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Université Clermont Auvergne - SIGMA Clermont
Institut Pascal, UMR 6602 CNRS/UCA/SIGMA Clermont, F-63171 Aubière, France





Abstract

This PHD is a part of a French project named AEROSTRIP, (a partnership between Pascal Institute,

Sigma, SAPPI, and Air-France industries), it is funded by the French Government through the FUI

Program (20th call). The AEROSTRIP project aims at developing the first automated system that

ecologically cleans the airplanes surfaces using a process of soft projection of ecological media on

the surface (corn). My PHD aims at optimizing the trajectory of the whole robotic systems in order

to optimally strip the airplane. Since a large surface can not be totally covered by a single robot base

placement, repositioning of the robots is necessary to ensure a complete stripping of the surface. The

goal in this work is to find the optimal number of robots with their optimal positions required to totally

strip the air-plane. Once found, we search for the trajectories of the robots of the multi-robot system

between those poses. Hence, we define a general framework to solve this problem having four main

steps: the pre-processing step, the optimization algorithm step, the generation of the end-effector

trajectories step and the robot scheduling, assignment and control step.

In my thesis, I present two contributions in two different steps of the general framework: the pre-

processing step, the optimization algorithm step. The computation of the robot workspace is required

in the pre-processing step: we proposed Interval Analysis to find this workspace since it guaran-

tees finding solutions in a reasonable computation time. Though, our first contribution is a new

inclusion function that reduces the pessimism, the overestimation of the solution, which is the main

disadvantage of Interval Analysis. The proposed inclusion function is assessed on some Constraints

Satisfaction Problems and Constraints Optimization problems. Furthermore, we propose an hybrid

optimization algorithm in order to find the optimal number of robots with their optimal poses: it is our

second contribution in the optimization algorithm step. To assess our hybrid optimization algorithm,

we test the algorithm on regular surfaces, such as a cylinder and a hemisphere, and on a complex

surface: a car.

Résumé

Cette thèse est une partie d’un projet français qui s’appelle AEROSTRIP, un partenariat entre l’Institut

Pascal, Sigma, SAPPI et Air-France industries, il est financé par le gouvernement français par le pro-
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gramme FUI (20eme appel). Le projet AEROSTRIP consiste à développer le premier système au-

tomatique qui nettoie écologiquement les surfaces des avions et les pièces de rechange en utilisant un

abrasif écologique projeté à grande vitesse sur la surface des avions (maı̈s). Ma thèse consiste à opti-

miser les trajectoires du système robotique total de telle façon que le décapage de l’avion soit optimal.

Le déplacement des robots est nécessaire pour assurer une couverture totale de la surface à décaper

parce que ces surfaces sont trop grandes et elles ne peuvent pas être décapées d’une seule position.

Le but de mon travail est de trouver le nombre optimal de robots avec leur positions optimales pour

décaper totalement l’avion. Une fois ce nombre est déterminé, on cherche les trajectoires des robots

entre ces différentes positions. Alors, pour atteindre ce but, j’ai défini un cadre général composant de

quatre étapes essentiels: l’étape pre-processing, l’étape optimization algorithm, l’étape generation of

the end-effector trajectories et l’étape robot scheduling, assignment and control.

Dans ma thèse, j’ai deux contributions dans deux différentes étapes du cadre général: l’étape pre-

processing et l’étape optimization algorithm. Le calcul de l’espace de travail du robot est nécessaire

dans l’étape pre-processing: on a proposé l’Analyse par Intervalles pour trouver cet espace de tra-

vail parce qu’il garantie le fait de trouver des solutions dans un temps de calcul raisonnable. Alors,

ma première contribution est une nouvelle fonction d’inclusion qui réduit le pessimisme, la sures-

timation des solutions qui est le principal inconvénient de l’Analyse par Intervalles. La nouvelle

fonction d’inclusion est évaluée sur des problèmes de satisfaction de contraintes et des problèmes

d’optimisation des contraintes. En plus, on a proposé un algorithme d’optimisation hybride pour

trouver le nombre optimal de robots avec leur positions optimales: c’est notre deuxième contribu-

tion qui est dans l’étape optimization algorithm. Pour évaluer l’algorithme d’optimisation, on a testé

cet algorithme sur des surfaces régulières, comme un cylindre et un hémisphère, et sur un surface

complexe: une voiture.
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Chapter 1

General Introduction

1.1 Problematic, Motivation and Objectives

This PHD is a part of a French project named AEROSTRIP, (a partnership between Pascal Institute,

Sigma, SAPPI, and Air-France industries), it is funded by the French Government through the FUI

Program (20th call). The AEROSTRIP project aims at developing the first automated system that

ecologically cleans the airplanes surfaces and their spare parts. AEROSTRIP system uses a process

of soft projection of ecological media recycled in real time: starch of wheat or corn could be used.

This process improves significantly the execution conditions of the cleaning task, e.g. stripping task.

Airplane stripping is an essential key task during a repair, an owner’s change, before repainting the

airplane to remove the corrosion from the surfaces or even to establish the aerodynamic quality of the

structures. Every year, 25 airplanes are cleaned in a center of the aeronautical maintenance of Air-

France Industries. The airplanes surfaces are traditionally cleaned by combining the intensive manual

sanding with the chemical cleaning. This method requires to move the airplane into a dedicated ven-

tilated shed where the operating costs are very high (of the order of 1MAC): the stripping ingredients

are still harmful (even after some real improvements of the biochemical strippers), several thousand

cubic meters of rinsing water are used to clean the paint waste and the strippers and a protection

equipment is mandatory for the operators. This method is dedicated to disappear eventually by virtue

of the regulations REACH [29] (which is a regulation of the European Union, adopted to improve

1
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the protection of human health and the environment from the risks that can be posed by chemicals,

while enhancing the competitiveness of the EU chemicals industry) and the directives of the aircraft

manufacturers. For instance, the AIRBUS A330 official textbook “Structural Repair Manual Airbus

A330” prohibits the use of chemical cleaning products on the composite because they may affect the

resin [110].

Six main types of stripping processes are applied during an aeronautical maintenance as presented

hereafter.

Manual stripping using grinding discs:

This process consists in removing the paint using a grinding tool as it is shown in Figure 1.1. This

method is expensive since it is time consuming, and needs a huge human effort. In addition, it gener-

ates a lot of dusts and it is subjected to severe working conditions. For example, the operator’s hands

are in the air holding a 7 kg sander tool. This frequent holding action causes a health problem: the

risk of Musculoskeletal disorders (MSDs) increases over-time. Usually 30% of the operators suffer

from long-term illnesses. According to Royal Aircraft Services, the manual stripping task requires the

Figure 1.1: Protection for the sanding phase

mobility of at least 4 people working full-time during a week to clean a small airplane. The efficiency

of this work is estimated a few square meters per hour.

Chemical stripping:

This technique has an average efficiency of 40
m2

h
. It consists in putting chemical products on the

surface and then rinsing it using water. This method is polluting, harmful for the technicians and very



1.1. Problematic, Motivation and Objectives 3

expensive. The chemical stripping is always a risk process to clean any surfaces: even the biochemical

products that replace the chemical products are dangerous. This stripping process generates volumi-

nous waste like rinsing water. In addition, the performance of the biochemical scouring agents, that

are used today, is less effective than the scouring agent that have been forbidden from being exploited.

This chemical cleaning process has additional costs: the immobilization of the airplane during one

week, the cost of the shed ventilation and finally the mandatory investment in forklift trucks and

equipments of complete protection of the operators.

Other methods of abrasives projection (plastic media, water):

Those methods are not intended to be used on composite materials because they are aggressive for

those sensitive materials.

Stripping by Flash lamp or Xenon:

This method uses a technology of pulsed light which entails the technical softening of paints. This

technique is badly adapted to industrial applications because they require high performances in time

and in costs. It is important to use a special head to guide the light for every stripped surface: stripping

huge surfaces become more difficult.

Stripping by laser:

This stripping by laser has the same concept as the lamp Flash, but the stripping process is easier to be

controlled using the laser. This technique is a promising but it is not common in the market because

the airplane could not be exploited before 5 to 9 years after being cleaned. Today, the research labo-

ratory of US Air Forces works on this type of stripping process, and it is applied only on the detached

part of the airplane. The cleaned coating is the only generated waste from the airplane: it is the main

advantage of the stripping by laser. However, this method does not improve the working conditions

of the operators since the manual stripping remains necessary.

Stripping by projection of ecological media:

An ecological stripping process has been recently proposed instead of the intensive manual sanding

stripping process or even the chemical cleaning process. The new stripping technique uses an eco-

logical media to strip airplanes: the starch of wheat or/and corn. Recently, this method appears in

the aeronautical maintenance sectors. This method is promising in terms of optimizing the opera-

tions, reducing the costs and increasing the safety of workers. However, this process is manual, so
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Figure 1.2: Stripping of the bottom part of the airplane manually.

AEROSTRIP project chose to strip airplanes automatically or semi-automatically.

1.1.1 Ecological stripping process using corn (AEROSTRIP):

Description:

The main objectives of AEROSTRIP project is to design and develop the first automated system to

strip airplanes and their spare parts using a closed ecological circuit. AEROSTRIP allies the perfor-

mance, the quality of cleaning, the prevention of the MusculoSkeletal Disorders (MSDs), the opti-

mization of the costs and the execution time. In AEROSTRIP, the objective is to attend less than 30%

of the global costs for the tasks of stripping/cleaning, and the execution time should be half reduced on

a complete airplane. AEROSTRIP project proposed a new stripping process which is semi-automatic,

inexpensive and eco-friendly: the corns are the media used by the stripper. A closed circuit is added

to recycle the corns. The closed circuit avoids dusts and reduces in a significant way the risks of

the MSDs. Moreover, the environmental costs are reduced since the excessive consumption of water

is stopped, the volume of waste is reduced, and the recyclable media are used instead of chemical

products.

AEROSTRIP develops two systems to strip airplanes. The first system is semi-automatic; it is usu-

ally used for the detached parts of the airplanes, e.g. nacelle, motors, etc. This system is considered

semi-automatic since an interaction between a robot and an operator exists: an operator should move



1.1. Problematic, Motivation and Objectives 5

the stripper along the surface. However, the second system is automatic and it is accomplished us-

ing a multi-robot system. In both systems, there are a stripping tool, a robot holding it and a me-

dia projection/recycled system. However, a crane holding the robot is added to the second system.

AEROSTRIP aims to validate its capacity of stripping 85% of the airplane surface automatically, 10%

semi-automatically, and 5% manually.

Figure 1.3: Stripping process

AEROSTRIP proposes a multi-robot system composed of mobile manipulators to strip surfaces. The

stripping tool is mounted on the end-effector of the manipulator. Figure 1.3 shows the stripping pro-

cess of an airplane.

Stripping tool and the media projection/recycled system:

The paint stripping mechanism involves the media bombardment (fine granules of corn) on the painted

surface at high pressure. Three parameters could be adjusted during the stripping process: the pres-

sure, the corn flow and the stripping tool speed. Those parameters must be carefully chosen since the

surface may not be stripped correctly as well as it could be damaged, e.g. a hole could be created on

the surface. The stripping tool is presented in Figure 1.4, it holds a camera that takes pictures of the

surface to be stripped. After bombardment the media is aspirated, it is recycled and it is used again

to strip the surface. The volume of the media is tested each time it is aspirated, if it is larger than a

given threshold it is thrown otherwise it is used to strip again. Five painting layers of different colors
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Figure 1.4: Stripping tool model: working principle

compose the aircraft of any AirFrance airplanes: those layers are shown in Figure 1.5. The camera

Figure 1.5: Painting layers

is used to make sure that the surface is stripped. A surface is considered well stripped if the primary

level appears. Several tests have been applied on a sample of an airplane door in order to evaluate the

influence of the pressure, the corn flow, and the stripping tool speed on the stripping quality. It was

proved that the more the corn flow is decreased, the more the cleaning is superficial, and the more the

tool speed is decreased, the more stripping is profound. Figure 1.6 shows the output of the camera

while stripping a sample of an airplane door: three different stripping processes have been shown.

It must be noted that the quality of the paint influences on the choice of the flow, the pressure and

the tool speed of the surface. A sample of the airplane could be used to estimate the previous three

parameters in order to fix them while stripping the whole airplane. However, an accurate fixed ap-

proximation is difficult: the painting layers could be influenced by the sun as well as the rain. Hence,

the painting layers on the top of the airplane are affected by those natural elements which is not the

case of its bottom part. Hence, the corn flow and the tool speed should be adjusted depending on
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(a) Bad Stripped surface (b) Mean stripped surface

(c) Well stripped surface

Figure 1.6: Painted surface (white paint) to be stripped.

the part of the airplane. For instance, the corn flow should be increased and the tool speed should be

decreased on the bottom part. However, the opposite case is applied on the top of the airplane.

The robot manipulator holding the stripping tool:

The chosen robot manipulator is the KUKA Light Weight Robot LWR 4+. This manipulator ac-

commodates the motors, gear units, brakes and sensors, as well as the necessary control and power

electronics for 7 axes. This robot can support a payload capacity of 7 kg. This LWR 4+ is 1.1785 m

(a) LWR 4+ (b) Workspace of the robot

Figure 1.7: KUKA LightWeight Robot LWR 4+

of height. The robot is shown in Figure 1.7a and its workspace is presented in Figure 1.7b. The shown

workspace is changeable with the torque limits, the joint positions, the collision and the self-collision
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avoidance. Before going further, I would like to add that, during my thesis, I provide a generic code

where the robot could be changed.

The crane holding the robot:

The crane shown in Figure 1.8a will hold the robot. The use of the crane is important when huge

surfaces should be stripped, which is always the case of airplanes. AirFrance has several type of air-

(a) Crane dimensions (A = 11.7m,H =
8.9m,C = 2.8m,D = 3.5m,E = 38m)

(b) Workspace of the crane

Figure 1.8: Crane that will holds the robot and its workspace.

planes shown in Table 1.1. As it is clear, the length varies between 22.67 and 72.72 m, the wingspan

between 24.57 and 79.75 m, and the height between 7.59 and 24.09 m. Since the robot can reach 1

m in best cases, a crane is required to cover the whole surface. The crane, shown in Figure 1.8a, is

the mobile platform that will be moved manually between various robot positions, it should hold the

KUKA arm. The crane can reach 30 m of length and 21 m of height. The stripping process is stopped

during the crane’s motion since the movement of the crane introduces some vibrations on the robots

that may affect on the robot behavior so on the stripping quality. Moreover, comparing the workspace

of the robot to the volume of the airplane, the crane should move the KUKA arm lots of times to cover

the whole surface. Though, the optimization of robots base placements and the movement between

them is important in order to decrease the cycle time of the stripping process. During the computing

of the number of robots base placements, the physical limits of the robot such as joint position and

torque limits, collision and self-collision avoidance, and even the stripping tool constraints, should be

taken into account: they influence on the robot workspace, so on the covered surface.
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Airplane model Length Wingspan Height
A318(111, 112, 121 et 122) 31,45 34,10 12,79
A319(111 à 115, 131 à 133) 33,84 34,10/35,80 11,76

A320(111, 211, 212, 214 à 216, 231 à 233) 37,57 34,10/35,80 11,76
A321(111, 112, 131, 211 à 213, 231, 232) 44,51 34,10/35,80 11,76

A330(200, 300, 300, 800, 900) 58,82/63,66 60,30/ 64 16,79/17,39
A340(200, 300, 500, 600) 59,39/63,6/67,9/75,3 60,3/63,45 16,7/16,85/17,28

A380-800 72,72 79,75 24,09
ATR 42(200, 300, 320, 500, 600) 22,67 24,57 7,59

ATR 72 27,166 27,05 7,72
Boeing 777 63,7 à 73,9 60,9 à 64,8 18,5 à 18,6
Boeing 787 56,7 60 17

Bombardier CRJ-1000 39,10 26,20 7,50
Bombardier CRJ-700 32,41 23,01 7,29

Embraer 170 29,90 26 9,85
Embraer 190 36,24 28,72 10,57

Embraer ERJ 145 29,87 20,04 6,75
RJ-85 Avroliner (AR8) 28,60 26,33 8,59

Table 1.1: Dimensions of Airfrance airplanes

1.1.2 Project consortiums

Three main entities are responsible of the project: SAPPI of SOFIPLAST, AirFrance industries and

SIGMA. PME SAPPI, R&D subsidiary of the group SOFIPLAST, have developed a solution to strip

airplanes using integrable vegetable media. Hence, they develop the stripping tool that must be used

as an end-effector of the robot during the airplane stripping. In parallel, SIGMA develops a system

controller that controls the movement of the robots between different poses in order to strip the whole

airplane. SIGMA also deals with the operator-machine interaction part since the human operator and

the robot will interact in 10% of the stripping process (semi-automatic part). However, AirFrance

industries supply samples of different airplanes to test the stripping process. In addition, AirFrance

industries test the stripping process on the whole airplane surface. The collaboration between the

three enterprises is shown graphically in Figure 1.9.

Two PHDs, and one post-doc have been funded by AEROSTRIP. The first PHD is tackling the small

system, and the second one is dedicated to the global system. The first PHD will aid in developing

/ implementing the multi-modal control scheme (inputs from multiple sensors) to aid the stripping

tool mounted on the robot to carry out the paint removal process and establish the success criteria.
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Figure 1.9: Graphical representation of the project lots

The second PHD, which is my PHD, aims at optimizing the trajectory of the whole robotic systems

in order to optimally strip the airplane. Since a large surface can not be totally covered by a single

robot base placement, repositioning of the robots is necessary to ensure a complete stripping of the

surface. However, in the post-doc, the goal is to develop a new image processing strategies to evaluate

automatically and on-line the performance of the airplane stripping. The multi-robot coordination

problems have been also tackled. A new method that allows a team of robots to deploy themselves

around a target object is developed, e.g. an airplane to be stripped.

To attend the optimal trajectories of the mobile platforms, two parameters have important influence:

the surface to be covered (airplanes), and the workspace of the robot. For instance, giving a curved

surface to be stripped, the position of the mobile platform with respect to this surface influences on

the percentage of the stripped surface. Eventually, the relationship between the shape and the robot

position is widely dependent. Due to this dependency, a general framework is proposed in Section 1.2.
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1.2 Thesis approach

Since large surfaces can not be totally covered by a single robot base placement, multi-robot sys-

tem is required. Hence, a repositioning of each robot is necessary to ensure a complete stripping

of the surface. Each robot of this system is hold by a crane which is a mobile platform. The

robots as well as their cranes have some collective behaviours. Multi-robot systems are known by

their benefits in the industrial field. Let enumerate some of their advantages: multi-robot systems

accelerate the task completion [33] (increase the performance), improve the robustness and gave

more accurate solutions [132], they even execute the impossible tasks for single robots [131], etc.

Hence, multi-robot systems were used in many domains such as intelligent security [83], environ-

ment monitoring [38, 117], humanitarian de-mining [71], search and rescue [95], surveillance [87],

health care [116], stripping [57, 69].

To find the optimal trajectories of the mobile platforms, we propose to find the optimal number of

robot base placements required to cover the whole surface. Then, the robots of the multi-robot system

should be distributed between the different optimal robot base placements and the robot trajectories

between those poses should be computed. Those two problems could be solved by following our

approach detailed in Subsection 1.2.1.

1.2.1 General framework:

Our thesis approach is presented in Figure 1.10. This approach is composed of four main steps: the

pre-processing step, the optimization algorithm step, the generation of the end-effector trajectories

from each pose step and the robots scheduling, assignment and control step.

The pre-processing and the optimization algorithm steps find the the optimal number of robot base

placements required to cover the whole surface. The generation of the end-effector trajectories from

each pose step is required to strip the surface from each robot base placement. The robots scheduling,

assignment and control step is used to assign the robots of the multi-robot system to the different

optimal robot base placements and find their trajectories. Let us explain each step. The pre-processing
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Figure 1.10: General framework of my PHD

step aims at discretizing the volume around the object to be stripped: a set of discretized points is

determined. Hence, the constraints projection on the surface from each discretized point consists in

computing the reachable part of the surface. This computation is accomplished using the constraints

projection function taking into account the different robot constraints: each discretized point will

have a value describing the percentage of the covered surface from this point. A subset of favourite

base placements is selected from the set of discretized points based on the coverage percentage.

This computed set is used in order to find the optimal number of robots with their optimal base

placements required to cover the whole object: it is the optimization algorithm step. Hence, the end-

effector trajectories are generated from each robot base placement (the generation of the end-effector

trajectories from each pose step). Finally, the robots scheduling, assignment and control step of

the general framework solves two different sub-problems, namely an assignment sub-problem and a

control sub-problem. The assignment sub-problem selects which optimal poses should correspond to

each robot in order to generate their trajectories from their initial positions. Once the robot trajectories

have been generated, we apply a controller to make the robots follow them.
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In this thesis, we focus on finding the optimal number of robots with their optimal poses (the op-

timization algorithm step): it is the general problem presented in Section 1.2.2. Then, we present

our contributions that are principally related to this step. However, the trajectories planning of the

end-effector and the robots scheduling, assignment and control steps are quickly tackled in this thesis.

Though, we show the state of the art of the trajectories planning of the end-effector step in Chapter 2

and we develop the formulation of assignment problem in Appendix E.

Figure 1.11: The state of the art of our general framework

The proposed general framework, shown in Figure 1.10, is related to four different state of the art

shown in Figure 1.11. Though, this thesis provides surveys on the robot constraints projection on

the surface, on the optimization of the number of robots, on the robot base placement for a complete

coverage and on the trajectories generation of the end-effector on the surface.

The constraints projection on the surface consists in computing the reachable part of the surface from

a given robot pose: the robot workspace is required. The determination of the robot workspace is

critical, so we present some existing methods used to compute the workspace. In this thesis, Interval

Analysis is used to compute the robot workspace for a reason detailed in chapter 2. However, Interval

Analysis suffers from pessimism which is an overestimation of the solutions. Hence, our first contri-

bution consists in reducing the pessimism of Interval Analysis. Moreover, this new tool was used to
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compute the set of joint angles of the robots that respect a set of constraints.

The optimization algorithm step involves two different state of the art: the optimization of the number

of robots and the robot base placement for a complete coverage. This optimization step requires

the workspace to compute the reachable part of the surface. The intersection between the robot

workspace and the surface is used to compute this reachable part of this surface. Since we have the

set of joint angles and not its correspondent workspace, we compute the reachable part of the surface

using different shapes of workspace (spherical, semi-spherical, elliptical). Furthermore, based on this

reachability, we propose an hybrid optimization algorithm to find the optimal number of robots with

their optimal poses to totally cover a surface: the second contribution of our work.

The state of the art related to trajectories generation of the stripping tool on the surface is inspired from

the trajectories generation of the spray painting robot. The same algorithms could be used on both

applications since they are close. We wrote a survey named ”Automated path generation of spray

painting robots: a review” that is submitted to Robotics and Computer-Integrated Manufacturing

journal. A part of this survey is presented in Chapter 2.

1.2.2 General problem

The general problem aims to find the optimal number of robots N and their base placements required

to totally cover the surface. The optimization relies on two parameters: the shape of the surface to be

stripped, and the robot workspace. Defining T as a set of robot poses T = {Ti ∈ SE(3),1 ≤ i ≤ N},

the coverage problem can be formulated as follows:

min
N,T

f (N,T,S)

Subject to g(N,T,S) = 0

h(N,T,S)≤ 0

(1.1)

where:

f (N,T,S): is the optimization function,

S: is the surface to be stripped,
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g(N,T,S) =
⋃N

j=1C(S,T j)− λS: is the function to test if the surface is λ% covered (λ% is the

percentage of the covered surface),

h(N,T,S): is the set of additional constraints.

In our problem, we should optimize the number of robots N, so f (N,T,S)= N. It can be noticed that

the task can be achieved using from one robot to N robots. Obviously, when the number of robots

increases the coverage task can be achieved faster. If one robot is only used, it has to be moved N

times while if N robots are used then the task can be achieved at once without moving the robots.

Additional constraints can be taken into account during the optimization using h.

1.3 Manuscript structure

The manuscript is organized in the following way. In Chapter 2, we present the state of the art

related to the robots constraints projection on the surface, the optimization of the number of robots,

the robot base placements for complete coverage and the path generation of spray painting robots.

In Chapter 3, we present the motivation of exploiting Interval Analysis in our context and how it

is used to solve Constraint Satisfaction Problems and Constraint Optimization Problems. A new

method to reduce the pessimism based on the convex hull properties of BSplines and the Kronecker

product is initiated in this chapter. This method is assessed on three different scenarios using three

different robots: a 2D robot, a planar robot and a 3D robot. In Chapter 4, the robot base placement

is deeply studied to reduce the cycle time and increases the coverage task accuracy. We develop an

optimization strategy to find the optimal number of robots with their optimal poses required to cover

the entire surface. The optimization strategy is finalized by an hybrid optimization algorithm that is

assessed on different type of surfaces (a hemisphere, a cylinder and an action car) and using different

workspaces (spherical, semi-spherical and elliptical). Finally, in Chapter 5, we present a summary

about my thesis with some future works.



Chapter 2

State of the art

The general framework, presented in Figure 1.10 in Chapter 1, shows the state of the art related to:

1. The robot constraints projection on the surface (Section 2.1),

2. the optimization of the number of robots (Section 2.2),

3. the robot base placement for a complete coverage (Section 2.3),

4. the trajectories generation of the end-effector on the surface (Section 2.4).

The constraints projection on the surface consists in computing the reachable part of the surface from

a given robot pose: the robot workspace is required. The determination of the robot workspace is

critical, so we present some existed method used to compute the workspace. Then, we present the

state of the art of Interval Analysis which is the mathematical tool that we use to compute the set of

joint angles respecting a set of constraints.

Moreover, the optimization of the number of robot and their poses is inspired from Art Gallery Prob-

lem and camera base placement problems: the state of the art of each problem is presented in this

chapter. Art Gallery Problem consists in computing the minimal number of guards to monitor a

gallery. However, the camera base placement problems distinguish between two sub-problems: how

to place a given number of cameras to optimize the coverage of a surface (FIX problem), or how to

compute the minimal number of cameras required to totally cover a surface (MIN problem). Even-

tually, we are interested in MIN problem. Further, we show the analogy between our problem (the

16
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optimization of the number of robots with their poses to totally cover a surface) and the combination

between Art Gallery problem with camera placement problems.

Besides, the state of the art of a robot base placement for a complete coverage is provided. This

state of the art consists in finding the robot base placement that maximizes the reachability of a given

surface. Several works tackled this problem and a small review is presented in this Chapter.

Finally, the state of the art of path generation of spray painting robots is presented. The painting

process was the first automated process that generates the end-effector trajectories on a surface. We

assumed that path generations in the painting and the stripping processes share the same concepts.

Though, we considered that the same algorithms could be applied for both processes to generate

the end-effector trajectories. The painting process was the source of our inspiration to the proposed

approach developed in Chapter 1.

2.1 Robot constraints projections on the surface

The robot constraints projections on the surface is the determination of the reachable part of the

surface from a given pose. The reachable part is the intersection between the robot workspace and

the surface. During this computation, the different robot constraints should be taken into account:

robot stability, robot dynamic and kinematic constraints, singularity avoidance, etc. Each robot is

characterized by its workspace. In the most of the cases, the workspace of a manipulator is spherical

when none of the constraints is considered. However, this workspace becomes more complex when

the number of constraints increases. In this section, we present the different methods used to compute

the robot workspace and their disadvantages. After that we introduce Interval Analysis: the chosen

mathematical tool used to compute the robot workspace. Some other applications of Interval Analysis

in robotics are also discussed.
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2.1.1 Robotic Workspace

The workspace of a manipulator robot is the space that can be reached by its end-effector taking into

account a set of constraints. Numerous of analytical and numerical methods have been proposed to

compute a manipulator’s workspace [72, 73, 104, 135]. It is hard to obtain the illustration of the ma-

nipulator workspace when the number of degree of freedom of the robot increases. Several methods

exist in order to estimate the workspace in the Cartesian space.

Analytical methods: The analytical methods provide workspaces that are closed to the real workspaces.

However, the computation becomes complicated when the degree of freedom of the robot increases.

This is due to the non-linear equations and the matrix inversion involved in robot kinematics. More-

over, only certain specific manipulators could be handled by the analytical methods [2]. The analytical

methods are not general and they are not practical. For that, we will not develop those methods in this

thesis: the articles [52, 126, 135] give more details about computing the workspace of revolute joint

manipulators using analytical methods.

Numerical methods: Those methods are general since they can be applied to most of the manipula-

tors robots: they are relatively simple and more flexible. The simplicity and the flexibility come from

the probability methods that don’t involve the inversion of the Jacobian. However, those methods

have an approximation boundary of the workspace. This is insufficient while computing the reach-

able part of the surface since some points may be unreachable and inside the external boundary of the

workspace. For that, we will not develop the numerical methods in our thesis. Nonetheless, for more

information about this method please refer to those articles [72, 77, 104].

Discretization methods: The discretization methods aim at finding the workspace volume. Those

methods consist in discretizing the workspace into nodes using a predefined discretization step [103].

Then, a test is applied on each node to judge if it belongs to the workspace. This test uses the inverse

kinematics and the different robot constraints. This method is suitable for all robots, but its accuracy

depends on the discretization step. Moreover, an accurate workspace needs a small discretization step

and the computation time increases exponentially with the number of the discretized nodes.

Numerical methods based on Interval Analysis: They are an alternative to discretization with the

aim to address the aforementioned drawbacks (the computation time). Interval Analysis provide guar-
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anteed workspace in reasonable computation times [48]. The computation using Interval Analysis is

guaranteed since the rounding errors are taking into account and all the feasibility of all poses inside

the spherical workspace of the robot is explored. In addition, numerical methods based on Interval

Analysis are able to deal with uncertainties.

In the stripping process, huge surfaces with complex shapes are considered: an accurate robot’s

workspace is required in a reasonable computation time. Though, we propose using Interval Analysis

to compute workspace since it deals with uncertainties and it provides guaranteed workspace in a

reasonable computation time. Hence, we will present the state of the art of Interval Analysis in the

section below.

2.1.2 Survey on Interval Analysis

Interval Analysis, abbreviated IA, is a mathematical tool that deals with solving numerical problems

using computers [91]. Interval Analysis will be detailed in Chapter 3. IA allows to find solutions

as finite domains instead of specific values which is a good advantage when the unknown variables

are physical parameters. IA guarantees the solutions since it takes into account numerical round-off

errors. IA is interesting since it deals with uncertainties that are unavoidable due to the manufacturing

tolerance of the robots. The consideration of the uncertainty is essential in many robotic applications:

spatial or medical robotics domain should manage with the uncertainties to ensure the accuracy of

the results. Numerous other issues are addressed using IA such as workspace analysis [17], robots

performance comparison [19], calibration [31] or robust control [34].

IA is used to solve a static vehicle localization problem by considering it as a set-inversion prob-

lem in[81]. In [61], IA is used to estimate the position of a satellite after an assumption that the

positioning problem is a constraint satisfaction problem with continuous variables. This assumption

is added to deal with non-linear state estimation. Jaulin proved that the localization of an underwater

robot can be considered as a continuous constraint satisfaction problem and IA is very efficient to

solve it [62, 65]. He also showed that the efficiency of IA for solving the simultaneous localization

and map building (SLAM) problem: SLAM problem is formulated as a constraint satisfaction prob-

lems [63]. Some experiments have been conducted in the context of to the localization of a submarine
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robot from the GESMA (Groupe d’Etudes Sous-Marines de l’Atlantique): the Daurade robot is used

for an experiment in the Douarnenez bay, in Brittany (France) [75]. In this approach, the map is rep-

resented by a binary image for a submarine robot localization. The advantage of this new approach is

to represent even unstructured maps: it is efficient in real environment with lots of outliers. A combi-

nation of the best of the probabilistic approach and interval strategies to solve the global localization

problem of underwater robots is proposed in [97]. The proposed method reduces the uncertainty

into a specific limited region. Moreover, separators are used to solve the localization problem of a

robot with sonar measurements in an unstructured environment [32]. The Minkowski sum and the

Minkowski difference concept are used to create the separators and to facilitate the resolution.

Several works chose Interval Analysis to compute the robot workspace. Merlet used Interval Anal-

ysis to compute the workspace of a 6 degree of freedom parallel robot [88] and to compute all the

geometries of a simplified Gough platform [89]. Chablat et al. compute the dexterous workspace and

the largest cube enclosed in this workspace using IA [17]. In parallel, they developed an algorithm to

determine the largest regular dexterous workspace enclosed in the Cartesian workspace [18]. Merlet

solve the forward kinematics of parallel robots taking into account a part of IA advantages: all the

solutions are provided, the computation time is reduced, the different physical constraints of the robot

are added, and the uncertainties in the robot’s model are taken into consideration. All the possible

design of parallel manipulators that satisfy a set of compulsory requirements (taking into account

manufacturing errors) are computed in [53]: this set of solution could not be found using the classical

optimal design methodologies. The wrench-feasible workspace (WFW) of n−parallel robot is com-

puted using an IA approach [47, 48]. IA methodology provides better results since full-dimensional

sets of poses are returned (here boxes). However, the discretization methodology returns a discrete

finite set of individual poses. In addition, the computation time required to test all the poses using the

discretization methodology is higher than the computation time needed using the IA approach.
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2.2 Optimization of the number of robots

In this section, we present the state of the art of two types of optimization problems for coverage tasks:

searching for the optimal number of cameras required to cover a surface and finding the optimal num-

ber of guards to monitor a gallery. Those two state of the arts are our inspiration in order to optimize

the number of robots and their poses required to cover the whole surface. Moreover, the optimiza-

tion of the number of robots with their poses could be considered as an extension of a combination

between Art Gallery Problem and camera base placements. Over the years, Art Gallery Problem has

been studied in robotics, optimization, vision computational graphics, etc [67]. For instance, it was

used to optimally position TV cameras in a closed room, to distribute the lighting sources in a small

room, or to find the positions of different radar stations in a mountain [99]. It is also used for military

goals especially during infiltrating an area and clearing it of threats. In the opposite side, optimal

cameras and sensors placement have been deeply studied the last decades.

2.2.1 Art Gallery History

Chvatal was the first to tackle this problem in 1973 [28, 39]. His goal was to find the smallest

number of guards needed to cover the whole polygon composed of n-edges. A polygon is generally

composed of n vertices and n edges, where the edge is a line joining two vertices. Chvatal assumed

that n/3 guards are enough to cover a n-edged polygon. Fisk proposed a new algorithm to solve

Art Gallery Problem because the concerned surfaces to monitor became more complex (it is Fisk

assumption) [39]. The proposed technique consisted in dividing the polygon into triangles. Then, all

the vertices were coloured using three different colors: each vertex of a given triangle must have a

different color. Finally, each color had a defined number of vertices. The minimal value of those three

numbers represented the number of guards required to cover this polygon. Kahn et al. were the first

to treat orthogonal art galleries in 1983: they established the lower bound to n/4 and they assumed

that n/4 guards are required to monitor the whole orthogonal surface (see Figure 2.1). They divided

the surface into quadrilateral shapes and used the colors concept to solve the problem. In other

words, they used Fisk assumption. Rectilinear star-shaped polygons were partitioned into convex
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Figure 2.1: Orthogonal comb polygon [109]

quadrilaterals using a linear algorithm proposed by Sack and Toussaint [107]. This algorithm has

been used by Edelsbrunner et al. to partition the polygon into a subclass of star-shaped polygons and

L-shaped pieces and then one guard is located on each kernel: it is an O(nlogn) algorithm. O’rourke

established a new proof to confirm that n/4 guards should be used to monitor the whole surface [102].

Sack and An proposed an algorithm to judge if a polygon can be covered by one guard on one vertex.

They also developed another O(nlogn) algorithm to decompose any rectilinear polygons into convex

quadrilaterals and locate n/4 guards on the surface. In 1984, Franzblau and Kleitman proved that the

minimum set of guards required to cover a rectilinear monotone polygon could be computed using an

algorithm of O(n2) complexity [40]. Sack and Toussaint published an extensive paper on the guard

placement in rectilinear galleries in 1988 [108]. In 2007, important results were reached by locating

guards on the vertices [30]. A randomized art gallery problem has been appeared over the years.

González-Banos were the first to propose the randomized art gallery for determining the set of the

optimal locations that increases the efficiency of the visual sensing [45]. Recently, randomized art

gallery problem is applied on camera placement problems which is developed hereafter.

The camera placement is an extension of Art Gallery problem. We can consider that the optimization

of the number of camera and the optimization of number of robots required to cover the surface are

two similar problems. However, the field of view in the first problem is the camera view, and it is the

reachable part of the surface in the second problem. In the next subsection, we will present a small

survey on the camera placement problem.
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2.2.2 Camera placement application

In this section, we present the two sub-problems of the camera base placement problems (MIN and

FIX), and we present the standard algorithm used to solve MIN sub-problem. It is important to know

that this paragraph presents the information required to understand our work. To get more informa-

tion about the different algorithms used to solve FIX and MIN sub-problems, for more information

please refer to the survey on the different optimization algorithms used to solve the camera placement

problem [36, 142].

FIX consists in optimizing the placements of a defined number of cameras to maximize the coverage

of a surface. It can be formalized as follows:

maximize f (x1, ...,xNp)

given
Nc

∑
i=1

bi ≤ m, x j,bi are binary,
(2.1)

MIN is the computation of the optimal number of cameras required to totally cover the surface. It can

be formalized as follows:

minimize
Nc

∑
i=1

bi

given f (x1, ...,xNp)≥ p, x j,bi are binary,

(2.2)

The target space of the camera network can be discretized into a set of possible camera configurations

(yaw and pitch angles, locations). Similarly, the target space of the cameras is discretized into finite

space which can be 2D or 3D, object positions and orientations, or even a combination of all the

above spaces. The discretized camera space is denoted as {ϒi : i = 1, . . . ,Nc} and the target space as

{Λ j : j = 1, . . . ,Np}. {bi : i = 1, · · · ,Nc} and {x j : j = 1, · · · ,Np} are two sets composed of binary

variables. bi = 1 means that a camera is placed or selected at ϒi. x j = 1 indicates that an object at the

position Λ j can be observed by the selected camera.

Greedy algorithm was suggested for solving the MIN problem. Several algorithms have been pre-

sented to solve FIX problem: the greedy heuristics algorithm, the random sampler algorithm based on
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marginal distribution, the metropolis sampling algorithm, the simulated annealing algorithm. More-

over, any solver of FIX problem (mentioned above) could be applied on a set of values containing

different number of cameras in order to be a MIN solver. After that, the solution is the element of the

set that represents the minimal number of cameras that cover totally the surface. Clearly, it is very

difficult to find the optimal solution using this methodology. In addition, their relevance is limited by

the complexity of the shape to be covered. For all those reasons, we propose an extended optimiza-

tion algorithm to find the optimal number of robots and their base placements. More details about this

strategy could be find in Chapter 4.

2.3 Robot base placement for complete coverage

In this section, we present the algorithm used to optimize one single robot base placement and we

present some recent works that optimize the poses of a set of robots for coverage tasks. The surface

coverage using robots is a common problem divided into two cases according to the robot state during

the task: the robot could be either static or mobile. For the static case, the robot is positioned at a fixed

point to cover a surface, e.g. to achieve painting, stripping, or sand-blasting tasks [9, 105, 125]. In the

mobile robot case, the robot can move to achieve its task like in de-mining, inspection and agricultural

fields coverage. The optimal paths of the mobile robots needed to cover an environment are computed

using some algorithms presented in the works presented in the following papers [1, 11, 37, 101].

Recently, a third type of coverage problem is defined when the surface to cover is larger than the

robot’s workspace. In that case, the surface can not be covered from one given position and the

coverage problem consists in repositioning the robot(s) under the assumption that the coverage task

can not be done continuously and needs to be stopped while repositioning the robot. For instance, the

stripping process is one of the third type of coverage problem. The stripping process may be applied

on large objects with complex geometric shapes. Hence, the stripping task should be applied from

several positions to cover the whole surface: an appropriate set of robot’s base placements of the

multi-robot system should be determined. Searching for the set of robot’s base placements is called

the base placement problem. Moreover, the set of robot’s base placements should be optimized in
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order to increase the robots performance and reduce the cycle time. Some literature are available for

finding an appropriate base placement for one robot in underwater environments [118, 119] and in

manufacturing environments [3, 136].

Generally, the robot workspace is required to find the optimal robot base placement for a given task.

The robot’s capabilities are usually captured using a discrete model of the reachable space. For in-

stance, the reachable space of a humanoid robot is computed using a randomized sampling in [50].

The directional structure of the workspace is introduced based on a workspace discretised into a set

of cubes in [139]. Mitsi et al. considered that the relative position of the robot to the trajectories

of the end-effector influences on the robot performance [92]. They proposed a hybrid optimization

algorithm that combined Genetic Algorithm with quasi-Newton method and Constraints Handlings

methods. The goal of this algorithm was to find the optimal base placement of a single robot allowing

to avoid the singular configuration, and taking into account the discrete end-effector positions. A

spherical sample point is embedded in each cube, and it is marked as reachable if an inverse kinemat-

ics solver finds a solution. The proposed model was used to find positions for mobile manipulators

in [140]. In the latter work, the approach is evaluated on a humanoid robot in door opening and even

grasping tasks. Furthermore, it has been used for stance selection for humanoid grasping tasks [14].

Yang et al. proposed a new method to find the appropriate manipulator base placement [136]. This

strategy avoids the use of the inverse kinematic methodology: the computation of the inverse kine-

matics problems is still a challenge and it limits the flexibility of the method. The proposed strategy

consists in defining a cost function to impel the workspace of a manipulator towards the target points,

considered as critical points. In parallel, the constraints are applied to prove the reachability of the

end-effector to those critical points. Besides, some numerical methods are proposed to compute the

workspace of a manipulator robot. The generated workspace is used for the optimization of the robot

base placements towards a work-cell containing the critical points. Genetic algorithm is used to op-

timize the robot base placement using an objective function taking into account the distance between

the robots and the work-cell [3]. In milling domains, the robot pose maximizing its manipulability

is chosen using genetic algorithm [129]. The best docking position of an Underwater Unmanned

Vehicle is computed using a genetic algorithm after formulating the problem as an optimization prob-

lem [119]. An intersection between a 2D ground plane and the inverse of the predefined reachability
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representation is used to compute the robot base pose in [128]. The benefit of the direction-selective

performance indexes and the task-dependent during the computation of the optimal base placement

for a robot has been proved in [13]. An orientation-based reachability map has been proposed in [35]

to deal with the robot capability: the robot base placement could be optimally positioned according

to the task’s type.

The above base placement optimization approaches were extended to deal with multiple industrial

robots for the coverage tasks. Hassan et al. proposed a new strategy to distribute the work between

robots for coverage tasks assuming that a reasonable number of robots is intuitively chosen based

on the size of the object [54, 56]. The strategy consists in finding an optimal base placement and

the visiting sequence of the base placements by each robot. A combination between the simulated

annealing and the genetic algorithm has been used to solve this program.

In the next section, we will present the state of the art of path generation of spray painting robots. The

algorithms that are developed in this section could be used to generate the trajectories of the stripping

tool on the surface. Path generation for the stripping robot is not a contribution of this thesis, but

we are presenting some algorithms that could be solutions. Section 2.4 is a part of a survey that we

have recently submitted to “Robotics and Computer-Integrated Manufacturing” journal. This survey

was our inspiration for our approach presented in Chapter 1 since the painting process was applied

on small surfaces and the base placement of the robot was not studied. Our proposed approach is

dedicated for every coverage process, like stripping, painting, etc.

2.4 Path generation of spray painting robots

The first painting robot was developed in 1967 [127]: it painted wheelbarrow boxes passing along a

conveyor. The painting process had two steps: a recording step and a playing step. In the recording

step, also named learning step, a human operator defined the spray gun trajectories, e.g. the end-

effector trajectories, that allow to coat the whole surface to be painted. However, in the playing step,

the robot reproduced the prerequisites trajectories to paint similar surfaces. This painting procedure

is known by different names: the manual tool planning, the manual self-learning programming [42],
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the robot teaching procedure [138], or the teaching method [24]. In the latter approach, the painting

quality, the cycle time and, the paint waste strongly rely on the human operator skills. Despite the

employees experience, the satisfactory trajectories are obtained after several attempts in the recording

step. Thus, the cycle time of the recording step increases, and the human operator is more exposed

to the risks of chemical products in the paint substances. Those considerations have led to diverse

alternative approaches for automated path planning of spray painting robots. The automated painting

task is challenging because the generated trajectories:

— rely on the surface shape, on the spray gun model and on the flow paint distribution model;

— may influence on the painting process criteria: the cycle time, the paint waste and/or the paint

uniformity;

— must satisfy several constraints such as the kinematic and dynamic limits of the robots, the gun

orientation's constraints [113], the reachability, the material waste, the surface's temperature

and the type of material deposition pattern (raster or spiral) [70].

In 1991, the first automated algorithm for painting tasks was proposed. Goodman and Hoppensteradt

dealt with the offline programming of painting robots task, and proposed a general framework solving

the latter task on trivial planar surfaces [46]. After that, Suh et al. developed a model representing

the paint flow distribution, and a new path planning algorithm named Automatic Trajectory Planning

System (ATPS) to compute the optimal trajectory of robot end-effector. In the ATPS, the painted

surface was considered as a set of small planes [122]. In 1996, Hertling et al. demonstrated that, for

complex surfaces, the difference between the angle of the spray gun and the normal of the surface is

affecting the painting distribution on the surface. Thus, they introduced a new concept called the zero

paint flow [59]. In 1997, N. Asakawa developed a new path generation algorithm. This algorithm

chooses painting points on the surface and then creates a trajectory by joining those points under the

assumption that the spray gun is always perpendicular to the surface and the distance between the gun

and the surface is always fixed. In 1997, Antonio et al. chose Cauchy curves to model the paint flow

distribution, and developed a framework taking into account the paint uniformity. However, in 2002,

Chen et al. proved that Cauchy curves model is not suitable for free-form surfaces, and they proposed

a new trajectory generation in order to achieve uniform paint thickness [26]. Chen et al. proved that

the gun velocity influences on the paint uniformity [20]. Therefore, they proposed a new trajectory
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generation algorithm that optimizes all the parameters affecting the paint uniformity: the surface

model, the position the orientation and the velocity of the spray gun, and the paint flow model. Li

et al. proposed a new trajectory optimization algorithm using Genetic Algorithm [82]. However, Lu

generated the gun trajectory for the cylindrical (or almost cylindrical) surfaces, and assumed that

their algorithm could be applied on surfaces with high curvatures [86]. In parallel, Zhou and Ceng

developed path generation algorithms for spherical surfaces [143].

The surfaces to be painted become more complex over time, and as a result the automated painting

process become more difficult. To deal with complex surfaces, Chen et al. proposed a partitioning

of the surface into several simple surfaces, called patches. The path generation algorithm is applied

on each of those patches to define the paint gun trajectories [20, 22]. Some segmentation strategies

dedicated for complex surfaces could be found in [22, 24, 115]. Nowadays, most of painting path

planning techniques are divided into three main steps and may consider several inputs as it is shown

in Figure 2.2.

In this state of the art, we will present the object model, the mesh segmentation algorithms, the path

planning algorithm, the finalization (the integration techniques) and the comparison between different

algorithms.

2.4.1 Object model

The object meshes are modelled using a triangular grid model in common STL (STereo Lithogra-

phy): the Delaunay triangulation. Delaunay triangulation is a type of CAD (Computer-Aided Design)

models. CAD softwares are used by architects, engineers, drafters, artists, and others to create pre-

cision drawings or technical illustrations. CAD softwares can be used to create two-dimensional

(2-D) drawings or three-dimensional (3-D) models. It is usually divided into two main groups: para-

metric surface’s models (see Figure 2.3a) and meshed/tessellated CAD models (see Figure 2.3b).

Several parametric representations exist to represent the covered surface, e.g. Bézier, B-splines,

Nurbs, etc. Those representations are mathematically accurate, but they don’t deal with complex

surfaces [27, 22, 114]. For this reason, the surfaces are usually represented using meshed/Tessellated

CAD model. The triangular grid model in common STL (STereo Lithography) is the most common
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Figure 2.2: Main steps of recent painting path planning techniques.

(a) Parametric CAD representation of a
bumper surface

(b) Tesselated CAD surface

Figure 2.3: CAD representations of surfaces [25]

meshed CAD model, it is called the Delaunay triangulation. This representation is usually used to

present free-form surfaces [6]. In this representation, the points of the surface cloud are joined using

edges, and small uniform triangles facets, are generated to model the surfaces [4]. Despite modelling

errors are introduced when the object surface is approximated by a set of triangles, those triangles

make the construction of the neighbour relationship simpler as presented in [114, 6]. Moreover, those

errors can be decreased by using finer mesh and this representation becomes more and more familiar

because the computer processing power is always on the increase, giving more accuracy.
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2.4.2 Mesh segmentation methods

In the automated path generation, the mesh segmentation methods are used to decompose the surfaces

into smaller surfaces (called patches) that have uniform geometrical properties. Hence, each patch can

be painted using the same strategy.

Sheng et al. developed first the combinatorial algorithm to generate different paths on simple sur-

faces [114]. Hence, a surface segmentation step, also named surface partitioning, is added before the

path planning in order to manage with compound surfaces [115]. Sheng et al. segmentation algorithm

deals with complicated multiple patch surfaces. However, the complicated surfaces must have low

curvatures because the segmentation algorithm analyses the surface as a plane. In recent works, Bo

et al. choose to first proceed to normal-based partition and then to topological-based partition [12].

This technique is important since it avoids the different curvatures before the projection of the surface

on a 2D plane.

Xia et al. proposed a new segmentation method [134] to deal with complex surfaces in order to

optimize the paint uniformity, the paint waste and the cycle time: it is the combinatorial algorithm.

Xia et al. added a second step to the combinatorial algorithm: it is called Segmentation Based On

Obstacle Avoidance (SBOOA). SBOOA reduces the cycle time and the painting waste by segmenting

each patch of the surface containing obstacles, e.g. holes. The suitability of SBOOA is evaluated

through the ratio between the percentage of the holes in the surface and the whole surface to be

painted. If this ratio is greater than a given threshold, the paint waste is not acceptable and SBOOA

algorithm is required, otherwise SBOOA segmentation is inessential.

2.4.3 Path planning algorithms

After the mesh segmentation into several sub-surfaces, a path planning algorithm is launched to gener-

ate the spray gun trajectories on each sub-surface. Those trajectories are defined by a set of successive

points. Each point describes the position and the orientation of the spray gun in a Cartesian frame.

Those points are joined to create trajectories in such a way that those trajectories have the less num-
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ber of turns: the minimal cycle time is reached [23]. Four main algorithms exist: the combinatorial

algorithm proposed in 2000 by Sheng et al. [114], the offset curve planner proposed in 2008 [8], the

incremental trajectory generation [6] and the trajectory planning [123].

2.4.4 Finalization: Integration techniques

After the surface segmentation and the trajectory generation, a connection between the generated

paths on each patch is required. Hence, an integration between the bordering paths is the solution.

Thus, the generated trajectories on each patch must be stitched taking into account the paint unifor-

mity. Chen et al. were the first one to tackle this problem in [21]. This algorithm is enhanced in [22],

taking into account all the intersection areas, and not only the intersection line. In the same patch,

the overlap distance and the gun velocity values do not change. However, in the intersection area,

those values are changed in order to attend the paint uniformity. Thus, the pattern search method

(optimization algorithm) is used to calculate those values in the integration zone (zone joining two

patches).

Finally, in [20], the same algorithm is used as in [22]. However, Chen chose the steepest-descend

algorithm for the optimization instead of the pattern search method.

2.4.5 Comparison between different algorithms

Surface type Incremental trajectory generation Combinatorial algorithm Offset curve planner
planar surface . + -
curved surface + - .

surface with holes . + -
Final result + 2+ 2-

Table 2.1: comparison table between the three algorithms based on the paint thickness variations (+:
best result, .: acceptable result, -: worst result)

In this section, we compare the different path generation algorithms, developed by Andulkar and

Chiddarwar [4], Chen and Xi [20], Atkar et al. [9] and Tang and Chen [123], based on our under-

standing as well as on the results of the state-of-the-art. Those algorithms are analysed based on the

paint uniformity which is computed at the end of the painting process. Their behaviour on different
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type of surfaces is also considered, e.g. the planar surface, the curved surface, and the surface with

holes. This comparison is shown in Table 2.1 [4, 5, 9, 115]. A lack of information in the experiments

prohibit some comparisons, especially with Trajectory planning algorithm.

For instance, the trajectory planning algorithm shows good results on free-form surfaces. However, it

has not been tested on other type of surfaces. Hence, the trajectory planning algorithm could not be

compared with other algorithms. Meanwhile, the combinatorial algorithm is the best algorithm on the

planar surfaces because it aims at generating paths using an intersection between a set of planes and

the surface. For curved surfaces, the incremental trajectory generation algorithm is a good choice,

but the offset curve planner could be a competitor. The incremental trajectory is the best based on

the experiments. However, the choice of the surface corner and of the X, Y, Z axis along the surface

could directly influence on the algorithm behavior: a bad choice of the start up corner or of the axis

directions may affect the paths, so the paint uniformity. Though, the choices of those two parameters

must be done automatically: a new topic for lots of works. Finally, the combinatorial algorithm is the

most powerful algorithm for the surface with holes. However, the incremental trajectory generation

algorithm will give interested results if a mesh segmentation is added before the path planning step.

Based on Table 2.1, the following conclusion could be made: the combinatorial algorithm attends the

paint uniformity more than the incremental trajectory algorithm. However, the comparison between,

the incremental trajectory and the combinatorial algorithms from one side, and the offset curve plan-

ner algorithm from the other side is hard: a lack of experiments in the latter algorithm limits this

comparison. Furthermore, based on the algorithm’s concept an assumption was made: on planar and

curved surfaces and surfaces with holes the incremental trajectory generation and the combinatorial

algorithms are more efficient than the offset curve planner. Brief, all of these algorithms provide

good results, but the combinatorial algorithm algorithm gives the most sufficient results in several

cases. However, some promising results are expected when a segmentation step is added before the

incremental trajectory algorithm. It is very obvious that the painting and the stripping processes are

very closed. Though, we can deduce that the incremental trajectory algorithm is the most efficient in

stripping process.
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2.5 Conclusion

In this chapter, we have presented the state of the art related to four fields of research. Each one

is related to one step of the proposed approach. Firstly, we have presented the state of the art of

the robot’s workspace computation. Then, we have presented the mathematical tool that we chose

to compute the workspace in our application: Interval Analysis. A brief survey concerning Interval

Analysis in robotics has been also provided. Interval Analysis is chosen to compute the robot’s

workspace since it provides guaranteed workspace in a reasonable computation time. However, it

suffers from pessimism: a new inclusion function to reduce pessimism will be introduced in Chapter 3.

Two state of the art useful to compute the optimal number of robots with their optimal base placements

has been discussed: the camera placement problem and Art Gallery Problem. We considered that the

problem of optimization of the number of robots is mainly similar to those two problems. The main

difference between those three problems is the field of view. In the camera placement problem, the

optimization is based on the field of view of the camera. Further, the human field view is used to

test the complete coverage in Art Gallery Problem. However, in the robot coverage problem, the

reachable part of the surface is used to check the coverage of a surface. In my thesis, the reachable

part of the surface will be the intersection between the surface and the robot’s workspace already

computed using IA.

The optimization of a single robot base placement for coverage task has been studied. Hence, a com-

bination between the optimization of the number of robots and the robot base placement for complete

coverage is required to solve our general problem (the optimization of the number of robots with their

base placements). This combination leads to a new contribution which is the hybrid optimization

function developed and tested on the coverage problem (striping application). This contribution is

developed in Chapter 4.

Finally, we developed the state of the art related to path generation of spray painting. This state of the

art can be used to generate the trajectories of the stripping tool on the surface. Unfortunately, we did

not have time to implement and to test it.



Chapter 3

Interval Analysis Using BSplines and

Kronecker product

Solving Constraint Satisfaction Problem (CSP) consists in finding the set of variables that respect

a set of constraints. CSP finds all the valid solutions. CSP could be extended to a problem that

should find the set of variables optimizing a criteria function and satisfying a set of constraints namely

Constraint Optimization Problem (COP) [112]. CSPs and COPs are popular in robotics where the

constraints may take several forms: the robot kinematic and dynamic limits, the robot balance or

the different constraints imposed by the desired task. On the one hand, CSP is used in sequential

manipulation planning [85], planning [124], robot control [41]. On the other hand, COPs may be

used for physical parameters identification [66]. The optimization techniques allow robots to perform

motions or to reach a static pose while minimizing criteria like energy consumption or even execution

time [79]. The optimal motion/ pose parameters must also satisfy a set of constraints (such as joint

limits, joints torques, balance, etc) in order to ensure the integrity of the robotic system and the task

completion. Depending on the application, the constraints and the criteria function can vary from

simple (continuous, linear, monotonic, etc) to very complex (discontinuous, non-linear, with local

extremum, etc). In simple cases (quadratic criteria without constraint), the optimal parameters can be

found easily using Lagrange multipliers, active set, etc [100]. For more complex cases, one usually

refer to heuristic algorithms or to some iterative algorithms [74, 130] that produce a solution in a finite

34
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time. For relatively complex cases (especially with discontinuous or non differentiable functions),

Genetic Algorithms return a solution without any guarantee of the optimality.

Interval Analysis (IA) is a powerful mathematical tool that could be used to solve CSPs as well as

COPs. For instance, optimization techniques based on IA provide actual and optimal results ensuring

the constraints satisfaction and the lack of solutions [51]. In [78], it has been proven that IA is efficient

for finding the feasible space during motion generation: finding a new posture in the feasible space

is faster than generating it explicitly. However in [64], IA is used for parameters estimations since

it deals with uncertainties and ensures the results consistency. Unfortunately, those techniques suffer

from a prohibitive computation time, due to the pessimism induced by the use of Interval Analysis.

The pessimism is an over-estimation of the functions, i.e. the given interval is still conservative (it

contains the actual solution) but it is larger than the actual solution. Pessimism is deeply linked to the

inclusion function (the way to evaluate a function in Interval Analysis). In order to reduce pessimism,

the natural inclusion function can be replaced by the centred, Taylor-centred or Chebyshev inclusion

functions [98]. In this chapter, we propose a new inclusion function for multi-dimensional systems

that decreases the pessimism and the computation time using the convex hull property of BSplines and

Kronecker product. This method was already applied in a one dimensional case to evaluate functions

over time intervals [79]. Our work is an extension to multi-dimensional problems. Our method is

applied on the resolution of CSPs and COPs. We assess the results of our method on robotic systems.

CSPs and COPs are presented in Section 3.1. Section 3.2 introduces IA and explains the IA’s main

drawback, i.e. the pessimism. Besides, Section 3.3 introduces how IA is used to solve CSPs and

COPs. Further, Section 3.4 details the BSplines and the Kronecker properties and how they can

be used to reduce the pessimism. After that, we detail two different implementation versions of

the proposed inclusion function in Section 3.5. The initial implementation version is published as a

conference paper in the “15th International Conference on Intelligent Autonomous Systems” [68] and

is presented in Section 3.5.1. The initial implementation has been improved: the final implementation

version is explained in Section 3.5.2. A paper has been recently submitted in “Reliable Computing

journal” about the final implementation version [80]. Moreover, the simulations and results of the

final implementation version is presented in Section 3.6. The results of the initial implementation

version can be found in Appendix D. Some mathematical tools with some examples can be found in
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the following Appendices A, B and C.

3.1 Problem Statement

Constraint Satisfaction Problem is a mathematical problem that consists in finding a set of objects or

states satisfying a set of constraints as defined hereafter:

Find all [q] ∈Q

such as ∀ j ∈ {1, . . . ,m} G j([q]) ∈ [g j,g j]
(3.1)

Where:

— n is the number of variables composing the set q,

— m is the number of constraints,

— q = {q1, ...,qn} is the set of n variables,

— Q = {[q1 : q1], ..., [qn : qn]} ⊂ Rn is the set of variable domains defined by the minimum and

maximum values of each variable,

— G ([q]) is the set of m constraints. Each constraint of this set G j([q]) must remains within the

interval [g j,g j] with the lower bound g j and the upper bound g j limits.

In robotics, q is composed by a set of variables that could be the joint trajectory parameters [91], the

set of joint angles creating the feasible space with bounding errors [78], etc. Moreover, the constraint

equation G j(q) is usually non-linear and refer to the collision avoidance constraint, the joint position

velocity or torque limits, the manipulability criteria to avoid singularities, the reachability of the end-

effector or the balance constraint etc.

Backtracking, iterative improvement, consistency, and IA [44, 137] are the four major algorithms

usually used to solve CSP. Backtracking algorithms usually use recursive formulations. The problem

is presented as a tree with a constraint on each node: the descent on a given node stops once the

condition is not fulfilled. However, iterative improvement algorithms initialize a random configura-

tion as the initial inputs. After that, the inputs are modified until the solution is reached. Moreover,
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Consistency algorithms reduce the problem complexity by decreasing its search space. Those algo-

rithms change the problem formulation but the solutions are the same. IA is chosen since it avoids the

lack of the solutions and guarantees them. Several works showed that Interval Analysis is competi-

tive compared to the classic optimization solvers since it provides guaranteed solutions respecting the

constraints.

The mechanical structure of the robot expands uncertainties during solving CSP: IA is the mathemat-

ical tool used to solve CSP to ensure the reliability and to deal with uncertainties [91]. IA can be used

to solve COPs in addition of solving CSPs using Equation 3.1. This transformation can be reached

by adding a criteria function to Equation 3.1. Hence, the resolution of the optimization problem can

be defined as (instead of Equation 3.1):

Find [q]⊂Q⊂ Rn

such as min
q

F ([q])

with ∀ j ∈ {1, . . . ,m} G j([q]) ∈ [g j,g j]

(3.2)

Where F ([q]) is the criteria function.

3.2 Interval Analysis

Interval Analysis, also called Interval Arithmetic, is a mathematical tool developed by mathematicians

since the 1950s. Nowadays, Interval Analysis is used in many fields: robotics, global optimization, lo-

calization of robots, parameter estimation, set inversion etc. The results provided by interval methods

are always guaranteed regarding a set of hypotheses [64]. Interval Analysis was initially developed

to take into account the quantification errors introduced by the floating point representation of real

numbers with computers. Nowadays, Interval Analysis is largely used in robotics.
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3.2.1 Presentation

Let us define an interval [a] = [a, ā] as a connected and closed subset of R, with a = In f ([a]), ā =

Sup([a]) and Mid([a]) = a+ā
2 . The set of all real intervals of R is denoted by IR. Real arithmetic

operations are extended to intervals. Consider an operator ◦ ∈ {+,−,∗,÷} and [a] and [b] two

intervals. Then:

[a]◦ [b] = [in fu∈[a],v∈[b] u◦ v, supu∈[a],v∈[b] u◦ v] (3.3)

This operation can be detailed as follows:

[a]+ [b] = [a+b, ā+ b̄]

[a]− [b] = [a− b̄, ā−b]

[a]∗ [b] = [min{ab,ab̄, āb, āb̄},max{ab,ab̄, āb, āb̄}]

[a]/[b] = [a]∗ [1/b] i f 0 /∈ [b] else [−∞,∞]

I f f ∈ {cos, sin, sqr, sqrt, log, ...} f ([a]) = [ f (a)|a ∈ [a]]

(3.4)

The propriety of the exponential function, shown in Equation 3.4, is also a property for every mono-

tonic functions.

3.2.2 Boxes or Interval Vectors

An interval real vector [a] is a subset of Rn that can be defined as the Cartesian product of n closed

intervals. [a] is called an interval vector, or also a box and it can be written as:

[a] = [a1]× [a2]×·· ·× [an], with [ai] = [ai, āi] f or i = 1, · · · ,n. (3.5)

where [ai] is the projection of [a] on the ith axis. Similarly to the interval, a box has a lower bound,

an upper bound, a width and a midpoint (also named centre). Let us define a box [a], the lower bound

is lb([a])= [a], (lb([a1]), lb([a2]),· · · ,lb([an]))T = (a1,a2, · · · ,an)T , the upper bound is ub([a])= [ā],

(ub([a1]),ub([a2]),· · · ,ub([an]))T = (ā1, ā2, · · · , ān)T . The width of ([a])= ([a1],[a2],· · · ,[an])T is w([a])

, (mid([a1]),· · · ,mid([an]))T . Let [b] be a subset of Rn, the intersection of [a] and [b] is defined as
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Figure 3.1: A box [a] in R2

[a]∩ [b] , ([a1]∩ [b1])×·· ·([an]∩ [bn]). Constantly, the union of two boxes [a] and [b] is not a box.

Hence, the interval hull is defined and it is computed as [[a]∩ [b]] = [a]t [b] , ([a1]t [b1])× ·· ·×

([an]t [bn]). Classical operations for interval vectors are the extensions of the same operations for

punctual vectors. Let us define [a], [b] as boxes of Rn, and α as a real number [64], then

α[a], (α[a1])×·· ·× (α[an])) ∈ Rn,

[a]T ∗ [b], [a1]∗ [b1]+ · · ·+[an]∗ [bn] ∈ R,

[a]+ [b], ([a1]+ [b1])×·· ·× ([an]+ [bn]) ∈ Rn.

(3.6)

3.2.3 Inclusion function

Consider a function m : Rn 7−→ Rm; the range of this function over an interval vector [a] is given by:

m([a]) = {m(u) | u ∈ [a]} (3.7)

The interval function [m] : IRn 7−→ IRm is an inclusion function for m if:

∀[a] ∈ IRn, m([a])⊆ [m]([a]) (3.8)

For instance, let us take a function m from R2 to R2 with two variables [a1] = [a1,a1] and [a2] =

[a2,a2]. The image of m may have any shapes: even it can be non-convex. The inclusion function [m]

of m compute the box [m]([a]) that totally includes m[a]. If this box m[a] is minimal then [m]([a]) is

a minimal inclusion function named [m]∗. Different types of inclusion functions exist. We will start
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Figure 3.2: Image of a box [a] using a function m and its inclusion functions [m] and [m]∗

by explaining the trivial inclusion function: the natural inclusion function.

3.2.3.1 Natural inclusion function

The natural inclusion function of m is computed by changing each occurrence of a real variable by its

corresponding interval, so each function by its interval.

Example 3.1. Consider four different expressions of the same function f (a) : R→ R

f1(a) = a(a+1),

f2(a) = a∗a+a,

f3(a) = a2 +a,

f4(a) = (a+
1
2
)2− 1

4
.

(3.9)

Their different natural inclusion functions for [a] = [−1,1]:

[ f1]([a]) = [a]([a]+1) = [−2,2],

[ f2]([a]) = [a]∗ [a]+ [a] = [−2,2],

[ f3]([a]) = [a]2 +[a] = [−1,2],

[ f4]([a]) = ([a]+
1
2
)2− 1

4
= [−1

4
,2].

(3.10)

Figure 3.3 shows different intervals computed using different inclusion functions. It is clear that
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Figure 3.3: Four different inclusion functions for the same function f .

for the same equation we can obtain different results based on the mathematical formulation: this

difference between the results is caused by the pessimism. The pessimism overestimates intervals:

it produces intervals larger than the real ones. Hence, it is important to know that all the solutions

are correct, but the accuracy decreases when the pessimism increases, i.e. larger intervals are found.

It is clear in Figure 3.3 that [ f4] is the only inclusion function who does not suffer from pessimism.

Though, we can say that the natural inclusion function performance depends on the mathematical

expression of m. However, the inclusion function may not exist and if it exists it is not easy to find

it. Shortly, pessimism is an overestimation of the actual result, and it is mainly caused by the multi-

occurrence of variables in equations. Each occurrence of the same variable is considered as a different

variable relying on the same interval [96, 133].

The use of the natural inclusion function is not recommended since it depends on the variables occur-

rence. In order to reduce pessimism, several inclusion functions are proposed.

3.2.3.2 Centred inclusion function

Let f : Rn 7−→ R be a scalar function of a vector a = [a1, · · · ,an]
T . f is considered differentiable over

the box [a], and mid([a]) is denoted by ac. The mean-value theorem means:

∀a ∈ [a], ∃z ∈ [a] | f (a) = f (ac)+gT (z)(a−ac) (3.11)
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where gT is the gradient of f , a column vector with entries gi =
∂ f
∂ai

, i = 1, · · · ,k. Hence,

∀a ∈ [a], f (a) ∈ f (ac)+ [gT ]([a])([a]−ac) (3.12)

where [gT ] is an inclusion function for gT , so

f (a)⊆ f (ac)+ [gT ]([a])([a]−ac) (3.13)

Thus, the interval function:

[ fc](a), f (ac)+ [gT ]([a])([a]−ac) (3.14)

is the centred inclusion function of f for any given [a]. This function is an affine function having an

uncertain slope [ f ′]([x]). Hence, [ fc](a) can be represented by a cone with a centre (ac, f (ac)). As

it is shown in Figure 3.4, the smaller the width of [a] is, the better the centred inclusion function is.

Hence, we can say that the image illustrates that when w([a])→ 0

w([ fc]([a]))
w([ f ]([a]))

→ 1 (3.15)

Figure 3.4: Perception of the centred inclusion function

The centred inclusion function is proposed since the scalar product with [a]−ac reduces the pessimism

when [a] is small. When [a] gets larger, the centred inclusion function efficiency reduces: its effect of

reducing pessimism decreases. The centred inclusion function for a function f from Rn 7−→R can be

noticeably improved by using the mixed centred inclusion function.
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3.2.3.3 Mixed centred inclusion function

When the centred inclusion function is applied on each variable, the whole function will be the mixed

centred inclusion function. Hence, the expression of the centred inclusion function is generalized for

n variables where a = (a1, · · · ,an)
T and m=mid([a]):

f ([a])⊂ f (m)+
n

∑
i=1

[gi]([a1], · · · , [ai],mi+1, · · · ,mn)∗ ([ai]−mi) (3.16)

The mixed centred inclusion function could get tighter intervals than the centred inclusion function for

multi-dimensional functions. That is because the gradient arguments are mixed in the new inclusion

function: the pessimism is reduced since [ f ](mid([a]), [a])⊂ [ f ]([a]).

3.2.3.4 Taylor inclusion function

Reconsidering the derivation of centred inclusion function, the high-order Taylor series can be used

to approximate the function f : Rn 7−→ R which leads to the Taylor inclusion function. The Taylor

inclusion function can be written as:

[ f ]T ([x]) = f (m)+ f ′(m)([x]−m)+ · · ·+ f n−1(m)
([x]−m)(n−1)

(n−1)!
+[ f n]([x])

([x]−m)n

n!
(3.17)

The evaluation of the Taylor inclusion function requires a computation of the derivatives of f up to nth

order. Hence, this computation may increase the computation time. Taylor inclusion function may be

the best of the previous inclusion functions. But, adding to the computation time, Taylor inclusion

function suffers from large overestimations for non-linear functions. Hence, Chebyshev inclusion

function has been proposed.

3.2.3.5 Chebyshev inclusion function

Chebyshev inclusion function is recommended for non-linear functions [133]. Chebyshev series are

a high accurate approximating series. Hence, Chebyshev inclusion function can control efficiently
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the pessimism during interval evaluation, especially for the non-monotonic functions. Chebyshev

inclusion function can be written as

[ fCk ]([x]) =
1
2

f0 +
k

∑
i=1

fiCi([x]) =
1
2

f0 +
k

∑
i=1

ficosi[θ ] (3.18)

where x = (x1, · · · ,xn)
T . Chebyshev interval method is considered as a kind of non-intrusive ap-

proach: it could be applied on many black box models and on complicated engineering models. It has

been proven that Chebyshev inclusion function controls the pessimism better than Taylor inclusion

function after some numerical tests for solving the mechanical dynamics problems. It is also proven

that Chebyshev inclusion function is easier to implement [133].

3.2.3.6 Bernstein inclusion function

Every multivariate polynomial p : Rm −→R of multi-degree n can be written as a linear combination

of the Bernstein polynomials of order n [43]:

p(x) =
n

∑
j=0

b(j,n)B(j,n)(x)

.

If p is of the form p(x) = ∑
n
i=0 aixi then the coefficients of the Bernstein expansion can be computed

with the following formula j-th Bernstein coefficient (of degree n): b(j,n) = ∑
n
i=0 ai

j! n!
i!( j− i)! i!(n− i)!

.

Thus, we can define the Bernstein Form interval extension of order n as follows: B(p)([0,1]m) =

[minj(b(j,n)),maxj(b(j,n))].

The polynomial must first be composed with the appropriate affine translation and scaling that maps

x into [0, 1] to compute the range over an arbitrary interval x, before computing Bernstein expansion.

The main advantage of Bernstein Form interval extension is that it gives the exact range if and only if

min j(b(j,n)) ∈ {b(0,n),b(n,n)} and max j(b(j,n)) ∈ {b(0,n),b(n,n)} [121].
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3.2.3.7 Horner schemes

Horner schemes consist in manipulating the mathematical form of the equation in order to get a new

form that reduces pessimism. Hence, Horner schemes, also called Horner’s method, transform the

monomial form of a function into an efficient form by factorizing it [96]. Given the polynomial of

one variable x:

p(x) =
n

∑
i=0

aixi = a0 +a1x+a2x2 + · · ·+anxn (3.19)

where a0, · · · ,an are real numbers. The univariate Horner scheme of Equation 3.19 is

p(x) = a0 + x(a1 + x(a2 + · · ·+ x(an−1 + xan) · · ·)) (3.20)

Univariate Horner schemes consist in transforming the polynomial into another one that contains the

minimal amount of mathematical operations. The multivariate Horner scheme H is defined as follows:

∀a ∈Q : a ∈ H

∀hdep ∈ H : xe
i .(hdep) ∈ H

∀hdep,hind ∈ H : xe
i .(hdep)+hind ∈ H

(3.21)

where e ∈ N\0 and the variable xi do not occur in hind .

For instance, let us consider the polynomial form of the function f (x) = 5+ 2x+ 4x2 + 3x3. The

univariate Horner scheme of f is fu(x) = 5+x(2+x(4+x(3))). However, a polynomial of 3 variables

f (x1,x2,x3) = x1x2
2+x1x3+x1x2

2x3 could have 2 different multivariate Horner schemes. The first mul-

tivariate Horner scheme is f (x1,x2,x3) = x1.(x2
2.(1+x3)+x3). This form is obtained by extracting x1

then x2. However, f (x1,x2,x3) = x1.(x3.(1+x2
2)+x2

2) is obtained by extracting x1, then x3. Moreover,

in both cases, the number of occurrence of each variable is reduced, i.e. the pessimism is reduced.

We should know that the different Horner scheme representations may not have the same effect of

reducing pessimism (it depends on the number of occurrence of each variable in the equation).

It has been proved in [96] that transforming a polynomial into a Horner scheme may reduce its over-

approximation, i.e. pessimism, but certainly it does not increase it.
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However, Horner schemes need a polynomial form of the function. In robotics, the different con-

straints are trigonometric functions, so it is mandatory to transform the trigonometric constraints into

polynomial forms using Taylor series. Moreover, it is easy to find the Horner schemes manually, but

the complexity increases if a generic program has to find Horner schemes for every proposed function.

Our goal in this PHD is to generalize the constraints when Horner schemes are not useful.

3.2.3.8 Comparison between different inclusion functions:

The natural inclusion function is more efficient than the centred inclusion function for large boxes.

However, the centred inclusion function gives better results once the box get tighter. None of the

existing inclusion function could be judged as the best: a compromise between the complexity and

the efficiency must be done.

In the other hand, Chebyshev inclusion function get tighter interval than Taylor inclusion function.

In addition, Chebyshev inclusion function does not need to calculate the derivatives of the original

function, so it can be used to solve the black box problems. However, Chebyshev inclusion function

is not a rigorous inclusion function because it neglects the numerical and the truncated errors in

integration. Further, Bernstein inclusion function is the best of all the above inclusion functions.

Hence, we got the idea of testing a new inclusion function using the Bernstein concept applied by

another mathematical tool, e.g BSplines concept. In this chapter, we propose a new inclusion function

based on BSplines and Kronecker product properties. This new inclusion function reduces pessimism

and takes into account the numerical and the truncated errors during integration.

3.3 Solving CSPs and COPs using IA

IA is used to solve CSPs (Equation 3.1) and COPs (Equation 3.2). Given input bounds, the algorithm

produces a subset of the input space that satisfies all the constraints (for CSPs) and also minimizes the

criteria function (for COPs). In both problem types, the subset of outputs is a set of small boxes. A

combination between bisection and contraction solves Equations 3.1 and 3.2. Those two operations

are presented hereafter.
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3.3.1 Bisection

Bisection is an iterative method that decomposes the set of inputs into smaller sets. The bisection-

based method is generally used to reduce the overestimation since pessimism is linked to the width of

the inputs. Several splitting methods could be used to apply bisection [93].

In COPs, the constraints and the criteria functions are evaluated for a current box. Based on this

evaluation, a decision must be taken: the boxes may be thrown away or may be split into smaller

boxes. A box is thrown away due to a constraint violation or to a large criteria function. The constraint

is considered violated if its interval evaluation has no intersection with the bounds [g j]. The splitting

process is applied to get a tighter evaluation of the constraints and the criteria function, and it ends

when the size of the box is smaller than a given threshold. For sake of simplicity, the box is divided

into two sub-boxes by splitting the largest interval in this box into equal intervals. The above steps are

programmed as it is shown in Algorithm 1. The line 4 could be skipped depending on the application:

some applications do not require a criteria function which is the case of CSPs. At the end of the

bisection algorithm, we get three types of set of boxes: the set of feasible boxes, the set of infeasible

boxes and the set of maybe feasible boxes (properties for CSPs).

In order to make the bisection process more obvious, let us consider two variables [x] = [xa,xb] and

[y] = [ya,yb], find the set of boxes that respects the constraint C having the color green as it is clear

in Figure 3.5. Using the bisection algorithm, we get three types of boxes: the infeasible boxes (in

white), the maybe feasible boxes (in red) and the feasible boxes (in green).

3.3.2 Contraction

Contraction is based on the filtering algorithm concept [60]. The contraction has the same formulation

for CSPs as well as for COPs. It manipulates the equation in order to propagate the constraints in two

ways: from inputs to outputs (Eq.(3.22)) and from outputs to inputs (Eq.(3.23)).

∀ j [g j]← G j([q])∩ [g j] (3.22)
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Algorithm 1: Algorithm for optimization process using bisection process.
Require: Initial research space Q, desired precision ε

1: initialization : Q.push(Q), f̃ = ∞

2: while Q is not empty do
3: get element [q] = Q.pop()
4: evaluate [ f ] = [ f ; f ] = F ([q])
5: if f < f̃ then
6: evaluate constraints: ∀ j [g j] = G j([q])
7: if ∀ j [g j]∩ [g j;g j] 6= /0 then
8: if ∀ j [g j]∩ [g j;g j] = [g j] and f < f̃ then
9: f̃ = f

10: q̃ = q
11: end if
12: if diam([q])> ε then
13: {q1,q2}= bisection(q)
14: Q.push(q1)
15: Q.push(q2)
16: end if
17: end if
18: end if
19: end while
20: return Optimal box q̃ of problem of Eq.(3.2)

∀i, j [qi]← G−i
j ([q], [g j])∩ [qi] (3.23)

where [g j] is the current value of the constraints bounds, qi the i-th input we contract, [qi] the current

bounds on the input qi and G−i
j (q, [g j]) is the inverse of function G j(q) regarding the input qi taking

into account the current value of the constraints bounds [g j]. [qi] and [g j] can be different from the

initial bounds due to previous iterations of the algorithm.

Eventually, contraction may define a smaller subset of input boxes respecting the different constraints.

For instance, given three variables x ∈ [−∞,5], y ∈ [−∞,4] and z ∈ [6,∞], and the constraint z = x+y,

find the intervals of x, y, z ensuring this constraint [76]. One can process as follow:

z = x+ y⇒ z ∈ [z∩ (x+ y)]⇒ z ∈ [6,∞]∩ ([−∞,5]+ [−∞,4]) = [6,9]

x = z− y⇒ x ∈ [x∩ (z− y)]⇒ x ∈ [−∞,5]∩ ([6,9]− [−∞,4]) = [2,5]

y = z− x⇒ y ∈ [y∩ (z− x)]⇒ y ∈ [−∞,4]∩ ([6,9]− [2,5]) = [1,4]

Thus, by using contraction, the intervals of the variables become tighter: x ∈ [2,5], y ∈ [1,4] and
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Figure 3.5: 2D bisection algorithm on a constraint C

z ∈ [6,9].

Generally, a combination between contractions and bisections is used as a solver. Firstly, contraction

reduces the input boxes size: the contraction is applied for each time a function is evaluated (lines 4

and 6 in Algorithm 1). Then, bisection is applied and contraction is called again until the dimension

of the generated boxes is smaller than a threshold. This method is the classic contraction/ bisection.

It uses the inclusion function m during contraction and bisection strategy. Hence, it suffers from

pessimism already explained.

Evaluating a constraint using the proposed inclusion function is detailed in two main sections: the

general principle is developed is Section 3.4 and its implementation is detailed in Section 3.5. Before

going further, I would like to say that we differentiate between two implementation versions: the

first implementation version is developed in Section 3.5.1 and it has been published as an article in

IAS conference [68], and the second implementation version is developed in Section 3.5.2 and it has

submitted to “Reliable computing” journal [80].

3.4 BSplines identification

BSplines properties were already used to tackle pessimism in one dimension: they are tested on

continuous constraints used to optimize robot motion [79]. In this chapter, a generalization of this
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concept to multi-dimensional problems is proposed.

3.4.1 Definition and convex hull property

BSplines function is the weighted sum of several basis functions. It is defined by m control points Pi

and basis functions Bi. K is the order of the basis function Bi.

F(q) =
m

∑
i=1

BK
i (q)Pi (3.24)

A BSplines curve is totally inside the convex hull of its control poly-line [79]. This property is

obtained quite easily from the following definition of a basis function:

∀q ∈ [q,q] ∑
m
i=1 BK

i (q) = 1 (3.25)

This immediately yields:

∀i ∈ [1,m] F ≤ Pi ≤ F ⇒∀q ∈ [q,q] F ≤ F(q)≤ F (3.26)

A conservative estimation of the bounds of F(q) is made based on the minimum and the maximum of

the control points. Thus, a bounding box of the considered function can be computed. However, the

control points of this function must be identified. For instance, let us consider the polynomial function

which is the blue curve in Figure 3.6. Bsplines representation of this curve gave the basis functions

and the control points as it is clear in Figure 3.6a. Hence, using the control points the box that includes

the curve could be deduced, i.e. the interval of the curve is also deduced (see Figure 3.6b).

3.4.2 Multi-dimension BSplines

N-dimensional BSplines are functions defined as:

F(q) =
m1

∑
i=0

m2

∑
j=0

...
mn

∑
z=0

(
Bm1

i (q1)B
m2
j (q2)...Bmn

z (qn)
)
×Pi, j,...,z (3.27)
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(a) Bsplines representation of a polynomial
function

(b) Interval evaluation using control points

Figure 3.6: Evaluating intervals using BSplines properties

Where:

— q = {q1,q2, ...,qn} ∈ [Q]⊂ Rn,

— mi is the degree of the input qi,

— Bmi(qi) is the BSpline Basis function of degree mi relied to input qi,

— Pi, j,...,z are the Control Points grouped into vector P.

As in the one-dimensional case, the BSpline curve is entirely in the convex hull of its control poly-

line:

∀q ∈ [Q] F(q) ∈ [min(P),max(P)] (3.28)

3.4.3 Constraint Evaluation

3.4.3.1 One dimensional case

Considering that all the functions can be described as a polynomial expression of the input as done

in [79], we have:

∀q ∈ [q,q] F(q) ∈
n

∑
i=0

ai×qi (3.29)
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where {a0,a1, . . . ,an} ∈Rn+1 are the coefficients of the polynomial. This equation can be written as:

F(q) = [1,q, . . . ,qn]× [a0,a1, . . . ,an]
T (3.30)

and knowing the coefficients ai, the coefficients pi of the equivalent control point are computed, such

as:

F(q) = [1,q, . . . ,qn]×B× [p0, p1, . . . , pn]
T (3.31)

where B is a matrix that contains the polynomial parameters of the BSplines basis functions. There-

fore, we can compute the corresponding BSplines parameters as:

[p0, p1, . . . , pn]
T = B−1× [a0,a1, . . . ,an]

T (3.32)

Though, we can deduce the bounds of F(q)

∀q ∈ [q,q] F(q) ∈ [min(p0, p1, . . . , pn),max(p0, p1, . . . , pn)] (3.33)

3.4.3.2 N-dimensional case

The same procedure can be applied to the N-dimensional case. Equation 3.45 could be written as:

F(q) = [1,q1,q2,q1q2, . . . ,µi, . . . ]× [a0,a1,a2, . . . ,ai, . . . ]
T (3.34)

where µi is the ith monomial. Let us note P the vector of the control points and X the vector of the

polynomial coefficients. P and X are related through the following equation:

P = B−1X (3.35)

Where B can be written as:

B= B1⊗B2⊗ . . .⊗Bi⊗ . . .⊗Bn (3.36)
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Bi are matrices linking the control point to the coefficients of the polynomial expression of the basis

functions of input qi and ⊗ is the Kronecker product as defined hereafter. The Kronecker product

is an operation on two matrices of arbitrary size resulting in a block matrix. Consider two matrices

A and B, where: A =


a1,1 . . . a1,n1

...
...

...

am1,1 . . . am1,n1

. The kronecker product of A by B can be written as

follows:

A⊗B =



a1,1×B a1,2×B . . . a1,n1×B

a2,1×B a2,2×B . . . a2,n1×B
...

...
...

...

am1,1×B am1,2×B . . . am1,n1×B


More details about Kronecker product can be found in Appendix A. By using the invertible property

of Kronecker product, Equations (3.35) and (3.36) can be turned into:

P =
(
B−1

1 ⊗B−1
2 ⊗ . . .⊗B−1

n
)

X (3.37)

Equation 3.37 is chosen since it allows a faster computation (more details can be found in Ap-

pendix A).

3.4.4 Constraint contraction

The contraction of a constraint consists in updating the bounds of the constraint function and the

bound of the inputs (see Section 3.3.2). In order to perform the contraction, we consider a new

variable ν j([q], [g j]) such as: for each constraint G j([q]), a new variable ν j([q], [g j]) is defined.

ν j([q], [g j]) = G j([q])− [g j] (3.38)

The control points of this function Pν j can be evaluated through

Pν j = B−1
ν j

Xν j (3.39)
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where B−1
ν j

and Xν j are the matrix and vector representation of the function ν j([q], [g j]). Obviously,

we perform the same decomposition than the one presented in Equation (3.48) to deal with error

component and sparse properties of the computation.

Let us define [µ] the interval value we want to contract that may be the bounds of the constraint [g j]

or the bounds of the input [q]. The contraction process returns to consider

[µ]← [µ]∩
(
ν j([q], [g j])+ [µ]

)
(3.40)

Therefore we can compute the equivalent control point Pµ of ν j([q], [g j])+ [µ] such as:

Pµ = B−1
ν j

Xν j +B−1
ν j

Xµ = Pν j +B−1
ν j

Xµ (3.41)

with Xµ is a zero value vector except for the component corresponding to the monomial µ that is the

opposite of the one of Xν j .

The evaluation of Equation (3.40) is performed as presented in Section 3.5.2.3 taking into account the

error such as in Equation (3.48) and using the sparse properties especially because Xµ contains only

one non-zero value.

3.5 Implementation

3.5.1 Initial implementation version

The initial implementation version can be decomposed into three main steps. Firstly, we have to deal

with non-linear functions. Secondly, we have to contract the monomials composed of one variable.

Thirdly, we should propagate the contraction on monomials composed of several variables.
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3.5.1.1 How to deal with non-linear functions?

The constraints must be formulated as polynomial equations of the inputs. Nevertheless, robotics

equations are generally non-linear (using sine and cosine). Here we proposed to create intermediate

inputs for cos(qi) and sin(qi). Each time those intermediate inputs are contracted, they propagate the

modification to the input qi that re-propagate on cos(qi) and sin(qi).

3.5.1.2 Monomial contraction:

After the contraction of monomials composed of one variable (q1, q2, etc), others monomials should

be contracted too (composed of more than one variable q1q2, q2q5q7, etc). Consider that the poly-

nomial constraint is a sum of many monomials µi after the linearisation. Considering a monomial

µi = ∏∀k σi,k composed of the multiplication of several input intervals [σi,k], if no input interval con-

tains zero, the input interval can be contracted thanks to:

[σi,k] = [σi,k]∩
[In f (ρi);Sup(ρi)]

∏∀k 6=i σi,k
(3.42)

The current input set will be considered as infeasible if this intersection returns an empty interval.

Hence, the contraction is propagated to different monomials.

3.5.2 Final implementation version

In the initial implementation step, the vector of the monomial coefficient X is considered constant

and the BSplines matrix Bi is updated regarding the current bounds of [qi]. This technique suffers

from the numerical errors while computing B−1
i for narrows intervals on [qi] due to ill-conditioned

matrix. A matrix is considered ill-conditioned if small changes on the inputs may result high changes

on the outputs: in our case we can say that small changes in Bi may introduce huge changes in B−1
i ,

though Bi is an ill-conditioned matrix. For instance, consider the linear system AX = Y , where A
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is the following matrix



10 7 8 7

7 5 6 5

8 6 10 9

7 5 9 10


. If Y =

[
32 23 33 31

]T

, X=
[

1 1 1 1

]T

. However, if

Y =
[

32.1 22.9 33.1 30.9

]T

, X=
[

9.2 −12.6 4.5 −11

]T

. In other words, very small variations on

Y led to big variations on X . If K(A) = ||A||× ||A−1|| has a high value, then A is considered an ill-

conditioned matrix. In the previous example, K(A) = 4488 is a high condition number, so A is an

ill-conditioned matrix. Those type of matrices are frequently crossed during our calculation. For that,

we propose the inputs normalization technique to solve the ill-conditioning problems 3.5.2.1.

In addition, the initial implementation version suffers from a huge computation time due to the use

of Recursive Inverse Kronecker product while contracting the monomial composed of one variable.

The disadvantage of this formulation appears when the number of degree of freedom of the robot

increases: the size of the matrices explodes and the computation time increases. Though, we propose

a final implementation version solving this problem that is developed in the section hereafter.

3.5.2.1 Inputs normalization

To solve this issue, Bi should be constant and X should vary. Hence, we use the inputs normalization

by setting:

[qi] = mi +[qre f
i ]

di

2
(3.43)

with mi and di are the middle and the diameter of the interval [qi] respectively and [qre f
i ] is set as the

reference interval of [qi] and is initialized at [qre f
i ] = [−1;1]. By applying this formula, the BSplines

matrix Bi relies on the reference interval [qre f
i ], hence remains constant over the whole computation

process. However, the polynomial parameter vector X relies on the middle and diameter of all the

inputs, so it will change over the whole computation process.

For instance, let consider a function f (q1,q2) = 1−3q1−2q2 +4q1q2 with q1,q2 ∈ [−10,10]. After

normalization of the inputs q1 and q2 using those equations q1 = 10q1re f and q2 = 10q2re f , we can

deduce that f (q1re f ,q2re f ) = 1−30q1re f −20q2re f +400q1re f q2re f . Thus, using our proposed inclu-
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sion function, we can deduce that f ∈ [−409,451]. More details about this example could be found

in Appendix B.

3.5.2.2 Non linear functions

The final implementation version is also based on a polynomial formulation of the constraint and

criteria functions. However, the problems in robotics are non-linear problems: Taylor approximation

is used to approximate the non-linear functions to polynomial formulations. Consider that s([qi]) ∈

{sin([qi]),cos([qi])}, the linearisation Equation is:

s([qi]) = s(mi)+
ds(mi)

dqi

di

2
[qre f

i ]+ . . .+[εs(qi)] (3.44)

[εs(qi)] is normalized using [εs,i
re f ], ms,i and ds,i as proposed in Equation (3.43). The reference error

interval [εs
re f
i ] is a new input in Equation (3.36). The interval value [εs(qi)] is updated every change

in the original interval [qi], and so ms,i and ds,i. In parallel, [εs,i
re f ] is set to [−1;1]. [εs(qi)] is not

affected by the bisection process. In our work, we consider the first order approximation of non-linear

functions.

Appendix C develops how we obtained Equation 3.44, and how the error [εs(qi)] is computed based

on an example.

3.5.2.3 Constraint Evaluation

The efficient computation of the bounds of a function G j([q]) is developed in this Subsection. In order

to make the computation faster, Equation 3.35 is decomposed as follows:

P = B−1X I +B−1Xε (3.45)

where P ∈Rx is the set of the equivalent control points, X I ∈Rx contains the polynomial coefficients

that refer only to monomials with reference intervals ([qre f
i ]) and Xε ∈Rx the polynomial coefficients



58 Chapter 3. Interval Analysis Using BSplines and Kronecker product

that refer to monomials with reference intervals ([qre f
i ]) and reference errors [εs,i

re f ]. Obviously X =

X I +Xε .

During the tests, we have noticed that the vectors Xε and X I of Rx includes lots of null values. In

order to speed up the calculation, a sparse representation of the matrices and vectors is proposed:

P = SIX I
s +SεXε

s (3.46)

where X I
s ∈ Ry is the vector collecting the non-null coefficients of X I and SI ∈ Rx,y is obtained by

removing from B−1 the columns corresponding to the null coefficient of X I , and similarly for Xε
s and

Sε .

Since the second term of Equation (3.46) SεXε
s relies on non-linear approximation errors, it must

decrease as the width of the input boxes decreases. Hence, the error interval [ε] could be computed

faster using the following equation:

[ε] = Sε .Xε
s (3.47)

with ε is the approximation error and Sε is the interval vector where each element is the interval

union of all the values of the corresponding column of Sε . Thus, each equivalent control point given

by SεXε
s lies in the interval [ε]. Obviously, [ε] is a pessimistic evaluation of the approximation.

Eventually, the evaluation of G j([q]) is done computing:

P = SI.X I
s +[ε] (3.48)

Hence, the function can be evaluated through the minimal and maximal value of P, where each control

point Pk can be computed with:

Pk = SI
k.X I

s k +[ε] (3.49)

As presented in Algorithm 1, this evaluation is used in order to assess if the corresponding constraint

remains within a given bounds [g j,g j]. By sequentially computing the control point Pk we can deter-

mine if the corresponding box is overlapping when min
∀k

Pk < g j and max
∀k

Pk > g j or min
∀k

Pk < g j and
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max
∀k

Pk > g j. As soon as, the overlapping of the constraint is detected, there is no need to compute

the other control points, since the bisection must be performed, hence the evaluation of the process is

stopped.

The polynomial formulation of the constraints and the computation of the sparse matrices and vectors

are done once in a preparation phase, before the beginning of Algorithm 1.

3.6 Tests and results

In this section, we present the results of solving CSPs and COPs using the proposed inclusion function

(final implementation version). The tests and results for the first implementation version are developed

in Appendix D.

The following abbreviations will be used in this section :

— BI: Bisection process using Interval Analysis,

— CI: Contraction and bisection using Interval Analysis,

— BS: Bisection process using the BSplines and Kronecker product properties,

— CS: Contraction and bisection process using the BSplines and Kronecker product properties.

In order to assess our improved inclusion function, we propose 3 different scenarios: one scenario

on a 2D robot (a robot of two degrees of freedom), another on a planar robot (a 2D robot of multiple

degrees of freedom), and the last scenario is on a 3D robot. Those three scenarios are presented in the

sections below.

3.6.1 2D Robot feasible space

In this section, we propose a system of two equations in order to assess our method on Constraint

Satisfaction Problem resolution. The goal is to find the feasible space of a robot, though all the sets

of joint angles that respects Equation 3.50. This problem is defined in Equation 3.1. The system is a
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2-dof planar robot q ∈ R2, with joint limits q1,q2 ∈ [−2;2], we set the following constraints :

x = cos(q1)+ cos(q1 +q2) ∈ [1.2;1.8]

y = sin(q1)+ sin(q1 +q2) ∈ [−0.5;0.5]
(3.50)

The results are presented in Figure 3.7 and in Table 3.1 with a stopping threshold of 0.05. The feasible

boxes are represented in red and the possible boxes are green. For the state-of-the-art methods (BI and

CI), Figures 3.7a and 3.7c show that the pessimism produces possible boxes even if they are totally

inside or outside the feasible space.

One can see that the use of Bsplines properties decreases the pessimism since the number of possible

boxes (green) is reduced and most of them are partially inside and outside the feasible space. CI

method reduces the number of iterations regarding BI method as presented in Table 3.1 even if only a

few possible boxes are removed.

Our new BS method allows the number of iterations to decrease. This method produces fewer but

larger possible boxes as it is shown on Figure 3.7b. Moreover, our new CS method reduces the number

of iterations (nearly half of the BI method) and the number of possible boxes. It also produces a set

of interval with different sizes (due to the non-uniform contraction) as presented on Figure 3.7d.

Regarding the computation time, the BS method has the lowest computation time even if the prepa-

ration phase requires a large computation time (' 250ms). The preparation phase is the phase where

the polynomials, the matrices, the vectors and all the materials required for solving the problem are

computed. However this computation time can be ignored since it is not required to perform it in case

of change of the x or y bound values.

solver
number of
iterations

computation
time (ms)

(+preparation time)

number of
feasible boxes

number of
possible boxes

BI 1567 24.1 130 716
BS 1083 14 (+242) 102 428
CI 1431 23.7 130 648
CS 743 24 (+262) 136 396

Table 3.1: Computation results of the feasible spaces for the 2-dof planar robot.
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This 2D simple CSP shows that the BSplines inclusion function reduces the pessimism. Hence it

reduces the number of iterations, that reduces the computation time for this case. In the following

subsection we assess our method on more complex cases dealing with planar 2D-robots and on 3D-

robots.

(a) BI method: Bisection with interval (b) BS method: Bisection with BSplines

(c) CI method: Contraction with interval (d) CS method: Contraction with BSplines

Figure 3.7: Presentation of the feasible spaces for the 2-dof robot. (feasible boxes in red, possible
boxes in green, actual feasible space limits in blue.)

3.6.2 Planar Robot

We assess our method on multi degrees-of-freedom 2D-robots. We address Constraint Satisfaction

Problems (CSP) and Constraint Optimization Problems (COP) to find the posture of the robot that fits

and optimally fits robot constraints and desired end-effector position. We consider robots with 2-to-9

degrees of freedom, with equal segment length. All the links have the same weight. The Centres Of
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Mass (COM) are located in the middle of the links. The total length of the robot is equal to 2. We set

as a constraint that the COM of the robot must remain in [−0.1,0.1] on the horizontal plane. We also

add a reachability constraint: the effector must reach a specific target. We assess our method on nine

different constraint satisfaction problems, with a square target of size 0.2 by 0.2 (pb 1,2,3), a circle

target with a radius of 0.1 (pb 4,5,6) and a ring target with an external radius of 0.15 and an interval

radius of 0.05 (pb 7,8,9). The targets are localized at three different positions {x,y} : {0.2;1.7} (pb

1,4,7), {0.4;1.4} (pb 2,5,8) and {0.6;1.1} (pb 3,6,9). If the computation time exceeds one week, we

stop the execution of the algorithm and no result are considered.

3.6.2.1 Solving CSP
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(c) computation time with the preparation phase

Figure 3.8: Comparison of the BSplines Bisection and the Interval Bisection methods to solve CSP.

Figures 3.8, 3.9 and 3.10 present the number of iterations and the computation time using BS, CI

and CS methods regarding the performance of BI method for the constraint satisfaction problem with

a stopping threshold of 0.01. Figure 3.11 compares the results of the CS method regarding the ones
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Figure 3.9: Comparison of the Interval Contraction and the Interval Bisection methods to solve CSP.

of BS method. The resolution of the CSP is done as presented in Algorithm 1. Nevertheless, the

execution of the algorithm is stopped as soon as one solution is found.

Figure 3.8a proves that the number of iteration required to solve the CSP using BS is lower than

the number of iterations using BI. We can deduce that the evaluation of the constraints induces less

pessimism using the Bsplines method. Figure 3.8c shows that the BS method (taking into account the

preparation phase) is faster than the BI method, but only for a large number of degrees of freedom

(n >= 7). We highlight that the BS method produces a result for the problems 1 and 2 with 9 degrees-

of-freedom in nearly 3 hours whereas the BI method cannot find a solution within one week.

Figure 3.9 compares the state-of-the-art CI with BI methods and proves that the number of iterations

is quite reduced, but with a very larger computation time.

Looking at Figure 3.10, it seems that the CS methods have nearly the same performances as the BS

methods. For an easier comparison, we present the results of CS method regarding the ones of the BS

method in Figure 3.11. Despite, we believed that the contraction step reduces the boxes before the

bisection process, hence reduces the number of iterations of the algorithm, it appears that, for some

problems, the number of iterations (and then the computation time) of the CS method is larger than

the number of iterations for the BS method. This phenomena is due to the bisection process. During

the BS method the diameter of the interval is equal to the initial size of the interval divided by 2k, with

k the number of bisection of this interval. The bisection process choose to bisect the input with the

maximal diameter and in case of equality, the first input of the queue is bisected. Since all the inputs
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Figure 3.10: Comparison of the BSplines Contraction and the Interval Bisection methods to solve
CSP.

have the same initial size, this case of equality appears at each iteration. During the CS method, the

contraction step may reduce one or several input intervals, hence the case of equality may appear at

the beginning of the process and becomes very rare after some iterations. Because of those properties

of the bisection process and of the contraction, the BS method and the CS method do not explore the

search space in the same order, hence a non-intuitive difference on results could be noticed in terms

of computation time and number of iterations.

3.6.2.2 Solving Optimization problem

We also assess our methods on additional optimization problems. We consider the same constraints

than in CSP and consider two different cost functions. The cost function of Problem 1 to 9 is the

sum of the square joint positions ∑
n
i=1 q2

i . Problem 11 to 19 consider the sum of square joint torques

∑
n
i=1 Γ2

i as a cost function. As for the CSP, the CI method is not suitable for optimization problem.
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Figure 3.11: Comparison of the Bsplines Contraction and the Bsplines Bisection methods to solve
CSP.

Hence, we choose to not present the results of the CI here for the sake of clarity.

Figure 3.12 and Figure 3.13 present the results of the BS method and of the CS method for eighteen

complex optimization process regarding the result of the state-of-the-art BS method. As for solving

a CSP, the two proposed methods produce a fewer number of iterations, but with a comparable com-

putation time. Figure 3.14 compares the results of BS and CS methods. Since there is no contraction

for the evaluation of the cost function, the two methods seem to present nearly the same performance

regarding the number of iterations and the computation time.

3.6.3 3D Robot

To assess the effectiveness of our method on a 3D robot, we consider two different robots (with 4 and

6 degrees of freedom) which derive from the KUKA LWR as presented on Figure 3.15. The 4-dof

robot is obtained by considering constant the joint number 3 and 5.

We consider the constraints about the desired end effector position with a box of 0.02 meter in the

x, y and z directions. We add torque constraint and we consider the cost function as the sum of the

torque square.
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input eval Diam(X) Diam(Y) Diam(Z)

[−0.5 : 1.5]
Interval 2.762 2.845 4.968

BSplines 3.628 3.633 2.070

[0 : 1]
Interval 1.554 1.329 2.390

BSplines 1.523 1.246 0.896

[0.25 : 0.75]
Interval 0.903 0.733 1.281

BSplines 0.099 0.385 0.666

[0.45 : 0.55]
Interval 0.191 0.151 0.262

BSplines 0.106 0.101 0.141

[0.495 : 0.555]
Interval 0.019 0.015 0.026

BSplines 0.010 0.010 0.014

Table 3.2: Comparison of the evaluation of the end effector {X ,Y,Z} Cartesian position depending
on the diameter of joint position interval for the 4 dof Robot

input eval Diam(X) Diam(Y) Diam(Z)

[−0.5 : 1.5]
Interval 9.89 10.14 10.19

BSplines 8.68 8.68 3.86

[0 : 1]
Interval 3.389 3.292 3.805

BSplines 1.053 0.942 1.068

[0.25 : 0.75]
Interval 1.503 1.490 1.789

BSplines 0.146 0.294 0.679

[0.45 : 0.55]
Interval 0.283 0.285 0.346

BSplines 0.137 0.128 0.143

[0.495 : 0.555]
Interval 0.028 0.028 0.035

BSplines 0.015 0.013 0.014

Table 3.3: Comparison of the evaluation of the end effector {X ,Y,Z} Cartesian position depending
on the diameter of joint position interval for the 6-dof Robot
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Figure 3.12: Comparison of the BSplines Bisection and the Interval Bisection methods to solve opti-
mization problems.

3.6.3.1 Constraint Evaluation

Tables 3.2 and 3.3 present the performance of the evaluation of the kinematic model for the 4 and

6-dof robots. In order to evaluate the improvement of the BSplines based inclusion function on the

constraint evaluation, we compute the end-effector box position for several box joint position.

One can notice that for the largest ([−0.5;1.5]) interval of the 4-dof robot the natural inclusion func-

tion produces less pessimism: this is mainly due to the polynomial approximation of the non-linear

functions that produces large error values. It is important to notice that, for nearly all the boxes of

the joint position, the BSplines based evaluation produces less pessimism than the natural interval

inclusion function.
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Figure 3.13: Comparison of the BSplines Contraction and the Interval Bisection methods to solve
CSP.

3.6.3.2 Solving Optimization problem

Since the use of the CI method did not provide good results for solving the CSP of planar robots, we

do not evaluate this method for 3D robots. In this part, we compare the performance of the BI, BS

and CS methods on four different problems for the 4 and 6 dof-robots. The problems 1 and 3 consider

a desired end effector position at {x,y,z} equal to {0.6,0.6,0.6} and {0.4,0.4,0.7} for problems 2

and 4. The problem 1 and 2 consider the nominal maximal torque values and the problem 3 and 4

only 10% of the maximal torque. Consequently, the problem 4 is infeasible, that is used to assess the

performance of our method on infeasible problems.

Table 3.4 and 3.5 emphasize that our methods (BS an CS) solve the optimization problem with less

iterations than the state-of-the-art method (BI). It also emphasizes that the use of the Bsplines prop-

erties reduces the number of iterations, due to a less pessimistic evaluation of the constraints. It is
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problem solver
number of
iterations

computation
time (Day-Hour:min:s)

preparation
phase (s)

cost function

1
BI 155715 9.51 2.71
BS 37437 5.42 30.2 2.68
CS 32331 5.00 27.4 2.68

2
BI 159951 9.64 2.71
BS 37057 5.36 28.6 2.68
CS 32015 4.93 23.8 2.68

3
BI 940343 59.5 2.59
BS 61001 8.17 20.3 1.74
CS 53733 8.20 29.8 1.74

4
BI 22761 1.39 unfeasible
BS 1581 0.25 28.6 unfeasible
CS 1609 0.29 27.8 unfeasible

Table 3.4: Comparison of the performances of the three solvers for the posture optimization of the
4-dof robot.

problem solver
number of
iterations

computation
time (Day-Hour:min:s)

preparation
phase (s)

cost function

1
BI 944808895 5-02:12:29 2.43
BS 116028803 3-08:50:05 455 2.39
CS 100293163 1-15:07:25 356 2.39

2
BI 1430891169 1-10:09:15 2.43
BS 111337437 3-11:29:08 715 2.39
CS 93289815 1-21:36:39 430 2.39

3
BI 72155242357 67-13:54:41 2.51366
BS 311645729 6-06:41:52 490 1.66
CS 258134817 3-19:48:31 367 1.66

4
BI 513515683 0-12:25:01 unfeasible
BS 741335 0-00:27:47 489 unfeasible
CS 570171 0-00:28:41 368 unfeasible

Table 3.5: Comparison of the performances of the three solver for the posture optimization of the
6-dof robot.
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Figure 3.14: Comparison of the BSplines Contraction and the BSplines Bisection methods to solve
optimization problems.

Figure 3.15: The 6 degrees of freedom robot we use : KUKA LWR

also evident that the use of a contraction process (CS) decreases more the number of iterations than

pure bisection processes (BI and BS) since it makes possible to reduce the size of the box during the

bisection process.

Regarding the computation time, it appears that our method is faster than the state-of-the-art BI

method in most of the cases. For the most complex problem (6-dof robot), our method is still the

faster one even when we consider the preparation phase (except for one case). It seems that our

method is more relevant to prove that the problem has no solution (problem 4) since the number of

iterations and the computation time are drastically reduced.
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3.7 Conclusion

In robotics, the computation of the feasible space of a robot is a critical research domain and it is

usually solved using Constraint Satisfaction Problem. In this chapter, we have proposed to exploit In-

terval Analysis to solve Constraint Satisfaction Problems and Constraint Optimization Problems. The

solver is based on a combination between bisection and contraction. However, this technique suf-

fers from pessimism. Hence, a novel technique has been proposed to evaluate the inclusion function.

Our method is based on the convex hull properties of BSplines functions and the Kronecker product

properties in order to reduce pessimism. Our algorithm was assessed on different problems using 2D

and 3D robots. We prove that our contribution deals with more complex optimization problems and

decreases the pessimism and the computation time. We should add that finally we did not compute

the feasible workspace in the world coordinate system: the set of joint angles are computed in the

robot coordinate system. This computation is required in order to generate a generic workspace of

a given robot, but we did not solve this problem due to a lack of time. The simplest way to do this

calculation is by using the direct kinematic. The latter generic workspace should be used in order

to find the reachable part of the surface from a given position. Since in this PHD, we did compute

the generic workspace of the robot, we will find the reachable part of the surface by considering a

different kind of workspaces (spherical, semi-spherical, elliptical, etc.)



Chapter 4

Optimal robot base placements for coverage

tasks

Considering the workspace of the robot is known, we can proceed to find the optimal robot base

placements for coverage tasks. The surface coverage using robots is a common problem divided into

two cases according to the robot state during the task: the robot could be either static or mobile.

In static case, the robot should cover a given surface and it should be positioned at a fixed point.

This technique is used in painting, stripping, or sand-blasting tasks [10, 105, 125]. In the latter case,

the surface is supposed totally reachable from the fixed point and the coverage problem returns the

optimal trajectories of the end-effector as solutions. Those end-effector trajectories are required to

sweep the entire surface. In mobile case, robots are moved to achieve their tasks like demining,

inspection and agricultural fields coverage. Several works addressed the generation of optimal paths

of mobile robots required to totally cover an environment [1, 11, 37, 101]. Recently, a third type of

coverage problem appears: the robot is fixed during the coverage task and the surface is larger than

its workspace. Hence, a repositioning of the robot(s) is required to cover the whole surface since

the surface can not be covered from one given position. The repositioning is accomplished under

the assumption that the coverage task can not be done continuously and needs to be stopped during

the robot’s movement. For instance, air-plane stripping and building facades refurbishing are some

coverage tasks that require repositioning the robots to cover the whole object. Another example of

72
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such tasks is the car stripping using KUKA Light Weight Robots (LWRs) shown in Figure 4.1.

Figure 4.1: Car stripping using a KUKA robot

In this chapter, we provide the third problem and we develop an optimal robot base placements strat-

egy using the repositioning concept. Optimal robot positioning could decrease the task cycle time

and increase its efficiency as well as its accuracy. The proposed strategy requires a combination be-

tween the robot base placements and the coverage problem. The placement of single robot has been

tackled in several domains. Those works were extended to deal with multiple industrial robots for the

coverage tasks. Hassan, Liu et al. proposed a new strategy to distribute the work between robots for

coverage tasks assuming that a reasonable number of robots is intuitively chosen based on the size

of the object [54, 56]. A combination of Simulated Annealing and Genetic algorithm optimization is

used to find the optimal robot base placement in [54]. We have already presented the state of the art

in Chapter 2. Despite the relevance of Hassan et al. strategy, it suffers from several weak points:

1. The number of robots is harder to guess when the surface gets more complex.

2. The end-effector trajectories used as inputs for base placement optimization are not optimal.

They are generated without considering the robot poses.

3. After the base placement optimization, area partitioning and allocation of the surface between

different robot poses is required to improve the end-effector trajectories [55].

4. The total surface coverage is not guaranteed.

To deal with those issues, we propose a new approach for a complete coverage using a multi-robot

system (Section 4.1). An important feature of our approach is that it does not only find the optimal

pose of robots bases but it also provides the optimal number of robots Ñ needed to cover the whole

surface. Contrary to the state of the art, the knowledge of the total number of robots is not required in
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our approach.

Briefly, in this chapter, we focus on solving the general problem formulated in Chapter 1 in Equa-

tion 4.1. We present the different algorithms that could be used to solve this problem. Those algo-

rithms are presented with a focus on the proposed hybrid optimization algorithm: our contribution

to solve the general problem (Section 4.2). An improved hybrid optimization has been created after

some changes. This algorithm is developed in Section 4.3. Finally, the hybrid optimization algorithm

and the improved hybrid optimization algorithm are tested in Section 4.4.

4.1 Approach to find the optimal number of robots

In this section, we develop the first two steps of the general framework shown in Figure 1.10 in

Chapter 1. Those two steps are required to solve the optimal robot base placements for coverage

tasks and they are presented in the flowchart shown in Figure 4.2. The inputs are the 3D mesh

Figure 4.2: Flowchart used to optimize the number of robots and their poses.

model of the object and the robot workspace. Those inputs are used for the pre-processing step and

the optimization algorithm that generates the set of robot poses. The pre-processing step aims at

transforming the continuous search space of the optimization algorithm into a discrete search space.
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The continuous optimization problem is the following:

min
N,T

N

Subject to g(N,T,S) = 0

h(N,T,S)≤ 0

(4.1)

After the pre-processing step this continuous optimization problem is transformed into a discrete

optimization problem developed hereafter. Hence, the optimal solution is easier to be reached, and

the execution time decreases.

4.1.1 Pre-processing step

The pre-processing step turns the continuous 4D search space of the robot (x, y, z and θ ) into a finite

set F of favourite robot poses to accelerate solving the optimization problem. To emphasize the pre-

processing step, each sub-step of the pre-processing step will be explained on an action car as an

object to be covered. We chose the action car since it is easy to show the discrete points around it.

For instance, considering a KUKA robot having a spherical workspace, a 4D discretization gives a

finite set F of favourite robot poses illustrated in Figure 4.3. The pre-processing step is composed

of three main steps: the search space discretization, the constraints projection and the favourite base

placement selection.

Figure 4.3: 4D discretization for the action car: red circles are the favourite robot poses of F (s = 0.1)
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4.1.1.1 Search space discretization

This step decomposes the continuous available space around the object into a set of discrete possible

robot poses P. Two adjacent poses are separated by a discretization step s along x, y or/and z axes.

Another discretization step sθ is considered along θ which is the robot orientation, e.g. the rotation

of the robot along his z axis. The discretization along z is optional and it depends on the object

volume. Hence, two types of discretization are considered: 3D discretization and 4D discretization.

3D discretization is applied on the ground around the object to be covered. It is chosen for objects

having an acceptable size compared to the robot workspace: they could be totally covered from the

ground. It is named 3D discretization since it is a discretization along x, y axes and θ angle. However,

4D discretization is required when the objects are huge and could not be totally covered from the

ground. In this case, a discretization along z axis is added to x, y, and θ discretizations. Hence, the

3D object is en-globed by the set of discretized points P. The θ discretization is important every time

the robot workspace is not homogeneous which is usually the case in almost all the applications: the

robot workspace has often a complicated shape. The discretization may influence on the quality of

the results if the discretization steps, s and sθ , are not properly chosen. However, in many industrial

applications, a trade-off between accuracy and computation time is accepted, and this compromise

is accomplished using discretization. Thus, the continuous space, or the searching space, around the

3D object is discretized into a set of robot base positions. The discrete positions are generated using

coarse discretization with s chosen as 10% of the length of the manipulator arm: the discretization

step takes into account the robot capacity. In addition, sθ is considered 0.1 rad. Moreover, the

discretization is refined if some predefined requirements could not be met, such as a total coverage of

the surface.

For instance, an action car could be totally covered from the ground using a KUKA arm having a

spherical workspace. Hence, 3D discretization for an action car is shown in Figure 4.4. The dis-

cretization along x, and y are shown in this figure, but the θ is not shown since the workspace is

considered spherical, e.g. the orientation of the robot does not matter.
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Figure 4.4: 3D discretization for the action car: red circles are the discretized points of P (s = 0.1)

4.1.1.2 Constraint projection

From each pose P of P, we assign a score C(S,P) that describes the percentage of the reachable

surface Si. Si is computed using a constraint projection function. Si is the sum of a set of integer

values where each point of the mesh object is affected to 1 if it is reachable by the robot from P

without any collisions and to 0 otherwise. At the end, from a given pose P, C(S,P) = 0 if the robot

does not reach the surface or if unavoidable collisions are detected between its body and the 3D

surface. Otherwise, C(S,P) = 100
Si

S
that is the percentage of the covered surface Si regarding the

total surface S from a given pose P. In this application, the points composing the mesh can are used to

test if the surface is totally covered. In this case, Si is the total number of points that could be reached

by the robot from a given pose P, and S is the total number of points that composes the cloud.

The optimal orientation θ is chosen in such a way it maximizes the score C(S,P). Hence, the set of

robot poses P contains all possible poses with different {x,y,z,θ} positions and the nearly optimal

orientation.

All the discrete points P ∈ P having a score C(S,P) 6= 0 will be added to a set C: the set of initial

poses. It is clear that C is a subset of P: C⊂ P. For instance, the set C for the action car is presented

in Figure 4.5.
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Figure 4.5: The set of the initial poses C of the action car (s = 0.1)

4.1.1.3 Favourite base placements selection

The favourite selection step is the final sub-step in the pre-processing step. It consists in computing

the set of favourite poses F. The poses in F are all poses of P having a score greater than a given

threshold C(S,P)> t. Every favourite pose F ∈ F is a part of the set of initial poses C as well as the

set of discrete poses P: F⊂ C⊂ P. The set of favourite poses F of a car is shown in Figure 4.6. The

Figure 4.6: Favorite base placements of the action car for t = 10%.

set of favourite poses F will be used during the optimization of the number of robots and their base
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placements.

4.1.2 Discrete optimization problem

The pre-processing step turns the continuous problem (presented in Equation 4.1) into the discrete

optimization problem given by Equation 4.2. The search space of the optimization problem is reduced

to F. The notations used in this discrete problem are the ones created after the pre-processing step.

Hence, the discrete optimization problem is formulated as follows:

min
Ñ,T̃⊂F

Ñ

Subject to g(Ñ, T̃, C̃) = 0

∀l,m ∈ [1, Ñ] hlm(T̃)≤ 0

(4.2)

With:

— Ñ: the minimal number of robots,

— T̃: the set of optimal poses of the robots such that T̃= {T̃i ∈ SE(3),1≤ i≤ Ñ},

— C̃: the set of reachable part of the surface from each pose T̃i ∈ T̃ such that C̃= {C̃i,1≤ i≤ Ñ},

— g(Ñ, T̃, C̃): function to test if λ% of the surface is covered,

— hlm(T̃): the set of additional constraints.

Eventually, T̃ ⊂ F ⊂ C ⊂ P. A surface is considered λ% covered if g(Ñ, T̃, C̃) =
⋃Ñ

l=1 C̃l−λS = 0.

One can solve the proposed problem for a total coverage by initializing λ to 1. A collision avoidance

between robots can be considered through the constraint hlm(T̃) when a multi-robot system is used. In

this case, the distance between any two adjacent robots should be greater than a predefined threshold

δ that is defined with respect to the dimension of the robot workspace, e.g. hlm(T̃) = ||T̃l− T̃m||−δ .

This distance is added as a constraint in order to reduce the overlapping of the workspace of two

adjacent robots, and to reduce the collision risk between two adjacent robots.

Since the discretization step may influence on the results, we propose a global optimization algorithm

that solves the flowchart (Figure 4.2) for a given discretization step. Then, if the percentage of the

covered surface is lower than λ , a finer discretization step is considered and the flowchart is solved
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again based on the finer discretization step. The optimization algorithm (called in line 6) will be one

step of the global algorithm developed in Algorithm 2. This global algorithm is the representation of

the flowchart in the algorithmic language. Thus, the volume around the 3D surface is discretized into

Algorithm 2: Global algorithm
Input : Object mesh to be covered, Robot model
Output: A set of robot base placements

1: Discretization of the volume around the surface: a set of robot base positions P such as
k ∈ {1, ...,Ntotal}

2: for k ∈ {1, . . . ,Ntotal} do
3: Find Sk such as Sk =C(Pl)
4: end for
5: Find the favourite robot base positions F
6: Optimization algorithm to find Ñ
7: if Covered ratio < λ then
8: Perform finer discretization
9: go to 6

10: end if
11: return Ñ and their positions;

a set of robot base poses P (line 1). A constraint projection on the surface is applied for each pose P

in P (line 3). Based on this evaluation, some discretized poses are discarded due to their proximity,

others due to their low coverage: a set of favourite robot base positions is defined F (line 5). After

that, the optimization algorithm is run in order to find the minimal number of robots base positions

based on the favourite base poses F (line 6). We supposed that in this optimization algorithm, we

add a threshold for the number of robots: if the number of robots found during the optimization

algorithm is greater than a given threshold and the percentage of the covered surface is lower than λ ,

the optimization is interrupted. After that, a finer discretization is called (line 8) if the covered ratio

of the total surface is lower than the specified threshold λ . Though, the optimization algorithm will

start again. Otherwise, the algorithm returns the optimal number of robots Ñ with their optimal base

placements.

Finding the optimal number of robot base placements can be solved using a Binary Integer Program-

ming strategy (BIP). However, our problem is a NP-hard problem: an exact solution of the minimum

number of robots is hard to compute using a Binary Integer Programming. Though, we propose a

novel combination between three algorithms: Greedy, Genetic, and Simulated Annealing algorithms

in Section 4.2.
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4.2 Hybrid optimization algorithm

In this Section, we present our hybrid optimization algorithm that merges the advantages of Greedy,

Simulated Annealing and Genetic algorithms. The hybrid optimization algorithm is called in line 6

of the global algorithm. Greedy algorithm is used to find the optimal number of robots. Simulated

Annealing and Genetic algorithms are usually used to optimize the positions of a given number of

robots. Let’s start by briefly presenting those algorithms.

4.2.1 Greedy Algorithm

It is perceptively used to find the optimal number of variables required to respect an optimization

function. It makes a local optimal choice at each iteration, hoping to find a global optimum at the

end of the algorithm. This algorithm reduces complexity during an exhaustive search: it has O(n)

complexity instead of O(nK) where K is the optimal number of robots. Greedy algorithm does not

intend to find the best solution, but it terminates in a reasonable number of steps; finding an optimal

solution to such a complex problem typically requires unreasonably many steps.

Greedy algorithm is developed in Algorithm 3. The algorithm intends to add a robot at each iteration

(line 5), until the percentage of the covered surface is greater than the threshold λ . The coverage test

is included in the constraint g(Ñ, T̃, C̃) in line 2. One can initialize λ = 1, if we want a surface totally

covered. The added robot is chosen randomly in such a way that it maximizes the coverage of the

surface, while the previous robot poses are not updated (line 5). This stability of robot poses leads to

local optimal solutions. The coverage of the surface is considered maximized when the added robot

ensures a total coverage greater than the total coverage of the previous iteration. As we will see in the

simulation and results section, Greedy algorithm is not efficient for solving our optimization problem.

Though, we decide that Greedy algorithm will be the fundamental base: instead of adding randomly

a robot at each iteration without changing the positions of the existing robots, a combination between

Simulated Annealing and Genetic algorithm is used to optimize this defined number of robot poses.
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Algorithm 3: Greedy algorithm
Input : The set of favourite robot poses F, the surface to be covered S
Output: Optimal number of robots Ñ and their poses T̃

1: Set T̃=∅, Ñ = 0, c =∅
2: while g(Ñ, T̃, C̃) 6= 0 do
3: c= F that maximizes the coverage of the surface S in such a way that c 6∈ T̃;
4: T̃ = T̃∪{c};
5: Ñ = Ñ +1;
6: end while
7: return Ñ and T̃;

4.2.2 Simulated Annealing

Simulated Annealing (SA) is a probabilistic technique for approximating the global optimum of a

given function. It is often used when the search space is discrete which is our case [58]. For problems

where finding an approximate global optimum is more important than finding a precise local optimum

in a fixed amount of time, Simulated Annealing may be preferable to alternatives such as gradient

descent. The name and inspiration come from annealing in metallurgy, a technique involving heating

and controlled cooling of a material to increase the size of its crystals and reduce their defects.

Simulated Annealing can be used to generate a solution for combinatorial optimization problems. A

temperature variable is used to simulate the heating process. A high initial value is assigned to the

temperature and then slowly decreases as the algorithm runs. Simulated Annealing avoids the local

optimum by using the temperature procedure [15]: the chance of accepting worse solutions reduces as

long as the temperature decreases. This acceptance decision is made by using an Acceptance function

that depends on the temperature and the percentage of the covered surface using the different robot

poses. The algorithm jumps out of any local optimums by using this Acceptance function, and it

focuses on an area of the search space where an optimal solution could be found.

Simulated Annealing shows robustness and flexibility for global search methods, it can deal with

highly non-linear problems and non-differentiable functions as well as functions with multiple local

optima. SA is suited for stochastic and non-stochastic optimization [49]. SA is also one of the

fastest and universal probabilistic local procedures [16]. Statistically, Simulated Annealing does not

guarantee a global optimal solution, and it gives a good solution. However, it tries to avoid a large
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number of local minima and it often yields a better solution than local optimization [58]. However,

it could not be used alone to find the optimal number of robots: it could optimize the positions of a

given number of robots.

4.2.3 Genetic Algorithm

Genetic Algorithm is a method of search often applied to optimization problems or machine learning.

Genetic Algorithms are part of evolutionary computing, they use an evolutionary analogy, “survival of

the fittest” [120]. Instead of a single point generation at each iteration, Genetic Algorithm generates a

population of points. After that, the best points are chosen as the optimal solution. It is more efficient

than the traditional methods and provides a list of good solutions instead of a single solution. Thus,

Genetic Algorithm increases the likelihood of finding the global optima.

In order to well understand Genetic Algorithm, we must explain some basic terminologies. The pop-

ulation is a subset of all the encoded solutions to the given problem. Each element of this population

is considered as one chromosome. A chromosome is one solution to the given problem and it is

represented by a vector of genes. The gene is one element position of a chromosome. The allele is

the value a gene takes for a particular chromosome. In our application, the chromosome is a vector of

mi elements where each element is an index of one favourite base placement in the vector of favourite

base placements F. The gene is an index of one element in the chromosome. The allele refers to value

inside the gene, so it refers to the index of the robot position in F vector. Figure 4.7 makes clearer

the definition of population, chromosomes, gene and allele. For each iteration in Genetic Algorithm,

we will have a population composed of Npop chromosomes. Each chromosome is composed of mi

elements; where mi is the number of robots in each iteration i.

The basic structure of Genetic Algorithm is presented in Figure 4.8. Genetic Algorithm starts by

a population initialization. After that, for each chromosome in this population, a fitness function

is evaluated. After that, we choose two chromosomes and we generate two children by applying

crossover and mutation (or one of them). Then, the children replace their parents, and the loop is

repeated until the termination criteria is reached: in our case when the percentage of the covered

surface reaches λ%.
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Figure 4.7: Basic terminology if Genetic Algorithm

4.2.4 Proposed hybrid algorithm

The structure of our hybrid algorithm is inspired from Greedy algorithm in order to find the optimal

number of robots. A combination between Simulated Annealing and Genetic algorithms is used to

benefit from their advantages and to get the optimal base placements of a given number of robots.

The speed of Simulated Annealing with the variety of possible solutions of Genetic Algorithm are

combined to get better results. Algorithm 4 describes our hybrid optimization algorithm. The al-

gorithm returns the number of robots Ñ with their optimal poses T̃. The number of robots increases

until the surface is totally covered (line 2). For each iteration of Greedy algorithm, the optimisation

of robot poses is accomplished using a combination between Simulated Annealing and Genetic algo-

rithms. Genetic Algorithm starts by a generation of a population of robot poses. In the initialization

of the population, the generation of the chromosomes is accomplished randomly. Moreover, during

the generation of all the elements of a chromosome, we consider one constraint which is the distance

between two adjacent robots l and m, e.g. the constraint hlm(T̃) ≤ 0. Hence, a population Pop is

initialized (line 4). Then, for each generation of Pop, two children are created from the two elements

of Pop having the maximum coverage of the surface (line 8): those two elements are considered

as the parents. The decision of replacing the worst two elements of the population by two gener-

ated children is made in line 11 using the Acceptance function of Simulated Annealing algorithm:
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Figure 4.8: Basic structure of Genetic Algorithm

exp(( f 1- f 2)/ats)). Those three steps are repeated until the maximum number of generation Ngen is

reached (line 6) or the ending temperature te is attended (line 15). The element of Pop covering the

larger part of the surface is chosen: Rpn (line 19). If all the robots in Rpn covers λ% of the surface,

the loop is broken. Otherwise, the number of robots increases until λ% of the surface is covered.

4.3 Improved hybrid optimization algorithm

In this section, we propose an improvement of the hybrid optimization algorithm. After that, a com-

parison between the hybrid optimization algorithm and the improved hybrid optimization algorithm

is presented. This comparison is based on different types of robot workspaces. The improved hybrid

algorithm consists in dividing the favourite base placements into Ñ zones. Each zone will contain one

robot and the optimization algorithm searches for the best position of each robot in each zone. At

the end, instead of having one huge zone for searching for the optimal positions of Ñ robots, we will

have Ñ different zones. This technique gives solutions closer to the optimal solutions. To attend this
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Algorithm 4: Hybrid optimization algorithm
Input : The set of favourite robot poses F, the surface to be covered S, the coverage threshold

p, the maximum number of iterations Niter, the initial temperature ts, the ending
temperature te, the maximum number of generations Ngen, the maximum number of
populations Npop

Output: Optimal number of robots Ñ and their poses T̃
1: Set U = F, V =∅, Rpn =∅, W = S, T̃=∅, Ñ = 0, Pop =∅;
2: while g(Ñ, T̃, C̃) 6= 0 do
3: U = F;
4: Pop= a population initialized using U ;
5: ats = ts;
6: for k ∈ {1, . . . ,Ngen} do
7: {m1,m2}← Two elements of Pop with the highest coverage, such as m1 6= m2;
8: {ρ1,ρ2}← Generatechildren(m1,m2);
9: {σ1,σ2}← Two elements of Pop with the lowest coverage, such as σ1 6= σ2;

10: Let f 1= Coverage(σi) and f 2= Coverage(ρi);
11: if ( f 2≥ f 1) || ( f 2 < f 1 & random(0,1)<= exp(( f 1- f 2)/ats)) then
12: Replace σi by ρi in the initial population;
13: end if
14: ats = ats− coolrate;
15: if ats < te then
16: break;
17: end if
18: end for
19: Rpn← The element of Pop having the maximum coverage;
20: V ← The correspondent coverage set of Rpn;
21: Ñ = Ñ +1;
22: end while
23: T̃ = Rpn;
24: return Ñ and T̃;

goal, the centre of mass of the object η is computed, and it is projected on the ground η0. The line

(ηη0) is the intersection line between the different planes dividing the set of favourite base place-

ments into Ñ different zones. The zone division is accomplished at the beginning of each iteration

of the hybrid algorithm. It should be respected during the generation of population and the genera-

tion of children (two steps of Genetic Algorithm). In the generation of population step, each element

contains Ñ robots where each robot is located in one zone. By doing that, we are trying to simplify

or speed-up the hybrid optimization algorithm to the optimal solution. This is reached by adding an

initial ”guess“ of the optimal solutions after considering the ”symmetry“ of the surface. Moreover,

in the children generation step, the robot that should change his location must stay in the same zone.

Only one constraint is considered during this study: the distance between two robots must be also
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taken into account. Figure 4.9 shows 5 robots with their 5 different zones. The center of mass η0 is

represented by the point O. Since 5 robots should be positioned, 5 planes A, B, C, D, and E separated

by 720 are shown in Figure 4.9. It is clear that only one robot is positioned in each zone.

Figure 4.9: Discretization of the ground around the action car

To test the efficiency of the improved hybrid optimization algorithm with respect to the hybrid opti-

mization algorithm, we propose to test them on three types of surfaces: a cylinder, a hemisphere, and

an action car. More details could be found in the next section.

4.4 Tests and results

In this section, we present the results for the hybrid and the improved hybrid optimization algorithms.

Due to lack of time, we test the hybrid optimization algorithm on an air-plane. The test of an improved

hybrid optimization algorithm on an air-plane is a future work.

4.4.1 Proposed hybrid optimization algorithm

2D test is used to evaluate four optimization algorithms: Greedy algorithm, Simulated Annealing

Greedy algorithm, Genetic Greedy algorithm and Hybrid optimization algorithm. Those four algo-
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rithms come from some combinations between Greedy algorithm on one side, and Simulated Anneal-

ing and Genetic algorithms on the other side. Hence, those combinations lead to Simulated Annealing

Greedy and Genetic Greedy algorithms. Furthermore, Greedy, Simulated Annealing Greedy, Genetic

Greedy and Hybrid optimization algorithms are compared on a reachability problem using a 2D-robot

as it is explained in Section 4.4.1.1. This 2D test is the initial proof of the efficiency of the hybrid

optimization algorithm. Moreover, Hybrid optimization algorithm is tested on 3D surfaces and the

results are compared to the results given by Greedy algorithm in Section 4.4.1.2.

4.4.1.1 2D test

A test on a 2D-robot with n degrees of freedom and a 2D-surface is applied: the goal is to test the

performance of the four algorithms on simple problems.

Number of robots
Algorithms Greedy

Simulated Annealing/
Greedy

Genetic/
Greedy Hybrid

2 19 1 70 81
3 12 23 30 19
4 8 51 – –
5 10 24 – –
6 8 1 – –
7 7 – – –
8 18 – – –
9 11 – – –

10 7 – – –
Total 100 100 100 100

Table 4.1: The optimal number of robots found using the four optimization algorithms

Algorithms Greedy
Simulated Annealing/

Greedy
Genetic/
Greedy Hybrid

Computation time average/
(in s) 0.4172738 0.3998774 1.090686 0.5934172

Table 4.2: Average of computation time (in seconds) for the four optimization algorithms

We consider a 2D robot with 3 degrees of freedom and a 2D polygon in order to evaluate those

algorithms. The task of the robot is to cover the whole perimeter of this polygon considering that
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the robot’s workspace is a circle (no need for the discretization along θ ): only the total coverage

of the surface is considered as an optimization criteria (λ = 1). The three links of the robot have

the following lengths: 0.2, 0.3 and 0.15 m (spherical workspace of a radius= 0.65 m), and the 2D

polygon has a perimeter of 10.02 m. The 2D polygon can be englobed by a box of size 4×4.7. The

discretization step along x and y axis is 0.02 m. The object to be covered and the robot are shown in

Figure 4.10. We can see that the dimensions of the object are greater than the dimension of the robot:

the robot should move between different poses to cover the surface. We did the test 100 times for each

algorithm and we did not consider the collision constraints since we want to compare the different

algorithms within the minimal number of constraints. The surface is supposed totally covered if

the red border of the surface is inside the union of the different robot workspaces found during the

optimization algorithm. Table 4.1 presents the results for the four optimization surface on the polygon

surface using the 2D robot. Those tests prove that the hybrid algorithm gives the best results in terms

Figure 4.10: Two dof Robot with a 2D surface that should be totally covered.

of efficiency and robustness. For instance, using the hybrid optimization algorithm, we have two

different values to cover the whole surface: 2 robots (81%), and 3 robots (19%). Moreover, Genetic

Greedy Algorithm gives two possible solutions, but a different distribution of the solutions is noticed:

2 robots (70%), and 3 robots (30%). The results of Simulated Annealing Greedy Algorithm are worse

than the results of the above algorithms, but they are better than the results of Greedy Algorithm. For

instance, Simulated Annealing Greedy Algorithm gives five possibilities of solutions: 2, 3, 4, 5 and

6 robots with 1%, 23%, 51%, 24% and 1% respectively. Greedy Algorithm gives 9 possibilities of

solutions: from 2 to 10 robots with 19%, 12%, 8%, 10%, 8%, 7%, 18%, 11% and 7% respectively.

In parallel, we can conclude using Table 4.2 that Simulated Annealing/ Greedy algorithm is faster
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than Genetic/ Greedy Algorithm. However, Genetic/ Greedy algorithm gives better results than

(a) (b)

Figure 4.11: The number of 2D-robots required to cover the whole 2D-surface using Greedy Algo-
rithm (red: surface, blue: possible robots positions, yellow: favourite robot positions, small black
circle: en-globs the robots position, big black circle: the workspace of the robot from the given
position).

(a) (b)

Figure 4.12: The number of 2D-robots required to cover the whole 2D-surface using Simulated An-
nealing Greedy Algorithm.

Simulated Annealing/ Greedy algorithm. Moreover, By combining those two algorithms, we get the

best algorithm: Hybrid optimization algorithm. This algorithm has the speed of Simulated Annealing

algorithm and the accuracy of Genetic Algorithm.

Figures 4.11, 4.12, 4.13, and 4.14 show the results of Greedy, Simulated Annealing Greedy, Genetic

Greedy and the hybrid optimization algorithms respectively. So as a conclusion, it is clear that the
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(a) (b)

Figure 4.13: The number of 2D-robots required to cover the whole 2D-surface using Greedy Genetic
Algorithm.

(a) (b)

Figure 4.14: The number of 2D-robots required to cover the whole 2D-surface using Hybrid Algo-
rithm.

hybrid Optimization Algorithm is the best optimization algorithm and this algorithm will be extended

to 3D robots with 3D surfaces in the following section.

4.4.1.2 3D test

Our hybrid optimization algorithm is assessed on standard surfaces, e.g. a cylinder and a hemisphere,

as well as on a complex surface, e.g. a car using KUKA Light Weight Robots (LWRs) having 7 de-

grees of freedom. Furthermore, the hybrid optimization algorithm is compared to Greedy algorithm.

It should be compared to Simulated Annealing Greedy algorithm, and to Genetic Greedy algorithm.
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This comparison is one of our future works. The comparison with Greedy algorithm is considered

since it is the basic algorithm to find the optimal number of robots to cover a whole surface. The in-

puts of both optimization algorithms are the different surface models S and the favourite robot poses

F.

In this application, we consider a spherical workspace with a radius of 1 around the base of the

robot, e.g. the discretization along θ is not necessary. Other types of workspaces will be tested later

on. Hence, the reachable part of the surface from a given position is considered as the intersection

between the spherical workspace and the surface to be covered.

A 3D discretization is considered in this example. The discretization step is set to 0.1 during the

pre-processing step. This step is chosen since it is almost 10% of the highest point in the KUKA

workspace (1.1785m). Each discretized point avoiding collision with the surface and allowing to

reach more than t = 15% of the surface is considered as a favourite robot pose. We found 398

favourite robot poses for the cylinder, 375 for the sphere and 397 for the action car represented as the

red spheres in Figure 4.15. For sake of simplicity, we used the point cloud to compute the percentage

(a) Cylinder (b) Sphere

(c) Action car

Figure 4.15: Surfaces to be covered by robots with the favorite base position (red spheres)

of the covered surface. In global, we consider a convex feasible set, hence if the three points of a

triangle are reachable, this triangle is supposed reachable. Those triangles are inside the reachable set
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of the surface. Each reachable point of the point cloud is represented by a red point on the surface as

it is clear in Figures 4.16 and 4.17. Greedy algorithm asserts that 6 robots are needed to totally cover

(a) Cylinder (b) Hemisphere

(c) Action car

Figure 4.16: Optimal base placements of different surfaces (greedy algorithm)

the cylinder (Figure 4.16a), 6 poses to totally cover the hemisphere (Figure 4.16b), and 9 robots to

cover the whole action car (Figure 4.16c). However, by applying our hybrid optimization algorithm,

we find that 5 robots are sufficient to totally cover the cylinder (Figure 4.17a), 2 robots to cover the

whole hemisphere (Figure 4.17b) and 6 robots are enough to totally cover the action car as shown in

Figure 4.17c. We did 15 tests to evaluate the behaviour of both algorithms.

Comparison
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(a) Cylinder (b) Hemisphere

(c) Action car

Figure 4.17: Optimal base placements of different surfaces (hybrid optimization)

As shown in Figures 4.16 and 4.17, the hybrid optimization algorithm gives less number of robots

needed to cover the whole surface. It is clear that the distribution of robot poses around the surface is

more homogeneous when we use our hybrid optimization algorithm. This point could be an advantage

if the number of robots composing the multi-robot system is lower than the optimal number of robots

required to cover the surface. Furthermore, the more the distribution of robot poses is homogeneous

around the surface the more the cycle time is reduced in the most cases, and the less the collision is

between robots. That is because the distance between any two adjacent robot poses is almost equal:

the time required to move the robots of the multi-robot system from one pose to the adjacent pose

is optimized. To assess the behaviour of the proposed algorithm, we ran the code several times for
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each surface type. Figures 4.18, 4.19, and 4.20 compare both optimization algorithms by showing

the average of the optimal number of robots (blue columns) and the margin of this number (red

line) required to totally cover the cylinder, the sphere and the action car respectively. We can notice

that for all surface types, the average of the optimal number of robots obtained using the proposed

optimization algorithm is lower than the average of the optimal number of robots found using the

greedy algorithm. Additionally, the margin of the optimal number of robots obtained using the hybrid

optimization algorithm is tighter than the margin computed using the greedy algorithm. Furthermore,

we can deduce that the proposed optimization algorithm is closer to the global optimal solutions for

all surface types.

Figure 4.18: The number of robots required to cover the whole cylinder using greedy algorithm and
the proposed hybrid optimization algorithm.

Figure 4.19: The number of robots required to cover the whole sphere using greedy algorithm and the
proposed hybrid optimization algorithm.
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Figure 4.20: The number of robots required to cover the whole action car using greedy algorithm and
the proposed hybrid optimization algorithm.

4.4.2 Improved hybrid optimization algorithm

Surface
Workspace

Spherical Semi-spherical Elliptical

Cylinder 416 416 166
Hemisphere 580 580 270

Car 692 692 307

Table 4.3: 3D discretization: the number of favourite robot poses for a cylinder, a hemisphere and a
car using different types of workspaces

Surface
Workspace

Spherical Semi-spherical Elliptical

Cylinder 3414 3414 1378
Hemisphere 2750 2750 785

Car 4906 4906 1960

Table 4.4: 4D discretization: the number of favourite robot poses for a cylinder, a hemisphere and a
car using different types of workspaces

In this part, we considered the same surfaces and the same robots already used in Section 4.4.1: a

cylinder, a hemisphere, a car and a KUKA Light Weight Robot (LWRs). However, we used three

different types of robot’s workspace: a spherical, a semi-spherical and an elliptical workspace. In

addition, we test the hybrid optimization algorithm and the improved hybrid optimization algorithm

using 3D and 4D discretizations for each surface type. The discretization step is 0.1 for 3D and 4D

discretizations. The discretization of θ is not considered when the robot’s workspace is a sphere. A

discretized point is considered a favourite robot pose if it avoids collision with the surface and allows
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to reach more than t = 15% of the cylinder, t = 9% of the sphere and t = 9% of the car respectively.

The threshold is chosen depending on the mesh refinement: finer is the mesh, smaller is the threshold.

Tables 4.3 and 4.4 show the number of favourite robot poses for a cylinder, a hemisphere and a car

using a spherical, a semi-spherical and an elliptical workspaces for each type of surfaces using 3D

and 4D discretizations respectively. It is clear that the number of favourite poses using a spherical and

a semi-spherical workspace for all the surface types is the same: it is a proof that the θ discretization

works perfectly.

Our algorithms were programmed using the C++ language and executed on the following hardware

and software: CPU Intel(R) Xeon(R) E5-2670, 6.4 GHz, Cache 8 Mo: CentOS Linux release 7.5.1804

(Core) 64 bits. This hardware is a cluster and I would like to thanks Mésocentre Clermont Auvergne,

the owner of this cluster, for their support. Before presenting the results for 3D and 4D discretizations,

we should know that the cluster gives 24 hours to solve an execution code. If the 24 hours finish, the

execution will be interrupted and we will satisfy with the achieved results.

4.4.2.1 3D discretization

We launch 100 times the hybrid and the improved hybrid optimization algorithms on the cylinder,

the hemisphere and the car using three types of workspace for each surface: the elliptical, the semi-

spherical and the spherical workspaces. The goal of both algorithms is to find the minimum number of

robots with their optimal base placements required to cover the whole surface using the correspondent

workspace.

Hence, we present using pie charts the percentage of the minimum number of robots for each case.

Moreover, the results for each surface using the different kind of workspaces and the two versions

of the algorithms are shown in Figure 4.21, 4.22 and 4.23. The pie charts on the left column present

the results for the hybrid optimization algorithm, and the results for the improved hybrid optimization

algorithm are shown in the right column.

After the interpretation of Figure 4.21, 4.22 and 4.23, we can confirm that the improved hybrid op-

timization algorithm gives better results, and even the number of possible solutions is less than the
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possible solutions given by the hybrid optimization function: the standard deviation of the optimal

number of robots found using the improved hybrid optimization algorithm is less than the standard

deviation of the optimal number of robots found using the hybrid optimization algorithm. One case

is an exceptional case where the standard deviation of the optimal number of robots given by the im-

proved optimization algorithm is greater than the standard deviation of the optimal number of robots

given by the hybrid optimization algorithm: it is the case when the surface is a car and the workspace

is a semi-spherical shape (Figure 4.23b and 4.23c). However, even if the standard deviation is greater,

the minimum number of robots is closer to the optimal solutions: 7, 8 and 9 robots could be found

using the improved hybrid optimization algorithm but 9 and 12 robots are found using the hybrid

optimization algorithm.

Besides, it is clear that the improved hybrid optimization algorithm is slower than the hybrid opti-

mization algorithm in terms of computation times for any surface types and any workspaces as it is

shown in Figure 4.28. However, the standard deviation of the computation time taken by the improved

hybrid optimization algorithm is smaller than the standard deviation of the computation time taken by

the hybrid optimization algorithm (see Table 4.5).

Algorithm Surface
Workspace Type

elliptical semi-spherical spherical

Hybrid
cylinder 2310.326 1373.818 1095.508

hemisphere 903.843 26.401 0.052
car 15815.768 6487.729 1554.951

Hybrid Improved
cylinder 56.841 1408.119 527.98

hemisphere 448.421 3.935 0.898
car − 2814.569 736.044

Table 4.5: 3D discretization: the standard deviation of the computation time (in seconds) of Hybrid
optimization algorithm and Improved Hybrid optimization algorithm applied on different type of
surfaces using different type of workspace

4.4.2.2 4D discretization

In the 4D discretization, we proceed with same strategy of 3D discretization. However, the number of

possible solutions which are the number of favourite robot poses is higher in this case. In addition, we

test the algorithm using different shapes of workspace: the spherical workspace which covers a huge
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part of the surface, the semi-spherical workspace which covers a normal part of the surface and the

elliptical workspace which covers a small part of the surface. Though, we can say that this methodol-

ogy gives better evaluation of the hybrid and the improved hybrid optimization algorithms. We launch

100 times both optimization algorithms on the cylinder, the hemisphere and the car using three types

of workspace for each surface: the elliptical, the semi-spherical and the spherical workspaces.

Moreover, we present using pie charts the percentage of the minimum number of robots for each

simple case. Those results are shown in Figure 4.25, 4.26 and 4.27.

Based on Figure 4.25, 4.26 and 4.27, we can say that in all cases the improved hybrid optimization

algorithm gives results that are more optimal than the results of the hybrid optimization algorithm

with a smaller standard deviation. Concerning the computation time, it is the same situation as we

have in 3D discretization methodology: the improved hybrid optimization algorithm is slower than the

hybrid optimization algorithm (see Figure 4.28). However, the standard deviation of computation time

for the improved hybrid optimization algorithm is smaller than the computation time for the hybrid

optimization algorithm as it is detailed in Table 4.6. Comparing the results of 3D discretization and

4D discretization, we can say that the improved hybrid optimization algorithm is more suitable than

the hybrid optimization algorithm when the number of possible solutions increases. Concerning the

computation time, this calculation should be accomplished off-line, and one calculation is enough for

each surface with a given workspace. Hence, the execution time of the improved hybrid optimization

algorithm can not be considered as a disadvantage in all cases, because the algorithm could find a

solution in a reasonable time.

Algorithm Surface
Workspace Type

elliptical semi-spherical spherical

Hybrid
cylinder 3838.177 328.131 388.146

hemisphere 1060.099 271.394 59.809
car 5035.356 2240.024 1078.814

Hybrid Improved
cylinder 1795.463 55.039 177.869

hemisphere 69.915 184.286 11.002
car − 576.028 328.026

Table 4.6: 4D discretization: the standard deviation of the results of Hybrid optimization algorithm
and Improved Hybrid optimization algorithm applied on different type of surfaces using different type
of workspace



100 Chapter 4. Optimal robot base placements for coverage tasks

4.4.3 Application on the airplane

The hybrid optimization algorithm is tested on an airplane using a KUKA manipulator. This airplane

is shown in Figure 4.29, its length is 14 m, its wingspan is 10 m and its height is 9 m. We chose

a 3D discretization (discretization along x, y and z axes): the discretization is not required in this

application since the workspace is spherical. The discretization step s = 0.4 m along x, y and z axes.

A discretized pose is considered favourite if its coverage score is greater than t = 0.09%. Using

the hybrid optimization algorithm, we find that 9 robots are required to cover 60% of this airplane

as it is clear in Figure 4.30. The computation time is almost 3 days. We can see that there are some

robot positions where the surface is considered reachable but it does not. Those robot positions are

the ones having black circles on the top of the robots. This problem is normal since we are doing

the intersection between the robot workspace and the surface. It will be solved when the constraint

projection on the surface is applied instead of doing the intersection process (the collision constraint

between the robot body and the surface should be considered).

In order to evaluate the algorithm and to reduce the computation time, we test it on an airplane where

the length and the wingspan are 4 m and the height is 4 m. We compute the favourite robot base

placements of this airplane without the wings. In this application, we considered the same values of

parameters as in the previous test (3D discretization where the discretization step s = 0.4 m along x,

y and z axes). Using the hybrid optimization algorithm, we find that 6 robots are required to cover

80.6% of the airplabe as it is clear in Figure 4.31.

4.5 Conclusion

In this chapter, a new approach to distribute tasks between robots of multi-robot systems has been

presented. It aims to find the optimal number of robots and their optimal poses required to cover large

and complex surfaces. An hybrid optimization algorithm is proposed, it combines three optimization

algorithms: greedy, genetic, and simulated annealing. It has been proved that this method returns the

number of robots required to equally cover the surface. After that, we proposed an improved hybrid
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optimization algorithm that deals with more complicated problems where the number of possible so-

lutions is very huge. Those algorithms have been assessed on regular surfaces (hemisphere, cylinder)

and on complex surfaces (car, airplane).
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(a) Results of Hybrid optimization algorithm in order
to cover a cylinder using a robot having an elliptical
workspace

(b) Results of Improved Hybrid optimization algo-
rithm in order to cover a cylinder using a robot hav-
ing an elliptical workspace

(c) Results of Hybrid optimization algorithm in order
to cover a cylinder using a robot having a semispher-
ical workspace

(d) Results of Improved Hybrid optimization al-
gorithm in order to cover a cylinder using a robot
having a semispherical workspace

(e) Results of Hybrid optimization algorithm in order
to cover a cylinder using a robot having a spherical
workspace

(f) Results of Improved Hybrid optimization algo-
rithm in order to cover a cylinder using a robot hav-
ing a spherical workspace

Figure 4.21: 3D discretization: comparison of the results of Hybrid optimization algorithm and Im-
proved Hybrid algorithm on a cylinder using the different workspaces
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(a) Results of Hybrid optimization algorithm in order
to cover a hemisphere using a robot having an ellip-
tical workspace

(b) Results of Improved Hybrid optimization al-
gorithm in order to cover a hemisphere using a
robot having an elliptical workspace

(c) Results of Hybrid optimization algorithm in order
to cover a hemisphere using a robot having a semi-
spherical workspace

(d) Results of Improved Hybrid optimization al-
gorithm in order to cover a hemisphere using a
robot having a semispherical workspace

(e) Results of Hybrid optimization algorithm in or-
der to cover a hemisphere using a robot having a
spherical workspace

(f) Results of Improved Hybrid optimization al-
gorithm in order to cover a hemisphere using a
robot having a spherical workspace

Figure 4.22: 3D discretization: comparison of the results of the Hybrid optimization algorithm and
Improved Hybrid optimization algorithm on a hemisphere using the different workspaces
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(a) Results of Hybrid optimization algorithm in or-
der to cover a car using a robot having a elliptical
workspace

(b) Results of Hybrid optimization algorithm in order
to cover a car using a robot having a semispherical
workspace

(c) Results of Impoved Hybrid optimization algo-
rithm in order to cover a car using a robot having
a semispherical workspace

(d) Results of Hybrid optimization algorithm in or-
der to cover a car using a robot having a spherical
workspace

(e) Results of Imroved Hybrid optimization algo-
rithm in order to cover a car using a robot having
a spherical workspace

Figure 4.23: 3D discretization: comparison of the results of Hybrid optimization algorithm and Im-
proved Hybrid optimization algorithm on a car using the different workspaces
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(a) Time required to find the optimal number of robots required
to cover a cylinder using different type of workspaces

(b) Time required to find the optimal number of robots required
to cover a hemisphere using different type of workspaces

(c) Time required to find the optimal number of robots required
to cover a car using different type of workspaces

Figure 4.24: 3D discretization: comparison between the execution time of Hybrid optimization algo-
rithm and Improved Hybrid optimization algorithm
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(a) Results of Hybrid optimization algorihtm in order
to cover a cylinder using a robot having an elliptical
workspace

(b) Results of Improved Hybrid optimization algo-
rihtm in order to cover a cylinder using a robot hav-
ing an elliptical workspace

(c) Results of Hybrid optimization algorihtm in order
to cover a cylinder using a robot having a semispher-
ical workspace

(d) Results of Improved Hybrid optimization algo-
rihtm in order to cover a cylinder using a robot hav-
ing a semispherical workspace

(e) Results of Hybrid optimization algorihtm in order
to cover a cylinder using a robot having a spherical
workspace

(f) Results of Improved Hybrid optimization algo-
rihtm in order to cover a cylinder using a robot hav-
ing a spherical workspace

Figure 4.25: 4D discretization: comparison of the results of Hybrid optimization algorithm and Im-
proved Hybrid optimization algorithm on a cylinder using the different workspaces
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(a) Results of Hybrid optimization algorihtm in or-
der to cover a hemisphere using a robot having an
elliptical workspace

(b) Results of Improved Hybrid optimization al-
gorihtm in order to cover a hemisphere using a
robot having an elliptical workspace

(c) Results of Hybrid optimization algorihtm in order
to cover a hemisphere using a robot having a semi-
spherical workspace

(d) Results of Improved Hybrid optimization algo-
rihtm in order to cover a hemisphere using a robot
having a semispherical workspace

(e) Results of Hybrid optimization algorihtm in order
to cover a hemisphere using a robot having a spheri-
cal workspace

(f) Results of Improved Hybrid optimization al-
gorihtm in order to cover a hemisphere using a
robot having a spherical workspace

Figure 4.26: 4D discretization: comparison of the results of Hybrid optimization algorithm and Im-
proved Hybrid optimization algorithm on a hemisphere using the different workspaces
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(a) Results of Hybrid optimization algorihtm in or-
der to cover a car using a robot having an elliptical
workspace

(b) Results of Hybrid optimization algorihtm in order
to cover a car using a robot having a semispherical
workspace

(c) Results of Improved Hybrid optimization algori-
htm in order to cover a car using a robot having a
semispherical workspace

(d) Results of Hybrid optimization algorihtm in or-
der to cover a car using a robot having a spherical
workspace

(e) Results of Improved Hybrid optimization algori-
htm in order to cover a car using a robot having a
spherical workspace

Figure 4.27: 4D discretization: comparison of the results of Hybrid optimization algorithm and Im-
proved Hybrid optimization algorithm on a car using the different workspaces
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(a) Time resuired to find the optimal number of robots required
to cover a cylinder using different type of workspaces

(b) Time resuired to find the optimal number of robots required
to cover a hemisphere using different type of workspaces

(c) Time resuired to find the optimal number of robots required
to cover a car using different type of workspaces

Figure 4.28: 4D discretization: comparison between the execution time of Hybrid optimization algo-
rithm and Improved Hybrid optimization algorithm

(a) The air-plane model (b) The air-plane model with the set of favourite robot base
placements

Figure 4.29: The representation of the air-plane with the set of favourite robot base placements (red
circle = favourite robot base placement)
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Figure 4.30: Optimal base placements to cover airplane using the hybrid optimization algorithm

(a) The optimal robot base placements (b) The covered surface of the airplane (without the
wings) from the optimal base placements

Figure 4.31: The results of the hybrid optimization algorithm on the airplane (the surface should be
at least 80% covered without the wings)
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Conclusion

5.1 Summary of Thesis Achievements

The automation is now prominent in different fields. In this thesis, we dealt with the automation in

coverage tasks, and more precisely in stripping procedures. The considered application consists in

stripping complex surfaces using a multi-robot system composed of mobile platforms: cranes. The

stripping tool is connected to the crane via an industrial robot manipulator. The mobile platform

is moved manually, and the stripping process is stopped during the robot movement. The goal of

this PhD is to optimize the poses of the whole robotic systems in order to optimally strip the whole

surface. The optimal robot poses must take into account the physical limits of the robotic systems

such as joint position and torque limits, collision and self-collision avoidance.

Our first contribution is the proposition of a general framework to estimate the optimal number of

robots and the related optimal base placement. The general framework has the object mesh to be

covered, and the robot model as inputs and generates the optimal number of robots with their optimal

base placements and the trajectories of each robot of the multi-robot system between those poses as

outputs. The general framework consists in starting by a pre-processing step that provides a set of

discrete favourite base placements. Those base placements are the set of poses that do not collide

with the object mesh, and that cover at least t% of the object. After that, this set of favourite base

placements is used as input of the optimization algorithm in order to find the optimal number of robots

111
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Ñ and their optimal base placements T̃. After that, the trajectories of the end-effector on the object

from each optimal pose are computed. Finally, a distribution of the robots that composes the multiple

robotic system is treated by doing robots scheduling and assignments. Though, the movement of the

robots between their assigned positions is controlled.

The second contribution is related to pessimism in Interval Analysis. We propose to use some proper-

ties of the BSplines and the Kronecker product to reduce the pessimism induced during the evaluation

of mathematical functions in Interval Analysis. We prove that our contribution deals with more com-

plex optimization problems and decreases the computation time. Interval Analysis is used to compute

the set of joint angles that allows a robot to reach a surface from a given position respecting a set of

constraints.

The third contribution is the proposed hybrid optimization algorithm. The main goal of this opti-

mization algorithm is to find the optimal number of robots with their optimal poses required to cover

an entire surface. An hybrid optimization algorithm is proposed, it combines the three optimization

algorithms: greedy, genetic, and simulated annealing. We proved that our hybrid optimization al-

gorithm is more efficient than Greedy optimization algorithm. In addition, we demonstrate that our

hybrid optimization algorithm gives better results in terms of robustness but it requires a little bit more

time. After that, we proposed an improved hybrid optimization function that is more robust when the

problem gets more complicated. However, the improved hybrid optimization function is slower than

the hybrid optimization function.

5.2 Future Works

Despite the huge effort on the thesis, I still have interesting works to accomplish, and other techniques

to test. Though, we count our future works.

— The bisection during solving CSPs or COPs using the proposed inclusion function could be

improved: the control points information could be used in order to guide the bisection process

in an effective way.
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— The use of multi-threading will also be investigated to decrease the computation time during the

evaluation of the bounds of a given function using the improved proposed inclusion function.

— The proposed inclusion function will be tested on more complex optimization problems such

as robotic motion optimization. It should be also tested on 3D robots taking into account ad-

ditional constraints such as kinematic constraints, collision and self-collision avoidance, singu-

larity avoidance or more dynamic constraints such balance or torque limits.

— The generated workspace using IA method should be used as an input for the hybrid opti-

mization algorithm instead of testing it on regular workspace (spherical, semi-spherical, and

elliptical shapes).

— The system could have different types of robots, so different robot workspace in the same

stripping process: this variety of robots should be considered in the program.

— The improved hybrid optimization algorithm could reach better results by changing the tech-

nique of children generation. The defined angle based on the number of robots should not be

the only criteria to define the border of a zone, but the number of favourite positions in each

zone should be considered during the zone generation.

— A new technique should be tested by considering that we can assign an ”area” on the ground

plane instead of a ”single position” to each mobile manipulator to operate around an object.

Here the analogy is again with human operators, who can move and cover an area (I am thinking

about the example of having several human operators stripping a big air-plane, and how these

human operators would behave to do the task. One could assign an ”area” to each operator).

You can try to optimize this ”area” according to some cost function. Or maybe simply exploit

the fact that the optimization becomes much less expensive computationally (instead of dealing

with many positions of the bases, we would be working only with a few ”areas”). This could

be an interesting fact in itself: it allows to take into account the uncertainty.

— We can also use Interval Analysis in order to take into account the uncertainty of base place-

ment: instead of getting a specific value for a base placement, we will get a box.

— In case the number of robotic systems is limited (the number of optimal robot poses is greater

than the number of robots of the multi-robot system), the robots will be redistributed based

on new optimal path planner that considers the different systems constraints. This step is the
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solution of the particular problems presented in Chapter 1. We propose to use the Hungarian

algorithm to solve those assignment problems.

— We can assume the planning of the end effector motion from a given position of the mobile

base can be done with an existing method (CPP, or methods for solving the ”lawn-mower prob-

lem”...) so we can maybe focus on the base placements and not the end effector-trajectory

planning.

— The goal of this thesis was to find the optimal number of robot positions required to cover a

surface. The algorithm used to attend this goal should be adapted to find the optimal positions

of crane around the surface to be covered.
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Kronecker product

A.1 Definition

The Kronecker product was firstly studied in the nineteenth century [111]. The Kronecker product of

two matrices A ∈ Rn1,m1 and B ∈ Rn2,m2 is the matrix A⊗B ∈ Rn1×n2,m1×m2 defined as follows:

A=


a1,1 . . . a1,n1

...
...

...

am1,1 . . . am1,n1

 A⊗B =



a1,1×B a1,2×B . . . a1,n1×B

a2,1×B a2,2×B . . . a2,n1×B
...

...
...

...

am1,1×B am1,2×B . . . am1,n1×B


(A.1)

A.2 Properties of the Kronecker Product

More properties of the Kronecker product can be found in [84]. Here we focus on the associative

(Eq. A.2) and the invertible (Eq. A.3) properties :

A⊗ (B⊗C) = (A⊗B)⊗C (A.2)

(A⊗B)−1 = A−1⊗B−1 (A.3)
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Using Equation (A.3), Equations (3.35) and (3.36) can be turned into :

P =
(
B−1

1 ⊗B−1
2 ⊗ . . .⊗B−1

n
)

X (A.4)

Assuming B ∈ Rx,x, with x = ∏
n
k=1 mi , the complexity of the inversion of the matrix B in Equa-

tion (3.35) is O(x3). Using the invertible property, the complexity decreases to O(x∑n m2
i ) where

x = ∏n mi, that will allow faster computation. Hence, Equation (A.4) is used to compute control

points.

One can consider the following property relating matrix/vector multiplication and the Kronecker prod-

uct:

A.X = (I⊗A)X (A.5)

Where A is a matrix and X is a vector. Equation (A.5) is used to reduce computation time for the

proposed inclusion function.

A.3 Recursive Inverse Kronecker Product

Using Equation (A.5), Equation (3.37) can be written as following:

P =
(
B−1

1 ⊗B−1
2 ⊗ . . .⊗B−1

n
)

Xn

=
(
B−1

1 ⊗ . . .⊗B−1
n−1
)(

I⊗B−1
n
)

Xn

=
(
B−1

1 ⊗ . . .⊗B−1
n−1
)

Xn−1

With: Xn−1 =
(
I⊗B−1

n
)

Xn

(A.6)

This equation can be used recursively to reduce the computation time. Regarding the low dimension

of the matrix Bi, the inversion is done numerically. However, future works will address this issue

as presented in Section 3.7. As an example, consider two matrices A ∈ R2×2 and B ∈ R2×2, and
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X = [X1,X2] ∈ R4 with {X1,X2} ⊂ R2, the following product can be computed such as:

(A⊗B)X =

 a1,1.B.X1 +a1,2.B.X2

a2,1.B.X1 +a2,2.B.X2

 (A.7)

Despite the multi-occurrence of B.X1 and B.X2, B.X1 and B.X2 are calculated only once.Though, the

computation time is decreased.



Appendix B

Evaluating an equation using different

inclusion functions

In this section, we present two examples: one dimensional and two dimensional examples. The

1-dimensional example is used to compare the efficiency of the different inclusion functions. The

2-dimensional example is shown to make clear how we can compute the interval of a function using

BSplines and Kronecker product properties.

B.1 1-dimensional example

For instance, consider the function f defined by f (x) = x2 + sin(x) and the intervals [x1] = [
2π

3
,
4π

3
]

and [x2] = [
99π

100
,
101π

100
]. We will compare the approximations of f (x1) and f (x2) obtained by using

the natural, the centred, Taylor of order two, Chebyshev of order five, Bernstein inclusion function,

BSplines and minimal inclusion functions, which will be [ f ]n, [ f ]c, [ f ]T 2, [ f ]C5, [ f ]B, [ f ]Bs and [ f ∗]
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respectively.

[ f ]n([x]) = [x]2 + sin([x])

[ f ]c([x]) = f (π)+([x]−π)[ f ′]([x])

[ f ]T 2([x]) = f (π)+([x]−π)[ f ′]([π])+
([x]−π)2

2
[ f ′′]([x])

[ f ]C5([x]) =
1
2

f0 +[−1,1]
5

∑
i=1
| fi|

[ f ]∗([x]) = [x2 + sin(x), x̄2 + sin(x̄)]

with f ′(x) = 2x+ cos(x) and f ′′(x) = 2− sin(x) and fi =
2
π

∫
π

0 f (cos(x))cos(ix)dx.

[x1] = [
2π

3
,
4π

3
] [x2] = [

99π

100
,
101π

100
]

[ f ] [ f ]([x1]) M ([ f ]([x1])) [ f ]([x2]) M ([ f ]([x2]))
[ f ]n [3.52046,18.41199] 3.46410 [9.64178,10.09940] 0.12564
[ f ]c [1.62022,18.11899] 5.07134 [9.70163,10.03758] 0.00397
[ f ]T 2 [4.33706,16.97362] 1.20913 [9.70362,10.03659] 0.00099
[ f ]C5 [4.15463,16.68117] 1.09911 [9.70362,10.03657] 0.00098
[ f ]B [5.25251,16.67994] 0 [9.70461,10.036673] 0.000083
[ f ]Bs [5.25251,16.67994] 0 [9.70461,10.0366] 0.00002
[ f ]∗ [5.25251,16.67994] 0 [9.70461,10.03658] 0

Table B.1: Comparing inclusion functions

The results are presented in Table B.1. Before analysing the data, we should add that M ([ f ]([x]))

stands the value of ω([ f ]([x]))−ω( f ([x])) = ω([ f ]([x]))−ω([ f ]∗([x])). As we can see, the natu-

ral inclusion function remains competitive for the large intervals. However, the centred, Taylor and

Chebyshev inclusion functions are more efficient than the natural inclusion function for the small in-

tervals. Besides, Taylor and Chebyshev inclusion functions bring noticeable improvement compared

to the natural and the centred inclusion functions even for large intervals. Moreover, the best two

inclusion functions are Bernstein expansion and Bsplines inclusion functions. However, it is clear

that Bsplines inclusion function remains the best inclusion function for large and small intervals: the

results are almost the real intervals.
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B.2 2-dimensional example

As an example of the use of BSplines to reduce pessimism, let us consider

f (q1,q2) = 1−3q1−2q2 +4q1q2

with q1,q2 ∈ [−10,10]. Thus, we have X = [1,−3,−2,4]T . We should compute B. f contains two

variables q1 and q2 each one of degree n = 1. Hence, we have n+ 1 = 1+ 1 = 2 basis functions

for each variable:B1
1(q1) = a1 + b1q1, B1

2(q1) = c1 + d1q1, B1
1(q2) = a2 + b2q2, B1

2(q2) = c2 + d2q2.

Based on Equation 3.25 we can have those two equations: B1
1(q1)+B1

2(q1) = 1 and B1
1(q2)+B1

2(q2) =

1. Adding to those two equations the fact that q1,q2 ∈ [−10,10], we obtain a system of equations

where the solution is a1 =
−q1

q1−q1
, b1 =

1
q1−q1

, c1 =
q1

q1−q1
, d1 =

−1
q1−q1

, a2 =
−q2

q2−q2
, b2 =

1
q2−q2

, c2 =
q2

q2−q2
, d2 =

−1
q2−q2

. Consider that B1 =

 a1 c1

b1 d1

 and B2 =

 a2 c2

b2 d2

. The

latter equations lead to a1 =
1
2

, b1 =
−1
20

, c1 =
1
2

, d1 =
1

20
, a2 =

1
2

, b2 =
−1
20

, c2 =
1
2

, d2 =
1

20
.

Though: B1 = B2 =

 0.5 0.5

−0.05 0.05

. We can deduce that B−1
1 = B−1

2 =

 1 −10

1 10

.

B−1
1 ⊗B−1

2 =



1×

 1 −10

1 10

 −10×

 1 −10

1 10



1×

 1 −10

1 10

 10×

 1 −10

1 10




=



1 −10 −10 100

1 10 −10 −100

1 −10 10 −100

1 10 10 100


We can com-

pute the equivalent control point using:

P =
(
B−1

1 ⊗B−1
2
)

X = [451,−409,−389,351]T (B.1)

Thus using our method, we can deduce that f ∈ [−409,451]. However, using the natural inclu-

sion functions we obtain f ∈ [−449,451]. That is because f (q1,q2) = 1− 3q1 − 2q2 + 4q1q2 =

1− 3[−10,10]− 2[−10,10] + 4[−10,10][−10,10] = 1+ [−30,30] + [−20,20] + [−400,400] = 1+
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[−450,450] = [−449,451]. Using a 3D plot of f , we can deduce that f is limited between −409 and

451 as it is clear in Figure B.1.

Figure B.1: 3D plot of f (q1,q2) = 1−3q1−2q2 +4q1q2

By applying Horner schemes, we got two different expressions of f : f = 1+q1(−3+4q2)−2q2 and

f = 1−3q1−2q2(1−2q1). For those two different expressions we got two intervals [−449,451] and

[−449,451]. Once can deduce that our method reduces pessimism in this example. Horner scheme

works for n = 2 and gives the same results, but his behaviour becomes more critical when n increases.

Hence, the proposed method allows to avoid or at least reduce pessimism for n = 2. Moreover, if the

value of n increases, then the pessimism will be more reduced: the multi-occurrence increases once n

increases.

Let us apply the inputs normalization on this example. After normalization of the inputs q1 and q2 us-

ing those equations q1 = 10q1re f and q2 = 10q2re f , we can deduce that f (q1re f ,q2re f ) = 1−30q1re f −

20q2re f + 400q1re f q2re f . Thus, we have X = [1,−30,−20,400]T and B1 = B2 =

 0.5 0.5

−0.5 0.5

.

Hence, B−1
1 = B−1

2 =

 1 −1

1 1

.
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B−1
1 ⊗B−1

2 =



1×

 1 −1

1 1

 −1×

 1 −1

1 1



1×

 1 −1

1 1

 −1×

 1 −1

1 1




=



1 −1 −1 1

1 1 −1 −1

1 −1 1 −1

1 1 1 1


We can compute

the equivalent control point using:

P =
(
B−1

1 ⊗B−1
2
)

X = [451,−409,−389,351]T (B.2)

Thus, using our method, we can deduce that f ∈ [−409,451] which is the same interval obtained

without inputs normalization.

Finally, let consider that q1 = q2 ∈ [−1,1] for the same equation

f (q1,q2) = 1−3q1−2q2 +4q1q2

. Thus, we have X = [1,−3,−2,4]T and B1 = B2 =

 0.5 0.5

−0.5 0.5

. We can compute the equivalent

control point using:

P =
(
B−1

1 ⊗B−1
2
)

X = [10,−4,−2,0]T (B.3)

Thus, using our method, we can deduce that f ∈ [−4,10]. However, using the natural inclusion

functions we obtain f ∈ [−8,10]. That is because f (q1,q2) = 1−3q1−2q2+4q1q2 = 1−3[−1,1]−

2[−1,1]+4[−1,1][−1,1] = 1+[−3,3]+[−2,2]+[−4,4] = 1+[−9,9] = [−8,10]. Using a 3D plot of

f , we can deduce that f is limited between −4 and 10. And using the two different Horner schemes

already defined we can deduce that f ∈ [−8,10]. Hence, we can deduce that our method reduces

pessimism for large and tight intervals.



Appendix C

How did we get the linearisation Equation

using Taylor theorem

Taylor’s theorem

Proof. Consider k ≥ 1 an integer and the function f : R→ R which is k times differentiable at the

point a ∈ R. Then, it exists a function hk : R→ R such that

f (x) = f (a)+ f ′(a)(x−a)+
f ′′(a)

2!
(x−a)2 + · · ·+ f (k)(a)

k!
(x−a)k +hk(x)(x−a)k

and limx→a hk(x) = 0. This is called the Peano form of the remainder.

The polynomial appearing in Taylor’s theorem is the k− th order Taylor polynomial of the function f

at the point a:

Pk(x) = f (a)+ f ′(a)(x−a)+
f ′′(a)

2!
(x−a)2 + · · ·+ f k(a)

k!
(x−a)k (C.1)

By applying Equation C.1 on cos(x) ans sin(x), we get the following equations
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cos(x) = cos(a)− sina(x−a)− 1
2

cosa(x−a)2 +
1
6

sina(x−a)3 + · · ·

sin(x) = sin(a)+ cosa(x−a)− 1
2

sina(x−a)2− 1
6

cosa(x−a)3 + · · ·
(C.2)

Consider x is qi, let apply the normalization, written in Equation 3.43, on a 2− th order Taylor

polynomial by considering a=mi, we got

cos([qi]) = cos(mi)− sin(mi)
di

2
[qre f

i ]+ · · ·

sin([qi]) = sin(mi)+ cos(mi)
di

2
[qre f

i ]+ · · ·
(C.3)

Hence, we got Equation 3.44.

For instance, consider the function cos(x) for x = [−4,4]: cos(x), its 3− th and its 5− th order Taylor

polynomials are shown in Figure C.1. Find the error εs for the approximation of cos(x) up to O(x3)

and up to O(x5). Using the below Figure, we can deduce that εs(x3) = [0 ;6.3464 ;6.3464] and

εs(x5) = [0 ;−4.3209 ;−4.3209].

Figure C.1: Taylor Series Expansion of cos(x)



Appendix D

Simulation and results for the first

implementation version of the proposed

inclusion function:

Figure D.1: Two dof Robot with a square surface in three different positions and a robot stability
margin

We tested our BSplines IA algorithm on 2D-robots with n degrees of freedom. The feasible space of

the joint values is computed using our method. Hence, a set of joints boxes, i.e. intervals, of the robot

respecting a set of constraints is defined. In this application, the end-effector must be inside a square

surface while the quasi-static balance of the robot is guaranteed though the projection of the center of

mass. We show the results of the implementation of the proposed method for three different positions
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of the square surface as presented in Figure D.1, with a robot of 2, 3, 4 and 5 degrees of freedom

for each position. We consider the 2D robot with a total length of 2, with all the segment of equal

values (2/n) and equal mass, a root position in (0,0) and with all joint limits of [−1.5,1.5]. The size

of the desired square surface is 0.2 with two feasible positions (0.2;1.7), (0.4;1.4) and one infeasible

position (0.6;1.1) (due to balance constraint). The balance of the robot is considered by ensuring that

the projection of its center of mass remains in the interval [−0.1,0.1] (considering that the center of

mass of each segment is at the middle of the segment). The surface reachability decision is based

on the position of the end-effector. This position is computed using a composition of transformation

matrices. The transformation matrix of qi is defined by: Tqi =


cos(qi) −sin(qi) βi

sin(qi) cos(qi) 0

0 0 1

 Where

∀i > 1,βi =
l
n and β0 = 0, since the initial robot position is along y axis. Hence the position of the

end-effector Pf = (Tf (0,2), Tf (1,2)) Where Tf = Tπ/2Tq1...Tqi...Tqn .

We assign 0.01 to the box threshold during the bisection process. We compare three methods: the

classic contraction with the bisection (Solver 1), the BSplines contraction of the monomial that are

composed only of input variables with the bisection (Solver 2), and the BSplines contraction of all

the monomials in the constraints equations with the bisection (Solver 3). The number of iterations

and the computation time required to find the feasible workspace are shown in Figures D.3a and D.3b

respectively, for a threshold of 0.01 and in Figures D.2a and D.2b respectively, for a threshold of 0.1.

The computing time required to find the feasible workspace for a robot of 5 dof using a precision of

0.01 was very huge: more than one week. Hence, we show the results of a robot with 1, 2, 3, and

4 dof for a precision of 0.01. For both thresholds, the number of iterations using the BSplines con-

traction with the bisection (Solver 2, 3) is smaller than the number of iterations in the state-of-the-art

method (Solver 1). Though, BSplines IA uses less number of bisections to find the robot feasible

workspace. Hence, our method decreases pessimism. A comparison between the two solvers using

the BSplines contraction (Solver 2 and 3) shows that (Solver 3) has lower number of iterations than

(Solver 2). Though, the contraction of each monomials of the constraint equation helps to reduce pes-

simism. However, (Solver 3) is slower than (Solver 2), since doing better contractions requires more

computation time (see Figure D.3b, D.2b). It is clear that while increasing the accuracy (decreasing
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the threshold), our method (Solver 2) becomes faster than the classic method (Solver 1). Hence the

BSplines contraction/ bisection reduces pessimism, and it is faster than the contraction/ bisection for

high accuracy. We proposed two solvers using BSplines contraction: Solver 2 is faster than Solver 3

and 1, but Solver 3 reduces the pessimism more than Solver 2. Tables D.1 and D.2 show the number

of iterations and the computing time required to find the feasible space of our different problems for

a precision of 0.01.

(a) Iteration numbers (b) Computation time

Figure D.2: Iteration numbers and computation time of the three different solvers compared to Solver
1 for a precision of 0.1

(a) Iteration numbers (b) Computation time

Figure D.3: Iteration numbers and computation time of the three different solvers compared to Solver
1 for a precision of 0.01
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Position Solver
DOF

2 3 4

1
1 1975 2288339 1356748167
2 1871 2032347 1086632883
3 1555 1771783 999374305

2
1 705 466451 737351907
2 681 397469 536515897
3 477 326615 488179609

3
1 21 74895 231273567
2 37 63129 152641419
3 29 52201 132694819

Table D.1: The number of incrementation required to solve Position 1 problem using Solver 1, Solver
2 and Solver 3/ PRECISION 0.01

Position Solver
DOF

2 3 4

1
1 0 / 00 : 00 : 0.05 0 / 00 : 03 : 39 4 / 14 : 39 : 57
2 0 / 00 : 00 : 0.04 0 / 00 : 01 : 51 2 / 00 : 02 : 09
3 0 / 00 : 00 : 0.04 0 / 00 : 01 : 58 3 / 01 : 50 : 30

2
1 0 / 00 : 00 : 0.02 0 / 00 : 00 : 43 2 / 12 : 11 : 18
2 0 / 00 : 00 : 0.01 0 / 00 : 00 : 21 1 / 00 : 02 : 35
3 0 / 00 : 00 : 0.01 0 / 00 : 00 : 22 1 / 13 : 14 : 06

3
1 0 / 00 : 00 : 0.0005 0 / 00 : 00 : 07 0 / 19 : 08 : 45
2 0 / 00 : 00 : 0.0007 0 / 00 : 00 : 03 0 / 07 : 02 : 04
3 0 / 00 : 00 : 0.0007 0 / 00 : 00 : 035 0 / 10 : 47 : 06

Table D.2: The time (in days / HH:MM:SS) required to solve Position 1 problem using Solver 1,
Solver 2 and Solver 3/ PRECISION 0.01



Appendix E

Assignment and Scheduling

The assignment problem, in the robots scheduling, assignment and control step of the general frame-

work, selects which optimal poses should correspond to each robot in order to generate their trajecto-

ries from their initial positions. This type of problems can be solved using different algorithms such

as The Multiple Traveling Salesman Problem (mTSP), Hungarian algorithm, the primal simplex algo-

rithm and the auction algorithm. We have chosen the Hungarian algorithm since it is fast and simple

and it is suitable for all the problems which can be described as an integer programming [141]. In

this appendix, we present the required formulation for the Hungarian application to our assignment

problem.

The assignment problem can be broken into two sub-problems which can be considered as two suc-

cessive Hungarian problems. The first one assigns Nsys robots to the previously computed N optimal

poses. The second assignment problem computes the necessary trajectories for each robot to reach the

desired poses. Usually Nsys ≤ N, so one robot should visit several poses. During the assignment, sev-

eral goals should be taken into consideration: the robots do not cooperate between them which mean

that each robot must have a separate zone to strip, the cycle time of moving the robots should be min-

imized and the distribution of the robots around the surface should consider the collision avoidance

between them.

Both problems can be formulated using the following formulation: let S= {Si ∈ SE{3},1≤ i≤Nsys}

be the set of initial positions of the robots composing the multi-robot system, T = {T j ∈ SE(3),1 ≤

129
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j ≤ N} be the set of optimal robot poses.

For the first problem, let ci j = distance(SiT j) be the cost of moving a robot from its current position

Si to the j− th optimal pose Tj.

ci j is computed using the weighted cost function C : S×T→ R.

Define the variable xi j =


1 if we assign the element j ∈ T to the element i ∈ S

0 if not
The problem is

Find a bijection f : S→ T

Such that ∑
Nsys
i=1 ∑

N
j=1 ci jxi j is minimized

Subject to ∑
N
j=1 xi j = 1 ∀i = 1, · · · ,Nsys

(E.1)

∑
N
j=1 xi j = 1 means that each optimal pose is assigned to one and only one robot.

For the second problem, once the first Hungarian algorithm has solved ST= {S1T1,S1T2, · · · ,SrsT1}=

{ST1,1,ST1,2, · · · ,STrs,1}, which represents the set of assigned optimal poses to the different robots.

For instance, ST1,1 means that the optimal pose T1 is assigned to the robot S1. Let be ui j,kl =

distance(STi j,STkl) the distance between two different robots and their assigned tasks (i 6= k). ui j,kl

is computed using the weighted cost function U : ST×ST→ R.

Define the variable mi j,kl =


1 if we assign the element i j ∈ ST to the element kl ∈ ST

0 if not
The problem is

Find a bijection f : ST→ ST

Such that ∑
Nsys
i=1 ∑

N
j=1 ∑

Nsys
k=1 ∑

N
l=1 ui j,klmi j,kl is maximized such as i 6= k

(E.2)

In this case the cost function has to be maximized to avoid collisions between the robots.
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problèmes non linéaires en robotique et en commande robuste. PhD thesis, Paris 11, 1997.



BIBLIOGRAPHY 135

[35] Jun Dong and J. C. Trinkle. Orientation-based reachability map for robot base placement.

In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages

1488–1493, Sept 2015.

[36] Herbert Edelsbrunner, Joseph O’Rourke, and Emmerich Welzl. Stationing guards in rectilinear

art galleries. Computer vision, graphics, and image processing, 27(2):167–176, 1984.

[37] Brendan Englot and Franz S Hover. Sampling-based coverage path planning for inspection of

complex structures. In Icaps, 2012.

[38] Maria Valera Espina, Raphael Grech, Deon De Jager, Paolo Remagnino, Luca Iocchi, Luca

Marchetti, Daniele Nardi, Dorothy Monekosso, Mircea Nicolescu, and Christopher King.

Multi-robot teams for environmental monitoring. In Innovations in Defence Support Systems–

3, pages 183–209. Springer, 2011.
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