
HAL Id: tel-02284938
https://theses.hal.science/tel-02284938

Submitted on 12 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Influence of Microstructural Components on the
Formability of Aluminium Alloy Sheets

Michael Langille

To cite this version:
Michael Langille. The Influence of Microstructural Components on the Formability of Aluminium
Alloy Sheets. Mechanics of materials [physics.class-ph]. Université Grenoble Alpes, 2019. English.
�NNT : 2019GREAI034�. �tel-02284938�

https://theses.hal.science/tel-02284938
https://hal.archives-ouvertes.fr


THÈSE 

Pour obtenir le grade de 

DOCTEUR DE LA COMMUNAUTE UNIVERSITE 
GRENOBLE ALPES 

Spécialité : Matériaux, Mécanique, Génie civil, 
Electrochimie 

Arrêté ministériel : 25 mai 2016

Présentée par 

Michael Langille 

Thèse dirigée par Alexis DESCHAMPS et codirigée par 
Frédéric DE GEUSER 

préparée au sein du Laboratoire des Sciences et 
Ingénierie des Matériaux et des Procédés (SIMaP) 
dans l’école Doctorale Ingénierie – Matériaux, Mécanique 
Energétique Environnement Procédés Production (I-
MEP2) 

Influence des constituants 
microstructuraux sur la formabilité des 
tôles en alliages d’aluminium 

Thèse soutenue publiquement le 5 juin 2019, 

devant le jury composé de :  

Pr. Joël Bonneville 
Professeur à l’université de Poitiers (Rapporteur) 

Pr. Aude Simar 
Professeure à l’université catholique de Louvain, Belgique (Rapporteur) 
Pr. Michel Perez 
Professeur à l’INSA Lyon (Président) 

Dr. Gilles Guiglionda 
Ingénieur de recherche à Constellium (Invité) 

Pr. Alexis Deschamps 
Professeur à Grenoble-INP (Directeur de thèse) 

Dr. Frédéric De Geuser 
Chargé de recherche au SIMAP (Co-encadrant) 

Pr. Bradley Diak 
Associate Professor at Queen’s University, Canada (Co-encadrant) 



 



1 

 
 
 

Acknowledgements 
I have many people to thank for their involvement in making this thesis possible. I will start with 

my supervisors: Alexis Deshchamps, Frédéric De Geuser, Bradley Diak, and Gilles Guiglionda. Each 

of you have contributed in a unique and special way to this work, and have always been there for 

me professionally and personally. I will be forever greatful for all of your guidance, patience, and 

many discussions that we had over the past three and a half years.  

Next, I would like to thank my interns, Devang Sejani for assisting in hardness testing, and Sami 

Meddeb for his work on atom probe tomography. I would like to thank Pr. Guillaume Parry for his 

guidance and assistance in completing the finite element modelling used in this thesis.  

I would also like to thank Dr. Shigeo Saimoto, one of my previous professors. He taught me how 

to properly do research, to think for myself and how to create a pathway to understanding from 

the experimental results. I owe Dr. Saimoto my sincerest gratitude for his patience and mentorship 

over the last 5 years and I would not be where I am today without him.   

J’aimerai bien de remercie tous les autres professeurs, doctorants et stagiaires qui m’ont aidé à 

apprendre le français (et la science aussi). Vous m’avez appris plus que la langue mais aussi la vie 

à la française et l’importance de l’apéro. Je vous souhaite la force de finir vos thèses même si ça 

prend super longtemps !!! 

Aussi, je dois remercier tous l’équipe de jjb au Martial Gym. Vous m’avez appris comment rester 

tranquille même quand il y a beaucoup de stresse dans ma vie. Vous étiez une famille pour moi 

pendant cette thèse et vous m’avez donné un endroit où je peux être moi-même, merci.  

I also must thank someone who I found during my time in Grenoble. I will never forget how you 

helped me get through this, especially the final few months. Thank you. 

I would like to thank my family and friends from back home. Despite being over 6000 km away 

from home, they were always there when I needed it most and were always willing to listen. I 

could not have completed this without you.  

Finally, I need to thank my past self for deciding to do this. I can’t believe it’s finally over but here 

we are!  



  2 

 
 

Table of Contents 
Acknowledgements ..................................................................................................................... 1 

Résumé étendu ........................................................................................................................... 7 

INTRODUCTION ....................................................................................................................... 7 

MÉTHODES ET MATÉRIELS ....................................................................................................... 8 

i) Formation des amas lors du vieillissement naturel et du pré-vieillissement des alliages Al-

Mg-Si-Cu .................................................................................................................................. 9 

ii) Asymétrie dans les tests de sensibilité de la vitesse de déformation : méthodes et 

analyses................................................................................................................................. 11 

iii) Effets de la composition et du traitement des alliages sur les propriétés mécaniques des 

alliages Al-Mg-Si-Cu ............................................................................................................... 14 

iv) Essai de sensibilité de la vitesse de déformation à basse température : profil thermique 

des obstacles ......................................................................................................................... 16 

v) Analyse de la striction dans les alliages d'aluminium durcissant par vieillissement : effets 

de la sensibilité de la vitesse de déformation et de l’écrouissage ........................................... 20 

CONCLUSIONS ....................................................................................................................... 24 

1 Introduction ...................................................................................................................... 27 

1.1 Thesis approach ......................................................................................................... 27 

1.1.1 Formation of clusters during natural and pre-ageing of Al-Mg-Si-Cu alloys.......... 28 

1.1.2 Asymmetry in strain rate sensitivity testing: methods and analyses .................... 28 

1.1.3 Effects of alloy composition and processing on the mechanical properties of Al-

Mg-Si-Cu alloys .................................................................................................................. 28 

1.1.4 Characterization of thermally activated dislocation glide in naturally aged Al-Mg-

Si-Cu Alloys: what it tells us about clusters ......................................................................... 29 

1.1.5 An analysis of necking formation in age-hardenable aluminium alloys: the effect 

of strain rate sensitivity ..................................................................................................... 29 

1.2 References ................................................................................................................. 29 

2 Literature Review .............................................................................................................. 31 

2.1 Microstructure effects................................................................................................ 31 

2.1.1 Solutes and clusters ............................................................................................ 32 

2.1.2 Precipitates ........................................................................................................ 32 

2.1.3 Dispersoids ......................................................................................................... 33 

2.1.4 Grain Size ........................................................................................................... 33 

2.1.5 Texture ............................................................................................................... 34 

2.2 Plastic flow ................................................................................................................. 34 

2.2.1 Yielding .............................................................................................................. 34 

2.2.2 Strain hardening ................................................................................................. 35 

2.3 Strain rate sensitivity .................................................................................................. 37 



3 

 
 
 

2.4 Formability ................................................................................................................ 40 

2.5 Effects of processing on obstacle formation ............................................................... 40 

2.5.1 Effects of natural ageing ..................................................................................... 41 

2.5.2 Effects of pre-ageing .......................................................................................... 41 

2.5.3 Effects of artificial ageing ................................................................................... 41 

2.6 Effects of composition on obstacle formation ............................................................ 42 

2.6.1 Effects of Cu additions ........................................................................................ 42 

2.6.2 Effects of Si additions ......................................................................................... 42 

2.6.3 Effects of Mg addition ........................................................................................ 43 

2.7 Conclusions ................................................................................................................ 43 

2.8 References ................................................................................................................. 43 

3 Materials and experimental methodology ......................................................................... 53 

3.1 Alloy compositions and heat treatments .................................................................... 53 

3.2 Microstructure characterization ................................................................................. 54 

3.2.1 Hardness testing ................................................................................................ 54 

3.2.2 Differential scanning calorimetry ........................................................................ 55 

3.2.3 Atom probe tomography .................................................................................... 57 

3.3 Mechanical characterization ...................................................................................... 58 

3.3.1 Tensile testing .................................................................................................... 58 

3.3.2 Strain rate sensitivity testing .............................................................................. 59 

3.3.3 Low-temperature testing.................................................................................... 60 

3.4 References ................................................................................................................. 62 

4 Formation of clusters during natural and pre-ageing of Al-Mg-Si-Cu alloys......................... 65 

Abstract ................................................................................................................................ 66 

1.0 Introduction ............................................................................................................... 67 

2.0 Background ................................................................................................................ 67 

3.0 Materials and methods .............................................................................................. 68 

4.0 Experimental Results and Analysis ............................................................................. 70 

4.1 Effects of Cu addition with 0.9 at% Si ..................................................................... 70 

4.2 Effects of Si additions with 0.1 at% Cu .................................................................... 73 

4.3 Effects of composition on hardness ........................................................................ 74 

4.4 Effects of composition on kinetics .......................................................................... 76 

4.5 Results Summary ................................................................................................... 77 

5.0 Discussion .................................................................................................................. 78 

5.1 Natural Ageing ....................................................................................................... 78 



  4 

 
 

5.2 Pre-Ageing ............................................................................................................. 78 

5.3 Artificial Ageing ...................................................................................................... 79 

6.0 Conclusions ................................................................................................................ 80 

7.0 Acknowledgements .................................................................................................... 80 

8.0 References ................................................................................................................. 81 

5 Effect of Si on the strain rate sensitivity of naturally aged Al-Mg-Si-Cu alloys ..................... 86 

Abstract ................................................................................................................................ 87 

1.0 Introduction ............................................................................................................... 88 

2.0       Background ................................................................................................................ 89 

3.0       Experimental Details ................................................................................................... 90 

4.0       Results and Analysis .................................................................................................... 90 

4.1        Microstructure and constant strain rate properties ................................................ 90 

4.2        Strain rate sensitivity ............................................................................................. 92 

4.3  Strain rate sensitivity results................................................................................... 93 

5.0       Discussion ................................................................................................................... 96 

6.0       Conclusions .............................................................................................................. 100 

7.0       References................................................................................................................ 101 

6 Influence of composition on the material properties in Al-Mg-Si-Cu alloys ....................... 106 

Abstract .............................................................................................................................. 107 

1.0 Introduction ............................................................................................................. 108 

2.0 Background .............................................................................................................. 108 

3.0 Materials and Methods ............................................................................................ 111 

4.0 Results and analysis ................................................................................................. 112 

4.1 NA1m ................................................................................................................... 118 

4.2 sNA1m ................................................................................................................. 118 

4.3 sNA1w .................................................................................................................. 118 

5.0 Discussion ................................................................................................................ 119 

5.1 Effects on mechanical properties .......................................................................... 119 

5.2 Effects on constitutive parameters ....................................................................... 120 

6.0 Conclusions .............................................................................................................. 121 

7.0        References ............................................................................................................... 121 

7 Characterization of Thermally Activated Dislocation Glide in Naturally Aged Al-Mg-Si-Cu 

Alloys: What it tells us about clusters ...................................................................................... 127 

Abstract .............................................................................................................................. 128 

1.0 Introduction ............................................................................................................. 129 

2.0 Background and Theory ........................................................................................... 129 



5 

 
 
 

3.0 Methods and Materials ............................................................................................ 133 

4.0 Results and Discussion ............................................................................................. 134 

4.1 Yield strength dependence on temperature ......................................................... 134 

4.2 Haasen plot representation .................................................................................. 135 

4.3 T4 clusters compared to saturated solid solution state at 78 K ............................. 139 

4.4 Dislocation-dislocation interactions in the alloys at larger strains ......................... 143 

5.0 Conclusions .............................................................................................................. 144 

6.0        References .............................................................................................................. 145 

8 An analysis of necking formation in Al-Mg-Si-Cu alloys: the effect of strain rate 

sensitivity………………………………………………………………………………………………………………………………..148 

Abstract .............................................................................................................................. 149 

1.0  Introduction ............................................................................................................. 150 

2.0  Background and Model Design ................................................................................. 150 

3.0 Methods and Materials ............................................................................................ 153 

4.0  Model implementation: parametric study on the effects of muc and mdc .................. 156 

5.0  Application of the model to experimental data ........................................................ 163 

6.0  Discussion ................................................................................................................ 166 

6.1  Neck localization, stabilization, and propagation .................................................. 167 

6.2 ULDL: muc = mdc = 0 .................................................................................................. 167 

6.3  UHDL: muc 0.05; mdc = 0 ........................................................................................ 167 

6.4  ULDH: muc = 0; mdc = 0.05 ..................................................................................... 168 

6.5  UHDH: muc = mdc = 0.05 ........................................................................................ 168 

7.0  Conclusions .............................................................................................................. 168 

8.0 References ............................................................................................................... 169 

9 Discussion, conclusions and perspectives ........................................................................ 171 

9.1 Discussion ................................................................................................................ 171 

9.1.1 Solute additions and processing on the mechanical properties ......................... 171 

9.1.2 Strain rate sensitivity testing and asymmetry ................................................... 176 

9.1.3 Connection of the mechanical properties to failure properties ......................... 178 

9.2 Conclusions .............................................................................................................. 179 

9.3 Perspectives............................................................................................................. 180 

Appendices ............................................................................................................................. 182 

Appendix 1 – Supplementary plots ...................................................................................... 182 

Appendix 1.1 – Hardness plots ......................................................................................... 182 

Appendix 1.2 – DSC thermographs................................................................................... 183 



  6 

 
 

Appendix 1.3 – sNA1w mechanical data ........................................................................... 185 

Appendix 1.4 – Haasen plot information .......................................................................... 186 

1.5 The yield strength for the AQ samples at 78K in the three conditions ......................... 192 

Appendix 2 – Temperature dependent shear modulus of aluminium ................................... 193 

 

 



7 

 
 
 

Résumé étendu 

INTRODUCTION 
Au fur et à mesure que la demande pour la production de véhicules de tourisme à faibles émissions 

de carbone et à haut rendement énergétique augmente, la demande d'alliages d'aluminium légers 

pour remplacer les composants existants en acier, le plus souvent sous la forme de peaux et de 

composants extérieurs, augmente également. Comme de nombreuses recherches l'ont montré, 

les alliages d'aluminium de la série 6000, dont les principaux éléments d'alliage sont 

principalement le magnésium (Mg), le silicium (Si) et le cuivre (Cu), ont démontré une résistance 

à la corrosion et une qualité de surface adéquates pour les portes, toits et capots de voitures. 

Cependant, à mesure que les concepteurs automobiles recherchent des formes extérieures (et 

des profils) de plus en plus complexes, la quantité de déformation plastique nécessaire pour que 

les tôles en alliage d'aluminium soient correctement embouties dans leur forme finale augmente 

constamment. Malheureusement, la plupart des alliages actuels n'ont pas une ductilité suffisante, 

ou plus précisément une aptitude au formage, pour permettre le formage de ces pièces à 

déformation élevée sans présenter de fissures. Il est entendu qu'une grande capacité 

d’écrouissage et une sensibilité élevée à la vitesse de déformation permettent une plus grande 

déformation avant la rupture du matériau, mais la compréhension complète des interactions 

entre la composition de l'alliage, le traitement, les propriétés des matériaux et, finalement, la 

formabilité reste difficile à cerner. Les procédés standards de traitement des tôles d’alliages pour 

applications automobiles consistent en la mise en solution, un traitement de stabilisation 

(vieillissement naturel ou pré-vieillissement), le formage, la peinture, et enfin la cuisson de la 

peinture qui s’accompagne d’un durcissement du composant final. Les effets de la composition 

sur la réponse à la cuisson de la peinture et sur la formation de la microstructure ont été bien 

étudiés mais les effets des traitements de stabilisation sur la formabilité ultérieure sont beaucoup 

moins bien compris. Ainsi, le but de cette thèse est de mieux comprendre et de relier la 

composition des alliages de neuf (9) alliages Al-Mg-Si(-Cu) par différentes voies de traitement 

thermique aux propriétés mécaniques résultantes et à leur influence sur la ductilité et, 

idéalement, la formabilité de la tôle en aluminium.  

La thèse est divisée en cinq parties principales qui suivent l'introduction, l'analyse bibliographique 

et les sections sur la méthodologie. Les sections sont les suivantes : 

i) Formation d’amas au cours du vieillissement naturel et du pré-vieillissement des 

alliages Al-Mg-Si-Cu 

ii) Asymétrie dans les tests de sensibilité de la vitesse de déformation : méthodes et 

analyses 

iii) Effets de la composition et du traitement des alliages sur les propriétés mécaniques 

des alliages Al-Mg-Si-Cu 

iv) Essais de sensibilité de la vitesse de déformation à basse température : profil 

thermique des obstacles 

v) Analyse de la striction, dans les alliages d'aluminium : effets de la sensibilité de la 

vitesse de déformation et du durcissement d’écrouissage 

Chaque chapitre est conçu pour utiliser l'information recueillie dans le chapitre précédent afin de 

fournir une meilleure base pour la compréhension de chacun des phénomènes étudiés dans 

chaque section. Ce résumé étendu permettra au lecteur de comprendre le travail effectué pour 
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cette thèse et de comprendre les principaux résultats de chaque article et les parties critiques de 

chaque discussion.  

MÉTHODES ET MATÉRIELS 
Les neuf alliages Al-Mg-Si(-Cu) choisis pour ces travaux ont été fournis par le Constellium 

Technology Centre (C-TEC) situé à Voreppe, France. La composition de ces alliages est indiquée ci-

dessous dans le tableau 1. Le rapport Mg + Cu/Si est représenté sur la figure 1 et comparé aux 

alliages d'aluminium courants de la série 6000. La conception des compositions des alliages était 

telle qu'il serait possible de tester les effets de : 

a) Additions de cuivre à 0,9 at % Si (C0S0, C2S0 et C8S0) 

b) Additions de cuivre à 1,3 at % Si (C0S3, C2S3, C5S3 et C8S3) 

c) Additions de Si à 0,1 at % Cu (C2S0, C2S1 et C2S3) 

d) Additions de Si à 0,3 at % Cu et 0,4 at % Mg (C8S0 et C8S3) 

e) Additions de Mg à 0,9 à Si et 0,3 at % Cu (C8S0 et C8S0M) 

Sample 
Name Si Cu  Mg 

C0S0 0.895 0.008 0.404 

C2S0 0.896 0.089 0.381 

C8S0 0.879 0.333 0.379 

C8S0M 0.899 0.337 0.557 

C2S1 1.069 0.087 0.372 

C0S3 1.299 0.004 0.387 

C2S3 1.262 0.088 0.400 

C5S3 1.284 0.218 0.372 

C8S3 1.324 0.329 0.385 
Tableau 1: Concentrations nominales de 
chacune des teneurs en alliages pour les 
neuf alliages testés dans ce travail en (en 
at %). Les éléments mineurs tels que Fe, 
Ti, Ni, etc. se trouvent dans le corps 
principal de la thèse. 
 

 

Figure 1: Représentation graphique des teneurs en Cu et en Mg comparées 
aux teneurs en Si des neuf alliages Al-Mg-Si-Cu testés dans ce travail. La 
ligne pointillée noire indique un rapport de 1:1 (Mg + Cu) à Si. Les flèches 
pointillées vertes et bleues indiquent les additions de Cu à Si constant, la 
flèche pointillée rouge indique l'addition de Mg à Cu et Si constants, tandis 
que la flèche grise indique l'addition de Si à Cu et Mg constants. Deux 
alliages courants, AA6016 et AA6022, sont présentés à titre de 
comparaison. 

En raison des exigences industrielles et des pratiques actuelles entourant la production de tôles 

en alliage d'aluminium pour les applications automobiles, les échantillons ont été testés dans un 

état stabilisé par pré-vieillissement, vieillissement naturel ou une combinaison des deux. Les 

programmes exacts de traitement thermique effectués sur les alliages sont illustrés à la figure 2 

ci-dessous. 
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Figure 2: Illustration des programmes de 
traitement thermique effectués sur les 
neuf alliages Al-Mg-Si-Cu résultant des 
conditions i) sNA1w, ii) sNA1m, et iii) 
NA1m. 

En effet, lors de la production de composants extérieurs automobiles, les tôles sont produites en 

usine et expédiées aux constructeurs automobiles, ce qui entraîne inévitablement la formation 

d’amas. 

i) Formation des amas lors du vieillissement naturel et du pré-

vieillissement des alliages Al-Mg-Si-Cu 
Pour les alliages d'aluminium de la série Al-Mg-Si, lors des processus de vieillissement à basse 

température (vieillissement naturel ou pré-vieillissement), deux distributions différentes d’amas 

sont formées avec un rapport Mg/Si inférieur ou supérieur à l'unité, respectivement. En formant 

des amas avant les processus ultérieurs de vieillissement artificiel, la barrière énergétique pour la 

formation de précipités peut être réduite si la stœchiométrie des amas est plus proche de celle 

des précipités de premier ordre, β'' ayant une stœchiométrie de Mg5Si6. En raison de l'effet négatif 

du vieillissement naturel, c'est-à-dire qu'un vieillissement prolongé de l’alliage immédiatement 

après la trempe provoquerait une diminution du durcissement lors de la cuisson des peintures, 

les fabricants ont commencé à mettre en œuvre le procédé de pré-revenu (PA) avant le 

vieillissement naturel (NA). Séparément, l'ajout de Cu a également augmenté le rapport (Mg + 

Cu)/Si dans les amas qui se forment à température ambiante et avant le vieillissement, réduisant 

ainsi l'effet négatif du vieillissement naturel. Il est donc important de mieux comprendre l'effet 

des divers ajouts d'éléments d'alliage sur l'évolution de la dureté pendant le vieillissement naturel 

NA et pendant le vieillissement naturel secondaire qui suit le pré-revenu (sNA), comme le 

montrent les figures 3a et 3b, respectivement. 

 

Figure 3: Les courbes de dureté montrant les effets des additions de Cu à 0,4 % Mg et 1,3 % Si pour a) la trempe à l'eau 
avec vieillissement naturel, et b) le pré-vieillissement à 80 °C pendant 8 heures avec vieillissement naturel secondaire. 
La dureté de chaque alliage après 30 jours de NA ou de sNA est reliée aux lignes pointillées de couleur correspondante. 
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Le concept de la présence de deux types d’amas différents dans le système d'alliage Al-Mg-Si(-Cu) 

n'est pas identifiable à partir des essais de dureté, mais ces essais peuvent éclairer l'évolution 

générale de la résistance mécanique et de la fraction du soluté qui se regroupe dans les amas au 

cours du temps. A partir de l’état trempé (WQ) (figure 3a), la dureté initiale augmente avec la 

teneur en Cu, ce qui s'étend sur toute la durée du processus jusqu'à 30 jours de NA. Il en va de 

même en ce qui concerne la dureté après pré-revenu pour laquelle les additions de Cu 

augmentent la dureté initiale et augmentent simultanément le temps d'incubation avant que 

l’augmentation de dureté ne reprenne. Après 30 jours de sNA, les mêmes tendances se retrouvent 

avec une augmentation de la dureté coïncidant avec une augmentation de la teneur en Cu. Il est 

intéressant de noter que les duretés après 30 jours NA et sNA ne sont pas égales pour chacun des 

alliages, la dureté NA étant toujours égale ou supérieure à la dureté sNA. Les additions de cuivre 

font augmenter la différence entre la dureté NA et la dureté sNA. Pour délimiter les différences 

entre les types d'amas qui se forment au cours des deux processus, des thermographes de 

calorimétrie différentielle à balayage (DSC) pour les échantillons dans les états NA1m 

(vieillissement naturel 1 mois) et as-PA (après pré-revenu) ont été réalisés, comme le montrent 

les figures 4a et 4b ci-dessous, respectivement, pour déterminer l'évolution de l'intensité 

maximale de dissolution en fonction de la teneur en Cu. 

 

Figure 4: Thermographes DSC montrant les effets des additions de Cu pour des échantillons contenant 1,3 at % Si et 0,4 
à Mg dans les conditions a) NA1m et b) de pré-vieillissement. 

Les thermographes DSC montrent l’effet des additions de Cu sur le comportement de dissolution 

des amas formés pendant NA et PA. La figure 4a montre un pic de dissolution dépendant du Cu, 

centré à 125 °C, dont l'intensité augmente avec la teneur en Cu. Le deuxième pic de dissolution 

(ayant son pic à 235 °C) ne présente pas de dépendance au Cu et a une augmentation très 

progressive à partir de 150 °C. L'intensité totale de dissolution augmente avec la teneur en Cu et 

est en corrélation directe avec une augmentation de la dureté. Dans la figure 4b, il n'y a pas de 

premier pic de dissolution et les thermographes DSC ne montrent aucun comportement de mise 

en amas ou de dissolution avant 175 °C. Le pic de dissolution à 210 °C a une dépendance mineure 

en Cu, son intensité augmentant légèrement avec la teneur en Cu. Comme l'intensité de 

dissolution totale est considérablement inférieure à celle de la condition NA1m, elle correspond 

à la dureté relativement plus faible de la condition as-PA par rapport à la dureté NA1m. Par 

ailleurs, l'inversion de l'effet négatif du vieillissement naturel dans le système de la série 6000 est 

éliminée par l'ajout de Cu à la figure 4a, l'augmentation de Cu faisant passer la température du 

pic de précipitation de 300 °C (sans Cu) à 265 °C (0,3 % Cu). Par ailleurs, l'introduction du pré-

revenu avant le vieillissement artificiel réduit également l'effet négatif du vieillissement naturel, 

de sorte que dans la figure 4b, le pic de précipitation reste à 250 °C, indépendamment de la teneur 

en Cu, à une température nettement inférieure à celles de l'état NA1m. 
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ii) Asymétrie dans les tests de sensibilité de la vitesse de déformation : 

méthodes et analyses 
Après avoir obtenu une compréhension générale des effets des ajouts de composition et du 

traitement sur la formation des amas et leur dureté correspondante, l'accent a été mis sur 

l'évaluation de la sensibilité de la vitesse de déformation des alliages afin de saisir et de 

déterminer un des paramètres critiques contrôlant la formabilité des alliages d'aluminium. La 

définition de la sensibilité de la vitesse de déformation de fait en termes d'évolution du volume 

d'activation inverse avec l'augmentation de la contrainte. Le volume d'activation peut être 

considéré comme la surface balayée par une dislocation entre les deux positions metastables de 

dislocations (avant et après) de l'activation thermique des obstacles contrôlant la déformation 

dans un matériau, multipliée par le vecteur du Burger, b. Le volume d'activation est directement 

lié à la taille, d, et la distribution ou l'espacement, l, des obstacles dans le matériau. 

1

𝑉′
=

1

𝑘𝑇

𝜕𝜎

𝜕 ln 𝜖̇
|

𝑇,Σ
= 𝑏𝑑𝑙 

𝑆 =
1

𝑇

𝜕𝜎

𝜎 𝜕 ln 𝜖̇
=

1

𝑇

𝜕 ln 𝜎

𝜕 ln 𝜖̇
= 𝑘/𝑉′ 

Où T est la température absolue, Σ, est la structure, 𝜎, l'état de contrainte actuel, et 𝜖̇, la vitesse 

de déformation. Dans le cas de la déformation plastique des alliages durcissables par 

vieillissement, les obstacles initiaux présents dans le matériau sont les amas, étant soit plus 

(interception positive) soit moins (interception négative) thermiquement activables que les 

dislocations. Au fur et à mesure que la déformation plastique progresse et que la densité des 

dislocations augmente, cela réduit leur espacement et finit par entraîner un changement de 

l'obstacle contrôlant la vitesse de déplacement des dislocations, entraînant un changement dans 

la sensibilité de la vitesse de déformation. La présentation typique de la sensibilité du taux de 

déformation est de tracer le volume d'activation inverse, 
1

𝑇

Δ𝜎

Δ ln �̇�
 versus 𝜎 − 𝜎0.2% dans ce qui est 

connu comme le diagramme de Haasen. Pour les matériaux purs où les dislocations sont les seuls 

obstacles présents et contrôlent la limite d'élasticité du matériau, la courbe de Haasen a une 

intersection de zéro. En ayant deux espèces différentes d'obstacles présents dans le matériau, des 

amas supposés constants tout au long de la déformation, et des dislocations qui augmentent en 

densité, on s'attendrait à ce que le diagramme de Haasen se manifeste en deux sections séparées, 

une première partie étant caractéristique des amas et la seconde étant liée aux dislocations. De 

plus, il est possible d'effectuer des tests de sensibilité de la vitesse de déformation soit en 

augmentant (ci-après dénommés " changements ascendants "), soit en diminuant (ci-après 

dénommés " changements descendants ") la vitesse de déformation de base. On a constaté qu'il 

y avait une différence dans la sensibilité de la vitesse de déformation des alliages de la série 6000 

entre les variations du changement ascendant et les variations du changement descendant. L'une 

des composantes les plus importantes de cette thèse est la méthode précise utilisée pour 

effectuer les mesures de sensibilité de la vitesse de déformation. Ceci a été obtenu en utilisant ce 

que l'on appelle la méthode de compensation, selon laquelle, lors d'un changement de vitesse, la 

rigidité de la machine de traction change et provoque une perturbation sur l'échantillon à tester. 

La méthode de compensation tient compte de ce changement de rigidité, de sorte que le temps 

nécessaire pour effectuer le changement de vitesse est considérablement réduit, ce qui augmente 

la précision de la mesure et réduit les effets de la déformation ultérieure sur le changement de 

contrainte final. En raison de la nature de la rigidité de la machine, la compensation est plus 

importante lors des essais de changement du changement descendant lorsque la rigidité de la 
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machine diminue, plutôt que lors des essais de changement du changement ascendant lorsque la 

rigidité de la machine augmente. Les figures 5a et 5b, respectivement, illustrent un exemple de 

test de changement du changement descendant non compensé et compensé de façon idéale. 

 

Figure 5: La dépendance temporelle du contrôle de la déformation réelle (en haut) et de la réponse à la contrainte réelle 
(en bas) avec un changement de vitesse de déformation pour un échantillon d'essai avec a) aucune compensation 
(méthode traditionnelle), et b) une compensation idéale. Notez la relaxation des contraintes sur une plus longue période 
pour atteindre une contrainte minimale dans l'essai non compensé par rapport à l'essai compensé. 

Il est évident que le rôle de la compensation diminue non seulement le temps nécessaire pour 

obtenir la contrainte minimale, mais réduit également la production de dislocations subséquente 

et le durcissement qui se produit entre le moment du changement de vitesse et le minimum dans 

la figure 5a. Ce durcissement diminuerait inévitablement le changement de contrainte apparent 

dû au changement de taux et entraînerait une augmentation apparente du volume d'activation 

(valeur inférieure sur la courbe de Haasen). Pour illustrer les différences entre les changements 

du changement ascendant et du changement descendant, la figure 6 présente un exemple de 

diagramme de Haasen réalisé dans le cadre de ce travail. 

 

Figure 6: Le diagramme de Haasen 
montrant les différences entre les tests 
de sensibilité de la vitesse de 
déformation S1/4 (rouge), S1/10 (vert) et S4 
(noir) pour l'échantillon C2S0 dans la 
condition NA1m. Noter l'écart important 
entre les tests de changement (S4) et les 
deux tests de changement (S1/4 et S1/10) 
qui sont identiques et qui dévient après 
environ 40 MPa d'écrouissage ; cette 
transition est marquée par la flèche 
noire. La sensibilité de la vitesse de 
déformation pour les dislocations de la 
forêt dans l'aluminium polycristalline pur 
est présentée à des fins de comparaison. 

D'après la figure 6, il est évident qu'il y a une distinction dans le volume d'activation inverse 

apparent lorsqu'on effectue des tests de changement du changement ascendant et des tests de 
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changement du changement descendant ¼ et 1/10. Immédiatement après la limite d’élasticité, le 

volume d'activation inverse est identique pour les tests de changement du changement ascendant 

et du changement descendant, car on présume que les obstacles au contrôle de la vitesse sont 

dus aux amas formés pendant le traitement thermique du NA1m. Toutefois, après un écrouissage 

suffisant (40 MPa), les deux essais commencent à diverger, ce qui suggère un changement dans le 

mécanisme de déformation entre les essais de variation vers le haut et vers le bas, la sensibilité 

de la vitesse de déformation des essais descendants étant supérieure. On soupçonne que la 

différence de volume d'activation inverse entre les essais du changement ascendant et du 

changement descendant est due à la restauration des produits de dislocation qui contribuent à la 

contrainte d'écoulement mais qui sont facilement restaurés pendant le processus de changement 

de vitesse à la température ambiante. Par ailleurs, il est possible de déterminer les effets des 

ajouts de Si sur la sensibilité de la vitesse de déformation des alliages à l'état NA1m, la courbe de 

Haasen présentée à la figure 7. 

 

Figure 7: Le diagramme de 
Haasen illustrant les effets du Si 
sur l'évolution du volume 
d'activation inverse pendant le 
durcissement sous contrainte. 
Les down-changes ¼ et 1/10 
(symboles fermés) ne sont pas 
identifiés séparément dans ce 
graphique mais sont 
différenciés des up-changes 
(symboles ouverts). Il est clair 
que le volume d'activation 
inverse du rendement à environ 
40 MPa est similaire pour tous 
les alliages, indépendamment 
de la direction du changement 
de vitesse. 

On peut observer dans la figure 7 que le volume initial d'activation inverse ne change pas de façon 

significative avec l'ajout de Si, ni entre les tests de changement du changement ascendant et du 

changement descendant. Les différences entre les tests de variation vers le haut et vers le bas 

apparaissent après 40 MPa d'écrouissage (marqués par la flèche noire), les tests de variation vers 

le bas ayant une augmentation marquée de la sensibilité de la vitesse de déformation. Au fur et à 

mesure que la déformation progresse, on peut constater que les ajouts de Si augmentent le 

volume d'activation inverse dans les tests de changement du changement ascendant et du 

changement descendant, ainsi que la sensibilité de la vitesse de déformation. On a constaté que 

la différence entre les sensibilités de la vitesse de déformation vers le bas et vers le haut 

augmentait avec la teneur en Si, ce qui suggère que la composante de annihilation contribuant à 

l'augmentation du volume d'activation inverse est directement liée à la quantité de Si présente 

dans l'alliage. Deux hypothèses sont faites à cet égard : Les ajouts de Si augmentent le nombre de 

produits de dislocations récupérables fabriqués ou les ajouts de Si facilitent l’annihilation des 

produits de dislocations récupérables. 
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iii) Effets de la composition et du traitement des alliages sur les propriétés 

mécaniques des alliages Al-Mg-Si-Cu 
Disposant désormais d'une méthode fiable pour déterminer la sensibilité de la vitesse de 

déformation pour les variations ascendantes et descendantes, l'attention se porte maintenant sur 

les effets de la composition et du traitement des alliages sur les autres propriétés mécaniques des 

alliages. Dans ce travail, les courbes contrainte-déformation ont été ajustées à l'aide d'une relation 

constitutive en deux étapes ayant une forme de Hollomon 

𝜎 = 𝜎0 + 𝐾𝑚𝑖𝜖𝑛𝑖 = 𝜎0 + 𝐾𝑖𝜖𝑛𝑖𝜖̇𝑚  

Où 𝜎0 est la limite proportionnelle, étant commune aux deux courbes, Kmi, le facteur pré-

exponentiel, ni, l'exposant de durcissement sous contrainte, et m, la sensibilité de la vitesse de 

déformation. La sensibilité de la vitesse de déformation a deux options ; mdc quand la vitesse 

diminue et muc, quand la vitesse augment. Puisque l'ajustement est séparé en deux régions 

séparées, l'ajustement total se compose de 5 paramètres ; un commun 𝜎0, Km1 et n1, et Km2 et n2. 

L'équation peut être convertie pour incorporer les paramètres de sensibilité de la vitesse de 

déformation grâce à 𝐾𝑖 = 𝐾𝑚𝑖/𝜖̇𝑚 qui peut ensuite être utilisée comme équation constitutive 

pour la modélisation par éléments finis en fonction de la vitesse de déformation. Étant donné que 

cette thèse porte surtout sur le comportement des alliages à forte déformation et pendant la 

striction, les valeurs pour la deuxième moitié de l'ajustement seront présentées avec les données 

𝜎0.2%. Les différences dues aux additions de solutés sur les valeurs de 𝜎0.2%, n2, et muc et mdc sont 

montrées dans les figures 8-10 pour les conditions a) NA1m et b) sNA1m, respectivement. 

 

Figure 8: L'évolution de la limite d'élasticité de 0,2 % avec la teneur totale en solutés dans les conditions a) NA1m et b) 
sNA1m. Pour plus de clarté, les effets des additions de Cu à 0,9 et 1,3 at % Si sont reliés par des flèches en pointillés verts 
et bleus, respectivement. Les effets des additions de Si à 0,2 % Cu et 0,4 % Mg sont liés aux flèches en pointillés gris. Les 
effets de l'addition de Mg à 0,9 % Si et 0,3 % Cu sont reliés par des flèches en pointillés rouges. 

Comme décrit précédemment, les différences entre les effets de la composition sur le 

comportement d’écrouissage du système Al-Mg-Si-Cu dépendent directement du processus de 

traitement thermique effectué et des types d’amas formés. Dans l'état NA1m, il a été démontré 

que les additions de Cu jouent un rôle important dans l'augmentation de l'intensité du pic de 

dissolution à basse température (voir Figure 4a) par rapport aux effets des additions de Si qui ne 

jouent pas un rôle important. Ceci se traduit par une réduction significative des effets de 

renforcement du Si par rapport au Mg et au Cu. La situation change dans le cas de la condition 

sNA1m (PA avec 1 mois de sNA) où le renforcement total dû aux additions de solutés semble être 

similaire pour toutes les espèces de solutés. Ceci est en corrélation avec les augmentations plus 

faibles de l'intensité du pic de dissolution après pré-revenu (figure 4b) pour Cu et Si. Il est à noter 

que Mg semble conserver son rôle d'agent durcissant relativement plus fort que les autres espèces 

de solutés. 
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Figure 9: L'évolution du taux de durcissement par écrouissage n2 avec la teneur totale en solutés dans les conditions a) 
NA1m et b) sNA1m. Pour plus de clarté, les effets des additions de Cu à 0,9 et 1,3 at % Si sont reliés par des flèches en 
pointillés verts et bleus, respectivement. Les effets des additions de Si à 0,2 % Cu et 0,4 % Mg sont liés aux flèches en 
pointillés gris. Les effets de l'addition de Mg à 0,9 % Si et 0,3 % Cu sont reliés par des flèches en pointillés rouges. 

Les effets des additions de solutés sur l'exposant de durcissement par déformation dépendent du 

traitement thermique effectué, chaque élément d'alliage sera discuté et des explications possibles 

seront présentées. On suppose que dans l'état NA1m, il y a rétention de Mg en solution solide 

puisqu'il y a encore un durcissement substantiel dans la courbe de dureté NA pour l'échantillon à 

haute teneur en Mg et qu'il a été démontré que Mg en solution augmente le taux d’écrouissage 

des alliages d'aluminium. Ceci contraste avec la condition sNA1m où il y a une élimination plus 

complète de Mg de la solution solide, comme en témoigne non seulement la courbe de 𝜎0.2% dans 

la condition de sNA mais aussi son effet sur l'augmentation de la limite d'élasticité dans la figure 

8b. Le résultat serait que l'absence d'atomes de Mg restant en solution enlèverait l'effet positif 

sur le taux d’écrouissage, tel qu'observé. En ce qui concerne les ajouts de Si, dans l'état NA1m, il 

a été démontré que les ajouts de Si augmentent la cinétique NA de telle sorte qu'après 1 mois de 

NA, il y a une réduction de Si libre en solution réduisant le durcissement sous contrainte malgré la 

présence de Si supplémentaire dans l'alliage et son rôle mineur d’augmentation de la limite 

élastique indiqué sur la figure 8a. Dans l'état sNA1m, c'est l'inverse qui se produit : le Si 

supplémentaire se joint moins aux amas de sorte qu'il y a un excès de Si en solution, ce qui 

entraîne un comportement accru d’écrouissage. En gardant à l'esprit l'idée d'un soluté libre en 

solution augmentant le durcissement par écrouissage, l'ajout de Cu au système à 0,9 % de Si a une 

augmentation plus positive par rapport à 1,3 % de Si, probablement due à l'augmentation de la 

cinétique de NA trouvée dans le système à 1,3 % de Si réduisant la quantité totale de Cu libre en 

solution. Dans l'état sNA1m, les effets des additions de Cu sont encore positifs alors que les 

différences entre les additions de Cu à 0,9 et 1,3 at % Si disparaissent. 
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Figure 10: L'évolution des sensibilités de la vitesse de déformation des muc (cercles fermés) et des mdc (cercles ouverts) 
avec la teneur totale en solutés dans les conditions a) NA1m et b) sNA1m. Pour plus de clarté, les effets des additions de 
Cu à 0,9 et 1,3 at % Si sont reliés par des flèches en pointillés verts et bleus, respectivement. Les effets des additions de 
Si à 0,2 % Cu et 0,4 % Mg sont liés aux flèches en pointillés gris. Les effets de l'addition de Mg à 0,9 % Si et 0,3 % Cu sont 
reliés par des flèches en pointillés rouges. 

Enfin, les différences entre les additions de soluté sur les muc et le mdc sont moins importantes que 

les propriétés précédentes où les additions de Si ont un effet positif sur les deux paramètres de 

sensibilité de la vitesse de déformation dans les deux conditions de traitement thermique. Dans 

l'état NA1m, à 0,9 % de Si, les additions de Cu résultent en une légère diminution de la muc tandis 

qu'à 1,3 % de Si, il y a une augmentation nette. Cet écart est probablement attribuable à 

l'élimination accrue du Cu libre de la solution en raison de l'accélération de la cinétique causée 

par l'ajout de Si. Dans l'état sNA1m, à 0,9 % en % de Si, les additions de Cu provoquent une forte 

diminution de la muc couplée à un pic de de mise en amas observable dans le thermographe DSC 

as-PA où la présence de soluté libre est généralement caractérisée par une diminution ou une 

contribution négative à la sensibilité de la vitesse de déformation lorsque cet effet est réduit dans 

le cas 1,3 % en Si. Les ajouts de magnésium entraînent une très légère augmentation du muc et du 

mdc dans l'état sNA1m probablement dû à l'incorporation du soluté dans les amas. Dans l'état 

NA1m, les ajouts de Mg ont une petite contribution négative à la muc probablement due à la 

rétention de Mg libre en solution qui augmente le taux de d’écrouissage alors qu'il y a un très petit 

effet positif dans le mdc. 

iv) Essai de sensibilité de la vitesse de déformation à basse température : 

profil thermique des obstacles 
Une autre méthode de caractérisation des amas et des obstacles au contrôle de la déformation 

est la variation de l'énergie thermique disponible dans le système lors d'expériences de sensibilité 

de la vitesse de déformation. Compte tenu de l'équation générale de la vitesse de déformation 

𝜖̇ = 𝜖̇0 exp (
𝛥𝐺(𝜎)

𝑘𝑇
) 

Où 𝜖̇ est la vitesse de déformation imposé, 𝜖̇0 est la vitesse de déformation de base, Δ𝐺(𝜎), 

l'énergie d'activation en fonction de la contrainte, k, la constante de Boltzmann et T, la 

température en absolu, en modifiant la température de test, il est possible de modifier la quantité 

d'énergie thermique, kT, disponible pour le système. Ce changement de l'énergie thermique 

disponible entraîne une modification du volume d'activation à mesure que les nouvelles positions 

stables des dislocations sont modifiées. Comme nous l'avons montré précédemment, un 

changement de la vitesse de déformation appliquée, Δ ln 𝜖̇, induit une modification de la 

contrainte, Δ𝜎, de sorte que la contrainte du matériau peut être liée au volume d'activation 

inverse, 1/𝑉′ comme suit 
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Ce qui peut alors être lié à la sensibilité de la vitesse de déformation   

𝑆 =
1

𝑇

Δ𝜎

𝜎 Δ ln 𝜖̇
=

1

𝑇

Δ ln 𝜎

Δ ln 𝜖̇
= 𝑘/𝑉′ 

Cependant, en utilisant l'équation de Taylor (𝜎 − 𝜎0.2%)/𝑀 = 𝛼𝜇𝑏/𝑙 il est possible de 

directement résoudre la distance d'activation d1 en déterminant la sensibilité du taux de 

déformation de la région dominée par les amas S1, de telle sorte que 

𝑑1 =
𝑘

𝑆1𝛼𝜇(𝑇)𝑏2
 

Où 𝛼 est la résistance à l'obstacle et µ(T), le module de cisaillement dépendant de la température. 

Il est également possible de déterminer la zone d'activation, 𝑎′ = 𝑑1𝑙, de manière à pouvoir 

inclure à la fois une mesure indirecte de la taille des amas, d1, et leur distribution (ou espacement), 

l. En effectuant les mesures de sensibilité de la vitesse de déformation à différentes températures, 

il est possible de déterminer les profils d'obstacles à travers les variations de d1, et/ou les effets 

de la distribution des obstacles. Un schéma montrant le profil thermique d'un exemple d'obstacle 

est illustré ci-dessous à la figure 11.  

 

Figure 11: Schéma de profil force-distance montrant les effets de la température sur l'évolution de la distance 
d'activation, d, à 78 (bleu), 198 (jaune) et 294 K (rouge). Il est à noter que les énergies thermiques sont additives de sorte 
qu'à 294 K, les trois régions colorées sont incluses dans le terme kT. La forme du profil dépend strictement du type 
d'obstacles présents et le schéma ci-dessus montre le profil d'un obstacle de type plus athermique (amas ou précipité) 
versus un obstacle plus thermique (atome de soluté). Ces valeurs peuvent ensuite être tracées sur un diagramme de 
distance d'activation en fonction de la température (illustré à droite) pour observer comment elles changent avec la 
température. 

Afin de générer et de commencer à comprendre la forme des obstacles présents dans l'alliage, 

des mesures de sensibilité de la vitesse de déformation ont été effectuées à 78, 198 et 294 K pour 

les neuf alliages dans les trois conditions expérimentales. La figure 12 montre la courbe de Haasen 

pour un seul alliage (C2S1) à l'état NA1m aux trois températures.  
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Figure 12: Diagramme de Haasen 
montrant l'évolution du volume 
d'activation inverse avec écrouissage à 
78 (bleu), 198 (jaune) et 294 K (rouge) 
pour l'échantillon C2S1 dans la 
condition NA1m. La pente S1 est 
indiquée par une ligne pointillée de la 
couleur correspondante, tandis que la 
grande pente de déformation, S, est 
indiquée par une ligne pointillée noire. 
Notez que S1 pour les essais à 198 et 294 
K sont presque identiques, ce qui 
suggère qu'il n'y a pas de changement 
significatif dans la distance d'activation 
avec la température. 

Au fur et à mesure que la température d'essai change, il y a un changement clair à la fois dans 

l'interception, qui représente la densité des obstacles, et dans la pente S1, qui représente leur 

capacité relative à subir une activation thermique. A 198 et 294 K, S1 ne semble pas changer, et 

l'interception suggère que les obstacles se comportent de manière très similaire à ces deux 

températures. Si l'on compare S1 à S à 294 K, la sensibilité du taux de déformation augmente de 

façon significative en raison de l’annihilation des produits de dislocation récupérables produits 

pendant la déformation, comme on l'a vu précédemment dans les différences observées entre les 

essais de variation du changement ascendant et du changement descendant. A 198 K, il n'y a 

presque pas de différence entre S1 et S, ce qui suggère que les obstacles se comportent de la 

même manière que les dislocations et que l'énergie thermique est insuffisante pour permettre 

l’annihilation des produits d’interaction des dislocations produits pendant les changements 

descendant. 78 K, l'interception et S1 augmentent, ce qui suggère que la densité des obstacles en 

cours d'activation augmente et que leur distance d'activation diminue. Par comparaison, S est 

significativement inférieur à S1, ce qui indique que la distance d'activation des obstacles est 

beaucoup plus petite, de sorte que les dislocations doivent être beaucoup plus proches des 

obstacles avant l'activation thermique que les dislocations. Pour les effets de chaque élément 

d'alliage, il est possible de tracer le profil distance-température et de le comparer à celui des 

dislocations à chaque température. Pour des raisons d'espace, les exemples d'additions de Mg et 

de Si à 0,3 % at % Cu seront montrés pour les conditions AQ, sNA1m, et NA1m. Celles-ci sont 

illustrées ensemble à la figure 13. 
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Figure 13: L'évolution de la 
distance d'activation avec 
la température montrant 
les effets des ajouts de Mg 
(gris) et de Si (bleu) par 
rapport à l'alliage de base 
(vert), tous ayant 0,3 at% 
Cu. Les conditions sNA1m 
(triangle), NA1m (carré) et 
AQ (diamant) sont 
comparées à l'aluminium 
polycristalline pur (ligne 
pointillée noire) pour servir 
de référence. 

Comme on l'a montré précédemment pour l'alliage C2S1 à l'état NA1m, la sensibilité de la vitesse 

de déformation S1 était la plus élevée à 78 K, ce qui donne le plus petit d1, les mêmes tendances 

que pour tous les alliages et conditions. Pour chacun des alliages, la condition AQ a un d1 le plus 

proche de la ligne de dislocation, car c'est la condition la plus proche d'une solution solide, ce qui 

donne la plus grande distance d'activation, les atomes solutés étant des obstacles très faibles et 

l'interaction soluté-dislocation étant dominée par le champ de contrainte local. Pour tous les 

alliages, la condition NA1m a une distance d'activation plus petite que la condition sNA1m, 

indépendamment de la température d'essai, ce qui suggère que les amas formés dans la condition 

NA1m sont plus forts ou plus gros. Ceci est confirmé par le fait que la limite d'élasticité 𝜎0.2% est 

plus élevée pour les alliages à l'état NA1m que pour les alliages à l'état sNA1m. A 78 K, il est difficile 

de discerner quel alliage a le plus petit et le plus grand d1 mais à 198 K, cela devient plus simple, 

l'alliage riche en magnésium ayant la plus petite distance d'activation, et l'alliage riche en silicium, 

la plus grande. Il est intéressant de noter que d1 de l'alliage riche en silicium ne change pas de 

façon significative entre 198 et 294 K, ce qui suggère que ces amas sont de nature plus athermique 

(voir figure 11), peut-être parce qu'ils sont plus gros, car il y a une élimination plus complète du 

soluté de la solution solide avec le Si ajouté, voir le graphique de dureté NA de la figure 3a. L'alliage 

de base (vert dans figure 13) et l'alliage de magnésium ajouté présentent tous deux une forte 

augmentation de la distance d'activation, ce qui suggère que ces amas sont de nature plus 

thermique et qu'il peut y avoir une composante du soluté qui contribue à la plus grande distance 

d'activation suggérée par le durcissement continu présenté par ces alliages même après 30 jours 

de NA et sNA. Il semblerait que s'il reste une partie du soluté en solution, il y a une plus grande 

rétention du soluté dans la condition NA1m car ces distances d'activation sont plus grandes que 

dans la condition sNA1m. Enfin, pour tous les alliages à des températures supérieures à 78 K, les 

obstacles formés lors des traitements thermiques sont considérablement plus forts que les 

dislocations, ayant des distances d'activation bien inférieures à celles du PC-Al. Le début de la 

restauration peut être observé sur la ligne PC-Al, avec un début à 210 K où la distance d'activation 

commence à diminuer. 
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v) Analyse de la striction dans les alliages d'aluminium durcissant par 

vieillissement : effets de la sensibilité de la vitesse de déformation et de 

l’écrouissage 
La dernière composante de cette thèse consistait à appliquer la relation constitutive à la 

modélisation par éléments finis afin de mieux comprendre les effets du durcissement par 

déformation et de la sensibilité de la vitesse de déformation à la fois du changement ascendant 

et du changement descendant sur la formation et la propagation de la striction. En général, 

l'apparition d'une striction diffuse est dictée par le critère de Considère selon lequel une fois que 

le taux de durcissement par déformation, 𝑑𝜎/𝑑𝜖 diminue en dessous de la contrainte 

d'écoulement, 𝜎, la localisation de la déformation aura lieu. Cependant, comme la relation 

constitutive dictant la contrainte d'écoulement est donnée par une relation de Hollomon 

modifiée, 𝜎 = 𝜎0 + 𝐾𝜖𝑛𝜖̇𝑚, le critère de Considère devient légèrement plus complexe et 

s'exprime comme suit 

𝑑𝜎

𝑑𝜖
=

𝐾𝜖𝑛𝜖̇𝑚

𝜖
(𝑛 + 𝑚

𝜕 ln 𝜖̇

𝜕 ln 𝜖
) = 𝜎0 + 𝐾𝜖𝑛𝜖̇𝑚  

L'effet intéressant est que lors d'une déformation uniforme, le terme 
𝜕 ln �̇�

𝜕 ln 𝜖
 est nul de sorte que le 

critère général Considère est rétabli. Cependant, lors de la formation d'une striction diffuse, 
𝜕 ln �̇�

𝜕 ln 𝜖
 

devient non nul de sorte qu'il y a un effet de la sensibilité de la vitesse de déformation. La figure 

14 montre le schéma d'un essai de traction conduit au-delà du critère de Considère de sorte qu'il 

existe un profil de vitesse de déformation non uniforme et identifie les régions intérieures et 

extérieures à la striction où la vitesse de déformation locale est supérieure et inférieure à la vitesse 

de déformation appliquée, respectivement. Des études approfondies ont été réalisées sur les 

effets de la sensibilité de la vitesse de déformation sur le comportement d'allongement post-

uniforme des matériaux, ce qui permet, en augmentant la sensibilité de la vitesse de déformation, 

soit de stabiliser la striction diffuse, soit de permettre sa propagation, ce qui est le cas par exemple 

dans les matériaux super-plastiques. Cependant, en raison de la nature délicate de la mesure 

précise de la sensibilité de la vitesse de déformation vers le bas, seule la sensibilité de la vitesse 

de déformation vers le haut est généralement utilisée pour la région à l'intérieur de la zone de 

striction où la vitesse de déformation a augmenté alors que peu ou pas d'attention a été placée 

sur la région externe à cette zone. 

 

Figure 14: Schéma montrant la 
distribution de la vitesse de 
déformation le long de la 
longueur de la jauge, à la fois à 
l'intérieur du col, avec 𝜖̇𝑖𝑛𝑡 > 𝜖̇0, 
et à l'extérieur du col, avec𝜖̇𝑒𝑥𝑡 <
𝜖̇0, où 𝜖̇0 est la vitesse de 
déformation de base. Dans 
l'exigence d'avoir une distribution 
continue de la déformation et du 
taux de déformation, il y aura 
inévitablement une distance, 𝑑�̇�0

, 

où la vitesse de déformation 
actuel est la vitesse de 
déformation de base.  

Comme le montre le schéma ci-dessus, en se déplaçant le long de la distance de l'échantillon de 

traction, il existe trois régions : a) une région intérieure du col, ayant une vitesse de déformation 

𝜖̇𝑖𝑛𝑡 étant contrôlée par muc, b) une région extérieure du col, ayant une vitesse de 



21 

 
 
 

déformation 𝜖̇𝑒𝑥𝑡 étant contrôlée par mdc, et c) une région de transition ayant la vitesse de 

déformation de base, 𝜖̇0. 

𝜎𝑢𝑐 = 𝜎0 + 𝐾𝑢𝑐𝜖̇𝑚𝑢𝑐𝜖𝑛     (a) 

𝜎𝑑𝑐 = 𝜎0 + 𝐾𝑑𝑐𝜖̇𝑚𝑑𝑐𝜖𝑛      (b) 

En raison des vitesses de déformation uniques et locales, l'intérieur du cou sera contrôlé par 

l'équation (a) et l'extérieur par l'équation (b), ces équations étant à la base de la relation de 

Considère dans leurs régions respectives. Comme on l'a vu précédemment, le mdc est supérieur 

au muc, de sorte qu'une diminution de la vitesse de déformation à l'extérieur du cou peut entraîner 

une diminution plus importante de la contrainte d'écoulement que l'augmentation due à la vitesse 

de déformation locale accrue sur l'intérieur du cou. L'interaction entre ces deux régions peut 

permettre de mieux comprendre l'adaptation des matériaux par l'intermédiaire des deux 

sensibilités de la vitesse de déformation afin de retarder l'apparition d’une striction localisée. 

Nous avons réalisé une étude paramétrique pour faire varier les valeurs de muc et mdc à 0 ou 0,05 

avec deux exposants de durcissement d’écrouissage différents, afin de mieux comprendre les 

effets des sensibilités de la vitesse de déformation sur la formation, la propagation, la stabilisation 

et la localisation d'une striction générée artificiellement. Les modèles ont été déformés jusqu'à ce 

que la région uniforme du modèle obtienne la déformation répondant au critère de Considère, 

0.265 pour les paramètres n = 0.375 et 0.281 pour les paramètres n = 0.400, respectivement. Le 

modèle a été exécuté en utilisant Abacus/CAE 6.14.3 en utilisant la relation constitutive 

susmentionnée avec une vitesse de déformation de base imposé, 𝜖̇0 = 5𝑥10−4 𝑠−1, identique aux 

vitesses de déformation de base des expériences de sensibilité de la vitesse de déformation. Pour 

des informations plus détaillées sur les conditions du modèle et sur le maillage, voir le chapitre 8 

dans le corps de la thèse. Un exemple de distribution de la déformation et de la vitesse de 

déformation d'un échantillon jusqu'à la limite de l'allongement uniforme sont illustrées à la figure 

15 ci-dessous. 

 

Figure 15: Les distributions a) de déformation et b) de vitesse de déformation de l'échantillon après avoir été déformées 
à 𝜖𝐷 = 0.241 (dans la région uniforme). Il est clair que la déformation et la vitesse de déformation les plus élevées se 
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situent au centre du cou et diminuent jusqu'à un minimum à la limite du cou artificiel, mais ce minimum est bien inférieur 
à la vitesse de déformation imposée de 5 x 10-4 s-1 et est dû à l'insertion du cou artificiel.  

On voit clairement qu'il y a une région ayant à la fois une grande déformation et une grande 

concentration de vitesse de déformation qui se trouve au centre du cou. La déformation et la 

vitesse de déformation diminuent en s'éloignant (le long de l'axe des y) du cou jusqu'à atteindre 

une distance minimale de 1.5 mm ; l'emplacement de l'apparition du cou artificiel. Les figures 16 

et 17 montrent les profils de déformation de sortie et les profils de distance de vitesse de 

déformation, respectivement, pour les 4 paramétriques ayant un exposant d’écrouissage de 0.375 

après avoir été déformés en 𝜖𝐷  de 0.265. 

 

Figure 16:  L'évolution de la 
déformation prédite par 
FEM en fonction de la 
distance du centre du cou 
artificiel pour les 
échantillons paramétriques 
ULDL (vert), ULDH (gris), 
UHDL (bleu) et UHDH 
(rouge). Les lignes pointillées 
verticales sont les lignes d0.05 
et les lignes pointillées sont 
les lignes d0.10. Ces lignes 
aident à illustrer l'évolution 
générale de la distribution 
de la déformation le long du 
cou formé. 

Les effets de la muc et de la mdc sont facilement perceptibles dans l'évolution de la distribution des 

déformations à partir du centre du cou. L'augmentation de muc ou de mdc a une forte influence sur 

la diminution de la contrainte au centre du cou, tandis que la combinaison de l'augmentation de 

la muc et de mdc à l'unisson entraîne une diminution supplémentaire. Comme il est important de 

comprendre non seulement la déformation au centre du cou mais aussi la distribution de la 

déformation, la distance pour une chute de 0.05 et 0.10, d0.05 et d0.10, respectivement, est 

indiquée. Il n'est pas surprenant que les paramètres ULDL donnent la distribution de déformation 

la plus radicale car il n'y a pas d'effet de 𝑚
𝜕 ln �̇�

𝜕 ln 𝜖
 car m est nul, de sorte que lors de la formation 

d'un col diffus, il n'y a pas de durcissement supplémentaire dû à la vitesse de déformation. Ceci 

est en contraste avec le fait que 
𝜕 ln �̇�

𝜕 ln 𝜖
 soit négatif entraîne une chute de contrainte en dehors du 

cou de sorte que le critère de Considère est rempli en dehors du cou et aussi à l'intérieur parce 

que la muc est nul. La situation est inversée pour les paramètres UHDL : 
𝜕 ln �̇�

𝜕 ln 𝜖
 est positif à l'intérieur 

du cou et nul à l'extérieur du cou, de sorte que le durcissement supplémentaire causé par muc fait 

que le critère Considère n'est pas respecté à l'intérieur du cou en raison du durcissement accru 

mais est toujours respecté à l'extérieur du cou, entraînant la propagation du cou. Ces effets sont 

plus apparents dans les distances d0.10, de sorte que l'effet de muc sur la délocalisation de la 

déformation à l'intérieur du cou est supérieur à celui de mdc. Enfin, dans le cas où muc et mdc sont 

tous deux augmentés comme dans le cas de l'UHDH, les effets du durcissement local à l'intérieur 

du cou et de la chute de contrainte dans les régions extérieures entraînent la délocalisation et la 

propagation du cou et donnent les plus faibles concentrations de déformation dans et autour du 

cou. 
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Figure 17: L'évolution du taux 
de déformation avec la 
distance du centre du cou 
artificiel dans le FEM pour les 
échantillons paramétriques 
ULDL (vert), ULDH (gris), UHDL 
(bleu) et UHDH (rouge). Les 
lignes pointillées verticales en 
b) sont les distances requises 
pour obtenir la vitesse de 
déformation de base, 𝑑�̇�0

. Les 

triangles montrent la pente de 
l'indicateur de déformation 
avec la distance près du centre 
du cou pour faciliter la 
comparaison entre les 
échantillons.  

Comme la même méthode a été employée pour les effets de la muc et du mdc sur la distribution de 

la vitesse de déformation autour de la striction, il est possible de comprendre l'évolution de celle-

ci par accumulation de la déformation. Il est clair que muc et la mdc agissent individuellement, et à 

l'unisson, pour limiter l’augmentation de la vitesse de déformation au centre du cou, bien que leur 

effet composé soit moins important qu'une augmentation individuelle, par rapport au cas des 

ULDL. Les paramètres UHDL entraînent une diminution de la vitesse de déformation à une 

distance inférieure à 𝑑𝜖𝐷
, ce qui fait que la vitesse de déformation augmente en dehors de cette 

région. Cette augmentation à grande distance entraîne une accumulation de la contrainte à 

distance du centre du col et indique que muc agit en prolongeant la durée de la striction diffuse 

avant une transition vers une striction localisée. L'évolution des vitesses de déformation pour 

UHDL est légèrement inférieure à celle pour ULDH et fournit des preuves supplémentaires de 

stabilisation du cou. Bien que la vitesse de déformation du col de l'ULDH soit inférieure à celle de 

l'UHDL, la distribution de la vitesse de déformation autour du centre du col est plus abrupte, de 

sorte que la partie du col sensible à la vitesse (située à l'extérieur de 𝑑�̇�0
) est considérablement 

réduite et indique que le col est plus localisé. Enfin, l'augmentation de muc et de mdc dans le cas 

de UHDH entraîne non seulement une réduction de la vitesse de déformation au centre du cou, 

mais aussi une réduction significative de la distribution de la vitesse de déformation sur la 

longueur de l'échantillon. Cela se reflète dans le profil de déformation où il n'y a pas de grande 

différence dans la distribution de la déformation le long de la longueur de l'échantillon, ce qui 

indique clairement la lenteur de la formation d'un col diffus qui finira par se localiser en cas de sur 

contrainte importante.  

En général, on peut dire qu'il est plus avantageux d'augmenter à la fois muc et mdc pour permettre 

à la fois la stabilisation et la propagation du col après la fin de l’allongement uniforme. L'effet 

durcissant de muc semble être plus important que l'effet adoucissant de mdc. On peut dire que la 

plus grande partie de la propagation du col (augmentant la vitesse de déformation à l'extérieur 

du col) est contrôlée par muc tandis que les propriétés de localisation du col sont dues au 

comportement adoucissant extérieur causé par mdc. La délocalisation et la propagation du col ne 

sont probablement possibles que lorsque muc et mdc sont très élevés, comme c'est le cas pour les 

matériaux super-plastiques. Bien qu'ils ne soient pas montrés ici, les effets de l'augmentation de 
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l'exposant d’écrouissage entraînent une diminution des effets de muc et de mdc en raison de la 

résistance accrue de l'échantillon en déplaçant le début du col diffus vers des déformations plus 

élevées (et des forces supérieures) de sorte que le durcissement ou le ramollissement ajouté sur 

le col intérieur et extérieur, respectivement, induisent une variation d’une fraction inférieure de 

la résistance totale du matériau. Cela est dû au fait que la partie du critère de Considère contrôlant 

le composant de durcissement par déformation après le col, 𝑛 + 𝑚
𝜕 ln �̇�

𝜕 ln 𝜖
, nécessite une 

augmentation ou une diminution plus importante du taux de déformation local pour produire un 

effet équivalent à une valeur n inférieure. Par ailleurs, l'augmentation de muc ou de mdc aurait le 

même effet que l'augmentation ou la diminution du taux de déformation, mais avant l'apparition 

d'un col local. 

CONCLUSIONS 
Les conclusions suivantes peuvent être tirées à l'issue de ces travaux : 

 Les types d’amas formées pendant NA et PA ne sont pas les mêmes 

o Pendant NA, Cu et Mg ont une forte influence sur la formation des amas capables 

de se dissoudre à basse température. Les ajouts de Si n'augmentent pas de façon 

significative la formation de ces amas, mais ils contribuent à réduire davantage 

leur température de dissolution. 

o Au cours du pré-revenu, un seul type d'amas semble se former, il se dissout à des 

températures supérieures à celles qui se sont formés au cours du NA. Les 

additions de Cu, Mg et Si semblent toutes augmenter l'intensité de dissolution 

des amas. Il a été démontré que le PA limite l'effet négatif du vieillissement 

naturel souvent observé dans les alliages Al-Mg-Si-Cu. 

 Il y a une grande différence entre les volumes d'activation inverse et les sensibilités de la 

vitesse de déformation en variation ascendante (plus petits) et en variation descendante 

(plus grands). L'utilisation de la méthode de compensation pendant les essais fait partie 

intégrante de l'obtention de mesures précises et fiables, en particulier pendant les essais 

descendants. 

 L'expression des additions de Cu, Mg et Si sur les propriétés mécaniques obtenues dans 

la série 6000 dépend directement du traitement thermique effectué. 

o En présence de NA, Cu et Mg ont une influence nettement plus grande que Si sur 

l'augmentation de la limite d'élasticité. 

o Pendant le PA, tous les éléments d’alliages contribuent de manière égale à 

l'augmentation de la limite d'élasticité. 

o L’ajout de Si augmente à la fois la sensibilité de la vitesse de déformation en 

variation ascendante et descendante, indépendamment du traitement 

thermique. Les ajouts de Cu et de Mg n'ont pas tendance à affecter celle-ci. 

 Il est possible de déterminer le profil d'interaction amas-dislocation en effectuant des 

mesures de sensibilité de la vitesse de déformation à différentes températures.  

o La distance d'activation des alliages à l'état sNA1m est généralement inférieure à 

celle de l'état NA1m, ce qui suggère une élimination plus complète du soluté de 

la matrice. 

o Il a été démontré que l'ajout de Si réduit la distance d'activation à la température 

ambiante, ce qui suggère une élimination plus complète du soluté de la matrice, 

comme l'indiquent les courbes de dureté NA et sNA.  

 Il a été démontré que l'augmentation de la muc et de mdc ensemble réduisait l'intensité de 

la vitesse de déformation au centre du col de striction en conjonction avec la vitesse de 
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déformation et la distribution de la déformation sur toute la longueur du col. La distance 

entre le centre du col et la vitesse de déformation de base s'est avérée insuffisante pour 

définir la taille du col, mais elle joue un rôle important dans la compréhension de 

l'évolution de celui-ci.  

o La majeure partie de l'allongement post-striction est déterminée par le paramètre 

muc en raison de l'effet très localisé de l'augmentation de la vitesse de 

déformation à l'intérieur du col. 

o Le composant mdc n'agit que sur les régions extérieures au col, étant de taille 

beaucoup plus importante de sorte que son effet est effectivement "dilué". 

o Dans l'étude de l'échantillon, la distance par rapport à la vitesse de déformation 

de base est contrôlée initialement par le gradient de déformation et ensuite par 

l'intensité de la vitesse de déformation au centre du col.  
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1 Introduction 
The environmental regulations surrounding the reduction of fuel emissions in transport have 

driven the necessity for improving automotive fuel efficiency [1], specifically in passenger vehicles. 

The objective of reducing the emissions can be undertaken by many methods; improved engine 

performance, enhanced filtering systems, and weight reduction, which has been the focus of most 

automotive manufacturers (AMs). Switching from higher density, stronger, more ductile steels to 

lighter, less ductile and formable aluminium alloys has been shown to be a suitable method for 

reducing fuel consumption through weight reduction. However, the most cost-effective sheet 

aluminium alloys used for body-in-white (BIW) applications, the 6000-series, still display a lack of 

formability to meet design requirements imposed during forming whereby cracking occurs at 

sharp bends [2]. The current alloys used are AA6111 (USA) and AA6016 (EU) both of which have 

sufficient strength, corrosion resistance, and surface finish but lack the formability demands of 

suppliers [3], [4]. As such, there is a strong demand to understand the influence of the composition 

and heat treatments in order to optimize the formability of this alloys series such that sharper 

bends and/or reduced sheet thicknesses may be implemented allowing for improved aesthetics 

and reduced vehicle weight.  

The 6000-series alloys of aluminium used in BIW applications are based on the ternary Al-Mg-Si 

system with the option of Cu additions. Similar to the 2000-series (Al-Cu) and 7000-series (Al-Zn) 

alloys, the 6000-series are age-hardenable alloys indicating that they may harden over time. 

Solute atoms (Mg, Si, and Cu) diffuse to form metastable obstacles (known as clusters and 

precipitates, depending on their size, stoichiometry, stability, etc) which influence the plastic 

deformation response of the automotive sheets during forming, and strengthen the material after 

final heat treatment. Conventionally, the alloys used for BIW applications are cast at a certain 

composition, hot-rolled to reduce the thickness, solutionized, and finally, cold-rolled to a final 

gauge. They may undergo an independent recrystallization step, or may be recrystallized at the 

same time as a final solution treatment, used to revert any precipitates formed during previous 

processes to a “random” solid solution. The final step prior to shipment to automotive 

manufacturers is either to ship the sheet directly, or to apply a stabilization treatment (pre-ageing) 

to reduce the formation of clusters during the shipping process. Once received, the AMs cut the 

sheet to size, and stamp the component into its desired shape (door, roof, hood, etc), and is then 

painted. The now painted BIW component passes through a paint-drying process, known as the 

paint-bake (PB) cycle, equivalent to 20 minutes at 185°C [3], used to both cure the paint and 

simultaneously strengthen the alloy by forming precipitates. The effects of composition and heat 

treatment on the forming response of the sheet into its final shape is the process that must be 

improved and more thoroughly understood.  

1.1 Thesis approach 
The basis of understanding the influence of composition on the formability of 6000-series 

aluminium alloys requires connecting the different length-scales involved from atomic to 

millimeter. The microstructure state prior to the forming operation is characterized by the 

distribution of solutes into clusters, whose characteristics are very elusive, due to the lack of 

specific crystallography, defined interfaces with the aluminium matrix, and the characteristic 

composition. However, different characterization techniques such as atom probe tomography 

(APT), differential scanning calorimetry (DSC), and Vickers micro-hardness testing (VH) can be 

used to obtain complementary information on the state of clustering as a function of processing 

parameters and alloy composition. The use of tensile and strain rate sensitivity (SRS) tests allows 



  28 

 
 

capturing the mechanical properties linked to the formability behaviour. Connecting these 

observed mechanical properties and corresponding analyses, to the microstructure observations 

and implementation into finite element modeling (FEM) should allow for a more complete 

understanding of the role played by each solute species and heat treatments on the formability 

of 6000-series aluminium alloys.  

The main objective of this research project is to explore the connection between the composition 

and the formability of 6000-series aluminium alloys, coupled with the state of clustering through 

two common heat treatment processes, namely natural ageing and pre-ageing. For this purpose, 

the influence of Cu, Si, and Mg on the formability are independently studied through systematic 

variations of the alloy composition in an attempt to isolate and understand the relative 

contributions of each alloying element to the mechanical properties and formability in this alloy 

series. A total of nine alloys have been studied. The thesis will be separated into chapters based 

on a bottom-up approach whereby each section will rely upon the previous, beginning with the 

effects of composition and heat treatments on the microstructure, to aid in developing the overall 

comprehension on the factors influencing formability. Each chapter after the literature review and 

methodology contained within the thesis may be treated as a stand-alone publication. Following 

the presentation of the papers, there will be a general discussion, conclusion, and perspectives in 

order to connect the themes of each of the papers into the general framework of this thesis. A 

summary of the papers contained within this thesis are presented below: 

1.1.1 Formation of clusters during natural and pre-ageing of Al-Mg-Si-Cu alloys 
Complimentary microstructure characterization by differentially scanning calorimetry and Vickers 

hardness testing are used to understand the formation of clusters during natural and pre-ageing 

processes as well as the subsequent artificial ageing responses. The effect of alloy composition 

will be related to the types and thermal stability of the clusters that form, along with the evolution 

of their kinetics through both direct natural ageing, and pre-ageing with secondary natural ageing 

processes. Differences between these two kinetic sequences will be discussed. Furthermore, the 

compositional effects on the subsequent artificial ageing kinetics and paint bake response in the 

alloys will be presented and discussed.  

1.1.2 Asymmetry in strain rate sensitivity testing: methods and analyses 
Conventionally, strain rate sensitivity (SRS) testing is performed using an instantaneous increase 

in the strain rate (up-change) which is important for understanding the stress-state at the interior 

of necking where the local strain rate increases. The testing apparatus used in this work allowed 

also for applying a decrease in the applied strain rate (down-change) whereby an asymmetry 

between down-change and up-change SRS tests within the Haasen plot is shown after a certain 

degree of plastic deformation. Possible origins of this asymmetry are discussed and analysis 

methods are developed and tested in order to connect the effects of Si content to the SRS 

asymmetry. The asymmetry is suspected to be due to sub-micron recoverable dislocations 

generated during deformation as the up-change and down-change tests only show asymmetry 

after a certain flow stress.  

1.1.3 Effects of alloy composition and processing on the mechanical properties of 

Al-Mg-Si-Cu alloys 
The mechanical properties of the nine 6000-series aluminium alloys having various Mg, Si, and Cu 

contents are examined through both tensile and strain rate sensitivity tests for the two heat 

treatment conditions, namely water quenched and naturally aged, and pre-aged followed by 

secondary natural ageing. The changes in the yield stress, strain hardening rate and capacity, 
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uniform and post-uniform elongations, as well as constitutive parameters are connected to the 

types of clusters formed by the two heat treatment schedules with varying solute contents. These 

properties are related back to the observations made in the DSC thermograms and the specific 

cluster dissolution intensity and thermal stability to explain the different observed phenomena.  

1.1.4 Characterization of thermally activated dislocation glide in naturally aged Al-

Mg-Si-Cu Alloys: what it tells us about clusters 
By changing the testing temperature during both tensile and strain rate sensitivity tests, the 

amount of thermal energy within the system is adjusted. The reduction in thermal energy available 

to the system results in the suppression of high-energy processes (such as dislocation recovery, 

point defect diffusion, etc) which inevitably changes the deformation behaviour of the tested 

alloys. Each of the nine alloys have been tested in three heat treatment conditions, at three 

different temperatures, with each displaying two domains of strain rate sensitivity, S1 (directly 

after yielding) relating to the initial obstacle (cluster) behaviour and a large-strain strain rate 

sensitivity, S. The evolution of these parameters with both temperature and alloy composition are 

discussed and compared to the values of pure polycrystalline aluminium in order to detail the 

effects of alloying on the strain rate sensitivities in Al-Mg-Si(-Cu) alloys. The changes in yield stress, 

activation volume and distance, and derived obstacle force-distance profiles are determined and 

discussed in terms of the changes in microstructure.  

1.1.5 An analysis of necking formation in age-hardenable aluminium alloys: the 

effect of strain rate sensitivity 
The initial understanding of increasing the strain rate sensitivity (SRS) leading to an improved 

formability through delaying the onset of localized necking is conventionally tied to the increased 

strain rate observed within the diffuse neck. This work has evidenced an asymmetry between the 

SRS measured during increasing and decreasing strain rate jumps, namely the decreasing SRS is 

larger than that of the increasing SRS. The result is that the same (but opposite) change in the 

local strain rate will result in a greater decrease in stress due to the decreased local strain rate 

compared to the relative increase in stress caused by the local increase in strain rate. The influence 

of this phenomenon on the development of a diffuse neck is tested through the finite element 

modelling of the neck evolution during a tensile test using a specific constitutive law whose 

parameters depend on sign of the strain rate evolution.  
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2 Literature Review 
The purpose of age-hardenable aluminium alloys is to produce a material that can be heat treated 

in order to increase its yield strength by the formation of obstacles to dislocation motion. There 

are three main families of age-hardenable aluminium alloys, designated by the Aluminium 

Association as the AA2xxx (Al-Cu), AA6xxx (Al-Mg-Si), and AA7xxx (Al-Zn-Mg) series. Other solutes 

and alloying elements may be added to each of these series but the main hardening species are 

those listed. The AA6xxx series is an ideal candidate for the automotive industry having adequate 

strength, good corrosion resistance and although it has good formability, it is less than that found 

in automotive steels. The weight reductions realized by switching from steels to the AA6xxx series 

exist but are not optimized as thicker gauges must be used to provide sufficient formability [1].  

The formability of aluminium alloys depends on the microstructure at different length scales (grain 

size, texture, composition, dispersoids, clusters) and the resulting mechanical properties, namely 

yield stress, strain hardening and strain rate sensitivity, and related macroscopic properties such 

as ultimate tensile strength, elongation to failure, post-necking strain. The complex interplay 

between the microstructural features on dislocation production, multiplication, and recovery 

results in the influence of composition on the formability. This necessitates that a hierarchal 

approach be taken in order to connect the alloy composition, to the microstructure formed, to its 

resulting mechanical properties which finally influence the overall formability of the sheet metal. 

Thus, systematic studies of varying levels of Mg, Si, and Cu, must be performed and tested in a 

variety of ways in order to isolate the effects of each alloying element on the various mechanical 

properties that influence formability. Connecting each of these hierarchal length scales is not 

simple and a thorough understanding of both the microstructure features and the mechanical 

properties is essential.  

2.1 Microstructure effects 
The material properties of aluminium alloys are the expressions of the microstructural 

components contained within and the type of deformation mode applied; uniaxial tension, biaxial 

tension, creep, etc. Age-hardenable aluminium alloys, such as the AA6xxx series, contain many 

microstructure features such as solute atoms, clusters, precipitates, dispersoids, and grain 

boundaries. Each of these components can affect one (or more) of the mechanical properties and 

interact with the complex interplay of dislocation production and annihilation during plastic 

deformation. The main microstructural features that will be examined in this work are those of 

free solutes and clusters which act as dislocation obstacles. 

The formation of each of these features depends on the composition [2]–[8], and ageing 

treatments [9]–[12] defined by temperature and time. The cause of the formation of solute 

clusters and precipitates is the reduction in Gibbs free energy of the system, Δ𝐺 which is driven 

by the time-dependent organization of random solutes from the solid solution due to the initial 

solution heat treatment (SHT). In the AA6xxx series alloys, the main solute components that are 

changed during heat treatments are Mg, Si, and Cu (if contained), whereby Al-Mg-Si(-Cu) 

complexes will form during the heat treatments to form metastable phases. The precipitation 

sequence in the Al-Mg-Si(-Cu) system follows 

SSSS  solute clusters  pre-β′′  β′′  β′, U1, U2, C, L, B′ , Q′  β, Q, Si 
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Where SSSS is the super-saturated solid solution occurring directly after the SHT and solute 

clusters having varying compositions. The current understanding of the formation of these 

complexes are presented in the following sections.  

2.1.1 Solutes and clusters 
The distribution of alloying elements contained within the aluminium matrix of age-hardenable 

aluminium alloys is directly based on the phase diagram of the system in question. The initial SHT 

is assumed to dissolve all solutes within the material (as dictated by the phase diagram) whereby 

upon a reduction in temperature, the solutes remain “trapped” in a high-energy state (that of a 

random solid solution) until sufficient time and energy (temperature) is provided to permit the 

diffusion of hardening species to change the solute distribution. Well before the formation of 

precipitates, the presence of clusters takes place, defined as non-random groups of solutes, 

distributed on the solvent crystal lattice, without a set composition or crystal structure. Individual 

clusters can be defined e.g. in atom probe volumes from criteria on solute separation. However, 

clusters are inevitably present in any structural state, including in a random solid solution. Thus, a 

“clustered state” means a microstructural state comprising a higher density of clusters than a 

random state, and/or clusters richer in solute. An alternative description of clustering has been 

used in the literature as fluctuations of the local solute concentration, in an analogy to the 

unmixing of solutes during spinodal decomposition [13]. In the AA6xxx series of alloys, two cluster 

types have been distinguished; type i and type ii depending on the temperature of formation being 

below or above 70°C, respectively [2]. These will be discussed later. 

Since the solutes present within aluminium alloys are substitutional, certain phenomena may be 

observed during plastic flow such as Portevin-Le Châtelier (PLC) [14], solute drag or dynamic 

strain-ageing (DSA) [15]–[19], which are typically associated with a negative strain rate sensitivity 

(nSRS) [20], [21] or a decrease in the SRS. The presence of these deformation phenomena are 

related to the dynamic interaction of dislocations and free solutes or solute clusters that may form 

during the arrest time of dislocation motion. Depending on the concentration of solutes and the 

deformation rate, these effects may vary in terms of critical strain or stress before they are 

triggered [22], [23]. Besides, the presence of solute atoms within aluminium alloys are typically 

characterized by an increased strain hardening rate, which has been frequently associated with a 

decrease of dislocation recovery during deformation [16], [24].  

When clusters form within these alloys, they become obstacles to plastic deformation and thereby 

increase the strength of the alloy [25]–[27]. Their subsequent interaction with dislocations will be 

dependent on their size and mechanical stability [28], [29]. Clusters being of the same crystal 

nature as the matrix and of low solute concentration, they are shearable in nature. As a result, the 

strengthening contribution of the obstacles will be closely related to the specific cluster strength 

as shown by de Vaucorbeil et al. [28]. Their influence on strain hardening is more complex as it 

can be both negative (due to cluster shearing and increased dynamic recovery because of lower 

solute content) or positive (due to a dynamic evolution of the clusters during straining). 

2.1.2 Precipitates  
The formation of precipitates within age-hardenable aluminium alloys has been studied in detail. 

Although there are many types of precipitates that can form within AA6xxx series alloys such as 

𝛽’’, 𝛽’, 𝛽, Q’, Q, L, etc, [3], [4], [30]–[32] it is the size and number density of the precipitates that 

will largely dictate their influence on mechanical behaviour. See Figures 2-1a and 2-1b for 

examples of precipitates in AA6063 formed through heat treatments at two different 

temperatures.  
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Figure 2-1: a) Bright-field TEM observations of the 𝛽′′ precipitates formed at optimum aged AA6063 (5h at 180 °C) shown 
to occur along the {100} directions taken from [33] and b) Bright-field TEM observations of the same AA6063 alloy from 
a) but aged now for 45 minutes at 230 °C showing larger precipitates along the {100] plane, likely 𝛽′ or Q’, taken from 
[34].  

The precipitates may either be shearable or unshearable (see Figure 2-2 below for an example of 

precipitate shearing after yield), which will change the observed strain hardening behaviour and 

the types of dislocations generated during plastic flow [35]. For the L, Q’ precipitates, which 

contain Cu [3], [30], [31] this transition occurs when the diameter is between 2.5 and 3.0 nm [36]. 

The deformation behaviour of shearable precipitates follows that of a banded structure whereby 

once dislocations shear through a precipitate along the glide plane in a successive manner forming 

dislocation braids [33], [37]. Once they have grown to become unshearable, the dislocation-

precipitate interactions is that of bypassing and the formation of Orowan loops [35], [36] or 

punched out prismatic loop stacks [38] resulting in a more homogeneous dislocation distribution, 

promoting recovery and yielding a decrease in the strain hardening rate coupled with a decreased 

strain hardening capacity [36].  

2.1.3 Dispersoids 
Dispersoids within aluminium alloys are formed during the casting of the ingot and aid in the hot-

rolling process that reduces the thickness of the material. These particles are typically 2 – 10 µm 

in size, composed of AlxFey(Mnz) and do not dissolve during the SHT due to their thermal stability. 

These large particles are unshearable and thus result in the formation of geometrically necessary 

dislocations (GNDs) within the material during plastic flow [38], [39]. The resulting strain 

hardening behaviour may be linear [40] as the generated dislocations pile-up at high energy grain 

boundaries, although dynamic recovery inevitably decreases the strain hardening capacity rapidly. 

In the event that there is a large friction stress within the matrix, dislocations may “pivot” or flow 

around the dispersoids requiring less energy to produce strain resulting in a parabolic strain 

hardening behaviour [40].  

2.1.4 Grain Size 
In pure, polycrystalline materials, the grain size is the upper boundary for dislocation slip distance 

[41], [42] while in engineering alloys, the presence of other obstacles of smaller length scales (such 

as dispersoids, precipitates, or clusters) will inevitably be the limiting factor for dislocation slip. 
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The grain boundaries are also areas of high solubility [43] for solute atoms such that enhanced 

precipitation (known as grain boundary precipitation) may occur. It has been previously 

determined that a grain size of 50 µm or less [44] is ideal for reducing grain size effects on the 

formability of sheet aluminium having a gauge of 1 mm, that is sheets should be 20 grains or more 

in thickness.  

2.1.5 Texture  
The texture of a material manifests itself by many ways, in particular in the form of the Lankford 

constant, or R-value [45], whereby a greater R-value promotes greater formability [46]. Having a 

strong cube texture promotes a more uniform plastic flow when materials are loaded in the 

balanced biaxial condition leading to a greater stretch formability [47], [48]. There are additional 

effects that influence the formability of materials such as latent hardening [49], [50] whereby the 

interaction of secondary slip systems due to a principle stress in the minor direction results in an 

enhanced level of hardening. Additionally, the differences in strain hardening between the two 

principle directions can cause additional strain accumulation in the direction with lower strain 

hardening resulting in a “wandering” balanced biaxial loading pathway [51], [52].  

2.2 Plastic flow 
The study of plastic flow in metallic materials began with the pioneering work of Friedel [53], 

Ashby, [39], Seeger [54]–[58] with extensions being made by strain hardening in single crystals by 

Nabarro et al. [59], [60]. These authors based much of their work on the original descriptions of 

dislocations within materials by Frank [61] and Nye [62]. The initial theories only described the 

dislocation production, recovery, and interactions [56], and then described the inhomogeneities 

in the deformation distribution within multi-phase materials due to the presence of harder, 

secondary phases. The presence of secondary phases manifest effects on the initiation and 

evolution of plastic flow within crystalline metals. In order to effectively study the plastic flow of 

metals and materials, the method of tensile testing is mostly employed, whereby a sample of a 

given geometry (see Chapter 3.3) is placed inside a machine which attempts to maintain a 

constant strain (or displacement) rate and determines the force required to maintain the applied 

rate. The most common representation of this data is in the form of stress-strain curves which 

may take one of the following forms: engineering stress-engineering strain (s-e), true stress-true 

strain (𝜎 − 𝜖), or true stress-true plastic strain (𝜎 − 𝜖𝑝). In this work, the true stress-true plastic 

strain representation will be used. 

The concepts of yield, strain hardening, strain rate sensitivity, and finally formability will be 

discussed in order to help understand the compositional and heat treatment effects on the 

mechanical properties of the AA6xxx series alloys.  

2.2.1 Yielding 
The yielding behaviour of age-hardenable aluminium alloys is dictated by the presence of 

obstacles: solutes, clusters, precipitates, grain boundaries, and/or dislocations. In classical theory, 

the yield stress, 𝜎0.2%, of the material has contributions due to many components: the intrinsic 

stress, 𝜎0, solute strengthening, 𝜎𝑠𝑠, clusters/precipitate strengthening, 𝜎𝑝, grain boundary 

strengthening, 𝜎𝑔𝑏, and dislocation strengthening, 𝜎𝑑 [27], [63].  
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Figure 2-2: The shearing of precipitates in AA6063 determined from weak-beam dark-field TEM observations of a 
deformed microstructure. The sample in questions was aged for 45 minutes at 230 °C. The inset shows the shearing of 
precipitates formed along the {100} with slip taking place along the {111} creating a ± 45° slip relative to the precipitates. 
Taken from [33] 

This 0.2% yield point is generally used as it is a reliable measure for when plastic flow has been 

initiated and the first set of dislocations either nucleate or shear/bypass the primary obstacles (as 

shown in Figure 2-2) present in the alloy. In the case where the density of weak obstacles is large 

with respect to the stronger ones, a linear summation may be assumed such that 

𝜎0.2% = 𝜎0 + 𝜎𝑠𝑠 + 𝜎𝑝 + 𝜎𝑔𝑏 + 𝜎𝑑 

Which holds true for the yielding of the material where the 𝜎𝑑 contributions would be due to any 

pre-deformation of the material and 𝜎𝑔𝑏 effects would only manifest if the grain size is sufficiently 

small whereby the Hall-Petch effect is observed [64], [65]. The form of this relationship changes 

when the flow stress is considered whereby the dislocation contribution evolves and will 

eventually dominate as dislocation multiplication (and recovery) takes place. This is known as 

strain hardening and will be covered in the following section.  

2.2.2 Strain hardening 
The strain hardening behaviour of materials is governed by the production, interaction, storage, 

and recovery of mechanically produced dislocations during plastic flow (after yield). In 

conventional testing methods, such as tensile or formability tests, strain hardening is 

conventionally separated in four (4) stages. Each stage denotes a certain type of dislocation 

behaviour with those pertaining to single crystal deformation using Roman numerals while those 

pertaining to polycrystalline materials using Arabic numerals. The general characteristics of the 

monocrystalline behaviour will be described but not in great detail. Separately, certain stages 

depend on sample geometry (with respect to the microstructure) while others depend on 

temperature resulting in the appearance of some stages at lower test temperatures. These stages 
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of strain hardening are shown below in Figures 2-3a and 2-3b, for the typical stress-strain curves 

and the common Kocks-Mecking plots, for single and polycrystalline materials, respectively.  

 

Figure 2-3: a) A schematic true stress-true plastic strain curve showing the deformation behaviour of an fcc material at 
lower (solid line) and higher temperatures (dashed line) denoting the different stages of strain hardening taken from 
[56]. b) A Kocks-Mecking plot (𝛩 = 𝑑𝜏/𝑑𝛾 versus 𝜏) schematic showing the different stages of strain hardening for single 
crystals (single slip) and poly-crystals (polyslip) taken from [66]. 

 Stage I 

Stage I of strain hardening is commonly referred to as “easy-glide”. This region is only observed in 

pure single crystals where the dislocation density is very low [59]. The rate of strain hardening in 

this stage is very low and is highly sensitive to the crystal orientation. The as-grown dislocations 

within the material are able to move along their glide-plane at very low stresses due to the lack of 

dislocation obstacles present. Stage I is a nearly flat region of the stress-strain curve occurring 

directly after yielding (the elastic region) as shown in Figure 2-3a and 2-3b single slip. 

 Stage II (2) 

Stage II (2) of strain hardening is dominated by the production and build-up of dislocations within 

the material and is characterized by a constant strain hardening rate; or a constant slope in the 

stress-strain curve [59]. There is a large production of edge dislocations which may pile-up at 

boundaries of high dislocation density [59]. Due to the orientation dependencies and necessity of 

having a relatively low-obstacle density condition, stage II is almost never observed at room 

temperature testing of polycrystalline materials as shown in Figure 2-3a. Since stage II is a 

geometric-based strain hardening evolution, there is not a significant temperature dependence 

on its rate, as shown in Figure 2-3a. In single crystals this region follows a parabolic hardening law 

whereby 𝜎2 ∝ 𝜖 with the hardening rate monotonically decreasing with increasing strain. In 

polycrystals, the type of dislocations produced and the relationship between stress and strain may 

be between linear and parabolic such that 𝜎𝑛 ∝ 𝜖, where n, the strain hardening exponent, is 

between 1 (linear) and 2 (parabolic) hardening. The nature of the strain hardening relation 

depends on the primary obstacles interacting with the dislocations which may take the from of 

dislocation-dispersoid (see Chapter 2.1.3) [38], [39], dislocation-shearable/non-shearable 

precipitates (see Chapter 2.1.2) [36], dislocation-cluster (see Chapter 2.1.1), and dislocation-

dislocation interactions. Depending on the type of interaction, three key parameters will be 

effected; the strain hardening rate, the rate of dislocation recovery (being most effected in stage 

3), and the distribution of slip [36]. In general, geometrically necessary dislocations (GNDs) 

produced by dispersoids or non-shearable precipitates result in an initially linear hardening 
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response [40] if the friction stress within the material is sufficiently low, allowing for the 

accumulation of GNDs at grain boundaries and other strong obstacles. If the friction stress is 

sufficiently high within the material, there may be a transition to rotational flow [40] of these 

GNDs resulting in a parabolic hardening relation. For smaller obstacles such as precipitates, the 

two domains exist of being shearable or non-shearable resulting in the strain hardening to be 

more like a pure metal generating shear loops or generating geometrically necessary prismatic 

loops (GNPLs), respectively [36], [39]. 

 Stage III (3) 

Stage III (3) is typically onset due to the occurrence of cross-slip which is a thermally activated 

process and triggers dynamic recovery, thereby reducing the strain hardening rate from 

dislocation storage (see the slope of the two curves in Figure 2-3a). The result is that a change of 

testing temperature will result in large changes in recovery due to dislocation arrangement, 

thermal activation and if present, solute mobility, and thus in strain hardening within stage 3 of 

deformation. In the presence of shearable precipitates or clusters, the strain hardening response 

is similar to that of pure metals but with an influence of these on both the production rate of 

dislocations and their recovery. The mechanical stability of the precipitates is assumed to be 

greater than that of the clusters such that it is possible for clusters to be mechanically dissolved 

during deformation [27], [67]. Poole et al. [36] and Jobba et al. [24] have shown that an increased 

presence of solutes impedes the dynamic recovery of dislocations in aluminium resulting in an 

increased strain hardening rate resulting in a net increase in the total dislocation density of the 

alloys throughout deformation, assuming the production rate is maintained.  

 Stage IV (4) 

The onset of stage IV (4) strain hardening begins at very large flow stresses (and strains) and is 

marked by a deviation from the monotonically decreasing strain hardening rate of stage 3. If this 

stage is prolonged, it may exhibit a small but constant hardening rate which occurs due to the 

steady-state production and recovery of dislocations (see Figure 2-3b). Due to its dependence on 

dislocation recovery, it is expected that stage 4 will have a large thermal component to its onset, 

rate and duration.  

2.3 Strain rate sensitivity 
Strain rate sensitivity (SRS) experiments are used to examine the reversible component of 

deformation during plastic flow, in other words the portion of the activation energy dislocations 

require in order to overcome (bypass, shear) obstacles within the material [68]–[71]. In their 

original experiments to determine the reversible component of the activation energy, Cottrell and 

Stokes [72] used variable temperature experiments to change the thermal energy available in the 

system and observed the change in the flow stress response. The alternative approach to this 

original method has been developed extensively by Basinski [73], Nabarro, [71], Saimoto [74], 

[77]–[79], Picu [20], [70], [77]–[79], McCormick [80]–[82], and Curtin [83] for a variety of 

materials. It consists of changing the active strain rate of deformation and determining the change 

in required stress to maintain the newly imposed strain rate. The basis of the thermodynamic SRS, 

S, begins with the rate equation for plasticity of 

𝜖̇ = 𝜖̇0 exp (−
Δ𝐺(𝜎)

𝑘𝑇
) 
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where 𝜖̇ is the strain rate, 𝜖̇0, the base strain rate, Δ𝐺(𝜎), the stress-dependent apparent 

activation energy, k, the Boltzmann constant, and T, the absolute testing temperature. To 

determine the activation energy required to overcome the obstacles present within the material, 

the strain rate equation is differentiated with respect to stress at constant temperature T and 

structure, Σ, yielding 

𝜕 ln 𝜖̇

𝜕𝜎
|

Σ,𝑇
=

𝜕 ln 𝜖0̇

𝜕𝜎
−

1

𝑘𝑇

𝜕Δ𝐺(𝜎)

𝜕𝜎
 

Where 
1

𝑘𝑇

𝜕Δ𝐺(𝜎)

𝜕𝜎
 is the apparent activation energy, where the apparent activation volume is found 

as 

1

𝑉′
=

1

𝑘𝑇

𝜕𝜎

𝜕 ln 𝜖̇
|

𝑇,Σ
 

Such that Δ𝐺 = 𝑉′𝜎 to give the relationship between the apparent activation energy and 

apparent activation volume. The apparent activation volume is the total volume of material swept 

or overcome by the dislocations between the two metastable dislocation configurations (before 

and after activation). Typically, a plot of 
1

𝑇

Δ𝜎

Δ ln �̇�
 versus 𝜎 − 𝜎0.2%, known as the Haasen plot [84] in 

the literature, is used to represent the change in the apparent activation volume during plastic 

flow. The initial apparent activation volume is therefore given by the intercept of the Haasen plot 

as 𝑘/𝑉′ = (1/𝑇) 𝜕𝜎/𝜕 ln 𝜖̇. For the case of pure polycrystalline aluminium, the intercept of the 

Haasen plot is zero. The evolution of the inverse activation volume with stress is known as the 

thermodynamic strain rate sensitivity, S, and is the slope of the Haasen plot, found as 

𝑆 =
1

𝑇

∂𝜎

𝜎 ∂ ln 𝜖̇
= 𝑘/𝜎𝑉′ 

Where the engineering SRS parameter, m, can be determined as 𝑚 = 𝑆𝑇. Alternatively, the 

instantaneous engineering SRS, mi, can be calculated as 

𝑚𝑖 =
Δ ln 𝜎

Δ ln 𝜖̇
|

𝑇,Σ
 

Which can be combined with the Hollomon equation (see Chapter 2.4) to model the stress-strain 

curve. For pure aluminium, the slope of the Haasen plot does not change throughout deformation 

and is characterized by the dislocation forest line of Sf, but this is not the case with alloys. Within 

the age-hardenable alloys, provided the alloy has been adequately annealed (ie: not a large 

retained dislocation density) the initial rate-controlling obstacles begin as solutes, 

clusters/precipitates. As deformation progresses and the dislocation density increases, the total 

contribution of obstacles to the flow stress evolves. Assuming a linear summation model, the 

relative contribution of obstacles to the total flow stress [63], [85] is given by 

𝜎 = 𝜎0 + 𝜎𝑠𝑠 + 𝜎𝑝 + 𝜎𝑑 

Such that the dislocation density generated linearly adds to the total flow stress. In general, 

𝜎0, 𝜎𝑠𝑠 , and 𝜎𝑝, make up the yield stress of the alloy and if the above equation is substituted into 

the determination of S, the total SRS [86] will be comprised as follows 

𝑆 =
1

𝑇

𝜕(𝜎𝑠𝑠 + 𝜎𝑝 + 𝜎𝑑)

𝜎 𝜕 ln 𝜖̇
= 𝑆𝑠𝑠 + 𝑆𝑝 + 𝑆𝑑 
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Where Sss is the thermodynamic SRS due to retained solutes, Sp is that due to clusters or 

precipitates, and Sd (or Sf) are those due to dislocations. Since directly after yield the major 

obstacles within the alloy are solutes or clusters / precipitates, S will be comprised solely of Sss and 

Sp. After sufficient plastic deformation once the dislocation density becomes dominant, the total 

SRS will become that of dislocations as they become the new rate controlling obstacles.  

When addressing the effects of temperature on the apparent activation volume, the change of 

the kT parameter (thermal energy available to the system) influences the calculation of Δ𝐺 and 

thus the apparent activation distance prior to the thermal activation of the rate controlling 

obstacles. If at yield and directly after, the rate controlling obstacles are assumed to be clusters 

or precipitates, an obstacle formed during the heat treatment process and not through plastic 

deformation, then an existing dislocation must overcome their energy barrier to permit plastic 

flow. Since S is the evolution of the inverse activation volume, V’, defined as the product of b, the 

the burgers vector, d, the apparent activation distance of the dislocation overcoming the rate 

controlling obstacle, and l, the dislocation segment spacing between successive obstacles, it is 

possible to isolate and determine the relationship between S and the apparent activation distance, 

d, using the Taylor equation, (𝜎 − 𝜎0.2%)/𝑀 = 𝜏 = 𝛼𝜇𝑏/𝑙, given by 

𝑆 =
𝑘

(𝜎 − 𝜎0.2%)𝑏𝑑

𝜎 − 𝜎0.2%

𝑀𝛼𝜇𝑏
=

𝑘

𝑀𝛼𝜇𝑏2𝑑
 

Whereby d can be determined directly from the thermodynamic strain rate sensitivity. The initial 

rate controlling obstacles in the alloys are clusters or solutes as the initial dislocation density is 

low. It is then possible to determine the force-distance interaction between dislocations and the 

initial rate controlling obstacles and its evolution with temperature to give information related to 

the size and density of the these obstacles. An example of two different rate controlling obstacle 

types (one more athermal and one more thermal) are represented below in Figure 2-4. It shows 

schematically the effect of temperature on the evolution of the apparent activation distance 

derived from the strain rate sensitivity directly after yield.  

 

Figure 2-4: The determination of the force-distance profile of obstacles to gain insight into their size via changes in 
temperature. The apparent activation distance, d, is determined directly from the initial strain rate sensitivity after 
yielding.  
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Although rather crude, this schematic illustrates the different types of apparent activation 

distance versus temperature possible and how they would theoretically evolve for precipitates 

(more athermal obstacles) and clusters or solutes (more thermal obstacles). These activation 

distances may then in turn be related to the physical obstacle size at yield and if applicable, a 

transition from being thermally visible to becoming thermally invisible if sufficient thermal energy 

is present.  

2.4 Formability 
Although a complex subject, the formability of aluminium alloys has been related to the strain 

hardening and SRS at high flow stresses (high strains) whereby increased strain hardening and SRS 

properties result in enhanced formability [87]. The formation of necking within sheet metals is 

related to the geometric instabilities which develop due to the increasing stress-state, 𝜎, and 

decreasing strain hardening rate, 𝑑𝜎/𝑑𝜖, resulting in the Considère criterion being met [88]. If a 

constitutive relation based on the Hollomon relation [87] is assumed 

𝜎 − 𝜎0 = 𝐾𝜖𝑛𝜖̇𝑚  

Where 𝜎 is the flow stress, 𝜎0 is the yield stress, K, the pre-exponential constant, and 𝜖, the current 

plastic strain. Differentiating the Hollomon relation to yield the Considère criterion results in 

𝑑𝜎

𝑑𝜖
=

𝐾𝜖𝑛𝜖̇𝑚

𝜖
(𝑛 + 𝑚

𝜕 ln 𝜖̇

𝜕 ln 𝜖
) = 𝜎 

Which results in both an n and m dependence. However, the dependence on m only takes place 

upon the incipient neck that is only related to n. Once the incipient (diffuse) neck forms, there 

become local changes in the strain rate such that 𝑚 𝜕 ln 𝜖̇ /𝜕 ln 𝜖 becomes non-zero. Within the 

neck interior, the local strain rate changes such that ln 𝜖̇ /𝜕 ln 𝜖 becomes positive, and having a 

positive m-value will result in an increase in the apparent strain hardening. The contrary is true 

outside of the neck region, whereby ln 𝜖̇ /𝜕 ln 𝜖 is negative and having a positive m-value will 

result in a decrease in the apparent strain hardening, or work-softening. The result is that the 

diffuse neck may be stabilized or propagate to delay the formation of a local neck which renders 

the sample unsuitable for use.  

2.5 Effects of processing on obstacle formation 
The three different core methods of obstacle formation will be considered due to the three 

different heat treatments typically executed during industrial production; natural ageing (NA) at 

room temperature, pre-ageing (PA) at medium temperatures, and artificial ageing (AA) at the 

paint bake temperature (185 °C) with focus placed on the NA and PA processes. It has been widely 

found that in a majority of Al-Mg-Si alloys, NA for prolonged durations resulted in a diminished 

paint bake (PB) response, resulting in the material being too soft [89], [90]. As such, PA treatments 

have been proposed to stabilize the material and improve the PB response after prolonged NA 

[91]–[95].  

As shown by Esmaeili and Lloyd [96] and Zhen et al. [97], [98] through differential scanning 

calorimetry (DSC) on as-quenched solutionized samples, the existence of two low-temperature 

exothermic peaks suggest that two cluster types can form at temperatures below the PB 

temperature. The two cluster types i and ii form at temperatures below and above 70°C, 

respectively [10], [98] such that NA and PA will ideally form the two unique cluster types, where 

type i is a detriment to the PB response [99]. Separately, De Geuser et al. [100] have used atom 

probe tomography (APT) to determine the differences in pair-correlation function of Si-Si, Mg-Mg 



41 

 
 
 

and Mg-Si clusters during both NA and PA, finding that two different types of cluster types form 

during the two respective processes.  

2.5.1 Effects of natural ageing 
The NA process in AA6xxx series alloys begins directly after quenching to room temperature 

whereby a sufficient equilibrium vacancy concentration coupled with the mobility of Si, Cu, and 

Mg in Al allow for rapid diffusion of these solutes. Werinos et al. [8] have extensively studied the 

stages of natural ageing directly after the quenching process originally conceived by Banhart [101], 

[102] in the Al-Mg-Si(-Cu) system and the evolution of clusters (type i) over time. Five critical 

stages to cluster formation were identified:  

1) Interaction of quenched-in excess vacancies with solute atoms based on solute-vacancy 

binding energies [103]. 

2) Rapid diffusion of Si to Si-vacancy complexes due to the high diffusivity of Si in Al [104] 

and locally strained areas due to the smaller atomic size of Si compared to Al [105]. 

3) Formation of both vacancy-free and vacancy-containing Si clusters resulting in rapid 

hardening with Mg incorporation into the vacancy-free Si clusters from positive Si-Mg 

binding energy [106]. 

4) Incorporation of Mg (or Cu) into the Si-rich clusters formed during stage 2 and 3 resulting 

in slower hardening. 

5) Cluster coarsening and/or depletion of the solute available for clustering causing minimal 

additional hardening. 

These systematic processes are supported by atom probe tomography (APT) work performed by 

Fallah et al. [105] which showed that the initial clusters formed during NA begin as Si-rich which 

undergo subsequent Mg-enrichment and coarsening. The study by De Geuser et al. [100] supports 

this claim showing that Mg-Mg clusters appear to dissolve during NA allowing for the Mg-

enrichment of the Si-Si clusters that formed.  

2.5.2 Effects of pre-ageing 
Unlike the NA clusters that form, the PA clusters form at temperatures above 70°C and are that of 

cluster type ii [10], [98]. These clusters that form during the PA treatment have been found to 

contain a greater Mg/Si ratio or to be Mg-rich compared to the base alloy composition [10], [107], 

which strongly suggests that Mg plays a large role in their formation. The goal of PA is both to 

partially stabilize the microstructure [5] and to produce clusters closer in Mg/Si ratio to the 

precipitates formed during the PB heat treatment (𝛽′′) in order to reduce the free energy barrier 

and improve the PB response [91], [92]. The subsequent NA response after the PA treatment has 

been studied by [10] but its effects on the mechanical properties remains unknown. It was 

suggested by Kim et al. [5], [6] that during NA after PA, cluster type i may form independently 

from those formed during the PA treatment while this was contested by Aruga et al. [10] 

suggesting that Si-aggregation to the type ii clusters is preferred.  

2.5.3 Effects of artificial ageing 
The purpose of AA is to increase the strength of the AA6xxx series alloys in order to improve dent 

resistance after the PB cycle. During the AA process, lower-energy obstacles form having a more 

defined crystal structure and stoichiometry than the clusters formed during PA and NA. Although 

AA processes follow a general nucleation, growth and coarsening sequence, the AA process never 

reaches the peak-age condition due to the requirements of AMs and the implementation of the 

PB cycle spanning only 20 minutes. Thus, it is most important to optimize the short ageing time 
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response of the alloys to enhance hardness increase during the PB treatment. It has been shown 

that if the clusters (or nuclei) that exist in the alloy after the PA or NA treatment are close in 

stoichiometric ratio to the precipitates that will form, the activation barrier to precipitation will 

be reduced and their formation will be more favourable [11], [91], [92], [108].  

2.6 Effects of composition on obstacle formation  
Due to the initial concerns of material strength, the effects of composition in the Al-Mg-Si(-Cu) 

alloys focused primarily on the age-hardening response of these alloys [109]–[111] whereby 

enhancing the precipitation volume fraction was found to improve the overall strength of the 

alloys. Subsequently, as the overall strength of the materials improved, focus was turned to 

processing routes commonly used and the solute effects on the natural ageing, pre-ageing, and 

age-hardening kinetics and responses [30], [89], [112], [113]. The current methods focus on the 

effects of these intermediate obstacles formed during natural and pre-ageing and their effect on 

the mechanical properties. Extensive work has been recently undertaken by Zhong et al. [114]–

[117] to study the influence of Mg/Si ratios and Cu additions on the mechanical properties and 

formability of AA6xxx series aluminium alloys. This work largely expanded on the earlier studies 

of Hirth et al. [118] and Sachdev [119] which focused primarily on the compositional effects using 

a single processing route on formability rather than multiple processing protocols.  

2.6.1 Effects of Cu additions 
The addition of Cu to Al-Mg-Si(-Cu) alloys has been shown to increase the Cu content in clusters 

formed during NA and PA processes. Cu has been demonstrated to have an effect similar to Mg 

whereby the (Mg + Cu)/Si ratio of clusters is usually considered and Cu tends to increase this ratio 

[5], [6], [120]. According to Werinos et al. [8], [121], directly after quenching, Cu increases the 

incubation time prior to subsequent hardening due to the positive Cu solute-vacancy binding 

energy [103] reducing the rapid diffusivity of Si at early ageing times to form Si-vacancy complexes. 

Since Cu acts in a similar manner to Mg, it is primarily involved in the later-stage clustering (or 

Cu/Mg-enrichment phase) of the early-stage Si-rich clusters formed during NA hence primarily 

partaking in increasing cluster size [102], [122]. Finally, Cu additions have been shown to reduce 

the negative naturally ageing effect of artificial ageing by assisting in changing the stoichiometry 

of NA clusters to that similar to 𝛽’’ reducing the energy barrier to their formation in a similar 

means to the PA process increasing the Mg/Si ratio of the clusters formed [110], [111]. 

Furthermore, as during NA and AA, Cu tends to increase cluster or precipitate size, it plays a critical 

role on providing additional strengthening to alloys during deformation.  

2.6.2 Effects of Si additions 
Adding Si to Al-Mg-Si(-Cu) alloys increases its contribution to clustering and precipitation 

depending on the total (Mg + Cu)/Si ratio of the alloys. The clustering pathways during NA have 

shown Si clustering to take place directly after quenching due to its rapid diffusivity in Al [101], 

[102]. Supported by work by Werinos et al. [121], Si additions during NA will decrease the initial 

incubation time prior to the alloy experiencing significant hardening, acting in an opposite manner 

to Cu. The addition of Si will also increase the early stage clustering kinetics via an increase in the 

number of pre-clusters through formation of Si-vacancy complexes and their transition into Si-rich 

clusters [105], [122], [123]. With an enhanced cluster number density decreasing the diffusion 

distances, the later-stage Mg (or Cu) enrichment of the clusters will accelerate. It can thus be 

surmised that Si additions increase the total NA clustering kinetics but due to an increase in the 

total Si content of the alloy [101], the (Mg + Cu)/Si ratio of the clusters that form during NA will 

decrease which in turn can enhance the negative natural ageing effect prior to artificial ageing. 

Depending on the total alloy composition, Mg (or Cu) are typically the limiting solutes in this alloy 
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system, thus Si additions should not play a major role in enhancing the precipitation strengthening 

of the alloys. Finally, in the PA process, Si additions should not have a major effect on the cluster 

number density as the clusters that form are Mg/Cu-rich [107]. In subsequent NA, it would be 

expected that Si agglomeration to the Mg/Cu-rich clusters should take place and with an increase 

in Si content [10], [11], the growth of the PA clusters should be accelerated due to Si rapid 

diffusivity in Al.  

2.6.3 Effects of Mg addition 
Mg additions into Al-Mg-Si(-Cu) alloys have a similar effect to Cu whereby they contribute 

significantly to the formation of clusters and precipitates during NA or AA, respectively. During 

NA, Mg additions increase the incubation time prior to appreciable hardening, possibly due to 

their positive binding energy with vacancies in Al [103], although the sign of this interaction is still 

subject to debate. Since Mg solutes play a major role in cluster growth during stage 3 and 4 of NA, 

their addition will tend to extend the duration of the later stages of NA through the slow 

enrichment of the locally strained Si-rich clusters where if additional Mg is present, longer times 

are required to deplete the free Mg-vacancy pairs remaining in solution. The typical result is an 

increase is NA cluster size and transition to more Mg-rich clusters at very long NA times [89], [90] 

reducing the negative natural ageing effect on the subsequent AA process. In direct AA, Mg 

additions increase the total amount of solute contributing to 𝛽’’ formation increasing the number 

density and/or volume fraction of the precipitates formed resulting in a net increase in peak 

hardness and total strength. Concerning the PA processes, Mg additions enhance the number 

density of PA clusters as there is an improved availability of Mg to form Mg/Cu-rich clusters.  

2.7 Conclusions 
The influence on composition on the formability of AA6xxx series alloys follows a hierarchal 

assembly where each stage must be thoroughly characterized and understood such that the 

mechanical expression of the microstructure may be properly understood. This general hierarchal 

sequence follows the composition-structure-strength/ductility-formability order whereby the 

higher-order mechanical expression is a manifestation of the lower-order behaviour. Through 

systematic studies and probing the microstructure using DSC, APT, SAXS, and hardness testing, 

the connection between composition and microstructure may be realized for different heat 

treatments. Using tensile and SRS tests for the different heat treatments, the connections 

between structure and strength/ductility may be studied. Finally, using finite element modelling 

that utilizes both the strain hardening and SRS properties of the alloys, the extension of 

strength/ductility to the formability may be better understood.  
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3 Materials and experimental methodology 
Nine (9) different alloy compositions were chosen, having systematically varying levels of Mg, Si, 

and Cu to determine their effects on the plastic properties of AA6xxx series sheet. These alloys 

coupled with two different heat treatment schedules, tested using microstructure and mechanical 

characterization methods, allow for the composition-structure-strength-ductility/formability 

relationships to be assessed in a hierarchal and systematic way.  

3.1 Alloy compositions and heat treatments 
The nine alloys selected to be studied in this work are shown below in Table 3-1, each being Si-

rich whereby there is greater Si content compared to the total of Mg and Cu.  

Table 3-1: The alloy designation and corresponding solute elements. The values listed are all in at% and for the remained 
of the work, only the Mg, Si, and Cu contents will be discussed. The effects of more minor elements were not explicitly 
studied in this work.  

Sample  
Name 

Mg 
(at%) 

Si 
(at%) 

Cu 
(at%) 

Fe 
(at%) 

Mn 
(at%) 

Cr 
(at%) 

Ti 
(at%) 

Al (at%) 

C0S0 0.404 0.895 0.008 0.070 0.029 0.005 0.011 

Bal. 

C2S0 0.381 0.896 0.089 0.072 0.029 0.005 0.013 

C8S0 0.379 0.879 0.333 0.079 0.031 0.006 0.012 

C8S0M 0.557 0.899 0.337 0.078 0.031 0.006 0.013 

C2S1 0.372 1.069 0.087 0.071 0.030 0.006 0.015 

C0S3 0.387 1.299 0.004 0.075 0.030 0.005 0.009 

C2S3 0.400 1.262 0.088 0.076 0.030 0.005 0.010 

C5S3 0.372 1.284 0.218 0.078 0.032 0.006 0.011 

C8S3 0.385 1.324 0.329 0.079 0.032 0.006 0.010 

 

It can be seen that four systematic studies for compositional effects are available for study; the 

effects of Cu at 0.9 and 1.3 at% Si, the effects of Si at 0.1 at% Cu, and the effects of Mg at 0.3 at% 

Cu with 0.9 at% Si. The heat treatment schedule for each of the alloys to produce the NA1m 

(naturally aged 1 month), sNA1w (secondary natural ageing 1 week), and sNA1m (secondary 

natural ageing 1 month) conditions are shown below in Figure 3-1. 
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Figure 3-1: The heat treatment schedule performed on each of the materials received from Constellium in the as-received 
condition. The sNA1w, sNA1m, and NA1m conditions will be used throughout this thesis primarily in the sections 
pertaining to tensile and strain rate sensitivity testing. Note that during differential scanning calorimetry and hardness 
testing, other times were used depending on the desired information to be determined, these other states will be noted.  

The samples were received in the form of cold-rolled sheet from the Constellium Technology 

Centre (C-TEC) in Voreppe, France in the form of 1000 mm x 400 mm x 1 mm sheet. Samples were 

cut according to the required dimensions/size specifications (depending on experiment type), and 

solutionized in an air furnace with a feedback loop to maintain a constant temperature. The 

samples were then either water quenched (WQ) in room temperature water, or quenched into 

water at 80°C, held at temperature using a hot plate, and transferred to a temperature controlled 

oil bath at 80°C for 8 hours within 1 minute. The samples were then removed, cleaned with 

ethanol and let naturally age for up to 1 month. The notation of NA will be reserved for samples 

that were WQ directly to room temperature and then allowed to naturally age at ambient 

temperatures. The notation of sNA will refer to secondary natural ageing whereby samples were 

first given a pre-ageing treatment (80 °C – 8 hours) and then allowed to secondarily naturally age 

at ambient temperatures.  

3.2 Microstructure characterization 
In order to properly characterize the effects of composition and heat treatment on the formation 

of clusters within the material indirect observation methods are used.  

3.2.1 Hardness testing 
The use of hardness testing will be to quickly identify the ageing curves and conditions for each of 

the alloys under the two different heat treatment schedules; WQ with NA, and PA with sNA, as 

well as the artificial ageing characteristics whereby samples in the sNA1w condition were then 

artificially aged (AA) at 185 °C for various lengths of time. The evolution of the ageing conditions 

will directly reflect the evolution of the cluster state over time spent at room temperature. From 

this information, it is possible to select the limits for more complicated studies that require more 

material and/or preparation time, such as tensile testing, strain rate sensitivity, atom probe 

tomography (APT), etc. Hardness samples were prepared using standard polishing methods; 600-

grit paper, 9 µm then 3 µm diamond, and finally colloidal silica were used to produce a mirror 
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finish. Samples were finally immersed in a solution of bright etchant for 30 seconds, rinsed in 

water, and dipped in a 5% nitric acid (HNO3) solution to remove any oxide layers that formed, 

rinsed in ethanol and finally dried. A Wilson Tukon 1202 (S/N 1202-02-0158) automated hardness 

indenter with a 100g mass and a 20 second dwell time was used to make the indentations. Ten 

indents, spaced 1 mm apart were made and analyzed using the Buehler OmniMet MHT, the values 

reported are the average of the 10 indents, standard deviations found to be on the order of ± 2 

HV100 are not plotted for clarity. 

3.2.2 Differential scanning calorimetry 
The purpose of differential scanning calorimetry (DSC) is to examine the amount of energy 

required (endothermic) or released (exothermic) in order to increase the temperature of a sample 

compared to a reference. Since extensive work has already been performed coupling either High 

Resolution Transmission Electron Microscopy (HR-TEM) and/or APT to DSC in the AA6xxx series 

[1]–[6], it will be possible to couple changes in heat treatment and DSC signatures to the changes 

in the cluster evolution within the alloys tested in this work.  

DSC samples were prepared from heat treated coupons (either PA or WQ) and allowed to sNA or 

NA until the final conditions. Samples were then cut using a disc cutter at 1500 rpm to a final size 

of 3.5 x 3.5 mm2, and lightly ground by hand using 600-grit SiC paper. Samples were then rinsed 

in ethanol, allowed to dry and massed using a Mettler Toledo balance. The samples were placed 

into an aluminium crucible, capped, and placed into a Mettler Toledo DSC using an empty crucible 

as reference. The DSC scans performed at outlined below in Figure 3-2 and were tested using an 

external N2 gas flow rate of 200 mL/min with a cell flow rate of 50 mL/min.  

 

Figure 3-2: The heating ramps and hold times used in the present work. Since this thesis focuses primarily on the 
clustering effects in the Al-Mg-Si-Cu alloy system, 300 °C was adequate for completing these reactions and observing 
their effects on the first precipitation peak.  

In traditional DSC testing, a 4th or 6th order polynomial fit is used to determine the baseline of the 

sample such that any reaction taking place in the sample will be above or below the baseline 

where in this work, these will represent exothermic or endothermic reactions, respectively. The 

purpose of cyclic heating used in this work is to eliminate the need to use a polynomial fit in order 
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to correct for the baseline but to use the second ramp as the baseline data set such that each 

sample, in each condition, will have its own unique baseline, based on the specific sample. The 

premise is that the initial ramp is the actual experiment whereby the exothermic and endothermic 

signals will be realized during the heating, and by holding at a high temperature above the main 

precipitation reaction, the solutes are able to be fully precipitated out such that no reaction should 

take place below this temperature during the second run, only the thermal effect due to the heat 

capacity shall remain. The second ramp thus provides an ideal baseline for the data set obtained 

during the first heating ramp. This process is shown below in Figure 3-3a with the resulting, mass 

normalized final data shown in Figure 3-3b.  

 

Figure 3-3: The DSC thermographs obtained from a) the first (black) and second (red) DSC heating cycles outlined in 
Figure 3-2 and b) the mass-normalized difference between the first ramp and second ramp. The exothermic direction is 
up.  

It can be seen that there is an initial transition region extending from -50 °C to -20 °C as the system 

and heating rate settles to its prescribed 20 °C/min. In certain tests, it was seen as advantageous 

to perform a full heating ramp extending to 600 °C and in these cases, a second order polynomial 

was fit to the two regions perceived to contain only the heat capacity of the sample; directly 

before the observance of clustering events, (between 20 – 50 °C) and after the final precipitation 

peak but prior to the solvus (550 – 580 °C). The correction process for these samples are shown 

below in Figure 3-4 along with the removal of a “spike” in the data which appeared to cause a 

vertical offset in the final data.  
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Figure 3-4: The procedural correction for a full-DSC thermograph. The raw data is shown in blue, which was adjusted to 
create the black line due to the “spike” in the data at 60 °C (see red arrow) by shifting all of the data at higher 
temperatures up by the size of the spike. A parabolic fit was then found using the two regions in orange (located along 
the adjusted line) and this was then used as the baseline to generate the final data (in green). A very small discontinuity 
may be seen at 60 °C where the “spike” took place but the curve remains continuous nonetheless.  

Each of the test samples are normalized to their mass such that samples of different sizes may be 

compared (although test samples were all 30 ± 3 mg in total mass). Any exothermic peak observed 

(above the x-axis) indicates the presence of a clustering or precipitation reaction that has taken 

place during the heating ramp while endothermic peaks (below the x-axis) are those requiring 

additional energy in order to dissolve any clusters or precipitates that formed during the heat 

treatments. The evolution of the endothermic and exothermic peaks with heat treatment and NA 

time, as well as between sample compositions will give insight into the amount of clustering 

available to the system or the amount of clustering that has already occurred. This information 

will then be connected to the other microstructure characterization techniques performed and be 

used as evidence to support the observed mechanical properties of the tested alloys.  

3.2.3 Atom probe tomography 
Atom probe tomography (APT) samples were prepared by cutting 20 mm x 15 mm samples from 

the grip and gauge regions of the tensile specimen selected for APT testing. Samples were ground 

from the original thickness of 1 mm to 250 µm using 600-grit, 9 µm, and 3 µm diamond polish. 

Samples were then mounted of a thick piece of aluminium (for support) and cut using a slow-

speed diamond blade to create matchsticks of 350 µm x 350 µm x 20 mm. Samples were then 

electropolished using a homemade electropolishing system to create atom probe tips having a 

nominal radius of curvature of 200 nm.  

A second set of samples were prepared using Plasma Focused Ion Beam Microscopy (PFIB) using 

an accelerating voltage of 15 kV, and Xe+ ions to prevent sample damage or Ga+ implantation 

confounding the results. Samples were cut from the grip and gauge section of the tensile 
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specimen, prepared using standard grinding and polishing practices until colloidal silica to produce 

a mirror finish. Samples were then initially cut into triangular prisms, 200 µm in width, 20 µm in 

length and 20 µm in depth using the FEI control software. One side of the sample was cut, a 

nanomanipulator was then inserted into the system, and welded to the cut end using platinum 

deposition. The other side of the sample was cut, and segments of the bar were welded (via 

platinum deposition) to a sample holder and cut from the bar. This was repeated until 4 samples 

were mounted on individual specimen posts. Each sample was then milled using an annular 

pattern in stages, beginning with a 500 nm inner radius, down to a 100 nm inner radius. Once the 

tip-radii were reduced to under 100 nm, a final cleaning was performed using an accelerating 

voltage of 5 kV and a small aperture size to prepare the most pristine samples possible and reduce 

any surface damage or Xe+ implementation which would result in potentially incorrect APT data. 

The APT experiments were performed at the Max Planck Institüt fur Eisenforschlung in Düsseldorf, 

Germany using a LEAP 5000 atom probe with a detector efficiency of 80%. The experiments were 

performed with a sample temperature of 50 K, a detection rate of 0.8%, pulse fraction of 20%, a 

pulse rate of 250 kHz and a field estimate of 20 V/nm. Between 40 and 70 million atoms were 

collected during each of the experiments.  

3.3 Mechanical characterization 
To adequately characterize the influence of microstructure on the mechanical properties that 

control the formability in AA6xxx series alloys, several lab-scale tests were performed. Two sets 

of samples were created for the mechanical testing; small-size tensile specimen (see Figure 3-5) 

and sub-size tensile specimen (Figure 3-5) taken from the grip region of the small-size tensile 

samples to be used in the SRS testing at dry-ice temperatures.  

 

Figure 3-5: The geometry of the tensile specimen prepared for tensile and strain rate sensitivity testing. The left image 
shown the standard specimen size which the right image shows the “sub-size” specimen which were extracted from the 
head region of the standard dog-bone samples.  

Tensile specimen were machined by Constellium in the rolling direction after cold rolling but prior 

to recrystallization or solution heat treatments. All samples were heat treated using the 

aforementioned equipment and let sit to NA until in the desired state. The cross-sectional area of 

the standard dog-bone samples was 10 x 1 mm2 having a gauge length of 25 mm, the sub-size 

specimen has a cross section of 2 x 1 mm2 with a gauge length of 15 mm.  

3.3.1 Tensile testing 
The tensile testing in this work was performed at Queen’s University, Kingston, Canada using a 

hydraulic INSTRON tensile machine equipped with a 10kN and 100kN load cell for the ambient 

and low-temperature tests, respectively. Testing was performed at a constant true strain rate, 𝜖0̇, 

of 5 x 10-4 s-1 using a 25 ± 10 mm extensometer and a PID system to actively control the 

deformation rate. The load-displacement curve was collected electronically and then converted 

to engineering stress-engineering strain (s - e), then to true stress-true strain (𝜎 − 𝜖) and finally 

to true stress, plastic strain (𝜎 − 𝜖𝑝). 
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3.3.2 Strain rate sensitivity testing 
The strain rate sensitivity (SRS) testing was performed at Queen’s University, Kingston, Canada, 

using a hydraulic INSTRON tensile machine equipped with a 10 kN and 100 kN load cell. The 

samples were instrumented with a 25 ± 10 mm extensometer, and tested at a base true strain 

rate, 𝜖̇0, of 5 x 10-4 s-1. SRS changes were by both increasing (up-change) or decreasing (down-

change) the active strain rate by either a factor of 4 and 10, or ¼ and 1/10, for the up-change and 

down-change tests respectively. The use of the step-ramp method, previously described by 

Carlone and Saimoto [7] was employed whereby a compensation or adjustment to the active true 

strain is inserted during the rate-change in order to eliminate the transient on the sample due to 

the change in machine compliance from the change in the strain rate. An example of 

undercompensated and ideally compensated systems for down-changes with the corresponding 

stress response (over time) are shown below in Figure 3-6a and 3-6b, respectively.  

 

Figure 3-6: The time dependence of the true strain control and true stress response with a strain rate change for an Al-
0.35Mg-1.3Si-0.5Cu test sample with a) no compensation (traditional method), and b) ideal compensation. Note the 
stress relaxation over longer time to reach a minimum stress in the un-compensated test compared to the compensated 
one. 

As can be observed above, a “step” is inserted into the strain evolution over time in order for the 

strain rate response to only be “felt” by the sample and not the tensile machine. The difference 

between these two are due to the machine stiffness whereby a decrease in the strain rate changes 

the machine compliance of the system resulting in an incorrect stress reading that requires time 

to stabilize. If the sample is correctly compensated (ie: a sufficiently large “step” is inserted) the 

relaxation time of the sample is considerably reduced and a better measurement of the true 

stress-drop caused by the changed strain rate is observed. This same process may be used in the 

determination of the stress change due to an increase in the applied strain rate whereby the 

instantaneous change in the stress is determined (see Figure 3-7) rather than the commonly 

determined steady state stress change or the back-extrapolated change in stress [8]–[10]. 
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Figure 3-7: The method of compensation and 
determining the stress change due to an increase in the 
applied strain rate. Note there is a small “bump” at 64.2 
seconds, just prior to the actual rate change taking 
place. The actual rate change taking place is from the 
minimum prior to the rate change (64.3 seconds) to the 
maxima after the rate change (64.42 seconds) yet prior 
to the transient occurring after 64.5 seconds.  

3.3.3 Low-temperature testing 
The low temperature testing in this work utilized two different testing machines with similar 

principles for force application and isolation for the tensile specimen. Both systems implemented 

the aforementioned step-ramp method for machine compensation to account for the machine 

stiffness and compliance since down-change testing was used at the lower temperatures.  

Dry ice testing 

The data collection and system calibration using the mechanical tensometer consisted of 

collecting data on chart recorder paper using an HP Chart Recorder and an ink pen, connected to 

the drive shift using a custom gear system, see Figure 3-8. Testing at dry ice temperatures required 

the use of dry ice (solidified CO2) within a carrier medium (ethanol used for this work) in order to 

provide adequate cooling of both the sample and the machine components. The ethanol-dry ice 

solution was made in a vacuum dewar, dry ice slowly added to prevent boiling and overspill. The 

tested sample was measured (width and thickness, nominally, 2 mm x 1 mm) and mounted square 

into the top grip of the tensile machine. The top grip was screwed into the pull rod of the testing 

machine and the bottom grip was secured, allowing for a small amount of slack to be present to 

allow for the contraction of the material when cooled. The dewar full of ethanol-dry ice mixture 

was slowly raised around the system and the temperature regulation system (water pump) was 

turned on in order to prevent cooling of unnecessary components. The system was allowed to 

equilibrate for one hour, the temperature measured using a thermocouple and dry ice added to 

maintain a constant source of cooling.  
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Figure 3-8: The tensometer used to perform the dry-ice 
ethanol sub-size strain rate sensitivity tests located at 
Queen’s University, Kingston, Canada. The mechanical 
assembly is shown on the left with the control panel 
shown on the right side. Great care was taken to ensure 
the temperature remained constant and was 
adequately low prior to testing by waiting over one 
hour prior to testing. 

Liquid nitrogen testing 

Liquid nitrogen testing was performed on a hydraulic INSTRON using a 100 kN load cell with an 

external testing frame used to transfer the load from the hydraulic ram to the sample contained 

within the liquid nitrogen tank, shown in Figure 3-9. The sample was measured, a J-type 

thermocouple attached to the grip segment of the sample to monitor the temperature, mounted 

into the grips, and the top grip was attached to the pull-rod of the system. The drive cylinder was 

attached to the top plate, and the bottom grip was secured to the bottom plate using a low-

temperature hemispherical nut. The ram was driven down to reduce space and to slightly load the 

sample (around 7.5 kg) and then unloaded to create space to allow for the contraction of the 

sample during cooling. The 30 litre liquid nitrogen (LN2) tank was partially filled, lifted around the 

sample and placed on the support rod where it was subsequently filled using a transfer dewar. 

Once filled, cotton insulation was placed on the surface of the container to prevent excessive LN2 

loss, and the temperature of the sample was monitored. As the LN2 boiled off, the LN2 was 

periodically filled to prevent icing of the components and after approximately one hour (or once 

the temperature was stabilized) the temperature was recorded and the test began. The same 

step-ramp method previously described was used to the SRS testing at LN2 temperatures albeit 

with significantly larger compensation values to the added slack in the system caused by the 

external support structure.  
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Figure 3-9: The testing apparatus connected to the 
hydraulic INSTRON used for testing at liquid nitrogen 
temperatures (78 K). The hydraulic assembly and the 
external support structure is shown on the right with 
the control electronics (PC and control board) shown on 
the left. All compensation levels were manually 
adjusted during the testing sequence and manually 
applied.  
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4 Formation of clusters during natural and pre-ageing of Al-

Mg-Si-Cu alloys 
 

The initial step in being able to formulate an understanding of how the variation of composition 

will inevitably yield an influence on the subsequent mechanical properties of Al-Mg-Si-Cu alloys 

lies within the ability to determine the effect of solute additions on the corresponding 

microstructure formed during different heat treatments. This chapter will look at the evolving 

microstructure caused by the effects of Cu additions at two different levels of Si (0.9 and 1.3 at%), 

the effects of Si additions at 0.1 at% Cu, as well as Mg additions at 0.3 at% Cu on nine alloys. The 

solute effects will be coupled with the resulting influence on total potential for clustering and 

precipitation via differential scanning calorimetry (DSC) for samples in the naturally aged (NA), 

pre-aged (PA) and the resulting artificially aged (AA) states. The differences in NA kinetics for 

samples with and without PA treatments will be compared and connected to the results obtained 

from DSC. In general, this paper will serve as a design reference for those who desire to better 

understand the general impact of Si, Cu, and Mg additions on the NA, PA with secondary NA, and 

AA kinetics in Al-Mg-Si-Cu alloys.  
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Formation of clusters during natural and pre-ageing of Al-Mg-Si-Cu alloys 

 

 

 

 

 

 

 

 

 

 

Abstract 
The Al-Mg-Si-Cu alloy system is used in the automotive industry for body-in-white (BIW) 

components that undergo processing routes that end with paint baking; the method used to cure 

paint onto automotive doors, roofs, and hoods. This alloy type is age-hardenable meaning that if 

given sufficient time and temperature, a super saturated solid solution will reduce its energy 

through the formation of second phases having a local concentration differing from the bulk alloy 

concentration. This system is unique whereby the formation of clusters, regions containing high 

solute, can occur at room temperature, a process known as natural ageing (NA). However, if these 

alloys were allowed to NA for long periods of time, the hardening that took place during the 

subsequent paint baking resulted in a diminished hardness. This anomaly was termed the negative 

natural ageing effect and was deemed undesirable, resulting in aluminium manufacturers 

introducing a stabilization treatment known as pre-ageing (PA) prior to allowing the samples to 

NA. This PA process produced clusters thought to have a different chemistry than those formed 

during NA only. This chapter studies the effects of solute additions combined with NA, PA with 

secondary NA (sNA), and artificial ageing (AA), on the clustering behaviours in this alloy series. 

Hardness testing is used to observe the evolution of the clustering state via their influence on 

strengthening while differential scanning calorimetry will determine the state of clustering and 

their influence on the precipitation behaviour of the alloys via the positioning and intensity of 

exothermic and endothermic peaks. The kinetics of NA, sNA, and AA will be presented and 

discussed.  
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1.0 Introduction 
The widespread use of age-hardenable aluminium alloys in the automotive and aerospace 

industries requires an intricate understanding of the clustering and precipitation of second phases 

resulting in added strength. The use of age-hardenable 6000-series aluminium alloy in sheets for 

body-in-white (BIW) components requires that the material combines a high formability while in 

the naturally aged (NA) or pre-aged (PA) conditions and a high capacity for precipitation hardening 

during subsequent artificial ageing (AA), referred to as the paint bake (PB) treatment (typically 20 

minutes at 170-190°C). When sheet alloys are solutionized, water quenched (WQ) and allowed to 

naturally age while being shipped prior to automotive manufacturers forming the BIW 

components, the material suffers from a reduced ductility and from insufficient hardening during 

the PB treatment. This effect is known as the negative natural ageing effect [1], [2] due to the 

formation of clusters during NA. In order to prevent this detrimental effect, producers either 

introduced Cu into these alloy systems at a cost of corrosion resistance or gave the sheets a PA 

treatment after solutionizing in order to preserve the formability and hardenability potential of 

the material while it is shipped to automotive manufacturers [3]–[6]. Although these phenomena 

have been previously studied, a systematic evaluation of the effect of alloy composition via the 

specific effects of each alloy species is still missing to understand the differences between NA and 

PA, and the resulting thermal and mechanical stability of the clusters that form during the two 

treatments, and thus to understand the resulting mechanical properties and formability of these 

alloys. 

2.0 Background 
The clustering and precipitation sequence in the 6000-series aluminium alloys have been 

extensively studied [7]–[9] and can be summarized as follows 

SSSS  solute clusters  pre-β′′  β′′  β′  β, Si 

Where SSSS is the supersaturated solid solution which have been shown to evolve into clusters 

during NA, PA, or early stage AA processes prior to the formation of precipitates. The clusters that 

form have been shown to have a large range of stoichiometry [9]–[11] and are less defined than 

those of precipitates. However, reasonable support has been found suggesting that two main 

types of clusters may form in this system: cluster types i and ii, said to form at temperatures below 

and above 70 °C, respectively [7], [12]–[14]. The differences between these cluster types have 

been described as having a (Mg + Cu)/Si ratio less than one (Si-rich) or greater than one (Mg- or 

Cu-rich), for cluster types i, and ii, respectively. Since the higher order precipitates in these alloys 

have stoichiometry of (Mg + Cu)/Si close to or greater than unity (Mg5Si6 for 𝛽′′, Mg1.8Si for 𝛽′, and 

Mg2Si for 𝛽) [15], having a cluster with a matching or more closely related stoichiometry to the 

precipitates will reduce the energy barrier required for the clusters to evolve into precipitates [2], 

[16], [17]. However, it must be stated that unlike the precipitates, cluster types do not have a fixed 

stoichiometry and it is very difficult to define specific definitions of cluster type i and cluster type 

ii due to the wide range of specific cluster chemistries and the temperature of their formation. 

Thus clusters in this work will be referred to as Si-rich or Mg- or Cu-rich for clusters having a (Mg 

+ Cu)/Si ratio less than or greater than unity, respectively. Subjecting the alloys to pre-ageing has 

actually been shown [18]–[20] to increase the PB response, which is correlated to the production 

of clusters with stoichiometry closer to the precipitates (Mg- or Cu-rich). Separately, Cu additions 

have been shown to promote to formation of Mg-rich and Cu-rich clusters formed at room 

temperature during NA and reduce the negative natural ageing effect in the 6000-series [3], [4] 

while changing the precipitation sequence to [21] 
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SSSS  solute clusters  pre-β′′  β′′  β′, U1, U2, C, L, B′ , Q′  β, Q, Si 

It is also important to understand the clustering kinetics in these alloys either during direct NA or 

secondary NA (PA with subsequent NA) to guide designing an alloy whose hardening between 

sheet production and the forming process will be delayed. Banhart et al. [22], [23] have studied 

clustering during NA in the 6000-series system using positron annihilation lifetime spectroscopy 

(PALS). They describe the kinetics by five separate stages, separately analyzed by Werinos et al. 

[24], [25], the duration of each stage depending on the solute content, either specifically or as 

combination of several species. They are summarized as follows [22]: 

 Stage 0: free-diffusion of vacancies in the alloy prior to the formation of solute/vacancy 

complexes. 

 Stage 1: formation of small Si-rich aggregates. 

 Stage 2: increase in vacancies trapped and immobilized in Si-rich clusters. 

 Stage 3: diffusion of Mg and Cu into the Si-rich clusters formed during Stage 2. 

 Stage 4: not confirmed but is speculated to be due to ordering of the solute species within 

the clusters and the release of vacancies from the clusters; annihilated at other sinks. 

Although this model exists, this work will focus primarily on the later stages of NA and the sNA 

process and the differences observed. The observations will be related back into this context to 

explain the various observations. In parallel, atom probe tomography (APT) measurements of the 

atomic scale pathways of clustering [26], [27], [28], [29] and high resolution transmission electron 

microscopy (HR-TEM) [30] has lead to similar conclusions regarding the influences of specific 

solute species on the evolution of clustering during NA. Cluster states after PA and secondary 

natural ageing (sNA) have been studied using APT by De Geuser et al. [10], Aruga et al. [27], [31]–

[33] and complemented by PALS by Chang et al. [16], [34] for several alloy compositions. It is of 

great importance to state that although the idea of two cluster types being present in the 

precipitation sequence exists, all references report the average stoichiometry of the clusters 

formed during the various ageing treatments strongly suggesting that the cluster chemistries exist 

along a continuum rather than in a discrete manner. 

In this context, the present work aims at providing a comprehensive dataset of the influence of Si, 

Cu, and Mg content on the kinetics of natural ageing, on the effect of pre-ageing on secondary 

natural ageing, and on the kinetics and strengthening during artificial ageing and the paint bake 

treatment. One of the specific aspects of our study is that the studied alloys are “Si-rich”, namely 

they have a (Mg + Cu)/Si ratio smaller than unity whereas the majority of previous studies were 

performed on “Si-lean” alloys [35], [36]. The study will be carried out by combining hardness 

testing and differential scanning calorimetry, both of which providing an indirect characterization 

of the clustering and precipitation states. 

3.0 Materials and methods 
Nine alloys from the Al-Mg-Si-Cu (AA6xxx) series were chosen for testing having varying levels of 

Si, Mg, and Cu, their solute contents are shown in Table 4-1. All of the alloys are Si-rich, having a 

(Mg + Cu)/Si ratio smaller than one; their compositions are plotted in Figure 4-1 compared to two 

common industrial alloys, AA6016 and AA6022. The alloys contain four levels of Cu denoted C0 

(no Cu), C2 (0.1 at%), C5 (0.2 at%) and C8 (0.3 at%), three levels of Si denoted S0 (0.9 at%), S1 (1.1 

at%) and S3 (1.3 at%), and two levels of Mg (0.4 and 0.6 at%). Thus, this series of alloy 

compositions makes it possible to evaluate separately the influence of each alloying element, in 

the context of several contents of the other alloying species. 
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Sample 
Name 

Si  
(at%) 

Cu  
(at%) 

Mg  
(at%) 

C0S0 0.895 0.008 0.404 

C2S0 0.896 0.089 0.381 

C8S0 0.879 0.333 0.379 

C8S0M 0.899 0.337 0.557 

C2S1 1.069 0.087 0.372 

C0S3 1.299 0.004 0.387 

C2S3 1.262 0.088 0.400 

C5S3 1.284 0.218 0.372 

C8S3 1.324 0.329 0.385 
Table 4-1: The nominal concentrations of 
each of the alloy contents for the nine 
alloys tested in this work. Note: The 
naming convention was originally made for 
the wt% of the alloys: C0S0 had 0.0 wt% Cu 
and 0.9 wt% Si, while C2S3 had 0.2 wt% Cu 
and 1.3 wt% Si. 

 

 

Figure 4-1: A plot of the Cu and Mg contents compared to the Si 
content of the nine Al-Mg-Si-Cu alloys tested in this work. The black 
dashed line indicates a 1:1 (Mg + Cu) to Si ratio. The green and blue 
dotted arrows indicate the additions of Cu at constant Si, the red 
dotted arrow indicates the addition of Mg at constant Cu and Si, while 
the grey arrow indicates the addition of Si at constant Cu and Mg. The 
composition range of two common alloys; AA6016 and AA6022 are 
shown for comparison. 

As described above, two separate heat treatment pathways were selected; one with and one 

without pre-ageing, followed by natural ageing at room temperature (15 °C – 25 °C). All samples 

were received in the as-rolled condition, having a nominal thickness of 1 mm. The samples were 

then solution heat treated (SHT) in an air furnace for 15 minutes at 550 °C and either WQ at 15 °C 

and allowed to NA or WQ at 80 °C, transferred to an oil bath at 80 °C for 8 hours resulting in the 

PA condition, and then allowed to secondary naturally age. For evaluating the paint bake response 

during AA, samples in the PA condition were allowed to sNA for 1 week (sNA1w) and then AA for 

various times at 185 °C where 20 minutes at 185 °C was named PB. Differential scanning 

calorimetry (DSC) measurements were performed using a sample size of 3.5 x 3.5 x 1 mm3 cut 

using a SiC cut-off wheel (nominal mass of 35 mg) on a Mettler Toldedo DSC using an empty Al 

crucible as reference. Samples were briefly ground by hand using 600-grit paper to remove any 

surface damage possibly inflicted by the cut-off wheel. The DSC scan cycle was as follows:  

1. Cooling of the sample to -50 °C and holding for 2 minutes. 

2. Heating to 300 °C at 20 °C/min, holding at 300 °C for 2 minutes. 

3. Cooling to -50 °C at -20 °C/min, holding at -25 °C for 2 minutes. 

4. Reheating to 300 °C at 20 °C/min. 

The data and thermal signature of the sample was assumed to be completed during the first 

heating ramp (Step 2), and was corrected for using the second heating ramp (Step 4) as the 

baseline rather than using a 4th or 6th order fit for the baseline correction (see Chapter 3.2.2 for 

more details). This method implies that the alloy does not experience significant transformations 

during the second heating ramp. The DSC measurements were made only at particular times of 

ageing: WQ, WQ with 1 month NA (NA1m), and directly after PA (as-PA). These three different 

points in time allow for the determination of: i) the initial clustering potential, ii) the 

corresponding clusters formed during NA, and iii) the corresponding clusters formed during PA. 

The differences between the DSC thermograms will give insight into the differences between the 

two heat treatment procedures and the corresponding microstructure features that are formed.  
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For hardness testing, samples were prepared using standard metallographic preparation 

methods: samples were cut using a SiC cut-off wheel, then polished using 600-grit paper, 9 µm 

then 3 µm diamond, and finally colloidal silica were used to produce a mirror finish. Samples were 

then tested using a Wilson Tukon 1202 testing machine (S/N 1202-02-0158) with a 100 g mass and 

a 20 second dwell time. Measurements were taken as the average of 10 indents, spaced 1 mm 

apart, and measured using the Buehler OmniMet MHT program with a standard deviation 

commonly found to be ± 2 HV100, that will not be plotted in the following for clarity. The natural 

ageing, secondary natural ageing, and artificial ageing kinetics of the alloys, were fit using an 

exponential [25], [37], [38] with t0 being the incubation time directly after the PA process prior to 

the observation of any substantial sNA [37], [39]. The relative errors of k were found to be ± 7.5%, 

5%, and 2.5% for kNA, ksNA, and kAA, respectively. An example of the parameters that will be 

obtained from the three different heat treatment processes (NA, sNA, and AA) is shown for alloy 

C8S0 in Figures 4-2a and 4-2b.  

 

Figure 4-2: A schematic of how a) the NA and sNA kinetics, and b) the AA kinetics are determined in the 6000-series 
alloys for the C8S0 alloy (Al-0.35Mg-0.9Si-0.3Cu). Note that the start time of calculation for the kNA kinetics matches that 
of the ksNA kinetics. This was done to allow for a direct comparison the kinetics of the two states.  

The critical parameters explored in this work are the kinetics of NA, sNA, and AA. Due to the long 

incubation times experienced in the PA samples (see horizontal line in Figure 4-2a), the hardness 

evolution during NA [22], [23], will begin at the same time interval as in the sNA such that they 

maybe compared directly (14 days for Figure 4-2a). Since the application of the present work is 

for automotive sheet forming, only the early stage AA kinetics, kAA were determined, from the 

initial condition, sNA1w up until 1 h of AA at 185 °C. 

4.0 Experimental Results and Analysis 
As shown in the alloy composition table, this work involves the study of the effects of Cu at 0.9 

at% Si and 1.3 at% Si, the effects of Si at 0.1 at% Cu, and the effects of both Mg and Si at 0.3 at% 

Cu. In order to limit the number of graphs shown in the main text body, only the effects of Cu at 

0.9 at% Si and the effects of Si at 0.1 at% Cu are presented below. The effects of Cu at 1.3 at% Si, 

and effects of Mg and Si at 0.3 at% Cu are shown in Appendix 1, while the results of the kinetics 

and key hardness values from all alloys will be summarized and discussed later in the chapter.  

4.1 Effects of Cu addition with 0.9 at% Si 
The effect of Cu content at 0.9 at% Si on the hardness evolution during NA, sNA, and AA is shown 

below in Figures 4-3a-c.  
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Figure 4-3: The effects of Cu content at Si level of 0.9 at% on the age hardening curves for a) NA, b) sNA, and c) AA after 
sNA1w. The incubation times prior to sNA are shown in dotted lines in b).  

As is apparent from Figure 4-3a, the initial hardness after WQ increases with Cu content as does 

the duration before hardening (incubation time) whereby the three alloys have identical hardness 

after one hour of NA. The final hardness (assuming hardening has completed) after 360 days of 

NA increases with Cu content. The same is true with the hardness in the PA condition and the 

incubation time after the PA process whereby both of these properties increase with Cu content, 

hardening is not taking place for up to 14 days of sNA in the 0.3 at% Cu samples compared to 7 

days in 0 and 0.1 at% Cu. After 360 days of sNA, the hardneness does increase with total Cu 

content. The 0 and 0.1 at% Cu alloys have almost identical hardness during both NA and sNA. The 

alloy with 0.3 at% Cu is significantly stronger, although its hardness difference with the other alloys 

is lower during sNA compared to NA suggesting that the types of clusters formed during these two 

processes are not the same nor are the kinetics. These trends of Cu additions continue to extend 

to the AA curves whereby the initial, PB, and peak hardness all increase with Cu content, most 

significantly between 0.1 and 0.3 at%. It should be noted that the peak age condition occurs at 

around 5h of AA time for all alloys, independently of Cu content.  

The thermograms corresponding to the WQ, NA1m, and as-PA conditions are shown in Figures 4-

4a-c.  
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Figure 4-4: The effects of Cu content at Si level of 0.9 at% on the DSC curves in the a) WQ, b) 30 day NA, and c) as-PA 
conditions. 

Increasing the level of Cu with 0.9 at% Si induces only minor changes in the DSC thermogram in 

the WQ condition. An increase in the clustering peak temperature (around 100 °C) is observed 

with increasing Cu content, together with a slight decrease of the dissolution peak temperature 

for these same clusters (around 220 °C). The precipitation peak is shifted to a slightly lower 

temperature suggesting that the PB response should be marginally enhanced by the Cu addition. 

After 30 days of NA, differences in the dissolution temperature of the clusters formed during NA 

appear. Increasing Cu results in the appearance of a low-temperature dissolution peak (centered 

at 150 °C) which is absent in the sample with no Cu. The total dissolution peak area between 100 

°C and 250 °C increases with Cu, consistent with an increase in the total amount of solute that is 

able to contribute to cluster formation, and correlating to the increased hardness after 30 days of 

NA in Figure 4-3a. In the NA state the precipitation peak is strongly shifted to lower temperature 

by the addition of Cu, especially 0.3 at%, which illustrates a reduction of the negative effect of 

natural ageing on the paint-bake response. The total area of the precipitation peak, although not 

quantitatively accessible by our experiments, increases with Cu content, which is consistent with 

the enhanced peak hardness observed in Figure 4-3c. Directly after PA (Figure 4-4c) the 0.3 at% 

Cu sample exhibits a very minor clustering at 160 °C while this is absent in the lower Cu alloys. 

Unlike in the NA1m condition, there is only a single cluster dissolution peak, occurring at 210 °C 

and being very weak in its thermal signature. This suggests that the PA clusters are more thermally 

stable than those formed during the NA process. The precipitation peak intensity does increase 

with Cu content but now there is no shift in the peak temperature. Most importantly, for all alloys 

this precipitation peak temperature, at 250 °C, is much lower than for the NA materials, and is 
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close to that of the WQ materials, which illustrates the efficiency of the PA treatment to eliminate 

the negative effect of NA on paint bake response. 

4.2 Effects of Si additions with 0.1 at% Cu 
The effects of Si content at 0.1 at% Cu on the hardness evolution during NA, sNA, and AA are 

shown below in Figures 4-5a-c.  

 

Figure 4-5: The effects of Si content at Cu level of 0.1 at% on the age hardening curves for a) NA, b) PA with sNA, and c) 
AA after sNA1w. The incubation times prior to sNA are shown in dotted lines in b). 

Directly after WQ, the initial hardness does not significantly vary with the additions of Si but the 

incubation time is reduced. The strengthening effect of Si remains similar until the final hardness 

is obtained. As seen in Figure 4-5b, Si has a large effect on the hardness directly after PA but 

conversely the incubation time is increased, so that the 1.3 at% Si alloy does not exhibit much 

additional hardening during the sNA for times longer than 14 days of sNA. It should be noted that 

the hardness for all alloys after 360 days NA is comparable to the that after 360 days sNA. The 

hardening effect of Si addition applies also to the paint bake treatment, where the additional Si 

does yield an increase in the PB hardness. This additional hardening effect is significantly 

diminished during subsequent AA resulting in a peak hardness not significantly influenced by the 

addition of Si. The DSC thermograms of the main heat treatment conditions are shown below in 

Figures 4-6a-c.  
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Figure 4-6: The effects of Si content at Cu level of 0.1 at% on the DSC curves in the a) WQ, b) NA1m, and c) as-PA 
conditions. 

The DSC thermograms directly after WQ (Figure 4-6a) show that the intensity of the clustering 

peak around 100 °C increases with Si content correlating to the greater hardening capacity with 

increasing Si during NA shown in Figure 4-5a. The dissolution peak around 210 °C also increases in 

intensity as expected with the increase in clusters formed during the heating ramp. In the NA1m 

condition, all of the clustering signal has now disappeared and the NA clusters begin to dissolve at 

lower temperatures compared to those in the as-PA condition in Figure 4-6c. In the NA1m 

condition, the 1.1 and 1.3 at% Si alloys appear to have two distinct dissolution peaks, 140 °C and 

220 °C (see Appendix 1.2 to show the evolution of this second peak with Cu content where the 

difference is much more pronounced) whereas the 0.9 at% Si alloy has a single, gradually 

decreasing dissolution peak. The precipitation peak temperature is lowered when the Si content 

reaches 1.3 at%, suggesting a reduction of the negative effect of NA on paint-bake response but 

this effect is much less significant than in the case of Cu additions. Finally, in the as-PA condition, 

there does not appear to be any retained clustering taking place while the cluster dissolution does 

not begin until 175 °C, a stark contrast to the NA1m condition showing that the clusters formed 

during the PA process are more thermally stable than those formed during NA. The dissolution 

peak intensity does appear to slightly increase with additional Si and translates into a greater 

precipitation peak intensity but now there is no shift in the peak temperature, similar to the effect 

of Cu. The precipitation peak temperatures are similar to that in the WQ condition, similarly to 

what has been shown above for the effect of Cu content. This increased dissolution peak intensity 

also correlates with the enhanced hardness as-PA exhibited by increasing the Si content in Figure 

4-5b. As there is no large difference in the precipitation peak intensity with additional Si, it 

correlates to the equally minor increase in peak hardness of the alloys during AA.  

4.3 Effects of composition on hardness 
The key hardness parameters from the three different heat treatments performed on the nine 

different Al-Mg-Si-Cu alloys are summarized below in Table 4-2. 
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Table 4-2: Key hardness parameters for the nine different alloys tested in the three different heat treatment procedures. 
HV0 is the hardness directly after WQ, HVas-PA, the hardness directly after the PA treatment, HVsNA1w, the value after 1 
week sNA (used as the initial point in the AA curve), HVPB, the paint bake hardness (20 min AA at 185 °C), and HVPeak, the 
peak AA hardness of the alloys. The average error for these measurements was ± 2 HV100.  

Sample Name HV0 HVas-PA HVsNA1w HVPB HVPeak 

C0S0 38.4 58.3 60.8 85.7 102.3 
C2S0 41.2 57.5 61.1 84.1 107.3 
C8S0 45.5 67.3 68.4 91.6 119.6 

C8S0M 48.1 79.6 79.5 102.6 132.6 

C2S1 41.4 61.1 62.9 86.6 106.9 

C0S3 43.9 67.8 69.6 89.4 108.6 
C2S3 43.3 68.6 69.3 90.2 109.0 
C5S3 51.4 75.0 74.0 89.9 113.9 
C8S3 48.1 80.1 80.0 92.7 119.6 

 

Based on the table above, it is clear that the initial hardness directly after quenching increases 

with the total solute content. In the as-PA condition, all solute elements appear to increase the 

hardness and this effect is similar to sNA1w. To understand the role of the different solutes on 

these key hardness parameters, they are plotted versus total solute content in Figure 4-7.  

 

Figure 4-7: The evolution of the HVsNA1w (circles), HVPB (triangles), and HVPeak (squares) hardness properties with total 
solute content to illustrate the dependency of certain properties of the different solutes. For clarity, the effects of Cu 
additions at 0.9 and 1.3 at% Si, are connected in green and blue dashed arrows, respectively. The effects of Si additions 
at 0.2 at% Cu and 0.4 at% Mg are connected with the grey dashed arrows. The effects of Mg addition at 0.9 at% Si and 
0.3 at% Cu are connected with red dashed arrows.  

In the sNA1w condition, the hardness increases uniformly with total solute content showing that 

the effect of Cu and/or Si additions (in at%) on the hardness increase is similar. This is in contrast 

to the Mg addition which appears to have a slightly stronger effect on the hardness. For the PB 

hardness, the effect of the different solutes is also similar to the sNA1w conditions, Mg having a 
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stronger effect compared to Si and Cu which retain their strengthening effects. Once samples are 

in the peak age condition, the stronger effects are now that of Cu and Mg while the effect of Si 

addition appears to be non-existent.  

In order to illustrate the hardening response during artificial ageing, Figure 4-8 represents the 

hardness difference between the PB state and the peak age state with respect to the sNA1w state, 

for the nine alloys tested.  

 

Figure 4-8: The paint bake (triangles) and peak age (squares) response compared to the total solute content of the nine 
tested alloys. For clarity, the effects of Cu additions at 0.9 and 1.3 at% Si, are connected in green and blue dashed arrows, 
respectively. The effects of Si additions at 0.2 at% Cu and 0.4 at% Mg are connected with the grey dashed arrows. The 
effects of Mg addition at 0.9 at% Si and 0.3 at% Cu are connected with red dashed arrows.  

Figure 4-8 shows that the PB response of the alloys has a negative correlation with the total solute 

content, where Cu, Si and Mg all show very similar effects. The sensitivity of each solute species 

changes in the peak age response whereby at 0.9 at% Si, Cu has a positive effect but this is 

eliminated at 1.3 at% Si. Increased level of Si has an identical effect to added Mg such that the 

general picture is that increased solute reduces the peak age response. These effects are related 

to the combination of the increased initial hardness prior to AA (in the sNA1w condition) and the 

lack of effect of Si on increasing the peak hardness value.  

4.4 Effects of composition on kinetics 
In addition to the absolute values of hardness, it is important to study the kinetics of hardness 

evolution in order to gain insight into what solute additions control the hardening kinetics for the 

various heat treatments. The tabulation of the kinetics studied for each of the nine alloys tested 

are shown in Table 4-3. 

Table 4-3: The ageing kinetics for the two different NA routes, kNA and ksNA, and the AA kinetics, kAA for the nine alloys 
tested. The NA time to reach maximum hardness, tNA, and the incubation time prior to hardening in sNA, t0, which was 
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used as the start time for the both kNA and ksNA fits, are shown. Note that the incubation time prior to the onset of NA 
was not recorded due to the lack of data points at very low NA times.  

Sample Name kNA ± 7.5% tNA (days) ksNA ± 5% t0 (days) kAA ± 2.5% 

C0S0 2.4 168 3.3 7 15.9 
C2S0 2.6 168 4.0 7 16.3 
C8S0 4.4 350 4.8 14 18.6 

C8S0M 3.4 63 3.2 7 17.7 

C2S1 2.3 112 4.2 7 16.3 

C0S3 1.8 168 3.2 7 12.3 
C2S3 2.4 63 5.4 14 14.9 
C5S3 3.0 42 3.8 7 13.6 
C8S3 4.0 28 3.3 7 12.9 

 

In order to understand how these properties evolve with alloy composition, the values are plotted 

against the total solute contents. The differences between the NA and sNA kinetics, kNA and kPA, 

are shown in Figure 4-9a and the kAA kinetics are plotted versus the total solute content in Figure 

4-9b.  

 

Figure 4-9: The compositional correlation of a) the kNA and ksNA kinetics and b) the evolution of kAA with total solute 
content. For clarity, the effects of Cu additions at 0.9 and 1.3 at% Si, are connected in green and blue dashed arrows, 
respectively. The effects of Si additions at 0.2 at% Cu and 0.4 at% Mg are connected with the grey dashed arrows. The 
effects of Mg addition at 0.9 at% Si and 0.3 at% Cu are connected with red dashed arrows.  

The NA kinetics depend on not only the solute content of the alloy but also the heat treatment as 

shown in Figure 4-9a. The kNA parameter strongly increases with the addition of Cu at constant Si, 

is independent of Si content at constant Cu, and decreases with the addition of Mg at constant Si 

+ Cu. In almost every case, the sNA kinetic parameter, ksNA, is greater than its NA counterpart 

(although the global kinetics is delayed by the incubation time). For ksNA, the effect of Cu at 

constant Si is weaker but there is the appearance of an initial “spike” in the ksNA rate with Cu 

additions at 1.3 at% Si which decreases with added Cu; this is not present with the effects of Cu at 

0.9 at% Si. However, Si addition increases the ksNA parameter, unlike kNA, while an addition of Mg 

also decreases the sNA kinetics, similarly to the NA kinetics. It is interesting that the AA kinetics 

appears to have a complex relation with Cu, Si, and Mg. At 0.9 at% Si, Cu increases kAA, while at 

1.3 at% Si, there is the same initial “spike” with the first Cu addition, followed by a subsequent 

decrease with further additions that was observed in the ksNA behaviour. Si additions slightly 

decreases kAA, which is also the case for an Mg addition.  

4.5 Results Summary 

 NA: the initial and final hardness increases most with Cu and Mg, Si has a smaller effect. 
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 PA: initial hardness increases with total solute content. 

 AA: HVPB depends most on Mg, while Cu and Si have similar effects; PB response decreases 

with the total solute content. 

 AA: HVpeak depends only on Mg and Cu content, both having similar effects; peak response 

increases with Cu content at low Si, but decreases with total solute content. 

 NA kinetics: kNA increases with Cu and Mg but has strongest effect at low solute levels; Si 

does not strongly affect kNA. 

 sNA kinetics: increase with Cu and Si, decrease with Cu at 1.3 at% Si and with Mg additions. 

 AA kinetics: decreases with Si and Mg content, appears to increase with Cu content at 0.9 

at% Si levels. 

5.0 Discussion 

5.1 Natural Ageing 
The effects of solute additions on the NA behaviour of the set of Al-Mg-Si-Cu alloys under study 

follows similar trends that were observed and explained by Banhart et al. [22] and expanded on 

by Werinos et al. [24], [25] pertaining to the five stages of NA. During NA, the first stage is an 

incubation time where hardness remains constant and is related to the free-vacancy content. The 

duration of this stage decreases with Si addition, due to the suggested rapid Si clustering taking 

place [25]. While the incubation time increases with Cu content, suggested to be related to the 

positive Cu-vacancy binding energy [34], [40] reducing their mobility and thus solute diffusion. It 

was found that added Cu increases the kNA kinetics of NA [34], being most prominent at lower Cu 

and Mg levels (see stage 3 of hardening being related to Cu and Mg). This may be due to the 

increased number density of NA clusters formed with Cu additions. It is interesting to note that 

the addition of Si reduces the time it takes for the NA process to stabilize in these alloys. This is 

likely due to the enhanced NA kinetics as there is an increase in the number density of Si-rich 

clusters formed during the early stages (1 and 2) of NA permitting their rapid growth during Cu 

and Mg enrichment (stage 3) requiring smaller diffusion distances. At lower levels of Si, the 

number density of Si-rich clusters is likely reduced such that it takes significantly longer for the Cu 

solutes to be removed from the matrix ultimately extending the duration of kNA kinetics prior to 

obtaining the final hardness. However, at the end the Cu and Mg enrichment of the clusters (stage 

3 in the Banhart formulation), the final hardness in the NA condition increases with the total solute 

content, with Cu and Mg having the largest influences.  

Within these alloys, it is very interesting to note that two cluster dissolution peaks are observed 

by DSC when Cu and Mg are added into the system (see Figure 4-4b and Appendix 1.2). The 

additions of Si cause a shift of the first dissolution peak to lower temperatures (see Figure 4-6b 

and Appendix 1.2) which strongly suggests that a distribution of cluster chemistries exist during 

the NA process, the lower temperature being primarily Mg- and Cu-related with their dissolution 

temperature being Si-related. Aruga et al. [27] found that Si-rich clusters formed during the NA 

process did not dissolve/evolve during subsequent AA giving rise to the negative NA effect. This 

result is consistent with the higher temperature dissolution peak intensity decreasing with Cu 

additions, whereby if less thermally stable clusters (being rich in Cu and Mg) are able to be 

dissolved at lower temperatures, the now free solutes may form the 𝛽′′ precipitates as observed 

by the increased precipitation peak area and decreased peak temperature shown in Figure 4-4b.  

5.2 Pre-Ageing 
During the PA process, the clusters that form are certainly different than those formed during NA, 

being formed at temperatures greater than 70°C [32], [41] and appear to have a (Cu + Mg)/Si ratio 
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greater than unity suggested by the reduction in the precipitation peak temperature compared to 

the NA1m condition. The hardness in the as-PA condition is equally sensitive to Si, Cu, and Mg 

addition supported by the single dissolution peak in the as-PA thermographs (Figures 4-4c and 4-

6c, and Appendix 1.2) increasing in intensity from any solute addition suggesting that all solutes 

take place in the initial clustering process. Cu additions in these alloys increases the incubation 

time prior to the onset of sNA. Since Cu has a greater vacancy binding energy than Si [34], [40], 

the increased incubation time may be explained by a delayed onset of diffusion of free solutes to 

the existing Mg- and Cu- rich clusters formed during PA [32].  

At 0.9 at% Si, the thermograms in the as-PA condition (Figure 4-4c) show a very small clustering 

peak present in the samples with 0.3 at% Cu. This would suggest that there is some amount of 

retained Cu in the matrix able to contribute to the growth of the clusters that were formed during 

the PA process whereby at 0.3 at% Cu, Si becomes the limiting solute in cluster formation. This is 

consistent with the increased ksNA observed with increasing Cu and it may be postulated that at 

higher levels of Cu, there is not an adequate amount of Si available in the system to deplete all of 

the Mg and Cu during the PA process. This would thus allow for further Cu-enrichment driving the 

increase in the sNA kinetics with Cu content at 0.9 at% Si with there being both additional free-Cu 

in the matrix and an increase in the number density of clusters formed during the PA process.  

This situation is reversed when the effects of Cu additions are observed at 1.3 at% Si, whereby the 

first addition of Cu “spikes” the ksNA rate while subsequent additions decrease the ksNA kinetics. 

The reason for the initial spike is not understood but it may be speculated that the initial “spike” 

is caused by the more favourable cluster stoichiometry of Mg- and Cu-rich clusters formed during 

PA allowing for the aggregation of excess fast-diffusing Si during sNA. With the subsequent 

additions of Cu, there is a more complete removal of Si from the matrix during the PA process so 

that any additional Si that remains in the matrix will be reduced, requiring additional time to 

diffuse to the existing clusters and possibly making Si the limiting solute. It is possible that these 

two competing effects are optimized at 0.1 at% Cu, with the cluster chemistry being more Si-rich 

with no Cu, and there being insufficient retained Si in the matrix to permit cluster growth with 0.2 

and 0.3 at% Cu.  

The addition of Si (at 0.1 at% Cu) shows there is a small increase in the dissolution peak intensity 

suggesting that Si increases the amount of solutes taking place in clustering during the PA process. 

If the retention of Si in solution exists, during the agglomeration phase of the clusters during sNA, 

the Si enrichment of the PA clusters is able to occur more rapidly due to the smaller diffusion 

distances required. This explains the increase in the observed sNA kinetics. It was previously 

suggested that the independent formation of unique NA clusters may coincide with the sNA 

process after PA [42], [43]. This is less likely to be the case in this work as the DSC thermograms 

after the PA process do not display any further clustering signal at the lower temperatures (50 °C 

– 100 °C) and contains a single cluster dissolution peak.  

With the additions of Mg there is a coupled effect of a more complete removal of total solute from 

the matrix (increased dissolution peak in Appendix 1.2) while also having the slowest diffusion of 

the three species yielding a decrease in the sNA kinetics with Mg additions, as observed.  

5.3 Artificial Ageing 
The trends observed during the AA process are quite well understood and follow the many studies 

performed on PB process as well as on peak ageing [18], [27], [35], [44]. Although the 

stoichiometry of clusters tend to greatly vary [10], [27], [34], [43], the stoichiometry of 
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precipitates tend to be more well defined [8], [19], [30], [45]–[47]. It is clear that the additions of 

Cu and Mg both increase the PB and peak hardness values. Since the basis of these alloys have a 

(Mg + Cu)/Si ratio significantly less than unity, any Cu or Mg addition will thus contribute to the 

formation of the precipitates by allowing for an additional volume fraction of precipitates to form. 

Si additions have a minor effect on the PB hardness, likely due to a retained effect of enhanced 

hardness after PA, but this effect is completely eliminated for the peak hardness, consistent with 

Si not being the limiting solute for precipitate formation. 

In terms of kinetics, it is important to remember that the starting condition of these alloys prior 

to AA is the PA with one week of sNA during which none of the alloys show any significant 

hardening from the direct PA condition. The increase in kinetics with additional Cu at 0.9 at% Si is 

most likely attributed to the amount of retained Cu in solution that is able to diffuse and grow the 

PA clusters having a more favorable stoichiometry for precipitate formation, being Mg- and Cu-

rich. At 1.3 at% Si, the additions of Cu have a similar trend to that on ksNA, whereby the initial 

addition of Cu causes an initial increase in the AA kinetics with subsequent additions causing 

further decreases. The initial spike in kinetics may be explained by an initial transition to a more 

favorable stoichiometry of the clusters that are formed, maintaining a small and easily dissolvable 

cluster size while retaining Si in solution to allow for cluster growth and transition to precipitates. 

The subsequent additions may then result in a two-fold effect: a decrease in the free-Si available 

to precipitate transition and an increase in PA cluster size improving their thermal stability. The 

addition of Mg causes a reduction in kAA likely due to an enhanced stability of the clusters formed 

during PA. Si additions retard the AA kinetics likely due to decrease in the (Mg + Cu)/Si ratio of the 

PA clusters that are formed increasing the energy barrier to permit precipitate formation [18], 

[27], [35], [44].  

6.0 Conclusions 
The roles of the different solutes during the NA, PA plus sNA, and AA processes were studied and 

from the current work, the following conclusions may be made: 

 In the WQ condition, Si, Mg, and Cu additions increase the potential for clustering. 

 After 30 days of NA there are two type of clusters that form. One type that dissolves at a 

lower temperature, the intensity depending on the on the Cu content while Si additions 

decrease their thermal stability. The second type dissolving at a higher temperature has a 

very small sensitivity due to solute additions. 

 Directly after PA, there is only one cluster type that is produced and dissolves at similar 

temperatures to the second cluster type formed during NA, its intensity increasing with 

total solute content. 

 The total solute content appears to increase the PA hardness but decreases the PB 

response. 

 The peak hardness increases with Cu and Mg content while the peak hardness response 

decreases primarily based on the Si content of the alloy. 

 The kNA NA kinetics rely solely on the Cu and Mg content of the alloys while the ksNA kinetics 

appear to have a more complex relationship, similar to kAA. 
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5 Effect of Si on the strain rate sensitivity of naturally aged 

Al-Mg-Si-Cu alloys 
 

One of the most important factors regarding the formability behaviour of aluminium alloys is their 

ability to both undergo strain hardening and their sensitivity to the rate of deformation, known as 

the strain rate sensitivity. In general, strain rate sensitivity tests are performed by the abrupt 

perturbation of a constant strain rate by that of an increased strain rate. During deformation and 

upon the onset of localized deformation, necking, the region interior of the neck undergoes a 

rapid increase in the applied strain rate. Thus, most laboratories have performed strain rate jump 

tests to probe the strain rate sensitivity of various alloys. This chapter will explore and detail key 

parameters to consider when performing strain rate sensitivity tests as well as demonstrate the 

importance of performing not only increases to the applied strain rate, but also decreases which 

will be shown to be experimentally more complicated. The apparent differences and resulting 

asymmetry in the strain rate sensitivity between the increasing and decreasing strain rate jump 

tests will be discussed and the effects of Si on each of these parameters will be highlighted to 

provide an example of the applicability of these methods. These will be extended to the apparent 

activation volumes and the possible causes of the observed asymmetry during testing at room 

temperature.  
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Abstract 
Increasing demand for a reduction in fuel emissions in passenger vehicles has generated the need 

for lighter weight materials to be used in automobile manufacture for body-in-white applications. 

Aluminum alloys in the 6000-series, containing Mg and Si are ideal candidates for these 

applications but lack the formability found in commonly used steels providing a need to more fully 

understand the factors influencing the formability of these alloys at high strains. Conventionally, 

a high strain rate sensitivity (SRS) is tied to increased formability due to the increase in the local 

strain rate found in the diffuse neck interior. However, most experimental work neglects that the 

regions exterior to the neck will undergo a local decrease in the strain rate which causes a 

corresponding material softening. Observations of an asymmetry between up-change and down-

change SRS of these alloys in the natural aged condition show that different mechanisms are 

controlling the SRS depending on the direction of rate change. Differential scanning calorimetry, 

continuous tensile, and precision strain rate sensitivity testing results are presented, elucidating 

the differences between the up-change and down-change SRS tests, shown to be due to the 

activation of different thermal obstacles during the two directions of rate changes. The role of Si 

additions on these mechanical properties are explored and their suspected role on the asymmetric 

SRS are discussed.  
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1.0 Introduction 
The use of aluminium alloy sheet metal in the automotive industry for body-in-white applications 

has established the requirement for a better understanding of the deformation behaviour and 

high-strain mechanical properties of these alloys. The production of automobile doors, roofs, and 

hoods, all introduce plastic strain to the sheet metal with industrial designers constantly pushing 

the limits of the material properties to produce the most desirable vehicles while manufacturers 

are attempting to reduce the mass of passenger vehicles to meet environmental standards [1], 

[2]. The result is that automotive manufacturers desire aluminium alloy sheets with increased 

formability to allow more complex designs to be created using thinner sheet metal without failure. 

In forming practices, once a sheet has developed a localized neck, it is considered to be in a failed 

state and the material may not be used.  

The transition from diffuse to localized necking is not fully understood but conventionally, the 

Considère criterion [3] is employed to determine the onset of diffuse necking. It relates the current 

strain hardening, 
𝑑𝜎

𝑑𝜖
, to the current flow stress, 𝜎, whereby once 

𝑑𝜎

𝑑𝜖
= 𝜎 is met, a geometric 

instability develops resulting in flow localization [4]–[6]. This flow localization results in an 

increased strain rate within the neck interior where studies have shown that materials with a large 

strain rate sensitivity (SRS) at high strains near the Considère criterion will delay the onset of 

localized necking [4], [6]–[10]. This effect is attributed to the local increase in the strain rate upon 

diffuse necking, which changes the local flow stress and strain hardening states. Conversely, little 

attention has been given to the region outside of the neck whereby the local strain rate will 

inevitably decrease [7] in order to maintain the overall imposed deformation rate. Therefore, the 

strain rate sensitivity of the flow stress becomes a most valuable parameter for understanding the 

necking behaviour, but its determination requires significant care. Strain rate sensitivity has 

historically being measured by tensile testing multiple specimens at various strain rates [11], [12], 

stress relaxation, or by strain rate change or jump tests of single specimens [13]–[17]. When 

performing strain rate change tests, the machine and specimen stiffness result in an elastic 

response to the newly imposed strain rate, and the associated stress change, which can lead to 

additional experimental errors. This effect is magnified if a decrease in the strain rate is applied or 

if the change in the strain rate is significantly large [18], [19]. Consequently, reliable instantaneous 

strain rate sensitivity values to determine thermodynamic parameters are elusive for most 

laboratories with most measurements being reported from tests that increase the strain rate 

(system stiffens). 

When reliable strain rate sensitivity measurements are made by either increasing or decreasing 

strain rates, an asymmetry of the SRS for dilute alloys has been observed at high strains (high flow 

stresses) [13], [20], [21] whereby the rate sensitivity of a decrease is found to be greater than the 

corresponding increase. Such an asymmetry will undoubtedly cause a difference between the 

relative increase and decrease in stress-state within the neck interior and exterior, respectively, 

whereby the magnitude of the stress decrease in the neck exterior is greater than the relative 

increase in stress of the neck interior, which may be hypothesized to reduce the localization of 

plastic flow. Since in the common formability literature the strain rate sensitivity of aluminum and 

aluminum alloys has been perceived to be negligible compared to materials like steels, there has 

been little effort to consider how alloying and microstructural design might contribute to this 

asymmetry to enhance neck prevention in sheets. Design of 6000-series aluminium alloys for 

automotive sheets has been a very active research area over the last 10 years, with much focus 

on optimizing the paint bake hardening response, i.e. the strength increase that happens due to 

precipitation during the paint bake heat treatment, consisting of 20 min at 185 °C. It is now well 
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chartered that in 6000-series alloys, the paint bake hardening response strongly depends on alloy 

composition and on the presence of clusters, whose characteristics depend on the heat treatment 

(time of natural ageing, pre-ageing treatment) [22]–[25]. Conversely, the influence of alloy 

composition and the presence of clusters on the strain hardening behaviour and on the SRS has 

been the object of very little research, despite the necessity to optimize globally the formability 

of the alloys and their end mechanical properties. 

The aim of the present paper is to precisely measure the strain rate sensitivity of the flow stress 

for different 6000-series Al alloys containing variable amounts of Si, and determine if there is 

asymmetry in the rate sensitivity. The paper starts with a brief review of the theory of thermally 

active flow in order to present the important measureable parameters before describing the 

experimental details.  

2.0 Background 
Strain rate sensitivity experiments are used to determine the reversible component of 

deformation during plastic flow, that is, the portion of activation energy dislocations carry as they 

overcome obstacles within the material [14], [26]–[28]. In the initial variable temperature 

experiments by Cottrell and Stokes [29], the components of thermal energy within the material 

were adjusted by temperature changes and the resulting changes in stress were measured. Since 

then, experimentally easier tests have been employed whereby the current strain rate is adjusted 

by a factor and the resulting change in the applied stress is measured. The basis of SRS is derived 

from the rate equation for plasticity such that 

𝜖̇ = 𝜖0̇ exp (−
Δ𝐺(𝜎)

𝑘𝑇
)     (1) 

where 𝜖̇ is the applied plastic strain rate, 𝜖̇0 the base strain rate, Δ𝐺(𝜎) is the stress-dependent 

activation energy barrier, k is the Boltzmann constant and T the absolute temperature. During 

strain rate change tests, the strain rate is experimentally manipulated, thus Eq. 1 is differentiated 

with respect to 𝜖̇ such that 

𝜕 ln �̇�

𝜕𝜎
|

Σ,𝑇
=

𝜕 ln 𝜖0̇

𝜕𝜎
|

Σ,𝑇
−

1

𝑘𝑇

𝜕Δ𝐺(𝜎)

𝜕𝜎
|

Σ,𝑇
   (2) 

At constant structure, Σ, and temperature, while 
𝜕 ln �̇�0

𝜕𝜎
, is assumed to be zero, thus from equation 

(2) it is possible to define the inverse apparent activation volume 1/V’: 

1

𝑉′ =
1

𝑘𝑇

𝜕𝜎

𝜕 ln �̇�
|

𝑇,Σ
     (3) 

so that 
1

𝑉′ = −
𝜕σ

𝜕Δ𝐺(𝜎)
. The apparent activation volume is directly related to the spacing between 

the rate controlling obstacles, l, the activation distance, d, and the Burgers vector, b, as 𝑉′ = 𝑏𝑑𝑙. 

An increase in the strain rate is analogous to a decrease of the test temperature performed by 

Cottrell and Stokes, thus probing the obstacles that control the plastic flow at lower temperature, 

whereas a decrease in the strain rate probes the rate-controlling obstacles equivalent to testing 

at a relatively higher temperatures [30], [31]. The evolution of 𝑉′ during deformation, and thus 

with increasing flow stress due to strain hardening, is the method to determine the 

thermodynamic strain rate sensitivity, S, which may be calculated as 

𝑆 =
1

𝑇

∂𝜎

𝜎 ∂ ln �̇�
=

1

𝑇

𝜕 ln 𝜎

𝜕 ln �̇�
      (4) 
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Plotting 
1

𝑇

Δ𝜎

Δ ln �̇�
= 𝑀𝑘/𝑉′ versus the true stress, 𝜎, yields the Haasen plot [32], where M is a Taylor 

factor of 3 used in this work. For simplicity in this work, Haasen plots and analyses will be 

constructed using the change in the flow stress, 
1

𝑇

Δ𝜎

Δ ln �̇�
 versus the reduced flow stress, 𝜎 − 𝜎0.2%, 

to account for the grown-in obstacles from the heat treatments. In the case of fully-recrystallized, 

pure aluminium, the Haasen plot intersects the plot origin and evolves linearly until failure as the 

rate controlling obstacles are forest dislocations where 1/𝑉′ ∝ √𝜌 ∝ (𝜎 − 𝜎0.2%) [14], [29], [32]. 

However, in age-hardenable alloys, the intercept and initial slope of the Haasen plot are expected 

to be different from pure aluminium due to the presence of obstacles other than forest 

dislocations such as solute atoms, clusters, and precipitates. In such materials, as strain hardening 

progresses and the dislocation density rapidly increases, a change in density of rate-controlling 

obstacles and thus in activation volume occurs. If one assumes a linear summation of the relative 

contributions of different obstacles to strengthening [33], [34], [35], then the linearity of the 

Haasen plot is preserved: 

𝜎 = 𝜎0 + 𝜎1 + 𝜎2    (5) 

whereby 𝜎0 is the intrinsic strength of the material, 𝜎1is the contribution due to the presence of 

clusters or precipitates (assumed to be constant with 𝜎0 + 𝜎1 = 𝜎0.2%) and 𝜎2 is the contribution 

due to dislocations generated by subsequent deformation. This can then be extended and 

substituted into Eq. 4 for 𝜎 and then used to determine the total thermodynamic strain rate 

sensitivity as S = S1 + S2.  

3.0 Experimental Details 
Three aluminum alloys were tested having a nominal composition of Al-0.35Mg-0.2Cu (wt%) with 

0.9, 1.1 or 1.3 wt% Si. The samples were received in the as-rolled condition, solution heat treated 

in an air furnace at 550 °C for 15 minutes, water-quenched (15 °C) and allowed to naturally age 

for one month. Specimens from each alloy were tested using a Mettler Toledo differential 

scanning calorimeter (DSC) at a heating rate of 20 °C /min up to 300 °C in both the water quenched 

(WQ) and 1 month NA conditions (NA1m). Tensile tests were performed using a servo-hydraulic 

Instron 8502 with a 10 kN load cell, equipped with a 25 ± 10 mm extensometer was used to 

capture the deformation of the samples of dog-bone tensile specimen that were machined from 

1 mm thick sheet of Al-Mg-Si-Cu alloys having a gauge length of 30 mm and a width of 10 mm. The 

samples were pulled at 294 K and a true strain rate of 5 x 10-4 s-1 until failure to determine the true 

stress versus true plastic strain tensile curves and corresponding strain hardening evolution. Strain 

rate sensitivity tests were performed using the same base strain rate and strain rate change 

factors of 4, or ¼ and 1/10, for the up-change and down-change rate changes, respectively. A 

proprietary software controlling a feedback-loop to the initial and active extensometer 

displacement was used to control the true strain rate and strain rate change allowing for precise 

measurement of the strain rate sensitivity [18].  

4.0 Results and Analysis 

4.1 Microstructure and constant strain rate properties 
Figures 5-1a and 5-1b show DSC thermograms for the three alloys respectively in the water 

quenched and naturally aged states, which give indications on the state of clustering in the 

conditions prior to tensile testing. In the water quenched condition, the thermogram shows a first 

exothermic peak centered around 100 °C, followed by an endothermic peak around 220 °C and a 

sharp exothermic peak around 250 °C. Based on the literature [36], [37], the first peak can be 

identified as the formation of clusters during the DSC heating ramp, the second to the partial 



91 

 
 
 

dissolution of these clusters, and the third to the formation of hardening precipitates such as ’’. 

From the results of Figure 5-1a, an addition of Si results in an increased formation of clusters and 

an enhanced formation of ’’. It can be expected that the increased formation of clusters 

happening during continuous heating also occurs during room temperature natural ageing, so that 

in a naturally aged condition the higher-Si content alloys contain a larger amount of clusters than 

lower-Si content alloys.  

In the NA1m condition (Figure 5-1b), the first exothermic peak has disappeared, which can be 

related to the initial presence of clusters formed during natural ageing. These clusters are 

observed to dissolve progressively over a wide temperature range, starting at 50 °C and extending 

to the temperature where precipitation starts. This dissolution peak could be the convolution of 

the dissolution of two types of clusters (such as Si-rich and Mg-rich) as has been proposed in the 

literature [38]–[42]. Although the addition of Si results in a larger quantity of clusters, their 

dissolution peak in Figure 5-1b is globally of lower magnitude, meaning that Si increases their 

thermal stability. However, in a description by two types of clusters of this dissolution behaviour, 

the data suggests that the magnitude of the low-temperature dissolution peak (120-140 °C) is 

increased by the addition of Si whereas the contrary applies to the high-temperature peak (~240 

°C) suggesting that Si additions increase the proportion of the lower thermal stability cluster 

species formed during NA. Additionally, the precipitation starting temperature is strongly shifted 

to higher temperatures as compared to the as-quenched condition, illustrating the well-

documented negative effect of natural ageing on paint-bake hardening response [43]–[45]. This 

negative effect is of lower magnitude in the high Si alloy which shows in the naturally aged 

condition a lower precipitation temperature as compared to the other alloys.  

 

Figure 5-1: DSC scans for the three alloys studied directly after solutionizing at 550 °C for 15 minutes, WQ and after a) 
zero NA, and b) NA1m. The exothermic (exo up) direction for clustering or precipitation is positive. 

Figure 5-2a shows the results of the constant strain rate tensile tests on the three alloys in the 

natural aged condition. Figure 5-2a presents the true stress-true plastic strain curves and Figure 

5-2b the corresponding strain hardening behaviour in a Kocks-Mecking representation of the stain 

hardening rate versus the stress increment after yielding. The addition of Si increases the yield 

strength, tensile strength, and instantaneous strain hardening rate throughout the tensile test. As 

a consequence, despite a higher yield strength, the addition of Si results in an increased uniform 

elongation via an increase in the strain hardening capacity. The strength increase with Si addition 

is consistent with the higher amount of clustering observed during DSC experiments. All stress-

strain responses displayed stable flow during straining. 
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Figure 5-2: The effects of Si additions after water quenching followed by NA for 1 month. Samples were tested at 294 K 
at a constant true strain rate of 5 x 10-4 s-1. a) True stress versus true plastic strain and b) Kocks-Mecking plot showing 
the evolution of strain hardening. 

4.2 Strain rate sensitivity 
In order to correctly perform the strain rate change tests, the step-ramp method originally 

implemented by Carlone and Saimoto [18] for servo-hydraulic systems was used whereby a “step” 

is inserted during the rate change in order to account for the difference in machine and specimen 

stiffness at the two different strain rates. The “step” described by Carlone and Saimoto is also 

referred to as compensation. It changes based on the strength of the sample (extent of strain 

hardening), the stiffness of the testing machine, and depends on both the direction of the strain 

rate change (up or down) as well as the change factor (4, 10, ¼, 1/10, etc). For the machine used 

in this work, compensation steps of 0.5 to 10 µm were used in down-changes depending on the 

sample, extent of strain hardening and rate-change magnitude. In Figures 5-3a and 5-3b, the strain 

and stress evolution over time is shown for a strain rate down change test without (Figure 5-3a) 

and with (Figure 5-3b) the step-ramp method.  

 

Figure 5-3: The time dependence of the true strain control and true stress response with a strain rate change for an Al-
0.35Mg-1.3Si-0.5Cu test sample with a) no compensation (traditional method), and b) ideal compensation. Note the 
stress relaxation over longer time to reach a minimum stress in the un-compensated test compared to the compensated 
one. 

When observing the evolution of both strain and stress over time, it is clear that elastically 

compensating the system to match the plastic strain rate change largely reduces the time taken 
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to reach the minimum stress. Without compensation (Figure 5-3a), the sample relaxes due to the 

elastic unloading of the machine and sample and a stress minimum is observed after several 

seconds compared to sub-second for the compensated tests. The result is that the total stress 

change is lower, and the apparent activation volume will be artificially higher than characteristic 

of the rate controlling obstacle (reducing its level on the Haasen plot and leading to a reduced 

apparent SRS). Without compensation, ad hoc back-extrapolation methods have been used in the 

literature to determine the “instantaneous” stress drop from after these relaxations [17], [46], 

[47]. 

The step-ramp method can be used when performing increasing strain rate changes but its 

necessity is much less due to the inherent increase in machine stiffness with strain rate increase 

in tension. Figure 5-4a and 5-4b shows the evolution of strain and true stress with time along an 

up-change of strain rate with a very small step ramp (steps of 0.05 – 1 µm were used for up-

changes depending on the sample and extent of strain hardening). Two different stress changes 

can be identified corresponding to the instantaneous stress change measured at the peak stress, 

and the transient stress change corresponding to a stress plateau at much later times. Although 

both stresses have been used in the literature [15], [21], [31], we will use the instantaneous stress 

change throughout the paper as it is more relevant to the understanding of non-constant strain 

rate processes such as necking. The two strain rate regions are denoted in Figure 5-4a and the 

measured stress increase is indicated in Figure 5-4b. 

 

Figure 5-4: Method used to determine the up-change 
response of strain-jump tests. The vertical line 
delineates the transition between the a) initial and the 
increased strain rate over time. The difference of the b) 
stress over time is between the region still within the 
first strain rate and the region where the increased 
strain rate is now active. The initial fluctuation in the 
stress before the rate change at 64.2 s is due to the 
start of a strain control segment just before the new 
rate and step are applied. 

 

4.3  Strain rate sensitivity results 
Tensile tests with intermittent strain rate changes by a factor of 4, ¼, and 1/10 were carried out 

on the three alloys in the NA1m condition. The Haasen plots constructed from the measured stress 

changes are shown in Figures 5-5a-c. The key parameters for each of the curves on the Haasen 

plot were determined as follows. The different regions and directions of strain rate changes were 
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fit piece-wise. The S4 curve (up-change 4x) was fit using a single straight line for the entire test, 

despite the flattening out that is observed in these tests at the highest stresses. The S1/10 and S1/4 

(respectively 1/10 and ¼ down changes) slopes were taken at the point of deviation from the initial 

S4 slope, starting at 40 MPa of strain hardening until linear regression failed. Both the S1/10 values 

and evolution slope are slightly but significantly larger than the S1/4 values. In the following, the 

combined ¼ and 1/10 tests were used to determine an average intercept (used in further 

calculations). This was required due to the fact there is no difference in the inverse activation 

volumes directly after yield and in the early stages of strain hardening prior to the observation of 

the asymmetry in the strain rate sensitivity tests. In theory, as will be subsequently discussed, the 

onset of the asymmetry should be independent of the strain rate change amplitude and the 

Haasen plot slopes are the critical component. In order to visualize the effect of Si addition on the 

strain rate sensitivity, the data of the three alloys are plotted together in Figure 5-6. 

 

Figure 5-5: The Haasen plots constructed using the compensation methods for the a) 0.9 wt% Si, b) 1.1 wt% Si, and c) 
1.3 wt% Si. The samples were tested at a base strain rate of 5 x 10-4 s-1 and a test temperature of 294 K. Note the large 
differences between the down-change and up-change tests at higher work-hardened states. The use of ¼ (open red 
squares) and 1/10 (open green triangles) strain rate changes were applied for the down-change tests, while a change 
factor of 4x (open black circles) was used for the up-change tests. Also shown is the behaviour for high purity 
polycrystalline aluminum at the same temperature. 
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Figure 5-6: The Haasen plot illustrating the effects of Si on the evolution of the inverse activation volume during strain 
hardening. The ¼ and 1/10 down-changes (closed symbols) are not identified separately in this plot. It is clear that the 
inverse activation volume from yield to about 40 MPa is similar for all alloys independent on the direction of the rate-
change. 

Several trends can be observed in the Haasen plot and specifically the evolution of 
1

𝑇

Δ𝜎

Δ ln �̇�
=

𝑀𝑘/𝑉′ with stress, where V’ is the apparent activation volume. Initially, Mk/V for all alloys 

whether by up or down ranges changes is similar at yield and follows a Cottrell-Stokes behaviour 

for the first 40 MPa of hardening similar to the pure Al dislocation-dislocation line (dashed line), 

which can be correlated to the first 0.04 strain in the Kocks-Mecking plot of Figure 5-2b. The 

positive intercept on the Haasen plot indicates an obstacle contribution to the flow stress that is 

more rate sensitive than dislocations. This behaviour continues with the up-change 

measurements to higher stresses, but increases more rapidly with the down-rate changes: the ¼ 

stress changes have a lower Haasen slope compared to the 1/10 stress changes for low 0.9 and 

1.1 wt% Si alloys. The addition of Si increases Mk/V at high strains for both the up-change and 

down-change tests compared to the 0.9 wt% Si base alloy. Since the initial values of Mk/V are 

similar for all three alloys, this variation at large strains results in a slope change of the Haasen 

plot, i.e. in a larger thermodynamic strain rate sensitivity, S, for increasing Si content. The S values 
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determined from testing the three alloys with different strain rate changes are summarized in 

Figure 5-7, based on the fits in Figures 5-5a-c.  

 

Figure 5-7: A summary of S4 (black), S1/4 (red), and S1/10 (green), taken from the Haasen plots in Fig. 5-6, using the analysis 
methods described for Fig. 5-5 a-c.  

The additions of Si increases S4 and S1/4, and the difference between S4 and S1/4. Silicon additions 

also appear to decrease the difference between S1/10 and S1/4 although this effect lies close to 

experimental scatter. An interesting correlation is that higher Si results in increased uniform 

elongation while simultaneously increasing both the up- and down-change SRS suggesting that 

alloys with higher Si contents may be more favourable for forming operations. The differences in 

the up- and down-change SRS will separately affect the interior and exterior parts of the diffuse 

neck, respectively, that develops during plastic deformation as the local strain rate is no longer 

equal to the imposed rate.  

5.0 Discussion 
In order to investigate the role of clusters formed during the NA process on the up-change and 

down-change tests, one can plot the evolution of the apparent activation volume normalized by 

b3 with strain hardening. Figures 5-8a-c shows the data points and model fitting to the 

thermodynamic strain rate sensitivity, S, obtained from the Haasen slope.  
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Figure 5-8: The evolution of the normalized apparent activation volume versus reduced stress for the up-changes (open 
black circles), ¼ (open red squares) and 1/10 (open green triangles), each with the corresponding modeled curves based 
on the respective SRS shown in the coloured dashed line for the a) 0.9 wt% Si, b) 1.1 wt% Si, and c) 1.3 wt% Si alloys. 

For all alloys tested, the apparent activation volume after initial yielding is similar at around 300 

b3. With straining the apparent activation volume progressively decreases due to the increasing 

dislocation density that follows V4 or the S4 lines in Figures 5-5a-c. The decreasing activation 

volume measured by down-change tests (V1/4 and V1/10) starts to decrease more than the up-

change measurements after some incubation stress suggesting that a different or second 

mechanism/obstacle is present. One explanation for this bifurcation could be dissolution of the 

solute clusters into smaller more complex objects, as described by Chen et al. [48] for Al-Cu, that 

ultimately decreases the apparent activation volume via a decrease in both the activation 

distance, d, and spacing of the obstacles, l, such that V’ = bdl decreases. Alternatively, if dislocation 

interactions affected by the solute cluster field create dislocation debris (small loops) with 

straining, these weaker obstacles can recover during the down changes, though this effect is 

unexpected at such low strains [49], [50]. 
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Based on the calculated S values shown for the three alloys in Figure 5-7, it is possible to estimate 

the activation distance, representative of the size of the rate-controlling obstacles, based on the 

relationship: 

(𝜎 − 𝜎0.2%)𝑉′ = 𝑀𝑘/𝑆    (6) 

Assuming that the Taylor equation applies, (𝜎 − 𝜎0.2%) = 𝑀𝛼𝜇𝑏 𝑙⁄ , where  represents the 

obstacle strength associated with forest dislocations (0.3 used in this work), µ, the temperature 

dependent shear modulus of aluminium (24 739 MPa at 294 K) and 𝑙 represents the obstacle 

spacing along the dislocation line, then 

(𝜎 − 𝜎0.2%)𝑉′ = (
𝑀𝛼𝜇𝑏

𝑙
) (𝑏𝑑𝑙) = 𝑀𝛼𝜇𝑏2𝑑 = 𝑀𝑘/𝑆  (7) 

The activation distance d, can be calculated from the Haasen plot, and normalized by the Burgers 

vector, as represented in Figure 5-9 for the three alloys from the up and down strain rate changes 

as well as the difference.  

 

Figure 5-9: The evolution of the d/b ratio for the up-change (black) and down-change (red) tests, with the difference 
(yellow) for each alloy tested in this work. The down-change values were taken from both the ¼ and 1/10 tests in 
combination determined, the slopes of 𝑉′𝑣𝑠. (𝜎 − 𝜎0.2%)−1 plots were taken from after the separation between the up- 
and down-change difference to eliminate effects of cluster contribution. 

It is evident that Si additions increase the down-change apparent obstacle size while having the 

contrary effect on the up-change values. The decrease in the up-change obstacle size follows the 

same trends found by Niewczas et al. [21] whereby additions of Mg was found to decrease d/b for 

up-change tests in Al-Mg alloys. The Niewczas et al. measurements were performed at 78 K 

compared to 294 K here, the latter temperature with more significant solute mobility and 

dislocation recovery, hence the significantly larger d/b ratio in the present work.  

The increase in the down-change obstacle size with Si content contrasts with what Niewczas et al. 

[21] found at 78 K with Mg, whereby Mg additions also decreased the d/b ratio. The likely cause 
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of this is the ability for dislocation-dislocation and dislocation-solute/cluster interaction products 

to be recovered during the down-change strain rate change [51] whereby there is an effect on the 

spacing of l, rather than d. Niewczas and Park [51] showed that in pure Al, dislocation-dislocation 

interaction products do not anneal out at temperatures below 100 K; in contrast, such recoverable 

components must be considered here. Saimoto [28] and Saimoto and Duesbery [49] have argued 

that the presence of these dislocation interaction products contribute to the SRS in the down-

change at ambient temperatures due to their likelihood to anneal out during the rate-change; in 

the strain rate change test, this effect would appear as an added relaxation during a perfectly 

compensated strain rate change. This would be coupled with the extensive work performed by 

Niewczas [50], [51] for observing the dislocation interaction products at low temperatures and 

the corresponding annealing temperatures, and how they influence the flow stress. It could be 

argued that certain dislocation-dislocation or dislocation-solute interaction products are able to 

influence the apparent obstacles size, being a second type of obstacle present and detectable 

during the strain rate change tests. A larger d/b indicates the presence of thermally activatable 

obstacles that are stronger in nature and thus, the relative increase in d/b with increased Si 

content may suggest that the production of these complex products depend on the Si content of 

the alloy whereby increased Si promotes the formation of dislocation-dislocation interaction 

products. The evolution of the d/b ratio for the up-change and down-change tests have clearly 

shown a distinct asymmetry that is directly related to the SRS difference. If it is proposed that the 

difference in the SRS between the down-change and up-change tests are due to the evolution or 

recovery of another type of obstacle, the difference in stress-change will be termed the 

asymmetric stress contributions (ASC), Δ𝜎𝐴𝑆𝐶 , related to the asymmetric SRS by 

𝑆𝐴𝑆𝐶 = 𝑆𝑑𝑐 − 𝑆𝑢𝑐     (8) 

where SASC is the SRS of the asymmetric stress contributions (see Figure 5-10), and Sdc and Suc are 

the down-change and up-change SRS values at high flow stresses (those after the deviation 

between up-change and down-change tests), respectively. From the calculation of SASC, the 

relative change in the flow stress due to the strain rate change test may be calculated by using Eq. 

4 but substituting in the new SASC 

Δ𝜎𝐴𝑆𝐶 = 𝑆𝐴𝑆𝐶 𝜎2𝑇Δ ln 𝜖̇𝑢𝑐𝑑𝑐    (9) 

where Δ ln 𝜖̇𝑢𝑐𝑑𝑐  is the difference in strain rate between the up-change and down-change strain 

rates. It is interesting that the evolution of the ASC may be calculated and plotted versus strain 

hardening for the total ASC as shown in Figure 5-10. 
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Figure 5-10: The evolution of the asymmetric stress contribution for the varying levels of Si. The production rate of the 
asymmetric stress contribution appears to increase with Si content while the onset of the deviation appears to be 
independent of Si content. Note that the S1/4 values were used along with the S4 to produce this plots. 

Figure 5-10 clearly shows an evolution in the rate of ASC accumulation with increased Si content 

while the onset of the ASC does not appear to be affected. If the premise of recoverable 

dislocation products and recovery is postulated to be responsible for the evolution of the ASC, it 

may be said that the addition of Si either increases the amount of recoverable debris being 

produced or Si increases the ability of the produced debris to be recovered. Both of these 

postulations would result in a net increase in the slope of Figure 5-10. It is not understood at this 

point whether having a large ASC in the SRS is favourable or not, but its effect will certainly be 

manifested in the onset of diffuse necking and its transition to a localized neck formed during 

plastic deformation.  

6.0 Conclusions 

 The use of compensation during down-change strain rate jump tests enables the most 

experimentally precise measurement of stress changes due to strain rate changes by 

taking into account the change in machine stiffness. 

 The strain rate sensitivity in 6000-series aluminium alloys was observed at 294 K to 

depend both on the magnitude of the strain rate change and on its sign. A difference 

between up- and down-changes was observed after an incubation strain hardening of 40 

MPa (equivalent to about 0.04 plastic strain). At larger strains the down-change 

thermodynamic strain rate sensitivity becomes substantially larger than that of up-change 

tests and the magnitude of the stress changes become dependent on the magnitude of 

the rate change. 

 The apparent activation distance derived from the up-change tests decreases with Si 

content indicating that the rate-controlling obstacles are more thermally activatable; the 

opposite correlation was found for Si additions and down-change tests. 
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 In the considerations of formability and the transition between diffuse and local necking, 

due to the large discrepancy between increasing or decreasing rate changes, it may be 

important to consider how the SRS affects the local stress state within the neck interior 

and exterior. 
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6 Influence of composition on the material properties in Al-

Mg-Si-Cu alloys 
 

After establishing the influence of alloy composition on the microstructure formed in the different 

heat treatments in the Al-Mg-Si-Cu system, it is now possible to evaluate the resulting effects of 

microstructure on the macroscopic mechanical properties. This chapter will take a unique 

approach on combining the tensile and strain rate sensitivity testing results and how the roles of 

Si, Mg, and Cu change depending on the specific heat treatment performed. The effects of the 

various alloying elements will all be presented in terms of total solute atomic percentage to give 

a direct relative sensitivity to each mechanical property with respect to each element. Mechanical 

properties such as the 0.2% yield strength, tensile strength, strain hardening capacity, uniform 

elongation, post-uniform elongation, strain hardening rate, and strain rate sensitivity are 

presented. At the end, an alloy design table is shown to give a very high level understanding of 

how to tune the relative mechanical properties via a combinatorial addition of specific solute types 

depending on the desired or current heat treatment practice.  
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Abstract 
The specific application of 6000-series alloys in automotive applications depend on the 

automotive manufacturers requirements. Having an understanding on the specific influences of 

solute additions on the yield strength, tensile strength, strain hardening rate and capacity, uniform 

elongation, and strain rate sensitivities, allow for alloys to be designed and tuned for specific 

applications. For example, structural automotive components must be strong and ductile, while 

their surface quality is not important due to them being hidden. Whereas body-in-white 

components much be formable, have good surface finish and provide sufficient corrosion 

resistance as they are exposed to the elements. The effect of solute additions is not direct on the 

effect to mechanical properties but rather on the formation of the microstructure, in this 

situation, the formation of clusters under two separate heat treatments. The expression of these 

microstructure features on the mechanical properties are discussed and compared. Surprisingly, 

certain solute additions were found to play largely different roles on the same mechanical 

property strictly depending on the heat treatment performed. This chapter is summarized by 

providing a table showing the relative change of a mechanical property based on the addition of 

Mg, Si, or Cu.  
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1.0 Introduction 
The ability of aluminium alloys to have a wide range of mechanical properties while also having a 

low density has allowed them to be implemented for diverse applications in order to provide light-

weighting where steels are conventionally being used. Specifically, the age-hardenable 6000-

series aluminium alloys being comprised primarily of aluminium (Al), magnesium (Mg), silicon (Si), 

and copper (Cu), have shown to have good strength, elongation, corrosion resistance, surface 

quality while maintaining adequate formability [1]–[3]. For example, this combination of 

properties complies with applications requiring crash resistance and thus a high tensile strength, 

large strain hardening and large uniform elongation for enhanced energy absorption, or for outer 

body panels that should have high strength, high formability and adequate surface quality. The 

levels of alloying elements that are added into the alloys vary, within ranges being denoted as 

specific alloy series, such as AA6063, AA6016, and AA6022. Within these domains, extensive work 

has been carried out to study the effects of composition on the clustering [4]–[10], the 

dependence of clustering on processing [11]–[19] and the subsequent artificial ageing (AA) 

behaviour [5], [12], [20]–[22]. It has been shown by Zhong et al. [23]–[25] and Prillhofer et al. [1], 

that the portfolio of mechanical properties varies broadly within the acceptable ranges of each 

alloy series. By determining the influence of alloying elements on each of the mechanical 

properties, such as strain hardening, uniform elongation, yield strength, and strain rate sensitivity, 

it becomes possible to design specific alloys for unique applications.  

The present work lies on the context of alloy optimization for outer body panel applications. For 

this application, the alloys undergo a process route implying a quench from a solutionizing 

treatment, some low temperature ageing (natural ageing and/or pre-ageing), followed by a 

forming operation and a paint-bake heat treatment. While a considerable research effort has been 

carried out to understand how to counterbalance the adverse effect of natural ageing on the paint 

bake response by optimizing the alloy composition and pre-ageing treatment, the influence of 

these parameters on the plastic properties involved in determining the formability has received 

little attention. Relating formability to simple alloy properties involves both strain hardening rate 

capacity and strain rate sensitivity. Increasing the strain hardening rate 
𝑑𝜎

𝑑𝜖
 improves the uniform 

elongation 𝜖𝐿 by delaying the Considère criterion (
𝑑𝜎

𝑑𝜖
= 𝜎 = 𝜎𝐿) while an increased strain rate 

sensitivity delays the transition from diffuse to local necking [26]–[30]. Both up-change and down-

change strain rate sensitivities (i.e. determined respectively by increasing and decreasing the 

strain rate) are of interest as they contribute to necking formation and propagation [28]. Finally, 

the yield strength, 𝜎0.2%, is also of interest in order to aid in determining the initial state of 

clustering within the alloys for each of the respective heat treatments and each composition. The 

aim of this paper is to provide a design guide describing the specific effect of alloying elements 

(Mg, Si, Cu) within the 6000-series alloys on the mechanical properties that influence the 

formability under two common heat treatments; direct natural ageing, and pre-ageing with 

subsequent natural ageing.  

2.0 Background 
The interaction between the initial microstructure formed due to composition and processing 

(solutes, clusters, precipitates, dislocations, grain boundaries), and those generated during plastic 

flow (dislocations, vacancies, voids) confounds any clear and direct relation between the solute 

content and resulting mechanical properties. Furthermore, the nature of each obstacle does not 

necessarily have an effect on all of the mechanical properties but rather a select few. For instance, 

it can be postulated that the 0.2% yield strength will be controlled primarily by the cluster size, 
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distribution and/or chemistry as these are the dominant obstacles present in the material [31]–

[33]. During the deformation and production of dislocations, the evolution of these obstacles is 

not clear but through use of constitutive relations, it is possible to detect correlations between 

solute additions and their key parameters which are related to deformation phenomena and then 

may be compared for different processing routes. In this work, a two region power-law fit will be 

used to model the stress-strain curve, having the form of 

𝜎 = 𝜎0 + 𝐾𝑖𝜖𝑛𝑖  

Where Ki and ni, are the pre-exponential and strain hardening exponents for the first or second 

regions, respectively. The two curves share a common proportional limit, 𝜎0, (similar to the yield 

strength but accounts for any yield point effects) such that the two curves begin at the same stress 

and cross-over at a specific strain, 𝜖3 and the fit ends at the uniform elongation, 𝜖𝐿. A sample fit 

is shown in Figure 6-1.  

 

Figure 6-1: The method used to determine the fit parameters shown on the C8S0M sample pulled at a true strain rate of 
5 x 10-4 s-1 until failure in the NA1m condition. Note a fit was taken from a 6th order polynomial fit made from the yield 
strength until the uniform elongation in order to eliminate any transient effects potentially caused by yield point effects.  

Although the fit may seem arbitrary, Saimoto and van Houtte [34] have developed the Saimoto-

van Houtte (SvH) consitutitive equation in order to determine specific parameters within the 

power law. The power-law relation can equally be written as 

𝜎 = 𝜎0 + [𝑀3+𝛽𝑖 (
𝑃

4𝐴
) (2 + 𝛽𝑖)(𝛼𝜇𝑏)2

1

𝐶𝑖𝑏
]

1
2+𝛽𝑖

𝜖
1

2+𝛽𝑖  

Whereby the variables, 𝜎0, 𝛽𝑖, and 𝐶𝑖, are the fitting variables, representing the proportional limit, 

strain hardening, and inter-obstacle spacing, respectively for the 𝑖 part of the curve; the first half 

and second half of the fit. The term, 𝛼, the obstacle strength factor, 𝜇, the shear modulus, b, the 

Burgers vector, M, the Taylor factor (a value of 3 used in this work), and P/A, representing the 



  110 

 
 

production to annihilation ratio of dislocations generated during deformation, characterized for 

each material at yield. From this equation, it can be seen that 

𝐾𝑖 = [𝑀3+𝛽𝑖 (
𝑃

4𝐴
) (2 + 𝛽𝑖)(𝛼𝜇𝑏)2

1

𝐶𝑖𝑏
]

1
2+𝛽𝑖

 𝑎𝑛𝑑 𝑛𝑖 =
1

2 + 𝛽𝑖
 

The fit parameters; Ci, 𝛽𝑖, and 𝜎0, are determined, first by fitting a 6th order polynomial to the data 

and determining the work hardening slope at 0.2% to determine the P/A ratio, by assuming that 

the mean-slip distance, 𝜆 = 𝜙
𝑏

2
𝜇2 1

𝑀3
(

(𝜎−𝜎0)𝑑𝜎

𝑑𝜖
)

−1

, (see Nabarro et al. [35]) is equal to the inter-

obstacle spacing, 𝑙 = 𝑀𝛼𝜇𝑏/(𝜎 − 𝜎0), at yield, whereby 

𝑃

𝐴
=

2𝜙

𝛼2
;

1

𝜙
=

𝑀2

2𝛼
𝜇 (

𝑑𝜖

𝑑𝜎
)

0.2%
  

As such, the total fit contains 5 total fit parameters; a common 𝜎0, 𝐶1 and 𝛽1, and 𝐶2 and 𝛽2 for 

the two respective fit regimes. Within this fit, 𝜎0 is the proportional limit and is able to account 

for any yield point phenomena such as yield point elongation [36] which is largely absent in this 

work and thus is considered analogous to the 0.2% yield strength. The pre-power law factor, Ki is 

the strengthening coefficient, and ni is the strain hardening exponent, where i represents region 

1 or 2 of the stress-strain curve. This constitutive relation has been applied to many different 

aluminium alloy systems [37]–[39] and steels [36]; expanded to explain the effects of vacancy 

production [40], nano-void formation and growth [41], [42], yield locus predictions [43] and used 

in crystal plasticity finite element models [44]. The focus in this work will be how the high-strain, 

strain hardening, n2, and pre-power law factor, K2, change with solute content and heat treatment 

condition. These fit parameters will be coupled with other critical material properties such as the 

uniform elongation along with the engineering strain rate sensitivity parameters to give a more 

complete picture of solute additions on the mechanical performance in Al-Mg-Si(-Cu) alloys. The 

strain rate sensitivity measurements reported were determined using the previously described 

step-ramp method by Carlone and Saimoto [45] and Chapter 5, for both up-changes and down-

changes. Since the focus of this work is for the application of formability, the up-change and down-

change engineering strain rate sensitivities will be determined from the final 4 data points for 

down-changes, and final 3 data points for up-changes, directly from the rate change using 

𝑚𝑖 =
Δ log 𝜎

Δ log 𝜖̇
 

The evolution of these values are shown below in Figure 6-2. 
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Figure 6-2: The effects of Si at 0.1 at% Cu on the engineering strain rate sensitivity parameters for both up-change and 
down-change tests. The dashed lines illustrate the average engineering SRS for the final 3 or 4 points for muc and mdc, 
respectively.  

As it is speculated that there is an influence of both strain hardening and SRS on the formation of 

necking, the post-uniform elongation in the engineering stress versus engineering strain context 

was determined. The engineering uniform elongation, eL, is the engineering strain at the ultimate 

tensile strength, the fracture elongation, ef, is the final engineering strain prior to material failure 

and the post-uniform elongation is the difference, ef – eL.  

3.0 Materials and Methods 
Nine aluminum alloys were tested having varying levels of solutes, having compositions similar to 

the AA6016 and AA6022 series, shown in Table 6-1. The alloys contain four levels of Cu denoted 

C0 (no Cu), C2 (0.1 at%), C5 (0.2 at%) and C8 (0.3 at%), three levels of Si denoted S0 (0.9 at%), S1 

(1.1 at%) and S3 (1.3 at%), and two levels of Mg (0.4 and 0.6 at%). Thus, this series of alloy 

compositions makes it possible to evaluate separately the influence of each alloying element, in 

the context of several contents of the other alloying species. 

Standard dog-bone tensile specimens were machined from 1 mm thick sheets in the as-rolled 

condition having a width of 10 mm and a gauge length of 30 mm. The samples were solution heat 

treated in an air furnace at 550 °C for 15 minutes, then either water-quenched (15 °C) and allowed 

to naturally age (NA) for one month (NA1m) or quenched in water at 80 °C, pre-aged (PA) at 80 °C 

for 8 hours in an oil bath, then let to naturally age for one week (sNA1w) or one month (sNA1m). 

For this work, a servo-hydraulic Instron machine 8502 with a 10 kN load cell, equipped with a 25 

± 10 mm extensometer was used to capture the deformation of the samples that were pulled at 

a true strain rate of 5 x 10-4 s-1 until failure to determine the true stress versus true plastic strain 

tensile curves and corresponding strain hardening evolution until failure. Strain rate sensitivity 

tests were performed using the same base strain rate and strain rate jump factors of 4 , ¼ and 

1/10, for the up-change and down-change rate jumps, respectively, using the step-ramp method 
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including compensation [45] and described in Chapter 5. A proprietary software controlling a 

feedback-loop to the initial and active extensometer displacement was used to control the true 

strain rate.  

Table 6-1: The compositions of the nine alloys tested (in at%). The superscripts indicate the effects of: 1a) Cu at 0.9 at% 
Si, 1b) Cu at 1.3 at% Si, 2) Si at 0.09 at% Cu, and 3) Mg at 0.9 at% Si and 0.3 at% Cu. 

Sample 
Name 

Mg (at%) Si (at%) Cu (at%) Al (at%) 

C0S0 0.404 0.895 0.0081a 

Bal. 

C2S0 0.381 0.896 0.0891a,2 

C8S0 0.379 0.879 0.3331a,3 

C8S0M 0.557 0.899 0.3373 

C2S1 0.372 1.069 0.0872 

C0S3 0.387 1.299 0.0041b 

C2S3 0.400 1.262 0.0881b 

C5S3 0.372 1.284 0.2181b 

C8S3 0.385 1.324 0.3291b,3 

 

The effects of Cu were studied at 0.9 at% Si with samples; C0S0, C2S0, and C8S0, and 1.3 at% Si 

with samples; C0S3, C2S3, C5S3, and C8S3. The effects of Si at 0.1 at% Cu with samples; C2S0, 

C2S1, and C2S3. The effects of Mg additions and Si additions at 0.3 at% Cu were studied with 

samples: C8S0 and C8S0M, and C8S0 and C8S3, respectively.  

4.0 Results and analysis 
As a first analysis of the tensile true stress – true strain data, a series of classical parameters has 

been measured on all alloys and processing conditions, such as the yield strength 𝜎0.2%, the true 

stress at uniform elongation, 𝜎𝐿, the strain hardening capacity, 𝜎𝐿 − 𝜎0.2%  , and the uniform 

elongation, L. These data are shown in Table 6-2.  

 

 

 

 

 

 

 

 

 

 

Table 6-2: A tabulation of each of the mechanical properties for each of the alloys under each heat treatment condition. 
These properties are those coming directly from the 𝜎 − 𝜖 curve.  

Condition 
Sample 
Name 

σ0.2% (MPa) σL (MPa) 
σL – σ0.2% 

(MPa) 
L ef – eL 
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NA1m 

C0S0 112.7 281.8 169.1 0.219 0.090 

C2S0 119.0 291.6 172.7 0.212 0.060 

C8S0 143.6 364.7 221.1 0.241 0.056 

C8S0M 163.6 378.2 214.6 0.215 0.043 

C2S1 123.4 307.6 184.2 0.239 0.065 

C0S3 124.7 302.5 177.8 0.233 0.087 

C2S3 131.2 324.4 193.2 0.235 0.080 

C5S3 147.4 365.9 218.5 0.241 0.090 

C8S3 152.5 376.1 223.6 0.242 0.077 

sNA1m 

C0S0 103.5 262.5 159.0 0.204 0.057 

C2S0 105.2 278.5 173.3 0.217 0.059 

C8S0 112.4 319.4 206.9 0.235 0.016 

C8S0M 132.3 355.8 223.5 0.240 0.039 

C2S1 106.3 288.4 182.2 0.230 0.067 

C0S3 118.7 302.9 184.2 0.229 0.111 

C2S3 116.1 312.9 196.7 0.240 0.059 

C5S3 128.0 351.4 223.3 0.252 0.066 

C8S3 138.8 371.0 232.1 0.253 0.059 

sNA1w 

C0S0 93.0 255.2 162.2 0.216 0.053 

C2S0 89.6 261.0 171.4 0.223 0.047 

C8S0 108.6 313.0 204.4 0.230 0.034 

C8S0M 127.2 345.4 218.3 0.230 0.040 

C2S1 95.5 277.5 181.9 0.232 0.041 

C0S3 110.4 296.0 185.6 0.236 0.090 

C2S3 110.2 311.6 201.4 0.250 0.069 

C5S3 122.4 339.9 217.5 0.244 0.053 

C8S3 134.5 362.8 228.2 0.233 0.025 

 

In order to determine what solute addition most significantly influences each of the mechanical 

properties, the properties from Table 6-2 are plotted versus total (Mg + Si + Cu) content (see 

Figures 6-5a-f and Figures 6-6a-f), in atomic concentration, which is more relevant for comparing 

the effect of solutes of very different atomic numbers. An example of how 𝜎0.2% changes with 

total solute content is given for the NA1m (Figures 6-3) and sNA1m (Figures 6-4) conditions, shown 

below.  
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Figure 6-3: The evolution of the 0.2% yield strength with total solute content in the NA1m condition. For clarity, the 
effects of Cu additions at 0.9 and 1.3 at% Si, are connected in green and blue dashed arrows, respectively. The effects of 
Si additions at 0.2 at% Cu and 0.4 at% Mg are connected with the grey dashed arrows. The effects of Mg addition at 0.9 
at% Si and 0.3 at% Cu are connected with red dashed arrows.  

 

Figure 6-4: The evolution of the 0.2% yield strength with total solute content in the sNA1m condition. For clarity, the 
effects of Cu additions at 0.9 and 1.3 at% Si, are connected in green and blue dashed arrows, respectively. The effects of 
Si additions at 0.2 at% Cu and 0.4 at% Mg are connected with the grey dashed arrows. The effects of Mg addition at 0.9 
at% Si and 0.3 at% Cu are connected with red dashed arrows.  
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The evolution of 𝜎0.2% with solute content in the NA1m condition (Figure 6-3) is quite different 

from the sNA1m condition (Figure 6-4). In the NA1m condition, both Cu and Mg have similar levels 

of strengthening while Si had a considerably lower strengthening effect. It is very interesting to 

note that despite having similar levels of strength, the sNA1m samples and the NA1m samples 

demonstrate largely different behaviours with respect to cluster strengthening due to solute 

additions where all solutes have similar strengthening effects in the sNA1m condition. These 

trends of specific solute effects in the two conditions parallel those for hardness in Chapter 4. 

Now the effect of solute content on the stress-strain behaviour will be evaluated, based on the 

fitting values of the the Saimoto – van Houtte relation that are tabulated in Table 6-3, along with 

the engineering strain rate sensitivities from up-changes (uc) and down-changes (dc). 

Table 6-3: The fit parameters generated from the SvH constitutive relation for each sample at a true strain rate of 𝜖̇ =
5𝑥10−4 𝑠−1. Due to sample complications, no data was available for the up-change strain rate sensitivity of the C8S3 
alloy in the NA1m condition.  

Condition 
Sample 
Name 

σ0 
(MPa) 

𝜖3 n1 n2 K1 K2 muc mdc 

NA1m 

C0S0 87.5 0.123 0.51 0.33 466.0 319.5 0.014 0.022 

C2S0 99.8 0.106 0.57 0.38 528.2 345.5 0.014 0.022 

C8S0 118.6 0.132 0.55 0.40 591.0 431.6 0.013 0.022 

C8S0M 143.2 0.122 0.58 0.42 624.0 446.6 0.012 0.023 

C2S1 98.9 0.113 0.53 0.36 496.2 349.3 0.014 0.028 

C0S3 101.3 0.122 0.54 0.35 493.1 333.1 0.015 0.028 

C2S3 106.3 0.122 0.53 0.36 519.0 367.6 0.015 0.027 

C5S3 117.9 0.138 0.51 0.37 556.5 417.3 0.016 0.025 

C8S3 126.9 0.137 0.55 0.38 594.1 423.8  N/A 0.027 

sNA1m 

C0S0 84.3 0.098 0.56 0.36 503.6 315.7 0.012 0.018 

C2S0 83.6 0.109 0.55 0.37 513.9 339.3 0.011 0.017 

C8S0 87.2 0.112 0.58 0.40 612.2 418.8 0.008 0.015 

C8S0M 108.8 0.131 0.56 0.40 604.9 438.3 0.010 0.022 

C2S1 84.0 0.108 0.55 0.37 528.7 353.1 0.012 0.026 

C0S3 89.6 0.136 0.50 0.34 482.0 349.8 0.014 0.029 

C2S3 93.4 0.113 0.55 0.39 548.9 380.3 0.014 0.027 

C5S3 99.4 0.133 0.53 0.37 581.0 419.5 0.011 0.026 

C8S3 114.7 0.126 0.57 0.40 621.9 445.2 0.014 0.026 
 C0S0 72.4 0.097 0.55 0.37 491.0 321.7 0.010 0.015 

 
 
 

sNA1w 

C2S0 67.5 0.097 0.57 0.39 525.9 345.6 0.007 0.014 

C8S0 92.2 0.097 0.64 0.44 680.6 423.9 0.006 0.013 

C8S0M 105.7 0.118 0.57 0.43 614.0 450.6 0.008 0.020 

C2S1 75.5 0.100 0.58 0.39 556.3 359.4 0.008 0.022 

C0S3 83.5 0.120 0.52 0.34 503.4 346.2 0.014 0.027 

C2S3 88.1 0.112 0.56 0.39 559.8 383.6 0.013 0.027 

C5S3 96.7 0.129 0.54 0.39 574.7 421.2 0.016 0.019 

C8S3 112.1 0.113 0.58 0.44 642.0 472.5 0.013 0.026 
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By looking at how the total solute content in at% influences each of the fit parameters and the 

engineering strain rate sensitivity, the nature of solute-dislocation and cluster-dislocation 

interactions may be postulated. Figures 6-5a-f and 6-6a-f show the correlations of the different 

parameters of the constitutive laws and strain rate sensitivity for the NA1m and sNA1m 

conditions, respectively. Note that only the strain hardening parameters (K2 and n2) corresponding 

to the large strain behaviour are shown in these graphs, since they are more relevant to the 

evaluation of formability than the low strain values. The sNA1w data is shown in Appendix 1.3 for 

the sake of space but will be discussed within the main body of the paper. 

 

Figure 6-5: The effects of total solute content on the a) strain hardening capacity, b) the uniform elongation, c) pre-
exponential, K2, for the second part of the constitutive relation, d) the strain hardening exponent, n2, e) the post-uniform 
elongation, and f) the up-change (closed circles) and down-change (open circles) engineering SRS for the alloys tested in 
the NA1m condition. For clarity, the effects of Cu additions at 0.9 and 1.3 at% Si, are connected in green and blue dashed 
arrows, respectively. The effects of Si additions at 0.2 at% Cu and 0.4 at% Mg are connected with the grey dashed arrows. 
The effects of Mg addition at 0.9 at% Si and 0.3 at% Cu are connected with red dashed arrows.  
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Figure 6-6: The effects of total solute content on the a) strain hardening capacity, b) the uniform elongation, c) pre-
exponential, K2, for the second part of the constitutive relation, d) the strain hardening exponent, n2, e) the post-uniform 
elongation, and f) the up-change (closed circles) and down-change (open circles) engineering SRS for the alloys tested in 
the sNA1m condition. For clarity, the effects of Cu additions at 0.9 and 1.3 at% Si, are connected in green and blue dashed 
arrows, respectively. The effects of Si additions at 0.2 at% Cu and 0.4 at% Mg are connected with the grey dashed arrows. 
The effects of Mg addition at 0.9 at% Si and 0.3 at% Cu are connected with red dashed arrows.  

The relative effects of solute additions for the three different heat treatments are summarized in 

Table 6-4.  
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Table 6-4: A summary of the influence of each alloying element on the corresponding mechanical properties. ‘+’ indicates 
an increase on the property with increased solute, ‘++’ indicates a stronger increase for the same increase in solute 
content, and ‘-‘ indicates a decrease of the property with increased solute. *The effect of Cu appears to depend on the 
level of Si present in the alloy.  

Property 
NA1m sNA1m sNA1w 

Cu Mg Si Cu Mg Si Cu Mg Si 

𝛔𝟎.𝟐% ++ + + + 

𝛔𝐋 ++ + ++ + + 

𝛔𝐋 − 𝛔𝟎.𝟐%  ++ - + ++ + ++ + 

𝛜𝐋 + - = + +/-* = + 

𝐦𝐝𝐜 = + - + ++ - + ++ 

𝐦𝐮𝐜 = - + - + 

𝐊2 ++ + ++ + ++ + 

𝐧2 + - ++ = + ++ - = 

ef – eL -/=* - + + - = -/--* + 

 

4.1 NA1m 
In the NA1m condition, there appear to be significant differences on the relative sensitivities of 

each solute element on each of the mechanical properties. All the parameters describing the 

large-strain constitutive law (𝜎0.2%, K2 and n2), are positively influenced by additions of Cu and Mg, 

having similar sensitivities. The addition of Si, however, presents a much smaller influence on the 

same parameters, slightly positive for 𝜎0.2% and K2, and slightly negative for n2. It is particularly 

interesting to observe that the effect of the same solutes on strain rate sensitivity (SRS) is very 

different from that on the constitutive law. The addition of Cu and/or Mg has no effect on the 

engineering SRS at large strains (whether for up- or down-changes) whereas the addition of Si 

increases the down-change SRS while not affecting the up-change SRS. 

4.2 sNA1m 
The effect of solute additions on the constitutive parameters is quite different in the sNA1m 

condition as compared to the NA1m case. Considering the effect of solute additions on the 

constitutive law at large strains (𝜎0.2%, K2, and n2), is similar to the NA1m case, a strongly positive 

effect of Cu addition, but now a comparable moderate positive effect of Si and Mg. Concerning 

the engineering SRS at large strains, the sNA1m condition presents no effect of Cu addition (or 

even a slightly negative effect), a slightly positive effect of Mg addition, and a positive effect of Si 

addition, especially on the down-change SRS.  

4.3 sNA1w 
The sNA1w condition, whose data are presented in Appendix 1.3, shows similar solute effects as 

compared to the sNA1m condition. Although some minor effects can vary, generally speaking the 

strong effect of Cu addition and smaller positive effect of Si and Mg on the constitutive laws are 

found, and on the large strain engineering SRS one finds also a positive effect of Si and Mg and a 

slightly negative effect of Cu.  



119 

 
 
 

5.0 Discussion 

5.1 Effects on mechanical properties 

The relative sensitivity of each material property to the effects of each solute clearly depends on 

the type of heat treatment performed and the nature of the clusters formed during the respective 

heat treatments as illustrated in Table 6-4.  

As previously shown in Chapter 4, Cu and Mg additions introduce a second family of clusters 

whose presence results in a secondary dissolution peak at lower temperatures in the NA1m 

condition, compared to the PA conditions whereby all clusters appear to dissolve in a single peak, 

at a significantly higher temperature compared to the NA1m conditions second peak. 

Interestingly, this initial dissolution peak shifts to lower temperatures with Si additions suggesting 

that these clusters are less thermally stable as shown in Chapter 4 (see Appendix 1.2 for the effects 

of Si addition at 0.3 at% Cu where this effect is more pronounced). This correlates to the yield 

strength evolution of the NA1m condition having a greater sensitivity to Cu and Mg additions 

compared to Si. The appearance of this earlier dissolution peak being highly sensitive to added Cu 

and Mg suggests that a separate, Cu/Mg-rich cluster is forming with a large effect on the yield 

strength [18]. Conversely, both the DSC and the strength data after pre-ageing strongly suggests 

that a single type of cluster forms during the PA process, which has an equal dependency on all 

solutes contributing to its formation [5], [8], [11], [13] supported by the evidence of the yield 

strength evolving uniformly with any of these solute additions. 

It is surprising that the Mg additions in the NA1m condition decreases the total strain hardening 

capacity, contrary to the results found by Chen et al. [46] and Jobba et al. [47] in Al-Mg alloys. This 

is the only case whereby additional solute do not increase the strain hardening capacity and is 

coupled with a decrease in the uniform elongation as would be expected for a sample with a 

reduced strain hardening capacity. In both PA conditions, the strain hardening capacity was found 

to increase with solute additions with Cu and Mg having a stronger effect than Si as observed by 

Chen et al. [46] due to the increased initial strain hardening rate exhibited by Cu and Mg as 

compared to Si. This coupled with the decrease in recovery rate found in binary alloys yielding a 

net increase in the total strain hardening capacity.  

The effects of total solute content on the up-change engineering SRS at large strain is consistent 

with the work performed by Zhong et al. [23], [25] whereby Si additions were shown to increase 

the muc values under all heat treatment conditions. The current work does not display as much of 

a dynamic strain ageing effect as observed by Zhong et al. [23] possibly due to the longer NA times 

used in this work and the more complete removal of solute from the matrix, resulting also in the 

present work displaying no negative strain rate sensitivity values. In the sNA1m and sNA1w 

conditions, the addition of Cu was found to decrease or not change the muc values at 0.9 and 1.3 

at% Si, respectively. It may be argued that the decrease in muc at 0.9 at% Si is due to a retention 

of solute in the matrix with added Cu (see hardening plots in Chapter 4) yielding a negative 

contribution of solutes to the strain rate sensitivity. In contrast, at 1.3 at% Si, there may be a more 

complete removal of Cu from the matrix and the clusters that are formed are more thermally (and 

thus speculated to be more mechanically) stable due to the higher dissolution temperature than 

those formed during NA only (see Chapter 4). 

Unfortunately, there is not extensive down-change engineering SRS data available in the literature 

to compare to the current work, thus depending on the interpretation used, there are a few 

possible explanations to the observed trends in mdc with solute additions. It is well established 



  120 

 
 

that in Cu and Al systems, the interaction of dislocations with other dislocations, stacking fault 

tetrahedra and other microstructural objects are able to produce sub-microscopic dislocation-

obstacle interaction products, called debris [48]. During a strain rate decrease test, the reduction 

of dislocation velocity and increase of waiting times at obstacles can allow the recovery of these 

generated debris [49], so that it would result in an enhancement of the decrease in the stress drop 

associated with the strain rate down-change. In a similar way as for a stress relaxation test, and 

keeping in mind that different types of debris anneal out at different temperatures [50], the 

corresponding stress change would be enhanced as compared to that measured during a strain 

rate up-change. In the framework of this interpretation of down-change SRS by the recovery of 

dislocation debris, the observed effects of (Si, Mg) and Cu could correspond to opposite effects 

on either the production rate of debris (which would be enhanced by the addition of Mg & Si and 

not by the addition of Cu) and/or on their annihilation during the strain rate decrease. However, 

other effects need to be considered as well. The addition of Si has been shown to increase the NA 

kinetics [8], [9] (see Chapter 4), resulting in an enhanced removal of solute from the matrix which 

negatively contribute to the SRS via dynamic strain ageing thus yielding an increase in the net SRS. 

Cu on the other hand, contribute more to the later-stage clustering behaviour and their additions 

may result in a greater total free solute in the matrix, having a negative effect on the SRS. Finally, 

the mechanical stability of the clusters during plastic deformation needs to be considered as well. 

If clusters are mechanically dissolved during plastic flow, their contribution to the flow stress and 

to the SRS can change dynamically. As an example, in an Al-Cu binary alloy, Chen et al. [46] have 

shown that GP zones were able to be mechanically dissolved. This phenomenon could be 

especially present in the case of the 1.3 at% Si alloys where the dissolution of clusters in the NA1m 

alloys during a heating ramp from the DSC thermographs occurs at lower temperatures (see 

Chapter 4) indicating they are less thermally stable and thus possibly less mechanically stable, 

coupled with the increase in cluster dissolution intensity.  

It is still not fully understood what obstacles are being activated during the up-change tests and 

the down-change tests but it is important to state that the asymmetry of strain rate sensitivity in 

the two direction certainly exist with mdc always being greater than muc at room temperature.  

5.2 Effects on constitutive parameters 
Fitting the stress-strain curves with constitutive relations provide the ability to connect solute 

contents to the microstructure evolution in different heat treatments whereby the fit parameters 

represent various physical phenomena that exist throughout the plastic deformation process. In 

the context of the present work, the focus is on the large-strain behaviour since it is more relevant 

to the study of formability.  

The increase in K2 reflects a decrease in dislocation annihilation/recovery during deformation 

whereby Cu and Mg additions have a stronger effect on decreasing annihilation compared to Si as 

shown by Chen et al. [46] in binary alloys. In the current work, Cu and Mg decrease recovery in 

the NA1m condition. This is made possible by additional obstacles formed during the NA process 

hindering the unzipping of dislocations which are pinned by the clusters [51]. The contributions of 

Cu and Mg are more pronounced than Si, suggesting that although the three solute species 

decrease the recovery rate, Cu and Mg play a larger role than Si. The difference with the 

aforementioned [46] work is likely due to the more complex alloys in the present work compared 

to their studying binary systems. The decrease in the dislocation recovery rate may either be due 

to the shearing and mechanical dissolution of clusters [46], [52], [53] increasing the total effective 

solute content in the alloy, or by the retardation of dislocation recovery during deformation [47], 

[54] due to an existing increased solute content in the alloy. Finally, the strain hardening exponent 
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increases with both Cu and Mg additions in the NA1m condition. The increase may be explained 

by an enhanced slip homogenization due to the added Mg and Cu due to the mechanical 

dissolution of the clusters. Si additions, decrease the strain hardening exponent, possibly due to 

the increase in cluster density and the reduction of free solute in the matrix. The situation changes 

for Mg and Si in the sNA1m and sNA1w conditions whereby Mg decreases the strain hardening in 

sNA1w and does not change the sNA1m strain hardening rate whereas Si does not change sNA1w 

but increases the sNA1m strain hardening behaviour. The decreased effects are assumed to be 

similar to those in the NA1m conditions with Mg increasing the number density of clusters formed 

in the sNA1w conditions decreasing the slip homogenization [55], [56], while Si additions are able 

to assist in slip homogenization via a greater fraction of Si remaining in solution due to the PA 

treatment (see Chapter 4).  

6.0 Conclusions 

 Cu, Mg, and Si all increase the yield strength of the alloys, independent of heat treatment, 

however, the effect of Cu and Mg is most pronounced in the NA1m condition compared 

to that of Si. In the sNA1m and sNA1w conditions, the total solute content is most 

important for the yield strength.  

 Cu additions decrease mdc at high flow stresses whereas both Mg and Si additions increase 

the mdc for all of the conditions while simultaneously increasing muc. 

 Individual solute contents appear to affect the various mechanical properties in differing 

proportions more so in the NA1m but not in the sNA1m suggesting that the cluster types 

that are formed in the two heat treatments are significantly different in nature. 

 If the NA1m heat treatment is to be used; the addition of Cu and Si is preferred to 

maximize both the up change and down change strain rate sensitivity while increasing the 

high strain work hardening 

 If the sNA1m heat treatment is to be used; Si and Mg additions show no detrimental 

effects to any of the material properties such that both of these additions are 

recommended.  
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7 Characterization of Thermally Activated Dislocation Glide 

in Naturally Aged Al-Mg-Si-Cu Alloys: What it tells us about 

clusters 
 

To compliment the initial observations of the effects of alloy composition on the resulting 

clustering behaviour in the Al-Mg-Si-Cu system, the evolution of the strain rate sensitivity with 

temperature and its connection to the apparent activation volumes and distances are presented 

in this chapter. From the changes in specific properties such as the yield strength, initial apparent 

activation volume and distance, underlying information regarding the rate controlling obstacles 

and microstructure may be elucidated. This may serve as a basis for providing additional 

information regarding cluster size, density, and potentially relative strength, compared to 

experimentally difficult but more direct means such as small angle x-ray or neutron scattering, 

atom probe tomography, differential scanning calorimetry, and hardness testing. Additionally, the 

work will be directly compared to the observations made in pure polycrystalline aluminium and 

the complexities that arise when working with industrial alloys at high (ambient) temperatures.  
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Abstract 
The use of strain rate sensitivity testing at 78, 198, and 294 K was performed on nine Al-Mg-Si-Cu 

alloys. The effects of alloy composition combined with three clustered states (heat treatments) 

allowed for the examination of the obstacle profile and the effects of retained solute in solution. 

The effects of yield strength and both initial and final thermodynamic strain rate sensitivities were 

related to both the unique solute addition and clustered state. Using samples tested in the as-

quenched condition, the Taylor relation was used in conjunction with the initial strain rate 

sensitivity in order to isolate the initial activation distance from the apparent activation volume 

allowing for the deconvolution of cluster density, representing the obstacle spacing, and the 

cluster size, related to the activation distance. Each of the values were compared to those of forest 

dislocations in polycrystalline pure aluminium, serving as a benchmark. In general, the clusters 

were found to behave more closely to a solid solution than precipitates with the clusters being 

shearable in nature and thus evolving during deformation.  
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1.0 Introduction 
The increased use of age-hardenable aluminium alloys in the automotive market, specifically, that 

of rolled sheets, has brought the need for an enhanced understanding of the deformation 

mechanics and strengthening mechanisms due to the presence of microstructure obstacles 

(solute atoms, clusters, and precipitates) formed during their processing via heat treatments. 

Automotive sheets used for exterior body panels are deformed in the naturally aged, NA, or pre-

aged, PA, states where the primary obstacles that control the deformation behaviour are clusters, 

prior to being submitted to what is known as the paint bake (PB) cycle (185 °C for 20 minutes) 

where a portion of these clusters are replaced by precipitates. The formation of clusters during 

both the NA and PA processes have been well studied using a variety of techniques [1]–[3]for the 

effects of both composition [4]–[8]and treatment temperatures and durations [9]–[12]combined 

with their effects on the PB response [13], [14].  

The chemistry-sensitive structural changes occurring during natural ageing (NA), pre-ageing (PA), 

and secondary natural ageing (sNA) that follows pre-ageing, affect the mechanical properties as 

measured by tensile testing, such as yield stress, strain hardening rate, strain rate sensitivity of 

the flow stress, and elongation, differently. Thermodynamic and structural models have been 

developed to predict strengthening, i.e. hardness, yield stress [15], but similar level of insight into 

strain hardening, strain rate sensitivity and total elongation from structure and chemistry is still 

missing. Zhong [16]–[19] has measured tensile behaviour (strain hardening, strain rate sensitivity, 

elongation, etc) of NA and PA with sNA of AA6xxx at room temperature and by observing the onset 

of phenomena like jerky flow, interpreted as the balance between solute atoms moving between 

the solid solution and the clusters. While the importance of room temperature properties for 

industrial forming and ultimately the behaviour of the component in service is obvious, changing 

the testing temperature provides the opportunity to drastically change the energy provided for 

thermal activation and thus to improve the understanding of the respective role of the different 

obstacle types to dislocation movement during plasticity. The aim of the present work is to assess 

the temperature dependent (78 to 300 K) strengthening for different compositions of 6000-series 

Al alloys, in different ageing conditions where the cluster microstructure has been previously 

evaluated (see Chapters 4 to 6). 

2.0 Background and Theory 
It is well established that thermal fluctuations can provide energy to help gliding dislocations over-

come short range obstacles such as forest dislocations, solute atoms, and clusters during plastic 

deformation [20]. The plastic shear strain rate, �̇�, and absolute temperature, T, dependence on 

the reversible part of the shear flow stress, τ, for plasticity by dislocation glide can be expressed 

as 

�̇� = �̇�0 exp (−
𝛥ℱ−𝜏𝑉′

𝑘𝑇
)    (1) 

where γ̇𝑜 is a structure dependent term, ∆ℱ is the Helmholtz enthalpy describing the dislocation-

obstacle intersection, V′ is the apparent activation volume describing the work done by the 

dislocation on the glide plane to overcome the obstacle, τ is the shear stress, and k is the 

Boltzmann constant. The thermal energy assists the dislocation in over-coming the barrier F at 

some applied stress, so that a more familiar Gibbs free energy description of the obstacle is 

Δ𝐺 = ℱ − τV′     (2) 
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[20] discuss the differences of these energies in detail. The right hand side of equation (1) can be 

differentiated with respect to shear stress into 

𝜕𝑙𝑛γ̇

𝜕𝜏
|

𝑇,Σ
=

𝜕𝑙𝑛γ̇𝑜

𝜕𝜏
|

𝑇,Σ
−

𝜕∆ℱ

𝑘𝑇𝜕𝜏
|

𝑇,Σ
+

V′

𝑘𝑇
|

𝑇,Σ
  

 (3) 

The first and second term become zero when the structure, , is constant during a stress change. 

This idealization immediately leads to the important relationship 

𝜕𝑙𝑛γ̇

𝜕𝜏
|

𝑇,Σ
=

V′

𝑘𝑇
|

𝑇,Σ
    (4) 

which relates on the left side an experimental measurement to a structural parameter on the right 

side, V’, indicating the nature of the rate-controlling process. Re-expressing (4) in terms of 

macroscopic stress and strain rate of a polycrystal corrected by the Taylor factor, M, as 

𝑘

V′  =
1

MT

Δ𝜎

Δ𝑙𝑛ε̇
|

𝑇,Σ
    (5) 

yields a relationship to determine V’ if the change in stress with change in strain rate is made at 

constant structure – that is instantaneous. A robust experimental technique to make such 

measurements using strain rate change tests has been fully documented [21]. The apparent 

activation volume, V’, can be related to geometrical features of the dislocations’ interaction with 

the lattice obstacles as 

V′ = b𝑎′ = b𝑑′𝑙    (6) 

where b is the Burgers vector of the dislocation, 𝑎′ is the apparent activation area, 𝑑′ is the 

apparent activation distance of the obstacle, and 𝑙 is the inter-obstacle spacing. The true activation 

volume (area x distance) is difficult to determine absolutely due to the unknown effect of stress 

on the barrier energy, and instead relative apparent values are reported, corresponding to the 

experimental measurements. 

In single obstacle systems like pure metal crystals, the yield stress, o, is controlled by the initial 

dislocation density; plastic deformation results in an evolution of dislocation density that induces 

a decrease of V’ with increasing strain via a decrease in the inter-obstacle spacing. In alloys, the 

identification and accounting of different obstacles’ contributions, i.e. forest dislocation, solute 

atoms, solute clusters, etc. to impeding dislocations and therefore strengthening assumes a model 

for n types of obstacles 

         σ𝑜
𝑝 = σ1

𝑝 + σ2
𝑝+. . . σ𝑛

𝑝     (7) 

where p is an exponent that in the simplest linear case is 1. One effective way to test the additivity 

relationship is using the Haasen plot. Assuming linear additivity, equation (7) becomes 

(
1

𝑉′
)

𝑝

= (
1

𝑉1
′)

𝑝

+ (
1

𝑉2
′)

𝑝

+ . . . (
1

𝑉𝑛
′)

𝑝

   (8) 

For illustrative and analytical reasons this behaviour is best represented in a form that plots 

equation (5) versus the increase of stress after yield, 𝜎 − 𝜎0.  Figure 7-1 shows a schematic so-

called Haasen plot with idealized behaviours expected for different materials microstructures.  

With the pure metal being the prototype behaviour with only the first term on the right side of 

equation (8), alloying to increase the solid solution will increase the thermal response relative to 

dislocations only by adding the second term to the right side of equation (8), while clustering and 
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later precipitation of new phases will remove the obstacles from the thermally activable spectrum, 

i.e. more athermal relative to the dislocations. With strain the dislocation forest density increases 

and with no changes in the density of the other obstacles, yields a constant slope, S. Thus, an 

effective experimental approach to characterize alloys with more than one obstacle is to measure 

the strain rate sensitivity of the flow stress during plasticity, where the initial values at yield 

describe the starting structure having a strain rate sensitivity, S1, with the constant strain rate 

sensitivity, S, being determined at higher strain-hardened states. In the current analysis the grain 

size, crystallographic texture and initial forest dislocation density is assumed to be very similar for 

all of the alloys studied. 

 

Figure 7-1: Schematic of idealized Haasen plot at constant temperature showing the effect of relative obstacle thermal 
profile for a pure metal to a precipitated alloy state on the evolution of the strain rate sensitivity versus the flow stress. 
The slope of the curve represents the thermodynamic strain rate sensitivity, S, and is assumed constant here for all alloys 
at larger dislocation densities. 

Furthermore, it is experimentally possible to estimate the rate-controlling obstacle’s glide 

resistance profile by reducing the testing temperature and measuring the changes in the yield 

stress and V’.  Figure 7-2 illustrates that as temperature decreases the applied stress required to 

push the dislocation segment through an obstacle increases, since the complementary remaining 

energy comes from thermal activation and thus depends of kT; at absolute 0 K, the stress 

represents the mechanical threshold, �̂�, of the obstacle [20].  
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Figure 7-2: Hypothetical sheared glide resistance 
profile plotting shear stress versus activation volume, 
and illustrating the effect of temperature T on the 
applied stress needed to overcome the obstacle to 

glide. At T1 a stress of T is required before the mobile 
dislocation is thermally activated. Without thermal 
activation the maximum glide resistance is �̂�. 

It is possible to calculate the initial obstacle activation size directly at yield by assuming all 

obstacles are point obstacles such that the activation work, w’, to cut the obstacle is 

𝑑′ =
𝑊′

𝛼𝜇(𝑇)𝑏2       (11) 

where  is an obstacle strength parameter, (𝑇) is the temperature dependent shear modulus, b 

is the Burgers vector and W’ is equivalent to the inverse of the slope of the Haasen plot for the 

controlling obstacle times the Boltzmann constant, k/S [20]. Note that d’ is not the size of the 

obstacle, but the dimension of the sheared obstacle. 

If the point obstacle assumption is untrue, issues arise in separating 𝑑′ and 𝑙 from 𝑎′. It is possible 

that a low density of small obstacles (small 𝑑′, large 𝑙) may yield the same 𝑎′ as material comprised 

of a high density of larger obstacles (large 𝑑′, small 𝑙). In theory, the two terms can be separated 

by comparing the evolution of V’ with strain hardening directly after yielding via the evolving 

strain-rate sensitivity, S1, compared to the initial activation volume at yield, Vo’.  

Starting with a microstructure in the saturated solid solution state, the formation of clusters 

increases the yield strength with ageing. In the case of small clusters, it is not fully understood 

whether the strengthening is due to the cluster number density, i.e. average separation, or the 

specific cluster size. By comparing the clustered state to the saturated solid solution, the yield 

strength scaling can be tested with 𝑑′𝑙0, those determined solely from the Haasen plot intercept, 

or via the apparent activation distance determined from the initial Haasen slope, S1. It is then 

possible to determine the scaling of 𝜎𝑜 with 𝑑1𝑙0. Although the two values for the activation 

distance, 𝑑′ and 𝑑1 should be identical, the advantage of 𝑑1 is in that it is an average evolution, 

rather than a single point derived from V’, such that it may be a better representation of the rate-

controlling obstacles. If these mechanical tests are able to determine the relative change in 

apparent cluster size formed during the various heat treatments via a correlation of the apparent 

activation distance, it may be able to reduce the costly and experimentally difficult methods of 

cluster characterization by small angle x-ray scattering (SAXS), small angle neutron scattering 

(SANS), or atom probe tomography (APT). These other methods undoubtedly are necessary for 

detailed analyses of clusters but for a general understanding and engineering approach to 

clustering, the ability to perform strain rate sensitivity measurements would allow for a much 

more statistical and cost-effective means for microstructure characterization by industry.  

The objective of the present work is to experimentally compare the thermally activated behaviour 

of dislocation motion in a series of clustering Al-Mg-Si-Cu alloys using the rate theory and the 
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Haasen plot analysis, and determine the effect of alloying on the cluster formation and 

strengthening. The chapter first examines the temperature dependence of the yield stress, and 

then the Haasen plot behaviours of the aged conditions, and contrasts them with the as-quenched 

saturated solid solution. 

3.0 Methods and Materials 
Tensile testing was performed on nine (9) Al-Mg-Si-Cu alloys (see Table 7-1) at 78, 198, and 294 K 

by immersing in environments of liquid nitrogen, alcohol and dry-ice mixture or ambient room 

temperature. All of the alloys are Si-rich, having a (Mg + Cu)/Si ratio smaller than one; their 

compositions are plotted in Figure 7-3 compared to two common industrial alloys, AA6016 and 

AA6022. The alloys contain four levels of Cu denoted C0 (no Cu), C2 (0.09 at%), C5 (0.2 at%) and 

C8 (0.3 at%), three levels of Si denoted S0 (0.9 at%), S1 (1.1 at%) and S3 (1.3 at%), and two levels 

of Mg (0.4 and 0.6 at%).  

Sample 
Name 

Si  
(at%) 

Cu  
(at%) 

Mg  
(at%) 

C0S0 0.895 0.008 0.404 

C2S0 0.896 0.089 0.381 

C8S0 0.879 0.333 0.379 

C8S0M 0.899 0.337 0.557 

C2S1 1.069 0.087 0.372 

C0S3 1.299 0.004 0.387 

C2S3 1.262 0.088 0.400 

C5S3 1.284 0.218 0.372 

C8S3 1.324 0.329 0.385 
Table 7-1: The nominal concentrations of 
each of the alloy contents for the nine 
alloys tested in this work. 

 

Figure 7-3: A plot of the Cu and Mg contents compared to the Si 

content of the nine Al-Mg-Si-Cu alloys tested in this work. The black 

dashed line indicates a 1:1 (Mg + Cu) to Si ratio. The green and blue 

dotted arrows indicate the additions of Cu at constant Si, the red 

dotted arrow indicates the addition of Mg at constant Cu and Si, while 

the grey arrow indicates the addition of Si at constant Cu and Mg. 

Two common alloys; AA6016 and AA6022 are shown for comparison. 

Tensile specimens were machined from the as-received rolled alloy sheets into standard dog-bone 

specimen having a gauge length of 25 mm, and a nominal cross-section of 10 mm2. The tensile 

specimens were batch solutionized at 550 °C for 15 minutes in an air furnace and then either: 

water quenched (WQ) and let to naturally age (NA) for one month to obtain the NA1m condition; 

or quenched into 80°C water, transferred to an oil bath and pre-aged (PA) at 80 °C for 8 hours, 

cooled and let to NA for either 1 week or 1 month to obtain the sNA1w and sNA1m conditions, 

respectively. Specimens were tested at a true strain-rate of 5 x 10-4 s-1 either continuously or with 

interrupted precise strain-rate change tests using a strain-rate change factor of ¼ or 1/10. Sub-

size tensile specimen having a gauge length of 20 mm and a cross section of 2 mm2 were spark cut 

from the larger tensile specimens and used for testing at 198 K using a specially designed cryostat 

[22]. Finally, 78 K tests were also made on each alloy in the as-quenched (AQ) condition, samples 

with minimal natural ageing (< 15 minutes) in order to characterize the saturated solid solution. 

The 0.2% offset yield stress, 0.2%, is used as the yield stress in all analysis rather than 𝜎0 as 

previously outlined. 
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4.0 Results and Discussion 

4.1 Yield strength dependence on temperature 

The effect of temperature on the yield strength for different alloys in different aged conditions is 

reported in this section. Thermal activation is evident when the yield stress decreases with testing 

temperature. Since the elastic constants are also temperature dependent, this component of the 

strengthening is removed from the yield strength measurement by normalizing by the 

temperature dependent elastic shear modulus, , using the data from 99.93 at.% Al single crystals 

measured by Sutton [23] and fitting a polynomial to the temperature dependence (see Appendix 

2). Figures 7-4a-d illustrate the temperature effect in the NA1m and sNA1m conditions for each 

of the groups of compositional effects.  

 

Figure 7-4: Yield strength normalized by temperature dependent shear modulus versus test temperature in sNA1m and 
NA1m conditions highlighting the effects of a) Cu additions at 0.9 at% Si and 0.4 at% Mg, b) Cu additions at 1.3 at% Si 
and 0.4 at% Mg, c) Si additions at 0.1 at% Cu and 0.4 at% Mg, and d) Mg additions at 0.9 at% Si and 0.3 at% Cu and Si 
additions at 0.3 at% Cu and 0.4 at% Mg.  

The additions of solute atoms to the base chemistry always increases 0.2%/(𝑇) of the alloys 

with the strength sensitivity to solute additions being stronger in the NA1m condition compared 

to the sNA1m condition. Separately, at 1.3 at% Si, the additions of Cu appear to have a lower 

strengthening effect at lower temperatures compared to the room temperature strength in the 

NA1m condition, while this effect does not appear in the sNA1m condition. This behavior strongly 

suggests that the cluster types and obstacle profiles that are produced in the two conditions may 

be different. Figure 7-4 also shows that some of the normalized yield measurements at 294 K are 

higher than the values at 198 K. The observed increase of 0.2%/(𝑇) at higher temperatures 

compared to 198 K is likely associated with greater free solute mobility provoking dynamic strain 

ageing effects. Focusing on the 78 K data, the inter-obstacle spacing, 𝑙𝑜, characterizing the 



135 

 
 
 

clustering of the same objects can be estimated assuming an array of point obstacles compared 

to the AQ condition by the increase in the yield strength 

𝑙𝑜 =
𝑀𝛼𝜇𝑏

𝜎0.2%𝐴𝑔𝑒𝑑−𝜎0.2%𝐴𝑄
    (12) 

Figure 7-5 shows that the inter-obstacle spacing calculated from 78 K test for the three heat 

treatment conditions evolves with total solute content. NA1m has the highest yield strength that 

corresponds to the smallest inter-obstacle spacing of the three heat treatment conditions, 

followed by sNA1m, and sNA1w. At 1.3 at% Si, the differences in the different heat treatment 

conditions decreases to the point where all samples register identical apparent inter-obstacle 

spacing at 0.3 at% Cu. The addition of Cu and Mg have the strongest effects on decreasing the 

inter-obstacle spacing parameter.  

 

Figure 7-5: Calculated Inter-obstacle spacing at yield determined from samples tested at 78 K in the sNA1w (open circles) 
sNA1m (open triangles) and NA1m (open squares) conditions. For clarity, the effects of Cu additions at 0.9 and 1.3 at% 
Si, are connected in green and blue dashed arrows, respectively. The effects of Si additions at 0.2 at% Cu and 0.4 at% Mg 
are connected with the grey dashed arrows. The effects of Mg addition at 0.9 at% Si and 0.3 at% Cu are connected with 
red dashed arrows. 

4.2 Haasen plot representation 

Haasen plots, 
1

T

∆σ

∆ ln ϵ̇
|
,T

 versus  − 0.2%, are shown in Figures 7-6 to 7-8 for the base alloy C0S0 

with addition of Cu only (C2S0, C8S0) for sNA1w, sNA1m, and NA1m. All remaining Haasen plots 

are compiled in Appendix 1.4.1. Generally, the deformation of these alloys has a thermodynamic 

response characterized by positive intercepts and positive slopes indicating obstacles to 

dislocation motion more thermal than dislocations and with positive strain rate sensitivity, 

respectively. Note that ¼ and 1/10 rate change results are not separately identified in the plots, 

but a spread between the two measurements develops with deformation where the   with 1/10 

rate change becomes larger than the ¼ rate change   particularly at higher temperatures. Only 
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the ¼ rate change data was used for the initial slope fits to determine S1 and the intercept values 

as indicated numerically in each plot, because the ¼ rate changes introduced the smallest 

perturbation in the measurement of the obstacle profile. Three behaviours were observed in the 

evolution of the instantaneous slope, S, of the curve: high-to-low-to-high; constant-to-high; and 

low-to-high. All parameters extracted from the Haasen plots for the aged alloys is tabulated in 

Appendix 1.4.2. 

The 78 K AQ data (SSS) is plotted as reference for all tests. In two low Si alloys, C0S0 and C8S0, the 

SSS curve is similar to the clustered alloy curves except for an offset in the vertical axis due to the 

increased yield strength. This upward shift in the curve is on first approximation a linear 

contribution that is directly attributed to the clustered objects being more thermally activable 

than dislocation-dislocation interactions (see the Figure 7-1 schematic). 

 

Figure 7-6: C0S0 Haasen plots for the three ageing conditions and testing temperatures. 
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Figure 7-7: C2S0 Haasen plots for the three ageing conditions and testing temperatures.  
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Figure 7-8: C8S0 Haasen plots for the three ageing conditions and testing temperatures. 

The activation area at yield can be estimated by using the Haasen slope S1 from initial hardening 

with the yield stress (not the intercept) to determine an activation area, d1𝑙. Figure 7-9 plots the 

composite yield stress versus apparent activation area for the objects other than dislocations at 

the three test temperatures illustrating the role of chemistry and ageing treatment a) NA1m, b) 

sNA1m, and c) sNA1w on the strengthening. These composite plots resemble the schematic in 

Figure 7-2 albeit with the scatter due the different alloys and changes in the obstacle energy 

profiles with temperature and stress.  
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Figure 7-9: Composite plots showing the evolution of the yield strength with derived apparent activation area 

determined from the initial Haasen plot slope at 78 K (open squares), 198 K (open triangles), and 294 K (open circles) for 

the a) NA1m, b) sNA1m, c) sNA1w conditions. 

4.3 T4 clusters compared to saturated solid solution state at 78 K 
The most important characteristic from the above results is that many (though not all) of the NA 

clustered solid solutions have a thermally activated response very similar to the supersaturated 

solid solutions measured at 78 K after dissolving the clusters, but lower yield strength. This 

observation suggests that the transition from AQ to cluster hardening is a simple linear 

relationship with flow stress. Specific chemistries (i.e. C2S1) show a more athermal (higher initial 

Haasen plot slope) than the solid solution at 78 K, while other alloys like C8S0M in the sNA1w 

more closely resemble the SSS, except with stronger obstacles. This section investigates whether 

the clustered NA state resembles a solid solution or a precipitate obstacle to the dislocations’ 

thermal activation process.  

Figure 7-10 plots the normalized apparent activation volume at yield, V’/b3
, from the Haasen plot 

intercept for a) NA1m and b) sNA1m compared to the AQ. It is evident that the strain rate 

sensitivity response at yield is more sensitive to the chemistries in the AQ condition than NA, 

though the exact correlation with Mg, Si, and Cu in the solid solution is unclear with this analysis. 



  140 

 
 

 

Figure 7-10: The evolution of the apparent activation volume normalized by Burgers vector for aluminium at yield using 

the intercepts of the Haasen plot at 78 K for the a) NA1m (open squares) compared to the SSS (AQ, open diamonds) and 

b) sNA1m (open triangles) compared to the AQ conditions. For clarity, the effects of Cu additions at 0.9 and 1.3 at% Si, 

are connected in green and blue dashed arrows, respectively. The effects of Si additions at 0.2 at% Cu and 0.4 at% Mg 

are connected with the grey dashed arrows. The effects of Mg addition at 0.9 at% Si and 0.3 at% Cu are connected with 

red dashed arrows. 

The Haasen plot intercept, which is proportional to inverse activation volume of rate controlling 

obstacles at yield, is further deconstructed into the apparent obstacle size, d’, using the yield 

strength to estimate the inter-obstacle spacing, 𝑙, and this is plotted in Figure 7-11 for all three 

ageing conditions at 78 K. Generally, both alloying and ageing results in an apparent increase in 

the obstacle size, with Cu and Mg yielding the largest increases, and Si either being neutral to 

effectively reducing the apparent obstacle size. 

 

Figure 7-11: Effect of composition for the sNA1w (open circles), sNA1m (open triangles) and NA1m (open squares) 

conditions on the activation distance determined from the intercept of the Haasen plot measured at 78 K. For clarity, the 

effects of Cu additions at 0.9 and 1.3 at% Si, are connected in green and blue dashed arrows, respectively. The effects of 

Si additions at 0.2 at% Cu and 0.4 at% Mg are connected with the grey dashed arrows. The effects of Mg addition at 0.9 

at% Si and 0.3 at% Cu are connected with red dashed arrows.  
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The Haasen plot intercept at yield correlates to the square root of the obstacle density. Figure 7-

12 plots the Haasen intercept versus square root of the total alloy concentration at 78 K measured 

for all nine aluminum alloys in the SSS state. A linear fit of C0S3, C2S3, C5S3 and C8S3 data is 

shown.  

 

Figure 7-12: Haasen plot intercept versus square root of the total alloy concentration at 78 K measured for all nine 
aluminum alloys in the SSS state. A linear fit of C0S3, C2S3, C5S3 and C8S3 data is shown. Also shown are trend lines 
(dashed) representing data measured previously for Al-xMg and Al-xCu binary alloys. 

For dilute binary solid solutions, the increase in Haasen intercept was shown previously by Diak 

and Saimoto [24] to scale with c1/2 with different slopes for different alloying elements; trend-lines 

for Al-xCu and Al-xMg are shown in Figure 7-13 for comparison.  
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Figure 7-13: Apparent activation volume normalized with the Burgers vector cubed versus the measured shear yield 

stress, 0.2%/M, of all alloys in the SSS and aged states measured at 78 K. The straight line fits are made from the SSS 
alloy to its aged states with a power law exponent, w, ranging from -0.9 to -1.5. This range is between the Labusch (-
2/3) and Friedel (-2) limits for a solid solution. The circled regions are drawn arbitrarily to separate the AQ (SSS) and the 
aged conditions. 

The current AA6xxx alloy systems are pseudo-ternary, where the collective solute effect for the 

Cu-Mg-Si is to offset the points as shown. The Si additions lower the intercept from the binary Al-

xCu, while Cu and Mg in the AA6xxx alloys increases the intercept values. The data is consistent 

with alloying concentration, and the fact the data do not collapse on a single line for all alloys 

indicates a complex relationship between solute chemistry, clustering and dislocation-obstacle 

interactions. 

A test of the solid solution strengthening mechanism is whether an alloy exhibits stress 

equivalence of the activation volume with respect to the shear yield stress when the testing 

temperature is changed: 

𝑉′

𝑏3 = 𝐵 (
𝜎𝑜

𝑀
)

𝑤

      (13) 

where B and w are experimental constants. Stress equivalence has previously only been reported 

for solid solutions with interpretations of possible clustering. The present alloys studied contain 

clusters in the NA state and Figure 7-13 clearly shows stress equivalence for individual alloys after 

different heat treatments, which indicates that these clusters are an evolving solid solution; the 

mobile dislocations do not see these objects as defined precipitates. The range of w from -1.5 to 

-0.9 is consistent with what Diak and Saimoto [24]measured in dilute aluminium binary solid 

solutions, but conflicts with observations by Niewczas et al. [25]for Al-xMg solid solutions in which 

w = -2/3. 
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What is clear is that addition of Cu to the highest Si containing alloy CXS3 increases the slope, 

which signifies a higher activation volume, or larger density of clusters. The lowest Si containing 

alloys tend to have the steepest negative slope, which is a sign of reduced clustering. The constant 

yet different slopes represents distinct pathways for the evolution of these solid solutions into 

clusters. 

4.4 Dislocation-dislocation interactions in the alloys at larger strains 
After about 50 MPa of strain hardening beyond the yield stress, the Haasen plots in Figures 7-6 to 

7-8 (and Appendix 1.4.2) are characterized by a straight-line behaviour consistent with the 

Cottrell-Stokes relationship [26]. Unlike pure aluminium and its dilute alloys, this value of S differs 

from the dislocation-dislocation contribution, Sd, tending to be larger at temperatures above 150 

K as summarized in Figure 7-14. At 78 K, the AQ data is lowest relative to the dislocation-

dislocation line, but has the least variation in values for the different alloys. Ageing treatments tie 

up free matrix solute in the clustered objects, and so the Haasen slope tends to approach the pure 

metal value at 78 K. At 198 K, all the measured values exceed the pure metal value, but there is 

less variation in S due to the higher temperature normalization. At 294 K, the deformation 

mechanism is much more complex than below 198 K due to diffusion controlled solute-vacancy 

mobility and dynamic recovery of dislocations and point defects. 

 

Figure 7-14: The evolution of the large strain, dislocation-dislocation thermodynamic strain rate sensitivity, S, with 
absolute temperature for the sNA1M (open triangle), NA1m (open square) and SSS (AQ, open diamond) conditions as 
compared to pure polycrystalline aluminium (PC-Al, dash-dotted line) showing the effects of a) Cu additions at 0.9 at% 
Si and 0.4 at% Mg, b) Cu additions at 1.3 at% Si and 0.4 at% Mg, c) Si additions at 0.1 at% Cu and 0.4 at% Mg, and d) 
Mg additions at 0.9 at% Si and 0.3 at% Cu and Si additions at 0.3 at% Cu and 0.4 at% Mg. 

The correlation of S at large strains to composition at 78 K is summarized in Figure 7-15. Generally, 

alloying the SSS (AQ) leads to little change in S with chemistry, due to the similarities in strain 

hardening. In contrast, after one month ageing, there is a correlation with alloying to reduce S 
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towards the solid solution behaviour. There is expected to be a difference in the strain hardened 

dislocation sub-structure with this alloying and thus a different S. 

 

Figure 7-15: Effects of alloy chemistry on the large-strain strain-rate sensitivity at 78K compared to the SSS (AQ, shown 
as open diamonds) for the a) NA1m and b) sNA1m conditions. For clarity, the effects of Cu additions at 0.9 and 1.3 at% 
Si, are connected in green and blue dashed arrows, respectively. The effects of Si additions at 0.2 at% Cu and 0.4 at% Mg 
are connected with the grey dashed arrows. The effects of Mg addition at 0.9 at% Si and 0.3 at% Cu are connected with 
red dashed arrows. Dotted arrows used for the reference, SSS (AQ) tests. The horizontal line at S equals 1.4x10-4 K-1 is for 
pure polycrystalline aluminum. 

5.0 Conclusions  
A thorough study was made on the thermally activated deformation behaviour of nine 

experimental Al-Mg-Si-Cu alloys. The main purpose of this work is to understand the nature of the 

clusters formed during direct NA (NA1m) and secondary NA occurring after PA processes (sNA1w 

and sNA1m) to determine if any significant differences exist and the effects of alloy composition 

on these obstacles. The precise strain rate sensitivity was measured for nine alloys after T4 ageing 

by specialized tensile testing at 78, 198 and 294 K. The key results are: 

 The yield stress of these alloys decreases with temperature up to 198 K and becomes 

athermal at 294 K due to increased solute atom mobility. 

 Secondary natural ageing from one week to one month increases the yield strengths of all 

alloys with the highest strengthening measured in the Mg containing alloys. 

 The measured Haasen plot ordinate values and slopes are all positive, indicating that all 

nine alloys in the T4 condition have a positive strain rate sensitivity. 

 An analagous force-distance profile for different microstructural states was estimated 

from the yield stresses and Haasen plot activation area measured at different 

temperatures. The profiles correlate with expected changes in the clustered state with 

ageing. 

 The strain rate sensitivity of the as-quenched alloys were measured at 78 K. 

o The square root of the alloying compositions correlate to the apparent inverse 

activation volume. 

o Cu and Mg additions decrease the activation volume 

o Si additions increase the activation volume. 

 At 78 K stress equivalence was observed between the measured apparent activation 

volume and the approximate shear stress as 
𝑉′

𝑏3 = 𝐵 (
𝜎𝑜

𝑀
)

𝑤

, where w = -1.5 to -0.9. The 

clustered T4 state therefore resembles more a solid solution to the mobile dislocations 

than a precipitated state. 

 At larger strains the evolution of the dislocation density exceeds the clustered object 

density and the constant slope follows the expected Cottrell-Stokes relationship albeit 



145 

 
 
 

with slopes different than pure aluminum due to the dynamic nature of the different 

dislocation structures that evolve with deformation. 
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8 An analysis of necking formation in Al-Mg-Si-Cu alloys: the 

effect of strain rate sensitivity 
 

The main goal of the thesis is to provide a comprehensive understanding connecting alloy 

composition and processing to the corresponding microstructure formed, its influence on the 

resulting mechanical properties and finally, their connection to the formability of the Al-Mg-Si-Cu 

alloys. This paper will incorporate the observed effects of asymmetry in the strain rate sensitivity 

and be combined with a basic strain rate sensitivity-modified power law equation in order to 

initially perform a parameterized study via the adjustment of the two unique strain rate sensitivity 

parameters and their influence on the width of the neck formed when samples are deformed to 

a local strain of 30%. This distribution of strain and strain rate will serve as a basis for potentially 

understanding the differences between neck formation, localization, propagation, and 

stabilization, each of which will be given their own definition based on the observed effects. From 

the parameterized study, experimentally determined numbers will be input into the model in 

order to determine in the formation and distribution of strain found within the neck rely most 

heavily on the increasing, decreasing, or a combined strain rate sensitivity parameter.  
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An analysis of necking formation in age-hardenable aluminium alloys: the effects of strain 

hardening and strain-rate sensitivity 

 

 

 

 

 

 

 

 

 

 

Abstract 
Reducing fuel emissions in passenger vehicles has provided the need to lighter materials to be 

used in automotive manufacturing, specifically for body-in-white applications. The forming 

requirements for both exterior and interior panels is to prevent the onset of localized necking or, 

to extend the diffuse necking condition, which is controlled by the Considère criterion. The 

increased strain hardening and strain rate sensitivity (SRS) behaviours have been previously shown 

to correlate to enhanced ductility, however, these trends are only ever considered for the region 

within the diffuse neck. Recent work in SRS has shown an asymmetry in the SRS behaviour of these 

alloys between increasing and decreasing strain-rate jump tests which would affect the interior 

and exterior of the diffuse neck, respectively. The use of finite element modeling coupled with 

parametric studies using pairs of up-change and down-change SRS properties of 6000-series 

aluminium alloys will be used to model the neck evolution during tension using a constitutive 

relation. The distance between the nominal strain rate and the centre of the diffuse neck will be 

linked to both the strain hardening and SRS parameters based on the applied model. Additionally, 

both the strain and strain rate distributions of these parametric studies will be investigated to 

ascertain the specific influence of the up-change and down-change SRS and the effect of strain 

hardening. Finally, the constitutive properties from a real specimen in this work will be analyzed 

at varying levels of deformation to observe the temporal dependency on strain for both the strain 

and strain rate distributions along the length of the sample.  
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1.0  Introduction 
The increased use of AA6xxx series sheet in the automotive industry has necessitated a more 

thorough understanding of the relationship between critical mechanical properties: strain 

hardening and strain-rate sensitivity (SRS), to the resulting formability. Although there are many 

factors that influence the mechanical properties of AA6xxx series alloys: composition, processing, 

and resulting microstructure, the relationship between these macroscopic properties and 

corresponding engineering parameters may be connected to the overall formability of the alloys. 

Formability is crucial in the production of body-in-white (BIW) automotive components where 

they are stamped in a “soft” temper and then run through a paint-bake cycle to simultaneously 

polymerize the paint, and harden the material. The formability of the material has a direct impact 

on the shapes and designs available to automotive manufacturers which directly affects the 

saleability, and the possibility of light-weighting through down-gauging or switching from steel to 

aluminium. A sheet is considered to be scrap once a local neck has formed; thus maintaining the 

aluminium sheet in either the uniform deformation or diffuse necked state is critical to extending 

its formability. Increasing the strain hardening and SRS of the alloys have been shown to increase 

the uniform and diffuse necked regimes of deformation, respectively. This work will use finite 

element modeling to assess the effect of the engineering mechanical properties of strain 

hardening and SRS of AA6xxx series sheets on the parameters relevant to formability: the uniform 

elongation, diffuse neck width and post-uniform elongation behaviour.  

2.0  Background and Model Design 
The onset of diffuse necking, the limit imposed by manufacturers during forming, is classically 

described using the Considère criterion whereby the onset of diffuse necking, 𝜖𝐷, begins once 

𝑑𝜎

𝑑𝜖
≤ 𝜎     (1) 

where 𝑑𝜎/𝑑𝜖 is the current strain hardening and 𝜎 is the current true stress. The transition to 

local necking, 𝜖𝐿, may be schematically defined for a tensile test when 𝑑𝜎/𝑑𝜖 = 𝜎/2. If a modified 

Hollomon-type constitutive relation is used to calculate the stress in the form of 𝜎 = 𝜎0 + 𝐾𝜖𝑛 𝜖̇𝑚   

[1]–[5] and then differentiation with respect to strain to obtain the Considère criterion given by 

[2], [4] 

𝑑𝜎

𝑑𝜖
=

𝐾𝜖𝑛 �̇�𝑚

𝜖
(𝑛 + 𝑚

𝜕 ln �̇�

𝜕 ln 𝜖
) = 𝜎 = 𝜎0 + 𝐾𝜖𝑛�̇�𝑚  (2) 

Where n is the strain hardening exponent, m the engineering strain rate sensitivity, 𝜎0 is the 

proportional limit, 𝜖 is the current strain, 𝜖̇ is the current strain-rate, and K, a pre-exponential 

constant. There is a clear dependency of 𝑑𝜎/𝑑𝜖 on both the strain hardening and strain rate 

sensitivity parameters whereby increasing m or n will increase 𝑑𝜎/𝑑𝜖 delaying the onset of the 

diffuse neck, all other parameters being held equal. One of the critical hypothesis is that the 

current strain rate is necessarily uniform prior to necking, yielding uniform deformation (not 

considering cases such as shear banding) such that the second parameter in brackets, 
𝜕 ln �̇�

𝜕 ln 𝜖
 is zero. 

However, upon the formation of a diffuse neck, this strain rate sensitive term becomes non-zero 

and there are inevitably two separate regions, the region interior and exterior of the neck having 

an active deformation rate greater or less than the imposed rate, respectively. This results in the 

second term being either positive (in the neck interior) or negative (in the neck exterior) causing 

a local hardening and softening effect, respectively, assuming the strain rate sensitivity parameter 

is positive. Schematically, a situation such as that in Figure 8-1 is observed.  
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Figure 8-1: A schematic showing the definition of the necked region of the sample. Due to requirement of strain and 
strain rate continuity, the strain rate within the neck interior is increased and the region exterior experiences a decrease, 
there must retain a region that continues to deform at the imposed experimental strain rate.  

Classical models and simulations work perfectly fine for this situation whereby the constitutive 

parameters are able to take into account the changes in the local strains and strain rates to adjust 

the local Considère condition. However, as previously shown in Chapter 5, there is an apparent 

asymmetry in the strain rate sensitivity being strictly dependent on the directionality of the rate-

change and whether it is increasing or decreasing. This necessitates that two sets of constitutive 

parameters be used 

𝜎𝑢𝑐 = 𝜎0 + 𝐾𝑢𝑐𝜖̇𝑚𝑢𝑐𝜖𝑛     (3a) 

𝜎𝑑𝑐 = 𝜎0 + 𝐾𝑑𝑐𝜖̇𝑚𝑑𝑐𝜖𝑛     (3b) 

Where the subscript uc represents up-changes, regions having a strain rate greater than that 

imposed, and dc representing down-changes, regions having a strain rate lower than that 

imposed. The net result of these two constitutive relations being required in their specific regimes 

is that the evolution of the Considère criterion is unique depending on the magnitude of the strain 

rate in the local regime. In the materials tested in this thesis, age-hardenable 6000-series 

aluminium, it was determined that the values for mdc were greater than muc suggesting that the 

softening that is observed in materials having an equal and opposite decrease in the local strain 

rate is greater than the local increase in the hardening due to the increased strain rate, that is 

|Δ𝜎𝑑𝑐| > |Δ𝜎𝑢𝑐|    (4) 

This would trigger the possibility for the diffuse neck to either stabilize or propagate, in the spatial 

dimension along the length of the specimen, in the direction of the applied deformation. One of 

the matters to consider in this relationship is that 𝜎𝑢𝑐  must equal 𝜎𝑑𝑐  when the local strain rate is 

equal to the base strain rate, 𝜖̇0, which necessitates the proper derivation of this equation, 

allowing for the large-strain extrapolation of the stress-strain curve to strain unobtainable by 

traditional tensile testing methods. In the present work, the Saimoto – van Houtte (SvH) [1] 

constitutive relation (shown in Eq. 5, used see Chapter 6 for more details) will be used to capture 
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the true stress response with the evolution of true plastic strain using two fit loci separating the 

low- and high-strain regions.  

𝜎 = 𝜎0 + [𝑀3+𝛽𝑖 (
𝑃

4𝐴
) (2 + 𝛽𝑖)(𝛼𝜇𝑏)2 1

𝐶𝑖𝑏
]

1

2+𝛽𝑖 𝜖
1

2+𝛽𝑖   (5) 

Where M is the Taylor factor, P/A is the ratio of the production of dislocation line-length to be 

compared to the annihilation of dislocations (see Chapter 6 for its derivation), 𝛼, the obstacle 

strength factor, 𝜇, the shear modulus, b, the Burgers vector, with 𝜎0, 𝛽𝑖, and Ci, the fitting 

variables. A sample fit is shown in Figure 8-2.  

 

Figure 8-2: The method used to determine the fit parameters shown on the C8S0M sample in the NA1m condition, pulled 
at a true strain rate of 5 x 10-4 s-1 until failure. Note the fit was taken from a 6th order polynomial fit made from the yield 
strength until the uniform elongation in order to eliminate any transient effects potentially caused by yield point effects. 
The two regions of the fit are clearly visible while they share a common 𝜎0. The power-law equivalent of the equations 
are shown but include the strain-rate sensitive pre-exponentials.  

The fitting routine has been previously explained [1], [6] and the current work uses the same fit 

parameters previously determined in Chapter 6. Since the fit uses two loci, it is possible to isolate 

the low-strain and high-strain regions of flow curve and in the case of formability, the high-strain 

regions are of significant interest. The SvH relation is able to be transformed into two power-law 

equations as 

𝜎 = 𝜎0 + 𝐾𝑚𝑖𝜖𝑛𝑖      (6a) 

 𝐾𝑚𝑖 = [𝑀3+𝛽𝑖 (
𝑃

4𝐴
) (2 + 𝛽𝑖)(𝛼𝜇𝑏)2 1

𝐶𝑖𝑏
]

1

2+𝛽𝑖  (6b) 

𝑛𝑖 =
1

2+𝛽𝑖
      (6c) 

ni are the work-hardening exponents for the two strain regions, and Kmi are the corresponding 

strain-rate dependent pre-exponentials. The pre-exponential may be converted using either the 
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experimental strain rate and the up-change or down-change engineering strain-rate sensitivities, 

muc and mdc, respectively, to create the strain rate independent pre-exponential given by 

𝐾𝑢𝑐 = 𝐾𝑚/𝜖̇𝑚𝑢𝑐;  𝐾𝑑𝑐 = 𝐾𝑚/𝜖̇𝑚𝑑𝑐    (7) 

Where Kuc and Kdc and the up-change and down-change pre-exponentials. It is clear that if the 

engineering SRS values are not the same, Kuc and Kdc must also be different which allows the 

determination of Eq. 3a and 3b. It is now possible to use the two different sets of Hollomon-type 

equations by implementing them into finite element modelling (FEM) but since the present work 

is concerned in the high-strain behaviour and the influence of these parameters on necking, only 

the large-strain, K2/n2 region (see Figure 8-2) will be used.  

3.0        Methods and Materials 
In order to aid in the understanding of the effects of strain rate sensitivity and strain hardening on 

the necking formation of aluminium alloys, finite element modelling was employed to simulate 

tensile testing to compute the strain and strain rate distributions around the formation of the 

neck. These simulations require input parameters that are representative of the material 

properties for which experiments are required. As previously described in Chapter 6, tensile and 

strain rate sensitivity tests were performed using standard dog-bone specimen having a gauge 

length of 25 mm with a 10 x 1 mm2 cross section. Testing methods employed consisted of standard 

tensile testing at room temperature (294 K) at a true strain rate, ϵ̇0 = 5 x 10−4 s−1, until failure 

on a servo-hydraulic Instron 8502, equipped with a 10 kN load cell and a 25 ± 10 mm Instron 

extensometer to capture the deformation. Strain rate change tests were performed on the same 

Instron using the step-ramp method described here [7] and in Chapter 5 with rate changes of 4x 

or 10x, or ¼ of the strain-rate for the up-change and down-change data, respectively. These tests 

were used to generate the constitutive parameters for all of the alloys used in this thesis but for 

the purpose of this section, serve as guidelines to determine realistic values to use in finite 

element simulations and establish the values for the parametric study. 

Finite element modeling was performed using the commercial software Abaqus/CAE 6.14.3. In 

order to simulate the effects of strain rate sensitivity on the formation and propagation of the 

neck, a simplified sample geometry was designed having a length of 12.5 mm, a thickness of 1 

mm, and a width of 5 mm and 4.9 mm at each end. This provided a sufficient instability to allow 

the computationally stable formation and propagation of a neck, this geometry is shown in Figure 

8-3 left and the corresponding mesh used in the analysis in Figure 8-3 right.  
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Figure 8-3: Left) The geometry of the FEM model used in the simulations to aid in the understanding of the effects of 
strain rate sensitivity on the necking formation and evolution during deformation. All dimensions are in millimeters and 
the thickness of the sample is one millimeter. Right) The mesh of the FEM model rendered in ABAQUS. The global element 
size was 0.5 mm with local dimensions of 0.25 mm used near the artificial neck region.  

The test sample was placed under symmetric conditions along the tensile axis and along the 

reduced section dimension (see the hatched sides in Figure 8-3 left). An imposed deformation rate 

of 0.00625 mm s-1 was imposed in order to match the experimentally imposed strain rate, 𝜖̇, of 5 

x 10-4 s-1 used as the base strain rate for the strain rate sensitivity experiments and the continuous 

strain rate tests. A parametric study was performed using fictitious but reasonable constitutive 

parameters in order to isolate the unique effects of the strain hardening and both muc and mdc 

strain rate sensitivity parameters on the formation and evolution of a neck. Several tests will be 

performed until a single element at the neck centre reaches the equivalent plastic strain levels of 

0.20 to 0.50 in increments of 0.05 to observe how the strain and strain rate profiles evolve during 

deformation. In general, the FEM models will be deformed using the aforementioned conditions 

until the uniform region of the simulations reaches the experimentally determined onset of diffuse 

necking (determined from the Considère criterion, 𝜖𝐷) as well as the local necking limit, 𝜖𝐿, 

obtained once 𝑑𝜎/𝑑𝜖 = 𝜎/2, and at which point the model will be stopped and the strain and 

strain rate profiles will be plotted, these distributions are shown in Figure 8-4 for the C8S0 sample 

in the NA1m condition at 𝜖𝐷.  
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Figure 8-4: The Left) strain and Right) strain rate distributions of a sample after being deformed to 𝜖𝐷 = 0.241 (in the 
uniform region). It is clear that the highest strain and strain rate is located at the neck centre and decreases until a 
minimum at the limit of the artificial neck, however, this minimum is well below the imposed strain rate of 5 x 10-4 s-1 
and is due to the insertion of the artificial neck.  

It is of interest to observe the distribution of strain and strain rate between the most extreme part 

of the neck interior (the most deformed element, shown in red above) at either variable distances 

or variables strains from the maximum. Both strain and strain rate versus distance plots will be 

output going from 0 (the neck centre, bottom right red element in Figure 8-4) until a distance 1.5 

mm (moving vertical along the right hand side of the model) away from the neck centre. In this 

work, the following properties will be determined and used in further analysis in order to better 

understand the effects of strain hardening and up-change and down-change strain rate sensitivity 

on the formation of both diffuse and local necking: 

 𝜖̇(𝑑 = 0) is the strain rate at the centre of the neck once the prescribed uniform 

elongation has been achieved at a large distance from the neck 

 𝜖(𝑑 = 0) is the strain at the centre of the neck once the uniform elongation has been 

achieved at a large distance from the neck, 𝜖0, will be used in text 

 𝑑(𝜖̇ = 𝜖0̇) is the distance from the centre of the neck to the first occurrence of the 

imposed strain rate once the prescribed uniform elongation is achieved, 𝑑�̇�0
, will be used 

in text 

 𝑑(𝜖 = 𝜖𝐿,𝐷) is the distance from the centre of the neck to the first occurrence of the limit 

strain, either 𝜖𝐷  or 𝜖𝐿, once the prescribed uniform elongation is achieved, 𝑑𝜖𝐷
 or 𝑑𝜖𝐿

, will 

be used in text 

 𝜖̇(𝜖 = 𝜖𝐿,𝐷) is the strain rate at 𝑑(𝜖 = 𝜖𝐿,𝐷) 

 𝑑(𝜖 − 0.05) and 𝑑(𝜖 − 0.10) is the distance from the centre of the neck to 𝜖(𝑑 = 0) −

0.05 and 𝜖(𝑑 = 0) − 0.10, respectively, 𝑑0.05 or 𝑑0.10 will be used in text 

These values are shown below in Figure 8-5a and 8-5b for a sample deformed to a limit strain of 

0.265 at a distance far from the neck.  
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Figure 8-5: The evolution of the a) strain with distance from the necked region of the finite element simulation illustrating 
the 0.05 (vertical dashed), 0.10 (vertical dotted), and the onset of diffuse necking, 𝜖𝐷, (dotted and dashed), strain levels 
and b) the strain rate showing both the initial strain rate 𝜖̇0 = 5𝑥10−4 𝑠−1 and the corresponding distance and strain 
rate based on the uniform elongation strain distance, d(𝜖𝐷) indicated with the corresponding output distance.  

It should be noted that, due to the sample symmetry, the actual size of the neck is twice the 

distance determined using the distance to base strain rate method . The distance of 0.3 mm found 

in Figure 8-5b above for 𝑑�̇�0
 yields a total neck width of 0.6 mm which is appropriate compared to 

the size of a necked sample determined experimentally for one of the samples tested at room 

temperature.  

4.0  Model implementation: parametric study on the effects of muc and mdc 
In order to establish the unique effects of the strain rate sensitivity parameters on the necking 

behaviour of the alloys, a set of hypothetical stress strain curves were created, having properties 

similar to those determined in this work (see Chapter 6 for the full list of constitutive values 

determined in this work). One curve had a relatively lower strain hardening exponent, 0.375, and 

the other a relatively larger, 0.400. The base constitutive relation for this curve was 

𝜎 = 𝜎0 + 𝐾𝜖𝑛; 𝜎0 = 100, 𝐾 = 400, 𝑛 = 0.375 or 0.400 

From this basic power law, the strain rate sensitive pre-exponential was then converted to the 

strain rate independent pre-exponential factors using combinations of muc and mdc of 0 and 0.05, 

for both levels of strain hardening. The full constitutive relations used in the FEM are shown below 

in Table 8-1 with the corresponding series name. For instance, ULDH stands for low SRS for up-

changes and high SRS for down changes, and the subscript “n” stands for a higher strain hardening 

rate. 

Table 8-1: List of constitutive parameters used in the parametric study. 

Series Name 𝜎0 Kuc muc Kdc mdc n 𝜖𝐷  

ULDL 100 400 0 400 0 0.375 0.265 
ULDH 100 400 0 585 0.05 0.375 0.265 
UHDL 100 585 0.05 400 0 0.375 0.265 
UHDH 100 585 0.05 585 0.05 0.375 0.265 

ULDLn 100 400 0 400 0 0.4 0.281 
ULDHn 100 400 0 585 0.05 0.4 0.281 
UHDLn 100 585 0.05 400 0 0.4 0.281 
UHDHn 100 585 0.05 585 0.05 0.4 0.281 

 

The model is governed by calculating the local strain rate compared to the imposed equivalent 

strain rate, 𝜖̇0 = 5𝑥10−4𝑠−1 whereby if the local strain rate is greater than 𝜖̇0, the parameters 𝜎0, 
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n2, Kuc and muc, will be used whereas if the local strain rate is less than 𝜖̇0, 𝜎0, n2, Kdc, and mdc will 

be used. The value for the local stress state is computed and compared to the local strain 

hardening rate, 𝑑𝜎/𝑑𝜖 to determine how the load state and strain will be distributed in the next 

time step of deformation in order to maintain strain and strain rate compliance.  

The main goal of this parametric study is to understand how the neck width is influenced by 

increasing the strain rate sensitivity either on the neck interior (manipulating muc), the neck 

exterior (manipulating mdc) both uniquely and in combination. One of the critical hypotheses is 

that having an asymmetry in the muc and mdc values may allow for the neck to either be 

destabilized or permit the propagation. The evolution of the strain and strain rate distribution for 

the effects of strain rate exponents, are shown in Figures 8-6a and 8-6b, respectively, for the 

parametric studies of samples with a strain hardening exponent of 0.375. Figures 8-7a and 8-7b 

show the corresponding strain and strain rate versus distance plots for the samples with a strain 

hardening exponent of 0.400.  

 

Figure 8-6: The evolution of the a) strain and b) strain rate with distance from the artificial neck in the FEM for the ULDL 
(green), ULDH (grey), UHDL (blue) and UHDH (red) parametric samples. The vertical dashed lines in a) are the 𝑑0.05 lines 
and the dotted lines being the 𝑑0.10 lines. These lines aid to illustrate the general evolution of the distribution of strain 
along the formed neck. The vertical dashed lines in b) are the distances required to obtain the base strain rate, 𝑑�̇�0

. 

 

Figure 8-7: The evolution of the a) strain and b) strain rate with distance from the artificial neck in the FEM for the ULDLn 
(green), ULDHn (grey), UHDLn (blue) and UHDHn (red) parametric samples. The vertical dashed lines in a) are the 𝑑0.05 
lines and the dotted lines being the 𝑑0.10 lines. These lines aid to illustrate the general evolution of the distribution of 
strain along the formed neck. The vertical dashed lines in b) are the distances required to obtain the base strain rate, 
𝑑�̇�0

. 

The first consideration will be regarding the distribution of strain with distance for the effects of 

muc and mdc at each level of strain hardening exponent, Figures 8-6a and 8-7a deformed to the 

uniform elongation limit. The trends observed in both cases are identical, the strain at the centre 

of the neck, 𝜖0 is the largest for the samples with muc = mdc = 0. Next, increasing either muc (blue) 
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or mdc (grey) uniquely exhibits nearly identical responses, both decreasing 𝜖0. This effect is further 

enhanced when both muc and mdc are increased although the relative increase is less pronounced 

than the initial increase of either muc or mdc. The same general trends were found when observing 

the effects of the strain rate sensitivity parameters on the evolution of strain rate with distance in 

Figures 8-6b and 8-7b. Increases in either muc or mdc both provided a similar effect of decreasing 

the strain rate at the centre of the neck, with mdc having a greater effect than muc. Increasing both 

of these parameters in unison provided a further decrease in the strain rate at the centre of the 

neck although the effect is significantly reduced in the same manner as their effect on the strain 

at the neck centre. The effects of the strain hardening exponent on both the strain and strain rate 

evolution with distance are shown below in Figures 8-8a and 8-8b, respectively for the ULDL and 

ULDLn, and UHDH and UHDHn, samples.  

 

Figure 8-8: A direct comparison between the effects of the strain hardening exponent n = 0.375 (solid lines) and n = 0.400 
(dotted lines) for the evolution of a) strain and b) strain rate versus distance for the ULDL (green) and UHDH (red) studies.  

The increased n-value increases the strain along the entirety of the necked profile due to 𝜖𝐷  

increasing. However, regarding the strain rate profile, the increased strain hardening exponent 

causes a larger decrease in the strain rate at the neck interface, being the most prominent with 

low m-values and this effect is effectively removed at greater distances from the neck. The key 

values described above are summarized and plotted for the effects of muc, mdc, and n, for the 

either parametric study samples in Figures 8-9 to 8-11. 
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Figure 8-9: The evolution of the strain rate determined at the centre of the artificial neck (green) and at the levels of the 
uniform elongation, 𝜖𝐷, (grey) for the n = 0.375 (solid) and n = 0.400 (hatched) model parameters. 

Figure 8-9 clearly illustrates that the strain rate at the centre of the neck decreases significantly 

by increasing either muc or mdc, with mdc having an apparently larger effect than muc. By increasing 

both strain rate sensitivity parameters, even further decreases are obtained. In all cases except 

the high muc, low mdc, increasing the strain hardening exponent causes a further decrease to the 

strain rate at the neck centre. At the level of the uniform elongation, the effects of strain rate 

sensitivity on the strain rate are significantly reduced but the same trends remain as those at the 

neck centre. It is interesting that despite the increase in 𝜖𝐷  caused by the increase in the strain 

hardening exponent, there is a decrease in the strain rate at the uniform elongation strain 

suggesting that the neck is less localized.  
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Figure 8-10: The evolution of the strain determined at the centre of the artificial neck (green) and at the levels of the 
where the strain rate reaches the base strain rate, 𝜖̇ = 𝜖̇0, (grey) for the n = 0.375 (solid) and n = 0.400 (hatched) 
model parameters. 

The same general trends are observed regarding 𝜖0 where increasing either muc or mdc or both 

decreases the strain. However, in this case, the decrease of strain is more significant when muc is 

increased as compared to mdc. The increase in the strain hardening exponent now increases 𝜖0 

(opposite to that of the strain rate) but this effect is due to the increase in the uniform elongation 

that has been used as the limit to stop the FEM simulation. The strain at the base strain rate 

increases with an increase in the strain rate sensitivity parameter suggesting that the distribution 

of strain along the length of the sample becomes more uniform as this coincides with a decrease 

in the strain at the sample centre. It is interesting to note that this effect is amplified when only 

mdc is increased compared to the case of increasing muc such that the difference between the 

strain at neck centre and strain at the base strain rate is smaller for the case of an increased mdc. 

This decrease is further diminished when both muc and mdc are increased simultaneously. The 

effects of increasing the strain hardening exponent is identical for all parameters where it 

increases the strain at the base strain rate.  
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Figure 8-11: The evolution of the distance from the centre of the neck to a decrease in 0.05 (green) and 0.10 (grey) of 
strain, to the point where the strain rate reaches the base strain rate, 𝜖̇ = 𝜖̇0, (blue), and the distance to the uniform 
elongation strain, 𝜖𝐷, (red) for the n = 0.375 (solid) and n = 0.400 (hatched) model parameters. 

The parameters shown in Figure 8-11 will aid in illuminating the distribution of both strain and 

strain rate sensitivity in and around the sample neck. The 𝑑0.05 and 𝑑0.10 values from the neck 

centre are most closely related to the strain distribution right at the neck centre and increasing 

mdc, muc, or both increase the distances for these two strain levels. The largest increases are due 

to increasing either both muc and mdc, or muc only as the muc parameter operates on the region 

having a strain rate greater than the base strain rate occurring most commonly closer to the neck 

centre. This is evidenced by comparing both 𝑑0.05 and 𝑑0.10 to 𝑑�̇�0
, in blue, whereby this delineates 

between the two regions being operated on by the muc, distances less than 𝑑�̇�0
, and mdc, distances 

greater than 𝑑�̇�0
. The 𝑑�̇�0

 lies between 𝑑0.05 and 𝑑0.10 in ULDH and the UHDH parametric samples. 

Due to the significant hardening taking place in the interior region of the neck, the increased muc 

yields the largest 𝑑�̇�0
. It should be noted that the ULDL sample data is not shown due to its very 

high strain rate at the neck centre resulting in a very large distance (>2 mm) to obtain the nominal 

strain rate. Finally, there is very little difference in 𝑑𝜖𝐷
 as this region is far (>1 mm) from the neck 

centre such that all parametric samples are within the mdc region. There is almost no effect on the 

strain hardening exponent on the any of the distances to the key parameters. Attention is now 

turned towards the rate of change in space for both the variation of strain and strain rate from 

the centre of the sample to different distances, shown in Figure 8-12 and 8-13, respectively.  
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Figure 8-12: The rate of change of strain from the neck centre to the 𝜖0 − 0.05 (green), 𝜖0 − 0.10 (grey), base strain 
rate (blue), and uniform elongation (red) for the n = 0.375 (solid) and n = 0.400 (hatched) model parameters. 

Aside from the unique values of strain and strain rate at various distances from the neck centre, 

understanding the distribution and localization of strain and strain rate along the length of the 

neck will give insight into the extent of necking and if it is possible for its stabilization or 

propagation whereby both the strain and strain rate distributions should ideally be zero for 

uniform elongation. For all cases with a non-zero muc or mdc, the slope to 𝑑0.05 strain drop is always 

greater than that of 𝑑0.10 level indicating that the severity of the neck is decreasing with distance. 

As commonly understood, increasing the muc plays a large role on reducing the localization of 

necking as is supported in this parametric study with the UHDL sample having a reduced strain 

localization compared to the ULDH test which is not only significantly greater than UHDL but has 

0.05 and 0.10 values being nearly identical suggesting that these two levels are both well within 

the neck. This is in comparison to the UHDL sample which has a significantly smaller strain 

distribution at 𝑑0.05 which further decreases at 𝑑0.10. When both muc and mdc are increased, both 

strain distributions of 𝑑0.05 and 𝑑0.10 decrease and are the lowest of all parametric study samples. 

These same trends are withheld for the strain distributions at the uniform strain, 𝑑𝜖𝐷
 (red in Figure 

8-12). The most interesting is regarding the strain distribution to the base strain rate where there 

is a complex interplay between both the strain rate at the centre of the neck and the strain rate 

distribution moving away from the neck, this will be covered later. The observed results were 

expected, when muc only is changed, it reduces the strain distribution more as compared to the 

mdc only. However, the most surprising of all is that when both mdc and muc are increased in unison, 

the strain distribution is significantly greater than the muc only study. This brings into question 

whether or not 𝑑�̇�0
 is a good method for defining the width of the neck, being discussed later. 

Finally, the increase of the strain hardening exponent tends to result in a minor decrease the strain 

distribution of all of the parametric studies.  
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Figure 8-13: The rate of change of strain rate from the neck centre to base strain rate (green) and uniform elongation 
(grey) for the n = 0.375 (solid) and n = 0.400 (hatched) model parameters. Note the ULDL sample strain rate change is 
not plotted for the base strain rate due to its unrealistically large distance.  

As a final measure to observe the possibility of necking, the strain rate distribution using 𝑑�̇�0
 

(green in Figure 8-13) and the 𝑑𝜖𝐷
 (grey in Figure 8-13) is shown. It is clear that the effect of mdc is 

significantly smaller than muc as these two strain rate sensitivity parameters play roles on 

distances less than or greater 𝑑�̇�0
, respectively. However, in this case, having both muc and mdc 

increasing in unison actually does not reduce the strain rate distribution as much as increasing muc 

only. Regarding the distance to the uniform elongation strain, all of which are very similar, the 

same trends remain. As expected, the strain rate distribution is the greatest in the ULDL, then 

ULDH, UHDL next, and finally UHDH. The change between UHDH now being lower than UHDL, 

unlike the rate using the distance to the base strain rate, is likely due to there being a region 

whereby mdc is able to play a role as it is outside of the base strain rate distance. By increasing the 

strain hardening exponent, the strain rate distribution tends to decrease for all distances expect 

in the UHDL test whereby increases are observed.  

5.0  Application of the model to experimental data 
In order to establish the validity and sensitivity of the model to the real experimental constitutive 

parameters, the FEM model was performed on one of the studied AA6xxx alloy, Al-0.35Mg-0.9Si-

0.8Cu (in at%) in the NA1m condition (see Chapter 3 for a full description of the heat treatment 

schedule). The constitutive parameters of this test are shown below in Table 8-2.  

Table 8-2: The SvH fit parameters determined for the C8S0 NA1m alloy in for the high strain region of the alloys. This is 
the only region of interest for use in finite element modeling since necking should never occur at low-strains. Thus to 
save computational time, only the second part of the fit will be considered.  

Sample Condition σ0 (MPa) K2m K2uc K2dc muc mdc n2 𝜖𝐷  𝜖𝐿 
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C8S0 NA1m 118.6 431.6 474.6 509.0 0.013 0.022 0.396 0.214 0.270 

 

It was decided to run the FEM simulation on the strain development of the centre of the neck 

between 0.20 to 0.50 in increments of 0.05 using the constitutive parameters for the C8S0 sample 

in the NA1m condition to understand how the aforementioned FEM outputs (distances, strains, 

and strain rate values at critical points) develop during deformation and is shown below in Figures 

8-12a and 8-12b. This should better elucidate a method for describing both the location and the 

evolution of the neck using the model output parameters.  

 

Figure 8-14: The evolution of the a) strain with distance from the necked region of the finite element simulation 
illustrating the 0.05 (dashed) and 0.10 (dotted) strain decrease levels, and b) the strain rate. The initial strain rate 𝜖̇0 =
5𝑥10−4 𝑠−1 is indicated with the corresponding output distance.  

In this simple example, it is easily shown that the distance to 𝑑0.05 and 𝑑0.10 of deformation 

decreases with increased deformation suggesting the localization of the neck. Additionally, 𝑑�̇�0
 

starts to decrease with deformation until a critical strain is achieved and then starts to increase. 

The corresponding evolution of 𝑑0.05, 𝑑0.10, and 𝑑�̇�0
 are shown below in Figures 8-15. 
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Figure 8-15: The evolution of the distance between the centre of the neck interior and the 𝜖 – 0.05 and 𝜖 – 0.10 strain 
levels, and 𝑑�̇�0

, for each of the maximum strain levels in the FEM simulation of the C8S0 sample in the NA1m condition. 

Note the 𝜖𝐷 (x) and 𝜖𝐿 (*) strains are shown and plotted using the 𝜖0 for their respective studies.  

When the physical distance values are plotted to evolve with maximum strain level, it is clear that 

two phenomena occur, the distribution of strain becomes much more localized (see the difference 

between 𝑑0.05 and 𝑑0.10) suggesting that the neck becomes more localized with increasing 

deformation and this is coupled with an initial decrease in 𝑑�̇�0
. One of the most interesting results 

is that the spatial strain distribution for the 𝑑0.10 decreases at a rate much faster with deformation 

compared to that of 𝑑0.05 although they both have the same form of exponential decay suggesting 

that strain accumulation is increasing at distances closer to the neck centre. The evolution of 𝑑�̇�0
 

with deformation begins at the 𝑑0.05 and does not vary as significantly as 𝑑0.05 or 𝑑0.10. At the 

limit of 𝜖𝐷, 𝑑�̇�0
 is almost equal to 𝑑0.10 and actual becomes greater than 𝑑0.10 at the point of 

localized necking. This shows a clear delineation where the effect of both muc and mdc play a role 

on strain localization before the onset of a localized neck (by definition) but upon localized 

necking, only muc is important as all deformation contained within the neck interior is at a strain 

rate greater than 𝜖̇0. This may now be compared with the strain and strain rate distributions 

around the neck in Figures 8-16a and 8-16b, respectively.  

 

Figure 8-16: The a) strain distribution for the 𝜖0 − 0.05 (triangles), 𝜖0 − 0.10 (circles), and 𝜖(𝜖̇ = 𝜖̇0) (diamonds) levels 
and b) the strain rate distribution for the base strain rate in the C8S0 sample in the NA1m condition.  

It is clear that for any means of measuring the strain distribution, it increases with deformation 

with the 𝑑0.05 distribution always being greater than the 𝑑0.10 distribution with this discrepancy 

decreasing during straining. Concerning the 𝑑�̇�0
 strain distribution, the low-strain behaviour 

follows that of 𝑑0.05 until the onset of diffuse necking, 𝜖𝐷 , when there is an apparent transition 

and it does not accelerate like 𝑑0.05 but rather follows a linear evolution and actual becomes less 

than the 𝑑0.10 strain distribution. There is clearly an interplay between the relevance of muc and 

mdc in the strain distribution whereby additional hardening is occurring at distances less than 𝑑�̇�0
 

due to muc but the softening is exacerbated in the regions exterior of 𝑑�̇�0
 due to mdc being greater 

than muc. The evolution of the strain rate distribution with deformation follows the same 

exponentially increasing behaviour as the strain distributions of 𝑑0.05 and 𝑑0.10 which begins to 

change slowly at lower levels of deformation, accelerating until the diffuse neck and finally local 

neck are formed. During uniform elongation the strain rate heterogeneity should be zero (or very 

little if the presence of shear bands or Lüder’s bands occur) such that 𝑑�̇�0
 should be zero. The goal 

of preventing the formation and development of a local neck should be in terms of reducing the 

strain rate distribution as much as possible.  
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6.0  Discussion 
The various deformation and necking parameters that have been explored in this work have been 

able to provide general information regarding neck localization, propagation and the influence of 

the strain rate sensitivity exponents on the accumulation of strain and strain rate in and around 

the neck. One of the complexities that was found was concerning the evolution of 𝑑�̇�0
 with 

deformation. At low strains, 𝑑�̇�0
 was shown to decrease with deformation until a critical strain 

was obtained and then it was found to increase with further deformation. Figure 8-17 shows the 

evolution of 𝑑�̇�0
 with deformation (in terms of the strain at the centre of the neck, 𝜖0).  

 

Figure 8-17: The evolution of 𝑑�̇�0
 with 𝜖0 determined between 0.20 and 0.50 for the FEM model using the constitutive 

parameters for the C8S0 sample in the NA1m. The top-left inset shows the evolution of d0.10 with 𝜖0 and the top right 
shows the strain rate at the neck centre evolving with deformation. Note the values for the onset of diffuse necking, 𝜖𝐷, 
and local necking, 𝜖𝐿, at shown for the “X” and “*”, respectively.  

Focusing specifically on how the distance to the base strain rate changes, Figure 8-17 it is clear 

that there are two regions located above and below 𝜖0 of 0.35 (although this may change if finer 

strain increments were used). In the first region, the decrease follows the trend of the distribution 

of strain (shown as the left inset for d0.10) whereby the distances decreases rapidly with 

deformation. By having the rapid changing of deformation, the effect of the strain hardening 

exponent is able to dominate with the strain accumulation occurring rapidly near the centre of 

the neck via the strain distribution. Concerning the second half, or strains greater than 0.35, it 

appears that the strain rate at the centre of the neck plays a dominant role. The transition point 

is effectively a minimization problem whereby the strain distribution has almost settled to its 

maximum and the strain rate at the centre of the neck has not yet started to rapidly increase.  

Now, attention should be turned towards two concepts: neck localization and neck 

stabilization/propagation. Neck localization will be used to refer to the extent of the strain 

accumulation around the neck centre and how the strain distribution changes during diffuse 

necking. Neck stabilization or propagation will be used to relate to the evolution of strain (strain 
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rate) and its distribution around the neck and if it changes with further deformation. These two 

ideas will be connected to the parametric studies.  

6.1  Neck localization, stabilization, and propagation 
The idea of neck localization is related directly to the distribution of strain around the neck 𝑑𝜖/𝑑𝑥, 

where x is the distance away from the neck. Although this FEM simulation includes an artificial 

neck in order to induce a strain rate and strain variation during deformation, the effects of the 

strain rate sensitivity are clearly apparent. Since the FEM model is constantly searching for the 

Considère criterion for each element 

𝑑𝜎

𝑑𝜖
=

𝐾𝜖𝑛 𝜖̇𝑚

𝜖
(𝑛 + 𝑚

𝜕 ln 𝜖̇

𝜕 ln 𝜖
) = 𝜎0 + 𝐾𝜖𝑛𝜖̇𝑚 = 𝜎 

Two things can be seen; prior to the formation of a diffuse or local neck (uniform elongation) the 

term 
𝜕 ln �̇�

𝜕 ln 𝜖
 is zero and thus the strain rate sensitivity does not have an effect on Considère and thus 

only by increasing n will Considère be delayed. However, upon the formation of a diffuse neck, 

the region within 𝑑�̇�0
 will be affected by muc, the region exterior, by mdc. We shall consider each 

of the parametric study cases; ULDL, UHDL, ULDH, and UHDH upon the formation of the diffuse 

neck.  

6.2 ULDL: muc = mdc = 0 
When there is an absence of strain rate sensitivity, the Considère criterion is controlled strictly by 

the local strain state and 𝑑𝜎/𝑑𝜖 = 𝑛𝐾𝜖𝑛−1 is the law controlling the onset of diffuse necking. In 

this case, the only method for delaying necking is through the increase of n, and upon the 

formation of a diffuse neck, local necking will inevitably proceed resulting in neck localization. This 

is clearly evident in Figure 8-6a and 8-6b whereby the ULDL parameters result in not only the 

largest strains and strain rates at the neck centre but also shows a very large variation in these 

properties moving away from the neck centre.  

6.3  UHDL: muc 0.05; mdc = 0 
In the case where muc > mdc (UHDL), both 𝑑𝜎/𝑑𝜖 and 𝜎 are increased due to the increase in the 

local strain rate and depending on the magnitude of muc and the local strain rate, the Considère 

criterion can not be obtained. However the effect of softening due to 
𝜕 ln �̇�

𝜕 ln 𝜖
 being negative at 

distances greater than 𝑑�̇�0
 will not be as significant (or zero in the parametric study case) such 

that despite the drop in strain rate, the Considère criterion is still achieved resulting in the 

formation of a diffuse neck. Thus in order to balance these two regions, the additional hardening 

in the neck interior will require additional strain be located exterior to 𝑑�̇�0
 but solely due to the 

enhanced hardening occurring at distances less than 𝑑�̇�0
. This is the case that is conventionally 

studied (or considered) and has been shown to delay neck localization such that 𝑑�̇�0
 should either 

increase or remain the same. As the strain increases and deformation occurs exterior to 𝑑�̇�0
, it 

signifies that the neck is stable and does not increase in severity with further deformation. In 

Figure 8-6b, the strain rate begins to lower with increased distance from the neck centre until a 

certain distance is obtained at which point the local strain rate increases suggesting that there is 

a stabilization of the neck. Additionally, the strain gradient close to the neck centre is lower than 

the ULDL and ULDH samples. One of the interesting factors to consider is the ratio between n and 

muc and mdc whereby the post-uniform deformation behaviour will change depending on the term 

in brackets, (𝑛 + 𝑚
𝜕 ln �̇�

𝜕 ln 𝜖
), where in the event of a very large m, (or very small n), it is possible for 
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changes in the local strain rate to eventually become larger than the hardening component, n, 

such as the case of super-plastic materials where m is frequently greater than 0.6.  

6.4  ULDH: muc = 0; mdc = 0.05 
When muc < mdc (ULDH), both 𝑑𝜎/𝑑𝜖 and 𝜎 are decreased due to the local decrease in the strain 

rate at distances greater than 𝑑�̇�0
. This signifies that the region interior of the neck, upon 

formation of a diffuse neck will continue to match the Considère criterion and any strain rate 

effects on the local regions will not provide any additional hardening. However, in the regions 

outside 𝑑�̇�0
, there will be a stress drop due to 

𝜕 ln �̇�

𝜕 ln 𝜖
 being negative. In this case, the region greater 

than 𝑑�̇�0
 will be in a state further along the Considère criterion (between diffuse and local necking) 

and as a result, deformation will be preferential to this region. The increased deformation in the 

neck exterior will result in an increase in the strain and strain rate distribution and will also yield 

neck stabilization. However, due to the fact that the decreased strain rate will take place over 

larger distances, the drop in the strain rate, 
𝜕 ln �̇�

𝜕 ln 𝜖
, will almost always be lower than the 

corresponding increase in strain rate of the neck interior. The net result is that despite the neck 

being stabilized, the effect of mdc on neck stabilization is less pronounced from local area softening 

that the effect of muc on neck stabilization due to local area hardening. This is clear with the 

fluctuations observed in Figure 8-6b with respect to the evolution of strain rate moving away from 

the neck centre, specifically at distances greater than 𝑑�̇�0
whereby the strain rate does not 

monotonically decrease with increasing distance. Separately, the strain distribution near the neck 

centre is quite pronounced and greater than the UHDL parameters but decreases with increasing 

distance from the neck centre.  

6.5  UHDH: muc = mdc = 0.05 
Finally, when both muc and mdc are increased (UHDH) and greater than zero, a combined effect is 

resulted and the larger effect of local hardening inside the neck (due to muc) is coupled with the 

local softening outside the neck (due to mdc) resulting in neck propagation. The strongest example 

of this is that both the strain, strain rate and their respectively evolutions with distance from the 

neck centre are the lowest amongst any of the samples showing only minor variations in Figures 

8-6a and 8-6b.  

7.0  Conclusions 
 The definition of the size of the neck being based on the limiting width of the region 

retaining the nominal strain rate has been shown to be inadequate for real experimental 

properties rather than in parametric studies. It provides an important parameter for 

understanding the regions of the sample being influenced by the muc and mdc strain rate 

sensitivity parameters. Its evolution with deformation may give insight into the neck 

formation and propagation.  

 The distinction between the neck localization and neck propagation/stabilization were 

discussed and shown to be related to the distribution of strain and strain rate with 

distance, respectively.  

 In order to delay and prevent the onset of local necking, having a high muc and mdc are 

suggested with muc playing a larger role due to the larger concentrations of strain rate 

being located at distances less than 𝑑�̇�0
 which mdc acts on a larger area but at distances 

further away from the neck centre. 

 The evolution of 𝑑�̇�0
 with deformation has been shown to be related to not only the 

distribution of strain rate but also the magnitude of the strain rate at the neck centre 

being largely tied to the muc strain rate exponent.   
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9 Discussion, conclusions and perspectives 
 

The work presented in this thesis permits to improve the understanding of the effect of additions 

of Si, Cu, and Mg to Al on the natural ageing and pre-ageing behaviours of Al-Mg-Si-Cu alloys 

commonly used in automotive applications. We have evaluated the effects of these various 

solutes and the corresponding microstructures formed during processing on the mechanical 

properties that control the formability of aluminium sheet alloys. The use of hardness testing and 

differential scanning calorimetry, complemented by the use of tensile testing and strain rate jump 

tests have been able to provide insight on the expression of formed clusters on the resulting 

mechanical properties. These mechanical properties were then implemented in finite element 

modelling to better understand their influence, specifically the asymmetry in increasing and 

decreasing strain rate sensitivity, on the overall onset and evolution of necking found in tensile 

testing. 

This chapter contains three sections; a general discussion of the work, conclusions that can be 

made from this work, and finally perspectives and future work. 

9.1      Discussion 
To summarize and connect each of the parts of the thesis, the work will be summarized succinctly 

to aid in the understanding of the industrial processing route beginning with the given alloy 

composition, the common heat treatments performed, the methods of analysis and both the 

resulting direct, and indirect, mechanical properties. The largest impact this thesis may have is in 

terms of the full chain connection of alloy composition to mechanical properties and the different 

contributions of each solute species. This section will be separated into three parts. The first part 

will focus on the effects of solutes and processing on the mechanical properties with explanations 

given using supporting evidence from the thesis. The second part will focus on the strain rate 

sensitivity testing and the observation of the asymmetry between the up-change and down-

change strain rate sensitivities. The third and final part will focus on the interplay of the 

mechanical properties and both the uniform and post-uniform elongation. 

9.1.1 Solute additions and processing on the mechanical properties 
To begin understanding the effects of both solutes and processing, it is easiest to recall the 

evolution of the artificial ageing behaviour of each of the alloy from the sNA1w, PB 20 min, and 

peak age states. The effects of specific solute additions for the three aged conditions are shown 

in Figure 9-1.  
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Figure 9-1: The evolution of the HVsNA1w (circles), HVPB (triangles), and HVPeak (squares) hardness properties with total 
solute content to illustrate the dependency of certain properties of the different solutes. For clarity, the effects of Cu 
additions at 0.9 and 1.3 at% Si, are connected in green and blue dashed arrows, respectively. The effects of Si additions 
at 0.2 at% Cu and 0.4 at% Mg are connected with the grey dashed arrows. The effects of Mg addition at 0.9 at% Si and 
0.3 at% Cu are connected with red dashed arrows.  

It can be clearly observed that the sensitivity of the hardness with solute additions changes 

depending on the heat treatment performed. In the sNA1w condition, all solutes have a similar 

effect on increasing the hardness with Mg having a slightly increased sensitivity. After 20 minutes 

of ageing at 185 °C (PB 20 min), there is still a similar sensitivity of the hardness for all solute 

additions except for Mg which retains its sensitivity. This is suspected to be due to the retained 

effects of hardness from the sNA1w condition where there is little change in the cluster density 

and only minor precipitation occurring. At the peak age condition, the situation is completely 

changed whereby both Cu and Mg additions result in large increases in the hardness as compared 

to Si additions. Since the base composition of the alloys tested are Si heavy, the (Cu + Mg)/Si ratio 

being less than one, while the stoichiometry of the precipitates formed, 𝛽′′ (Mg5Si6) and Q’ (Cu + 

Mg)/Si of 1.36, the extra Si does not enable additional precipitation as is evident from no change 

in hardness detected from Si additions. This aids in explaining the effects of both Cu and Mg on 

providing a large increase in the hardness caused by the added precipitation in the peak age 

condition. This is further supported by the DSC experiments that were performed in this work. 

The effects of Cu additions at 0.9 at% Si on the DSC thermographs are shown below in Figures 9-

2a-c for samples in WQ, NA1m, and as-PA conditions.  
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Figure 9-2: The effects of Cu content at Si level of 0.9 at% on the DSC curves in the a) WQ, b) 30 day NA, and c) as-PA 
conditions. 

The addition of Cu in the WQ condition has a small effect on increasing the cluster formation 

temperature to a slightly higher temperature, from 90 to 110 °C and decreases the onset of cluster 

dissolution from 175 to 150 °C, also acting to reduce the precipitation peak temperature from 255 

to 235 °C but not changing the intensity. In the NA1m condition, there is an increase in the total 

cluster dissolution signal with increased Cu content and the appearance of two distinct cluster 

dissolution signals appear, the lower temperature, Cu-related peak occurring at 150 °C and the 

higher temperature, Cu-independent peak, occurring at 235 °C. The increased total dissolution 

signal with added Cu suggests that there is an increase in the total amount of solute taking place 

in clustering, increasing the strengthening of the alloy, as shown in Figure 9-3a. The Cu addition 

also yields both an increase in the precipitation intensity while simultaneously lowering its 

temperature of formation. These suggest that the addition of Cu both contribute to the increased 

precipitation hardening of the system and reduces the negative natural ageing effect by lowering 

the energy barrier for the formation of the precipitates during subsequent AA processes. In the 

as-PA condition, the addition of Cu appears to result in the small retention of Cu in solution 

evidenced by the small exothermic signal occurring at 150 °C. Conversely, there is no significant 

difference in the cluster dissolution signal with added Cu suggesting that a similar amount of 

solute and number of clusters have formed during the PA process. Only their growth during the 

sNA from the retained solutes would increase their size/number density yielding an increase in 

the hardness, as previously shown and in the yield strength of the alloys, shown below in Figure 

9-3b. However, during the subsequent precipitation, the Cu additions increase both the 

precipitation peak intensity and peak temperature suggesting that their rate of formation is 

retarded but the total amount that may be formed increases. This would aid in explaining the fact 

that in the PB 20 min condition, the effects of Cu do not have a large effect on increasing the 
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hardness where the kinetics play a large role but in the peak age, when kinetics are of less 

importance, the total precipitation intensity results in a large increase in hardness, as observed. 

 

Figure 9-3: The effects of alloy composition on the yield strength in the a) NA1m and b) sNA1m conditions. For clarity, 
the effects of Cu additions at 0.9 and 1.3 at% Si, are connected in green and blue dashed arrows, respectively. The effects 
of Si additions at 0.2 at% Cu and 0.4 at% Mg are connected with the grey dashed arrows. The effects of Mg addition at 
0.9 at% Si and 0.3 at% Cu are connected with red dashed arrows. 

As explained using the results of the DSC thermographs, the sensitivity of the yield strength of the 

alloys with solute additions appear to relate directly to the dissolution intensities of the clusters 

formed during either NA or sNA. In Chapter 4, the effects of Cu, Si, and Mg additions were shown 

to have different effects on the clustering dissolution intensities and changed the number of 

dissolution peaks. In the NA1m condition, the appearance of two separate dissolution peaks were 

observed, the intensity of the lower temperature peak being most sensitive to Cu and Mg 

additions and the second peak being most sensitive to the total solute content. In the as-PA 

condition, the single dissolution peak increased in intensity by any solute addition, having a slightly 

stronger sensitivity to Mg additions. Both of these effects are reflected in the evolution of the 

yield strength in the NA1m condition, whereby Cu and Mg additions have a stronger effect as 

compared to Si, whereas in the sNA1m condition, Cu and Si have similar effects, with Mg having a 

stronger effect. The evolution of the strain hardening parameter at high strain with solute content 

are shown in Figures 9-4a and 9-4b for the two processing routes.  

 

Figure 9-4: The effects of alloy composition on the strain hardening exponent at high strain in the a) NA1m and b) sNA1m 
conditions. For clarity, the effects of Cu additions at 0.9 and 1.3 at% Si, are connected in green and blue dashed arrows, 
respectively. The effects of Si additions at 0.2 at% Cu and 0.4 at% Mg are connected with the grey dashed arrows. The 
effects of Mg addition at 0.9 at% Si and 0.3 at% Cu are connected with red dashed arrows. 

The possible rational for the observed effects of solute additions on the strain hardening may be 

explained using the amount of retained solute in solution and through the idea of dynamic strain 

ageing. As was demonstrated in Chapter 4 for the additions of solutes in the NA1m condition, Cu 
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additions were shown to increase the hardness and provide an increase in the low-temperature 

dissolution peak of the clusters that were formed. However, in the NA curves, at 0.9 at% Si, there 

was still sufficient hardening exhibited by the alloys even after reaching the NA1m condition 

whereas the samples with 1.3 at% Si did not show appreciable subsequent hardening suggesting 

that the maximum amount of solute has been incorporated into clusters reducing the total solute 

content within the matrix. As the presence of solute in solution have been shown to increase the 

strain hardening behaviour, the additions of Cu and Mg at 0.9 at% Si correlate with a large increase 

in the strain hardening behaviour. The increase in the total free solute will provide additional 

solute to the system increasing the likelihood of dynamic strain ageing shown to increase the 

strain hardening. Cu additions do still have a positive effect at 1.3 at% Si but this effect is mitigated 

due to the accelerated kinetics reducing the total solute in solution. The effects of Si additions 

show this clearly whereby they decrease the strain hardening behaviour in the NA1m condition 

which is suspected to be caused by the increased kinetics and net decrease of free solute in 

solution. In the sNA1m condition, the additions of solute were shown to provide an almost equal 

contribution to the dissolution peak of the clusters that were formed during the PA treatment. 

Comparing the levels of hardness in the NA1m and sNA1m condition, the additions of Cu were 

shown to increase the difference in hardness between these two conditions (NA1m – sNA1m 

hardness) such that the low-Cu samples had very similar levels of hardness while those with high 

Cu, had an NA1m hardness significantly greater than the respectively sNA1m hardness. The 

suspected cause is that there is a greater amount of retained solute in solution in the sNA1m 

condition yielding to a more pronounced effect of dynamic strain ageing and resulting in an 

enhanced strain hardening rate. This would aid in the explanation of the enhanced effects of Cu 

and the now positive effects of Si, both being due to the added retention of solute in solution. The 

corresponding effects of solute additions on the up-change and down-change strain rate 

sensitivities are shown in Figures 9-5a and 9-5b for the two processing routes, below.  

 

Figure 9-5: The effects of alloy composition on the increasing (closed circles) and decreasing (open circles) engineering 
strain rate sensitivities in the a) NA1m and b) sNA1m conditions. For clarity, the effects of Cu additions at 0.9 and 1.3 
at% Si, are connected in green and blue dashed arrows, respectively. The effects of Si additions at 0.2 at% Cu and 0.4 
at% Mg are connected with the grey dashed arrows. The effects of Mg addition at 0.9 at% Si and 0.3 at% Cu are 
connected with red dashed arrows. 

Although not fully understood, the effects of solute additions on the up-change and down-change 

strain rate sensitivities can be explained using the ideas of dynamic strain ageing and the retention 

of solute in solution. Considering first the up-changes in the NA1m condition, the additions of Cu 

and Mg at 0.9 at% Si result in a decrease of the strain rate sensitivity speculated to be caused by 

the increase of solute retained in solution increasing the dynamic strain ageing aspect which is 

typically characterized by a decrease in the strain rate sensitivity. On the contrary, Si additions and 
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Cu additions at 1.3 at% Si yield an increase in the strain rate sensitivity as there is a more complete 

removal of solute from the matrix, as previously discussed. In the case of down-changes, the 

additions of Cu and Mg show a very little increase in the strain rate sensitivity while Si additions 

provide a strong increase. Again, these effects are postulated to be due to the effect of dynamic 

strain ageing whereby if a down-change takes place, there is additional time for the dynamic 

formation of clusters resulting in a greater number density of clusters yielding a decrease in the 

activation volume which results in an increase in the engineering strain rate sensitivity. Although 

speculative, these explanations will be elaborated when discussing the evolution of the inverse 

activation volumes with deformation, specifically concerning the effects of Si additions as studied 

in Chapter 5.  

9.1.2 Strain rate sensitivity testing and asymmetry 
As shown in Chapter 5, the experimental set-up to accurately perform strain rate sensitivity tests 

is not trivial and requires a deep comprehension of the interaction between tensile testing 

equipment and its influence on the sample being tested. The observations of an asymmetry in the 

inverse activation volume (Haasen plot) between up-changes and down-changes strongly suggests 

that there is an underlying mechanism that is not well understood whereby the thermal activation 

of obstacles are not the same at room temperature. The effects of Si additions were used as an 

example to show how this asymmetry evolves during plastic deformation and are recalled below 

in Figure 9-6.  

 

Figure 9-6: The Haasen plot 
illustrating the effects of Si on the 
evolution of the inverse activation 
volume during strain hardening. 
The ¼ and 1/10 down-changes 
(closed symbols) are not identified 
separately in this plot but are 
differentiated from the up-change 
(open symbols). It is clear that the 
inverse activation volume from 
yield to about 40 MPa is similar for 
all alloys independent on the 
direction of the rate-change.  

 

Since the Haasen plot captures the evolution of the inverse activation volume during the 

production of dislocations (plastic deformation), three clear observations may be made: 

i) The inverse activation volume is the same for both up-changes and down-changes at 

low levels of strain hardening and then deviate 

ii) The inverse activation volume of down-change is larger than that of up-changes at 

larger levels of strain hardening 

iii) Si additions increase the inverse activation volume during both up-changes and down-

changes at equivalent levels of strain hardening 

At early stages of deformation, the dislocation density of the materials is relatively low in 

comparison to the density of the clusters formed suggesting that the rate-controlling obstacles at 

the beginning of plastic flow are due to the clusters formed during NA. At room temperature, 

there is sufficient thermal energy so that there is not a significant difference between the strength 
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of the different clusters. Atom probe tomography (APT) experiments performed suggest that the 

number density and size of clusters do not change significantly with Si additions in the NA1m 

condition resulting in the inverse activation volume being similar for all alloys just after yielding 

since solute remains in solution are effectively invisible due to their low thermal activation barrier. 

Thus it is presumed that the mechanism controlling this part of the Haasen plot is the thermal 

activation of clusters by dislocations whereby the clusters are more thermal in nature than 

dislocations. However, the shearing of the material can cause both dissolution or dynamic 

formation of clusters as the movement of dislocations may shear a cluster and move it apart, but 

also bring solute together, this being a form of dynamic strain ageing. If this premise is followed, 

then the greater amount of solute in solution at greater levels of Si would decrease the spacing 

between solutes and result in an increase in the inverse activation volume, as shown for both up-

changes and down-changes.  

The differences between the up-changes and down-changes must now be addressed and two 

hypotheses are proposed; the first being related to the time component (deforming at a faster 

rate reduces the amount of time for diffusion, slower rate increases this time) and the second 

being related to the production of dislocations products during deformation and their recovery. 

In the first scenario, the up-changes reduces the time for diffusion to take place such that if there 

is a change in the dynamic equilibrium of cluster density, deforming the material at a faster rate 

should result in a decrease of the diffusion component of dynamic strain ageing resulting in a 

lower number density (greater spacing) between clusters resulting a smaller inverse activation 

volume. At a slower rate of deformation, the contrary would be true whereby there is additional 

time for the diffusion of solute to form additional clusters resulting in an increase in their 

equilibrium number density (smaller spacing) yielding an increase in the inverse activation 

volume; as observed. The effect of Si additions is in concurrence with this hypothesis as the 

additions of Si will yield an increase of the availability of solute able to contribute to cluster 

formation, resulting in a net increase of the dynamic cluster density and thus increasing the 

inverse activation volume, as observed for both up-changes and down-changes. In the second 

scenario, it has been shown that the interaction of dislocations with other dislocations, solutes, 

precipitates, or clusters, produces vacancies, small loops, and stacking faults (termed dislocation 

interaction products, DIPs) which are able to be recovered during deformation and reduce the 

flow stress. If additional time is permitted for the recovery of DIPs such as the case of down-

changes, the stress drop due to the rate change will be larger resulting in a larger apparent inverse 

activation volume, as observed. In the case of up-changes, the opposite would be true where there 

is a reduced recovery of DIPs such that the stress change from the increased strain rate would be 

lower, as observed. The question now becomes the effect of Si on these two directions. The fact 

that the inverse activation volume increases with Si addition in the down-changes suggests that 

either additional DIPs are recovered or a greater amount of DIPs are produced. It is postulated 

that this effect would most likely be explained by the more efficient recovery of DIPs as in the 

NA1m condition, Si additions were shown to accelerate the NA kinetics resulting a smaller fraction 

of solute retained in solution. Solid solution additions have been shown to reduce dislocation 

recovery (see Al-Mg) via strain hardening but the addition of Si has been shown to decrease the 

strain hardening in the NA1m condition in this work, suggesting that there is a reduction of the 

solid solution component of Si thus facilitating recovery of both dislocations and DIPs. 

Alternatively, if the production rate of DIPs changes with Si content, it could be argued that having 

a greater number of clusters in the material results in an enhanced production of DIPs thus even 

if the recovery rate of DIPs does not change with added Si, the net result would be an enhanced 
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total stress drop. These ideas would correlate to the up-changes but in this scenario, the increased 

stress with added Si would be due to the thermal activation the centres producing the DIPs, the 

NA clusters.  

9.1.3 Connection of the mechanical properties to failure properties 
Finally, in order to combine all of the experiments performed in this work, the connection of the 

strain hardening, strain rate sensitivity and mechanical properties of the alloys are connected to 

the failure properties; the uniform and the post-uniform elongations. Figures 9-7a-f show effects 

of solute additions on the various mechanical and failure properties for samples in the sNA1m 

condition.  

 

Figure 9-7: The effects of total solute content on the a) strain hardening capacity, b) the uniform elongation, c) pre-
exponential, K2, for the second part of the constitutive relation, d) the strain hardening exponent, n2, e) the post-uniform 
elongation, and f) the up-change (closed circles) and down-change (open circles) engineering SRS for the alloys tested in 
the sNA1m condition. For clarity, the effects of Cu additions at 0.9 and 1.3 at% Si, are connected in green and blue dashed 
arrows, respectively. The effects of Si additions at 0.2 at% Cu and 0.4 at% Mg are connected with the grey dashed arrows. 
The effects of Mg addition at 0.9 at% Si and 0.3 at% Cu are connected with red dashed arrows.  

The strain hardening capacity, 𝜎𝐿 − 𝜎0.2%, represents the total dislocation storage capacity of the 

material, the strain hardening rate, 𝑛2, the production rate, and pre-exponential factor, 𝐾2, the 
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recovery rate, all increase with Cu and Mg (except for 𝑛2), with Si having a smaller effect on all of 

these properties. Despite the differences in the specific mechanical properties, all of the solutes 

equally increase in the uniform elongation, 𝜖𝐿. In the case of Cu additions, the increase in 𝐾2 and 

𝑛2 suggest that the recovery of dislocations is reduced coupled with an increased dislocation 

production rate such that strengthening occurs at a faster rate. However, as there is also an 

increase in the strain hardening capacity allowing for more dislocations to be preserved in the 

material prior to failure and results in an increase in the uniform elongation. Similarly, the addition 

of Mg increases the storage rate and total storage capacity while not changing the dislocation 

production rate resulting in a total increase uniform elongation to a similar extent as Cu additions. 

Finally, despite the smaller increases in the dislocation production rate, total capacity and 

recovery rate, the compounded effects result in an identical increase in the uniform elongation. 

Concerning the post-uniform elongation, the strain rate sensitivity and total strength of the alloys 

seem to influence this post-necking behaviour. The addition of Cu increases the strength but does 

not cause a large effect on the strain rate sensitivity such that changes in the strength caused by 

the strain rate sensitivity from flow localization does not significantly affect the Considère criterion 

inside the neck interior such that the post-uniform elongation decreases with Cu additions. The 

opposite is true in the case of Si additions whereby there is not a significant effect on the 

strengthening component while the strain rate sensitivity has a large increase (both up-change 

and down-change) resulting in significant changes of the local Considère criterion during post-

uniform elongation whereby the added strengthening reduces flow localization prolonging the 

elongation prior to failure, as-observed. Finally, with Mg additions, the story is similar to Cu 

additions where the relative strength of Mg is greater than Cu but also the strain rate sensitivity 

such that there is a sufficient contribution of the strain rate sensitivity to retarding flow 

localizations that the Mg addition yields a greater post-uniform elongation.  

9.2 Conclusions 
The complete work presented within this thesis leads to an improved understanding not only of 

the effects of alloy composition on the clusters formed during natural ageing and pre-ageing with 

secondary natural ageing, but also of the effects of the specific solute elements under each of the 

heat treatment condition on the specific mechanical properties and the resulting formability. The 

method of including compensation during strain rate sensitivity testing was also thoroughly 

discussed and the resulting asymmetry in the strain rate sensitivity was elucidated at room 

temperature. This allowed for the connection of the effects of strain hardening and strain rate 

sensitivity on the final necking formation and evolution during subsequent post-uniform 

elongation in order to serve as a framework for a better comprehension of formability. The 

following points derived from the work of this thesis are presented below: 

 The types of clusters formed during NA and PA are not the same 

o During NA, Cu and Mg have a strong influence on the formation of the clusters 

able to dissolve at lower temperatures. Si additions do not significantly increase 

the formation of these clusters but causes a decrease of their dissolution 

temperature. 

o During PA, only a single cluster type appears to be formed being dissolved at 

temperatures greater than those formed during NA. Cu, Mg, and Si additions all 

appear to increase the cluster dissolution intensity. PA has been shown to reverse 

the negative natural ageing effect often observed in Al-Mg-Si-Cu alloys. 
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 There is a large difference between up-change (smaller) and down-change (larger) inverse 

activation volumes and strain rate sensitivities with the up-change strain rate sensitivities. 

The use of the compensation method during testing is necessary to obtain precise and 

reliable measurements, specifically during down-change tests. 

o Up-changes result in a relatively lower strain rate sensitivity and decrease the 

inverse activation volume. Down-changes result in a relatively larger strain rate 

sensitivity and increase the inverse activation volume. 

 The expression of Cu, Mg, and Si additions on the resulting mechanical properties in the 

6000-series depend directly on the heat treatment performed and the resulting cluster 

types. 

o During NA, Cu and Mg have a significantly larger influence on increasing the yield 

strength than Si. 

o During PA, all alloying elements contribute equally to increasing the yield strength 

of the alloys. 

o Si additions increases both the up-change and down-change strain rate 

sensitivities, independent of the heat treatment. Cu and Mg additions tend to not 

affect or decrease the up-change and down-change strain rate sensitivities. 

 It is possible to determine the cluster-dislocation interaction profile by performing strain 

rate sensitivity measurements at various temperatures.  

o The activation distance of the alloys in the sNA1m condition are typically lower 

than those in the NA1m condition suggesting a more complete removal of solute 

from the matrix. 

o The addition of Si was shown to reduce the activation distance at room 

temperature supporting a more complete removal of solute from the matrix as 

supported by the NA and sNA hardness curves.  

 Increasing the muc and mdc together was shown to reduce the intensity of the strain rate 

at the centre of the neck in conjunction with both the strain rate and strain distribution 

along the length of the neck. The distance from the neck centre to the base strain rate 

was shown to be inadequate for defining the size of the neck but plays an important role 

on understanding the evolution of the neck.  

o The majority of the post-necking elongation is provided by muc due to the very 

localized effect of the increased strain rate interior of the neck. 

o The mdc component acts only on the regions exterior to the neck, being much 

larger in size such that its effect is effectively “diluted”. 

o In the sample study, the distance to the base strain rate was shown to be 

controlled initially by the strain gradient and subsequently by the intensity of the 

strain rate at the neck centre.  

9.3 Perspectives 
After completing and understanding the main experiments contained within the thesis and the 

resulting potential for designing Al-Mg-Si-Cu alloys with specific properties with required 

mechanical properties, it is recommended that the following program be followed to enrich the 

current understanding of the influence of alloy composition on the formability of Al-Mg-Si-Cu 

alloys: 

a) Perform digital image correlation testing in order to compare the evolution of the strain 

and strain rate distribution with the finite element modeling simulations performed in this 

work.  
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b) The completion of industrial formability tests such as Marciniak-Kuczynski and limiting 

dome height tests in order to generate the forming limit curve on samples having the 

highest and lowest muc and mdc values. Samples with the largest discrepancy between mdc 

and muc should also be tested to determine how large of a role the asymmetrical strain 

rate sensitivity plays on necking formation and propagation.  

c) The completion of small angle X-ray scattering (SAXS) and further analysis of atom probe 

tomography (APT) experiments in order to elucidate the size, density and stoichiometry 

distribution of the clusters formed in the NA1m and sNA1m conditions to validate the 

observations made by DSC and hardness testing. SAXS measurements on 6000-series 

alloys will require specific development of low X-ray energy measurements at a 

synchrotron source so as to reach the Al K-edge (~1500 eV).  

d) Additionally, the behaviour of clusters during plastic straining, such as dissolution or 

dynamic formation, are of significant interest as it is speculated that they will lead to 

contributions to both the strain hardening and strain rate sensitivity asymmetry. It is 

particularly challenging to evaluate this dynamic evolution, since all of the relevant 

experimental techniques (SAXS, DSC, APT) cannot be performed in-situ during a tensile 

test. Ex-situ measurements, minimizing the time between the end of the tensile test and 

the microstructure evaluation, should be carried out. 
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Appendices 

Appendix 1 – Supplementary plots 
The following sections contain the corresponding plots for each type of test not included in the 

main body of the work.  

Appendix 1.1 – Hardness plots 

 

The effects of Cu content at Si level of 0.9 at% on the age hardening curves for a) NA, b) sNA, 

and c) AA after sNA1w. The incubation times prior to sNA are shown in dotted lines in b).  
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The effects of Cu content at Si level of 0.9 at% on the age hardening curves for a) NA, b) sNA, 

and c) AA after sNA1w. The incubation times prior to sNA are shown in dotted lines in b).  

Appendix 1.2 – DSC thermographs 

 

The effects of Cu content at Si level of 0.9 at% on the DSC curves in the a) WQ, b) 30 day NA, and 

c) as-PA conditions. 
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The effects of Cu content at Si level of 0.9 at% on the DSC curves in the a) WQ, b) 30 day NA, and 

c) as-PA conditions. 
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Appendix 1.3 – sNA1w mechanical data 

 

The effects of total solute content on the a) strain hardening capacity, b) the uniform elongation, 

c) pre-exponential, K2, for the second part of the constitutive relation, d) the strain hardening 

exponent, n2, e) the post-uniform elongation, and f) the up-change (closed circles) and down-

change (open circles) engineering SRS for the alloys tested in the NA1m condition. For clarity, 

the effects of Cu additions at 0.9 and 1.3 at% Si, are connected in green and blue dashed arrows, 

respectively. The effects of Si additions at 0.2 at% Cu and 0.4 at% Mg are connected with the 

grey dashed arrows. The effects of Mg addition at 0.9 at% Si and 0.3 at% Cu are connected with 

red dashed arrows. 
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Appendix 1.4 – Haasen plot information 

1.4.1 Haasen plots at the three tested temperatures 

  
C8S0M_sNA_ 1week C8S0M_sNA_ 1month 

 

 

C8S0M_NA_1month  
 

Figure C.1: C8S0M Haasen plots for the three ageing conditions and testing temperatures.  
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Figure C.2: C2S1 Haasen plots for the three ageing conditions and testing temperatures. 
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Figure C-3: C0S3 Haasen plots for the three ageing conditions and testing temperatures.  

0 50 100 150 200 250 300 350
0.00

0.02

0.04

0.06

0.08

0.00438
8.71738E-5

1.13559E-4
0.00365

1.71879E-4

0.01573

 78 K

 200 K

 294 K

 

 



/(

T


ln
)

 (
M

P
a

/K
)

-

 (MPa)

C0S3_sNA1w

SSS

(78 K)

.

0 50 100 150 200 250 300 350
0.00

0.02

0.04

0.06

0.08

1.10498E-40.00442
0.00404

1.20762E-4

1.37747E-4

0.02083

 

 

 78 K

 200 K

 294 K



/(

T


ln
)

 (
M

P
a
/K

)

-

 (MPa)

C0S3_sNA1m

SSS

(78 K)

.

0 50 100 150 200 250 300 350
0.00

0.02

0.04

0.06

0.08

0.00486 1.19284E-4

1.27624E-4
0.00383

1.76402E-4

0.01452

 

 

 78 K

 200 K

 294 K



/(

T


ln
)

 (
M

P
a

/K
)

-

 (MPa)

C0S3_NA1m

SSS

(78 K)

.



189 

 
 
 

  
C2S3_sNA_ 1week C2S3_sNA_ 1month 

 

 

C2S3_NA_1month  
 

Figure C-4: C2S3 Haasen plots for the three ageing conditions and testing temperatures. 
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Figure C-5: C5S3 Haasen plots for the three ageing conditions and testing temperatures.  
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Figure C-6: C8S3 C5S3 Haasen plots for the three ageing conditions and testing temperatures. Note, not data was 

measured at 78 K for C8S3_NA1m. 
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Appendix 1.4.2 – Haasen plot data tables 

Haasen plot intercept, k/V’ (MPa K-1), and initial slope, S1 (K-1), values tabulated for sNA1w, 

SNA1m and NA1m at the three test temperatures. 

Alloy  78 K   198 K   294 K   

  sNA1w sNA1m NA1m sNA1w sNA1m NA1m sNA1w sNA1m NA1m 

C0S0 K/V’ 

S1 

1.45x10-2 

1.41x10-4 

1.46x10-2 

1.51x10-4 

1.44x10-2 

1.49x10-4 

4.55x10-3 

6.78x10-5 

4.63x10-3 

6.66x10-5 

5.05x10-3 

6.66x10-5 

3.15x10-3 

7.90x10-5 

3.79x10-3 

7.94x10-5 

3.73x10-3 

1.39x10-4 

C2S0 K/V’ 

S1 

1.39x10-2 

2.73x10-4 

1.84x10-2 

2.39x10-4 

1.75x10-2 

1.79x10-4 

5.88x10-3 

2.78x10-5 

3.70x10-3 

8.73x10-5 

5.14x10-3 

7.32x10-5 

3.76x10-3 

3.99x10-5 

3.49x10-3 

7.92x10-5 

3.51x10-3 

1.31x10-4 

C8S0 K/V’ 

S1 

1.57x10-2 

1.62x10-4 

1.62x10-2 

2.26x10-4 

1.98x10-2 

1.47x10-4 

4.22x10-3 

5.56x10-5 

4.08x10-3 

7.52x10-5 

5.48x10-3 

5.53x10-5 

4.22x10-3 

6.85x10-5 

3.98x10-3 

6.52x10-5 

5.53x10-3 

9.01x10-5 

C8S0M K/V’ 

S1 

1.46x10-2 

1.26x10-4 

1.48x10-2 

1.59x10-4 

1.83x10-2 

2.72x10-4 

5.35x10-2 

8.38x10-5 

4.29x10-3 

7.94x10-5 

5.38x10-3 

8.36x10-5 

4.08x10-2 

1.11x10-4 

3.23x10-3 

1.44x10-4 

5.53x10-3 

9.01x10-5 

C2S1 K/V’ 

S1 

1.58x10-2 

1.59x10-4 

1.78x10-2 

2.00x10-4 

1.52x10-2 

2.04x10-4 

3.79x10-2 

9.35x10-5 

4.43x10-3 

8.31x10-5 

3.71x10-3 

1.17x10-4 

3.64x10-2 

5.44x10-5 

4.28x10-3 

8.06x10-5 

4.22x10-3 

1.37x10-4 

C0S3 K/V’ 

S1 

1.57x10-2 

1.72x10-4 

2.08x10-2 

1.38x10-4 

1.45x10-2 

1.76x10-4 

4.38x10-2 

8.72x10-5 

4.42x10-3 

1.10x10-4 

4.86x10-3 

1.19x10-4 

3.65x10-2 

1.14x10-5 

4.04x10-3 

1.21x10-4 

3.83x10-3 

1.28x10-4 

C2S3 K/V’ 

S1 

1.10x10-2 

1.63x10-4 

1.44x10-2 

1.71x10-4 

1.61x10-2 

1.34x10-4 

4.54x10-2 

9.54x10-5 

4.14x10-3 

1.09x10-4 

4.37x10-3 

1.19x10-4 

4.02x10-2 

9.13x10-5 

4.31x10-3 

7.86x10-5 

5.41x10-3 

1.09x10-4 

C5S3 K/V’ 

S1 

9.63x10-3 

1.79x10-4 

1.19x10-2 

1.89x10-4 

1.35x10-2 

1.70x10-4 

4.51x10-2 

7.81x10-5 

4.18x10-3 

8.79x10-5 

4.30x10-3 

1.16x10-4 

4.33x10-2 

8.27x10-5 

4.16x10-3 

8.79x10-5 

4.72x10-3 

1.15x10-4 

C8S3 K/V’ 

S1 

1.56x10-3 

1.39x10-4 

1.55x10-2 

1.66x10-4 

- 

- 

3.65x10-2 

1.11x10-4 

4.29x10-3 

1.09x10-4 

3.81x10-3 

1.40x10-4 

4.82x10-2 

7.27x10-5 

5.15x10-3 

7.50x10-5 

5.72x10-3 

1.78x10-4 

1.5 The yield strength for the AQ samples at 78K in the three conditions 

Sample AQ NA1m sNA1m sNA1w 

C0S0 67.2 145.4 133.7 120.5 

C2S0 50.6 153.9 138.8 115.5 

C8S0 54.8 185.5 143.5 135.1 

C8S0M 67.1 214.5 174.6 171.8 

C2S1 62.2 160.6 137.2 123.1 

C0S3 60.0 159.8 152.5 140.7 

C2S3 67.6 178.9 154.5 148.6 

C5S3 73.5 188.1 163.3 156.2 

C8S3 70.2 184.6 182.4 184.6 
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Appendix 2 – Temperature dependent shear modulus of aluminium 

 

The temperature dependence of the elastic shear modulus for 99.93 purity aluminium single 

crystal calculated from the elastic constants measured by Sutton [Phys. Rev. 91(1953) 816-821.]. 

Also shown is a polynomial fit for the data and the room temperature data point tabulated by 

Kocks, Argon and Ashby [Prog. Matls. Sci. 19 (1975) 1-291.]. 
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Influence des constituants microstructuraux sur la 

formabilité des tôles en alliages d’aluminium 

Alors que les constructeurs automobiles cherchent à améliorer l'efficacité 

énergétique des voitures, ils cherchent à remplacer les composants actuels en 

acier par de nouveaux alliages d'aluminium (Al) plus légers et plus récents. Il a 

été démontré que les alliages d'aluminium à base de magnésium (Mg), de 

silicium (Si) et de cuivre (Cu) offrent une résistance suffisante pour remplacer ces 

composants en acier, mais ne possèdent pas la formabilité souhaitée. Ce travail 

vise à comprendre les effets des ajouts de Mg, Si et Cu sur la formabilité de ces 

alliages. Grâce à l'utilisation de la calorimétrie et des essais de dureté, l'état de 

la microstructure a été révélé. L'utilisation d'essais de traction a permis de 

déterminer les propriétés mécaniques en relation avec la microstructure. Les 

paramètres de propriétés mécaniques ont ensuite été inclus dans des 

simulations par éléments finis pour comprendre leurs effets sur la formabilité de 

l'alliage. Cette thèse a établi un lien entre la composition, les microstructures 

pour deux voies de traitement différentes, les propriétés mécaniques 

résultantes et leur influence sur la formabilité finale de ces alliages Al-Mg-Si-Cu. 

 

The influence of microstructural components on the 

formability of aluminium alloy sheets 

As automotive manufacturers seek to improve the fuel efficiency of passenger 

vehicles, they look to replace current, heavy steel components with newer, 

lightweight aluminium (Al) alloys. Al alloys based on addition of magnesium 

(Mg), silicon (Si), and copper (Cu), have been shown to provide adequate 

strength to replace these steel components but lack the desired formability. This 

work aims to understand the effects of Mg, Si, and Cu, additions on the overall 

formability of these alloys. Through the use of differential scanning calorimetry 

and hardness testing, the state of the microstructure has been indirectly 

revealed. The use of tensile testing has permitted to determine the mechanical 

properties in relation with the microstructure. The mechanical properties 

parameters have then been included into finite element modeling simulations to 

understand their effects on the overall alloy formability. This thesis has achieved 

a connection between the composition, the changes in microstructure for two 

different processing routes, the resulting mechanical properties and their 

influence on the ultimate formability of these Al-Mg-Si-Cu alloys.  


