
HAL Id: tel-02285386
https://theses.hal.science/tel-02285386v1

Submitted on 12 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Graph based transforms for compression of new imaging
modalities
Mira Rizkallah

To cite this version:
Mira Rizkallah. Graph based transforms for compression of new imaging modalities. Image Processing
[eess.IV]. Université de Rennes, 2019. English. �NNT : 2019REN1S021�. �tel-02285386�

https://theses.hal.science/tel-02285386v1
https://hal.archives-ouvertes.fr


THÈSE DE DOCTORAT DE

L’UNIVERSITE DE RENNES 1
COMUE UNIVERSITE BRETAGNE LOIRE

Ecole Doctorale N°601
Mathèmatique et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Signal, Image et Vision

Par

Mira RIZKALLAH

Graph-based transforms for compression of new imaging modalities

Thèse présentée et soutenue à RENNES , le 26 Avril 2019
Unité de recherche : SIROCCO, Inria Rennes Bretagne Atlantique

Rapporteurs avant soutenance :

Gene Cheung Professor, EECS Department, York University, Canada

Markus Flierl Professor, KTH University, Sweden

Composition du jury :

Président : Luce Morin Professor at INSA Rennes

Examinateurs : Laura Toni Assistant Professor at UCL, London, United Kingdom

Dir. de thèse : Christine Guillemot Research Director, Inria Rennes Bretagne Atlantique

Co-dir. de thèse : Thomas Maugey Researcher, Inria Rennes Bretagne Atlantique



Acknowledgement

I owe my deepest gratitude to all the people in Inria Rennes Bretagne Atlantique, who have made my

three years of Phd a great experience.

Christine, know that your words of wisdom and advice have always been received with highest

degrees of respect. Your support, confidence and commitment to my project were instrumental to its

successful completion. I extend my thanks and gratitude to Thomas who has shown me that there is no

limit to aspiration. It was a great honor and a privilege to work with you and I’ll always be looking up to

you when I think of dedication to science. I genuinely appreciate your honesty, persistence, and fruitful

scientific and human discussions which have been invaluable to both my thesis and future professional

career.

My sincere gratitude also goes to my supervisors during my stay in Lausanne Switzerland, Francesca

de Simone and Pascal Frossard who have played a great role in this thesis and enormously contributed

to its success. I am greatly thankful for your assistance, advice and support and I am quite happy that I

had the opportunity to work with someone with amazing scientific and human qualities like yours.

I would also like to express my gratitude towards all the jury members (Luce Morin (jury president),

Laura Toni, Markus Flierl and Gene Cheung) for accepting to be a part of this long process. In your

own ways, each one of you have added to this work and helped in shaping me both as a student and a

researcher.

I would particularly like to thank Dr. Charles Yaacoub, who is undeniably the first reason of what I

am today. I will never find enough words to express my gratitude to such a great teacher. Thank you to

all my teachers through the years for being such an exceptional inspiration for me.

For all future Phd students: “don’t pick a thesis subject, pick a team, as your team is the biggest

factor in your Phd success. A team where you don’t feel like home won’t give you opportunities to

grow. ” I couldn’t have picked more wisely. My deepest heartfelt appreciation goes to all my colleagues

in SIROCCO. You are my role models and you have inspired me in so many ways both at the personal

and scientific levels and for that I’ll be forever grateful.

Pierre, my loving boyfriend, I am so lucky to have you in my life. Without you, my last year of thesis

would have been unbearable. Thank you for your presence and encouragement during my stressful

moments. Thank you for your understanding and unconditional love.

A very special thought goes to my friends in France and Lebanon for being there for me. Also, I am

extremely grateful for Pierre’s family. I have learned a lot from your perseverance and I feel extremely

lucky to know you. I have a special place in my heart for all of you, thank you for being my big family.

Last but not least, I want to dedicate this thesis to my father (my hero), my loving mother (my

everything), my brother (my prince) and all my family who have always supported me. I am so lucky

to have you. Your faith in me, your unconditional love and my eagerness to make you proud was the

driving force behind my success.

This project has been, without any doubt, the largest test of my own commitment, spanning about



three years away from my family and loved ones. But I have not achieved this alone. Along the way,

I have received so much support from so many people to count. I definitely wouldn’t have done it if

some of you weren’t in my life. Thank you for all the gracious sacrifices you have made for me while

I realized this goal. Though you may not see your names here, know that your various contributions

have not gone unnoticed or unappreciated.

3





Table of Contents

Résumé en Francais v

Introduction xi

I State of the Art 1

1 Transforms for signals on graphs and applications in image compression 3

1.1 Graphs and signals defined on graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Spectral representation and generalized operators for signals on graphs . . . . . . . . . . 7

1.2.1 Graph spectral representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Generalized operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Graph based transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 Non-localized transforms: Fourier-like . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.2 Localized transforms: Wavelet-like . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Graph based transforms in image compression . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Background on light fields and omni-directional imaging 19

2.1 Light Field imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Formal definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.2 Light field rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.3 Light field representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.5 Light fields compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Omni-directional imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Formal definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.2 Omni-directional image representations . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.3 Coding of omni-directional visual content . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.4 Metrics to assess the compression performance . . . . . . . . . . . . . . . . . . . . . 28

II Contributions 31

3 Local graph based transforms for light field compact representation 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 General light field notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Separable graph transforms on fixed graph supports . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Fixed graph supports: super-pixels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

i



TABLE OF CONTENTS

3.2.2 Graph signal: residuals after CNN based prediction . . . . . . . . . . . . . . . . . . 36

3.2.3 Separable graph transforms: spatio-angular . . . . . . . . . . . . . . . . . . . . . . 36

3.2.4 Light field predictive coding scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Geometry-aware graph transforms for color coding of light fields . . . . . . . . . . . . . . 42

3.3.1 Geometry-aware graph supports: super-rays . . . . . . . . . . . . . . . . . . . . . . 42

3.3.2 Graphs and graph signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.3 Geometry-aware graph transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.4 Light field color coding scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Rate-distortion performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.2 The performance of the color coding scheme . . . . . . . . . . . . . . . . . . . . . . 58

3.4.3 The performance of the predictive coding scheme . . . . . . . . . . . . . . . . . . . 62

3.4.4 The predictive coding scheme vs the color coding scheme . . . . . . . . . . . . . . 63

3.4.5 Small note about complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Graph-based spatio-angular prediction for light fields 65

4.1 Spatio-angular prediction based on local non separable graph transform . . . . . . . . . . 66

4.1.1 Notations: Supports and Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1.2 Background on graph sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.3 Graph-based spatio-angular prediction . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1.4 Sampling set selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Spatio-angular prediction based on local separable graph transforms . . . . . . . . . . . . 70

4.2.1 Separable graph-based spatio-angular prediction . . . . . . . . . . . . . . . . . . . 72

4.3 Non separable vs separable graph based prediction . . . . . . . . . . . . . . . . . . . . . . 72

4.3.1 Energy compaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3.2 Compressibility of the reference view . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.3 Robustness of the Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 The proposed coding schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.1 Overall description of the coding scheme based on the non separable graph trans-

form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.2 The proposed coding scheme based on the separable graph transform . . . . . . . 79

4.5 Comparative assessment against State of the Art coders . . . . . . . . . . . . . . . . . . . . 80

4.6 Conclusion and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Rate-distortion optimized graph partitioning for omnidirectional image coding 83

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 360-degree image as signal on a graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 R-D optimized graph partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4.1 Distortion estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4.2 Rate approximation of transform coefficients . . . . . . . . . . . . . . . . . . . . . . 87

5.4.3 Rate approximation of the subgraphs boundaries . . . . . . . . . . . . . . . . . . . 87

ii



TABLE OF CONTENTS

5.4.4 Minimization of the total coding rate . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4.5 Discussion and mathematical interpretation . . . . . . . . . . . . . . . . . . . . . . 89

5.5 Experimental validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5.1 Validation of our rate proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5.2 Coding results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 Graph based transforms under statistical uncertainties 101

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 When does the model based transform outperform the topology based transform? . . . . 102

6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.4 Experimental validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.4.2 Synthetic topologies and models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Conclusion and perspectives 113

Author’s publications 117

List of Figures 119

List of Tables 123

A Impact of light field compression on post-capture functionalities 127

B Graph based compression of light fields 133

Bibliography 145

iii





Résumé en Francais

Contexte

Au cours des dernières années, il existe un intérêt particulier à donner une impression plus aigue de

profondeur, et de géométrie au contenu visuel que nous cherchons à capturer et à diffuser, que ce soit

pour des applications immersives ou pour la photographie. Celà a du sens car après tout, nous avons

deux yeux avec lesquels nous pouvons percevoir le monde qui nous entoure. Nous pouvons bouger

et donc changer de perspectives. Nous pouvons également nous concentrer sur un objet particulier

de la scène. En tant que tels, la disparité, le changement de perspective et la mise au point sont des

capacités capitales de notre système visuel. Il s’est avéré qu’avec une photographie conventionnelle,

nous ne sommes pas capables d’imiter notre système visuel. Ce que nous capturons avec une seule

caméra conventionnelle nous en dit assez peu sur la géométrie de la scène. En particulier, les cameras

traditionnelles n’enregistrent pas la quantité de lumière circulant le long des rayons qui contribuent à

l’image. Ils ne nous disent que la somme des rayons lumineux frappant chaque point de l’image. En

quête des "informations géométriques manquantes", de nouvelles modalités d’imagerie ont récemment

été proposées.

Un exemple en est le champs de lumière. Comme son nom l’indique, un champ de lumière [62] [76] [61]

représente l’ensemble des rayons de lumière émis par la scène selon différentes orientations. C’est une

description formelle des intensités des rayons qui se déplacent de et vers chaque point de l’espace. D’un

point de vue plus général, il s’agit d’un terme plus large désignant la capture synchrone d’une scène sous

différents points de vue. Dans de nombreux cas, il peut s’agir d’un ensemble de vues décrivant la même

région d’intérêt. Ce contenu visuel a récemment été capturé par de nouvelles caméras plénoptiques [40]

[75] et a apporté d’énormes contributions dans de nombreux domaines, notamment l’imagerie médicale,

les systèmes de sécurité et autres [80].

Les caméras plenoptiques basées sur des matrices planaires de capteurs ont cependant une limitation

importante: elles ne capturent que les rayons lumineux dans une partie limitée de l’espace directionnel;

Elles ont un champ de vision limité. Celà a conduit au développement de caméras omnidirectionnelles

parallèlement à l’étude des caméras à champ lumineux. Les images omnidirectionnelles ont commencé

à susciter un intérêt vif dans les communautés de traitement d’images et de vision par ordinateur en

raison de leur large champ de vision. Ceci est une propriété intéressante qui apporte beaucoup à de

nombreuses applications telles que la navigation à 360°, les systèmes de surveillance et la modélisation

3D des environnements [39]. Ils permettent également à un très grand nombre d’utilisateurs de regarder

vidéos 360 en ligne, sur leur smartphone, leur tablette ou leurs lunettes de réalité virtuelle.

Fournir l’information géometrique manquante, que ce soit dans un champ de lumière ou dans un

contenu omnidirectionnel, s’est fait au détriment de la collecte de grands volumes de données à très haute

dimension. Ainsi, le développement de ces nouvelles modalités d’image que nous souhaitons stocker

ou délivrer a donné un nouvel élan à la recherche sur les schémas de compression [117] [18] [6] . Avec
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la forte demande d’images de haute résolution et de haute qualité, le développement de schémas de

compression à la fois efficaces et non complexes est crucial.

Motivation et objectifs

Dans un schéma de codage classique de tout type de contenu, nous visons à réduire le nombre de

bits nécessaires pour représenter des données avec une qualité fixe. Une étape importante dans le

développement d’un schéma de compression est l’étape de la transformée, où le signal initial à coder est

projeté dans un autre domaine et les redondances sont réduites. La parcimonie du signal de sortie et la

compaction de l’énergie sont des propriétés très importantes recherchées la plupart du temps. Afin de

spécifier une transformée, il convient de délimiter les supports sous-jacents, les signaux à transformer

et les bases de la transformation elles-mêmes. La transition entre la définition d’une transformée dans le

domaine 1D vers le domaine des images 2D s’est naturellement déroulée, car la géométrie sous-jacente

est toujours régulière et les supports peuvent être étendus intuitivement d’un espace régulier à un autre

plus étendu.

Après tout, on peut facilement supposer que les pixels voisins qui correspondent à un même ob-

jet sont généralement très dépendants. Nous avons toujours eu tendance à définir des supports en

regroupant des pixels corrélés avant la transformée. Les blocs de differentes tailles dans un schéma de

codage 2D peut être considérée comme un support prenant en compte la géométrie d’une image 2D [44].

Plus récemment, des supports ayant des formes variées, tels que les super-pixels [1], ont été proposés,

offrant un moyen plus souple qui s’adapte plus facilement au contenu de la scène.

Afin de réduire la redondance d’un signal se trouvant sur de tels supports dans une image classique,

une méthode traditionnelle consiste à projeter le signal sur des fonctions de base assurant à la fois la

décorrélation et la compaction de l’énergie du signal de sortie. Par exemple, le DCT classique en 2D

[107] et la transformée en ondelettes [95] ont été largement appliqués sur des blocs réguliers. La DCT

à adaptation de forme (SA-DCT) est également apparu comme une transformée prometteuse pour les

super-pixels [93].

Aller au-delà d’une image 2D classique reposant sur des grilles uniformes, jusqu’à un volume 4D

couplé à une géométrie complexe dans le cas des Champs de Lumière et à un domaine structurel non

uniforme avec le contenu omnidirectionnel a soulevé de nombreuses questions. Comment généraliser

les outils traditionnels de traitement et de compression des images 2D à de nouveaux domaines non

nécessairement échantillonnés de manière uniforme sous forme de grille 2D? Plus précisément, avec les

informations géométriques déjà acquises, comment pouvons-nous définir les supports de transformées

de manière à exploiter à la fois le contenu et la structure sous-jacente? Une fois les supports définis avec

soin, comment concevoir une transformation basée sur ces supports à la fois efficace et non complexe?

Que ce soit dans un champs de lumière ou une image omnidirectionnelle, les données capturées reposent

sur des structures irrégulières. Dans le premier cas, l’irrégularité provient du fait que la géométrie de la

scène est complexe. Dans le dernier cas, les pixels sont le résultat d’un échantillonnage de nature non

uniforme et correspond à un échantillonnage équi-angulaire sur une sphère. Les outils de traitement

de signal classiques se révèlent inappropriés pour des domaines aussi complexes et irréguliers, car ils

sous-évaluent généralement la structure inhérente. D’où la nécessité d’une nouvelle représentation plus
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Figure 1: Le graphe capture la structure géométrique sous-jacente des données.

flexible. Dans cette thèse, nous nous appuyons sur la notion de graphes (Fig. 1). La communauté

de traitement des signaux sur les graphes s’est récemment impliquée dans la conception de nouveaux

outils et algorithmes capables de gérer les défis posés par la nature irrégulière des supports de graphes

et de traiter efficacement les signaux définis sur les nœuds des graphes [92].

Si nous limitons notre attention au cas champs de lumière, nous pouvons imaginer un graphe énorme

représentant les corrélations existantes en traçant des arêtes entre les différents pixels dans, et entre les

différentes vues. Ce graphe peut être considéré comme un support pour définir une transformée à base

de graphes. Néanmoins, sa grande dimensionnalité soulève des problèmes de complexité frappants.

Dans cette thèse, nous visons à réduire cette complexité. Nous sommes donc intéressés à trouver des

supports plus locaux en nous basant sur le concept de super-rayons inhérent à la géométrie et au contenu

du champs de lumière. Le concept de super-rayons introduit dans [46] en tant qu’extension du concept de

super-pixels au domaine 4D d’un champs de lumière. Un example de résultat de super-rayons est illustré

dans la Fig. 2.

Après avoir effectué le partitionnement, les super-rayons constituent le support des transformées lo-

cales basées graphes. Maintenant que nous avons les supports dépendents de la géométrie et la couleur,

cela nous amène au premier objectif que nous abordons dans cette thèse: Comment concevoir des trans-

formées basées graphes, locales non complexes et efficaces tout en tenant compte de la géométrie?

Cependant, la localité des supports de super-rayons pose un autre problème: elle ne nous permet

pas de capturer les dépendances spatiales à long terme du signal de couleur, contrairement aux schémas

prédictifs efficaces utilisés dans les codeurs classiques (par exemple, HEVC). Plus précisément, dans le

cas des transformées locales basées graphes, à l’intérieur de chaque super-rayon, une grand partie de

l’énergie est concentrée dans un nombre limité de coefficients. Néanmoins, en les codant directement,

les corrélations entre différents super-rayons ne sont pas exploitées. Ceci nous oriente vers la deuxième

contribution pour les champs de lumière: la conception d’algorithmes d’échantillonnage et de prédiction

qui permettront la meilleure compression des coefficients qui détiennent les énergies les plus élevées.

Ceci en exploitant la corrélation spatiale au-delà des limites du support de transformée locale basée

graphe .

De la même manière que le graphe énorme de Champs de lumière, un gros graphe peut également
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Figure 2: Un example de super-rayons obtenus en utilisant l’agorithme proposé dans [46]. Pour une
bonne visualisation, le resultat est montré pour seulement une vue du champs de lumiere StillLife. A
gauche, la vue originale en couleur. A droite, les super-rayons obtenus.

être conçu pour représenter la structure sphérique sous-jacente du contenu de omni-directionnel. Cela

tient principalement au fait que les schémas de compression existants pour le contenu omnidirectionnel

ne s’adaptent pas à la géométrie sphérique sous-jacente et sont donc sous-optimaux. Confrontés aux

mêmes problèmes de complexité, nous abordons les objectifs suivants: comment définir des supports

locaux pour limiter la complexité des transformées basées graphes? Comment diviser efficacement

le graphe en supports plus restreints, tout en tenant compte de la géométrie sphérique? Comment

optimiser le lissage des signaux sur les sous-graphes tout en conservant un léger sur-coût pour coder la

description de la partition?

Dans les représentations à base de graphes évoquées précédemment, le graphe a été utilisé pour

caractériser soit les pixels corrélés, soit ceux dépourvus de corrélation, sans aucune notion du niveau de

corrélation. Si nous souhaitons donner des poids aux connections et par ça modéliser les similitudes des

signaux, nous pouvons définir un modèle du signal. Parfois, un bon modèle peut améliorer l’efficacité

du codage. Mais, dans quelle mesure pouvons-nous utiliser ce modèle, au lieu de nous fier uniquement

à une topologie? Cela a motivé notre étude théorique finale où nous cherchons à trouver une limite

théorique sur l’incertitude qu’une transformée basée sur un modèle peut gérer.

Résumé des Contributions

Cette thèse est structurée en deux parties principales.

Dans la partie I, le chapitre 1 fournit une compréhension globale des transformées basées graphes.

Plus précisément, nous introduisons la définition formelle d’un graphe et d’un signal sur un graphe avec

la taxonomie et les notations pertinentes utilisées dans la suite de ce travail de thèse. Nous nous con-

centrons sur l’application des transformées basées graphe dans le domaine de la compression d’image.

Ensuite, au chapitre 2, nous donnons un aperçu des deux modalités d’image abordées dans cet ouvrage:
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les champs de lumière et les images omni-directionnelles. Plus précisément, nous présentons la définition

de chacune d’elles, leurs différentes représentations et les nouvelles possibilités qu’elles offrent dans les

differents domaines.

Dans la partie II, nous présentons nos différentes contributions présentées ci-dessous. En résumé,

cette partie est orientée selon deux axes principaux correspondant aux deux modalités d’image deja

mentionnées. Plus en détail, cette partie est organisée comme suit:

• Chapitre 3: Ce chapitre explore deux manières de résoudre les deux problèmes principaux de

la conception de la transformées basées graphe pour la compression des champ de lumière: (a)

Trouver le graphe optimal sur lequel le signal à transformer est régulier et (b) Trouver le meilleur

compromis entre complexité et précision de la représentation. Nous présentons une première so-

lution qui consiste à utiliser des supports de graphes qui ne tiennent pas compte de la géométrie.

Ils seront fixés pour toutes les images de sous-ouverture du champ de lumière, associés à un mé-

canisme de prédiction puissant basé sur les réseaux de neurones convolutionnels (CNN). Une

autre solution est également proposée en considérant les super-rayons quasi-idéaux qui sont plu-

tot conscients de la géométrie. Ceux-ci sont construits avec prudence et associés à des transformées

basées graphes séparables optimisées, afin de préserver les corrélations angulaires. Les résultats

expérimentaux montrent l’intérêt des approches en termes de compaction de l’énergie. Des sché-

mas de codage sont également décrits pour évaluer les performances débit-distorsion des transfor-

mées proposées et sont comparés aux codeurs classiques notamment HEVC et JPEG Pleno VM 1.1.

• Chapitre 4: Dans le chapitre précédent, l’efficacite des transformées locales basées graphes

était montrée en terme de compaction d’énergie. Néanmoins, la localité des supports nous per-

met pas d’exploiter pleinement les dépendances à long terme du signal. Dans ce chapitre, nous

décrivons une solution de prédiction basée sur des graphes . Celle-ci permet de tirer parti des

mécanismes de prédiction intra ainsi que des bonnes propriétés de compaction d’énergie des

transformees proposées dans le chapitre précedent. Nous nous appuyons sur des transformées

spatio-angulaires non séparables et séparables et nous déduisons des coefficients spatio-angulaires

à basse fréquence à partir d’une seule image de référence comprimée et des coefficients de hautes

fréquences. L’image de référence est composée d’échantillons choisis avec soin dans le champ de

lumière. Les approches se révèlent très efficaces dans un contexte de compression de haute qualité

des champs de lumière quasi sans perte.

• Chapitre 5: Dans ce chapitre, nous nous intéressons au codage du contenu omnidirectionnel.

Récemment, afin d’être comprimés à l’aide de codeurs existants, ces signaux sont projetés sur le

domaine planaire 2D. Une représentation plane couramment utilisée est la représentation équi-

rectangulaire, qui correspond à un motif d’échantillonnage non uniforme sur la surface sphérique.

Cette particularité n’est pas explorée dans les schémas de compression d’images classiques, qui

traitent le signal d’entrée comme une image en perspective sur une grille regulière. Dans ce travail,

nous construisons un codeur basé sur les graphes, adapté à la surface sphérique. Nous constru-

isons un graphe directement sur la sphère. Ensuite, pour obtenir des transformées basées graphes
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non complexes, nous proposons un algorithme de partitionnement de graphes optimisé en terme

de debit-distorsion. Ceci nous permet d’obtenir un compromis efficace entre la distorsion des

signaux reconstitués, la régularité du signal sur chaque sous-graphe et le coût de codage de la par-

tition. Les résultats expérimentaux démontrent que notre méthode dépasse le codage traditionnel

JPEG des images équi-rectangulaires.

• Chapitre 6: Les chapitres précédents sont principalement liés à des applications pratiques et ont

été construits sur l’hypothèse qu’un pixel est corrélé ou non avec un autre. Afin de donner plus de

degrés de liberté aux supports de graphe que nous voudrions utiliser, nous pouvons supposer un

modèle de signal représenté par des poids. Dans ce contexte, dans ce chapitre, nous abordons un

problème plus théorique de compression concernant les transformées basées graphes: l’incertitude

d’un modèle et son impact sur les transformées. Plus précisément, nous étudions dans quel cas

le fait de s’appuyer sur un modèle incertain pour définir une transformée (avec plus de degrés de

liberté pour les poids) apporte une amélioration aux transformées qui se basent uniquement sur

la topologie (où seuls les poids binaires sont utilisés). Nous développons les différentes équations

qui mènent à une discussion intéressante sur l’effet de l’incertitude des poids sur l’efficacité de la

compression. Nous validons ensuite notre étude théorique sur des données synthétiques.

Enfin, nous concluons ce manuscrit en discutant des contributions et des perspectives futures de ce

travail. La liste des publications de l’auteur de cette thèse est disponible dans la section publications de

l’auteur. En annexes, figurent les differentes contributions de l’auteur qui ne sont pas incluses dans ce

manuscrit.

Les travaux présentés dans ce manuscrit ont été soutenus par le Ministère de l’Enseignement supérieur

et de la Recherche. Ils ont également été financés en partie par le programme de recherche et d’innovation

H2020 de l’UE dans le cadre de la convention de subvention n°694122 (ERC Advanced Grant CLIM).
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Introduction

Context

In the recent years, there exists a special arousal to grant a greater sense of geometry to the visual content

we seek to capture and deliver, may it be for immersive applications or photography. It makes sense

because after all, we have two eyes with which we are able to perceive the world around us. We can

move and therefore shift perspectives. We can also focus on a particular object in the scene. As such,

disparity, motion and focus are chief geometrical cues our visual system is capable of doing. It turned

out that with a conventional photograph, we are not capable of mimicking our visual system. What we

capture with a single camera tells us rather little about the geometry of the scene. In particular, they do

not record the amount of light traveling along individual rays that contribute to the image. They tell us

only the sum total of light rays striking each point in the image. Going after the "missing geometrical

information", new imaging modalities have been recently proposed.

An example of such is the so called Light Field. In essence, as its name suggests, a Light Field [62] [76]

[61] is the embodiment of the concept of representing light as a vector field. It is a formal description

of the intensities of rays, flowing from and into every point in space. From a higher perspective, it is a

broad term referring to the synchronous capture of a scene from different viewpoints. In many cases,

it can be portrayed as a collection of views describing the same region of interest. Thus, the captured

data for a static light field contains redundant information in both the spatial and angular dimensions.

Moreover, this visual content has been recently captured by novel plenoptic cameras [40] [75] and has

offered enormous contributions in a lot of fields including medical imaging, security systems and others

[80].

Light field cameras based on planar arrays of sensors have, however, a severe limitation: they capture

only light rays in a limited portion of the directional space, i.e., they have a limited field of view. This led

to the development of omni-directional cameras running in parallel to the study of light field cameras.

Omni-directional images began to spark a tremendous interest in the image processing and computer

vision communities due to their large field of-view. A large field of view is an interesting property

that brings a lot to many applications such as 360 navigation , surveillance systems, and 3D modeling

of environments [39]. It also enabled users to watch 360 videos online, on their smartphone, tablet or

Virtual Reality glasses 1.

Providing the missing information, whether in a captured light field or an omnidirectional content,

has come at the expense of the collection of large volumes of high dimensional data. Thus, the outgrowth

of those novel imaging modalities that we wish to store or deliver has brought a new impulse to research

in compression techniques [117] [18] [6] . With the high demand of high resolution images and high

1“Google cardboard,” https://vr.google.com/cardboard/
“Google daydream,” https://vr.google.com/daydream/
“Google odyssey,” https://gopro.com/odyssey
“Facebook surround 360,” https://facebook360.fb.com/ facebook-surround-360/
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qualities, the development of compression schemes that are at the same time efficient and not complex,

is crucial.

Motivation and Goals

In a classical coding scheme of any kind of content, we aim at reducing the number of bits needed to

represent data for a fixed quality. One important step in the development of the compression scheme is

the transform stage, where the initial signal to be coded is transformed and redundancies are reduced.

The sparsity of the output signal is a very important property that is seeked most of the times. In order

to specify a transform, one should delineate the underlying supports, the signals to be transformed and

the transform basis functions themselves. The transition between the definition of a transform in the 1D

domain to 2D domain of images was smooth since the underlying geometry is always regular and the

supports can be intuitively extended to the 2D regular space.

After all, we can easily assume that neighboring pixels that correspond to a same object are usually

highly dependent. We have always tended to define supports by grouping correlated pixels together

prior to the transform. The size varying blocks in a 2D coding scheme can be though as supports taking

into account the geometry of a 2D image [44]. More recently, the shape-varying supports such as super-

pixels [1] have been proposed providing a more flexible way that more easily adapt to the content of the

scene.

In order to reduce the redundancy of a signal lying on such supports in an 2D classical image, a

traditional way of doing is to project the signal onto some basis functions that provide at the same time

the decorrelation and the energy compaction of the output signal. For example, the classical 2D DCT

[107] and wavelet transform [95] have been widely applied on regular blocks. Shape adaptive DCT

SA-DCT has also appeared as a promising transform for super-pixels [93].

Moving beyond a traditional 2D image lying on uniform grids, to a 4D volume coupled with complex

geometry in Light Fields and a non uniform structural domain with the omnidirectional content has led

to numerous questions. How can we generalize the traditional 2D image processing and compression

tools to new domains that are not necessarily uniformly sampled as a 2D grid? More precisely, with the

geometrical information already acquired, how can we define the transform supports in a way that we

exploit both the content and the underlying structure? Once the supports are carefully defined, how to

design a transform based on those supports that is at the same time efficient and non complex?

Whether it was in a Light Field or an Omni-directional image, the captured data lies on irregular struc-

tures. In the former, the irregularity comes from the fact that the scene geometry is complex. While

in the latter, the sampling is already non-uniform and corresponds to an equi-angular sampling on a

sphere. Classical signal processing tools are revealed to be inappropriate for such complex and irreg-

ular domains since it usually undervalue the inherent structure. From here arises the need for a new

representation that is more flexible. In this thesis, we rely on the notion of graphs. (See Fig. 3) The

Graph Signal Processing community has been lately devoted to design new tools and algorithms that

can proficiently handle the challenges arising from the irregular nature of graph supports and efficiently

process the signals living on the vertices of graphs [92].

If we restrict our attention to the Light Fields case, we can imagine a huge graph to represent the ex-
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Figure 3: The graph describes the underlying geometric data structure.

isting correlations by drawing edges between different pixels inside and between the different views.

Such graph can be considered as a support to define a graph transform. Nevertheless, striking com-

plexity issues arise from its high dimensionality. In this thesis, we aim at reducing this complexity. We

are thus interested in finding more local supports relying on the concept of super-rays that are inherent

from the geometry and the content of the Light Field. The concept of super-ray introduced in [46] as an

extension to 4D Light Field of the concept of super-pixels.The result of the partitioning in one light field

view is shown in Fig. 4.

After performing the partitioning, super-rays constitute the supports of local graph transforms. Now

that we have the supports denoting the geometry and the color information, this leads us to the first

problem we address in this thesis: How to design efficient non complex local geometry-aware graph

transforms for Light Fields?

However, another problem arises with the locality of the super-ray supports: it does not allow us

to capture long term spatial dependencies of the color signal, unlike efficient predictive schemes used

in state of the art coders (e.g. HEVC). More precisely, in the case of the local graph transforms, inside

each super-ray, most of the energy is concentrated in a small number of coefficients. Nevertheless, the

correlations between different super-rays are not exploited. This motivates the second contribution for

Light Fields: the design of a prediction and sampling scheme that would allow the best compression of

the coefficients with the highest energy, by exploiting spatial correlation beyond the limits of the local

graph transform support.

Similarly to the huge graph for Light fields, a big graph can also be used to represent the underlying

spherical structure of the omni-directional content. The motivation behind this comes from the fact that

the existing compression schemes for omnidirectional content do not adapt to its underlying spherical

geometry and are therefore sub-optimal. Faced with the same complexity issues, we tackle the problem

of: how to define local supports and graph transforms ? How to efficiently partition the graph into

smaller supports, taking into account the geometrical information? How to optimize the smoothness of

the signals on the sub-graphs while keeping a small overhead to code the description of the partition?

In the previously evoked graph based representations, the graph has been used to characterize either

pixels that are correlated or those with no correlation at all without any notion of the level of correlation.
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Figure 4: An example of super-rays obtained using the algorithm in [46]. For visualization purpose, the
result is shown for only one view of the Light Field StillLife. On the left, the original view in the RGB
space. On the right, the resulting super-rays.

If we wish to give more degree of freedom to the weights and by that model the vertices similarities,

then we can define a signal model. Sometimes a good model can improve the coding efficiency. However,

to what extend are we able to use this model, instead of only relying on a topology? This has motivated

our final theoretical study where we seek to find a theoretical limit on the uncertainty that a transform

based on a model can handle.

Thesis Roadmap

This dissertation is structured in two main parts.

In Part I, Chapter 1 provides a global understanding of the transforms defined for signals on graphs.

Specifically, we introduce the formal definition of a graph and a graph signal along with the relevant

taxonomy and notations used in the rest of the thesis work. We focus on the application of the graph

transforms in image compression. Then, in Chapter 2, we give a broad background on the two imaging

modalities tackled in this work: The Light Fields and Omni-directional images. Specifically, we present

the formal definition of each, the different representations they have and what new possibilities they

provide.

In Part II, we present our different contributions presented above. In a nutshell, this part is oriented

along two main axes corresponding to the two imaging modalities. More in detail, this part is organized

as follows:

• Chapter 3 : This chapter explores two ways of solving the two main issues concerning the

graph transform conception for light field compression: (a) The careful graph support design in

a way that the signal to be transformed is smooth on the graph and (b) Finding the best trade-

off between complexity and representation accuracy. We present a first solution that consists of

using geometry-blind graph supports which are fixed for all light field sub-aperture images cou-
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pled with a powerful prediction mechanism based on Convolutional Neural Networks (CNN).

Another solution is also proposed considering quasi-ideal geometry-aware super-rays which are

cautiously built coupled with an optimized separable graph transform to preserve angular corre-

lations. Experimental results show the benefit of the approachs in terms of energy compaction.

Coding schemes are also described to assess the rate-distortion performances of the proposed

transforms and are compared to state of the art encoders namely HEVC and JPEG Pleno VM 1.1

• Chapter 4 : In the previous chapter, the local graph-based transforms have been shown to be

powerful tools in terms of energy compaction. Nevertheless, the locality of the supports may not

allow us to fully exploit long term dependencies in the signal. In this Chapter, we describe a

graph-based prediction solution that allows taking advantage of intra prediction mechanisms as

well as of the good energy compaction properties of the graph transforms proposed in chapter

3. We rely on both non-separable and separable spatio-angular transforms and derives low fre-

quency spatio-angular coefficients from one single compressed reference image and from the high

angular frequency coefficients. The reference image is made of samples that are carefully chosen

from the light field. The approaches is shown to be very efficient in a context of high quality quasi-

lossless compression of light fields.

• Chapter 5 : In this chapter, we are interested in coding the omnidirectional content. Recently,

in order to be compressed using existing encoders, these signals are mapped to planar domain.

A commonly used planar representation is the equi-rectangular one, which corresponds to a non

uniform sampling pattern on the spherical surface. This particularity is not explored in traditional

image compression schemes, which treat the input signal as a classical perspective image. In this

work, we build a graph-based coder adapted to the spherical surface. We build a graph directly on

the sphere. Then, to have computationally feasible graph transforms, we propose a rate distortion

optimized graph partitioning algorithm to achieve an effective trade-off between the distortion of

the reconstructed signals, the smoothness of the signal on each subgraph, and the cost of coding

the graph partitioning description. Experimental results demonstrate that our method outper-

forms JPEG coding of planar equi-rectangular images.

• Chapter 6 : The previous chapters are mostly related to practical applications, and were built on

the assumptions that a pixel is either correlated or not with another. In order to give more degrees

of freedom to the graph supports we would want to use, we can assume a signal model repre-

sented by edge weights. In this chapter, we tackle a more theoretical problem in transform based

compression on graphs: the uncertainty of a graph model and its impact on the transforms. More

precisely, we study when does relying on an uncertain model to define a transform (with more

degree of freedom for weights) brings improvement to only topology based transforms (where

only binary weights are used)? We develop the different equations that leads us to an interesting

discussion about the effect of uncertainty of the edge weights on the compression efficiency. We

then validate our theoretical study on synthetic data.
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Finally, we conclude this manuscript by discussing contributions and future perspectives of this

work. The list of publications produced by the author of this thesis can be found in the the author

publications section. The authors contributions that are not discussed in this manuscript are joined in

Appendix A and B.

The work presented in this manuscript has been supported by the French Ministry of Higher Ed-

ucation and Research. It has also been supported in part by the EU H2020 Research and Innovation

Programme under grant agreement No 694122 (ERC advanced grant CLIM).
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Chapter 1

Transforms for signals on graphs and

applications in image compression

Traditionally, Digital Signal Processing (DSP) deals typically with signals residing in continuous do-

mains, which may be then sampled to get a particular digital representation to be processed afterwards.

Usually, those signals are acquired and sampled uniformly representing some evolution in time of a

variable or some luminance distribution on a regular lattice (two dimensional images). Thus, it is ex-

pected that the main part of the signal processing research targets uniform grids. Yet, in applications

such as social, energy, transportation, sensor and neural networks, high dimensional data resides on the

vertices of weighted graphs. Also, weighted graphs are commonly used to represent similarities in sta-

tistical learning problems addressed in computer vision. Even images and three dimensional scenes can

be considered as graphs where pixels or regions are nodes connected based on their similarity, depen-

dencies and distance in the 3D scene. Classical signal processing tools are revealed to be inappropriate

for such irregular structures. Therefore, a lot of research effort has been lately devoted to design new

tools and algorithms that can proficiently handle the challenges arising from the irregular nature of

graph support and efficiently process the signals living on the vertices of graphs.

In this chapter, we review the main principles of Graph Signal Processing. The graphs and the signals

on irregular domains are first recalled. We then present the graph signal spectral representations and

the generalized operators for signals on graphs. With the aid of the aforementioned notions, we review

the main strategies used to define the graphs and design the transforms for graph signals.

1.1 Graphs and signals defined on graphs

In this first section, we briefly recall the basic definitions for graphs and signals residing on graph nodes

(or vertices). We commonly consider a weighted undirected graph (see Figure 1.1) G = {V, E , A, W, V}

where V and E represent the set of vertices(or nodes) and edges. The Adjacency (or connectivity) matrix

A of G is a n × n symmetric matrix such as A(i, j) = 1 if there is an edge connecting the vertices i

and j, and A(i, j) = 0 otherwise, for i, j = 1...n. W is a weight matrix, positive and symmetric in our

case of undirected graphs typically denoting similarities between connected nodes. In such matrix, if

the nodes m and n are connected by an edge, W(m, n) equal to W(n, m), represents the weight of this

edge. Otherwise W(m, n) is equal to zero. The self-loops matrix V of G is an n × n diagonal matrix with

entries V(i, i) for i = 1...n, that are non-zero only if there is a self-loop connecting the node i to itself,

and V(i, j) = 0 for i �= j. The degree of a vertex n is the sum of weights of all the incident edges that

can be computed by summing the elements of the nth row of the weight matrix W or the adjacency A

3



Part I, Chapter 1 – Transforms for signals on graphs and applications in image compression

if the graph is unweighted. The degree matrix D is a diagonal matrix with the ith diagonal value is the

degree of a vertex i.

Figure 1.1: An example of a arbitrary graph consisting of 7 nodes V1, V2, . . . V7 that are connected by
undirected weighted edges

Assuming that the graph G consists of N nodes and is connected, i.e. every node can reach another

node in this graph following some paths, we denote by the j-hop neighborhood of a vertex n expressed

in Eq.(1.1), the set of vertices which are at most j hops away from node n. The distance dh here represents

the minimum distance in hops between two nodes. An example of neighborhood of a vertex is depicted

in Figure 1.2.

Nj(n) = {v ∈ V, dh(v, n) ≤ j}, (1.1)

If we do not take the weights into account, and we define the degree of a vertex as the number of

connections it has, we can define the unweighted combinatorial graph laplacian as:

Lu = D − A, (1.2)

More generally, the generalized graph Laplacian embodies the intrinsic structure of the graph and is

primarily useful for its spectral interpretations. It is defined as:

Lg = D − W + V, (1.3)

Where D is a diagonal degree matrix with the nth diagonal entry dn is equal to the degree of the vertex

n, i.e. the sum of the weights of all incoming edges at the node n. If we do not take the self loops into

account (assume V = 0), the resulting laplacian L = D − W is the so-called combinatorial laplacian.

For the sake of simplicity, we restrict our attention in the following to the latter combinatorial

graph laplacian L. It is a real symmetric positive semi-definite matrix that has a complete set of real

orthonormal eigenvectors U = {u0, u1, . . . uN−1} corresponding to non-negative eigenvalues σ(L) =

{λ0, λ1, . . . λN−1} satisfying LU = λU. Note that there is not necessarily a unique set of graph laplacian

eigenvectors as it can be seen later on in this chapter. Also, more generally, zero appears as an eigenvalue
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1.1. Graphs and signals defined on graphs

Figure 1.2: An example of node neighborhood: N1(n) and N2(n) represent the 1-hop and 2-hop neigh-
borhood of the vertex respectively.

with multiplicity equal to the number of connected components of the graph and the largest eigenvalue

depends on the largest degree of the graph. Hence, since we restrict our attention to connected graphs,

the sorted spectrum of eigenvalues is denoted by (1.4) :

0 = λ0 < λ1 ≤ λ2 ≤ λ3 · · · ≤ λmax, (1.4)

The first eigenvalue (i.e. λ0) is always zero and the corresponding eigenvector u0 is constant, which

is a useful property in extending intuitions about the DC components of the signals related to classical

signal processing theory.

Another popular option for analyzing the connected graph structure is to normalize each weight by
1√
didj

, leading to the normalized graph laplacian of the form (1.5):

L = D−1/2LD−1/2 = I − D−1/2WD−1/2, (1.5)

The first eigenvalue of the normalized laplacian is also equal to zero however in that case its associ-

ated eigenvector is not constant. A nice property of this normalized version is that its eigenvalues are

always enclosed in the interval [0, 2] which makes evaluation and comparison of graph signals’ spectral

representations simpler, particularly if we deal with graphs having a large difference in the total number

of connected nodes.

A third popular matrix often used in dimensionality reduction techniques is the random walk matrix

computed as P = D−1W. Each entry in this matrix is a probability Pij of going from a vertex i in the

graph to another vertex j in one step of a Markov Random walk on the graph. It should be noted here

such matrix is used when the nodes by themselves symbolize possible signal states or values.

A graph signal f : V → IR is a real-valued function, where each vertex n is assigned a real value f(n).

Thus, such function may be represented as a vector f ∈ IRn with the nth element corresponding to the

value of the signal at the vertex n in V . An example of a signal defined on a graph is depicted in Figure

1.3.
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Figure 1.3: An example of a signal defined on a graph. The color of the nodes denotes the different
values of the signal on the graph vertices. The weights are written in red on each edge.

The signal in Figure 1.3 is a special case of a smooth signal where there is no brutal signal variation

between any two strongly connected nodes in the graph. The smoothness of a signal is thus potently

dependent on the structure of the graph on which it is defined. More precisely, a signal is considered to

be smooth with respect to a graph G when it exhibits small variations between strongly connected ver-

tices. Typically, the global smoothness of a graph signal f is expressed though the discrete p-Dirichelet

norm of f [92] ( Eq. 1.6):

Sp(f) =
1

p

�

v∈V

�∇vf�p
2 =

1

p

�

v∈V

� �

u∈Nv

W(v, u)[f(v) − f(u)]2
� p

2

, (1.6)

Where Nv denotes the one-hop neighborhood of the vertex v, and W(v, u) is the edge weight between

the nodes v and u. When p = 1, Eq. (1.6) defines the total variation of the signal f on the graph. A

widely-used and well-known Laplacian based form of smoothness is derived by fixing p = 2 as in Eq.

(1.7).

S(f) =
�

u,v∈E

W(v, u)[f(v) − f(u)]2 = fT Lf , (1.7)

Eq. (1.7) implies that a signal is smooth , i.e. S(f) is small only if the signal has similar values

on neighboring vertices connected by an edge with high weights. This notion of smoothness has been

widely used in semi-supervised learning literature, where the goal was to recover missing signal values

under smoothness priors exploiting the assumption that the signal’s values vary slowly between nodes

connected with strong edges.[7] The smoothness is one of many signal processing tasks that one can

generalize to graph signals.

To our knowledge, with the emergence of the graph representations and the graph signal processing

research field, different frameworks have been developed and adopted to efficiently process signals re-

siding on graph nodes taking into account the underlying graph support. David Shuman et al [92] were

among the first in this academic movement, leading the way as they published an influential paper
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1.2. Spectral representation and generalized operators for signals on graphs

stipulating the graph signal processing (GSP) framework which is based on spectral graph theory [16]

and relies on an analogy built between the traditional Fourier transform and the spectral decomposition

of the sets of eigenvalues/eigenvectors of the graph laplacian matrix. Aliaksei Sandryhaila and Jose

M.F. Moura [87][86] developed a different framework relying on the algebraic signal processing theory

[81] where the adjacency matrix was used to define a graph shift operator. The former framework has

been principally defined for weighted undirected graphs with real non-negative edge weights, whereas

the key advantage of the latter is that it can be generalized to account for directed graphs with nega-

tive and complex weights. After adopting a particular framework, researchers have been interested in

generalizing the signal transforms from the classical euclidean domain to the graph settings.

In the traditional digital signal processing, the aptitude of defining and applying global or localized

transforms on signals such as Fourier transform, wavelets, curvelets and windowed Fourier transforms

to sparsely represent high dimensional data lying on regular spaces has led to significant improvement

in the aforementioned compression tasks. Interestingly, a signal residing on graph nodes can be viewed

as a vector in IRn. However, a major obstacle to the applications of classical transforms on graph signals

is that treating the graph signals in the same way as handling a discrete-time signal completely ignores

significant dependencies and interactions arising from the underlying irregular structure and the con-

nectivity in the graph domain. Relying on the spectral graph theory, some of the research effort [92] [16]

has been recently dedicated to find analogies between the traditional signal processing and the graph

signal processing.

1.2 Spectral representation and generalized operators for signals on

graphs

1.2.1 Graph spectral representation

In classical Fourier analysis, the eigenvalues of the 1-D Laplace operator were revealed to carry an exact

notion of frequency: eigenvectors associated to low eigenvalues are slowly oscillating complex expo-

nential exhibiting low variations (i.e. low frequency) whereas for larger eigenvalues, the associated

Eigenfunctions oscillate more rapidly (i.e. high frequency). Analogously, in the graph setting, the eigen-

vectors associated to small eigenvalues of the Laplacian matrix are signals that vary slowly across the

graph edges as opposed to those associated to large eigenvalues where they take values changing more

rapidly. In other words, in the former case, the values of the low frequency eigenvectors are expected

to be similar on vertices connected by an edge with a high weight. In the latter, they are more likely to

have dissimilar values at those locations. The set of eigenvectors of the graph Laplacian matrix are thus

considered as a Fourier basis for signals defined on the graph vertices.

Formally, for a function f defined on the vertices of a graph G, the graph Fourier transform f̂(λl) at

frequency λl is hence defined as the inner product with the associated eigenvector ul (Eq. (1.8)):

f̂(λl) =< f , ul >=
N�

n=1

f(n)u∗
l (n), (1.8)
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Part I, Chapter 1 – Transforms for signals on graphs and applications in image compression

where the inner product is linear with respect to the first argument and conjugate-linear with respect to

the second argument of the previous equation, and u∗
l (n) is the conjugate value of the eigenvector ul at

the node n. The inverse Graph Fourier Transform f(n) at node n is given by Eq. (1.9):

f(n) =

N−1�

l=0

f̂(n)ul(n) (1.9)
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Figure 1.4: Equivalent representations of a graph signal in the vertex and graph spectral domains. On
the left, a signal f that resides on the vertices of a sensor network with Gaussian edge weights. The
signal values are represented by the colors of the vertices. On the right, the same signal in the graph
spectral domain. In this case, the signal is a heat kernel, which is actually defined directly in the graph

spectral domain as f̂(λl) = e
−10

λmax
λl . The plotted signal in is then determined by taking an inverse graph

Fourier transform in Eq [1.9] of f̂ .

An example of the two equivalent representations of a graph signal is depicted in figure (1.4) where

a sensor network consisting of 100 vertices is drawn with random edge weights. A heat kernel f̂ has

been designed in the graph spectral domain as shown on the right of Figure (1.4). The plotted signal

in Figure (1.4) is then determined by taking an inverse graph Fourier transform in Equation [1.9] of f̂ .

The graph Fourier basis functions can be chosen as the eigenvectors of either the combinatorial or the

normalized graph Laplacian. In both cases, the spectrums hold a frequency-like analysis. Moreover, as

for the classical Fourier analysis, the spectral representation proficiently provides central information

about the graph signal. More precisely, the smoothness of the signal as measured in equation 1.7 can

also be written as:

S(f) = fT Lf =
N−1�

l=0

λl̂f
2(λl), (1.10)

The signal is smoother when the most of the corresponding graph Fourier coefficients are concentrated

in the low eigenvalues. This is the case heat kernels for instance. This property is useful for data com-

pression and graph regularization techniques as such signals can be closely estimated by a sparse set of

coefficients [92].
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1.2. Spectral representation and generalized operators for signals on graphs

1.2.2 Generalized operators

Besides its frequency interpretation and its use for the graph spectral representation, the Graph Fourier

Transform has been also valuable for defining generalized operators for graph signals such as filtering,

convolution, translation and scaling . . . [92] which are some of the ingredients used to develop localized

and multiscale transforms on graph signals discussed in a later section.

In essence, in the classical signal processing framework, frequency filtering consists of representing

a signal as a linear combination of complex exponentials then attenuating or amplifying contributions

of some of those signal components. The Fourier coefficients of the signal are thus multiplied by a so-

called transfer function. An inverse Fourier transform of the resulting filtered coefficients corresponds

to the convolution in the time domain. Intuitively, and since a Graph Fourier Transform is well-defined

(in Eq (1.8)), the outcome f̂out of the filtering of a signal f on a graph G with a graph filter with transfer

function h is defined in the graph spectral domain as the multiplication of the Graph Fourier coefficients

f̂(λ) with the transfer function ĥ(λ) as follows:

f̂out(λ) = f̂(λ)ĥ(λ) ∀λ ∈ σ(L) (1.11)

In the above mentioned formulation, σ(L) denotes the spectrum of the graph G. Equivalently, the

filtered signal in the vertex domain is consequently computed by taking the inverse Fourier transform

of the result of Eq. (1.11), such that:

fout(n) =
N−1�

l=0

f̂(λ)ĥ(λ)ul(λ) (1.12)

In matrix notations, we can also write the former Equation as

fout = ĥ(L)f (1.13)

Where

ĥ(L) = U




ĥ(λ0) 0 · · · 0

0 ĥ(λ1) · · · 0
...

...
. . .

...

0 0 · · · ĥ(λN−1)




UT . (1.14)

When the graph filter h is a polynomial of order K with coefficients {αk, k = 0, . . . K} such that:

u(λl) =
K�

k=0

αkλk
l (1.15)

The frequency filtering’s outcome of an input signal f(n) at a vertex n can be inferred as a linear combi-

nation of the signal values at vertices restricted within K-hop neighborhood of the node n. [92]

This property is suitable for designing signals that are well localized in the vertex domain and was

extensively exploited by many researchers in the graph signal processing field more particularly for

learning dictionaries highlighted in a later section [116].
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Part I, Chapter 1 – Transforms for signals on graphs and applications in image compression

Furthermore, enforcing the well-known property that convolution in the vertex domain is equivalent

to a multiplication in the frequency domain, a generalized convolution is defined by taking the inverse

Fourier transform of a multiplication of two signals in the graph spectral domain. Thus, given two

signals f and g residing on vertices of the same graph structure, the result of their convolution on a

vertex n is computed by:

(f ∗ g)(n) =
N−1�

l=0

f̂(λl)ĝ(λl)ul(n) (1.16)

The definition of convolution can’t be directly generalized in the vertex domain because of the unavoid-

able fact that weighted graphs are irregular structures which lack a shift-invariant notion of translation

in the vertex domain. The translation in the frequency domain can still be generalized though. More

precisely, the translation Tvf(n) of a signal f to a node v can be defined as a convolution (following from

Eq. 1.16 ) with a Kronecker function centered at vertex v (δv) as in Eq. (1.17):

Tvf(n) =
√

N(f ∗ δv(n)) =
√

N
N−1�

l=0

f̂(λl)u
∗
l (n)ul (1.17)

√
N is a normalizing constant which ensures that the translation operator preserves the mean of the

signal. The Kronecker function δv is an N -dimensional signal that is equal to one at node v and zero

everywhere else. An example of the translation of a signal to different locations on the graph is illus-

trated in Figure (1.5). Looking more closely at the properties of the translated signals on such irregular

topologies, it is clear that the signal does not maintain its original values. The translation operator is ac-

tually a kernelized operator that acts on the kernel f̂(.) defined directly in the graph spectral domain. In

these examples, we can understand the subtle difference between the standard translation on a regular

structure and the generalized translation on graphs.

0.2

0.4

0.6

0.8

1

1.2

1.4

0.1

0.2

0.3

0.4

0.5

0.6

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 1.5: The translated signals (a) T20f (b) T53f (c)T78f , where f is the heat kernel shown in figure
(1.4)

Moving to another essential operator mainly for wavelets, scaling or dilation can be generalized to

the graph setting by performing the scaling to the Graph Fourier domain. Assuming a kernel f̂(λ) :

IR+ → IR, we can define the dilation of a signalf by a factor s in the Graph Fourier domain by:

�Dsf(λ) = f̂(sλ) (1.18)

A key thing to note here that the scaling requires the kernel f̂ to be defined on the entire real-line, not
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1.3. Graph based transforms

only on σ(L) [43].

The generalized operators detailed above are mainly defined in the spectral domain. Other works

such as [77] have defined translation and convolution in the spatial domain, since the translation in the

spectral domain is not really satisfying and does not preserve neighborhood information. However, in

our framework, we choose to work in the continuation of the spectral-based methods.

Having discussed the major operators on graphs, we will discuss in the following section the trans-

forms that have been proposed relying on them.

1.3 Graph based transforms

Consider a graph G = {V, E , A, W, V} where V is the set of nodes, E the set of edges drawn between the

nodes. A, W and V are the Adjacency, weights and self-loops matrices respectively. Also, consider the

signal x is living on the vertices set V . A large number of Graph-based transforms have been proposed

in the graph signal processing literature. They can be split into two categories: Non-localized and

Localized.

1.3.1 Non-localized transforms: Fourier-like

Formally, for the signal x defined on the vertices of the Graph G, the graph Fourier transform x̂(λl)

at frequency λl is defined as the inner product with the associated eigenvector ul (see Equation 1.8 in

section 1.1). ifferent types of Laplacian matrices have been defined. We can thus characterize various

Graph Fourier Transforms depending on the matrix involved in the Transform.

(1) Unweighted Graph Fourier Transform (uGFT) corresponds to projecting the signal onto the eigenspace

of the unweighted combinatorial graph Laplacian of the graph G.

(2) Weighted Graph Fourier Transform (wGFT) corresponds to projecting the signal onto the eigenspace

of the weighted combinatorial graph Laplacian of the graph G.

(3) Unweighted Normalized Graph Fourier Transform (uNGFT) corresponds to projecting the signal

onto the eigenspace of the normalized unweighted graph Laplacian of the graph G.

(4) Weighted Normalized Graph Fourier Transform (wNGFT) corresponds to projecting the signal

onto the eigenspace of the normalized weighted graph Laplacian matrix of the graph G.

(5) Generalized Graph Fourier Transform (gGFT) corresponds to projecting the signal onto the eigenspace

of the generalized graph Laplacian of the graph G.

The Graph Fourier Transform is global as most of the eigenvectors of the graph Laplacian matrices

are not localized in the vertex domain of the graph. Yet, many existing applications such as the analysis

of graph signals, source localization and detection necessitate the localization of the transforms.

11



Part I, Chapter 1 – Transforms for signals on graphs and applications in image compression

1.3.2 Localized transforms: Wavelet-like

To provide localization in the vertex and spectral domains, wavelet-like transforms for signals on graphs

[21, 73, 71, 70, 43, 108] have gained considerable attention mostly due to their capability of providing

multiresolution representations obtained with the definition of graph translation and scaling. Moreover,

these signal representations can be used to develop local analysis tools, so that a graph signal can be

treated "locally" around a vertex using data residing in its small neighborhood. Existing designs of

wavelet-like filterbanks on the graph can be divided into two types, namely, spatial and spectral designs.

The vertex domain designs of graph wavelets and transforms are founded on spatial features of the

graph support such as k-hop neighborhoods and k-hop connectivity between nodes. Wang and Ram-

chandran [108] designed spatially localized transforms for sensor network graphs with binary edges

(having weights equal to 0 or 1). They proposed computing a weighted average or a weighted dif-

ference in a k-hop neighborhood around each node in the graph. Their approach intuitively defines a

two-channel wavelet filterbank with approximation and detail filters, however suffers from two main

glitches: a non-zero DC response of the filters and an oversampled output. In [21], the proposed graph

wavelets are effectively localized in space with respect to a range of positions and scaling indices. Specif-

ically designed in the vertex domain to analyze network traffic, the wavelet’s construction relies on the

geodesic distance or the shortest path between nodes on the graph. Yet, the construction algorithm is

restricted to unweighted graphs, and the transform is generally not invertible.

Additionally, graph wavelet lifting schemes have been proposed in [89] [72] and offer a natural way

of constructing local two-channel critically sampled filterbanks on graph-signals. In such approaches,

the vertices are divided into two sets, the odd and the even nodes using graph coloring techniques [50].

The odd nodes compute their "prediction" coefficients using their own data and data from their even

neighbors, then even nodes compute their "update" coefficients from their own data and the prediction

coefficients of their odd neighboring nodes. Although the transform can be applied on any arbitrary

graph, the scheme by itself dictates that any two nodes having the same parity can’t use each other’s

data even if they are connected by an edge. This remains as the underlying reason why those schemes

do not provide optimal signal decorrelations.

The graph spectral domain designs of graph wavelets are based on the spectral features encoded

in the eigenvalues and eigenvectors of the graph Laplacian. The main goal behind those designs is

providing localized bases in both the vertex and the graph frequency domains. Coifman and Maggioni

[17] introduced the "diffusion wavelet" which interacts with the underlying graph structure through

the repeated applications of the powers of a diffusion operator (such as Laplacian) to capture different

resolutions. The localized basis functions at each resolution are then downsampled and orthogonalized

appropriately. Another approach proposed to define wavelets relies on the precise analogy with the

time domain wavelets that is translating and dilating band-pass filters defined in the graph spectral

domain [43]. The graph wavelet filterbanks defined in [73, 71, 70] are fundamentally inspired from the

classical multiresolution analysis based on filter banks in the Euclidean domain. Under some conditions,

the defined filter-banks are critically sampled and can either be orthogonal with a perfect reconstruction

[73] or bi-orthogonal and localized with a compact support at the expense of a small reconstruction error

[71]. We refer readers to the above cited papers and references therein for more thorough analysis and

details.
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1.4. Graph based transforms in image compression

The aforementioned transforms draw on pre-defined structures merely derived from the graph and

some of them can be efficiently implemented. However, they are commonly not well-adapted to the

signals in hand. Addressing this issue, very few researchers dedicated their work to offer an extra

adaptivity of the transforms. More precisely, the authors in [9] used a large number of bases, each one

adapted to specific space and frequency localization properties, to construct diffusion wavelet packets.

The choice of the bases depends on the task in hand. Another approach consisted of the use of deep

learning to design lifting schemes that resembles a deep auto-encoder network [85]. In both works,

nevertheless, the training signals living on the graph vertices are not taken into account. In addition,

the definition of the trees in [82] denotes the geometry and the structure of the input data and the

adaptivity is obtained after reordering and permutations derived from the tree which inevitably makes

the performance of the scheme dependent on the tree construction and reordering involved.

Later on, there have been a growing interest in learning structured dictionaries from signals on

graphs in order to sparsely represent the graph signals at a low computational cost. Zhang et al [116]

were the first to introduce structured dictionaries for signals living on arbitrary graphs. Making use

of the graph Laplacian operator, the algorithm is built on a sparse approximation step followed by an

updating step which iteratively leads to a structured dictionary. The learned dictionaries were able to

capture the spectral features of the different considered signals, in return providing sparser representa-

tions.

Afterwards, Thanou et al [101] have proposed a parametric family of structured dictionaries formu-

lated as unions of polynomial matrix functions of the graph Laplacian, to sparsely represent signals on a

given weighted graph, and an algorithm to efficiently learn the parameters of a dictionary belonging to

this family from a set of training signals on the graph. When translated to a specific vertex, the learned

polynomial kernels in the graph spectral domain correspond to localized patterns in the graph vertex

domain. The translation on different locations in the graph leads to an efficient and sparse signal rep-

resentation with a greater performance than non-adapted transforms such as spectral graph wavelets,

and comparable to state of the art algorithms as K-SVD.

Now that we have surveyed the graph based transforms already proposed in the literature, we focus

in the following on their use in image compression schemes. In the following section, we only give a

brief state of the art relevant to the work in this thesis. A more complete overview about graph based

transforms designed for image compression can be found in [14].

1.4 Graph based transforms in image compression

In essence, image compression consists of encoding an image I onto some code-word c, that is carefully

chosen in a way that the distortion on the reconstructed image Ĩ is minimized under a total bitrate

constraint. This minimization can be written as:

min
c

D(I, Ĩ) + λR(c(I)) (1.19)

where R(c(I)) is the average code-word length. In most of the lossy compression schemes, a first step
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Part I, Chapter 1 – Transforms for signals on graphs and applications in image compression

consists of transforming the signal and projecting it in another domain. At the output of this stage, we

have a novel image representation made of coefficients Î that are approximately uncorrelated. Also, we

aim at having most of the energy compacted in fewer coefficients and thus the sparsity of the output is a

researched asset. We refer to those two properties as the decorrelation efficiency and energy compaction

performance. Those are critical to achieve an acceptable compression performance. The coefficients Î are

subsequently quantized, and the quantization indices are coded with with some lossless compression

algorithms such as Huffman or arithmetic coding. Note that if the transform (i.e. the projection matrix)

to be used is not known in advance in both encoder and decoder, then the total rate consists of two

different terms. The former consists of the bits needed to code the quantization indices. The latter is

made of auxiliary information for the decoder to be able to reproduce the suitable inverse transform

and retrieve the original image signal. Both terms are maybe dependent on I, making the design of

adaptive transforms a challenging problem.

One of the first proposed transforms is the Karhunen-Loeve transform (KLT). It is based on the eigen-

decomposition of the estimated covariance matrix of the input process. Projecting the signal into the

eigenvectors of its covariance matrix has been shown to be optimal under mean square error metric and

fixed-rate coding [42]. The Discrete Cosine Transform (DCT) [96] is almost equivalent to the KLT for a

first order auto regressive process [49]. While many common transforms used in image compression

schemes (for example JPEG and JPEG 2000 and HEVC), such as the DCT and wavelet transforms [26],

make use of a fixed set of basis vectors that do not need to be communicated to the decoder side, the

KLT is a signal-adaptive transform and the necessity of sending additional information is stands still as

a challenging problem. Also, the KLT has no structure and lacks any fast implementation. Those are the

main disadvantages that have limited the use of the KLT in image compression.

Nevertheless, all the models defined before based on stationary Gaussian assumptions fail to capture

the complex and non stationary behavior typically occurring in digital images. In this context, the Graph

Fourier Transform has been proposed and can be seen as an adaptive DCT taking into account both the

image structure and the image signal in hand. Like the KLT, it is based on an eigendecomposition of

a kernel matrix (Laplacian matrix). As has been seen in 1.1, the graph topology A and set of weights

W fully define the graph Laplacian matrices, from which the Graph transforms are computed. Hence,

obtaining a “good” Graph Fourier Transform depends on the selection of the topology and weights

yielding the best compression performance in an RD sense as in 1.19.

When the data to be handled is already structured, the knowledge of meaningful graph topology

A, weights W and self-loops V (if they exist), plays a crucial role in the success of graph-based repre-

sentations and transforms for compression applications. More precisely, if a function is assumed to be

smooth or piecewise smooth on a graph, it can be described by a very small number of coefficients in

a well-chosen basis which is usually related to the graph topology (A) or model (W). For certain types

of signals such as 1D and 2D images, one can often construct the graph in an intuitive manner: Each

pixel of the image is represented by a node in the graph. Edges are drawn between neighboring nodes

intuitively based on the knowledge of the structural information. A signal lying on a structure with

Adjacency matrix A can be transformed using the eigenvectors of the unweighted combinatorial graph

Laplacian Lu or the normalized unweighted graph Laplacian Lu. Intuitive models are convenient to

analyze since usually such graphs are not highly connected thus the precision matrix is sparse. The very
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Figure 1.6: Different strategies to design a decorrelating transform

well known transform DCT falls in this category. For example, behind the 2D-DCT, lies an assumption

of a 4-neighbors connected graph where all weights are unity [114]. The 1D-ADST is a Graph Based

Transform derived from the generalized graph Laplacian Lg of a line graph whose weights are all equal

to wu and having a single self-loop on the first sample with the same weight wu [32]. Likewise, rely-

ing on the structure of the graph and its spectral properties, structured graph dictionaries [116] can be

learned and Graph wavelet filter banks [73] [71] can be used to transform the signal.

Ideally, the heuristic intuition-based and data-driven schemes should be combined together for bet-

ter performance especially when the structural information is not entirely reliable and meaningful.

Three major design approaches exist for that case:

(i) Adjusting the already known topology and intuitive model matrices depending on signal charac-

teristics.

(ii) Learning new model from the data taking into account the underlying structure.

(iii) Assigning model weights depending on the inherent graph topology and neighborhood informa-

tion.
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The weight wij on each edge of the graph is conventionally defined as a function of the difference in

pixel values Ii and Ij connected by that edge. Real-valued graph weights are however too expensive in

terms of signaling rate. To overcome this issue without loosing adaptivity, the weights are constrained

to be in the set {1, 0} in [90] [58], [35]. This implies that the weights are restricted to describe strong or

zero correlations; the weights can be defined as a result of an edge detection algorithms [90], using some

greedy optimization algorithms [58]. In [35], the authors proposed to segment an image into uniform

regions that adhere well to object boundaries (the so-called superpixels) and apply a unweighted Graph

Fourier Transform within each superpixel. This method can be seen as removing unreliable links in the

whole graph representing the image therefore avoiding the filtering around the edges and reducing the

overhead of representing the graph structure within each superpixel as well. In [33], the difference |Ii −
Ij | is quantized to two values using a pdf-optimized uniform quantizer, yielding a graph that is always

connected by construction; although weight binarization leads to suboptimal compression efficiency,

it is shown that a suitably designed quantizer makes the performance loss very small. Offering more

adaptivity, in [48], two sets of weight values are used, i.e. wij = {1; 0} for image blocks characterized

by strong or zero correlation, and wij = {1; c} for blocks exhibiting strong or weak correlation. The

constant c is optimized using a model suitable for piecewise smooth signals, and very good results are

obtained in the compression of depth map images. However, the overhead incurred by the graph for

natural images makes it harder to obtain significant gains. This problem has been addressed in [33],

where edge prediction followed by coding is used to reduce the overhead, leading to performance gains

between 1 and 3 dB in peak signal-to noise ratio (PSNR) over the DCT. More sophisticated graph coding

techniques may also contribute in reducing the overhead, e.g. one might think of applying contour

coding techniques as in [118], [23], [104] to reduce the cost of representing the graph. Moreover, in

[104] directional graph weight prediction modes are proposed, which avoid transmitting any overhead

information to the decoder.

For natural image compression, in [32], two graph topology and model adaptations were proposed

for inter-predicted residual blocks taking into account the statistical properties of the residuals. The first

method is edge-adaptive where graph link weights are reduced depending on the directionality of the

edges detected in the image. A similar work [84] explores the structure tensor’s properties to design

graph Adjacency templates before computing the optimal edge weights that successfully describe the

inter-pixel correlations. One of the main drawbacks of such methods lies in the cost required to represent

and encode the graph, which may outweigh the coding gain provided by the edge-adapted transform.

To reduce the signaling overhead, the coder can choose one out of some fixed graph templates to de-

scribe the signal by minimizing its total variation with respect to the Graph [32]. An alternative strategy

consists of maximizing the Gaussian likelihood subject to a constraint set defined by a (matrix type -

graph template) pair as in [78]. However, with the previously evoked set of constraints on the graphs,

the resulting transform may not retain the advantages of the edge-aware operator.

As for the problem of estimating and learning models from the data taking into account the known

structure, recently, there has been a growing interest in learning Laplacian matrices (with non negative

weights) that can successfully describe the graph signals due to their spectral properties and intuitive

interpretations. Dong et al [29] estimate the graph Laplacians under signal smoothness priors with re-

spect to the graph. To this end, a factor analysis model for the graph signals is adopted and a Gaussian
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prior on the latent variables is imposed to control these signals. In their algorithm, the learned Laplacian

is combinatorial positive semi-definite. In a more recent work [31], more generalized graph estimation

problems are formulated and three different Laplacian matrix types are estimated: The generalized

Laplacian, the diagonally dominant Laplacian, and the combinatorial one. Unlike the previously cited

work, the estimation does not rely on approximations or smoothness priors, however on a strong mini-

mization of the following objective function:

Tr(ΘS) − logdet(Θ)� �� �
D(Θ,S)

+
α

2
||Θ||1,off

� �� �
R(Θ,α)

(1.20)

where Θ is the target variable matrix (i.e., a specific type of graph Laplacian), R(Θ, α) refers to the spar-

sity promoting regularization term with parameter α and D(Θ, S) is the data fidelity term, whose mini-

mization is equivalent to the maximum likelihood estimate of precision matrices under the assumption

of an attractive Gaussian Markov Random Field (GMRF). Prior knowledge about the graph connectiv-

ity (data structure) is built into the choice of the added structural constraints to the main minimization

problem.

Naturally, learning problems are complex and require a lot of computational efficiency especially

for large data and graphs. To alleviate this problem, for nodes that lie on a vertex set V embedded

in an euclidean domain (2D images, 3D scenes, voxelized point clouds), it is common practice for the

neighborhood structure (the weights matrix) of the underlying graph to be inherited from the neigh-

borhood structure of the containing domain since the structure of the data is more meaningful and can

successfully model the inter-pixels correlations. More precisely, for signals living on such nodes, the

signal model precision is usually defined using the neighborhood information provided by the struc-

ture graph. For instance, in [15], the authors examined two weights models: the auto-regressive model

and the inverse-distance model. The former fits the best weights to the signal in hand under some

auto-regressive assumptions. The latter, also applied in [115], exploits the neighborhood information by

assigning weights that fall off inversely with distance up to a threshold. A similar strategy was adopted

in [69] where the weights of the links are computed as an exponential term of the euclidean distance

square of the inter-pixel distance.

As an alternative to the weight functions, and under the assumption of a Gaussian process, covari-

ance functions can be used to characterize the signal. For example, one can estimate the covariance

function by assuming that it depends only on the distance between the nodes. Authors in [15] refer to

this as the Non-Parametric model NP Model. Another option is to assume that the graph signal values

are samples of an Ornstein-Uhlenbek process and thus define the covariance as a function of the distance

with only one parameter which models its decay.

Once the graph Adjacency, Weights or Covariance functions are well defined, the signal is then trans-

formed using the graph transforms as outlined in section 1.3 or traditional Karhunen-Loeve transforms.

In the rest of the thesis, we will restrict our attention to the special case of structured data where the sig-

nals are sampled on nodes embedded in a structured domain. Light fields and omni-directional images

are two examples of structured data and will be extensively studied in the following chapters.

17





Chapter 2

Background on light fields and

omni-directional imaging

2.1 Light Field imaging

From a purely geometric point of view, light is composed of rays: directed lines in 3D space that carry

a certain intensity value, or radiance. Conventional photographs do not record most of the information

about the rays flowing in the camera at the moment of capture. For example, if we think about the light

striking a sensor and consequently contributing in one pixel, the photograph tells us nothing about the

distribution of the rays and their individual contribution in the final pixel. It turns out this geometrical

information is the crucial piece of the omitted information that leads to different problems in conven-

tional photography. This has led to the development of the light fields concept: a representation of a

3D scene as a collection of light rays coming through every point in space and flowing in all possible

directions.

In this section, we introduce the basic notion of light fields, which represents the total geometrical

distribution of the rays entering the camera at the moment of capture. For the sake of completeness, we

then briefly overview the acquisition techniques and the most prominent applications. We then focus

on the major problem related to the core of the thesis which is the compression of the large amount data

that a light field represents.

2.1.1 Formal definition

The Plenoptic function

Thinking about the geometrical distribution and representation of the light travelling in the world has

an extensive investigation history. Adelson and Bergen [2] P were among the first in this academic

movement, leading the way as they published an influential paper stipulating the representation of a

light ray R as a 7 dimensional (7D) function known as the Plenoptic function:

R = Π(x, y, z, θ, φ, λ, t) (2.1)

The first three dimensions outlining the ray position, θ and φ define its direction, for all wavelengths

λ and at every time t. The sampling of the temporal dimension is usually dependent on the capturing

device’s frame rate and the wavelength is decomposed into 3 channels, namely the Red-Green-Blue

(RGB) components. Without any consideration about the range and sampling of the function, intuitively,
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the plenoptic function can be used to represent all possible observable scenes. For instance, to generate

a conventional photo, a pinhole camera samples Π at a range of (θ, φ) for a fixed (X, Y, Z).

In practice, this function can be simplified by omitting dimensions. McMillan and Bishop [68] re-

duced the 7D plenoptic function to 5D by removing the wavelength and time parameters (See Fig. 2.1).

They recorded cylindrical views (2D) of a static scene at multiple 3D camera positions in order to sample

the 5D function.

The Lumigraph

Nevertheless, it is very difficult to capture the entire or even a bounded sampling of the plenoptic func-

tion. And even if we can do so, this will lead to highly redundant information. Indeed, if we take the

reasonable assumption that the air around an object does not absorb or deflect light (i.e has a trans-

mittance of 1 and a constant refractive index), all the ray intensities remain almost constant along their

path. This observation led Levoy and Hanrahan [62] to introduce to computer graphics the notion of

4D light field so called Lumigraph, hence eliminating 3 dimensions assuming that all rays are flowing

in free-space for the same wavelength at a fixed time. Although the 4D collection of rays can be pa-

rameterized in different ways, the simplest way is to use two parallel planes (The so called Two planes

parameterization). More precisely, each ray is described by its intersection with two distinct and parallel

planes that we denote (x, y) and (u, v) (as illustrated on Fig. 2.1). The plenoptic function is thus reduced

to the 4D light field function :

R = L(u, v, x, y) (2.2)

Similarly to the plenoptic function, if the light field is colored then we can add a color dimension,

and a dynamic light field (a video) adds the temporal dimension.

By convention, (u, v) are the angular dimensions, as they define the angle of the ray relative to the

second intersection (x, y), the spatial dimensions.

2.1.2 Light field rendering

Lately, computational imaging has gained a considerable attention promising a wind range of appli-

cations in security and medicine. Researchers in computer graphics, and computer vision, have ex-

plored the acquisitions of light fields and built devices to capture them in order to enable many post-

capture functionalities when coupled with some computational approaches. light field’s gathering re-

quires taking an important amount of photographs of the same entity from different perspectives under

unchanged light conditions. This notion is so-called the light lield rendering.

Levoy and Hanrahan [62] have proposed moving a single-camera across the scene with a changing

time of capture. An alternative technique suggested by Wilburn et al [110] was the use of an array

of cameras which revealed the “see-through” effect enabled by the light field post-capture processing,

precisely, the digital refocusing. If the cameras are arranged along a 1D path, then displaying the views

successively would give the impression of orbiting around the scene at a constant time. If arranged

in 2D arrays, then the full light field is captured. Doing so, new focused images can be generated

computationally.
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2.1. Light Field imaging

Figure 2.1: 5D Plenoptic function vs the two-plane parameterization: On the left, the ray is sampled
with the plenoptic function by 5 coordinates, (θ, φ) being the direction and (x, y, z) the 3D position of
the generating point. The ray on the right is sampled with the two-plane parameterization. A ray is
described by 4 coordinates corresponding to its intersection points with two parallel planes noted (u, v)
and (x, y).

In 2006, Ren Ng [76] proposed the complete architecture of a plenoptic camera 1.0 i.e. light field

camera, by introducing a microlens array positioned above the standard photosensors. In such camera,

sensors under each microlens record light striking the microlens from different positions spread over the

main lens aperture. This constitutes the light field, whose (X, Y ) or spatial resolution, depends on the

number of microlenses and whose (U, V ) or angular resolution depends on the number of pixels behind

each microlens. Because the rays are multiplexed by direction into a single sensor, plenoptic cameras

trade spatial resolution for angular resolution. And because the distance between the microlenses is very

small, their angular sampling is dense. Conversely, because there is a limit to the number of microlenses

we can use, the generated images are fairly low resolution: the spatial sampling is sparse. Therefore

with a fixed sensor resolution, collecting more directional information necessitates scarifying in final

output spatial resolution.

An enhanced plenoptic camera 2.0 has been proposed to overcome this issue and was proposed in a

more recent paper [40]. The main difference between this camera and the former one is that instead of

placing micro lenses at the focal distance from the sensor plane, the array is positioned at a distance a

from the main lens aperture and at another distance b from the sensor plane. This difference results in

a rise of the capability of the plenoptic camera 2.0 since the former had an output of simply one pixel

per microlens whereas this one provides many pixels yielding improved rendering results, and greater

spatial resolution.

Additionally, if we move further down the scale of the sights we might want to perceive, and as

suggested by Levoy[61], adding a microlens array to a traditional microscope will contribute with no
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doubt in a variety of additional features that can be exploited in future investigations in the medicine

and science fields.

There are a few plenoptic cameras available in the market. For instance, the Lytro 1 and Lytro Illum

are two affordable cameras focused to the consumer level, while the company Raytrix focuses on making

high-end focused plenoptic cameras for the industry. Some high-end camera (e.g. the Canon 5D Mark

IV) also have a microlens covering two pixels and could arguably be considered as a light field camera,

however in practice they are used for auto-focusing.

2.1.3 Light field representations

Figure 2.2: Example of light field captured with a plenoptic camera. (a) The raw photograph is an (x, y)
grid of images, where each one reveals the amount of light striking that microlense from different (u, v)
positions on the main lens aperture. (b) Reorganizing the pixels by angle into different images gives a
matrix of views called sub-aperture images however with a small baseline. (c) An epipolar plane image
shows, for a fixed pair of vertical (or horizontal) angular and spatial coordinates, the variations in inten-
sities depending on the horizontal (or vertical) angular and spatial coordinates. This last representation
is mostly used for depth estimation.

When sampling the light travelling along the rays inflowing the plenoptic camera at the moment of

capture, the light field offers rich material about the scene. One way to think about it is that it provides

information about the light striking each microlense. This is the raw light field photograph which is usually

hard to visualize.

A more popular representation is the sub-aperture representation which consists in gathering pixels

with the same relative position in a microlens image and placing them in a new image depending of

the microlens image it came from. Doing so, we obtain an array of images similar to a camera array

view matrix however with much smaller baseline. It is easy to see that the view resolution depends on

the number of microlenses while the number of subaperture images depends on the number of pixels
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underneath each microlens.

Another way of slicing such light field could be noted L(u, x) and L(v, y). First proposed to analyze

a spatio-temporal volume , Epipolar Plane Images (EPIs) intuitively offer a way to visualize pixel inten-

sities as a function of its horizontal (or vertical) spatial and angular coordinates. The obtained image, as

in 2.2(c), is of particular interest as it allows direct study of intensity variations and thus gives interesting

information about the geometry and the disparity of objects in the scene.

2.1.4 Applications

We can generally classify light field applications in two main classes. First, we have the depth estima-

tion methods, that seek to expressly recover the scene geometry from the captured light field. Then

image rendering techniques that aim at producing conventional images from the extracted geometrical

information. Because the application fields are not related to the core of the thesis, we only give a non-

exhaustive overview, rather than a comprehensive list of applications. We also focus on lenslet-based

light field images which will be considered in the rest of the thesis.

Depth estimation

Depth estimation from a pair of stereo cameras is one of the most studied problem in the computer

vision literature [88]. Notwithstanding that the classical correlation-based methods can be extended

to several views instead of two [3][22][113], there are various different ways of leveraging the views

redundancy that are exclusive to light fields.

Having very narrow baselines, lenslet-based light field images could not be efficiently used in stereo

matching techniques as they usually involve interpolation with blurriness due to sub-pixel shifts in the

spatial domain. Researchers have been devoted to find other constraints and cues for estimating the

depth. One way was to compute cross-correlations between microlens images to estimate the disparity

map [41]. Also, the epipolar images (EPI) as mentioned in the previous section have been shown to

be very useful for depth estimation. The slope of the line formed by the pixels corresponding to the

same scene point in an EPI is proportional to its depth [8]. Structure tensors can then be used on the

EPIs to measure the slope and infer the corresponding disparity [109]. The resulting depth values can

be regularized [109] or given sufficient sampling, simply filtered [57] to take into account occlusion and

produce the final depth map.

Likewise, estimating depth from defocus and correspondence has been studied expansively. As-

sessing depth from focus (defocus) has been achieved using multiple image exposures or complicated

equipment to be able to record the data at the same lighting conditions at the same time. Using defo-

cus cues, we should analyze the optimal contrast within a patch. In such measurements, obstructions

may easily affect the outcome therefore it is necessary to use patch based measurements to improve the

stability. Also, some out of focus regions such as high frequency regions and bright light can yield to

higher contrast yielding many ambiguities in defocus measurements.

Alleviating some of the defocus ambiguities and problems, correspondence cues between multiple

views have also been extensively considered to estimate depth maps. However, the only use of this cue

did not bring much promising outcomes from traditional light fields facing many errors due to large
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stereo displacements with a limited search space. Matching uncertainties and inaccurate results also

occur in repetitive patterns and noisy areas of the image.

In the new plenoptic cameras, the array of microlens inserted between the main lens and the photo-

sensors provided sufficient information that one can refocus after light field acquisition, and effectively

shift viewpoints within the main lens aperture. Using those two assets, Tao et al. [100] successfully

combined both defocus and correspondence cues, relying on a confidence measurement of each cue to

finally estimate the depth map.

Image rendering

Light field imaging belongs to the image-based rendering field, where we aim at generating new con-

ventional photographs using the geometrical and texture information captured in the light field. One

of the first prominent applications was the generation of new point of views from the 4 dimensional

volume in [62].

Digital refocusing or the Synthetic aperture from a light field has also been an active research field. With

the information we have in a light field, we are capable of retrieving small details in the scene with a

high fidelity. The underlying reason of this fidelity is that the refocusing algorithms are based on ray

tracing techniques simulating a virtual camera and a sensor that sums the rays with a great precision.

More precisely, it is possible to computationally replicate the ray angular integration happening inside

of the body of a conventional camera [63]. In the case of the 4D light field, this can be simply done with

a shift and add procedure of all or a subset of the sub-aperture images.

2.1.5 Light fields compression

In the context of computer graphics techniques, the input for previously detailed rendering and post-

capture manipulations comprises geometrical information of the scene along with lighting attributes

(texture information). Despite the significant progress in light field acquisition and sampling, it is still

challenging to render new photographs in real time because of the computational burden and the high

data rate constraints. Additionally, the spatial sampling during the acquisition stage should be fine

enough to permit acceptable quality of rendered photographs with a minimal amount of distortion,

thus inferring a tremendously large amount of captured image data.

To overcome the former problems, compression and coding techniques are essential for transmission

as well as fitting all the information into the local memory during post-capture manipulation, while

random access to any light field fragment is also crucial to achieve interactive rendering rates.

Existing light fields compression solutions can be broadly classified into two categories: approaches

directly compressing the lenslet images or approaches coding the views extracted from the raw data. The

authors in [chao2017] propose a coding scheme for light field image compression based on graph-based

lifting transform. The scheme is able to encode the original raw data without introducing redundancies

from demosaicking and calibration.

Other Methods proposed for compressing the lenslet images mostly extend HEVC intra coding

modes by adding new prediction modes to exploit similarity between lenslet images (e.g. [18], [19],
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[20], [64]). The authors in [99] propose a lenslet-based compression scheme that uses depth, disparity

and sparse prediction followed by JPEG-2000 residue coding.

A second category of methods consists in encoding the set of views which can be extracted from

the lenslet images after de-vignetting, demosaicing and alignment of the micro-lens array on the sensor,

following e.g. the raw data decoding pipeline in [25]. Several methods code the views as pseudo video

sequences using HEVC [66], [83], or the latest JEM coder [51], or extend HEVC to multi-view coding

[4]. Low rank models as well as local Gaussian mixture models in the 4D rays space are proposed in

[55] and [105] respectively. View synthesis based predictive coding has also been investigated in [117]

where the authors use a linear approximation computed with Matching Pursuit for disparity based

view prediction. The authors in [53] and [97] use instead a the convolutional neural network (CNN)

architecture proposed in [56] for view synthesis and prediction. The prediction residue is then coded

using HEVC [53], or using local residue transforms (SA-DCT) and coding [97]. Most of the compression

schemes have been designed based on the impact on the light field quality. In our work [83], we have

studied how the compression of light fields may impact the post-capture functionalities namely the

refocusing and extended depth of field.

2.2 Omni-directional imaging

In this section, we provide a broad overview on omni-directional images, that is substantial for the un-

derstanding of the rest of the thesis.

2.2.1 Formal definition

In traditional photography, an omni-directional camera is a camera that has a large field of view covering

approximately the entire sphere or at least a full circle in the horizontal plane. Since it covers all the

directional space, it is called omni-directional meaning "all-directional". It is also referred to as 360 camera

since it covers the 360 degrees of the sphere.

The omni-directional image is thus an image captured by the 360 camera that represents the light

activity arriving at a point (the image center) from every direction (360 degrees field of view). In practice,

a normal camera can capture at most light falling onto the focal point through a hemisphere. Thus, an

omni-directional image is most of the time, the result of several stitching algorithms of images captured

by different types of cameras such as catadioptric or fish-eye etc.

2.2.2 Omni-directional image representations

There exist different ways to represent the omni-directional content. The most popular one is the equi-

rectangular (or "equi-angular") representation where each point of the sphere (at specific angles θ and

φ on the sphere) is projected into a pixel in a rectangular image. It has been studied extensively since

it can be useful for image processing applications. However, it does suffer from stitching artifacts and

radial distortion.
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Sphere Panorama

Figure 2.3: Equirectangular representation [67] of a omnidirectional content. Each sample on the sphere
is projected on a traditionnal 2D grid to form an equi-rectangular image.

Sphere Cube's faces on the panoramaCube

Figure 2.4: Cube maps representation of a omnidirectional content. The environment is projected onto
the sides of a cube and unfolded into six regions of a single texture or stored as independent textures.

Another way to represent the content is to use the cube map projection technique. In essence, cube

mapping represents a method of environment mapping that uses the six faces of a cube as shown in Fig.

2.4.

An alternative representation is a based on a pyramid. This representation has been adopted as a

multi-resolution approach, to provide a view angle at a high resolution (the blue part on Fig. 2.5) and the

rest of the sphere is covered however at a lower resolution. This is mainly useful for streaming purpose.

Sphere
Pyramid

Figure 2.5: Pyramidal representation of a omnidirectional content

While all the aforementioned representations suffer from projection errors and glitches, the uniform

sampling on the sphere provides a more flexible approach where we don’t deal with a 2D image any-

more, the samples lie directly on the sphere (see Fig 2.6).

2.2.3 Coding of omni-directional visual content

Several approaches to code omni-directional visual content have been proposed in the past few years.

They can be grouped into three main categories:
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Figure 2.6: Uniform sampling on the sphere for the representation of omnidirectional content

1. Coding based on adaptive and partial content delivery.

2. Coding while exploiting or adapting to the 2D spherical surface geometry of the content.

3. Coding after a geometric representation or projection based method.

One of the very first solutions to code an omnidirectional image was developed by Apple Inc. The

so-called Quicktime VR [11] which refers to both a file format and visualization software. It allows for

creation and display of panoramic images. More specifically, it stores 360 degree cylindrical panoramic

images divided in tiles. For display, only the tiles visible in the current viewport are decoded. The idea

of using the Region of Interest (RoI) to code omnidirectional visual content recently appeared in [5].

The authors propose to deliver only the omnidirectional content’s part which is being viewed. Each

frame, after an equirectangular projection, is divided into regions which are then coded separately with

different quality according to an adaptive model. The tiles corresponding to the portion of the frame

being viewed are encoded with the highest possible quality. The quality of other regions is determined

considering their probability of being viewed next. A major problem in such approaches is that they do

not explore the spherical geometry which makes this type of coding sub-optimal.

To deal with this problem, other works [102] investigate coding strategies that take into account a

specific 2D spherical surface. Assuming that a raw image can be mapped into a sphere after stitching,

the authors proposed a generic compression method based on the decomposition over a dictionary of

geometric atoms. A redundant dictionary is built over two generating functions (denoting both low

and high frequencies) extended with scaling and affine transformations on a 2D sphere. The matching

pursuit algorithm is then performed to choose atoms from the dictionary, followed by sorting the atoms

along the decreasing magnitude of their coefficients, and then applying adaptive quantization. The

proposed codec outperforms JPEG 2000 at low bitrates.

Representing omni-directional visual content using geometric projections, which produce less amount

of data, is another strategy. An example of such approaches can be found in [38] where authors propose

a rhombic dodecahedron (RD) mapping model. This convex polyhedron was selected considering the

limitation that faces should be of quad-based nature, allowing the construction of unfolded rectangu-

lar images. The model provides almost uniform pixel distribution without significant oversampling or
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Figure 2.7: Equirectangular planar representation of the omnidirectional image Theater from the SUN360
dataset

undersampling. This grants the possibility of applying traditional transform coding more efficiently

when compared to alternatives, such as cubic mapping. Nevertheless, this method has not been widely

adopted because of its complexity.

2.2.4 Metrics to assess the compression performance

Metrics are required to compare the coding performances between different proposed coders. The most

used one is the Peak Signal to Noise Ratio (PSNR) to measure the quality of a compressed image at

a given bit-rate. However, in the omni-directional image case, it is computed in different domains to

accurately reflect the visual quality of the spherical content.

PSNR in the equirectangular domain

The traditional PSNR is computed in the equirectangular ( see example from the SUN360 dataset 1 in

Fig. 2.7) domain where it measures the distortion of a retrieved signal compared its original version.

It is computed pixel-wise between the two original and decoded equi-rectangular images:

PSNR = 10 · log10

�
d2

MSE

�
(2.3)

with d the maximum possible value for a pixel (e.g. 255 for a 8 bits image), and the Mean Squared

Error (MSE) computed for two single channel images I and J of size m × n as:

MSE =
1

m × n

m−1�

i=0

n−1�

j=0

(I(i, j) − J(i, j))
2 (2.4)

The main drawback of this evaluation is that it does not take into account the spherical geometry and

1“Sun360 dataset.” Available online at : http://people.csail.mit.edu/jxiao/SUN360/main.html
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Figure 2.8: Cube-maps planar representation of the Theater omnidirectional image in the SUN360
dataset.

the redundancy around the poles, neither the frequency of accessing different viewports by the users.

PSNR in the spherical domain

In order to alleviate this issue, the authors in [112] propose a method to compare the original and coded

omnidirectional content when the head motion data is not known beforehand. They propose a sphere

based PSNR computation, denoted as S-PSNR, to approximate the average quality over all possible

viewing directions.

If we perform a uniform sampling on the sphere, the error over this entire set of points on the sphere

is averaged to compute S-PSNR of different coded representations with respect to the ground truth

uniformly sampled sphere. The MSE is thus computed between two sets of points p and q made of N

samples each:

MSE =
1

N

N�

i=0

(p(i) − q(i))
2 (2.5)

Then, they propose to take into account the fact that not all viewports are equally likely, e.g., users

are more likely to view areas around the equator than the poles. Using head motion data over a set

of users, they estimate relative frequencies of accessing different points on the sphere. The resulting

frequencies are then used to compute a weighted S-PSNR with a weighted summation of errors instead

of the traditional MSE.
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PSNR in the cubemaps domain

Another strategy is to compute the PSNR of the cubemap projections of the omni-directional content. In

essence, cube mapping represents a method of environment mapping that uses the six faces of a cube.

An example of such image is shown in Fig. 2.8.

The scene is projected onto the sides of a cube and stored as six square textures as we can see in

Figure 2.8, or unfolded into six regions of a single texture. Once the six images are rendered, we can

compute the PSNR between the resulting images after decoding and projection, and the original ground

truth cubemap. This is another way to efficiently reflect the quality of viewpoints asked by a user. In

our experiments, the PSNR computed is the mean PSNR over the six faces of the cube.
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Chapter 3

Local graph based transforms for light field

compact representation

3.1 Introduction

In this chapter, we address the problem of designing graph based transforms for light fields compact

representation. Light fields record illumination of light rays emitted by a scene in different orientations.

The captured data for a static light field is represented by a 4D function LF (u, v, x, y). It can be seen

as a collection of images of the same scene taken from different points of view. It contains redundant

information in both the spatial (x and y) and angular dimensions (u and v).

The existing spatio-angular correlations should ideally be represented by a huge non separable weigh-

ted graph connecting pixels within and across views of the entire light field. The basis functions of a

graph Fourier transform [92] could then be used to decorrelate the color signal residing on the graph

vertices. However, such graph would have a very high number of vertices, each vertex corresponding

to a light ray. This makes the diagonalization of the Laplacian matrix unfeasible, hence, the computation

of the graph Fourier transform intractable.

To lower the dimensionality of the problem, we can partition the global graph into smaller ones

that are coherent and correlated inside and across the views. This can be viewed as cutting relatively

unreliable edges from the global graph. We therefore group similar pixels within and across views based

on the concept of super-rays defining the supports of the set of local graph transforms. The concept of

super-ray has been introduced in [45] as an extension of super-pixel’s concept to light fields .

Despite the local support of limited size defined by the super-rays, the local Laplacian matrix remains

of high dimension and its diagonalization to retrieve the transform eigenvectors is computationally

expensive. An intuitive way to solve this problem is to perform the transform in a separable manner:

• A first spatial transform applied per super-pixel inside each view to capture spatial correlations.

Then,

• An angular transform between corresponding super-pixels across the views to capture angular

dependencies.

We have however observed that if the shape of the super-ray undergoes a slight change between views,

the basis functions computed from the graph Laplacian have very different forms from one super-pixel

to the corresponding ones in the other views (refer to Figure 3.1), resulting in a decreased correlation

between spatial transform coefficients.
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Edges of the �rst spatial 

graph transform inside 

views

Correspondences 

between views

Figure 3.1: Second eigenvector of shape-varying super-pixels belonging to the same super-ray.

This chapter explores two ways of solving the two main issues concerning the graph transform con-

ception for light field compression mentioned above: (a) the careful graph support design in a way

that the signal to be transformed is smooth on the graph (low total variation x�Lx) and (b) finding

the best trade-off between complexity and representation accuracy. The first solution consists of using

geometry-blind graph supports which are fixed for all light field sub-aperture images coupled with a

powerful prediction mechanism based on Convolutional Neural Networks (CNN). The second solution

considers quasi-ideal geometry-aware super-rays which are cautiously built coupled with an optimized

separable graph transform to preserve angular correlations.

In summary our main contributions are as follows:

• We first examine the case where the structure of the local graphs is derived from a coherent super-

pixel over-segmentation of the different views to cope with the feasibility of separable graph trans-

forms. In order to decrease the energy of the signals to be transformed, a powerful prediction

mechanism based on view synthesis is used as a first step to exploit inter-view correlation. The

local Graph Transform is computed and applied in a separable manner with a first spatial un-

weighted transform followed by an inter-view Graph Transform. For the latter, both unweighted

and weighted versions have been considered. A dedicated predictive coding scheme is then de-

scribed to assess the rate-distortion performance on a set of real light fields.

• We then consider the design of local Graph Transforms based on shape-varying super-rays that are

adapted to scene geometry. To define the supports of the geometry-aware local transforms, we pro-
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pose (section 3.3.1) a new algorithm to segment the light field into super-rays. The method takes

as input only the top-left color image and a sparse set of disparities. The resulting segmentation

defines the supports of local graph transforms. We then introduce (section 3.3.3) a novel method

to optimize the spatial transforms in such a way that the basis functions are coherent across the

views, given the scene geometry. We analyze the properties in terms of energy compaction of the

proposed super-rays based graph transforms. A complete color coding scheme (section 3.3.4) is

also described to assess the rate-distortion performance of these novel transforms on a set of real

light fields.

3.1.1 General light field notation

Suppose we are dealing with a light field consisting of N = U × V views. In this chapter and the one

that follows, we will alternate between the two different notations: Iσ(u,v) or Iv to represent a light field

view in a way that we best serve the clarity of our presentation. If we need to show a 2D position, we

refer to a image view at angular positions (u, v) in the light field as Iσ(u,v) where σ(u, v) is a mapping

from the N × N space to the range [1, N ] in N. More precisely, for each u and v, σ(u, v) = (u − 1)U + v

where U is the number of views in the column wise angular dimension. Otherwise, if we read through

the light field views with a raster scan, we just use Iv for the view v.

3.2 Separable graph transforms on fixed graph supports

3.2.1 Fixed graph supports: super-pixels

Figure 3.2: The original view xσ(4,4) of "Cars" dataset in [56] (left) and the corresponding super-pixel
segmentation (right).

To exploit the local redundancies in images and video, various pixel grouping strategies are used

in image/video compression, e.g., fixed square patches, blocks with adaptive size. Compared with the

traditional block based grouping, super-pixels aim at gathering similar pixels into more meaningful

regions or objects which however requires the design of shape-adaptive decorrelating transforms.
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Part II, Chapter 3 – Local graph based transforms for light field compact representation

We consider here the design of graph based transforms adapted to the local signal characteristics. In

order to define these local transforms, super-pixels are computed on a reference view using the SLIC

algorithm [1] which groups pixels having similar color values and that are close spatially, as shown in

Fig.3.2. The segmentation in the central view is propagated to other views without changing the position

and size of the segmentation mask to cope with the feasibility of the separable graph transform.

Blindly propagating the segmentation map to the whole set of views of the light field does undeni-

ably violate our main hypothesis that the signals residing on the local graphs are smooth. This will for

sure drop the energy compaction capacity of our graph based transforms. Yet, to overcome this issue, we

can exploit effective prediction techniques. Local graph transforms are applied on the residual signals

and the energy will be compacted in fewer coefficients prior to coding.

3.2.2 Graph signal: residuals after CNN based prediction

Machine learning methods have been recently considered for view synthesis. In [56], the authors only

use the four corner sub-aperture views to synthesize the whole light field with high quality by two

convolutional neural networks (CNN). One of the CNNs is trained to model the disparity in the given

light field, while the other one is used to estimate the color of the synthesized views.

To obtain a pleasing prediction of the color signal and decrease the energy to be coded prior to

transform, we use this architecture to predict the light field views from four corner views, as shown by

the yellow parts in Fig.3.8.

Once a prediction x̃ of the light field signal x is obtained, we can compute the residuals r = x − x̃

that will be the graph signals during the following transform stage.

3.2.3 Separable graph transforms: spatio-angular

Thanks to the superpixel ability to adhere to image borders, the sub-aperture images are subdivided

into uniform regions where the residual signal is supposed to be smooth. We can think of the local

graph support as a super-ray that groups uniform super-pixels from different views that are supposed

to be correlated. In order to capture the spatial and angular correlations within each super-ray and to

avoid the complexity of the non-separable version, we use a separable Graph Transform comprising a

local super-pixel based spatial GT followed by a local angular GT. The graphs used to compute the local

separable transforms are depicted in Figure 3.3.

First spatial graph transform

If we consider only one residual view v of the light field and a segmentation map S, the kth super-

ray SRk,v can be represented by a signal rk,v ∈ R
Nk,v defined on an local spatial graph with only

connections in the spatial domain (i.e. between the neighboring pixels in a super-pixel, and not across

the views in a super-ray). As proposed in [92], a graph transform is defined based on the Laplacian

matrix Lk,v = Dk,v − Ak,v , where Dk,v is a diagonal degree matrix whose ith diagonal element is equal

to the sum of the weights of all edges incident to node i. The spatial graph transform basis is given by

the eigenvectors Uk,v of the Laplacian Lk,v . For the signal rk,v settled on the vertices of the graph, the
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Edges of the second 
angular graph transform

Edges of the first 
spatial graph transform

Figure 3.3: Illustration of the two graphs used to compute the two local separable graph transforms.

transformed coefficients vector r̂k,v are outlined as:

r̂k,v = U�
k,vrk,v (3.1)

The inverse spatial graph Fourier transform is then given by

rk,v = Uk,v r̂k,v (3.2)

Fig. 3.4 shows the luminance values of a cropped region of the residues for a subset of views of the

Flower 1 dataset. Although the disparity is not taken into account, the signals in super-pixels which are

co-located across the views are correlated for light fields with narrow baselines.

Second angular graph transform

The purpose of this transform is to tract the similarity between the transformed coefficients of each

band b, r̂k,v(b) across the views which can be observed as in Figure 3.5. In a general case, for a given

super-ray, we do not necessarily have the same number of pixels in all the views, hence the number of

coefficients resulting from the spatial transforms is not identical in all the views. Therefore, for each

band b, we build a different graph between the views where the band b exists. In the specific case of a

fixed segmentation used here, for a given band b (coefficients corresponding to the bth eigenvectors of

the spatial transforms), we always construct a 2D grid of M × N vertices corresponding to all light field

views to be coded.
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-20

20

Figure 3.4: Illustration of coherent residual signals in superpixels for a subset of views of "Flower 1"
(luminance).

Unweighted Angular Graph Transform For each super-ray k, and for each band b, the Adjacency Ab
k

and degree Db
k matrices are used to compute the inter-view Laplacian as Lb

k = Db
k−Ab

k. The eigenvectors

Ub
k of Lb

k are then used to characterize the angular graph transform basis. Moreover, the spatial-band

vector is defined as r̂b
k = [r̂k,v(b)]v∈{1,2,...,V }, s.t. b<|rk,v|, where V is the number of views. The angular

transform coefficients are obtained by calculating:

ˆ̂rb
k = Ub�

k r̂b
k. (3.3)

The inverse angular Graph Transform is then given by

r̂b
k = Ub

kˆ̂rb
k (3.4)

A major assumption lying behind the use of the unweighted version of a Laplacian is a constant pair-

wise relationship between neighboring nodes which may not accurately reflect the statistical precisions

in our case especially for high frequencies where different patterns of correlations can be observed (refer

to Figure 3.6).

Weighted Angular Graph Transform Instead of applying the same graph transform to all the bands,

we divide them into 64 groups, ranging from low to high frequencies. For each group, we compute the

sample covariance matrix from a set of training superpixels spatial coefficients. We show an example of

covariance matrices obtained for the first 16 groups in Figure 3.6. It is evident that we can note different

models of correlations when we move from low to high frequencies.

We solve the minimization problem defined in [30] to compute 64 different generalized Laplacian
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Figure 3.5: An example of the transformed coefficients of the 9 first bands b, r̂k,v(b) across the views for
a super-ray.

matrices 1, that can be either computed separately for each dataset and sent as additional information or

learned for a set of training datasets and stored in the decoder side. Due to the high computational cost

of the first option, we will learn a fixed set of 64 Laplacian matrices to be exploited for all datasets. Let

Uh be the matrix whose columns contain the weighted Graph Transform basis for a specific group h i.e.,

the eigenvectors of the corresponding weighted Laplacian. The band signals belonging to this group are

thus projected onto this basis.

Energy compaction gain with angular transforms

We evaluate the energy compaction of the transformed coefficients for the three transforms (only spatial

GT, spatial + unweighted angular GT, spatial + weighted angular GT) to show the utility of exploring

inter-view correlation.

Energy compaction is measured by ordering all coefficients (for the luminance component) according

to their decreasing variances. The total energy in the transform coefficients is the same as that in the

Light Field residual signal, due to the orthogonality of the transforms. Fig. 3.7 shows the fraction of the

total energy captured by α % of transform coefficients as a function of α for the residuals of a dataset used

in our experiments, namely "Flower 1". Higher energy compaction is observed with the second angular

transform compared with only applying the spatial transform, with a slight improvement for the wGT.

This shows the utility of exploring the inter-view correlations between residues in different views and

1We adapt the code provided with the paper [30] to solve problem 1 as defined in their paper for our estimated covariance
matrices.
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Part II, Chapter 3 – Local graph based transforms for light field compact representation

Figure 3.6: Covariance matrices of the transformed coefficients of 16 group of bands {r̂b
k} across the

views. Going through line by line, from left to right, is equivalent to moving from low to high frequen-
cies groups

adapting the graph weights for that purpose compared to only performing local spatial transforms.

After performing the segmentation and two transforms, the energy of the residual signal is indeed

expected to be small and mostly concentrated in a small number of coefficients. In the following section,

we aim at exploiting this energy compaction property to code the residual signals and improve the

quality of the prediction at the decoder side.

3.2.4 Light field predictive coding scheme

Figure 3.8 depicts the proposed predictive coding scheme. Let LF = {Iσ(u,v)} denote a light field, where

u = 1, . . . , U and v = 1, . . . , V are the view indices.

Four views at the corners LFcor = {Iσ(1,1), Iσ(1,V ), Iσ(U,1), Iσ(U,V )} are encoded using HEVC-Inter

and used to synthesize the whole light field with the CNN based synthesis method [56], as shown in

Fig.3.8 (red arrows). To improve the quality of the synthesized light field, the residuals between the syn-

thesized and original views are encoded by graph transforms, (see Fig.3.8, blue arrows). The residuals

of all the views but the 4 corner views LF\LFcor are considered here. These residual signals are grouped

into super-pixels using the SLIC algorithm [1] as explained in section 3.2.1, then graph transforms are
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Figure 3.7: Energy Compaction of the transformed residues r for "Flower 1".

Figure 3.8: Overview of proposed light field predictive coding scheme.

applied on each super-pixel as in section 3.2.3. At the end of the transform stage, coefficients are grouped

into a three-dimensional array R where R(iSR, ibd, v) is the vth transformed coefficient of the band ibd

for the super-ray iSR. Using the observations on all the super-rays in some training datasets, we can find

the best ordering for quantization. We first sort the variances of coefficients with enough observations

in decreasing order. We then split them into 64 classes assigning to each class a quantization index in the

range 1 to 64. All the remaining coefficients with less observations will be considered in the last group.

We use the zigzag ordering of the JPEG quantization matrix to assign the quantization step size for each.

The quantized coefficients are further coded using an arithmetic coder.

Note that the super-pixels are computed on the synthesized view, since those are available at both

the encoder and decoder. We can thus, at the decoder side, recover the super-pixel segmentation from

the four corner views L̂Fcor, then construct the spatial and angular unweighted graphs. Also, for the

weighted angular graph transform, the Laplacians are learned on a training set of light fields and then

fixed. After applying the inverse separable graph transform, the decoded residuals are added to the
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Part II, Chapter 3 – Local graph based transforms for light field compact representation

synthesized light field to obtain the final decompressed light field.

3.3 Geometry-aware graph transforms for color coding of light fields

The compression efficiency of any coder based on block partitioning and transform coding does unde-

niably depend on the way the partitioning is done, and on how the resulting segmentation adheres to

object boundaries. In the previously presented coder, fixing the graph supports for the transforms may

result in a decrease in the energy compaction due to high frequencies captured on the object boundaries.

Here, we instead rely on a segmentation of the entire 4D light field into geometry-aware super-rays.

3.3.1 Geometry-aware graph supports: super-rays

The concept of super-ray has been introduced in [46] as an extension of super-pixels [1] to group light

rays coming from the same 3D object, i.e. to group pixels having similar color values and being close

spatially in the 3D space. The method performs a k-means clustering of all light rays based on color and

distance in the 3D space. To deal with dis-occlusions, a slightly modified formulation is proposed in [98]

where the dense depth information is also used in the clustering. When the depth information is not

fully reliable, this method results in inconsistent super-rays across views, i.e. shape-varying super-rays.

In addition, the signaling cost of such a global light field segmentation is high.

In order to make the super-rays more consistent across the views, we propose a modified version

where we compute super-pixels in the top-left view. Then, using the disparity map, we project the

segmentation labels to all the other views. Namely, having a segmentation map in the top left view

and the corresponding disparity map, we compute the median disparity per super-pixel, and use it to

project the segmentation mask to the other views. More precisely, the algorithm proceeds row by row.

In the first row of views, we perform horizontal projections from the top-left xσ(1,1) to the V − 1 views

next to it. For each other row of views, a vertical projection is first carried out from the top view xσ(1,1)

to recover the segmentation on view xσ(u,1), then V − 1 horizontal projections from xσ(u,1) to the V − 1

other views are performed, as shown in Figure 3.9.

An example of segmentation S is shown in Figure 3.9, where the background consists of two yellow

superpixels, and two foreground objects are labeled with red and pink. The disparity of the two objects

is equal to 1, while the background is almost fixed with a disparity equal to 0. At the end of each

projection, some shapes are projected in all the views without interfering with others. Those typically

represent flat regions inside objects (for example, the object labeled in pink). While others, mainly

consisting of occluded and occluding segments end up superposed in some views, for example, the

red object occluding pixels from the yellow background. In this case, the occluded pixels are assigned

the label (e.g. red) of the neighboring super-ray corresponding to the foreground objects (i.e. having the

higher disparity). As for appearing pixels, for example, between the yellow background and pink object,

they will be clustered with the background super-rays (i.e. having the lower disparity e.g. yellow). The

super-rays that end up with different shapes in the views are marked with a dashed contour.

We assess how the proposed super-ray construction method deals with occluded and dis-occluded

parts, and to which extent the super-rays are consistent despite uncertainty on the disparity informa-
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3.3. Geometry-aware graph transforms for color coding of light fields

Figure 3.9: Image showing the super-ray construction. The algorithm proceeds row by row. In the
first row, only horizontal projections (blue arrows) are performed. In every other row, first a vertical
projection (red arrow) than V − 1 horizontal projections (blue arrows) are performed.

tion. Figure 3.10 shows examples of super-rays obtained with different sets of synthetic and real light

fields captured by a Lytro Ilum camera ("MonasRoom", "Butterfly" from the HCI old Light Field Dataset,

"Flower 2", "Rock" used in [56], and "FountainVincent", "StonePillarInside" used in [106]). In the first three

columns, we have the original top left corner view, its corresponding disparity map and super pixel

segmentation using the SLIC algorithm [1] respectively. In the fourth column, we show horizontal and

vertical epipolar segments taken both from the 4D light field color information and our final segmenta-

tion in specific regions of the image (the red blocks). We can see that we are following well the object

borders, especially when the disparity map is reliable. Also, we have always attained a high percentage

of coherent super-rays across views (higher than 40% as measured with Cons(%) in the fifth column).

More precisely, Cons(%) gives the percentage of coherent super-rays: a super-ray is coherent when it is

made of super pixels having the same shape in all the views, with or without a displacement.

At the end of this segmentation stage, we end up with a segmentation map with consistent super

rays in flat objects and shape-varying super-rays mainly on the borders.

3.3.2 Graphs and graph signals

In order to jointly capture spatial and angular correlations between pixels in the light field, we first

consider a local non separable graph per super-ray. While in section 3.2.3, we were dealing with each
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Figure 3.10: Consistent Super-rays performance:In the first three columns, we have the original top left
corner view, its corresponding disparity map and super pixel segmentation using the SLIC algorithm
[1] respectively. In the fourth column, we show horizontal and vertical epipolar segments taken both
from the 4D light field color and our final labeling in specific regions of the image(the red blocks). We
use the prism color map in Matlab for the segmentation, just for illustration purposes.
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super-ray inside a view at a time, here, we take the whole super-ray in all the light field views. More

precisely, if we consider the luminance values in the whole light field and a segmentation map S, the kth

super-ray SRk can be represented by a signal xk ∈ R
Nk defined on an undirected connected graph G =

{V, E} which consists of a finite set V of vertices corresponding to the pixels at positions {ul, vl, xl, yl}, l =

1 . . . N such that S(ul, vl, xl, yl) = k. A set E of edges connect each pixel and its 4-nearest neighbors in the

spatial domain (i.e. in each view), and to its corresponding pixels, found by disparity based projection,

in the 4 nearest neighboring views. The disparity used for projection is fixed for all pixels in super-ray

and is actually equal to the median disparity in the corresponding super-pixel of the top-left view. An

example of graph built inside a super-ray is shown in Figure 3.11.

Figure 3.11: Example of local non-separable graph within a super-ray. We can see the connections within
super-pixels in each view, as well as connections between pixels belonging to different views. The color
assigned to the vertices is the luminance value of the pixels. For visualization purposes, we show the
luminance in false colors.

3.3.3 Geometry-aware graph transforms

In this section, we focus on the design of suitable transforms for the light field luminance values residing

on the local graphs defined above.

Non separable graph transform

The optimal local decorrelating transform within a super-ray is unquestionably the one who follows

both spatial and angular correlation structures of the light field, precisely the one that relies on the Non

Separable graph built inside each super-ray.
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Let us consider the kth super-ray SRk and its corresponding local graph Gk. We start by defining

its adjacency matrix Ak with entries Ak(m, n) = 1, if there is an edge e = (m, n) between two vertices

m and n, and Ak(m, n) = 0 otherwise. The adjacency matrix is used to compute the Laplacian matrix

Lk = Dk − Ak, where Dk is a diagonal degree matrix whose ith diagonal element Dk(i, i) is equal to

the sum of the weights of all edges incident to node i. The resulting Laplacian matrix Lk is symmetric

positive semi-definitive and therefore can be diagonalized as:

Lk = UkΛkU�
k (3.5)

where Uk is the matrix whose columns are the eigenvectors of the graph Laplacian and Λk is the diag-

onal matrix whose diagonal elements are the corresponding eigenvalues. The Laplacian eigenbases Uk

are analogous to the Fourier bases in the Euclidean domain and allow representing the signals residing

on the graph as a linear combination of eigenfunctions akin to Fourier Analysis. This is known as the

Graph Fourier transform. For the signal xk defined on the vertices of the local graph, the transformed

coefficients vector x̂k is defined in [92] as:

x̂k = U�
k xk (3.6)

The inverse graph Fourier transform is then given by

xk = Ukx̂k (3.7)

Although this would be the ideal local decorrelating transform for the signal, the Laplacian of such

graph, despite the locality, remains of high dimension (almost 6000 nodes per super-ray) leading to a

high transform computational cost. To limit the computational cost, we then consider separable local

transforms.

Coherent separable graph transform

The separable graph transform is defined by a first spatial transform followed by a second angular

transform as detailed in section 3.2.3.

The spatial graphs in the different super-pixels forming one super-ray may not have the same shape

particularly on the object boundaries. Furthermore, we have observed that for a specific super-ray,

when the spatial graph topology in the corresponding super-pixels undergoes a slight change, the basis

functions of each spatial graph transform are different and thus incompatible with each others (refer to

Figure 3.1), resulting in decreased correlation of the spatial transform coefficients across views. This is

shown in the sequel to severely decrease the efficiency of the angular transform.

Basically, during the diagonalization procedure, the eigenfunctions are only defined up to sign flips

for Laplacians having a simple spectrum (if the eigenvalues have a multiplicity of 1, for example con-

nected graphs). Therefore, even having the same shape in two different views, we may end up with two

opposite eigen-vectors for a specific eigenvalue during the diagonalization.

Moreover, eigenvectors computed independently on two different shapes (i.e. corresponding to two

different Laplacians) can be expected to be reasonably consistent only when the shapes are approxi-
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mately isometric. Whenever this assumption is violated, it is impossible to expect that the lth eigenvec-

tor of a Laplacian Lk,i in view i will correspond to the lth eigenvector of another Laplacian Lk,j in view

j. If the basis functions do not behave consistently on the corresponding points of the two shapes, the

two signals defined on those two Laplacians will be projected onto incompatible basis functions (see

Figure 3.12), and therefore we cannot guarantee any correlation to be preserved after performing the

first spatial graph transform.

Edges of the �rst spatial 

graph transform inside 

views

Correspondences 

between views

Figure 3.12: Second eigenvector of shape-varying super-pixels belonging to the same super-ray.

Coherent spatial graph transform

In order to overcome those limitations, we consider an approach which aims at finding coupled basis

functions. More precisely, suppose that, in a super-ray k in a reference view o and a target view i, we

have two Laplacians Lk,o and Lk,i with size (no×no) and (ni×ni) respectively. They can be diagonalized

as:

Lk,o = Uk,oΛk,oU�
k,o

Lk,i = Uk,iΛk,iU
�
k,i

(3.8)

If the two Laplacians are equal, we make sure that their eigenvectors are compatible with sign flips

accordingly. We check the first value of the each eigenvector and flip its sign if the value is negative.

In the case where the super-pixel shapes in the sub-aperture images are not isometric, we propose to di-

agonalize one specific spatial graph Laplacian Lk,o and find Uk,o. Then, we search for basis vectors Ûk,i

that approximately diagonalize any other spatial graph Laplacian Lk,i and at the same time preserve

correlations after the transform. Inspired by the work of [59], we pose the problem as

Û∗
k,i = min

Ûk,i

off(Û�
k,iLk,iÛk,i) + α

���(F�Uk,o − G�Ûk,i)
���

2

F
,

s.t. Û�
k,iÛk,i = I.

(3.9)

where we seek to minimize the weighted sum of two terms subject to the orthonormality constraint of

the computed basis functions Ûk,i. The first term is a diagonalization term that aims at minimizing
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the energy residing on off-diagonal entries (off(M) =
�

i�=j mij). The second term aims at enforcing

coherence between the two spatial graph transforms and is defined as follows.

Based on the geometry information we have in hand, we can actually define, a priori, a set of corre-

spondences between Lk,o and Lk,i. More precisely, we suppose that we have a set of p corresponding

functions represented by matrices F and G of sizes (n0 × p) and (ni × p) respectively. An example of F

and G is shown in figure 3.13. Each column of F and G can be seen as impulse functions centered on

specific vertices of the graphs in both views.

1

2
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4

5

6

7

view 1

vie

Figure 3.13: Example of correspondence functions F and G computed for a small shape-varying super-
pixel. The graph nodes are labeled in both graphs following a vertical scan line. In the second view, we
have one disappearing node and another appearing one with respect to the first view.

The basis functions of both Laplacians are supposed to be consistent if the Fourier coefficients of the

functions F and G on Lk,o and Lk,i are approximately equal i.e. if F�Uk,o � G�Ûk,i. To avoid over-

determining the problem, we use the farthest point sampling technique restricting the correspondence

points to a maximum of 15 points.

If we parametrize the new basis functions of Lk,i as being a linear combination of the old basis

functions, we can write Ûk,i = Uk,iBk,i where Bk,i is a matrix of combination coefficients, that plays a

role of reflecting and rotating the original basis vectors in Uk,i so that they will align the best way with

Uk,o while almost diagonalizing the Laplacian Lk,i. Using the diagonalizing property of Uk,i, we can

re-write Equation (3.9) as

B∗
k,i = min

Bk,i

off(B�
k,iΛk,iBk,i) + α

��(F�Uk,o − G�Uk,iBk,i)
��2

F
,

s.t. B�
k,iBk,i = I,

(3.10)

It is important to note that the first term of the above problem does not guarantee a preserved increas-

ing order of the eigenfunctions. It is therefore more convenient to use an alternative penalty equal to
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���B�
k,iΛk,iBk,i − Λk,i

���
2

F
that relates not only to the diagonalization property, but also to the distribution

of the energies across the basis functions after the optimization.

B∗
k,i = min

Bk,i

��B�
k,iΛk,iBk,i − Λk,i

��2

F
+ α

��(F�Uk,o − G�Uk,iBk,i)
��2

F
,

s.t. B�
k,iBk,i = I,

(3.11)

The problem in Equation (3.11) is a non linear optimization problem with an orthogonality con-

straint, which can be solved by iterative minimization algorithms. In our case, we used Matlab opti-

mization toolbox (interior point method of the fmincon function) to solve it.

The gradients of the two terms of the cost function in the optimization of equation 3.11 are provided

below:

∇B�B�
ΛiB − Λi�2

F

= ∇Btr
�
(B�

ΛiB − Λi)
�(B�

ΛiB − Λi)
�

= ∇Btr
�
(B�

ΛiB − Λ
�
i )(B�

ΛiB − Λi)
�

= ∇Btr(B�
ΛiBB�

ΛiB − B�
ΛiBΛi

− Λ
�
i B�

ΛiB + Λ
�
i Λi)

= 4(ΛiBB�
ΛiB − ΛiBΛi)

(3.12)

As for the coupling term, with a similar derivation as the first gradient and using the trace derivation

properties in [79], we get:

∇B(
��(F�Us0

− G�Usi
B)

��2

F
)

= 2U�
si

G(G�Usi
B − FUs0

)
(3.13)

Since we are dealing with large datasets and a large number of super-rays, it is convenient to use

parallel computing to independently compute eigen-basis for the different super-rays. Also, in order to

reduce the complexity of the problem, we propose to split it into smaller problems that are independent:

we pick a small number h of eigenvectors to be optimized at a time. Then, for each disjoint group l

of h eigenvectors in Uk,i, we formulate a sub-problem by expressing h new eigenvectors as a linear

combination of h old eigenvectors. Noticing that Uk,i = [ �Uk,i1
, �Uk,i2

, ..., �Uk,il
] and

Λi =




�Λ1
k,i 0 0 0

0 �Λ2
k,i 0 0

0 0 .. 0

0 0 0 �Λl
k,i




(3.14)

For each group of h eigenvectors, we find �Bl
k,i of size (h × h) that will minimize the objective function
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on the subset of eigenvectors.

�Bl∗

k,i = min
�Bl

k,i

����Bl�

k,i
�Λl

k,y
�Bl

k,i − �Λl
k,y

���
2

F
+ α

���(F� �Uk,ol
− G� �Uk,il

�Bl
k,i)

���
2

F
,

s.t. �Bl�

k,i
�Bl

k,i = I,

(3.15)

We examine the performance of our optimization process described above and its effect on the trans-

form coding efficiency. In all the experiments, for each super-ray k we find the super-pixel Lk,o that is

on the top-left most of the light field, and fix it as reference for the coupling process. We optimize the

maximum number of eigenvectors defined as floor(
nk,0

10 ) × 10 with nk,0 being the number of pixels in

the reference super-pixel. An example of input and output of the coupling process for a shape-varying

super-ray is illustrated in Figure 3.14. We see that the consistency of eigenvectors in the different graphs

is much better after our optimization. If we project the light field signal residing in the super-ray on

the optimized coupled eigenvectors, the inter-view correlation is better preserved compared to the non

optimized eigenvectors.

At the end of the optimization stage, most of the eigenvectors are thereby compatible across views

and the transform will necessarily preserve any correlation already observed between views. An ex-

ample of the second eigenvector of a super-ray before and after optimization is shown in Figure 3.1.

While eigenvectors corresponding to higher frequencies are harder to adjust, the low frequency eigen-

vectors can be easily optimized. In our application, this is not a big problem since we have a high energy

compaction in lower frequency bands, and those are the bands that matter the most for reconstruction.

Energy compaction of the spatial transform

Figure 3.15 shows the energy compaction observed in the spatial transform domain, then in the spatio-

angular transform domain, i.e. after performing the first spatial transform and after performing both

spatial and angular transforms on the color signal of the light fields. The energy compaction is computed

for both optimized and non optimized cases. It denotes the percentage of energy if we keep some of the

coefficients and discard others. For the spatial transform, we gather the transform coefficients of all

super-pixels, and then we scan them following the intuitive order increasing order of the Laplacian

eingevalues to compute the compaction. For the spatio-angular compaction, we follow the learned sub-

optimal scanning order using different observations from the different datasets as explained in section

3.3.4.

If we compare the energy compaction of the spatial transforms only (red and blue curves) for dif-

ferent datasets, we observe that we may loose in terms of energy compaction for some datasets after

optimization.

In order to explain such loss, we analyze how the graphs are varying under the new basis functions

after optimization. An example is shown in Figure 3.16 where edges between highlighted nodes are

added implicitly in the graph after coupling. The new underlying Laplacian is computed as L̂k,i =

Ûk,iΛk,iÛ
T
k,i.

The underlying assumption behind the optimization procedure is that the signal can be modeled by

a modified Gaussian distribution (Gaussian Markov Random Field) with a modified precision matrix
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Correspondences

Before coupling After coupling

Original graphs and correspondences

Eigenvectors 

Figure 3.14: Illustration of the output of the optimization process for a super-ray in 4 views. The first row
corresponds to a super-ray accross four views of the light field. The signal on the vertices correspond
to the color values lying on super-pixels corresponding to the same super-ray and the blue lines denote
the correspondences. The second to fourth rows are illustrations of basis functions before and after
optimization. The signals on the vertices are the eigenvectors values.
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Figure 3.15: Energy compaction with or without optimization of the first spatial transform for four
datasets ("Seahorse", "Rock" , "Flower2" and "Cars") from the dataset used in [56] and two others ("Friends"
and "Stone Pillars Inside") taken from the datasets in [106].
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which is equivalent to the new Laplacian matrix with some added small weights. Since this procedure

is modifying the original graph structure, it may, in some cases, bring some high frequencies.

Original graphs before coupling New graphs after coupling

Figure 3.16: Image showing the old graphs before coupling and the new graphs after optimization.
New edges with absolute weight values larger than 0.04 are shown as blue lines connecting highlighted
nodes.

Angular graph transform As previously detailed in the paragraph 3.2.3, for each super-ray k, and for

each band b, the Adjacency Ab
k and degree Db

k matrices are used to compute the inter-view Laplacian as

Lb
k .

Moreover, the spatial-band vector is outlined as x̂b
k = [x̂k,v(b)]v∈{1,2,...,N}, s.t. b<|xk,v|, where N is the

total number of views. The angular transform coefficients are obtained by calculating:

ˆ̂xb
k = Ub�

k x̂b
k. (3.16)

The inverse angular Graph Transform is then given by

x̂b
k = Ub

k ˆ̂xb
k (3.17)

Correlation and energy compaction after angular transform

The gain in compaction after the spatio-angular transform is clear in Figure 3.15. This is due to the fact

that we are able to preserve angular correlations after the spatial transform, which will be subsequently

exploited by the angular transform.

In order to assess the performance of our coupling process in preserving the correlation, we draw

in Figure 3.17, the correlation matrices and the covariance matrices for some bands after the first trans-

form with shape-varying super-rays. If we restrict our attention to the first column, We see that after

the first transform that is not optimized, we have uncorrelated transform coefficients due to the per-

turbation of eigenvectors computed on super-pixels having slightly different shapes. This problem is

almost resolved with our coupling procedure in the second column, where we can observe more cor-

relation between the coefficients of the same band in neighboring views. Furthermore, the logarithm
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Figure 3.17: Advantage of our optimization in terms of energy compaction. The three rows correspond
to (1) correlation matrices of the spatial transformed coefficients of the first ten bands, (2) the log of the
absolute value of the covariance matrices of the 64 first bands of the spatial transformed coefficients,
and (3) the logarithm of the variance of the coefficients after the angular transform, respectively. The
two columns show the two cases: without or with our optimization.

of the variances (values lying on the diagonal in the covariance matrices) being higher in the first low

frequency bands and decreasing when moving further from the DC, shows the energy compaction of

the first transform. As for the values of the off-diagonal elements of the covariance matrices, they show

how correlated are the transformed coefficients after the first transform inside the views. If we observe

the off-diagonal values and compare them with or without optimization, we find out that the optimiza-

tion performs better for low frequencies than for high frequencies and is therefore more able to retrieve

coherent basis functions.

After the second angular transform per band, for both cases with or without optimization, we com-

pute the logarithm of coefficients’ variances after the second transform and illustrate it in the third

row where the x-axis and y-axis correspond to the band number and the view number respectively. A

compaction of the energy in fewer coefficients is observed in the optimized case compared to the non-

optimized case, especially when we focus on the top-left region. Some inter-view high frequencies are

sometimes still there and might be due to the presence of some super-rays are made of super-pixels

that adhere well to borders in some views while not adhering in some others due to disparity rounding

effects.
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3.3. Geometry-aware graph transforms for color coding of light fields

Once we have assessed the performance of our optimization and armed with the previously pro-

posed tools, we exploit in the following section, the compaction property to directly code the luminance

of the light fields.

3.3.4 Light field color coding scheme

The overall steps of the compression algorithm are shown in Figure 3.18. The top left view of the Light

Field is separated into uniform regions using the SLIC algorithm to segment the image into super-pixels

[1], and its disparity map is estimated. Using both the segmentation map and the geometry informa-

tion, we construct consistent super-rays in all views as explained in section 3.3.1. The non separable

and separable transforms described above are then locally applied on each super-ray. The transformed

coefficients are then quantized and encoded to be stored or transmitted. The segmentation map of the

reference view and a disparity value per super-ray also need to be transmitted as side information to

the decoder.

Figure 3.18: Overview of proposed color coding scheme for Light Field Compression

Segmentation map and disparity values coding

The segmentation map of the reference view is encoded using the arithmetic edge coder proposed in

[23]. The contours are first represented by differential chaincode [36] and divided into segments. Then,

to efficiently encode a sequence of symbols in a segment, AEC uses a linear regression model to estimate

probabilities, which are subsequently used by the arithmetic coder. Disparity values are encoded using

an arithmetic coder.

Grouping and transform coefficients coding

The energy compaction is not the same in all super-rays. This can be explained by the fact, that the

segmentation may not well adhere to object boundaries, resulting in high angular frequencies after

optimization of the first spatial transform.

To optimize the coding performance, we divide the set of super-rays into four classes, where each

class is defined according to an energy compaction criterion.
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First, we learn a scanning order. More precisely, at the end of the two graph transform stages, co-

efficients are grouped into a three-dimensional array R where R(iSR, ibd, v) is the vth transformed co-

efficient of the band ibd for the super-ray iSR. Using the observations on all the super-rays in some

training datasets (Flower1,Friends), we can find the best ordering for scanning and quantization. We

sort the variances of coefficients with enough observations in decreasing order and we follow this de-

creasing order during the scanning process. For a class i, the high frequencies are defined as the last

round(N × (4 − i)/4) coefficients where N is the total number of coefficients. Each super-ray belongs

to class i if it does not belong to class i − 1 and the mean energy per high frequency is less than 1. We

start by finding the super-rays in the first class than remove them from the search space before finding

the other classes, and idem for the following steps. We code a flag with an arithmetic coder to gives the

information of the class of super-rays to the decoder side. In class i, the last round(N × (4 − i)/4) coef-

ficients of each super-ray are discarded. The rest of the coefficients are grouped into 32 uniform groups.

The quantization step sizes in groups are defined with a rate-distortion optimization taking into account

a big number of observed coefficients. At the end of this stage, for each class, each group is coded using

the Context Adaptive Binary Arithmetic Coder (CABAC) from the HEVC H.265 reference coder.
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3.4 Rate-distortion performance evaluation

3.4.1 Experimental setup

For performance evaluation, we test our methods on real light fields captured by plenoptic cameras

from [56] and [106]. We consider the 8 × 8 central sub-aperture images cropped to 364 × 524 in [56], and

9 × 9 cropped to 432 × 624 from [106] in order to avoid the strong vignetting and distortion problems on

the views at the periphery of the light field. The disparity map of the top left view of each light field has

been estimated using the method in [52]. The estimated disparity map is used to construct super-rays

as described in Section 3.3.1.

We assess the compression performance obtained with our graph based transform coding schemes

against three state of the art schemes: coding the light field views with JPEG Pleno VM 1.1 or with HEVC

as a video sequence following a lozenge order (HEVC lozenge) [83], and according to the scanning order

proposed in [65] (HEVC pseudo).

The basic configuration files of JPEG Pleno VM 1.1 have been used with small changes in order to be

applied on 9 × 9 views. For HEVC-lozenge, the base QPs are set to 20, 26, 32, 38 and a GOP of 4 is used.

The HEVC version used in the tests is HM-16.10. The base QPs of HEVC pseudo are set to QPB = 8, 14,

20, 26, 32 and 38, and the views at hierarchical layers 2, 3, 4, 5, 6 respectively have QPs equal to QPB +8,

QPB + 9, QPB + 10, QPB + 11 and QPB + 12, as described in [65].

For the color coding scheme, we investigate the performance of the non separable, optimized and

non optimized graph transforms which we denote as Color-NS, Color-SO and Color-S respectively. For

the predictive coding scheme, two versions are studied: they are based on applying the spatial transform

followed by an unweighted (CNN-uGT) or weighted (CNN-wGT) angular transform. The results are

generated by selecting the best pairs of parameters (Q, QP ) where Q is the quality parameter used

to control the quantization of the transformed residuals and QP is used in the HEVC inter-coding of

the four corners used to synthetize the whole light field prediction with CNN. Such selection can be

automatically predicted after training a model represented by a function of light field features and target

bitrate as in [54].

In Figures 3.19, 3.20 and 3.21, our color coding scheme based on both non separable and separable

graph transforms is investigated against HEVC-lozenge and JPEG pleno 1.1 for three light fields with 9×9

views, from the ICIP 2017 Grand Challenge [106].

Further experiments are also depicted in Figures 3.22, 3.23, 3.24 and 3.25 for 8 × 8 light fields from

[56]. Note that JPEG pleno VM 1.1 can hardly be applied for such data since the number of views is

odd. We therefore use HEVC pseudo, HEVC Lozenge, CNN view synthesis (prediction) and CNN-HEVC

as anchors. The latter is the direct coding of the residuals with HEVC as a video sequence. To show

more precisely the gain of the predictive coding scheme at low bitrate we compute the Bjontegaard

comparison in Table 3.2.

In Table 3.1, we restrict our attention to the optimized separable graph based transform (Color-SO)

that can be applied no matter how big the super-rays are. It shows the rate allocation of our color coding

scheme, at low and high bitrates, for the different light fields.
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Figure 3.19: Rate distortion performance of our graph based Color coding schemes (Color-NS, Color-S
and Color-SO) compared to HEVC lozenge and JPEG Pleno VM 1.1 for "Stone Pillar Inside" from [106]
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Figure 3.20: Rate distortion performance of our graph based Color coding schemes (Color-NS, Color-S
and Color-SO) compared to HEVC lozenge and JPEG Pleno VM 1.1 for "Friends" from [106].

3.4.2 The performance of the color coding scheme

A better performance with the optimization We can observe that, for most of the light fields used

in our tests, the non separable graph transform (Color-NS) yields a better rate-distortion performance
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Figure 3.21: Rate distortion performance of our graph based Color coding schemes (Color-NS, Color-S
and Color-SO) compared to HEVC lozenge and JPEG Pleno VM 1.1 for "Fountain Vincent" from [106]
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Figure 3.22: Rate distortion performance of our graph based coding schemes (CNN-uGT, CNN-wGT,
Color-NS, Color-S and Color-SO) compared to CNN, CNN-HEVC, HEVC lozenge and HEVC pseudo for
"Flower 2" from [56].
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Figure 3.23: Rate distortion performance of our graph based coding schemes (CNN-uGT, CNN-wGT,
Color-NS, Color-S and Color-SO) compared to CNN, CNN-HEVC, HEVC lozenge and HEVC pseudo for
"Cars" from [56].
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Figure 3.24: Rate distortion performance of our graph based coding schemes (CNN-uGT, CNN-wGT,
Color-NS, Color-S and Color-SO) compared to CNN, CNN-HEVC, HEVC lozenge and HEVC pseudo for
"Rock" from [56].
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Figure 3.25: Rate distortion performance of our graph based coding schemes (CNN-uGT, CNN-wGT,
Color-NS, Color-S and Color-SO) compared to CNN, CNN-HEVC, HEVC lozenge and HEVC pseudo for
"Flower 1" from [56].

compared to the separable case (Color-S and Color-SO) for a fixed number of super-rays. While the

non optimized graph transform (Color-S) fails to compact the energy of the light field, the optimized

graph transform (Color-SO) is performing better and sometimes almost catches the non separable case.

One major advantage of the separable optimized case is that it can be applied on super-rays of large

dimensions without facing the basis functions computational complexity issue of the non separable

case. Furthermore, the number of eigenvectors to be optimized can be defined by the encoder and does

not have to be necessarily large.

A good performance compared with state of the art Moreover, we can observe a better performance

of our method at high bitrate compared to JPEG Pleno VM 1.1 and HEVC lozenge. At low bitrate, the

prediction in the HEVC and JPEG Pleno based schemes is better than our disparity compensation of

super-rays. Also, the bitrate allocated to the segmentation and disparity is very large, especially at low

bitrate (almost reaching 30 percent for most datasets in Table 3.1) and could be further reduced.

Impact of disparity errors When the disparity information is not reliable, dis-occluded pixels may be

clustered with a wrong super-ray, resulting in high frequencies, hence poor energy compaction, after the

spatial transforms in those specific regions. As explained before, we overcome this problem by dividing

the super-rays into classes.

Impact of super-rays size The size of super-rays may have an impact on the rate distortion perfor-

mance especially when the disparity information is reliable and there is a lot of homogeneous objects.

If we have large objects, we might want to merge some small super-rays which makes a non separa-

ble graph transform practically unfeasible. Here comes the advantage of an optimized separable graph
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Light Field
Rate allocation(in %) for the Color - SO scheme

Overall bitrate Segmentation Disparity Coefficients

Cars (364 × 524)
0.2563 bpp (PSNR = 42.24dB) 2.69% 0.55% 96.76%
0.0212 bpp (PSNR = 25.23dB) 32.55% 6.60% 60.85%

Flower2 (364 × 524)
0.2710 bpp (PSNR = 40.77dB) 2.69% 0.55% 96.76%
0.0362 bpp (PSNR = 29.18dB) 20.17% 4.14% 75.69%

Rock (364 × 524)
0.1951 bpp (PSNR = 41.68dB) 4.00% 0.82% 95.18%
0.0306 bpp (PSNR = 31.10dB) 25.49% 5.23% 69.28%

Seahorse (364 × 524)
0.2302 bpp (PSNR = 42.99dB) 2.65% 0.74% 96.61%
0.0612 bpp (PSNR = 33.88dB) 9.97% 2.78% 87.25%

Friends (432 × 624)
0.1464 bpp (PSNR = 41.73dB) 3.89% 0.10% 96.01%
0.0294 bpp (PSNR = 33.38dB) 19.39% 5.10% 75.51%

StonePillarInside (432 × 624)
0.2204 bpp (PSNR = 39.07dB) 2.59% 0.54% 96.87%
0.0212 bpp (PSNR = 32.85dB) 26.89% 5.66% 67.45%

FountainVincent (432 × 624)
0.2448 bpp (PSNR = 40.37dB) 2.12% 0.57% 97.31%
0.0330 bpp (PSNR = 30.38dB) 15.76% 4.24% 80.00%

Table 3.1: Rate allocation performed by the proposed color coding scheme with the optimized separable
graph transform (Color - SO). The rate is divided into three parts used for coding the segmentation,
disparity and transform coefficients.

transform where one can define the number of eigenvectors to be optimized depending on the homo-

geneity of the shape-varying super-rays inside the views. In this case, the segmentation and disparity

costs will more likely drop also since we also have less contours and values to code.

In our experiments, however, we use a uniform segmentation into super-pixels. We fix the number

of super-rays to 2800 for the light fields in [56], and 4000 for the light fields in [106].

We have observed that when we have a small number of super-rays, the disparity errors may have

an impact on the compensation and therefore result in a decreased PSNR-Rate performance. On the

other hand, having a very large number of super-rays increases the rate needed for segmentation and

limits the dimension of each super-ray, resulting in a smaller benefit in terms of de-correlation of the

proposed spatio-angular transform.

3.4.3 The performance of the predictive coding scheme

We now restrict our attention to the two versions of the predictive coding scheme CNN+uGT and

CNN+wGT in the Figures 3.22, 3.23, 3.24 and 3.25 and Table 3.2. Our Graph based transform approaches

slightly outperform CNN learning based scheme at low bitrate and bring a small improvement to the

HEVC based coding of the residues (Table 3.2). For higher bitrates, the compression performance is

further enhanced compared to CNN, and almost reaching CNN+HEVC performance. At low to middle

bitrates, both graph-based transform schemes outperform direct use of HEVC inter coding as we can

also observe after computing the Bjontegaard metric in Table 3.2. Also, a small improvement is brought
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by the weighted angular transform compared to the unweighted version.

Table 3.2: Bjontegaard comparison (∆PSNR (dB)) at low bitrate (< 0.04 bpp)

CNN-uGT vs CNN-wGT vs
CNN HEVC lozenge CNN-HEVC CNN-uGT

Car 0.6 0.9 0.3 0.1
Flower 1 0.3 1.7 0.2 0.1
Flower 2 0.4 1.6 0.3 0.2

Rock -0.1 0.7 -0.1 0.3

3.4.4 The predictive coding scheme vs the color coding scheme

If we restrict our attention to the low bitrate range in the rate-distortion curves, we can actually con-

clude that the light field prediction with view synthesis is very powerful compared to reconstructing

the light field with only low frequencies captured by graph transforms on Color. This is shown in the

gap between the dashed green curve (CNN) and our Color coding schemes.

Also, we can observe a better energy compaction when we apply the transforms on color with

geometry-aware supports than on residues with fixed graph supports. This is clear when we observe

the evolution of the curves of both schemes between low and medium to high bitrates. This is mainly

due to the fact that the residuals are not smooth on the fixed graph supports, and their spatial angular

variations can’t be efficiently predicted by the color segmentation. Whereas in the color based coding

scheme, geometry-aware graph supports are constructed assuming a good correlation between color

values inside super-pixels and across the views, which is rarely violated only when disparity informa-

tion is very poor.

Another issue in the color based coding scheme is that when we limit our transforms to local graph

supports, we do not explore the correlations between super-rays. On the contrary, in the predictive

coding scheme, the four corner views are actually coded with HEVC where intra and inter prediction

are both applied, i.e. where spatial and angular, both short and long term dependencies are captured.

3.4.5 Small note about complexity

One might wonder how complex are our coding schemes especially on the decoder side. Indeed, the

decoder needs to compute the optimized basis functions for the non consistent super-rays, inducing

some computational complexity. However, the optimization can be performed independently on each

super-ray, in a parallel manner. Also, if the super-rays are carefully built and the objects that we have

in the scene follow the lambertian assumption, we end up with mostly consistent and some varying

super-rays where the energy compaction is expected to be quite high. Hence, only a very few number

of eigenvectors need to be optimized, others can be totally discarded. Also, with the advance of parallel

computing and the ability of GPU arrays, we believe that the different parallel optimizations can be

done at a time, reducing the decoding time.
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Chapter 4

Graph-based spatio-angular prediction for light

fields

Graph-based transforms have been shown to be powerful tools for compression. However, the com-

putation of the basis functions becomes rapidly intractable when the size of the support increases, i.e.

when the data is high dimensional (e.g. Light Fields). To cope with this difficulty, we have investigated

the design of local transforms with limited supports in Chapter 3. Nevertheless, the locality of the sup-

port does not allow us to capture long term spatial dependencies of the color signal, unlike efficient

predictive schemes used in state of the art codecs (e.g. HEVC). More precisely, in the case of local graph

based transforms, the correlations between different super-rays are not exploited.

In this Chapter, we aim to tackle this problem. More accurately, the proposed approaches are based

on the observation that, when using a local Graph Transform, either non separable or separable, most

of the light field energy is packed in the low frequency coefficients. This motivates the design of line of

actions that would allow the best compression of these coefficients, e.g. by exploiting spatial correlation

beyond the limits of the local graph transform support. To do so, some form of prediction across super-

rays would be needed. Nevertheless, the super-rays being of arbitrary shapes, developing inter super-

ray prediction mechanisms is not an easy task. The idea we develop here consists instead in encoding a

selected set of samples, using powerful prediction mechanisms available in state-of-the-art coders (e.g.

HEVC), and then to recover the low frequency coefficients of the local graph transforms from its coded

high frequency coefficients and the encoded reference samples as seen in Fig 4.1.

In summary, our contributions are as follow:

• In the non separable case, the ideal way of exploring both the transform’s compaction and the long

term dependencies would be to define the reference image as a light field view. However, due to

matrix conditioning problems explained in the sequel, the recovered low frequencies in that case

are very sensitive to high frequencies coefficients quantization, making the prediction very poor.

In order to overcome this issue, we find a sub-optimal sampling set in each super-ray and project

the samples into one reference image. Although this approach has the best rate distortion results

(despite the noisy reference image), the complexity limitation and a high sensitivity to noise stand

still for some cases.

• We thus derive our prediction equations in the separable spatio-angular case where no matrix

inversion is needed. A light field view is chosen as a reference. This second approach keeps

the advantages of both the reduced basis function computational complexity due to the limited

support and the structured reference image (easily coded with intra-predictions). It however keeps
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only in part the advantage of the energy compaction of the graph transform since the recovered

frequencies do not necessarily correspond to the low frequencies.

The proposed methods can be seen as a graph-based prediction deriving low frequency spatio-

angular coefficients from one single compressed reference image (e.g. the projected sampling sets in

the non-separable case, top-left view in the separable case) and from the high frequency coefficients.

The methods have been assessed in the context of quasi-lossless encoding of light fields. Experi-

mental results show that, when coupled with a powerful intra-prediction tool, the graph-based spatio-

angular prediction brings a substantial gain in bitrate reaching almost 30% compared to HEVC coding

of the light field as a video sequence.

Graph Transform

+
Prediction

Sampling

Figure 4.1: Overview of the prediction and sampling with a local graph transform on a specific super-
ray. On the encoder side, a sampling is performed to find the best set of samples and a graph transform
is applied. The high frequencies along with the reference samples (surrounded in green) are sent to the
decoder which predicts the low frequency transform coefficients to then recover the original super-ray
by inverse graph transform.

4.1 Spatio-angular prediction based on local non separable graph

transform

4.1.1 Notations: Supports and Transform

Recall the second solution proposed in section 3.3 of Chapter 3. In one super-ray, we denote our light

field luminance values as xk. The non separable graph transform is applied on xk as follows:

x̂k = U�
k xk (4.1)

Where the columns of Uk are the eigenvectors of the local graph laplacian inside the kth super-ray.

The inverse graph Fourier transform is then given by

xk = Ukx̂k (4.2)

We suppose that we have Nk pixels in one super-ray with Nk,v0
being the number of pixels that

belong to a reference view v0. We denote the set of pixel indices in a super-ray k as Sk, those which lie

in the sampling set as S and the set of all other pixels indices of the super-ray as SC = Sk \ S. We denote
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4.1. Spatio-angular prediction based on local non separable graph transform

the first Nk,v0
indices of low frequency coefficients as T and the rest of indices as TC . We will explain

why we chose this number in the sequel.

4.1.2 Background on graph sampling

In this subsection, we introduce the theoretical background and some notations related to graph sam-

pling theory which are crucial for the understanding of the rest of the chapter. Let’s consider any graph

G = {V, E} made of N vertices associated with a Laplacian L. It has a complete set of eigenvalues

λl, l ∈ [1, N ] and eigenvectors ul, l ∈ [1, N ]. A graph signal is bandlimited and has a bandwidth ω = λn

if it can be expressed as a linear combination of only the first n eigenvectors of L. The space of ω-

bandlimited signals is called a Paley-Wiener space and is denoted as PW (G)ω ⊂ R. A subset of vertices

S ⊂ V is a uniqueness set [74] for signals in PW (G)ω ⊂ R if ∀f, g ∈ PWω(G), f(S) = g(S) =⇒ f = g.

It can be also inferred that S is a uniqueness set for all signals f ∈ PWω(G), if and only if

[u1(S)u2(S), . . . , un(S)] are linearly independent where λn is the nth smallest eigenvalue of L and

ui(S) ∈ R
|S| is a reduced eigenvector. The term reduced implies taking rows corresponding to the

indices of the sampling set S. [103]

It can also be shown that for any minimum uniqueness set S of size n for signals in PWω(G), there is

always at least one node ∫i /∈ S such that S
� ∫i is a uniqueness set of size n+1 for signals in PWω+1(G).

[103]

After building a uniqueness set, a simple way to reconstruct the missing samples is to solve a least-

squares problem in the spectral domain [74]. Observing that the signal f ∈ PWω(G) can be written

as:

f =

�
f(S)

f(Sc)

�
=

�
Ũ(S)

Ũ(Sc)

�



α1

α2

· · ·

αn




=

�
u1(S) u2(S) . . . un(S)

u1(Sc) u2(Sc) . . . un(Sc)

�



α1

α2

· · ·

αn




, (4.3)

[α1, α2, . . . , αn]
� can be retrieved by the least square solution to the upper part of the system above

as:

[α1, α2, . . . , αn]
�

=
�
Ũ�(S)Ũ(S)

�−1
Ũ(S)f(S), (4.4)

then the missing samples are reconstructed as follows:

f(Sc) = Ũ(Sc)




α1

α2

· · ·

αn




(4.5)

where columns of Ũ are the n first eigenvectors of the L.

In the special case where S is of size n (S is therefore a minimum uniqueness set[103] for signals f ∈
PWω(G)), Ũ(S) is a square invertible matrix. Equipped with the aforesaid arguments, the formulation
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in Equation 4.4 can be further simplified to:

[α1, α2, . . . , αn]
�

=
�
Ũ(S)

�−1
f(S), (4.6)

While the aforementioned sampling theorem [74] has been proposed for band-limited signals, we

extend those equations to our problem in the following section. More precisely, we deal with signals(i.e.

Color Signals) that might not be necessarily band-limited on the underlying graph supports (i.e. Super-

Rays).

4.1.3 Graph-based spatio-angular prediction

Due to the high level of correlation between the different pixels forming a super-ray k, the energy of the

transformed coefficients x̂k is highly compacted in the low frequencies x̂k(T ). However, we might still

end up with some non-zero high frequencies x̂k(Tc). If we choose an appropriate uniqueness sampling

set S in the kth super-ray, then the non separable inverse graph transform is defined under appropriate

permutation as:

xk = Ukx̂k (4.7)

⇔
�

xk(S)

xk(Sc)

�
=

�
Uk(S, T ) Uk(S, Tc)

Uk(Sc, T ) Uk(Sc, Tc)

��
x̂k(T )

x̂k(Tc)

�
. (4.8)

If the signal samples are transmitted separately, xk(S) is available at the decoder. If we impose

|S| = |T |, then Uk(S, T ) is a square invertible matrix. Furthermore, if we only transmit x̂k(Tc), then we

are able to recover x̂k(T ) from the following equation:

x̂k(T ) =
�

Uk(S, T )
�−1�

xk(S) − Uk(S, Tc)x̂k(Tc)
�

. (4.9)

Equation (4.9) is our so-called graph-based spatio-angular prediction. First, xk(S) can be seen as a

signal composed of a λ|S|-band-limited part plus some high frequencies. In this equation, we are actually

removing the high frequencies to retrieve the band-limited signal (i.e. xk(S) − Uk(S, Tc)x̂k(Tc)). Using

the least squares reconstruction method in (4.4), we find the low frequency transformed coefficients

x̂k(T ).

Moreover, the high-frequency coefficients x̂k(Tc) can be also seen as prediction coefficients, transmit-

ted to recover the exact light field at the decoder. The basis of the linear prediction is the graph-transform

basis, which makes these coefficients low-energetical and thus easy to transmit.

The signal values at Sc are then retrieved from the following equation:

x̂k(Sc) = Uk(Sc, T )x̂k(T ) + Uk(Sc, Tc)x̂k(Tc)

Where the first term is equivalent to the λ|S|-band-limited signal recovered on Sc and the second term

is added in order to take into account the high frequency components.

To be able to carry out our graph-based spatio-angular prediction, we should at first determine the
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4.1. Spatio-angular prediction based on local non separable graph transform

appropriate sampling set. More precisely, we want to find S that results in the best conditioning of

the sub-matrix Uk(S, T ) that guarantees a small reconstruction error. Simultaneously, we seek a sam-

pling set that can be wrapped onto one single view to be coded with efficient prediction mechanisms.

Equipped with the aforementioned statements in the previous subsections, we move forward to find the

right S per super-ray.

4.1.4 Sampling set selection

A first intuitive way to define the sampling set per super-ray is to choose the set of Nk,v0
pixels that

reside in the reference view v0 that can be subsequently coded with intra HEVC. In our experiments

however, we have found that the resulting sub-matrix Uk(S, T ) is ill-conditioned for non-consistent

super-rays. This drove us to search for more efficient sampling algorithms existing in the literature.

We choose to use an adapted version of the algorithm described in [103]. It has been shown that this

method provides a small reconstruction error for noisy signals of different bandwidths.

More precisely, for each super-ray k, we specify the band-limit frequency as λk
n with nk = Nk,v0

(This

number is outlined as such for coding purposes, the argument for this choice is explained in the sequel).

We seek to find the optimal sampling set S that guarantees the exact reconstruction of any signal in

PW (Gk)λk
n

. We know that we have a correspondence between the size of the minimum uniqueness

set and the signal bandwidth. We therefore want to find a set of Nk,v0
samples. In order to find the

vertices that belong to this set, we have to find Nk,v0
linearly independent rows from the matrix Ũ.

We follow the same reasoning as in [103] however with slightly different constraints to adapt it to our

coding problem. In summary, the algorithm takes as input the whole super-rays graphs and the number

of samples per super-ray. At the output of this stage, we want to wrap all the samples in a reference

view to be efficiently coded with HEVC. Inspired by the work in [103], we use Algorithm 1.

While this method allows an optimal sampling per super-ray, yet, it does not guarantee that the

output vector is well structured. It is impossible to say that the samples of neighboring super-rays

will be efficiently de-correlated using intra-prediction mechanisms of any efficient coder. In extreme

cases, we might end up with noisy samples that are very difficult to code. We thus propose to wrap

our samples into one reference view taking into account the geometrical information given by our local

graph.

We first observe that our non separable graph laplacian is a sum of two laplacians: The first one

includes the connections Ls
k (s for spatial) inside views, and the other La

k (a for angular) made of edges

between pixels inside different views. La
k is actually composed of various connected components, each

one corresponding to a 3D point in the scene.

Using the angular information provided by La
k, we define the matrix E of size (Nk,v0

× Nk) where

each element gives the correspondence between a pixel in of super-ray k in v0, and any other pixel in

the super-ray. Consider a pixel p1 in the view v0. If we can access a pixel p2 from p1 following the graph

connections in La
k then the entry E(p1, p2) = 1, otherwise E(p1, p2) = 0.

For each sample S(i) corresponding to a point p, we find the corresponding point p0 in the set of pix-

els S0 belonging to the super-ray in the first view i.e. p0 such as E(p, p0) = 1. The best case scenario is

when each sample has a correspondence to a different pixel in the first view. In this case, the projection
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Algorithm 1: Light Field Super-ray Graph based Sampling Algorithm

Data: The set of graphs for all super-rays, Segmentation map of a reference view, the sampling
set size per super-ray: {Gk = {Vk, Lk}}, SMref ,{nk}

Result: A reference image made of samples drawn in all super-rays: Iref

foreach Super-ray k do
Initialize: S ← Vk

i where Vk
i is the vertice corresponding to the centroid of the super-pixel

residing in the reference view ;

Compute Ũ;
for m = 2 → nk do

Define T = [1, m];

Compute z = null(Ũ(S, T ));

Normalize rows of Ũ(Sc, T );

Compute b = Ũ(Sc, T )z;
i ← argmaxi(|b(i)|);
S ← S ∪ Sc(i)

end
Fill Iref at the right positions : Iref (SMref = k) = xk(S);

end

is easy following the graph links. In the worst case, more than one sample might have a correspondence

with the same point in the first view. In this case, first found, first served. The others are considered

as disocclusions, which along with pixels who have no correspondence in the first view, will be pro-

jected into the rest of the available positions. Some images obtained after sampling and projections are

shown in Figure 4.2. Despite the non-optimality of this method, we have ascertained that it leads to an

acceptable rate with HEVC under lossless settings.

Once we have the samples in hand, they can be sent as prediction information to the decoder side,

instead of sending the low frequency coefficients that contain most of the light field energy (about 99 %

for all datasets).

4.2 Spatio-angular prediction based on local separable graph trans-

forms

In this part, we move to deal with the separable graph transform. We propose to code one view as a

reference and then recover the whole light field from this view and some high frequencies. We consider

the same approach described in section 3.3, to compute the graph spatial and angular supports inside

views. The signal considered is the luminance values of the light field. The spatial graph transform

coefficients x̂k,v for each spatial graph Gk,v are obtained as in Chapter 3 by calculating:

x̂k,v = U�
k,vxk,v. (4.10)
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Figure 4.2: Reference Images obtained after projection of the sampling sets in all super-rays for different
light fields.

Where Uk,v are the eigenvectors of the spatial laplacian and xk,v are the luminance values of the super-

ray k in view v. Inversely, the luminance values of the pixels belonging to the graph are retrieved from

xk,v = Uk,vx̂k,v. (4.11)

Inside a super-ray k, the spatial transform coefficients x̂k,v are correlated between the views v. An

angular transform is thus used to tract the similarity between the transformed coefficients of each band

b, x̂k,v(b) across the views. The angular transform coefficients are obtained by calculating:

ˆ̂xb
k = Vb�

k x̂b
k. (4.12)

Where Vb
k is a matrix whose columns are the eigenvectors of the angular laplacian Lb

k drawn for the

band b.
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4.2.1 Separable graph-based spatio-angular prediction

Let us consider that the view 1 is coded as a reference. In order to perform the prediction, we follow the

same reasoning as in non separable graph case however we apply it to each band that exists in the view

1.

For a given super-ray, the spatial transform in view 1 is x̂k,1 = U�
k,1xk,1 according to notations

introduced before.

We choose one sample for each band. It corresponds to the vertex Vi that is in the reference view

(labeled by 1 in our case). For a given band b, the inverse angular transform is defined as

x̂b
k = Vb

k ˆ̂xb
k (4.13)

⇔




x̂b
k(1)

x̂b
k(2)
...

x̂b
k(Nb),




=




Vb
k(1, 1) Vb

k(1, 2) · · · Vb
k(1, Nb)

Vb
k(2, 1) Vb

k(2, 2) · · · Vb
k(2, Nb)

...
...

. . .
...

Vb
k(Nb, 1) Vb

k(Nb, 2) · · · Vb
k(Nb, Nb)







ˆ̂xb
k(1)

ˆ̂xb
k(2)
...

ˆ̂xb
k(Nb)




(4.14)

where Nb denotes the number of views where the bth band of the kth super-ray is defined. Since the

view 1 is transmitted separately, x̂b
k(1) is available at the decoder. If we only transmit ˆ̂xb

k(2), . . . , ˆ̂xb
k(Nb),

the we are able to retrieve ˆ̂xb
k(1) from the following equation:

ˆ̂xb
k(1) =

1

Vb
k(1, 1)


x̂b

k(1) −
�

Vb
k(1, 2) · · · Vb

k(1, Nb)
�



ˆ̂xb
k(2)
...

ˆ̂xb
k(Nb)





 . (4.15)

Equation (4.15) is our graph-based spatio-angular prediction for the separable case. The spatial co-

efficients of all the views are then retrieved from the following equation




x̂b
k(2)
...

x̂b
k(Nb)


 =




Vb
k(2, 1)

...

Vb
k(Nb, 1)


 ˆ̂xb

k(1) +




Vb
k(2, 2) · · · Vb

k(2, Nb)
...

. . .
...

Vb
k(Nb, 2) · · · Vb

k(Nb, Nb)







ˆ̂xb
k(2)
...

ˆ̂xb
k(Nb)




Once the decoder recovers the first spatial graph transform coefficients in all the views, it can recon-

struct the whole light field color values by a simple spatial inverse GFT since it has access to the graph

supports and coefficients.

4.3 Non separable vs separable graph based prediction

We apply both our methods on real light fields captured by plenoptic cameras from the datasets used in

[56] and [106]. To avoid the strong vignetting and distortion problems on the views at the periphery of

the light field, we only consider the 8 × 8 central sub-aperture images cropped to 364 × 524 in [56], and

9 × 9 cropped to 432 × 624 from [106]. Some of the light fields considered are shown in Figure 4.5. The
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4.3. Non separable vs separable graph based prediction

Figure 4.3: Reference Images being the top-left views of each light field.

full set of light fields considered for the test is: Flower2, Cars ,Rock and Seahorse from the dataset in [56]

and StonePillarInside and Friends from the dataset of ICIP challenge 2017 and used in [106]. The method

used to estimate the disparity of the top-left views is described in [52]. Examples of the disparity maps

provided are shown in Figure 4.6. A sparse set of disparity values and the segmentation maps computed

with SLIC [1] are used to construct local graph supports as described in Section 4.2.

4.3.1 Energy compaction

As explained before, we aim at compacting most of the light field energy in few coefficients, and at then

predicting these coefficients (i.e. they are not transmitted) from a coded reference image and from the

high frequency graph transform coefficients that need to be transmitted at small cost given that they

contain little information. Table 4.1 gives the percentage of total energy that resides in the predicted

DC spatio-angular bands for both non separable (x̂k(T ) ∀ k) and separable (ˆ̂xb
k(1) ∀k, b) cases. We can

observe that most of the energy is compacted in the DC spatio-angular bands, which shows the efficiency

in terms of spatio-angular de-correlation of the graph transforms.

The non separable prediction has the benefit of the low energy of the high frequency coefficients of
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Figure 4.4: Illustration of the energy compaction for two super-rays of Flower2. The transform coeffi-
cients are ordered with the assumed frequency order. The red squares are the predicted DC values on
the decoder side. The two rows correspond to two different super-rays and the two columns are for
both cases: Non Separable and Separable respectively.
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4.3. Non separable vs separable graph based prediction

Figure 4.5: An example set of light fields used in our experiments. Only the top-left view is shown for
illustration purpose. From left to right: Flower2, Cars, StonePillarsInside and Friends.

Figure 4.6: An example set of top-left view disparity maps used in our experiments

75



Part II, Chapter 4 – Graph-based spatio-angular prediction for light fields

Table 4.1: Percentage of energy residing in the DC spatio-angular bands in the non separable case
x̂k(T ) ∀ k and in the separable case ˆ̂xb

k(1) ∀ k, b

Light Fields Energy Percentage in x̂k(T ) ∀ k Energy Percentage in ˆ̂xb
k(1) ∀ k, b

Flower 2 99.15 % 99.02 %
Cars 99.27 % 99.34 %
Rock 98.63 % 98.45 %

Seahorse 99.17 % 98.73 %
Stone Pillars Inside 98.90 % 98.26 %

Friends 99.76 % 99.80 %

the graph transform that also need to be coded. The separable graph transform, in some cases, loses this

benefit as we predict the DC angular(i.e. after the transform across the views) coefficients of all spatial

bands. Those low angular frequency coefficients may not contain all the energy otherwise captured

by the lower spatio-angular frequency coefficients of the non separable case, although it remains quite

efficient in terms of energy compaction as we can see in Table 4.1.

To further illustrate the energy compaction of the transforms, we plot in Fig. 4.4, for two different

super-rays, the transform coefficients following the coding order (learned order of frequencies) for both

cases: separable and non separable graph transforms. As we can see, in the non separable case, the low

frequencies that are predicted on the decoder side (the red dots) correspond to the first frequencies and

thus to those who hold most of the energy. However, in the separable case, the coefficients predicted do

not necessarily exhibit the highest energy. This is quite clear in the second example, where the red dots

in the separable case are assigned to very low values.

4.3.2 Compressibility of the reference view

Thanks to the prediction equations introduced in Section 4.2.1, an efficient encoding of the top-left view

in the separable case or the reference view in the non separable case (using any classical encoder with ef-

ficient spatial predictors) can be seen as a way to encode those DC spatio-angular frequency coefficients

which contain most of the light field energy.

The separable graph transform based prediction takes advantage of the natural structure of the ref-

erence view as we can see in Fig. 4.3. It is thus efficiently coded using intra-prediction tools. For the

non-separable graph prediction, however, this is not the case since the optimal sampling does not to-

tally guarantee that the samples are well structured in each super-ray of the 2D reference view. Yet, the

super-ray segmentation preserves in a certain way the natural structure of the reference view (See Fig.

4.2).

In our experiments, we choose HEVC intra to encode this information (i.e. top left view or reference

view). Tables 4.2 and 4.3 give the bit rate obtained when encoding the reference view (from which

are derived the DC spatio-angular frequency coefficients) with HEVC-Intra (with QP set to 0). The bit

rates are compared with those obtained when using a simple arithmetic coder for directly encoding the

spatio-angular DC coefficients. In order to apply the arithmetic coder for each frequency band b, we first

group all the coefficients ˆ̂xb
k(1) ∀k of the super-rays in which this band exists, and we code them with an

arithmetic coder independently of the other bands. The table shows the rate gain obtained by encoding
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the set of reference samples with HEVC intra, thanks to the possibility to capture dependencies between

super-rays.

Table 4.2: Bit rate obtained, in the case of the separable graph transform, when using HEVC intra to code
the first view (left column), and when using entropy (arithmetic) coding of all the DC spatio-angular
bands ˆ̂xb

k(1) ∀ k, b (right column).

Light Fields HEVC intra of the first view Entropy coding of ˆ̂xb
k(1) ∀ k, b

Flower 2 1.0 Mbits 1.48 Mbits
Cars 1.06 Mbits 1.54 Mbits
Rock 1.02 Mbits 1.38 Mbits

Seahorse 0.72 Mbits 1.22 Mbits
Stone Pillars Inside 1.81 Mbits 1.66 Mbits

Friends 1.62 Mbits 2.04 Mbits

Table 4.3: Bit rate obtained, in the case of the non separable graph transform, when using HEVC intra-
coding (left column) of the reference set of samples, and entropy (arithmetic) coding of all the DC spatio-
angular bands x̂k(T ) ∀ k (right column).

Light Fields HEVC-Intra coding of set of reference samples Entropy coding of x̂k(T )∀k
Flower 2 1.23 Mbits 1.59 Mbits

Cars 1.45 Mbits 1.64 Mbits
Rock 1.31 Mbits 1.49 Mbits

Seahorse 0.74 Mbits 1.38 Mbits
Stone Pillars Inside 1.92 Mbits 1.84 Mbits

Friends 1.86 Mbits 2.07 Mbits

4.3.3 Robustness of the Prediction

In order to assess the efficiency of our prediction and the light field sampling algorithm for the non

separable case, we plot in Fig. 4.7 the condition number in log base 10 of the matrix Uk(S, T ) for all

super-rays k in all the datasets. The condition number is measured to show how much sensible is our

prediction in equation 4.9 x̂k(T ) to a small change in
�

xk(S) − Uk(S, Tc)x̂k(Tc)
�

. On one hand, the

condition numbers are computed without sampling i.e. assuming that the reference samples as those

in the top-left view. These are shown in red. While the results in blue correspond to the condition

numbers after taking the actual samples found with algorithm 1. A major difference is shown in log

scale, where the sampling has reduced the condition number from 1015 to a maximum of around 102.

Without sampling, the prediction fails since a tiny change in the high frequency coefficients (even a

small rounding procedure) can result in a huge loss in the reconstruction quality.

For the prediction based on the separable graph transform, we do not need a matrix inversion. We

only need to invert a number Vb
k(1, 1) whose minimum corresponds to 1/

√
M × N . This inversion does

have a smaller impact than the one in the non separable case. This is a major explanation of the PSNR

difference between our schemes for a fixed quantization step size Q = 1 in Table 4.4.
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Figure 4.7: Efficiency of the sampling and effect on the condition number of the matrix Uk(S, T ). We
show for each dataset, for all super-rays the log base 10 of the condition number without (red) and with
(blue) sampling.

4.4 The proposed coding schemes

4.4.1 Overall description of the coding scheme based on the non separable graph

transform

The first proposed quasi-lossless coding scheme is shown in Figure 4.8 and is based on the non separable

case.

The top left view x1 is separated into uniform regions using the SLIC algorithm ([1]) to segment the

image into super-pixels, and its disparity map is estimated with [52]. The disparity values are encoded

using simple arithmetic coder. The segmentation is coded with edge arithmetic coder (AEC) [23] as in

the previous chapter. Using both the segmentation map and the geometrical information, we can build

consistent super-rays and graphs in and across all views as explained in section 3.3.3 in both the encoder

and decoder sides.

Once the local graphs are computed, we can find the optimal sampling sets (their actual positions

in the light field and the corresponding luminance values) as explained in 4.1.4. Those samples are

reorganized in a reference image coded with HEVC intra and sent as prediction information to the

decoder.
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Figure 4.8: Overview of proposed coding scheme based on the non separable graph transform.

We apply the non separable graph transform on the coded version of the reference image (quasi-

lossless coding) and the original values of all other samples to compact their energy in fewer coefficients.

Since the reference image is coded with very small QP, we are almost sure that we are not adding angular

incoherence between the different views. Once we have the graph transforms coefficients, instead of

sending the whole spectrum with simple arithmetic coding, we propose to make use of our graph-

based prediction and therefore deriving low frequency spatio-angular coefficients in the decoder side

from the reference image coded with HEVC-Intra and the high angular frequency coefficients.

We thus send, for all super-rays, the AC coefficients (Nk − Nk,1) last bands after the non separable

graph transform. (Nk and Nk,1 are the number of pixels belonging to the super-ray k and those only

residing in view 1 respectively). Specifically, after applying the spatio-angular graph transforms on all

super-rays, all frequency coefficients are grouped into a two-dimensional array y where y(k, v) is the

vth transformed coefficient for the super-ray k. Using the natural scanning order (increasing order of

eigenvalues), we assign a class number to each super-ray. For a class i, the high frequencies are defined

as the last round(Nk × (4− i)/4) coefficients where Nk is the total number of coefficients. Each super-ray

belongs to class i if it does not belong to class i − 1 and the mean energy per high frequency is less

than 1. More precisely, we start by finding the super-rays in the first class then remove them from the

search space before finding the other classes, and idem for the following steps. We code a flag with

an arithmetic coder to give the information of the class of super-rays to the decoder side. In class i,

the last round(Nk × (4 − i)/4) coefficients of each super-ray are discarded. Then, the rest of the high

frequency spatio-angular coefficients are quantized uniformly with a small step size Q = 0.5. Then, they

are grouped in 32 uniform groups to enter a simple arithmetic coding.

4.4.2 The proposed coding scheme based on the separable graph transform

In the separable case (Fig 4.9), one major difference resides where the top-left view is the reference view

first coded with HEVC intra.

Since the decoder already receives the top left image and the disparity values, with the SLIC algo-

rithm, it can deduce the segmentation map and the super-rays used for local graph transforms design
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Figure 4.9: Overview of proposed coding scheme based on the separable graph transform.

and application.

Furthermore, the decoder have received the spatio-angular high frequency coefficients. Using those

two kinds of information, it can predict the DC spatio-angular components obtained after the angular

graph transform and then reconstruct the luminance values of all the views as explained in Section 4.2.1.

4.5 Comparative assessment against State of the Art coders

To assess our Graph-based Spatio-Angular Prediction, we evaluate it in the context of the quasi-lossless

coding scheme in Section 4.4 against a complete HEVC based scheme with a QP set to 0 and a GOP

of 4. The HEVC version used in the tests is HM-16.10. The light fields are coded following a raster

scanning starting with the top-left view as a reference intra-coded frame. Results are reported in Table

4.4 where we compare mainly the rate needed to code a Light Field under quasi-lossless settings (based

on visual quality assessment, we consider a PSNR higher that 50 dB as a quasi-lossless compression). A

substantial gain in bitrate is observed while preserving a high quality of the reconstructed light fields.

This can be justified by the efficiency of our spatio-angular graph transforms in terms of compaction

along with the ability of HEVC-intra to effectively exploit spatial correlations in the reference view.

Table 4.4: Rate comparison between our proposed schemes (with both non separable and separable
graph transforms) and a scheme using HEVC-inter to code the views in a raster scan order, at high
quality (PSNR > 50 dB)

Light Fields HEVC-Inter (QP=0) Raster Scan Non Separable Scheme (Q = 0.5) Non Separable Scheme (Q = 1) Separable Scheme (Q = 1)
Flower 2 3.3129 bpp (54.2033 dB) 2.4470 bpp (60.4656 dB) 2.4457 bpp (52.9393 dB) 2.4799 bpp (55.1969 dB)

Cars 3.6688 bpp (54.0812 dB) 2.7759 bpp (60.5035 dB) 2.7801 bpp (53.0268 dB) 2.6258 bpp (55.2009 dB)
Rock 3.2700 bpp (53.7601 dB) 2.0423 bpp (60.2994 dB) 2.0545 bpp (52.6230 dB) 2.0162 bpp (54.7765 dB)

Seahorse 2.4751 bpp (54.3804 db) 1.8224 bpp (60.4474 dB) 1.7849 bpp (53.0111 dB) 1.9762 bpp (55.2844 dB)
Stone Pillars Inside 4.9017 bpp (52.1036 dB) 2.5559 bpp (59.7134 dB) 1.5269 bpp (52.3953 dB) 3.3094 bpp (55.0022 dB)

Friends 3.5400 bpp (52.7986 dB) 1.9327 bpp (59.7657 dB) 1.9311 bpp (52.4402 dB) 2.4436 bpp (54.8196 dB)
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4.6 Conclusion and perspectives

In this chapter, we have explored local separable spatio-angular graph transforms for light fields com-

pact representation. The limited support of local transforms may not allow us to exploit long term

spatial dependencies. To cope with this limitation, we have proposed a novel approach to leverage the

good spatial de-correlation properties of traditional codecs (e.g. HEVC intra), making use of efficient

predictors, into local spatio-angular graph transforms. A reference view coded with any efficient codec

is used to predict low angular frequency transform coefficients that, together with the transmitted high

angular transform coefficients, allow recovering the entire graph-based representation. The scheme has

been assessed for high quality (quasi-lossless) coding. Note that the prediction mechanism, in case of

coarser quantization, tends to amplify the quantization noise on the reconstructed data representation.

This issue is left for further study.

Both proposed approaches are very efficient when the quantization noise on the reference view is

limited, hence for quasi-lossless compression. If the latter is too coarsely compressed, drift and noise

amplification might appear during this prediction step. This is due to the fact that, in Equation (4.15),

the prediction uses the spatial transform coefficients estimated on the reference view available at the de-

coder side. Further study will be dedicated to addressing this problem in the case of lossy compression.
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Chapter 5

Rate-distortion optimized graph partitioning

for omnidirectional image coding

5.1 Introduction

In this Chapter, we focus on another type of image modalities, namely omnidirectional images captured

with 360 cameras. Nowadays, they are widely used for popular applications such as virtual reality

and immersive communications. Omnidirectional images are spherical signals captured by cameras

with 360-degree field of view. In order to use existing image and video processing algorithms, these

signals are usually mapped to planar domain and stored as rectangular lattices. A commonly used

planar representation for omnidirectional content is the so-called equirectangular representation [12] as

explained in section 2.2.2 (Figure 5.1).

Such representation is widely adopted to store and process omnidirectional signals due to its simplic-

ity and its compliance with classical image and video processing chains, designed for rectangular images

and videos captured by perspective cameras. Nevertheless, omnidirectional cameras, such as catadiop-

tric or fish-eye cameras, have a specific nature where lines in the 3D space are projected into curves

in the image domain. Additionally, this representation presents strong warping distortions around the

polar areas and corresponds to an equi-angular sample distribution on the spherical surface, which is

non-uniform (Figure 5.2).

While the actual sampling patterns of multi-dioptric systems are difficult to model, it is unlikely that

the acquisition system would be designed to perform a non-uniform sampling of the surrounding space,

with more samples captured around the poles. Therefore, the level of information carried by each pixel is

heterogeneous with more informative pixels in the equator and more redundant ones around the poles.

This pose problems in real world applications where one might be interested in some viewports on the

sphere. An equirectangular image can be fed as input to existing state of the art encoders, however the

equirectangular signal statistics differ from those of classical perspective images. Thus, using existing

compression algorithms is sub-optimal [94].

In this chapter, similarly to the case of light fields, we aim at finding the best supports for local graph

based transforms of omni-directional images. For that purpose, we first propose to use a graph-based rep-

resentation which takes into account the spherical geometry and provides a flexible way to efficiently

store and compress the omni-directional content. Specifically, we propose to represent an omnidirec-

tional image by a graph, where the graph vertices correspond to the image pixels defined on the spher-

ical surface. The edge weights capture the sampling grid on which the signal is defined. Such a flexible

representation permits to go beyond traditional transform coding by moving from classical fixed trans-
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(a) Pool (b) Farm

(c) Metro (d) Hotel

Figure 5.1: Omnidirectional images (in equirectangular format) used in our experiments: two outdoor
images (a and b) and two indoor images (c and d)[111]

forms such as the Discrete Cosine Transform (DCT) to graph-based transforms that are adapted to the

actual signal support, such as the Graph Fourier Transform (GFT) [34] [92].

Due to the high spatial resolution typical of omnidirectional images [12], the graph that we propose

to build would have a huge number of vertices (>500K). Consequently, the GFT computation in an

actual coding pipeline would be unfeasible. Indeed, one would think about using sampling techniques

on the sphere. However such coding schemes involve interpolation which makes the distortion control

very complex. To overcome this problem, we propose an efficient graph partitioning strategy, which

takes into account the geometrical information in order to optimize the smoothness of the signals on the

subgraphs while keeping a small overhead to code the description of the partition. Finally, we propose

a complete GFT-based lossy compression scheme using this partitioning and compare its performance

to the classical DCT-based JPEG coding [27]. Experimental results show that the partitioning provides

an effective tradeoff between the smoothness of signals on the subgraphs and the cost of coding the

partition. Moreover, the proposed coding scheme outperforms JPEG coding of planar equirectangular

images, in terms of Rate-Distortion (RD) analysis using multiple quality metrics.

5.2 360-degree image as signal on a graph

A 360-degree image I can be represented by a signal x ∈ R
N defined on an undirected, 4-connected,

weighted global graph G = {V, E , W} (See Figure 5.2), which consists of a finite set of vertices V defined

on the image surface, with |V| = N , a set of edges E , and a weighted adjacency matrix W. For i =

1, ..., N , the signal value xi corresponds to the pixel color value at vertex i ∈ V . If there is an edge e =

(i, j) connecting vertices i and j, the entry Wi,j represents the weight of the edge, otherwise, Wi,j = 0.

We define the weight of an edge connecting adjacent vertices i and j via a Gaussian kernel weighting
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Figure 5.2: Equi-angular (i.e., non uniform) sampling on the sphere corresponding to the planar equirect-
angular representation. A graph is drawn on the spherical surface with vertices corresponding to pixels
and edges connecting each pixel with its four closest neighbors (three closest neighbors at the poles).

function:

Wi,j = exp

�
−dgeo(i, j)2

2θ2
geo

�
(5.1)

for some parameters θgeo , where dgeo(i, j) represents the geodesic distance between vertices i and j

capturing the sampling grid on which the vertices are defined (Figure 5.2).

As previously detailed in the previous chapters, once we have a graph and a signal defined on its

vertices, the eigenvectors U of the Laplacian are used to define the graph Fourier transform (GFT) [92]

of the signal x as as follows:

x̂ = UTx, (5.2)

the inverse graph Fourier transform is given by:

x = Ux̂. (5.3)

A signal x is considered to be smooth on G if strongly connected vertices have similar signal values

[119]. This is usually quantified in terms of the laplacian quadratic form:

S2(x) = xTLx. (5.4)

In general, graph-based image compression methods use a graph representation as defined above, and

perform a GFT to capture the main characteristics of the signal. The coefficients are then encoded in-

85



Part II, Chapter 5 – Rate-distortion optimized graph partitioning for omnidirectional image coding

stead of original values. The smoother the signal on a graph (smaller S2(x)), the more its energy is

concentrated in the low frequency GFT coefficients and the more it is easily compressible.

5.3 Problem formulation

In our case, the common computational limitation of the global graph representation is the maximum

acceptable number of vertices in the graph for GFT computation, which limits the resolution of the

visual signal that can be supported.

In order to cope with the feasibility of the graph-based transform of the signal in high resolution

omnidirectional images, the global graph G = {V, E , W} should be separated into several connected

components, e.g. M subgraphs {G1, ..., Gi, ..., GM } by pruning some unreliable edges. The i-th subgraph

is Gi = {Vi, Ei, Wi} where Vi are the vertices in the subgraph, with |Vi| = Ni < N , Ei are their edges,

and Wi is the weights matrix. xi is the signal defined on the i-th subgraph. The signals on each of the

subgraphs are then independently processed, and transformed separately using their respective local

Laplacian Li.

If the topology and weights of the global graph are fixed, in order to obtain a good compression

performance, the graph partition should be chosen such that it leads to smooth representations of the

signals inside different subgraphs. On the other hand, it should also be easy to encode, since it has to

be transmitted to the decoder for signal reconstruction. Our problem is therefore how to split the fixed

global graph into connected components, so that we achieve optimal RD performance and such that all

the connected components contain less than Nmax nodes..

We first pose the problem as a rate-distortion optimization problem defined as:

min
G̃={Gi}

D(G̃) + γRC(G̃) + βRB(G̃)

subject to Ni < Nmax, ∀i

(5.5)

G̃ = {Gi} is the global graph based on the geometry defined a priory using Equation (5.1) , where some

edges are removed. D(G̃) is the distortion between the original image and the reconstructed one, RC(G̃)

is the rate cost of the transform coefficients, and RB(G̃) is the rate cost of the boundaries for the graph

partitioning description. Each of these terms possibly depend on the chosen partition of the graph and

of the coding scheme envisioned. We detail each one of them in the next section.

5.4 R-D optimized graph partitioning

5.4.1 Distortion estimation

Since the GFT is orthonormal and independant in each subgraph, the distortion term in the above prob-

lem D(G̃) is equal to the sum of distortions on all subgraphs:

D(G̃) =

M�

i=1

D(Gi) =
M�

i=1

�xi − x̃i�2 =
M�

i=1

�x̂i − x̂i�2,
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where xi and x̃i are the original signal and decoded signal in the ith subgraph respectively. x̂i and x̂iq

are the original and quantized signal GFT coefficients in the ith subgraph.

If we consider a uniform scalar quantizer with small quantization step q for all N coefficients, D(G̃) can

be approximated by:

D(G̃) = q2 N

12
(5.6)

and is thus independent from G̃. Therefore, the optimization problem (5.5) is reduced to minimizing the

rate terms.

5.4.2 Rate approximation of transform coefficients

We can evaluate the rate of the GFT coefficients RC(Gi) in a subgraph i using the approximation in [47]:

RC(Gi) = S(xi) = xT
i Lixi =

�

l

λlx̂
2
i,l. (5.7)

The parameters λl and x̂i,l are the eigenvalues of the local Laplacian, and the corresponding GFT co-

efficients of the signal xi respectively. Hence, it is an eigenvalue-weighted sum of squared transform

coefficients which depends on the underlying local graph Li.

Such proxy assumes that the bitrate of the transform coefficients increases when the smoothness of a

signal on the graph decreases. While the bitrate needed to code the DC component is not captured

by this approximation, we assume that it is only dependent on the number of subgraphs, which can

be tuned using the Nmax constraint in our optimization problem. The higher the Nmax, the lower the

bitrate needed to code the DC coefficients.

5.4.3 Rate approximation of the subgraphs boundaries

In fact, in our problem we impose that the pixels of the same subgraph form a connected component.

Thus, a common way to code the subgraph membership is to code the boundaries. In order to ap-

proximate the coding rate of a boundary Bij between two adjacent subgraphs Gi and Gj , we use the

4-directional differential freeman chaincodes (DCC) [37] and estimate the coding rate of the boundary

as its entropy computed as follows:

CB(ij) = −#l

4�

k=1

pk log2 pk, (5.8)

where #l is the number of chaincodes of the boundary and pk, k = 1 : 4 are the probabilities of each of

the 4 directions.

5.4.4 Minimization of the total coding rate

Using (5.6) (5.7) and (5.8), the optimization problem in (5.5) becomes:
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min
G̃={Gi}

M�

i=1

xT
i Lixi + α

1

2

M�

i=1

�

j∈Ni

CB(ij),

s.t. N(Gi) < Nmax, ∀i
(5.9)

where Ni is the neighborhood of the subgraph Gi. The second term is divided by 2 since we only

have to code the boundary between any two neighboring regions once.

Finding this optimal partition is in general a combinatorial task, so we solve it using traditional agglom-

erative approximation. To initialize our optimization process, we use the Normalized Cut [91] which is

well known for favoring the highest smoothness inside partitions. For that, we build a new graph GNC

with the same connectivity as G however with weights taking into account both the geodesic distance

on the sphere and the euclidean distance in the Y space as:

w(i, j) = exp

�
−dgeo(i, j)2

2θ2
geo

�
exp

�
−dx(i, j)2

2θ2
x

�
. (5.10)

Note that this graph GNC is only used in the Normalized Cut algorithm, and do not serve as a support

for GFT thus will not be transmitted. To limit the computation time, the segmentation is performed with

recursive 2-way cut algorithm: at each iteration, only the first 2 eigenvectors are computed exploiting

the sparse nature of the laplacians. At the output of the initialization, we have an over-segmentation

with non-overlapping subgraphs R = {G1, ..., Gi, ..., GK}. To model their spatial locality, we construct a

subgraph neighborhood matrix E where E(i, j) = 1 indicates that the subgraphs Gi and Gj are adjacent

in the image. In fact, merging any two adjacent subgraphs Gi and Gj implies re-considering the connec-

tions between adjacent pixels on the boundary between them (from the global graph), hence removing

the boundary itself. At each iteration of the merging process, we find the two adjacent subgraphs G∗
i

and G∗
j , which if merged, bring the most significant decrease of the criterion in (5.9) while not exceeding

Nmax nodes in the merged region. In other words,

{G∗
i , G∗

j } = max
Gi,Gj∈R

∆RC(Gi, Gj) + λ∆RB(Gi, Gj),

s.t. E(i, j) = 1, N(Gi ∪ Gj) < Nmax

(5.11)

where

∆RC(Gi, Gj) = xT
i Lixi + xT

j Ljxj

−
�

xT
i

xT
j

��
Li + Dij Wij

Wji Lj + Dji

� �
xi xj

�

∆RB(Gi, Gj) = CB(ij).

∆RC(Gi, Gj) and ∆RB(Gi, Gj) essentially capture the difference in the rate needed to code the coeffi-

cients and the rate to code the boundaries between the two regions before and after merging, respec-

tively. If ∆RC(G∗
i , G∗

j ) + λ∆RG(G∗
j , G∗

j ) > 0, we merge G∗
i and G∗

j into one subgraph, and repeat the

process until the total rate cannot be further reduced.

88



5.4. R-D optimized graph partitioning

In the previous formulation and subgraph merging process, we assume that all subgraphs are having

the same contribution to the global rate of the whole scheme. However, in our omnidirectional image

application, we are interested in giving ideally more rate to the most useful part of the signal, allowing

more rate to the subgraphs occupying the biggest surface in the sphere, favoring the merging on smaller

surfaces in the spherical domain. Hence, we modify the initial RD gain of Equation (5.11) adding a

normalizing factor equal to the area occupied by the merged region on the sphere:

{G∗
i , G∗

j } = max
Gi,Gj∈R

∆RC(Gi, Gj) + λ∆RB(Gi, Gj)

Aij
, (5.12)

where Aij is the area on the sphere that the merged region occupies. Such normalization gives more

priority to merging in the poles than in the equator. The final algorithm of the partitioning is detailed in

Algorithm 2.

Algorithm 2: Rate-distortion optimized Graph partitioning for omnidirectional image coding

Data: NcutLabels, Maximum number of Nodes in a Subgraph: GNcut, Nmax

Result: Labels after merging Gfinal

Initialization: G = {Gi} = GNcut;
Construct the region neighborhood matrix E;
Compute ∆RC(Gi, Gj) + λ∆RB(Gi, Gj) for all i, j where E(i, j) = 1 and N(Gi ∪ Gj) < Nmax ;
Repeat

Find {G∗
i , G∗

j }, Eq. (5.12)

G = G \ {G∗
i , G∗

j } ∪ {G∗
i ∪ G∗

j };
Update E based on the newly merged region

Until max (∆RC(Gi, Gj) + λ∆RB(Gi, Gj)) < 0;
Gfinal = G;

5.4.5 Discussion and mathematical interpretation

In this section, we show how the normalized cut algorithm favors smoothness inside partitions, and

then we try to justify our intuition in Equation 5.12 by drawing the problem that we are actually solving.

Suppose we have an omnidirectional image represented on the sphere by a graph GNC with the same

connectivity as G but with weights taking into account both the geodesic distance on the sphere and the

euclidean distance in the Y space as in Equation (5.10).

Let’s start by reviewing the main notions of the normalized cut. If we fix the number of partitions to

k and we consider a partitioning P = {G1, G2, . . . , Gk}. We have k indicator functions zl, l ∈ [1, k] of N

entries with:

zk(i) =

�
1 if vi ∈ Vk

0 otherwise
(5.13)

The entry zk(i) indicates if a node i belongs to the partition k.

The normalized cut [91] is defined as:

Ncut(P) =
1

2

k�

l=1

�
w(Gl, Ḡl)

vol(Gl)

�
(5.14)
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With vol(Gl) being the sum of degrees of all nodes in Gl, and w(Gl, Ḡl) refers to the sum of all weights

joining Gl to any other partition in P . Furthermore, we can observe that the Normalized cut is naturally

linked to the sum of weights of edges lying within partitions:

2Ncut(P) =

k�

l=1

�
w(Gl, Ḡl)

vol(Gl)

�

= M −
k�

l=1

�
w(Gl, Gl)

vol(Gl)

�

= M −
k�

l=1

1

vol(Gl)


�

i�=j

(wij(zl(i) − (1 − zl(j)))2




= M −
k�

l=1

1

vol(Gl)

�

i�=j

�
exp

�
−dgeo(i, j)2

2θ2
geo

�
exp

�
−dx(i, j)2

2θ2
x

�
(zl(i) − (1 − zl(j)))2

�

= M −
k�

l=1

1

vol(Gl)

�

i�=j

�
wgeo

i,j exp

�
− (xi − xj)2

2θ2
x

�
(zl(i) − (1 − zl(j)))2

�

(5.15)

Where M is a constant with respect to {zl}. Thus, minimizing the normalized cut is equivalent to

maximizing the non constant term:

k�

l=1

1

vol(Gl)

�

i�=j

�
wgeo

i,j exp

�
− (xi − xj)2

2θ2
x

�
(zl(i) − (1 − zl(j)))2

�
, (5.16)

with respect to z, with z being orthogonal indicator functions defined as in 5.13.

On the other side, maximizing the smoothness inside partitions can be seen as a minimization of

the total variation or the laplacian quadratic form xTLx with L being the underlying graph used for a

transform. In our case, L is dependent on the geometry and wij = wgeo.

If we consider the same partitioning P as before, the total variation can be re-written as a function of

the indicator function zl as:

xTLx =
k�

l=1

xT
l Llxl

=
k�

l=1

�

i�=j

�
wgeo

i,j (xi − xj)2(zl(i) − (1 − zl(j)))2
�

(5.17)

Using the previous equations, we can consider that the normalized cut favors smoothness inside

partitions. We tend to group pixels together where the geodesic weight is high, and a small signal

variation is observed. The two differences with the direct minimization of the total variation reside in

the exponential term of the signal distance, and the normalization factors by the volume of partitions

that are crucial for getting a more balanced partitioning. Starting from here, the surface (or area Aij)

term in Equation 5.12 can be interpreted as the volume of a partition although in our case, we do not

consider the signal variation in computing the surface. The problem that we are actually solving by 5.12
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can be considered as a minimization of a normalized version of our rate approximation (normalized

total variation and boundary rate) and is henceforth equivalent to:

min
G̃={Gi}

M�

i=1

xT
i Lixi

Ai
+ α

1

2

M�

i=1

�

j∈Ni

CB(ij)

Ai
,

s.t. N(Gi) < Nmax, ∀i
(5.18)

5.5 Experimental validation

We now move to describe how we use the above graph partitioning algorithm in an omnidirectional

image compression scheme. As pointed out in the previous sections, once we solve our optimization

problem, we have two kind of information to transmit to the decoder side: the GFT coefficients of the

signals in all subgraphs and the description of the partitioning. The transform coefficients are quantized

using a uniform quantizer with a fixed step size q for all the bands, then coded with a simple entropy

coder.

In order to code the partition map, we use the arithmetic edge coder (AEC) proposed in [24]. The

contours are first represented by differential chaincode (DCC) [37] and divided into segments. Then, to

efficiently encode a sequence of symbols in a segment, AEC uses a linear regression model to estimate

probabilities, which will be subsequently used in the arithmetic coder.

5.5.1 Validation of our rate proxy

Although we do not explore the true rate needed to code boundaries using AEC in our graph parti-

tioning, we can show the accuracy of our proxy. During the optimization process, we compare the rate

needed to code a boundary using AEC to our rate proxy using the entropy. Results are shown in Figure

5.3 in which the x-axis corresponds to the rate needed using AEC, and the y-axis corresponds to the our

proposed rate proxy of RB . Although our rate proxy of the subgraphs’ boundaries has a very small

computation time with respect to AEC, the positive linear trend observed in the plot shows that it is a

good approximation.

5.5.2 Coding results

We test our method on four grayscale omnidirectional images, namely Metro, Pool, Farm and Hotel shown

in Figure 5.1. Each omnidirectional image is of size (512 × 1024).

We test two versions of our scheme that we call WithoutGeometry and WithGeometry. In the first version,

the geodesic distance is not taken into account which comes down to set θgeo = ∞ in the construction

of graphs G and GNC. Moreover, the merging is done as explained in Equation (5.11). On the other

hand, the second version corresponds to our detailed scheme of the previous section taking into account

the geometrical information in all stages: normalized cut, merging with equation (5.12) and transform

coding. To evaluate the compression performance, we compute the PSNR in three different domains: the

equirectangular domain between original and decoded omnidirectional images, in the spherical domain
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Figure 5.3: Accuracy of the our rate proxy. x-axis: rate needed to code a boundary using EAC. y-axis:
rate computed using our proxy

after performing a uniform sampling of the spherical surface[112], and in the cube-map domain.

Figure 5.4 shows an example of subgraphs obtained using WithGeometry scheme after fixing λ to 600 for

the Pool image, in the equirectangular and the spherical domains. It is clear that subgraphs are adhering

to the objects borders in both domains and larger subgraphs are formed around the poles.

Results in Figures 5.8 and 5.9 show that WithGeometry leads to a better rate-distortion performance in

all domains, compared to WithoutGeometry. There is two major explanations of this behavior. First,

the global graph in the first case is more adapted to the omnidirectional signal: more specifically, the

signal values in horizontally adjacent pixels around the poles are assumed to be more correlated than

those which are horizontally adjacent in the equator. This is the case of most of omnidirectional images

where poles usually consist of the floor or the sky. In practice, some images like Metro do not totally

follow this assumption which explains the comparable performance observed for the two schemes. A

second explanation is that in the WithGeometry case, the total rate is allocated more carefully taking into

account the area occupied on the sphere. Furthermore, the obtained results show that our proposed

schemes outperform classical DCT transform coding scheme in JPEG especially in the low bitrate range,

although they can be further improved by optimizing the coding step namely in the quantization and

arithmetic coding parts.

5.6 Conclusion

In this chapter, we have proposed a new graph-based framework for omnidirectional image compres-

sion. We introduced a new R-D optimized graph partitioning to cope with the feasibility of graph
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(a)

(b)

Figure 5.4: Graph partitions represented in the equi-angular domain (a) and in the spherical domain (b)
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(a)

(b)

Figure 5.5: Graph partitions represented in the equi-angular domain (a) and in the spherical domain (b)
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(a)

(b)

Figure 5.6: Graph partitions represented in the equi-angular domain (a) and in the spherical domain (b)
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(a)

(b)

Figure 5.7: Graph partitions represented in the equi-angular domain (a) and in the spherical domain (b)
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Figure 5.8: Rate-distortion comparison. 1st row: performance in the equirectangular domain. 2nd row :
performance in the Spherical domain. 3rd row : performance in the Cubemap domain
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Figure 5.9: Rate-distortion comparison. 1st row: performance in the equirectangular domain. 2nd row :
performance in the Spherical domain. 3rd row : performance in the Cubemap domain
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Fourier Transform on global graphs defined on high resolution images. The partition obtained provides

an effective tradeoff between the smoothness of signals inside subgraphs and the cost of coding the

partition description. Also, we showed that our methods outperform traditional DCT coding schemes

at low bitrates. As future work, we investigate the use of different forms of laplacians and focus on

the adpatation of the quantization and other coding tools, which may lead to further improvements to

the coding performance. Comparison with traditional coding of planar representations other than the

equirectangular one [13], as well as analysis of RD performance on higher resolution test material, will

also be performed.
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Chapter 6

Graph based transforms under statistical

uncertainties

6.1 Introduction

Suppose we want to provide a more compact representation of a signal x living on a nodes set V em-

bedded in a 2D (images) or 3D euclidean domain (point clouds or 3D scenes).

As already mentioned in the previous chapter, an intuitive way to define the graph Adjacency matrix

A is to use the neighborhood structure of the underlying domain. For example, one pixel is connected

to its four or eight nearest neighbors in an 2D image, or a 3D point is connected to its neighbors within a

specific distance in the 3D scene. Using A, an unweighted Laplacian or any alternative topology-based

matrix La can be further computed. The eigenvectors matrix Ψ = [ψ1ψ2...ψn] of the laplacian serves as

the unweighted Graph Fourier Transform (uGT) basis.

One other approach is to model the vertices similarities and thus characterize the signal by a weight

matrix W where each weight is either learned under some probabilistic assumptions or heuristically de-

fined as a function of distance measures (as done for example in Chapter 5 in the With Geometry case). A

lot of weights models are adopted in the literature such as inverse-distance, auto-regressive and squared

exponential. [15][115][69]. The weight matrix is then used to compute the precision matrix of the signal

as the weighted Laplacian or any alternative model based matrix Q = Lw [69][115]. The precision ma-

trix is mainly useful for characterizing a stationary Gaussian Markov Random Field (GMRF), in which

case the precision matrix will have only a finite number of non-zero elements. Besides, another way is to

suppose that the signal is a Gaussian Process and directly compute an approximated covariance matrix

Σ by assigning to each element Σ(i, j) between the nodes i and j a function of the distance such as the

Ornstein Uhlenbeck or the squared exponential functions, or an approximation learned from training

data block [15]. The eigenvectors matrix Φ = [φ1φ2...φn] of the assumed model precision or covariance

matrices form the transform basis of what we call: a Model-Based Graph Transform (mGT).

In practice, the signals that we are dealing with might not exactly follow the data models we assume.

After all, statistically speaking, we almost never have enough observations to compute an optimal data

model. For example, a high weight learned or assumed for the edge E{i, j} between neighboring nodes

i and j in an image, does not necessarily mean that the signal values on the two nodes are highly

correlated. An edge appearing at object boundaries leads to two different pixel values on two adjacent

vertices. Typically, uncertainty appears when the weights of the true signal model, i.e the covariance of

the signal in hand, differ from the assumed or learned ones.

In this chapter, we aim at understanding the effect of this uncertainty on the compression efficiency
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of both the transforms evoked previously: uGT and mGT. Specifically, we want how much uncertainty

can the model-based transform handle while being more efficient than the topology-based transform?

6.2 When does the model based transform outperform the topology

based transform?

The true distribution of the signal X residing on the nodes of the graph G can be thought as a multi-

variate normal distribution or Gaussian Markov Random Field N (µ, Σ̂) with mean µ and covariance

Σ̂.

Intuitively, in order to achieve the best decorrelation of the signal, the assumed graph model W

should well approximate the true model Ŵ of the graph signals, since undoubtedly, the true graph

which stands for the true precision matrix has edges and weights that are consistent with inter-node

correlations. Defining W = Ŵ leads to signal smoothness with respect to the graph and to the highest

energy compaction in the low frequencies. However, with real data, this is generally not the case, and

we mostly deal with uncertain models specifying signal distributions as NM(µM , Σ = (Lw + δI)−1) 1.

with Σ̂ = Σ + ξ. Suppose that we are dealing with distributions with the same mean µM = µ.

Moreover, a reliable topology A has only relevant information related to the edge positions. It tells

whether the signal value on node i is conditionally dependent or not of the signal on node j given all the

other values, without giving any additional information on the strength of this dependency. The graph

topology specifies a signal distribution NL(µL, ΣL = (La + δI)−1).

To examine when relying on the topology outperforms the model based transforms in terms of en-

ergy compaction and decorrelation efficiency, we will use the Kullback-Leibler (KL) divergence as a metric

to measure how close the two transforms are to the best energy compaction. The use of such metric is

justified by two facts: First, it has always been used in graph learning [30] [28]. The minimization of

the KL divergence is equivalent to maximizing the log-likelihood and thus leads to compact representa-

tions which is a desirable property of signal transforms. Second, it theoretically measures the expected

number of extra bits required to code samples from a true distribution P using a code optimized for Q

rather than the code optimized for P.

We start by finding the expressions of the two KL divergences that we are interested in. The expres-

sions in Equations 6.1 and 6.2 denote the KL divergences between the true model distribution N and

either the assumed model NM or the model specified by the graph topology NL, respectively.

1δ is a small positive value to preserve positive definitiveness. The eigenvectors of La and La + δI are the same, only the
eigenvalues σi of the latter are equal to a shifted version of the eigenvalues values of the former λi + δ
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DKL(N ||NM) =
1

2

�
Tr(Σ−1

Σ̂) + (µM − µ)Σ−1(µM − µ)

− N + log
� |Σ|

|Σ̂|

��

=
1

2
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Σ̂) − Tr(Σ̂
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Σ̂) − log
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��
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2
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Tr
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− log
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��

(6.1)

DKL(N ||NL) =
1

2

�
Tr(Σ−1

L Σ̂) + (µL − µ)ΣL
−1(µL − µ)

− N + log
� |ΣL|
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��
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− log
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|(La + δI)Σ̂|
��

(6.2)

Where Tr stands for the trace operator, N is the number of nodes of the graph G and |A| is the

determinant of a matrix A.

Theoretically, a better transform performance in terms of energy compaction and a lower extra cost

is expected using the code optimized for the distribution with the smallest KL divergence with respect

to the true model distribution. So a sufficient condition for the Model-based Transform(mGT) to outper-

form the Graph-based Transform(uGT) is that DKL(N ||NM) ≤ DKL(N ||NL). Applying this condition

to Equations 6.1 and 6.2,and replacing Σ̂ by Σ + ξ we get the following.

DKL(N ||NM) ≤ DKL(N ||NL)

1

2

�
Tr

�
(Lw + δI − Q̂)Σ̂

�
− log

�
|(Lw + δI)Σ̂|

��
≤

1

2

�
Tr

�
(La + δI − Q̂)Σ̂

�
− log

�
|(La + δI)Σ̂|

��

Tr
�

(Lw − La)(Σ + ξ)
�

≤ − log det
�La + δI

Lw + δI

�

Tr
�

(Lw − La)ξ
�

≤ Tr((La + δI)Σ − I) − log det
�La + δI

Lw + δI

�

(6.3)

The left term of inequation 6.3 can be equivalently written as a multiplication of the vectorized forms
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2 of the two matrices (Lw − La)T and ξ , where T denotes the transpose operator. Using the symmetry

property of (Lw − La) and since ξ is a centered noise, we get the following.

vec(Lw − La)vec(ξ) ≤ Tr
�

(La + δI)Σ − I
�

− log det
�La + δI

Lw + δI

�

N2E
�

(Lw − La)ξ
�

≤ Tr
�

(La + δI)Σ − I
�

− log det
�La + δI

Lw + δI

�

N2
�

Cov(Lw − La, ξ) + E(ξ)E(Lw − La)
�

≤

Tr
�

(La + δI)Σ − I
�

− log det
�La + δI

Lw + δI

�

N2Cov(Lw − La, ξ) ≤ Tr
�

(La + δI)Σ − I
�

− log det
�La + δI

Lw + δI

�

(6.4)

Where E denotes the expectation and N is the total number of nodes in the graph. Since the covari-

ance of two random variables is equal to their correlation multiplied by the product of their standard

deviations, we can get a sufficient condition on the uncertainty ξ as

σξcorr(ξ, Lw − La) ≤
Tr

�
(La + δI)Σ − I

�
− log det

�
La+δI
Lw+δI

�

N2σLw−La

σξcorr(ξ, Lw − La) ≤ 2DKL(NM||NL)

N2σLw−La

f(ξ) ≤ B

(6.5)

The second line of the inequality can be found by noticing that Tr(I) = N and that the resulting term

of the nominator is hence equal to double of the DKL(NM||NL).

6.3 Discussion

The decision to "whether use a model-based or a topology-based transform" is now well defined in

Eq. 6.5 as a function of the model uncertainty. The bound B shows that the ability of Model Based

Transforms to handle uncertainty is dependent on both the graph where the signal resides(in the term

La), and the assumed model itself (in the terms Lw and Σ). Interestingly, the theoretical limit is very

dependent on the KL divergence between the two distributions defined by the topology and the model

(in the term DKL(NM||NL)). Since the KL divergence is a positive term, then the resulting theoretical

limit B is always positive.

The correlation existing between the noise matrix (ξ) and the mismatch between the model and the

topology (Lw − La) is also a factor that plays a very important role. If the correlation is negative, then

we are in a case where the model based transform is always outperforming a topology based transform

no matter how high the level of uncertainty is. On the other hand, if the noise and the mismatch are

2We mean by vectorized form stacking the columns of the matrix in a vector.
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positively correlated, then as much as the correlation increases, we tend to have a lower bound making

the model-based transform less resistant to uncertainties.

6.4 Experimental validation

6.4.1 Experimental setup

In our experiments, we follow the steps depicted in Figure 6.1.

Figure 6.1: Followed scheme in order to study the impact of the model uncertainty on both uGT and
mGT.

The signal x is an n × m matrix made of n columns of m values corresponding to the m observations

of the n different variables x1, x2, ...xn assigned to the nodes of the graph G. Two transforms are applied

leading to two different transformed signals: on one hand, the signal x is projected into the eigenspace

of the unweighted normalized graph Laplacian as in equation 6.6. This makes up the uGT transform. On

the other hand, the Model based transform (mGT) consists of projecting the signal into the eigenspace

of the assumed model precision matrix or covariance matrix as in equation 6.7.

x̂L = Ψ
TxT (6.6)

x̂Q = Φ
TxT (6.7)

Note that the signal of interest x has a true covariance matrix Σ̂ which, more likely will be different

from the previously mentioned model covariance matrix and also does not necessarily fall in the space

spanned by the eigenvectors of the unweighted normalized Laplacian of the underlying graph. We will

model this difference as a gaussian centered noise added to the model covariance Σ (Equation 6.8). This

choice can be justified by the fact that if we are wrong about high weights at z1 positions {p1, p2 . . . pz1},

most probably we would also be wrong about low weights at another z2 positions {q1, q2 . . . qz2}. The

extra value given to the edges in the first set would be required to rectify low weights assigned to edges

in the second set.

Σ̂ = Σ + ξ (6.8)
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6.4.2 Synthetic topologies and models

We perform different tests on synthetic data with various weights distributions while also changing the

degrees of our graphs. More precisely, the construction of the graph G is done in two steps. We first

determine the graph structure (i.e connectivity). We generate regular graphs with different degrees d,

where each node is exactly connected to d other nodes. In the second step, edge weights related to the

assumed models are randomly selected based on three different distributions:

1. Gaussian distribution with a mean µw and variance σ2
w

2. Uniform distribution drawn between two values wa and wb

3. Bimodal distribution centered on two different values µa and µb

The selection of those options can be intuitively explained. For example, the use of a regular graph and

bimodal weight distribution does intuitively model the case when depth values lying on a 2D grid are

compressed assuming some bimodal weights. Each edge is assigned a small or high weight depending

whether there is an border detected in the depth map or not to model the degree of dependency between

the connected pixels.

Uniform and Gaussian weights appear when the model is highly heterogeneous or approximately

homogeneous respectively. To illustrate the case, consider an inverse distance model where each weight

Wij is assigned a value of 1
dij

where dij is the euclidean distance between two nodes i and j. If in the

considered connected node set, the number of {i, j} pairs is the same for all d in the distance range, then

we have a uniform weight distribution. On the contrary, if the distance is more or less constant between

connected nodes then the weights follow a Gaussian distribution.

Once the graph has been created and model weights have been assigned, the signals to be entering

the transform blocks of mGT and uGT are computed as random observations of a Gaussian Markov

Random Field defined by its precision matrix Q̂ with modified weights Ŵ that are generated following

the method described below.

Uncertainty generation

A fair method to generate the uncertainty of the signal covariance is to modify the precision matrix ele-

ments corresponding to edges positions in the graph before inversion hence restricting the uncertainty

to the normalized weights W assigned to graph edges instead of adding or removing edges. The uncer-

tain covariance matrix can be directly computed as the inverse of the noisy precision matrix Q̂ = I − Ŵ.

More precisely, we propose to modify the distribution of the non-zeros elements of the model normal-

ized weights matrix W by adding a controlled zero-mean Gaussian noise �. We first create n random

unit vectors {u1u2 . . . un} of dimension d = 25 and create the d × n matrix where each column corre-

sponds to one unit vector. The noise is then generated as in Equation 6.9.

Ŵ = W + �;

� = β(UTU · A)
(6.9)
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Where β is a value that serves to tune the noise variance, A is the graph Adjacency matrix and (·)

denotes the dot product between two matrices. The resulting noise is restricted to the non-zero elements

of the Laplacian matrix. The unreliable weights are then shifted and rescaled to preserve the same mean

and variance as original normalized weights as in Equation 6.10.

Ŵij =
σ2

W

σ2
W + σ2

�

(Wij + �ij − µW) + µW (6.10)

σ2
W and σ2

�
denote the variances of the normalized weights and of the added noise � respectively. µW is

the mean of the normalized weights. By changing β, we can generate uncertain models with different

covariance matrices each corresponding to a certain level of uncertainty on the weights, or equivalently

to a certain level of unreliability on the covariance matrix elements.

Transform efficiency metrics

To quantify the efficiency of the transforms and practically study the impact of uncertainty, we will

use two measures namely the decorrelation efficiency and the transform coding gain which are directly

related to the energy compaction property. The decorrelation efficiency ηc compares the sum of absolute

off-diagonal terms in the correlation matrix of the signal before (zx) and after the transform (zx̂) as in

Equation 6.11. A higher value of ηc denotes a higher decorrelation efficiency.

ηc = 1 − zx̂

zx
(6.11)

The transform coding gain TC is defined from the variances of the transformed signal coefficients as

TC = 10 log10

�
1
N

�N
i=1 σ2

i��N
i=1 σ2

i

� 1

N

�
(6.12)

where N denotes the number of signal coefficients and σi refers to the variance of the ith transformed

coefficient. The transform with the higher coding gain packs more energy into a fewer number of coef-

ficients.

KL divergence: a reasonable metric

In order to see how the KL divergence relates to the coding efficiency, we first perform different tests

and plot the KL divergence as well as the decorrelation efficiency and transform coding gain as a function

of the SNR of the covariance matrix elements. For a clear illustration, we only show an example with a

regular graph consisting of N = 100 nodes with deg = 8. Weights are drawn from a bimodal distribution

centered on 0.2 and 0.7. Results of Figure 6.2 show that the KL divergence is a good metric for denoting

the energy compaction and decorrelation properties of a transform; the crossing point of the mGT and

uGT curves is roughly the same (f(ξ) around 0.9 × 10−4) in the three plots 6.2a, 6.2b and 6.2c. It also

appears that the uGT efficiency is constant with different amount of uncertainty as long as the mean

and the variance of the true signal model does not vary. This can be mostly justified by the fact that the

uncertain weights have the same statistical moments as those associated with the true data model. On
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Part II, Chapter 6 – Graph based transforms under statistical uncertainties

the other hand, the transform coding gain of the Model-based transform is getting lower when the f(ξ)

increases.
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Figure 6.2: Impact of the uncertainty when the graph consists of 100 nodes, is regular with d = 8, and
the weights follow a bimodal distribution centered around 0.2 and 0.7. The Limit shown in the plot is
computed as in Eq. 6.5

Impact of the graph degree and the data statistical model on the uncertainty theoretical bound

For a comprehensive evaluation of our theoretical bound B found in section 6.2 and in order to provide

a fair study of the impact of the graph structure (degree) and data model on this bound, we will consider

three different scenarios.

For the first scenario, we fix the graph degree and the two first statistical moments of the precision

model weights. We then generate them from the three different distributions. For the second scenario,

we fix the graph degree, the statistical distribution and mean of the weights while only varying the

weight variance. For the last scenario, we fix the model i.e. the weights statistical distribution, mean

and variance and vary the graph degree. Results are shown in Figure 6.3, 6.4 and 6.5 respectively for the

three scenarios.

For the sake of clarity, in the following analysis, we are mainly interested in the crossing point (the

bound) and the gap between the two curves of a same color (representing both transform uGT and mGT)

in the plots. However, comparing the curves with different colors does not make sense since we are not

dealing with same references.

As shown in Figure 6.3, the unweighted graph transform is performing more closely to mGT in the

case when the true precision model weights follow a Gaussian distribution. The uniform distribution

is the case when it has the lowest performance compared to the mGT. The bimodal distribution lies

between the two. Furthermore, the crossing point between the two transform efficiencies corresponds

exactly to our previous analysis and theoretical bound. Our theoretical limit B provides a sufficient

condition for the Model-Based transform to outperform the unweighted Graph Transform.

The results of the second scenario in Figure 6.4 provide a clear evidence that the ability of the un-

weighted graph transform to compete with the mGT in terms of transform coding efficiency is highly

dependent on the variance of the precision model weights. A higher variance results in a larger gap

between the uGT and mGT decorrelation efficiency and transform coding gain (Figure 6.4b , 6.4c). This
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Figure 6.3: Impact of the uncertainty when the graph consists of 100 nodes, is regular with deg = 8, and
the weights follow uniform(red), bimodal(green) or gaussian(blue) distributions with a fixed variance
0.0671 and mean 0.45
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Figure 6.4: Impact of the uncertainty when the graph consists of 100 nodes, is regular with deg = 8, and
the weights follow a uniform distribution with dist = {0.3, 0.7, 0.89} that correspond to green, blue and
red respectively.
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Figure 6.5: Impact of the uncertainty when the graph consists of 100 nodes, is regular with deg =
{8, 12, 20}(green, blue and red respectively), and the weights follow a uniform distribution centered
on 0.45 with dist = 0.89
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is also apparent in the large gaps in the crossing points of the three colored pairs of curves. It must be

noted that the theoretical limit in this case is also well aligned with the observations and moves to the

right when the variance of the model weights is getting smaller meaning that the Model based transform

is more vulnerable against uncertainty when the model is getting more homogeneous.

Moreover, in Figure 6.5, the graph structure, more precisely the degree of a regular graph plays a

crucial role in determining the amount of vulnerability of the mGT against the model uncertainty. This

can be shown by the theoretical bound varying between 24 and 27 dB when the graph degree is 8, 12 or

20 with fixed model weights. the higher the degree of a graph, the higher the sensitivity of the mGT to

uncertainty.

6.5 Conclusion

In this chapter, we showed that under some statistical uncertainties, relying on the unweighted graph

laplacian to transform the signal could outperform the model-based transforms in terms of compression

efficiency. Experimental results show that by using the theoretical bound B, which does only require

a graph laplacian matrix and a signal model, one can decide whether to apply the unweighted graph

transform or the model-based transform to the graph signal to get a better compression efficiency. We

showed that the sparsity of the graph, the variance of the model weights and the model weights distri-

butions can have an impact on the model-based transform vulnerability against uncertainty.
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Conclusion and perspectives

General conclusion

The ever-growing development of new camera types (whether Light Field or Omnidirectional cameras)

that aim at capturing extra geometrical information, has led to a tremendous amount of redundant data

to be stored and delivered. This expects constant innovation in the compression domain. An important

step in the development of efficient coding schemes is to delineate effective transforms that are capable

of successfully decorrelating the signals and thus result in signals much easier to code.

In this thesis, we were interested in defining optimal transforms for the new imaging modalities men-

tioned above. Albeit exclusive to such data, the dense color information resides on irregular domains.

This irregularity arises from the underlying complex geometry of the scene in the case of light fields,

and the non-uniformity of the sampling pattern in omni-directional captures. We rely on graph based

representations, where we build graphs linking different pixels to represent their dependencies. Using

those graphs, we design efficient graph based transforms for the compression of two emerging imaging

modalities: light fields and omni-directional images. The efficiency is measured founded on the energy

compaction property of the transform, its complexity and the resulting rate distortion performance.

In Chapter 3, we have targeted the problem of local graph transform design for light field energy

compaction and compact representation. We have proposed two solutions. The first solution consists

of using geometry-blind graph supports which are fixed for all light field sub-aperture images coupled

with a powerful prediction mechanism based on Convolutional Neural Networks (CNN). In the second

solution, the transform supports are based on super-rays (geometry-aware) built in a way that their

shape remains coherent across the different views. We have first considered non separable graph trans-

forms. Despite the limited size of the transform support, the Laplacian matrix of such graph remains

of high dimension and its diagonalization to compute the transform eigenvectors is computationally

expensive. To solve this problem, we then considered a separable spatio-angular transform. We have

shown that, when the shape of corresponding super-pixels in the different views abide small changes,

the basis functions of the spatial transforms are not coherent, consequent in a decreased correlation be-

tween spatial transform coefficients. We hence proposed a novel transform optimization method that

aims at preserving angular correlation even when the shapes of corresponding super-pixels (i.e. form-

ing one super-ray) are not isometric. This procedure has been shown to increase energy compaction of

the separable spatio-angular graph transforms and bring substantial rate-distortion performance gains

compared to a non optimized case. The proposed optimized spatio-angular graph transforms can be

applied on both color or residual signals and can be easily parallelized to reduce the complexity on the

decoder side.

While in the previous chapter, the limited support of local transforms may not allow us to exploit

long term spatial dependencies, in Chapter 4, we cope with this limitation. We propose a novel approach

to leverage the good spatial decorrelation properties of traditional codecs (e.g. HEVC intra), making use
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of efficient predictors, into local spatio-angular graph transforms. A reference view coded with any

efficient codec is used to predict low angular frequency transform coefficients that, together with the

transmitted high angular transform coefficients, allow recovering the entire graph-based representation.

The scheme has been assessed for high quality (quasi-lossless) coding.

We then tackle the compression of the second modality, namely the omni-directional images in chapter

5. We have proposed a new graph-based framework for omnidirectional image compression. We intro-

duced a new R-D optimized graph partitioning to cope with the feasibility of graph Fourier Transform

on global graphs defined on high resolution images. The partition obtained provides an effective trade-

off between the smoothness of signals inside subgraphs and the cost of coding the partition description.

Also, we showed that our methods outperform traditional DCT coding schemes at low bitrates.

In the previously evoked methods, we are mainly relying on the topologies of the underlying graphs

to define the transforms. In the following chapter (chapter 6), we tend to give more flexibility to the

weights on the edges of the graph, prior to transform design. Specifically, We develop a theoretical

study to give a deeper understanding of the impact of the model uncertainty on the graph transforms.

Perspectives and future work

Several approaches could be considered to extend the work presented in this thesis.

In chapter 3, we have designed two solutions for lossy compression that work well for light fields

with comparatively small baselines. Concerning the first solution based on the super-pixel over-segmen-

tation and CNN based prediction, an efficient bit allocation can be pictured with a careful choice of the

QP of the four references and the Q parameter. If we restrict our attention to the second solution, with the

geometry aware supports, instead of adding a prediction step, we can incorporate a merging process as

in [98]. This method allows us to exploit long term dependencies by merging similar neighboring super-

rays with a rate distortion optimization and hence reducing the overall coding cost. An alternative way

to exploit the long term dependencies is to perform a third graph transform on the low spatio-angular

frequency coefficients with adapted weights depending on the super-rays similarity. In what concerns

the spatio-angular transform itself, the complexity can be further reduced using fast graph Fourier trans-

forms [60]. Moreover, future work can tackle the coding step itself by adjusting the quantization step

sizes and tailoring the arithmetic coding to the statistical properties of the coefficients.

The same merging process can also be applied in the schemes proposed in chapter 4. This appends

an extra prediction mechanism that reduces correlations between neighboring super-rays. Furthermore,

in the case of lossy compression and a coarser quantization, noise and drift amplification is a subject

of a future study. The conditioning problem that we faced could maybe be resolved with an efficient

optimization procedure that is sufficiently regularized to retrieve the exact reconstruction of the light

fields.

As a common future direction for both chapters, the methods need to be tuned for light fields with

wider baselines, adapting the number of references and/or samples. Also, one could think of extending

all coding schemes to dynamic light fields. Coupled with an efficient scene flow estimation, the pro-

posed graph-based transforms can similarly be considered to best de-correlate the signal along super-

rays and motion trajectories. In order to account for the temporal dimension, we can think of using the
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notion of time-varying graphs [10], where the edges change over time.

In chapter 5, we have developed a rate-distortion optimized graph partitioning to define optimal

sub-graphs. We have chosen the parameter λ in an intuitive manner. There is still no exact way of

defining it in an optimal manner. Thus, it might be interesting to see how we can cautiously define this

parameter for a better Rate-distortion optimization. Also, the coding of the segmentation map (i.e. the

contours of sub-graphs) can be ameliorated with new efficient coders [118] that can be customized for

the spherical geometry of the scene. Conforming the quantization step sizes of the sub-graphs frequency

coefficients to the geometry of the sphere is also an interesting future direction. An extension to the RGB

color and to omni-directional videos space can be envisioned.

Giving more degree of freedom to the weights, in chapter 6, we can broaden our study to different

data models and apply our theoretical bound on real data such as 2D images or 3D point clouds. How-

ever, the main difficulty resides in the estimation for each 2D or 3D partition of a correlation term that is

dependent on both the model uncertainty and the mismatch between model and topology. Statistically

speaking, we want to find a plausible estimate of the true signal model of the signals inside blocks. Spe-

cific classes of images where the true model is approximately known will therefore be considered in our

future work.
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Abstract—Light Fields capturing all light rays at every point
in space and in all directions contain very rich information about
the scene. This rich description of the scene enables advanced
image creation capabilities, such as re-focusing or extended
depth of field from a single capture. But, it yields a very high
volume of data which needs compression. This paper studies the
impact of Light Fields compression on two key functionalities:
refocusing and extended focus. The sub-aperture images forming
the Light Field are compressed as a video sequence with HEVC.
A focus stack and the scene depth map are computed from the
compressed light field and are used to render an image with an
extended depth of field (called the extended focus image). It has
been first observed that the Light Field could be compressed with
a factor up to 700 without significantly affecting the visual quality
of both refocused and extended focus images. To further analyze
the compression effect, a dedicated quality evaluation method
based on contrast and gradient measurements is considered to
differentiate the natural geometrical blur from the blur resulting
from compression. As a second part of the experiments, it is
shown that the texture distortion of the in-focus regions in the
focus stacks is the main cause of the quality degradation in
the extended focus and that the depth errors do not impact
the extended focus quality unless the light field is significantly
distorted with a compression ratio of around 2000:1.

I. INTRODUCTION

During the last two decades, there has been a growing inter-

est in Light Fields. Many acquisition and sampling techniques

were envisioned in order to capture the light information

present in a scene using arrays of cameras, plenoptic cameras

or moving cameras [1], [2], [3], [4]. Essentially, a captured

light field comprises geometrical information of the scene

along with texture information. The light field representation

enables various applications such as digital refocusing, depth

estimation, changing perspective and viewpoints, simulating

captures with different depth of fields and 3D reconstructions.

This comes at the expense of collecting large volumes of

high-dimensional data, which appears to be the key downside

of light fields. For example, a modest four dimensional light

field, captured by a plenoptic camera comprising a 256x256

array of microlenses with 32x32 photosensors behind each

microlens, yields a storage footprint of around 200 Mbytes,

which is significantly large for a photograph. Therefore, to

realize practical applications of light fields, it is essential

to efficiently compress this data without compromising the

ultimate quality and more importantly, without leaving an

undesirable effect on the targeted post-capture processing.

Some research effort has been dedicated in the past years

to the design of light fields compression schemes based on

vector quantization [5], transform coding [6] [7], statistical

representations [8], multiview video compression and disparity

compensation techniques [9], or adaptations of HEVC [10],

[11], [12]. However, very little attention has been given to the

impact of compression on the image creation functionalities.

In this paper, we aim at analyzing the impact of com-

pression on two post-capture image rendering functionalities:

refocusing and extended focus. The extended focus image is

characterized by the fact that all its pixels are in-focus whereas

the focus stack images have in-focus and out-of-focus pixels

in different regions of the scene.

Toward this goal, we first compress the light field using

HEVC, considering the set of sub-aperture images as a video

sequence. The focus stack images are then computed by shift-

ing and adding the compressed sub-aperture images. After-

wards, the scene depth map is estimated from the compressed

sub-aperture images and the computed focus stack using the

method described in [13]. The observed quality of the focus

stack and the extended focus images show that one can vary

the QP parameter up to 32, and decrease the light field data

volume from 50 Mbytes down to 75 kbytes without visually

impacting the quality of the rendered images.

Looking at a refocused image after compression, the blur

due to compression is unnoticed in out-of focus regions where

the quantization blur is mixed to natural geometry blur. As for

the extended focus, the compression blur is visible in the entire

image. Comparing with the refocused and extended focus

images computed from the original light field, it appears that

the refocused images are visually more robust to compression

than the extended focus image. Traditional metrics such as

PSNR fail to accurately reflect this unbalanced robustness.

For this reason, a dedicated metric naturally differentiating

the geometrical blur present in out-of-focus regions from the

blur introduced by compression is then considered based on

contrast and gradient measurements. Furthermore, it is shown

that the depth map used for creating the extended focus image

does not impact the extended focus even for a compression

factor of 2000, and that the extended focus image quality

degradation essentially results from the texture distortion of

the in-focus pixels of the focus stack images.
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Fig. 1: Processing chain considered in this work with four main stages: 1) Compression, 2) Focus stack generation, 3) Depth estimation and
4) Extending the depth of field.

II. LIGHT FIELDS PROCESSING CHAIN

The light field processing chain considered in this work is

depicted in the scheme of Fig. 1. It proceeds in four phases:

compression, generating the focus stack, depth estimation and

finally extending the depth of field. We explain each of these

steps separately in the following.

The light field sub-aperture images are first assembled,

following a spiral scan line (see Fig. 2), as a video sequence

which is coded with HEVC. The spiral scan line is justified

by the fact that the luminosity of the sub-aperture images

varies progressively going from the center outwards due to

the spherical shape of the camera main lens. The method is

compared to previous multiview and disparity compensation

techniques [9] in Fig. 3 for the Buddha light field1. Given the

significant improvement in the rate-distortion efficiency, this

method is used in our analysis in the following sections.

Once the light field has been compressed, 32 photographs

focused at different depths, forming the so-called focus stack,

are computed by shifting and adding the sub-aperture images

[1] [2] as in Eq. (1)

Eαi
(x, y) =

1

(αiF )2

X

u

X

v

L(u,v)(Xs + x, Ys + y) (1)

Xs = u(1−
1

α i
);Ys = v(1−

1

α i
),

where Eαi
(x, y) denotes the pixel value at position (x, y)

in the ith refocused image Eαi
at depth αi. The value F

represents the distance between the lens and the reference

film planes. Focusing at different depths αi corresponds to

changing the separation between the lens and the film plane,

hence the multiplication αiF .

In the experiments reported in the paper, the parameter

αi takes 32 different values in the interval [0.6, 1.8]. This

parameter actually controls the position of the focus plane.

1buddha4.tar.gz at http://graphics.stanford.edu/software/lightpack/lifs.html

L(u,v) is the sub-aperture image from the (u, v) position on

the main lens aperture. Xs and Ys are the shift amounts.

The image creation process is equivalent to shearing the 4D

light field varying the slope of epipolar lines. At that stage, a

natural geometrical blur appears in out-of-focus regions.

Fig. 2: Light field coding using HEVC: The sub-aperture
images are coded in a video sequence following a spiral
scan line.

Afterwards, the scene depth map is also estimated from

compressed sub-aperture images and the computed focus stack

using the method detailed in [13] which combines both defo-

cus and correspondence cues. For each pixel, we seek the op-

timal contrast within a patch along refocused images thus the

highest defocus response, and the minimum correspondence

response minimizing the angular variance along the sheared

light fields. The output of this phase is a depth map with each

pixel value pointing out to one image of the focus stack. Once

the depth map and the focus stack have been computed, the

depth of field can be extended, focusing on all the scene at

once leading to an image with no geometrical blur. The all in-

focus image E(x, y) is constructed from the depth map and the

focus stack images as follows. For each pixel at position (x, y)
and its corresponding depth αi, the extended focus image

E(x, y) is formed by taking the pixel at position (x, y) in
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Fig. 3: Comparison of the coding efficiency of HEVC-Spiral
(using QP =24, 28, 32, 36, 40, 44, 48) with the methods
in [9] based on disparity compensated multiview coding
techniques.

the focus stack image Eαi
(x, y) (E(x, y) = Eαi

(x, y)).

III. SUBJECTIVE RESULTS AND ANALYSIS

As depicted in Fig. 1, the four stages involve two types of

blur: a geometrical blur caused by the refocusing procedure

which is, by nature, good for image quality, and a quantization

blur which decreases the perceived quality due to texture

compression. Besides, some errors may occur in the depth

estimation process, where a wrong depth is assigned to some

of the pixels.

The added amount of blur can be observed in Fig. 4 where

results of the Refocusing and Extended Focusing algorithms

before and after compression of a natural Light Field are

shown. The two types of blur are apparent in the refocused

image. On the one hand, the red patch refers to an out-of-

focus region in the background where the geometrical blur

is mixed with compression blur after compression. In these

regions, the compression blur is not visually perceptible. On

the other hand, the orange ones refer to an in-focus region in

the foreground only affected by the compression blur that thus

becomes visible at high compression ratios. When combining

the in-focus regions of all the refocused images in an extended

focus image, only the blur due to compression remains such as

in the white patches. Experimentally, we observed that we can

achieve high compression ratios, attaining a range of 500:1

to 700:1 without altering the visual quality of the extended

focus image. Afterwards, for very high compression ratios, the

quality drops significantly leading to a fully blurred image.

We remark that the perceived quality of the refocused

images is naturally higher compared to the extended focus.

This is due to the fact that some parts of the refocused

images are naturally blurred, and the probability of adding

blur to in-focus regions is relatively small compared to the

extended focus. Moreover, the extended focus is built from

the focus stack, therefore the compression blur propagates

from in-focus regions of the focus stack to the extended focus.

However, this subjective quality trend does not exactly align

Original
Compression:

50 MB -> 14 KB
Compression:

50 MB -> 75 KB

Refocused 

image: 

Foreground

Refocused 

image: 

Background

Extended 

Focus

Fig. 4: Evolution of the quality of the refocused and ex-
tended focus images’ while varying the compression ratio.
The red patches refer to out-of focus regions of a refocused
image, the orange ones to the in-focus regions without and
with light field compression and the white ones to a region in
the extended focus without and with light field compression.

with primary PSNR measurements depicted in Fig. 5. More

precisely, we plot the PSNR of the rendered images as a

function of the PSNR of the compressed Light field and its

size after compression while varying the QP from 24 to 44.

A decrease of 1 dB of the light field’s PSNR leads to a

decrease of 2 dB in terms of PSNR for both functionalities.

In other words, the PSNR does not reflect the fact that the

extended focus is more affected by compression than the focus

stack2. This is mainly due to the fact that the PSNR does not

differentiate the geometry blur from the compression blur.
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Fig. 5: The evolution of the refocused and extended focus
images’ quality as a function of the compressed Light Field
quality.

For this reason, we propose in section IV, a dedicated metric

based on gradient and contrast measurements that evaluates the

amount of compression blur added to in-focus regions. With

2There, we are interested by the PSNR evolution rather than the PSNR
value since the reference from which the MSE is computed is not the same.
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this metric, we study the impact of compression on the amount

of blur in the focus stack and the extended focus images.

Afterwards, we examine the major cause of the extended

focus quality degradation: errors in depth estimation or texture

compression.

IV. PROPOSED METRIC

As explained in the previous section, the proposed metric

aims at measuring the amount of compression blur added in

the regions that are supposed to be in-focus in the focus stack

and extended focus images. Let ni and n0i denote the numbers

of in-focus pixels in a refocused image Eαi
(at depth αi),

before and after compression of the light field respectively. The

percentage of pixels that become blurred after compression is

expressed by:

 =
ni − n0i
N

× 100 (2)

where N denotes the total number of pixels in the evaluated

image. n0

i is estimated from the difference in the gradient

response of in-focus pixels before and after compression. The

gradient responses are evaluated using the following gradient

operator:

G(x, y) =
1

|WD|

X

(x0,y0)2WD

∆Eαi
(x0, y0) (3)

where Eαi
is the evaluated refocused image in the focus stack.

Considering only pixels at positions (x, y) which were in-

focus before compression, G(x, y) is the gradient response

averaged within a patch to improve robustness. WD represents

the window around the current pixel (x, y) with its size |WD|
and ∆ stands for the spatial gradient operator.

The gradient’s variation is compared to a predefined thresh-

old value T , to determine whether the pixel is still in-focus or

not after compression.

The calculated ratio  is averaged over the entire focus

stack. For the extended focus image,  is computed under the

perspective that everything is supposed to be in-focus (ni is

thus equal to N ).

V. EXPERIMENTS

In our experiments, HEVC Test Model (HM) reference

software3 was used to code the sub-aperture images. A GOP

size of 4 was picked with a ’IBBBP’ encoding scheme. Only

the central viewpoint image is intra-coded. The QP was varied

from 24 to 44. PSNR, SSIM and  are measured taking as

reference the refocused and extended focus images computed

from the original uncompressed light field.

A. Quality Evaluation: Focus Stack vs. Extended Focus

We used the  (Eq. (2)) to measure the percentage of

blur added in the refocused and extended focus images after

compression of the light field. For the experiments, we use

two light fields: a natural one captured by a plenoptic camera

and a synthetic one. Totoro Waterfall (available at [14]) is

3Reference software for ITU-T H.265 high efficiency video coding Version
10/14 available at http://www.itu.int/rec/T-REC-H.265.2

captured by a Lytro plenoptic camera and consists of 11x11

subaperture images containing 379x379 RGB pixels each. Da

Vinci (available at [15]) is a synthetic light field comprising

9x9 Multiview images with 768x768 pixels each. Fixing T to

0.003 and the window radius to 3,  is plotted in Fig. 6 as

a function of the size of the compressed light field. It shows

the difference in the amount of blur added due to compression

between the refocused and extended focus images.
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Fig. 6: Percentage of blurred in-focus pixels due to compres-
sion ( ) for both the extended focus and refocused images.
(a) Natural light field (Original size = 50 MB), (b) Synthetic
light field (Original size = 136 MB)

After compressing both light fields, an average maximum

of 3% of initially in-focus pixels become out-of focus in each

refocused image. This is a very small amount compared to the

extended focus image where a very high percentage of pixels

(up to 80% at high compression ratios) becomes blurred due

to compression.

The probability of adding blur in the in-focus regions is

relatively small which makes the focus stack visually more

robust to compression than the extended focus.

B. Impact of the Texture and Depth Estimation on the Ex-

tended Focus Quality

There are two possible causes of quality degradation of the

extended focus image resulting from compression of the light

field: depth map errors and focus stack texture distortion. For

the purpose of investigating the impact of those two types of

errors, we evaluate the quality of the extended focus image

under different conditions. More precisely, three combinations

of inputs to the extended focus estimation algorithm are

tested separately: an original depth map DM with the focus

stacks after compression FS0; a reconstructed depth map

after compression DM 0 with original focus stacks FS and

finally DM 0 with FS0 which is the natural combination. We

then plot, for each one of them, the quality evolution as a

function of the size of the compressed light field. The quality

is estimated with PSNR (Fig. 7 (a)(d)), SSIM (Fig. 7 (b)(e)),

and  (Fig. 7 (c)(f)).

We see that using an original focus stack FS, the depth map

DM 0can be estimated from a natural light field compressed

with a factor 3600 or a synthetic one with a factor of 8000

without altering the quality of the extended focus. On the other

side, no additional gain in quality is observed with an original

depth map DM and a reconstructed focus stack FS0. This
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Fig. 7: Evolution of the quality (PSNR, SSIM and the dedicated metric  ) of the Extended Focus (EF) with different input combinations:
An original Depth Map (DM) and a reconstructed Focus Stack (FS’); an original Focus Stack (FS) and a reconstructed Depth Map (DM’);
DM’ and FS’. (a)(b)(c): A natural light field (Original size = 50 MB). (d)(e)(f): A synthetic light field (Original size = 136 MB).

shows that the extended focus quality degradation essentially

results from the focus stack texture distortion.

VI. CONCLUSION

In this paper, we analyze the impact of light field com-

pression on the quality of the focus stack and the extended

focus images. It has been observed that a light field can

be compressed by a factor of around 700 without altering

the visual quality of both considered functionalities. Based

on a dedicated quality metric adapted to the problem, we

showed the focus stack is more robust to compression than

the extended focus since already some parts of it are blurred

natively. It has been also shown that the major cause of quality

degradation in the extended focus is the texture distortion of

in-focus regions in a focus stack while the depth estimation

errors do not have a significant impact on the rendering quality.

This study might be used to develop new performing coding

schemes for Light Fields taking into account the quality of

targeted applications.
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ABSTRACT

This paper describes a graph-based coding scheme for light fields

(LF). It first adapts graph-based representations (GBR) to describe

color and geometry information of LF. Graph connections describ-

ing scene geometry capture inter-view dependencies. They are used

as the support of a weighted Graph Fourier Transform (wGFT) to

encode disoccluded pixels. The quality of the LF reconstructed from

the graph is enhanced by adding extra color information to the rep-

resentation for a sub-set of sub-aperture images. Experiments show

that the proposed scheme yields rate-distortion gains compared with

HEVC based compression (directly compressing the LF as a video

sequence by HEVC).

Index Terms— Graph Based Representation (GBR), Graph

Fourier Transform (GFT), Compression, Light fields (LF).

1. INTRODUCTION

Light fields (LF) have emerged as a representation of light rays emit-

ted by a 3D scene and received by an observer at a particular point

(x, y, z) in space, along different orientations. A variety of cap-

turing devices have been designed based on camera arrays [1], on

single cameras mounted on moving gantries, or on arrays of micro-

lenses placed in front of the photosensor to obtain angular informa-

tion about the captured scene [2, 3].

The problem of LF compression rapidly appeared as quite criti-

cal given their significant demand in terms of storage capacity. Clas-

sical block-based coding schemes such as JPEG applied for each im-

age of the 2D array of images forming the lumigraph have been quite

naturally considered yielding however limited compression perfor-

mances (compression factors not exceeding 20 for an acceptable

quality) [4]. A method based on video compression is presented

in [5] where a few views are encoded in Intra while the other views

are encoded as P-images in which each block can be predicted from

one of the neighboring Intra views with or without disparity com-

pensation, the choice of the prediction mode being made to optimize

a rate-distortion measure. A second scheme is presented where sev-

eral predictions of a view are computed from neighboring views us-

ing disparity maps, and averaged to give the final predicted view.

The prediction residue is then encoded using classical coding tool-

s (DCT, quantization). Multiview video compression and dispari-

ty compensation techniques are considered in [5, 6], and intra cod-

ing modes have also been proposed in [7] for LF compression using

HEVC. The authors of [8] exploits inter-view correlation by using a

homography-based low rank approximation of the LF, showing sig-

nificant gains compared to HEVC Inter-coding for real LF captured

by micro-lenses based devices.

In this paper, we explore the use of GBR for LF. GBR has been

proposed for describing the geometry of multi-view images, first

for horizontally aligned cameras [9] and more recently for complex

camera configurations [10]. Here, we consider GBR to represent

LF using 3D geometry information. The graph connections are de-

rived from the disparity and hold just enough information to synthe-

size other sub-aperture images from one reference image of the LF.

Based on the concept of epipolar segment, the graph connections are

sparsified (less important segments are removed) by a rate-distortion

optimization. The graph vertices and connections are compressed

using HEVC [11]. The graph connections capturing the inter-view

dependencies are used as the support of a Graph Fourier Transform

[12] used to encode disoccluded pixels.

However, the graph mostly represents scene geometry. Texture

information is limited to a reference view and disoccluded pixels,

which is not sufficient for reaching a high reconstructed LF quality.

The bitrate distribution between texture and geometry (i.e. depth)

is a key issue in view synthesis from multi-view data and depend-

s on the camera configuration [13]. To enhance the quality of the

reconstructed LF, the residuals of a subset of views are added to

the graph representation. Experiments with synthetic LF from the

dataset in [14] rendered with Blender [15] show that the proposed

scheme achieves higher reconstruction quality at low rates compared

with traditional video compression by HEVC.

2. LIGHT FIELDS GEOMETRY

We consider the simplified 4D representation of LF describing the

radiance along rays by a function L(x, y, u, v) of 4 parameters at

the intersection of the light rays with 2 parallel planes. This rep-

resentation can be seen as an array of multi-view images {Iu,v}.

Each view Iu,v ∈ R
X×Y ×3 at position (u, v) is an RGB image

with X × Y pixels. Given a pixel (x, y) in Iu,v , its corresponding

pixel in Iu0,v0 (the pixel corresponding to the same 3D point in the

real world), should have the same color values under the Lambertian

assumption. In principle, multiple views of a scene can be rendered

from one unique view with the help of scene geometry. This is the

core idea of depth image based rendering (DIBR). For instance, giv-

en a LF dataset with available depth images {Zu,v}, pixel (x�, y�) in

Iu0,v0 corresponding to the same 3D point as the pixel (x, y) in Iu,v

can be located by

(x�, y�) = (x+ dx, y + dy) ,

dx = B∗(u−u0)∗f
Zu,v(x,y)

, dy = B∗(v−v0)∗f
Zu,v(x,y)

,
(1)

where B is the distance between neighboring cameras, f is the focal

length, Zu,v(x, y) is the depth of pixel (x, y) in Iu,v . View Iu0,v0
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thus can be rendered pixel by pixel by Eq.(1). (dx, dy) is also known

as disparity. In the tests, we consider synthetic LF [14] for which

depth information is available. For real LF, depth has to be estimated

using for example the methods in [16, 17].

Pixels in different views corresponding to the same 3D point

have same or similar color values. In this paper, we represent inter-

view dependencies in LF with a graph using geometry information,

and use the graph as a support to encode the color information using

graph-based transform coding.

3. GRAPH REPRESENTATION

3.1. Graph construction

Let us denote the graph by G = {V, E}, where vertices V = {vi}
correspond to each pixel in sub-aperture images {Iu,v}, and edges

E = {eij} connect pairs of pixels across two images.

Graph connections for reference image. As shown in Fig.1.a, im-

age I1,1 (left bottom corner image marked in red) is selected as the

reference view. Pixels on each row of I1,1 are grouped into a set

of straight horizontal segments based on their depth. One segment

has a constant depth. As shown in Fig.1.b, one row in I1,1 has been

divided into 3 segments. Every segment in I1,1 is connected to one

segment in every sub-aperture image by one graph edge, since the

two segments correspond to the same straight segment in the real

3D world. For instance in the toy example in Fig.1.a, the reference

view I1,1 is connected with every sub-aperture image Iu,v by graph

edges. However, for one straight segment in I1,1, all its connection-

s to other sub-aperture images can be deduced from each other by

Eq.(1). Therefore, for one segment in I1,1, only one of its connec-

tions is necessary in the final graph structure. In our GBR, we only

keep the graph connections between I1,1 and I1,2 (the right sub-

aperture image of I1,1), as shown in Fig.1.a, the connections marked

as red solid line are kept and the other connections marked as black

doted lines are redundant and removed. Fig.1.c gives an illustration

of the kept graph connections between {I1,1} and {I1,2}.

To simplify the graph representation, each graph connection is

represented by a one-dimensional metric namely unidimensional

disparity based on the epipolar segment concept [10]. The epipolar

segment is a line segment consisting of all possible projections of a

pixel with varying depth. The unidimensional disparity actually is

the distance between the start point of the epipolar segment and the

position of the true projection.

Graph connections for disoccluded pixels. Besides the reference

image I1,1, the disoccluded pixels which are not visible in I1,1 are

also considered in the graph construction. For the sake of simplicity,

we only consider the disoccluded pixels in IU,V (the top right corner

image in Fig.1.a), since most of the disoccluded pixels in images

{Iu,v} (1 < u < U, 1 < v < V ) are visible in IU,V . To construct

the graph connections for the disoccluded pixels, the same strategy

has been applied here. In other words, these disoccluded pixels are

treated as “reference pixels” for other sub-aperture images.

3.2. Graph sparsification

As presented in [10, 18], the constructed graph in section 3.1 is spar-

sified based on a rate-distortion model,

J (E) = D(E) + αR(E) , (2)

where J is the Lagrangian cost (smaller J values mean better opti-

mal status), D is the distortion of rendered sub-aperture images and

R is the modeled bitrate cost for coding the graph connections. α

is the Lagrangian multiplier which represents the relation between

bitrate and rendering quality (distortion). To decrease the computa-

tional cost we compute the rendering distortion on only a subset of

views. Edges are removed based on the shortest path optimization of

E = argmin
E

J (E). (3)

Graph sparsification does not only reduce bitrate cost but also cor-

rects errors in the depth, since the optimization modifies graph con-

nections regarding rendering distortion. For real LF with estimated

depth, it is very useful due to noise or errors in the estimated depth.

3.3. Graph with Residuals

So far, the constructed graph contains minimum amount of color

information, since only the reference view I1,1 and the disoccluded

pixels in IU,V are kept. To enhance the quality of the reconstructed

views, residues rm,n between a subset of M rendered images (from

the graph) Ĩm,n and the original true images Im,n, computed as

rm,n = Im,n − Ĩm,n are added to the graph.

At the decoder, these selected sub-aperture images are also treat-

ed as “reference images” to render the remaining sub-aperture im-

ages. The depth of each straight segment in the reference image I1,1

is estimated from the corresponding graph connections by Eq.(1).

Then, the depth of the selected images Im,n is computed by projec-

tion from the estimated depth of I1,1. We compute each remaining

sub-aperture image Im,n by combining M + 1 rendered images,

one image recovered from the graph and M images warped from the

selected reference images.

Îu,v =
1

�

wi

�

w0Ĩu,v +

M
�

i=1

wi Ĩu,v

�

�

�

Îm,n

�

,

[w0, w1, ...wM ]T = Rxy
�

Ĩu,v |
Îm,n

, Iu,v

�

Rxx
�

Ĩu,v |
Îm,n

�

−1

where weights [w0, w1, ...wM ]T are computed using the minimum

mean square error estimation theory. Rxy
�

Ĩu,v |
Îm,n

, Iu,v

�

is the

cross-correlation of the M +1 rendered images and the original im-

age Iu,v , and Rxx
�

Ĩu,v |
Îm,n

�

is the autocorrelation of the M +1

rendered images.

4. CODING SCHEME

The proposed encoder is shown in Fig. 2. As explained in Section

3, from two sub-aperture images, namely the corner images I1,1 and

IU,V , we construct the LF graph representation (G = (V, E)). The

graph edges E are stored in a grey-level image which is coded using

HEVC (More details about the graph edges coding can be found

in [10]). The vertices are pixels in the images I1,1 and Io
U,V (the

parts of IU,V that do not appear in I1,1). A part of the graph is

depicted in Fig. 3 where blue segments are edges with a small weight

(0.5) whereas red ones are edges with high weight(1). While I1,1

is classically compressed using HEVC, the arbitrarily shaped Io
U,V

requires dedicated tools. We propose to compress it using a graph-

based compression scheme as follows.
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(a) GBR for LF. (b) example of graph connections between I1,1 and Iu,v . (c) Graph connections between I1,1 and Iu,v .

Fig. 1. Graph based representation (GBR) adapted to LF.
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Fig. 2. Proposed encoder

Let S = [S1S2] be the vector of all color values in V to be

coded, where S1 comprises the color values of the reference image

I1,1 (separately coded with HEVC), and S2 the color values of the

disoccluded pixels Io
U,V . The color values in the reference view are

initially propagated to the disoccluded pixels using an iterative d-

iffusion method. More precisely, at the first iteration, the pixels at

the borders of the disocclusion areas are predicted by computing a

weighted average of their 1−hop neighborhood in the reference im-

age. For example, the prediction of a disoccluded pixel p1 connected

to four pixels in the reference view (p2, p3, p4, p5) is computed as

w12p2 + w13p3 + w14p4 + w15p5
w12 + w13 + w14 + w15

where wij denotes the weight of the connection between the pixels

i and j. In practice, the weight values are always 1 except where

the depth difference exceeds threshold
Zmax−Zmin

20
(Zmax and Zmin are

maximum and minimum values of the depth image). In that case,

a lower weight is assigned to attenuate the color propagation. The

predicted pixels are then used to predict other disoccluded pixels in

the following iteration.

To code the prediction residuals of the disoccluded pixels, i.e.,

R = S2−E(S2/S1), we use the weighted Graph Fourier Transform

(wGFT) [12] . The target disocclusion image is divided in 8×8 pixel

blocks. In each block, we use the 4-neighbors graph which connects

the disoccluded pixels to transform the residuals. More specifically,

given the weight matrix W , we define the diagonal degree matrix D,

where Dii =
�

j wij . Lastly, the graph normalized weighted Lapla-

cian matrix Lnorm is computed as Lnorm = I − D−1/2WD−1/2.

Let Ψ be the matrix whose columns contain the wGFT basis i.e., the

eigenvectors of the graph normalized laplacian. The residuals are

thus projected on the wGFT basis as R̂ = ΨR. The coefficients are

quantized for various quality factors following the method in [19],

entropy coded then sent to the decoder side.

Fig. 3. A part of the graph drawn between the pixels of the

reference image I1,1 and the disocclusions image Io
U,V . Red

and Blue connections have 1 and 0.5 as weights respectively

Because the decoder already received the disparity information

in the graph-based representation, it can deduce the exact same lo-

cations of disoccluded pixels in the target image as the encoder. It

builds the same 4-neighbors graph connecting the disoccluded pix-

els, computes the edge weights using the disparity information and

derives the same transform basis.This computation is required only

for few blocks containing the disoccluded pixels. Also, there is no

need to send additional side information as done in edge-adaptive

approaches [20, 21].

Finally, the remaining views Iu,v are coded as follows. They are

first predicted using the graph-based representation. Then, a residual

is computed with the true Iu,v . This residual is further compressed

with HEVC.

5. EXPERIMENTS

We test our GBR on synthetic LF (with U = 9, V = 9, X = 768
and Y = 768) from the dataset in [14] rendered with Blender [15].

Three datasets, called Buddha, butterfly and monasRoom, have been

tested here.
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Fig. 5. PSNR-rate performance of the proposed GBR on different datasets, (a) buddha, (b) butterfly and (c) monasRoom.
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Fig. 4. Results of coding the disoccluded pixels using a

Graph-based approach(QF from 10 to 90) vs HEVC (QP 0

to 40) for Buddha and monasRoom

5.1. Evaluation of GFT

To show the interest of exploiting inter-view neighboring relation-

s(i.e graph edges) in coding the disocclusions, we first compare the

performance of our graph-based compression scheme against HEVC

inter-coding. We first code the disoccluded parts along with the ref-

erence view as a video sequence using HEVC. We vary the QP from

0 to 40. For each QP, a prediction of the disocclusions is comput-

ed(Sec. 4), then the residuals are coded while varying the quality

factor from 10 to 90. The bitrate is the one needed to code the dis-

occlusions. The PSNR is measured taking as reference the original

disocclusions color values. From the results (Fig. 4), we notice that

our approach outperforms HEVC with a higher PSNR for most QP

values while preserving acceptable bitrates. Our diffusion method

yields a good prediction with Buddha since the background most-

ly consists of smooth regions, and that explains the better coding

performance. Whereas for monasRoom, the background is made of

texture and wrong color values are propagated to the disoccluded

areas resulting in residuals harder to code.

5.2. Light field representation and compression

We perform the GBR representation with fixed Lagrangian mul-

tiplier α = 0.5 in Eq.(2). In this case, the graph sparsification

highly depends on the distortion term D(E). The number of sub-

aperture images selected to add residuals is chosen as {1, 4, 9, 21}
with a regular sub-sampling pattern. The baseline method is the

scheme which directly compresses the whole LF dataset as a video

sequence with HEVC. Fig.5 shows the PSNR-rate performance of

the proposed GBR on different datasets. At low bitrate, the pro-

posed GBR can yield PSNR-rate gain. However, at high bitrate,

the GBR scheme is outperformed by HEVC, due to the limited

number of selected sub-aperture images. More results (including

visual results of rendered views) can be found on the web page

https://www.irisa.fr/temics/demos/lightField/

GBR/GBR_LF_2017.html. The proposed method is only tested

on the synthetic light fields data, since the accurate depth or disparity

information is needed.

6. CONCLUSION

In this paper, we have adapted the graph based representation (G-

BR) [10] to represent light fields (LF). The weighted Graph Fourier

Transform (wGFT) is applied on the constructed graph to code the

disoccluded pixels. To improve the rendering quality, the residuals

of a sub-set of views are added into the graph and further used to

render the other views of the LF. Experimental results show rate-

distortion gain compared with HEVC based compression. For future

work, we will focus on the application of our method to the real light

fields.
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[8] Xiaoran Jiang, Mikaël Le Pendu, Reuben A Farrugia, Sheila S

Hemami, and Christine Guillemot, “Homography-based low

rank approximation of light fields for compression,” in IEEE

International Conf. on Acoustics, Speech and Signal Process-

ing (ICASSP), 2017.

[9] Thomas Maugey, Antonio Ortega, and Pascal Frossard,

“Graph-based representation for multiview image geometry,”

IEEE Transactions on Image Processing, vol. 24, no. 5, pp.

1573–1586, 2015.

[10] Xin Su, Thomas Maugey, and Christine Guillemot, “Rate-

Distortion Optimized Graph-Based Representation for Multi-

view Images With Complex Camera Configurations,” IEEE

Transactions on Image Processing, vol. 26, no. 6, pp. 2644–

2655, 2017.

[11] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand,

“Overview of the high efficiency video coding (HEVC) stan-

dard,” Circuits and Systems for Video Technology, IEEE Trans-

actions on, vol. 22, no. 12, pp. 1649–1668, 2012.

[12] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Or-

tega, and Pierre Vandergheynst, “The emerging field of signal

processing on graphs: Extending high-dimensional data anal-

ysis to networks and other irregular domains,” IEEE Signal

Processing Magazine, vol. 30, no. 3, pp. 83–98, 2013.

[13] Emilie Bosc, Vincent Jantet, Muriel Pressigout, Luce Morin,

and Christine Guillemot, “Bit-rate allocation for multi-view

video plus depth,” in 3DTV Conference: The True Vision-

Capture, Transmission and Display of 3D Video (3DTV-CON),

2011. IEEE, 2011, pp. 1–4.

[14] Sven Wanner, Stephan Meister, and Bastian Goldluecke,

“Datasets and Benchmarks for Densely Sampled 4D Light

Fields,” in VMV. Citeseer, 2013, pp. 225–226.

[15] Blender, “Blender,” https://www.blender.org/, [On-

line].

[16] Michael W Tao, Sunil Hadap, Jitendra Malik, and Ravi Ra-

mamoorthi, “Depth from combining defocus and correspon-

dence using light-field cameras,” in Proceedings of the IEEE

International Conference on Computer Vision, 2013, pp. 673–

680.

[17] Hae-Gon Jeon, Jaesik Park, Gyeongmin Choe, Jinsun Park,

Yunsu Bok, Yu-Wing Tai, and In So Kweon, “Accurate depth

map estimation from a lenslet light field camera,” in Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2015, pp. 1547–1555.

[18] Xin Su, Thomas Maugey, and Christine Guillemot, “Graph-

based representation for multiview images with complex cam-

era configurations,” in Image Processing (ICIP), 2016 IEEE

International Conference on. IEEE, 2016, pp. 1554–1558.

[19] Jesse D Kornblum, “Using JPEG quantization tables to identify

imagery processed by software,” Digital Investigation, vol. 5,

pp. S21–S25, 2008.

[20] Godwin Shen, W-S Kim, Sunil K Narang, Antonio Ortega, Jae-

joon Lee, and Hocheon Wey, “Edge-adaptive transforms for

efficient depth map coding,” in Picture Coding Symposium

(PCS), 2010. IEEE, 2010, pp. 566–569.

[21] Hilmi E Egilmez, Amir Said, Yung-Hsuan Chao, and Anto-

nio Ortega, “Graph-based transforms for inter predicted video

coding,” in Image Processing (ICIP), 2015 IEEE International

Conference on. IEEE, 2015, pp. 3992–3996.

����



Rate-Distortion Optimized Super-Ray Merging for

Light Field Compression

Xin Su

INRIA

Rennes, FRANCE

Xin.Su@inria.fr

Mira Rizkallah

IRISA

Rennes, FRANCE

Mira.Rizkallah@irisa.fr

Thomas Maugey

INRIA

Rennes, FRANCE

Thomas.Maugey@inria.fr

Christine Guillemot

INRIA

Rennes, FRANCE

Christine.Guillemot@inria.fr

Abstract—In this paper, we focus on the problem of com-
pressing dense light fields which represent very large volumes
of highly redundant data. In our scheme, view synthesis based
on convolutional neural networks (CNN) is used as a first
prediction step to exploit inter-view correlation. Super-rays
are then constructed to capture the inter-view and spatial
redundancy remaining in the prediction residues. To ensure that
the super-ray segmentation is highly correlated with the residues
to be encoded, the super-rays are computed on synthesized
residues (the difference between the four transmitted corner
views and their corresponding synthesized views), instead of
the synthesized views. Neighboring super-rays are merged into
a larger super-ray according to a rate-distortion cost. A 4D
shape adaptive discrete cosine transform (SA-DCT) is applied
per super-ray on the prediction residues in both the spatial
and angular dimensions. A traditional coding scheme consisting
of quantization and entropy coding is then used for encoding
the transformed coefficients. Experimental results show that the
proposed coding scheme outperforms HEVC-based schemes at
low bitrate.

Index Terms—Super-Ray (SR) Merging, Rate-Distortion Min-
imization, Light Field (LF) Compression, Shape-Adaptive DCT
(SA-DCT)

I. INTRODUCTION

Light fields (LF) are defined as the representation of

radiance of light rays emitted along several directions by

the different points in a 3D scene. Several devices have

been developed for light fields capture, either based on

camera arrays [1], on single moving cameras, or on arrays

of microlenses [2], etc. Light fields have recently gained

in popularity due to the variety of potential applications in

computational photography and computer vision, however

they represent very large volumes of data with challenges

in terms of storage, transmission and processing.

In this paper, we focus on the problem of compress-

ing dense light fields captured by plenotic cameras. First

methods for compressing synthetic light fields appeared late

90’s essentially based on classical coding tools as vector

quantization or using JPEG coding for each sub-aperture

view, yielding however limited compression performances.

It is only recently that compression solutions have been

proposed for dense real light fields captured by plenoptic

cameras. The proposed solutions can be classified into two

categories: either coding the array of sub-aperture images

extracted from the lenslet image as a pseudo video sequence

in [3], [4], or directly encoding the lenslet images captured by

plenoptic cameras In [4]–[11], with extensions of HEVC with

dedicated prediction modes. Multiview video compression

and disparity compensation techniques are considered in [7].

A homography-based low rank approximation [12] is used to

exploit angular correlation of LF. Besides being represented

and encoded as images or videos, the LF is represented by

4D Gaussian mixture models in [13] and by graphs containing

minimum amount of color and disparity information in [14].

In this paper, we propose a compression scheme based

on view synthesis. Four corner views of the LF are first

encoded by HEVC-Inter and transmitted. The whole LF is

then synthesized from the four corner views using the convo-

lutional neural networks (CNN) based architecture proposed

in [15]. The prediction residues are then transformed using

a 4D-shape adaptive Discrete Cosine Transform (4D SA-

DCT) which exploits both spatial and angular correlation

remaining in the residue signals. The support of the 4D SA-

DCT is defined by a segmentation of the light field into

super-rays. Super-rays can be seen as a set of super-pixels

that are coherent across all light field views, taking into

account disparity information. Note that local transforms have

also been investigated for light fields compression in [16],

however, the support of the local transform was defined by

co-located super-pixels in the different views, not taking into

account disparity.

To ensure that the super-ray segmentation is highly corre-

lated with the residual signals, the super-rays are computed

on synthesized residues (the difference between the four

transmitted corner views and their corresponding synthesized

views). Neighboring super-rays with similar homogeneous

residues are merged into a larger super-ray to have a better

spatial energy compaction by optimizing a rate-distortion cost.

Experimental results show that the proposed coding scheme

yields rate-distortion gains at low bitrates (e.g. < 0.04 bpp

corresponding to a PSNR quality up to 35 dB) compared

with HEVC-based coding schemes, while being comparable

or slightly worse at higher bitrates.

II. LIGHT FIELD CODING SCHEME

A. Scheme Overview

Fig.1 depicts the proposed coding scheme. Let LF =
{Iu,v} denote a light field, where u = 1, . . . , U and v =
1, . . . , V are the view indices. Four views at the corners

LFcor = {I1,1, I1,V , IU,1, IU,V } are encoded using HEVC-

Inter and used to synthesize the whole light field with the



Fig. 1. Overview of proposed coding scheme.

CNN based synthesis method [15], as shown in Fig.1 (red

arrows). To improve the quality of the synthesized light field,

the residuals between the synthesized and original views are

encoded by applying local super-ray based shape adaptive

DCT (SA-DCT) (see Fig.1, blue arrows).

1) The processing chain of the four corner views: At the

decoder, the decompressed four corner views are used to

synthesize the whole LF using the CNN-based architecture

of [15], as shown by the yellow region in Fig.1. The first

CNN is trained to model the disparity from the four input

views, while the second CNN is used to estimate the color of

the synthesized views. The synthesis quality depends on the

QP value of the HEVC-inter coder.

As shown by the yellow region in Fig.1, we compute the

residual signals as the difference between the decompressed

four corner views �LFcor and their corresponding synthesized

views �LFcor. The four images of residues are then warped

onto the other views using the disparity estimated by the

CNN. The super-ray segmentation is then computed by ap-

plying the SLIC algorithm [17] on the set of residue images,

but also taking into account disparity when performing the

clustering. Computing the segmentation on the residue images

rather than on the synthesized views, similar residues signals

are more likely to be grouped into one segment which can

benefit the following energy compaction in transform domain.

2) The processing chain of the residues: The synthesized

views �LF and the super-ray segmentation are computed in the

same manner at the encoder. We apply a local spatial SA-DCT

on the residuals for each view using the super-ray as a support

of the transform. Spatial SA-DCT coefficients of each super-

ray corresponding to the same frequency form a U×V block

in the angular domain, on which a second angular SA-DCT is

applied to capture angular dependencies. A traditional coding

scheme consisting of quantization and entropy coding is then

used for encoding the transformed coefficients. At the decoder

side, the decoded residuals are added to the synthesized views

to obtain the final decompressed LF.

B. Super-Ray Segmentation on Residues

The concept of super-ray has been introduced in [18] as an

extension of super-pixels [17] to group light rays coming from

the same 3D object, i.e. to group pixels having similar color

values and being close spatially in the 3D space. While the

authors in [18] estimate disparity only at the centroid of the

super-rays, here we consider a scheme using dense disparity

maps to synthesize the entire light field from a sparse set of

views. The disparity maps used in the tests reported below,

have been estimated by the first CNN of the view synthesis

architecture of [15] from the four corner views which are

available at both the encoder and decoder. Having a dense

disparity map for each view, the pixels in all the views are

clustered using a method similar to SLIC [17] with a weighted

combination of a color distance, a spatial distance and in

terms of depth.

Fig.2 (a) shows that the super-rays computed on the set of

synthesized color images are well aligned with the edges of

the objects, but are not really suited for the residue images

they are supposed to represent (see the edge of the building).

Indeed the residues generally lie on both sides of object edges.

Since the real residue signal is not available at the decoder,

we generate an estimation of it (called synthesized residue),

that is used to build a more accurate segmentation. For that

purpose, the residue images at the four corner views are first

computed as the difference between the coded/decoded corner

views and their synthesized versions (see Fig.1). The residue

images at the other viewpoints are then obtained by warping

the corner residue images to the other positions using the

estimated disparity. We see in Fig.2 (b) that the super-ray

segmentation computed on these synthesized residue images

has better correlation with the real residual signals, which is

proved by the energy compaction comparison between Fig.2

(a) and (b) in section IV-A. Since the synthesized residues

are available at both the encoder and decoder, we can obtain

the same super-ray segmentation on both sides, and do not

need to transmit it.

C. 4D Shape Adaptive DCT (SA-DCT)

While 2D DCT applied on a square or rectangular support

may fail to capture correlation at image edges, we consider

here a separable 4D shape-adaptive DCT with a support

defined by the super-ray segmentation. Fig.3 illustrates how a

4D SA-DCT is applied on the i-th super-ray SRi in the LF.



(a) Super-ray segmentation computed on synthesized color is shown with
corresponding color image (left) and real residual image (right).

(b) Super-ray segmentation computed on synthesized residues is shown
with corresponding synthesized residual image (left) and real residual
image (right).

Fig. 2. Super-ray segmentation computed on (a) synthesized color and (b)
synthesized residues. Only the center view (u = 4, v = 4) has been shown
here. Segments in (a) are well aligned with the edges of color image, however,
not aligned with the discontinuities within the residue images, see the border
of the building. Segments in (b) obtained using synthesized residues better
follow the discontinuities of the real residue signals.

A spatial 2D SA-DCT is first applied per view on each super-

ray (i.e. on the super-pixel of the view which belongs to the

considered super-ray). In each view, the obtained coefficients

form a rectangular block with non-zero coefficients only in

the top-left area with the DC component located at the left-top

corner, as shown in the middle of Fig.3. These coefficients

are sorted from low to high frequency by following a Zig-Zag

order. Coefficients corresponding to the same frequency band

but from different views form an U × V block in angular

domain, as shown on the right of Fig.3. Another SA-DCT,

i.e. an angular SA-DCT, is then applied on this block. Note

that some values may be missing in the U × V block, since

the size of SRi varies in different views. Generally, the 4D

DCT T(·) can be computed as

{Xi,b} = T(SRi) ,

T(·) = DCTu ⊗DCTv� �� �⊗DCTy ⊗DCTx� �� �
Spatial SA-DCT Angular SA-DCT

(1)

where {Xi,b} ∈ R
U×V×N , N is the maximum size of SRi in

different views, b = 1, 2, · · · , U×V ×N . For some values of

b, Xi,b may be missing due to the non-regular shape of SRi.

The positions of missing elements in {Xi,b} are available at

both encoder and decoder, since the super-ray segmentation is

known. DCT∗ ∈ R
n×n corresponds to a n-point DCT (n is

the number of elements of SRi in corresponding coordinate),

and ⊗ denotes a Kronecker product operator.

D. Quantization and Entropy Coding

At the end of those two transform stages, coefficients are

grouped into a 2-dimensional array X where X(i, b) is the

b-th band in super-ray SRi. Using the observations on all

the super-rays in a training dataset (Rose [12]), we can find

Fig. 3. An illustration of 4D SA-DCT performed on super-ray.

the best ordering for quantization. We first sort the variances

of coefficients with enough observations in decreasing order.

We then split them into 64 groups g: {Xi,b, ∀i, b ∈ g}.

All the remaining coefficients with less observations will be

considered in the last group. We use the zigzag ordering of the

JPEG quantization matrix to assign the quantization step size

Q for each. A simple rounding procedure then results in the

quantized coefficients Xq(i, b) = round(X(i, b)/Q(X(i, b)).
that are further coded using an arithmetic coder.

III. RATE-DISTORTION OPTIMIZED SUPER-RAY

MERGING

In order to increase compression performances, we improve

the super-ray segmentation with a rate-distortion optimized

super-ray merging. Four initial segmentations are performed

using different initial numbers of clusters leading to different

super-ray sizes as shown in Fig.4.a. The resulting segmen-

tations are referred to as layers. Note that we modify the

super-ray segmentation in layer l respecting to the boundaries

of super-rays in layer l − 1, to make sure the boundaries

are coherent at different layers. For instance, if super-ray

SRl−1
i in layer l − 1 is across two (or maybe more) super-

rays in layer l, one of these super-rays in layer l is enlarged

to completely contain SRl−1
i , and the other super-rays are

reduced correspondingly. We choose to enlarge the super-ray

that initially contains most parts of SRl−1
i .

The merging results {SRi} are initialized by the super-rays

{SRl=0
i , ∀i} at layer 0 and the merging starts from layer 1 to

layer 3. At each time, we only consider one super-ray SRl
i

at layer l, which consists of several super-rays {SRl−1
j } at

layer l − 1, i.e. SRl
i = {SRl−1

j } = {SRl−1
j ∈ SRl

i, ∀j},

as shown in Fig.4 (b). {SRl−1
j } will be merged into SRl

i,

i.e. {SRl−1
j } ⇒ SRl

i, if and only the rate-distortion cost J
reduces after merging.

The rate cost of the 4D SA-DCT coefficients (after quanti-

zation) is modeled by their entropy computed per coefficient

group as

R =
X

g

entropy ({Q(Xi,b), ∀i, b ∈ g}) . (2)

The distortion is computed as the distortion of SA-DCT

coefficients before and after quantization as

D =
X

i

X

b

[Xi,b − Q(Xi,b)]
2
. (3)

Thus, the rate-distortion cost is

J = D + λR , (4)



where λ = 1 represents the relation between rate and

distortion. The merging procedure based on the minimization

of the rate-distortion cost J is detailed in Algorithm 1. Fig.4

(c) gives an illustration of merging results using Flower1

dataset in [15].

(a) Super-rays in different layers.

(b) Merging. (c) Merging result of Flower1 [15].

Fig. 4. An illustration of super-ray merging. (a) Super-rays at different layer

l = 0, 1, 2, 3 from left to right. (b) Super-rays {SRl−1
j } = {SRl−1

j ∈

SRl
i,∀j} in layer l− 1 are merged into SRl

i, i.e. {SRl−1
j } ⇒ SRl

i, if the

rate-distortion cost J has been reduced. (c) A merging result of Flower1

[15].

Algorithm 1: Merging based on rate-distortion minimiza-

tion

Data: Super-rays at different layer {SRl=0
i }, {SRl=1

i },

{SRl=2
i }, {SRl=3

i }
Result: Merged super rays {SRi}
Initialization: {SRi} = {SRl=0

i };

for Layer l = 1 to 3 do

for Each super-ray SRl
i in layer l do

Compute J with {SRi} Eq.4;

Find super-rays {SRl−1
j } = {SRl−1

j ∈ SRl
i, ∀j}

in layer l − 1;

Compute J 0 with {{SRi} \ {SR
l−1
j }}

�
SRl

i,

i.e. {SRl−1
j } are replaced by SRl

i Eq.4;

if J > J 0 then

Merge, {SRl−1
j } ⇒ SRl

i;

Update {SRi};

end

end

end

IV. EXPERIMENTS

We test our coding scheme on four real LF with 8×8 sub-

aperture images of size (X = 536, Y = 376) from the dataset

used in [15], called Flower1, Flower2 and Cars.

A. Energy Compaction

We first evaluate the effectiveness of our 4D segmentation,

by analyzing the compaction of the energy after transfor-

mation. Therefore, 4D SA-DCT is applied on: 1) super-

pixels used in [16] (computed on synthesized color without

disparity compensation or merging) 2) super-rays computed

on synthesized residues without disparity compensation or

merging 3) super-rays computed on synthesized residues with

disparity compensation but without merging 4) super-rays

computed on synthesized residues with disparity compen-

sation and merging. Fig. 5 shows the percentage of energy

carried by a given percentage of coefficients obtained by SA-

DCT on these segmentations. The blue curve is the baseline

method [16]. The red curves show the impact of using the

synthesized residues to compute the segmentation. However,

due the error in the synthesized residue, the improvement

is limited. The Yellow curve shows the impact of using the

disparity information, while the purple curve measures the

effect of the merging. Thanks to the merging operation which

compensates the errors in the super-ray segmentation, the

proposed contributions bring a significant increase in terms

of energy compaction (∼10%) with respect to a direct use of

a super-pixel segmentation per view [16].
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Fig. 5. Energy compaction of the transformed coefficients of Flower1 and
Cars using different super-ray computations. The super-rays computed on
synthesized residues with merging and disparity compensation yield higher
energy compaction.

B. Rate-PSNR results

The final rate-distortion performance of the proposed

scheme is evaluated in comparison with three baseline meth-

ods: 1) HEVC-lozenge [3], the whole LF is considered as a

video and compressed by HEVC with a lozenge sequence,

2) CNN+HEVC [3], the same CNN based view synthesis is

applied here, while the residues are compressed by HEVC, 3)

CNN+SA-DCT (no merging, no disparity) [16], our previous

coding scheme presented in [16] using the same CNN based

view synthesis, however, there is no disparity compensation

or super-merging strategy. Note that the coding methods

using CNN based prediction are performed with best pairs of

parameters (Q,QP ) where Q is the quality parameter used

to compress the residues and QP is used in the HEVC inter-

coding of the four corners. The obtained rate-distortion curves

are shown in Fig. 6.

The proposed CNN+SA-DCT coding scheme yields better

or comparable rate-PSNR performance at low bitrate than

HEVC based reference methods. The improvement of the

proposed CNN+SA-DCT compared with the baseline method

in [16] indicates the effectiveness of super-ray merging. It

allows the proposed coding scheme to capture more informa-

tion with fewer bits (at low bitrate), compared with HEVC
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Fig. 6. Rate-distortion comparison. From left to right: Flower 1, Cars and Flower 2.

based encoders. Tab. I shows the improvement in terms of

bjontegaard metric at low bitrate (< 0.04 bpp corresponding

to a PSNR quality up to 35 dB) obtained by our coding

scheme. However, as shown in Tab. I, at bitrates higher

than 0.04 bpp, the HEVC based encoders (HEVC lozenge

and CNN+HEVC) generally outperform the proposed coding

scheme at high bitrates. This is due to the fact that the

proposed scheme does not have very complex and high quality

prediction strategies in residue coding which is useful at high

bitrate.
TABLE I

BJONTEGAARD COMPARISON (∆PSNR (DB)) AT low BITRATE (< 0.04
BPP) AND high BITRATE (> 0.04 BPP)

Our CNN+SA-DCT vs

CNN+HEVC HEVC lozenge CNN+SA-DCT in [16]
Low High Low High Low High

Flower 1 0.22 0.05 1.92 -0.19 0.03 0.55
Cars 0.21 -0.17 0.48 -0.50 0.17 1.08

Flower 2 0.1 -0.26 1.77 -0.85 0.09 0.38

V. CONCLUSION

In this paper, we have presented a rate-distortion optimized

super-ray merging to exploit the correlation in the spatial and

angular dimensions of light fields. After the CNN-based view

synthesis, the residue inside each super-ray is compacted into

a few coefficients using 4D shape-adaptive DCT transform.

The experimental results show that the proposed light field

coding scheme can yield rate-distortion gains compared with

HEVC based compression, especially at low bitrate.

ACKNOWLEDGMENT

This work has been supported in part by the EU H2020

Research and Innovation Programme under grant agreement

No 694122 (ERC advanced grant CLIM).

REFERENCES

[1] B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth,
A. Adams, M. Horowitz, and M. Levoy, “High performance imaging
using large camera arrays,” ACM Transactions on Graphics (TOG),
vol. 24, no. 3, pp. 765–776, 2005.

[2] R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan,
“Light field photography with a hand-held plenoptic camera,” Computer

Science Technical Report CSTR, vol. 2, no. 11, pp. 1–11, 2005.
[3] M. Rizkallah, T. Maugey, C. Yaacoub, and C. Guillemot, “Impact of

light field compression on focus stack and extended focus images,”
in Signal Processing Conference (EUSIPCO), 2016 24th European.
IEEE, 2016, pp. 898–902.

[4] D. Liu, L. Wang, L. Li, Z. Xiong, F. Wu, and W. Zeng, “Pseudo-
sequence-based light field image compression,” in Multimedia & Expo

Workshops (ICMEW), 2016 IEEE International Conference on. IEEE,
2016, pp. 1–4.

[5] C. Conti, P. Nunes, and L. D. Soares, “HEVC-based light field image
coding with bi-predicted self-similarity compensation,” in Multimedia

& Expo Workshops (ICMEW), 2016 IEEE International Conference on.
IEEE, 2016, pp. 1–4.

[6] C. Conti, L. D. Soares, and P. Nunes, “HEVC-based 3D holoscopic
video coding using self-similarity compensated prediction,” Signal

Processing: Image Communication, vol. 42, pp. 59–78, 2016.
[7] Y. Li, M. Sjostrom, R. Olsson, and U. Jennehag, “Efficient intra

prediction scheme for light field image compression,” in Acoustics,

Speech and Signal Processing (ICASSP), 2014 IEEE International

Conference on. IEEE, 2014, pp. 539–543.
[8] R. Monteiro, L. Lucas, C. Conti, P. Nunes, N. Rodrigues, S. Faria,

C. Pagliari, E. da Silva, and L. Soares, “Light field HEVC-based image
coding using locally linear embedding and self-similarity compensated
prediction,” in Multimedia & Expo Workshops (ICMEW), 2016 IEEE

International Conference on. IEEE, 2016, pp. 1–4.
[9] C. Perra and P. Assuncao, “High efficiency coding of light field images

based on tiling and pseudo-temporal data arrangement,” in Multimedia

& Expo Workshops (ICMEW), 2016 IEEE International Conference on.
IEEE, 2016, pp. 1–4.

[10] W. Ahmad, R. Olsson, and M. Sjöström, “Interpreting Plenoptic Im-
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Titre: Transformées basées graphes pour la compression de nouvelles

modalités d’image

Mot clés : Transformées à base de graphes, champs de lumière, images omnidirectionelles

Resumé : En raison de la grande disponibilité de nouveaux

types de caméras capturant des informations géométriques

supplémentaires, ainsi que de l’émergence de nouvelles modal-

ités d’image telles que les champs de lumière et les images

omnidirectionnelles, il est nécessaire de stocker et de diffuser

une quantité énorme de hautes dimensions. Les exigences

croissantes en matière de streaming et de stockage de ces

nouvelles modalités d’image nécessitent de nouveaux outils de

codage d’images exploitant la structure complexe de ces don-

nées. Cette thèse a pour but d’explorer de nouvelles approches

basées sur les graphes pour adapter les techniques de codage

de transformées d’image aux types de données émergents où

les informations échantillonnées reposent sur des structures ir-

régulières. Dans une première contribution, de nouvelles trans-

formées basées sur des graphes locaux sont conçues pour des

représentations compactes des champs de lumière. En tirant

parti d’une conception minutieuse des supports de transfor-

mées locaux et d’une procédure d’optimisation locale des fonc-

tions de base , il est possible d’améliorer considérablement le

compaction d’énergie. Néanmoins, la localisation des supports

ne permettait pas d’exploiter les dépendances à long terme

du signal. Cela a conduit à une deuxième contribution où dif-

férentes stratégies d’échantillonnage sont étudiées. Couplés à

de nouvelles méthodes de prédiction, ils ont conduit à des ré-

sultats très importants en ce qui concerne la compression quasi

sans perte de champs de lumière statiques. La troisième par-

tie de la thèse porte sur la définition de sous-graphes optimisés

en distorsion de débit pour le codage de contenu omnidirec-

tionnel. Si nous allons plus loin et donnons plus de liberté aux

graphes que nous souhaitons utiliser, nous pouvons apprendre

ou définir un modèle (ensemble de poids sur les arêtes) qui

pourrait ne pas être entièrement fiable pour la conception de

transformées. La dernière partie de la thèse est consacrée à

l’analyse théorique de l’effet de l’incertitude sur l’efficacité des

transformées basées graphes.
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Abstract : Due to the large availability of new camera types

capturing extra geometrical information, as well as the emer-

gence of new image modalities such as light fields and omni-

directional images, a huge amount of high dimensional data

has to be stored and delivered. The ever growing streaming

and storage requirements of these new image modalities re-

quire novel image coding tools that exploit the complex struc-

ture of those data. This thesis aims at exploring novel graph

based approaches for adapting traditional image transform cod-

ing techniques to the emerging data types where the sampled

information are lying on irregular structures. In a first contribu-

tion, novel local graph based transforms are designed for light

field compact representations. By leveraging a careful design of

local transform supports and a local basis functions optimization

procedure, significant improvements in terms of energy com-

paction can be obtained. Nevertheless, the locality of the sup-

ports did not permit to exploit long term dependencies of the

signal. This led to a second contribution where different sam-

pling strategies are investigated. Coupled with novel prediction

methods, they led to very prominent results for quasi-lossless

compression of light fields. The third part of the thesis focuses

on the definition of rate-distortion optimized sub-graphs for the

coding of omni-directional content. If we move further and give

more degree of freedom to the graphs we wish to use, we can

learn or define a model (set of weights on the edges) that might

not be entirely reliable for transform design. The last part of

the thesis is dedicated to theoretically analyze the effect of the

uncertainty on the efficiency of the graph transforms.


