Keywords:

I would like to thank all of those who participated in this thesis and in the 4 years I spent at Inria. First of all, my advisor Adrien Bousseau who has always been supportive, willing to make me progress and provided me so much useful advices. I am also grateful to Georges Dre akis for his additional guidance and interesting discussions about the future of research. Many thanks also to Alysha Efros and Philip Isola who welcomed me in their lab in Berkeley

Résumé

Les outils digitaux ouvrent de nouvelles voies de création, aussi bien pour les artistes chevronnés que pour tout autre individu qui souhaite créer. Dans ce e thèse, je m'intéresse à deux aspects complémentaires de ces outils : interpréter une création existante et générer du nouveau contenu.

Dans une première partie, j'étudie comment interpréter un dessin comme un objet 3D. Nous proposons une approche basée donnée qui aborde ce e problématique en entrainant des réseaux convolutifs profonds (CNN) à prédire l'occupation d'une grille de voxels à partir de dessins. Nous intégrons ces CNNs dans un système de modélisation interactif qui permet à l'utilisateur de dessiner un objet, tourner autour pour voir sa reconstruction 3D et le ra ner en redessinant depuis une nouvelle vue. Nous complémentons ce e approche par une méthode géométrique qui permet d'améliorer la qualité de l'objetnal. Pour cela, nous entrainons un CNN à prédire des cartes de normales à plus haute résolution depuis chaque vue d'entrée. Nous fusionnons alors ces cartes de normales avec la grille de voxel en optimisant pour la surface nale. Nous entrainons l'ensemble de ces réseaux grâce à des rendus de contours d'objets abstraits générés procéduralement.

Dans une seconde partie, je présente une méthode pour générer des vidéos stylisées faisant penser à de l'animation traditionnelle. La plupart des méthodes existantes gardent le mouvement 3D originel de la vidéo, produisant un résultat ressemblant plus à une scène 3D couverte de peinture qu'à une peinture 2D de la scène. Inspirés par l'animation "cut-out", nous proposons de modi er le mouvement de la séquence a n qu'il soit composé de mouvements rigides en 2D. Pour y parvenir, notre approche segmente le mouvement et l'optimise a n d'approximer au mieux le ot optique d'entrée avec des transformations rigides par morceaux, et re-rend la vidéo de fac ¸on à ce que son contenu suive ce mouvement simpli é. En appliquant les méthodes de stylisations existantes sur notre nouvelle séquence, on obtient une vidéo stylisée plus proche d'une animation 2D.

Ces deux parties reposent sur des méthodes di érentes mais toutes deux s'appuyent sur les techniques traditionnelles utilisées par les artistes : soit en comprenant comment ils dessinent un objet, soit en s'inspirant de leur fac ¸on de simpli er le mouvement.

C h a p t e r 1

Introduction

From the seminal SketchPad [START_REF] Sutherland | Sketchpad a man-machine graphical communication system[END_REF] up to recent tactile tablets, more and more artists use digital tools in their creation process. Digital tools bring new opportunities to assist artistic creation: developing new ways of creation (e.g. 3D sketching in virtual reality [Goo16]), emulating traditional medias with digital tools (e.g. digital painting or drawing [START_REF] Semmo | Image stylization by interactive oil paint ltering[END_REF]) or simplifying existing creation process (e.g drawing in-between frames for animation [START_REF] Dvorožnák | Toonsynth: example-based synthesis of hand-colored cartoon animations[END_REF]). In this thesis, I will discuss how digital tools can ease creation for accomplished or novice artists.

Accomplished artists o en master traditional techniques. Digital tools can help them in the exploration of di erent choices (design space exploration [ADN + 17], color exploration [TEG18, MVH + 17]) or by automating tedious tasks that do not rely so much on creativity (physical simulation [DBB + 17, BBRF14], 3D modeling [DAI + 18, LPL + 18], in-between image generations [START_REF] Dvorožnák | Toonsynth: example-based synthesis of hand-colored cartoon animations[END_REF], sketch beauti cation and clean up [START_REF] Liu | Strokeaggregator: consolidating raw sketches into artist-intended curve drawings[END_REF][START_REF] Li | Deep extraction of manga structural lines[END_REF]). e main challenge is thus to nd the right scope for the task and to insert it in the traditional work ow that artists use. Successful integration requires to have a seamless transition between the automated or assisted task and the rest of the creative process.

On the other hand, novice artists are o en not fully familiar with traditional techniques. Digital tools then have the role of helping them to create despite their lack of skills. To account for this, the tools need to be robust to rough or erroneous inputs. Digital tools can also be made to help the user learn a speci c technique (e.g. assistive tools for sketching [LZC11, IBT13, HLW + 17]), or allow novices to produce artistic depictions they can't create manually (stylization [START_REF] Semmo | Image stylization by interactive oil paint ltering[END_REF]GEB16]).

Overall digital tools target two fundamental tasks:

• Generating new content (a static or animated image, a 3D object) • Interpreting existing content (a sketch, a painting)

Generating artistic depictions

Generating a realistic depiction has been well automated for a long time (photography, photo-realistic rendering) but obtaining an artistic depiction still involves signi cant manual work.

is is a tedious task even for well accomplished artists. For example, to make the movie Loving Vincent, more than 125 artists had to paint each frame of the movie for 4 years. Figure 1.1 shows frames from Loving Vincent and Happy Time, a short movie realized by an artist specialized in watercolor animations. On the other hand, more and more novices want to produce artistic images but lack the skills to achieve pleasant results by hand. With the tremendous amount of visual content that is created nowadays, there is thus a real need to automate or ease the creation of such images, for all kind of users.

Static stylization e role of digital stylization is to mimic traditional styles and accelerate the creation of content. e input of these tools can be either 3D or 2D. In both cases, the goal is to automatically produce an image that shows the original content in a stylized way. is can be done either by distributing style elements over the image (e.g. brush strokes) or by synthesizing texture (from an examplar or from parameters). Example results from a few existing methods are shown in Figure 1.2. Non Photorealistic Rendering is widely used to recreate the traditional look of Japanese anime, more rarely to mimic other traditional medias such as painting or drawing. One reason might be the di culty to control such styles for artists. Some recent e orts have been made to provide them with programmable rendering pipelines that allows to create such styles easily [MSS + 18, GTDS10] but currently no industrial solution exist that handles a large enough variety of style with easy controls.

(a) S t y l i t , 2 0 1 6 (b) F r e e s t y l e , 2 0 1 0 (c) A n i P a i n t , 2 0 1 2

Animated stylization

Applying stylization algorithms on animated images adds the extra challenge of motion. A common approach is to make the style follows the optical ow of the input video to ensure temporal consistency [Lit97, BCK + 13, BNTS07, OH12, SED16, RDB18]. Unfortunately, following the optical ow too strictly does not reproduce the typical look of 2D animation and gives the impression to look at a 3D painted world. Several methods have thus been proposed to incorporate a controlled amount of noise [FLJ + 14, KP11] so that the result looks less fake or to stylize the motion in itself [WDAC06, BSM + 07]. However, the eld has still not reach a point where the results are not distinguishable from man-made 2D animations.

Style models

ere is a large variety of ways to model a given style. We can classify the existing approaches into roughly two categories of models:

Explicit

e style is explained by a series of carefully chosen operations and parameters, like extracting lines, distributing brush strokes or applying texture [START_REF] Litwinowicz | Processing images and video for an impressionist e ect[END_REF][START_REF] Bousseau | Video watercolorization using bidirectional texture advection[END_REF][START_REF] Peter | Anipaint: Interactive painterly animation from video[END_REF]. Although these methods are highly customizable and produce a large variety of styles, it is o en complicated to nd the right parameters to achieve a given style. It can require a long trial and error process to reach the desired result, which can break the creative process of the artist.

Implicit

e style is explained by an exemplar and the tool automatically produces an image whose style is similar to the examplar one. ese methods are referred to "style transfer" and vary on the synthesis algorithm (by copying patches or optimizing the features of the nal image) as well as on the way the exemplar is provided (taking an image in the wild [START_REF] Ruder | Artistic style transfer for videos and spherical images[END_REF], or producing an exemplar given a speci c protocol [FJL + 16, BCK + 13]). Although it allows to easily de ne the desired style, the user has li le control on the output of the method.

Interpreting existing artistic depictions

Another way to assist artists is to automatically interpret the images they produce. One popular and important medium to interpret is sketches. Indeed, because of its rapidity to execute, sketches are widely used by either novices or professional artists as a preliminary representation in the creative process [START_REF] Pipes | Drawing for Designers[END_REF]. It is thus crucial to be able to understand them. e computer vision community has produced a large amount of work on how to interpret natural images and state of the art methods now allow to segment, label and understand almost any picture. However, interpreting an artistic creation brings new challenges due to the speci city of such representation: it is o en incomplete or erroneous because of the artistic vision it conveys. As demonstrated in Figure 1.3, drawings can exhibit a large variety of styles. Sketches are o en even more approximate since there are made very quickly with no mean of high accuracy. is problem is ampli ed when working with sketches from novice: they usually adopt representations that are not faithful to the reality (e.g. stickmen to represent humans) and not the most informative (orthographic frontal view) [FMK + 03a] as shown in Figure 1.3a).

Sketch based interactions

Being able to interpret concept sketches gives ways to artists to explore di erent possibilities from early stages of the design. For example, SketchSoup allows to explore the design space of shapes from a few sketches [ADN + 17]. Sketches can also be used to quickly explore mechanisms for objects with movable parts [SLZ + 13] or as an input for generative design [KGC + 17]. In 2D animation, sketches allow to intuitively de ne character animations [TBvdP04] or poses [GCR13, HMC + 15]. Finally, sketching gesture are also used to guide image or 3D scene edition, by roughly indicating ow directions or shapes [CGS16, ZHP + 19].

Sketch reconstruction

e most common application of sketch interpretation is probably to create 3D objects. Sketch based modeling systems allow the user to create new 3D objects using sketching gesture but usually requires them to have good drawing skills. O en, users need to adapt their technique to the system, either because the tool ask for numerous 3D interactions [START_REF] Igarashi | Teddy: A sketching interface for 3d freeform design[END_REF][START_REF] Nealen | Fibermesh: designing freeform surfaces with 3d curves[END_REF][START_REF] Bae | Ilovesketch: asnatural-as-possible sketching system for creating 3d curve models[END_REF] or because it needs speci c inputs such as symmetry or ordering relationship [START_REF] Gingold | Structured annotations for 2D-to-3D modeling[END_REF]. For trained artists who know how to draw very quickly, these additional interactions can break their creative process. For novices, reaching the required accuracy in the drawing can be di cult. For this reason, systems designed for complete novices are o en based on shape retrieval: the goal is then to retrieve a similar shape in a database instead of creating a new one [XXM + 13, ERB + 12].

Besides the academic research on this topic (please refer to Section 2.2), several industrial so ware have been released, either on their own or included in well known 3D modelers (e.g. CATIA Natural Sketch [Sys11]). But no system currently exists that allows the user to draw as they would do on paper and obtain a good estimate of the underlying 3D shape.

Sketch models

As for the generation of artistic images, the main challenge is to understand how artists create sketches so that we can model them. As previously, we can distinguish two ways of modeling the understanding of sketches:

Explicitly through the de nition of constraints over the lines or over the whole sketch.

e solution is then found by optimization to satisfy as much as possible these constraints [CSMS13, JHR + 15, XCS + 14]. However, de ning any constraint on lines requires to be able to rst understand what is a line in the drawing, which is usually solved by using vectorized input. Moreover, the possible solutions are quite restricted by the amount of constraints we are able to de ne and compute.

Implicitly through the use of a database of exemplars. In this case, the system learns to interpret a sketch by seeing a large number of exemplar interpretation, for example pairs of sketches and 3D objects [LPL + 18, LYF17]. e possible solutions are then constrained by the space covered by the exemplars.

Scope of this thesis

In this thesis, I explore generating and interpreting artistic content through the presentation of two di erent tools:

• a sketch based modeling system that interprets one or several sketches as a 3D object,

• a method to generate stylized videos that reproduce the simpli ed motion of 2D animations

We took inspiration from traditional techniques of artists to guide the design of both tools.

Sketch based modeling

For the rst project, we looked at how professional designers use drawing to create new shapes. When drawing only one sketch, designers usually use a three-quarters perspective view, o en recognized as the most informative viewpoint [START_REF] Eissen | Sketching: e Basics[END_REF]. In addition, designers o en create plates of drawings that contain several sketches of the same objects. In this case, they demonstrate the use of a larger variety of viewpoints as shown in Figure 1.4, and more speci cally of orthogonal ones (face, top, side) that give a more precise representation of the shape.

Designers also usually distinguish two types of lines: construction lines that help them lay down the correct structure of a shape and guide the drawing of the lines descriptive of the surfaces.

ese observations guided the design of our sketch based modeling system in di erent ways.

First, we designed the work ow so that the user can draw a complete shape from one viewpoint and get a 3D reconstruction without having to draw from di erent views at Images from [START_REF] Pipes | Drawing for Designers[END_REF][START_REF] Eissen | Sketching: e Basics[END_REF] rst. We propose an interactive setup where the user can re ne its shape from any number of viewpoints. We also create an interface that allows the user to draw construction lines as well as descriptive lines, although only these last ones are used by the system since they give the most information on the surface and are easier to synthesize.

To model the interpretation of sketches, we chose a data-driven approach and guided the design of the training database with the previously stated observations: the database contains objects drawn in perspective from near to three-quarters views and orthogonal viewpoints (used only when a rst sketch has already been drawn).

e knowledge about how designers draw is thus mainly incorporated in the conception of the training database that conditions what the system learns to interpret.

More precisely, we use convolutional neural networks (CNNs) to predict a voxel grid from several sketches as well as one normal map per input view. e voxel grid prediction gives a good approximation of the global shape while the addition of normal maps allows for more details on visible parts of the object.

Using deep learning allows the system to handle a large diversity of shapes. e system can easily be retrained with a di erent database depending on the user's need. It is also very fast to evaluate, which is essential in an interactive setup, and naturally robust to some amount of noise without requiring clean vectorized lines.

More explanations on the system and the voxel prediction can be found in Chapter 2.

Chapter 3 details the addition of normal maps to improve the nal quality while Chapter 4 describes the construction of our database.

Video stylization

For the second project, we looked at traditional 2D animations and observed how animators simplify the motion, in addition to the appearance stylization. Our major source of inspiration is "cut-out" animation, in which the motion is simpli ed to an extreme: pieces of textured paper are moved in front of the camera, resulting in regions moving rigidly in the 2D plane (following only translation, rotation and scaling). is e ect also shows up in other cartoon types such as the famous South Park TV show or in Disney multi-plane cell animation. Inspired by these artworks, we decided to simplify the motion such that it will be piecewise rigid: we thus decompose the video into di erent segments that we make follow a rigid motion at each frame.

We modeled explicitly this problem in several constraint-based optimizations for both nding the right segmentation, the motion associated to each segment and the nal motion. More precisely, we rst segment the video in a temporally coherent manner to nd pieces whose motion could be approximated by a rigid motion. e user gives guidance on the segmentation by scribbling to choose which parts should be separated or in the same rigid segment. is gives us a rigid motion that each pixel should follow at each frame. We then optimize for the nal motion so that the resulting trajectories do not deviates too much from the input ones.

All details about this technique are presented in Chapter 5.

Contributions

ese projects have led to two publications in international conferences and journals:

Introduction

e ambition of sketch-based modeling is to bring the ease and immediacy of sketches to the 3D world to provide "an environment for rapidly conceptualizing and editing approximate 3D scenes" [START_REF] Zeleznik | Sketch: An interface for sketching 3d scenes[END_REF]. However, while humans are extremely good at perceiving 3D objects from line drawings, this task remains very challenging for computers. In addition to the ill-posed nature of 3D reconstruction from a 2D input, line drawings lack important shape cues like texture and shading, are o en composed of approximate sketchy lines, and even when multiple drawings of a shape are available, their level of inaccuracy prevents the use of geometric algorithms like multi-view stereo. We introduce a data-driven sketch-based modeling system that addresses these challenges by learning to predict 3D volumes from one or several freehand bitmap drawings. Our approach builds on the emerging eld of generative deep networks, which recently made impressive progress on image [START_REF] Chen | Photographic image synthesis with cascaded re nement networks[END_REF] and shape synthesis [START_REF] Fan | A point set generation network for 3d object reconstruction from a single image[END_REF] but has been li le used for interactive creative tasks.

Figure 2.1 illustrates a typical modeling session with our system. e user starts by drawing an object from a 3/4 view, which is the viewpoint preferred by designers to illustrate multiple sides of a shape in a single drawing.

anks to training on a large collection of 3D shapes, our approach produces a complete volumetric reconstruction of the object, including occluded parts. is initial reconstruction allows the user to rotate the object and inspect it from a di erent vantage point. e user can then either re-draw the object from this new viewpoint to correct errors in the reconstruction, or move on to drawing new parts of the object. In both cases, the temporary 3D reconstruction acts as a reference that signi cantly helps the user create new drawings of the 3D shape. Since all interactions occur in a shared 3D space, this work ow provides us with multiple registered drawings of the object along with their respective calibrated cameras, which form the input to our 3D reconstruction algorithm.

At the core of our system are deep convolutional neural networks (CNNs) that we train to predict occupancy in a voxel grid, given one or several contour drawings as input. ese CNNs form a exible and robust 3D reconstruction engine that can interpret bitmap drawings without requiring complex, hand-cra ed optimizations [LS96, XCS + 14] nor explicit correspondences between strokes in multiple views [START_REF] Bae | Ilovesketch: asnatural-as-possible sketching system for creating 3d curve models[END_REF][START_REF] Rivers | 3d modeling with silhoue es[END_REF]. However, applying deep learning to sketch-based modeling raises several major new challenges. First, we need a network architecture capable of fusing the information provided by multiple, possibly inconsistent, drawings. Our solution combines a single-view network, which generates an initial reconstruction from one drawing, with an updater network that iteratively re nes the prediction as additional drawings are provided.

is iterative strategy allows us to handle drawings created from an arbitrary number of views, achieving a continuum between single-view [START_REF] Gingold | Structured annotations for 2D-to-3D modeling[END_REF] and multi-view [START_REF] Bae | Ilovesketch: asnatural-as-possible sketching system for creating 3d curve models[END_REF] sketchbased modeling systems. en, we describe how to co-design the training data and the user interface to reduce ambiguity in the prediction. In particular, we restrict viewpoints for the rst drawing to avoid depth ambiguity for the single-view network, while we allow greater freedom for the subsequent drawings that are handled by the updater network.

Once trained, our system can generate a coherent multi-view prediction in less than a second, which makes it suited for interactive modeling. One restriction of our current implementation is that the resolution of the voxel grid hinders the recovery of thin structures. We thus target quick 3D design exploration rather than detailed modeling.

In summary, we introduce an interactive sketch-based modeling system capable of reconstructing a 3D shape from one or several freehand bitmap drawings. In addition to the overall system, we make the following technical contributions:

• An iterative updater network that predicts coherent 3D volumes from multiple drawings created from di erent viewpoints.

• A multi-view drawing interface that we co-design with our synthetic data to help users create drawings similar to the ones used for training.

Note that our approach is modular and could adapt to other drawing techniques and shapes than the ones used in this paper.

Related work

Our work builds on recent progress in deep learning to tackle the long standing problem of sketch-based modeling. We refer the interested reader to recent surveys for extended discussions of these two elds [SSM + 16, OSSJ09, CSGC16].

Sketch-based modeling

e problem of creating 3D models from line drawings has been an active research topic in computer graphics for more than two decades [ZHH96, LS96, IMT99]. While sketching is one of the most direct ways for people to represent imaginary 3D objects, recovering 3D information from 2D strokes poses signi cant challenges since an in nity of 3D shapes can potentially re-project on the same drawing [START_REF] Barrow | Interpreting line drawings as threedimensional surfaces[END_REF]. Various approaches have been proposed to tackle the inherent ambiguity of this inverse problem.

Constrained-based approaches assume that the lines in a drawing represent speci c shape features, from which geometric constraints can be derived and imposed in an optimization framework. Popular constraints include surface orientation along smooth silhoue es [START_REF] Malik | Recovering three-dimensional shape from a single image of curved objects[END_REF], orthogonality and parallelism of edges on polyhedral models [LS96], symmetry [START_REF] Cordier | Inferring mirror symmetric 3d shapes from sketches[END_REF], and surface developability [JHR + 15] among others. However, the assumptions made by these methods o en restrict them to speci c classes of shapes, or speci c drawing techniques such as polyhedral sca olds [START_REF] Schmidt | Analytic drawing of 3d sca olds[END_REF], curvature-aligned cross-sections [SBSS12, XCS + 14] or cartoon isophotes [START_REF] Xu | Inverse toon shading: Interactive normal eld modeling with isophotes[END_REF]. In addition, most of these methods require clean vector drawings as input to facilitate the detection of suitable constraints, as well as to compute the various energy terms that drive the optimization. Unfortunately, converting rough sketches into clean vector drawings is a di cult problem in its own right [START_REF] Favreau | Fidelity vs. simplicity: a global approach to line drawing vectorization[END_REF], while methods capable of directly recovering 3D information from noisy drawings are prohibitively expensive [IBB15]. In this work, we bypass all the challenges of de ning, detecting and optimizing for multiple geometric constraints by training a deep convolutional neural network (CNN) to automatically predict 3D information from bitmap line drawings.

Interactive approaches reduce ambiguity in 3D reconstruction by leveraging user annotations. Single-image methods allow users to create 3D models from existing imagery by snapping parametric shapes to image contours [CZS + 13, SAG + 13] or by indicating geometric constraints such as equal length and angle, alignment and symmetry [START_REF] Gingold | Structured annotations for 2D-to-3D modeling[END_REF] or depth ordering [SKv + 14]. Other methods adopt an incremental work ow where users progressively build complex shapes by drawing, modifying and combining simple, easy to reconstruct 3D parts. Existing systems di er in the type of assumptions they make to reconstruct intermediate shapes from user strokes, such as smooth shapes in ated from silhoue es [IMT99, NISA07b], symmetric or multi-view pairs of 3D curves related by epipolar constraints [START_REF] Orbay | Sketch-based surface design using malleable curve networks[END_REF][START_REF] Bae | Ilovesketch: asnatural-as-possible sketching system for creating 3d curve models[END_REF], curves lying on pre-de ned planes or existing surfaces [START_REF] Bae | Ilovesketch: asnatural-as-possible sketching system for creating 3d curve models[END_REF][START_REF] Zheng | Smart canvas : Context-inferred interpretation of sketches for preparatory design studies[END_REF], visual hulls carved from orthogonal viewpoints [START_REF] Rivers | 3d modeling with silhoue es[END_REF]. e main drawback of such methods is that users have to mentally decompose the shape they wish to obtain, and construct it by following a carefully ordered series of sketching operations, o en performed from multiple viewpoints. In contrast, while our system supports incremental modeling, our CNN-based reconstruction engine does not rely on restrictive assumptions on the drawn shapes and allows users to draw a complete object from one viewpoint before visualizing and re ning it from other viewpoints.

Data-driven approaches exploit large collections of 3D objects to build priors on the shapes that users may draw. Early work focused on retrieving complete objects from a database [FMK + 03b, ERB + 12], which was later extended to part-based retrieval and assembly [LF08, XXM + 13] and to parameter estimation of pre-de ned procedural shapes [NGDGA + 16, HKYM16]. While our approach also learns shape features from object databases, we do not require these objects to be expressible by a known parametric model, nor be aligned and co-segmented into recon gurable parts. Instead, our deep network learns to generate shapes directly from pairs of line drawings and voxel grids, which allows us to train our system using both existing 3D model databases and procedurallygenerated shapes. Our approach is also related to the seminal work of Lipson and Shpitalni [START_REF] Lipson | Conceptual design and analysis by sketching[END_REF], who used a database of random polyhedrons to learn geometric correlations between 2D lines in a drawing and their 3D counterpart. e considered correlations include the angles between pairs and triplets of lines, as well as length ratios. ese priors are then used to evaluate the quality of a 3D reconstruction in a stochastic optimization. In a similar spirit, Cole et al. [CIF + 12] generate a large number of abstract blobs to serve as exemplars for a patch-based synthesis algorithm that converts line drawings into normal maps. While we build on these initial a empts, deep learning alleviates the need for custom feature extraction and optimization and allows us to handle a wider diversity of shapes. In addition, we integrate our 3D reconstruction engine in an interactive system capable of fusing information from multiple sketches drawn from di erent viewpoints.

Deep learning

Our work is motivated by the recent success of deep convolutional neural networks in solving di cult computer vision problems such as image classi cation [START_REF] Krizhevsky | Imagenet classication with deep convolutional neural networks[END_REF], semantic segmentation [START_REF] Long | Fully convolutional networks for semantic segmentation[END_REF], depth and normal prediction [EF15, WFG15]. In particular, our single-view volumetric reconstruction network follows a similar encoder-decoder architecture as depth prediction networks, although we also propose a multi-view extension that iteratively re nes the prediction as new sketches are drawn by the user.

is extension is inspired by iterative networks that implement a feedback loop to impose structural constraints on a prediction, for instance to re ne hand [START_REF] Oberweger | Training a feedback loop for hand pose estimation[END_REF] and human pose [START_REF] Carreira | Human pose estimation with iterative error feedback[END_REF].

Our architecture also shares similarities with deep networks tailored to multi-view 3D reconstruction. Choy et al. [CXG + 16] train a recurrent neural network (RNN) to predict a voxel reconstruction of an object from multiple uncalibrated photographs. Similarly, our iterative updater network can be seen as a recurrent network that is unrolled to simplify training. In addition, our modeling interface provides us with calibrated cameras by construction, since we know from which viewpoint each drawing is created. Unrolling the network allows us to apply the camera transformations explicitly as we iterate over each viewpoint. Ji et al. [JGZ + 17] describe a multi-view reconstruction network that fuses two aligned voxel grids, each being lled with the color rays originating from the pixels of two calibrated input views.

eir method extends to more than two views by averaging the predictions given by multiple pairs of views. Our updater network follows a similar strategy of implicitly encoding the camera orientation in the voxel grid. However, we iterate our updater over all drawings, one at a time, rather than combining multiple pairwise predictions at once. is design choice makes our method more sensitive to the order in which the drawings are created.

While CNNs have been mostly applied to photographs, they have also demonstrated impressive performances on tasks similar to ours, such as sketch cleanup [START_REF] Simo-Serra | Learning to Simplify: Fully Convolutional Networks for Rough Sketch Cleanup[END_REF] Two recent methods with similar goals have been developed concurrently to ours. First, Liu et al. [START_REF] Liu | Interactive 3D Modeling with a Generative Adversarial Network[END_REF] combine a voxel sculpting interface with a generative network to project the coarse voxel shapes modeled by the user onto a manifold of realistic shapes. We see our sketch-based interface as an alternative to voxel-sculpting. Second, Lun et al. [LGK + 17] propose a method to reconstruct a 3D object from sketches drawn from one to three orthographic views. We share several ideas with this la er work, such as training with synthetic drawings and predicting 3D shapes from multiple views. On the one hand, Lun et al. achieve ner reconstructions than ours by extracting a 3D surface from multiple depth maps rather than from a voxel grid. On the other hand, they train separate networks to process di erent combinations of front/side/top views, while our updater network allows us to fuse information from any of the 13 viewpoints available .2: Overview of our method. Le : We train our system with a large collection of 3D models, from which we generate voxel grids and synthetic drawings. We train a single-view CNN to predict an initial reconstruction from a single drawing, as well as an updater CNN to re ne a reconstruction given a new drawing. Right: e single-view CNN allows users to obtain a complete 3D shape from a single drawing. Users can re ne this initial result by drawing the shape from additional viewpoints. e updater CNN combines all the available drawings to generate the nal output. in our interface. In addition, we integrated our approach in an interactive system to demonstrate the novel work ow it enables. e le part of the gure illustrates the o ine training of the deep neural networks. Given a dataset of 3D models, we rst generate a voxel representation of each object, along with a series of line drawings rendered from di erent viewpoints. Our single-view CNN takes a drawing as input and generates a voxel grid with probabilistic occupancy. Our updater CNN also takes a drawing as input, and complements it with an initial 3D reconstruction provided by the single view network. Note that we transform this reconstruction according to the camera matrix of the input drawing, so that the updater CNN does not have to learn the mapping between the 3D volume and a given viewpoint. e updater network fuses the information from these two inputs to output a new 3D reconstruction. In practice, we repeatedly loop the updater over all available drawings of a shape to converge towards a multi-view coherent solution.

Overview

e right part of Figure 2.2 illustrates our online modeling work ow. e main motivation of our approach is to provide a work ow that seamlessly combines 2D sketching and 3D visualization. At the beginning of a modeling session, our interface displays an empty 3D space seen from a 3/4 view. We additionally display perspective guidance to help users draw with the same perspective as the one used to generate the training data, as detailed in Section 2.6. Once an initial drawing is completed, the user can invoke our single-view CNN to obtain its 3D reconstruction, which she can visualize from any viewpoint. e user can then re ne the shape by re-drawing it from a new viewpoint, using the current reconstruction as a reference. We feed each new drawing to the updater network to generate an improved 3D reconstruction.

Volumetric prediction from line drawings

e key enabler of our modeling system is a deep convolutional network that we train to predict voxelized objects from line drawings. We rst present our single-view network that takes as input one drawing to generate an initial 3D reconstruction. We then introduce our updater network that iteratively fuses multi-view information by taking as input a drawing and an existing volumetric prediction. We illustrate our network in Figure 2.3 and provide a detailed description in Appendix A. We discuss and compare our design choices against alternative solutions in Section 2.7.

Single view prediction

Our single-view network follows an encoder-decoder architecture typical of image generation tasks such as depth prediction [EF15], colorization [SLF + 17], novel view synthesis [PYY + 17]. e encoder passes the input image through a series of convolutions of stride 2 and recti ed linear units to progressively reduce spatial resolution while increasing feature dimensionality, e ectively extracting a compact representation of the image content.

e decoder passes this representation through a series of deconvolutions of stride 2 and recti ed linear units to progressively generate a new visualization of the image content, in our case in the form of a voxel grid.

Following [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF], we also include skip connections between the encoder and decoder layers of equal resolution.

ese skip connections allow local information to bypass the encoder bo leneck, providing the decoder with multi-scale features that capture Figure 2.3: Our network follows a so-called "U-net" encoder-decoder architecture. e input drawing is processed by a series of convolution and recti ed linear units to extract high-dimensional features at low spatial resolution. ese features are then processed by deconvolutions and recti ed linear units to generate the multi-channel image that represents our voxel grid. Skip connections, shown in green, concatenate the output of convolutional layers to the output of deconvolutional layers of the same resolution. ese connections allow high-resolution features to bypass the encoder bo leneck, allowing the network to exploit multi-scale information for decoding. e updater network also takes an existing prediction as input, shown in yellow.

both global context and ne image details. Isola et al. [START_REF] Isola | Image-toimage translation with conditional adversarial networks[END_REF] have demonstrated the e ectiveness of a similar "U-net" architecture for image-to-image translation tasks.

e task of our network is to classify each voxel as occupied or empty. We model the voxel grid as a multi-channel image, where each channel corresponds to one depth slice. Given this representation, our network can be seen as an extension of existing depth prediction networks [EF15], where we not only predict the depth of the visible surface but also all occluded voxels along the viewing ray corresponding to each pixel of the Here we illustrate a few iterations between two views, although we loop over more views when available.

input drawing. Since our modeling interface employs a perspective camera model, the voxel grid associated to a drawing actually forms a pyramid in 3D space. While we considered using an orthographic camera model for simplicity, our early experiments suggest that perspective cues signi cantly help the network to predict depth for regular shapes.

Multi-view prediction

Our updater network adopts a similar architecture as the one described above, except that it also takes as input an existing volumetric prediction and uses the input drawing to re ne it. In practice, we concatenate the existing prediction with the output of the second convolution layer, as illustrated in Figure 2.3 (yellow block). Note that we do not threshold the probabilities of occupancy in the existing prediction, which allows the updater network to account for the uncertainty of each voxel.

Iterative update.

e updater network processes one drawing at a time, which allows us to handle an unbounded number of views. However, each update may modify the prediction in a way that is not coherent with the other views. We found that we can achieve multi-view consistency by iteratively applying the updater network until convergence, akin to a coordinate descent optimization. Figure 2.4 illustrates this process with two views: the rst drawing is given as input to the single-view network to generate a rst prediction. is prediction is then given to the updater network along with the second drawing to produce a re ned solution. e resulting voxel grid can now be processed again by the updater, this time taking the rst drawing as input. is process generalizes to more views by looping the updater over all drawings in sequence. In practice, we used 5 iterations for all results in the paper. We evaluate the convergence of this iterative scheme in Section 2.7.

Resampling the voxel grid. As mentioned in Section 2.4.1, we designed our networks to process and generate voxel grids that are expressed in the coordinate system of the input drawing. When dealing with multiple drawings, the prediction obtained with any drawing needs to be transformed and resampled to be passed through the updater network with another drawing. In practice, we store the prediction in a reference voxel grid in world coordinates, and transform this grid to and from the coordinate system of each drawing on which we run the updater network.

Single-view re nement. While we designed the updater network to fuse information between multiple views, we found that it is also able to re ne a single-view prediction when used as a feedback loop on a single drawing, as shown in Figure 2.5. is observation may seem counter-intuitive, since the updater does not have more information than the single-view network in that con guration. We hypothesize that iterating the updater on a single drawing emulates a deeper network with higher capacity. Note also that a similar iterative re nement has been demonstrated in the context of pose estimation [CAFM16, OWL15].

Training

Details about the design of the training database are given in Chapter 4. For the results shown in this chapter, we use procedurally generated objects rendered with image-space contours. We detail here the viewpoints used to render contours and the training procedure of our system.

Viewpoints

Viewpoint is a major source of ambiguity for line drawing interpretation. We now describe our strategies to signi cantly reduce ambiguity for the single-view network by restricting camera orientation and position. We relax these restrictions for the updater network since it can handle more ambiguity thanks to the existing prediction it also takes as input.

Camera orientation. Representing a 3D object with a single drawing necessarily induces ambiguity. e design literature [START_REF] Eissen | Sketching: e Basics[END_REF] as well as other sketching systems [BBS08, SBSS12, XCS + 14] recommend the use of "informative" perspective viewpoints that reduce ambiguity by showing the 3D object with minimal foreshortening on all sides. We follow this practice to train our single-view network. We render each object from eight viewpoints positioned near the top corners of its bounding box, as shown in inset.

In addition, designers frequently adopt so-called "accidental" viewpoints when a representing shape with several drawings, such as the common front, side and top views. We include these viewpoints in the training set of our updater network since we found them useful to re ne axisaligned shapes. However, we do not use these viewpoints with the single-view network because they o en yield signi cant occlusions, which make them very challenging to interpret in the absence of additional information. e inset shows the additional viewpoints available to the updater network.

Camera position. Line drawings also have an inherent depth ambiguity: the same drawing can represent a small object close to the camera, or a big object far from the camera. We reduce such ambiguity for the single-view network by positioning the 3D object at a constant distance to the camera. In addition, we achieve invariance to 2D translations in the image plane by displacing the camera by a random vector perpendicular to the view direction.

However, a 2D translation in one view potentially corresponds to a translation in depth in another view, which prevents us imposing a constant distance to the camera for the updater network. We thus train the updater network with random 3D displacements of the camera. We found that the updater network succeeds in exploiting the existing prediction to position the object in depth.

Training procedure

We train our single view network by providing a line drawing as input and a ground truth voxel grid as output. However, training our updater network is more involved since we also need to provide an existing prediction as input. Given a drawing and its associated 3D model, we obtain an initial prediction by running the single-view network on another viewpoint of the same object. Figure 2.6 illustrates this process. We thus need to train the single-view network before training the updater. We trained our system using the Adam solver [KB14], using batch normalization [START_REF] Io | Batch normalization: Accelerating deep network training by reducing internal covariate shi[END_REF] to accelerate training. We xed Adam's parameters to β 1 = 0.5, β 2 = 0.999, = 1e -8.

We xed the learning rate to 0.0002 and trained the networks for 1, 000, 000 iterations. Training the complete system took around a week on a NVidia TitanX GPU.

Figure 2.7: Screenshots of our user interface. We display axis-aligned lines around the cursor to guide perspective drawing (le , shown in blue). We also allow users to draw construction lines (right, shown in red). Only the black lines are processed by our 3D reconstruction engine.

User interface

Figure 2.7 shows the interactive interface that we built around our deep 3D reconstruction engine. We designed this interface to reproduce traditional pen-on-paper freehand drawing. However, we introduced several key features to guide users in producing drawings that match the characteristics of our training data in terms of viewpoints and perspective.

Similarly to the seminal Teddy system [IMT99], the working space serves both as a canvas to draw a shape and as a 3D viewer to visualize the reconstruction from di erent viewpoints. While we allow free viewpoint rotations for visualization, we restrict the drawing viewpoints to the ones used for training. In particular, we impose a 3/4 view for the rst drawing, and snap the camera to one of the 13 viewpoints available to the updater for subsequent drawings.

e menu in the top le allows users to switch from 2D drawing to 3D navigation and also provides basic drawing tools (pen and eraser). In addition, we provide a "construction line" mode to draw sca olds [START_REF] Schmidt | Analytic drawing of 3d sca olds[END_REF] and other guidance that will not be sent to the network (shown in red in our interface). We found such lines especially useful to lay down the main structure of the object before drawing precise contours (shown in black). We further facilitate perspective drawing by displaying three orthogonal vanishing lines centered on the pen cursor (shown in blue) and by delineating the working space with a wireframe cube.

For each voxel, our networks estimate the probability that it is occupied. We render the shape by ray-casting the 0.5 iso-surface of this volume, using the volumetric gradient to compute normals for shading. We also export the shape as a triangle mesh, which we obtain by apply a marching cube [START_REF] Lorensen | Marching cubes: A high resolution 3d surface construction algorithm[END_REF] followed by a bilateral lter to remove aliasing [START_REF] Jones | Non-iterative, feature-preserving mesh smoothing[END_REF].

Results and evaluation

We now evaluate the expressivity and robustness of our method and compare it to alternative approaches. We use the dataset of abstract procedural shapes described in next chapter for these comparisons. All results were obtained with a voxel grid of resolution

64 3 .
In all cases we evaluate the quality of a volumetric reconstruction against ground-truth using the intersection-over-union (IoU) metric, which computes the ratio between the intersection and the union of the two shapes [START_REF] Häne | Hierarchical surface prediction for 3d object reconstruction[END_REF][START_REF] Riegler | Octnetfusion: Learning depth fusion from data[END_REF]. e main advantage of this metric over the classi cation accuracy is that it ignores the many correctly-classi ed empty voxels far away from the shapes. ese results were created with the version trained on abstract procedural shapes, which succeeds in interpreting these drawings of diverse man-made shapes. In particular, the CNNs manage to segment the foreground object from its background, combine information from di erent drawings to reconstruct occluded parts, create holes and concavities such as on the armchairs and on the last wagon of the train. Figure 2.9 shows the more challenging case of a house with a slanted roof, which is well reconstructed even though the networks were only trained with shapes made of axis-aligned cuboids and cylinders.

Creative modeling by experts

We provide screen captures of a few modeling sessions in the video accompanying the publication 1 , showing how users iterate between 2D sketching and 3D navigation within a single workspace. In particular, users can draw a complete shape from one viewpoint before rotating the 3D model to continue working on it from another viewpoint. is Figure 2.8: 3D scenes modeled using our system. Each object was modeled with two to three hand drawings, shown in insets.

Figure 2.9: Our system manages to reconstruct the slanted roof of this house, even though it was only trained on shapes composed from axis-aligned cuboids and cylinders.

work ow contrasts with the one of existing sketching systems that require users to decompose the object in simple parts [NGDGA + 16] or to provide multiple drawings of the shape before obtaining its reconstruction [START_REF] Rivers | 3d modeling with silhoue es[END_REF]. e video also shows animated 3D visualizations of the objects.

Evaluation by novice users

While we designed our system for artists who know how to draw in perspective, we also conducted a small study to evaluate whether our interface is usable by novices. We recruited six participants with limited drawing and 3D modeling skills (average score of 2.8 and 2.3 respectively on a 5-point Likert scale from 1 = poor to 5 = good). All participants followed a 15 minutes tutorial to learn how to draw a cube and a cylinder within our interface. We then asked each participant to model one of the two objects shown in inset, which we designed to be expressible by our shape grammar. Figure 2.10 shows the drawings and 3D models they created.

Overall, participants quickly managed to use our system (average score of 5.5 on a 7point Likert scale from 1 = hard to use to 7 = easy to use). However, many participants were disappointed by the lack of details of the reconstruction and gave an average score of 3.8 when asked if the 3D model corresponds well to their drawings (1 = not at all, 7 = very well). e best results were obtained by participants who planned their drawings ahead to best represent the shape centered on screen (P1 and P6). In contrast, two participants did not obtain a complete shape because they drew the object too small to capture details (P2) or too big to t in the drawing area (P5). is observation suggests the need for additional guidance to help novices compose a well-proportioned perspective drawing.

All participants judged the on-cursor vanishing lines helpful to draw in perspective (6.6 on average on a 7-point Likert scale from 1 = not helpful to 7 = very helpful). P3 commented "Sometimes it seems to me that the guides point to wrong directions, but that is just my sense of perspective that is wrong!". All the participants followed the vanishing lines to draw cuboid shapes. However, several participants commented that they would have liked guidance to draw 3D cylinders. In particular, P2 drew very approximate cylinders to represent the wheels of his car, which our system failed to interpret properly.

Finally, even though P1 and P6 created many drawings, several are redundant and did not help our system improve its prediction. We believe that users would interact more In contrast, P2 drew the object too small and with too approximate perspective to be reconstructed by our system, while P5 le too li le room for the handle of the hammer.

e ectively with our system if we could indicate which regions of the shape is underconstrained. Recent work on uncertainty quanti cation in deep networks form a promising direction to tackle this challenge [KG17].

Convergence of the updater

In what follows, we count one iteration each time the updater network visits all views in sequence. Figure 2.11(le) plots the L 2 distance between successive iterations, averaged over 50 abstract shapes rendered from two, three and four random views. While we have no formal proof of convergence, this experiment shows that the algorithm quickly stabilizes to a unique solution. However, Figure 2.11(right) shows that the accuracy decreases slightly with iterations. We suspect that this loss of accuracy is due to the fact that the updater is only trained on the output of the single-view network, not on its own output. However, training the updater recursively would be more involved. We found that 5 iterations provide a good trade-o between multi-view coherence and accuracy.

Comparisons

To the best of our knowledge, our method is the rst that can automatically reconstruct a 3D model from a set of multiple perspective bitmap drawings. As a baseline, we compare our approach with a silhoue e carving algorithm [MA83]. We implemented two versions of silhoue e carving for this comparison. e rst version takes as input the same drawings as the ones provided to our method, which necessarily includes a 3/4 view for the rst drawing to be fed to the single-view network, and di erent random views for the other drawings. e second version only takes drawings from orthogonal views, which is the most informative setup for silhoue e carving. As shown in Figure 2.12 (right) (le), our approach outperforms silhoue e carving in both conditions. In particular, our method achieves a high IoU ratio with as li le as one view. Figure 2.12 provides a visual comparison between our reconstructions and the ones by silhoue e carving. Our approach is especially bene cial in the presence of concavities.

Figure 2.13 evaluates our network architecture against several alternative designs. We perform this evaluation on the single-view network since any improvement made on it would directly bene t the updater. A rst important design choice to evaluate is the andred). e strength of our approach is that it achieves high accuracy from only one view, and remains competitive with silhoue e carving with four views. Bo om: Reconstructed objects using our method (top row) and silhoue e carving (bo om row) with 3 random views. Our method can handle concavities that cannot be recovered by carving.

choice of the volumetric representation. While we chose a binary representation of the volume, we also considered a signed distance function. However, our experiments reveal that this alternative representation reduces quality slightly, producing smoother predictions than ours. We also compare our U-net architecture with the multi-scale depth prediction network proposed by Eigen and Fergus [EF15], which we modi ed to output a multi-channel image. is network follows a similar encoder-decoder strategy as ours but does not include as many skip-connections between multi-scale layers, which also reduces the quality of the prediction. [EF15] and with a network trained to predict a signed-distance function rather than a binary voxel grid. Our design outperforms these two alternatives.

Limitations

Figure 2.14 shows drawings with thin structures that are challenging to reconstruct for our current implementation based on a 64 3 voxel grid. High-resolution volumetric representations is an active topic in deep learning [HTM17, RUBG17, FSG17] and we hope to bene t from progress in that eld in the near future. An alternative approach is to predict multi-view depth maps, as proposed by Lun et al. [LGK + 17], although these depth maps need to be registered and fused by an optimization method to produce the nal 3D surface Nevertheless, we present in Chapter 3 an approach to combine voxels and normal maps in order to recover sharp surface features.

Our deep networks also have di culty interpreting drawings with many occlusions, as shown in Figure 2.15. Fortunately, designers tend to avoid viewpoints with many occlusions since they are not the most informative. Nevertheless, occlusions are inevitable on objects composed of many parts, and we observed that the quality of the reconstruction can reduce as users add more details to their drawings. A simple solution to this limitation would consist in le ing the user freeze the reconstruction before adding novel parts. is feature could be implemented by copying the reconstruction in a temporary bu er, and agging all the lines as construction lines to be ignored by the system. Users Chapter 2. 3D sketching using multi-view deep volumetric prediction V i e w 1 V i e w 1

V i e w 1 V i e w 2

V i e w 2 V i e w 2 could then proceed with drawing new parts which would be interpreted as a new object, and we could display the existing reconstruction and the new parts together by taking the union of their volumes.

Performances

We implemented our system using the Ca e library for deep learning [JSD + 14] and OpenGL for real-time rendering in the user interface. Table 2.1 provides timings at test time for an increasing number of views, measured on a desktop computer with an NVidia TitanX GPU, and on a MacBook Pro laptop using only the CPU. Our 3D reconstruction engine scales linearly with the number of views and outputs a prediction in less than a second using GPU and within a few seconds using CPU, on a 64 3 voxel grid with 5 iterations of the updater. Our single-view and updater networks occupy 775MB of memory together.

Conclusion

In this chapter, we explored the use of deep learning for sketch based modeling. We trained convolutional neural networks to predict voxel grids from bitmap sketches. Our system, composed of a single-view network and an updater network, allows to get a 3D volume from one sketch and fuse information from multiple drawings. We integrated these networks into an interactive application where the user can draw a shape from one viewpoint, rotate around the predicted shape, and re ne it from new viewpoints.

C h a p t e r 3

Combining voxel and normal predictions for multi-view 3D sketching is work was done in collaboration with David Coeurjolly (Université de Lyon -CNRS) and Jacques-Olivier Lachaud (Université de Savoie). It will be presented at Shape Modeling International 2019.

Introduction

A challenge when using generative networks for sketch-based modeling is the choice of a geometric representation that can both represent the important features of the shape while also being compatible with convolutional neural networks. In the previous chapter, we used voxel grids that form a natural 3D extension to images. However, the memory consumption of voxel grids limits their resolution, resulting in smooth surfaces that lack details. Alternatively, several methods adopt image-based representations, predicting depth and normal maps from one or several drawings [LGK + 17, LPL + 18, SDY + 18]. While these maps can represent ner details than voxel grids, each map only shows part of the surface, and multiple maps from di erent viewpoints need to be fused to produce a closed object.

Motivated by the complementary strengths of voxel grids and normal maps, we propose to combine both representations within the same system. We complement our volumetric approach with a normal prediction network similar to the one used by Su et al. [SDY + 18], which we use to obtain a normal map for each input sketch. e voxel grid thus provides us with a complete, closed surface, while the normal maps allow us to recover details in the parts seen from the sketches.

Our originality is to not only use the voxel grid as a preliminary prediction to be shown to the user, but also as a support for normal map fusion. To do so, we rst locate the voxels delineating the object's boundary, and re-project the normal maps on the resulting surface to obtain a distribution of candidate normals for each surface element. We then solve for the smoothest normal eld that best agrees with these observations [START_REF] Coeurjolly | Piecewise smooth reconstruction of normal vector eld on digital data[END_REF]. Finally, we optimize the surface elements to best align with this normal eld [START_REF] Coeurjolly | Digital surface regularization by normal vector eld alignment[END_REF]. We evaluate our approach on the dataset presented in Chapter 4, on which we recover smoother surfaces with sharper discontinuities.

Related work

As stated in previous chapter, reconstructing 3D shapes from line drawings has a long history in computer vision and computer graphics. Recent work exploit deep neural networks to predict 3D information from as li le as a single bitmap line drawing. However, convolutional neural networks have been originally developed to work on images, and several alternative solutions have been proposed to adapt such architectures to produce 3D shapes.

A rst family of methods focuses on parametric shapes such as buildings [NGDGA + 16], trees [START_REF] Huang | Shape synthesis from sketches via procedural models and convolutional networks[END_REF], and faces [START_REF] Han | Deepsketch2face: A deep learning based sketching system for 3d face and caricature modeling[END_REF], and train deep networks to regress their parameters. While these methods produce 3D shapes of very high quality, extending them to new classes of objects require designing novel parametric models by hand.

A second family of methods target arbitrary shapes and rely on encoder-decoder networks to convert the input drawing into 3D representations. e system presented in Chapter 2 falls into this family. However, it is limited to voxel grids of resolution 64 3 , which is too li le to accurately capture sharp features. Alternatively, Su et al. [SDY + 18] and Li et al. [LPL + 18] propose encoder-decoder networks to predict normal and depth maps respectively. While these maps only represent the geometry visible in the input drawing, Li et al. allow users to draw the object from several viewpoints and fuse the resulting depth maps to obtain a complete object. A similar image-based representation has been proposed by Lun et al. [LGK + 17], who designed a deep network to predict depth maps from 16 viewpoints, given one to three drawings as input. In both cases, fusing the multiple depth maps requires careful point set registration and optimization to compensate for misalignment. Our approach combines the strength of both voxel-based and image-based representations. On the one hand, per-sketch normal maps provide high-resolution details about the shape, while on the other hand, the voxel grid provides an estimate of the complete shape as well as a support surface for normal fusion.

Line drawing interpretation is related to the problem of 3D reconstruction from photographs, for which numerous deep-learning solutions have been proposed by the computer vision community. While many approaches rely on voxel-based [CXG + 16, JGZ + 17] and image-based [TDB16] representations as discussed above, other representations have been proposed to achieve ner reconstructions. Octrees have long been used to eciently represent volumetric data, although their implementation in convolutional networks requires the de nition of custom operations, such as convolutions on hash tables [START_REF] Tatarchenko | Octree generating networks: E cient convolutional architectures for high-resolution 3d outputs[END_REF] or cropping of octants [START_REF] Häne | Hierarchical surface prediction for 3d object reconstruction[END_REF]. Point sets have also been considered as an alternative to voxel-based or image-based representations [START_REF] Fan | A point set generation network for 3d object reconstruction from a single image[END_REF], and can be converted to surfaces in a post-process as done for depth map fusion. More recently, several methods a empted to directly predict surfaces. Pixel2Mesh [WZL + 18] relies on graph convolutional networks [BBL + 17] to predict deformations of a template mesh. However, this approach is limited to shapes that share the same topology as the template, an ellipsoid in their experiments. In contrast, Groueix et al. [GFK + 18] can handle arbitrary topology by predicting multiple surface patches that cover the shape. Since these patches do not form a single, closed surface, their approach can also be used to generate a dense point set from which a surface can be computed as a post-process. In contrast to the above approaches, we chose to combine voxel-based and image-based representations because both can be implemented using standard convolutional networks on regular grids.

Overview

Our method takes as input several sketches of a shape drawn from di erent viewpoints (Figure 3.1a). We rst use existing deep neural networks [DAI + 18, IZZE17] to predict a volumetric reconstruction of the shape, along with one normal map per sketch (Figure 3.1b). We then project the normal maps on the surface of the volumetric reconstruction and combine this information with the initial surface normal to obtain a distribution of normals for each surface element (Figure 3.1c,d). While the normals coming from different sources mostly agree, some parts of the shape exhibit signi cant ambiguity due to erroneous predictions and misalignment between the input sketches and the volumetric reconstruction. erefore in the next step of our approach we reconstruct a piecewisesmooth normal eld by a variational method [START_REF] Coeurjolly | Piecewise smooth reconstruction of normal vector eld on digital data[END_REF] that lters the noisy distribution of normals and locates sharp surface discontinuities (Figure 3.1e).

e reconstruction energy is weighted by the variance of the distribution of normal vectors within each Figure 3.1: Overview of our method. Our method takes as input multiple sketches of an object (a). We rst apply existing deep neural networks to predict a volumetric reconstruction of the shape as well as one normal map per sketch (b). We re-project the normal maps on the voxel grid (c, blue and yellow needles), which complement the surface normal computed from the volumetric prediction (c, pink needles). We aggregate these di erent normals into a distribution represented by a mean vector and a standard deviation (d, colors denote low variance in green and high variance in red). We optimize this normal eld to make it piecewise smooth (e) and use it to regularize the surface (f). e nal surface preserves the overall shape of the predicted voxel grid as well as the sharp features of the predicted normal maps.

surface element, which acts as a con dence estimate. Finally, we regularize the initial surface such that its quads and edges align with this normal eld [START_REF] Coeurjolly | Digital surface regularization by normal vector eld alignment[END_REF], resulting in a piecewise-smooth object that follows the overall shape of the volumetric prediction as well as the crisp features of the predicted normal maps (Figure 3.1f).

Volumetric and normal prediction

Our method builds on prior work to obtain its input volumetric and image-based predictions of the shape. e full description of the volumetric prediction can be found in Chapter 2. For completeness, we brie y describe here the two types of predictions and refer the reader either to previous chapter or to the original paper for additional details.

Volumetric prediction

e approach presented in Chapter 2 relies on two deep convolutional networks. First, the single-view network is in charge of predicting occupancy in a voxel grid given one drawing as input. en, the updater network re nes this prediction by taking another drawing as input. When multiple drawings are available, the updater network is applied iteratively over the sequence of drawings to achieve a multi-view coherent reconstruction. Both networks follow a standard U-Net architecture [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] where the drawing is processed by a series of convolution, non-linearity and down-scaling operations before being expanded back to a voxel grid, while skip-connections propagate information at multiple scales. is method produces a voxel grid of resolution 64 3 from drawings of resolution 256 2 .

Normal prediction

We obtain our normal prediction using a U-Net similar to the one we use for volumetric prediction. e network takes as input a drawing of resolution 256 2 and predicts a normal map of the same resolution. Lun et al. [LGK + 17] and Su et al. [SDY + 18] have shown that this type of architecture performs well on the task of normal prediction from sketches. We base our implementation on Pix2Pix [START_REF] Isola | Image-toimage translation with conditional adversarial networks[END_REF], from which we remove the discriminator network for simplicity.

Data fusion

e main novelty of our method is to combine a coarse volumetric prediction with perview normal maps to recover sharp surface features. However, these di erent sources of information are o en not perfectly aligned due to errors in the predictions as well as in the input line drawings. Prior work on multi-view prediction of depth maps [LGK + 17, LPL + 18] tackle a similar challenge by aligning the corresponding point sets using iterative non-rigid registration. We instead implement this data fusion in two stages, each one being the solution of a di erent variational formulation.

In the rst stage, we project the normal predictions onto the surface of the volumetric prediction, and complement this information with normals estimated directly from the voxel grid. We then solve for the piecewise-smooth normal eld that best agrees with all these candidate normals, such that sharp surface discontinuities automatically emerge at their most likely locations [START_REF] Coeurjolly | Piecewise smooth reconstruction of normal vector eld on digital data[END_REF]. In the second stage, we optimize the surface of the voxel grid such that it respects the normal eld resulting from the rst stage, while staying close to the initial predicted voxel geometry [START_REF] Coeurjolly | Digital surface regularization by normal vector eld alignment[END_REF].

Generation of the candidate normal eld

We begin by thresholding the volumetric prediction to obtain a binary voxel grid. e boundary of this collection of voxels forms a quadrangulated surface Q made of isothetic unit squares, which we call surface elements in the following. We then project the center of each surface element into each normal map where it appears to look up the corresponding predicted normal. We use a simple depth test to detect if a given surface element is visible from the point of view of the normal map. We also compute the gradient of the volumetric prediction using nite di erences, which we use as an additional estimate of the surface normal. We aggregate these various estimates into a spherical Gaussian distribution, with normalized mean n and standard deviation σ n . For surface elements not visible in any normal map, we set n to the estimate given by the volumetric prediction.

Reconstruction of a piecewise-smooth normal vector eld

For each surface element, we now have a unique normal vector n as well as an estimate of its standard deviation σ n . We obtain our nal piecewise-smooth normal eld n * by minimizing a discrete variant of the Ambrosio-Tortorelli energy [START_REF] Coeurjolly | Piecewise smooth reconstruction of normal vector eld on digital data[END_REF].

On a manifold Ω, the components {n * 0 , n * 1 , n * 2 } of n * and a scalar function v that captures discontinuities are optimized to minimize

AT ε (n * , v) := Ω α i |n * i -ni | 2 + i v 2 |∇n * i | 2 + λε|∇v| 2 + λ ε (1 -v) 2 4 ds , (3.1)
for some parameters α, λ, ε ∈ R. Note that the scalar function v tends to be close to 0 along sharp features and close to 1 elsewhere.

e rst term ensures that the output normal n * is close to the noisy input n. e second term encourages n * to be smooth where there is no discontinuity.

e last two terms control the smoothness of the discontinuity eld v and encourage it to be close to 1 almost everywhere by penalizing its overall length. Note that xing all the n * i (resp. v), the functional becomes quadratic and its gradient is linear in v (resp. all the n * i), leading to an e cient alternating minimization method to obtain the nal n * and v. Parameter α controls the balance between data delity and smoothness. A high value be er preserves the input while a low value produces a smoother eld away from discontinuities. Parameter λ controls the length of the discontinuities -the smaller it is, the more discontinuities will be allowed on the surface. We use the same values λ = 0.05 and α = 0.1 for all our results. e last parameter ε is related to the Γ-convergence of the functional and decreases during the optimization. We used the sequence (4, 2, 1, 0.5) for all our results. Please refer to [START_REF] Coeurjolly | Piecewise smooth reconstruction of normal vector eld on digital data[END_REF] for more details about the discretization of Equation (3.1) onto the digital surface Q and its minimization. We further incorporate our knowledge about the distribution of normals at each surface element by de ning α as a function of the standard deviation σ n . Intuitively, we parameterize α such that it takes on a low value over elements of high variance, e ectively increasing the in uence of the piecewise-smoothness term in those areas:

α(s) := 2(1 -σ n (s)) 4 .
at a surface element s ∈ Q. is local weight allows the Ambrosio-Tortorelli energy to di use normals from reliable areas to ambiguous ones. We set α(s) to 0.8 for surface elements not visible in any normal map.

Surface reconstruction

Equipped with a piecewise-smooth normal eld n * , we next reconstruct a regularized surface whose quads are orthogonal to the prescribed normals. We achieve this goal using the variational model proposed in [START_REF] Coeurjolly | Digital surface regularization by normal vector eld alignment[END_REF]. Let V denotes the vertices {v i } of the input digital surface Q, F the set of (quadrilateral) faces and n * f the prescribed normal vector on face f , we solve for the quad surface vertex positions P * = {p * i } that minimize the following energy function:

E(P *) := α n i=1 p i -p * i 2 + β f ∈F e j ∈∂f (e j • n * f) 2 + γ n i=1 p * i -b * i 2 . (3.2)
where " • " is the standard R 3 scalar product, e j ∈ ∂f is an edge of the face f (equal to some p k -p l), b * i is the barycenter of the vertices adjacent to p * i , and α , β γ ∈ R (set respectively to 10 -3 , 1 and 10 -1 in all our experiments). e rst term encourages the regularized surface to stay close to the input surface. e second term encourages the faces to be as orthogonal as possible to the prescribed normal vector eld n * . e last term enhances the aspect ratio of the nal quads by displacing the vertices onto their tangent planes. Since Equation (3.2) is a sum of quadratic terms with linear gradients with respect to the vertex positions, the optimal positions P * can be obtained by solving a sparse linear system (see [START_REF] Coeurjolly | Digital surface regularization by normal vector eld alignment[END_REF] for details). As illustrated in Figure 3.2, this surface reconstruction guided by our piecewise-smooth normal vector eld e ectively aligns quad edges with sharp surface discontinuities.

Evaluation

We rst study the impact of the di erent components of our method, before comparing it against prior work. For all these results, we use the dataset described in Chapter 2 and 4. is dataset contains shapes rendered from front, side, top and 3/4 views. Note however that we only train and use the normal map predictor on 3/4 views because the other views are o en highly ambiguous.

Ablation study

Figure 3.3 compares the surface reconstructions obtained with di erent sources of normal guidance, and di erent strategies of normal fusion. We color surfaces according to their orientations, as shown by the sphere in inset. As a baseline, we rst extract the surface best aligned with the gradient of the volumetric prediction, similarly to previous chapter. Because the volumetric prediction is noisy and of low resolution, this naive approach produces bumpy surfaces that lack sharp features (second column). Optimizing the normal eld according to the Ambrosio-Tortorelli energy removes some of Input voxel surface {n g } {n g } + AT {n} {n} + AT n * = {n} + weighted AT Figure 3.3: Ablation study showing the surface obtained using various normal elds as guidance. e volumetric gradient n g produces bumpy surfaces that lack sharp features (second column), even a er being optimized according to the Ambrosio-Tortorelli energy (third column). Our aggregated normal eld n yields multiple surface discontinuities where the normal maps are misaligned, such as on the arms and the seat of the armchair (fourth and h column). We obtain the best results by reducing the in uence of the aggregated normals in areas of low con dence (last column, n *). the bumps, but still produces rounded corners (third column). Aggregating the volumetric and image-based normals into a single normal eld produces smoother surfaces, but yield bevels where the normal maps are misaligned (fourth and h column). We improve results by weighting the aggregated normal eld according to its con dence, which gives the Ambrosio-Tortorelli energy greater freedom to locate surface discontinuities in ambiguous areas (last column).

We further evaluate the importance of our local weighting scheme in Figure 3.4. We rst show surfaces obtained using a constant α in the Ambrosio-Tortorelli energy. A low α produces sharp creases and smooth surfaces but the nal shape deviates from the input, as seen on the cylindrical lens of the camera that becomes conic (Figure 3.4b). On the other hand, a high α yields a surface that remain close to the input, but misses some sharp surface transitions (Figure 3.4d). By de ning α as a function of the con dence of the normal eld, our formulation produces a surface that is close to the input shape and locates well sharp transitions even in areas where the normal maps are misaligned (Figure 3.4e).

Performances

We implemented the deep networks in Ca e [JSD + 14] and the normal eld and surface optimizations in DGtal1 . Both the prediction and optimization parts of our method take approximately the same time. e volumetric prediction takes between 150 and 350 milliseconds, depending on the number of input sketches. e normal prediction takes around 15 milliseconds per sketch. In contrast, normal eld optimization takes around 700 milliseconds and surface optimization takes around 30 milliseconds. Note however that we measured these timings using GPU acceleration for the deep networks, while the normal eld and surface optimizations are performed on the CPU.

Comparisons

Figure 3.5 compares our surfaces with the ones obtained in Chapter 2, where we apply a marching cube algorithm on the volumetric prediction. Our method produces much smoother surfaces while capturing sharper discontinuities. While our method bene ts from the guidance of the predicted normal maps, it remains robust to inconsistencies between these maps and the voxel grid, as shown on the armchair (top right) where one of the normal maps suggests a non-at back due to a missing line in the input drawing.

Robustness

Figure 3.6 evaluates the robustness of our method to noisy volumetric predictions, showing that our combination of normal map guidance and piecewise-smooth regularization yields stable results even in the presence of signi cant noise. We also designed our method to be robust to normal map misalignment, common in a sketching context.

Limitations

Figure 3.8 illustrates typical limitations of our approach. Since our method relies on normal maps to guide the surface reconstruction, it sometimes misses surface discontinuities between co-planar surfaces, as shown on the top of the locomotive. An additional drawing would be needed in this example to show the discontinuity from bellow. A side e ect of the surface optimization energy (Equation 3.2) is to induce a slight loss of vol- ume, which is especially visible on thin structures like the wings of the airplane and the toothbrush. Possible solutions to this issue includes iterating between regularizing the surface and restoring volume by moving each vertex in its normal direction. Another limitation of our approach is that normal maps only help recovering ne details on visible surfaces, while hidden parts are solely reconstructed from the volumetric prediction, as shown on the back of the camera in Figure 3.6.5. Finally, because we favor piecewise-smooth surfaces, our approach is be er suited to man-made objects than to organic shapes made of intricate details.

Input sketches Chapter 2 Ours Normal maps Figure 3.8: Limitations of our method. Our method cannot recover surface discontinuities that are not captured by the normal maps, such as the top of the locomotive. e surface optimization tends to shrink the object, as seen on thin structures like the wings of the airplane and the toothbrush.

Figure 3.9: Since normal maps only capture visible surfaces, the back and bottom of this camera is solely de ned by the volumetric prediction. Nevertheless, the method reconstructs a smooth surface in such cases as it still bene ts from the piecewise-smoothness of the Ambrosio-Tortorelli energy.

Conclusion

In this chapter, we showed how volumetric and normal map predictions can be combined, using the volumetric representation to capture hidden parts and the image-based representation to capture sharp details. We use the volumetric representation as a support for normal map fusion by solving for a piecewise-smooth normal eld over the voxel surface. is method is especially well suited to man-made objects dominated by a few sharp discontinuities.

C h a p t e r 4

Generating synthetic drawings for training

Introduction

One of the major challenge of using deep learning is the access to training data. In our case, collecting thousands of hand-drawings registered with 3D objects would be very costly and time consuming. Similarly to prior data-driven approaches [ERB + 12, XXM + 13, HKYM16, NGDGA + 16], we alleviate the need for collecting real-world drawings by generating synthetic line drawings from 3D objects using non-photorealistic rendering. is allows us to easily adapt our system to the design of di erent types of objects by generating training data that is representative of such objects.

However, it is not obvious to nd a database that would allow the design of a large variety of shapes. In online repositories of real objects, like ShapeNet, a few classes such as cars or chairs concentrate the majority of objects. is could prevent the user to design shapes out of this space. We instead propose to use abstract shapes generated procedurally. is allows to generate a su cient amount of varied objects so that the system learns to interpret the lines instead of learning to recognize categories of objects. We design a simple shape grammar that assemble geometric primitives (cuboids, cylinders) in a random way to produce symmetric objects and show that it allows to design a large variety of shapes. We also train our single view network on a small dataset of chairs and vases and show that, even if each network performs best on the database on which it was trained, our procedural dataset allows to capture the global shape quite accurately for other datasets.

We generate our contours using standard contour extraction methods. But these clean line drawings are not representative of how human draw. Even good artists draw noisy lines because of slight shaking of the pen or imprecise direction of the line. We thus create a new dataset of contours that mimics some of the errors made by humans. Unfortunately, our preliminary experiment do not allow to conclude on the usefulness of this addition.

Related work 4.2.1 Synthetic data for machine learning

Access to training data is notoriously a major challenge for deep learning methods. e use of synthetic images has become common in a variety of applications for natural images, such as segmentation, normal estimation, 3D reconstruction or material acquisition. Depending of the targeted application, the method to generate images varies from physically based rendering of indoor scenes [ZSY + 17] to rendering of individual objects composited with random background [START_REF] Su | Render for cnn: Viewpoint estimation in images using cnns trained with rendered 3d model views[END_REF], but also capturing frames from realistic videogames [START_REF] Stephan R Richter | Playing for data: Ground truth from computer games[END_REF] or generating fake materials with dedicated so wares [DAD + 18].

For sketch-related applications, the use of synthetic data is even more crucial. While it is possible to collect a large quantity of (non labeled) photographs online, collecting sketches is much harder. Datasets of cartoon drawings of objects have been collected via crowd-sourcing [ERB + 12] but building a dataset of perspective drawings registered with 3D models raises many additional challenges. In particular, we assume that users of our system are su ciently skilled to draw 3D objects in approximate perspective, which may not be the case for the average Mechanical Turk worker [START_REF] Eitz | How do humans sketch objects?[END_REF]. In addition, crowdsourcing such a drawing task would require signi cant time and money, which prevents iterative design of the dataset, for instance to adjust the complexity and diversity of the 3D shapes. For these reason, synthetic drawings extracted from 3D objects have been used in all sketch based retrieval or modeling systems, since the method of Eitz et

Non Photorealistic Rendering

e problem of extracting line contours from 3D objects has been long studied in the Non Photorealistic Rendering community. We refer the reader to the recent tutorial by Hertzmann and Bénard [START_REF] Bénard | Line drawings from 3d models[END_REF] for a survey of the di erent types of contours that can be extracted and how they can be stylized. In 2008, Cole et al. [CGL + 08] analyze how human-drawn lines align with these line contours and show that the majority but not all lines drawn by artists align with synthetic contour lines.

For simplicity reasons, we only use contours in this project but several works have shown that other types of sketching features can be rendered such as hatching [START_REF] Hertzmann | Illustrating smooth surfaces[END_REF]KNBH12a], shading [START_REF] Xu | Inverse toon shading: interactive normal eld modeling with isophotes[END_REF] or construction lines [SIJ + 07]. Moreover, a programmable Non Photorealistic Renderer for line is now available in Blender [START_REF] Grabli | Programmable style for npr line drawing[END_REF], making easier the rendering of more complex styles.

Generation of contours

Similarly to recent work on sketch-based procedural modeling [NGDGA + 16, HKYM16], we bypass the challenges of real-world data collection by generating our training data using non-photorealistic rendering. is approach gives us full control over the variability of the dataset in terms of shapes, rendering styles, and viewpoints.

3D objects

e main strength of our data-driven approach is its ability to capture the characteristic features of a class of objects. We experimented with two sources of 3D object datasets: online repositories and shape grammars.

Online repositories. A rst usage scenario of our system is to train it with speci c object classes. For instance, a furniture designer could train the system with chairs and tables, while a car designer could train the system with various vehicles. In practice, we tested this approach with the two largest classes of the ShapeCOSEG dataset [WAvK + 12], which contain 400 chairs and 300 vases, some of which are shown in Figure 4.1. For each dataset, we used 90% of the objects for training and the other 10% for testing. Shape grammars. One drawback of online shape repositories is that they are dominated by a few object classes, such as tables, chairs, cars and airplanes [CFG + 15], which may not cover the types of objects the user wants to model. In addition, many of these objects are very detailed, while we would like our system to also handle simple shapes to allow coarse-to-ne explorative design. We address these limitations by training our system with abstract shapes with varying degrees of complexity.

C h a i r s P r o c e d u r a l s h a p e s V a s e s

We designed a simple procedure that generates shapes by combining cubes and cylinders with CSG operations. Our procedure iteratively constructs a shape by adding or substracting random primitives. At each iteration, we position the new primitive on a random face of the existing shape, scale it by a random factor in each dimension and displace it by a small random vector while maintaining contact. e primitive is either merged with or subtracted from the existing shape. We inject high-level priors in this procedure by aligning each primitive with one of the three world axes, and by symmetrizing the shape with respect to the xy plane in world coordinates.

e resulting axis-aligned, symmetric shapes resemble man-made objects dominated by at orthogonal faces, yet also contain holes, concavities and curved parts. We generated 20, 000 random shapes with this procedure, some of which are shown in Figure 4.1. We isolated 50 of these shapes for testing, and used the rest for training.

Voxelization. We voxelize each object at a resolution of 64 3 voxels using Binvox [START_REF] Nooruddin | Simpli cation and repair of polygonal models using volumetric techniques[END_REF][START_REF] Min | Binvox 3d mesh voxelizer[END_REF]. We scale each object so that the voxel grid covers 120% of the largest side of the object's bounding box.

Line rendering

For the results presented in Chapter 2 and some in this chapter, we adopt the simple image-space contour rendering approach of Saito and Takahashi [START_REF] Saito | Comprehensible rendering of 3-d shapes[END_REF], who apply an edge detector over the normal and depth maps of the object rendered from a given viewpoint. Edges in the depth map correspond to depth discontinuities, while edges in the normal map correspond to sharp ridges and valleys. We render each drawing at a resolution of 256 2 pixels.

We adopt a di erent object-based detector to experiment with noisy drawings. Indeed, object-space contours provide us with vectorial lines that facilitate stylization. is rendering is used only for the study on the in uence of noise and details about how we generate them are presented in the next section.

Incorporating noise

As shown in Figure 4.2, our volumetric network trained with perfect data is moderately robust to the noise present in human drawings. It o ers robustness to small amount of noise, such as wavy, incomplete or overshot lines and slight perspective distortions although the quality of the nal objects slightly decreases. However, drawings made under drastically di erent or wrong perspectives yield distorted shapes. We also observed sensitivity to over-sketching and varying line thickness.

In order to reduce this sensitivity to noise, we generated a new dataset of contours that incorporate synthetic noise. We rst extract contours from the objects in 3D space by detecting occluding contours and sharp changes of orientation (if the angle between two triangles is larger than 60 degrees). is simple detector is su cient for our procedural objects as they do not contain smooth ridges and valleys. We then test the visibility of each portion and chain them so that each visible line in 2D is represented by a unique vectorial line. Finally, we apply noise functions on each of these lines to mimic errors made by human. We implemented three di erent types of noise usually made by humans, shown in Figure 4.3:

Noisy lines is simulates the shaking of the pen. We sample each line with a constant density and displace each point along the normal to the line. We move each point in a coherent way with its neighbors so that the noise smoothly changes along the line.

Imprecise endpoints and direction

is simulates errors in the direction of lines and in the location of endpoints, which usually results in gaps or crossing near corners . We randomly displace endpoints along the tangent of the line and apply small random rotation, translation and scaling to each individual line.

Oversketching

is simulates line repetitions that occurs when the user draw several times the same line. We repeat a random amount of time (between 1 and 2) each line with a di erent noise.

Results and evaluation

In the rst part of this evaluation, we use the image-space contours described in Section 4.3.2 along with the volumetric single view network presented in Chapter 2 to evaluate the performances on several objects databases. In the second part, we evaluate how the robustness evolve when using the noisy contours described in Section 4.3.3 for the normal prediction network used in previous chapter. We trained the single-view network with three di erent datasets (depicted with di erent colors), and evaluated each version on drawings from the three testing sets (distributed on the x-axis). e network trained on abstract procedural shapes captures the overall shape of objects from other categories, while the networks trained on chairs and vases generalize poorly. Each network performs best on the shapes for which it has been trained.

One of the motivations for our deep-learning-based approach is to allow adaptation to di erent classes of objects. Figure 4.5 provides a quantitative evaluation of this ability for the single-view network. is gure plots reconstruction quality over the three testing datasets, using all three training datasets. As expected, the network trained on a given dataset performs best on this dataset, showing its specialization to a speci c class. For instance, only the network trained on vases succeeds to create hollow shape from an ambiguous drawing (fourth row, third and fourth column). Interestingly, the network trained on abstract procedural shapes is second best on the other datasets, suggesting a higher potential for generalization. Figure 4.6 shows representative results for each condition. While the networks trained on chairs and vases manage to reconstruct objects from these classes, they fail to generalize to other shapes. In contrast, the network trained on abstract shapes captures the overall shape of chairs and vases, although it misses some of the details. is superiority of the procedural dataset may be due to its larger size and variability.

In uence of noisy lines

To evaluate how the addition of noise impacts the results of the network, we trained a normal prediction network (presented in the previous chapter) with two di erent variants of contours: the clean image-space contours presented in Section 4.3.2 (referred to clean contours in the rest of the section), and the object-space contours with noise presented in Section 4.3.3 (referred to noisy contours).

We rst evaluate the performance of each trained network over the two datasets by measuring the mean angular error over 800 synthetic sketches. ese results are summarized in Figure 4.7. Both networks perform the same when tested on clean data. However, the network trained with noisy contours clearly performs be er on noisy drawings, with an error twice smaller compared to the one trained on clean contours. e network trained with noisy sketches (thirs row) produces be er results than the one trained with clean data (second row) network trained with clean drawings (second row) produces large errors and noisy normal maps while the one trained with noisy drawings (third row) produces clean normal maps. More precisely, the network has learned to ignore the double lines caused by over-sketching. is is particularly visible on the second and fourth drawing where the cylinders exhibit strong over-sketching. e network trained with noisy drawing produces a cleaner discontinuity in those zones while the one trained with clean drawings tries to produce two discontinuities, which lead to strong errors.

We also compare these two networks on real data in Figure 4.9, to see if our synthetic noise helps handling human noise. e rst line shows the camera from Figure 4.2 with exaggerated noise while the other lines show sketches drawn in the application from Chapter 2. e observations are the same than with synthetic data: the network trained with noisy drawings produces cleaner results with only few artifacts. ese tests shows that the incorporation of a noise model in the synthetic data is crucial to handle human errors. Even if our noise model is simple, it is su cient to allow networks to learn to be robust to various errors made by humans when drawing.

Conclusion

In this chapter, we demonstrated that the use of abstract procedural shapes as a training database allows to reconstruct a large variety of man made objects. We also showed that the network trained with this dataset generalizes be er than networks trained on a class speci c dataset.

We extract standard contours from these objects and mimic some errors made by humans. We show that this incorporation of noise allows the networks to be robust to human errors made in real drawings.

C h a p t e r 5

Image-space motion rigidi cation for video stylization is work was done in collaboration with Aaron Hertzmann (Adobe Research). It will be presented at Expressive 2019.

Introduction

e goal of video stylization is to give a video the look of having been created with an artistic medium, such as oil painting or watercolor. Past research in non-photorealistic animation has worked hard to ensure "temporal coherence", generally taken to mean avoiding ickering artifacts, while also following optical ow [HE04, Lit97, HP00, BCK + 13, BNTS07, OH12, SED16, RDB18]. We believe that some of the most recent methods have become too successful at it: too much temporal coherence creates the uncanny and unappealing e ect of a 3D world covered in paint, rather than of a painting of a 3D world (e.g. [START_REF] Selim | Painting style transfer for head portraits using convolutional neural networks[END_REF][START_REF] Ruder | Artistic style transfer for videos and spherical images[END_REF]). Some previous works have injected noise into animation in the quest for a more hand-made look [FLJ + 14, KP11, FJS + 17]. Our work explores a di erent avenue -inspired by traditional cut-out and multi-plane animation -to create motion that looks hand-drawn, rather than being too faithful to the input.

We complement existing methods by introducing motion rigidi cation, which consists of deforming a video so that its motion becomes as piecewise-rigid as possible in image space. When advected along our modi ed optical ow, style elements undergo 2D rigid transforms and uniform scaling rather than tracking 3D trajectories. We enforce similarity (rotation, translation, and scaling) rather than strict rigidity, since scaling is necessary to model objects that move away or toward the observer. e resulting stylized videos exhibit a very "2D look;" this look is reminiscent of traditional cut-out animations like Charlie and Lola and Village of Idiots (Figure 5.1) where objects are animated by moving their parts rigidly from frame to frame, and by replacing the parts when they deform Figure 5.1: Our method takes inspiration from traditional cut-out and multi-plane animations. See our video for animated versions. signi cantly.

Our approach is inspired by the work of Breslav et al. [BSM + 07], who hypothesize that, since style elements are traditionally drawn in 2D, they should move in 2D to preserve their hand-drawn appearance. However, their approach was limited to a very speci c type of texture-mapped 3D rendering. In addition, while their method changes the motion of the stylization texture, it keeps the underlying object unchanged, which yields motion discrepancies at silhoue es. We build on their approach and generalize it to arbitrary videos and to any stylization algorithm that takes an optical ow as input.

Our solution includes three main components:

• A motion segmentation algorithm that decomposes a video into near-rigid pieces.

Users can control the segmentation with scribbles, for instance to capture motions that are subtle yet contribute to the intended story.

• A motion optimization algorithm that warps pixel trajectories such that they form as-rigid-as-possible segments while deviating as-li le-as-possible from the original trajectories.

• A video re-rendering algorithm that synthesizes a video whose motion conforms with prescribed pixel trajectories. e output of our method is thus a new video aligned with its rigidi ed optical ow, which can be used as input to any video stylization method.

We demonstrate the e ectiveness of our method by rigidifying videos with complex motions (animals, humans, natural scenes), which we subsequently stylize with a recent by-example style transfer algorithm [GEB16, RDB18].

Related work

Video stylization has been an active topic in Non-Photorealistic Rendering for more than two decades [START_REF] Litwinowicz | Processing images and video for an impressionist e ect[END_REF][START_REF] Meier | Painterly rendering for animation[END_REF], as surveyed by Bénard et al. [START_REF] Bénard | State-of-the-art report on temporal coherence for stylized animations[END_REF], Kyprianidis et al. [START_REF] Kyprianidis | State of the art: A taxonomy of artistic stylization techniques for images and video[END_REF], and Rosin and Collomosse [START_REF] Rosin | Image and Video-Based Artistic Stylisation[END_REF]. We rst discuss the main approaches to stylize videos, before discussing related methods on motion estimation and processing.

Video stylization. e earliest methods for stylized animation targeted oil painting, where individual brush strokes are clearly visible [START_REF] Meier | Painterly rendering for animation[END_REF][START_REF] Litwinowicz | Processing images and video for an impressionist e ect[END_REF].

e most common strategy to produce such a style consists in distributing brush strokes to cover the rst frame of the animation, moving the strokes to the next frame using optical ow, and removing or adding strokes to avoid overlaps and gaps [Lit97, HP00, HE04]. ese approaches have later been extended to styles like watercolor by advecting [START_REF] Bousseau | Video watercolorization using bidirectional texture advection[END_REF] or ltering [START_REF] Kass | Coherent noise for non-photorealistic rendering[END_REF] a stylization texture from frame-to-frame. Recent methods employ byexample texture synthesis to handle an even wider range of styles [BCK + 13, BBRF14, SED16, FJS + 17, RDB18]. ese methods cast the synthesis as a global optimization that strives to reproduce the appearance of an exemplar while maintaining temporal coherence along optical ow. However, enforcing temporal coherence too strictly results in rather arti cial results, which motivated Fišer et al. [FLJ + 14, FJS + 17] to inject randomness in the synthesis to mimic the temporal noise of traditional animations. Our work is largely complementary to all these methods, since our goal is not to improve how the stylization follows the video motion, but rather to modify that motion to look more hand-drawn.

Our approach follows the idea of Breslav et al. [BSM + 07], who stylizes 3D animations using 2D pa erns that approximate object motion with similarity transforms. eir main idea and results are highly inspirational, but the speci c approach they took has numerous limitations. In particular, their method only applies to textured 3D models, with prede ned texture segmentation. In addition, their method does not modify the motion of the underlying 3D objects, resulting in visible sliding of the pa erns along silhoue es where the input and modi ed motion di er signi cantly. Our approach addresses these limitations to produce rigidi ed videos that are compatible with a large body of existing video stylization methods.

Our approach is inspired by the 2D motion produced by traditional animation tech-niques, such as paper cut-out. Barnes et al. [BJS + 08] described an animation system dedicated to this technique, where users animate characters made of one or several rigid parts. Each part is rendered with a constant texture, which mimics traditional animations where the same piece of paper is moved from frame to frame. In contrast, we designed our method to best preserve the original appearance of the input video, including temporal variations of texture and shading within each rigid piece. We leave the choice of abstracting away such variations to the subsequent stylization algorithms that can be applied on our output.

Motion estimation and processing. While we aim at simplifying motion in a video, several methods aim at magnifying motion [LTF + 05, WRS + 12, WRDF13]. In particular, our method follows the main processing steps of Liu et al. [LTF + 05] -motion segmentation, motion modi cation, and video re-rendering. However, our implementation of the two rst steps di ers. For motion segmentation, Liu et al. group correlated trajectories, while we group pixels that follow the same similarity transforms. For motion modi cation, Liu et al. simply apply a scaling factor on the motion vectors, while we optimize for new trajectories that are as-rigid-as-possible while staying close to the input. Closer to our application domain, Collomosse et al. [START_REF] Collomosse | Rendering cartoon-style motion cues in post-production video[END_REF], Lee et al. [START_REF] Lee | Cartoonmodes: Cartoon stylization of video objects through modal analysis[END_REF] and Wang et al. [START_REF] Wang | Cohen. e cartoon animation lter[END_REF] magnify motion in videos to reproduce the classical "squash and stretch" e ects of cartoon animations, while Dvorožňák et al. [DLKS18a] transfer these e ects from a hand-drawn exemplar. Finally, local rigidity has been used as a regularizer in optical and scene ow computation [START_REF] Vogel | Piecewise rigid scene ow[END_REF][START_REF] Yang | Dense, accurate optical ow estimation with piecewise parametric model[END_REF], which is complementary to our goal of modifying the video to achieve rigid motion. .2: Overview of our method. Given an input video and its optical ow (a), we rst employ interactive segmentation to decompose the video into parts that approximately move rigidly (b). We then optimize pixel trajectories such that they remain close to the input trajectories, while being as rigid as possible (c, magni ed for visualization). e optimized trajectories are then used to re-render the video and its optical ow (d), which can serve as input to any existing stylization algorithm (e).

Overview

We address these objectives as three separate computational steps -motion segmentation, trajectory optimization, and video re-rendering (Figure 5.2).

We rst cast motion segmentation as a labeling problem, where pixels of a frame receive the same label if their optical ow is approximated well by the same similarity transforms (Section 5.4). Our formulation includes spatial and temporal smoothness terms to favor the emergence of large segments that move coherently during multiple frames. Since the number and shape of the segments greatly impact the outcome of our method, we provide artistic control on this step by means of user scribbles. However, while the similarity transforms found for each segment only introduce subtle deviations from the original optical ow, accumulating these deviations over multiple frames would yield signi cant dri of the video content. We address this issue in a second step, where we track pixels along extended sequences and optimize the resulting trajectories to best satisfy the local rigid motion while minimizing global dri (Section 5.5).

Our last step consists in warping the video according to the displacement of the optimized trajectories. Note that, unlike conventional methods that estimate optical ow from a given video, this step entails generating a new video that follows the given ow. Once re-rendered, our rigidi ed video is ready to be processed by any existing video stylization algorithm.

Motion segmentation

e rst step of our method takes as input a video and its optical ow and segments it into parts such that, for each frame of the video, the optical ow within each part is well approximated by a similarity transform. A similarity transform S is composed of a rotation matrix R, a translation vector t, and a uniform scaling s. We formulate this segmentation as a labeling problem, where each label ∈ L is associated with a series of similarity transforms over all frames, {S t = (R t , t t , s t)} t∈(1...T) . e output of this step is a spatio-temporal label map, which assigns each pixel of each frame to one of the labels, each of which has an associated similarity transform (Figure 5.2b). We use a xed number of labels, speci ed by the user scribbles (Section 5.4.2).

Since the optical ow of real-world videos is o en inaccurate at objects boundaries, we achieve more precise segmentations by complementing the per-frame motion models with a color model for each segment. We use a Gaussian Mixture Model (GMM) with 5 Gaussians to represent the color distribution of a label over all frames, with scale, mean and variance parameters denoted as (α g , µ g , σ g) g∈(1...5) .

We rst discuss how to evaluate the quality of a given con guration of unknowns, before explaining how we nd high-quality con gurations using an optimization algorithm that iterates between assigning pixels to labels, and updating the motion and color parameters of each label given their assigned pixels. While we describe our algorithm in terms of pixels, we detail at the end of Section 5.4.3 how we accelerate the optimization by working on superpixels.

Energy formulation

In what follows, we denote I t∈T the input video frames and f t the optical ow from frame t to the next. Each pixel i in frame t has an initial position u t i , such that u t+1 i = u t i + f t i .

We de ne the quality of a given labeling L with an energy composed of two terms. e rst term measures how well the similarity transforms and Gaussian Mixture Model of a label approximate the optical ow and color of pixels assigned to that label. For a given pixel i, frame t and label , we express the term as

E fit (u t i ,) = n(u t i + f t i) -(R t s t u t i + t t) -w color log g α g G(I t (u i), µ g , σ g) , (5.1)
where G denotes the normal distribution and w color balances the contribution of the motion and color models.

e second term encourages large, uniform segments by penalizing the assignment of di erent labels to neighboring pixels that share similar colors and motion

E smooth (u i , u j , i , j) = δ(i = j) exp - D c (i, j) 2β c + exp - D f (i, j) 2β f , (5.2)
where D c (i, j) = nI(u i) -I(u j) measure the color di erence and D f (i, j) = nf i -f j the optical ow di erence between pixels i and j. e indicator function δ(i = i) equals 1 when the labels i and j di er, 0 otherwise, and the exponential decreases quickly as the color and motion di erences increase. We follow Rother et al. [START_REF] Rother | grabcut": Interactive foreground extraction using iterated graph cuts[END_REF] to compute the weights β c and β f as the average color and optical ow di erences of the video, computed over all pixel neighborhoods. In practice, we evaluate E smooth on a spatio-temporal neighborhood to also encourage temporal coherence of the segmentation, as detailed in Section 4.

We balance these two terms with dedicated weights to obtain the energy of a given labeling L over the entire video sequence

E segment (L) = i t w fit E fit (u t i , t i) + j∈N t i w smooth E smooth (u t i , u j , t i , j), (5.3)
where t i denotes the label assigned to pixel i in frame t, and N t i denotes its spatiotemporal neighborhood.

User guidance

e energy formulation outlined above solely measures the quality of a segmentation based on geometric criteria (tness and smoothness). However, the quality of a segmentation also o en depends on artistic goals. For example, users may want to approximate background objects with a single segment, yet decompose a foreground object in several pieces to be er capture subtle motions. Similarly, users may choose to segment each leg of an animal separately to prevent one of the legs to appear " xed" to the body, even if that leg only moves slightly. In addition, the segmentation algorithm can be sensitive to errors in the optical ow or to low-contrast object boundaries. We enable user control and correction by incorporating scribbles in our segmentation algorithm. Each scribble is assigned a color that represents a label, such that pixels scribbled with the same color should end up in the same segment, while pixels scribbled with a di erent color should be in separate segments. We achieve this behavior by over-writing the ing term on scribbled pixels

E fit scribble (u t i ,) = w scribble δ(= s) (5.4)
with s the label of the scribble. e weight w scribble balances the strength of the user annotations against the other terms of the optimization. e di erent scribble colors implicitly de ne the set of labels L considered by the optimization. We also experimented with automatic segmentation and a variable number of labels, using a so-called label cost to encourage the use of as few labels as possible [DOIB12]. However, we achieved our best results with user guidance. In practice, we only require users to provide scribbles in a few keyframes of their choice, and we propagate these scribbles over the entire video by tracking the scribbled pixels until they get occluded.

Optimization

e energy we de ned depends on two sets of variables -the assignment of pixels to labels, t i , and the similarity transforms and Gaussian Mixture Models associated to each label, parameterized by S t and (α g , µ g , σ g) respectively. We solve for values of these variables that approximately minimize E segment (L) using the PEARL algorithm, which is a general optimization method for multi-model ing [START_REF] Isack | Energy-based geometric multi-model ing[END_REF]DOIB12]. In a nutshell, the algorithm alternates between assigning observations to labels using a xed set of models, and updating the model parameters of each label to best t the observations assigned to it (Algorithm 5.1). At each iteration, the assignment of labels is performed using the α-expansion algorithm 1 . We performed 3 such iterations for all results, which was su cient to converge in our experiments. e main challenge in applying PEARL in our context is to properly initialize and update the model parameters to capture the complex motion of real-world objects over multiple frames.

Algorithm 5.1: PEARL algorithm [DOIB12] applied to our motion segmentation problem.

1 Initialize similarity transforms and GMMs for the set of label candidates L ; 2 Run α-expansion to compute the optimal labeling L according to E segment (L) (Equation 5.3), using xed label candidates L ;

3 Update the similarity transforms and GMMs of the label candidates L to best t the optical ow and color distribution within each segment of L ;

4 Goto 2;

Initializing the motion and color models. Since each scribble color corresponds to a unique label, we initialize the Gaussian Mixture Model and similarity transforms of each label from its scribbled pixels tracked along the video. Given a set of such scribbled trajectories, we use the least-squares formulation described by Breslav et al. [BSM + 07] to t a similarity transform on the optical ow displacements within each frame, and use the OpenCV [Bra00] implementation of Gaussian Mixture Models to t a color distribution on the colors gathered from all frames. Finally, when the trajectories of the scribbled pixels start a er the rst frame of the video, or end before the last frame, we initialize the similarity transforms of the missing frames with the transforms obtained at the closest frames.

Updating the motion and color models. Each labeling iteration of the PEARL algorithm forms segments by assigning pixels to labels. Our goal is then to use the optical ow and color values of each segment to update the motion and color models of the corresponding label. However, a given label may only occur in a subset of the video frames; while each label needs a color and motion model in every frame to be used as candidates for the next labeling iteration. Our solution is to extend the segment to other frames by tracking each of its pixel along the forward and backward optical ows. We then update the model parameters using the same least-squares and GMM ing as for the initialization. Finally, in the event where all pixel trajectories of a segment end before Implementation details. In practice, we accelerate the evaluation of E segment (L) by computing the labeling on a graph of superpixels rather than on the pixel grid. As a downside, working with superpixels reduces temporal coherence of the segmentation since superpixels are computed in each frame independently. We use the average color and optical ow values over superpixels to compute the color and motion di erence terms D c and D f , and consider two superpixels to be spatial neighbors if they share a boundary, and temporal neighbors if they are connected by at least one optical ow vector. We also introduce a weight on the term E smooth for temporal neighbors according to the number of optical ow connections they share, w temporal (i, j)

= p∈S i q∈S j δ f (p,q) min(|S i |,|S j |)
, with S i and S j neighboring superpixels and δ f (p, q) equals 1 when pixel p and q are connected by the optical ow, 0 otherwise. Finally, we consider that a superpixel is covered by a scribble if 25% of its pixels are covered by that scribble.

Our implementation is based on the Flownet 2.0 optical ow algorithm [IMS + 17] and on SEEDS superpixels [VdBBR + 12]. We detect occlusions by checking the consistency of the forward and the backward ow, as described by Sundaram et al. [START_REF] Sundaram | Dense point trajectories by gpuaccelerated large displacement optical ow[END_REF] (Equation 5 in their paper).

Trajectory optimization

Our segmentation algorithm recovers one similarity transform per segment, per frame. However, applying these transforms in sequence results in signi cant dri , as approximation errors accumulate from frame to frame. e second step of our approach is to optimize pixel trajectories over the video to best reproduce the similarity transforms found at each frame, while keeping pixels close to their original trajectories. As an additional bene t, balancing rigidity of the output with delity to the input o ers a continuum of solutions, ranging from the original video all the way to a highly rigidi ed video.

Our approach starts by tracking pixels along the video optical ow to create their trajectories. We adopt a greedy scheme where we start a trajectory for every pixel of the rst frame, and then for every pixel of subsequent frames that is not traversed by any existing trajectory. We repeat this process in reverse order, starting from the last frame and progressing towards the rst. ese two passes over the video provides us with a large set of, sometimes redundant, trajectories. We then order the trajectories by length and select them one by one until all pixels of the video are traversed by at least one trajectory. We end up with N trajectories U i=1•••N , each tracking a pixel u i over a continuous subset of the frames, i.e. U i = (u t-m i , ..., u t i , ..., u t+n i). We next optimize for new trajectories Ûi according to two energy terms. e rst term measures the deviation of each trajectory from the similarity transforms of the segments it traverses, similar in spirit to as-rigid-as-possible energies used for image and surface deformation [SMW06, SA07]

E rigid (Ûi) = t nû t+1 i -(R t s t ût i + t t) (5.5)
where the sum runs over all frames of the trajectory, and we use the shorthand = t i for clarity.

e second term measures the deviation of each trajectory from its original position

E anchor (Ûi) = t nû t i -u t i .
(5.6)

Combining the two terms gives an energy over all trajectories

E trajectories (Û) = i=1•••N w rigid E rigid (Ûi)
+ w anchor E anchor (Ûi).

(5.7)

A er optimization, we generate the output optical ow f t i by spla ing the vector (û t+1 i ût i) for each pixel along each optimized trajectory. Similarly, we generate a warping eld w t i by spla ing the vector (u t i -ût i), which we will use to render a new video aligned with the optimized optical ow (Section 5.6). Since the optimized trajectories may not traverse all pixels of the output, we di use the spla ed values to empty pixels. Implementation details. Equation 5.7 corresponds to a linear least-squares energy, which we minimize by solving the corresponding sparse linear system using Eigen [GJ + 10]. Like with the segmentation, we speed-up computation and improve robustness to noise by performing the above optimization over superpixels rather than pixels, where we select trajectories such that each superpixel is traversed by at least one trajectory. However, since this strategy results in a much sparser set of trajectories, di using the spla ed optical ow and warp vectors produces blurry vector elds. We address this issue by rst generating a new segmentation L, where we assign to each superpixel the most frequent label among the trajectories traversing that superpixel. We then use this segmentation to stop the di usion at borders between superpixels of di erent labels. Note that L is only a proxy for the segmentation of the output video, since the superpixels are computed on the input rather than on the unknown output. Nevertheless, we found that this approximation improves results compared to using the input segmentation, or no segmentation at all.

Rendering

We are now equipped with a rigidi ed optical ow f t i , along with a warping eld w t i that indicates how to distort the input frames to align them with the new ow. Speci cally, we render each new frame Ît by looking up, for each pixel ût i , the color of pixel ût i + w t i in the original frame I t .

Results

We applied our approach on videos with varied motion, including deformable animals and characters (walking cheetah, talking man, walking woman, dancing girl), uids (waves), and out-of-plane motion (camera rotating around a mountain or following a street). Figure 5.3 shows one frame for each of these sequences, along with user scribbles and the resulting motion segmentation.

Our results demonstrate several di erent e ects, which were produced as a function of the input video and the user scribbles that we provided. For example, we assigned the jaw of the talking man to a di erent segment than the remaining of his face, which results in a cut-out motion similar to how Canadians are animated in South Park. We also purposely separated the legs of the cheetah from its body to achieve a puppet-like animation, or the head of the dancing girl from her torso for a similar e ect. Our method also applies to non-articulated objects, such the depth layers of the mountain sequence, or the ground and walls of the walking sequence. In such cases, our method approximates rigid out-ofplane motions by 2D translations and scaling, as is traditionally done in multi-plane cell animation. Finally, the wave sequence illustrates an extreme case of non-rigid motion. Our method approximates the complex motion as a series of simple ones, which results in visible discontinuities at motion borders. ese discontinuities can be a enuated by reducing the weight w rigid in Equation 5.7.

Figure 5.4 visualizes the rigidity of an output video by showing how a checkerboard texture evolves as it is advected along its optical ow. Note how the squares of the checkerboard retain their shape in successive frames, while they quickly distort when advected along the original video, revealing the 3D shape of the underlying objects.

e only distortions that remain visible in our results occur at disocclusions, where our implementation of texture advection stretches the texture to cover the gaps. Our method be er preserves the shape of the checkerboard pa ern (bo om row). See our supplemental materials for animated versions of this visualization.

We strongly encourage readers to look at our video2 to judge the e ect of our method during animation. In particular, while we provide the intermediate warped videos as supplemental material, the bene t of our approach is best appreciated on side-by-side comparisons between stylizations of original sequences and stylizations of our rigidi ed versions. For stylization, we use the method by Ruder et al.3 [START_REF] Ruder | Artistic style transfer for videos and spherical images[END_REF], which incorporates temporal coherence constraints to the successful neural style transfer algorithm of c i t y d a n c e wa v e s i n p u t s t y l e s t y l i z e d f r a me i n p u t s t y l e s t y l i z e d f r a me mo u n t a i n s wa l k i n g t a l k i n g ma n c h e e t a h Limitations. Our focus in this work is on the style of motion, rather than on automated video analysis. Our method is sensitive to errors in the input optical ow, which can impact the motion segmentation and optimization. We used extra scribbles to both indicate the desired style and to correct such errors. e optical ow and segmentation algorithms also produce ragged object boundaries, which creates artifacts in the warped video. However, these artifacts are largely hidden in the nal stylized result. Given the dizzying pace of advances in computer vision at present, we believe that it should be easy to considerably improve these aspects of our method.

e term E anchor of our trajectory optimization typically results in a warping eld of small magnitude, which makes our simple image warp su cient in most cases. Nevertheless, stretching or fold-over artifacts sometimes occur in areas where two segments move in opposite directions by several pixels, as shown in Figure 5.6. A potential so- Parameter settings and timings. All our videos have a resolution of around 800 × 450 pixels, which we segmented into 5600 superpixels, each covering around 60 pixels. We kept all parameters xed for our tests. In particular, we used w color = 0.01 to balance the color and optical ow terms of the segmentation, w fit = 80, w smooth = 15, w scribble = 10000 to treat scribbles as hard constraints, w anchor = 1e -6 and w rigid = 1 to achieve a near rigid output. We also experimented with smaller values of w rigid , but the resulting e ects were too small to be noticeable. Table 5.7 details the time spent for each step of our method, for each of our results on a desktop computer equipped with an Intel Xeon E5-2630 CPU (20 cores) and 48GB of memory . e most expensive part is the motion segmentation, which takes around 4 seconds per frame on average. Signi cant time is also spent on di using the optical ow and warp vectors to all pixels (around 2 seconds par frame), which could be greatly accelerated by using a GPU solver. Table 5.1: Timings for some of our results. e computational cost of the segmentation is roughly linear with the number of frames and labels, while the remaining steps are linear with the number of frames. Motion segmentation dominates the cost, followed by the di usion of optical ow and warping vectors.

Conclusion

In this chapter, we presented a method to simplify the motion of a video, inspired by traditional cut-out animation. We rst segment the video into large rigid regions, guided by user scribbles. We then optimize for the position of each pixel so that it follows the rigid motion of its segment while deviating as li le as possible from the initial positions. Finally, we warp the input video so that the frames match with the piecewise rigid ow.

e new video and its optical ow can then be fed to any stylization algorithm. e resulting stylized video has a look reminiscent of traditional 2D animation.

C h a p t e r 6

Conclusion

In this last chapter, I begin by summarizing the contributions presented in this thesis and present ideas to complement them, for both sketch based modeling and video stylization. In a third section, I discuss the challenges of designing tools for artists and elaborate on opportunities for future research.

Sketch based modeling

Research in sketch-based modeling has long been driven by the need for a exible method capable of reconstructing a large variety of shapes from drawings with minimal user indications. In this thesis we explored the use of deep learning to reach this goal and proposed a simple modeling interface that allows users to seamlessly sketch and visualize shapes in 3D. Our approach is modular and we see multiple directions of future research to improve it.

Predicting shapes with deep volumetric networks

We proposed an architecture capable of predicting 3D volumes from a single drawing, as well as fusing information from multiple drawings via iterative updates. Our system can handle an arbitrary number of views in arbitrary order.

Finer reconstructions may be obtained by training our CNNs with di erent loss functions. In particular, adversarial networks have recently shown an impressive ability to hallucinate ne details in synthesis tasks by combining a generator network with a discriminator that learns to identify if an output is real or synthesized [START_REF] Isola | Image-toimage translation with conditional adversarial networks[END_REF]. Speci c network architecture could also be used, such as the ones inspired from octrees, in order to reach a higher resolution output.

Although our iterative process is easy to train, it has the major disadvantage of being sensible to the order of the drawings. In particular, the rst drawing has a major impact on the nal output shape. A single network that takes all sketches as input and treat them all at once would be more satisfactory. Inspired by SurfaceNet [JGZ + 17], we conducted preliminary experiments on a network that takes a single volume as input, carved from all input sketches. However, our early results suggest that 3D convolutions slow down and complexify training. More experiments should thus be done in this direction. Recently, Ai ala et al. [START_REF] Miika | Burst image deblurring using permutation invariant convolutional neural networks[END_REF] presented a network that takes as input an arbitrary number of aligned images to deblur them. Each image is fed into a network and features of all image are aggregated via a max pooling operation before going through a last series of layers. In our scenario, we could extract 3D features from each sketch, align these feature maps by rotating them to the same viewpoint and aggregate these to get the nal shape.

Training with synthetic data

To avoid the collection of 3D objects and drawings, we trained our system with fully synthetic data by generating procedural shapes and rendering them in contours.

Despite its simplicity, our abstract shape grammar proved su cient to train our system to reconstruct a variety of man-made objects. We hope that this new application will motivate further research in the design of advanced shape grammars that capture the statistics of real-world objects.

We demonstrated the potential of our system by training it with simple contour drawings. Artists o en use other visual cues to depict shape in their drawings, such as hatching to convey shading [START_REF] Hertzmann | Illustrating smooth surfaces[END_REF], cross-sections to convey curvature directions [START_REF] Shao | Crossshade: shading concept sketches using cross-section curves[END_REF], sca olds and vanishing lines to lay down perspective and bounding volumes [START_REF] Schmidt | Analytic drawing of 3d sca olds[END_REF]. An exciting direction of research would be to train our system to generalize to all these drawing techniques. However, achieving this goal may require the design of new nonphotorealistic rendering algorithms that formalize and reproduce such techniques [GSV + 17]. Going further, style transfer algorithms [START_REF] Kalogerakis | Learning Hatching for Pen-and-Ink Illustration of Surfaces[END_REF] may even enable the synthesis of user-speci c training data. Moreover, we use in our system only the nal line drawing as a bitmap image, but the temporal sequence of lines could also be used to be er infer the underlying shape. For example, construction lines and sca olds provide important clue on the nal shape at the very beginning of the sketching process.

Finally, we trained our system with noisy lines to improve its robustness and show that it helps the network to handle some errors made by humans. In this thesis, we focused on local noise made when tracing non perfectly straight line, but human drawings usually contains perspective errors at a more global scale that would be interesting to simulate.

Fusing di erent modalities to increase quality

Recent work on sketch-based modeling using deep learning relied either on volumetric or image-based representations of 3D shapes. In this thesis, we showed that we can combine these two representations by using the voxel grid as a support for normal maps fusion. is allows to combine the ability to recover hidden parts via volumetric prediction while the normal maps capture ner details.

Other image-based modalities could be used to improve further the quality of the prediction, for example depth maps that would allow to conserve depth discontinuities. Recent works have also shown that networks can predict a con dence score on their own prediction [LPL + 18]. is score could be used in the fusion step to weight the di erent inputs.

Fundamentally, we see deep learning and hand-cra ed optimizations as complementary. We could thus further optimize the resulting shape to enforce regularities such as parallelism, orthogonality and symmetry [LWC + 11, XCS + 14].

Video stylization

Despite decades of research in non-photorealistic rendering, motion stylization has received signi cantly less a ention than appearance stylization. As a result, while stylization algorithms can now make individual frames look much like paintings, stylized videos o en move too realistically compared to traditional hand-drawn animations. Often, they make the world appear covered in paint. Unfortunately, there are very few reference points in traditional animation to inspire innovative algorithms. Most handpainted and hand-drawn animations use very simple strategies for creating motion, such as redrawing every frame, or moving paper cut-outs. Hence, to some extent, every nonphotorealistic animation algorithm creates a new style of motion.

In this spirit, we explore in this thesis a new style of motion, based on identifying problems with existing motion styles, and taking inspiration from the traditional cut-out an-imation style as well as from the seminal work by Breslav et al. [BSM + 07]. Our output videos produce a strong sense of 2D motion, as if individual parts were moved around in the image plane. Since our method outputs a new video and its optical ow, it is compatible with any existing stylization algorithm.

Our method employs motion segmentation to decompose the video into near-rigid parts, and we found that di erent segmentations of the same video can result in very di erent stylizations, which motivated us to provide user control on this step. In the future, we believe that a combination of be er computer vision algorithms and new design principles inspired by real-world animations could help automate motion simpli cation. For example, the Cartoon Animation Filter [START_REF] Wang | Cohen. e cartoon animation lter[END_REF] aims at mimicking cartoon speci c features such as squash and stretch but other styles of motions could be considered.

Moreover, we think that motion and appearance could be stylized jointly to get a more convincing result. In our case, we could use the segmentation and the associated rigid motions to guide the stylization step, for example stylizing each segment individually to give a cartoon e ect [START_REF] Wang | Video tooning[END_REF] or using the rigid motion to guide hatching or brush directions.

Future work on digital tools for artists

My explorations during this thesis have led me to distinguish four main criteria that digital creative tools should ful ll:

Meaningful task e scope of the task needs to be well de ned relatively to the workow of the artist: placed at the right moment and with the right inputs and outputs. Moreover, the gain for the artists needs to match the investment of using the tool (learning to use it, adapt their way of working).

is also means that the task should be ful lled with a good enough quality so that the artists doesn't have to manually correct it.

Ease of use e tools should be intuitive to use for artists so that they can easily and quickly experiment with it. e tools should thus adapt to the way artists work more than the opposite.

Room for creativity

e artistic intent should always come from the artist and not from the tool. Fully automatic tools are thus not necessarily a good solution, as the artists should be able to control the process. e tools should facilitate parts that can be automated but leave the control to the user each time it is needed so that they can express their creativity. For professional artists, I would even argue that they rarely need tools to replace their nal gesture, but more to help them in the preparatory steps where it is crucial to give them a large amount of freedom to explore.

Pleasant result

e resulting creation should be similar to the result the artist would obtain manually. I believe that satisfying these criteria requires to collaborate with artists all along the process.

A tight collaboration at the beginning of the project is necessary to analyze the needs of artists and understand how they are working. is helps to think about what is the task in which they need help, how the artists will use the tool and what is the creative part that should be conserved. It is also important to keep artist's inputs coming all along the project up till the end of it in order to evaluate how the project ful lls these criteria. is opens interesting challenges I would like to tackle. In particular, I believe that creating intuitive tools requires a tight integration between user interfaces and computer graphics. As stated in the introduction of this thesis, computer vision and computer graphics are essential to interpret the intent of the user correctly and generate visual content that corresponds to it. But work is also needed on user interaction to allow artists to express their intent intuitively. e design of both the interface and the computer graphic tools should thus be done jointly so that they form a consistent system and lean on each other.

In the case of our sketch based modeling system, we designed the interface so that it helps the system to interpret user's sketches.

e interface guide the user to draw in accordance to the training data so that we get be er results.

Playful Pale e [SLD17] is also a good example of such co-design. e goal was to bring a new way of managing and choosing colors when painting digitally, inspired by traditional physical pale e. Although this project emphasizes on the interface design, computer graphics were necessary to model the digital pale e as a mix of color blobs and thus to generate the pale e interface.

is paper is a perfect mix between interaction and computer graphics problem with an artist-centered approach. e authors rst carefully study how artists use a physical pale e to extract design principles for their digital version of it and then had the nal system tested by artists as an evaluation.

As a conclusion, the creation of digital tools for artists is a broad eld that can be applied to various artistic domains: design, 2D animation, 3D modeling, painting, photography or video manipulations. Each of these domains brings new challenges and in nite possibilities of helping the creation process of artists. While a large variety of methods can be used to solve these problems -the recent progress of deep learning techniques bringing interesting new ways of solving them -, it is crucial to always work in collaboration with artists and put them at the center of these research problems.

A p p e n d i x A

Architecture of the volumetric network

We adapt our architecture from pix2pix [START_REF] Isola | Image-toimage translation with conditional adversarial networks[END_REF] by reducing the number of layers of the decoder part. e encoder-decoder architecture consists of the following layers:

A er the last layer of the decoder, a So Max is applied followed by a classi cation loss.

We then keep only one channel over two (the one containing the probability of occupancy) to get a voxel grid of dimension 64.

As an exception to the above notation, Batch-Norm is not applied to the rst C64 layer in the encoder. All ReLUs in the encoder are leaky, with slope 0.2, while ReLUs in the decoder are not leaky.

Figure 1 . 2 :

 12 Figure 1.2: Example results from various stylization algorithm: a) StyLit [FJL + 16] takes as input an examplar painting of a sphere and a rendering of a scene, b) Freestyle [GTDS10] is a programmable line rendering tool integrated in Blender, c) in Anipaint [OH12], brush strokes are distributed over frames of a video according to a user-guided ow.

 Figure 1.3: Drawings can exhibit a large variety of styles and completeness depending on the skill of the artist and on its purpose: a) novices drawings are schematic and not faithful to the reality (drawings taken from [EHA12]), b) designers draw objects in accurate perspective using construction lines (Drawings by Spencer Nugent, taken from [ADN + 17]), c) illustrative drawings from comics can exhibit various styles and abstraction levels (Drawings by Denis Medri, Marjane Satrapi and Jacques Tardi, taken from [GTDS10])

Figure 1

 1 Figure 1.4: a) When drawing each object from only one view, designers use a threequarters perspective view. b) To explore the design of an object more precisely, designers create plates of drawings that contains a mix of perspective and orthographic views.Images from[START_REF] Pipes | Drawing for Designers[END_REF][START_REF] Eissen | Sketching: e Basics[END_REF]

 Figure 2.1: Our sketch-based modeling system can process as li le as a single perspective drawing (a) to predict a volumetric object (b). Users can re ne this prediction and complete it with novel parts by providing additional drawings from other viewpoints (c).is iterative sketching work ow allows quick 3D concept exploration and rapid prototyping (d).

 Figure2.2: Overview of our method. Le : We train our system with a large collection of 3D models, from which we generate voxel grids and synthetic drawings. We train a single-view CNN to predict an initial reconstruction from a single drawing, as well as an updater CNN to re ne a reconstruction given a new drawing. Right: e single-view CNN allows users to obtain a complete 3D shape from a single drawing. Users can re ne this initial result by drawing the shape from additional viewpoints.e updater CNN combines all the available drawings to generate the nal output.

Figure 2 .

 2 Figure2.2 provides an overview of our system and the underlying convolutional neural networks.e le part of the gure illustrates the o ine training of the deep neural networks. Given a dataset of 3D models, we rst generate a voxel representation of each object, along with a series of line drawings rendered from di erent viewpoints. Our single-view CNN takes a drawing as input and generates a voxel grid with probabilistic occupancy. Our updater CNN also takes a drawing as input, and complements it with an initial 3D reconstruction provided by the single view network. Note that we transform this reconstruction according to the camera matrix of the input drawing, so that the updater CNN does not have to learn the mapping between the 3D volume and a given viewpoint. e updater network fuses the information from these two inputs to output a new 3D reconstruction. In practice, we repeatedly loop the updater over all available drawings of a shape to converge towards a multi-view coherent solution.

Figure 2 . 4 :

 24 Figure2.4: We apply the updater network iteratively, alternating between views to converge towards a multi-view coherent solution. Here we illustrate a few iterations between two views, although we loop over more views when available.

 Figure 2.5: e updater network can re ne the prediction even when only one drawing is available.

Figure 2 . 6 :

 26 Figure 2.6: We rst train our single-view network on ground truth data, then use its predictions as training data for the updater network.

Figure 2 .

 2 Figure2.8 presents several 3D scenes modeled with our system by two expert users.ese results were created with the version trained on abstract procedural shapes, which succeeds in interpreting these drawings of diverse man-made shapes. In particular, the CNNs manage to segment the foreground object from its background, combine information from di erent drawings to reconstruct occluded parts, create holes and concavities such as on the armchairs and on the last wagon of the train. Figure2.9 shows the more challenging case of a house with a slanted roof, which is well reconstructed even though the networks were only trained with shapes made of axis-aligned cuboids and cylinders.

Figure 2 . 10 :

 210 Figure2.10: Drawings and 3D objects created by our six novice participants. P1 and P6 obtained the best results by drawing the object in the center of the canvas, with proper perspective. In contrast, P2 drew the object too small and with too approximate perspective to be reconstructed by our system, while P5 le too li le room for the handle of the hammer.

Figure 2

 2 Figure 2.11: Le : Di erence of prediction between successive iterations of the updater network, showing that the network quickly converges towards a stable solution. Right: e accuracy decreases slightly during the iterations. 5 iterations o er a good trade-o between multi-view coherence and accuracy.

 Figure2.12: Top: Comparison between our method (blue) and silhoue e carving (green and red). e strength of our approach is that it achieves high accuracy from only one view, and remains competitive with silhoue e carving with four views. Bo om: Reconstructed objects using our method (top row) and silhoue e carving (bo om row) with 3 random views. Our method can handle concavities that cannot be recovered by carving.

 u t s k e t c h Ou r s S DF [E i g e n & F e r g u s]

Figure 2 . 13 :

 213 Figure 2.13: We compare our single-view network with the one of Eigen and Fergus [EF15] and with a network trained to predict a signed-distance function rather than a binary voxel grid. Our design outperforms these two alternatives.

Figure 2 .

 2 Figure 2.14: in structures are challenging to capture by the 64 3 voxel grid.

Figure 2 .

 2 Figure 2.15: e single-view network performs best on informative viewpoints that minimize occlusions (le). Drawing the same shape from a viewpoint with signi cant occlusions results in an erroneous prediction (right).

Figure 3 . 2 :

 32 Figure 3.2: Surface reconstruction obtained from the normal eld regularized with our weighted Ambrosio-Tortorelli functional (see Fig.3.1b for the input voxel grid). e insets show how the quadrangulation perfectly recovers the surface singularities.

 Figure 3.4: Ambrosio-Tortorelli with a xed α deviates from the input shape (b) or misses sharp discontinuities (d). Our spatially-varying α allows the recovery of sharp features in areas where the aggregated normal eld has a low con dence (e).

Figure 3

 3 Figure 3.5: Comparison to volumetric prediction only (Chapter 2) on a variety of objects.

Figure 3

 3 Figure3.6 evaluates the robustness of our method to noisy volumetric predictions, showing that our combination of normal map guidance and piecewise-smooth regularization yields stable results even in the presence of signi cant noise. We also designed our method to be robust to normal map misalignment, common in a sketching context. Figure 3.7 demonstrates that our method is stable in the presence of global and local misalignment. We simulate a global misalignment by shi ing one of the normal maps by 5 pixels, and a local misalignment by replacing each normal by another normal, sampled in a local neighborhood.

 Figure 3.7: Robustness to misaligned normal maps. Here we simulate global misalignment by shi ing an entire normal map by the same amount (second row) or by shi ing each normal by a random amount (third row). While these perturbations degrades the result of the baseline methods, our method remains stable.

Figure 4 . 1 :

 41 Figure 4.1: Representative voxelized objects and drawings from our three datasets.

 Figure 4.2: Behavior of the single-view network on various sources of noise. While the network trained on clean drawing tolerates some amount of sketchiness, overshoot and incompleteness, it is sensitive to over-sketching that produces thicker lines than the ones in the training set. Drawing with a very di erent or wrong perspective yields distorted shapes.

 Figure 4.3: We simulate three types of noise that we observe in human drawings: a) noisy lines, b) imprecise endpoints and direction, c) oversketching. In this oversketching case, lines are repeated up to four times with no shaking.

Figure 4 . 4 :

 44 Figure 4.4: Examples of noisy drawings generated by our procedure. e amount of noise increases from le to right.

 Figure 4.5:We trained the single-view network with three di erent datasets (depicted with di erent colors), and evaluated each version on drawings from the three testing sets (distributed on the x-axis). e network trained on abstract procedural shapes captures the overall shape of objects from other categories, while the networks trained on chairs and vases generalize poorly. Each network performs best on the shapes for which it has been trained.

Figure 4 . 7 :

 47 Figure 4.7: We trained a normal prediction network with the two di erent types of contours (clean and noisy) and test them against the same two categories. Training with noisy drawings allows to have a smaller error when tested against noisy drawings.

Finally

 Figure 4.9: We fed real noisy images to the three networks trained with di erent datasets: the camera on the rst line has been drawn with exaggerated noise on purpose, other drawings come from the application. e network trained with noisy sketches produces cleaner normal maps with few artifacts.

Figure 4 . 10 :

 410 Figure 4.10: We trained the single view volumetric network with the two di erent types of contours (clean and noisy) and test them against di erent variants of a sketch.

 Given a video and its optical ow, our goal is to generate a new video and optical ow such that • e new video is composed of large segments that follow similarity transforms from frame to frame,• e pixel trajectories in the new video are close to the pixel trajectories in the original video,• e new video and its optical ow are well aligned.

Figure 5

 5 Figure5.2: Overview of our method. Given an input video and its optical ow (a), we rst employ interactive segmentation to decompose the video into parts that approximately move rigidly (b). We then optimize pixel trajectories such that they remain close to the input trajectories, while being as rigid as possible (c, magni ed for visualization). e optimized trajectories are then used to re-render the video and its optical ow (d), which can serve as input to any existing stylization algorithm (e).

 Figure 5.3: Example scribbles and motion segmentation for each sequence in our results.

Figure 5

 5 Figure5.4: Advecting a checkerboard texture along the video quickly reveals distortions due to non-rigid motion (middle row). Our method be er preserves the shape of the checkerboard pa ern (bo om row). See our supplemental materials for animated versions of this visualization.

Figure 5 . 5 :

 55 Figure 5.5: We use neural style transfer [GEB16, RDB18] to render videos in various styles. We only transferred the luminance for the waves sequence.

 Figure 5.6: Our simple image warp can produce stretching (le) or fold-over artifacts (right) in the presence of strong displacement between neighboring segments. Userprovided depth ordering and in-painting would be needed to handle such cases.

 Let (De)Ck denote a (De)Convolution-BatchNorm-ReLU layer with k lters (outputs a layer with k channels). (De)CDk denotes a (De)Convolution-BatchNorm-Dropout-ReLU layer with a dropout rate of 50%. All convolutions are 4×4 spatial lters applied with stride 2. Convolutions in the encoder downsample by a factor of 2, whereas deconvolutions in the decoder upsample by a factor of 2.

 work was done in collaboration with Mathieu Aubry (École des Ponts), Phillip Isola (MIT) and Alexei A. Efros (UC Berkeley). It was presented at I3d 2018 and published in Proceedings of the ACM on Computer Graphics and Interactive Techniques in 2018.

	• Johanna Delanoy, David Coeurjolly, Jacques-Olivier Lachaud, Adrien Bousseau. C h a p t e r 2
	Combining Voxel and Normal Predictions for Multi-View 3D Sketching, Shape
	Modeling International, 2019, to appear 3D sketching using multi-view deep
	volumetric prediction
	• Johanna Delanoy, Mathieu Aubry, Phillip Isola, Alexei A. Efros, Adrien Bousseau.
	3D Sketching using Multi-View Deep Volumetric Prediction, in Proceedings of the
	ACM on Computer Graphics and Interactive Techniques, 1 (21), 2018
	• Johanna Delanoy, Adrien Bousseau, Aaron Hertzmann. Video Motion Stylization
	by 2D Rigidi cation, in Proceedings of the ACM/EG Expressive Symposium, 2019, to
	appear

is

Table 2 .

 2 1: Our method scales linearly with the number of input drawings, generating the prediction in less than a second for a 64 3 voxel grid on a modern GPU.

		1 view 2 views 3 views 4 views
	Desktop GPU (ms)	140	210	280	350
	Laptop CPU (s)	1	1.5	2.2	2.9

 Part of this work was done in collaboration with Mathieu Aubry (École des Ponts), Phillip Isola (MIT) and Alexei A. Efros (UC Berkeley). It was presented at I3d 2018 and published in Proceedings of the ACM on Computer Graphics and Interactive Techniques in 2018. Bastien Wailly implemented the contour detector and noise functions presented in Section 4.3.3.

 al. in 2012 [ERB + 12] up to the most recent ones [HKYM16, NGDGA + 16, LPL + 18, LGK + 17]. All of them use standard contour extraction methods.

https://youtu.be/DGIYzmlm2pQ

https://dgtal.org/

Code for multi-label segmentation available at https://vision.cs.uwaterloo.ca/code

https://youtu.be/t2Hu58J0gH8

https://github.com/manuelruder/artistic-videos

e skip connections (shown as dashed arrows) consist in concatenating the output of a convolution in the encoder to a deconvolution of the same size in the decoder.

Acknowledgements

T r a i n i n g s e t

C h a i r s V a s e s P r o c e d u r a l V i e w 1

V i e w 2 V i e w 1 V i e w 2 V i e w 1 V i e w 2