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RESUME

Dans cette these, nous nous concentrons sur les méthodes d’éclatements d’opérateurs
monotones (en anglais “splitting”) qui sont appliquées a des problémes d’optimisation
convexe ou d’inclusions monotones présentant des structures décomposables. Une
des contributions majeures de cette these est de considérer des reformulations de
type point-selle (Lagrangiennes) de ces probléemes d’inclusion menant vers des algo-
rithmes de type primal-dual.

Dans un contexte général pour résoudre un probleme d’inclusion monotone et
obtenir des algorithmes de splitting, nous développons une méthode de point proxi-
mal généralisée et construisons une application associée avec des propriétés de con-
traction similaire a celle de 'opérateur résolvante classique. Notre configuration
générale inclut des algorithmes de splitting connus dans I'abondante littérature qui
les applique a des modeles d’apprentissage et de régression parcimonieuse tres en
vogue ces dix dernieres années dans les domaines de l'inférence statistique et du
traitement de signal et d’images.

Nous présentons également des techniques de décomposition afin de résoudre la
version multi-blocs de certains problemes structurés en exploitant des reformulations
appropriées du probleme original et puis en appliquant une version particuliere de
I’algorithme de notre schéma général.

Finalement, nous appliquons la méthode de splitting généralisée a un probleme
de planification de la production d’énergie a grande échelle avec une décomposition

spatiale.
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ABSTRACT

We focus in this thesis, on splitting methods which be applied to special optimization
or inclusion problems considering its related inclusion problems with an appropri-
ated Lagrangian map.

In a general setting for solving a monotone inclusion problem and obtain split-
ting algorithms, we develop a generalized proximal point and construct a related
map with similar contraction properties as the resolvent map. Our general setting
includes popular splitting algorithms.

Also, we show decomposition techniques in order to solve the multi-block version
of our model problems, finding adequate formulations of the original problem and
then apply a particular algorithm version of our general scheme.

Finally, we apply the splitting method to a large-scale energy production plan-
ning problem.
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Introduction

Decomposition techniques have been widely used in Mathematical Programming
and Variational Analysis to cope mainly with the large-scale models issued from
Decision Systems with many variables and constraints, but also to manage hetero-
geneous models including discrete choices, uncertainties or even mix of conflictual
criteria. The recent explosion in size and complexity of datasets and the increased
availability of computational resources has led to what is sometimes called the big
data era. The large dimension of these data sets and the often parallel, distributed,
or decentralized computational structures used for storing and handling the data, set
new requirements on the optimization algorithms that solve these problems. Much
effort has gone into developing algorithms that scale favorably with problem dimen-
sion and that can exploit structure in the problem as well as the computational
environment.

Splitting methods for convex optimization or monotone variational analysis are
commonly referred to address the construction of decomposition techniques based
on regularization and duality. Indeed, many hard problems can be expressed under
the form of a minimization of a sum of terms where each term is given by the compo-
sition of a convex function with a linear operator. The main advantage of splitting
methods results thus from the fact that they can yield very efficient optimization
schemes according to which a solution of the original problem is iteratively computed
through solving a sequence of easier subproblems, each one involving only one of
the terms constituting the objective function. These algorithms can also handle
both differentiable and non smooth terms, the former by use of gradient operators
(yielding explicit forward steps) and the latter by use of proximal operators (yielding
implicit backward steps), thus giving rise to efficient first-order algorithms.

Since the pioneer works of Martinet [35], Glowinski-Marocco [24], Gabay [22]
and Rockafellar [45], many algorithms have been studied for different models. A
cornerstone was Lions and Mercier’s paper in 1979 [31] about the Douglas-Rachford’s



family of splitting methods applied to the following inclusion :
Find z € X such that 0 € S(z) + T(x) (V)

where S and T are maximal monotone operators (typically subdifferential operators
of convex functions) on a Hilbert space X.

Back to the motone inclusion problem, i.e. to find x € X such that 0 € T (z)
where 7 is maximal monotone, the proximal point method (PPM) constructs the
mapping J] = (I + AT)~! for A > 0, the resolvent of 7 with known contractive
properties, and transforms the above inclusion into an equivalent fixed-point equa-
tion, i.e. x = JJ (x). (PPM) is thus defined by the following fixed-point iteration

o= T
which corresponds, when 7 = df, the subdifferential of a convex function f, to the

following subproblem :

1
7 = argmin , f(z) + —~||z —

2\
That so-called implicit backward step leads to the celebrated Augmented Lagrangian

t||2

algorithm when f is the dual function associated to the Lagrangian Relaxation of
a constrained concave maximization problem with many potential applications (see
for instance [28]).

In general the maximality assumption on 7 is restrictive, consider for instance
the inclusion problem corresponding to the sum of two operators, i.e. inclusion (V).
The sum S + T is not necessarily maximal monotone and also its resolvent doesn’t
necessarily maintain its separability structure. Fortunately Lions and Mercier [31],
solve that disadvantage considering an appropriate operator called after ” Douglas-
Rachford” operator (cf. [17], defined by

Gyr=1—J, +JJ2JF — 1]

having splitting properties and whose fixed points are closely related with the so-
lution points of problem (V). Moreover, the maximality assumptions on 7" and S,
ensure that GG, maintains the contractive properties of the single resolvent and the
fullness of its domain.

When T = 0f and S = Jg, unlike the resolvent map, GG, is not in general the
subdifferential of a function [19], so we need to continue working with monotone
operators even in optimization problems in order to obtain splitting methods for

optimization problems.



The Douglas—Rachford method leads us to consider in Chapter 2 and 4 the follow-
ing methodology: given an inclusion problem with separable structure, we construct
an appropriated average map with full domain having splitting properties and then

apply the fixed point method to this new map.

Gabay [22] noticed that the Douglas-Rachford operator is behind the popular Al-
ternate Direction Method of Multipliers (ADMM), considering the dual variational
problem associated with the composite model

Minimize f(x)+ g(Ax)

where f : IR" — IR and g : IR™ — IR are proper lower semi-continuous (lsc, for
short) convex functions and A a given (m x n) matrix. The ADMM is an iterative
method that consider two sub problems associated with f and g separately at each

iteration.

Algorithm (ADMM)

M = argming f(z) + §||Az — 2F + o7 yF|?
= argmin, g(z) + §||Az* — z 4+ o7 F|?
yk—i-l — yk + (T(A:Ek+1 _ Zk+1)

where ¢ is a positive real parameter.

Recently Shefi and Teboulle [49] have presented a unified scheme algorithm for
solving the last composite model based on the introduction of additional proximal
terms like in Rockafellar’s Proximal Method of Multipliers [44], this algorithm in-
cludes a version of a Proximal ADMM and other known algorithms like Chambolle
and Pock [10].

In Chapter 2, we consider an extended model problem coming from an energy
production planning problem

gl’iyr)l [f(z) +g(y) : Av + By = (] (P)

where f and g are again proper lsc convex functions, and A and B are matrices of
order m x n and m x p, respectively. Its saddle-point formulation in the variational
setting is

Find (7, z,9) € IR" x IR? x IR™ such that 0 € L(z,z,7) (V1)

where L is the maximal monotone map defined on IR" x IRP x IR™ as

of (x) 0o 0 A x
L(z,z,y) = | 909(z) |+] 0 0 B z
-A —-B 0



For solving (V7), a generalized resolvent of L, defined as J5 = (L + P)™'P, is in-
troduced, where P is a symmetric positive semidefinite matrix with special block
structure in order to split J5 into a separable structure leaving f and g separated.
Then we consider the relaxed fixed-point method applying to J5, where after chang-
ing the variables we obtain the following generalized algorithm

Generalized Splitting Scheme (GSS)

1 1
ZF1 € argmin {9(2) + §||BZ + Mk + AP, + 5”2’ - Zk”%/g} (1)

M = yArF — (v — 1)BF + M (2)
1 1 1
#F ¢  argmin {f(x) + 5“1433 + M2 + 29 BE, + 5“55 - ka%/l} (3)

ﬁk+1 — uk + M(’yA:L‘k + (1 . ’y)Ai‘kJrl + ngJrl) (4)

(@ 2P ) = p( 2L A 4 (1= p)(af, 28, ). ()

where the special cases v = 0 and v = 1, include the Shefi-Teboulle algorithm.

To guarantee the convergence of GSS and find an average map behind it, we
developed a general setting in order to solve the inclusion problem: finding z € IR"
such that 0 € T (x), studying the generalized proximal point associated to the
generalized resolvent J} = (T+P)~!P, where P is a symmetric positive semidefinite
matrix, and then defining the map G7 as

GL = S(T + 5'9)~1s" (6)
where S is a matrix satisfying S'S = P. By the monotonicity of 7, G7 is %—average.

In the special case of T = L, we find conditions on the matrix S in order to G%
has full domain, which is used in the proof of the convergence of GSS. Also, consid-
ering S = S5 (defined in Remark 2.4.3), we recover the Douglas-Rachford operator
coinciding with /\%Ggg/\_%, showing that its fundamental properties of splitability
and %—average can be deduced from our generalized setting corresponding the La-
grangian map. Also, the general setting help us to find the ergodic and nonergodic
rate of convergence of GSS.

Finally, in the last section of Chapter 2, for f; : IR — IR (i = 1,---,q) and
g : IR™ — IR proper lsc convex functions, A; and B matrices of order p x n; and

4



p X m, respectively, the following S-Model problem is presented:

(a:17.“ 7$q7z)

q
s.t ZAi:vi + Bz =0.

i=1

This model is a multiblock generalization of problem (P). In [18] the authors propose
the so called Separable Augmented Lagrangian Algorithm (SALA) in order to solve
the S-Model problem by considering ¢ = 0 and B = 0. At each iteration k, the
algorithm considers a set of subproblems (one subproblem fo each i = 1,--- ¢)
defined by

. 1 _
argmin,, f;(z) + §HAZ:E — 2P MTYYR)3, (7)
where M is a parameter matrix considered symmetric positive definite, solved in
parallel processing.

As a generalization, they also consider different parameter matrices depending
on each iteration.

Reformulating the S-Model problem in order to apply GSS, we get a new algo-
rithm called “Proximal Multi-block Algorithm (PMA)” where like SALA it
considers a set of problems at each iteration k:

lz — =]

1 1
argmin {fl(a:) + §HAZ£B — M[@?“H?\/h + B

QQZ-}a =1 4,
where M; is symmetric positive definite and (); symmetric positive semi-definite.
Matrix ); allow us to deal with the not injective case on A; and choosing it appro-

priately, each sub problem becomes on proximal step of f;.

In Chapter 3, we show some decomposition techniques, which consist in find-
ing an adequate formulation of the original problem in order to apply GSS with
particular parameter matrices Vi, V, and M, and consequently find new splitting
algorithms.

For every i € {1,---,q}, let f; : IR" — IR be proper lsc convex. We consider
the separable model with coupling variable (SMCV) defined as

min Z fi(z) (S)

For this problem we recover algorithm PDA and the algorithm given in [34] by con-
sidering a particular parameter. We also show the relationship between these two

5



algorithms.

Adding linear constraints in the model, we obtain the separable model with
coupling constraint (SMCC) where A;,i = 1,...,q are (p X n;) matrices

min i fi(xy)
i=1

=1

Notice that this problem can be seen as a S-Model problem and, since SMCC can
be formulated as SMCV, we apply the results obtained for SMCV to SMCC, getting
directly two algorithms which can also be recovered from PM A considering special
formulation for SMCC.

The precedent algorithms found in this chapter, consider, for each iteration, the
proximal step of all family {f;},=1.... ;, or separate the family into two sub-family, one
consisting of { f;}i=1,.. ,—1 and the other consisting of f,. Then, the proximal step of
all {fi}iz1... g—1 are found in parallel processing and then, after linear combination
of all these values, the proximal step of f, is found.

We show that after special reformulations, we get two splitting algorithms, one
for SMCV and the other for SMCC. Each algorithm separates the problem into two
sub-block problems, considering the proximal step to one sub-block and then (at a
linear combination of the preceding values) the proximal step is found for the other
sub-block, both in parallel processing.

In the last part of this chapter, we consider the following multi-block optimization
problem

min Z f1<$l) -+ g(Z Aﬂ»’z) + S(l‘) (Psc>

x=(x1,,2q) <

where for i € {1,...,q¢}, fi : R" - IR, g: IR* - IR and s: R" — IR (n=>7 n;)

are proper Isc convex functions, and A; are matrices of order p x n;.

This special structure is deduced from the formulation over the Euclidean space
of the following stochastic optimization model problem with finite scenarios =

T T
min [ Ee > g/(X,(6),6) st X € Nand > B;X,(§) =0,V € 2 (SP)
t=1

XeLl
t=1

where £ is the linear space of all mapping X from Z to IR" := IR™ x --- x IR"T,
and A the nonanticipativity subspace of £, and for ¢ e Zand t =1,--- T, g;(-, )

6



is a proper Isc convex function and Bf an me X n; matrix.

As a consequence of obtaining a splitting algorithm for (P;.), we get a splitting

algorithm for problem (SP).

Coming back to problem (Vj), if one these maps (say T') is co-coercive, then
we can apply the Forward-Backward method or Backward-Forward method, which
combine the Backward step of S with the Forward step of 7. Notice that the For-
ward step only needs the value of single value map 7" unlike the Backward step needs
the value of the resolvent map of S which in general is not easy.

D. Davis and W. Yin [16] generalized problem (V) considering the sum of three
maps:
Find z such that 0 € S(z)+ T (z)+ C(x)
where S and T are again maximal monotone (with 7" not necessarily single value) and

C' a co-coercive operator with full domain. They combine separately the Backward
steps on S and 7', with the Forward step on C, defining the following map

Gi=1—J +J32J5 —1—XC(J}))

which clearly extends the Douglas-Rachford operator G, and the operators corre-
sponding to the Forward-Backward and Backward-Forward methods.

In Chapter 4, we consider the more general composite monotone inclusion:
Find x such that 0 € S(x) + A"T'(Az) + C(x) (Var)

where S : R" — IR" and T : IR™ —> IR™ are maximal monotone maps,
C : IR" — IR" a —co-coercive with full domain and A an m X n matrix.

For the particular case C' = 0, the map G coincides with the Douglas-Rachford
operator which in turn is equal to )\%Gg A"2 as mentioned just after (6).

For the general cases (C' not necessarlly equal to zero) and assuming A mJectlve
we get from (6) considering T~ = L an alternative Lagrangian map and S = D a
special matrix, a map G% which extends the Davis-Yin operator G (coinciding it
with /\%G%)\_% when A = ) and maintaining similar properties as G, for instance
under mild assumptions, G% is an average map with full domain.

Then using the generalized resolvent J z%’ we get a new splitting algorithm which
converges to a saddle-point of Lagrangian map associated with primal problem (Var)

because, as mentioned previously, G]% is an average map with full domain.



For the general case, where A is not necessarily injective, problem (Var) is

< M Ax ) + C(x) (Vary)

reformulated as
M~3TM"3

0eS(@)+( Am Vi) .

1
Vagx

where M and V' are two symmetric matrices of order m x m and n x n, respectively,
with V positive semi-definite and M positive definite.
Mz A
In this reformulation the involved matrix < VZ ) is injective if and only if
2
A'M A +V is invertible. So, assuming that condition and applying the former split-
ting algorithm (for the injective case on A) to (Vary), we get a splitting algorithm
for problem (Var) in the general setting, which is termed “Generalized splitting
algorithm for three operators (GSA30)”:

(GSA30)
B o (T4 M)yt + MAT) (®)
gk—i—l — yk‘ + MACBk o M2k+1 (9)
rEtl = C((V + AAMA) Y (Vak + ATMER) (10)
i,k—i—l — (S + Vv 4 AtMA>—l (ka 4 Athk—i-l o Atgjk+1 - rk—i—l) (11
(@) = @ g + (1 - p) (2, o). (12)

The structure of problem (Var) is related to the variational formulation of the

minimization of separable convex functions:
Minimize f(x)+ g(Az) + h(z) (13)

where f : IR" + IR and g : IR™ — IR are proper lower semi-continuous convex func-
tions, h : IR" — IR is convex and (%)—Lipschitz—differentiable, and A an m xn matrix.

Condat [13] presents two types of algorithms for solving (13) that we call C' Al
and C'A2, for simplicity, we have considered with fixed relaxation parameter p > 0

and without error term.

Algorithm (CA1)
gkt = (TOf + Luxn) H(a* — 7VR(2F) — T AlyF)
Taan = (009" + Lpxm) (y* + c AQ2T*HT — 2¥))
(@ ) = p@ g + (1= p)(2F, )



and the other one switch the roles of primal and dual variables:

Algorithm (CA2)
7 = (009" + Insxn) ™' (y* + 0 Az*)
gkl = (70f + Lixn) H(a* — 7VR(2F) — T AL 255 — b))
(@F P ) = (L )+ (1 — p)(F, )

The main difference between these algorithms is the order of action of the proximal
steps. In the same manner, we present two versions of each algorithm proposed in
this chapter.

From our general setting, choosing special parameter matrices and different La-
grangian maps, we get different variants of algorithms C'A1 and C'A2. From the
variant of C'A1 we recover in particular the recently algorithm proposed by Yang.

Using the same techniques given in Chapter 2, we show the ergodic and noner-
godic rates of convergence of the algorithms found in this chapter.

The last model considered in this chapter is concerned with the more general
S—Model problem defined as:

inf Z fi(@:) + h(z) + g(2)

x=(x1,,2q), 2

q
s.t ZAM@' —Bz=0
i=1

where for i = 1,---,q, f; : IR" — IR and g : IR™ — IR are proper lsc convex
functions, h : IR" — IR is convex and (%)—Lipschitz—differentiable (n = >0 n),
and A; and B are matrices of order p x n; and p x m, respectively.

Rewriting this last problem as a variational inclusion problem having similar
structure as problem (Var), we apply GSA30 getting a new algorithm called “Sep-
arable Primal -Dual Variant (SPDV)” which is a generalization of PMA ap-
pearing in Chapter 2.

Finally, in Chapter 5, we apply the splitting algorithm developed in the previous
chapters in order to solve a model of long-term energy pricing problem. Rewriting
this model as problem (P), we apply algorithm GSS, getting three types of algo-
rithms. Finally, we give some ideas on how to deal with the considered model in the
stochastic case where many ’scenarios’ with given probabilities need to be included,

thus minimizing the total expected cost on the horizon.
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Chapter 1

Notations, preliminaries and basic
results on convex optimization

problems

1.1 Notations and basic definitions

Throughout this thesis, we will use the following notations on convex optimization
and variational inequality problems . Most of the theoretical material can be found
in [43, 4].

We will denote by IR the set of extended real numbers IRU{+o00} = [—00, +00].
For a given subset C' C IR" we will denote by cl (C), int (C) and ri (C), the closure,
the interior and the relative interior of C, respectively.

For a given set C' C IR", the orthogonal subspace to C, denoted by C*, is the

linear subspace
Ct={r"cR": (z%2)=0 forallz € C}.

For a closed convex set C' C IR", we denote by Proj () the projection of z € R"
onto C' which consists of all ¥ € C satisfying

lz = gll < [lz =yl forall yeC

where || - || denotes a norm of R". Of course, if C' # (), then § satisfying this
inequality is unique if the considered norm is Euclidean (unless otherwise stated, we
will use in all the Thesis this type of norm). For F' C IR", the set Proj ~(F) denotes
the collection of all Proj (x) for x € F.

For a closed convex set C' C IR", the normal cone of C' at a given point z € C'is
the set denoted by N¢(z) and defined as

Ne(z)={z* e R": (z*,y —z) <0 for all y € C},

11



assuming Ne(z) =0 if x ¢ C.
A function f:IR™ — IR is said to be convex, if its epigraph

epi (f) :={(z,A) e R" x R : f(x) < A}

is convex; and concave, if —f is convex. The function f is said to be lower semi-
continuous (lIsc, for short) at a given point z if for every A € IR verifying A < f(Z)
there exists an open set V' containing Z such that A\ < f(z) for all x € V. This
function is Isc if it is Isc at every point of IR". Of course, f is lIsc if epi (f) is closed
in IR" x IR.

Assuming f convex, it is said to be proper if f(x) > —oo for all x € IR" and its
domain defined as

dom (f) :={x € R": f(z) < +o0} = Proj g (epi(f))

is nonempty. Of course, dom (f) is convex if f is convex.
A function f: IR"™ — TR is said to be strongly convex (with modulus a > 0)
or a—strongly convex if for all z,y € IR" and all ¢ € [0, 1], one has

S =tz +ty) <A =) f(z) +1f(y) - %t(l — )z —yl*

The function f is said to be f—Lipschitz differentiable function (with 5 > 0)
if it is differentiable whose gradient is f—Lipschitz (ie, Lipschitz continuous with
constant (3). In that case, f is of real value on the whole IR".

Associated to a function f : R™ — IR, its Fenchel-conjugate is the function
f* defined on IR" as

fr(@%) = sup [(z", x) — f(x)]

zcR™

and its biconjugate is the function f** which is the conjugate of f*, ie

f7(@) = sup [(z,2%) — f*(27)].

z*eR™

It is clear that f* and f** are convex and lsc, and f** is the greatest lsc convex

*k

function bounded from above by f. Moreover, f** and f coincide if f is proper Isc

convex.
The subdifferential of f at a point x € IR" is the set

Of(z) ={a* € R": f(z) + («",y — ) < f(y) for all y € R"}
or equivalently
Of(z) ={a* € R": f(x) + f*(z") < (2", x)}.
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Clearly 0f (z) = 0 if x ¢ dom (f) or if f is not Isc at x. In general, 9f(x) is convex
and closed, maybe empty. It is nonempty and bounded on int (dom (f)).

Another very important property of subdifferential is its monotonicity. For all
(z,z*), (y,y*) in the graph of Jf one has

(" —y*,z—y) > 0.

In general, a multivalued map (or simply, map) I' : R® — IR" is said to be
monotone if for all (x,z*), (y,y*) in the graph of T' [is the set consisting of all pair
(z,2*) € IR" x IR" such that z* € I'(2)] one has

(" —y*,z—y) > 0.

It is clear that if " is monotone, then its inverse map I'"! defined by I'"!(z*) = {x :
x* € T'(z)}, is monotone. So, the monotonicity property can be seen as a property
on the graph instead on the map itself.

The map I' is said to be maximal monotone if for any monotone map > :
R" — R" satisfying I'(z) C %(x) for all z € IR™, one has I' = X. It also follows
that I' is maximal monotone if and only if I'"! is maximal monotone.

A very important characterization of the maximality in the monotone sense is
given by Minty’s theorem [36]. It say that a monotone map I' : R" — TR" is
maximal monotone if and only if the inverse map (I + I')~!, which is single-valued
and with full domain. Here I denotes the identity map from IR" into itself.

Analogous to the strongly convexity, amap I' : IR" —> IR" is said to be strongly
monotone (with modulus o > 0) or a—strongly monotone if I' — p/ is monotone,
i.e. for all (z,2*), (y,y*) in the graph of I, it holds

(" —y*,z —y) > alz—y|*

One deduces that f : IR” — IR is strongly convex if and only if its subdifferential
df is strongly monotone.

The inverse of a strongly monotone map (with modulus «) is clearly single value
and a~!—Lipschitz.

A map I is said to be co-coercive with constant S ( or shortly 5—co-coercive) if
its inverse ' is S—strongly monotone. That is, for all (z,z*), (y,%*) in the graph
of T', it holds

(" —y" 2 —y) > Blla” —y*|I”.
One deduce that if I' is co-coercive with constant 3 then I' is S~'—Lipschitz.
When > 1, the map I' is nonexpansive. In general, a map I' is said to be
nonexpansive if it is Lipschitz with constant < 1, i.e. if there exists 7 < 1 such
that for all (z,z*), (y,y*) in the graph of T, it holds that

2" ="l < 7llz = yll

13



Another important property used in many parts of the thesis is the a—average
of a map. A map I is said to be a—average if

'=(1-a)l+aR

where R is a nonexpansive map. A 27 '—average map is also called firmly nonex-
pansive. For example, the resolvent of a maximal monotone map I', J' := (I +T)~!
is firmly nonexpansive (and defined on the whole space).

We finish this section by introducing the following notations that we will use for
instance in Chapters 2, 3 and 4. For arbitrary maps 77 and 75 and vectors x and y

of appropriated dimensions, we denote

z\ _ T (x)
Y T5(y) '

Analogously, for two given functions ¢g; and gs, we denote

T
15

(91, 92) (21, 22) = g1(21) + 92(22)

for all z; and zy of appropriated dimensions.

1.2 The duality scheme

An optimization problem in the mathematical context can be set as
a:=inf[f(z): x € R" (P)

where f : IR" — IR is a given function. Problem (P) is commonly called primal
problem.

In order to develop the duality scheme following Rockafellar’s scheme [43], we
introduce a duality space IR? and a perturbation function ¢ : IR"x IRP — IR satisfying
o(z,0) = f(x) for all x € IR". Then the associated perturbed primal problems is
defined as

h(u) :=inf [p(z,u) : x € IR"]. (P,)
If  is convex on IR" x IRP then h is convex on IR?; but if ¢ is Isc it does not neces-

sarily imply that A is lsc.

It is clear that h(0) = «, then the duality arises from the idea to find in other
way h(0), for this we use the Fenchel-conjugate function h* of h,

W (u”) = supl(u”, u) — h(u)] = ©*(0,u).

14



The biconjugate of h is

h**<u) = su*p[<u, u*> - W*(Oa u*)]

u

The biconjugate, under some conditions (see [43]), allows us to recover the initial

function. In general,

B = 1*(0) < h(0) = .

Then the dual problem is defined as
B =h"(0) =sup [—¢"(0,u") : u* € IRP]. (D)

The primal and dual problem are also related through the Lagrangian function
l: IR" x IR” — IR defined as:

[(z,u") = inf [p(z,u) — (u*,u) : u € IRP].
So, if ¢ is convex proper Isc, the primal and dual problem are respectively:

infsup {(z,u*) and supinfi(z,u”).

In order to obtain optimal solution of primal and dual problems without duality
gap (a = (), the Saddle Point problem arises which consist in finding (z,y) €
IR" x IRP such that

inf(z,5) = I(7,5) = sup (7, y).
z Yy

Under some regularity condition on ¢, the primal and dual problems can be
respectively formulated as inclusion problems called optimality condition

Find x € IR" such that 0 € 7}dp(m ) (Pope)

and
Find y € IR? such that 0 € m50p* (moy) (Dope)

I’I’LX'I'L Onxn
T = and o = )
Opxp Ipxp

The Saddle Point problem can also be formulated as

where

Find (z,y) € IR" x IR" such that (0,0) € (9,) x (9,[1])(z,y) (Lope)
which, in terms of dp and assuming ¢ proper lsc convex, it holds that
(2,y) € Op(x,u) if only if 2z € 0,l(z,y), u € Oy[—I|(x,y).

15



Since dp* = (d¢)~!, then problems (Py), (Dy) and (Ly) are equivalent to each
other in the sense that the mapping intervening in each inclusion problem is the
composite of dp or dp~! with 7, or 7y (and its respective transpose matrix).

Following this construction, [42] (see also [39]) has extended this duality scheme
to general variational or inclusion problems which can be set as

Find x € IR" such that 0 € S(x). (V)

A perturbation map associated to problem (V) is a map F satisfying 7{ F'my = S.
Then the corresponding dual and lagrangian problems are respectively formulated

as
Find y € IR” such that 0 € 7bF~!(moy) (Dy)
and
Find (z,y) € IR" x IR such that (0,0) € L(x,y) (Ly)
where

(z,y) € F(z,u) if and only if (z,u) € L(z,y).

Coming back to the duality scheme for an optimization problem, we reformulate
the duality and its respective Lagrangian problem through their optimality condi-
tions for some particular classes of optimization problems.

1.2.1 The composite model
A composite model is an optimization problem that can be set as
Minimize f(x)+ g(Ax) (P.)

where f : IR" — IR and g : IR? — IR are proper lsc convex functions, and A a p x n
matrix. We consider the following perturbation function ¢ : IR" x IR’ — IR defined
by

p(z,u) = f(z) + g(Az + u)
and its corresponding dual problem

Minimize f*(—A'y) +g"(y) (De)
and its Lagrangian function [ : IR" x IR — IR defined by

l(z,y) = f(r) — g"(y) + (y, Ax).

Under some regularity conditions, the optimal conditions of (P.) and (D,.) are

respectively

Find x € IR" such that 0 € df(z) + A'dg(Ax) (P.)

16



and
Find # € IR" such that 0 € —Adf*(—A"y) + dg*(y). (De)

The corresponding Saddle point problem can also be formulated as

Find (z,y) € IR" x IRP such that 0 € ( of (@) ) + ( 0 A > ( v ) . (L&)
9 —A 0 Y

1.2.2 The separable case

We now consider a more general optimization problem regarding to the previous one

1(21121)1 [f(z)+g(z) : Ax + Bz = (] (Psc)

where f : IR" — IR and g : IR? — IR are again proper lsc convex functions, and A
and B are matrices of order m x n and m X p, respectively.
It is clear that problem (Pi.) includes the composite model (P.) by considering

B = —1I,y,. Conversely, problem (Ps.) can be written as the following composite

model:

min f($)+9(2)+5{o}<A B ) (Z)

So, the dual problem is
min f*(=A'y) +¢"(=B'y) (Dsc)
and the lagrangian function I, : IR" x IR? x IR™ — IR is
lc(z, 2,y) = f(x) + g(2) + (y, Az + Bz).

The optimality conditions of (Py.) and (D,.) and the corresponding saddle point
problem are respectively:

Find (z,z) € IR" x IR? st ( 0 ) € ( o1 (@) ) + ( A >N{0}(Ax+Bz) (Psey)

0 dg(z) Bt
and
Find z € IR" such that 0 € —AJf*(—A'y) — Bdg*(—B'y) (Dser)
and
Find (z,z,y) € IR" x IR? x IR™ such that 0 € L(z, z,7) (Lsew)

where L is the maximal monotone map defined on IR" x IR? x IR™ as

of (x) o 0 A x
L(z,z,y) = (Op2lse) X (0y[—ls)) = | 9g(2) |+] 0O 0 B z |. (1.1)
0 _A -B 0 y



1.2.3 The optimization problem with linear subspace con-

straints

We note that problem (Ps.) (in particular problem (FP,)) can be formulated as

rzréi‘gl ¥(2) (Petp)
where 1) : IR" — IR is a proper lsc convex function and V' a linear subspace of IR".
We present now two equivalent formulations of (Py,) like the primal and dual
problems by expressing V' as Image space and as well as kernel space of suitable
matrices.

It is clear that (Py,) can be formulated as the composite model:

~

min ¥ (z) + dy(2) (Pasp)

whose associated dual problem is

=)

min (") + dyu(27) (Dapp)

which can be formulated as the following optimization problem with linear subspace
constraints

min ¢*(2"). (Dstp)

z*eV+t
Let K and W be matrices of order p x r and r X n, respectively, such that V =
ker(K) = range (W). Then (Pg,) and (Ds,,) can also be formulated respectively as

the following optimization problems termed primal projection problem

Iglinn o W(x) (Ps‘gp)
and dual projection problem
min ¢* o K'(u*). DY,
min, "0 K'(u) (DY)

We observe that problems (Py,) and (Py,,) are defined on different linear spaces
and, if WW is injective, then problem (Ps‘gp) is defined on a linear space of dimension
dim (V') which is less or equal than r, that is, the dimension of the linear space where

problem (Py,) is defined. Similarly, problems (Dg,,) and (DY,

wp) are also defined on

different linear spaces.
As a special case, problems (P.) and (D.) can also be formulated respectively
as the primal projection and dual projection problems regarding the following opti-

mization problem

min_t(z,y) (Op)

(z,y)eV
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where ¢(z,y) := f(z) + g(y) and

V = range < LZ" > :ker< —A Iy, )

In the separable case, problem (Dy,.) can also be formulated as the dual projection
problem related to (Op) by considering V' = ker < -A —-B ) Then, by setting R
and D matrices of order n X ¢ and p X ¢, respectively, such that

— R
V =
range ( D )

we obtain two related problems, the primal projection problem

min  f(Rz) + g(Dz)

ZER

and the optimization problem with linear subspace constrains

(min) [f*(z*) + g*(2*) : R'a* + D'2* = 0].

x*’y*

Remark 1.2.1 Considering IR" = IR" x IRP, the linear subspace V coincides with
IR" x {0,} and the matrices W and K are exactly the projection matrices m and
b, respectively, defined in problems (P,p.) and (Dopc). So,

(poW)(z) =(x,0) and (¢¥* o K)(u*) =*(0,u*) for all x € IR" and u* € IR?

and hence problems (Py,) and (P};,) are respectively the primal and dual optimiza-
tion problems associated to perturbation function ¢ = 1 described in the duality

scheme.

1.3 The gradient and proximal point methods

The gradient and proximal point methods are apparently the most popular and basic
methods to solve an optimization problem or (more generally) an inclusion problem.

Let h : IR" — IR be an (%)—Lipschitz—differentiable convex function. In order to
find a minimizer of h, the gradient method generates, from a given initial point
2¥ € IR", the iterative points defined by:

"t = 2F — aVh(zh).

The corresponding sequence converges to a minimizer of h if o €0, %[
Regarding the proximal point algorithm in order to find a minimizer of a proper
Isc convex function f : IR" — IR, this algorithm constructs the so called Moreau
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envelope function, an alternative Lipschitz-differentiable convex function having
the same minimizers as function f. Then the proximal point algorithm can be
recovered from the gradient algorithm applied to the Moreau envelope function.

Given A > 0, the Moreau envelope function of f is the function f), defined
as

) 1
a(2) = min | f (@) + oy lle =27 (%)
One deduce immediately that
e inf f =inf f\ and argmin f = argmin f); and

e f, is differentiable on IR" and its gradient is

VA = 30— 00F + D7)

which is (3)-Lipschitz. The set value (AJf + )7 (z) is singleton whose unique

element is the minimizer of problem (x).

So, given an initial point 2° € IR", the proximal point method generates a se-
quence defined by

=P — pAVA(E) = (1= p)2" + p(Aaf + 1)1 (2Y).

This sequence converges to a minimizer of f if p €]0,2[.

1.3.1 Application to the dual projection problem
The dual projection problem (D}, ),
min * o K'(u*
u*EZRP ( )
represents, as we saw, the general formulation of all dual problems described in
Subsection 1.2.3. In order to apply the gradient method to this problem, we check

under what condition the dual objective function ¥* o K* is Lipschitz-differentiable

on the whole IRP. This is the object of the next proposition.

Proposition 1.3.1 With the same notations as before, suppose that v is proper
Isc a-strongly conver and K a monzero matriz, then ¢* o K' is differentiable with
gradient KV¢* K" which is @—Lipschitz with full domain.

Proof. From the assumptions, 0v* is univalued with full domain. Then the
subdiferential of 1*o K is K'V¢* K* having full domain. On other hand, for arbitrary
points z,y € IR’ we have that

(KVY*K'e — KV Ky, x — y) = (Vo Kz — Vo  K'y, K'z — K'y)
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and since 9y = (V¢*)~! is a-strongly monotone, we get
KV Kz — KV Ky, 7 — y) > o VoK' — Vo' Ky

which implies, if K is nonzero, that

(KV* Klr — KV Kly, o — y) > ﬁ\lKvw*K% — KV Ky,

The Lipschitz constant of KV¢*K" is deduced applying the Cauchy-Schwarz’s in-
equality. [ ]

Regarding the proximal point algorithm applied to before dual problem, for a
given r X r symmetric positive definite matrix @), we consider a little more general
Moreau envelope function of f denoted by fq, defined as

) 1
fo(z) = min | f(z) + Sz = 2[lg | - (env)
Similarly to the classical Moreau envelope function fy, it holds that
e inf f = inf fy and argmin f = argmin fq;

e fo is differentiable on IR" and its gradient is

Via(2) = QI - (0f + Q)" Ql(»).

The set [(Of + Q)~'Q](z) is singleton whose element is the optimal solution
of the minimization problem (env);

e Q7 Y/2V foQ'/? is 1—Lipschitz on IR,

The next proposition shows another way to express the Moreau envelope function
for the objective dual function.

Proposition 1.3.2 Let ) : IR" — IR be a proper lsc convex function, K a p x r
matriz satisfying Im (K*) Nridom (¢*) # (0. For a p X p positive definite matriz M
one has

1
(V* o K" pr—1(u*) = —ir;f () + §||K$||?M —(u, Kzy| forallu e IRP.  (xx)
Furthermore, denoting z, := (0(¢* o K*) + M) "' M~ u the minimizer of problem
(env) with f = (Y*oK') and Q = M, and z, = (0 +K'MK) ' K'u a minimizer
of problem (xx), then

Zu=u— MKux,.
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Proof. From assumptions, ¢* o K* is proper lsc convex and then
* * kk * * 1 *
(" 0 K)arr = (97 0 Ky ]™ = [(07 0 K"+ S - 5]
Also, (¢* o K')*(v) = inf, [¢)(x) : Kx = v] and hence
1
(6 0 K')ys(u) = —infinf  [p(e) + vl — (v,0) : Ko =1]
which implies that
x . 1
(0" 0 K1 (w) = —inf | () + S| Kelly — (v, Kz)

The relationship between the optimal solutions follows from this expression. [ ]

On the other hand, since both optimization problems
min f(z) and min fo(w)
x w
have same optimal values and same minimizers, then under the regularization con-

dition given in Proposition 1.3.2, both optimization problems

1
min ¥* o K* and  min (—min{ z) + || Kz|?, — U,K:E})
mig, () min, tin | 9(2) + S| Kalfy, — (v, Ko)

have also same optimal values and same minimizers.

The problem on the right is termed Augmented Dual Problem [47] and its
objective function is nothing else than (¢ + %HK()H?\/I)* o K' and hence the aug-
mented dual problem is the dual projection problem corresponding to problem (Py,)
with objective function ¢ + 3 || K (-)[3,.

In particular, for a given perturbation function ¢ of f in the duality scheme, the
objective function of the dual problem corresponding to ¢(z,u) + £||u/|* (another
perturbation function of f), results to be Lipschitz-differentiable if ¢ and 79 satisfy
the conditions given in Proposition 1.3.2 considering 1) = ¢ and K = .

1.3.2 The resolvent map corresponding to the Saddle Point
Problem

Rockafellar [44], considered the proximal point method to a saddle point problem
corresponding to a convex optimization problem with inequality constraints, getting
the so called “proximal multiplier algorithm”.

Corresponding to the Saddle Point Problem (Lg.,) defined in Section 1.2.2 and
associated to the diagonal block symmetric positive definite matrix

Wy 0 0
P = 0 W2 0
0o 0 M
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where Wy, W5 and M are symmetric positive definite matrices of order n x n, p X p
and m X m, respectively, we introduce the following resolvent map defined by

(L+P)'P.

Since L is maximal monotone, Minty’s theorem guarantees that (L + P)~!P has full
domain and its value at each point (z, z,y) € IR" x IRP x IR™ is a singleton whose

value is

0€ o}
(L+P)1P(W,y>={(n,v,M1(My+An+Bu): € W)(n,v)}

0e fo’z) (n,v)

where

Hiy o (n,v) = 0f(n) + Wi(n — x) + A'y + A'M ' (An + Bv)

and
H(Q:C’Z) (n,v) := dg(v) + Wa(v — 2) + By + B'M~'(An + Bv).

It is noteworthy that the involved subproblems cannot directly be splitted because of
the coupling on their variables 17 and v is present and hence the solvability of such
subproblems becomes very difficult in practice. In Chapter 2 we present another
matrix P avoiding the aforementioned coupling.

1.4 The a—average maps

The gradient and proximal point method have common structure in the sense that
both methods can be formulated as a relaxed fixed point method [13] for a suitable

mapping having the following property defined now.

Definition 1 An operator T is a—average if o €10, 1[ and there exists a nonex-
pansive map N such that T = (1 — «)I + aN.

For instance, the a—average maps involved in the gradient and proximal point
methods are respectively 8Vh and I — (A f+1)~!. Baillon-Haddad’s theorem shows
that if h is convex and (%)—Lipschitz—differentiable, then SVh is %—average having
full domain. On the other hand, Rockafellar [43] (Proposition 12.11) shows that if
[ is proper lIsc convex, then (AQf 4 I)~* and hence I — (AQf + )" are 3—average
having full domain.

Another important example of a—average map is given through a maximal mono-
tone map T : IR" —> IR™ and a n x n positive definite matrix M. It is not difficult
to show that the resolvent map

M2(T + M)™'M:
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which is related with the multidimensional scaling proximal point method [29] is
s—average having (due Minty) full domain.

In general, an a—average map 7 satisfies the following important inequality

1—a||

1Ta =Tyl < llz—yl* - (I —=T)x— =Tyl

a
which immediately implies the convergence of the relaxed fixed point algorithm as

mentioned in next proposition.

Proposition 1.4.1 Let T : IR" — IR" be an a—average map with full domain and
p €10,a7t[. Assume that the fized point set of T is nonempty. For a given initial

point 2° € IR™ consider the following iteration points
2" = pT(2") + (1 — p)a"
Then the corresponding sequence {x"} converges to a fixed point of T.

This important convergence result makes it possible to deal with general mono-
tone inclusion problems by transforming them into fixed point equations correspond-
ing to a— average maps. Moreover, for practical treatments is also important that
the corresponding a— average map possesses splitting property.

We give two examples of a—average maps corresponding to inclusion problems
for the sum of two and three monotones maps. The first one is due the Douglas &
Rachford scheme discussed in [31] and the second one is due to Davis & Yin [16].

1.4.1 Douglas-Rachford map

Consider the following inclusion problem for the sum of two maps
0eS(x)+T(x)

where S and T are two maximal monotone maps from IR" into itself. It is well known
that S 4 T is not necessarily maximal monotone which is a condition to apply the
proximal point method. Another disadvantage of this method is the absence of
splitting structure of its corresponding resolvent map.

Lions and Mercier [31], reformulate the above inclusion into a fixed-point equa-
tion with respect to an appropriated operator called after “Douglas-Rachford” op-
erator, defined by

Gy=1—Jf +J)2J] — 1], (1.2)

where JI' = (A\T'+ I)~! and J{ = (AS + I)™" are the resolvent maps of T" and S,
respectively. This map is %—average and, unlike the resolvent map of S + 7', it has

splitting property and having full domain.
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This map is behind the popular ADMM algorithm as noticed Eckstein [21]. On
the other hand, D. O’Connor and L. Vandenberghe [40] have recently shown that
Chambolle-Pock algorithm [10] is also constructed using this map by considering S
and T" with special structures in the inclusion problem.

1.4.2 Davis-Yin map

We consider the sum of three maps
0€S(x)+T(z)+ C(x) (V2)

where S and T are two maximal monotone maps and C' a S—co-coercive function
with full domain, all from IR" into itself.

It is possible to apply the Douglas-Rachford method considering the sum of S
(or T') and C' as a unique map, but in general this procedure does not split S and
C (or T and C).

Davis and Yin [16] have recently considered the following map
Gi=1—JL +JJ2JF — 1 —\C(J})] (1.3)

having splitting property and defined everywhere of IR". It is also a—average for

a= 52, it A €]0,2].

1.4.3 Convergence Study

We recall that x, = O(y,) means that there exists a positive C' such that for all n
sufficiently large

[2n]l < Cllyall-

And x,, = o(y,) means that Hi—:” converges to 0.
Also we say that x,, converge linearly to x* if there exists a positive C' < 1 such that

for all n sufficiently large
[£n41 — 27| < Cllag — 27]|.

For example, H. Brezis et P.L. Lions [?] showed that given a monotone map
T with at least one zero then the fixed point residual (FPR) ||J) (z,) — (@,)]| is
O( \/klﬁ) D. Davis and W. Yin [15] improve this result for any average map with
has at least a fixed point getting that its FPR is o le) and the ergodic FPR is
o)
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Rockafellar [45] showed that if we consider T a strongly monotone map (or more
generally 7! Lipschitz continuous at 0) and 7 has at least one zero then the prox-

imal point applied to 7 generates a linearly convergent sequence.

Lions and Mercier [31] showed that if 7" in 4.2 is strongly monotone and Lips-
chitz then the Douglas-Rachford method generates a linearly convergent sequence.
Recently Giselsson [23] gave a best upper bound rate as Lions-Mercier and showed
linear convergence under other regularity conditions over S or 7', proving that in
these cases the map G is contractive. In the convex case D. Davis and W. Yin [15]
showed the ergodic and nonergodic convergence rate of the feasibility and objective
function error related to the relaxed Douglas-Rachford method.

D. Davis and W. Yin in [16] showed that under regularity assumptions the map
G is a contractive map from which the linear convergence is deduced.

In this thesis, we will not focus on the special cases when linear convergence

is attained, rather keeping the analysis on global or point wise convergence in the

ergodic or non ergodic sense.
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Chapter 2

A unified splitting algorithm for
composite monotone inclusions

Operator splitting methods have been recently concerned with inclusions problems
based on composite operators made of the sum of two monotone operators, one of
them associated with a linear transformation. We analyze here a general and new
splitting method which indeed splits both operator proximal steps, and avoiding
costly numerical algebra on the linear operator. The family of algorithms induced
by our generalized setting includes known methods like Chambolle-Pock primal-dual
algorithm and Shefi-Teboulle Proximal Alternate Direction method of multipliers.
The study of the ergodic and non ergodic convergence rates show similar rates with
the classical Douglas-Rachford splitting scheme. We end with an application to
a multi-block convex optimization model which leads to a generalized Separable
Augmented Lagrangian algorithm®.

2.1 Introduction

Composite models involving sums and compositions of linear and monotone oper-
ators are very common and still challenging problems like in constrained separable
convex optimization or composite variational inequalities. We will consider here

composite monotone inclusions of the form (X and Y are Hilbert spaces) :

0 € S(z) + A"T(Ax) (2.1)

where S': X +— X and T : Y +— Y are maximal monotone operators and A: X — Y
is a linear transformation (associated with its adjoint operator A*, which will be
denoted by A" when dealing with finite-dimensional spaces).

!This chapter corresponds to the paper [41] submitted to Journal of Convex Analysis
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Most existing monotone operator splitting methods can deal with composite
models, for example the Douglas-Rachford family (see [31]) and its special de-
composition versions, the Alternate Direction Method of Multipliers (ADMM) (see
[22, 21]) and the Partial Inverse or Proximal Decomposition Algorithm (PDA) (see
[51, 34, 42]).

Lions and Mercier [31] analyzed the Douglas-Rachford’s method (including the
limiting case of Peaceman-Rachford splitting, PRS) for the case of the sum of two
maximal monotone operators (S + T'), alternating between proximal steps applied
to each operator separately. Gabay [22] analyzed the case S + A*T'A where A
is an injective linear transformation (and A* its adjoint), yielding the celebrated
Alternative Direction Method of Multipliers (ADMM). Spingarn [50] studied the
case when the operator is the sum of the normal cone of a closed subspace M and
a maximal monotone operator 7T'. Later, Pennanen [42] showed how to reformulate
that model as a monotone inclusion

The first study which explicitly considered an algorithm to solve the composite
inclusion which avoids the use of projection (or proximal) steps on the range of A
was proposed in [9] (an extension of Spingarn’s Partial Inverse to composite models
was proposed too in [1]). The corresponding algorithms solve the dual problem at
the same time, which is defined by :

0€ —ASH(=A"Y) + T '(y)
Many applications surge in the minimization of separable convex functions like :
Minimize f(x)+ g(Ax) (2.2)

where f : IR" — IR and g : IR™ — IR are proper lower semi-continuous convex
functions and A is a given (m x n) matrix. The Dual problem in the sense of

Rockafellar-Fenchel theory is :
Minimize f*(—A'y) + g*(y)
where f* is the Fenchel-conjugate of f.
Recently Chambolle-Pock [10] studied model (2.2) and introduced new splitting
schemes applied to a Lagrangian formulation of the primal minimization problem.

They applied a primal-dual version of (ADMM) to the following saddle-point for-
mulation :

min maxf(7) = g (y) + (A, )

Observe that we could as well define a Lagrangian operator associated with the
composite inclusion (2.1) :

L(z,y) = [S(x) + A'y] x [T~ (y) — Ax] (2.3)
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Chambolle and Pock’s algorithm relies on two Proximal steps on f and g with
an additional extrapolation step (in a similar fashion of Varga’s iterative principle

[53]) as summarized below :

ol = (I +70f) (2% — TAYF)
Yyt = (I +00g") ' (y" + o Azr)
gk—s—l — yk—i-l + e(yk—i-l _ yk)

where (I + 70f)~! is the resolvent operator of the subdifferential operator S =
Of which is known to be defined on the whole space and supposed to be easily
computable in a so-called ’backward’ proximal step as detailed below.

The difference and presumed advantage of that formulation is the symmetry
(considering that z and y can be updated in reverse order) and a potentially de-
composable algorithm which depends on three parameters. Their convergence result
states that we should choose their values such that o7||A|> < 1.

Observe now that (CPA) can be rewritten using Augmented Lagrangian-like
functions by using the Moreau identity (see [37]) :

(I+009") (y) +o(I+07dg) (0 'y) =y
Resuming the transformed steps into the following iteration:

Algorithm (CPA)

2" = argmin, f(2) + 5=z — o + TAGF|?
A = argmin, g(2) + §llz — Az* — o7 lyH|?
yk+1 — yk + O.(Ajk+1 _ Zk+1)

gk+1 — yk+1 +@(yk+1 _yk)
Chambolle and Pock confirmed the expected rate of convergence in O(1/k) and
even obtain the accelerated rate of O(1/k?) following the FISTA scheme of Beck
and Teboulle [5] (thus reaching Nesterov’s optimal rates in convex programming
[38]).

In a recent survey, Shefi and Teboulle [49] have presented a unified scheme algo-
rithm for solving model (2.2) based on the introduction of additional proximal terms
like in Rockafellar’s Proximal Method of Multipliers [44]. The resulting schemes in-
clude a version of a Proximal (ADMM) and other known algorithms like Chambolle-
Pock’s method (CPA). Indeed, a generic sequential algorithm proposed by Shefi and
Teboulle is the following three steps scheme :

Algorithm (STA)

P = axgming £(z) + §Av — 2+ 0 P + Yo — a3,
= argmin, g(2) + g||AzF — 2 4+ o2 + Sz — 2|3,
S Y S S Y SR
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where ||.||5s is the norm induced by a symmetric positive definite matrix M, i.e.
|z||%; = ' Mz. Algorithm (STA) makes use of alternate minimization steps on the
Augmented Lagrangian function associated with the coupling subspace Az — 2z = 0.
It is noted in [49] that (CPA) with the choice # = 1 corresponds exactly to (STA)
with My =771 — 0 A'A and M, = 0 (which implies again that o7||A||*> < 1).

Later, Condat [13] extended the model (2.2) and algorithm (CPA) to the case
f =F 4+ h where F': [R" — IR is convex and smooth. He relaxed the restriction on
the parameters allowing o7||A]|> = 1 and also includes the Douglas-Rachford family
in the case of A = I (therefore we can say that Chambolle-Pock’s method generalized
Douglas-Rachford’s splitting scheme). Condat showed too that Chambolle-Pock’s
method is the proximal point method applied to the Lagrangian operator associated
with the primal and dual pair of inclusions.

In this chapter we will further extend the algorithms surveyed by Shefi and
Teboulle, in order to solve the following convex optimization problem

{rzlgr)l [f(z) 4+ g(2) : Az + Bz =0]. (P)

where f and g are again convex lsc functions and, A and B are two matrices of order
m X n and m X p, respectively. It is clear that this problem includes problem (2.2)
by considering B = —1Ipy,.

The primal variational formulation of (P) is the following
At
Find (z,z) € IR" x IR? such that ( 8 ) € ( ZJ;E;) ) + < Bt )/\/'{0}(14904— Bz)

where N¢(a) is the normal cone to set C' at point a.

The dual variational formulation of (P) is the following

Find y € IR™ such that 0 € — A(9f) ' (=A'y) — B(9g9) *(—B'y) (2.5)

In Section 2.2, we propose a generalized proximal point method (GPPM) which
was developed implicitly by Condat [13], where we consider specific assumptions to
relax the condition of symmetric positive definiteness of the matrix associated with
the resolvent, to authorize matrices which are only symmetric positive semidefinite,
maintaining the properties of convergence of the proximal method.

In Section 2.3, we apply GPPM in order to find a zero of the Lagrangian map
associated with problem (P), selecting an appropriate symmetric positive semi defi-
nite matrix in order to obtain a Generalized Splitting Scheme (GSS), which includes
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various known algorithms, for instance both types of algorithms studied by Shefi
and Teboulle [49] correspond indeed to particular choices of the parameters in GSS.

In Section 2.4, we define a 1—co-coercive operator G5 related to GPPM, which
set of fixed points is related to the zeroes of T. When T is the Lagrangian operator
and the matrix P has a special structure as considered in Section 2.3, we show
examples where we can get that operator explicitly, in particular we can recover the
Douglas-Rachford operator.

In Section 2.5, we investigate the rate of converge of the GSS scheme, in the
ergodic and non ergodic sense, analyzing the convergence of the sequences of the
optimal values and the constraints violations associated with problem (P).

Finally, section 2.6 applies the GSS scheme to some general multi-block convex
optimization problem with a composite structure. We show the relationship with a
separable Augmented Lagrangian algorithm (SALA) introduced in [32].

2.2 A generalized proximal point method
The classical Proximal Point method is used to solve a monotone inclusion
Find x € IR" such that 0 € T(z) (V)

where T : IR — IR" is a maximal monotone operator. We denote by sol (V) the
solution set of problem (V). It is closed, convex and may be empty. The iteration
exploits the contractive properties of the resolvent operator JI' = (I + 77)7! to
define a sequence given by z*** = J¥(2*) which converges weakly to a solution of

(V) if it is nonempty.

Following former ideas developed by Condat [13] in the proof of the convergence
of a specialized splitting method closely related (CPA), we define the generalized
Proximal Point iteration by substituting the classical resolvent by

JE = (T+P)'P (2.6)

where P is an r X r symmetric positive semidefinite matrix.

Since T' is monotone, then for any (z,z*), (Z,7*) € graph (J}), one has

(" —&", Px — Pz) > (Pz* — Pz*,2" — %) > 0. (2.7)
We deduce immediately the following properties:
e T + P and thereby its inverse (T + P)~! are monotone.
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e R:=P+ [« — @ is a symmetric positive definite matrix, whenever @) is the
orthogonal projection onto the image of P, which implies in particular that
Q satisfies QP = PQ = P and Q* = Q.

o JL = JLQ, where Q is as above.

As R is symmetric positive definite, it induces an inner product on IR", (u, v) g :=
(Ru,v) for all u,v € IR" with its corresponding norm |jul|gr := \/{(u,u)g for all
ue IR

Hence, from (2.7), for all z, 7 € dom (QJ}) = dom (J3),

(QJp(7) = QJp(2),2 — 2)r > [|QJp(z) — QJp(2)|I%,

which implies that QJ% is 1—co-coercive wrt R on domain of J5.

We deduce immediately the following relationship between the solution set of
problem (V') and the fixed points of JL and QJ3.

Proposition 2.2.1 With the same notations as before, we have
o x € sol (V) if and only if x is a fived point of Jb.
e v is a fized point of QJF if and only if v = Qz for some x € sol (V)N JE(v).

Proof. The first property is directly by definition. The second one follows from
the fact that v € QJpv if and only if there exists x such that z € JE(v) satisfying
v = Quz. Tt follows that x € J5(v) = J5(Qxz) = Jh(z). Using the first equivalence
we deduce that = belongs to sol (V). [

Concerning the regularity of J%, we have

e If P is positive definite, then Q = I,, and R = P. We deduce that JL = QJ%
and then J} is 1—co-coercive wrt P on the whole of its domain.

e If P is not positive definite, then JJ may not be single valued. But if it is
single valued, then it is continuous on the whole of its domain.

We consider now a relaxed version of the generalized proximal iteration. In con-
nection with the resolvent operator J} and a real positive parameter p, we consider
for an arbitrary point 2° € dom J%, the sequence {z*} defined by

e pIB(ah) + (1 - phat. (2.8)
Notice that this sequence is well defined whenever
range (pJ3 + (1 — p)I) C dom (J}).

Concerning the convergence of {z*}, we distinguish the following situations:
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e If P is positive definite, then J% is 1—co-coercive wrt P (hence single valued)
with full domain which implies that {z*} converges, for p € (0,2), assuming
sol (V) nonempty. In fact, given z* € sol (V'), the convergence follows from

the inequality

2 _
l2* — 27 ))% > 2= LYk — k)% + [ — 27

e In general, since QJ}, is 1—co-coercive wrt R, then for p € (0,2) and assuming
that QJ} has closed domain and nonempty fixed point set (which is equiv-
alently to sol (V') being nonempty), the sequence {Qz*} is convergent. The
convergence of {2*} needs additional assumptions as we show in the following

proposition.

Proposition 2.2.2 Let T : IR" —5 IR" be mazimal monotone and P be an r x r
positive semidefinite matriz. Assuming J} single valued (which implies that it is
continuous) with closed domain and sol (V') not empty. Then, for p € (0,2), the

sequence {x*} converges to some point belonging to sol (V).

Proof. Since QJL is 1—co-coercive wrt R, it is single valued on its domain; and
since Jb = JLQ, then from (2.8) we obtain that

Q! = pQIE(QaY) + (1 — p)Qa. (2.9)

Using again the fact that QJ% is 1—co-coercive wrt R and, by assumptions with
closed domain, p € (0,2) and sol (V') nonempty, then {Qx*} converges to some point
a, which is a fixed point of QJ%. From Proposition 2.2.1 and the single valuedness
assumption, J%(a) € sol (V).

On the other hand, using the triangular inequality in (2.8) we have

|25 = TE(@)]| < pIlTE(Qa*) = TE (@) + 11 = pllla* = TE(@)]

Since J% is continuous, the sequence ||J%(Qx*) — JL(a)|| converges to 0. We deduce
that {z*} converges to JL(a). ]

Some examples of specially tailored co-coercive operators will be discussed in
Section 2.4.

2.3 Generalized splitting algorithms

With the convex minimization problem (P) defined in Section 2.1, we associate its
Lagrangian function defined as

Iz, z,y) = f(z) + g(2) + (y, Az + Bz) (2.10)
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and then its saddle-point problem in the variational setting
Find (z,z,y) € IR" x IR’ x IR™ such that 0 € L(z, z,7) (V)

where L is the maximal monotone map defined on IR" x IR x IR™ as

Of(x) o 0 A T
L(z,z,y) == (0, .1) x (O, [-1]) = | dg(z) |+] 0 0 B z |. (2.11)
0 -A —-B 0 Y

The map L, as the sum of maximal monotone operators and a skew-symmetric
linear operator, satisfies similar inequalities as the subdifferential of a convex-concave
bifunction. These inequalities will be used in order to obtain the rate of convergence
studied in Section 2.5.

Proposition 2.3.1 For any (d,d"), (d,d*) € graph (L), considering d = (x,z,v)
and d = (%, 2,7), it holds

(d—d,d) >z, 25) — UT,2y) > (d—d,d&).

These inequalities are still verified if we consider (d,d*) € graph (L) and d €
dom (f) x dom (g) x IR™, for the first inequality; and (d,d*) € graph (L) and
d € dom (f) x dom (g) x IR™, for the second inequality.

It is well known that, under some regularity conditions, problem (V) admits a
saddle-point if and only if problem (P) admits an optimal solution. One instance of

such regularity condition is :
There exist « € ri (dom f) and z € ri(dom g) such that Az + Bz = 0. (H)

We now apply to problem (V7)) the relaxed proximal method described in the
previous section for a specially tailored matrix P in order to provide a separable

structure to the algorithm.

2.3.1 The separable structure on the main step

In this part we describe the main iteration step of the relaxed proximal method
given in (2.8) providing a decomposable structure.
We will choose an appropriate symmetric matrix P in order to split (L+ P)~! or
equivalently J5 = (L+ P)~!P, into a separable structure leaving f and g separated.
To that end, given (Z,Z2,9) € IR" x IR’ x IR™, we analyze the solution of the
following inclusion system: Find (z, z,y) such that

39(2) + 0 0 Bt z + Pgl PQQ P§2 z = Z
0 —-A -B 0 Y P31 Py Psg Yy y
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We introduce now two parameters a, 8 € IR, and a positive definite matrix M to
simplify the third row-block of P into P; = [(1+a)A (1+8)B M™']. So, the

last inclusion can be expressed as
y=My—aMAx — M Bz (2.12)
and hence, replacing it in the second block-system, this results in
99(2) + (24 B)B' (Mg — aM Ax — M Bz) + Po1x + Pz 3 2.

So, in order to express this last system eliminating primal variable z, we need to
consider Py; = «(2 + 8)B*M A, obtaining

2 € (0g+ Py — B2+ B)B'MB) (2 — (2 + B)B'M7Y). (2.13)
Using again (2.12), now in the first block system, we get
Of(x) + (2+ a)A'(Mj — aMAx — BMBz) + Pz + a2+ 8)B'MAz > &
which is equivalent to
€ (Of + Py — a2+ a)A'MA) (7 — (24 @) A'M§ — 2(a — B)A'M Bz). (2.14)

Summarizing the previous sequence in order to get a separable structure, we
must first solve system (2.13), then system (2.14) and finally system (2.12). The
corresponding matrix P, of order (r X r) with » = n + p + m, is then of the form

C a2+ B)A'MB (1 + a)A!
P:=1| a2+ B)B'MA Cy (14 8)B! (2.15)
(1+a)A (1+5)B M1

where C1(n x n),Cy(p X p) are arbitrary symmetric matrices,
From the maximality of df and Jg, the inclusions in (2.13) and (2.14) are indeed
equalities if the matrices defined as

Wy :=Ci—a2+a)A'MA and W,:=C,— (24 8)B'MB,

are positive definite. In that case (L + P)~! is single-valued with full domain and
therefore J5 is continuous with full domain.
It is clear that P is symmetric. It is positive semidefinite (resp. positive definite)

if and only if the matrix

R Cl—(l—FOé)QAtMA (a_ﬁ_l)AtMB
U.—< (a —B—-1)B'MA 02_(1+5)ZBtMB) (2.16)

is positive semidefinite (resp. positive definite).

We now list some conditions in order to get a positive semidefinite matrix U :
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A1 If C = [(1+a)* + (a—B—1)}JA'M A and Cy — [(1+ 3)? 4+ 1] B M B are positive
semidefinite then U is positive semidefinite.

A2 1f O —[(1+a)? +1]JA'MA and Cy — [(1+ 8)?+ (a— 8 —1)?| B'M B are positive
semidefinite then U is positive semidefinite.

A3 TIf f<a—1,and C;—[(1+a)*+(a—B—1)]A'MA and Cy — [(1+8)* + (o —
p — 1)]|B'M B are positive semidefinite then U is positive semidefinite.

A4 1f 8 = a—1. Then C; — (1 + a)?A'MA and Cy — o*B'M B are positive
semidefinite if only if U is positive semidefinite.

In order to calculate the sequence in (2.8), we first calculate (z¥+1, 21 ghtl) =
JE (2, 2% y*), which is equal to
Ciak + (2 + B)ATM B2* + (1 + a) Alyk
(2 Y = (L+ P)™' | a(2+ B)B'M Az 4+ Cy2F + (1 + B)By*
(1+ a)Ax® + (1 + B)BzF + M~1yk
Then from (2.13), we have that
P =J (2 (B+2)B'MAz") (2.17)

where Z = CozF — (24 B)(1 + B)B'MBz* — B'y* and Jjj, = (9g + W2)™! is the
generalized resolvent operator associated with the convex function g.
From (2.14), we have that

Rl j{vl (92 — 2o — B)AtMng+1) (2.18)
where & = Cizf — (2 + a)(1 + @) A'MAx* + (o — 28 — 2)A'M BzF — Aly* and

j{vl = (0f + Wy) ! is the generalized resolvent operator associated with the convex
function f; and from (2.12), we have that

g =yt + (L + @) MA" + (1+ B)MB2* — aMAZ — BMBZH. - (2.19)

The sequence in (2.8) is completed with an extrapolation step for a given p €
(0,2):

(Ik+1, Zk+1 k+1>

YY) = p(@ G 4+ (1 p) (a2 ). (2.20)
We obtain the following proposition directly from Proposition 2.2.2.

Proposition 2.3.2 Let p € (0,2). Assume that C; € IR™", Cy € IRP*? and
M € IR™™ are symmetric, with M positive definite; and «, 3 € IR, such that W,
and Wy are positive definite and satisfying one of conditions (A1)-(A4). If sol (V1)
k ok o,k

,2F,yb)
defined by the sequential update formulas (2.17— 2.18— 2.19— 2.20) converges
to some element of sol (Vr).

is monempty, then for an arbitrary (2°,2° 4°) € IR*™*™ the sequence (x
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We will now further reformulate the iteration to show the alternating steps on
separable Augmented Lagrangian functions. We introduce the parameter v = a — f3
and the matrices defined as

Vii=W, - A'MA and V,:=W,— B'MB. (2.21)
The conditions (A1) — (A4) become:

ALY If Vi — (y — 1)2A'M A and V, — B'MB are positive semidefinite then U is
positive semidefinite.

A2 If Vi — A'MA and V3 — (v — 1)2B'M B are positive semidefinite then U is

positive semidefinite.

A3’ Ify > 1. Then Vi—(y—1)A*M A and Vo—(y—1) B* M B are positive semidefinite

then U is positive semidefinite.

A4’ If v = 1. Then Vi and V5 are positive semidefinite if only if U is positive
semidefinite.

We introduce a new primal-dual auxiliary variable u* := y* 4+ (o —~v+1)M Ax* +
(1+ B)M Bz*, to obtain the following updates :

K3 = Yk Blyk 2.22
L = g8 [ - BYM At 2.23

[\V]
(\]
e~

D = Vigb — yAM AL 4 (y — DA'MBZF — AW

[\
[\
ot
N N N N N

ik+1 — J‘{Vl [xk+% o 2,7AtMng+l]
i = uP M AR+ (1 — )M AFFT + M BEFT 2.26
(:L.k+1’ Zk+1, uk+1) — p(:'i,k+1’ 2k+1, ,ak+1) + (1 . p)(ﬂjk, Zk’uk) 2 27

which is equivalent to the following sequential minimization subproblems :

Generalized Splitting Scheme (GSS)
1 ¢ argmin {g(z) + %HBZ + M7k + A3, + %Hz - zk||%,2} (2.28)
T2 = yAZF — (v — 1)BZF + MW (2.29)
Pt € argmin {f(x) + %HAQT +ofte 42y BE2, 4 %Hx - :Ek||%/l}(2.30)
@ = b 4 M(yAz® 4+ (1 — 4) Az 4+ BERT (2.31)
(2L 2R by = p(ZFFL 2R G (1 — p)(2®, 25, ub). (2.32)

From Proposition 2.3.2, we obtain the proposition of convergence of (GSS)
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Proposition 2.3.3 Let p € (0,2). Assume that Vi € IR™", Vo € IRP*P and M €
IR™ ™ are symmetric, with M positive definite such that Vi +A'M A and Vo+ B*M B
are positive definite. Let v € IR such that one of conditions (Al")—(A4’) is satisfied.
If sol (V1) is nonempty, then for an arbitrary (2°,2° u®) € IR*™P*™  the sequence
(xF, 2% uk) in (2.28)-(2.52) converges to some element of sol (V).

We analyze now the special cases when v = 0 and v = 1, which correspond to
the two types of algorithms proposed by Shefi and Teboulle [49].

Case 7 =0

From (A1’), if both matrices V; — A'M A and V, — B'M B are positive semi-definite
then P is a positive semi-definite matrix.

Switching the order (2.28) for (2.30), we get the following algorithm where the
primal updates are performed in parallel:

1 1
€ argmin {f(x) + §||Ax + B2" 4+ M~ |)3, + §||ZL‘ — xk||%/1} (2.33)

1 1
FF+1 ¢ argmin {g(z) + §||A:ck + Bz + M3, + §||z - zkH%/Q} (2.34)

@t = uF 4 M(AFMT + BERY (2.35)

(xlc—f—l, Zk—i—l7 uk—i—l) — p(i,k—l—l, 2k—i—17 ﬂk—l-l) + (1 . p)(ZEk, Zk,uk) (236)

If B= -1y, M =cl,., and p = 1, we obtain the algorithm STA type I
proposed by Shefi and Teboulle [49].

Summarizing, from Proposition 2.3.3, we obtain the following proposition of
convergence of the sequence defined by (2.33)-(2.36).

Proposition 2.3.4 Let p € (0,2). Assume that Vi € IR™", Vo € IRP*P and M €
IR™ ™ are symmetric, with M positive definite, such that Vi+A'M A and Vo+B*M B
are positive definite and Vi — AM A and Vo — B'M B are positive semi-definite. If
sol (V1) is mnonempty, then for an arbitrary (2°,2°,u°) € IR"™P™™  the sequence
(xF, 2% uk) in (2.83)-(2.56) converges to some element of sol (V).
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Case vy =1
From (A4'), it holds that V; and V5 are positive semi-definite if only if P is a positive
semi-definite matrix. In this case GSS becomes :
sh+1 : Lok kg2, L k(2
z € argmin g(z)—|—§]|Ax +Bz+ M u HM+§Hz—z 17, (2.37)
aFtt = uF 4 M(Ax* + B (2.38)

1 1
P € argmin {f(a:) + §||Ax + BEFL 4 MR 2, §||x — 2|3, }2.39)

(Ik+1, Zk+1, uk-{—l) — p(j'k+1, 2]4}-1—1’ ak-{-l) _|_ (1 - p)<xk7 Zk7 uk) (240)

If B= —Iup, M = Tl Vo = 0 and Vi = 0 '1,y, — TA'TA such that
1 > o7||A|?, then we obtain the over relaxed algorithm proposed by Chambolle-
Pock [10].

onsiderin =1 an efining, =% = ", ZF = 2 and u"¥ = u en
C d 1 d defi , k lc7 k k+1 d k k+1’ th

substituting in (2.37)-(2.39) and switching the order, we get the following algorithm

1 1
" € argmin {f(:c) - §HAQ: + BZ* + Ma¥|)3, + 5”95 — a‘c’““%,l} (2.41)

1 1
ZF € argmin {g(z) + §||A:Ek+1 + Bz 4+ M7'a* |3, + §||z - zk||%,2} (2.42)

abtt = a@f 4+ M(AzF 4 BEM (2.43)

If B= —1I,x, and M = cl,,, we obtain the algorithm STA type II proposed by
Shefi and Teboulle [49], which is called the Proximal Alternating Direction Method
(PADM).

Further transformations applied to (2.37)-(2.40) lead us to consider two inter-

esting algorithms. The first of them is obtained by considering V5 = 0, and con-

sidering the auxiliary variables z¥*1 2% 4*, 5% to update the relaxed sequences

:/L,\kJrl = %:L,kJrl + (1 B %)xk — i.kJrl7 ’Z\k — %ZkJrl + (1 _ %)Zk — 2k+1’ ak — akJrl and
¢ = 2 getting
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1 1
2" € argmin {f(x) + §||Aa: + Bz 4+ MR35, + §Hx — E*H%/l} (2.44)

1
Z¢ € argmin {g(z) + 5“,0/1@’”1 +Bz+ M0 + (p— 1)B’z\k|]?\4} (2.45)
a" = A"+ pM AT 4 (p — 1)M BZF + M Bz (2.46)
S = Pt (1 - p)F* (2.47)

The second interesting algorithm is obtained by considering the auxiliary vari-
ables 2%, 2% @* 5% to update the relaxed sequences ¥ := /l)xk“ +(1— %)xk = ghtl,

= A (1= )28 = 2 ah o= @t and 8° = ", getting

1
1 ¢ argmin {g(z) + §HpA50k +Bz+ M "+ (p— 1)Bék|\?\/[} (2.48)

Wt = aF + pMAZY + (p — 1)MBZ* + M Bz (2.49)

g = pif 4 (1 p)s* (2.50)
1 1

#*1 € argmin {f(:l:) + §||A:1: + BEF o M2, 4 EHx - 5k:+1||%/1(}.51)

So, by considering in these two last algorithms B = —1I,,x,, M = cl,, and V; =0,
the sequences §* and §* becomes unnecessary. Moreover, (2.44)-(2.47) become the
generalized ADMM proposed by Eckstein [21], and (2.48)-(2.51) become the algo-

rithm 2 considered in [15].

From Proposition 2.3.3, we obtain the convergence of the sequence (2.37)-(2.40)

Proposition 2.3.5 Let p € (0,2). Assume that Vy € IR™", Vo € IRP*P and M €
IR™™ are symmetric, with Vi and Vs positive semi-definite and M positive definite
such that Vi + A'M A and Vo + B*M B are positive definite. If sol (V) is nonempty,
then for an arbitrary (2°,2°,u%) € IR"™*™  the sequence (x*, 2% u*) defined in
(2.37)-(2.40) converges to some element of sol (V1).

2.4 The co-coercive map associated with GPPM

Lions and Mercier [31] have transformed an inclusion problem of the sum of two
maximal monotone operators (S +T') into a fixed-point equation with respect to an
appropriated operator, the Douglas-Rachford operator, which is 1—co-coercive map

and, in order to compute its value at each point of its domain, only local calculations
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of proximal terms of S and T separately are needed. Eckstein [21] later showed the
relationship between the splitting algorithm (ADMM) and the fixed-point method

applied to a Douglas-Rachford operator, after a suitable linear transformation.

In our general setting, we show in this section that the sequence generated by the
generalized proximal point method (GPPM) corresponding to map J% for arbitrary
maximal monote operator 7" and arbitrary symmetric positive semidefinite matrix P
is nothing else but the sequence generated by the fixed point method corresponding
to map G% defined in (2.53), after a linear transformation S (satisfying P = S'S). Tt
leads thus in some sense to a generalization of a Douglas-Rachford operator, keeping
the property of 1—co-coercivity.

As pointed out in Subsection 2.3.1, the sequence generated by GPPM for T'= L
defined in (2.11) and P defined in (2.15) corresponds to the sequence generated by
the generalized splitting scheme (GSS) defined in (2.17)-(2.20).

In Section 2.2, we have shown that the sequence generated by GPPM is nothing
else but, under the linear transformation (), the sequence generated by the fixed
point method corresponding to the 1—co-coercive wrt R map QJ% (see (2.9)). But
for arbitrary symmetric positive semidefinite matrix P, matrices ) and R are dif-
ficult to calculate; when P is symmetric positive definite, then ) = I and R = P.
Alternately by considering S such that P = S'S, we define GL an operator easier to
implement than Q.J% and having similar properties, for example, it is 1—co-coercive
property wrt the usual norm. In particular, using G% instead QJ%, we give an al-

ternative proof of Proposition 2.2.2.

Finally, by considering S = S5 defined in Remark 2.4.3, one gets G§3 = SHL +
StS3)~1S3 which corresponds, under a reparametrization, to the classical Douglas-
Rachford operator defined by M’%Sg(L+S§Sg)’153M%. In other words, the Douglas-
Rachford operator and its fundamental properties of of co-coercivity and splittability
will be shown to be a special case of our generalized setting based on the Lagrangian

monotone inclusion.

Associated with the r x r symmetric positive semidefinite matrix P introduced
in the former section, let consider a ¢ x r matrix S satisfying

pP=4S'S (2.52)
and then the map G% : IR? — IR? defined as
G§ = S(T + 5'9)~'s". (2.53)
It follows that
SJh =GLS (2.54)
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and hence, from (2.7), we get for all w,w’ € IR" :
(G5(Sw) — Gg(Sw'), Sw — Sw') > ||Gg(Sw) — G (Sw)|*.

Since for any s, s’ € IR? there exist w,w’ € IR" such that S’Sw = S*s and S*Sw’ =
Sts' we get
(Go(s) = G(8), 5 — ') > ||G5(s) — Gg(s)]?

which means that G% is 1—co-coercive with respect to the usual norm.

The following proposition shows in particular that G% is the Moreau-Yosida
regularization of ST—1S?. This will be used in the examples considered in this
Section and in Section 2.6 (Proposition 2.6.1).

Proposition 2.4.1 Let T : IR" —5 IR" be an arbitrary map, S and M two matrices
of order ¢ X r and q X q, respectively, with M invertible. For z € IR? the value
(ST1S* + M)~'Mz is nonempty if and only if (T + S'M~1S)~1S*2 is nonempty.
Furthermore, it holds that

(ST'S'+ M) "Mz =2~ M1'S(T+ S'M~15)"1S"2.
Proof. The proof follows from the two properties:

o v € (ST'S! + M)~ Mz if and only if there exists y € IR™ such that Sz €
T(y) and z — M!Sy = z.

o y* € (T+ S'M~15)71S!z if and only if exists z* € IR" such that S'z* € T'(y*)
and z — M~ 1Sy* = z*. n

Similar to Proposition 2.2.1, we get the relationship between the solution set of
problem (V') and the fixed points of G%.

Proposition 2.4.2 With the same notations as before, we have
o [fzesol(V), then Sz is a fized point of G%.
e Ifw is a fized point of Gk, then w = Sq for some q € sol (V)N (T + P)~'Stw.
We deduce that the set of fixed point of G¥ is exactly
S(sol (V) = {Sw:w € sol (V)}.

Applying S to the sequence {w*} defined in (2.8) and considering the permuta-
tion property (2.54), we get:

Swhtt = pGL(Sw*) + (1 — p)Sw”. (2.55)
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This equation gives us another alternative proof of convergence of the sequence
{w*} under the same conditions of Proposition 2.2.2. In fact, since G% is 1—co-
coercive and from (2.55), we have that, given w* € sol (V)

9 _

| Sw* — Sw*||* — T'OHkaJrl — SwF|* — [|Sw*Tt — Sw*||? > 0. (2.56)

Since rank S*S = rank S, the domain of G is equal to the domain of J% which is
closed, using this fact and from (2.56) we deduce that Sw* converges to some point
b, which is a fixed point of G%. On the other hand, using the triangular inequality
and considering w := (T + P)~1S%, we get

[t — @l < pl(T + P)7'S"(Sw®) — ]| + 1 = pl|w* — @].

From the continuity of J%, we deduce the continuity of (7'+ P)~!1S* = JL.S*, where
STt denotes the Moore-Penrose pseudo-inverse matrix of S. Therefore we deduce
that {w*} converges to .

We now give some explicit expressions of G for the Lagrangian operator L and
matrix S such that P = S*S, considered in Section 2.3.

2.4.1 Examples of co-coercive operators Gé
Example 2.4.1 Let v =1 (8 =« — 1), We consider in (2.15)

Ci=Vi+ (1+a)?A'MA and Cy=Vs+ a*B'MB,

where Vi and Va are as (2.21) assumed positive semidefinite matrices. In (2.37)-
(2.40) matrices Vi and Va are associated with the additional prozimal term that will
be used in ADMM, which, as we have shown in Subsection 2.3.1 (Case v = 1), is
related to Shefi-Teboulle algorithm type II [49]. We get :

Vi+(1+a)?A'MA (14 a)aA'MB (1 + «a)A

P = (1+a)aB'MA  Va+a?B'MB  oB'
(1+a)A aB M-!
The matriz
vy 0 0
S, = 0 Vf 0
(1+a)MzA aM2B M2



satisfies (2.52) and the corresponding map Gél, that applies IR" x IR? x IR™ into
itself, is defined as

[N

Virx
Gél (ZE\7 27 :/y\) - ‘/2%2
Mz Az + M2Bz +73
where )
x=0f + Vi + AAMA) (V2% — A'M2(j + 2M2 Bz))
1 1
z= (09 + Vo + B'MB) ' (V,?Z — B'M?=7)).
Note that Gél has full domain if Vi + A'M A and Vo + B'M B are assumed positive

definite matrices.

Remark 2.4.1 The map G§1 is the Douglas—Rachford operator [31], applied to the

two maps
V% 0 -1 1
! of Vi 0 AM:
B 0 Lo 1 0
M:A 0 e
and
S S -
) A 0 ] 1( (—Im 0 0 >>
_ O _ 2 — 1 1
0 M;‘B dg 0 -V B'M:

The corresponding sum of these two maps is exactly the dual variational map

(2.5) associated with the following optimization problem

min (f,0)(z1,22) + (0,9) (21, 22)

(z1,72,21,22)EF

where F is the set of all (z1,xs, 21, 22) satisfying

1 1 Z1
1 T2 1 Z9
Mz A 0 0 M2B
Remark 2.4.2 In the case that Vo = 0, which corresponds to Chambolle-Pock al-

gorithm as we showed in Subsection 2.3.1, we can restrict the map Ggl, and obtain
the map Dy that applies IR" x IR™ into itself, where Di(x,u) is

N|= —

( VP (Of + Vi + ATMA)!

Vi — AU (u + 22)
MzAQf + Vi + AMA) [V,

x— AM3 (u+22)] + 2z +u
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where
2= M2B(dg+ B'MB) 'B'Mz(—u).

Note if B is injective, then Dy has full domain.

The map Dy can be obtained in the form (2.53), considering that when Vy = 0,
the matriz

1
. V2 0 0
Sy = 1 1 _1
(I1+a)M2A aMz:B M~z
satisfies (2.52), and we obtain that Dy = G% .

The map Dy can also be obtained as the Douglas—Rachford operator, applied to

(i e (v

—1
. _Inxn 0 0 . _Inxn 0
0 M:B dg 0 B'M:

The corresponding sum of these two maps is exactly the dual variational map asso-

the two maps

=

AtM 3 ))

and

ciated with the following optimization problem

min _ f(x) 4+ (0, 9)(21, 22)

(z,21,22)EF

where F is the set of all triples (x, z1, z0) satisfying

1
‘/15 _Ian 0 21
— 0.
<M§A>x+< 0 M%B) <z2>

Remark 2.4.3 In the case Vi = 0 and Vo, = 0, we can restrict the map Gél, and
obtain the map Dy that applies IR™ into itself, where Dy(z,u) is

M2A@f + AMA)  A'M2 [—u — 22 + 2 + u

where
2= M2B(dg+ B'MB) 'B'Mz(—u).

Note that if A and B are injective, then Do has full domain.

The map Do can be obtained in the form (2.53), considering that when Vi =
Vo =0, the matrix

Ss=((1+a)M:A aMiB M%)
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verifies (2.52), and we obtain that Dy = G, .

The map Dy can also be obtained as the Douglas—Rachford operator [31], applied
to the two maps

—MzAQf) Y(—A'Mz) and — MzB(dg) '(—B'M?).

The corresponding sum of these two maps is exactly the dual variational map
(2.5) associated with the following optimization problem

min - [f(z) +9(2) : M2 Az + M2Bz =0).
x?y

Alternatively we can consider, instead Do, the map Dy := M’%DQM%, i.e

Dy(u) = A(Of + AMA) ' A'M [~ — 22 + 2 + @

where
z = B(dg+ B'MB) *B'M(—u),

which 1s co-coercive w.r.t. the metric induced by M.
Example 2.4.2 Let v =0 (o = ). We consider in (2.15)
Ci=0+(a+1D)HAMA+R and Co=(1+ (a+1)*)B'MB,
where R is a positive semidefinite matriz. Then Vi and Va in (2.21) are equal to
Vi=A"MA+ R and Vo, = B'MB.

These matrices are associated with the additional proximal term considered in (2.33)-
(2.86), which, as we have shown in Subsection 2.3.1 (Case v = 0), is related to
Shefi-Teboulle algorithm type I [49]. We get :

1+ (a+1)HAMA+R a2+ a)A'MB  (1+a)Al
P= a(2+ a)B'MA 1+ (a+1)*)B'MB (1+ «)B*
(1+a)A (1+a)B M1
The matriz )
Rz 0 0
Sy = Mz A ~M:B 0

(1+a)M2A (14+a)MzB M~z
satisfies (2.52) and hence the value G§ (T,2,7) of the corresponding map G§,, that
applies IR™ x IR™ x IR™ into itself, is
Riz
Mz Az — M2 Bz
Mz Az + M2Bz+ 73
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where
x=(0f + 2A'MA + R)" (R2% + A'M2(3 — 7))

2= (8g+2B'MB) '\B'M2 (-3 — 7).

Note that G§4 has full domain if 2A'M A + R and 2B'M B are assumed positive

definite matrices.

Remark 2.4.4 In the case that R = 0, we can restrict the map G§4, and obtain the
map Ds that applies IR™ x IR™ into itself, where D3(Z,y) is

M2AQDf +2A'MA) YA'M=2(Z — ) + Mz2(dg + 2B'MB) "' B Mz(—% — §)
MzADf +2A'MA) P A'M=2(Z —§) — M2(dg + 2B'MB) ' B'M2(—Z — ) + 7

The map D3 can be obtained as the form (2.53), considering that when V; =
A'MA and Vo = B'M B, the matriz

o Mz A ~M:B 0
Tl a+aMiA Q+a)MEB M7: )T

satisfies (2.52), then we obtain that D3 = G, .

2.5 Rate of Convergence

The global rate of convergence of ADMM and other monotone operator splitting
algorithms has motivated many research contributions that we cannot survey here
(see [15] for example). We will recover these results for the generalized splitting
scheme GSS with no further refinements (like uniform or strong convexity) and will
remain in the framework of finite-dimensional spaces (see [2] for similar results in
Hilbert spaces).

D. Davis and W. Yin [15] have show the ergodic and nonergodic convergence rate
of the feasibility and objective function error related to the relaxed PRS and relaxed
ADMM, which is a particular case of our general scheme as remarked in Subsection
2.3.1. Similarly, in this Section, without regularity assumption, we show the ergodic
and nonergodic convergence rate of the constraint violations (feasibility) and objec-
tive function error related to the chain of steps (2.17) — (2.18) — (2.19) — (2.20),
defined in Subsection 2.3.1, which is our main sequence associated with primal prob-
lem (P) defined in the first section.
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With the same expressions of matrices P and U defined in (2.15) and (2.16),
respectively, we get the following identity by using S satisfying P = S*S and explicit

expressions of P and U,

[, 215 = 1@, 2,9)I> = (@, 2) |15 + 1M (1 + @) Az + (14 8)Bz) + M2y

(2.57)
Notice that for v =0 (8 = «),
1, NG = N2lV - aeara + 1200 pess + 1Az — Bzl3,
and fory=1(f=a—1),
1z, 2)llE = 1217, + 112117, (2.58)

Back to the sequence (2.17)-(2.20) and considering w* = (2%, 2%, 4*), it holds
from definition that

JEwk = (%1 FE g and Wbt = pJEwk + (1 — p)u”. (2.59)

The following proposition will be used later in Subsection 2.5.2 in order to esti-

mate an upper bound of the optimal value of problem (P).

Proposition 2.5.1 With the same notations as before and consideringw = (x, z,y) €
dom (f) x dom (g) x IR™, the following inequality holds:

2—p - - -
¥~ = =L b+ = b~ = wllh > 2p [, ) — 1, 2,4)]

Proof. Let w = (x,2,y) € dom (f) x dom (g) x IR™. Since P(w* — Jkw") €
L(J5w"), then using Proposition 2.3.1, it holds that

(Jpw* —w, P(w* — Jpw")) > 1@ 2 y) — Uz, 2, 5. (2.60)

On the other hand, from the symmetry of P, it holds
2

2p (Jhw* —w, P(w* — JEuw®)) = Ju* —w|} — =Ll — w3 - [0t - wll?
So, replacing this last expression in (2.60), we get the desired inequality. [ |

In particular, from the inequality of last proposition, we get
[w* —wlp — [|w*™* —wlp > 2p [1(Z*, 2 y) — (2, 2,5")] . (2.61)

This inequality will be used in Theorem 2.5.1 for approximating the optimal value
of problem (P).
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We note that Proposition 2.5.1 is a general version of the inequality given in
Proposition 2 of [15] which is obtained by considering A = I = —B, M = v~ 'I and
P as in Remark 2.4.3, w = (z,x,0) (which implies M~3S83w = x), z = M_%S;;zk,
and

2t = (Tprs)a(z) = (M3 GE M3)gy (M2 852F) = M~3 Sgu**1,

Similarly, Proposition 2.5.1 is also a general version of the one given in Proposition
11 of [15] by considering M = ~[ and P as in Remark 2.4.3; (z*, z*,¢*) and z*
fixed points of G§, and (Tpgrs)r = (M%GggM’%)g,\, respectively; w* satisfying
Mz Sswk = 2% and w = (z*, 7%, 0) such that

M3 Sqw = M285(7%, 2, ") — §* = 2* —w*

where w” = Jy(p)ag)-1(-8t) (27)-

2.5.1 Bounding the fixed-point residual

The fixed-point residual of operator pG% + (1 — p)I,x, is the sequence with general
term
16GE + (1= )y Suc* — Su|?

which, from (2.55), is equal to
Hka+1 _ kaH2'

Since p € (0,2), then pGL +(1—p)I,«, is non expansive and hence {||Sw*! —Sw*||}
is non increasing. Summing over k = 0,--- , N — 1 in (2.56), we get

|Swh — Swh1|? < —[|Su® — Su|?. (2.62)

_r
(2-p)
On the other hand, using the Jensen’s inequality, we get

|Sw* — SuwP||? < 2||Sw* — Sw*||? + 2||Sw’® — Sw*|* < 4| Sw® — Sw*|?

and hence

2
1 4
- m||sz — Su’|* < mIISwO — Sw*||®>.  (2.63)

1 N
N Z(ka — ka_l)
k=1

Notice that upper bounds (2.62) and (2.63) can also be deduced respectively from
Theorem 1 “Notes on Theorem 17 and Theorem 2 developed in D. Davis and W.
Yin [15].
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2.5.2 Bounding the saddle-point gap

We consider the following ergodic sequences defined as: for N > 1,

N X XN
EN::Nij’ iNz—Nkzlék and @N::NZg)k.

Theorem 2.5.1 With the same notations as before, we get the following rate of
convergence:

e Ergodic Convergence: for any w = (x, z,y) € dom (f) x dom (¢g) x IR™

1
Tk, Zk,y) — Uz, 2,T) < ﬂHSwO — Swl|?. (2.64)

e Nonergodic Convergence: for any w* = (z*, z*,y*) € sol (V1)

1+|1-
(34,3, )~ Ua”, 2, ) < — AP

Sw® — Sw*||?. (2.
N/EErICE F 2o

Proof. Summing (2.61) over £ = 0,--- ;N — 1, and applying the Jensen’s
inequality to the convex functions I(-,-,y) — l(x, z,-) for arbitrary fixed elements
x € dom (f), z € dom (g) and y € IR™, where [ is the lagrangian function defined in
(2.10) of Section 2.3, we deduce the desired ergodic convergence.

Given w* € sol (V) and considering w = w* in (2.60), we get
(GESwF — Sw*, Sw” — GESw*)y > 1(, 2M y*) — 1(2*, 2%, §*1) > 0
and hence, from the Cauchy-Schwarz inequality and (2.55), we obtain
%Hc;gswk — Swr||SwE — Suk|| > 1(EH L ) (et 2 . (2.66)
On other hand, from (2.55) and since {||Sw*** — Sw*||} is non increasing, we

get

1+ 1

1 1 —
|GESwk—Sw*|| = ||;(ka+1—5w*)+(1——)(ka—Sw*)H < Tp‘HSwO—Sw*H.

p

So, replacing this last expression and inequality (2.62) in expression (2.66), we
deduce the desired nonergodic convergence. [ |
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2.5.3 Bounding the constraint violation

We consider, for N > 1,

We get the following result

Theorem 2.5.2 With the same notations as before, for any w* € sol (V1), we get
the following rate of convergence:

e Ergodic Convergence:

ga— -~ —_ o~ — — 4 *
”(;Ck — Tk, 2k — Zk)“2U + HAl’k + szH?\/[ < p2/{:2 ”Swo — Sw ||2
e Nonergodic Convergence:
1
(2 =1, 2 = ) AP+ B < s — S

k k=1 3k k=1 ~k k—l)

Proof. From (2.59) we have w* —w"=1 = p(g¥ — b= 8 — k=1 gk —y and

hence, from (2.19), we get

wh —wht = p(aF =2 A M[(1 o) AT (14 8) B2 — AR — BBEM).
(2.67)
Summing over k =1,--- | N, we obtain
L
N T N ~ ~ _ _
i Z(w —w" ) = p(TN—TN, En—2n, M[(1+a)AZn+(148) BZn—aATN—BZN]).

k=1
Then from (2.57), we get

= [Ty — Zn, 28 — 28|} + |AZN + B2y |3,
P

and hence, given w* € sol (V7), we deduce from (2.63) the ergodic rate of conver-

gence for constraint violations.

Using (2.67), from (2.57), we get
1
—llw® —wt B = (@ - 2t 2 |+ A+ B2,

and hence, from (2.62), we deduce the nonergodic rate of convergence for constraint
violations. |

We note that the particular case v = 1, Vi = 0 and V5, = 0, which implies
that U = 0, the two terms |[(Tx — T, Zx — 21)||% and ||(Z% — %71 28 — 2F71)||2 of

inequalities in Theorem 2.5.2 are null and hence we recover the Theorem 15 of [15].
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2.6 Application to the decomposition of multi-

block optimization problems

To conclude our study, we consider the application of the generalized scheme GSS
to the decomposition of some block structured convex optimization problems.

For i € {1,...,q}, let f; : IR™ — IR and g : IR™ — IR are proper lsc convex
functions, A; and B matrices of order p x n; and p X m, respectively. We consider
the following S-Model problem:

inf Z filz:) +g(2)

(Ilv"'vxmz)
q
s.t ZAixi + Bz =0.
=1

This problem has been analyzed by many authors (see [29] for instance). We rewrite
it into two different forms, (B;) and (Bz), but with the same structure as (BP) de-
fined below, then we rewrite (BP) as problem (P) also defined below. Finally, we
apply the algorithm (2.37)-(2.40) to this last problem.

The S- Model problem is equivalent to

inf Zfz(i’fz) +9(2) +5{0}(Z Ajz; + Bz). (B1)

(w1, ,24,2) 4 —

In this formulation the function g can be viewed as a function f;. The associated
dual problem of (By) is

inf Z(f{" o Ay + (9% o B')y". (Ds)

Now, by considering n = >"%_ n; and f: IR* — IR defined as f(z) := >0 fi(x,),
the problem (Ds) can be written as
Aj
inf f*o | i |y +(g" 0By
y At

q

This is a composite problem whose associated dual problem is
q q
( inf )Z filw:) + (g7 0 BY) o (=) Ay). (B2)
b Ea) oy i=1
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We observe that in this last problem we reduce the number of variables considered
in the S-Model problem and the function g acts now as regularization function.

Using the same notations as before, we define a problem having the same struc-
tures as problems (B;) and (Bs):

Zfz ;) + (9" o BY)* ZA:CZ (BP)

xq)

In order to apply the splitting algorithm to problem (BP), we reformulate it to an
appropriate optimization problem. To do it, consider

Ki=( Ly Ly ) € R and

A
A= € IRrx",
Aq

So, problem (BP) can be formulated as

zcIR" zfe]RPq [f(z)+ (9o B")* o Kz: Az — 2 =0]. (P)

Notice that this last formulation problem has a good separable structure.

We apply to problem (P) the algorithm (2.37)-(2.40) developed in Subsection
2.3.1 (Case 7 = 1). We assume that g verifies the following identity

I[(g* o BY)* o K| = K'(B(dg) 'B") K.
The saddle-point problem of (P) is
Find (z,z,9) € IR" x IR" x IR such that 0 € L(z, z, %) (V1)

where L is the maximal monotone map defined on IR" x IRP? x IR"? as

af(x) 0 0 A
L(x,z,y) == | KYB(0g)"'B) 'Kz |+ 0 0 I
0 -A 1T 0 Y

For i € {1,...,q}, let M; be an p x p symmetric positive definite matrix and Q;

be an n; X n; symmetric positive semi-definite matrix.

In order to take advantage of the separability of f, we take Vi = diag([Q1, ..., Qq])
and M = diag([My, ..., M]), and we consider V5 = 0 in order to calculate 2™ using
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alone the resolvent of dg. So, the related algorithm (2.37)-(2.40) takes the following

structure:
2k+1 — (Kt(B(ag)let)flK_i_M)fl(MAmk +yk) (268)
gt = Y+ M(AdR - 2 (2.69)
P = (Of + ATMA + V)T (Ve 4 ATM R — At (2.70)
(2" ) = p(@ M ) 4+ (1 - p) (2", 2 ) (2.71)

Because of the diagonal structure of expression (2.70) the calculation of ZF*1 is

realized in parallel: for i € {1,--- ¢},
= (0f; + AIMA; + Qi) N (Quxf + AIME! T — Al
Now, in order to calculate 5!, the following identity is relevant:
Proposition 2.6.1 With the same notations as before, the following identity holds
(K'(B(0g)'BY 'K + M)™'M =1 - M 'K'S(I — B(dg + B'YXB) 'B'S)K

where ¥ is a p X p matrix defined by

-1
q
Y= (KM 'KY! = <Z Mﬁ) .
Proof. From Proposition 2.4.1, we have
(K'(B(0g) 'BY 'K+ M)'M=1—-M'K'(B0g) 'B"+ KM 'K") 'K
and hence by combining it with the following identity
(B(og) 'B'+x Y)Y 'Yyt =1 -XB(dg + B'YB)'B'

obtained also from Proposition 2.4.1, we get the desired identity. ]

So, using the identity of this last proposition, we can obtain an equivalent ex-
pression of #**1 in (2.69) but with a more tractable expression for computational

purpose :
" = K'S(I — B(0g + B'SB)'B'S)K (Ax* + M~1y"). (2.72)

It follow in particular that §**! € range K* and, by considering y* € range K*

in (2.71), we have that y**! € range K* and hence all the block components of 7*+1
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(similarly of y**1) are equal. We denote by g¥+1 (resp y**!

of §**1 (resp y**1). Then,

) such a block component

gt = 2(I — B(dg + B'SB) 'B'S)K (Az* + M1 K'y*) (2.73)
By denoting
q
("= (09 + B'SB)'BH(S Y (Ajah) + uf)
7j=1

we obtain, from (2.73),
FH = yF 4 5( Z — B¢, (2.74)
On the other hand, from (2.69), we get

+1 _ Axk + M*th(yf o ngrl)

which combining with (2.74), we deduce that for i € {1,--- ,q},

q
Rl — Ak — MY (Z(ijf;) - B(’f“) :

=1

Therefore we obtain the following algorithm, called “Proximal Multi-block Al-

gorithm”.
Proximal Multi-block Algorithm
(PMA)
For i € {1,---,q} set @; € IR™ "™ symmetric positive semi-definite, M; € IRP*?

symmetric positive definite. Set > = ( !, Mi_l) ~!. Then for an arbitrary (z°, 2°,¢) €
IR™ x IRP* x IRP

Step 1. Find ¢**! such that
1 q
("' = argmin {g(w) +5l1Bw =) (45]) - Z_lnyé}
7j=1

Step 2. Find z¢+!
For alli € {1,...,q} do
Find 2" such that

q
2?:-&-1 A k 12 (Z(Aﬂf) . B<k+1> .

i=1
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Step 3. Find ¢**! such that

q
Pl =yf 45 (Z(ijf) — B<k+1> .

j=1
end for

Step 4. Find z#*!
For alli € {1,....,q} do
Find #¥*! such that

1 1

end for

Step 5. Find (zF*1, 2F L ¢~

c

k k k ~kA1 skl ~k k ok k
(@ 2yt = p(@ T 2L ) 4+ (1= p) (s 28 ).
The next proposition gives conditions in order to guarantee the convergence of

PMA. The proof is a direct consequence of Proposition 2.3.5.

Proposition 2.6.2 Let p € (0,2). Fori € {1,...,q}, assume that Q; € IR""™ and
M; € IRP*P are symmetric, with Q; positive semi-definite and M; positive definite
such that Q; + AIM;A; is positive definite. If sol (V) is nonempty, then for an
arbitrary (°,2°,4°%) € IR™ x IRP x IRP, the sequence (2% K'y*) generated by
(PMA) converges to some element of sol (V).

The Separable Augmented Lagrangian Algorithm (SALA) with multidi-
mensional scaling has been proposed in [18] to solve a special case of the S-Model
where ¢ = 0 and B = 0 . This algorithm can be recovered if instead of applying
the algorithm (2.37)-(2.40) to problem (P), we consider the algorithm (2.41)-(2.43)
with V; = V5 = 0. Therefore SALA is a particular version of (PMA).

The advantages of (PMA) are twofold: 1) the inclusion of the relaxing term p €
(0,2), which enables the accelaration of the algorithm, and 2) the additional proxi-
mal term [|z; — 2} |3, considered in the subproblems of Step 4, which improves the
strong convexity of the proximal subproblem when we choose an adequate matrix
Q;. More specifically, considering o; and 7; positive numbers holding o;7; || 4;||* < 1
and choosing M; and (); matrices defined as

M; =0,l,x, and @Q; = T-_llnixni — g ALA,;,

7
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the conditions about matrices @Q;, M; and Q; + A!M;A; in Proposition 2.6.2 are
verified and hence the subproblem in Step 4 of the Algorithm (PMA) becomes

1
7 = argmin {fz(xz) + 2_“531 —ap = [ AET — o Al A — Aﬁng]HQ}
Ti

which has an explicit solution in some particular cases, for instance f;(z;) = ||z;]|1-

o7
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Chapter 3

Decomposition techniques

In the last section of previous chapter we have developed a general algorithm termed
Proximal Multi-block Algorithm (PMA) in order to solve a S-Model problem as in
Section 2.6. This algorithm uses the proximal step of all the family {f;}i=1.. 4
through a parallel processing for each iteration.

The special case considering g = 0 and B = 0 in the previous S-model, which will
be termed separable model with coupling constraint (SMCC) is considered in
Section 3.2. We propose an alternative way to use the proximal step of each f;,
separating the problem into two sub-block problems and considering the proximal
step to one sub-block and then (at a linear combination of the preceding values) the
proximal step is found for the other sub-block, both in parallel processing.

For this purpose, we first study in Section 3.1 the separable model with cou-
pling variable (SMCV) using the duality scheme developed in Chapter 1, finding
an adequate formulation for that problem, allowing recovery two know algorithms
with multi—scaling parameters, and their relationship. We also show the numeri-
cal behavior of these two algorithms. Since SMCC can be formulated as a SMCV,
we apply the results obtained for SMCV to SMCC, getting another way to recover
SALA and DSALA, the last also contained in PM A.

In Section 3.3, we get two splitting algorithms, one for SMCV and the other for
SMCC. Each algorithm separates the problem into two arbitrary sub-block problems
considering the proximal step of all functions corresponding to each sub-block in
parallel processing similar to the one obtained in the precedent section.

All found algorithms in this chapter are consequences of finding adequate for-
mulations of the original problem and then applying popular algorithms. In this
vein, in the last section we study an especial block optimization problem, that will
be used for solving a stochastic optimization model problem, reformulating it and
applying the multi-scaling ADMM (considering V; = 0 and V5 = 0 in (2.41)—(2.43)).

In [11] the authors show that “The direct extension of ADMM is not
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necessarily convergent”. The authors in [54] showed an alternative way to deal
with a multi-block optimization problem, reformulating it into two-block problem
in order to apply the ADMM.

The main difference of the corresponding algorithm found by these authors re-
garding the one proposed in Section 3.2 of this chapter is the step order of subprob-
lems intervening in the algorithm.

On the other hand, in [20] the author gives another way to solve problem SMCC
using projective splitting methods.

3.1 The separable model with coupling variable
(SMCYV)

In this section we present the sum problem (or consensus problem as termed in
[7]). In this book the authors give important references on recent advances and
applications regarding the SMCV.

For every i € {1,---,q}, let fi : R™ — TR be proper lIsc convex. We consider
the following SMCV

nf > fi() (9)

which by defining f : R™ — R as f(z) := Y.L, fi(z:) for z = (21,--,z,) with
z; € IR", and W the ng x n matrix defined by W = (I,xp, - - - Lyxn)?, that problem
can be set as

inf foWW(x) (PY)

zeR™

which is termed Primal projected problem regarding to the following optimiza-
tion problem with linear subspace constraint

inf Zﬁ(zi) (3.1)

st zeV (32)
where V' := range (W) = {z = (z1,--- ,2,) € R" : 2y = --- = z,}. Clearly, this
problem is also equivalent to

inf . P
nf )+ 0v(2) (P)

~

Notice that if we apply the Douglas-Rachford’s method (DRM) to problem (P),
we obtain the so called [29] “Proximal Decomposition algorithm (PDA)”.
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On the other hand, by making V' = ker(K) where K is the n(q — 1) x ng matrix
defined by
l(:[LM4VMrU —-D
with D being the n(q— 1) x n matrix defined by D = (I,,xs -+ - Inxn)", we obtain the
following problem so called Dual projected problem:

inf  f*o K'u*. (DY)
u*elR™a—1)
Now, by considering h : R4V — TR defined as h(y) = ;1:_11 fi(y;) for y =
(y1,- -+ ,y,) with y; € R", problem (DY) can be formulated as
inf  A*(u*) + fF o —D'u*. (DY)
urelR™(@—1)

Since D'D = (q — 1)I, applying the DRM to problem (DY), we obtain a suit-
able decomposition algorithm called “Dual Proximal Decomposition algorithm
(DPDA)”.

By considering V' = ker(K) in problem (3.1)-(3.2), it is transformed in

q—1
(iunf) > filw) + fols)
AT
st u;—s=0,1=1,---,¢q—1

which is exactly the dual problem of (DY).

In [7] the authors termed this problem “Global variable consensus with reg-
ularization”, where f, represents the regularization function. In order to solve such
a problem, they apply ADMM, which is equivalent to apply the Douglas-Rachford’s
method to problem (DY).

Summarizing the previous discussions, PDA is DRM applied to problem (P),
and DPDA is DRM applied to problem (Dy).
We now describe these two algorithms:

Proximal Decomposition algorithm
(PDA)

For every i € {1,--- ,q — 1} set M; € IR™" symmetric positive definite. Then for
an arbitrary (z°,¢4% u%) € R™ x R" x IR™,

Step 1. Find 2**!
For alli € {1,...,q} do
find xf“ the optimal value of problem

1
inf | fi(x) + 5lle =y + MR,
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end for

Step 2. Find y**! such that

Step 3. Find u**!
For alli € {1,...,q} do
find ¥ such that
uFH = b 4 M (e — it

end for
Dual Proximal Decomposition algorithm
(DPDA)
For every i € {1,---,q — 1} set M; € IR™" symmetric positive definite matrix.

Then for an arbitrary (z°, 3%, u%) € R"4~1 x IR™ x R™4¢~Y

Step 1. Find z**!
For alli e {1,....q— 1} do
find ¥ the optimal value of the problem

1
nf | o) + glle = o+ Mot

end for

Step 2. Find y**! the optimal value of the problem

2

1 q—1 g
1

i= j=1

Z?;f M;

Step 3. Find u**+!
For alli € {1,...,q— 1} do
find u¥™ such that
=l DA )

end for
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Remark 3.1.1 If f, =0, then DPDA becomes PDA applied to problem

So, apply PDA to problem (S) is equivalent to apply DPDA to the following problem

inf Z fi(z) + 0(z).

zeR™ 4

Example 3.1.1 (Numerical illustration for the sum of three operators) We
apply the methods PDA and DPDA in order to solve the following problem

8 0 5 0
min z,r )+ x, T )+ T, T
$:($1,$2)€R2 < ’ > < 0 1 ] ’ > < 0 7 ] ’ >

which evidently x* = 0 1is the unique solution.

We consider, for i € {1,2,3}, M; = X in the algorithm of (PDA); and for
jge{l,---,q—1}, we set M; = X in the algoritm of (DPDA).

The graph in (fig 3.1) describes the relationship of parameter \ for PDA and
DPDA wversus the necessary number of iterations in order to get an approximation
of the optimal value with an error (||z§ — x*||) less than 1078, 1072% and 107

respectively.

1
0 2

Figure 3.1: iteration vs parameter
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3.2 Separable model with coupling constraints (SMCC)

For i € {1,---,q}, let f; : R"™ — IR be proper lsc convex function and A; be a
p x n; matrix. We consider the SMCC which can be expressed as

=1

i=1

This is a minimization problem over a linear subspace whose dual projection

problem is
q

. * t *

u}g]%p — (fi o Aju (Dy,)
which is a SMCV as described in the previous section. So, if we apply the algo-
rithms PDA and DPDA to this problem, we obtain respectively the Separable
Augmenting Lagrangian Algorithm (SALA) and the Dual Separable Aug-
menting Lagrangian Algorithm (DSALA). In order to apply PDA or DPDA
we will use the equivalent expression of the Moreau envelope function to each com-

posite function f; o Al as showed in Proposition 2.4.1.

We now describe the algorithms SALA and DSALA.

Separable Augmenting Lagrangian Algorithm
(SALA)

For every ¢« € {1,---,q}, set M; € RP*P symmetric positive definite. Set ¥ =
(329, M;1)~! (similarly to the given in Proposition 2.6.1). Then for an arbitrary

i=1 %

(2°,9°,u°) € R>=17 % IRP x RY4,

Step 1. Find z**!
For alli € {1,...,q} do
find 27 the optimal value of the problem

1
in { filw) + 5l A = My + u?llh]
end for

Step 2. Find y**! such that



Step 3. Find u**+!
For alli € {1,....,q} do
find u¥™ such that

end for

Dual Separable Augmenting Lagrangian Algorithm
(DSALA)

For i € {1,---,q — 1}, let M; € IRP*P symmetric positive definite. Set ¥ =
q—1
(3" MY =1 Then for an arbitrary (2°,1°,u%) € IRZi=1 " x IRP x IRP(~D

i=1 )

Step 1. Find z**!
For alli e {1,....q—1} do
find xf“ the optimal value of the problem

1
igf [fz(@ + §||Az$ — M7+ Uf”?\@]

end for

k+1

Step 2. Calculate w"™" the optimal value of the problem

. 1 . (i
inf [fq(w) + §||Aqfv — Y+ Z(Aixf“)\@]

j=1

Step 3. Find y**! such that

Step 4. Find u**!
For alli e {1,...,q— 1} do
find u™ such that
-1
ubtt = — At Mi_IZ(Z(Aia:fH) + Attt

7
=1

end for
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Remark 3.2.1

o If A, =0, then DSALA becomes SALA applied to problem
q—1
inf Z fi(@:)
i=1
q—1
i=1

e Fori c {1,..,q}, let f; : IR" — IR and g : IR" — IR proper Isc convex
functions, and A; be p X n; matriz. We consider the Multi-block problem

mxin Z i) + g(z Ay

also termed in [7] as Sharing problem, where f; is called local cost function
and g the shared objective.

It is clear that Multi-block problem includes SMCC' problem by considering
g = 0q0y. Conversely, we can formulate the Multi-block problem as a SMCC
by making xe1 =y ¢ Aix;:

q
inf D filw) + g(wgin)
=1
q
s.t ZAixi — xg41 = 0.
=1

So, by applying the SALA or DSALA algorithms to this last problem, we get
a splitting algorithm for Multi-block problem.

Example 3.2.1 (Numerical illustration for the sum of operators) We con-
sider the algorithms SALA and DSALA in order to solve the following constrained

problem
, 10 N &8 0 N 50
min T1, T To, T T3, T
21,22,23 02" 01| o7 |7
subject to
1 —1 n 4 n 1 3 0
x T Ty =
o 2 |21 TP -1 5|7

whose solution is =7 = x5 = x5 = 0.
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We consider, fori € {1,---,q}, M; = X in SALA; and for j € {1,--- ;¢ —1,
M; = X in DSALA.

The graph in (fig 3.2) describes the relationship of parameter A versus the nec-
essary number of iterations in order to get an approrimation of the optimal value

with an error (|5 — x%||) less than 1075, 107 and 107" respectively.

3580

sala-10%
dsala 10 |
sala-1025
deala-10% |-
sala-10°50
dsala 10 |-

300

250

200
B
® 150

100 =

sl //:
" 4 e

A parameter

Figure 3.2: iteration vs parameter

3.3 Proximal separation into two sub-blocks

The algorithm PDA described in the first section of this chapter considers the proxi-
mal step of all family {f;};—1 ... , in parallel processing. Unlike this algorithm, DPDA
separates the family into two sub-families or sub-blocks: one consisting of ¢ — 1 func-
tions, fi,---, fg—1, and the other consisting of f,. Then, the proximal step of each
function of sub-block {f;}i=1.. -1 is found in parallel processing and then, at a
linear combination of all these values, the proximal step of f, is found.

B. He and X.Yuan [25] considered a linear programming model and a corre-
sponding algorithm separating the problem into two adequate sub-blocks. They
then determinate the proximal step of all functions corresponding to one of these
sub-block in parallel processing and, using these values, determinate the proximal
step for all functions corresponding to the second sub-block in parallel processing
too.

We show in this section that this procedure can also be applied for general
setting by separating a given problem into two arbitrary sub-blocks. In practice, is
more adequate to separate into two sub-blocks taking into account the difficulty to

determinate their proximal steps.
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3.3.1 The separable model with coupling variables

Let r and s be two positive numbers such that » + s = ¢ and r > s. We separate
the block of functions into two sub-blocks: the first one consisting of r functions
{fi}i=1... » and the second one consisting of s functions { f;, }i—1.... s, and the matri-
ces coupling these two sub-blocks: B; and By of order n(q—1) xnr and n(g—1) X ns,
respectively, defined as

Isn —C
C -
B, = and By = —-C
C —Insn
Lr—s)xn(r—s) ~U
with C' = < Lixn Inxn >t and U a n(r—s)xn matrix such that U = ( Lixn + Lixn )

Since V' = ker ( B, B, >, then problem (3.1)-(3.2) can be equivalently formu-

lated as

inf D filwi) + D fier(z) (3.3)

(z,2)
st Byx+ Byz =0. (3.4)

On the other hand, the diagonal structure of BiB; and BiBs allows to solve in
parallel processing the proximal step of each sub-block when the algorithm (2.41)-
(2.43) with V4 = 0 and V3 = 0, is applies to problem (3.3)-(3.4). Explicitly BB
and B! B, are respectively equal to:

InXT’L

2L %n
2l "

and
2[n><n

2-[71 n
. n[nxn

]n(rfs)xn(rfs)
where n =7 — s+ 1.

So, applying the algorithm (2.41)-(2.43) with V; = 0, Vo = 0 and M = X (which is
a slight variant of ADMM) to problem (3.3)-(3.4) by considering f(z) =Y., fi(z;)
and g(2) = > 77, fi+r(2j), we get the following algorithm:

oM = (Of + ABIB,)) TN (ABL By2* + BiuF)
Y = (99 + ABLBy) TN (ABLBi2* ! 4 Biu®)

uk-i—l _ Uk+)\(B1$k+l+BQZk+l)
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Since B! B is dlagonal the calculation of Z++1

forie{1,---,r}

can be realized in parallel processing:

oF T = (Ofi + AiLn) HA(BE By2®); + (Biuk),).

~k+1

Similarly, since BLBs is dlagonal the calculation of """ is also realized in parallel

processing: for j € {1,--- s},

= (O fir + A Lnsen) S NBSBiz*th); + (Bhub),)

J

where {o;}i—1,... 4 is defined as

1 if ie{l,s+1,---,r},
;=14 2 it ie{2,---,s,r+1,---,q—1}, (3.5)
r—s+1 if i=gq.

Then we get the following algorithm.

Two Sub-blocks Proximal Decomposition algorithm
(2sb-PDA)

Set the finite sequence {ai}iz1,... o previously defined and A a positive number. Then
for an arbitrary (z°,2%,u°) € IR’"” x IR x IR™~1)

Step 1. Find 2**!
For alli e {1,...,r} do
if i =1 then & = —2F, p; = u¥, end if
if 2<i<sthen§ = -2, —2f, w=uf, ) +u_, end if
if i >s+1then & =—25 p;=uf,, ,, end if
find 2%%! the optimal value of the problem

—Le

inf filx) + + (M)

end for

Step 2. Find zF*!
For all j € {1,...,s} do
if j <s—1then (;=—a"" -2kl v =—uk_ | —u};, end if

if j=sthen ¢=->7 i v=->" uf , endif

find z¥*! the optimal value of the problem

) Ay _ _
Hzlf frai(2) + Tﬂuz +a; G+ Aary) 2
end for
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Step 3. Find u**+!
For alli € {1,....¢q— 1} do

if 1 <i¢<2s—2then

K+l k1
@i = Z(; (i mod 2))/24+1° bi = Z(i+(i mod 2)

If i > 2s — 1 then

a; = i), b= —zF end if

Calculated uf™ such that

)/2 end if

ub T = w4 A(aPT b

end for

3.3.2 The separable model with coupling constraints

Since SMCC can be formulated as a SMCV (DY ), we can get from the previous
algorithms given for the last model an splitting algorithm for the SMCC which
separates it into two sub-block problems: the first one corresponding to {f;}i=1.... »
and the second one corresponding to {f,4;};=1,..s. Then, the proximal step of all
functions corresponding the first sub-block is obtained by parallel processing, and
then, using these values, the proximal step of the other functions is also obtained in
parallel processing.

So, the SMCC can also be formulated as

(iacnzf) Z(f{k o A})(x;) + Z(f:+j o AL ;)(z) (3.6)
' i=1 J=1
st Bix+ Bz =10 (3.7)

where B; and B, are the matrices corresponding to expression (3.4).

Similarly to algorithm (2sb-PDA), applying the algorithm (2.41)-(2.43) with
Vi =0, V, =0and M = X to this new formulation problem we get the follow-
ing algorithm called (2sb-SALA).

Two Sub-blocks Separable Augmenting Lagrangian Algorithm
(2sb-SALA)

Set the finite sequence {e;}i—1.. , defined in (3.5) and A a positive real number.
Then for an arbitrary (29, 2°,u%) € R™ x IR x IR™~Y

Step 1. Find z*+!
For alli € {1,...,r} do
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if i =1 then & = —2F, u; = uf, end if

if 2<i<sthen¢ = —2F | —z2F = ug(i_l) +uk;, |, end if
if i >s+1then & =—2F u=uf, |, end if

find 7%%! the optimal value of the problem

inf 7 % 2
nf | i) + 5 il
calculated 2°+! = —a;7 ¢ — (M) "1y — (Aay) AR
end for
Step 2. Find z*+!
For all j € {1,...,s} do
if j <s—1then (; = -2t — xfill, vj = —uk; | — uf;, end if

if j=sthen ¢ =—>1_ 2 1, =-5"7 uf | end if

=S Z

find 2;”1 the optimal value of the problem

irzlf fr+j( )+ 2t “AT+J’Z+)\CJ+V]”2
Qryj

sk+1

= —agl G o= (M) TN = (M) T A

calculated z
end for

Step 3. Find u*+!
For alli e {1,...,q— 1} do
if 1 <¢<2s—2then
a; = xl(?:l(z mod 2))/2417 Vi = _Zéil(z' mod 2)),2 €nd if
If i > 25 —1 then
a; = it b= —zF1 end if
Calculated uf™ such that

ubtt = uf 1 AT 4

end for

3.4  Multi-block optimization problem

We consider the following problem

mln Zfzx, —l—gZAIZ + s(z (Psc)

z=(x1,

where for i € {1,...,q}, fi: R" =R, g: IR" - IR and s: R* — IR (n= Y1 n;)

are proper Isc convex functions, and A; are matrices of order p x n;.
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By considering f : IR" — IR defined as f(z) = Y.~ fi(x;) and matrices K and
A of order p X pg and pq x n, respectively, defined by
A
K::(]pxp ]pxp> and A := ,
q

then (P;.) can be set as

m;n f(z)+ (go K, s) ( IA )x

For every i € {1,...,q}, set M; an p x p symmetric positive definite matrix and
@; an n; X n; symmetric positive definite matrix. We define the blocks diagonal

matrices M = diag (My,---, M,) and Q = diag (Q1,---,Qy)-

We apply the algorithm (2.41)-(2.43) with V; = 0 and V2 = 0, which is equivalent
to the scaling ADMM. So, in order to take advantage of the separability of df we
consider the matrix of scaling defined as M = diag (M, Q).

= (Of + Q+ ATMA) TN AME + QzF — Ak — ub) (3.8)
A = (K'9gK + M) (MA + ub) (3.9)
AT = (05 + Q) QM 4+ ub) (3.10)
WF = b M(AFT - R (3.11)
ustt = g+ QM — 257 (3.12)

Then using similar techniques described in Section 6 of Chapter 2, we get the
following algorithm called “Separable Multi-block for sum of three blocks
function (SMS3BF)”

(SMS3BF)

For every i € {1,---,q}, set M; and Q; symmetric positive definite matrices of

order p x p and n; x n;, respectively, and ¥ = (3.2, M;')~!. Then for arbitrary

(29,9, 2°, 0% u®) € IR" x IR" x IR" x IR x IR",

Step 1. Find 2**!
For alli € {1,...,q} do
find ¥ such that

it = (0f; + Qi + AIMA) T (AIMyy) + Qizf — Al* — uf)
end for
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Step 2. Calculate w**!

Step 3. Find y**!
For alli € {1,...,q} do
find ¥ such that

q
it = At = MU0 (At wt,

J=1

end for

Step 4. Calculate s**!
Zchrl — (88 4 Q)fl(kaﬂ’l + ukz)

Step 5. Calculate v*+!

q
=08 1 S Akt + wkth.

J
J=1

Step 6. find u**!
For alli € {1,....,q} do
find u¥™ such that
= Qb o)

end for

Remark 3.4.1 If s =0 in problem (Ps.), then this problem becomes a multi-block

problem

which is treated in Section 6 of Chapter 2, considering B = —I. In that case, the
k-th iteration in Step / satisfies

sz+1 — ka-‘rl + uk

and hence from Step 6, we get u¥™ =0 for all i € {1,...,q}. So, the (k + 1)-th

iteration in Step 1, becomes

i = (Ti+Qi+ALDA) H(ALDyF 1 +Quaf T — Aloh ), 2812 = 2k 2 gnd 12 =0

7

implying that the variables z and u in the algorithm turn out obsolete. The resulting

algorithm becomes equivalent to algorithm (PMA).
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3.4.1 Aplication to a stochastic problem

We consider a stochastic problem with finite scenarios, which can be reformulated
as a problem defined over a Euclidean linear space, having the same structure of
problem (Py.) considered at the beginning of this section. Then we apply (SMS3BF)
in order to obtain a splitting algorithm for such a stochastic problem.

Let consider a finite set = of scenarios and a corresponding positive probability
function p. We also consider the linear space £ consisting of all mapping from = to
IR" := IR" x --- x IR"", and the following inner product related

(X,Y)e = ple)X(E),Y () (3.13)

e

Set E := card(Z) and G := {1,--- ,T}. We consider the linear space R"" :=
R™F x ... x IR""F and the following related inner product

<((x§)565)t6G7 ((yf)feE)t€G>anE = Zp(f)«xf)te& (?/f)teG>-

£e=

There is a relationship between IR and £ through the following isomorphic map-
ping W : (IR"F (., ) pre) = (£, (7)) such that for z = ((2%)¢cz)icq, the value
W (z) € L satisfies

W (x)(€) = (a5,--- ,25) forall €cE.

For each t € GG, we consider A;, a partition of = such that A4;,; is a refinement of
A;. The nonanticipativity subspace of L is defined as (see (1.3) in [46])

N :={X € L£: X, is constant on each A € A4, fort e G}.

For t € G and & € Z, we consider Bf an mg x n; matrix and then C(€) :=
ker([ B¢ ... B ]).

The following stochastic optimization problem is considered

min
XeL

T T
B gu(Xi(€),8) :st X e Nand Y BiX,(§) =0,V €Z|.  (SP)
t=1

t=1

Reformulating this problem in the Euclidean linear space IR"F, we get
T

min 3 p(O) Y 0uaf. 0 + 3 610,y (O Bad) + dwoan ()

o=((2})ecz)icq teE ccE t=1
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This last problem can be reformulated having the same structure of (Py.) considered
at the beginning of this section:

min Y [Zp@)gt(acm

xz((xf)sez)tec t=1 Lg&e=

T
+ 0@z tom} (Y Bilh)cez) + 0wy () (3.14)

t=1

where

By
B; =
By*
Since algorithm SMS3BF applied to last problem uses the proximal step of dy -1
through the isomorphic mapping W, we get an equivalent expression for the general
resolvent of ddy -1, with respect to matrix Q := Mdiag (Q1, -+ ,Q7), where Q, is

defined as
p (61 ) Int XNt

p(fE)[ntXnt

Proposition 3.4.1 Given x = ((25)ecz)ice € IR™ and M defined as before. Then
the resolvent value z := (9dy -1 +Q)~'Q(x) can be calculated as follows: for every
t € G and every A € Ay,

%

1
== (Z p(ﬁ’)xf) for all € € A.
Z p(f ) g&'eA
geA
Proof. Set Y € £ and PY = Proj /Y. Then
(Y —PY,n).=0 forall neN

and hence
QWYY —WIPY),W™n) =0 forall ne€N.

Since W™1PY € WIN, we get
(D01 +Q) QWY = WL PY.

So, using the equivalent expression of PY given by Rockafellar and Wets [46], we
deduce the result. [ ]

We now apply algorithm SMS3BF considering for every ¢ € (&, the parameter
matrices Q, = Q, and M, = diag (p(fl)]\Z/fl, e ,p(SE)MfE), Then we obtain the
following algorithm, called “Time Scenarios Decomposition (TSD)”
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(TSD)

For every t € G, £ € =, set Mf a symmetric positive definite matrix. For every
€ € E, set also X¢ = (ZtT=1<7]\7ff)_1)_1 andiﬁ = > ce=me. Then for an arbitrary
(xO’yO’ZO7UO7u0) € -anE X -lRpT X .anE x IRP % .anEa

Step 1. find zF*!
For allt € {1,....,7} and £ € =do
find (2¥t1)¢ such that
B -1
() = (G0+€) + Mon, + (B MBS ()
where i = (Bf)'M; By (y*); + ()i — p(€) 7' B (0%)¢ — p(&) 7' (uP);
end for

Step 2. Calculate y*+!
For allt € {1,....,T7} and ¢ € =do

S = B — (1) (236 k+1>€>.
=1
end for

Step 3. Calculate z*+!
For allt € {1,...,T7} do
set A € A

), (Zp Y <5>—1<u’“)§’]>/2p<§’>, Ve € A.

geA €'eA

Step 4. Calculate v*+!
For all £ € = do

(T41)F = (74 +p(€)¢ (Z Bf(ﬁ“)?) .

end for

Step 5. Calculate uf*!
For allt € {1,...,T} and £ € = do

(u*)F = (@) + p(E) () — ()]

end for
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Chapter 4

A new splitting algorithm for
inclusion problems mixing a
composite monotone plus a

co-coercive operator

In this chapter we consider the following composite monotone inclusion:
0 € S(x)+ A'T(Az) + C(x) (Var)

where S : R" — IR" and T : IR —5 IR™ are maximal monotone maps,
C : IR" — IR" is B—co-coercive with full domain and A an m x n matrix. Re-
garding this formulation, D. Davis and W. Yin’s [16] analyze the particular case
A =1 (thus m = n). They reformulate (Var) as a fixed-point equation with respect
to an appropriate average map with similar properties as the Douglas-Rachford map
considered for the sum of two maximal monotone maps (C' = 0). In fact this new

map recovers the Douglas-Rachford map when C' = 0.

Monotone inclusion problems with three operators have gained a recent increase
of interest in the community of splitting methods. It is motivated by many in-
verse problems in different fields like data analysis, image processing or machine
learning when parcimony is a challenge for very large data sets. Primal-dual split-
ting methods were proposed in the literature as extensions of the classical splitting
schemes for two operators, mainly the Douglas-Rachford family [31], which lead
to decomposing the corresponding proximal steps for each operator separately (see
9, 12, 52, 13, 26, 16, 27, 6, 55, 30]).

The case C' = 0, was studied in Chapter 2, where we have shown that the
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Douglas-Rachford map is recovered from (2.53) considering the associated lagrangian
map and a special matrix (see Remark 2.4.3). On the other hand, the case C' # 0
and under mild assumption, we construct an average map with similar properties
as the Davis-Yin map (recovering it when A = I) using the same definition (2.53),
but considering a variant of the lagrangian map associated to (Var) and a special
matrix. Then, we construct a generalized resolvent map defined in (2.6) deducing
from it new splitting algorithms in order to solve problem (Var).

The structure of problem (Var) is related to the variational formulation of the

minimization of separable convex functions:
Minimize f(x)+ g(Ax) + h(x) (4.1)

where f : IR" — IR and ¢ : IR™ — IR are proper lower semi-continuous convex func-
tions, h : IR" — IR is convex and (%)—Lipschitz—differentiable, and A an m xXn matrix.

Condat [13] considers problem (4.1) where under some regularity conditions it

can be equivalently written as the following inclusion problem

0 Of (x) + Vh(x) 0 A T
()=o) () () @

To solve such problem, the author applies the Forward-Backward method, getting
two algorithms described just below where, for simplicity, we fixed the relaxation
parameter p > 0 and without error term, termed for us CA1 and CA2:

Algorithm (CA1)

Fhtl = (TOf + Luxn) H(a* — 7VR(2F) — T AlyF)
U = (009" + Lnxm) "' (y* + 0 AQREH! — 2))
(2" y ) = p(@L ) 4+ (1 - p) (2%, yY)
and
Algorithm (CA2)

ghtt = (00g* + Lpxm) L (y* + cAz")

phtl = (TOf + Luixn) H(aF — 7VR(2F) — T AL (255 — b))

(@) = p(@L M) + (1= )2, )

The main difference between CA1 and CAZ2 is the parameter matrices chosen
in the Forward-Backward method. Choosing special parameter matrices and La-

grangian maps in our general setting, we get different variants of algorithms C'Al
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and C'A2. For example, a variant of C'A1 is the recently algorithm YA proposed by
O’connor [40], a slight variant of algorithm PD30O proposed by Yan [55], in order to
solve model (4.1):

Algorithm (YA)
oY = (70f + Lixn) Ha® — 7VR(2F) — T AlyF)
Y = (009" + Lnxm) L (WF + 0 A28 — 2F + 7V A(2¥) — 7VR(2FH)))

Note that CA1 and YA differ on their second update and on the choose of parameter
p, considering p = 1 in the second algorithm. Through numerical experiment, Yan
[55] noticed that YA has more advantages than CA1 (considering p = 1).

Similarly, our variant algorithm of CA2 has the same advantage like YA re-
spect to CA1, ie. has large range of acceptable parameters ensuring convergence
and better numerical result.

In Chapter 2 we have proposed some splitting algorithms for the following sep-
arable optimization problem

min - |f(z) +9(2) - Av + Bz = 0] (o)
where f and g are convex and A and B two matrices of appropriated dimensions.
In practice (see for instance [55]) f and g have the form (k + h) where h is convex
differentiable and k not necessarily differentiable but with a tractable proximal step.
So, we need to propose an appropriate algorithm such that instead of finding the
value of (0k + Vh+ Q)~! at a given point, where @Q is a symmetric positive definite
matrix, the algorithm must use the proximal step of dk and the evaluation of Vh,
separately, in oder to obtain a splitting structure.

So, we will assume that problem (Fp) has the following form:

I(Ilir)l [f(x) + ha(z) + g(2) + ho(z) : Az + Bz = 0]. (P)
where f and g are convex lsc functions, h; (i = 1,2) is convex and (é)—Lipsehitz—
differentiable, and A and B two matrices of order m xn and m X p, respectively. It is
clear that this problem includes problem (4.1) by considering B = —I,«, and hy = 0.

In Section 4.1, we analyze the case A injective (m > n), constructing an average
map and a related splitting algorithm for solving (Var). Then, in order to obtain
another algorithm switching the proximal steps of S and 7" with respect to algorithm
(4.4)-(4.7) found in this section, we construct an appropriated average map, getting

also ergodic and nonergodic convergence.
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The general case (A not necessarily injective) is analyzed in Section 4.2 by re-
formulating (Var) as a problem preserving his original structure but corresponding
to an injective matrix. Then, applying the results of Section 4.1, we get two general
algorithms in this setting.

So, taking special parameter matrices intervening in the two previous general
algorithms, we get in Section 4.3 two new algorithms (Algl) and (Alg2) closely re-
lated with Condat’s splitting algorithms (CA1) and (CAZ2). We show that (Algl)
and (Alg2) can also be obtained from Davis-Yin algorithm [16]. The rate of con-
vergence of the two new algorithms is also analyzed.

In Section 4.4, we study problem (P) by reformulating it in order to apply the
same procedure of Section 4.1 corresponding to injective matrix.

In Section 4.5, we apply the algorithm developed in Section 4.2 to a general
multi-block convex optimization problem.

Finally, in Section 4.6 a numerical example is given.

4.1 Matrix A injective

Problem (Var) can be set as a composite monotone inclusions by considering the
sum of S and C as a unique map, which, similarly to the one given in [41], is

equivalent to the primal problem
At
Find (z, z) € IR"xIR™ such that ( 8 ) € ( S(m)Tj(L )C(a:) )—i—( 7 >N{0}(A:1:—Z)
Z J—

where, as usual, N (a) is the normal cone to set K at point a.
This problem is in turn equivalent to the following saddle-point inclusion problem

Find (z,z,7) € (IR" x IR™) x IR™ such that 0 € L(z, z,7) (V1)

where L is the map defined on (IR" x IR™) x IR™ as

S(x)+ C(x) 0 0 A x
L(z,z,y) = T(z) + 0 0 —JI z
-A 1 0 Yy

From [41] we know that the lagrangian map L allows us to find splitting algo-
rithms alternating between general proximal steps applied to S+C and T', separately.
In order to also split the general proximal map of S + C' into the general proximal
map of S and the evaluation of C, we consider an alternative Lagrangian map which
considers S and C' defined with different variables.
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Take M an arbitrary m x m positive definite matrix. Since A is of full-rank, then
A'M A is invertible and hence, from he third row-block of expression L in (V7), we get
T = (A'MA)"*A*'M 2. One deduces that the solution set of problem (V7), denoted
by sol (V1), coincides with the solution set of the following inclusion problem

Find (z,%,7) € (IR" x IR™) x IR™ such that 0 € L(z, z, 7)) (V2)

where L is the map defined on (IR" x IR™) x IR™ as

S(x) + C((AIMA)~LAM ) 0 0 A x
L(x, z,y) == T(2) + 0 0 —I z
0 -A 1 0 Yy

The maps S and T being defined on different variables, we will get an additional
separation of these maps by introducing an appropriate regularization map similarly

to the one given in Section 4 of [41].

4.1.1 The average map Gg\: an appropriate regularization

map

First recall that the generalized resolvent operator associated with a maximal mono-
tone map 7' and a positive semi-definite linear map P is defined by J% := (T+P)"'P
which is not necessarily defined on the whole space. Similarly, the corresponding
map G% := S(T + P)~1S* where S satisfies P = 5SS, is not necessarily defined on
the whole space but has contractive properties under additional assumptions (see
Section 2.4 of Chapter 2).

Back to the Lagrangian map L defined above, we take a symmetric positive

definite matrix M of order m x m and the matrices

AIMA 0 Al
P= 0 0 0 and f)z(M%A 0]\7‘%>,
A o0 M

which satisfy P = D'D. We define the generalized resolvent map
L._ -1
Jz=(L+P)P

and then the map

D
Y&

L . DT | DEOV-171¢
D.—D(L—l-D D) D*.

It is clear that the set of fixed points of J 12 and G% are respectively sol (V) and

[N
[SIE

D(sol (V1)) := {MzAz + M 2jj: —A'j € S(z) + C(z), § € T(Az)}.
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Also, by simple calculations we get

L _ 7T S
Gﬁ I— J+J

JS 2T — 1~ C o JL (4.2)

where

JL = M>(T +M) ‘Mz,

JS . = M2A(S+ A'MA)"A'M?, and
C = M2A(AMA)'C(AMA) AN,

Notice that C' = 0 implies L monotone and thereby the co-coercivity of GZA as
shown in expression just before of Proposition 2.4.1. If C' # 0, the map GA is stlll
co-coercive by making an additional condition on matrix M as shows the followmg
proposition :

Proposition 4.1.1 Let S : R" —> IR" and T : R™ — IR™ be mazimal monotone
maps, C : IR" — IR" a 5—co-coercive function with full domain, and A an m X n
injective matriv. Assume that ||[(A'M A)7L|| €]0,28[. Then, GL]5 is a—average with

: — 28
full domain, where o = AT < 1.

Proof. The fullness of the domain of G% is deduced from the maximality of S and
T and the fullness of the domain of C.
From expression (4.2) the a—average of map G is deduced from Proposition

2.1 of Davis-Yin [16] taking into account that jT and J jt A

and WC’ is f—co-coercive. |

are both 1—co-coercive,

— 1 a1
We note that the particular case A =1 and M =~ in M * GLEM * correspond
to the average map associated to the sum of three maps defined in [16].

Remark 4.1.1 Using Proposition 2.4.1 the map G% can also be deduced from the
average map associated to the sum of three maps defined in [16] applying to the
following equivalent problem of (Var)

0€ (M2AST A'M2) " (y)+ M~ 2T M2 (y)+ M2 A(A'MA)'C(A'MA) " A M= (y).

This equivalent problem is deducted as follows, first we note that problem (Var) is
equal to the composite problem

0€S(x)+ AM:z [M-%TM—% + M%A(AtMA)—1C(AtMA)-1AtM%] M3 A(z)
then the dual problem is equal to
1 1 1 1 1 1 -1
0 € ~MIAS™ (—A'MEy)+ | MSTM 3 + MEA(A'MA) ' C(A'MA)AME | ()

finally taking the dual again considering the last problem as sum of two map problem,

we obtained the desirable equivalent problem.
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4.1.2 Constructing the splitting algorithm

In connection with the resolvent operator J 12 and a real positive parameter p, we

consider for an arbitrary point w® € dom J 12 , the sequence {w*} defined by
whtt € pJ%(wk) + (1 — p)w*. (4.3)

Denoting w* := (2F, 2% y*) and @**! .= (Fk+L ZEHL ghtl) = ngk, we get from
(4.3) that

gl — (T + M) (y* + M A" (4.4)
gt = oF 4 MAxb — M (4.5)
rFtl = C((A'M A) T AM 2 (4.6)
sk+1 (S + AtMA)fl (Atﬂngrl _ Atgk+1 _ TkJrl) (47)
(21 P o) = p(@ 2 )+ (1= p) (e, 28 ) (4.8)
and
Du**t = pGL(Dw) + (1 — p) Du*. (4.9)

It is worth to mention that {Dw*} is the sequence generated by the fixed point
method corresponding to operator pG%—i—(l—p)] which is pa—average if p €]0,a7!]
because G% is a—average (see Proposition 4.1.1), and hence the sequence {Dw"}

converges if sol (Var) is nonempty.

The next proposition concerns the convergence of w¥; its proof is similar to the

given in Section 2.4 of Chapter 2.

Proposition 4.1.2 With the same hypothesis given in Proposition 4.1.1, let p €
10, ™[ and assume that sol (Var) is nonempty. Then for an arbitrary (x°, 2°,9°) €
(IR" x IR?) x IR™, the sequence (x*, 2% y*) defined by the sequential update formulae
(4.4)— (4.8), converges to some element of sol (V7).

Proof. From the comments given just before this proposition, {ﬁwk } converges to
some b € sol (Vy), which is a fixed point to G%.

Now, from (4.3) and considering @ := (L + P)~'D'b, we get by using the trian-
gular inequality

lw*** — @l < p||(Z+ P)"' D' (Dw*) = | + |1 = pl[|lu* — @]].
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On the other hand, the map Jg being continuous, (L + P)~'D! = JED* is also
continuous, where D+ denotes the MoorePenrose pseudo-inverse matrix of lA), and
hence the convergence of {w*} to w is deduced. n

Remark 4.1.2 We note that the sequence 2 in (4.4)-(4.8) is only used in the final
step of the algorithm, so we can discard it and consider the final step as

(2" R = (@M G + (1 = p) (2, yF).

Applying (4.4)-(4.8) to the optimization problem (4.1), we get the following

sequence:
1 —

= argmin {g(z) + §||Z — My - Axk“?\/[} (4.10)

G = yF 4 M ALk — M (4.11)

L = A(A'MA) T VR((AMA) P AM (4.12)

1 _
F*1 = argmin {f(x) + 5||A:c — FR L MR f’““”fd} (4.13)
(a1 P ) = p(@F 25 g o+ (1= p) (e, 27, 7). (4.14)

4.1.3 Switching the proximal step

Applying the forward-backward method to a lagrangian inclusion problem (V), Con-
dat [13] obtains two splitting algorithms C'A1 and C'A2 corresponding to two ap-
propriated parameter matrices. The main difference between these algorithms is the
order of action of the proximal steps.

In the same manner, we present an algorithm switching the order of action
of the proximal steps regarding algorithm (4.4)—(4.8). For this purpose, it is not
only necessary to find an appropriate matrix but also consider another alternative
Lagrangian map.

For a given m x m positive definite matrix M (similarly to the given at the
beginning of this section), we consider the map L defined on (IR" x IR™) x IR™ as

S(x) 0o 0 A T
L(x,z,y) = | T(2) + MA(AIMA)'C(z) | + 0 0 —I
0 —-A I O Y

whose set of their zeroes is exactly
{(x*, MA(A'MA)'C(x*) + y*,2%) : (2%, y", 2%) € s0l (V) }.
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Note that when C' = 0, this new Lagrangian coincides with Lagrangian L corre-
sponding to problem (V7) defined at the beginning of this section.

Analogously to the one given in Subsection 4.1.1, we define Jg and G% corre-
sponding to matrices

0 0 0
P=1|0o M -I and E:(o % —M—%>,
0 —1 M

which satisfies P = D'D. It follows that

Gh=1—J5 0, +Jo2)S — 1 —ColJS

ACTTA aeiial (4.15)

where j%, JS

‘g4 and C are defined just after of expression (4.2).

We note that the main difference between GzL:) and G% (the last one defined in

. . . g T 7S
(4.2)) is the switching position of Jo- and J7 -,

same conditions giving in Proposition 4.1.1, we get that G% is also a—average.

in their expressions. So, under the

The fixed point iteration method applied to Jlg generates the following sequences

P = (S AIMA) TN AM Y — AlyP) (4.16)
gt = oy MAZMT — M2 (4.17)
rFtl = MA(A'MA) (@) (4.18)
P = (T + M)~ (MAZM 4 gFtt — pF ) (4.19)
(:L'k+1, Zlc+17 yk+1) — p(jk—H, 2k+17gk+1> + (1 . p)(xk, ij yk) (420)

We note that the main difference between this algorithm and the one of (4.4)-
(4.8) is the order position of the (general) proximal step of S and T

Remark 4.1.3 Bricerio [8] has analyzed the particular case A = I and T = Ny
where V' is a linear sub-space of a Hilbert space H. He proposed two alternative
methods where the first one was obtained through the composition of two special
average maps, and the other one through the forward-backward method applied to
the sum problem corresponding to the partial inverse of map S with respect to V' and

a special co-coercive map. The considered model is

Find x € H such that 0 € ZSZ(QU) + C(x) (Sy)

i=1
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where for i € {1,--- ,m}, S is mazximal monotone and C co-coercive, all defined
on H. The aforementioned algorithms were applied to an appropriate reformulation
of this model. Considering H = IR", an alternative reformulation of problem (S,)

15

Find x € IR" such that 0 € S;(z) + D'T (Dz) + C(z) (RS,)

where T := (Sa,-++,Sn) and D is an n(m — 1) X n matriz defined by D =
(Inxn =+ Inxn)t. Notice that problem (RS,) has the same structure as model (Var)
considered at the beginning of this chapter, when D 1is injective. So we can ap-
ply algorithm (4.4)-(4.8) or his switched version (4.16)-(4.20), getting in both cases
splitting algorithms by considering M = M. These splitting algorithms combine
prozimal steps on each S; with the forward step on C, because D'D = (m — 1)1,xp.

4.1.4 Rate of Convergence

This part is dealing with the rate of convergence of algorithm (4.10) — (4.14) . In this
direction, the next proposition gives an upper bound estimation of the saddle-point
gap of optimization problem (4.1) defined in the introduction of this chapter.

Proposition 4.1.3 With the same notations as before and consideringw = (x, z,y) €
dom (f) x dom (g) x IR™, the following inequality holds:

ik = ] = Al = — ot = w2 20 [1E, 2 ) — e, 2, )]

AT g

wherevzi 2—p—
l(x,z,y) = f(z) + h(x) + g(2) + (y, Az + Bz).

~

Proof. Since w**! = ngk, one has L(w*!) € P(w* — ") and hence

~

Vh(z5+1)
L/(warl) c P(wk o warl) . 0
0

where I/ is L without the term C, and z**! = (A*MA)~'A'Mz*+!. Note that
L' = (0, .0") x (0y[1']), where

Uz, 2,y) = f(x) + g(2) + (y, Az — z).
From Prop. 3 given in [41] and denoting w := (z, z,y) € dom (), we get

(@4 = w0, Pt = @41) ) = (F41 — 0, TRE)) > 1@ 2 ), 2,5,

(4.21)
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On the other hand, since h is convex and 3~!—Lipschitz differentiable, we have

LH’Z\kJrl _ i’k+1||2 <Vh( 1) ~k+1 /Z\k+1> > h( k+1) h(/z\k+1>

26

and
h(x) > h(ZM) + (VA(ZFTY), o — 25H1),

Then, summing the three last inequalities we get

~ 1
<1I1k+1 —w, P(w* — wk+1)> + %H?’“H — M1 > 0@ AR ) — Uz, 2, gTY).

(4.22)
We now find an appropriate upper bound for %H/z\"€+1 — 212, From the defi-
nition of G% we have
Dttt = GL (Dw ) = Dw® — M2 4 Mz AghH!
and hence by using w*™! = pw*™! + (1 — p)w”* we get
1f)(w’f“ wh) = D@ — wh) = M2 A — M3, (4.23)
p
Since

hHl skl (AtMA) 1At]\—4%[ﬂ7[%5k+1 _M%Ai,k—l-l]
we get, from (4.23), the desirable appropriate upper bound

1 AMA)| 1~ AMA)™!
_HAk—H_fk—H‘P < ”( ) ||||_D(wk+1_wk>”2 — |I( ) ”Hwkﬂ—wkH%.

25" 23 2607

On the other hand, from the symmetry of matrix ]3, it holds
~ 9 _
2 (@1 — w, Pk — 1)) = [lur = w]% = T Lttt — bl — utt = wll3

So, replacing the two last expressions into (4.49), we get the desired inequality. =

Upper bound of fixed-point residual
Set M and p satisfying the hypothesis of Proposition 4.1.2, i.e,

I(AMA)~
2

at=2— > p > 0.

With this condition pGEﬁ + (1 —p)I is pa—average and hence from (4.9), we have
| Dw”* — Dw*||> — 0|| Dw**' — Du”||? — | Dw*** — Dw*||> > 0 (4.24)
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where 0 = % [2—p—%] > (0 and w* € sol (V7).

Then using similar argument given in Section 2.5.1 of Chapter 2, we get that
R R 1 -~ R
| Dw* — Dw*=1|? < @HDwO — Dw*|)? (4.25)

and
2

N
RN 4o~ o A
HNZ(DM—DQUH) < < 1Dw’ = Du’||* (4.26)
k=1

These two relations can also be deduced respectively from Theorem 1 “Notes on
Theorem 1”7 and Theorem 2 given in [15].

Bounding the saddle-point gap

We consider the following ergodic sequences defined for N > 1 as

1 & 1 & 1 &
EN::NZ:T:’“, EN::NZ,%’“ and @N::Nng.

We get the following result

Theorem 4.1.1 With the same notations as before. Set M and p satisfying

[(AMA)
2= zp>0

The following rate of convergence are deduced:

e Ergodic Convergence: for any w = (x, z,y) € dom (f) x dom (g) x IR™,
1 ~ ~
P

e Nonergodic Convergence: for any w* = (z*, 2*,y*) € sol (V1),

a7 %)

+
VE+1  k+1

UFH, 2y — a2, ) < ( ) | Du” — Du||” (4.28)

where o
BN 0 IR (702 |
p2\/§ 2ﬂp26
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Proof. From Proposition 4.1.3 we get
[w* —wl[b — W™ —wl% > 2p [(ZM, 2 y) — U2, 2, )]

since 2 — %

— > p > 0. Summing over k = 0,--- , N — 1, and applying the
Jensen’s inequality to the convex functions [(-,-,y) — l(z, z,-) for arbitrary fixed
element (z,z,y) € dom (f) x dom (g) x IR™, where [ is the Lagrangian function
defined in Proposition 4.1.3, the desired ergodic convergence is deduced.

Regarding the nonergodic convergence, for w* € sol (V) and considering w = w*
in (4.3.1), we get

I(AMA)~ AL skl e g e o
Tp2|’wl~c+l_wk”?3 > l($k+1,zk+1,y )—l(I  z ’yk‘+1)

and hence, from the Cauchy-Schwarz inequality and (4.9), we obtain

<tbk+1 —w”, ﬁ(wk — wk+1)>+

AM A)~?
H( 25 2) H ||wk-|—1_,wk:||?3 > l(a?kH,2’““,3/*)—1(:):*,2’*,3]’““).
p

(4.29)

On other hand, from (4.9) and since {||Dw*™! — Dw*||} is non increasing, we get

14+1— ~ ~
MHDMO—DIU*H.
P

I
;||w’““—w*||ﬁ||w’““—w’“||ﬁ+

> o~ ~ 1 ~ ~ 1. ~ ~
|G Dut~Du| = | (Dut* = Dur) (1) (Dut~ Du)| <

So, replacing this last expression and inequality (4.25) in expression (4.29), we
deduce the desired nonergodic convergence. [ ]

Constraint violations

Following the same arguments given in the proof of Theorem 2.5.2 of Chapter 2, we
get the following result.

Theorem 4.1.2 With the same notations as before. Set M and p satisfying

[(A'MA)
2— > p>0.

2p

For any w* € sol (Vy), the following rate of convergence are obtained:
¢ Ergodic Convergence:
4%~ %l < | Du® — |
Ty — zkl||l 77 < — || Dw” — Dw?||.
k kllM = kp
e Nonergodic Convergence:
1
pV kO
89
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Linear convergence

In the case when A = [ (sum of three maps problem), D. Davis and Yin [16]
got a linear convergence under additional regularity condition (co-coercive, strong
montone or lipschitz properties) over the monotone maps. In the case when matrix
A is injective, since the map G% can be obtained from Davis-Yin map associated
to a sum of three maps problem (see remark 4.1.1), and noting that if S y—strong
monotone then (MzASLAM2)"1 is Ty —Strong monotone and if 7' is §—co-
coercive then M~ 2TM~2 is H"ﬁ”—co—coercive. We deduce the linear convergence of
algorithm (4.4)-(4.8) and (4.16)-(4.20), if we consider the additional hypothesis: S

strong monotone and 7’ is co-coercive.

4.2 The general case on matrix A

We now consider problem (Var) without assuming matrix A injective. In order to

cope with this rank deficiency, we reformulate the problem as

M=>TM ™ < M: Ax ) + C(x) (Vary)

0€S(@)+( AM Vi) . i

where M and V' are two symmetric matrices of order m x m and n x n, respectively,
with V positive semi-definite and M positive definite.

MzA
It is clear that matrix ( Vz > is injective if and only if A'M A+ V is invert-

2

ible. So, applying the algorithm described in Section 4.1 for matrix M = I we get
a splitting algorithm for problem (Var) in the general setting.

It is important to note that formulation (Var;) is motivated by the optimization
problem defined in (4.1). Indeed, using the same notations given at the end of the
first section of Chapter 1, problem (4.1) can be formulated as

min _ f(z) + h(x) + (g,0)(21, 22) (o)

(z,21,22)EF

where F is the set of all triples (z, 21, 2z2) satisfying

Mz A ~M: 0 2
1 T+ = 0
Va 0 -1 Z9
It is clear that the optimal solution set of problem (e) consists of all (z, Az, Vzz),

where z is an optimal solution of problem (4.1).
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Notice that problem (e) has the same structure as problem (F). Indeed, by
taking fi(x) = f(z) + h(x) and fo = (¢,0) and the matrices

1 Ve
B, = MZA and By = » 0 ,
Va 0 -1

the dual variational formulation of problem (o) consists in finding a zero of the sum
of two composite maps consisting of

N[

)

Va2

(O

Then the dual problem of this sum problem is

- ( MiA ) (Of +Vh)™! (_ ( AME V

and

vl

[a=)
N——
N—

0 € df(zx) + Vh(z) + ( AtMz V3 ) K1 < A@ix > :

Since K ! has the following expression

P M=2 0 dg M=z 0 _ M~29gM~32
0 I 0 0 I 0 ’

then the last inclusion problem can be set as

0eaf(@)+( AM Vi)

4.2.1 The main algorithm for non injective operators

Like to map L and matrix D corresponding to problem (Var), we denote respectively

by L' and D' the map and matrix corresponding to problem (Vary). It is clear that
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~

L’ is defined on (IR" x IR™ x IR") x (IR™ x IR") and its value is

S(x) + C((AAMA+ V) Y (A M2z, + V2zy))
M~:TM"2(z)

L'(x, 21, 2,41, 42) = 0.,
Oyl
0y2

0 0 0 A'M: V3 T

O 00 —I 0 2

+ o 00 0 —I 2z

~M:A I 0 0 0 Y1

~V: 01 0 0 Us

The set of zeroes of L' is
{(z,M2z,V2z, M~ 23,0,,) : (0,,0.,0,) € L(Z, % 3)},

where 0,, denotes the zero vector of the w—space.
On the other hand, the corresponding map defined in (4.2) associated with L’ is
denoted by GLE/, which applies IR™ x IR" into itself and whose value at (u,x) is

uw—JTu+ M2AJS [V%az + AIM2(2JTu —u) — C(Vax + AtM%jTu)}
V3Js [v%x AM3 (20 0 — ) — C(Via + AtM%jTu)]
where

JT = M2(T + M)™*Mz, JS = (S+V + A'MA)™" and C = C(AMA+ V)L,

Set r = |[(V + A'!MA)~!||. From Proposition 4.1.1, G% is 4;’i—auverage with
full domain, if » < 2.
Applying the algorithm described in (4.4)-(4.8), we get that

P = ME(T + M) "Mz (yf + M2 Azb)

A= yh Vagh

G = yb 4 M2 A -

gt = g+ Ve - g

P = C((A'MA+ V)T AM R 4 vEzE)

P = (S AMA+ V) (AtM%zf“ P VB At gkt rkH)
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@yt bt = p(@ L T BT + (1= p) (2", uE, vs).

Notice that g™ = 0, and hence, by considering y9 = 0, we get & = 0, which

implies in particular 51! = Vagh, So, by denoting

skl oap—Lioktl k41 ikt E_ ags k
=M, gt = M2y and y" = M2y,

we deduce from the previous sequences our main algorithm termed “Generalized
splitting algorithm for three operators (GSA30)”:

(GSA30)

gL — (T 4+ M) (yF + M Ax®) (4.30)
gt = yF 4+ MALY — MR (4.31)
rF = C((V + APMA) N (Vak + ATM AT (4.32)
P = (S+VHAMA)T (Va* + AAMZE — AP — pF)(4.33)
(L) = p@EHL ) + (1= p) (o). (4.34)

We finally deduce the following proposition directly from Proposition 4.1.2.

Proposition 4.2.1 Assume that V € IR™*" and M € IR™™ are symmetric, with
V' positive semi-definite and M positive definite, such that V + A'MA is positive
definite and satisfying that ||[(V + A'MA)~Y|| €]0,26]. Let p €]0,a [ be where
o= 45—||(V+2,ftMA)*1H‘ If sol(Var) is nonempty, then for an arbitrary (z°,1°) €
IR" x IR™, the sequence (z*,y*) in (4.30)-(4.34) holds that (z*, Az* y*) converges
to some element of sol (V1,).

Similarly to expression (4.9), the sequence {¢* := (2%,4*)} generated by algo-
rithm (GSA30), satisfies the following relation

QC = pGE(QC) + (1 — p)QCt (4.35)

. M3A M-3
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4.2.2 Switching the proximal step

In a similar way described for the injective context, we get now an algorithm where
the order position of the proximal steps corresponding to maps S and 7" in algorithm
GSA30 are switched. In order to do that, like to map L and matrix D corresponding
to problem (Var), we denote respectively by L' and D' the map and matrix for
problem (Vary). Then, the map GEJj defined in (4.15) is replaced by GE which

applies IR™ x IR" into itself whose value at (u,z) is
w— Mz AJS (z,u) + JT [QM%Aj\S(x,u) —u— M2AC(J(x, u))}
Ve S (z,u) — VaC(T%(x, u))

where

SIS

JT = MY(T + M)"'M3, J°=(S+V+AMA) "o ( Vi oA'M

)

and
C = (AtMA + V)_lC’.

By setting r = ||(V + A'MA)~!||, we deduce from Proposition 4.1.1, that GZ, is

28
48—r

Now applying algorithm (4.16)-(4.20) for problem (Vary), we get the following

—average with full domain, if r < 24.

chain of sequences:
B = (S AMA+V)THAMEZE + VEh — A'MRyE - Vigh)
P = b MRAT - o
Bt o= b veattt
P = MrAAMA+ V) IC@E)
P = VI(ATMA+V)TIO@E)
AU = Ma(T + M) M2 (M2 AFFT 4 ghtt — pht)
Zth = Vaghtl 4 ghtt — bt

(@ ) = (L) (L )k ),

So, by defining
P = (AAMA+V)C(@EMY)  and R = pif 4 (1 — p)rF
and assuming for arbitrary points z°, 7%, 9 and 29,
V%zg — V%yg =V’ - VY,
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we get applying the mathematical induction (k > 1)

V%ZIQ€ — V%yéc = p(Vik — V%TIQ“) + (1 = p)(Vaht — vrk=h
= Vak - vk

Hence, by denoting
=M 22k = MeEt b= Mrgb and g = Maght!

we deduce from the previous chain of sequences our desired new algorithm:

P = (S+ AMA+ V) (Vb + AIM2F — Alyf — Vi) (4.36)
G = yF £ MAZET - Mk (4.37)
L = (APMA + V)TLo(EMY (4.38)
AL = (T M)"Y(MAF 4 g5 — M AP (4.39)
(karl’ zk“,ykﬂ, Tk+1) p( k+1 ~k+17gk+l7fk+1) + (1 o p)(xk, zk,yk,rk) (4'40)

Notice that the sequence {&* = (zF — r¥ 2% y*)} corresponding to the sequence
(4.36)-(4.40), satisfies the following relation

Qe = pGL (QEX) + (1 — p)Qet (4.41)

_ 0 M: —M-3
Q_(vé 0 0 )

4.3 A variant of primal-dual Condat’s algorithms

where

D=

In this section, considering special parameter matrices M and V' corresponding to
algorithms (4.36)-(4.40) and (4.30)-(4.34), we deduce two algorithms which can be
seen as variants of the primal-dual Condat’s algorithms C'A1 and C'A2 [13] and
their respective construction relationship. We also show the relationship of these
new algorithms with Davis-Yin’s algorithm, and also their ergodic and nonergodic
rate of convergence.

Applying (4.36)-(4.40) considering M = ol,xm and V = 77, — c A'A, we
get the following sequence:

P = (S T ) T (T i — 0 ATA) (2 — 1F) 4 g AT — Al

gk‘-i—l — yk‘ +O’Ai’k+1 _ O_Zk‘
L = ro(ah
gkz—i-l _ (T + UIme)_l(UAfk—H + gk-ﬁ-l _ JAfk—H)
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(@1 g ) — @ PGP (1 ) (a2 ),

Defining the new variables n* = o Az* + y* — 02% — 0 Ar* and 7* = o Az* + §* —

oz — 0 AT* we obtain the following algorithm
Algorithm (Algl)
(2R = (7S + L) L2k — T AR — o)
PRl = 2O ()
P = (0T + L) 1(0F + 0 AQ22F L — 2F) + 0 Ark — g AFKHL)

(b1, g1 ) = p(h L) (1 p) (o, )

\

This algorithm is indeed a variant of C'A1 for solving optimization problem (4.1).
In particular when p = 1, we recover YA algorithm [55] which is described in the

introduction of this chapter.

On the other hand, applying (4.30)-(4.34) with M = ol and V = 77115, —
o A'A, we get the following sequence:

P = (T 4 0Lpm) (Y + 0 AzF)
g = yF 4o Axk — g

r* = C((77 s — 0 AT A) T2k 7o ATZRTL))

P = (ST  n) (T s — 0 AT A)2F + g ATEFTE — AlGETT — i
(@M = p(EL 7 4+ (1= p) ().

Then using that (6T + Lxm) ™t = I —0(T + 0 Lxm) !, and eliminating the term
1 we obtain the following algorithm:

Algorithm (Alg2)

[ gFHl = (6T + Lnxm) H(yF + o Azt)

rk—i—l — TC(xk o TAt(gk-l—l o yk))

i.k“i’l — (TS + Inxn)—l(xk _ TAt(ngJrl _ yk) _ Tk+1)
@) = @ )+ (1 )t ).

So, by considering o, 7 and p positive parameters such that o7||A||* < 1, 7 < 23
and p < 462[_37,
quence (2%, Ax* y*) to an optimal solution of the lagrangian problem corresponding
to problem (4.1).

With respect to the convex problem (4.1), algorithm Alg2 is a variant of C'A2

by changing Vh(z*) by Vh(zF — 7 A (gFH — *)).

then applying Proposition 4.2.1, we deduce the convergence of se-
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4.3.1 Relationship with the Condat’s method

When C = 0, algorithms Algl and Alg2 are exactly C Al and C A2 respectively.
Otherwise, when C' # 0, they are different. We consider the lagrangian function
defined as

U(z,y) = f(x) = g"(y) + (Az,y) (4.42)

and its corresponding maximal monotone map L’ defined on IR" x IR™ as

L'(w,y) == (0.') x (0,[-1]) = ( gg]if(?) > + ( _OA fét ) < ;j > . (4.43)

The next inequalities which are immediately deduced by definition will be used
later in Proposition 4.3.1.

Lemma 4.3.1 For any (d,d*), (d,d*) € graph (L"), considering d = (z,y) and d =
(Z,79), it holds

(d—d,d) >1(z,5) - '(z,y) > (d—d.d).
These inequalities are still verified if we consider (d,d*) € graph(L') and d €
dom (f) x dom (g*), for the first inequality; and (d,d*) € graph(L') and d €
dom (f) x dom (g*), for the second inequality.

Notice that algorithms C'A1 and C'A2 generate the sequences w¥ = (2*, y*) and

wF = (7%, §%), for i = 1,2, respectively, which satisfy the following inclusion

k
D) + P — k) 3 - ( Vi) )

where P, and P, are matrices defined as

1y A oA
Pl:(—TA (lr]) and P2:<‘:4 é]) (444)

As showed in the proof of Theorem 2 regarding the relaxed primal-dual algorithm
given by Chambolle-Pock [10], it holds that

2 —
2L y) = L0, 7] < [loF — wlff, — 16" = w]l}, — ==Lt — b,

where U; and U, are two matrices defined as

1 1 t 1 1 t
U = Coma)l A Uy = G =map)! A :
—A 17 A I

g

=
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and £ defined as
L(z,y) = f(z)+ h(z) — g"(y) + (Az, y). (4.45)

The last inequality is fundamental to deduce the ergodic convergence of C'Al
and C'A2 as showed in the aforementioned Chambolle-Pock’s paper.

On the other hand, algorithm Algl generates the sequences ¥ = (7%, 7jF), €& =
(z% — r¥ n%) and €F = (#F — 7%, i) satisfying

~ h(7k+1
L) + (8 - ¢4) 3 - ( e ) ' (440
Similarly, algorithm Alg2 generates the sequences w* = (2%, y*) and wh*1 = (ZF+1 gr+1)
satisfying
hizx At ~k+1 k
L' (@) 4 Py(wh+! — w’“)a—(V( To( y>)>. (4.47)

From (4.47) and (4.46), we deduce the following fundamental upper bound of
the saddle-point gap. This will be used later in the analysis of the ergodic and
nonergodic rates of convergence.

Proposition 4.3.1 With the same notations as before; let us assume that o7 ||A||* <
1, then for any w = (z,y) € dom (f) x dom (¢*), the following inequalities hold:

e For the sequences generated by algorithm Algl, it holds that
I1€F — ', = M€ = €F1B, — 1€ — w3, > 2p[L(@* Y y) — Lz, 7))
where w' = w — (TVh(x),0)
e For the sequences generated by algorithm Alg2, it holds that
lw® = wlf, = Al — w5, — 0™ —w|}, > 20[C(2" " y) — L(x, 55
whereA:% [2—p—%].
Proof. From (4.47), and applying Proposition 4.3.1, we get
<5k+1 —w, Py(¢F —§k+1)> —(FF =g, VR(EY)) > PETL ) — U, .
using that 0% = &F + (7*,0) in the last inequality, we have
<§k+1 —w, Py(€F — k+1 > <Ak+1 z, Vh( k+1>> > P(F y) — 1z, 7).
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where uFtt = FA 4 gk — ok 4 7 AN (R — %), Then, since h is convex and f71-

Lipschitz—differentiable, we have
(Vh(z"1), 25 — 1) — gHVh(fk“) — Vh(@)|]* > h(@**") — h(z)

and from the properties of norm we have

%ijﬂ . a\k+1H2 Z <5:k+1 Ak+1 Vh( k+1) Vh(x)) o gHVh(ijrl) . Vh(:li')H2

Then, summing the three last inequalities we get
(61— Pr(€h = €917 alla =B 2 £ ) = Lla ). (448)
where w' = w — (TVh(x),0).

k+1 ’\k+l||2

Now we find an appropriate upper bound for BHx . From the ex-

pression of P, we have
I, )lip, =77 e = AP + Nyl rane

Then since o7||Al|*> < 1, we have that 07'T — 7AA? is positive definite matrix, so
we get

k+1 Ak+1H2 — HSE‘kJrl _ 7;k+1 _ xk 4y TAt( k+1 k)H2

TIE — ¥,

T 1) k41 k12
;Ilﬁ — &5,

[z

IN

On other hand, from the symmetry of matrix Py, it holds

- ~ 2—p
2p (€1 —f, e —E4)) = 164 —wlpy = =L — €, — 16— wl

So, replacing the two last expressions into (4.48), we get the desired inequality
of the first item.

Now we proof of second item, from (4.46), and applying Proposition 4.3.1, we
get

<’[I)k+l o /LU,P2<U}k . ,u~)k+1)> . <i‘k+l z, Vh > > l k-‘rl ) l (x yk-‘rl)

where 281 = 2% — 7 AY (¥ — ¢/*). Then since h is convex diferentiable with Vh

6’1—Lipschitz, we have

i”’z\k-i-l _ jjk+1H2 <Vh( ) ~k+1 Ak+1> > h( k+1) h(%\k—&-l)
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and
h(x) > h(Z") + (VA 2 — 251,
Then, summing the three last inequalities we get
1
<wk+1 o 'U),Pg(wk . wk+l)> + %“’Z\k’ﬁ-l . i,k’-i—l”Z > E(ik+1,y) . £($,gk+l). (449)

Then using the same techniques as the first item, we get the desired inequality of
the second item. m

4.3.2 Relationship with the Davis-Yin’s method

Recently D. O’Connor and L. Vandenberghe [40], noticed that algorithm YA (de-
scribed early in the introduction of this chapter) can be deduced from the algorithm
developed by D. Davis and W. Yin [16] by means a reformulation of the sum of

three special operators.

Now we show that algorithm Algl and Alg2 are also obtained from Davis-Yin’s
algorithm considering these adhoc reformulations.

Fixing A = I in problem (Var) and applying algorithms Algl and Alg2 with

o =7~ !, we obtain

J = (T L) T ) (4.50)
rEtl = 7O — (" — b)) (4.51)
P = (78 + L) (@ — 7255 — b)) — rF Y (4.52)
(@) = pEL g + (1 - p) (2, "), (4.53)
and the switching algorithm
T = (7S L) (@ — T =) 4.54
P = O

ﬁk+1 — (T—IT—I _|_ ]mxm)_l(nk + T_l(2j'k+1 . mk‘) + T_lrk . 7_—1,";k‘+1) 456

() = () (1 p) (bt )

Notice that [40] these two algorithms can also be obtained directly from the

Davis-Yin’s algorithm.
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Now, in order to recover algorithms Algl and Alg2 from algorithms (4.50)—
(4.53) and (4.54)—(4.57), respectively, we consider the following inclusion problem

problems :

corresponding with the sum of three operators, as defined in [40] for optimization
S 21 At ~ 1 21 21
| o )r(a V) + Var
N{@](Z?) (V) <Z2> (22 e
where V = (10) ' — AA".

Notice that algorithms (4.50)—(4.53) and (4.54)—(4.57) need the resolvent maps
¢

] and of the inverse of ( jé

C
0

0e

of T ( AV > which by simple calculations

S
Nioy
are respectively

—1 t
(TS+éan) ] and ( 1‘47 > (T_l _|_0_—1[m><m)—17_( A ‘7 ) ]

Then the aforementioned two algorithms applied to problem (Var,) are exactly Algl
and Alg2.

The fact that problem (Varsy) can be deduced from problem (Vary) follows from
the following steps: We first apply the dual formulation to (Var), which consists in
finding y € IR™ such that

0T Hy) — A(S+C) H(—Aly).

Then reformulate it as (Var;) considering M = I, resulting

1 Ly | SO A
0eT (y)—i—(—A Vz) 0 v Y.
Finally, the dual formulation of the last inclusion problem considering V = —V is

exactly (Vars). Conversely, using the same previous arguments, we can show that
problem (Vary) is deduced from problem (Var,).

4.3.3 Rate of convergence

Following the same arguments described in Subsection 4.1.4, we can deduce similar
rates of convergence for the sequences generated by Algl and Alg2. For that we
need the upper bound of the saddle—point gap given in Proposition 4.3.1 and also an
upper bound of the fixed—point residual. The last upper bound can be deduced (see
Subsection 2.5.1 in Chapter 2) from the following relations which follow respectively
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from (4.41) and (4. 35) considering M = ol,xm and V = 7711, — 0 A'A in the
definition of matrices Q and @ involved in (4.35) and (4.41):

Dywftt = pG5, (Dywt) + (1 — p) Dyw}

and R
Dyw§™ = pGE,(Dywh) + (1 — p) Dyw§

where w = (2 — 7k n¥), wh = (2%, y*) and

_1 1 _1
D= (74 ) a b [T
Va2 0 Va 0

which satisfy
— I ~

\ =

cA —ol 1

By Proposition 4.1.1, G¥, and G’g, are 4;—i—&werage maps, if 7 < 23, and their

corresponding fixed point sets are respectively
{(02A(z — 7C(2)) — 0723, V3(z — 7C (7)) : —A'y € S(z) + C(z), § € T(Az)}

and
by, Viz) : —Aly € S(z) + C(z), § € T(Az)}.

Now, corresponding to algorithms Algl and Alg2, we consider, for ¢ = 1,2, the
following sequences:

(C@? 1) - (ijkaﬁk)a (wzkayzk> ( b (2 - i)rk777k>7 (’Df = ‘ik - (2 - Z)fk7 k > 17

and the ergodic sequences, for N > 1,

v | | N | N | N
,_ 2 : ko SN L 2 :~k: oN .— 2 : k-1 SN 2 : k-1
Cz . N £ gz s v, = N — ) wW; = N w; and v, = N v, s
and, associated to matrix P; defined in (4.44), we consider the norm

1z, y)

where ¢ = 1 corresponds to algorithm Algl, and i =2 to Alg2.

b, = 2y + ollAz + (=1)'o " yl?,

Using the upper bound of the saddle-point gap and the fixed—point residual
developed in Sections 2.5.2 and 2.5.3 of Chapter 2 the following rate of converge are
deduced in the two next results:
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Theorem 4.3.1 With the same notations as before. Set o, T and p satisfying
T 2
2—E2p>0, and 1> ot| A~

The following rate of convergence are deduced:

e Ergodic Convergence: for any (x,y) € dom (f) x dom (¢*) and i = 1,2,
—k _ 1
L(Civy) — L(2,77) < ﬂﬂ(w& V) — (& — i y)5, (4.58)

where p; = (2 —1)TVh(x).

e Nonergodic Convergence: for any (z*,y*) € sol (V) and i = 1,2,

P+l oy Skl < a1 a2 0 0V (o ko x]2
L) - LA < (i 222 Ieo) = 0 = it
(4.59)
where
: L+t —pl I(A'MA)Y|
T=(2- h(x* = d =
1 ( Z>Tv (l’ )7 aq pQ\/a an 6%)] 25p29

Respect to the rate of constraint violations we have

Theorem 4.3.2 With the same notations as before. Set o, T and p satisfying

92— % >p>0, and 1> o7| Al
For any (z*,y*) € sol (V) and i = 1,2, the following rate of convergence are obtained
by setting uf = (x* — (2 —i)7C(2*), y*):

e Ergodic Convergence:

2

ok — D2 + ol| Ak — ABE + (—1)'0 (7 — DY) <

4

0 0 *
Wi, V) — U

e Nonergodic Convergence:

| 1
o5 =i M IV + o | A = Awi ™ 4+ (= 1)o7 (7 = DIP < —fl(wd 1) =1

K3 (2 1771

where o = p(2 — p — %) and

Remark 4.3.1 Considering the sequence (x¥,z¥,s¥) generated by PD3O [55], the

sequence (2%, yF) = (x¥, 1) is generated by YA (or equivalently by Algl with
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p=1)using T =~ and o = 6. Moreover, the sequence r* in YA verifies 2F+1 =
ok —rk — 7 A'y*. One deduces that

I = (z = 7Vh(@), $)E, = 77w — Vhz) = 7A's — P+ ls — s

= (2 8) = (S

where ||(a,0)[|73 = llal* + |03, with M = (I —v0AA") defined in [55]. The last
equality relations and the upper bound given in Proposiion 4.3.1, allow us recover the
upper bound (36) given in Theorem 2 of [55] related to the aforementioned sequence
(xk, zk, s%).

Notice that Theorem 2 of [55] is exactly the ergodic convergence of Theorem

4.8.1.

4.4 General separable optimization problem

Following the same scheme described in Section 4.2 regarding the optimization prob-
lem (4.1), we reformulate problem (P) keeping the same structure of problem (Var),
where the involved matrix is injective and then we apply the algorithm developed
in Section 4.1.

Set M, V; and V5, symmetric matrices of order m xm, nxn and p X p, respectively,
with V} positive semi-definite and M and V, positive definite. Then problem (P)
can be formulated as

min (f + hi, ho)(z1,22) + (9,0)(21, 22),

(x1,%2,21,22)EF

where F denotes the set of all (x1, 9, 21, 22) satisfying

M3A 0 MzB 0
T 21
1 X9 1 22

0 Wy -V 0

The dual problem of its variational formulation consists in finding a zero of the sum

D=

of the two composition maps given by

MzA 0 - o
1 Of +Vh AtMz VE 0
I Vh - 0 R
1
0V ’ 2

and

MzB 0 -1 , 1
L el e )
1 0 —I, 0

_‘/'22 0



Then the dual formulation of this sum problem is
MzA 0

B AME VE 0
e TR ()0 e
2 2 0 0 0 v

where the map G is the inverse of the composite map defined by

—~MzB 0 501! - 1
P [og] (—BMz 0 v2>
1 0 I, O

Vo0

Vhy
Vhy

SIS
(@)
VN

which is clearly monotone.
The next proposition gives an explicit expression of the resolvent of G and thereby
its maximal monotonicity by Minty’s theorem.

Proposition 4.4.1 With the same notations as before, for given (x,y,z) € IR™ X
IR" x IRP, it holds that

1
(G + D)7 (x,y,2) = (=M?Bu,y, Vi),
where I denotes the identity map of order m +n + p, and
w=(dg+Va+ B'MB) ' (—=B'Mzz + V;22).

Proof. Since (G+ )™ =1—(G~' +I)7!, then using Proposition 2.4.1 of Chapter
2 we obtain

MIB 0 D9+ BMB+V, | e :
5 2
@rnt=| o g || RTEMBET (B0
Vb 0
from which the desired equality is deduced. [ ]

Observe that problems (4.60) and (Var) have same structure where the involved
matrix in the first one is injective and whose corresponding maps verify the proper-
ties required in Proposition 4.1.1. So, the corresponding algorithm described by the
sequential update formulae (4.4) — (4.8) converges to a solution of its corresponding
saddle-point problem, whose solution set is

{(7,2, M2 Az, V22, Vy 22, M~ 23,0, —V, *Vhy(2)) : (0,,0.,0,) € L(z, %, 7)},

where L is the classical Lagrangian map corresponding to problem (P), which is
defined as

df(x) + Vhy(x) 0o 0 A T
f/(x, z,y) = | 90g(z)+Vha(z) | + 0 0 Bt z
0 A -B 0 y
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So, applying the sequential update formulae (4.4) — --- — (4.8) for M = I and

p = 1, and using Proposition 4.4.1 we get the following update sequences

k41
21

—M2B(9g + Vs + BMB) ™ (Vi (s + Vi) — B'M3 (yf + M Aak))
yh + Vi ah

Vit (9g + Va + BMB) ™ (Vi (y + Vi ) — BIM (yf + M Axh)

yr 4+ M%A[E’f — 2t

yh + Vitak —

yh + Vitah —

Vi (Vi + A'MA) (V2 24+ A 25))

Vha(Vy 22541)

(OF + Vi + AMAY (Vi (541 — ght) 4 ATMB (24 — bty — b

1
VotV (5 — ™) = i),

By construction we can reduce some sequences: for £ > 1, one has

1
e 35 =0 and hence 25™ = V;22%, and

e on other hand,

VI

1 1 1 1
Vo (ys + Vot as) = Virys + VoVl H(Vy? (2 — uf) — 15) = Vo? 25 — 7.

1
k k 2

Hence, by denoting 2% = z¥, 2* = V, 228 and ¢* = M%y’f, the above chain of

sequences is reduced to, for £ > 1,

= (0g+ Vo + B'MB) ' (Vaz* — vk — Bly* — B'M Az¥)) (4.61)
= y* + MAz* 4 M B (4.62)
= Vh((Vi + AAMA) Y (Vizh — A'M BZF)) (4.63)
= Vhy(z") (4.64)
= (Of + Vi + AAMA)  (Vigh — APM BT — Aly T — 1) (4.65)

Notice that the update sequences (4.61) — (4.65) is also satisfied for k = 0, if we

consider y§ = 0, and y5 and x9 satisfying

1 1 1
Vo' (ys + Vo' ay) = Vo — 1

- 0 0
for arbitrary r5 and z3.

From Proposition 4.1.2, we get the following convergence result of the sequences

described by (4.61) — (4.65)
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Proposition 4.4.2 With the same notations as before, we assume that V; € IR™",
Vo € IRP*P and M € IR™ ™ are symmetric with Vy and M positive definite such that
Vi + A'M A is positive definite and satisfying that max(||Vy ||, ||(Vi + AtM A)7Y|) €
10,2min (81, B2)[.  If sol (V;) is nonempty, then for arbitrary points (x°,2z° y°) €
(IR" x IRP) x IR™ and 13 € IR, the sequence (", 2% y*) generated by (4.61) — (4.65)
converges to some element of sol (V;).

4.5 Application to the decomposition of multi-

block optimization problems

In this section we extend the algorithm (PMA) described in Chapter 2 in order
to solve the more general S-Model defined below. This extension uses a similar
reformulation as described in the mentioned chapter and has similar structure as
problem (Var) described in Section 4.2.

Our S—Model problem is as follows

Zfz ) +9(2)
ZAiSCZ'—BZ:O,

where f; : IR" — IR (i € {1,....q}) and g : IR™ — IR are proper lsc convex
functions, h : IR" — IR is convex and ( )-Lipschitz-differentiable (n = "7  n;),
and A; and B are matrices of order p X n; and p x m, respectively.

It is clear that this problem is equivalent to

- Zf’ z;) + g(2) + 0 (Bz — ZAZ%> + h(x) (B1)

a:q -
=1

or again

Vp = mf Zf" z;) + (g% o BY)* <ZA xz> + h(z (B2)

We note that (B2) has the same structure as the optimization problem (4.1)
given in the introduction of this chapter. If we apply Algl or Alg2, we obtain an
algorithm with separable structure but unfortunately with two important disadvan-
tages: the necessity to know the norm of A in order to choose the parameters for
the convergence result, and also the necessity to know all values of (7df; + I)~! at

arbitrary points (parameter 7 beings equal for all 7).
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So, we consider a reformulation of (Bs) allowing us to choose in an independently
manner parameters for each block, where we only need to know the norm of each
A; separatly.

By considering f : IR" — IR defined as f(z) = Y%, fi(z;), and matrices K and
A of order p x pq and pg X n, respectively, defined by

A
K::(]pxp ]po) and A:= ;
Aq
problem (Bs) can be set as
inf f(@) +[(g" 0 BY)" o K](Az) + h(x). (Ps—mod)

:1::(:1:1,--- s xq)

Note that this new problem has also the same structure as problem (4.1) but
with a good separable structure since f and A have separable structure for blocks.
Then, we apply to this last problem algorithm GSA3O developed in Section 4.2.
Alternatively, we can apply algorithm (4.36) — (4.40), but for simplicity we will not
do it in this work.

Regarding function ¢, we assume that
Ol(g* o BY)* o K| = K'(B(d9) 'B") K.
The saddle-point problem of (Ps_p0q) 18
Find (z,z,7) € IR" x IR?* x IR" such that 0 € L(z, 2, 7) (Vi)

where L is the maximal monotone map defined on IR" x IRP? x IR? as

Of(x) + Vh(x) 0 0 A x
L(z,z,y) == | KYB(09)"'B) 'Kz | + 0 0 —I z
0 -A 1 0 Y

Fori e {1,---,q}, let M; be an p X p symmetric positive definite matrix and @; be

an n; X n; symmetric positive semi-definite matrix.

In order to take advantage of the separability of f, we consider the diagonal ma-
trices V' = diag (Qq,- -+ , Qq) and M = diag (M, --- ,M,). So, the related algorithm
GSA3O has the following structure:

L — (KY(B(0g)'BY) 'K + M)~ (M Ax* + yF) (4.66)
P = yf 4+ M(AgF — 3+ (4.67)
P = VR(A'MA+ V)7 (Vak + A'MER) (4.68)
P = (Of + AIMA+ V)T (Vak 4 AIMER — AEEL B (4.69)

108



(@M Ay = p(@F L 2L ) 4 (1= p) (2", 28 o). (4.70)

We finally get the following algorithm

Separable Primal-Dual Variant
(SPDV)

For ¢ € {1,---,q} set Q; € IR™ ™ symmetric positive semi-definite, M; €
IRP*P symmetric positive definite. Set ¥ = ( 4 M{l)_1

=1 . Then for an arbitrary
(20,29, 949) € IR" x IRP* x IRP

Step 1. Find ¢**! such that
1 q
¢F*! = argmin {g(w) + 5 Bw =) (Ajaf) - E‘lny%} :
=1

Step 2. Find z*+!
For alli € {1,...,q} do
Find ™ such that

q
gl = Ak — MY (Z(ijf) — BCkH) .
7=1
Step 3. Find ¢! such that
q
Gt =y +3 (Z B<’f“) .
7=1

end for

Step 4. Find r*' = (7' .- r5+1) such that

= Vh((A'MA + Q) H(Qa* + A'M )
where A = diag([A1, ..., Aq]), Q@ = diag([Q1, ..., Qq]) and M = diag([M;, ..., M,])

Step 5. Find z#+!
For alli € {1,...,q} do
Find #¥*! such that

1
ZF = argmin {fz(xz) + §||AzmZ — Zf““ + M[lg]fﬂ + AﬁfHH?M —||xz — a2kt rkHHQ }

where #F = (ALM; A; + Q)i
end for
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Step 6. Find (zF+1 2+t yk+1)

C

(", 2yt ) = (@ 2L g (L= p) (", 2N, ).

rde

The following converge result is deduced.

Proposition 4.5.1 Assume that QQ; and M; are symmetric matrices of order n;xn;
and p X p, respectively, with Q; positive semi-definite and M; positive definite such

that Q;+ A M;A; is positive definite and satisfying ||(Q; + ALM; A;) 7| €]0,28]. Let
28
Ap—max;{[[(Vi+ A} M; A;) [},

an arbitrary (2%, 2°,¢y0) € IR™ x IRP? x IRP, the sequence (z*, 2%, K'y¥) generated by
(SPDV) converges to some element of sol (Vz).

p €10, a” [ where o := . If sol (Vi) is nonempty, then for

Remark 4.5.1 Choosing matrices

-1 t
Mi = Ui]po and Qz =T ]nani — O'Z‘AZ»AZ‘,

)

the subproblem in Step 5 of the Algorithm (PMA) becomes

" : 1 . _
FF 1 = argmin {fz(xz) + §||xz — 2t — 7o AT — g AL Al — Al — Tk+1]||2} :
7

If in addition the positive parameters o; and T; are chosen satisfying O'Z'TiHAiHQ <1
and T; < 203, then the conditions on matrices Q;, M; and Q;+ ALM;A; in Proposition
4.5.1 are immediately verified and thereby the sequence (2%, K'y*) generated by
(SPDV) converges to some element of sol (Vi) if nonempty.

4.6 Numerical Example

We consider the problem (commonly referred as fused lasso) with the least squares
loss as in [55]

1
min Z{|Qz = b; + pullz]ly + pal| Az (4.71)

where Q € IR"*?, b € IR" and

A= € RP=Dx,
-1 1

We consider n = 200, p = 4000, gy = 20 and pe = 200. Moreover, matrix ()
and vector b quoted from [55].
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We compare the algorithms C'Al, C'A2 with their variants algorithms Algl and
Alg?2 considering p = 1 as relaxing parameter. Notice that in this case Alg1l coincides
with YA. We choose as parameters

1

and o= —

e 87

and we implement the last algorithms considering three variant for y as v, = 1, v =
1.5 and 73 = 1.99. For C' A1 and C'A2 we only use v; because for v, and -3 the con-

vergence is not guaranteed.

102 T T T 10° . . .
b YA—«,1 .!\ YA—31
o — YA, M —E— YAy
10 %\ YA, | ] S e —g— YAy,
‘\R\\ new-7, "ﬁ:\?" \G\\I" ~— new-+,
., \‘3\\ — P new-1, 10° SP\_\ B = — B new-,
10 i o \\ —-p—-new-qy a ‘\\_\ —f—--new-1y
i LAY CAl-7, o R B 5 CAl-7,
] "a, o
P QN CA2-~ = % A CA2-y
5 T ‘ & 3 )
S 407 L = | ; B P\h\ =
| e ) <., =] - =
- €] ‘B'-"\.S B “"x,‘_m‘% = 108 \I\G'l B
. ~ * ©,
10 By ™ ® ke
g *® “e
0‘1,\,, ‘DQ.R b T <
By ~
0 S % s
; 3 &
6 -10 5
PR 10 Q
B
10710 ; ;
0 1000 2000 3000 4000 0 1000 2000 3000 4000
iteration iteration

We observe that all algorithms have the same behavior for v, but for v, and
3 algorithms YA and Alg2 (= New) have more velocity and maintain the same
behavior.
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Chapter 5

Application to stochastic problems

In this chapter, we will consider a large-scale production planning problem with a
multiple separable structure which is favorable to the use of the splitting techniques
which constitute the heart of the present thesis. Motivated by a long-term energy
production planning problem, we analyze here a stochastic optimal control problem

where three levels of coupling structure are present, namely:
e the coupling of the dynamic equations w.r.t. time intervals;

e the coupling of the scenario tree w.r.t. the so-called non-anticipativity con-
straints, i.e. which force the decisions at some period ¢ to be the same for
scenarios with identical past history before t;

e the spatial coupling which interconnects the local subsystems

Most approaches in the literature to treat stochastic multistage optimization prob-
lems use a scenario tree where the non-anticipativity constraints at each node of the
tree are dualized to allow the temporal decomposition as if the model was determin-
istic (see [48] for instance).

5.1 The stochastic optimization model

We study the model problem presented in [33]. Consider a set of agents Z (ge-
ographical zones, markets) with interconnections between them given by a graph
(E C Z x Z). Given a finite period time {0,---,7 — 1}, for each agent (z € Z)
there are a production (p,,), demand (d,.), storage (z.,) and interchange (f.,) of a
commodity (electricity, gas). The objective is to minimize the cost associated with
the production, interchange, usage of storage of a commodity, in order to satisfy
the demand. The usage of the storage (u.,) and the storage (x.,) evolve in
time satisfying a dynamic equation. Finally, uncertainty affects the following data:
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the local demands (d,,) are random processes and we consider additional terms i,
that are random input of the storage. The distribution of these random processes
is supposed to be known and generally approximated by a finite set of historical
scenarios.

Since we are working with random variables affecting the dynamic equations
defining the state and control decisions, we need to consider the nonanticipativity
constraints that rule the sequence of decisions when the successive realizations of
the random values are revealed at each stage. More specifically, given the following
constraints :

e The demand equation is given by

Der + Uzr + Z feT - Z feT :dzr

eczt e€z~

where z (resp. z7) is the set of outgoing (res. ingoing) arcs incident to zone
z.

e The storage x., obeys the dynamics
Lzg+1 = Lz — Ugzr + iy
where 7., is a random input in the storage.

e The quantity transported through line f., satisfies the capacity constraints as

f(i‘l' GFET

e The variables x.;, u.; and p.; satisfy some constraints

‘TZT e XZTJ uZT e UZTJ pZT E PZT

e The control variable f.., u., and p., should then satisfy the nonanticipativity
equations

pZT7uZT7f€T j‘FT

i.e. Py, Uy, for are Fr—measurable where F. is a o—field defined as

Fr=0({(der,izs) : 2 € Z,7 € [0,8]})

Summarizing, we consider the following multistage stochastic problem
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T

2 (Z Co(pog) + ) leT(fET)>] (5.1)

min F
() —
7=0 Z€EZ eckE

p7u7f7x€L2

Dor + Usr + Z for — Z fer = d.r, Ve Z, 1€[0,T—1] (5.2)

eczt e€z™
Tpril = Lo — Upr + Gar, Ve Z 1€[0,T—1] (5.3)
Tor € Xory, Usr € Uyry Por € Pir Ve Z, 1€[0,T—1] (5.4)
Jer € Fer Vee E, 7€[0,T—1] (5.5)
Ty0 = Z:0, Ve Z (5.6)
Pars Uzr X Fr Vee Z, 7€[0,T -1 (5.7)
Jer 2 F- Vee E, 7€[0,T—1] (5.8)

5.2 Solution of a deterministic formulation

In the first part of this chapter, we study the deterministic case of the last model.
The modeling of cost functions ¢, and ., is borrowed from [14].

Cost on the final state
The hydroelectric production cost is negligible in the considered model. On the
other hand, we add a cost on the final state =, — W¥(x,7) to penalize the excess of

water reserves, defined as
in
U(z.7) = /"™ max{0, 2.0 — .7}

Thermic production
The thermic production cost is a piecewise affine and convex function of the pro-
duction levels p,,. It will be defined with a given number of stages j = 1,...,Q.,
each one associated with a given slope ¢/_ valid in the interval [P/ | P/1]. We need

obviously 0 < ¢l <2 < --- <9 to obtain an increasing convex function of p,,.
The cost function is thus defined by

(L per if 0 < p.. < Pl
¢ P+ o (per — P2) if P, <p., < P2
Gor(Pzr) = § :
S P+ % (p., — P21 it PRl <. < PO
400 else
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where we defined P/ = Pi_— Pi=! with P! = 0.

The cost function g., is reformulated as

infy S99

J=1 "z77 2T

gZT(pZT) = s.t. ZJQZZI 9;7_ = D.r

~

<6l <P

where 67_ represents the production of stage j.

Interzonal transfer costs
For an arc e = (z,2') € E interconnecting two zones z and 2/, the flow transfer
during period 7 is the variable f., which is bounded by 0 < f., < k.,. The transfer
cost is linear and given by o, (fer) = ¢ f,..

Failure cost
The failure quantity corresponds to the part of demand not satisfied during period
7 in zone z. It will be denoted by 7.,. It is penalized by the cost ¢/% >> ¢/ .

Using former formulations of the cost functions, the problem becomes

T—1 Q-7
min Z Z Z 00+ |+ Z ler fer | + Z cl™my,  (5.9)
(Ou,fmy) =0 [zeZ 7=1 eclk z2€Z
satisfying

Qzr '
Uer + Y 00 = for A N =dor — Y for, V2 € Z, 7 €[0,T — 1)(5.10)

J=1 eczt ecz™
Tyl = Lpr — Upr + iz, VzeZ, 7€[0,T—1] (5.11)
X< g, < XM Yz e Z, 1 e[0,T — 1] (5.12)
0 <wu, UM, VzelZ 1€l0,T—1] (5.13)
0<0I <Pl g, VzeZ 7€[0,T—1] (5.14)
0< fer < Kerlp, Ve€eE, 7€[0,T—1] (5.15)
v, >0, v, > (20— x.7), VZEZ (5.16)

We rewrite this problem in the context of problem (P) defined in Chapter 2, in
order to apply GSS algorithm also described in that chapter.
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Setting q.r = ((09,)jeQ..» Usrs Nors Tzrp1) € RO 13 and f, = (fer)eer, relation
(5.10) becomes

AZTqZT - Bsz = dzT7 Vz € Z, V71 € [O,T — 1]

where B, is the row z of the incidence node-arc matrix for graph G, and the matrix
A,, defined as

AZT:(hXQ” 11 0)

Considering q. = (¢z-)-ejo,r—1], the objective cost function (5.9) can be rewritten

T-1
Z kz(qza Uz) + Z Z le‘l‘fm‘?

z2€Z eeE 7=0

as

where the zonal cost of production K, is equal to

T-1

kz (q27 Uz) =
7=0

Qzr
N+ oy,
j=1

fin
+c ;.

We introduce the set of zonal constraints associated to the production C, which
are the constraints (5.11)-(5.16) except (5.15) and the set of interzonal transfer
constraint C., which is the constraint (5.15). Then the planning problem (5.9)-
(5.16) now reads

T-1
i k(@) £ DY lerfer (5.17)

z2€Z ecE 7=0

A.q.r — B.fr =d,., Y(z,7)€Zx[0,T—1] (5.18)
(q.,v.) €C., Vz€ Z, (5.19)
for €Cor, V(e,7) € Ex[0,T —1]. (5.20)

Considering f = (f7)-ejo,r—1) and d. = (d.-)-¢cjo,r—1], relation ((5.18)) becomes
A.q.— B.f=d,, Vz2€Z (5.21)
where A, = diag (Ao, -+, Axr—1)) and B, = diag (B,,--- , B,). Then considering
w = (q,,v,).cz and d = (d,),ez, we have that (5.21) becomes
Aw+ Bf =d

where A = diag ([A., Orx1], -, [A., Orx1]) and B =
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In summary, we rewrite (5.17)-(5.20) as

T-1
(IZ}I% D ka(w.) £ 0D lerfer (5.22)

z€Z eeE 7=0

Aw+ Bf =d (5.23)
w,€C., Vze€Z, (5.24)
for € Cor, Vec E, V7 €[0,T—1]. (5.25)

Since this problem has the same structure as problem (P), we apply GSS considering
different parameters. In fact, we apply slight modifications of ADMM, Chambolle-
Pock, and Spingarn algorithms, which correspond to the GSS algorithms with dif-
ferent parametrized matrices.

5.2.1 ADMM applied to the dynamic model

We apply the algorithm (2.41)-(2.43) with V; =0, V5 = 0 and M = AI (which is a
slight variant of ADMM) to the problem (5.22)-(5.25) obtaining the algorithm

A _
Wt € argmin, o {Z k(w,) + §|]Aw + Bff —d+ )xlkaQ} (5.26)

z2€Z

T—1
LS argmin ;e {Zzlﬂfﬂ —||Awk+1 +Bf —d+ )\ 1yk||2]{5 27)

ecE 7=0
Y = P N AT BT - d) (5.28)

Since

||Aw—|—Bfk —d—i-)\*lkaQ ZZ“AZTQZT_ z T _dZT_)\ilyl,;'H2

ze€Z =0

the corresponding minimization problem in (5.26) can be solvable in parallel pro-
cessing with respect to z indices. Similarly, the corresponding minimization problem

in (5.27) can also be solvable in parallel processing with respect to 7 indices.
Application 1

Step 1. Zonal subproblems
For all z € Z do

Find ¢t = (02,505 ub T nftt ab ™l ) cormy and 05T solution of
Qz‘r ) QZT )
mln Z 027-9‘;7- + Cfdllnzr || Z 0 + Uyr + Ner + Bzfqlf; - dZT + A7 yZTH +C£1nvz

(g2, Uz)
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St Togy1 = Tor — Upr + s, V7 €E[0,T—1]
X< g, < XM N e [0,T — 1]
0 <wu,, KU, V7el0,T-—1]
0< ¢ <Pl g, Vrelo,T—1]
v, 2 0,
(% Z (l’zo - sz)a
end for
Step 2. Network subproblem

For all 7 € [0,T7 — 1] do
Find f5*! solution of

Qzr
A ‘
H}in g ler fer + 5 § | § (eir)kﬂ + U];jl + 77];:1 + B fr — dsr + )‘_1?/];7“2
" ecE z€Z  j=1

s.t 0 < for < KerOp, Ve€E.
end for

Step 3. Dual update
For all (z,7) € Z x [0,T — 1] do

Qzr

Yt = A0+l i 4 B — d)
7j=1

end for

5.2.2 Chambolle-Pock applied to the dynamic model

Considering in algorithm (2.41)-(2.43) the positive parameters r1, ro such that 1 >
|| B|? and 1 > ryA||A||?, and the parameter matrices Vi, Vo and M defined as

Vi=rl—MNA'A, Vo=ryd —AB'B and M = M,
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we obtain a variant of Chambolle-Pock algorithm. This variant is applied to problem
(5.22)-(5.25) obtaining the following algorithm

]_ _
w* € argmin, .. {Z k. (w.) + 2_7~1Hw —w* + 1 A (Aw” + Bf* —d + A_lyk)||2}

z€Z

fk+1

m

T-1
1 _ _
argmin fer€Cer {Z Z ler fer + %Hf - fk + Tg)\Bt(Awk+1 + Bfk —d+ A_lyk)HQ}

ecE 7=0

yk+1 _ yk +/\(Awk+1 +Bfk+1 _ d)

Notice that each resultant sub-problem is a classical proximal step and can be solv-
able in parallel procesing with respect to z and er indices respectively.

Now, in order to get a more explicit form the last algorithm, we find explicit
expressions of the norms of A* and B! (for this purpose we assume in the original
model (5.9)—(5.16) that the graph is complete), and also explicit expressions of

AN (Aw” + Bf* —d+X'y*) and  BY(Aw*t + Bf* —d + 2 7yF).
For g = ((92r)reo,7-1])zez, the following expressions hold

” )
(Atg)z = ( gz > and (Btg)r = ZngBi

z€Z

where Cjz = (QZT)TE[O,T*”? with (_727 = Gzr ( 1Qzﬂ—><1 1 10 )

We now calculate the norms of A* and B*. To calculate the norm of A*, note
that

AA" = diag (A, AL ,--- A, AL)
and A, A! = diag (Q.,0+2, -+, Q.. (r—1) + 2). Then,
JAJB = 2+ max{Q., (5.20)

Since that in the original model (5.9)—(5.16) the graph is complete, then given
n zones, the n x n(n — 1) matrix B holds that

BB* =2nluxn — 2(1nxn). (5.30)
The following proposition shows some properties of matrix with this structure.

Proposition 5.2.1 Set x, y € IR. We consider the n X n matrix

Then,
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e P has x and v 4+ ny as unique eigenvalues,

o [|[P|2= \/max{\x], |z + nyl|}

o if v ¢ {0, —ny}, then P is invertible and

1 y
Pl = “(Lixn) — ————(Luxn)-
x< <n) x(x—i—ny)( <n)
Since matrix B is a row permutation of the nT'xn(n—1)T matrix diag (B, - - - , B),

then || B|ls = ||Bll2. Therefore, from (5.30) and the last proposition, we conclude
that
B3 = 2n. (5.31)
So, from (5.29) and (5.31) and choosing the parameters r1 ,ry € IR satisfying
1>7rA2n  and 12> 7mA(2+ max{Q,.})
we get from the previous algorithm, the desired more explicit algorithm:

Application 2

Step 1. Zonal subproblems
For all z € Z do
calculated
For all 7 € {0,--- ,T — 1} do

QZT
br = (O (0L a4+ B — L+ AR ( lg.x1 1 10 >
j=1
end for
Set b = (b)refo,r—1

1 kL (i KLkl kel ke k+1 :
Find ¢; " = ((61,)jdq.. st met 221 )repor—1) and vZ T solution of

T-1

(min) Z

qz,Vz —0

Qzr
Z CiTQgT + cfaianT

j=1

. 1 1
+ Mo, + ol — gf A 4 v, — ol
27’1 2T1

St Togq1 = Tor — Upr + 1y, YV T7€[0,T—1]
Xmn < g < XMy e[0,T 1]
0<u., <UMS,, Vrelo,T—1]
0<¢_ <Py, VYrelo,T—1]

v, >0,
v: > (220 — To1),
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end for
Step 2. Network subproblem

For all 7 € {0,--- ,T — 1} do

calculated
QZT .
a=) [Z(%)’“H U g B fE — de 4 AT | A
z€Z Lj=1
For all e € E do
Find f*! solution of
. 1 k 2
min leTfeT+_||feT_feT+r2)\ae||
fer 219
s.t 0 S feT S 'Lie‘rdh-
end for
end for
Step 3. Dual update
For all (z,7) € Z x [0,T — 1] do
QZT .
g =yl A AQ O i ol B — )
j=1

end for

5.2.3 PDA applied to the dynamic model
We reformulate the problem (5.22)-(5.25) and apply Spingarn method. Set
T-1 )
hw, f) = k(gev:) + Y ) lerfer . V={(w,f): Aw+ Bf =0}
z ecE =0

and also a’ such that (A B)a’ = d. Then, problem (5.22)-(5.25) can be set as

min h(w,
min (w, f)

(w,f) eV +d
w, €C,, VzelLZ,

fer €Cer, Vee€ E,7€0,T—1].
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Using the Spingarn’s algorithm to that problem, we get

A
wht € argmin, o {Z k.(w,) + §||w — s+ A—ldkHz}

T-1
. A 3
fk+1 € argming cc {Z Z[eTfeT + §Hf _ gk + A 1rk|‘2}

e€E 7=0
(5,657 = Py, £ 407 a4, r4))
A = gk Akt — gk
PEHL = gk \(fRL gl
In order to get a more explicit expression of this algorithm, we need to find an

adequate manner to express the projection on the affine space V + a’. For these we
assume that Q,,, =--- =@, .. Since

PV+a’ = CL/ — Pv(CL/) + Pv,

it suffices to determinate the projection over V. Set B= diag (B, --- , B) a permu-
tation matrix D such that DB = B, then

V={(w, f): DAw+Bf =0} and DAA'D'=diag(AgAl, -, Aq_nAly_y),

where, for 7 =0,--- , T — 1, A, := diag (A e AL )
On the other hand, since V' is the kernel of matrix ( DA B ), one deduces
that the projection Py (w, f) is equal to
(w—A'D'(DAA'D'+ BB)"Y(DAw+ Bf), f—B'(DAA'D'+ BB")""(DAw+ Bf)).
To finish, we calculate the inverse of DAA!D! + BB, Since
DAAtDt + ./B\Et = dlag (A()AS + BB*, e, (A(T—I)AIETfl)? +BBt),

it suffices to determinate the inverse of each diagonal block A,AL + BB! (1 =
0,---,7 —1). From definition,

A AL + BBt = diag (Q.;r + 2, , Qs +2) 4+ 201 — 2(Lnsen)

and, by considering @, = Q,,» = --- = @, , we deduce, from Proposition 5.2.1,
that

1 2

(A-A: ) Qr+2n+27"" " (Qr +2n+2)(Q, +2) "
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and hence the desired explicit expression of the projection is deduced. In particular,
a — Py(d') = (A'D'b, B'D'D)
where b = (b-)-¢o,.. r—1} is defined as

1 2 dsr
bT = dT + ZZEZ 11><n .
Q. +2n+2 (Qr +2n+2)(Q- +2)

Therefore, the last previous algorithm can be set in the following context

Application 3

Step 1. Zonal subproblems

Find ¢+ = (67,523 b nf4)),cory and ph* = (841, 2541) solution of

Til QZT
_ - | o
(Eni)n) Z Z 01+ |+ LM, + §H(QZ>Pz) — st AT
=0 Lj=1

St Tpgyl = Tpr — Upr + iz, V7 €[0,T —1]
Xmin < g, < XM Y e [0,T — 1]
0<u., <U™5, ¥r1el0,T—1]
0<¢_<Pig,, VYrelo,T—1]

v, >0,
v, > (220 — T27),

Step 2. Network subproblem

For all (e,7) € E x {0,---,T — 1} do
Find f*+! solution of

et

A
Il}'cliﬂ leTfeT + §||f67 - 957- + )\717"57.“2

s.t feT S CeT-
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end for

Step 3. Projection Step
Jerl  ghtl gkl

k+1 (q_k+1’ﬁk+1) where qk+1 ((027_ AT T i

calculate g**! = (g51), and s
2k+1 (k+1 k+1).

? Z

and p}

First calculate

QZT QZT
Cor = Y (O b 4 TN (0L + A ) + BT AT
j=1 J=1
then calculate
I 2%y

2T = —CZT +
bp Qr+2n+2 (Q-+2n+2)(Q; +2)

and finally calculate
(B = (010" + A OL,) — ppir + b

st =W AT — pps 4+ by

et = b N — pp., + ber

sk+1 _ ’Uerl + /\flﬁ‘l;

UZ
FhHL gkt \-lgk
and
gt = SR AT E = " Bl (ppar — ber)
z€Z
Step 4. Dual update
Caleulate 1 = (1)), and @1 = (@1, 5°41) where g1 o= ((B1,)525, 5, 7)
and pk+1 @\kJrl’ :’L,\k+1)'
dk-i-l — dk + )\((qk+17pk+1) . Sk+1)
TkJrl — T’k + )\(karl _ gk+1)

5.3 Uncertainty Environment

The general case of stochastic production planning models has been studied by many
authors and we will not detail the different discussions which are behind these models
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when decomposition is the final objective to cope with the curse of dimensionality
(see [46, 48, 3]).

Coming back to the stochastic model problem (5.1)-(5.8), we rewrite it in the
context of problem (P).

Set W,r = (pZTa U, wz‘r)? w, = (wZT)TE[O»T*H’ w = (sz)z€Z7 d= (<dZT)T€[O,T7H)Z€Z
and f = ((feT)eeE')TE[OvT_l]

(IS’I?) [Z (Z Cy pZT + ¢z Z,T ) + ZZZ feT ] (532)

z€Z \7=0 7=0 ecE
Aw+ Bf =d (5.33)
w, €C,, VzeLZ, (5.34)
for €Cer, Yee E, VT €[0,T—1]. (5.35)
W,y X Fr, for X F Vze Z, Vee E,V7 €[0,T — 1] (5.36)

considering matrices A and B defined as

_le
A dla’g <A217 ' 7Azn) and E -
_B.
where A, = diag ([11],---,[11]) and B, = diag (B.,--- , B.).

Notice that Aw and B f in (5.33) are random vectors because w and f are so.
They are defined by

Aw(€) = Aw(€)) and  Bf(€) = B(£(¢)) forall £ €=,
We apply algorithm (2.41)-(2.43) with V; = 0, Vo = 0 and M = Al (which is
a slight variant of ADMM) to last problem, assuming the random variable space

of finite dimension (finite scenarios) with inner product induced by the expectation
function, getting the following algorithm.

Stochastic Application 1(SA1)

Step 1.
For all z € Z do
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Find wht! = (ph+1 w1 25+1) a solution of

T-1
A
min E [ (Cz(pZT) + §”pz‘r + U, r + Bsz - dZT + )\13/57'”2) + wz(sz)]

(pu)

3

Tpgil = Xy — Uy +ipr, VT E0,T—1]
T, € X.pyuyy €U por €P,yy V7E[0,T—1]

pZT?uZTj‘FT7 VTE [07T_1]

end for.

Step 2.
Find f**! a solution of

T-1
. A _
ST DS SIERRE S ol R )]

7=0 \e€FE z2€Z

for €F.r Yee E,VT€[0,T—1]
for 2 F, Yee E,V71€e[0,T—1]

Step 3. Dual update
yk+1 _ yk + )\(A\wk+1 + Ekarl _ d).

Notice that the sub-problem of Step 2, can be solvable by the progressing hedg-
ing algorithm proposed by Rockafellar and Wets[46] because the only restriction
coupling e and 7 is the nonanticipativity constraint.

The sub-problem of Step 1 is a stochastic optimal control (SOC) which has less
variables than original problem. But the white noise assumption over the random
variable (d.;,7.;)rcp,r—1) is not enough in order to apply dynamic programming, be-
cause we have two another families of random variables (f¥),cjor—1) and (y%,)refo.r—1)
which from Step 3, are not independent over time, since y*_ depends on (dar)rrefom-

So we cant not solve the sub-problem of Step 1 directly by dynamic programming.

Following the same ideas presented in [33], we now reformulate problem (5.32)-
(5.36) considering information relaxation in order to obtain a variant of sub-problem
corresponding to Step 1 of previous algorithm (SA1) where we can apply DP for
solve it.
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For each 7 € [0,7 — 1] and z € Z, we consider a random variable U,, < F,, then
we consider the approximate version of our problem (5.32)-(5.36):

(ISIJI}) IF [Z (i c.(psr) + ¢z(sz)> + 2 Z le(feT)] (5.37)

zeZ \1=0 7=0 ecFE

Ep.. +u., + B.f|U..] = Eld..|U.,], Vz€ Z,¥re0,T - 1](5.38)
w, €C,, VzeLZ, (5.39)
fer €Cer, Ve€ E,Vre[0,T—1]. (5.40)
W, I Fr, for X F,, VzEZ Ve E, VT €[0,T —1]. (5.41)

Set matrix Q,, (1 = 0,---, T —1and z € Z = {2, -+ ,2,}) satisfying Q,,h =
IEh|U,,], then restriction (5.38) become

QAw + QBf = Qd (5.42)

where Q = dlag (Qz17 e ’an)7 with sz - dla’g (QZZU) e 'in(T—l))'

Therefore, since (5.42) is a coupling linear constraint, similar to our original
model (5.32)-(5.36), we get the following algorithm for solving (5.37)-(5.41):

Stochastic Application 2 (SA2)

Step 1.
For all z € Z do

Find wht! = (ph+1 uf+1 2%+ a solution of

T—1
min > L(Pers Uar, Qur BofF, Qurtfh dor) + a(2or)
“ 7=0

Tpril = Xy — Uy + iy, VT E0,T—1]
T, € X.pyuyy €U, por € P,y V1[0, —1]

Dzr, Uzr j ]:77 \V/ T E [O,T— 1]
where the function L is defined as

L(p7u7f~7g>d> :Cz(p)_'_ <QZT(p+u—d)+f>7g> +%HQZT(p+u_d)+f~”2

end for.
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Step 2.
Find f**! a solution of

T—1
. A _
min IE [Z (Z le(fef)+§Z"er(plz€il +u§il+Bsz _dZT) + A 13/57"2)]

ZeL
eeE z2€Z

T7=0

fer €Fer Yee E,V71€[0,T—1]
for 2 F, Yee E,V71e[0,T—1]

Step 3. Dual update
yk-i-l _ yk + )\(QA’LUk+1 + QBfk+1 _ Qd)
Choosing U, equal to (d.,,i.,), we have that Q.. B, ft’~C and QZTyfT are not noise,
on the contrary are function of (d.,,i.,). Therefore we can apply DP for solve the
sub-problem of Step 1.

In a future work we will try to apply the algorithm TSD, developed in Subsection
3.4.1 of Chapter 3, to sub-problem of Step 1 of algorithm SA1.
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Conclusion

The contributions of this thesis are disseminated in the 5 chapters with different
relative importance. Chapters 2 and 4 contain the main basic algorithms for two
or more operators and they are nearly self-contained. In Chapter 2, the main point
is the generalized splitting scheme which includes most of the classical primal-dual
splitting methods as particular cases associated with the choices of the blocks of the
matrix involved in a generalized proximal point method (a method constructed in
this thesis) applied to the saddle-point inclusion problem.

The general setting shows us the relationship between the splitting algorithms
and the fixed point algorithms corresponding to special average maps. This general
setting also gives us a common point of view of the splitting and convergence proper-
ties of the classical primal-dual splitting methods deduced from this general setting,
allowing us to improve them by adding for example multi-scaling parameters and a
relaxed parameter.

The separable models for multi-block constrained optimization are studied in
Chapter 3 and many new decomposition algorithms are derived with block separable
augmented Lagrangian subproblems. One of these algorithms (SMS3BF) is applied
to a stochastic model defined as (SP), splitting the nonanticipative constrains and
the linear temporal coupling constraints.

In Chapter 4, a Lipschitz-differentiable function or its corresponding co-coercive
map is added to the models proposed in Chapter 2. So we get extended version of
this algorithm, where we add a Forward step correspond to that function in there
formulation. Notice that, under mild assumptions, these extended algorithms inherit
the properties of the generalized splitting schemes of Chapter 2.

Finally, in Chapter 5, some of the new algorithms considered in the thesis are
applied to an applicative model, the stochastic multistage production planning prob-
lem with a limited set of numerical experiments based on randomly generated data
sets. More is to be done to further validate the proposed algorithms considering the
different coupling inherent to the model. An important open question is concerned
with the tuning of the numerous parameters which influence these splitting methods.
Even if the theoretical convergence rate analysis presented in Chapters 2 and 4 are
not surprising, either in the ergodic or non ergodic sense, the numerical behavior of
the splitting methods is still very sensitive to the choice of the scaling parameters,

as already observed in the literature (see [19, 29]).
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