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Abstract

In this thesis we explore the problem of signature analysis in avionics mainte-
nance, to identify failures in faulty equipment and suggest corrective actions to
resolve the failure. The thesis takes place in the context of a CIFRE convention
between Thales R&T and the Université Paris-Sud, thus it has both a theoretical
and an industrial motivation.

The signature of a failure provides all the information necessary to understand,
identify and ultimately repair a failure. Thus when identifying the signature of
a failure it is important to make it explainable.

We propose an ontology based approach to model the domain, that provides
a level of automatic interpretation of the highly technical tests performed in the
equipment. Once the tests can be interpreted, corrective actions are associated
to them.

The approach is rooted on concept learning, used to approximate description
logic concepts that represent the failure signatures.

Since these signatures are not known in advance, we require an unsupervised
learning algorithm to compute the approximations. In our approach the learned
signatures are provided as description logics (DL) definitions which in turn are
associated to a minimal set of axioms in the A-Box. These serve as explanations
for the discovered signatures, thus providing a glass-box approach to trace the
reasons on how and why a signature was obtained.

Current concept learning techniques are either designed for supervised learn-
ing problems, or rely on frequent patterns and large amounts of data. We use
a different perspective, and rely on a bottom-up construction of the ontology.
Similarly to other approaches, the learning process is achieved through a refine-
ment operator that traverses the space of concept expressions, but an important
difference is that in our algorithms this search is guided by the information of
the individuals in the ontology.

To this end the notions of justifications in ontologies, most specific concepts
and concept refinements, are revised and adapted to our needs.

The approach is then adapted to the specific avionics maintenance case in
Thales Avionics, where a prototype has been implemented to test and evaluate

the approach as a proof of concept.






Resumé en Frangais

Dans cette these, nous étudions le probleme de I'analyse de signatures de pannes
dans le domaine de la maintenance avionique, afin d’identifier les défaillances au
sein d’équipements en panne et suggérer des actions correctives permettant de
les réparer. La these a été réalisée dans le cadre d’une convention CIFRE entre
Thales Research & Technology et I’Université Paris-Sud. Les motivations sont
donc & la fois théoriques et industrielles. Une signature de panne fournit toutes
les informations nécessaires pour identifier, comprendre et réparer la panne. Son
identification doit donc étre explicable. Nous proposons une approche a base
d’ontologies pour modéliser le domaine d’étude, permettant une interprétation
automatisée des tests techniques réalisés afin d’identifier les pannes et obtenir les
actions correctives associées. Il s’agit d’une approche d’apprentissage de concepts
permettant de découvrir des concepts représentant les signatures de pannes.
Comme les signatures ne sont pas connues a priori, un algorithme d’appren-
tissage automatique non supervisé approxime les définitions des concepts. Les
signatures apprises sont fournies sous forme de définitions de la logique de descrip-
tion (DL) et ces définitions servent d’explications. Contrairement aux techniques
courantes d’apprentissage de concepts congues pour faire de 'apprentissage
supervisé ou basées sur 'analyse de patterns fréquents au sein de gros volumes
de données, 'approche proposée adopte une perspective différente. Elle repose
sur une construction bottom-up de 'ontologie. Le processus d’apprentissage est
réalisé via un opérateur de raffinement appliqué sur ’espace des expressions
de concepts et le processus est guidé par les données, c’est-a-dire les individus
de l'ontologie. Ainsi, les notions de justifications, de concepts plus spécifiques
et de raffinement de concepts ont été révisés et adaptés pour correspondre a
nos besoins. L’approche a ensuite été appliquée au probléme de la maintenance
avionique. Un prototype a été implémenté et mis en ceuvre au sein de Thales

Avionics a titre de preuve de concept.

La these est organisée de la maniere suivante : Le manuscrit est composé de
7 chapitres incluant introduction et conclusion générales. Le premier chapitre
fait office d’introduction et introduit la problématique, les contributions de la
these et met en perspective le contenu du manuscrit ; le chapitre 2 constitue
un état de I'art ciblé sur les ontologies, ’apprentissage dans les ontologies, et
la modélisation de la maintenance avionique; le chapitre 3 présente ’approche
théorique retenue basée sur la découverte de concepts dans les ontologies formelles

avec les algorithmes associés ; le chapitre 4 met en ceuvre cette approche théorique



dans ’analyse de signature en maintenance avionique en lien avec une ontologie
et a partir de fichiers de résultats de tests; le chapitre 5 présente le prototype
développé ; le chapitre 6 présente les expérimentations réalisées avec ce prototype
et sa validation; le chapitre 7 conclu le manuscrit en faisant un bilan des
travaux réalisés et en avancant quelques perspectives. Dans le chapitre un,
(Introduction) , on présente tout d’abord le domaine applicatif de la these, qui
est la maintenance avionique en général et chez Thales en particulier. Parmi
plusieurs centaines d’équipement que Thales répare, un équipement particulier,
nommé < Elevator and Aileron Computer — ELAC », composé de six cartes
électroniques et de deux alimentations, a été retenu pour la recherche. On
explique ensuite comment les techniciens testent cet équipement a ’aide d’un
banc de test, ainsi que la structure des fichiers < .AR > générés, dont chaque ligne
teste une fonction spécifique (GO/NOGO). Ensuite on présente la problématique
de la these qui est la découverte de signatures de défaillance, et la proposition
d’actions correctives aux techniciens, ces propositions devant étre impérativement
explicables. L’ensemble de symptomes représente la signature de la défaillance,
et ces signatures définissent des classes de tests, et les propriétés utilisées pour
construire ces classes fournissent leur explication. Une fois les classes disponibles,
elles seront utilisées pour classer les tests : pour chaque classe de test un ensemble
d’actions correctives est associées, devenant les suggestions/propositions faites
au technicien.

L’association de la signature trouvée et des actions correctives est donnée
par les données historiques. De cette fagon, chaque fois qu'un nouveau test
arrive, il est d’abord analysé pour trouver des actions correctives si son type de
défaillance existe déja dans 1’ontologie. Sinon, un nouveau type de défaillance est
appris grace aux informations contenues dans ce nouveau test, ce qui enrichit
progressivement 1’ontologie pour augmenter son exhaustivité. On a choisi de
guider la découverte des types de défaillances par les tests disponibles, ce qui
permet de réduire I’espace de recherche, et les types de pannes possibles peuvent
étre trouvés en temps réel. Il s’agit ainsi de découvrir des concepts dans une
ontologie en LD d’une maniére non supervisée, de telle sorte qu’ils représentent
des ensembles intéressants d’individus, et que la définition de chaque concept
découvert soit explicite.

Le chapitre deux, (Related Work) on présente une revue de littérature
ciblée sur les ontologies et I’apprentissage automatique, toujours en lien avec
la problématique de maintenance avionique. On introduit les ontologies, leur
role dans la représentation des connaissances, leur lien avec le Web Sémantique,
les langages RDF et OWL 1 et 2, puis on s’attarde sur les ontologies formelles
avec les logiques de description (LD). Apres on présente les grandes approches

de la maintenance industrielle, permettant ainsi de définir le probleme de la
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maintenance avionique et la terminologie associée. Tout d’abord est présentée
lapproche « Model Based Diagnosis (MBD) » développée par les communautés
de I'informatique et de 'intelligence artificielle et fournissant un cadre pour le
diagnostic de systemes. En tant que tel, le diagnostic peut étre considéré comme
une forme de raisonnement abductif, ou étant donné un ensemble d’observations,
les raisons possibles des observations sont les diagnostics. Des stratégies visant a
éviter d’explorer I’espace exponentiel des diagnostics et d’influencer les préférences
sur les diagnostics récupérés ont été largement étudiées dans la littérature.

On s’interesse aussi par les approches de la maintenance basées sur des
ontologies. L’objectif de la plupart des travaux rattachés a cette approche est de
fournir un modele formel qui tient compte de toutes les sources d’information
hétérogenes nécessaires et disponibles, dans une représentation unique et bien
définie, et de faire des inférences automatiques sur les connaissances représentées.
Différents travaux sont étudiés et ils visent tous a fournir un modele qui est
une ontologie, qui tient compte de la terminologie appropriée utilisée dans le
domaine, sur la base de normes et/ou de recommandations, mais malheureu-
sement, aucun de ces travaux n’a été au-dela de 'implémentation méme de
I'ontologie. L’utilisation d’ontologie pour découvrir des signatures de défaillances
nécessitant un mécanisme d’apprentissage associé a ’ontologie, On s’intéresse
a apprentissage d’ontologie et 'apprentissage de concepts. L’apprentissage
d’ontologie est un domaine multidisciplinaire qui vise la génération automatique
d’ontologies. On distingue plusieurs approches : (i) les approches basées sur
I’apprentissage a partir de textes, étroitement liée a ’analyse du texte et au
traitement du langage naturel; (ii) les approches basées sur la fouille de données
liées (Linked Data Mining) reposent sur des techniques d’exploration de graphes
qui nécessitent un graphe complet ; (iii) les approches de <« crowdsourcing s,
une alternative a l'apprentissage entierement automatique, dans laquelle les
humains sont impliqués dans le cycle d’apprentissage, révisant le contenu dans
une ontologie, ou y ajoutant explicitement du contenu ; et enfin (iv) les approches
basées sur ’apprentissage de concepts dont le but est de découvrir des définitions
de concepts. C’est cette derniere approche, 'apprentissage de concepts, plus
adaptée a la problématique de recherche que on retient et étudie ensuite.

Dans le contexte des LD, les différentes méthodes d’apprentissage de concept
présentent toutes des limitations dans le contexte de la maintenance avionique,
notamment lié au fait qu’elles sont supervisées, et nécessitent des échantillons
positifs et négatifs définis par rapport a des classes déja définies, que 'on a pas
ici.

A cause de cette limitation, on s’intéresse assez brievement & ’apprentissage
non-supervisé sur des données structurées.

Le chapitre trois, (The Approach : Situation Discovery), on développe notre
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approche, qui constitue sa la principale contribution de la these. On s’intéresse
ainsi a la capacité de déterminer quand un ensemble d’individus peut étre
distingué des autres, et chacun de ces ensembles, pour lequel on peut trouver une
définition appropriée, est appelé une situation. Dans ce chapitre on développe
I’approche retenu pour obtenir ces situations, une approche d’apprentissage non
supervisée de concepts, basée sur la notion de raffinement de concept mis en
ceuvre par un opérateur spécifique. L’intuition qui sous-tend ce processus de
raffinement est que, compte tenu d’un ensemble d’individus X, on veut construire
des descriptions pour des sous-ensembles de X qui peuvent étre représentés par un
concept d’une ontologie en LD. Ensuite, une fois les descriptions construites, on
fournit les moyens d’imposer une préférence a ces concepts de LD afin que seuls
ceux qui sont intéressants soient récupérés. Ces concepts sont ensuite intégrés
a l'ontologie LD originale, ou ils peuvent étre utilisés pour la classification. La
construction des expressions conceptuelles repose sur les propriétés des individus
dans X analysés, et par conséquent les définitions conceptuelles fournissent une
explication sur les propriétés des individus qui sont pertinentes pour les distinguer
du reste. Dans ce chapitre on présente en détail, et de fagon formelle, I’approche
de découverte de situation (Situation Discovery) et on explique comment on
calcule les situations dans 'ontologie O spécifiée en ELO. Pour cela on définit
formellement lun opérateur de raffinement (Refinement Operator), qui repose
sur la notion de MSR, (Most Specific Representative) utilisée pour la découverte
de situation. Les différentes étapes permettant d’affiner un concept C guidé par
une instance x et une ontologie O, sont présentées en détail, le résultat étant les
concepts obtenus par une étape de raffinement de C. Ce chapitre constitue la
contribution majeure de la these.

Dans le chapitre quatre, (Situation Discovery in Avionics Maintenance ), on
montre comment la relation entre les situations et les signatures de défaillance est
établie, montrant ainsi comment 'approche générale présentée dans le chapitre
précédent est adaptée a ’analyse des signatures en maintenance avionique. Plus
précisément les deux fonctions principales que le prototype doit assurer pour
aider le technicien dans le processus de diagnostic sont : 1) consulter la base de
connaissances pour obtenir les mesures correctives suggérées, et 2) enrichir la
base de connaissances grace aux commentaires des utilisateurs sur la pertinence
ou non des suggestions données. L’enrichissement de la base de connaissances
nécessite non seulement d’envisager les éventuelles nouvelles actions correctives,
mais aussi de découvrir de nouvelles signatures de défaillance.

Dans le chapitre cing, (Prototype) on présente la mise en ceuvre concréte de
I’approche, par la réalisation d’un prototype, concu et déployé pour appuyer le
diagnostic de maintenance avionique. On rappelle brievement le processus de

diagnostic de maintenance de 'ELAC, I'origine des données, et le contexte de
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Thales ou se déroule le prototype implémenté . Apres on présente les exigences
du prototype, permettant pour le premier (Consult) de consulter la base de
connaissances pour obtenir des suggestions, et pour le second (Acquire Feedback)
associé au retour de l'utilisateur, permettant de mettre & jour/enrichir la base
de connaissances avec de nouveaux fichiers < .AR » et de nouvelles actions
correctives. On présente ’architecture du prototype, concu et réalisé dans un
environnement distribué (TRT cluster) permettant un traitement massif des
données et un acces a distance. Les fonctions principales du systéme associées aux
deux cas d’utilisation précédents sont détaillées et montré comment 'utilisateur
final interagit avec ’outil au travers d’un interface homme-machine spécifique.

Dans le chapitre six, ( Evaluation ), on présente ’évaluation de ’approche
par la mise en ceuvre du prototype.On évalue la pertinence et le nombre de
suggestions proposées par 'approche. L’hypothese a valider étant que plus le
grain de la base de connaissances est fin, plus on peut trouver des signatures
de défaillance spécifiques, et ainsi minimiser le nombre d’actions correctives
suggérées. Les résultats obtenus par une premiere série d’expérimentations
relatives a la pertinence et la spécificité des suggestions, a permit d’obtenir une
base de connaissances performante formée de 100 échantillons. Une seconde série
d’expériences, a permit de vérifier qu’il y avait bien une évolution dans la base de
connaissances, a mesure qu’on lui présentait plus d’information. Par évolution,
dans notre travail ; on entend que la KB est plus finement grainé, et que ses
réponses sont plus précises. Des expérimentations avec 25, 50 et 100 échantillons
ont montré que c’est effectivement la tendance. On fournit des mesures et des
analyses sur 'efficacité de la mise en ceuvre, données par les temps de réponse
et évalue le passage & I’échelle (scalability) de la solution proposée. Dans une
derniere expérimentation, on compare notre approche a celle du du systeme
DL-learner, un outil similaire utilisé pour découvrir des concepts, mais de fagon
supervisée.

Finalement, dans le chapitre chapitre sept (Conclusions and Further Work),
on conclut le manuscrit en faisant un bilan synthétique de nos contributions, et
présente ensuite quelques perspectives. La premiere concerne I'usage d une logique
de description plus expressive que la LD ELO utilisée dans la thése qui ne possede
pas les constructeurs de disjonction et de négation, ce qui aurait cependant
pour conséquence une croissance exponentielle des concepts augmentant ainsi
I’espace de recherche. La deuxieme perspective est un traitement parallele des
différentes partitions de I’A-box suivi d’une fusion et consolidations des résultats
obtenus selon une stratégie de type Map-Reduce. La troisieme perspective est
d’introduire une distance explicite entre signatures permettant a considérer de
nouveaux individus dans les signatures et par la méme améliorer les suggestions

fournies. Enfin la derniére perspective concerne I’extension du modele a d’autres



équipements que 'ELAC considéré dans la these, ainsi qu’a d’autres taches de

maintenance.
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Chapter 1

Introduction

This thesis takes place in the context of a Convention Industrielle de Formation
par la Recherche (CIFRE) between Thales R&T and the Université Paris-Sud,
thus it has both: a theoretical and an industrial motivation. The thesis explores
the problem of signature analysis in avionics maintenance, and proposes an
ontology based approach rooted on concept learning, to approximate Description
Logic concepts that represent the failure signatures.

In avionics, a failure denotes the loss of the ability of a device to meet the
performance specifications that it was intended to meet. The signature of a failure
in this context, represents all sufficient and necessary information that is strongly
related to the failure mechanism [JEDEC, 2018]. Knowing the signature allows
to better understand the failure, to predict the behavior of the equipment, and
to repair it. In equipment diagnosis, the manifestation of a failure is put down
to the bad interaction between some of its components, which are grouped into
functional chains. Identifying these functional chains and the faulty components
involved, provides the signature of the failure. In model based diagnosis this
is known as a diagnosis [De Kleer and Kurien, 2003], and the model aims to
predict the intended behaviour of the modeled system. In our case we do not
count with such a model. Instead, we are given tests that report the status of
the functions in the equipment, and corrective actions made by the maintenance
technicians. In this context, our task is to provide an approach and a tool to
support maintenance technicians with suggestions on the corrective actions to

be taken, given an input test.

1.1 Avionics Maintenance

In avionics maintenance complex and time-consuming actions have to be taken

to return a faulty equipment to a fully functional state. The objective of our



work is to support maintenance technicians in their activity with cues of actions
or full actions to perform, in order to repair faulty equipment.

During the maintenance processes in avionics, when an equipment is found
faulty on an aircraft it is to be repaired or replaced. Avionics maintenance is
divided three levels:

e Level 1 (On aircraft) : These are the maintenance actions performed on
aircraft. When an aircraft arrives to an airport, the status of its systems
and equipments are tested and maintained in place. If a failure exists, the
faulty equipment is identified, called a Line Replacement Unit (LRU) and
is replaced by another unit with the same capabilities. The main objective
of the maintenance action in this stage is to return the aircraft to a fully

functional state as soon as possible to minimize the time it stays on ground.

e Level 2 (In Shop) : The LRU found faulty by maintenance level 1 are sent
to a specialized shop for investigations and maintenance. Each LRU is
composed of several Shop Replacement Unit (SRU), and the task of the
technicians is to identify the faulty SRU.

e Level 3 (In Shop) : The third level of maintenance also takes place in the
repair workshop, where provided a faulty SRU the technicians find the
components that cause the failure to repair the equipment.

Figure 1.1 depicts the three levels in avionics maintenance. Our work is concerned

Aircraft LRU SRU Components

- Illl.-“-_./
I N

1 %

On aircraft (ine or hangar) In Shop In Shop
From aircraft, indentify faulty From LRU, identify faulty From SRU, identify failed
LRU SRU component(s)
Airline or MRO Airline or MRO or Equipement supplier
Equipment supplier

Figure 1.1: The different levels of avionics maintenance. Image credit: Guillaume
Ruban, TAV.

with maintenance levels 2 and 3, that is in shop maintenance.
To determine the proper corrective actions when a faulty equipment presents

a failure, the technicians need to gather all the necessary information that allows



them to identify the failure cause. The technicians make investigations and run
tests to evaluate the state of the equipment. All the necessary and sufficient
information that is strongly related to the mechanism of the failure is called the
Failure Signature [JEDEC, 2018] . When a technician makes investigations and
evaluates the results of the tests, she/he is looking for the symptoms that are in
line with the signature of the failure to isolate the problem, and establish the
proper repair actions for the equipment.

This process is time-investing, automatically establishing the most probable
actions is useful to shorten the examination and repair time, thus gaining in
efficiency and lowering the costs.

Out of the hundreds of types of equipment Thales Avionics repairs, the
Elevator and Aileron Computer (ELAC) was selected by Thales for this study
because of the availability of the results, the high frequency of maintenance and
the complexity of its diagnosis. The ELAC is a Line Replacement Unit (LRU)
of which several versions exist (ELAC A, ELAC B, ELAC Téléchargable). The
ELAC B used in our approach comprises six boards and two power units. Each
of the boards has hundreds of components and in case a failure is found, the
right component to be replaced has to be found. Figure 1.2 presents a diagram
of an ELAC B computer.

Numbering labels correspond to CMM figure
) ELAC Boards ¢ ! ¢

ELAC B will be fitted with 6 newly re-

designed SRUs, following the study

of the THALES AVIONICS EMM 20
program (Enhanced Manufacturing
and Maintainability)

260
0 A1)

SRU SPARE PARTS
- 4 different hardware boards
out of 6 boards in the ELAC
— No more power supply
adjustment

60 ELAC B is said to be "FFF" will current ELAC which
is to say that ELAC B is equivalent to the current
ELAC in Farm, Fit and Functions

8

Figure 1.2: A diagram of an ELAC B computer, extracted from the product
sheet specification. The figure shows the 6 internal boards and the schematics of

the product.

In order to diagnose the problem, the technicians test the ELAC in a special
unit called a Test-Bench, which exhaustively tests the equipment functions.

Once the tests are run, it is up to mechanic experts to interpret the results,



determine the possible components of the equipment involved in the failure, and
the repairs/replacements to be done. For a maintenance process it is difficult
to establish a priori what are the actions to be taken to return the equipment
to a fully functional state. Each function in the equipment is associated to a
functional chain, which is a logical circuit comprising tens of components. Once
the logical components are identified, their physical locations in the equipment

need to be precised to proceed with the repair.

The main source of information for the ELAC technicians to make the repairs,
are the tests results that come out of the Test-Bench. These are presented as an
AR (All Results) file, which is divided into chapters, sections and subsections.
Each subsection contains up to hundreds of individual tests, one per line. Each
line of the .AR file represents a test on a specific function with the sanction GO
or NOGO, which tells us if the test was passed. An extraction of an .AR file and

its main structure is shown in Figure 1.3.

8: ARINC INPUTS/OUTPUTS } Part/Chapter

ARINC MESSAGE RECEPTION } Function
180203 T1DGIO0O8 080030 40AC HEX EQ 40AC GO
180206 T1DGIO@8 080040 50AC HEX EQ 40AC NOGO

COM ARINC reception CHANNEL1) } Sub-function

180215 T1DGIO@8 080050 AQ000Q HEX EQ D55555 NOGO
180221 T1DGIO@8 080330 D55555 HEX EQ D55555 GO
180227 T1DGIO@8 080620 D55555 HEX EQ D55555 GO
\ 7\ / N / e
A 4 vV Vv A 4 A 4
Code Designation Measurements Result / Sanction

Figure 1.3: Extract of an .AR file. The figure shows the first lines of chapter ”8:
ARINC INPUT/OUTPUTS”, with the function and sub-functions being tested,

where two tests present the sanction: "NOGO”.

Besides his expertise, to interpret these results the technician relies on a
Component Maintenance Manual (CMM), and a visualization tool to identify

the physical location of the components.

An additional complication in this problem is the non-deterministic relation
between the failures and the corrective actions: a specific failure can be detected

by several distinct tests, and distinct tests might have the same corrective action.



1.2 Problematic

Equipment diagnosis is a complex task since on the one hand, the interpretation
of the results requires high expertise and experience, and on the other hand the
possible corrective actions can be exponential with respect to the number of
components.

To determine the proper corrective action, a good understanding of the
failure and the test results is needed due to the following reasons. First, the
technician needs to know why an action is proposed. He can not blindly change a
suggested component, the causes and the effects of the failure need to be clearly
determined. Second, once the maintenance process ends, a fully functional and
certified equipment is returned to the client. For safety reasons, a certification
that the equipment provides the expected services is needed. In this process, the
mechanism of the failure has to be clearly established, to explicitly show the
failure causes and their exhaustive repair. Third, the explanations influence the
adherence and confidence of the technicians in the system. Finally, besides the
direct use for the technicians, the explanation for a failure allows to identify it,
design tests to detect it, define ways to solve it, and certify equipment which is
free of the failure. Thus the explanation is of great value.

Thus, automatizing the diagnosis process requires not only to be able to
interpreted the test, but also to provide explanations on the proposed suggestions.

Confronted with this problem, our goal in this thesis is to:

Support avionics maintenance by discovering Failure Signatures and
proposing corrective actions, in such a way that the suggestions are

explainable.

This problem has to be solved by taking into account the following constraints.

Sparse data A particular aspect of our problem is that the available data is not
sufficient for an automatic learning system based on statistical analysis. Classic
machine learning techniques aim to approximate a function f which describes
the behavior of a real world process, through a hypothesis i, where the accuracy
of h to approximate f relies on the amount of data presented to the model. In
our case we count only with 150 samples of .AR files and their corrective actions,
therefore we can not rely on techniques that require large amounts of data to
properly model a process.
Sparse knowledge We have at our disposal a set of 150 test results of a specific
equipment (ELAC B) and the associated corrective actions. The correlation
between the actions and the tests is given by historical data gathered from the
maintenance workshop.

To assign actions for a test result, technicians follow maintenance manuals



stating the specific functions of components, the functional chains involved, and
their physical location.

There is no explicit model for this manual process. There exist manuals,

visualization tools, and guidelines on the procedures. But a model relating the
test results to the components to be replaced is not available. To obtain such
a model we count only with the test results and the corrective actions in the
historical data.
Number of suggested repair actions The correspondence between the set
of NOGO lines in an .AR file and the components that need to be replaced is
not evident. Note that the combinations of the functions to be checked in an
AR file is exponential with respect to the number of NOGO lines. For example,
a file containing 4 lines with a sanction of NOGO, has 2* = 16 combinations.
To solve the failure, all the combinations might need to be considered in the
worst case. A file with 20 NOGO lines could easily have associated more than 1
million function combinations to check. In the sample data we have found files
with 40, 50, 100 and thousands of lines that present the result NOGO. This is
why equipment diagnosis is complex.

Providing hundreds of results as possible repair actions is useless. First,
technicians must not have to choose from a large number of suggested actions.
Each action chosen triggers a new test-bench session that can last for hours.
Secondly, the number of failing components is often low in reality. So in each
repair, the suggested components to be replaced should be minimized.
Provide an explanation for the given results As outlined in section 1.2,

explainability of the system is important for technicians and security certification.

1.3 The proposed solution

In order to provide suggested corrective actions to the technicians, given an
input test, first we have to be able to classify the test. But in our problem we do
not count with classes of tests.

To find these classes, we look into the properties of the tests for those
that represent the symptoms of a failure. A failure is given by the replaced
faulty components. Thus, all those properties that allow to distinguish a set
of tests that are solved the same way, represent the symptoms of the failure.
This set of symptoms represent the Failure Signature. These failure signatures
define classes of tests, and the properties used to construct these classes provide
their explanation. Once the classes available, we use them to classify the tests,
where for each class a set of corrective actions are associated, which become the
suggestions to the technician.

From the historical data, we find that some different tests can be associated to



a same corrective action. Therefore, it is not a unique test result that characterizes
a failure, but rather sets of tests. These sets are not known in advance, and
therefore we first must discover them. Moreover, the proposal of actions must be
explained because technicians have to know the reason for the actions and due
to the requirement of security certification as we have already mentioned above.
To this end, we provide the definitions of the signatures, that play the role of
explanations.

To discover the definitions of the failure signatures, we can rely on the

following pieces of knowledge:

e the files containing the test results, one file corresponding to one faulty
ELAC/LRU.

e the historical knowledge in avionics maintenance, which is the established

correspondence between test result files and the correction actions.

We propose to model the tests and their results in an ontology to enable
automatic reasoning over it. Indeed, Al techniques allow to formally represent the
knowledge of a domain and perform automatic processing over this knowledge,
like reasoning. In this thesis, we propose to use Description Logic (DL) as the
underlying language for the ontology, since it is a formal representation, for
which the reasoning results are traceable and explainable. The proposed approach
allows to enrich this ontology with discovered new Failure Signatures and their
definitions incrementally.

Once the discovered signatures are made available, when a new, unseen, test
file is presented to the system we use the ontology to determine the type of
failure to which it belongs. Thus the ontology provides a level of automatic
interpretation of the test files. Then, corrective actions can be provided to the
technicians as suggestions.

The association of the signature found and the corrective actions is given by
the historical data. In this way, each time a new test arrives, it is first analyzed
to find if it corresponds to a failure signature already known by the knowledge
base. Otherwise, a new type of failure signature will be learned, thanks to the
information this new test carries, thus incrementally enriching the ontology to
increase its completeness.

In this DL setting, tests are individuals, and failure signatures are concepts.
Consequently, our objective is first to discover these concepts, corresponding to
sets of individuals, and secondly associate these concepts to corrective actions.

There exist several approaches to construct and discover concept definitions,
most of which rely on positive and negative samples with respect to the categories
already defined. As stated before, we do not know these categories in advance,

and we cannot used these approaches.



The discovery of the concepts in a DL setting can be achieved even if we do
not have a large amount of data, therefore we do not rely on large amounts of
historical data. In principle, we could provide all possible combinations of all
available properties of the tests in the model, and use them to formulate the
categories of the tests. However, the possible concepts we can construct in this
way grows exponentially, and might even be infinite if the length of the concept
is not limited. To overcome the problem of searching through all possible concept
expressions, in our approach we guide the discovery of the failure types by the
available tests. In this manner the search space is limited and the possible failure
types can be found in tractable time.

From the point of view of the techniques that enable us to obtain these

signatures in a DL setting, our objective is to:

Discover concepts in a DL-Ontology in an unsupervised fashion, in
such a way that they represent interesting sets of individuals, and

the definition of each discovered concept is explicit.

Note that, for each discovered set of individuals, several concept expressions
might correspond. Those that are the shortest most specific will be preferred to

avoid useless expressions .

1.4 The main contributions

o We identify a new problem in DL setting, which is to discover new concepts

that are unknown in advance, named unsupervised concept discovery.

e We propose the algorithms to the problem of unsupervised concept dis-
covery. The main algorithm is presented as a refinement operator which
provides a full control over the refinement process. We show the operator
is sound and complete, in that it provides an access to all relevant con-
cept definitions that can be constructed to describe the different sets of

individuals in the ontology.

e We provide an explainable method to suggest avionics maintenance actions

based on the discovered concepts.

e We provided a prototype used in a Thales division to support avionics
maintenance diagnosis, where given a test file as input the suggested
corrective actions are returned. The prototype uses information from

Thales Avionics (Toulouse, Chéatellerault - France) with whom we have

In this context useless is understood as expressions that do not contribute in the number
of tests captured by the description.



developed the model and selected the data. The final implementation is to
be hosted in Thales Research & Technology (Palaiseau - France) using a

BigData platform, allowing massive processing and remote access.

e We test and evaluate the approach applied to the avionics maintenance,

and provide discussions on the found results.

1.5 The thesis structure

The rest of this document is organized as follows:
Given the context and problematic presented in this introduction, we continue
by presenting the state of the art on tools and techniques that allow to solve

similar problems.

Chapter 2 presents the related work. We start by introducing ontologies
and their role in knowledge representation and knowledge integration. We ex-
plain their relation with the semantic web and highlight some challenges of
implementing ontologies based systems. Next, we present approaches to model
industrial maintenance using ontologies and their relation to our solution. Finally,
we introduce ontology learning, for which concept learning is a specific case. We
explore the current techniques for concept learning, and outline the limits they

present for solving our problem.

Given the research works related to our problem, we next present our solution.

Chapter 3 In this chapter we present our approach which allows us to
overcome the technical challenges for concept discovery, under the constraints
and conditions stated in our problem definition. A preliminary part introduces
the necessary notions and definitions used in our approach. Then this section
presents the definitions, the algorithms and the proofs of soundness and com-
pleteness for our approach. Our solution is driven by the analysis of one sample
at the time to guide the search over the space of concept expressions. This search
is realized through the iteration of a refinement operator. In this chapter we
specify how the operator generates concept expressions, what are the properties
of the discovered definitions and how they can be used to distinguish sets of

individuals that share some semantic features in the ontology.

The approach presented in chapter 3 is of general use, thus the next step is

to apply it to the avionics maintenance case.

Chapter 4 In this chapter we establish the relation between the situations



found by the approach in chapter 3 and our goal of discovering Fuailure Signatures
in avionics. To this end, we pose the problem of finding the signatures as finding
situations in an ontology. Once the signatures are available, we specify how to
obtain the suggested corrective actions for a given .AR file. Finally, we show
how to integrate the new knowledge in the ontology. The algorithms and the

specifications on what the computations yield are given in this chapter.

Once the design of the algorithms and their specifications are given, we

proceed to implement them to develop a prototype.

Chapter 5 In this chapter we detail the implementation process. We present
the requirements of the prototype, the context on which it is intended to be used,
the architecture of the system, the two main functions: Consult and Feedback,

and the different versions of the prototype.

With the prototype in place and the specifications of the approach clearly

established, we proceed to make experiments and evaluate our approach.

Chapter 6 This chapter shows the evaluation of the approach, by perform-
ing different tests using the prototype and analyzing how well these results
comply with the criteria defined for a desirable solution. Several variations in the
prototype are made considering: different amount of analyzed data, two different
implementations and two different reasoners. A final evaluation considers the

feedback from the users on the usefulness of the approach.

Chapter 7 This chapter presents our conclusions and guidelines for further

work.

Finally the Annex provides details on the data sources, the user manual,

and a list of by products of the thesis.
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Chapter 2

Related Work

In this chapter we describe techniques related to our problem, that is ontology
based concept discovery applied to the maintenance domain.

We start by presenting ontologies. We defined them in a most general sense.
We specify their role in computer science. One of their most notorious applications
is related to the semantic web, where the Ontology Web Language (OWL) is
designed as formalism to annotate content on the web and make knowledge
interoperable. These features are important to understand the capabilities,
potential and relevance of ontologies and knowledge based systems. Secondly,
we introduce Description Logic, the formalism used in this thesis to represent
ontologies.

In Section 2.2, we describe approaches for diagnosis and maintenance. First
we provide a brief overview of Model Based Diagnosis (MBD), where the problem
of defining the causes of failures in equipment is studied. In this setting, given
a model of a system, the goal is to use the model to predict the behaviour
of the system and provide diagnosis. We explain the similarities, limitations
and ideas that intersect with our approach. Next we present an overview of
approaches that envisage and study their application in industrial maintenance.
Indeed, a model is to provide an abstraction of a real world process. It allows the
study of the process, to understand its mechanism and to predict its behaviour.
Ontologies provide the means to model industrial processes and systems, in a
conceptual way. Because of their features, ontologies have been considered to
enable knowledge management in the industry.

Because knowledge discovery involves automatic processing of information,
in Section 2.3 and Section 2.4, we provide a general introduction to machine
learning, supervised learning, unsupervised learning and clustering. Nowadays
machine learning is largely associated with neural networks, statistical analysis

and deep learning. These are techniques based on functions that operate over large
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amounts of unstructured data which is represented as vectors and matrices of real
numbers. In a symbolic setting, like ontologies, the information is discrete and
highly structured, which requires a different approach. This is why “classically”,
knowledge representation and machine learning are regarded as two separate
branches of artificial intelligence, where many approaches to combine them
exist, aiming to take advantage of both areas [Dietz Saldanha et al., 2018]. Our
work also falls in the category of such hybrid approaches, with an emphasis
on knowledge representation. It is out of the scope of this thesis to provide an
extensive insight into machine learning, but a context to properly position our

work, with respect to these approaches is required.

The construction of a model can be very demanding: the knowledge of
experts in the domain is needed as well as skilled ontology engineers. The goals
for which the model is constructed influence its design and the inferences obtained
should be inline with the expected results. These factors associated with the
needed resources, impose a constraint on the development of knowledge based
systems. A study and methodology for estimating such costs can be found in
[Simperl et al., 2012]. We introduce an overview of ontology learning which aims
to achieve the challenging goal of automatic construction of ontologies, from
which concept learning is a particular case. Concept learning is concerned with
automatic construction of concept definitions and general concept inclusions.
The main techniques of these approaches are based on least common subsumers,
normalization, refinement operators (as in inductive logic programming) and
in bisimulations. Some of these approaches provide theoretical studies of the
problem, and others go as far as possible to implement software tools. A state of
the art tool for supervised concept learning is DL-Learner, based on refinement
operators. Our work is inspired by the approach of DL-Learner whose main

features are therefore explained in detail.

We finish this chapter with an outline of the tools and techniques in knowledge
clustering and graph mining. The motivation behind this is to take advantage of
the extensive research and techniques for clustering. In the same line of thought,
pattern recognition identifies similar patterns present in the data. Since the
information in ontologies can be represented as a graph, an overview of the

techniques to mine common subgraphs is presented.
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2.1 Ontologies and Description Logics for Knowl-

edge Representation

2.1.1 Ontology: Definition, Role, Representation Languages

The term ontology has its origin in the greek words : onto (being; that which
is) and logos (logical discourse, study of). It can be understood as the ”study
of being” or ”the study of things that exist”. As such, it is a very abstract and
broad notion that can be defined differently depending on the domain it is being
used: philosophy, linguistics, computer science, etc. Ontologies are intrinsically
related to the idea of conceptualization and naming things that exist. They study
concepts that directly relate to being, in particular becoming, existence, reality,
as well as the basic categories of being and their relations.

In computer science, ontologies are regarded as formal representations of
knowledge, although there is no general agreement on what characteristics a
representation should have to be called an ontology [Lehmann and Vélker,
2014]. Depending of the point of view and the domain being modeled, their
definitions and characteristics can vary, they can be viewed as: dictionaries,
thesauri, taxonomies or highly axiomized formalizations. In this thesis, we are
interested in formal ontologies.

Ontologies play a central role in data and knowledge integration: by providing
a shared schema, they facilitate query answering and reasoning over disparate
data sources. Ontologies provide a computer readable interpretation of multiple
sources, e.g. the content of the web. This allows to have a common language for
describing the web, where ontologies can refer to each other and where new ways
to link information (e.g. through annotations) are available. As such, ontologies
are essential to the semantic web. The Ontology Web Language (OWL) defined
by the World Wide Web Consortium (W3C) used in the semantic web, specifies
the syntactic restrictions to construct the ontologies [Consortium et al., 2012].
This specification standardizes the format of the ontologies, facilitating their
access, interoperability and shareability.

In this thesis we do not explore or discuss the details and research on the
semantic web. We only highlight how it benefits from ontologies and formal
descriptions, and how this has made ontologies more popular, in order to show
the scope of applications that can benefit from our approach.

A main motivation for the use of ontologies in the semantic web comes from
the limits that the content on the world wide web presents. The Hyper Text
Markup Language (HTML) was designed to link documents and tag the content
of web pages. The HTML documents are then interpreted by a client (typically

a web browser) which provides a representation and access to their content. The
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limits of HTML lay in that the tagged content lacks of meaning. We can tell that
a specific web site contains text, images, links, etc., and we can even associate a
description to these items, but we can not explicitly tell what this information is
about: a person, a company, an event, etc. To provide this additional layer of
information, and enable automatic access to it, the ”semantic web” came into
place [Berners-Lee et al., 2001].

An ontology compliant with OWL can be serialized in different file formats:
Extensible Markup Language (XML), Turtle, Resource Description Framework
(RDF). These files can be used to link the resources used in the web with the
terms in the ontology, associating the meaning the ontology carries to the content
in the web.

Once an OWL ontology is available, it has to be interpreted. This interpreta-
tion is given by the semantics applied to the represented knowledge. Two main
semantics are given to interpret OWL ontologies: the direct semantics and the
RDF semantics.

The Direct Semantics of an OWL 2 (latest version of OWL) ontology is
compatible with the model theoretic semantics of the SROIQ description logic
(a fragment of FOL with useful computational properties) [Consortium et al.,
2012]. This semantics assigns meaning directly to the structures in the ontology.
The advantage of this close connection is that the extensive description logic
results in the literature and implementation experience can be directly exploited
by OWL 2 tools, extending the reasoning capabilities of DL to OWL knowledge
bases. Some syntactic restrictions are required on these ontologies (e.g. transitive
properties cannot be used in number restrictions), which are also known as
OWL 2 DL ontologies. Section 3.1.2 introduces Description Logics, that provide
the logical foundation for OWL DL, and which is the knowledge representation
language chosen in this thesis.

On the other hand, RDF-based semantics interpret the ontology as a graph.
This semantics is fully compatible with RDF semantics. Every OWL 2 ontology
can be serialized as an RDF graph, and thus no restrictions are imposed on these
representations. These ontologies are known as OWL-Full ontologies. A drawback
on this setting is that the full graph of the ontology has to be materialized, thus
making all the knowledge implicitly encoded in the ontology explicit.

2.1.2 Description Logics

Description Logics (DLs) are a family of First Order Logic (FOL) formalisms
[Baader, 2003a] that represent knowledge in terms of concepts, individuals that
belong to these concepts and the relations between them. DLs are equipped

with formal, logic-based semantics, and provide reasoning as a central service:
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reasoning allows to infer implicitly represented knowledge from what is explicitly
expressed in the knowledge base.

Description Logics have their roots in semantic networks [Lehmann, 1992,
Quillian, 1967, Sowa, 1987] and frames [Minsky, 1974], which are early formalisms
for representing knowledge and which allow automatic reasoning. Even though
they present differences, both are structures that represent knowledge as concepts
(sets of individuals) and relations between them. Their implementation was
initially intended for artificial intelligence, in providing a model on how humans
reason, and in machine translation as one specialized area of application. A
drawback of such approaches was the lack of clear and well defined semantics. A
recognition that frames could be given formal semantics through First Order Logic
came in [Hayes, 1981], where the sets of individuals are unary predicates and the
relations between them are binary predicates. Nevertheless, such representations
did not require all the machinery of FOL to capture the semantics of frames.
Furthermore, First Order Logic is undecidable, meaning that for some decision
problems, an answer can not be given in finite time, thus the need to restrict to
a fragment of the language.

In logic, the predicate symbols provide the vocabulary to express facts about
the world and the syntax of the language allows to combine these symbols in words
or well formed formulae with well defined semantics. Typically the formalism
provides unary (negation) and binary (conjunction, disjunction, implication,
equivalence) connectors, which can be combined with quantifiers (existential
restriction, universal restriction) to form valid words over the sets of symbols.
These comprise the constructors of the language. The constructors and the values
that can be passed as parameters for the predicates, define the expressivity of
the corresponding language.

There is a trade-off between the expressivity of the language and the complex-
ity of the reasoning procedures: the more expressive the DL language, the more
complex reasoning becomes. On the other hand, less expressive DL languages
might have very efficient decision procedures, but might not be rich enough to
properly represent the necessary concepts and relations in the target domain.

Thus depending on the constructors allowed by each language, a computa-
tional complexity to reason over the represented knowledge is associated.

Extensive research and efforts have been made in providing procedures that
are decidable and tractable (they should terminate, provide an answer in finite
time, and preferable in polynomial time, i.e. avoid exponential blowup) for the
different families of DLs.

Thus, Description Logic comprises a family of FOL languages for knowledge
representation, with well defined semantics, associated complexity results and

for which efficient algorithms for reasoning exist.
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As mentioned before, the different DL languages are distinguished by the
constructors they provide. The selection of a language depends on the application
domain and on the associated complexity. The description logic language AL
(which stands for Attributive Language) is considered as the reference language
for DLs, from which modifications and extensions exist. In this thesis we are
interested with the DL language EL£O as defined in [Kazakov et al., 2012].

The language £LO is different from AL in that it does not allow negation
nor disjunction. However it allows to refer to individuals in complex concepts
thanks to nominals. In this thesis we have chosen £L£0O because it is the simplest
DL language that allows to describe the avionics domain. As stated before,
the more expressive the language the more expensive it is to reason over the
represented knowledge. Allowing negation and disjunction can easily lead to
exponential blowup and have not been considered as strictly necessary to describe
our domain. Thus we do not intend to use unnecessarily expressive languages,
unless required. Our goal is to provide an approach that can solve a basic
case, and establish the cornerstone for extensions to more expressive DLs, if
it is considered necessary. Under these considerations, a simpler language £L£
(which considers only conjunction and existential restrictions) could suffice, but
we find that it is not expressive enough for our problem. Details about the
maintenance tests made in avionics are expressed as individuals. If we expect to
make distinctions between the tests, nominals have to be allowed in the concept
definitions. Therefore, after an initial analysis of our data, the minimal and
sufficient DL family for our approach is EL£0O, detailed in chapter 3.

Regardless of the chosen language, in Description Logics a distinction be-
tween the terminological knowledge and the assertional knowledge is made. The
terminology is given by the vocabulary of the ontology, where the names of the
concepts, the names of the relations and their definitions (if they are formed
of sub concepts, of intersections of other concepts, the domain and range of a
relationship) are given. This part of the ontology is called the T-Box. On the
other hand, we have the assertions, which are statements of facts about the
world expressed in terms of the T-Box. A T-Box and an A-Box all together are
known as a Description Logics knowledge base, which in turn is also called a
DL-Ontology.

2.2 Approaches for Diagnosis and Maintenance

2.2.1 Model Based Diagnosis

Model Based Diagnosis (MBD) is a framework for system diagnosis developed

by the Computer Science and Artificial Intelligence communities. A system
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is provided in terms of its components and their interaction. The model of a
system allows to predict its expected behaviour. When an observation, typically a
measurement, about the state of the system differs from its predicted behaviour,
it is called a symptom of a failure. A failure is put down to the bad interaction of
a set of components in the system. The intuition is that when a symptom which
depends on the interaction of a set of components is detected, it can not be the
case that all the components involved are working properly. Each such set of
components is called a conflict set for the observed symptom. A minimal conflict
set, is a conflict set for which no other proper subset is a conflict set. These are
desirable because we would like to identify as precisely as possible the causes for
the detected failure, that is the faulty components. A diagnosis in this setting is
a hypothesis on how the system differs from its model. The size of the diagnosis
space is exponential in the number of components of the system. The model of a
system and the notions of conflict sets and diagnosis can be formally defined
through First Order Logic (FOL), where a system is a triple composed of: the
system description, the components of the system and the observations. The
diagnoses are found through logical inferences that make the proposed diagnoses,
the observations and the description of the system consistent. As such, diagnosis
can be seen as a form of abductive reasoning, where given a set of observations,

the possible reasons for the observations are the diagnoses.

Strategies to avoid exploring the exponential space of diagnoses, and im-
posing preferences on the diagnoses retrieved have largely been investigated.
An introductory document and the main techniques for MBD can be found in
[De Kleer and Kurien, 2003].

Similarly to our problem, we aim to point out the faulty components that
may return the equipment (system) to a fully functional state. We also rely on
First Order Logic (FOL) formalizations to model our domain. But we do not
count with an explicit model of the system. We do not have the explicit relation
of the sequence and interdependence of the components in the equipment, and
we are not modeling the equipment itself. Instead, we model the test results that
report the status of functions in equipment and corrective actions having been
made by the maintenance technicians. This knowledge is formalized using DL
ontologies and the possible diagnoses are given by the discovered signatures for

the failures.

We next present approaches that leverage ontologies for industrial mainte-

nance processes.
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2.2.2 Ontologies in Approaches for Maintenance

There exist several works that research the applicability, advantages and con-
siderations of using ontologies to model maintenance, and support the overall
process. The main objective in these works [Karray et al., 2012, Regal and Pereira,
2014, Ebrahimipour and Yacout, 2015, Palacios Medinacelli et al., 2016, C. In-
saurralde, 2018, Keller, 2016] is to provide a formal model that considers all the
available\necessary heterogeneous sources of information, in a single well-defined
representation. Such a model has the advantage of increasing the shareability and
accessibility of the knowledge, and allows for a computer readable representation,

which enables to draw automatic inferences over the represented knowledge.

In [Emmanouilidis et al., 2010] the importance to develop a domain ontology
in the context of Condition Based Maintenance is analyzed. The approach
emphasizes the relevance of an incremental modelling capacity along with a
domain ontology, to provide a diagnosis of assets and a prognosis on how they
will evolve over time. The role of the ontology in this work is to structure the

available knowledge and deal with the heterogeneous data sources.

In [Regal and Pereira, 2014] they study how an ontology can be constructed
to leverage from the interaction of Intelligent Maintenance Systems (IMS) and
Spare Parts Supply Chain (SPSC). IMS allow to forecast failures which can
avoid downtime and provide competitive advantages. The interaction of this
information with SPSC can enable a more precise demand and store planning for
spare parts, thus the relevance of the interaction of both systems. It is pointed
out that some of the challenges of a successful interaction between such systems
is due to the semantic differences between these areas, with diverse concepts
and diverse vocabularies. Thus in [Regal and Pereira, 2014], it is proposed an
ontology as a common vocabulary, to overcome these limitations and to serve as

a basis for the future construction of an integration system.

In [Ebrahimipour and Yacout, 2015] a methodology for constructing an
ontology schema is presented which relies on industry standards (ISO 14224,
ISO 15926) as basis for providing a generic, shared and standard vocabulary for
maintenance. The aim of this methodology is to support maintenance knowledge
representation by providing a shareable and operable format that facilitates
knowledge retrieval and semantic extraction during fault diagnosis process. The
ontology is represented using OWL\RDF. It allows to overcome the heterogeneity
of the vocabulary and of the data sources found in maintenance documents.

There are also studies [Ebrahimipour et al., 2010, Dittmann et al., 2004] on
ontology based systems for Failure Mode and Effects Analysis (FMEA). FMEA
was initially introduced by NASA on the 60’s for its space program. It is a method

to analyze potential reliability problems all along the development cycle of a
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project. It facilitates taking actions to overcome reliability issues and estimate
risks in design time, thus enhancing the reliability through design. Characterizing
failures and preventing them, is central to FMEA, where the knowledge about the
different systems that involve: design, monitoring, maintenance and evaluation of
systems, requires a centralized and common access. The works using ontologies
for FMEA have a generic scope, they provide well based general-purpose terms
as a foundation for more specific domains. Their focus is to provide access to
the heterogeneous information involved in safety and reliability systems. The
work of Regal and Pereira [Regal and Pereira, 2014] provides an outline of these
approaches.

Following the same line of thought, the work of [Wu et al., 2014] relies on ATA
ISPEC2200 and ISO 15926 to obtain a generic system-level representation model
for maintenance in aircraft, where the ontology helps to overcome heterogeneity
and data inconsistency in the maintenance report. Similarly, in previous work
[Palacios Medinacelli et al., 2016], research on proper terminology, challenges
and benefits of implementing a maintenance support system are explored. The
work states the rationale and potential of an ontology based approach to support
avionics maintenance, where knowledge discovery can be used to identify failures,
and ontology alignment techniques would allow integration with upper ontologies.

The efforts in the above presented approaches aim to provide a model which
considers the proper terminology used in the domain, based on standards and/or
recommendations. This model is an ontology that offer a common access point to
the resources and systems involved in maintenance to the multiplicity of actors
involved in the process. A common challenge on these works is the different
formats of the sources of information and the access to the data for each involved
actor. The approaches provide analysis and a guidance on how these knowledge
bases should be built, operated and highlight their potential. It is envisaged that
such knowledge bases, besides providing a common language and common access
point to the represented knowledge, would also serve as corner stones to build
intelligent systems on top of them. But none of the above mentioned works go
beyond the implementation of the ontology. Previous work [Palacios Medinacelli
et al., 2017] evaluates the use of ontologies aided by machine learning to build a
prototype system to support avionics maintenance, nevertheless the approach
provides only guidance on how the search is to be done, and does not reach the

implementation phase.

2.3 Ontology Learning and Concept Learning

The literature on machine learning is extensive [Cherkassky and Mulier, 2007]

covering a wide spectrum of techniques, applications, perspectives and disciplines.
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It is out of the scope of this thesis to provide an extensive survey of the field.
In this section we provide an intuition of its general concepts, and define the
context under which this thesis takes place in the area.

Machine Learning (ML) is a field of artificial intelligence which relates to
automatic learning by computers in a broad sense. The algorithms used in
ML can mainly be classified in supervised learning, unsupervised learning and
hybrid approaches. Supervised learning refers to the problem of approximating
an unknown function f through a hypothesis i, where the learning process is
guided by positive (and possibly negative) samples of the correct (resp. incorrect)
outputs of the function f. The hypothesis h can then be used to approximate
the output of f. In unsupervised learning, there is no function f to approximate.
The data is given without any labels (like positive or negative samples) and
the task is to identify sets of data, that can be grouped together according to
some of their features. Usually a distance between the elements in the data is
defined, forming neighborhoods of elements and the notions of minimum distance
between neighbors and maximum distance between neighborhoods is applied to
form clusters. The notion of unsupervised comes from the non-involvement of an
external influence to classify the data. A third type of algorithms called hybrid,
usually working on semi-labeled data, mix both types of algorithms [Goodfellow
et al., 2016].

From these techniques we are interested in those that allow for automatic
learning in ontologies, presented next. Other works related to unsupervised

approaches for structured data will be presented in Section 2.4.

2.3.1 Ontology Learning

A major challenge for ontology based approaches is the construction of the
ontology. Top-level descriptions of a domain are easier to model than detailed
descriptions, nevertheless the model should be accurate enough to solve the
problem/tasks for which it was designed. When creating a knowledge base,
the designer has to select the relevant pieces of information to be represented
and organize them accordingly. The features of the represented knowledge, the
terminology used and the detail to which the descriptions are given depend on
the objective for which the knowledge base was built.

This can be a difficult and time consuming task because of many factors: it
requires expertise in the domain, it requires expertise in creating a knowledge
base, and it is subject to the perspective of the designers involved, among others.

Ontologies can vary on their size, complexity, usage, maintainability, etc. All
these characteristics influence on the feasibility of implementing ontology based

systems. A cost analysis method to evaluate the resources needed for ontology

20



engineering has been proposed in [Simperl et al., 2012], which reflects the variety
and complexity of tasks and resources needed to obtain an effective ontology.
Thus, automatic ontology learning has a very practical application and benefits,
if carried out properly.

Ontology learning is a multidisciplinary field which aims at the automatic
generation of ontologies. The term “ontology learning” was coined by Médche
and Staab in 2001, and the first ontology learning workshop held in 2000
brought together people from very different research communities, with works
based on ripple down rules, word sense clustering, and information extraction.
In [Lehmann and Voelker, 2014] they present a compilation of approaches in
the area of ontology learning including contributions by the concept learning
community as well as “classical” works on ontology learning from text or other
semi-structured resources. It provides an overview of a broad range of ontology

learning approaches, from which we borrow the following classification:

e Ontology Learning from text mostly focuses on the automatic or semi-
automatic generation of lightweight taxonomies by means of text mining
and information extraction. Many of the methods used in ontology learn-
ing from text (e.g. lexico-syntactic patterns for hyponymy detection or
named-entity classification) are inspired by previous work in the field of
computational linguistics, essentially designed in order to facilitate the
acquisition of lexical information from corpora. Some ontology learning
approaches do not derive schematic structures, but focus on the data level.
Such ontology population methods derive facts from text. An example
is the Never-Ending Language Learning (NELL) project [Carlson et al.,
2010], which reads the web to add statements to its knowledge base and

improves its performance over time, via user feedback.

e Linked Data Mining refers to the process of detecting meaningful patterns
in RDF graphs. One of the motivations behind this research area is that
Linked Data publishers sometimes do not create an explicit schema for their
dataset upfront, but focus on publishing data first. Being able to detect the
structure within published RDF graphs can, on the one hand, simplify the
later creation of schemata and, on the other hand, allow to detect interesting
associations between elements in the RDF graph. This can be achieved
via statistical schema induction or statistical relational learning methods
[Bithmann and Lehmann, 2012, Bithmann and Lehmann, 2013, Vélker and
Niepert, 2011], which mine frequent patterns and correlations in large data
sets. In Linked Data mining, clustering approaches can be used to group
related resources and provide an enhanced structure for the underlying
data.
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e Concept Learning in Description Logics and OWL is a direction of research
that aims at learning schema axioms, such as definitions of classes, from
existing ontologies and instance data. Most methods in this area are based
on Inductive Logic Programming methods [Nienhuys-Cheng and De Wolf,
1997]. While many algorithms, such as DL-FOIL [Fanizzi et al., 2008b] and
OCEL [Lehmann and Hitzler, 2010] are generic supervised machine learning
approaches for description logics, there are also specific adaptations to
ontology learning, in terms of performance and usability. Closely related
to concept learning in Description Logics is onto-relational learning, which
combines methods for learning OWL axioms with rule learning approaches
[Lisi and Esposito, 2009].

e Crowd-sourcing ontologies is an interesting alternative to purely automatic
approaches as it combines the speed of computers with the accuracy of
humans. Provided that the task to be completed is simple enough, it only
requires the right incentives for people to contribute. Examples of crowd-
sourcing in the field of ontology learning include taxonomy construction
via Amazon mechanical turk, and games with a purpose for ontology
population [Karampinas and Triantafillou, 2012, Chilton et al., 2013].

To sum up the approaches based on learning from text are closely related to
text analysis and natural language processing. Although in maintenance reports
there exist valuable information in the form of text, the automatic interpretation
of the textual content of these reports is out of the scope of our approach. We
aim to discover concepts based on the values of their instances and through
the vocabulary and constructors allowed in an ontology. This is independent
from interpreting what is written in the reports, and different from discovering
relations between textual elements.

The approaches in the linked data category rely on techniques for graph
mining which require the full graph. This implies that the all the knowledge that
can be inferred, must be explicitly represented in this graph (in the context of
OWL this is called the materialization of the ontology). Graph mining techniques
are further detailed in Section 2.4.2. Additionally, they rely on frequent patterns
in large amounts of data. In our problem such large datasets are not available.

In contrast, the approaches in the concept learning category are interesting
for our approach because their goal is to discover concept definitions. Either
these approaches are designed for supervised machine learning or are based on
clustering techniques. These two kinds of approaches are described in more detail
in Section 2.3.2 and in Section 2.4 respectively.

Crowdsourcing is an alternative to fully automatic learning, where the humans

are involved in the learning cycle, reviewing the content in an ontology, or
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explicitly adding content to it. These alternatives can not be applied to our
problem because it is not possible to ask users to classify information in categories
that are not know in advance. The idea of involving the user in the learning
cycle is interesting. In our problem such a process could be used to validate the

discovered categories.

2.3.2 Concept Learning

Inductive machine learning studies the problem of learning a function f for
which samples of its inputs and outputs are given as pairs of the form {z, f(z)}.
The task is to learn a function h, called hypothesis, that best approximates f.
Each sample z is described by its features, which are represented as a vector.
Each value of each feature of a sample can be either discrete or a real number
[Goodfellow et al., 2016]. If f is a binary function, the problem is called binary
classification.

Binary classification in description logics is called concept learning [Tran
et al., 2012] since the function to be learned is expected to be characterized by a
concept expression, for which the output is binary. Concept learning differs from
the classical setting mentioned above in that an object is described not only by
the values of its features, but also by its relations to other objects.

In [Tran et al., 2015] the related work on methods of concept learning in DLs
are classified into three groups. The first group focuses on learnability in DL
and presents some relatively simple algorithms [Cohen and Hirsh, 1994]. The
second group studies concept learning in DLs using refinement operators as in
inductive logic programming [Badea and Nienhuys-Cheng, 2000, Lehmann and
Hitzler, 2010, Ratcliffe and Taylor, 2017]. The third group exploits bisimulation
for concept learning in DLs [Ha et al., 2012, Nguyen and Szatas, 2013, Tran
et al., 2015]. Our work is inspired by the latter two types of approaches.

Within the second group of approaches (based on refinement operators) DL-
Learner [Lehmann, 2009] is a state-of-the art tool for concept learning. It provides
a framework for supervised machine learning using several algorithms which
are highly parameterizable. It uses refinement operators like CELOE [Lehmann
et al., 2011] for OWL expressions and ELTL [Lehmann and Haase, 2009] for the
EL family of DL. Depending on the desired properties of the operator and the
DL-constructors allowed, the operator traverses the space of possible concept
expressions in a top-down or bottom-up manner. Then these concept expressions
are evaluated, using heuristics, to find the most suitable ones. Shorter and more
simple expressions are preferred by these algorithms. DL-learner, likewise the
other approaches in this group, first generates concept expressions from the

available classes and constructors of the underlying ontology, and then uses the
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positive (and possibly negative) samples to decide which expressions are more
promising to iterate the process over them.

The approaches of the third group use the notion of bisimulation from modal
logics that characterizes distinguishability between objects. A proper bisimulation
definition is given to suit DL and it is used to define partitions in the set of
objects of the ontology [Ha et al., 2012, Nguyen and Szatas, 2013, Tran et al.,
2015]. These partitions define equivalence classes between the objects, i.e. those
objects that can not be distinguished between them. Each one of these partitions
is a DL-concept, and finding the partitions is equivalent to learn concepts. The
way these partitions are found, is similar to those approaches based on refinement
operators in that combinations of the constructors allowed by the language are
generated, and then evaluated against the samples.

To sum up, the approaches based on refinement operators require positive
(and possibly negative) samples. In our problem, we require to distinguish between
the samples based on their features, and not by a label, i.e. we do not count with
positive/negative samples, this problem has been partially studied in [Palacios
Medinacelli et al., 2018, Palacios Medinacelli et al., 2017]. With regard to the
approaches based on bisimulation, the notion of equivalence classes is interesting
because it allows to formally specify: if the model can distinguish between samples,
the properties that separates them, and provide approximations to the concepts
that are looked for. Finally, in both above mentioned types of approaches, the
search of concept expressions is done by combining the constructors allowed
in the language, without regard of the information in the samples. This search
space grows exponentially. The samples are only used after the concepts are
generated, to avoid an exhaustive search in this space. The samples are not used

to generate the concepts themselves.

2.4 Unsupervised Learning over Structured Data

2.4.1 Clustering in Knowledge Bases

Clustering in computer science refers to an area of research concerned with data
analysis and interpretation. It is a field with extensive literature and applications,
like data mining, pattern recognition, image analysis, etc. In this thesis we do
not intend to provide a deep review of the field, but to highlight the applicability
to our problem. A general reference to clustering can be found in [Pedrycz, 2005].
Intuitively, clustering is a methodology to identify interesting groups of data
within a given dataset, based solely on the features of the data. The dataset
is given without further information on how it can be organized. Clustering

provides means to distinguish sets of data that share some meaningful features.
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Each such set is called a cluster. In this sense, the principle in clustering is similar
to our problem, where distinctions between groups of samples in a dataset are
searched for, and where the construction of such groups does not depend on the
labeling of the analyzed samples (as in opposition to supervised learning).

Two central notions in techniques for clustering are: similarity and distance.
A similarity measure allows to compare the elements in a dataset, and it can
be defined for each type of data the clustering problem handles. A distance on
the other hand, is a metric that allows to establish how close the elements in a
dataset are to each other. The clusters are then formed by minimizing the distance
between the elements inside each cluster, and maximizing the distance between
the clusters. The similarity measure, the distance and the very notion of cluster
can vary depending on the perspective, the underlying data and the goal of the
clustering process. Some of the main techniques include: hierarchical clustering,
k-means clustering, distribution-based clustering, density-based clustering. These
techniques are developed for data whose features are represented as vectors
of discrete or real values. When considering description logic knowledge bases,
these approaches can not be directly applied, since the features are not only
discrete or continuous values, but also other objects with their own features.
Thus adaptations or new approaches are required to handle these cases. In the
following we present some of the work in this area where the concept of clustering
is applied to knowledge bases.

Some approaches have been proposed to adapt well-known clustering tech-
niques to ontologies and knowledge bases [Fanizzi et al., 2008a, Fanizzi and
d’Amato, 2007, Lee and Gray, 1998, Nowak-Brzeziriska, 2016]. These approaches
define a similarity measure based on a lexicographic distance between the rules,
text-based similarity in the instances of the knowledge base, and similarity based
on a set of defined features (like concepts). Then the distance and the clusters
formed are obtained using a suitable and well studied clustering algorithm (such
as k-means or Hopfiled network). The work of Fanizzi and d’Amato [Fanizzi and
d’Amato, 2007] presents an adaptation of hierarchical clustering to semantic
knowledge bases, like OWL ontologies. Namely, it can be used to discover in-
teresting groups of semantically annotated resources in a wide range of concept
languages. The method exploits a dissimilarity measure that is based on the
resource semantics with respect to a number of dimensions corresponding to
a committee of features. These features are represented by a group of concept
descriptions. The algorithm is an adaptation of the classic Bisecting k-Means to
complex representations typical of the ontology in the Semantic Web.

An algorithm to cluster rules in a knowledge base is presented in [Lee and
Gray, 1998] based on the syntactic information in the rules and their lexical

similarity. Clustering is achieved by using a neural network algorithm based on
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Hopfield network. The goal of this approach is to support Knowledge Based
Systems maintenance, by rendering the content of the knowledge base more
accessible through the clustering of similar rules. The clusters are aimed to
provide an adequate amount of information and acceptable sized clusters.

The above mentioned approaches transform the information present in the
ontology into vectors of discrete/real values. Then, a similarity measure and a
distance are defined over them, to proceed with clustering. Full vectors of the
same size are needed to compare them. This in our case is undesirable. Indeed,
in our problem, the information can be incomplete (some of the values on such
vectors might be unknown) and converting the information in the ontology into
vectors, may lead to ignore relations between instances.

A problem similar to ours has been investigated [Fanizzi et al., 2004, Kietz
and Morik, 1994] for the automated construction of terminologies from assertions
in Description Logics (DLs) (ALC). These approaches are based on first finding
the most specific generalization (msg) of each sample in a set of samples, and
then finding the most general descriptions (mgd) for the msc’s found. To select
which mgd’s represent a cluster, the notion of maximal set of mutually disjoint
concepts is used.

To obtain clusters, in [Fanizzi et al., 2004] an initial taxonomy is constructed
based on the content of a given A-Box, thus building a hierarchy of super concepts.
Each super concept in this taxonomy is analyzed to obtain its Mutually Disjoint
Concepts (MDC). Each MDC serves as the basis for an iteration of the same
process to find sub-clusters. Here, a supervised phase takes place where the dis-
joint concepts (each MDC) are generalized/specialized using upward /downward
operators to refine them. Since clusters in this setting need to be disjoint, the
instances of other concepts are used as negative samples. When a concept covers
negative samples, it needs to be specialized with a downward refinement oper-
ator. This method relies on the assumption that the MDC is given. However,
as the authors point out, finding the MDCs has a superpolynomial worst case
complexity.

Finally, some tools [Lehmann et al., 2017] have been developed for data
analytics considering OWL knowledge bases. SANSA! is a big data processing
engine for scalable processing of large-scale RDF data. It is a state of the art
knowledge analytics system, which uses machine learning algorithms to exploit
the graph structure and semantics of the background knowledge specified using
the RDF and OWL standards. The machine learning layer of SANSA currently
supports algorithms for unsupervised learning, from which for clustering we find:
RDF Modularity Clustering, BorderFlow Clustering, Power Iteration Clustering,
Link based Silvia Clustering. It also provides Frequent Pattern Mining through

Thttp://sansa-stack.net
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Association Rule Learning. These algorithms are based on embedding of entities
and relations into low-dimensional vectors [Yang et al., 2014].

Such tools are intended to either find relations between concepts, mostly
based on textual analysis, and find concepts based on frequent patterns. In our
problem, we do not search to propose new rules between similar concepts, since
these concepts are not known in advance. And we can not solely rely on frequent

patterns, since we are also interested in finding rare occurrences.

2.4.2 Graph Mining

Finally, the instances in an ontology can be represented as graphs, we need to
consider graph mining techniques that could be applied to achieve our goal.

One of the main problems addressed by the different works with graph
structures lies in the subgraph isomorphism issue, through which common graph
structures can be found. The work in [Yan and Han, 2003] proposes an algorithm,
CloseGraph to mine closed frequent graphs. [Motoda, 2007], [Inokuchi et al.,
2000], [Inokuchi et al., 2003] and [Yoshida et al., 1994] present two approaches for
extracting frequent subgraphs: AGM and GBI. AGM relies on the representation
of the graphs by adjacency matrices. Each graph is assigned a unique label that
encodes the adjacency matrix. The subgraph isomorphism problem is solved by
comparing the codes of the graphs and an Apriori-like algorithm that generates
graphs of size K joining two subgraphs of size k-1 and verifies their frequency.
The use of a taxonomy enables the extraction of generalized subgraphs. GBI
relies on the chunking of adjacent nodes in order to generate subgraphs and the
rewriting of the graphs given the selected subgraphs as new nodes. Typicality
and chunking criteria are used in order to select the pairs of adjacent nodes. The
Subdue graph-based mining system [Ketkar et al., 2005] also relies on the use of
heuristics to evaluate the potential subgraph patterns. [Karunaratne et al., 2010]
presents an approach for mining subgraphs, using an itemset mining approach.
The MFI (Maximal Frequent Itemset) [Aggarwal and Yu, 1998] algorithm is
applied on graph structures that are formerly transformed into itemsets.

While the approach appears to be very efficient for a purpose of graph classifi-
cation, contrary to the approaches described above, the lack of comprehensibility
of the subgraphs that are discovered is a limitation for the purpose of concept
discovery.

Using graph mining, the most relevant structures of a set of graphs can
be established, and patterns that discriminate positive from negative samples
can be found. These approaches search for similar structures. This is close to
our goal, since similar instances are expected to belong to the same concepts.

Nevertheless, these structures are required to be presented as graphs and are
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based on detecting frequent patterns, which implies that non-frequent structures
might be ignored. Since we are working with sparse data we need to consider
unfrequent patterns as well. Additionally, the data represented as graphs are not

guaranteed to have a representation in an ontology.

2.5 Summary

In this chapter we have provided an extensive range of studies related to our
problem. This illustrates the breadth of the research that influences this thesis.
We have presented related work from the perspective of description logics, system
diagnosis and maintenance, concept learning, and clustering. All these areas
intersect part of our work, and provide the foundations for our approach.

As explained in the introduction (Chapter 1), we aim to support avionics
maintenance by discovering failure signatures. The terminology, statement of the
problem, and approaches that aim to support diagnosis were presented in the
Section 2.2: model based diagnosis section. We have seen that extensive work on
this area has been done, which shows and emphasizes the need to minimize the
number of repair suggestions (diagnosis) and the importance of providing the
reasons for the diagnosis (explainability). Some logic-based research [Horridge,
2011] propose an abductive approach to the problem, where the detected failure is
seen as an observation, and the logic statements that make this observation true,
are seen as possible explanations for the detected failure. Nevertheless, central
to all these approaches is the availability of the model of the system/equipment
to be diagnosed. In our case, not only this model is not available, but we require
to model the diagnosis process, which goes beyond considering only the model
of the equipment, where the experience of the technicians plays a central role in
the possible corrective actions for a failure.

We have also seen that in industrial maintenance, several actors, facilities,
and locations are involved. This implies a high heterogeneity in the systems
and in the data sources that take part in maintenance. To allow a centralized
access to the heterogeneous and distributed information, several approaches
that propose the use of ontologies in maintenance have been presented. As we
have seen, they highlight the relevance of a standardized model to enable and
increase accessibility and shareability to the available information, but they do
not propose specific implementations of support systems based in those models.

Finally, from a more technical point of view, the use ontologies to discover
information (i.e. approximate failure signatures) requires automatic learning in
ontologies. We have outlined the main areas of ontology learning, and focused on
concept learning. We have seen that there exist supervised machine learning tools

and algorithms, and approaches for clustering in ontologies. Those approaches
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that are designed for supervised learning are not suited to our problem, since
the negative samples can not be determined a priori, and the positive samples
are not complete. Thus, clustering in ontologies provides alternative means to
discover and extract the concept definitions that may represent signature failures.
As we have seen, clustering techniques, as well as those techniques based on
graph structures, rely on frequent patterns or in information presented as graphs.
In our case these represent a limitations, since we are interested on frequent and
unfrequent occurrences of failure signatures, and in meaningful descriptions in
terms of the ontology.

To overcome the above stated limitations: non availability of a model of the
process, the lack of positive and negative samples, the ability to provide results
over sparse data and provide explainable suggestions, in chapter 3 we present

our approach.

29



30



Chapter 3

The Approach : Situation

Discovery

We are interested in the ability to determine when a set of individuals can
be distinguished from the rest. Each such set, for which we can find a proper
definition is called a situation in this chapter. To obtain these situations we
present our approach for unsupervised concept learning, which is based on the
notion of concept refinement. The intuition behind the refinement process is,
that given a set of individuals X', we want to construct descriptions for sub-sets
of X that can be represented by a DL concept. Next, once the descriptions are
constructed, we provide means to impose a preference on these DL concepts so
that only the ones that are interesting for us are retrieved. These concepts are later
integrated to the original ontology, where they can be used for classification. The
construction of the concept expressions rely on the properties of the individuals
in X analyzed, and therefore the concept definitions provide an explanation on
which are the properties of the individuals that are relevant to distinguish them

from the rest.

To this end, we start from a concept C, for which all individuals in X are
instances, and construct refinements C’ that are each time more specific than C,
and thus capture each time a smaller set of individuals X’ C X. If we iterate
this process we obtain a concept for every subset of X', that can be described by
a DL concept. Each one of these DL concepts is referred as a situation in the
ontology.

A challenging aspect of our problem is that we do not know a priori the
individuals in the target sets we are looking for, and thus we propose a process
to construct all relevant concept expressions (i.e. related to the individuals) from

which we can select those that best suit a preference criteria.
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In the following we present the preliminary theoretical background and
next we introduce the definitions and notions necessary to specify in detail
the approach. Then, the algorithms to refine concepts and to iterate over the
resulting refinements are presented. Finally, we show how this process enables

us to obtain the relevant subsets of the given input set of instances X.

3.1 Preliminaries

In this section we formally introduce DL [Baader et al., 2010, Baader et al.,
2005, Baader et al., 2017] ontologies and in particular the DL language E£LO
which belongs to the OWL 2 EL profile! and has a practical polynomial reasoning
algorithm [Kazakov et al., 2012]. We also define some non-classical DL reasoning

tasks that are pertinent to our approach.

3.1.1 £LO Ontologies

A DL-Knowledge Base or DL-Ontology (ontology for short) represents the knowl-
edge of an application domain in terms of concepts and relations, where each
element in the domain is called an individual. An ontology comprises two com-
ponents: a T-Box and an A-Box. The T-Box contains the terminology of the
knowledge base, that is the vocabulary for representing the knowledge, and the
A-Box contains assertions about named individuals in terms of the vocabulary.

These notions are formalized next.

Syntax of £LO

Definition 3.1 (Concept names, role names and individuals). The vocabulary
of the ontology comprises three disjoint sets N, N,., and A. N, is a set of unary
relations called concept names or atomic concepts, N, is a set of binary relations
called role names, and A is a set of arguments that these relations take, called

individuals.

The concepts in the ontology denote sets of individuals and the roles denote

binary relationships between individuals.

Example 3.1. To describe the domain of human, we may have the following con-
cepts No = {Person, Male, Female, Man, Woman, Mother, Father}, the roles
N, = {hasChild, hasGrandChild}, and two individuals A = {Jean, Marie}.

In addition to atomic concept and role names, complex concept descriptions

can be defined. The syntax of a specific DL language specifies the constructors

Lhttps://www.w3.org/ TR /owl2-overview/#Profiles
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allowed to form words over the concept and role names. These words are well-
formed sentences or formulae with well-defined semantics, according to a set
of rules specific to each language. In Figure 3.1 the set of constructors of £LO,
their syntax and their semantics are presented. Complex concepts are defined
recursively using the constructors in Figure 3.1.

In the following we denote (possibly complex) concept names by uppercase
letters like C' and D, role names by lowercase letters like r and s, and individual
names by lowercase letters like x,y and z.

In the remainder of this thesis all concepts are assumed to be ELO concepts.

Syntax Semantics
Concepts:
atomic concept A AT
nominal {a} {a®}
top AT
conjunction cnp Ctnp?
existential restriction JR.C' {z|Jy e CT: (z,y) € RT}
Axioms:
concept inclusion cCD cTc pt

Figure 3.1: Syntax and semantics of £LO.

Definition 3.2 (££0 Ontology, T-Box and A-Box). An ontology O = (T, A) is
a pair, where T is called the T-Box and A is called the A-Box. The T-Box T is
a finite set of concept inclusion axioms of the form C E D. The A-Box is a finite

set of concept and role assertions of the form C(x) and r(x,y), respectively.

A concept equivalence C' = D is an abbreviation for the two concept inclusions
CLC D and CC D, and it is called a concept definition. Concept equivalences
can be used to assign names to complex descriptions in a T-Box. The descrip-
tion language has a model-theoretic semantics detailed next. Thus, statements

in the T-Box and in the A-Box can be identified with formulae in first-order logic.

Semantics of £ELO

Definition 3.3 (Interpretation). An interpretation I consists of a non-empty
set A called the domain of T and an interpretation function % that assigns to
each C € N¢ a set CT C A%, to each r € N, a binary relation r* C AT x A7,
and to each x € A an element v € AT . The interpretation function is extended

to complex concepts as shown in Figure 3.1.

Definition 3.4 (Model). An interpretation I satisfies (also called a model of)
an aziom C T D (resp. A(x),r(z,y)), written T }=C T D (resp. T |= A(z),T =
r(z,y)), if CT C DT (resp. T € CT, (2%,y*) € rT). If an interpretation T
satisfies all azioms in an ontology O, T is called a model of O (written T = O).
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Definition 3.5 (Logical consequence). An aziom ( is a logical consequence of
an ontology O, written O |= B, if every model of O satisfies (.

If x is an instance of C' w.r.t. an ontology O, i.e. O = C(z), and O is clear
from the context, we say that C(x) holds (in O) for short.

Definition 3.6 (Subsumption). A concept C is subsumed by concept D w.r.t.
OifO ECLCD.

If O = CC D (ie. C is subsumed by D) we say that C' is more specific than
D. Inversely, we say that D is more general than C.

We next introduce ontology materialization is a reasoning task that computes
logical consequences of an A-Box w.r.t. a T-Box and it is the most important
task in some languages, e.g. OWL 2 RL. [Glimm et al., 2017].

Definition 3.7. We say that O is materialized if (1) O |= A(a) implies A(a) €
O for each concept name A from O and each indiwvidual a from O; and (2)
O = r(a,b) implies r(a,b) € O for each role name r from O where a,b are

individuals in O.

Materialization is a stepping stone for rewriting based query answering for

languages that allow existential quantification [Kontchakov et al., 2011].

Definition 3.8. An A-Box A is called acyclic iff there are no n > 1 and

individuals ag,aq,- -+ ,a, and roles ry,--- ,r, such that
® a = aop,
e ri(ai—1,a;) € A for 1 <i<n,
o there is j,0 < j < n such that a; = ay.

Definition 3.9 (Most Specific Concept (msc)). Given an ontology O and an

individual x, we say that C' is the most specific concept for z if:
O C(x)
and for every other concept D, with O |= D(x) we find
OECCD

One must note that the existence of the msc is not guaranteed in DL. In
[Baader and Molitor, 1999] it is highlighted that the msc in ££ needs not to exist,
if cyclic A-Boxes are allowed. For example for the simple A-Box {r(a,a), A(a)},
the msc does not exist, since the concepts of the form Jr.Jr.Ir..... A for which a

is an instance, are infinite. Even if we restrict to acyclic A-Boxes (as in our case)
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the existence of the msc is not guaranteed [Penaloza and Turhan, 2010]. For
instance, for A = {A(a)}, T = {A C 3r.A}, the msc would require an infinite
chaining of existential restrictions, which is not a concept.

To guarantee the existence of the msc, a sufficient condition is that T-Box is
terminology and A-Box is acyclic [Baader, 2003b]. A T-Box is a terminology if
it is comprised of only primitive concepts definitions, of the form A = D and
T-Box does not contain multiple definitions, i.e. there can not be two distinct
concept definitions Dy and Dy such that both A = Dy and A = D5 belong to
the T-Box. Note that these restrictions still allow for concept definitions that
refer to themselves.

In this thesis we restrict our work to acyclic A-Boxes and terminology T-
Boxes. In fact, the signatures discovered are always concept definitions of the
form C = D, thus the Most Specific Concept (msc) is guaranteed to exist.

Moreover without loss of generality, we assume that A-Boxes only contain
assertions about concept names and role names. This can be achieved by intro-
ducing a definition for a concept description appearing in an A-Box, that is, if
we have C(a) € A where C is a complex concept, then we add into the T-Box a
concept definition A, = C and A.(a) into A.

Definition 3.10 (Sub-concept). Given a (possibly complex) concept C, the set
of its sub-concepts Sub(C) is defined recursively by:

Sub(B) = {B}
Sub(Ir.C) = {3Fr.C}USub(C)
SUb(Cl |_|02) = {Ol HCQ}USUb(Cl) USUb(CQ)

Definition 3.11 (Concept Size). Given a (possibly complex) concept C, its size
Size(C) (in symbols |C|) is defined by:

o IfC=Ae N, U{T,L}, then Size(C) = 1.
o If C' = C1MCy, then Size(C) = 1 + Size(Cy) + Size(Ch).
e IfC =3r.D, then Size(C) = 1 + Size(D).

Definition 3.12 (Concept substitution). Given a (possibly complex) concept C,
a concept substitution of D by E in C, written C|p_ g, is the replacement of
an occurrence of the sub-concept D € Sub(C) in C by E.

To illustrate these notions, consider the following example:

Example 3.2. Consider the set of individuals:

A = {Jean, Marie}
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the set of concept and the set of role names:
N¢ = {Person, Male, Female, Man, Woman} and N, = {hasChild}

and the T-Bou:

Ti={ Man = PersonTl Male
Woman = Personl Female
Father = Man 3hasChild.Person}

If we unfold the concept Father, we have:
Unfold(Father) = (Person M Male) M 3hasChild.Person

Then, the set of sub-concepts of Father is:

Sub(Unfold(Father)) ={ (Personn Male) N 3hasChild.Person, Person M Male,
Person, Male,3hasChild.Person}
|Sub(Unfold(Father))| = 5

And the size of Father, is:
Size(Unfold(Father)) = 1(+(1+1+1)+(1+1))=6

Note that the number of sub-concepts of C' and the size of C, are different, and
that Sub(Un fold(Father)) is bounded by Size(Un fold(Father)).

Next, using concept substitution, we can obtain a concept equivalent to

Woman from the concept Man:

Man|praie— Femate = PersonTl Female
We find this is equivalent to:

Woman = Man|paie—s Female

We can also see from the T-Box that Father is subsumed by Man, in symbols:
Father C Man

(since every Father necessarily is a Man, but not every Man is necessarily a
Father)

These notions allow us to make some inferences, for example if we are given the
following set of facts in the A-Box:

Ay ={ Person(Jean), Male(Jean), hasChild(Jean, Marie)
Person(Marie), Female(Marie) }

We can conclude that:

O E {Man(Jean), Woman(Marie), Father(Jean)}
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3.1.2 Justifications in DL Ontologies

In this section we review the notion of ontology justification [Kalyanpur et al.,
2007, Baader et al., 2007], which refers to the most pertinent information, from a
(possibly big) ontology, for deducing a particular entailment. We consider similar
basis, for our ideas on how to extract the most useful properties for concept

refinement.

Definition 3.13 (Justification). Let O be a knowledge base and let B be an
aziom. A subset M C O is called a justification for 5 iff

MEB

and
M B
for every M’ C M.

Intuitively a justification for a concept inclusion £, is a minimal subset of
axioms M from the ontology, such that they are sufficient and necessary for
B to be a logical consequence of M. The number of possible justifications for
such a 8 in ££0O may be exponential in the number of axioms in O. Thus it can
not be ensured that all justifications can be computed in polynomial time with
respect to the size of the ontology. Nevertheless, it is possible to compute one
justification in polynomial time for ££0O language [Baader et al., 2007].

Notice that the notion of justifications is given with respect to a whole
ontology. There has been some work [Arif et al., 2016, Kazakov and Skocovsky,
2018] on efficient computation of justifications with respect to ££ T-Box for
subsumption axioms of the form C'C D. In our approach we focus on an A-Box.
Thus this notion is later modified to compute minimal subsets of an ££0O A-Box.
These minimal A-Boxes enable us to construct concept refinements.

In the next section we present the notions and provide the definitions that

are specific to our approach.

3.2 Approach Definitions

Given an ontology O we aim to find interesting subsets of its individuals, and
for each one of these sets provide a description using the vocabulary and the
constructors allowed by the language. We call each one of this sets a situation
in O (defined next). In this section we formally define this problem in terms

of finding the situations in an ontology. Then we provide a refinement operator

2The cited paper considers the family ££, but it is shown that ££O has the same complexity

since the logical consequence in ££0O is polynomial.
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which enables us to discover and extract these situations, in the form of complex
DL concepts definitions. Before the algorithms are presented, some notions
necessary to specify the results and their properties are introduced.

Let us continue by formally defining the interesting subsets of individuals in

an ontology.

Definition 3.14 (A representative concept). Let A be a set of all individuals in
an ontology O, and let X C A. For a concept C, we say that X is represented
by C (or C represents X) w.r.t. O and A, if:

C(x) holds for all z € X, i.e. O = C(z), and

C(y) does not hold for any y € A\ X, i.e., O C(y).

If there exists a concept C that represents X, we say that X is representable.

Example 3.3 (Representative Concept). Consider the set of individuals A =
{f1, f2, f3}, a subset of individuals X = {f1, fo}, and the following ontology
O=(T,A):

T ={C=3T}
A ={A(f1),B(f2), E(f3),r(f1, f3),r(f2, f3)}

By checking the two following conditions, we determine if C' represents X. We
find:
O EA{C(f).C(f2)}

O FA{C(f3)}

Thus X is represented by C.
However, it is not true that each set of instances can always be represented.

Example 3.4 (Example 3.3 contd.). Consider the set X' = {fa, f3}, there is
no ELO concept that can represent X’.

A set of individuals that can be represented have to share some common
properties merely among them, which are made explicit by the concepts that
represent them. By reading the concept definition, we get an explicit explanation
of their common properties. For example, the individuals f; and f5 share the
property that they are connected to some individual via the role r. Whilst, f,
and f3 do not have any property in common that can distinct them from f;.

There are two sets of individuals which can be always represented as shown

by the following lemma.

Lemma 3.1. Given an ontology O and a set A of individuals, we have
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e T is a representative concept for A.

e | is a representative concept for ().

Proof. Tt is clear that for all x € A, O = T(x) holds and for any y € A\ A, it
satisfies O & T(x). So T represents A w.r.t. any ontology O and A. It can be

proved that | represents ) w.r.t. any ontology O and A in a similar way. [

Proposition 3.1. Given an ontology O, the set A of individuals in O, and
X CAX CA.If X and X' are representable, then X N X’ is representable in
ELO.

Proof. Since X and X’ are representable, we assume that C' and C’ represent
X and X’ respectively. Then we can see that C' 1 C’ represents X N X’. This
is because for any v € X N &X', O = C(z) and O = C’'(x), which implies
OECNC (z). Forany y € A\ (X NAX'), if y ¢ X, then we know O [~ C(y);
If y € X7, then O = C'(y). Therefore, O = (C M C")(y). So, C M C’ represents
Xnx. O

However, the conclusion is not anymore true for set union or set complement.
Consider Example 3.3, let X; = {f2}, X2 = {f3}. We can see that X; is repre-
sented by the concept B w.r.t. O and A, and X5 is represented by the concept F
w.r.t. O and A. However, we have known that X7 U X5 is not representable. Let
Xs; = {f1}. Then we have that A\ X3 = {f2, f3} is not representable in ELO.

The following lemma tells that any concept naturally represents a special set
of individuals. That is, every concept can represent some set of individuals given

in an ontology.

Lemma 3.2. Given a concept C', an ontology O, the set A of individuals in O,
C represents the set of individuals S = {x € A| O = C(x)}.

Proof. By the definition o,f S, we know that for any € S, O = C(z), but for
any y € A\ S, O} C(x). Then by Definition 3.14, C represents the set S w.r.t.
O and A. ]

Example 3.5 (Example 3.3 contd.). A represents the set {f1}, B represents
the set {fo}, and E represents represents the set {fs}. And the concept AN B

represents (.

Note that when a concept represents an empty set of individuals of an
ontology, it means that this concept is irrelevant to characterize the properties
of the individuals from this ontology. Hence, from now on, we are interested in

only the concepts that represent a non-empty set.
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Proposition 3.2. Given an ELO ontology O, a set A of individuals, a concept
C and a set X C A, the decision problem:

Does C represent X w.r.t. O?
can be solved in P-Time.
Proof. By Definition 3.14, C represents X w.r.t. O iff:
e For each x € X, we find O = C(z) and
e For each y € A\ X, we find O = C(y)

To verify the above conditions we need to perform instance checking for each
1 € A. That is, we need at most |A| instance checking operations. Since instance
checking in £L£0 is polynomial, the whole procedure to verify if C' represents X’

w.r.t. O is still in polynomial time. O

Proposition 3.3. Let O be an ELO ontology and A the set of individuals in
O. For a given set of individuals X C A, and an integer n > 0, the decision

problem Representability,, :
Is there a concept C with |C| < n that represents X w.r.t. O¢
can be solved in ExpTime.

Proof. We can have at most (|N¢| + |N;| + |A| 4 |Op|)™ concepts constructed
from a finite concept set N, a finite role set NV,., a finite set of individuals A, and
a finite set of constructors Op®. By Proposition 3.2, deciding if each concept is a
representative concept of X' can be done in P-time. Therefore, deciding if there

is a concept whose length is less than n can be decided in exponential time. [

By the proof of Proposition 3.3, if n is bounded by a constant, then the
problem Representability,, is solvable in P-Time.

Note that a set of instances X can be represented by several concepts, and
that their number might even be infinite (Example 3.6). To avoid dealing with
an infinite number of concepts, we use the notion of equivalence classes. The
concepts representing X are equivalent in the sense of their instances, and thus
they define a class of equivalent concepts. Each one of these classes is called a
situation in O and it suffices to provide one concept belonging to the class to
characterize it. Therefore to define a situation, our problem is reduced to finding
a single representative for the situation instead of finding all of the concepts that

comprise it.

3The constructors of the underlying language, like conjunction (M) or existential restriction
(3). If the parenthesis are taken into account, this adds at most 2! to the number of concepts

constructed, which remains exponential w.r.t. |C/|.
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Definition 3.15 (Situation in O). Given an ontology O, a set A of individuals
in O, and a set X C A, a situation for X in O is the set:

[|1X]|Q = {C | C represents X w.r.t. O and A}.

We call A the domain of the situation.

When the ontology O and the set of individuals A are clear from the context,
||X]|§ is shortened as ||X||. By an abuse of symbol, we also use a situation to
refer to an element from ||X|.

Intuitively, a situation in O explicitly characterizes, via concept descriptions,
a given set of individuals in the ontology.

Additionally, among the concepts that belong to a situation there might be
some of them that are not equivalent in the classical sense (i.e. w.r.t. subsump-

tion), as illustrated by Example 3.6.
Example 3.6. Consider again example 3.3 and the following T-Box:

To={ C,=3rT,
CQ = ET.{fg},
03 =dr. TN 37‘{f3}}

Then, Cy,Cs, Cs all represent X. Thus {C1,Cq,C3} € ||X||. Note that another
concept Cy = Ir. TN Ir. T M---0O3Ir. T would also represent X, this shows that
the set || X|| could be infinite, even with very simple DLs. Furthermore note that
Cy #£ Cy £ Cs, but {C1,Cq, C3} € ||X||, thus concept equivalence is strictly more

specific than the notion of situations.

Indeed, the notion of situation is more general than the notion of standard

equivalence class as shown in the following conclusion.

Proposition 3.4. Given an ontology O and the set A of individuals in O, we
assume O |= A = B. Then we have that A € ||X|| if and only if B € ||X|| for
any X C A.

Proof. Since O = A = B, it holds that O |= A(z) iff O |= B(«) for any individual
x € A. By Definition 3.14, A represents a set of individuals X iff B represents a
set of individuals X O

Note that not every subset of individuals can lead to a (non-empty) situation.
For instance, the set X' = {fs, f3} from Example 3.3 can not be represented
under £L£0, therefore the set ||X]| is empty.

Assume we are given a set of individuals X C A, and we need to determine
weather a situation representing X exists. If the response is no, to ensure a

complete and sound answer, we would require to access all possible situations in
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O, and for each of them, test if it represents X'. We could also be interested in
all the possible ways we could use DLs to discriminate between the individuals
in X, to extract a particular set. It is then natural to ask for the subsets of X’

for which a DL representation exists, thus discovering the situations in O.

Definition 3.16 (Situation discovery problem). Let O be an ontology and A a
set of individuals in O. For X C A, the situation discovery problem is to compute
the following set: Zo(X) = {X1,..., X, | Xi C X, ||X||o # 0}. That is, to find
all the subsets of X that are representable w.r.t. O.

We also shorten Zp(X) as Z(X) when the ontology O is clear from the
context. Since each X; € Zp(X) leads to a situation ||X;||o, we will also call

such X; a situation by an abuse of terminology.

Lemma 3.3. Let O be an ontology and A be a set of individuals in O. For any
X CA, EX)#0.

Proof. By Lemma 3.1, it is easy to see that () is representable by 1, so @) €
E(X). O

Lemma 3.3 shows that we can compute at least one situation with no
computation cost. Henceforth, we omit this trivial situation in the rest of this
thesis.

Moreover, Example 3.4 shows that it happens that X is not representable,
but Z(X) contains subsets of individuals that are nevertheless representable,

such as X; = {f3} having a representative concept E.

Definition 3.17. Let O be an ELO ontology and A a set of individuals in O.
For a given set of individuals X C A and an integer n > 0, the decision problem
SD,, is defined as follows:

Does there exist a situation C' for some X' C X in O with |C| <n?

If the answer to SD,, is positive, it means that there exists a nonempty subset
X’ C X such that C is a representative concept for X’ w.r.t. O and |C| < n.

Proposition 3.5. SD,, is in ExpTime.

Proof. For a given subset of individuals X’, by Lemma 3.3, checking if there
exists a concept of size less than n that represents X’ w.r.t. O can be achieved
in ExpTime, which is the Representability,, problem. Checking Representability,,
for all possible X’ C X requires at most 2/¥! checks, thus we can decide SD,, in

exponential time w.r.t. to size of X and n. O
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According to the proof, if the |X| and n are bounded by a constant, SD,, is
in P-Time.

The following conclusion shows that for a set of individuals X, the Z(-) oper-
ator satisfies monotonicity in the sense that (1) the set of concepts representing
X might decrease when the situation domain increases; (2) a concept A that
characterizes X still characterizes some set of individuals when the situation
domain increases. Nevertheless, the set of individuals that A characterizes might

no longer be X. In fact, it could be the case that X is no longer representable.

Proposition 3.6. Let O be an ontology and A be a set of individuals in O.
Consider Ay C A. Suppose that X € Z(A1) is represented by a concept A w.r.t.
O and A1. Then the following conclusions hold:

1 |X]|a C {1 X]|a,
2. X is not necessarily representable w.r.t. A.

3. The concept A still represents some set of individuals X', that is, X' €
=E(A).

Proof. To prove ||X||a C [|X]|a,, we suppose C € ||X]||a. Then it holds that
O = C(z) for any € X and O [ C(y) for any y € A\ X. Since Ay C A, we
have O |= C(z) for any x € &} and O }= C(y) for any x € Ay \ X. Thus C
represents X w.r.t. Ay, that is, C' € ||X]|a, -

To see that X' is not necessarily still representable w.r.t. X5, we consider the
following example extended from Example 3.3: O’ = O U{B(f1),7(fs, f3)}, A =
{f1, fos f3, fa}, A1 = {f1, f2, f3}, and X = {f1, fo}. We know from Example 3.3
that X is represented by C w.r.t. O and A;. However, X is not representable
w.r.t. A because O = fo = fy, then there is no concept D that can satisfy both
O = D(f;) and O = D(f,).

To prove the third item, we define X’ = X U{x € A | O = A(x)}. Obviously,
X’ C A.For each z € X', if x € X, we know O = A(x) since A represents X if
x € X'\ X, then it is obvious that O = A(x) by the definition of X”. For each
ye A\ X' if y e Ay \ X, then O [~ A(y) since A represents X w.r.t. O and A;
if y € Ay, sincey € X', then y € {x € A| O = A(z)}. Hence, O |~ A(y). In
short, A represents X’ w.r.t. O and A. O

3.3 Computing Situations in An Ontology

In this section we present the algorithms that allow us to extract the situations

present in an ontology. To this end, we proceed in several steps:
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1. First, we detail how to obtain a single DL concept representing a situation
in O. For this we define a refinement operator that allows to traverse the
space of situations in O. The operator is guided by an individual z € A

and constructs concepts that describe situations in O to which x belongs.

2. Once we count with the means to discover situations for a single individual
x, we extend the process to extract situations from a whole set of individuals

X, based on the refinement operator.

3. Finally, once we can describe a set of individuals X', we show how to find

the situations for the sub-sets X’ C X for which a DL description exists.

3.3.1 Refinement Operator

To obtain the concepts describing the situations in X', we start with a ”root”
concept C, that captures all individuals in X and proceed to refine it. These
refinements will at some point separate the sub-sets in X’ that can be described,
thus discovering the situations in X.

To refine a concept, we need a way to traverse the space of concept expressions
in an ordered manner. This is where the refinement operator comes into play. In
this section, we present an algorithm to obtain the refinements of a concept C
that describe a set of given samples.

In our approach, we first select an instance x € X, obtain its minimal A-Box
and establish the possible extensions. Each extension represents a property
of = (directly or indirectly) and for each such extension a set of possible DL
expressions can be constructed. Each DL expression obtained this way is then
”added” to the original concept C' to construct the refinements. The steps of
the refinement process are outlined in Figure 3.2 and are specified in Algorithm
3.2. To detail the process, we first need some basic notions given in the next

subsection.

3.3.1.1 Basic Notions

In this section we first define the notion of a minimal A-Box, which tells us
properties of x that are necessary to validate the instantiation of x with respect
to a given concept C. These properties will be used by the refinement operator
to define the extensions of z and propose the refinements of C'. Since £LO allows
for nominals, we would like to make this information explicit in the A-Box. Thus
in the following we assume that each node a in the graph representation of the
A-Box, has attached the corresponding nominal {a} (i.e. {a}(a) € A-Box).

Definition 3.18 (Minimal A-Box). Let O = (T, A) be an ontology and C(x)
be an instance assertion implied by O, i.e. O = C(z). An A-Box A’ is called a
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An algorithm is given to obtain the Minimal A-Box for
which the assestion C(x) holds. Several such A-Boxes might
exist.

Compute Minimal
A-Box

| A-Box
Using this minimal A-Box we obtain the Leafs. These

represent all the individuals related to x, that have some
properties not required by C(x). We use these properties

‘ Obtain leaves |

|
; |
| !
' !
: !
| !
| |
ﬁ : ) | to specialize C.
Q
g | For each leaf : For ea.ch lleaf, several extensions mi.ght be found. An
& | | extension is represented by the properties of the leaf.
g ¢ |
= ‘ Obtain extensions ‘ |
2| |
5 | |
e | | For each extension, there exist several DL-expressions that
| For each ext. | describe this property. We modify the original concept C
| ‘|, : using these expressions.
' !
| Generate possible |
| concepts |
| |
! |
E—_—————————————— = Finally, a set of tuples; associating each leaf extension
with a concept, is returned as the output. These are all the

" D
Set of {leaf, extension, concept} possible refinements of C in one iteration. (i.e. with the

Output property C’ is subsumed by C)

Figure 3.2: Steps to refine a concept C' guided by an instance x and an ontology

O; The output is the concepts obtained by one refinement step of C.

minimal A-Boz for C(x) w.r.t. O (in symbols AS ) if (1) TU A’ = C(x), and
(2) there is no A-Box A" C A’ such that TU A" = C(x).

These properties identified by a minimal A-Box involving = or any other indi-
vidual connected to x, called extensions. These extensions are used to construct
DL expressions and obtain the refinements of C'.

To facilitate the definition of the refinement operator, in the remaining of
this chapter we assume that the materialization of the ontology [Kontchakov
et al., 2011, Glimm et al., 2017] has been done first, i.e. all concept and role
inferences are explicitly stated in the A-Box. In this case, the minimal A-Box is

simplified as below.

Definition 3.19. Let A be an A-Box and C(x) be an instance assertion implied
by A, i.e. A= C(x). An A-Box A’ is called a minimal A-Box for C(x) if (1)
A" = C(x), and (2) there is no A-Box A” C A’ such that A" = C(z).

Let us illustrate the intuition behind this process. Any individual in an
ontology O and its relations to other individuals can be represented as a directed
(acyclic) graph, with the nodes being the individuals and the edges being the

relations between them, as stated by the A-Box (figure 3.3). For example consider
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the A-Box :
Ai s {ri(z, y), ra(y, w), r3(y, 2) }
we obtain:

T2 ~ (W
1
¥4

Figure 3.3: The graph representation of individual x w.r.t. A;.

Assume a concept C = Ir1.3r5. T, we find that z is an instance of C. We can
determine which are the properties of x that are necessary for C(x) to hold. Both
r1(z,y) and ro(y, w) are necessary, but the assertion r3(y, z) € A; is not relevant
for deciding whether C'(x) holds. From this observation, a simpler representation
of x can be obtained , i.e. the A-Box : A; \ {r3(y, )}, for which z still remains
an instance of C'. This can be seen as a cut in the graph representation of z

(figure 3.4) between the necessary and unnecessary assertions in the A-Box. This

T2

71 /w
Ty (y

Figure 3.4: The graph representation of individual z, w.r.t. A; \ {rs(y,2)}.

representation allows us to establish up to which point the assertions in A; are
relevant for C'(x) to hold. All the necessary assertions comprise a minimal A-Box
for which C'(z) holds, and all unnecessary assertions provide the basis to further
specialize C' and still capture z. These specializations are the refinements we
are looking for. In order to isolate and manipulate these elements, first we need
to establish all individuals connected to x. This is formalized in the following

definition:

Definition 3.20 (Binary relation closure). Given an ontology O, two individuals
x,y and an A-Box A, we say that there exists a binary relation closure between

x and y, denoted by r 1(x,y), if x =y or if there exists a path of the form:
{ri(z, z1),r2(21,22)5 - - s Pm(Zn-1,20)} € A
withn > 1, z, =y, and 7 a role in O

Next, we want to establish which of the edges of the graph representing
individual x are necessary for a given concept C' to capture it. To this end we

introduce the notion of necessity:
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71 () Tm
T iz 2o any

Figure 3.5: The representation of a path from individual z to individual y.

Definition 3.21 (Necessity). Given a concept C, an instance x of C, an A-Box
A and a role r(y,z) € A with r T (z,y). We say that:

1. Role r(y, z) is necessary for C(x) iff:

ANA{r(y,2)} = C(2)
We say r(y, z) is unnecessary for C(z) otherwise.
2. Individual i is necessary for C(x) iff:
1=2a or
there exists z such that r(z,i) € A and r(z,1) is necessary.
We say i is unnecessary for C(z) otherwise.
3. Given a necessary individual i, then a concept assertion D(i) € A is
necessary for C(z) iff:
AN{D()} = C(x)
We say D(i) is unnecessary for C(z) otherwise.

Note that depending on the concept C' and the content of the A-Box, a
unnecessary role might become necessary, therefore several possible answers
might exist. For example take the concept C' = Ir. T and the A-Box: A =
{r(z,y),r(z, 2)}, then we have:

Clx)=T wrt A\ r(z,y)

We conclude that r(x,y) is not necessary, but only as long as r(z,2) € A (and
vice-versa).

Given a definition of the necessary assertions for an individual x to be an
instance of a concept C, we can also obtain those assertions that are not necessary.
These (unnecessary) assertions are linked to the individual « but are not required
by C'. As such they can be seen as candidate properties for specializing C'. These
are the assertions about special individuals hereafter called leaves of x, defined
by:

Definition 3.22 (Leaves). Given a concept C, an instance x of C, and an

A-Boz A, the set of leaves of x w.r.t C is given by:

Leaves,.c ={y | B(y) € A,y is necessary, B(y) is unnecessary for C(z)}

U{y | r(y,z) € A where y is necessary, but r(y, z) is unnecessary for C(x)}
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Intuitively the set Leaves, ¢ represents all those individuals y in the frontier
of x w.r.t. C, in the sense that no further edges of the graph representing x are
considered by C' to decide whether the individual x belongs to it. In our example

r3(y, z) is not necessary.

Definition 3.23 (Extensions). Given an individual x, a concept C' and the set
Leavesy ¢ w.r.t. an A-Box A, the set of extensions Ext, ¢ to specialize C w.r.t.
x is defined by:

Extyc ={r(y,z) € A|y € Leaves, c and

r(y, z) is unnecessary for C(x) } U
{B(y) € A|y € Leaves, c, B(y) is unnecessary for C(zx) }

The set Ext, ¢ captures all those assertions through which C' can be further
specialized. The set of leaves and their extensions allow us to compute the

refinements of C.

3.3.1.2 Computing Minimal A-Box

To obtain the refinements of a concept C, we first introduce an algorithm that
computes a minimal A-Box.

We now introduce an algorithm to compute a minimal set of necessary
assertions, from which we can extract Leaves; ¢ and Ext, ¢ to construct the
refinements. The algorithm takes as input an individual x, a concept C' and an
A-Box A. It will test all individuals connected to x for necessity, and output a
set of necessary assertions for C'(z) to hold under A. To illustrate the algorithms

behavior consider the concept
C = 3r.T and the A-Box A = {r(z,y),r(y,w),r(z,2)}

as inputs. In Algorithm 1 we first compute R, (Line 2), which is the subset of
the A-Box A containing all those role assertions in a path from z:

r(z,y) € Ry since r 1 (z,z) and r(z,y) € A
r(y,w) € Ry since r 1 (x,y) and r(y,w) € A
r(z,z) € Ry since r 1 (z,z) and r(z,2) € A

yields R, = {r(z,y),r(y,w),r(z,2)}

(3) makes a copy Copyr of R, from which we will sequentially remove the last

elements of each path. (4) establishes as the candidates Candg to be tested all
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Algorithm 1 MinAbox

1:

[ S S i e
S Y X I S g A w2 Q

input: (z,C(z) =T, A)
Re ={r(y,2) |1 (z,y),r(y,2) € A}
Copyr = Rz
Candr = {r(y,z) € Ry | Bw s.t. r(z,w) € Ry}
C, ={D(2) e A| z==x or Jy s.t. r(y,2) € Ry}
while Candgr # () do
for r(y,z) € Candgr do
if C(z) =T wrt. (Rx\ {r(y,2)}) UC, then
remove 7(y, z) from R,
end if
remove 7(y, z) from Copyr
end for

Candr = {r(y, 2) € Copyr | Bw s.t. r(z,w) € Copyr}

: end while
: for De(C, do

if C(x) =T wrt. (C; \{D})UR, then
remove D from C,
end if

: end for
: return: 4, = R, UC,
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those role assertions that do not have further outgoing edges (that is, the last
elements of a path):
Cand'R = {T(y, U}), ’I"(J?, Z)}

(5) creates the set of all concept assertions about all the individuals that take part
in a role in R, this is necessary to establish if a concept assertion is necessary
for the final A-Box. In our example this set is empty. Then the while loop starts,
which tests all assertions for necessity until no more candidates are found. (7)
takes one candidate at the time, and (8) tests if it is necessary. Recall that a
role assertion is unnecessary if C'(z) holds when the assertion is removed from
the A-Box. The unnecessary assertions are removed from R, (9), which at the
end of the algorithm will contain only necessary role assertions. Any assertion
already tested is removed from Copyg by (11) in order no to test them twice.

In our example we test Candg = {r(y,w), r(x, z)} for necessity:

Imtlally Rm - {r(m,y),r(y,w),r(m,z)}

Test r(y, w) for necessity :

C(z) =T wrt. {Ry \ r(y,w)} UC,, then we remove r(y, w)
R = {r(m,y),r(x,z)}
Copyr = {r(a:,y),r(:z:,z)}

Test r(x, z) for necessity :

C(z) =T wrt. {Ry \r(z,2)} UCy, then we remove r(z, 2)
Ra ={r(z,y)}
Copyr = {r(z,9)}

Once all identified candidates are tested, the set Candg is re-computed (13)

considering only those assertions remaining in Copyr,

Candgr = {r(z,y)}
A second run of the while loop yields:

Test r(x,y) for necessity :

C(x) =1 wrt. {R; \r(z,y)} UCy, then we keep r(z,y)
Re ={r(z,y)}
Copyr ={}

Since there are no more candidates to test for necessity the while loop ends and
the modified set R, is a minimal set of necessary role assertions for C(x) = T.

Until this point we have tested all role assertions in A for necessity, but we
have kept all class assertions C, related to x. The final for loop (15) tests each

class assertion in C, for necessity, to keep only the necessary ones. This is where
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the algorithms stops, and the output A, ¢ (20) is then a set of minimal role and

class assertions, a minimal A-Box, necessary for C, to hold:
Avc = {r(z,2)}

From the set A, ¢ we can easily construct Leaves, ¢ and Ext, ¢, following their
definitions. Consider again: C = 3. T and A = {r(z,y),r(y, w), r(z, 2)}, we have

the output (of one run) of algorithm 1 A, ¢ = {r(z,y)} from where we obtain:
Leaves, o = {z,y}

and

Extmyc = {T(y7 U}), ’I"(‘T, Z)}

where the possible extensions to specialize C are r(y,w), r(x, z), which is the

intended answer.

Soundness of Algorithm 1 . We show that the output of Algorithm 1, A, ¢, a
minimal A-Box that entails C'(z). The first part of the proof, follows from Lines
8 and 16 in Algorithm 1 which remove from A, ¢ only those assertions that are
unnecessary for C'(z). That is, assertions will be removed from A, ¢ only as
long as A, ¢ |= C(z), thus at the end of the process A, ¢ = C(z) is ensured.
For the second part, we proceed by contradiction. If A, ¢ is not minimal, it
implies that there exists another A-Box A’ # A, with A’ C A, ¢ and 4’ | C(x)
(A’ is minimal). Since A’ C A, ¢ there must be an assertion § € A, ¢ such
that 8 ¢ A’. Lines 8 and 16 in Algorithm 1 test each assertion for necessity.
Therefore 5 € A, ¢ implies that A, ¢ \ f & C(z). £LO is monotonic. Thus,
Az o\ B~ C(x) implies A’ \ B & C(z), because A C A, ¢. Since g ¢ A,
A"\ B = A" Thus A’ £ C(z), a contradiction. O

Note that, a minimal A-Box is not unique, but several might exist. The other
minimal A-Boxes can be obtained by subsequent runs of algorithm 1 in the
fashion of [Kalyanpur et al., 2007] via Hitting Set Tree search.

The minimal A-Box allows to select the unnecessary assertions, which can

be used to construct concepts that represents situations in the ontology.

3.3.1.3 Computing Refinements

In this section, we introduce the process of computing concept refinements. From
a constructive point of view, a refinement C’ is a modified version of C, where

a part of the original concept C has been replaced by a more specific ELO
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expression. This modification depends on the leaf and the extension selected.

The output of Algorithm 2 is a set of refinements of the form:

a.(C) = {Cl,....C.}.

r¥'n

Before we present the algorithm for the refinement process, we need to intro-
duce the notion of reason for a leaf. This is important because in the refinement
process we start by a concept C, and construct new concept expressions by
modifying C'. The modifications are related to the leafs, and take place in a
specific position within C'. Thus, the link between a position in C' and a leaf, has

to be established. This notion is captured by the following definition.

Definition 3.24 (Leafreason). Given a complex concept C, the set{D1,...,D,}
of its sub-concepts, an instance x of C and a leaf | € Leavesy . An let D; be

the shortest concept for which it holds:
[ is necessary for C(x) , but

l is unnecessary for C

DT ()
The reason for [, in symbols Ry, is defined by:
if D; is of the form 3r.B, then R; = B, or
R, = D; otherwise.
For the case | = x we have R; = C.

The idea behind the refinement process is that given the leafs for C'(z), we
can use the unnecessary properties of the leafs (role and class assertions) to
obtain specializations of C. To this end, we must first identify the part of the
complex concept C' that refers to a leaf [ (that is the reason for 1), and then by
adding constraints to this reference, we ensure the resulting concept requires

more properties from [ than the original C.
Example 3.7 (Reason of a leaf). Consider the following A-Boux:
Ay = {ri(z,y),r2(2, 2), Ay), B(y), D(2)}

and the concept:
C=3r;.AN3ry.D

where its sub-concepts are:

Ch= 3r.A
Cl= 3Fry.D
c,= A
Ci= D



we find that Cj = A is the reason for leaf y, since for the concept
C‘CZLHT =TMNdry.D

where C is replaced by T, y is no longer necessary nor a leaf. If we would make
the replacement using C7, y would also become unnecessary, but C} is not the
shortest.

Given the reason C) = A, if we want to specialize C by establishing that any
individual connected to x through role r1 should not only be of class A (Ir1.A) but
additionally of class B, we can achieve this by replacing C} with a conjunction
of C} and B:

C'=3r1.(ANB)N3re.D

In this way we obtain C' which is a modified version of C, for which it holds:
C'(z) and C'C C

We now formally define the refinement operator in Algorithm 2.

Algorithm 2 Operator o
1: input: (z,C,0 ={T, A})
Ref =0
A’ = MinAbox(z,C, A)
Leafsyc={l1,...,ln}
Extyc ={rilli,y1), .., rm(ln,yx), B1(lh),. .., Ba(ln)}
for [ € Leaves; ¢ do
Obtain R; (the reason for 1)
for B(l) € Exty ¢ do
C'=C|r,»rinB
add C’ to Ref
end for
for r(l,z) € Ext, ¢ do

e e
W M e

O/ = C |R1—>RlI_IE|T.T
add C’ to Ref
15: end for

—
o

16: end for
17: return: Ref

Let us use the following example to illustrate Algorithm 2.

Example 3.8 (Refinements of a concept C'). Consider the following concept C,

its instance x and the A-Box As as an input for our algorithm:
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Cc = 37‘1.T

A

T1 7 y

A = {ri(e.y), Aly), N ;
ra(z, 2), B(2)} Th—i

In Algorithm 2 we initialize the set of refinements Ref to () (Line 2). Then
we compute the minimal A-Box for C(x) (Line 8) using algorithm 1, from where

we can obtain the leaves (Line 4) and the extensions (Line 5) of x with respect

to C.
2

(2)
(3) A" ={ri(z,y)}
(4) Leavesyc ={z,y}

(5) Eaty o ={r2(z,2), A(y)}

Nezxt, for each leafl (6) we first obtain the position in C to make the specialization,
that is the reason R, (7) for the leaf I. Within the extensions of each leaf, we find
two types: concept assertions and role assertions. If the extension is a concept
assertion of the form B(l) (8), then the corresponding refinement C' is a copy of
C where the reason Ry has been replaced by the expression R; M B (9). That is,
besides imposing that the leaf | is of type R;, C' imposes now that it additionally
has the type B. Each C' is a new concept name, which is added to the set of
refinements (10). If the extension is of the form r(l, z), the loop in (12) works
in a similar way. The difference is that instead of imposing a new type for 1, it

imposes that I has to be connected to some individual z through a role r (13).

(6) For x € Leavesy ¢ : Ry,=0C
(12) Forry(z,z) € Extyc: C{=3r1. TN 3re. T
(6) Fory € Leavesy ¢ : Ry=T
(8) For A(y) € Exty o : CL=3r.(TNA)
(17) Ref = {C}, 4}

Finally we return the set Ref containing the refinements (17). It is easy to see

that C and C% are proper refinements, since for both it holds:
CiEC and C5C C, and

As = Ci(z) and As | Ch(2)

Note that C7 = Ir1. T M 3re. T imposes that any instance of C| needs to be
connected to some individual by a role ro. From A-Box As we know that ro(z, 2)
and B(z), thus a refinement could also impose that the range of such role ro
should be of type B (i.e. Ira.B). This refinement can be obtained, if the operator

1s iterated.
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We consider some properties of a refinement of a concept C, formalized next.

Definition 3.25. Given an ontology O, a concept C and xz, an instance of C,

we say that a concept C' is a refinement of C if it holds:
OEC(z) andC"C C

Additionally we say that C' is a direct refinement of C, if:
ISub(C")| — |Sub(C)| =1

The operator is intended to provide access to the concepts describing sets
of individuals in a top-down manner. That is from more general (capturing
more individuals) to more specific (capturing less individuals). This can be
achieved by iterating the operator. At each iteration of a, we have to ensure
that no intermediate concept expressions are left unexplored, ensuring that the
operator is sound and complete. The operator is sound if: z is an instance of
each refinement C’ of C, and each C’ is more specific than C. The operator is
complete if no refinements C’ are left unexplored. These properties are precised

in the following.

Proposition 3.7. Given an ontology O = {T, A}, a concept C, an instance x
of C, and a,(C) = {CY,...,ClL}. Let C' € a,(C) be one of the refinements of
C. Then it holds:

O EC' ()

and

Proof. For the first part of the proof, concerning O |= C’(z), we start by the

observation that C' is of the form:
OEDl ﬂDQﬂ"'ﬂDn

Where for C(x) to hold, each D;(z) must hold as well. Without loss of generality?,

each D; is a concept of the form:
D,L' = 37‘1.37‘2. PN E'Tn.Rl

Since D;(x) holds, there exists a path rq,r9,...,7, from z to an individual
[ of type R;. This implies that the A-Box A must contain axioms of the form:
rn(u,l) € A and Ri(l) € A. If R; is to be replaced by a new expression Rj,

4The case D; = R; and the cases where each existential restriction might be of the form
J.r.(AM 3r...), the concept R; will always refer to the type of leaf I.
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resulting in D} and C’ respectively, we must ensure that [ is also an instance of
R;. That is if Rj(l) holds, D}(x) and C’(x) hold as well.
Algorithm 2 will replace R; by R} in one of the following two forms:

R; =R, N B where B(l) € Ext, ¢

or
Ry =Ry M 3r;. T where rj(l,l') € Exty o

Thus, necessarily O = Rj(I). This ensures that D;(z) holds, and since this is
the only modification in C, we have that C’(z) holds as well.

For the second part of the proposition C’ C C, we have to prove that
the replacement R; T R;. Note that a replacement is always of the form
R; = R; N B, where B is a (possibly complex) concept expression. Thus we find
that y € R} — y € Ry, but y € R; -+ y € R;}. This implies R} € R;, which in
DL notation becomes R; C Ry, from which follows D) C D; and C' C C. O

Proposition 3.8. Let C be a concept, x be an instance of C, and O be an ontol-
ogy such that O = C(x). Then C' € a,(C) implies that C' is a direct refinement of C.

Proof. Given C, there exists a minimal A-Box, A, for z w.r.t. C. If ¢’ is a
refinement of C, then it was constructed by «, using some extension g for x. This
implies there exists an axiom 3 € A,, but 8 € A/, where A/, is the minimal A-Box
for & w.r.t. C'. For each such 3, the operator o will replacement a sub-concept
D € Sub(C), by a new concept D', where D’ is of the form D’ = DM 3r. T or
D’ = D B, for some named concept B. Thus, |[Sub(D’)| — |Sub(D)| = 1. Since
this is the only change made to C, then it follows |Sub(C’)| — |Sub(C)| =1. O

Proposition 3.9. Given an ontology O = {T, A} and an individual x € O. Let
A C A, be a tree with root x, and let C4/ be the most specific concept for x
w.r.t. A’, then Car can be obtained by .

Proof. Given an individual z, let A,, C A, where A,, is a tree with root in z. We
have to prove that the MSC for A, can be obtained by «. The MSC need to
comply with two conditions. Let C,, be the MSC for A,,, then it holds:

A, E Ch(z), and
it does not exist another concept D such that
DcC C, and A, E D, (z)
Let A,,_1 be a subtree of A,, rooted as well in x, with

(1)An = Anfl U B
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where [ is an assertion in A, and let C,,_1 be the MSC of A, _;. Note that
because C,_q is the MSC, A,_; is the minimal A-Box for C,_1, and thus

necessarily 8 € Ext, ¢ If we apply the operator a, to Cp_1 , it yields:

az(Cp-1) ={C1,C5,...,CI.}

where some C was constructed using . Because C, C Cy,_1, the minimal A-Box
of C! needs at least all assertions in A,,_;. But since C),_; is already the MSC

for A, _1, the minimal A-Box for C/ has to be larger than A,,_;:
|[Ac;| > [An—1]

From « and (1) we know that 4,,_; U S |= C{(z), thus A,,_; U S is a minimal
A-Box for Cl(x).
AC,i = An—l U B = An

Therefore A, = C(x).

For the second condition, assume another concept D T C! exists with
An | D(x). This implies that Ap > Acy, but since Ac; = A, it follows that
Ap > A, and thus D can not be the MSC for A,,. O

3.3.2 Algorithms for Situation Discovery

In this section, we will apply the refinement operator for computing situations,
consisting of two components: refinement over one instance and refinement over
a set of instances. The first component is used in the second to find situations.

We have seen that multiple concepts can exists in a situation. To characterize
the maximal details of a situation, it is interesting to the most specific concept

in a situation defined below.

Definition 3.26 (Most Specific Representative MSR). Given a set of individ-
uwals X = {x1,...,xn} and the set of its representative concepts ||X|| = {7 |
& represents X'}, the Most Specific Representative of the set X, written MSRy,
is the concept 7 € ||X|| such that:

VS € ||X]|, we find S C .

Example 3.9 (Most Specific Refinement). As an example consider A =
{z,y,2,2'}, the set X = {x} and the A-Bou:

As = {r(z,y),7(2,2), Aly), B(y), C(<")}
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and the concepts:

o= IrT ={z,z}
A= IrA = {z}
S = Irfy} = {z}
= Ir(ANBN{y}) = {x}

= Ir(AnBN{y}H)nirA ={z}

We find that % & || X|| since z € H. In contrast, all other concepts do represent
X, thus we have A1, .%o, 3,7y € ||X|| (note that the set S can be infinite).

The subsumption relation between them is given by:

AL A, ST
SE A, S, S
ygE y4

Two of these concepts are more specific than the rest: 5 and %y, and equivalent
to each other. To select between 5 and %y we prefer shorter concepts, since
|| < ||, the most specific representative MSRy is 5. Given yet another
concept :

s =Ir.({y} MANB)

We have that S5 = S5 and |.S5| = |-S3|, thus they are two versions of the same

concept.

3.3.2.1 Refinements of One Individual

If we apply a to each refinement iteratively we can traverse the space of refine-
ments of C, as given in Algorithm 3. From Propositions 3.7 and 3.9 we have that
each refinement obtained by « is the most specific concept of an equivalence
class w.r.t. z, therefore using o we traverse the space of equivalence classes of
x. The space of possible refinements is a lattice (Fig. 3.6), where each node’s
descendants are as well sub-sets of their predecessors, since the refinements
go from more general to more specific. In this way we can find the MSR for
{z}. Note that, even though applying « to two different refinements C’ and C”
will not output the same sets, it suffices to choose only one refinement in each
iteration to arrive to the MSR for {«}. This is because the MSR has to consider
all possible properties of x, and by continuously applying « to any refinement C’
we will leave no necessary properties unexplored. By selecting any of the output
refinements of a(C') as the input of the next iteration, we will arrive to the MSR
when the output of « is empty.

Without loss of generality, we consider that each role in the A-Box is unique.
Then each refinement C” obtained by the operator will make a unnecessary asser-

tion in the A-Box for C, necessary for C’. Since the A-Box is finite, iterating the
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Algorithm 3 Computing the MSR for an instance z of C
input: (z,C,0)
c;=C
while o, (C;) # 0 do
Set C; to any C' € a,.(C;)

end while

return: C;

e e
- g

Figure 3.6: The lattice of refinements of C' w.r.t. z.

operator with Algorithm 4 will become all unnecessary assertions will necessary.
At this point the set of extensions Ext; ¢ will become empty, and the iteration
process will stop.

In Algorithm 4, regardless of the refinement chosen to continue the iteration
process (Line 4) all extensions in Ext, ¢ will be explored by «. And thus if the
iteration process is allowed to finish, a version of the MSR will be obtained in
the end.

3.3.2.2 Refinements of a Set of Individuals

From Proposition 3.9 it follows that using «, we can the most specific repre-
sentative for a situation to which a single instance x € X belongs. But this
does not necessarily hold for a set of instances X. The instances in X might
share a limited number of properties, thus the MSR of x does not necessarily
represent X'. There might exist several refinements found by «, that represent
X, but from which none is the MSR of X'. This is because the refinements found

by «, depend on the instance chosen. Using an instance xo € X', with x # x4
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might give different results. This implies that even if we find all the most specific
refinements that represent A’ using x, none of them might be the most specific
with respect to the whole set. Therefore, a priori, we would have to explore all
of the refinements of all the instances in X.

To find the refinements that best represent X we assign a rank to them,
based on their recall of X.

The first observation here is that, since for each refinement C’ of C' it holds
C' C C, whenever C’ no longer represents X (i.e. some individual in X is not an
instance of C’) it implies no descendant of C’ can represent X, and therefore we
do not require to further refine C’. The second observation is that, from all the
refinements of a,, with 100% recall, we can not, a priori, discard any of them as

candidates for the iteration process. Consider the following case:

Example 3.10. The MSR of a set of individuals X
X ={x,2'}

Ag - {rl(x,y),rg(y,w),rg(y7z)} U

{Tl (‘r,v y/)v 1 ({E/, Z/)’ TQ(ylv wl)v 7”‘3(2’, ul)}

T2 w
r1
ry—Y 73
z

T2
/
r1 y !’
=1
\ ; 3 ;
"z a7

Figure 3.7: The graph representation of individuals z and z’.

If we refine a concept ¥ = Ir. T guided by x. Applying o, () we find two
refinements .1 and o with a recall for X of 100%, where:

yl = 37’1.(3T2.T)

yQ = 37"1.(37"3.T)

The iteration process will stop here, since any further refinement will require the

individuals w or z (not connected to x') or be of the form:

Sy = Hrl.(ﬂrg.T M HTg.T)
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The recall of S5 is 50%, since ' & S5 (i.e. Ag = S3(x')). Guided by x we can
not find better representatives than % and S for X, nevertheless there ezists a

concept that represents X which is more specific than both :
Y4 = E|T1.2|T2.T [l 37’1.37’3.T

This concept can not be found by « using x. The operator « is designed to provide
the MSR for the given minimal A-Box. We can see that Ay o, = Az, »,, and
since 3 C Sy, a, will prefer 3. But we find that this is not true with respect

to x’. In other words, to find %4 we need to use x'.

Definition 3.27. Let X be a set of instances and O be an ontology. Given a
concept C, the recall of C is defined as recall(C) = W

At a first sight, this would mean that we have either to test all individuals
in X or somehow select the correct individual from the beginning to find the
concept we are looking for. Two observations can help us to avoid this exhaustive
search in a more clever way: first, the MSR of a set X, if it exists, is necessarily
a refinement of « for some individual € X and second, given a refinement .7’
that represents A’ obtained by applying a to ¥ using an arbitrary x, the MSR
of the set X" is necessarily a refinement of a,(.#’) for some z’. This implies we
can select any individual z € X to refine the input concept ., and as soon as
we do not find any more refinements with a 100% recall guided by the current
individual z, we can continue the process by selecting a different individual z’. If
this process is continued, we will arrive to the MSR for X. This is the intuition

behind Algorithm 4 presented next.

Algorithm 4 Get-MSR »
1: input: (C,0,X)
2. S« C
3: for z € X do
4 Best={.7}
5 while Best # () do
6: & <+ any C’ € Best
7
8
9

Best = {C’ € a, () | recall(C’) = 100%}
end while
: end for

10: return: .

In Algorithm 4 we obtain all those refinements of . with a recall of 100%
and hold them in the set Best (4,7). Initially, the set Best contains only the
input concept C' (2,4). As long as this set is not empty (5), we select any of
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its elements (which are ensured to be concepts with a 100% recall) as the next
concept . to be refined (6). In (7) we use the operator a guided by the current
individual x to obtain all refinements of . with a 100% recall, and store them in
the set Best. If we can still find such kind of refinements, this process is repeated
(5). Once we do not find any best refinement, the set Best is empty and the while
loop in (5) stops. At his point . is the last best refinement found. Then, the for
loop in (3) will select another element in the input set X and repeat the process,
until all individuals in X are explored. Finally, .# holds the 100% refinement for
the set X verified by all instances, which is returned as the output (10).
Continuing with the previous example, from all the refinements of C' we find
two types: those for which the recall of the set X is 100%, and those for which
the recall is below. Once no more 100% concepts are found, algorithm 4 stops,
and a set of all of those concepts that are immediate refinements of a 100%
concept is available (i.e. o, (#)). Each concept in this set, represents a (possibly

overlapped) subset of individuals of X that share some common features.

Proposition 3.10. Given a set of individuals X, whenever the output of Algo-
rithm 4 . # 0, .7 is the MSR for X.

Proof. From Line 7 in Algorithm 4, the output . holds:
Ok () foral z e X.

We have to show that there does not exist " C .7, s.t. forallz € X, O = ().
We proceed by contradiction. Assume such .#’ exists. Since every D; € ay is
the most specific concept w.r.t. APi and since the output .# was obtained by
oz, it means that . is as well the msc for some 2’ € X. This implies that
|AZ| > |AZ|. Thus there exists an axiom 3 € AZ with 8 ¢ AZ/. This implies
B is an extension of ' w.r.t. .. From Proposition 3.9 for every such minimal
A-Box AL w.r.t. some concept D, the operator a,s produces the msc, . But
Line 7 tests each such concept, and thus msc,s w.r.t. Ay does not have a recall
100%. Thus O £ '(z) for some x € X.

O

In fact, using a initial set of “samples”, and the operator a we can find all the
representable set of individuals and thus obtaining the situations characterizing
them.

Proposition 3.11. Given a set of individuals X, an A-Box A and a concept
D such that Vo € X we find A= D(x). Then, D is a refinement of a for some
re k.

Proof. Vx € X, A |= D(z) implies D € ||X||. Thus for each z, there exists

a minimal A-Box w.r.t D s.t. AP = D(x). For each minimal A-Box, «a, will
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generate the most specific concept s.t. A2 is minimal . Let D, € a, be a
refinement obtained guided by z, for which A2 is minimal. If D, ¢ ||X|], it
implies that for some 2’ € X, we find AD* £ D, (2).

The set X represented by D, implies D, C D. Since D is not the most specific
concept for A, but AP is the minimal A-Box for D, there must exist another
minimal A-Box of another individual ' € X for which D is the most specific
concept. Since otherwise D, would suffice. This implies D is a refinement for

some ¢’ € X. O

Once we can obtain the MSR for a set of individuals X', we know that any
refinement of such MSR obtained by the operator a w.r.t. some z will define
a strict subset X’ C X. Since all these individuals in X’ are instances of the
obtained refinement, the set X’ defines a situation. By iterating this process
over each subset found, and for each corresponding MSR, we can obtain all the

situations in X. Algorithm 5 specifies this process.

Algorithm 5 SD(X)
1: input: (C,0,X)

2 == {X}

3: ToRefine = {X'}

4: while ToRefine # () do

5: for Y € ToRefine do

6: for y €Y do

7: for D € o, (Get-MSR(Y)) do
8: Instp={yeY | O D(y)}
9: Add Instp to ToRefine
10: end for

11: end for

12: remove Y from ToRefine

13: end for

14: Add ToRefine to =
15: end while

16: return: =

In Algorithm 5 the set of all situations Z is initialized with X (Line 2),
since C' representing X’ implies X € =. Next we define a set ToRefine of all
those sets that need to be analyzed to look for sub-situations (Line 3). For each
such set Y (Line 5) we obtain its MSR computed by Algorithm 4, and for each
individual in Y (Line 6), we refine MSR(Y). In this fashion, we obtain the
representable subsets of Y. Intuitively, if there exists a subset of Y that can

be represented, there exists a concept D = MSR. This concept can be found
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by applying o, (M SR) for some y € Y. For every such refinement found, we
record the sets its instances in Instp (Line 8). Because there exists a concept
D for each one of these sets, they define a situation. And thus all the different
sub-sets are added to ToRefine (Lien 9), to explore if sub-situations can be
found. Since all subsets found this way are representable, we add all of them to
=. This process is repeated for the MSR, every subs set found, and refined with
every instance in such sets. Finally, when no more subsets can be found. The
refinements of every M SR will be empty (there exists no concepts that are more
specific than those found for the discovered sets) and thus the while loop (Line

5) will stop. The output of Algorithm 5 is the set of all situations in X.

Proposition 3.12. Given an ontology O, a concept C and the set of its instances

X, all elements in the output = of Algorithm 5 are situations in X.

Proof. We have to prove that every subset X’ C X that belongs to = can
be represented. If there exists a subset X/ C X s.t. X’ is representable, then
there exists its most specific representative MSRy:. From X’ C X we have
MSRy C MSRx.

From Proposition 3.9 we have that the MSR of a set Y, is a refinement
obtained by oy, for some y € Y. That is if Y is representable, its MSR can be
found by «. In Algorithm 5 for all z € X’ (Line 6) we obtain all the immediate
refinements D C MRSy (Line 7). Thus M SRy C D for some D. In (8) we
obtain all those individuals that are represented by D, and the iteration process
obtains its M SR. Thus every X’ C X added to Z is representable. O

3.4 Summary

We have presented an approach to discover interesting subsets of individuals in
an ontology O called situations. Each situation in O defines a set of individuals
that can be described by a DL concept, and that might have an infinite number
of concepts associated. To uniquely characterize each situation, we adapted the
notions of justifications in ontologies and the notion of most specific concepts.
We have presented an algorithm to compute a minimal A-Box, based on the
notions of necessity. The minimal A-Box allows us to construct refinements of a
given input concept, with respect to one of its instances. To this end we have
presented a sound and complete algorithm, in the form of a refinement operator,
to obtain the immediate refinements of a given concept. The operator allows to
characterize all the situations in O to which the given input instance belongs.
This process is then extended from a single instance, to obtain the MSR of a
set of instances. Finally we have presented how to characterize all the situations

present in the input set, where for each situation a MSR can be obtained, thus
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solving the situation discovery problem defined at the beginning of this chapter,
in Section 3.2. The algorithms and processes detailed in this chapter allow for
concept learning in an unsupervised fashion. We do not use positive nor negative
samples, and provide the most general and complete version of our operator to
traverse a search space, characterized by the notion of situation in O. In this
respect, the specifications in this chapter are highly customizable and can be
adapted to solve a problem where automatic descriptions for sets of instances
need to be discovered. The selection of which of these descriptions are to be
kept, is case dependent, and in this regard the approach provides the shortest
and most specific concepts, that provide access to situations in O.

In Chapter 4 the relation between situations and failure signatures is es-
tablished, showing how the general approach presented in this chapter can be

adapted for Signature Analysis (SA).
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Chapter 4

Situation Discovery in

Avionics Maintenance

In this chapter we detail how the refinement process presented in chapter 3 can
be used in the avionics maintenance domain. There are two main functions the
prototype should provide to support the technician on the diagnosis process :
1) Consult the knowledge base to obtain suggested corrective actions, and 2)
Enrich the knowledge base through the users feedback on whether or not the
given suggestions were relevant. The enrichment of the knowledge base requires
not only to consider the possibly new corrective actions, but also to discover
new failure signatures. This chapter specifies the results these processes should
yield, and how these results can be obtained. To this end, we first present the
constructed ontology for avionics maintenance on which the approach is based.
The ontology has been designed considering the two main data sources: the .AR
files and the corrective actions, detailed in the next section. Next we explain how
the signature of a failure can be defined as a situation in the ontology, enabling
the situation discovery process presented in chapter 3 to be used to solve the
problem of discovering failure signatures. Finally, we present how to integrate the

technician’s feedback into the knowledge base, before turning to the summary.

4.1 The Data and The Ontology

In this section we present the data that was provided for the approach and
the ontology constructed to capture its most relevant features. The ontology
is to represent the information of the diagnosis process, in terms of concept
names and role names, which are combined using the DL language constructors

(conjunction, existential restriction, nominals) to create concept definitions.
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These definitions conform the terminological knowledge or T-Box of the ontology.
Once these concept definitions are available, we can populate the ontology by
adding assertions to the A-Box, which denote facts expressed according to the
terminology in the T-Box.

The information about the diagnosis process has two main sources: the .AR
files containing the results of the tests made to each equipment, and the corrective
actions associated to each such test. This information has been modeled in the
ontology Thales Avionics Maintenance Ontology (TAMO), aided by the Thales
Avionics experts.

We start by detailing the structure of the .AR files and the ontology to

describe them.

4.1.1 The All Results (.AR) files

In the diagnosis process the technician tests the ELAC in a special unit called
a Test-Bench. This unit checks exhaustively all the ELAC functions, and the
output of this process is an .AR file (All Results). The .AR files are the main
source of information for the ontology. They are presented in plain text format
and contain up to thousands of lines. Each line of an .AR file represents an
individual test on a specific function of the ELAC, with the sanction GO or
NOGO which indicates if the test was passed. Thus, an .AR file is a set of
individual test results (thus the name All Results files). Each .AR file is divided

in three main sections:

1. The header, with information about the context of the test, including: the

equipment to be tested, the time and date, the type of test.

2. The test results, which are organized in three levels: part, function and
sub-function. This section contains the individual tests on the functions of
the ELAC.

3. The footer, summarizing the results and length of the full test.

Figure 4.1 shows an extract of the header of an .AR file. On the very top we
find the title of the file ”ALL RESULTS FILE”. Next, we have the "SMART
TEST PROGRAM?” section, where the manufacturer, the part-number of the
tested equipment, the corresponding maintenance manual with the specification
of the equipment, and the specific test program run for this examination are
shown.

The ”OPERATOR LOG” section, is concerned with the parameters given by
the operator to run the test: characteristics of the tested equipment (amendment),

the operator (technician) who made the test, the justification of the test (whether
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it is a initial test, a loop test or a final test), and the date-time when the test
was started.

Each .AR file can test a specific set of functions from the ELAC. The section
?START OF CURRENT SELECTION” in the header, provides the first and
last entry point of the test, i.e. which functions are tested. The functions tested
by the test-bench are organized in parts. The parts to be tested, depend on the
equipment and the program selected. It is for the operator to decide if he/she
wants to test all parts, just a sub-set of them, and how many times. In the
specific case of the ELAC, there are fourteen parts that can be tested. In the
inatial test and final tests, it is mandatory that all fourteen parts are checked.
After an initial examination, it is possible that a test of all the parts does not
detect any failure. If nevertheless the technician suspects a failure is still present
in a specific function, he/she can choose to test one specific part, several times

to stress the equipment and find the failure. This is called a loop test.
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. : be found.
. [ELACY) *
* « | TEST PROGRAM The specific piece of software usad to run the test,
L MANUFACTURER i THALES ANIONICS »
: UUT PART=NUMSER FR .
w SPECIFICATION i CHM OXN-XX-XHK ®
- -
. TEST PROGRAM i B-HIEC .
snimins svimivinini srimivimivinins Section: OPERATOR LOG
UUT PART-MUMBER Idem as above,
GFERATOA Lo AMENDMENT If the equipment (ELAC) had some amendments, they ane listed
here, The amendments can be seen as upgradesfupdates to the

UUT PART-HUMDER T OO equipment.

AMENDMENT tOAIBCIDELFIGIH

SERTAL-NUMBER + ELACVBOON

et - SERIAL-NUMBER See UUT PART-NUMBER,

TEST JUSTIFICATION : RECETTE D°ENTREE

OPERATOR The technician that run the test,

DATE = OCT @7/2018 TIME & 14:24:51 TEST JUSTIFICATION The type of test run (Initial test, Loop test or Final test).

R e e e ] U.‘u—._lm .._-—ngm ﬁ._._ﬂ .n__-zm D*E test,

“ START 0 F CURRENT SELECTION “
“.I_.I__1__1__.1_1_._..._...._....._....._4..1_.1_.I_..1_..1_.1__1__.1__.1_.1_.1_1:::2111111111111:“
FIRST ENTRY POINT + 1: [EEPRDM BITE
LAST ENTRY POINT 1 14:; SAPETY TESTS/OPERATIOMAL MOOE ACTIVATION

Section: START OF CURRENT SELECTION

FIRST ENTRY POINT

Fourteen sections (parts) can be tested for each equipment. This
value indicates the first part tested. A initial test must ren all parts
(1-14), loop tests can run any subset of them.

LAST ENTRY POINT

Last section (part} tested.

Figure 4.1: To the left, an extract of the header of an .AR file, to the right the description for each field.
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Once the context of the full test is set in the header, the second section of
the .AR file (figure 4.2) shows the results of the individual tests, hierarchically
organized in parts, functions, and sub-functions. The largest sub-section of the
results is the part. An ELAC .AR file can have between one and fourteen parts.
In figure 4.2 it is shown part 8: ARINC INPUTS/OUTPUTS, where two tests are
made at the level of the function ARINC MESSAGE RECEPTION and three
tests made at the level of the sub-function COM ARINC reception CHANNELT).
Each individual test, is presented in a single line with the following format: first
a code (eg. 180203) and a designation (eg. TIDGIO08 080030), which allows to
identify the corresponding entry in the CMM to interpret the test result. The
designation has two levels, and is divided in designation 1 (e.g. TIDGIO08) and
designation 2 (e.g. 080030). Next, we have the measurements (e.g. 400AC HEX
EQ 40AC) obtained by the test-bench on the specific function. The type and
format of the measurements depend on the specific functions being checked, and
are usually ranges of voltage values. If the measurement of the voltage value is
within the expected range, the test is passed, otherwise is failed. In figure 4.2
the measurement 40AC HEX EQ 40AC on line with code 180203, indicates that
the obtained value is 40AC (left) and it should be equal to 40AC (right). Since
they are equal, the result of the test is GO. In the next line (code 180206), the
expected value is also 40AC but the read value is 50AC, and thus the test is not
passed, and the result is NOGO.

8: ARINC INPUTS/OUTPUTS } Part/Chapter

ARINC MESSAGE RECEPTION } Function
180203 T1DGIOO8 080030 40AC HEX EQ 40AC GO
180206 T1DGIOQ8 080040 50AC HEX EQ 40AC NOGO

COM ARINC reception CHANNEL1) } Sub-function

180215 T1DGI0O8 080058 A0 HEX EQ D55555 NOGO
180221 T1DGIOO8 080330 D55555 HEX EQ D55555 GO

180227 T1DGIOO8 080620 D55555 HEX EQ D55555 GO

\ 7\ / N / e
Code Designation Measurements Result / Sanction

Figure 4.2: An extraction of the structure of an .AR file.

Finally, the footer section (figure 4.3) presents the summary of the results. It
is divided in two sub-sections: END OF CURRENT SELECTION and END OF
UUT TEST. In case a loop test is run, the technician can instruct the test-bench
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to test a sub-set of parts any given number of times. This is called a selection.
Once the selected parts have been tested, the section END OF CURRENT
SELECTION summarizes its results: the first and last tested parts, the number
of individual tests made, the number of failed tests and the date/time when the
test was finished.

The second section in the footer of the .AR file is "END OF UUT TEST”
and it displays the aggregated results of each selection of parts. This section
shows, the total number of individual tests made, the total number of failures,

and the date/time of the conclusion of the whole test.
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4.1.2 Modelling AR Files in the Ontology TAMO

In this section, we present the part of Thales Avionics Maintenance Ontology
(TAMO) coming from the analysis of the .AR files.

The concepts and role definitions of TAMO are represented in Description
Logics in form of a T-Box. Once the T-Box is built, the A-Box of TAMO can be
populated through instantiation of terms of the T-Box. The T-Box along with
the A-Box constitute the knowledge base KB.

Figure 4.4 and 4.5 detail the main concept names and role names, respectively,

to represent the .AR tests in the ontology.

TAMO CONCEPTS

Concept Description
Test Groups all types of tests

TestLogLine Each line present in a TestMain

TestMain Each .AR file is a TestMain
TestPart The first level in the structure of a test
TestFunction The second level in the structure of a test
TestSubfunction The third level in the structure of a test
TestCode The code of the TestLogLine
TestDescription A description of a test
TestDesignation Each TestLogLine can have one or two designations
TestFile The .AR file name
TestProgram The program run on the test-bench for this specific TestMain
TestResult The sanction of each TestLogLine
Justification The reason the test was made (intitial test, final test, loop)
Station The Test-Bench where the test was performed

Figure 4.4: The concepts chosen to represent the tests in TAMO.

As seen before, there are several levels of test in an .AR file. The .AR file
itself is a test, denoted by TestMain and each individual line in an .AR file
is as well a test, denoted by TestLogLine. Each TestLogLine can belong to a
TestPart, a TestFunction and/or a TestSubFunction within the .AR file. Besides
the location of each TestLoglLine within the file, we consider its most significant
properties: its TestCode, the two TestDesignations, and the TestResult. We do
not consider the measurements of the TestLogLine, because they refer to numeric
real values which would require additional processing (determine if they are in a
range, if they are greater or smaller than, etc.) which would require to increase

the expressiveness of the language chosen for the ontology. Thus we consider
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only if the test was passed or not.

Our approach focuses on the tests made on the ELAC computer. The ontology
(Figure 4.10) is able to represent more information than the one considered
relevant for the current use case, but we have selected a subset of concepts
and roles that are relevant for our scenario. Because of this, there is no need
to consider the manufacturer, the part number, nor the serial number of the
equipment. We have also omitted the first entry point and last entry point fields,
since the TestPart is already associated to each TestLogLine.

Once the concepts are defined, we need to establish the relations between
them. We do this by introducing roles. Intuitively, a role defines a binary relation
between two individuals in the form of R(a,b). The domain of the role R
establishes the type of individuals allowed as the first component (a) and the
range defines the type of individuals allowed as the second component (b). Figure
4.5 presents the role domain, the role name, the role range, and a description for
the main roles selected in TAMO.

TAMO ROLES
Domain Role Range Description
TestMain hasTestFile TestFile The .AR file name associated to each TestMain
TestMain hasTestProgram TestProgram The program run but the test-bench
TestMain hasTestLine TestLogLine Links a TestLogLine to a specific TestMain
TestMain justifiedBy Justification The justification of the full test (initial, loop, final)
TestLogLine hasTestCode TestCode The TestCode of each TestLogLine
TestLogLine hasTestDes1 TestDesignation The first designation of each TestLogLine
TestLogLine hasTestDes2 TestDesignation The second designation of each TestLogLine
TestLogLine hasTestResult TestResult The sanction of each TestLogLine (GO/NOGO)
TestLogLine lineHasPart TestPart The TestPart to which this TestLogLine belongs
TestLogLine lineHasFunction TestFunction The TestFunction to which this TestLogLine belongs
TestLogLine lineHasSubFunction TestSubfunction The TestSubfunction to which this TestLogLine belongs

Figure 4.5: The roles chosen to represent the tests in TAMO.

The concept names and role names introduced so far constitute the T-Box of

TAMO, that is the terminological knowledge represented in the ontology. The
T-Box alone contains no information about any particular .AR test. It defines
the vocabulary we can use to describe them, and what form these descriptions
should have, but it does not contain the descriptions themselves. To add the
AR tests to the ontology (i.e. populate the ontology) we assert facts about the
.AR files in the form of axioms in the A-Box. The A-Box constitutes all the facts

we know about our domain.
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Since the A-Box contains only unary and binary relations, it can be repre-
sented as a graph, which can be a useful representation for visualization and
processing. Consider the following A-Box corresponding to some of the lines
from the .AR file in figure 4.6.

A-Box; ={

TestMain(¢1), TestFile(ELAC.AR), TestLogLine(L),
TestDesignation(71DGI008), TestDesignation(080050), TestResult(NOGO),
TestPart(8: ARNIC...), TestFunction(ARNIC MESSAGE...),
TestSubfunction(COM ARNIC...),TestPart(T'S), TestCode(180215),
hasTestFile(ty, ELAC.AR) hasTestLine(t;, L),

lineHasSubfunction(l;, COM ARNIC...), hasTestResult(l;, NOGO),
lineHasPart(ly,8: ARNIC...) lineHasFunction(l;, ARNIC MESSAGE...),
hasTestDes1(ly, T1DGI008),hasTestDes2(l1,080050),hasTestCode(ly, 180215)}

Then A-Box; can be represented as a graph, as shown in figure 4.7.

8: ARINC INPUTS/OUTPUTS } Part/Chapter

ARINC MESSAGE RECEPTION } Function
180203 T1DGIO08 080030 40AC HEX EQ 40AC GO
180206 T1DGIO08 080040 50AC HEX EQ 40AC NOGO
COM ARINC reception CHANNEL1) > Sub-function
180215 T1DGIO08 080050 AQ0000 HEX EQ D55555 NOGO |
180221 T1DGIO0O8 080330 D55555 HEX EQ D55555 GO
180227 T1DGIO0O8 080620 D55555 HEX EQ D55555 GO
N VAN / Nt
Code Designation Measurements Result / Sanction

Figure 4.6: The extract of the .AR file corresponding to A-Box;.
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Figure 4.7 shows an example of the extract of an .AR file represented as a
graph. The graph represented corresponds to A-Box;. The nodes of the graph
are the individuals, the labels below the nodes correspond to concepts names,
and the edges between the nodes are the relations between the individuals. The
example in figure 4.7 shows a partial representation of the .AR file, where the

TestMain t; has a single T'estLogLine l; and seven properties.

4.1.3 The Corrective Actions

On the other hand we have the corrective actions. In avionics maintenance
there are multiple types of maintenance actions (repair, cleaning, preventive
maintenance tasks, upgrades, etc) which we call the event of the maintenance
action. From these types of maintenance actions, we have selected the replace-
ments of the components in the ELAC as the actions to be modeled, since these
components have a direct influence in the results of the .AR files. Each ELAC
is a computer composed of several boards (six plus two interface boards), and
each board has hundreds of components of different types that can be replaced.
Figure 4.8 illustrates the structure of an ELAC and a set of corrective actions,
as extracted from the workshop systems. The actions are divided per SRU (Shop
Replacement Unit), which in our case are each one of the boards in the ELAC.
The types of boards are: POWER MON, MPU ANA, MSP DG, CSP DG, CPU
ANA, POWER COM, LSP and INTER UNIT.

In the sample data in figure 4.8 the corrective action for each file is given
by the board (SRU1 Type), the specific position (repere topo) and the type of
component (SRU1 component) to be replaced. These three elements are necessary
for the technician to identify the replacement. In the example, the corrective
action for file 20094-777-777.AR is to replace components U30 and U44 of type
AMPLI in the board MPU ANA. Therefore an individual corrective action must
denote the board, the position of the component and the type of component to

be replaced. Formally:

Definition 4.1 (Individual corrective action). An individual corrective action
ia is a tuple:

ia = (board, component, type)
where board is the board in the ELAC computer where the replacement takes

place, component is the position of the replaced component and type is the type

of the replaced component.

Each time a repair is needed several such replacements can take place, in
several boards, therefore a complete corrective action is a set of individual

repairs.
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20094-777-777.AR MPU ANA AMPLI U30 u44
20182-777-777.AR MSP DG EPLD u28
20030-777-777.AR MSP DG EPLD|RAM U25|U35 U36

Figure 4.8: The association between the .AR files and the repair actions. From
left to right: the .AR file name, the board, the type of component and the
position of the replaced component. Diagram extracted from FELAC product

specification sheet.

Definition 4.2 (Composed corrective action). A composed corrective action a
1 as a set:

a = {iay,iaz,...,ian}
where each ia; is an individual corrective action.

For example, the file 20030-777-777.AR, has associated a composed corrective

action a = {iay,iaz,ias} where :

ia; = (MSP DG, U25, EPLD)
iay = (MSP DG, U35, RAM)
ias = (MSP DG, U36, RAM)

4.1.4 Modeling Corrective Actions in TAMO

The model of the actions is simpler than that of the .AR files, since we consider
a specific type of corrective action (replacement) and the three elements that

identify them: the board, the component position (topo) and the component type.
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The T-Box with the concept names and role names to represent the corrective

actions is shown in figure 4.9.

TAMO ACTIONS T-Box

Concept Description

ComposedCA Denotes a composed corrective action

AtomicCA Denotes an individual corrective action

SRU The board where the component replaced by each
AtomicCA takes place

LocationinSRU The position (topography) on the board (SRU) of the
component replaced by each AtomicCA

ComponentType The type of the component replaced by each
AtomicCA

Domain Role Range Description

ComposedCA  hasindividualAction AtomicCA Associates an individual action (AtomicCA) to a
corrective action (ComposedCA)

AtomicCA actionHasCard SRU Indicates the board (SRU) of each AtomicCA

AtomicCA actionHasComponent | LocationInSRU | Indicates the location in the board (SRU), of the
component replaced by the AtomicCA

AtomicCA actionHasType ComponentType | Indicates the ComponentType of the component
replaced by the AtomicCA

Figure 4.9: The T-Box to represent the corrective actions: on the top, the concepts

names, on the bottom the role names.

Note that a technician might perform several tasks during the investigations
of the cause of the failure, and might replace suspicious components, which do not
really solve the failure. Thus, if these components were listed in the replacements
that solve the failure, some unrelated replacements would be suggested. The
data we use for training is filtered, and only the root causes for each failure are
taken into account.

The ontology TAMO was designed to provide a generic vocabulary and a
basis for domain specific ontologies. TAMO allows to represent information
about the tests, the corrective actions, the items associated and contextual
information about the maintenance process. Since in our scenario we test a single
equipment family (ELAC) and the interest is focused solely on the test results,
the information about the type of equipment, the operator that ran the test, the
aircraft involved, etc., was not considered a priority ! and was left as possible
extensions for future work. The ontology in Figure 4.10 shows the sub-part of

TAMO directly related to the tests and actions previously detailed.

1This information might also be subject to restrictions, like the airplane logs, since they

belong to the client, i.e. the airline.
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4.2 Failure Signatures as Situations in O

In avionics maintenance, the signature of a failure is characterized by the
properties (results, context) of the test files that detect the failure. Thus what we
want to achieve is to extract the relevant properties from the test files, that allow
us to define a failure signature. Such a set of properties, enable us to distinguish
a set of tests files from the rest, and therefore finding these sets of test, provides
the basis to construct a failure signature. Recall that a situation in O, is a set
of individuals that can be described by a DL concept. The sets of individuals
are the sets of tests, and the DL concepts, are the descriptions of the signatures.
Under this perspective, a failure signature defines a situation in O, as presented
in chapter 3. This section formalizes the relation between failure signatures and
situations, and shows how to obtain them.

We start by quoting a definition for the Failure Signature from the Global
Standards for the Microelectronics Industry [JEDEC, 2018]:

The necessary and sufficient information about a failure that estab-
lishes a strong relationship between failure characteristics and failure
mechanism. This necessary and sufficient information can include
emission microscopy results, morphology data, test data, IV-curves,
environmental history, etc. and therefore can be either electrical
or physical in nature. The scope of application can be time-based,

lot-based, package-based, design-based, etc.

Regarding the .AR test files, the information available to define a signature
are all the features of the test: the TestLogLines, the TestCode of each line, the
TestPart and TestFunction to which each line belongs, etc.

The possible ways in which we can combine the properties of the .AR files
grow exponentially with respect to the number of features they present. But
only some of the sets of .AR files we find this way, will indeed represent a failure
signature. Nevertheless, a failure signature necessarily has to be represented by
one or more of these sets of .AR tests. Any such set of .AR tests that can be
described by a DL concept in O defines a situation in O, thus the situations in
O provide the means to define the failure signatures : every failure signature is a
situation. Therefore our problem is reduced to finding situations in O.

Nevertheless, not all the situations in O define a failure signature. Some of
them are too general, in that they do not properly separate a set of files from the
rest, and can be seen as approximations for the signatures. Thus we look for the
more specific description for each situation in O, given by the MSR. The MSR
provides the most detailed DL description for a situation in O. If the situation is

too general, any refinement of the MSR will lead to the discovery of new, more
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specific situations (if they exist). These are the reasons why we search for the
MSR: it provides the most precise characterization for each signature, it allows
us to define the limit of the current situation and enables us to continue the
refinement process. Thus every situation that represents a set of files {f1,..., fn}
in O is characterized by its MSR, which we call the signature for {fi,..., fn}.
This notion is captured by the following definition:

Definition 4.3 (Signature in O). Given a set of . AR files {f1,..., fn} and an
ontology O, the signature & of {f1,..., fn} is their MSR.

To illustrate this notion consider example 4.1, where on the left of figure
4.11 we have the graph representation of files f1, f2, f3 and on the right the

corresponding A-Box.

Given the set of individuals A = {f1, fa, f3} the following DL concept defini-

tions are examples of refinements we can obtain using a:

S = 3JhasTestLine.(IhasTestResult. {NOGO})

1 = FhasTestLine.(3hasTestCode.{1234})

S = 3FhasTestLine.(hasTestCode.{1234} M FhasTest Result. {NOGO})
s = FhasTestLine.(3hasTestCode. {1234} M 3hasTestResult. { NOGO}

M3hasTestPart.{Partl})

FEach of the above refinements is obtained by a(T) guided by f1. The concepts are
selected to show that the refinements become each time more specific, that many
situations can be found guided by one sample, and that for each situation several
different concepts might exist. When several concepts represent a situation, the
most specific is selected.

From the above concept definitions, we find that %y = {f1, fe, f3} and
S, Fo, s = {f2, f3}, thus these four concepts define two situations in O (i.e.
{f1, fa, f3} and {f2, f3}). The signature for {f1, fa, f3} is S, but we have three
candidates for the signature of { fa, f3}: S5, S, S1. Note that S5 C S C 7.
Following definition 4.3, we select /5 as the signature for { fa, fs} since it is the

more specific.

The signatures found are added to the KB, so that they can be further used

for consulting. The consulting phase, is detailed in the next section.
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Example 4.1.

Graph A-Box
O 1234 hasTestCode(ly,1234)
fi Iy /
O O O NOGO hasTestLine(f1,11), hasTestResult(ly, NOGO)
\O Partl hasTestPart(ly, Partl)
O 1234 hasTestCode(lz,1234)
I2 la /

hasTestLine(fa,12), hasTestResult(la, NOGO)

hasTestLogLine(fs,13), hasTestPart(la, Partl),

hasTestCode(l3,2345), hasTest Result(l3, NOGO)

hasTestCode(ly, 5678)

hasTestLine(fs,l4), hasTestResult(ly, NOGO)

hasTestPart(ly, Part2)

Figure 4.11: Graph representation and corresponding A-Box for files f1, fo, fs.
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4.3 Obtain suggestions for a new sample (Con-

sult)

A set of samples of the relation between the tests and the actions is given by
an expert. From the technicians experience, we can evidence that for each file,
more than one individual corrective action can take place, and in more than one
board.

Figure 4.12 shows a subset of the samples of the relation between the .AR

files and the corresponding corrective actions:

Ar File
CAPACITOR| C123 C128 | U14 LOGIC STD|
10094-888.AR POWER MON AMPLI U19 U26 U31 LSP CLEANING u7
10094-9999.AR CPU ANA EEPROM
10094-1111.AR CPU ANA CONVERTER u7s MPU ANA AMPLI ués

Figure 4.12: The association between the .AR files and the repair actions. From
left to right: the .AR file, board, type of component, position of component
replaced in SRU1, and in SRU 2.

The relation between files and actions is represented by the set F'A of pairs
(f,a), where each f is an .AR file and each a is a composed action. Thus the

actions associated to a specific file f are defined by:

Definition 4.4 (File Actions).
Ap={a| (f,a) € FA}

As an example consider the set: FA = {(f1,a1),(f2,a2),(fs,as)}, then

Afl = {0’1}'
We can extend this definition in a similar way to obtain the actions of a

signature .&.

Definition 4.5 (Signature Actions). Let . = {f1,..., fu} be a signature in O,
and let F'A be the set correlating files and actions. Then the actions associated
to . are defined by:

Ay ={a|(f,a) € AF and f € S}

Consider again the set: FA = {(f1,a1),(f2,a2),(f3,a3)}, and let ¥ =
{an f3}7 then Ay = {a'27a’3}'

When the KB is used to obtain suggestions for a new file f,, we first obtain

the most specific signature in O, then we obtain the files already in the KB
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that belong to this signature, and finally obtain the actions associated to each
file, thanks to the set F'A. These actions represent the suggestions for f,. These
three steps are detailed in the following.

Let A = {f1,..., fa} be the set of all .AR files in O, and assume O has
been enriched (trained) using the refinement process in chapter 3, where all
signatures for a situation in O have been discovered and added to O. Given a new
file f, ¢ A, our task is to find the set A, of actions that can be associated to f,.

Step 1: Obtain the most specific signature for an .AR file The file f,,
might belong to more than one signature in O, thus we select the most specific

one, since it provides the most detailed description for the failure signature.

Definition 4.6 (Most Specific Signature). Given an .AR file f, and an ontology
O that contains learned signatures. Let fy € F1,.... 7, be the signatures for f,.
A most specific signature for f, is defined by:

S = | BS; with I © .,

Consider again example 4.1, and let f, = f3 (meaning that both files have

exactly the same test results). Then the signatures for f, are:
fv € 50,5

Following definition 4.6, the most specific signature of f, (in symbols %%, ) is
S

Step 2: Obtain all the files in KB that belong to the selected signature
Once we have selected the signature for f, the second step is to obtain all files
that belong to the signature. That is the files in O that are instances of the

signature. In our example we have:

Sy, =S ={fo, f3}

Step 3: Obtain the actions associated to each file in the signature Once
we obtain the .AR files that belong to the most specific signature ., = {fa, f3}
for f,, we use the set F'A to obtain its suggestions. Consider again the set:
FA = {(fi,a1), (f2,a2),(fs,a3)}. We have found that #;, = {f2, f3}, then
according to definition 4.4 we have Ay, = {az,as}.

Finally, all those corrective actions associated to the signature ., form the
suggestions of file f,:

Suggestionsy, = Az,

Figure 4.13 illustrates the relations between the files, the signatures and the

actions from example 4.1 in this section.
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AA = {a17a27a3}

A

A={f, f2, f3} (file,action)
2
P T L gl
I3 ={fa f3}
Az, = {az,a3} (Fara2)
(f3,a3)

Figure 4.13: Illustration of the relation between signatures, .AR files and correc-

tive actions.

4.4 A more fine-grained KB through feedback
(Feedback)

In this section we detail the acquisition and integration of new information into
the KB, through the technicians feedback. In the previous section, we have shown
how to consult the knowledge base and obtain the suggested actions for a new
AR file f,. After the file is consulted, and the suggestions are proposed to the
technician, an investigations & repair phase follows. During this process, the
technician resolves the failure detected by the .AR file. Once the true corrective
action is known, we can start the next process.

The feedback process has two main tasks:

1. It aims to integrate and validate the feedback from the technician by
recording the true corrective action and associate it to the corresponding

AR file. In this way it is made available for future consultations.

2. The .AR file in the feedback might contain information not seen before in
the training stage (other properties). The second task of the feedback is to
analyze this new .AR file, in search for new signature descriptions, and, if

found, integrate these descriptions in the knowledge base.

As a result of this process, we obtain a more fine grained ontology and a larger
set of corrective actions that can be suggested. These two tasks are described in

the following.

Integrate the true corrective action This step is simple. The feedback of the

user is given by the consulted .AR file f, and the individual corrective actions
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that solved the failure: iaq,%as, . ..%a,. The full composed corrective action ay,

associated to the .AR file, is the set containing all the individual actions:
ay, = {ia1,1a2,...1a,}

This information is added to the KB. Finally the set FA (of files-actions) is
modified to link the file f, to the composed corrective action ay,, by adding the
pair (fy,ar,) to FA.

Analyze the new .AR file in search for new signatures Since the signa-
tures discovered in O depend on the .AR file analyzed, it is possible that new
signatures are found following the arrival of a new .AR file. This is the case when
the technician provides the feedback 2. Intuitively, this process is a continuation
of the learning phase, which is "restarted” from a specific point. The signature
learning process explained previously in this chapter, in section 4.2, requires
to specify: the file to guide the learning, the initial set of tests and the initial

concept to refine. These three parameters are given by:

e Once the new file f, is presented to the KB, we obtain the most specific

signature .¢, for f,, where %, is the concept to be refined.

e We obtain all files in ., = {f1,..., fn}, and set A ={f,..., fn}. This

is the initial set of individuals for which we want to find sub-signatures.

e The refinement process is guided by f.

2We do not integrate new files when they are consulted, because the true corrective actions

are not yet known.
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Example 4.2. Assume a new .AR file fy, detailed in figure 4.1/4, for which we

want to obtain its signature. Continuing example 4.1, if we consult the KB for the
Graph A-Box

O 7890 hasTestCode(ls, 7890)

f4 Is asTestCode
O O NOGO hasTestLine(f4,15), hasTest Result(ls, NOGO)

OhasTestLine ~ hasTestResult
hasTestPart
O Part2 hasTestPart(ls, Part2)

Figure 4.14: The graph representation and the corresponding A-Box of a new

file f, presented to the KB for learning.

signature of fa, we find that its most specific signature (out of { S0, 1, S, F3})
18 yo N
S = JhasTestLine.(3hasTestResult. {NOGO})

And thus :
T = S0 =1{f1, f2, f3, fa}

Since fy is a new .AR file, we can use it to search for new signatures. If we
refine the current signature found for fy, we obtain a set of refinements of the

form:
ar(H) ={A,.... 7}

One of such refinements, .7, is defined by:
| = JhasTestLine.(3hasTest Result. {NOGO} M 3hasTest Part.{ Part2})
Where the instances of | are :
A =Afs, fa}

Since .| is also the MSR for {fs, f4}, we record this new signature in the KB,
making it available for further consultation.
If f4 would be consulted again, its MSR will no longer be %y

S =S ={fs, fa}

This example illustrates how new signatures can emerge in the presence of

new samples.
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From the above example, it is clear that new samples might lead to the
discovery of new signatures. This process can go on continuously, and the
resulting KB will become each time more ”fine-grained”, in the sense that
more signatures that capture each time a more specific set of files can be made
available.

We are interested in this evolution, since the more fine grained the knowledge
becomes the more precise the corrective actions related to each signature can be.

The following and final example shows how the more signatures we find,

allows us to minimize the set of corrective actions for the suggestions.

Example 4.3. We are given the set of .AR files A = {f1, f2, f3}, the set of ac-
tions Ax = {a1, as,a3}, the relations between them FA = {(f1,a1), (f2,a2), (f3,a3)}
and a concept that captures all files Sy = A. In time ty we are presented with
a new file f, = f3 (meaning f, and f3 have the exact same results) for which
we want to obtain the suggested corrective actions. We find that f, € S (since
fo = f3) and the associated corrective actions are (ay,as,ag). This is illustrated

in Figure 4.15. In time t; we obtain A1 as a refinement of . The operator

fo=fs A ={f1, f2, f3} (file,action) An = {ay, a2, a3}
to
7 1
S =A .
fxoe 570 fi \ (Fr.an) / 1
MSCfm =% f2 o
Ay ={a1,a2,a3} / (f2,a2) \
f3 as

(f3,a3)

Figure 4.15: The state of the KB in time #¢.

a ensures that 1 C .Yy and thus .1 can only contain equal or less elements
than . Since the actions associated to each signature depend on the files in
the signature, the suggestions for a refinement .’ can only be equal or less than
the suggestions of . In time t1 we find f, € S, S1. We select again the
MSR (1) and thus the suggestions are Ay, = {as,a3} (Figure 4.16 ). In t3 the
operator « is applied to . and the suggestions for f, become Ao, = {as}. The
modifications to the knowledge base, the set of actions, and the files in signature

S are shown in Figure 4.17.

The next section of this chapter, presents the summary and the conclusions.
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fz = f3 A= {fl7f2a f3} (ﬁle’aCtion) AA = {a17a27a3}

ty
2 A
alF) =S S i N .
fz € S0, (f1,a1)
MSC;, =
A(771 _ {a27a3} (f27a2)
(f3,0a3)
Figure 4.16: The state of the KB in time ¢;.
. fo=fs A={f1, fo, f3} (file,action) Aa = {a1,a2,a3}
2
alA) =S S i N f >
fw€y05y17y2 (fl,al)
MSCy =% | [ Fafy N s >
Ay, = {as} (f2,42)
(f37a3)

Figure 4.17: The state of the KB in time to.

4.5 Summary

In this chapter we have presented the relation between the approach for situation
discovery introduced in chapter 3 and the problem of approximating failure
signatures stated in the introduction in chapter 1. We have first detailed the
AR files, their sections, properties and the relevant features that are taken
into account to model them and provide their representation in the ontology,
called Thales Avionics Maintenance Ontology (TAMO). We have next made an
analysis of the corrective actions we are required to provide as suggestions, and
we have similarly established their main features to be considered and modeled.
As explained before, in this work we are focused in the process of diagnosis
and repair of the ELAC equipment in the maintenance workshop. Nevertheless,
the design of TAMO is conceived to provide the basis to model maintenance

for any other equipment, consider more types of tests, more complex corrective
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actions and attach contextual information. This has been left out of the scope
of the thesis, to establish limits for our problem. Nevertheless, for the sake of
completeness, the main concepts and relations related to tests and corrective
actions available in TAMO are also shown in figure 4.10.

With the details on the data sources, the mapping to the ontology concepts,
and the structure of the ontology, we have proceeded to apply situation discovery
to approximate signatures in TAMO, where the .AR tests modeled in TAMO are
sets of individuals, and the signatures are DL descriptions for some of these sets.
By refining the initial concept TestMain from which all .AR files are instances,
we obtain the features that allow us to distinguish between them. These features
tell us what are the elements of the tests results they have in common, expressed
in the language of the ontology. For each set of files that can be described, we
select a single concept (the most specific) as the representative for the signature
of those files. The signature has in consequence associated the corrective actions
corresponding to those files. These actions become, in turn, the suggested actions
for any new file that is classified as belonging to the mentioned signature.

We have seen that there are two main tasks we need to consider when new,
unseen .AR files are presented to the KB: consulting the KB to obtain the
suggestions, and enrich the KB. For the consulting phase, we ask the ontology
what is the most specific signature for the new file, and then the associated
actions become the suggestions for the new file. For the feedback phase, we use
the new .AR file to guide a new refinement process in search for new signatures.

In the next chapter, we specify how these processes (consulting and feedback)

are implemented.
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Chapter 5

Prototype

In this section we present the implementation of the approach, where a prototype
to support avionics maintenance diagnosis has been designed and deployed. To
start we briefly recall the maintenance diagnosis process for the ELAC and detail
some important aspects. Then we explain the origin of the data, the context
in Thales where the implemented prototype takes place, and its requirements.
Next, we present the architecture of the system in a distributed environment
allowing massive data processing and remote access. Then for the two main
functions of the system : consult and feedback, we detail the implemented
procedures and show how the final user interacts with the tool. The prototype
had several versions, to improve its features. These are outlined before turning

to the summary.

5.1 The diagnosis process

This section briefly recalls the diagnosis process for the ELAC equipment and

explains the environment in which the implemented tool is expected to be used.

5.1.1 The Maintenance Procedure

Aviation maintenance is a rich, complex and highly technical domain. As such,
it involves a diversity of locations, companies, services and actors with tight
interaction and interdependence. The diversity of stakeholders and its distributed
nature is reflected on the systems that compose it.

Our approach focuses on the maintenance workshop, whose clients are the
airlines. When an equipment in an aircraft is found faulty, it is removed and
replaced by another unit with the same capabilities. The removed unit is sent to

a workshop, where it has to be diagnosed, repaired and certified.
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Client FrontDesk Technician TestBench

'] sru
SRU
SRU

Investigations

lcZ 221 Failure Causes
Repair

k-_z
Verification

oo

SRU repaired
< ———————————— ——
. SRU___]]

Figure 5.1: Sequence diagram for the repair of a SRU (Shop Replacement Unit).

Figure 5.1 illustrates the process: the Client (top left) sends the faulty
equipment, called a Shop Replacement Unit (SRU) to the workshop to be
repaired. The SRU is received in the workshop via the FrontDesk, along with the
cause of removal of the SRU from the aircraft and other contextual information,
like the aircraft type, the status of the systems of the aircraft, etc. The FrontDesk
gathers all this information and creates a Work Order for the equipment. Once
received and registered, the SRU is then transferred to the technician along
with the Work Order, and the technician proceeds to test the equipment in the
Test-Bench to verify if he can detect the same failure detected by the client, and
determine its origin. The Test-Bench outputs the corresponding .AR file (All
Results) with the test results. Out of these tests, a series of investigations take
place (not necessarily by the same technician) to determine the exact failure
causes and the corresponding maintenance actions to return the unit to a fully
functional state. Once the repair process takes place, it has to be verified (again
using the testbench) and if all tests are passed it is certified, returned to the
FrontDesk, and finally returned to the client. All the actions performed by the
technician for repair are filled in a report, and the more relevant parts of this
report (like the list of components replaced and the root cause of the failure)

are registered in a distributed system called ISEDIS.
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5.1.2 The Investigations to Diagnose and Repair an Equip-

ment

The investigations involve many processes and vary from equipment to equipment.
In this section we explain in more detail how the technician uses the results
of the test bench and what resources he has available to determine the failure
causes for an ELAC equipment. This provides an insight on the complexity of the
task, a better understanding of the procedure, and how exactly the implemented
tool is intended to support him.

The investigations start with the analysis of the test results. The Test-Bench
is a station designed to test a series of functions of the equipment and the
results of the tests are presented to the technician as a text file. Each such file
is composed of thousands of lines, where each line tests a specific function of
the equipment. (for an illustration refer to Figure 4.2). The level of the tests is
very low, in the sense that they test a functional chain, that is a specific circuit
inside the equipment. If the circuit is working properly, the corresponding line
in the test presents a result of GO, whereas if the test is not passed, the line
presents a sanction of NOGO. Therefore a test file is composed of thousands of
sub-tests (around 4000 sub-tests) each one with a result of either GO or NOGO.

Once the test results are available (Figure 5.2), the individuals tests (each
line in the .AR file) with the result NOGO provides the technician with the
references to the functional bock involved. The functional block is a logic diagram
of interconnected components. In order to verify if they work properly, their
physical location has to be established. Once the functional block(s) involved
in the failure have been identified, the physical components are identified with
the help of some software tools and/or manuals (Orchestra, Individual Drawing,
CMM). The physical components provide a reference that allows to establish their
physical location in the equipment, thanks to the physical drawings. Through
this process the technician obtains a list of possibly problematic components,
and proceeds to the repair operation. Once the replacements and repairs are
finished, the technician reports in detail his/her actions, which are recorded
in the SAP\ERP ! system, for reference. The information in the SAP comes
from several sources (WorkShop Order, Maintenance Report) and many of its
fields are in textual form. i.e. they are not structured. From the records in the
SAP module (and other sources) another technician selects the most relevant
information regarding the repair process (main cause, components replaced, etc.)
and feeds the tool for reliability and technical support ISEDIS. The advantage
in ISEDIS is that a bigger part of the information is structured in proper fields

(no longer as plain text).

L SAP\ERP is an enterprise resource planning software.
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TEST RESULTS Func. Block ref FUNCTIONAL DRAWINGS
Func. Block -> Physical component
ref.

NOGO (defect) -> Func. Block ref.

Component ref.

COST
. Func. Block cost
. Component cost

Technician identifies
the list of possible
components to change PHYSICAL DRAWINGS

< Physical component -> component

location

Technician reports
operations

SAP Records extraction _ ISEDIS
Operation Records = Repair Records

Figure 5.2: The systems and tasks involved in the maintenance process, from

the point of view of the technician.

A limitation found in our case was that there is no direct correlation between
the test obtained from the test-bench and the final report recorded in the ISEDIS
system, that can be automatically exploited. The systems and the procedures are
independent from each other, and thus reliable access to correlate both (the .AR
files and the replaced components listed in ISEDIS) is not explicitly given. The
correlation between the historical data of the tests and the corrective actions
in ISEDIS system had to be "manually’ established by an expert, and was not
possible in all cases.

Reducing the investigations time, to determine the list of possible faulty

components, is traduced in more efficiency in the repair process.

5.1.3 The format of the data sources

Regarding the format of the data, the .AR files are presented as plain text, and
thus can be accessed through any standard text editor.

To include an .AR file in the ontology we need to map it to the model defined
by the ontology. We can not do this directly. First the .AR files are parsed into

a structured JSON format, and then a second process creates an OWL version
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of the files, to be used by the ontology.

The JSON format is the preferred format to exchange information between
the modules of our tool. The files representing the ontology, the T-Box, the
A-Box, and intermediary files (temporal representations, discovered knowledge)
are all in OWL2 format. The correlation between the .AR files and the corrective
actions is given as an Excel file.

Finally, a copy of each .AR file consulted using our tool, and their struc-
tured JSON representations, are stored in Cassandra, ensuring we register all

information provided to the system.

5.1.4 The e-Diag initiative

In order to support the technician in diagnosis and maintenance, the e-Diag
(electronic diagnosis) initiative within Thales was launched. e-Diag aims to
provide a knowledge base that allows the technician to obtain suggestions
of the components to be repaired, a visualization tool that allows the easy
physical location of the component and a dysfunctional model, to determine the
mechanism of the failures. Within this context, our approach provides a solution
for constructing and exploiting a knowledge base, to provide repair suggestions.

The e-Diag project forms part of the efforts in Thales for digitalization of
the information they already hold in their key market areas, such as avionics.
This digitalization process is aimed to add value to their current procedures and

provide new revenue out of the exploitation of the digitalized information.

5.2 Requirements

The requirements presented in this section are concerned with the expected
interaction of the user with the tool, its input and outputs, and the environment

in which the system should be deployed.

5.2.1 Use Cases

To support the technician in the diagnosis task, two main use cases have been
identified: consult the KB to obtain suggestions, and update/enrich the KB with

new .AR files and corrective actions, which we call the feedback from the user.

Use Case: Consult

The tool should enable the user to provide an .AR file as an input, and
receive the corresponding suggested actions as output. The suggested actions

should be grouped by composed corrective actions, since it is interesting for
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the technician to see when repairs that were made together solved the failure
detected by the .AR file. Additionally for each suggestion, besides the listing of
the components to be replaced, the number of cases seen where this suggestion
is related to the failure have to be displayed. This value is also considered as the
confidence of the suggestion. This use case of the tool is called consulting the

knowledge base and is illustrated in figure 5.3.

Technician TAMO

AR

Parse file

k-2 f

Get signature
LII0 S

Get actions
LIID Ay
Suggestions

Figure 5.3: Interaction between the end user and TAMO. Case: Consult the

knowledge base.

Use Case: Acquire Feedback

On a second phase, once the technician has obtained the suggestions and made
the repair, he/she has determined the real corrective action (which might differ
from the suggested one) and we can update the ontology using this feedback
(figure 5.4) to increase the confidence on the given suggestion, or associate
new corrective actions to failure signatures. The technician is to return to the
tool, and provide the true corrective action for a previously consulted .AR file.
Intuitively, if the suggestion provided when the file was consulted was correct,
the confidence of the given answer should increase. If the suggestion was not
correct, the true corrective action has to be acquired and integrated into the
system. Finally, once the feedback is received, the tool counts with a new .AR
file and its corrective actions. The system should analyze this new .AR file, to

determine if new signatures can be discovered.
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Technician TAMO

AR + Actions
Acknowledge

Integrate actions

P
Discover new signatures

Figure 5.4: Interaction between the end user and TAMO. Case: Acquire users
feedback.

5.2.2 Environment

On both previously described cases, the technician is located in his own workshop.
Many repair workshops may exist. Thus the knowledge base has to be accessible
from all workshops, and should be able to respond to consults and acquire
feedback from technicians in any of these locations. Additionally in a full scale
implementation, the system should be able to handle a large quantity of data
to be consulted. Finally, as the information handled in avionics is sensible and

confidential, the system has to be deployed in a secure environment.

5.3 System Architecture

An overall diagram of the system for consulting the knowledge base is shown in
figure 5.5, where three different work groups are involved: to the left the end
user in Thales Avionics Workshop (TAV) who accesses the system functions
via the Human Machine Interface (HMI), and two teams to the right in Thales
Research and Technology (TRT). One team is in charge of the distributed
infrastructure and provides the web services that allow the end user to interact
with the knowledge base, and on the far right another work team is in charge of
the development, implementation and monitoring of the learning and reasoning

engine which directly accesses and modifies the knowledge base.
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Diagram : System Architecture (.AR file consult)

WORKSHOP . Internet . SERVER
! m WebServices Learning Engine
Knowledge Base
— > _ - Receive .AR file ; . | - Obtain signatures
. Test : Test | - Generate and output | Test for sample
A (ARfie) . (ARfile) | JSON from .AR - USON) - Get Actions for
- ; _ - Store in Database | signature
Actions __ " B m - Return suggested
" P Repair Actions
' Actions i Actions
! (ISON) ' (JSON)

Figure 5.5: The implementation of the prototype to consult the knowledge base. On the left the end user provides the test results. These
are passed over a VPN through internet to Thales TRT. In TRT, the web services provide the file to the KB, and transmit the answer
back to the user.
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In figure 5.5 we show the end user (technician) on the left who provides a new
.AR file (test) for which he/she requires a suggestion. The HMI is a web-based
interface, built using HTML and Javascript mainly. The technician uses the
HMI to upload the file, which is received and pre-processed in TRT. The server
in TRT is a Tomcat Server which allows for the Java coded web pages to be
served. The received .AR files, need to be transformed into a structured format
to enable the mapping of the information of the file carried into the ontology.
We have selected JSON as the format to structure the .AR file, because it is a
well known, simple format which can be easily exchanged and exploited through
several applications. Then, a reasoner is used (Hermit/JRDFox) to decide if the
uploaded .AR file is an instance of a known signature, in which case we can
obtain the associated repair actions. Once the analysis is ready, the answer of
the suggested repair actions is returned back to the web services, again in JSON

format. This information is finally returned to the end user via the web service.

The TRT cluster

The distributed system is mounted over a BigData architecture to allow
massive processing and distributed access. The platform is composed of a cluster
of five computers, plus a dedicated server to host the HMI, and the corresponding
proxies and firewalls required by Thales. In this setting, each request from the
HMI to the server in TRT, is associated to a stream of messages managed by
Kafka. Kafka is a messages manager which allows for distributed processing.
Intuitively, each request to the server is considered a message and a list of
messages is maintained by a central manager (broker). Each node in the cluster
is capable of requesting the central manager (broker) a message to process,
and once the processing is finished, the message is erased from the list. This
allows for parallel and distributed processing when the number of messages
are massive. Additionally, each message processed, involves the reception and
processing of an .AR file. The information generated in this process is registered
in Cassandra, which is a database with distributed capabilities. In Cassandra, the
data is distributed among the nodes in the cluster allowing for redundancy and
replication of the data. Redundancy refers to the existence of several nodes in the
system, thus if one node fails, another can continue to perform the required tasks.
Replication involves sharing information so as to ensure consistency between
redundant resources (nodes), this involves the synchronization of the nodes in a

cluster.
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5.4 Technical specifications

The user interface is designed using HTML (V4) and JavaScript (1.7), and is
fully operational using any up-to-date web browser. In the implementation of
the prototype we have opted for FireFox (V 50 +) as the default browser. It is
to note that, since we are in a controlled and secure environment, the tool is
only accessible using a computer connected to the Thales internal network.

The learning engine of our approach, as well as the web service are imple-
mented in Java (V. 1.7). As reasoners we have used Hermit 1.3.8 and JRDFox
v6.

The system uses Cassandra as the Data Base Management System, and the

web server is provided by TomCat.

5.5 System Functions

In this section we detail the main functions of the system. We start by explaining
the initial setup of the system, and how the sample data was used to construct
a trained knowledge base. Once this knowledge base is available, we show the

implementation of the two main functions of the tool: consulting and feedback.

5.5.1 Access the system - Initial setup

Before deployment, the knowledge base has been trained using our approach and
the available training samples. In this initial setup the descriptions (signatures)
are discovered.

In the first connection to the system, the welcome screen appears. Once
inside the system, the main screen (figure 5.6) provides access to the two main
functions: Upload a file to consult the KB and obtain the suggestions, and

provide feedback for an already consulted file.
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5.5.2 Consult the KB

The main use of the system is to consult the knowledge base to find the failure
signature that best suits an .AR file test, and obtain the suggestions. This process
is detailed in figure 5.7.

In the top left of diagram in figure 5.7 we have the Human-Machine Interface
(HMI) and the preprocessing module. The HMI is an HTML-Javascript based
interface to allow the technician to interact with the system. It connects the
client machine with the web service coded in JAVA, and managed by a tomcat
server. The HMI enables the user to select and upload an .AR file which is then
transmitted to the preprocessing module in the server.

Once the file has been received, it is first parsed to JSON to provide a
structured and shareable representation of the .AR file. The structure of the
parsed file corresponds to the model for the files defined in the ontology. Once
the JSON file is available, a second module maps each entry in the JSON file
to an axiom that can be added to the ontology. This provides with an A-Box
representing the file, stored in OWL format in memory. The DL representation
of the file is represented by f in the diagram. The preprocessing module also
stores in the database (Cassandra) a copy of the file received in both: raw format
and in JSON.

Once f is available, it is transmitted to the classify module, where we use a
reasoner to consult the knowledge base, and obtain all the signatures . known
for f. Then, according to our preference criteria, we select the most specific
signature .#y of f. Once the signature .7} is selected, we consult again the
knowledge base to obtain all its instances /s = {f1,..., fn}, that is all known
files that share the same signature. The output of this module is the selected
signature along with the .AR files that comprise it.

The get suggestions module, consults the historical data in the database, to
retrieve the corrective actions associated to each file in .#%, thus constructing the
set of corrective actions for the signature. The duplicates are eliminated and the
actions are formatted into JSON. The JSON file containing the suggestions is
returned to the HMI, which decodes the file and provides a visual representation
for the actions.

The next section shows the user interface for the consulting phase.
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HMI

In the consulting phase, first the technician uploads an .AR (All Results) file,
which is the output of the test-bench. Figure 5.8 shows the interface through
which the technician can upload the .AR file.

@ e-Diag # Home & Upload ) Feedback THALES

Please select AR file and click on 'SEND

Figure 5.8: The upload file screen.

The "CLICK TO SELECT THE .AR FILE” button, opens a pop-up window
to select the file from the desired location (hard disk drive, usb key, etc.). Once
the file is chosen, its name will be displayed on the top of the screen and a
"SEND” button will appear to start the analysis.

Depending on the type of file and the size of the knowledge base, the system
will take between a few seconds (20s) to several minutes (+5m) to analyze the
file, and retrieve the suggested actions. Figure 5.9 shows the suggestions provided

to the technician by the tool.
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Several suggested actions might correspond to a single file. In Figure 5.9
we see that three suggestions were found for this case. Each suggested action

displays:
e Number of suggestions.

e Confidence: the confidence assigned to this particular suggestion to repair

the failure, given by the number of similar cases found.

e Number of positive cases found: How many cases similar to the failure found,

were solved by this corrective action (proportional to the confidence).

e Replacements. These are the components to be replaced, identified by:

their board, location and type.

The consulting phase ends here. The technician may use the suggestions to help

him diagnose and repair the equipment.

5.5.3 Integrate Users Feedback

Once the technicians have made the repair, based or not on the proposition(s)
given by the consult phase, the right corrective action to repair the equipment
is known (which might differ from the suggested one). This feedback is used to
increase/decrease the confidence of the given suggestions, add new corrective
actions to the system, and analyzed the consulted .AR file to search for new
signatures. The implementation of this process is detailed in the following.

Figure 5.10 illustrates the process for acquiring the technicians feedback. On
the top left, we have the HMI as in the consulting phase, which enables the user
to select the previously consulted .AR file, to validate the given suggestions.

Since we already treated the file before, we already have a structured (JSON)
version of it and the file does not need to be uploaded again. Once its unique
identifier is selected through the HMI, the preprocessing module, retrieves its
JSON version from the database (Cassandra) and passes it to the OWL parser,
to obtain f, where f is the OWL representation of the .AR file. The file f and
the validated actions are then send to the add module.

In the add module, a first stage is concerned with adding the actions and
the .AR file permanently into the knowledge base and the database, where the
set AF of files-actions is stored.

The corrective action is split into its atomic components, i.e. the individual
corrective actions, and they are added to the database, each one as a pair (file,
actions). Next the file f is permanently added to the knowledge base’s A-Box.
Note that in the consulting phase, we did not add f to the KB, because we didn’t

know the corrective action and thus we could not associate it to any suggestions.
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It should also be noted, that the A-Box of the KB (at the bottom right of
the diagram) is composed of several sub A-Boxes. This is necessary to reduce
the load imposed to the reasoner when querying a large database. The intuition
behind this split A-Box structure is to provide to the reasoner with the minimal
necessary information, so it can provide an answer faster. Because of this, the
add module has to handle to which A-Box it is going to add the current .AR file.

Once the information is stored, a background learning phase takes place,
which no longer involves the user. The learn module receives the new file f and
uses it to discover new signatures. We first obtain the current signature .7
and all its instances. This is done to avoid to use all files in the analysis. If f
belongs to ./ and there exists a more specific signature, then this signature can
be found by refining .#y. We obtain the refinements of .#s using the operator
af(F). All signatures found in this process are then added to a separate OWL
file ”New K” which can be seen as an extension of the T-Box in the knowledge
base. This structure allows to separate the original terminology (T-Box) from
the acquired knowledge (New K). Once the signatures learned, they are available

for further consulting.
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HMI

In this section we show and explain the user interface for the feedback process.

Once feedback has been selected in the initial screen (Figure 5.6, the system
displays to the technician a list of all the consulted files, for which the feedback
has not yet been given (figure 5.11), the user must select the correct file, and the
system will show the previously found suggestions, so that the user can validate
them.

The validation screen (figure 5.12) is similar to the one obtained in the
consulting phase, but this time the tool gives the user the chance to validate the
suggestions (meaning the suggested replacement action indeed solved the failure)
or to turn to manual feedback if no proposition was correct. Each proposed
suggestion presents a ”Validate” button, and if none of the suggested actions is
correct, the HMI provides a "SWITCH TO MANUAL FEEDBACK” button, on
the bottom right of the screen. Manual feedback implies that none of the given
suggestions were correct or that they were not accurate.

If manual feedback is selected (figure 5.13), the user is presented with a form
to fill in the components replaced. For each component replaced he/she must fill
in: the board, the location and the type of each replaced component. Next, an
additional learning phase takes place to search for new signatures that could be
discovered, thanks to the new .AR file. All this process runs in the background
and is transparent to the user.

Finally, either through the automatic or manual feedback, the system will
acknowledge it has properly received the information from the technician with a

”Thank you” message. This ends the feedback phase of the prototype.
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@ e-Diag #& Home & Upload o Feedback

# Filename

1 011414-11-21-10h25.AR
2 011418-01-16-09h11.AR
3 121212-11-21-10h45.AR

4 011414-11-21-10h25.AR

Figure 5.11: The consulted files awaiting validation.
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O e-Diag # Home & Upload o Feedback THALES

Manual Feedback

# Event Board Location Type

CARTE DGS

CARTE ZZZ

REPLACEMENT Enter board Enter location Enter type

SWITCH TO SUGGESTIONS BACK

Figure 5.13: The manual feedback screen.
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5.6 The different versions of the prototype

The prototype has passed through a series of iterations in its development which

can be summarized as follows.

e V1 Implements the algorithms and specifications of the approach. Serves

as a proof of concept and to determine the limits of the implementation.

e V2 Improves version one in the amount of data it can handle and in the

time needed for the consulting and feedback phases.

It is important to outline that the resulting trained KB from V1 and V2, follow

the same specification.

5.6.1 Version 1

The first version of the prototype (V1) serves as a proof of concept. This version
takes as input the ontology with an empty A-Box, a set of file samples with their
corresponding actions, and finds the signatures that can be derived from each
sample. This version is mainly intended to: verify that the results are inline with
the specifications of the algorithms, to select and format the output presented to
the end user, and to evaluate the scalability and limits of the solution. Efficiency
at this stage was not a main objective, but instead to evaluate the feasibility of
the implementation and identify its limits. The consultation times under this
version would vary from some seconds up to several (15+) minutes, and the

learning phase of one file could take between 20 minutes up to one day.

5.6.2 Version 2

Out of the tests and usage of the first prototype, we found several important
points to take into account for a better evaluation of the approach. First, we found
that the knowledge base grew very fast with a very small number of .AR files
and that it became challenging for the reasoner to provide answers after ~20 files
were analyzed. Second, we identified some procedures, like the computation of
the minimal A-Box and the iteration process, which could be optimized. We also
found that it was challenging for the reasoner to handle concept definitions that
involved equivalences within the sub-concepts that conformed it. To overcome

these limitations, the second version (V2) considers the following extensions.

e We have analyzed up to which level we can split the knowledge base, in
order to provide to the reasoner only the amount of information strictly
necessary to perform the computations. Out of this analysis we have split

the ontology in several files. One file contains the original T-Box, another
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file contains the discovered knowledge given by the signatures, and the
A-Box is split in several files, each one containing a limited number of .AR
files. Out of the usage and experiments with version V1, we have found
that a limit for the reasoner arrived when the A-Box reached about 20 000
axioms. Thus the current implementation takes up to 5 .AR files in one
A-Box, before creating a new file. In this manner, we have increased the
limit size of the knowledge base, from 25 files on version one, to 50, 100
and 150 files in version two. An important feature of this division, is that
some of the processes, notably learning and consulting the knowledge base,
can be parallelized up to certain point. Implementing parallel computing
requires high expertise at a conceptual level, at an implementation level
and for the consideration of the underlying architecture of the system, thus
it is out of the scope of this thesis. Nevertheless, the analysis has been
made on the feasibility, and the second version of the prototype opens the

doors for implementing some of these processes in parallel.

Out of the analysis made in version V1, we have evidenced that the calls
to the reasoner were the most time consuming tasks. We have reduced the

calls to the reasoner where possible in version V2.

To evaluate whether the limitations for the reasoner were given by the types
of task given, or by the reasoner itself, we have developed two sub-versions
of V2. The first sub-version V.2.1 uses HermiT? (v. 1.3.8) as the reasoner
and the second sub-version V.2.2 replaces the main calls to the reasoner
with RDFox?, which is a parallel, RDF* based reasoner, for which Oxford

Labs has provided us with a research license for the experiments.

5.7 Summary

In this chapter we have specified the two main uses of the implemented system:

consult and feedback. We have started by describing the context under which

the diagnosis support tool takes place within Thales, and by describing how the

technician currently analyses, repairs and reports faulty ELAC equipment. These

considerations establish the requirements for the prototype. We have shown the

designed architecture for the system to overcome the distributed access, and to

leverage on BigData architecture, to enable scalability of the system. Within

this context, we have specified the modules that carry on each of the main

functions of the system, along with the interfaces that allow the user to interact

2http://www.hermit-reasoner.com/
3http://www.cs.ox.ac.uk/isg/tools/RDFox/
4Resource Description Framework graphs
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with the tool. In the specification of the modules of the system, it is shown the
correspondence with the definitions and specifications made in Chapter 3 and
Chapter 4, where the approach and its application to our problematic is detailed.
Finally we have provided an insight on the different versions of the prototype
and the reasons why these versions took place.

This chapter allows not only to establish the characteristics of the prototype,
but enables to appreciate the overall path from the conception of a solution,
through the specification of the background theory and the development of the
necessary algorithms, to the design of a system and its implementation. This chap-
ter closes the gap between conception, formal specification and implementation

of a feasible solution.
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Chapter 6

Evaluation

In this chapter we present the evaluation of the approach through the imple-
mentation of the prototype. It is divided in three sections. Section 6.1 evaluates
the relevance and the number of suggestions proposed by the approach. Our
hypothesis here is that the more fine grained the knowledge base, the more

I we can find and therefore we can minimize the number

specific failure signatures
of suggested corrective actions. Next, in Section 6.2 we provide measurements
and analysis on the efficiency of the implementation, given by the response times.
In Section 6.3 we compare our approach with DIL-learner, which is a similar
tool used to discover concepts. Additionally, in Section ?? we present a survey
designed for user feedback 2.

Finally, in section 6.4 we present a summary of the obtained results and our

conclusions about the experiments.

6.1 Evaluation of the Relevance and the Num-

ber of Suggestions

In this section we evaluate a) how pertinent the suggestions are with respect to
the given sample data, and b) the number of responses obtained using different
versions of the knowledge base. These experiments aim to test our assumption
that the more files we analyze, the more specific failure signatures we can find
(traduced in minimizing the suggested actions) and the better the results we can
provide (whether the given suggestions suit the problem or not). To this end
we consult several versions of the knowledge base (trained with 25, 50 and 100

samples) and for each version we analyze the proposed suggestions versus the

I Failure Signatures in defined in chapter5
2 At the moment of the redaction of the thesis this evaluation was ongoing.
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real corrective actions, and the number of suggestions proposed.

6.1.1 Key Performance Indicators

To evaluate the relevance and the number of suggestions, we have defined a
series of key performance indicators detailed in figure 6.1. Our approach aims
to discover failure signatures from a set of given samples, which are later used
to classify new unseen .AR tests. Our assumption is that the more knowledge
that is analysed, the richer the resulting knowledge base, which should traduce
in improving the quality of the discovered failure signatures. The quality of the

discovered signatures is given by the relevance of the associated suggestions, and

the specificity of the signatures.

Criteria

Objective

Relevance of Composed actions
suggestions

Individual actions

This indicator tells us if the suggested corrective actions are relevant to solve the failure
detected by the .AR files. An .AR file may have several suggestions associated, we consider that
the suggestions were relevant if among them there is one that solves the failure. A composed
action solves a failure if all individual actions in the composed action are required for the failure
to be solved. ( A composed action is a set of individual actions)

This indicator is similar to the previous one, but considers individual actions. An individual
action is relevant if it is an element of the composed action that solves the failure.

Specificity of Number of files in
discovered failure signature
failure signatures

Number of
suggestions per
consultation

Our hypothesis assumes that the more information that is presented to the knowledge base, the
more signatures we can specialise, thus improving the model accuracy and increasing its
quality. For each discovered failure signature a number of .AR files in the KB are associated. The
more specific the signature, the less files that belong to it. To verify if this evolution takes place,
we analyse the discovered signatures of different versions of the knowledge base.

This is another perspective from the same principle in the previous indicator, that is more
directly related to our objective of minimising the amount of suggestions provided to the
technician. Some consulted files will have associated too many suggestions because a proper
signature is not known. If the suggestions are too many, they become useless even if among
them there is a relevant one. This happens when a very general signature has been associated
to a file. We expect that the richer the knowledge base, the more signatures we can specialise,
and that less files will be associated to a very general signature. This should in turn translate in
the number of suggestions being reduced. To verify if this evolution takes place, we analyse the
discovered signatures of different versions of the knowledge base.

Figure 6.1: The Key Performance Indicators (KPIs) for efficacy.

Each signature has associated a set of suggested corrective actions. To

evaluate the relevance of the suggestions, we have established the first two
indicators in table 6.1: Relevance of composed actions, and Relevance of
individual actions. Recall that to return an equipment to a fully functional
state, several component replacements might take place. Each replacement is
called an individual action, and the set of all individual actions required to solve
a failure is called a composed action. Note that a composed action could also be
comprised of a single repair 3. These first two indicators allow to evaluate the

relevance of the suggestions for both cases. We assume that individual corrective

3Composed and individual actions are defined in chapter 5 The Prototype
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actions are more frequently shared by .AR files than fully composed actions,
which would enable us to provide partial relevant suggestions, when no exact
composed actions can be found. The reason to evaluate both types of answers is
to asses if the rate of relevant suggestions increases when we consider as well the
individual actions.

The last two indicators in table 6.1: Number of files in failure signature
and Number of suggestions per consultation deal with the aspect of how
specific are the discovered signatures. When few information is available, we
expect that the discovered signatures would be too general. That is, too many
files will be associated to such signatures. When a file is consulted, and the
signature found is too general, it means that the knowledge base does not know
a better (more specific) signature for the consulted file. Better in this case is a
signature which is more specific since it should provide less suggestions, and to
which less files should be associated.

Before we introduce the methodology to evaluate these KPIs, let us present

some of the characteristics of the data available for our experiments.

6.1.2 The Characteristics of the Data

The data available for our experiments imposes several challenges. It is relatively
small, when considering the number of samples versus the number of features
the samples have, and when considering the number of possible resolutions
(corrective actions) that exist. We find that most of the files, do not share a
corrective action with another file. This implies that for some failures (and their
failure signatures) at most one sample can be used to learn the corresponding
signature. This fact is one of the factors that motivates an analytical based
learning, in contrast to a frequent pattern or statistical learning process. This
also implies that the prediction that can be achieved by a model based on the
experience of the technicians, reflected in the sample data, can not be 100 percent
accurate: if an expected corrective action is not present in the sample data, it is
not possible for the model to predict that action. Nevertheless, the motivation to
implement a prototype and its evaluation is to show up to which degree a model
based on our approach can provide satisfactory answers (if any), and to estimate
the applicability, benefits and challenges of such systems. These challenges reflect
the complexity of dealing with real data and provide on-filed evaluation of the
prototype.

In the following we highlight the main properties of the data that should be
considered when interpreting the results of the evaluation.

A summary of the information from the .AR files used in the evaluation is

given in figure 6.2 where it can be seen that there are only 15 composed actions
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Measurement Value Unit

Number of files 150 |Files

Individual actions associated to a file (min) 1 |Individual actions
Individual actions associated to a file (max) 23 |Individual actions
MNumber of different composed actions 120 |Composed actions
Number of different individual actions 239 |Individual actions
Composed actions present in more than 1 file 15|Composed actions
Individual actions present in more than 1 file 58 |Individual actions
Number of files that share a composed action with another file 45 |Files

Mumber of files that share an individual action with another file 90 |Files

Total files that share a composed action with more than one file 25 |Files

Composed actions present in two or more files 5|Composed actions
Individual actions present in two or more files 31 |Individual actions
% of files that can be given a composed answer 30,0 %

% of files that can be given a partial answer 60,0 %

Figure 6.2: A summary of the properties of the data to evaluate efficacy. The
table shows a summary of the number of corrective actions (composed and
individual) associated to each file, and the amount of files that share corrective

actions.

that are shared by two or more samples (files). On the other hand, these 15
actions are associated to 45 files.

Any approach that uses this data set, will obtain the suggestions from the
correlated samples in the historical data given by the experts experience.

If the full set of 150 files is divided into a training set and a validation set,
to cross validate a model, a specific suggestion will only be available if the
corresponding file is within the training set. In this setting, from figure 6.2 it can
be seen that since only 45 files share composed actions, the remaining 105 files
(approx 70% of the 150), have no possibility to be given a correct suggestion.
Indeed, for a suggestion to be available, the associated file has to be in the
training set.

To further increase the difficulty of the problem, from the 45 files that do
share a composed action, 20 of them share the action with only one file. And thus
only 25 files share actions with more than one sample, which in turn corresponds
to only 5 corrective actions.

An alternative to overcome these figures is to consider partial corrective
actions (individual actions). Since our goal is to provide suggestions of repair
actions, these suggestions can be completely correct (for which few samples
exist), partially correct or not relevant at all.

If we consider individual actions, as partially correct suggestions, in the sense

that they give a hint or a partial resolution for the failure, these numbers change.

122



There are 90 files that share an individual corrective action with another file,
representing 58 individual actions. Thus, we would expect that the number of
relevant suggestions increases if partial suggestions are made available.

To be able to compare the use of composed and individual actions, both are
considered in the evaluation of the relevance of the suggestions.

Our problem has an additional complication: multiple signatures may corre-
spond to multiple actions and different actions might solve the same test result.
This impacts the meaning of the signatures computed and the learning process.

If we know that for the set of tests {t1,t2,t3,t4} action A; follows. Then we
would consider these tests as the positive samples of the signature . we are
looking for. Then, the task is to obtain the most specific signature such that
& = {t1,12,t3,t4}. But we could find that ¢; and t3 have one test result, and
t3, t4 have another, and that all of them are still solved by the same action
A;. Therefore we are looking for two signatures .7 and . ”hidden” in the
set of samples. Since we can not know this in advance, a strategy needs to be
implemented to consider these cases.

Considering the other direction: when a signature .# is solved by multiple
actions Ajg, As. We will have two sets of samples {¢t1,t2} for A; and {t3,t4} for
As, thus we will find two signatures .7 and .%. But if all samples belong to
the same signature, it should be the case that .7 = % = {t1, t2, t3, t4}, which
is the intended answer. This property has another implication in the learning
process: the fact that test ¢3 is not in the set of samples for .7 does not imply
it has a different signature, and we can not consider t3 as a negative sample

for .. This is why we do not use negative samples to guide the search.

6.1.3 Methodology

To evaluate our previously defined KPIs, we need to establish how the set of sam-
ples will be used. Cross-validation offers a methodology to select which parts of
the data that will be used for training and which ones for validation. Next, to esti-
mate how well the discovered signatures behave, we defined some metrics over the

defined KPIs. Both, cross-validation and the selected metrics are introduced next.
Cross Validation

When developing a model for classification, the accuracy of the model depends
on the samples that are used for training it. Once the model is trained, its accuracy
can be verified by using a second set of validation data. Out of this validation,
the generalization error can be determined (i.e. how well unseen samples can be
predicted).
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The objective of cross-validation is to estimate the generalization error, and
ultimately minimize it.

Given a set of samples, it is divided in several partitions and some of these
partitions are used as training data while others remain as validation data. In
this way we can estimate the error of the model with respect to the partitions.
It is evident that depending on the selected partition the results may vary, and
thus there are several ways of implementing cross-validation, like k-fold cross
validation and leave-one cross validation [James et al., 2013]. The main differ-
ence lies on how the training and validation sets are constructed, and on how

many times/partitions are tested. In this thesis we focus on k-fold cross validation.
k-Fold Cross Validation

In k-fold cross-validation, the original sample set is randomly partitioned into
k equal sized subsamples. A single subsample is retained as the validation data
for testing the model, and the remaining k-1 subsamples are used as training
data. The cross-validation process is then repeated k times, with each of the k
subsamples used exactly once as the validation data. The k results can then be
averaged to produce a single estimation.

Assume we have 100 data points. For k-fold cross validation, these 100 points
are divided into k equal sized and mutually-exclusive folds. For k=10, we might
assign points 1-10 to fold #1 , 11-20 to fold #2, and so on, finishing by assigning
points 91-100 to fold #10. Next, we select one fold to act as the validation set,
and use the remaining k-1 folds to form the training data. For the first run, we
might use points 1-10 as the test set and 11-100 as the training set. The next
run would then use points 11-20 as the validation set and train on points 1-10

plus 21-100, and so forth, until each fold is used once as the validation set.
Metrics

In pattern recognition, information retrieval and binary classification, preci-
sion (also called positive predictive value) is the fraction of relevant instances
among the retrieved instances, while recall (also known as sensitivity) is the
fraction of relevant instances that have been retrieved over the total amount of
relevant instances [Olson and Delen, 2008, Duda et al., 2012]. Both precision and
recall are therefore based on an understanding and measure of relevance, and
are applied to the first two KPIs defined in figure 6.1 (Relevance of composed
actions, and Relevance of individual actions).

These metrics are based on the notions of true/false positives and true/false

negatives. Before presenting how to compute these indicators, we first define
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how the positive and negative samples should be understood in our context.

Definition 6.1 (Positive, Negative, False Positive and False Negative Samples).
Given and .AR file f, a failure signature ., the correct corrective composed
action Ay for f, and the set of actions Actions» = {A1,...,Ap} associated to
&, we say that file f is a:

e True positive (tp) for 7, if & is the MSR for f and Ay € Actions.s.

e False positive (fp) for .7, if & is the MSR for f but Ay & Actions.s.

e True Negative (tn) for .7, if & is not the MSR for f and Ay ¢ Actionss.

o False negative (fn) for .7, if .~ is not the MSR for f but Ay € Actions.s.

Precision is defined by:

p=_P
tp+fp
Whereas recall is defined by:
t
R=_—"
tp+fn

The two measures can be used together in the F1 Score (or f-measure) to
provide a single measurement for a system. The f-measure combines precision
and recall as their harmonic mean. It is defined by:

P-R
"P+R
The above measures are defined at the level of the individual signatures in

the knowledge base. In our case, each discovered signature can be seen as a
binary classifier of which an .AR file is or is not an instance, but the tool as a
whole is a system composed of multiple binary classifiers. Once we obtain the
precision and recall for each relevant signature, we need to aggregate them since
we are interested on evaluating the system as a whole. This can be achieved by
the micro and macro average of the precision and the recall. Given n = number
of all signatures we want to evaluate, the Micro Average Precision (MicroAP)
and Micro Average Recall (MicroAR) are defined by:

. 27’11 tp,

MicroAP = — =12
iy tp + > Dy

" D,

MicroAR = iz i

D tpy + 30 g
Similarly the Macro Average Precision (MacroAP) and Macro Average Recall
(MacroAR) are defined by:

" P,
MacroAP = Z:’;l
n

n
MacroAR = Ljizl Ri
n
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6.1.4 Experiments

The relevance of the provided suggestions and the specificity of the signatures
found, can be evaluated in different contexts. First we evaluate how well a model
trained using 100 samples performs (leaving a third of the samples to validate it)
and then we evaluate whether the results improve when more/less information
is used for training.

Thus this section is subdivided in two experiments:

e Relevance and Specificity of the Suggestions For this experiment,
we use cross validation. We partition the set of all samples in several sub

sets, and use each test as a validation set once.

e Evolution of the KB To estimate if the performance increases with the
evolution of the knowledge base, we obtain the KPIs for knowledge bases
of different sizes (25, 50 and 100 samples).

Experiment 1 - Relevance and Specificity of the Suggestions

In this first experiment, we evaluate the relevance of the returned suggestions
and the specificity of the discovered signatures. For both evaluations we use
k-fold cross validation with a size of k = 3, which represents a third of the
samples. This means that the full set of 150 samples is divided in three partitions
p1, p2 and p3, each one containing 50 .AR files. Each partition is used once as the
validation set, while the other two are used for training the knowledge base. The
size of k is selected considering that there are few samples that share composed
corrective actions (v~ 30%) and the time necessary to train each knowledge base.
The low rate of shared composed actions means that roughly, 1 out of 3 samples
has a chance to be correctly classified by a model. If we select a partition size
that is too small, it is possible that the validation set contains no classifiable files
(v« 70% of files), and if the partition is too big it is possible that all classifiable
files are in the validation set, leaving the training set with only unclassifiable
files.

Using k = 3 provides us with three versions of the knowledge base: K Bfé(tf b2
K BEiP* and K BY25". When the knowledge base K BY3;"* is obtained using
the partitions p; Ups, each file in p3 is consulted against K Bfégj P2 TFor each such
consultation, the file is assigned a signature (given by the MSR). Each signature
has associated a) a set of corrective actions, that represent the suggestions, and
b) a set of files. Under these considerations, when consulting the samples in p3

we analyze:

e Per each file consulted:
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— the number of relevant composed actions suggested vs. the relevant

individual actions suggested, in figure 6.3 ,

— the relevant actions (composed and individual) suggested vs. the total

number of suggestions in figure 6.4, and

— the number of files per suggestion, and number of suggestions, in
figure 6.5.

e Additionally, per each signature found we analyze:
— the precision, recall and f-measure, shown in figure 6.6.

In the following, we provide the results and analysis corresponding to the
knowledge base K Bfégj P2 “and the aggregate results for the three versions of the
knowledge base. The full results for each version (K B2;7¢ and K BYiP?) are

available in the Appendix B.
Results of experiment one for K B}

Figure 6.3 shows the number of relevant composed actions and the number
of relevant individual actions for each consulted file in partition p3. Each file
has been consulted against the knowledge base trained with partitions p; U pas,
consisting of 100 samples (K Bfég P2) A correct composed action, means that
one of the suggestions proposed by the tool contains all the individual actions
(replacements) that are required to solve the failure detected by the consulted
AR file. From the figure, we can see that this is the case only for 2 out of the 50
files in p3. In the analysis made in figure 6.2 we showed that only 30% of the files
have the possibility to be correctly classified if the set of samples is partitioned
into training and validation sets 4 and that only 15 composed corrective actions
are shared by more than one file. Thus assuming a ”lucky” partition where for
each predictable action, we have one sample on the training set, and one sample
in the validation set, at most 22 files could have a correct answer. And this
would only be the case if the model is able to perfectly learn with one sample
only, and if two samples having the same corrective action have the exact same
features. As we have seen, this is not the case (different samples may have the
same corrective action, and vice versa). This shows the low rate of full correct
answers expected. Nevertheless, in the awareness of these figures, the objective
of these experiments is to show if these estimations really hold, and if the model

can provide valuable suggestions even under these circumstances.

4Most of the files (70%) are the only representatives for their corresponding composed

corrective action.
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To this purpose, we also consider partially correct suggestions, or correct
individual answers. These are given by the individual replacements in any of the
suggestions, that are inline with the expected results. From figure 6.3 it can be
can seen that the number of partial suggestions is much higher than considering
fully composed corrective actions only. The model has given a partial answer
for 14 out of the 50 files. This partial answer can either be a single replacement
or up to five replacements. This shows that if partial answers are considered,
more relevant information can be provided. This makes sense in the context of
suggested corrective actions, which do not intend to impose a repair, but to give

hints on its resolution.
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Figure 6.3: The suggestions for the 50 files (x-axis) in partition p3 when consulting the knowledge base K Bfé{)" P2 Tn the figure the y-axis
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Figure 6.4 is built over the same graphic of figure 6.3 but adds the total
number of suggestions. For each file consulted, we first show the total number of
suggestions (corrective actions) found by the tool, and next to it we show the
relevant composed and individual actions suggested. A few files have associated
a large number of suggestions, thus the figure is limited to show only 25 files.
Nevertheless, on top of the total number of suggestions, figure 6.4 shows the
quantity.

Intuitively, if the suggestions are too many (more than 20) it is possible that
among them we find a correct or a partially correct answer, but to determine
which is the correct one the technician would have to test all of them. Thus a
reduced number of suggestions is acceptable and desirable, but more than 20
suggestions is considered useless.

There are two main results to note on this figure: the composed corrective
actions and the individual actions.

With respect to the composed corrective actions, in one case 5 suggestions
were given and in the other case 28, thus we consider the the first case is relevant,
and the second case needs further refinement.

Regarding the individual corrective actions, 8 out the 14 correct partial
suggestions have 20 or more suggestions, and thus only 6 of them are considered
relevant.

Although these numbers are relatively low, one has to bear in mind the small
amount of total samples, the small amount of shared actions between the files,
and the fact that the same type of file can be solved by different corrective
actions. The figure shows that the correct and partial suggestions can be found by
the approach, and that some of the suggestions may require further refinement,

to make them relevant.
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Figure 6.5 shows the number of files and number of suggestions (composed
corrective actions) associated to each file consulted. This aims to establish how
general or how specific are the signatures found.

The analysis made in Section 6.1.2 and figure 6.2 show that the types of
actions associated to each test (AR file) are very different. Most of the files
(70%) have associated a unique corrective action. Thus, intuitively, the number
of files and the number of suggestions provide a measure on how general the
signatures are. We would expect that a very general signature, will capture a
large number of files and that will have a large number of corrective actions
associated, whereas more specific signatures will show these numbers reduced.

From figure 6.2 it can be seen that 10 out of the 50 consultations provided
more than 20 suggestions, thus the remaining 80% of the files had assigned an
acceptable number of suggestions. We can also see that for 31 files the suggestions
are 10 or less. Thus approximately (62%) of the signatures found, are specific
enough.

In figure 6.2 it can be seen that 4 consultations found very general signatures,
with 96 or even 98 files associated (out of 100). Unequivocally these signatures
are too general, in the sense that they do not properly separate a group of .AR
files from the rest. This is as well reflected in the high number of suggestions for
these consultations.

Note however, that the total files associated to each signature found in figure
6.5 has to be interpreted carefully. The fact that a large number of files is
associated to a signature, does not necessarily imply the signature is too general.
It could be the case that we count with many samples which present the exact
same results, and if a proper signature is discovered for these files, all of them
are expected to be associated to the signature. The relation between a large
number of files/actions and the specificity of the signatures, assumed in this
experiment, comes from the previous analysis made in Section 6.1.2 from which
we would expect a large number of files in general signatures.

In conclusion, we can see that with respect to the specificity of the signatures,

the results of the experiment provide desirable signatures.
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Figure 6.6 is divided in two parts. The top section shows the precision, recall
and f-measure for the partial suggestions (individual actions) whereas the bottom
section shows these results for the composed actions.

The 50 files consulted (belonging to partition p3) were assigned to 25 sig-
natures by the knowledge base K Bféar P2 Figure 6.6 shows the recall, precision
and f-measure for each one of these signatures. As we have seen in figure 6.3, 14
out of the 50 files were given a partially correct suggestion. These 14 files are
captured by 9 signatures. This is shown in the top part of figure 6.6, where it can
be seen that 4 of those signatures (2,4,5 and 13) have a precision of 1, meaning
that they capture only .AR files for which the signature has the correct partial
answer associated. We can also see that only one signature (19) has a precision
below 0.5. Thus most of the signatures have good precision. The recall of the
signatures is not so good, but this has to be properly understood. We can see
the recall varies from 0.1 to 0.5, and that it does not get beyond these values. It
is expected that partial answers are shared by several different signatures. This
implies that different files, share some partial corrective actions. Because the
files are different, they should not belong to the same signature. Nevertheless,
given that they share some individual replacements, they are considered as false
negatives: a false negative is a file for which a partial suggestion can be given,
but it does not belong to the signature. This explains the low recall, and shows
that the results are inline with the expected behaviour of the system and the
analyzed data. In this setting, the most relevant metric is the precision, which
is high. Since the recall is low, and the f-measure provides the relation of the
precision and recall, the f-measure is also expected to be low.

On the bottom section of figure 6.6 , we see the same analysis, but this time
for composed corrective actions (full suggestions). As said before, only 2 .AR
files got relevant full suggestions. This is represented by signatures 2 and 24. We
have also seen that only one of them is relevant (6), since the other one (24) is
too general (it captures 31 files and 28 suggestions).

When considering composed corrective actions, the recall is more relevant
(although still there could be files with different results and exactly the same
correct actions). We can see that the score of signature 6 is perfect, since out
of the 50 files in p3 it captures only 1 file, and no other file in p3 is seen as a
false negative (no other file is expected to be captured by this signature). For
signature 24 it is the contrary, the precision is low (0.25) since it captures 4
files, and 3 of them are not provided a relevant suggestion. The recall is even
lower (0.14), meaning that other files (6) were expected to be captured by the
signature. Both values are reflected in the low value of the f-measure. In short,

the explanation for these low scores is that the signature is too general.
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Macro and Micro Precision and Recall

Let us now provide the analysis of the micro and macro precision and recall
from figure 6.7. The low average micro precision is explained by the fact that
the true positives are always a few (1 to 4) as opposed to several cases where
the false positives can be many times more (8 or 9). Since the micro average
precision puts all these results together, without regard of the signature to which
they belong, the numbers of false positives easily override the number of true
positives. This is similar for the micro average recall.

On the other hand, the macro average precision and recall, take into account
the signatures where the results are obtained from. And thus a ’bad’ performance
of a single signature, will not easily override the good performance of other
signatures. From figure 6.7 it can be seen that with respect to the macro
measures, K BY3"? has a good precision performance for both, individual and

composed actions, and it has an acceptable recall, for composed actions.
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Figure 6.7: Evaluation of the relevance of the suggested actions. On the left:

aggregated results of macro and micro recall, and macro and micro precision.

On the right: the specificity of the discovered failure signatures, given by the
average and median files for all 50 consultations.

The experiments so far, show the relevance of the responses with respect
to one knowledge base K Bfég‘ P2 where we can see the relation between the
specificity of a signature and its score, as well as the usefulness of providing
partial answers. The experiments also show that the results are inline with the
initial analysis of the spare data and its high heterogeneity. Nevertheless, the

selection of the partitions can greatly influence the results obtained.
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To reduce the bias of selecting one of the partitions (ps) as validation data
instead of any of the other two (p1,p2) we have made the same experiments with
the three versions of the knowledge base. These are included in the Appendix B.

We next present the aggregated analysis of the results of the three versions
available.

Aggregated results of experiment one for K BY3;"?, K BY2;7* and K BLi;"*

The results presented so far concern only one of the three versions of the
knowledge base. The objective of cross-validation is to make multiple experiments
in similar conditions with different partitions of the data set, to estimate how
and if these results vary.

In experiment one, two main aspects of the trained knowledge bases are
evaluated: the relevance of the suggestions and their specificity. For the relevance,
we have provided an analysis of the number of relevant signatures found, and
for each of these, the precision, recall and f-measure were given. Finally, the
average macro and micro precision for the entire knowledge base was calculated
and explained. The next step is to obtain the same measurements for all three
versions of the knowledge base, and compare them.

Figure 6.8 shows, on the top the values of the Micro/Macro Average Precision
and the Micro/Macro Average Recall of the three KB versions. On the bottom,
the figure shows a graphic of such comparison. Each indicator is given for the
individual vs. the composed actions. From figure 6.8 it can be seen that the
micro average precision and the micro average recall are smaller for both types
of suggestions (individual and composed) than their macro versions.

From figure 6.8 it can be seen that in all three versions, the precision is in
general good (>0.5), and is always better when considering individual actions.
A better precision implies less false positives. The graphic shows that when con-
sidering individual actions most of the files captured by the signature are indeed
(partially) related to the signature’s corrective action. In contrast, many files
that share some individual replacements with those proposed by the signature,
are not captured by the signature. This means that they are considered as false
negatives, and thus the recall is lower than the precision.

If we consider only full suggestions (composed actions) as relevant answers,
these figures change. In all three cases, the recall is higher for composed actions,
meaning that most of the files for which the suggestion is relevant are indeed
captured by the signature. This translates in a low rate of false negatives,
increasing the recall. The precision for composed actions is not as high as the
precision for individual actions, but the macro results are, in all three cases,

much better than the micro average ones.
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Figure 6.8: Evaluation of the relevance of the suggested actions, showing aggregated results (through macro and micro recall, and macro
and micro precision) and the specificity of the discovered failure signatures, given by the average and median files for all 50 consultations.
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As the final results for this experiment, figure 6.8 shows the aggregated results
for the specificity of the signatures. We have seen that given the high disparities
between the files in the data set, we can rely on the number of files that belong
to a signature as a measure on how general/specific the signature is. Figure 6.8
shows the average and median number of files captured by each signature, for
all 50 consultations made to each KB. The average value can be influenced by
non frequent but very high results. In figure 6.8 we can see that the average
files is above 20 files per consultation, which is undesirable. On the other hand,
the median provides the middle value over which half of the measurements are
encountered. This is a better estimator for our case (since it is less sensitive to
extreme and rare values) which shows that the median is way below 15 files that
belong to each signature found. These results are promising, since we have seen
the importance and the influence of the specificity of the signatures, and where

having more specific signatures is desirable.

Experiment 2 - Evolution of the KB

This second set of experiments, has the objective of evaluating whether there
exists an improvement in the quality of the knowledge base as more information
is presented to it, and to estimate the evolution of this improvement.

To evaluate the quality of the knowledge base we use two criteria: first,
precision and recall based on the ratio of positive and negative samples of
the signatures found, and second, the average and the median related to the
specificity of the signatures.

Three versions of the knowledge base are constructed: K Bss, K Bsy and
K Bjgp using training sets of size 25, 50 and 100, respectively, where each
knowledge base doubles the size of the previous one.

The knowledge base K Bigg is selected as the best performing knowledge
base, from the three versions obtained in experiment one (cross-validation). The
best performing version is K BY3;"2. Since our goal is to assess if an evolution
takes place, it does not make sense to take any of the other two versions in
experiment one, as they underperform the former. This selection also provides
us with the evaluation set ps.

The knowledge base K By is obtained by randomly selecting 50 files from
K By, ensuring that no file in K Bgg overlaps p3. We do not cross-validate
these sub-versions, because computing many versions of the knowledge base is
expensive (in time and computer resources). Thus this second experiment is
not intended to provide an exhaustive test of all the possible versions of the
knowledge base, but to provide a trend, for which random selection of sub sets
of K B is fair.
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The knowledge base K Bss is also obtained by randomly selecting 25 files
from K Bigp.

An additional motivation for selecting a knowledge base of size 25, comes
from the fact that the first version of the prototype had a limit of around 25 files
for the training and consulting processes (depending on the files presented to the
KB). Above this number, the reasoner would timeout. Thus, this is the bigger
knowledge base we could handle before improving the code. We are interested in
evaluating if improvements on the quality of this KB can be achieved.

The three knowledge bases are consulted using partition ps, which is the

validation set for K Bigg. That is, all three KBs are consulted the same files.

Results - Evolution of the relevance of the knowledge base

To detail the behaviour of the K Bygg, K Bsg and K Bos we first show the
recall, precision and f-measure for each relevant signature in each knowledge base.
This comparison is shown in figure 6.9. Then, we compare the macro and micro
precision and recall, along with the average number of files, for each version of
the KB. This second comparison is shown in figure 6.10.

We start the analysis of the results in figure 6.9 by the number of signatures
used for the 50 consultations to each KB. From all the signatures each KB
has discovered in the training phase, only some one of them are selected when
consulting a file, ie. the most specific. We can see that for the 50 files consulted
in each case, K Baos has only selected 10 signatures, compared to 21 signatures
selected by K Bsg and 25 signatures selected by K Bigg. Evidently, the more files
used to train a KB, the more signatures it has available. From these, we would
expect that those found by smaller training sets (K Bos) are more general than
those found by larger training sets (K Bgo, K B1go).

If we focus on the individual actions (top graphic of each pair of results in
figure 6.9) we can see that for the 50 files, K Bys has been able to classify them
in 5 signatures, whereas K Bsg had only selected 4 signatures. Thus it would
seem that K Bss can provide more relevant answers than K Bsg. Even though
the results from K By are very good for its size, its has to be noticed that from
the 10 files that are given a partial suggestion, for half of them (5 files) the
signatures are too general and provide all possible suggestions in K Bss. This
is why ”so many” files are provided a ”correct” partial suggestion. This can be
partially seen by the precision, which would be much lower for the ”irrelevant”
signatures, if the size of K Bys would be bigger. In such scenario more undesired
files would belong these signatures, increasing the number of false positives. The
generality of the signatures in each KB will be shown in more detailed in the

evaluation in figure 6.10.
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Figure 6.9: From top to bottom, the comparison of the individual and composed
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composed (bottom) actions for a version of the knowledge base. In all figures

the x-axis shows the signatures selected in the 50 consultations.
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The relation between the precision and the number of signatures selected is
more evident in K Bygg where it can be seen that most of the partial suggestions
have a high precision, making them relevant. With respect to the full suggestions,
in all cases their scores remain low, this is explained by the analysis made in
figure 6.2 where we have seen that very few files in the full set of samples share
composed corrective actions. This is also true for the individual actions, but they
are more frequently shared than full corrective actions, which is reflected in all
three KBs in that more relevant suggestions are made at this level. Finally, one
should notice that for several files (all those signatures with no score) no relevant
suggestions were found. Regarding this last point, the figures show a tendency

of having each time more relevant suggestions as the KB training sets increase.

Results - Evolution of the specificity of the knowledge base

The aggregated results of the evolution on the relevance of the suggestions
are shown in figure 6.10. Regarding the aggregated precision and recall, we have
seen that the most indicative measure is the macro average precision. We can see
in all cases that this measure performs well, above 0.6 for K Bos and K Bigg, and
that this value is always higher for individual actions, highlighting the relevance
of providing partial suggestions, and the associated low rate of false positives.
On the other hand, the macro average recall for composed actions performs well
in all cases, and is always higher that its individual actions counterpart. We have
seen that few files share fully composed actions, a higher macro average recall
indicates that when a composed action is detected, most of the files that share
this action are captured by the selected signature.

Finally, on the right of each figure an analysis of the average and median
number of files for each KB is provided. These measurements are slightly differ-
ent than those shown in cross-validation, where the average and median were
calculated with respect to the files from each KB. In the evolution analysis, each
KB has a different set of files and of different sizes, nevertheless, all of the KB’s
are consulted the same set of files, i.e. p3. Thus the average and median are
calculated with respect to this set, to provide a fair estimation.

From figure 6.10 it can be seen that both, the average and median files
associated to each version of the knowledge base decrease as the size of the
training set grows. In average K By associated 4.2 files to each selected signature,
whereas half of the signatures selected by K Bjgg have associated exactly one file.
This shows that indeed, the more information that is presented to a knowledge

base, the more specific its signatures can be.
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Figure 6.10: Experimentation on the evolution of the KB. The figures show on
the left, the Micro Average Precision, the Micro Average Recall, the Macro
Average Precision and the Macro Average Recall. On the right, the Average and
Median number of files, out of the 50 files consulted. Both types of evaluation
are shown for each version K Bss, K Bsg and K Bigg of the knowledge base.
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6.2 Evaluation of the Response Times and Scal-
ability

The second type of evaluation concerns efficiency. We evaluate V1 vs V2 of the
prototype to determine the impact of the modifications in the efficiency. The
limit of the first version (V1) regarding the number of files that could be used in
a single KB was 25 files. The changes made in the second version (V2) allowed
to handle all the files that in the sample dataset (150 files). These experiments
provide an insight on the efficiency of the implementation and the scalability of

the approach, which is also relevant for systems with similar capabilities.
Objective

The main objective of our work is to provide solid foundations on the
techniques and algorithms used, and then to provide a prototype that serves
as a proof of concept. The prototype is meant to validate the hypothesis, and
help identify the key elements that allow or prevent the approach from being
implemented. The objective in this experiment is to determine such limits. To
this end we evaluate the consulting time between the first and the second version
of the prototype.

In the consulting phase the technician uploads an .AR file and the system
proposes the suggested corrective actions. It is important to determine the
response time, for several reasons: first, there is an evident limit: it should not
take more than the time the technician takes to solve the failure (the technician
can take a up to a few days to determine the failure). Second, consulting a larger
KB should take more time, therefore there is a limit on the amount of information
that can be handled in an acceptable time, and even a limit where no suggestions
can be given, thus the response times allow us to estimate these limits. Finally,
this provides us and the end user with the nominal waiting times for a response.
The user will expect a response in a given interval of time considered normal.

The learning phase is by far the most expensive task, computationally speak-
ing. In the development of the prototype V1, the first tests for learning took
several days (2-6), and the larger the KB became the more time this task required.
In fact this was the main motivation to implement a second version: to overcome
the limits of the KB that can be used.

The first version allowed us to identify key limits to the feasibility of the
approach. These are related to: the number of calls made to the reasoner, the
split of the knowledge base, and avoiding equivalent definitions to be added to
the knowledge base. Version two of the prototype has split the A-Box of the

knowledge base to avoid considering the whole information at the same time, and
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opens the possibility to parallelize consulting the knowledge base. We have also

included check on already learned equivalent signatures or parts of signatures.

These changes have allowed us to learn from more files, but this process is
still slow (we exhaustively analyze 100 files in approximately 7 days). Consulting
the knowledge base, is a sub process of learning, and is the main functionality
of the system (learning can be made offline). Thus this experiment shows the
consulting times for ps with respect to the above mentioned versions of the

prototype.

The limits on the consulting times, and ultimately the size of the knowledge
base that can be handled impacts the feasibility of a large scale implementation,

and enable us to verify if the changes made have had the desired effect.

6.2.1 Key Performance Indicators

To evaluate the efficiency of the implementation we evaluate the consulting time,
detailed in figure 6.11

Criteria Description

Response time
(Consult Ontology)

The prototype provides two main functionalities: consulting and learning. In the
consult phase the user uploads an .AR file and receives the suggestions from the
system. This KPI shows the time needed for this task, and does not take into
account the time needed to upload the file, nor to send the response to the end
user, but the time the knowledge base takes to provide the suggestions for a

given .AR file.

Figure 6.11: Key Performance Indicator for efficiency.

The consulting response time, is the more visible feature of the system and
assessing the time it takes is important for the implementation and for the
expectations of the end user. Consulting the ontology is also a sub-task of the
learning phase, since each learning cycle requires querying the knowledge base.

Thus improvements in this process improve as well the learning time.

The bigger the knowledge base, the more time consulting it should take.
We would like to evaluate or approximate the limits of this task in the current
implementation. Indeed, the first version of the prototype could only be trained
with up to 25 files, and consulting the knowledge base was in the order of
minutes. This indicator also allows us to assess if the changes made to the first

version of the prototype do impact the performance of the system.
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6.2.2 Experiments

Experiment 3

During the implementation of the first version, which is the more limited, we
evidenced that in both: the consulting phase and the feedback phase, the most
time was invested in calls to the reasoner. To overcome these limitations, the first
version was refined to reduce the reasoner calls and avoid equivalent signature
definitions. This allowed to handle up to 42 files in the learning phase, but this
limit could not be passed using a single knowledge base. This last implementation
of version 1 is used in this experiment. This knowledge base in denoted by K Bys.

The second version of the prototype, has divided the A-Box in several
consistent sub-sets, so that each call to the reasoner has to work with a reduced
size of information. When using all the information at the same time (all data
in a single A-Box) in version one, we saw that consulting the KB could take
more than 20 minutes, and in some extreme cases answers wouldn’t be given for
several hours. The second version further reduces the calls to the reasoner, splits
the A-Box and is designed to be used in a server environment. To evaluate the
impact of these changes we show the consult time for each one of the files in p3
against K By and K Bgg and K Bigp.

Figure 6.12 gathers the consult times of p3 against K Byo, K Bsg and K Bg,
where K Bys is obtained and consulted with the last implementation of version
one of the prototype, and K Bsy and K Bjgg are obtained and consulted using
version two of the prototype. The background surface represents the consulting
times for K Bys, where it is evident that these times are several times longer
than those obtained by K Bsg and K Bygg. The times on the y-axis are shown in
milliseconds, the figure has a limit of 25 000 milliseconds, or 25 seconds. Not
only a more than 50% of these files (29) are above this limit, but 13 files had a
consulting time longer than one minute (60000 ms) of which 9 had a timeout,
where the timeout was set to five minutes. In contrast 90% of the files consulted
for K Bigg has a consult time below 5 seconds, with only 5 files above this mark,
where the highest time was 21 seconds. Additionally, one has to bear in mind
that these results are for a knowledge base twice the size of K Bys. If we turn
our analysis to K Bsg (the smaller surface) we can see that the times for K Bigg
are almost cut by half. The same files that take more time in K B1gg take more

time as well in K Bsg.
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Figure 6.12: The consulting times for the 50 files (x-axis) in partition p3. In the figure three surfaces are plotted. In the background the
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In this section we have seen the relation between the consulting times, the
size of the knowledge bases and the improvements on the implementation of the
prototype.

These elements are important to estimate the feasibility of the implementation
of the approach. It is not sufficient to establish whether or not the suggestions
can be relevant, but also real processing limits to the proposed solution. Special
attention should be put in the cases where the reasoner timed out, and in the
ability to split the A-Box.

Thanks to these experiments, we have seen that the identified improvements
indeed greatly upgrade the performance of the prototype, in that they reduce
the consulting time and allow to handle bigger knowledge bases. Files that time
out, do not only depend on the size of the consulting knowledge base but as well
on the files complexity, and the equivalences found among the signatures in the
KB, which make the reasoner task harder. This is evidenced by high reduction
of timeouts in the second version. Finally the results show that the limits on
the size of the KB can be further pushed, and the split of the A-Box shows that

implementing parallel processing is worth.

6.3 Comparison with similar Approaches

In this section we compare our tool to a state-of-the-art concept learning tool:
DL-learner. We use both tools to learn concepts from the same training set, and

evaluate the number of suggestions obtained.
Objective

We want to evaluate our approach versus a state of the art concept learning
tool. Our objective is to obtain the amount of suggestions that each tool provides,
to determine which one best minimizes the number of suggestions. Additionally,
as we have imposed a limit on how specific the concepts returned by our tool
(TAMO) should be, this experiment also allows us to asses if this limit is too

low to properly classify the set of samples.

6.3.1 Key Performance Indicators

The indicator for the comparison is the number of suggestions proposed by each
tool. We want to asses if our approach is more successful in minimizing the

proposed suggestions, than those obtained by DL-Learner.
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6.3.2 Methodology

5. since it is ont of the most complete

For this experiment we have used DL-learner
and up-to-date tool for concept learning.

DL-Learner is a machine learning tool, designed for supervised learning
over DL-ontologies. It supports an extensive number of parameters, algorithms,
metrics and languages [Lehmann and Hitzler, 2010]. DL-Learner is designed
for supervised machine learning. Thus we argue that it does not exactly suits
our case. Nevertheless, the way it constructs concepts is similar to ours. Thus
we would like to compare how relevant are the concepts found by DL-Learner,
compared to our approach. To enable this comparison, we can regard our training
set as partially-labeled data, and DL-Learner can be used to approximate the sets
(signatures) we are looking for. DL-Learner provides a set of the best n concepts
that describe the samples having a particular corrective action. These concepts
depend on the underlying language, the time allowed to run the tool, the type
of problem (positives only or positives and negatives), etc. In DL-learner, class
expressions that are shorter are preferred.

On the other hand, using our approach in order to find the most specific
class for each failure signature, a limit in the length of the discovered concepts
has been imposed to be up to 35 subconcepts. The experiment also allows us
to determine whether this limit is enough to properly distinguish between the
tests. In other words, we consider up to 35 properties common to all tests to
form a failure signature, and we evaluate if this suffices to arrange the number

of samples we handle.
Experiment 4

For the sake of clarity, in this section we refer to our approach as TAMO, to
differentiate our results from those obtained with DL-Learner. For this experi-
ment we have selected a random subset of 25 files out of the total files available
(150). For each file, we have obtained the number of corrective actions assigned,
both with DL-learner and TAMO. Both DIL-learner and TAMO, were trained
with a set of 50 files, obtained from cross validation, in Section 6.1.

Results TAMO vs DL-Learner
Since our goal is to minimize the number of suggested actions, we want to

evaluate how many actions are proposed by each tool to each file. In Figure

6.13 we show the number of actions returned using the concepts learned by

Shttp://dl-learner.org
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DL-Learner and the concepts learned by TAMO, for each of the 25 selected files.
Each file may belong to one or more DL-Learner concepts, and therefore it will
be associated to all the actions those concepts represent. The concepts that are
too general, capture most/all instances. From the figure we can see that most
of the concepts from DL-Learner will associate around 20 actions to each file,
whereas in our case, most of the files are associated to 3 or less actions. There
are also a few cases where we associate more than 30 actions to a file, this is
mostly because those files were not related to the set of files we used, to create
our classes (learning phase).

The low precision of the DL-Learner concepts, can be explained by the fact
that the tests that are solved by the same action might be not only very different
from each other, but they might not even share anything in common among
them. Given that the underlying language is ££0, no disjunction is allowed
(which would help to capture files that are different by a single concept), there
is no single representation for all those tests in £E£O and DL-learner returned

short but very imprecise concepts.

Actions Per File - DL-Learner vs. TAMO

40 B DL-Learner
B TAMO

Actions

10

Figure 6.13: Number of actions suggested for each file. DL-Learner vs. TAMO.

6.4 Summary

In this chapter we have presented the evaluation of the approach, aided by the
implementation of a prototype.

We have provided an analysis on: the relevance and specificity of the signatures
found using cross validation to reduce the bias on the partitions selected. We
have seen that relevant answers can be given using our approach, even under the

high constraint the data impose: high variability and sparse data. We have also
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seen the benefits of considering not only full composed actions as suggestions,
but that considering partial suggestions increases the relevant answers we can
provide. Out of these experiments, we have obtained a performing knowledge
base trained with 100 samples. In a second set of experiments, we tested whether
there is an evolution in the knowledge base, as more information is presented to it.
By evolution we mean the KB is more fine grained, and that its answers are more
precise. We have seen from our experiments with 25, 50 and 100 samples, that
this is indeed the tendency. Then, we have proceeded to evaluate the efficiency
of the implementation given by the response times. A high-performance system
is not the goal of this thesis, but identifying the main challenges and risks for an
full implementation are of high interest. Thus we have outlined the weak point we
have detected on the several versions of the implementation, provided guidance
on how these could be overcome, and evaluated the chosen improvements given by
the consultation response times. In a final set of experiments, we have compared
the concepts we learn with respect to those learned by a similar tool: DL-Learner.
Even though they are designed for different tasks, DL-learner could be used to
obtain concepts that approximate the signatures. We have seen that the precision
of the concepts obtained by our approach is better adapted to our needs than
those obtained using DL-learner. Finally, we have provided the designed survey
to obtain the users feedback on the experience of the tool. This last experiment

is ongoing at the moment of the writing of this thesis.

151



152



Chapter 7

Conclusions and Further
Work

In this chapter we summarize the main contents of this thesis and the conclusions
regarding the most relevant features. Finally, we present directions for further

work.

7.1 Conclusions

We have presented an approach to provide concept definitions in DL for those
sets of individuals in an ontology O that can be distinguished between them.
Each one of these sets can be seen as a semantic cluster of individuals, since
for each of them there exists a concept expression (at least one) that describes
the cluster. In this thesis, each concept describing a set of individuals in O is
called a situation. We have provided upper bounds for computing a situation
in O and for computing all situations in O, which are exponential in the size
of the concepts. Nevertheless, these problems become polynomial if the size of
the concept expressions is bound by a constant. Since each set of individuals
can be described by more than one DL concept, we have proposed to prefer the
most specific among them. Thus for each representable set of individuals in O a
single concept representing the set is selected. This concept is called the MSR of
the set. Once these notions are defined, we have provided a sound and complete
algorithm to compute the situations. We have shown how to compute the MSR
for an single individual (which corresponds to its most specific concept), how
to compute the MSR of a set of instances, and we have provided a strategy to
obtain all situations in a set of individuals along with their correspondent MSR’s.

These algorithms allow us to solve the situation discovery problem.
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Our approach for concept discovery can be used to identify ”interesting” sets
of individuals of a given domain, and provide a meaningful description of the
main features shared by the individuals in each such set. The intuition behind
is that, if a set of individuals share some properties expressible in DL, a DL
definition for such a set of individuals can be provided by solving the situation
discovery problem.

In the avionics maintenance domain, the set of individuals to analyze is
the set of .AR files resulting from the Test-Bench, and the situations found
to describe sub-sets of .AR files serve to approximate failure signatures, thus
discovering situations in this specific ontology (TAMO) amounts to discover
failure signatures.

Once the signatures are available, we have shown how they can be used by
a diagnosis support tool. We have specified the context on which such a tool
should be deployed, explaining how the technician currently diagnoses equipment,
which are the resources he/she possesses for the maintenance operation, the
systems involved, and the format and origin of the data sources. Out of this
specification, the requirements of the prototype were established, resulting in
two main functions: a) consult the knowledge base to obtain suggested corrective
actions, and b) integrate the technicians feedback on the proposed suggestions to
enrich the knowledge base. A specification on which results these process should
yield, and how the system was implemented was also given.

As the prototype was implemented, we have evidenced limitations in the
amount of data it could handle, on the speed of the consultation and learning
phases, and constraints on the access and scalability for an industrial implemen-
tation. By reducing the calls to the reasoner, avoiding equivalent definitions in
the knowledge base and more importantly, splitting the A-Box of the ontology,
we have overcome many of these constraints. Besides the modifications made
to improve these processes, the prototype was adapted to be deployed under a
BigData platform, enhancing the scalability since it enables for future implemen-
tation of massive data processing and parallel processing. These improvements
have resulted in a second version of the prototype, which was being evaluated at
the moment of the redaction of this thesis.

Finally, with the implementation of the approach, we have run a series of
experiments that mainly evaluate the relevance of the proposed suggestions and
the specificity of the resulting knowledge base. We have additionally provided
an evaluation of the performance on the two versions of the prototype, given
by the response times when consulting the knowledge base. A final experiment,
compares the signatures found using DL-Learner and our approach.

In the evaluation of the relevance of the approach, we have seen that taking

into account partial suggestions can significantly increase the relevant proposed

154



suggestions. Even though for many consulted files, no relevant suggestions were
found, due mostly to the sparse data in the sample set, we have seen that the
quality of the ontology shows an improvement as more knowledge is analyzed.
Moreover, given that the possible suggestions are exponential in the number of
failed tests in an .AR file, the evaluation shows that an implementation of such
a system is able to provide relevant suggestions, and that these would increase
with time.

To conclude, in this thesis we have provided a solution to approximate failure
signatures in avionics maintenance, using an ontology based approach. The work
in this thesis has a multidisciplinary background, since it is directly related to
system diagnosis, knowledge representation and reasoning, machine learning, and
description logics, among others. This broad reach is reflected in the stages and
results detailed throughout the thesis, where we have passed from the conception,
design, implementation, deploying and evaluation of the proposed ideas. This is
also a consequence of the nature of the thesis, which takes place under a CIFRE
convention, involving both: academia and industry.

In research and innovation there exits several levels of maturity of a project,
given by the Technology Readiness Level [Héder, 2017] starting from the very
idea in level 1 to the full industrialization of a product, in level 9. The works
in this thesis, have lead to an ”Initial Gate” approval in TRT, which means
that part of the technology developed in TRT has been transferred to another
entity, in our case Thales Avionics. Thus the work hereby presented involves
levels 1,2,3,4 and 5 of the TRL scale.

Finally, the thesis had lead to several internal (Thales and U-PSud) and
external presentations for the work, the development of a screencast (video
presentation) of the prototype, the proposal for a patent, and a review of the
process involved in maintenance by the experts and technicians involved in the

project.

7.2 Further Work

In the short term, the evaluation of the usability and acceptability of the
prototype is a main objective.

The tool that implements our approach has an impact on the work the
technicians do, and the way they interact with the knowledge base. Their
expectations and the acceptability of such a tool play a very important role
on estimating the feasibility, benefits and risks of stepping into a industrial
implementation.

At the moment of the redaction of this thesis, the last version of the prototype

was implemented and a group of ELAC technicians were granted access to it.
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The evaluation of the usability and acceptability, is a rich field, and we do not
intend to make a full analysis of it in this thesis, nevertheless we have developed,
with the help of colleagues in Thales Avionics, a survey designed to test the
usability and acceptance of the implemented system.

A sample of the designed survey is shown in Figure 7.1.

As future work we envisage the following directions:

e More expressive DLs The current approach is restricted to the ELO
language of DLs. Natural extensions to be considered are to allow the use
of disjunction (L) and negation (—) as constructors in the DL language.
One implication of allowing disjunction regards the exponential grow on
the number of concepts that have to be explored. Even though this can
be limited when the search is guided by the instances, as in our approach,
the full implications and considerations remain to be studied. The case of
negation is similar, in the sense that to ensure that a negated argument

holds, all the cases where it does not hold have to be explored.

e Parallel Processing The modifications made in the second version of the
prototype, have split the A-Box in several consistent partitions, where each
of these A-Boxes is consulted independently by a sequential process and the
results aggregated in the end. Since the results of each the consultations are
independent from each other, each A-Box can be consulted by a separate
process (i.e. parallel processing) and then the results aggregated to provide

a single consolidated result, in a Map-Reduce fashion.

e Distance between the signatures To the moment, the signatures have
no further relation between them than that of subsumption. A distance
can be defined, with regard to the specific features considered by each
signature, to provide more flexibility on the results. Such a distance would
also allow for individuals that do not belong to a signature, to be closely

related to the signature, which can improve the suggestions provided.

e Model Extension Finally, the model considered in this thesis focuses
on the ELAC equipment, on the replacement of components, and on the
technician’s diagnosis process. The model can be extended to consider
more equipment, more maintenance tasks and more actors involved in the

maintenance process.

All these aspects, remain as further work.
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Appendix A

User Manual



e-Diag User Manual

The e-Diag initiative has the goal of supporting diagnosis in avionics maintenance by identifying
equipment failures and propose suggestions to experts on the corresponding repair actions. The
prototype is implemented in a distributed environment involving a Thales Avionics Workshop in
Chatellerault, and the BigData platform in Thales Research and Technology, in Palaiseau, both
interconnected through a secure VPN (Virtual Private Network).

On the side of the workshop we have the technician that performs the tests of the faulty equipment, and
in Thales R&T we count with a cluster of servers that run several web-services, host the database
(Cassandra3), the knowledge base (OWL files) and the learning engine (implemented in Java).These
interactions are illustrated in the following figure:
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WebServices Learning Engine
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Actions

Before the prototype can be used for consulting, a preliminary phase of training the knowledge base has
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| Actions
! {1SON)
'

Obtain signatures
forsample
GetActions for
signature

Return suggested
Repair Actions

taken place. Once the training is complete, the system is ready to classify unseen tests, to provide
suggested actions and to enrich its knowledge base through feedback.

This version of the prototype is limited to the ELAC (Elevator and Aileron Computer) test results as input,

and component replacements are provided as output. . These component replacements are
characterized by a board, a position and a component type




Access the system

The user interface is designed using HTML (V4) and JavaScript (1.7) , and works with any up-to-date web
browser. We have used FireFox (V 50 +) for the tests. Nevertheless, since we are in a controlled

environment, the tool is only accessible using the station placed in the Chatellerault workshop connected
to the BigData network in TRT.

In the first connection to the system, the welcome screen appears:

@ e-Diag # Home & Upload oy Feedback THALES

e-Diag

Failure diagnosis tool

NEXT »

Once inside, the prototype provides two main functionalities: consulting and feedback.



0 e-Diag @ Home & Upload o Feedback THALES

A &

UPLOAD FEEDBACK
Upload an AR file and get the suggestion to Give your feedback and improve the data
repair the equipment relevance continously



Consulting the Knowledge Base

The knowledge base is the ontology designed for the ELAC use case, plus all the types of failures learned
by the system. We want to consult this knowledge base to find the type of failure that best suits the test
file being consulted. Once this failure type is identified, we can retrieve the possible corrective actions.

In the consulting phase, first the technician uploads an .AR (All Results) file, which is the output of the
test-bench.

@ e-Diag @ Home & Upload ¢ Feedback THALES

UPLOAD FEEDBACK
Upload an AR file and get the suggestion to Give your feedback and improve the data
repair the equipment relevance continously

FEEDBACK

Then, the system provides the user with a pop-up to select the .AR file to analyze from the desired
location (hard disk drive, usb key, etc.). Once the file chosen, its name will appear on the screen and a
SEND button will appear to start the analysis.



o e-Diag @ Home & Upload o Feedback THALES

Upload an AR file

Please select AR file and click on ‘SEND’

CLICK TO SELECT THE ARFILE




Depending on the type of file and the size of the knowledge base, the system will take between a few
seconds (20s) to several minutes (+10mn) to analyze the file, and retrieve the suggested actions. More
than one suggestion might be proposed for each consulted file. Each suggested action is composed of:

o Number of suggestion.First, second, etc.

e Confidence: the confidence assigned to this particular suggestion to repair the failure.

o Number of positive cases found: How many cases similar to the failure found, were solved by this
corrective action (proportional to the confidence).

® Replacements: The components: their location and type, to be replaced.

@ e-Diag # Home & Upload o Feedback THALES
! Confidence: 65 % e Confidence: 20 % @ Confidence: 15 %
Positive =17/ 50 Positive =9 / 50 Positive = 24/ 50
# Event Board Location Type 0 ( # Event Board Location Type
X CARTECSP-DG J18  AMPL x x T MPL

& NEWUPLOAD

The consulting phase ends here. The technician may use the suggestions to help him diagnose
and repair the equipment.



Feedback

Once the technicians have made the repair, based or not on the proposition(s) given by the consultation
phase, the right corrective action to repair the equipment is known (which might differ from the
suggested one). This feedback is used to increase/decrease the confidence of the given suggestions. The
system displays to the user a list of all the consulted files, for which the feedback has not yet been given.
The user must select the correct file, and the system will show the previously found suggestions, so that
the user can validate them.

@ e-Diag # Home & Upload ¢y Feedback THALES
Z REFRESH
Search
# Filename Timestamp
1 011414-11-21-10h25.AR 08/02/2018 14:15

2 011418-01-16-09h11.AR 08/02/2018 14:15

3 121212-11-21-10h45.AR 02/09/2013 11:10

4 011414-11-21-10h25.AR 08/02/2018 15:15

This screen is similar to the one obtained in the consulting phase, but this time the tool gives the user the
chance to validate the suggestions (meaning the suggested replacement action indeed solved the failure)
or to turn to manual feedback if no proposition was correct. Manual feedback implied that none of the
suggestions were correct or that they were not accurate.



@ e-Diag # Home & Upload o Feedback THALES

Confidence: 65 % Confidence: 20 %

Confidence: 15 %

Positive =17 / 50 Positive =9 / 50 Positive = 24 / 50

# Event Board Location Type # Event Board Location Type # Event Board Location Type
1 X ARTE CSP-DG AMPL 1 3 CARTECSP-DG 22 AMPL 1 X8 C Q65 AMP
2 X CARTE G u2s EPLD

VALIDATE >

VALIDATE )

VALIDATE »




If Manual Feedback is selected, the user is presented with a form to fill in the components replaced; for
each component replaced he/she must fill in: the board, the location and the type of each replaced
component. Since the initial suggestion was not correct, an additional learning phase takes place to
verify if there exists a new type of failure, and to associate the new corrective actions. All this process
runs in the background and is transparent to the user.

The background learning process analyses the test file, and tries to create a new failure description
based on the information this new test contains. Once the new failure description is found, it is added to
the knowledge based and is made available for the subsequent consultations.

0 e-Diag & Home & Upload o Feedback THALES
Manual Feedback
# Event Board Location Type
— I—
1 x CARTE DGS ul4 AMPLI _
2 x CARTE ZZZ Q99 PLS n
REPLACEMENT Enter board Enter location Enter type -
| SEND )

SWITCH TO SUGGESTIONS

Finally, either through the automatic or manual feedback, the system will acknowledge it has properly
received the information from the technician with a “Thank you” message. This ends the feedback phase

of the prototype.



@ e-Diag @ Home & Upload o Feedback THALES

THANK YOU !

Your feedback is key to improve the data relevance continuously
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Appendix B

Experiments Appendix

This appendix presents the results of the cross validation experiments for the

knowledge bases K BYy5" and K BYag??, that were not shown in chapter 6.
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Figure B.4

actions suggested (light blue) vs. the correct atomic actions (green) and the correct composed actions (orange). For visibility, a cut on 25

suggested actions limits the graphic.
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Figure B.7: The 50 files in partition p2 were classified under 25 signatures when consulting the knowledge base K Bjy;" . The figure shows,

for each signature the precision, the recall and the f-measure, considering partial answers.
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Abstract : In this thesis we explore the problem of
signature analysis in avionics maintenance, to iden-
tify failures in faulty equipment and suggest correc-
tive actions to resolve the failure. The thesis takes
place in the context of a CIFRE convention between
Thales R&T and the Université Paris-Sud, thus it has
both a theoretical and an industrial motivation. The si-
gnature of a failure provides all the information ne-
cessary to understand, identify and ultimately repair a
failure. Thus when identifying the signature of a fai-
lure it is important to make it explainable. We pro-
pose an ontology based approach to model the do-
main, that provides a level of automatic interpretation
of the highly technical tests performed in the equip-
ment. Once the tests can be interpreted, corrective
actions are associated to them. The approach is roo-
ted on concept learning, used to approximate des-
cription logic concepts that represent the failure si-
gnatures. Since these signatures are not known in
advance, we require an unsupervised learning algo-
rithm to compute the approximations. In our approach
the learned signatures are provided as description lo-
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a minimal set of axioms in the A-Box. These serve
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ning process is achieved through a refinement opera-
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but an important difference is that in our algorithms
this search is guided by the information of the indivi-
duals in the ontology. To this end the notions of jus-
tifications in ontologies, most specific concepts and
concept refinements, are revised and adapted to our
needs. The approach is then adapted to the specific
avionics maintenance case in Thales Avionics, where
a prototype has been implemented to test and eva-
luate the approach as a proof of concept.
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