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Abstract

In this thesis we explore the problem of signature analysis in avionics mainte-

nance, to identify failures in faulty equipment and suggest corrective actions to

resolve the failure. The thesis takes place in the context of a CIFRE convention

between Thales R&T and the Université Paris-Sud, thus it has both a theoretical

and an industrial motivation.

The signature of a failure provides all the information necessary to understand,

identify and ultimately repair a failure. Thus when identifying the signature of

a failure it is important to make it explainable.

We propose an ontology based approach to model the domain, that provides

a level of automatic interpretation of the highly technical tests performed in the

equipment. Once the tests can be interpreted, corrective actions are associated

to them.

The approach is rooted on concept learning, used to approximate description

logic concepts that represent the failure signatures.

Since these signatures are not known in advance, we require an unsupervised

learning algorithm to compute the approximations. In our approach the learned

signatures are provided as description logics (DL) definitions which in turn are

associated to a minimal set of axioms in the A-Box. These serve as explanations

for the discovered signatures, thus providing a glass-box approach to trace the

reasons on how and why a signature was obtained.

Current concept learning techniques are either designed for supervised learn-

ing problems, or rely on frequent patterns and large amounts of data. We use

a di↵erent perspective, and rely on a bottom-up construction of the ontology.

Similarly to other approaches, the learning process is achieved through a refine-

ment operator that traverses the space of concept expressions, but an important

di↵erence is that in our algorithms this search is guided by the information of

the individuals in the ontology.

To this end the notions of justifications in ontologies, most specific concepts

and concept refinements, are revised and adapted to our needs.

The approach is then adapted to the specific avionics maintenance case in

Thales Avionics, where a prototype has been implemented to test and evaluate

the approach as a proof of concept.





Resumé en Français

Dans cette thèse, nous étudions le problème de l’analyse de signatures de pannes

dans le domaine de la maintenance avionique, afin d’identifier les défaillances au

sein d’équipements en panne et suggérer des actions correctives permettant de

les réparer. La thèse a été réalisée dans le cadre d’une convention CIFRE entre

Thales Research & Technology et l’Université Paris-Sud. Les motivations sont

donc à la fois théoriques et industrielles. Une signature de panne fournit toutes

les informations nécessaires pour identifier, comprendre et réparer la panne. Son

identification doit donc être explicable. Nous proposons une approche à base

d’ontologies pour modéliser le domaine d’étude, permettant une interprétation

automatisée des tests techniques réalisés afin d’identifier les pannes et obtenir les

actions correctives associées. Il s’agit d’une approche d’apprentissage de concepts

permettant de découvrir des concepts représentant les signatures de pannes.

Comme les signatures ne sont pas connues a priori, un algorithme d’appren-

tissage automatique non supervisé approxime les définitions des concepts. Les

signatures apprises sont fournies sous forme de définitions de la logique de descrip-

tion (DL) et ces définitions servent d’explications. Contrairement aux techniques

courantes d’apprentissage de concepts conçues pour faire de l’apprentissage

supervisé ou basées sur l’analyse de patterns fréquents au sein de gros volumes

de données, l’approche proposée adopte une perspective di↵érente. Elle repose

sur une construction bottom-up de l’ontologie. Le processus d’apprentissage est

réalisé via un opérateur de ra�nement appliqué sur l’espace des expressions

de concepts et le processus est guidé par les données, c’est-à-dire les individus

de l’ontologie. Ainsi, les notions de justifications, de concepts plus spécifiques

et de ra�nement de concepts ont été révisés et adaptés pour correspondre à

nos besoins. L’approche a ensuite été appliquée au problème de la maintenance

avionique. Un prototype a été implémenté et mis en œuvre au sein de Thales

Avionics à titre de preuve de concept.

La thèse est organisée de la maniere suivante : Le manuscrit est composé de

7 chapitres incluant introduction et conclusion générales. Le premier chapitre

fait o�ce d’introduction et introduit la problématique, les contributions de la

thèse et met en perspective le contenu du manuscrit ; le chapitre 2 constitue

un état de l’art ciblé sur les ontologies, l’apprentissage dans les ontologies, et

la modélisation de la maintenance avionique ; le chapitre 3 présente l’approche

théorique retenue basée sur la découverte de concepts dans les ontologies formelles

avec les algorithmes associés ; le chapitre 4 met en œuvre cette approche théorique



dans l’analyse de signature en maintenance avionique en lien avec une ontologie

et à partir de fichiers de résultats de tests ; le chapitre 5 présente le prototype

développé ; le chapitre 6 présente les expérimentations réalisées avec ce prototype

et sa validation ; le chapitre 7 conclu le manuscrit en faisant un bilan des

travaux réalisés et en avançant quelques perspectives. Dans le chapitre un,

(Introduction) , on présente tout d’abord le domaine applicatif de la thèse, qui

est la maintenance avionique en général et chez Thales en particulier. Parmi

plusieurs centaines d’équipement que Thales répare, un équipement particulier,

nommé ⌧ Elevator and Aileron Computer – ELAC �, composé de six cartes

électroniques et de deux alimentations, a été retenu pour la recherche. On

explique ensuite comment les techniciens testent cet équipement à l’aide d’un

banc de test, ainsi que la structure des fichiers ⌧ .AR � générés, dont chaque ligne

teste une fonction spécifique (GO/NOGO). Ensuite on présente la problématique

de la thèse qui est la découverte de signatures de défaillance, et la proposition

d’actions correctives aux techniciens, ces propositions devant être impérativement

explicables. L’ensemble de symptômes représente la signature de la défaillance,

et ces signatures définissent des classes de tests, et les propriétés utilisées pour

construire ces classes fournissent leur explication. Une fois les classes disponibles,

elles seront utilisées pour classer les tests : pour chaque classe de test un ensemble

d’actions correctives est associées, devenant les suggestions/propositions faites

au technicien.

L’association de la signature trouvée et des actions correctives est donnée

par les données historiques. De cette façon, chaque fois qu’un nouveau test

arrive, il est d’abord analysé pour trouver des actions correctives si son type de

défaillance existe déjà dans l’ontologie. Sinon, un nouveau type de défaillance est

appris grâce aux informations contenues dans ce nouveau test, ce qui enrichit

progressivement l’ontologie pour augmenter son exhaustivité. On a choisi de

guider la découverte des types de défaillances par les tests disponibles, ce qui

permet de réduire l’espace de recherche, et les types de pannes possibles peuvent

être trouvés en temps réel. Il s’agit ainsi de découvrir des concepts dans une

ontologie en LD d’une manière non supervisée, de telle sorte qu’ils représentent

des ensembles intéressants d’individus, et que la définition de chaque concept

découvert soit explicite.

Le chapitre deux, (Related Work) on présente une revue de littérature

ciblée sur les ontologies et l’apprentissage automatique, toujours en lien avec

la problématique de maintenance avionique. On introduit les ontologies, leur

rôle dans la représentation des connaissances, leur lien avec le Web Sémantique,

les langages RDF et OWL 1 et 2, puis on s’attarde sur les ontologies formelles

avec les logiques de description (LD). Après on présente les grandes approches

de la maintenance industrielle, permettant ainsi de définir le problème de la
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maintenance avionique et la terminologie associée. Tout d’abord est présentée

l’approche ⌧ Model Based Diagnosis (MBD) � développée par les communautés

de l’informatique et de l’intelligence artificielle et fournissant un cadre pour le

diagnostic de systèmes. En tant que tel, le diagnostic peut être considéré comme

une forme de raisonnement abductif, où étant donné un ensemble d’observations,

les raisons possibles des observations sont les diagnostics. Des stratégies visant à

éviter d’explorer l’espace exponentiel des diagnostics et d’influencer les préférences

sur les diagnostics récupérés ont été largement étudiées dans la littérature.

On s’interesse aussi par les approches de la maintenance basées sur des

ontologies. L’objectif de la plupart des travaux rattachés à cette approche est de

fournir un modèle formel qui tient compte de toutes les sources d’information

hétérogènes nécessaires et disponibles, dans une représentation unique et bien

définie, et de faire des inférences automatiques sur les connaissances représentées.

Di↵érents travaux sont étudiés et ils visent tous à fournir un modèle qui est

une ontologie, qui tient compte de la terminologie appropriée utilisée dans le

domaine, sur la base de normes et/ou de recommandations, mais malheureu-

sement, aucun de ces travaux n’a été au-delà de l’implémentation même de

l’ontologie. L’utilisation d’ontologie pour découvrir des signatures de défaillances

nécessitant un mécanisme d’apprentissage associé à l’ontologie, On s’intéresse

à l’apprentissage d’ontologie et l’apprentissage de concepts. L’apprentissage

d’ontologie est un domaine multidisciplinaire qui vise la génération automatique

d’ontologies. On distingue plusieurs approches : (i) les approches basées sur

l’apprentissage à partir de textes, étroitement liée à l’analyse du texte et au

traitement du langage naturel ; (ii) les approches basées sur la fouille de données

liées (Linked Data Mining) reposent sur des techniques d’exploration de graphes

qui nécessitent un graphe complet ; (iii) les approches de ⌧ crowdsourcing �,

une alternative à l’apprentissage entièrement automatique, dans laquelle les

humains sont impliqués dans le cycle d’apprentissage, révisant le contenu dans

une ontologie, ou y ajoutant explicitement du contenu ; et enfin (iv) les approches

basées sur l’apprentissage de concepts dont le but est de découvrir des définitions

de concepts. C’est cette dernière approche, l’apprentissage de concepts, plus

adaptée à la problématique de recherche que on retient et étudie ensuite.

Dans le contexte des LD, les di↵érentes méthodes d’apprentissage de concept

présentent toutes des limitations dans le contexte de la maintenance avionique,

notamment lié au fait qu’elles sont supervisées, et nécessitent des échantillons

positifs et négatifs définis par rapport à des classes déjà définies, que l’on a pas

ici.

A cause de cette limitation, on s’intéresse assez brièvement à l’apprentissage

non-supervisé sur des données structurées.

Le chapitre trois, (The Approach : Situation Discovery), on développe notre
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approche, qui constitue sa la principale contribution de la thèse. On s’intéresse

ainsi à la capacité de déterminer quand un ensemble d’individus peut être

distingué des autres, et chacun de ces ensembles, pour lequel on peut trouver une

définition appropriée, est appelé une situation. Dans ce chapitre on développe

l’approche retenu pour obtenir ces situations, une approche d’apprentissage non

supervisée de concepts, basée sur la notion de ra�nement de concept mis en

œuvre par un opérateur spécifique. L’intuition qui sous-tend ce processus de

ra�nement est que, compte tenu d’un ensemble d’individus X, on veut construire

des descriptions pour des sous-ensembles de X qui peuvent être représentés par un

concept d’une ontologie en LD. Ensuite, une fois les descriptions construites, on

fournit les moyens d’imposer une préférence à ces concepts de LD afin que seuls

ceux qui sont intéressants soient récupérés. Ces concepts sont ensuite intégrés

à l’ontologie LD originale, où ils peuvent être utilisés pour la classification. La

construction des expressions conceptuelles repose sur les propriétés des individus

dans X analysés, et par conséquent les définitions conceptuelles fournissent une

explication sur les propriétés des individus qui sont pertinentes pour les distinguer

du reste. Dans ce chapitre on présente en détail, et de façon formelle, l’approche

de découverte de situation (Situation Discovery) et on explique comment on

calcule les situations dans l’ontologie O spécifiée en ELO. Pour cela on définit

formellement lun opérateur de ra�nement (Refinement Operator), qui repose

sur la notion de MSR (Most Specific Representative) utilisée pour la découverte

de situation. Les di↵érentes étapes permettant d’a�ner un concept C guidé par

une instance x et une ontologie O, sont présentées en détail, le résultat étant les

concepts obtenus par une étape de ra�nement de C. Ce chapitre constitue la

contribution majeure de la thèse.

Dans le chapitre quatre, (Situation Discovery in Avionics Maintenance ), on

montre comment la relation entre les situations et les signatures de défaillance est

établie, montrant ainsi comment l’approche générale présentée dans le chapitre

précédent est adaptée à l’analyse des signatures en maintenance avionique. Plus

précisément les deux fonctions principales que le prototype doit assurer pour

aider le technicien dans le processus de diagnostic sont : 1) consulter la base de

connaissances pour obtenir les mesures correctives suggérées, et 2) enrichir la

base de connaissances grâce aux commentaires des utilisateurs sur la pertinence

ou non des suggestions données. L’enrichissement de la base de connaissances

nécessite non seulement d’envisager les éventuelles nouvelles actions correctives,

mais aussi de découvrir de nouvelles signatures de défaillance.

Dans le chapitre cinq, (Prototype) on présente la mise en œuvre concrète de

l’approche, par la réalisation d’un prototype, conçu et déployé pour appuyer le

diagnostic de maintenance avionique. On rappelle brièvement le processus de

diagnostic de maintenance de l’ELAC, l’origine des données, et le contexte de
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Thales où se déroule le prototype implémenté . Après on présente les exigences

du prototype, permettant pour le premier (Consult) de consulter la base de

connaissances pour obtenir des suggestions, et pour le second (Acquire Feedback)

associé au retour de l’utilisateur, permettant de mettre à jour/enrichir la base

de connaissances avec de nouveaux fichiers ⌧ .AR � et de nouvelles actions

correctives. On présente l’architecture du prototype, conçu et réalisé dans un

environnement distribué (TRT cluster) permettant un traitement massif des

données et un accès à distance. Les fonctions principales du système associées aux

deux cas d’utilisation précédents sont détaillées et montré comment l’utilisateur

final interagit avec l’outil au travers d’un interface homme-machine spécifique.

Dans le chapitre six, ( Evaluation ), on présente l’évaluation de l’approche

par la mise en œuvre du prototype.On évalue la pertinence et le nombre de

suggestions proposées par l’approche. L’hypothèse à valider étant que plus le

grain de la base de connaissances est fin, plus on peut trouver des signatures

de défaillance spécifiques, et ainsi minimiser le nombre d’actions correctives

suggérées. Les résultats obtenus par une première série d’expérimentations

relatives à la pertinence et la spécificité des suggestions, a permit d’obtenir une

base de connaissances performante formée de 100 échantillons. Une seconde série

d’expériences, a permit de vérifier qu’il y avait bien une évolution dans la base de

connaissances, à mesure qu’on lui présentait plus d’information. Par évolution,

dans notre travail ; on entend que la KB est plus finement grainé, et que ses

réponses sont plus précises. Des expérimentations avec 25, 50 et 100 échantillons

ont montré que c’est e↵ectivement la tendance. On fournit des mesures et des

analyses sur l’e�cacité de la mise en œuvre, données par les temps de réponse

et évalue le passage à l’échelle (scalability) de la solution proposée. Dans une

dernière expérimentation, on compare notre approche à celle du du système

DL-learner, un outil similaire utilisé pour découvrir des concepts, mais de façon

supervisée.

Finalement, dans le chapitre chapitre sept (Conclusions and Further Work),

on conclut le manuscrit en faisant un bilan synthétique de nos contributions, et

présente ensuite quelques perspectives. La première concerne l’usage d’une logique

de description plus expressive que la LD ELO utilisée dans la thèse qui ne possède

pas les constructeurs de disjonction et de négation, ce qui aurait cependant

pour conséquence une croissance exponentielle des concepts augmentant ainsi

l’espace de recherche. La deuxième perspective est un traitement parallèle des

di↵érentes partitions de l’A-box suivi d’une fusion et consolidations des résultats

obtenus selon une stratégie de type Map-Reduce. La troisième perspective est

d’introduire une distance explicite entre signatures permettant à considérer de

nouveaux individus dans les signatures et par la même améliorer les suggestions

fournies. Enfin la dernière perspective concerne l’extension du modèle à d’autres
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équipements que l’ELAC considéré dans la thèse, ainsi qu’à d’autres tâches de

maintenance.
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Chapter 1

Introduction

This thesis takes place in the context of a Convention Industrielle de Formation

par la Recherche (CIFRE) between Thales R&T and the Université Paris-Sud,

thus it has both: a theoretical and an industrial motivation. The thesis explores

the problem of signature analysis in avionics maintenance, and proposes an

ontology based approach rooted on concept learning, to approximate Description

Logic concepts that represent the failure signatures.

In avionics, a failure denotes the loss of the ability of a device to meet the

performance specifications that it was intended to meet. The signature of a failure

in this context, represents all su�cient and necessary information that is strongly

related to the failure mechanism [JEDEC, 2018]. Knowing the signature allows

to better understand the failure, to predict the behavior of the equipment, and

to repair it. In equipment diagnosis, the manifestation of a failure is put down

to the bad interaction between some of its components, which are grouped into

functional chains. Identifying these functional chains and the faulty components

involved, provides the signature of the failure. In model based diagnosis this

is known as a diagnosis [De Kleer and Kurien, 2003], and the model aims to

predict the intended behaviour of the modeled system. In our case we do not

count with such a model. Instead, we are given tests that report the status of

the functions in the equipment, and corrective actions made by the maintenance

technicians. In this context, our task is to provide an approach and a tool to

support maintenance technicians with suggestions on the corrective actions to

be taken, given an input test.

1.1 Avionics Maintenance

In avionics maintenance complex and time-consuming actions have to be taken

to return a faulty equipment to a fully functional state. The objective of our
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work is to support maintenance technicians in their activity with cues of actions

or full actions to perform, in order to repair faulty equipment.

During the maintenance processes in avionics, when an equipment is found

faulty on an aircraft it is to be repaired or replaced. Avionics maintenance is

divided three levels:

• Level 1 (On aircraft) : These are the maintenance actions performed on

aircraft. When an aircraft arrives to an airport, the status of its systems

and equipments are tested and maintained in place. If a failure exists, the

faulty equipment is identified, called a Line Replacement Unit (LRU) and

is replaced by another unit with the same capabilities. The main objective

of the maintenance action in this stage is to return the aircraft to a fully

functional state as soon as possible to minimize the time it stays on ground.

• Level 2 (In Shop) : The LRU found faulty by maintenance level 1 are sent

to a specialized shop for investigations and maintenance. Each LRU is

composed of several Shop Replacement Unit (SRU), and the task of the

technicians is to identify the faulty SRU.

• Level 3 (In Shop) : The third level of maintenance also takes place in the

repair workshop, where provided a faulty SRU the technicians find the

components that cause the failure to repair the equipment.

Figure 1.1 depicts the three levels in avionics maintenance. Our work is concerned

Figure 1.1: The di↵erent levels of avionics maintenance. Image credit: Guillaume

Ruban, TAV.

with maintenance levels 2 and 3, that is in shop maintenance.

To determine the proper corrective actions when a faulty equipment presents

a failure, the technicians need to gather all the necessary information that allows
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them to identify the failure cause. The technicians make investigations and run

tests to evaluate the state of the equipment. All the necessary and su�cient

information that is strongly related to the mechanism of the failure is called the

Failure Signature [JEDEC, 2018] . When a technician makes investigations and

evaluates the results of the tests, she/he is looking for the symptoms that are in

line with the signature of the failure to isolate the problem, and establish the

proper repair actions for the equipment.

This process is time-investing, automatically establishing the most probable

actions is useful to shorten the examination and repair time, thus gaining in

e�ciency and lowering the costs.

Out of the hundreds of types of equipment Thales Avionics repairs, the

Elevator and Aileron Computer (ELAC) was selected by Thales for this study

because of the availability of the results, the high frequency of maintenance and

the complexity of its diagnosis. The ELAC is a Line Replacement Unit (LRU)

of which several versions exist (ELAC A, ELAC B, ELAC Téléchargable). The

ELAC B used in our approach comprises six boards and two power units. Each

of the boards has hundreds of components and in case a failure is found, the

right component to be replaced has to be found. Figure 1.2 presents a diagram

of an ELAC B computer.

Figure 1.2: A diagram of an ELAC B computer, extracted from the product

sheet specification. The figure shows the 6 internal boards and the schematics of

the product.

In order to diagnose the problem, the technicians test the ELAC in a special

unit called a Test-Bench, which exhaustively tests the equipment functions.

Once the tests are run, it is up to mechanic experts to interpret the results,
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determine the possible components of the equipment involved in the failure, and

the repairs/replacements to be done. For a maintenance process it is di�cult

to establish a priori what are the actions to be taken to return the equipment

to a fully functional state. Each function in the equipment is associated to a

functional chain, which is a logical circuit comprising tens of components. Once

the logical components are identified, their physical locations in the equipment

need to be precised to proceed with the repair.

The main source of information for the ELAC technicians to make the repairs,

are the tests results that come out of the Test-Bench. These are presented as an

.AR (All Results) file, which is divided into chapters, sections and subsections.

Each subsection contains up to hundreds of individual tests, one per line. Each

line of the .AR file represents a test on a specific function with the sanction GO

or NOGO, which tells us if the test was passed. An extraction of an .AR file and

its main structure is shown in Figure 1.3.

Figure 1.3: Extract of an .AR file. The figure shows the first lines of chapter ”8:

ARINC INPUT/OUTPUTS”, with the function and sub-functions being tested,

where two tests present the sanction: ”NOGO”.

Besides his expertise, to interpret these results the technician relies on a

Component Maintenance Manual (CMM), and a visualization tool to identify

the physical location of the components.

An additional complication in this problem is the non-deterministic relation

between the failures and the corrective actions: a specific failure can be detected

by several distinct tests, and distinct tests might have the same corrective action.
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1.2 Problematic

Equipment diagnosis is a complex task since on the one hand, the interpretation

of the results requires high expertise and experience, and on the other hand the

possible corrective actions can be exponential with respect to the number of

components.

To determine the proper corrective action, a good understanding of the

failure and the test results is needed due to the following reasons. First, the

technician needs to know why an action is proposed. He can not blindly change a

suggested component, the causes and the e↵ects of the failure need to be clearly

determined. Second, once the maintenance process ends, a fully functional and

certified equipment is returned to the client. For safety reasons, a certification

that the equipment provides the expected services is needed. In this process, the

mechanism of the failure has to be clearly established, to explicitly show the

failure causes and their exhaustive repair. Third, the explanations influence the

adherence and confidence of the technicians in the system. Finally, besides the

direct use for the technicians, the explanation for a failure allows to identify it,

design tests to detect it, define ways to solve it, and certify equipment which is

free of the failure. Thus the explanation is of great value.

Thus, automatizing the diagnosis process requires not only to be able to

interpreted the test, but also to provide explanations on the proposed suggestions.

Confronted with this problem, our goal in this thesis is to:

Support avionics maintenance by discovering Failure Signatures and

proposing corrective actions, in such a way that the suggestions are

explainable.

This problem has to be solved by taking into account the following constraints.

Sparse data A particular aspect of our problem is that the available data is not

su�cient for an automatic learning system based on statistical analysis. Classic

machine learning techniques aim to approximate a function f which describes

the behavior of a real world process, through a hypothesis h, where the accuracy

of h to approximate f relies on the amount of data presented to the model. In

our case we count only with 150 samples of .AR files and their corrective actions,

therefore we can not rely on techniques that require large amounts of data to

properly model a process.

Sparse knowledge We have at our disposal a set of 150 test results of a specific

equipment (ELAC B) and the associated corrective actions. The correlation

between the actions and the tests is given by historical data gathered from the

maintenance workshop.

To assign actions for a test result, technicians follow maintenance manuals
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stating the specific functions of components, the functional chains involved, and

their physical location.

There is no explicit model for this manual process. There exist manuals,

visualization tools, and guidelines on the procedures. But a model relating the

test results to the components to be replaced is not available. To obtain such

a model we count only with the test results and the corrective actions in the

historical data.

Number of suggested repair actions The correspondence between the set

of NOGO lines in an .AR file and the components that need to be replaced is

not evident. Note that the combinations of the functions to be checked in an

.AR file is exponential with respect to the number of NOGO lines. For example,

a file containing 4 lines with a sanction of NOGO, has 24 = 16 combinations.

To solve the failure, all the combinations might need to be considered in the

worst case. A file with 20 NOGO lines could easily have associated more than 1

million function combinations to check. In the sample data we have found files

with 40, 50, 100 and thousands of lines that present the result NOGO. This is

why equipment diagnosis is complex.

Providing hundreds of results as possible repair actions is useless. First,

technicians must not have to choose from a large number of suggested actions.

Each action chosen triggers a new test-bench session that can last for hours.

Secondly, the number of failing components is often low in reality. So in each

repair, the suggested components to be replaced should be minimized.

Provide an explanation for the given results As outlined in section 1.2,

explainability of the system is important for technicians and security certification.

1.3 The proposed solution

In order to provide suggested corrective actions to the technicians, given an

input test, first we have to be able to classify the test. But in our problem we do

not count with classes of tests.

To find these classes, we look into the properties of the tests for those

that represent the symptoms of a failure. A failure is given by the replaced

faulty components. Thus, all those properties that allow to distinguish a set

of tests that are solved the same way, represent the symptoms of the failure.

This set of symptoms represent the Failure Signature. These failure signatures

define classes of tests, and the properties used to construct these classes provide

their explanation. Once the classes available, we use them to classify the tests,

where for each class a set of corrective actions are associated, which become the

suggestions to the technician.

From the historical data, we find that some di↵erent tests can be associated to
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a same corrective action. Therefore, it is not a unique test result that characterizes

a failure, but rather sets of tests. These sets are not known in advance, and

therefore we first must discover them. Moreover, the proposal of actions must be

explained because technicians have to know the reason for the actions and due

to the requirement of security certification as we have already mentioned above.

To this end, we provide the definitions of the signatures, that play the role of

explanations.

To discover the definitions of the failure signatures, we can rely on the

following pieces of knowledge:

• the files containing the test results, one file corresponding to one faulty

ELAC/LRU.

• the historical knowledge in avionics maintenance, which is the established

correspondence between test result files and the correction actions.

We propose to model the tests and their results in an ontology to enable

automatic reasoning over it. Indeed, AI techniques allow to formally represent the

knowledge of a domain and perform automatic processing over this knowledge,

like reasoning. In this thesis, we propose to use Description Logic (DL) as the

underlying language for the ontology, since it is a formal representation, for

which the reasoning results are traceable and explainable. The proposed approach

allows to enrich this ontology with discovered new Failure Signatures and their

definitions incrementally.

Once the discovered signatures are made available, when a new, unseen, test

file is presented to the system we use the ontology to determine the type of

failure to which it belongs. Thus the ontology provides a level of automatic

interpretation of the test files. Then, corrective actions can be provided to the

technicians as suggestions.

The association of the signature found and the corrective actions is given by

the historical data. In this way, each time a new test arrives, it is first analyzed

to find if it corresponds to a failure signature already known by the knowledge

base. Otherwise, a new type of failure signature will be learned, thanks to the

information this new test carries, thus incrementally enriching the ontology to

increase its completeness.

In this DL setting, tests are individuals, and failure signatures are concepts.

Consequently, our objective is first to discover these concepts, corresponding to

sets of individuals, and secondly associate these concepts to corrective actions.

There exist several approaches to construct and discover concept definitions,

most of which rely on positive and negative samples with respect to the categories

already defined. As stated before, we do not know these categories in advance,

and we cannot used these approaches.
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The discovery of the concepts in a DL setting can be achieved even if we do

not have a large amount of data, therefore we do not rely on large amounts of

historical data. In principle, we could provide all possible combinations of all

available properties of the tests in the model, and use them to formulate the

categories of the tests. However, the possible concepts we can construct in this

way grows exponentially, and might even be infinite if the length of the concept

is not limited. To overcome the problem of searching through all possible concept

expressions, in our approach we guide the discovery of the failure types by the

available tests. In this manner the search space is limited and the possible failure

types can be found in tractable time.

From the point of view of the techniques that enable us to obtain these

signatures in a DL setting, our objective is to:

Discover concepts in a DL-Ontology in an unsupervised fashion, in

such a way that they represent interesting sets of individuals, and

the definition of each discovered concept is explicit.

Note that, for each discovered set of individuals, several concept expressions

might correspond. Those that are the shortest most specific will be preferred to

avoid useless expressions 1.

1.4 The main contributions

• We identify a new problem in DL setting, which is to discover new concepts

that are unknown in advance, named unsupervised concept discovery.

• We propose the algorithms to the problem of unsupervised concept dis-

covery. The main algorithm is presented as a refinement operator which

provides a full control over the refinement process. We show the operator

is sound and complete, in that it provides an access to all relevant con-

cept definitions that can be constructed to describe the di↵erent sets of

individuals in the ontology.

• We provide an explainable method to suggest avionics maintenance actions

based on the discovered concepts.

• We provided a prototype used in a Thales division to support avionics

maintenance diagnosis, where given a test file as input the suggested

corrective actions are returned. The prototype uses information from

Thales Avionics (Toulouse, Châtellerault - France) with whom we have

1
In this context useless is understood as expressions that do not contribute in the number

of tests captured by the description.
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developed the model and selected the data. The final implementation is to

be hosted in Thales Research & Technology (Palaiseau - France) using a

BigData platform, allowing massive processing and remote access.

• We test and evaluate the approach applied to the avionics maintenance,

and provide discussions on the found results.

1.5 The thesis structure

The rest of this document is organized as follows:

Given the context and problematic presented in this introduction, we continue

by presenting the state of the art on tools and techniques that allow to solve

similar problems.

Chapter 2 presents the related work. We start by introducing ontologies

and their role in knowledge representation and knowledge integration. We ex-

plain their relation with the semantic web and highlight some challenges of

implementing ontologies based systems. Next, we present approaches to model

industrial maintenance using ontologies and their relation to our solution. Finally,

we introduce ontology learning, for which concept learning is a specific case. We

explore the current techniques for concept learning, and outline the limits they

present for solving our problem.

Given the research works related to our problem, we next present our solution.

Chapter 3 In this chapter we present our approach which allows us to

overcome the technical challenges for concept discovery, under the constraints

and conditions stated in our problem definition. A preliminary part introduces

the necessary notions and definitions used in our approach. Then this section

presents the definitions, the algorithms and the proofs of soundness and com-

pleteness for our approach. Our solution is driven by the analysis of one sample

at the time to guide the search over the space of concept expressions. This search

is realized through the iteration of a refinement operator. In this chapter we

specify how the operator generates concept expressions, what are the properties

of the discovered definitions and how they can be used to distinguish sets of

individuals that share some semantic features in the ontology.

The approach presented in chapter 3 is of general use, thus the next step is

to apply it to the avionics maintenance case.

Chapter 4 In this chapter we establish the relation between the situations
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found by the approach in chapter 3 and our goal of discovering Failure Signatures

in avionics. To this end, we pose the problem of finding the signatures as finding

situations in an ontology. Once the signatures are available, we specify how to

obtain the suggested corrective actions for a given .AR file. Finally, we show

how to integrate the new knowledge in the ontology. The algorithms and the

specifications on what the computations yield are given in this chapter.

Once the design of the algorithms and their specifications are given, we

proceed to implement them to develop a prototype.

Chapter 5 In this chapter we detail the implementation process. We present

the requirements of the prototype, the context on which it is intended to be used,

the architecture of the system, the two main functions: Consult and Feedback,

and the di↵erent versions of the prototype.

With the prototype in place and the specifications of the approach clearly

established, we proceed to make experiments and evaluate our approach.

Chapter 6 This chapter shows the evaluation of the approach, by perform-

ing di↵erent tests using the prototype and analyzing how well these results

comply with the criteria defined for a desirable solution. Several variations in the

prototype are made considering: di↵erent amount of analyzed data, two di↵erent

implementations and two di↵erent reasoners. A final evaluation considers the

feedback from the users on the usefulness of the approach.

Chapter 7 This chapter presents our conclusions and guidelines for further

work.

Finally the Annex provides details on the data sources, the user manual,

and a list of by products of the thesis.
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Chapter 2

Related Work

In this chapter we describe techniques related to our problem, that is ontology

based concept discovery applied to the maintenance domain.

We start by presenting ontologies. We defined them in a most general sense.

We specify their role in computer science. One of their most notorious applications

is related to the semantic web, where the Ontology Web Language (OWL) is

designed as formalism to annotate content on the web and make knowledge

interoperable. These features are important to understand the capabilities,

potential and relevance of ontologies and knowledge based systems. Secondly,

we introduce Description Logic, the formalism used in this thesis to represent

ontologies.

In Section 2.2, we describe approaches for diagnosis and maintenance. First

we provide a brief overview of Model Based Diagnosis (MBD), where the problem

of defining the causes of failures in equipment is studied. In this setting, given

a model of a system, the goal is to use the model to predict the behaviour

of the system and provide diagnosis. We explain the similarities, limitations

and ideas that intersect with our approach. Next we present an overview of

approaches that envisage and study their application in industrial maintenance.

Indeed, a model is to provide an abstraction of a real world process. It allows the

study of the process, to understand its mechanism and to predict its behaviour.

Ontologies provide the means to model industrial processes and systems, in a

conceptual way. Because of their features, ontologies have been considered to

enable knowledge management in the industry.

Because knowledge discovery involves automatic processing of information,

in Section 2.3 and Section 2.4, we provide a general introduction to machine

learning, supervised learning, unsupervised learning and clustering. Nowadays

machine learning is largely associated with neural networks, statistical analysis

and deep learning. These are techniques based on functions that operate over large
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amounts of unstructured data which is represented as vectors and matrices of real

numbers. In a symbolic setting, like ontologies, the information is discrete and

highly structured, which requires a di↵erent approach. This is why “classically”,

knowledge representation and machine learning are regarded as two separate

branches of artificial intelligence, where many approaches to combine them

exist, aiming to take advantage of both areas [Dietz Saldanha et al., 2018]. Our

work also falls in the category of such hybrid approaches, with an emphasis

on knowledge representation. It is out of the scope of this thesis to provide an

extensive insight into machine learning, but a context to properly position our

work, with respect to these approaches is required.

The construction of a model can be very demanding: the knowledge of

experts in the domain is needed as well as skilled ontology engineers. The goals

for which the model is constructed influence its design and the inferences obtained

should be inline with the expected results. These factors associated with the

needed resources, impose a constraint on the development of knowledge based

systems. A study and methodology for estimating such costs can be found in

[Simperl et al., 2012]. We introduce an overview of ontology learning which aims

to achieve the challenging goal of automatic construction of ontologies, from

which concept learning is a particular case. Concept learning is concerned with

automatic construction of concept definitions and general concept inclusions.

The main techniques of these approaches are based on least common subsumers,

normalization, refinement operators (as in inductive logic programming) and

in bisimulations. Some of these approaches provide theoretical studies of the

problem, and others go as far as possible to implement software tools. A state of

the art tool for supervised concept learning is DL-Learner, based on refinement

operators. Our work is inspired by the approach of DL-Learner whose main

features are therefore explained in detail.

We finish this chapter with an outline of the tools and techniques in knowledge

clustering and graph mining. The motivation behind this is to take advantage of

the extensive research and techniques for clustering. In the same line of thought,

pattern recognition identifies similar patterns present in the data. Since the

information in ontologies can be represented as a graph, an overview of the

techniques to mine common subgraphs is presented.
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2.1 Ontologies and Description Logics for Knowl-

edge Representation

2.1.1 Ontology: Definition, Role, Representation Languages

The term ontology has its origin in the greek words : onto (being; that which

is) and logos (logical discourse, study of). It can be understood as the ”study

of being” or ”the study of things that exist”. As such, it is a very abstract and

broad notion that can be defined di↵erently depending on the domain it is being

used: philosophy, linguistics, computer science, etc. Ontologies are intrinsically

related to the idea of conceptualization and naming things that exist. They study

concepts that directly relate to being, in particular becoming, existence, reality,

as well as the basic categories of being and their relations.

In computer science, ontologies are regarded as formal representations of

knowledge, although there is no general agreement on what characteristics a

representation should have to be called an ontology [Lehmann and Völker,

2014]. Depending of the point of view and the domain being modeled, their

definitions and characteristics can vary, they can be viewed as: dictionaries,

thesauri, taxonomies or highly axiomized formalizations. In this thesis, we are

interested in formal ontologies.

Ontologies play a central role in data and knowledge integration: by providing

a shared schema, they facilitate query answering and reasoning over disparate

data sources. Ontologies provide a computer readable interpretation of multiple

sources, e.g. the content of the web. This allows to have a common language for

describing the web, where ontologies can refer to each other and where new ways

to link information (e.g. through annotations) are available. As such, ontologies

are essential to the semantic web. The Ontology Web Language (OWL) defined

by the World Wide Web Consortium (W3C) used in the semantic web, specifies

the syntactic restrictions to construct the ontologies [Consortium et al., 2012].

This specification standardizes the format of the ontologies, facilitating their

access, interoperability and shareability.

In this thesis we do not explore or discuss the details and research on the

semantic web. We only highlight how it benefits from ontologies and formal

descriptions, and how this has made ontologies more popular, in order to show

the scope of applications that can benefit from our approach.

A main motivation for the use of ontologies in the semantic web comes from

the limits that the content on the world wide web presents. The Hyper Text

Markup Language (HTML) was designed to link documents and tag the content

of web pages. The HTML documents are then interpreted by a client (typically

a web browser) which provides a representation and access to their content. The
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limits of HTML lay in that the tagged content lacks of meaning. We can tell that

a specific web site contains text, images, links, etc., and we can even associate a

description to these items, but we can not explicitly tell what this information is

about: a person, a company, an event, etc. To provide this additional layer of

information, and enable automatic access to it, the ”semantic web” came into

place [Berners-Lee et al., 2001].

An ontology compliant with OWL can be serialized in di↵erent file formats:

Extensible Markup Language (XML), Turtle, Resource Description Framework

(RDF). These files can be used to link the resources used in the web with the

terms in the ontology, associating the meaning the ontology carries to the content

in the web.

Once an OWL ontology is available, it has to be interpreted. This interpreta-

tion is given by the semantics applied to the represented knowledge. Two main

semantics are given to interpret OWL ontologies: the direct semantics and the

RDF semantics.

The Direct Semantics of an OWL 2 (latest version of OWL) ontology is

compatible with the model theoretic semantics of the SROIQ description logic

(a fragment of FOL with useful computational properties) [Consortium et al.,

2012]. This semantics assigns meaning directly to the structures in the ontology.

The advantage of this close connection is that the extensive description logic

results in the literature and implementation experience can be directly exploited

by OWL 2 tools, extending the reasoning capabilities of DL to OWL knowledge

bases. Some syntactic restrictions are required on these ontologies (e.g. transitive

properties cannot be used in number restrictions), which are also known as

OWL 2 DL ontologies. Section 3.1.2 introduces Description Logics, that provide

the logical foundation for OWL DL, and which is the knowledge representation

language chosen in this thesis.

On the other hand, RDF-based semantics interpret the ontology as a graph.

This semantics is fully compatible with RDF semantics. Every OWL 2 ontology

can be serialized as an RDF graph, and thus no restrictions are imposed on these

representations. These ontologies are known as OWL-Full ontologies. A drawback

on this setting is that the full graph of the ontology has to be materialized, thus

making all the knowledge implicitly encoded in the ontology explicit.

2.1.2 Description Logics

Description Logics (DLs) are a family of First Order Logic (FOL) formalisms

[Baader, 2003a] that represent knowledge in terms of concepts, individuals that

belong to these concepts and the relations between them. DLs are equipped

with formal, logic-based semantics, and provide reasoning as a central service:
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reasoning allows to infer implicitly represented knowledge from what is explicitly

expressed in the knowledge base.

Description Logics have their roots in semantic networks [Lehmann, 1992,

Quillian, 1967, Sowa, 1987] and frames [Minsky, 1974], which are early formalisms

for representing knowledge and which allow automatic reasoning. Even though

they present di↵erences, both are structures that represent knowledge as concepts

(sets of individuals) and relations between them. Their implementation was

initially intended for artificial intelligence, in providing a model on how humans

reason, and in machine translation as one specialized area of application. A

drawback of such approaches was the lack of clear and well defined semantics. A

recognition that frames could be given formal semantics through First Order Logic

came in [Hayes, 1981], where the sets of individuals are unary predicates and the

relations between them are binary predicates. Nevertheless, such representations

did not require all the machinery of FOL to capture the semantics of frames.

Furthermore, First Order Logic is undecidable, meaning that for some decision

problems, an answer can not be given in finite time, thus the need to restrict to

a fragment of the language.

In logic, the predicate symbols provide the vocabulary to express facts about

the world and the syntax of the language allows to combine these symbols in words

or well formed formulae with well defined semantics. Typically the formalism

provides unary (negation) and binary (conjunction, disjunction, implication,

equivalence) connectors, which can be combined with quantifiers (existential

restriction, universal restriction) to form valid words over the sets of symbols.

These comprise the constructors of the language. The constructors and the values

that can be passed as parameters for the predicates, define the expressivity of

the corresponding language.

There is a trade-o↵ between the expressivity of the language and the complex-

ity of the reasoning procedures: the more expressive the DL language, the more

complex reasoning becomes. On the other hand, less expressive DL languages

might have very e�cient decision procedures, but might not be rich enough to

properly represent the necessary concepts and relations in the target domain.

Thus depending on the constructors allowed by each language, a computa-

tional complexity to reason over the represented knowledge is associated.

Extensive research and e↵orts have been made in providing procedures that

are decidable and tractable (they should terminate, provide an answer in finite

time, and preferable in polynomial time, i.e. avoid exponential blowup) for the

di↵erent families of DLs.

Thus, Description Logic comprises a family of FOL languages for knowledge

representation, with well defined semantics, associated complexity results and

for which e�cient algorithms for reasoning exist.
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As mentioned before, the di↵erent DL languages are distinguished by the

constructors they provide. The selection of a language depends on the application

domain and on the associated complexity. The description logic language AL
(which stands for Attributive Language) is considered as the reference language

for DLs, from which modifications and extensions exist. In this thesis we are

interested with the DL language ELO as defined in [Kazakov et al., 2012].

The language ELO is di↵erent from AL in that it does not allow negation

nor disjunction. However it allows to refer to individuals in complex concepts

thanks to nominals. In this thesis we have chosen ELO because it is the simplest

DL language that allows to describe the avionics domain. As stated before,

the more expressive the language the more expensive it is to reason over the

represented knowledge. Allowing negation and disjunction can easily lead to

exponential blowup and have not been considered as strictly necessary to describe

our domain. Thus we do not intend to use unnecessarily expressive languages,

unless required. Our goal is to provide an approach that can solve a basic

case, and establish the cornerstone for extensions to more expressive DLs, if

it is considered necessary. Under these considerations, a simpler language EL
(which considers only conjunction and existential restrictions) could su�ce, but

we find that it is not expressive enough for our problem. Details about the

maintenance tests made in avionics are expressed as individuals. If we expect to

make distinctions between the tests, nominals have to be allowed in the concept

definitions. Therefore, after an initial analysis of our data, the minimal and

su�cient DL family for our approach is ELO, detailed in chapter 3.

Regardless of the chosen language, in Description Logics a distinction be-

tween the terminological knowledge and the assertional knowledge is made. The

terminology is given by the vocabulary of the ontology, where the names of the

concepts, the names of the relations and their definitions (if they are formed

of sub concepts, of intersections of other concepts, the domain and range of a

relationship) are given. This part of the ontology is called the T-Box. On the

other hand, we have the assertions, which are statements of facts about the

world expressed in terms of the T-Box. A T-Box and an A-Box all together are

known as a Description Logics knowledge base, which in turn is also called a

DL-Ontology.

2.2 Approaches for Diagnosis and Maintenance

2.2.1 Model Based Diagnosis

Model Based Diagnosis (MBD) is a framework for system diagnosis developed

by the Computer Science and Artificial Intelligence communities. A system
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is provided in terms of its components and their interaction. The model of a

system allows to predict its expected behaviour. When an observation, typically a

measurement, about the state of the system di↵ers from its predicted behaviour,

it is called a symptom of a failure. A failure is put down to the bad interaction of

a set of components in the system. The intuition is that when a symptom which

depends on the interaction of a set of components is detected, it can not be the

case that all the components involved are working properly. Each such set of

components is called a conflict set for the observed symptom. A minimal conflict

set, is a conflict set for which no other proper subset is a conflict set. These are

desirable because we would like to identify as precisely as possible the causes for

the detected failure, that is the faulty components. A diagnosis in this setting is

a hypothesis on how the system di↵ers from its model. The size of the diagnosis

space is exponential in the number of components of the system. The model of a

system and the notions of conflict sets and diagnosis can be formally defined

through First Order Logic (FOL), where a system is a triple composed of: the

system description, the components of the system and the observations. The

diagnoses are found through logical inferences that make the proposed diagnoses,

the observations and the description of the system consistent. As such, diagnosis

can be seen as a form of abductive reasoning, where given a set of observations,

the possible reasons for the observations are the diagnoses.

Strategies to avoid exploring the exponential space of diagnoses, and im-

posing preferences on the diagnoses retrieved have largely been investigated.

An introductory document and the main techniques for MBD can be found in

[De Kleer and Kurien, 2003].

Similarly to our problem, we aim to point out the faulty components that

may return the equipment (system) to a fully functional state. We also rely on

First Order Logic (FOL) formalizations to model our domain. But we do not

count with an explicit model of the system. We do not have the explicit relation

of the sequence and interdependence of the components in the equipment, and

we are not modeling the equipment itself. Instead, we model the test results that

report the status of functions in equipment and corrective actions having been

made by the maintenance technicians. This knowledge is formalized using DL

ontologies and the possible diagnoses are given by the discovered signatures for

the failures.

We next present approaches that leverage ontologies for industrial mainte-

nance processes.
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2.2.2 Ontologies in Approaches for Maintenance

There exist several works that research the applicability, advantages and con-

siderations of using ontologies to model maintenance, and support the overall

process. The main objective in these works [Karray et al., 2012, Regal and Pereira,

2014, Ebrahimipour and Yacout, 2015, Palacios Medinacelli et al., 2016, C. In-

saurralde, 2018, Keller, 2016] is to provide a formal model that considers all the

available\necessary heterogeneous sources of information, in a single well-defined

representation. Such a model has the advantage of increasing the shareability and

accessibility of the knowledge, and allows for a computer readable representation,

which enables to draw automatic inferences over the represented knowledge.

In [Emmanouilidis et al., 2010] the importance to develop a domain ontology

in the context of Condition Based Maintenance is analyzed. The approach

emphasizes the relevance of an incremental modelling capacity along with a

domain ontology, to provide a diagnosis of assets and a prognosis on how they

will evolve over time. The role of the ontology in this work is to structure the

available knowledge and deal with the heterogeneous data sources.

In [Regal and Pereira, 2014] they study how an ontology can be constructed

to leverage from the interaction of Intelligent Maintenance Systems (IMS) and

Spare Parts Supply Chain (SPSC). IMS allow to forecast failures which can

avoid downtime and provide competitive advantages. The interaction of this

information with SPSC can enable a more precise demand and store planning for

spare parts, thus the relevance of the interaction of both systems. It is pointed

out that some of the challenges of a successful interaction between such systems

is due to the semantic di↵erences between these areas, with diverse concepts

and diverse vocabularies. Thus in [Regal and Pereira, 2014], it is proposed an

ontology as a common vocabulary, to overcome these limitations and to serve as

a basis for the future construction of an integration system.

In [Ebrahimipour and Yacout, 2015] a methodology for constructing an

ontology schema is presented which relies on industry standards (ISO 14224,

ISO 15926) as basis for providing a generic, shared and standard vocabulary for

maintenance. The aim of this methodology is to support maintenance knowledge

representation by providing a shareable and operable format that facilitates

knowledge retrieval and semantic extraction during fault diagnosis process. The

ontology is represented using OWL\RDF. It allows to overcome the heterogeneity

of the vocabulary and of the data sources found in maintenance documents.

There are also studies [Ebrahimipour et al., 2010, Dittmann et al., 2004] on

ontology based systems for Failure Mode and E↵ects Analysis (FMEA). FMEA

was initially introduced by NASA on the 60’s for its space program. It is a method

to analyze potential reliability problems all along the development cycle of a
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project. It facilitates taking actions to overcome reliability issues and estimate

risks in design time, thus enhancing the reliability through design. Characterizing

failures and preventing them, is central to FMEA, where the knowledge about the

di↵erent systems that involve: design, monitoring, maintenance and evaluation of

systems, requires a centralized and common access. The works using ontologies

for FMEA have a generic scope, they provide well based general-purpose terms

as a foundation for more specific domains. Their focus is to provide access to

the heterogeneous information involved in safety and reliability systems. The

work of Regal and Pereira [Regal and Pereira, 2014] provides an outline of these

approaches.

Following the same line of thought, the work of [Wu et al., 2014] relies on ATA

ISPEC2200 and ISO 15926 to obtain a generic system-level representation model

for maintenance in aircraft, where the ontology helps to overcome heterogeneity

and data inconsistency in the maintenance report. Similarly, in previous work

[Palacios Medinacelli et al., 2016], research on proper terminology, challenges

and benefits of implementing a maintenance support system are explored. The

work states the rationale and potential of an ontology based approach to support

avionics maintenance, where knowledge discovery can be used to identify failures,

and ontology alignment techniques would allow integration with upper ontologies.

The e↵orts in the above presented approaches aim to provide a model which

considers the proper terminology used in the domain, based on standards and/or

recommendations. This model is an ontology that o↵er a common access point to

the resources and systems involved in maintenance to the multiplicity of actors

involved in the process. A common challenge on these works is the di↵erent

formats of the sources of information and the access to the data for each involved

actor. The approaches provide analysis and a guidance on how these knowledge

bases should be built, operated and highlight their potential. It is envisaged that

such knowledge bases, besides providing a common language and common access

point to the represented knowledge, would also serve as corner stones to build

intelligent systems on top of them. But none of the above mentioned works go

beyond the implementation of the ontology. Previous work [Palacios Medinacelli

et al., 2017] evaluates the use of ontologies aided by machine learning to build a

prototype system to support avionics maintenance, nevertheless the approach

provides only guidance on how the search is to be done, and does not reach the

implementation phase.

2.3 Ontology Learning and Concept Learning

The literature on machine learning is extensive [Cherkassky and Mulier, 2007]

covering a wide spectrum of techniques, applications, perspectives and disciplines.
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It is out of the scope of this thesis to provide an extensive survey of the field.

In this section we provide an intuition of its general concepts, and define the

context under which this thesis takes place in the area.

Machine Learning (ML) is a field of artificial intelligence which relates to

automatic learning by computers in a broad sense. The algorithms used in

ML can mainly be classified in supervised learning, unsupervised learning and

hybrid approaches. Supervised learning refers to the problem of approximating

an unknown function f through a hypothesis h, where the learning process is

guided by positive (and possibly negative) samples of the correct (resp. incorrect)

outputs of the function f . The hypothesis h can then be used to approximate

the output of f . In unsupervised learning, there is no function f to approximate.

The data is given without any labels (like positive or negative samples) and

the task is to identify sets of data, that can be grouped together according to

some of their features. Usually a distance between the elements in the data is

defined, forming neighborhoods of elements and the notions of minimum distance

between neighbors and maximum distance between neighborhoods is applied to

form clusters. The notion of unsupervised comes from the non-involvement of an

external influence to classify the data. A third type of algorithms called hybrid,

usually working on semi-labeled data, mix both types of algorithms [Goodfellow

et al., 2016].

From these techniques we are interested in those that allow for automatic

learning in ontologies, presented next. Other works related to unsupervised

approaches for structured data will be presented in Section 2.4.

2.3.1 Ontology Learning

A major challenge for ontology based approaches is the construction of the

ontology. Top-level descriptions of a domain are easier to model than detailed

descriptions, nevertheless the model should be accurate enough to solve the

problem/tasks for which it was designed. When creating a knowledge base,

the designer has to select the relevant pieces of information to be represented

and organize them accordingly. The features of the represented knowledge, the

terminology used and the detail to which the descriptions are given depend on

the objective for which the knowledge base was built.

This can be a di�cult and time consuming task because of many factors: it

requires expertise in the domain, it requires expertise in creating a knowledge

base, and it is subject to the perspective of the designers involved, among others.

Ontologies can vary on their size, complexity, usage, maintainability, etc. All

these characteristics influence on the feasibility of implementing ontology based

systems. A cost analysis method to evaluate the resources needed for ontology
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engineering has been proposed in [Simperl et al., 2012], which reflects the variety

and complexity of tasks and resources needed to obtain an e↵ective ontology.

Thus, automatic ontology learning has a very practical application and benefits,

if carried out properly.

Ontology learning is a multidisciplinary field which aims at the automatic

generation of ontologies. The term “ontology learning” was coined by Mädche

and Staab in 2001, and the first ontology learning workshop held in 2000

brought together people from very di↵erent research communities, with works

based on ripple down rules, word sense clustering, and information extraction.

In [Lehmann and Voelker, 2014] they present a compilation of approaches in

the area of ontology learning including contributions by the concept learning

community as well as “classical” works on ontology learning from text or other

semi-structured resources. It provides an overview of a broad range of ontology

learning approaches, from which we borrow the following classification:

• Ontology Learning from text mostly focuses on the automatic or semi-

automatic generation of lightweight taxonomies by means of text mining

and information extraction. Many of the methods used in ontology learn-

ing from text (e.g. lexico-syntactic patterns for hyponymy detection or

named-entity classification) are inspired by previous work in the field of

computational linguistics, essentially designed in order to facilitate the

acquisition of lexical information from corpora. Some ontology learning

approaches do not derive schematic structures, but focus on the data level.

Such ontology population methods derive facts from text. An example

is the Never-Ending Language Learning (NELL) project [Carlson et al.,

2010], which reads the web to add statements to its knowledge base and

improves its performance over time, via user feedback.

• Linked Data Mining refers to the process of detecting meaningful patterns

in RDF graphs. One of the motivations behind this research area is that

Linked Data publishers sometimes do not create an explicit schema for their

dataset upfront, but focus on publishing data first. Being able to detect the

structure within published RDF graphs can, on the one hand, simplify the

later creation of schemata and, on the other hand, allow to detect interesting

associations between elements in the RDF graph. This can be achieved

via statistical schema induction or statistical relational learning methods

[Bühmann and Lehmann, 2012, Bühmann and Lehmann, 2013, Völker and

Niepert, 2011], which mine frequent patterns and correlations in large data

sets. In Linked Data mining, clustering approaches can be used to group

related resources and provide an enhanced structure for the underlying

data.
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• Concept Learning in Description Logics and OWL is a direction of research

that aims at learning schema axioms, such as definitions of classes, from

existing ontologies and instance data. Most methods in this area are based

on Inductive Logic Programming methods [Nienhuys-Cheng and De Wolf,

1997]. While many algorithms, such as DL-FOIL [Fanizzi et al., 2008b] and

OCEL [Lehmann and Hitzler, 2010] are generic supervised machine learning

approaches for description logics, there are also specific adaptations to

ontology learning, in terms of performance and usability. Closely related

to concept learning in Description Logics is onto-relational learning, which

combines methods for learning OWL axioms with rule learning approaches

[Lisi and Esposito, 2009].

• Crowd-sourcing ontologies is an interesting alternative to purely automatic

approaches as it combines the speed of computers with the accuracy of

humans. Provided that the task to be completed is simple enough, it only

requires the right incentives for people to contribute. Examples of crowd-

sourcing in the field of ontology learning include taxonomy construction

via Amazon mechanical turk, and games with a purpose for ontology

population [Karampinas and Triantafillou, 2012, Chilton et al., 2013].

To sum up the approaches based on learning from text are closely related to

text analysis and natural language processing. Although in maintenance reports

there exist valuable information in the form of text, the automatic interpretation

of the textual content of these reports is out of the scope of our approach. We

aim to discover concepts based on the values of their instances and through

the vocabulary and constructors allowed in an ontology. This is independent

from interpreting what is written in the reports, and di↵erent from discovering

relations between textual elements.

The approaches in the linked data category rely on techniques for graph

mining which require the full graph. This implies that the all the knowledge that

can be inferred, must be explicitly represented in this graph (in the context of

OWL this is called the materialization of the ontology). Graph mining techniques

are further detailed in Section 2.4.2. Additionally, they rely on frequent patterns

in large amounts of data. In our problem such large datasets are not available.

In contrast, the approaches in the concept learning category are interesting

for our approach because their goal is to discover concept definitions. Either

these approaches are designed for supervised machine learning or are based on

clustering techniques. These two kinds of approaches are described in more detail

in Section 2.3.2 and in Section 2.4 respectively.

Crowdsourcing is an alternative to fully automatic learning, where the humans

are involved in the learning cycle, reviewing the content in an ontology, or
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explicitly adding content to it. These alternatives can not be applied to our

problem because it is not possible to ask users to classify information in categories

that are not know in advance. The idea of involving the user in the learning

cycle is interesting. In our problem such a process could be used to validate the

discovered categories.

2.3.2 Concept Learning

Inductive machine learning studies the problem of learning a function f for

which samples of its inputs and outputs are given as pairs of the form {x, f(x)}.
The task is to learn a function h, called hypothesis, that best approximates f .

Each sample x is described by its features, which are represented as a vector.

Each value of each feature of a sample can be either discrete or a real number

[Goodfellow et al., 2016]. If f is a binary function, the problem is called binary

classification.

Binary classification in description logics is called concept learning [Tran

et al., 2012] since the function to be learned is expected to be characterized by a

concept expression, for which the output is binary. Concept learning di↵ers from

the classical setting mentioned above in that an object is described not only by

the values of its features, but also by its relations to other objects.

In [Tran et al., 2015] the related work on methods of concept learning in DLs

are classified into three groups. The first group focuses on learnability in DL

and presents some relatively simple algorithms [Cohen and Hirsh, 1994]. The

second group studies concept learning in DLs using refinement operators as in

inductive logic programming [Badea and Nienhuys-Cheng, 2000, Lehmann and

Hitzler, 2010, Ratcli↵e and Taylor, 2017]. The third group exploits bisimulation

for concept learning in DLs [Ha et al., 2012, Nguyen and Sza las, 2013, Tran

et al., 2015]. Our work is inspired by the latter two types of approaches.

Within the second group of approaches (based on refinement operators) DL-

Learner [Lehmann, 2009] is a state-of-the art tool for concept learning. It provides

a framework for supervised machine learning using several algorithms which

are highly parameterizable. It uses refinement operators like CELOE [Lehmann

et al., 2011] for OWL expressions and ELTL [Lehmann and Haase, 2009] for the

EL family of DL. Depending on the desired properties of the operator and the

DL-constructors allowed, the operator traverses the space of possible concept

expressions in a top-down or bottom-up manner. Then these concept expressions

are evaluated, using heuristics, to find the most suitable ones. Shorter and more

simple expressions are preferred by these algorithms. DL-learner, likewise the

other approaches in this group, first generates concept expressions from the

available classes and constructors of the underlying ontology, and then uses the
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positive (and possibly negative) samples to decide which expressions are more

promising to iterate the process over them.

The approaches of the third group use the notion of bisimulation from modal

logics that characterizes distinguishability between objects. A proper bisimulation

definition is given to suit DL and it is used to define partitions in the set of

objects of the ontology [Ha et al., 2012, Nguyen and Sza las, 2013, Tran et al.,

2015]. These partitions define equivalence classes between the objects, i.e. those

objects that can not be distinguished between them. Each one of these partitions

is a DL-concept, and finding the partitions is equivalent to learn concepts. The

way these partitions are found, is similar to those approaches based on refinement

operators in that combinations of the constructors allowed by the language are

generated, and then evaluated against the samples.

To sum up, the approaches based on refinement operators require positive

(and possibly negative) samples. In our problem, we require to distinguish between

the samples based on their features, and not by a label, i.e. we do not count with

positive/negative samples, this problem has been partially studied in [Palacios

Medinacelli et al., 2018, Palacios Medinacelli et al., 2017]. With regard to the

approaches based on bisimulation, the notion of equivalence classes is interesting

because it allows to formally specify: if the model can distinguish between samples,

the properties that separates them, and provide approximations to the concepts

that are looked for. Finally, in both above mentioned types of approaches, the

search of concept expressions is done by combining the constructors allowed

in the language, without regard of the information in the samples. This search

space grows exponentially. The samples are only used after the concepts are

generated, to avoid an exhaustive search in this space. The samples are not used

to generate the concepts themselves.

2.4 Unsupervised Learning over Structured Data

2.4.1 Clustering in Knowledge Bases

Clustering in computer science refers to an area of research concerned with data

analysis and interpretation. It is a field with extensive literature and applications,

like data mining, pattern recognition, image analysis, etc. In this thesis we do

not intend to provide a deep review of the field, but to highlight the applicability

to our problem. A general reference to clustering can be found in [Pedrycz, 2005].

Intuitively, clustering is a methodology to identify interesting groups of data

within a given dataset, based solely on the features of the data. The dataset

is given without further information on how it can be organized. Clustering

provides means to distinguish sets of data that share some meaningful features.
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Each such set is called a cluster. In this sense, the principle in clustering is similar

to our problem, where distinctions between groups of samples in a dataset are

searched for, and where the construction of such groups does not depend on the

labeling of the analyzed samples (as in opposition to supervised learning).

Two central notions in techniques for clustering are: similarity and distance.

A similarity measure allows to compare the elements in a dataset, and it can

be defined for each type of data the clustering problem handles. A distance on

the other hand, is a metric that allows to establish how close the elements in a

dataset are to each other. The clusters are then formed by minimizing the distance

between the elements inside each cluster, and maximizing the distance between

the clusters. The similarity measure, the distance and the very notion of cluster

can vary depending on the perspective, the underlying data and the goal of the

clustering process. Some of the main techniques include: hierarchical clustering,

k-means clustering, distribution-based clustering, density-based clustering. These

techniques are developed for data whose features are represented as vectors

of discrete or real values. When considering description logic knowledge bases,

these approaches can not be directly applied, since the features are not only

discrete or continuous values, but also other objects with their own features.

Thus adaptations or new approaches are required to handle these cases. In the

following we present some of the work in this area where the concept of clustering

is applied to knowledge bases.

Some approaches have been proposed to adapt well-known clustering tech-

niques to ontologies and knowledge bases [Fanizzi et al., 2008a, Fanizzi and

d’Amato, 2007, Lee and Gray, 1998, Nowak-Brzezińska, 2016]. These approaches

define a similarity measure based on a lexicographic distance between the rules,

text-based similarity in the instances of the knowledge base, and similarity based

on a set of defined features (like concepts). Then the distance and the clusters

formed are obtained using a suitable and well studied clustering algorithm (such

as k-means or Hopfiled network). The work of Fanizzi and d’Amato [Fanizzi and

d’Amato, 2007] presents an adaptation of hierarchical clustering to semantic

knowledge bases, like OWL ontologies. Namely, it can be used to discover in-

teresting groups of semantically annotated resources in a wide range of concept

languages. The method exploits a dissimilarity measure that is based on the

resource semantics with respect to a number of dimensions corresponding to

a committee of features. These features are represented by a group of concept

descriptions. The algorithm is an adaptation of the classic Bisecting k-Means to

complex representations typical of the ontology in the Semantic Web.

An algorithm to cluster rules in a knowledge base is presented in [Lee and

Gray, 1998] based on the syntactic information in the rules and their lexical

similarity. Clustering is achieved by using a neural network algorithm based on
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Hopfield network. The goal of this approach is to support Knowledge Based

Systems maintenance, by rendering the content of the knowledge base more

accessible through the clustering of similar rules. The clusters are aimed to

provide an adequate amount of information and acceptable sized clusters.

The above mentioned approaches transform the information present in the

ontology into vectors of discrete/real values. Then, a similarity measure and a

distance are defined over them, to proceed with clustering. Full vectors of the

same size are needed to compare them. This in our case is undesirable. Indeed,

in our problem, the information can be incomplete (some of the values on such

vectors might be unknown) and converting the information in the ontology into

vectors, may lead to ignore relations between instances.

A problem similar to ours has been investigated [Fanizzi et al., 2004, Kietz

and Morik, 1994] for the automated construction of terminologies from assertions

in Description Logics (DLs) (ALC). These approaches are based on first finding

the most specific generalization (msg) of each sample in a set of samples, and

then finding the most general descriptions (mgd) for the msc’s found. To select

which mgd’s represent a cluster, the notion of maximal set of mutually disjoint

concepts is used.

To obtain clusters, in [Fanizzi et al., 2004] an initial taxonomy is constructed

based on the content of a given A-Box, thus building a hierarchy of super concepts.

Each super concept in this taxonomy is analyzed to obtain its Mutually Disjoint

Concepts (MDC). Each MDC serves as the basis for an iteration of the same

process to find sub-clusters. Here, a supervised phase takes place where the dis-

joint concepts (each MDC) are generalized/specialized using upward/downward

operators to refine them. Since clusters in this setting need to be disjoint, the

instances of other concepts are used as negative samples. When a concept covers

negative samples, it needs to be specialized with a downward refinement oper-

ator. This method relies on the assumption that the MDC is given. However,

as the authors point out, finding the MDCs has a superpolynomial worst case

complexity.

Finally, some tools [Lehmann et al., 2017] have been developed for data

analytics considering OWL knowledge bases. SANSA1 is a big data processing

engine for scalable processing of large-scale RDF data. It is a state of the art

knowledge analytics system, which uses machine learning algorithms to exploit

the graph structure and semantics of the background knowledge specified using

the RDF and OWL standards. The machine learning layer of SANSA currently

supports algorithms for unsupervised learning, from which for clustering we find:

RDF Modularity Clustering, BorderFlow Clustering, Power Iteration Clustering,

Link based Silvia Clustering. It also provides Frequent Pattern Mining through

1
http://sansa-stack.net
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Association Rule Learning. These algorithms are based on embedding of entities

and relations into low-dimensional vectors [Yang et al., 2014].

Such tools are intended to either find relations between concepts, mostly

based on textual analysis, and find concepts based on frequent patterns. In our

problem, we do not search to propose new rules between similar concepts, since

these concepts are not known in advance. And we can not solely rely on frequent

patterns, since we are also interested in finding rare occurrences.

2.4.2 Graph Mining

Finally, the instances in an ontology can be represented as graphs, we need to

consider graph mining techniques that could be applied to achieve our goal.

One of the main problems addressed by the di↵erent works with graph

structures lies in the subgraph isomorphism issue, through which common graph

structures can be found. The work in [Yan and Han, 2003] proposes an algorithm,

CloseGraph to mine closed frequent graphs. [Motoda, 2007], [Inokuchi et al.,

2000], [Inokuchi et al., 2003] and [Yoshida et al., 1994] present two approaches for

extracting frequent subgraphs: AGM and GBI. AGM relies on the representation

of the graphs by adjacency matrices. Each graph is assigned a unique label that

encodes the adjacency matrix. The subgraph isomorphism problem is solved by

comparing the codes of the graphs and an Apriori-like algorithm that generates

graphs of size K joining two subgraphs of size k-1 and verifies their frequency.

The use of a taxonomy enables the extraction of generalized subgraphs. GBI

relies on the chunking of adjacent nodes in order to generate subgraphs and the

rewriting of the graphs given the selected subgraphs as new nodes. Typicality

and chunking criteria are used in order to select the pairs of adjacent nodes. The

Subdue graph-based mining system [Ketkar et al., 2005] also relies on the use of

heuristics to evaluate the potential subgraph patterns. [Karunaratne et al., 2010]

presents an approach for mining subgraphs, using an itemset mining approach.

The MFI (Maximal Frequent Itemset) [Aggarwal and Yu, 1998] algorithm is

applied on graph structures that are formerly transformed into itemsets.

While the approach appears to be very e�cient for a purpose of graph classifi-

cation, contrary to the approaches described above, the lack of comprehensibility

of the subgraphs that are discovered is a limitation for the purpose of concept

discovery.

Using graph mining, the most relevant structures of a set of graphs can

be established, and patterns that discriminate positive from negative samples

can be found. These approaches search for similar structures. This is close to

our goal, since similar instances are expected to belong to the same concepts.

Nevertheless, these structures are required to be presented as graphs and are
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based on detecting frequent patterns, which implies that non-frequent structures

might be ignored. Since we are working with sparse data we need to consider

unfrequent patterns as well. Additionally, the data represented as graphs are not

guaranteed to have a representation in an ontology.

2.5 Summary

In this chapter we have provided an extensive range of studies related to our

problem. This illustrates the breadth of the research that influences this thesis.

We have presented related work from the perspective of description logics, system

diagnosis and maintenance, concept learning, and clustering. All these areas

intersect part of our work, and provide the foundations for our approach.

As explained in the introduction (Chapter 1), we aim to support avionics

maintenance by discovering failure signatures. The terminology, statement of the

problem, and approaches that aim to support diagnosis were presented in the

Section 2.2: model based diagnosis section. We have seen that extensive work on

this area has been done, which shows and emphasizes the need to minimize the

number of repair suggestions (diagnosis) and the importance of providing the

reasons for the diagnosis (explainability). Some logic-based research [Horridge,

2011] propose an abductive approach to the problem, where the detected failure is

seen as an observation, and the logic statements that make this observation true,

are seen as possible explanations for the detected failure. Nevertheless, central

to all these approaches is the availability of the model of the system/equipment

to be diagnosed. In our case, not only this model is not available, but we require

to model the diagnosis process, which goes beyond considering only the model

of the equipment, where the experience of the technicians plays a central role in

the possible corrective actions for a failure.

We have also seen that in industrial maintenance, several actors, facilities,

and locations are involved. This implies a high heterogeneity in the systems

and in the data sources that take part in maintenance. To allow a centralized

access to the heterogeneous and distributed information, several approaches

that propose the use of ontologies in maintenance have been presented. As we

have seen, they highlight the relevance of a standardized model to enable and

increase accessibility and shareability to the available information, but they do

not propose specific implementations of support systems based in those models.

Finally, from a more technical point of view, the use ontologies to discover

information (i.e. approximate failure signatures) requires automatic learning in

ontologies. We have outlined the main areas of ontology learning, and focused on

concept learning. We have seen that there exist supervised machine learning tools

and algorithms, and approaches for clustering in ontologies. Those approaches
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that are designed for supervised learning are not suited to our problem, since

the negative samples can not be determined a priori, and the positive samples

are not complete. Thus, clustering in ontologies provides alternative means to

discover and extract the concept definitions that may represent signature failures.

As we have seen, clustering techniques, as well as those techniques based on

graph structures, rely on frequent patterns or in information presented as graphs.

In our case these represent a limitations, since we are interested on frequent and

unfrequent occurrences of failure signatures, and in meaningful descriptions in

terms of the ontology.

To overcome the above stated limitations: non availability of a model of the

process, the lack of positive and negative samples, the ability to provide results

over sparse data and provide explainable suggestions, in chapter 3 we present

our approach.
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Chapter 3

The Approach : Situation

Discovery

We are interested in the ability to determine when a set of individuals can

be distinguished from the rest. Each such set, for which we can find a proper

definition is called a situation in this chapter. To obtain these situations we

present our approach for unsupervised concept learning, which is based on the

notion of concept refinement. The intuition behind the refinement process is,

that given a set of individuals X , we want to construct descriptions for sub-sets

of X that can be represented by a DL concept. Next, once the descriptions are

constructed, we provide means to impose a preference on these DL concepts so

that only the ones that are interesting for us are retrieved. These concepts are later

integrated to the original ontology, where they can be used for classification. The

construction of the concept expressions rely on the properties of the individuals

in X analyzed, and therefore the concept definitions provide an explanation on

which are the properties of the individuals that are relevant to distinguish them

from the rest.

To this end, we start from a concept C, for which all individuals in X are

instances, and construct refinements C 0 that are each time more specific than C,

and thus capture each time a smaller set of individuals X 0 ✓ X . If we iterate

this process we obtain a concept for every subset of X , that can be described by

a DL concept. Each one of these DL concepts is referred as a situation in the

ontology.

A challenging aspect of our problem is that we do not know a priori the

individuals in the target sets we are looking for, and thus we propose a process

to construct all relevant concept expressions (i.e. related to the individuals) from

which we can select those that best suit a preference criteria.

31



In the following we present the preliminary theoretical background and

next we introduce the definitions and notions necessary to specify in detail

the approach. Then, the algorithms to refine concepts and to iterate over the

resulting refinements are presented. Finally, we show how this process enables

us to obtain the relevant subsets of the given input set of instances X .

3.1 Preliminaries

In this section we formally introduce DL [Baader et al., 2010, Baader et al.,

2005, Baader et al., 2017] ontologies and in particular the DL language ELO
which belongs to the OWL 2 EL profile1 and has a practical polynomial reasoning

algorithm [Kazakov et al., 2012]. We also define some non-classical DL reasoning

tasks that are pertinent to our approach.

3.1.1 ELO Ontologies

A DL-Knowledge Base or DL-Ontology (ontology for short) represents the knowl-

edge of an application domain in terms of concepts and relations, where each

element in the domain is called an individual. An ontology comprises two com-

ponents: a T-Box and an A-Box. The T-Box contains the terminology of the

knowledge base, that is the vocabulary for representing the knowledge, and the

A-Box contains assertions about named individuals in terms of the vocabulary.

These notions are formalized next.

Syntax of ELO

Definition 3.1 (Concept names, role names and individuals). The vocabulary

of the ontology comprises three disjoint sets N
c

, N
r

, and �. N
c

is a set of unary

relations called concept names or atomic concepts, N
r

is a set of binary relations

called role names, and � is a set of arguments that these relations take, called

individuals.

The concepts in the ontology denote sets of individuals and the roles denote

binary relationships between individuals.

Example 3.1. To describe the domain of human, we may have the following con-

cepts N
C

= {Person,Male, Female,Man,Woman,Mother, Father}, the roles

N
r

= {hasChild, hasGrandChild}, and two individuals � = {Jean,Marie}.

In addition to atomic concept and role names, complex concept descriptions

can be defined. The syntax of a specific DL language specifies the constructors

1
https://www.w3.org/TR/owl2-overview/#Profiles
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allowed to form words over the concept and role names. These words are well-

formed sentences or formulae with well-defined semantics, according to a set

of rules specific to each language. In Figure 3.1 the set of constructors of ELO,

their syntax and their semantics are presented. Complex concepts are defined

recursively using the constructors in Figure 3.1.

In the following we denote (possibly complex) concept names by uppercase

letters like C and D, role names by lowercase letters like r and s, and individual

names by lowercase letters like x, y and z.

In the remainder of this thesis all concepts are assumed to be ELO concepts.

Figure 3.1: Syntax and semantics of ELO.

Definition 3.2 (ELO Ontology, T-Box and A-Box). An ontology O = hT ,Ai is
a pair, where T is called the T-Box and A is called the A-Box. The T-Box T is

a finite set of concept inclusion axioms of the form C v D. The A-Box is a finite

set of concept and role assertions of the form C(x) and r(x, y), respectively.

A concept equivalence C ⌘ D is an abbreviation for the two concept inclusions

C v D and C v D, and it is called a concept definition. Concept equivalences

can be used to assign names to complex descriptions in a T-Box. The descrip-

tion language has a model-theoretic semantics detailed next. Thus, statements

in the T-Box and in the A-Box can be identified with formulae in first-order logic.

Semantics of ELO
Definition 3.3 (Interpretation). An interpretation I consists of a non-empty

set ⇤ called the domain of I and an interpretation function ·I that assigns to

each C 2 N
C

a set CI ✓ ⇤I , to each r 2 N
r

a binary relation rI ✓ ⇤I ⇥ ⇤I ,
and to each x 2 ⇤ an element xI 2 ⇤I . The interpretation function is extended

to complex concepts as shown in Figure 3.1.

Definition 3.4 (Model). An interpretation I satisfies (also called a model of)

an axiom C v D (resp. A(x), r(x, y)), written I |= C v D (resp. I |= A(x), I |=
r(x, y)), if CI ✓ DI (resp. xI 2 CI , (xI , yI) 2 rI). If an interpretation I
satisfies all axioms in an ontology O, I is called a model of O (written I |= O).
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Definition 3.5 (Logical consequence). An axiom � is a logical consequence of

an ontology O, written O |= �, if every model of O satisfies �.

If x is an instance of C w.r.t. an ontology O, i.e. O |= C(x), and O is clear

from the context, we say that C(x) holds (in O) for short.

Definition 3.6 (Subsumption). A concept C is subsumed by concept D w.r.t.

O if O |= C v D.

If O |= C v D (i.e. C is subsumed by D) we say that C is more specific than

D. Inversely, we say that D is more general than C.

We next introduce ontology materialization is a reasoning task that computes

logical consequences of an A-Box w.r.t. a T-Box and it is the most important

task in some languages, e.g. OWL 2 RL. [Glimm et al., 2017].

Definition 3.7. We say that O is materialized if (1) O |= A(a) implies A(a) 2
O for each concept name A from O and each individual a from O; and (2)

O |= r(a, b) implies r(a, b) 2 O for each role name r from O where a, b are

individuals in O.

Materialization is a stepping stone for rewriting based query answering for

languages that allow existential quantification [Kontchakov et al., 2011].

Definition 3.8. An A-Box A is called acyclic i↵ there are no n � 1 and

individuals a0, a1, · · · , an and roles r1, · · · , rn such that

• a = a0,

• r
i

(a
i�1, ai) 2 A for 1  i  n,

• there is j, 0  j < n such that a
j

= a
n

.

Definition 3.9 (Most Specific Concept (msc)). Given an ontology O and an

individual x, we say that C is the most specific concept for x if:

O |= C(x)

and for every other concept D, with O |= D(x) we find

O |= C v D

One must note that the existence of the msc is not guaranteed in DL. In

[Baader and Molitor, 1999] it is highlighted that the msc in EL needs not to exist,

if cyclic A-Boxes are allowed. For example for the simple A-Box {r(a, a), A(a)},
the msc does not exist, since the concepts of the form 9r.9r.9r. . . . .A for which a

is an instance, are infinite. Even if we restrict to acyclic A-Boxes (as in our case)
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the existence of the msc is not guaranteed [Peñaloza and Turhan, 2010]. For

instance, for A = {A(a)},T = {A v 9r.A}, the msc would require an infinite

chaining of existential restrictions, which is not a concept.

To guarantee the existence of the msc, a su�cient condition is that T-Box is

terminology and A-Box is acyclic [Baader, 2003b]. A T-Box is a terminology if

it is comprised of only primitive concepts definitions, of the form A ⌘ D and

T-Box does not contain multiple definitions, i.e. there can not be two distinct

concept definitions D1 and D2 such that both A ⌘ D1 and A ⌘ D2 belong to

the T-Box. Note that these restrictions still allow for concept definitions that

refer to themselves.

In this thesis we restrict our work to acyclic A-Boxes and terminology T-

Boxes. In fact, the signatures discovered are always concept definitions of the

form C ⌘ D, thus the Most Specific Concept (msc) is guaranteed to exist.

Moreover without loss of generality, we assume that A-Boxes only contain

assertions about concept names and role names. This can be achieved by intro-

ducing a definition for a concept description appearing in an A-Box, that is, if

we have C(a) 2 A where C is a complex concept, then we add into the T-Box a

concept definition A
c

= C and A
c

(a) into A.

Definition 3.10 (Sub-concept). Given a (possibly complex) concept C, the set

of its sub-concepts Sub(C) is defined recursively by:

Sub(B) = {B}
Sub(9r.C) = {9r.C} [ Sub(C)

Sub(C1 u C2) = {C1 u C2} [ Sub(C1) [ Sub(C2)

Definition 3.11 (Concept Size). Given a (possibly complex) concept C, its size

Size(C) (in symbols |C|) is defined by:

• If C = A 2 N
c

[ {>,?}, then Size(C) = 1.

• If C = C1 u C2, then Size(C) = 1 + Size(C2) + Size(C1).

• If C = 9r.D, then Size(C) = 1 + Size(D).

Definition 3.12 (Concept substitution). Given a (possibly complex) concept C,

a concept substitution of D by E in C, written C|
D!E

, is the replacement of

an occurrence of the sub-concept D 2 Sub(C) in C by E.

To illustrate these notions, consider the following example:

Example 3.2. Consider the set of individuals:

� = {Jean,Marie}
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the set of concept and the set of role names:

N
C

= {Person,Male, Female,Man,Woman} and N
r

= {hasChild}

and the T-Box:

T1 = { Man ⌘ Person uMale

Woman ⌘ Person u Female

Father ⌘ Man u 9hasChild.Person}
If we unfold the concept Father, we have:

Unfold(Father) = (Person uMale) u 9hasChild.Person

Then, the set of sub-concepts of Father is:

Sub(Unfold(Father)) = { (Person uMale) u 9hasChild.Person, Person uMale,

Person,Male, 9hasChild.Person}
|Sub(Unfold(Father))| = 5

And the size of Father, is:

Size(Unfold(Father)) = 1(+(1 + 1 + 1) + (1 + 1)) = 6

Note that the number of sub-concepts of C and the size of C, are di↵erent, and

that Sub(Unfold(Father)) is bounded by Size(Unfold(Father)).

Next, using concept substitution, we can obtain a concept equivalent to

Woman from the concept Man:

Man|
Male!Female

= Person u Female

We find this is equivalent to:

Woman ⌘ Man|
Male!Female

We can also see from the T-Box that Father is subsumed by Man, in symbols:

Father vMan

(since every Father necessarily is a Man, but not every Man is necessarily a

Father)

These notions allow us to make some inferences, for example if we are given the

following set of facts in the A-Box:

A1 = { Person(Jean),Male(Jean), hasChild(Jean,Marie)

Person(Marie), Female(Marie)}
We can conclude that:

O |= {Man(Jean),Woman(Marie), Father(Jean)}
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3.1.2 Justifications in DL Ontologies

In this section we review the notion of ontology justification [Kalyanpur et al.,

2007, Baader et al., 2007], which refers to the most pertinent information, from a

(possibly big) ontology, for deducing a particular entailment. We consider similar

basis, for our ideas on how to extract the most useful properties for concept

refinement.

Definition 3.13 (Justification). Let O be a knowledge base and let � be an

axiom. A subset M ✓ O is called a justification for � i↵

M |= �

and

M0 6|= �

for every M0 ⇢M.

Intuitively a justification for a concept inclusion �, is a minimal subset of

axioms M from the ontology, such that they are su�cient and necessary for

� to be a logical consequence of M. The number of possible justifications for

such a � in ELO may be exponential in the number of axioms in O. Thus it can

not be ensured that all justifications can be computed in polynomial time with

respect to the size of the ontology. Nevertheless, it is possible to compute one

justification in polynomial time for ELO language [Baader et al., 2007]2.

Notice that the notion of justifications is given with respect to a whole

ontology. There has been some work [Arif et al., 2016, Kazakov and Skocovský,

2018] on e�cient computation of justifications with respect to EL T-Box for

subsumption axioms of the form C v D. In our approach we focus on an A-Box.

Thus this notion is later modified to compute minimal subsets of an ELO A-Box.

These minimal A-Boxes enable us to construct concept refinements.

In the next section we present the notions and provide the definitions that

are specific to our approach.

3.2 Approach Definitions

Given an ontology O we aim to find interesting subsets of its individuals, and

for each one of these sets provide a description using the vocabulary and the

constructors allowed by the language. We call each one of this sets a situation

in O (defined next). In this section we formally define this problem in terms

of finding the situations in an ontology. Then we provide a refinement operator

2
The cited paper considers the family EL, but it is shown that ELO has the same complexity

since the logical consequence in ELO is polynomial.
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which enables us to discover and extract these situations, in the form of complex

DL concepts definitions. Before the algorithms are presented, some notions

necessary to specify the results and their properties are introduced.

Let us continue by formally defining the interesting subsets of individuals in

an ontology.

Definition 3.14 (A representative concept). Let � be a set of all individuals in

an ontology O, and let X ✓ �. For a concept C, we say that X is represented

by C (or C represents X ) w.r.t. O and �, if:

C(x) holds for all x 2 X , i.e. O |= C(x), and

C(y) does not hold for any y 2 � \ X , i.e., O 6|= C(y).

If there exists a concept C that represents X , we say that X is representable.

Example 3.3 (Representative Concept). Consider the set of individuals � =

{f1, f2, f3}, a subset of individuals X = {f1, f2}, and the following ontology

O = hT ,Ai:

T = {C ⌘ 9r.>}
A = {A(f1), B(f2), E(f3), r(f1, f3), r(f2, f3)}

By checking the two following conditions, we determine if C represents X . We

find:

O |= {C(f1), C(f2)}

O 6|= {C(f3)}
Thus X is represented by C.

However, it is not true that each set of instances can always be represented.

Example 3.4 (Example 3.3 contd.). Consider the set X 0 = {f2, f3}, there is

no ELO concept that can represent X 0.

A set of individuals that can be represented have to share some common

properties merely among them, which are made explicit by the concepts that

represent them. By reading the concept definition, we get an explicit explanation

of their common properties. For example, the individuals f1 and f2 share the

property that they are connected to some individual via the role r. Whilst, f2

and f3 do not have any property in common that can distinct them from f1.

There are two sets of individuals which can be always represented as shown

by the following lemma.

Lemma 3.1. Given an ontology O and a set � of individuals, we have
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• > is a representative concept for �.

• ? is a representative concept for ;.

Proof. It is clear that for all x 2 �, O |= >(x) holds and for any y 2 � \ �, it

satisfies O 6|= >(x). So > represents � w.r.t. any ontology O and �. It can be

proved that ? represents ; w.r.t. any ontology O and � in a similar way.

Proposition 3.1. Given an ontology O, the set � of individuals in O, and

X ✓ �,X 0 ✓ �. If X and X 0 are representable, then X \ X 0 is representable in

ELO.

Proof. Since X and X 0 are representable, we assume that C and C 0 represent
X and X 0 respectively. Then we can see that C u C 0 represents X \ X 0. This
is because for any x 2 X \ X 0, O |= C(x) and O |= C 0(x), which implies

O |= C u C 0(x). For any y 2 � \ (X \ X 0), if y 62 X , then we know O 6|= C(y);

If y 62 X 0, then O 6|= C 0(y). Therefore, O 6|= (C u C 0)(y). So, C u C 0 represents
X \ X 0.

However, the conclusion is not anymore true for set union or set complement.

Consider Example 3.3, let X1 = {f2},X2 = {f3}. We can see that X1 is repre-

sented by the concept B w.r.t. O and �, and X2 is represented by the concept E

w.r.t. O and �. However, we have known that X1 [ X2 is not representable. Let

X3 = {f1}. Then we have that � \ X3 = {f2, f3} is not representable in ELO.

The following lemma tells that any concept naturally represents a special set

of individuals. That is, every concept can represent some set of individuals given

in an ontology.

Lemma 3.2. Given a concept C, an ontology O, the set � of individuals in O,

C represents the set of individuals S = {x 2 � | O |= C(x)}.

Proof. By the definition o,f S, we know that for any x 2 S, O |= C(x), but for

any y 2 � \ S, O 6|= C(x). Then by Definition 3.14, C represents the set S w.r.t.

O and �.

Example 3.5 (Example 3.3 contd.). A represents the set {f1}, B represents

the set {f2}, and E represents represents the set {f3}. And the concept A uB

represents ;.

Note that when a concept represents an empty set of individuals of an

ontology, it means that this concept is irrelevant to characterize the properties

of the individuals from this ontology. Hence, from now on, we are interested in

only the concepts that represent a non-empty set.
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Proposition 3.2. Given an ELO ontology O, a set � of individuals, a concept

C and a set X ✓ �, the decision problem:

Does C represent X w.r.t. O?

can be solved in P-Time.

Proof. By Definition 3.14, C represents X w.r.t. O i↵:

• For each x 2 X , we find O |= C(x) and

• For each y 2 � \ X , we find O 6|= C(y)

To verify the above conditions we need to perform instance checking for each

i 2 �. That is, we need at most |�| instance checking operations. Since instance

checking in ELO is polynomial, the whole procedure to verify if C represents X
w.r.t. O is still in polynomial time.

Proposition 3.3. Let O be an ELO ontology and � the set of individuals in

O. For a given set of individuals X ✓ �, and an integer n > 0, the decision

problem Representability
n

:

Is there a concept C with |C| < n that represents X w.r.t. O?

can be solved in ExpTime.

Proof. We can have at most (|N
c

|+ |N
r

|+ |�|+ |Op|)n concepts constructed

from a finite concept set N
c

, a finite role set N
r

, a finite set of individuals �, and

a finite set of constructors Op3. By Proposition 3.2, deciding if each concept is a

representative concept of X can be done in P-time. Therefore, deciding if there

is a concept whose length is less than n can be decided in exponential time.

By the proof of Proposition 3.3, if n is bounded by a constant, then the

problem Representability
n

is solvable in P-Time.

Note that a set of instances X can be represented by several concepts, and

that their number might even be infinite (Example 3.6). To avoid dealing with

an infinite number of concepts, we use the notion of equivalence classes. The

concepts representing X are equivalent in the sense of their instances, and thus

they define a class of equivalent concepts. Each one of these classes is called a

situation in O and it su�ces to provide one concept belonging to the class to

characterize it. Therefore to define a situation, our problem is reduced to finding

a single representative for the situation instead of finding all of the concepts that

comprise it.

3
The constructors of the underlying language, like conjunction (u) or existential restriction

(9). If the parenthesis are taken into account, this adds at most 2

n�1
to the number of concepts

constructed, which remains exponential w.r.t. |C|.
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Definition 3.15 (Situation in O). Given an ontology O, a set � of individuals

in O, and a set X ✓ �, a situation for X in O is the set:

||X ||O� = {C | C represents X w.r.t. O and �}.

We call � the domain of the situation.

When the ontology O and the set of individuals � are clear from the context,

||X ||O� is shortened as ||X ||. By an abuse of symbol, we also use a situation to

refer to an element from ||X ||.
Intuitively, a situation in O explicitly characterizes, via concept descriptions,

a given set of individuals in the ontology.

Additionally, among the concepts that belong to a situation there might be

some of them that are not equivalent in the classical sense (i.e. w.r.t. subsump-

tion), as illustrated by Example 3.6.

Example 3.6. Consider again example 3.3 and the following T-Box:

T2 = { C1 ⌘ 9r.>,
C2 ⌘ 9r.{f3},
C3 ⌘ 9r.> u 9r.{f3}}

Then, C1, C2, C3 all represent X . Thus {C1, C2, C3} 2 ||X ||. Note that another

concept C4 ⌘ 9r.> u 9r.> u · · · u 9r.> would also represent X , this shows that

the set ||X || could be infinite, even with very simple DLs. Furthermore note that

C1 6⌘ C2 6⌘ C3, but {C1, C2, C3} 2 ||X ||, thus concept equivalence is strictly more

specific than the notion of situations.

Indeed, the notion of situation is more general than the notion of standard

equivalence class as shown in the following conclusion.

Proposition 3.4. Given an ontology O and the set � of individuals in O, we

assume O |= A ⌘ B. Then we have that A 2 ||X || if and only if B 2 ||X || for
any X ✓ �.

Proof. Since O |= A ⌘ B, it holds that O |= A(x) i↵ O |= B(x) for any individual

x 2 �. By Definition 3.14, A represents a set of individuals X i↵ B represents a

set of individuals X .

Note that not every subset of individuals can lead to a (non-empty) situation.

For instance, the set X 0 = {f2, f3} from Example 3.3 can not be represented

under ELO, therefore the set ||X 0|| is empty.

Assume we are given a set of individuals X ✓ �, and we need to determine

weather a situation representing X exists. If the response is no, to ensure a

complete and sound answer, we would require to access all possible situations in
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O, and for each of them, test if it represents X . We could also be interested in

all the possible ways we could use DLs to discriminate between the individuals

in X , to extract a particular set. It is then natural to ask for the subsets of X
for which a DL representation exists, thus discovering the situations in O.

Definition 3.16 (Situation discovery problem). Let O be an ontology and � a

set of individuals in O. For X ✓ �, the situation discovery problem is to compute

the following set: ⌅O(X ) = {X1, . . . ,Xn

| X
i

✓ X , ||X
i

||O 6= ;}. That is, to find

all the subsets of X that are representable w.r.t. O.

We also shorten ⌅O(X ) as ⌅(X ) when the ontology O is clear from the

context. Since each X
i

2 ⌅O(X ) leads to a situation ||X
i

||O, we will also call

such X
i

a situation by an abuse of terminology.

Lemma 3.3. Let O be an ontology and � be a set of individuals in O. For any

X ✓ �, ⌅(X ) 6= ;.

Proof. By Lemma 3.1, it is easy to see that ; is representable by ?, so ; 2
⌅(X ).

Lemma 3.3 shows that we can compute at least one situation with no

computation cost. Henceforth, we omit this trivial situation in the rest of this

thesis.

Moreover, Example 3.4 shows that it happens that X is not representable,

but ⌅(X ) contains subsets of individuals that are nevertheless representable,

such as X1 = {f3} having a representative concept E.

Definition 3.17. Let O be an ELO ontology and � a set of individuals in O.

For a given set of individuals X ✓ � and an integer n > 0, the decision problem

SD
n

is defined as follows:

Does there exist a situation C for some X 0 ✓ X in O with |C|  n?

If the answer to SD
n

is positive, it means that there exists a nonempty subset

X 0 ✓ X such that C is a representative concept for X 0 w.r.t. O and |C|  n.

Proposition 3.5. SD
n

is in ExpTime.

Proof. For a given subset of individuals X 0, by Lemma 3.3, checking if there

exists a concept of size less than n that represents X 0 w.r.t. O can be achieved

in ExpTime, which is the Representability
n

problem. Checking Representability
n

for all possible X 0 ✓ X requires at most 2|X | checks, thus we can decide SD
n

in

exponential time w.r.t. to size of X and n.
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According to the proof, if the |X | and n are bounded by a constant, SD
n

is

in P-Time.

The following conclusion shows that for a set of individuals X , the ⌅(·) oper-
ator satisfies monotonicity in the sense that (1) the set of concepts representing

X might decrease when the situation domain increases; (2) a concept A that

characterizes X still characterizes some set of individuals when the situation

domain increases. Nevertheless, the set of individuals that A characterizes might

no longer be X . In fact, it could be the case that X is no longer representable.

Proposition 3.6. Let O be an ontology and � be a set of individuals in O.

Consider �1 ✓ �. Suppose that X 2 ⌅(�1) is represented by a concept A w.r.t.

O and �1. Then the following conclusions hold:

1. ||X ||� ✓ ||X ||�
1

2. X is not necessarily representable w.r.t. �.

3. The concept A still represents some set of individuals X 0, that is, X 0 2
⌅(�).

Proof. To prove ||X ||� ✓ ||X ||�
1

, we suppose C 2 ||X ||�. Then it holds that

O |= C(x) for any x 2 X and O 6|= C(y) for any y 2 � \ X . Since �1 ✓ �, we

have O |= C(x) for any x 2 X1 and O 6|= C(y) for any x 2 �1 \ X . Thus C

represents X w.r.t. �1, that is, C 2 ||X ||�
1

.

To see that X is not necessarily still representable w.r.t. X2, we consider the

following example extended from Example 3.3: O0 = O [ {B(f4), r(f4, f3)},� =

{f1, f2, f3, f4},�1 = {f1, f2, f3}, and X = {f1, f2}. We know from Example 3.3

that X is represented by C w.r.t. O and �1. However, X is not representable

w.r.t. � because O |= f2 ⌘ f4, then there is no concept D that can satisfy both

O |= D(f2) and O 6|= D(f4).

To prove the third item, we define X 0 = X [ {x 2 � | O |= A(x)}. Obviously,

X 0 ✓ �. For each x 2 X 0, if x 2 X , we know O |= A(x) since A represents X ; if

x 2 X 0 \ X , then it is obvious that O |= A(x) by the definition of X 0. For each
y 2 � \ X 0, if y 2 �1 \ X , then O 6|= A(y) since A represents X w.r.t. O and �;

if y 62 �1, since y 62 X 0, then y 62 {x 2 � | O |= A(x)}. Hence, O 6|= A(y). In

short, A represents X 0 w.r.t. O and �.

3.3 Computing Situations in An Ontology

In this section we present the algorithms that allow us to extract the situations

present in an ontology. To this end, we proceed in several steps:
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1. First, we detail how to obtain a single DL concept representing a situation

in O. For this we define a refinement operator that allows to traverse the

space of situations in O. The operator is guided by an individual x 2 �

and constructs concepts that describe situations in O to which x belongs.

2. Once we count with the means to discover situations for a single individual

x, we extend the process to extract situations from a whole set of individuals

X , based on the refinement operator.

3. Finally, once we can describe a set of individuals X , we show how to find

the situations for the sub-sets X 0 ⇢ X for which a DL description exists.

3.3.1 Refinement Operator

To obtain the concepts describing the situations in X , we start with a ”root”

concept C, that captures all individuals in X and proceed to refine it. These

refinements will at some point separate the sub-sets in X that can be described,

thus discovering the situations in X .

To refine a concept, we need a way to traverse the space of concept expressions

in an ordered manner. This is where the refinement operator comes into play. In

this section, we present an algorithm to obtain the refinements of a concept C
that describe a set of given samples.

In our approach, we first select an instance x 2 X , obtain its minimal A-Box

and establish the possible extensions. Each extension represents a property

of x (directly or indirectly) and for each such extension a set of possible DL

expressions can be constructed. Each DL expression obtained this way is then

”added” to the original concept C to construct the refinements. The steps of

the refinement process are outlined in Figure 3.2 and are specified in Algorithm

3.2. To detail the process, we first need some basic notions given in the next

subsection.

3.3.1.1 Basic Notions

In this section we first define the notion of a minimal A-Box, which tells us

properties of x that are necessary to validate the instantiation of x with respect

to a given concept C. These properties will be used by the refinement operator

to define the extensions of x and propose the refinements of C. Since ELO allows

for nominals, we would like to make this information explicit in the A-Box. Thus

in the following we assume that each node a in the graph representation of the

A-Box, has attached the corresponding nominal {a} (i.e. {a}(a) 2 A-Box).

Definition 3.18 (Minimal A-Box). Let O = (T ,A) be an ontology and C(x)

be an instance assertion implied by O, i.e. O |= C(x). An A-Box A0 is called a
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Figure 3.2: Steps to refine a concept C guided by an instance x and an ontology

O; The output is the concepts obtained by one refinement step of C.

minimal A-Box for C(x) w.r.t. O ( in symbols AC

x

) if (1) T [A0 |= C(x), and

(2) there is no A-Box A00 ⇢ A0 such that T [A00 |= C(x).

These properties identified by a minimal A-Box involving x or any other indi-

vidual connected to x, called extensions. These extensions are used to construct

DL expressions and obtain the refinements of C.

To facilitate the definition of the refinement operator, in the remaining of

this chapter we assume that the materialization of the ontology [Kontchakov

et al., 2011, Glimm et al., 2017] has been done first, i.e. all concept and role

inferences are explicitly stated in the A-Box. In this case, the minimal A-Box is

simplified as below.

Definition 3.19. Let A be an A-Box and C(x) be an instance assertion implied

by A, i.e. A |= C(x). An A-Box A0 is called a minimal A-Box for C(x) if (1)

A0 |= C(x), and (2) there is no A-Box A00 ⇢ A0 such that A00 |= C(x).

Let us illustrate the intuition behind this process. Any individual in an

ontology O and its relations to other individuals can be represented as a directed

(acyclic) graph, with the nodes being the individuals and the edges being the

relations between them, as stated by the A-Box (figure 3.3). For example consider
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the A-Box :

A1 : {r1(x, y), r2(y, w), r3(y, z)}

we obtain:

x y

w

z

r1
r2

r3

Figure 3.3: The graph representation of individual x w.r.t. A1.

Assume a concept C ⌘ 9r1.9r2.>, we find that x is an instance of C. We can

determine which are the properties of x that are necessary for C(x) to hold. Both

r1(x, y) and r2(y, w) are necessary, but the assertion r3(y, z) 2 A1 is not relevant

for deciding whether C(x) holds. From this observation, a simpler representation

of x can be obtained , i.e. the A-Box : A1 \ {r3(y, z)}, for which x still remains

an instance of C. This can be seen as a cut in the graph representation of x

(figure 3.4) between the necessary and unnecessary assertions in the A-Box. This

x y

wr1
r2

Figure 3.4: The graph representation of individual x, w.r.t. A1 \ {r3(y, z)}.

representation allows us to establish up to which point the assertions in A1 are

relevant for C(x) to hold. All the necessary assertions comprise a minimal A-Box

for which C(x) holds, and all unnecessary assertions provide the basis to further

specialize C and still capture x. These specializations are the refinements we

are looking for. In order to isolate and manipulate these elements, first we need

to establish all individuals connected to x. This is formalized in the following

definition:

Definition 3.20 (Binary relation closure). Given an ontology O, two individuals

x, y and an A-Box A, we say that there exists a binary relation closure between

x and y, denoted by r "(x, y), if x = y or if there exists a path of the form:

{r1(x, z1), r2(z1, z2), . . . , rm(z
n�1, zn)} ✓ A

with n � 1, z
n

= y, and rj a role in O

Next, we want to establish which of the edges of the graph representing

individual x are necessary for a given concept C to capture it. To this end we

introduce the notion of necessity:
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x z1 z2 . . . z
n�1 y

r1 r2 rm

Figure 3.5: The representation of a path from individual x to individual y.

Definition 3.21 (Necessity). Given a concept C, an instance x of C, an A-Box

A and a role r(y, z) 2 A with r " (x, y). We say that:

1. Role r(y, z) is necessary for C(x) i↵:

A \ {r(y, z)} 6|= C(x)

We say r(y, z) is unnecessary for C(x) otherwise.

2. Individual i is necessary for C(x) i↵:

i = x or

there exists z such that r(z, i) 2 A and r(z, i) is necessary.

We say i is unnecessary for C(x) otherwise.

3. Given a necessary individual i, then a concept assertion D(i) 2 A is

necessary for C(x) i↵:

A \ {D(i)} 6|= C(x)

We say D(i) is unnecessary for C(x) otherwise.

Note that depending on the concept C and the content of the A-Box, a

unnecessary role might become necessary, therefore several possible answers

might exist. For example take the concept C ⌘ 9r.> and the A-Box: A =

{r(x, y), r(x, z)}, then we have:

C(x) = > w.r.t A \ r(x, y)
We conclude that r(x, y) is not necessary, but only as long as r(x, z) 2 A (and

vice-versa).

Given a definition of the necessary assertions for an individual x to be an

instance of a concept C, we can also obtain those assertions that are not necessary.

These (unnecessary) assertions are linked to the individual x but are not required

by C. As such they can be seen as candidate properties for specializing C. These

are the assertions about special individuals hereafter called leaves of x, defined

by:

Definition 3.22 (Leaves). Given a concept C, an instance x of C, and an

A-Box A, the set of leaves of x w.r.t C is given by:

Leaves
x,C

= {y | B(y) 2 A, y is necessary, B(y) is unnecessary for C(x)}
[ {y | r(y, z) 2 A where y is necessary, but r(y, z) is unnecessary for C(x)}
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Intuitively the set Leaves
x,C

represents all those individuals y in the frontier

of x w.r.t. C, in the sense that no further edges of the graph representing x are

considered by C to decide whether the individual x belongs to it. In our example

r3(y, z) is not necessary.

Definition 3.23 (Extensions). Given an individual x, a concept C and the set

Leaves
x,C

w.r.t. an A-Box A, the set of extensions Ext
x,C

to specialize C w.r.t.

x is defined by:

Ext
x,C

= {r(y, z) 2 A | y 2 Leaves
x,C

and

r(y, z) is unnecessary for C(x) } [

{B(y) 2 A | y 2 Leaves
x,C

, B(y) is unnecessary for C(x) }

The set Ext
x,C

captures all those assertions through which C can be further

specialized. The set of leaves and their extensions allow us to compute the

refinements of C.

3.3.1.2 Computing Minimal A-Box

To obtain the refinements of a concept C, we first introduce an algorithm that

computes a minimal A-Box.

We now introduce an algorithm to compute a minimal set of necessary

assertions, from which we can extract Leaves
x,C

and Ext
x,C

to construct the

refinements. The algorithm takes as input an individual x, a concept C and an

A-Box A. It will test all individuals connected to x for necessity, and output a

set of necessary assertions for C(x) to hold under A. To illustrate the algorithms

behavior consider the concept

C ⌘ 9r.> and the A-Box A = {r(x, y), r(y, w), r(x, z)}

as inputs. In Algorithm 1 we first compute R
x

(Line 2), which is the subset of

the A-Box A containing all those role assertions in a path from x:

r(x, y) 2 R
x

since r " (x, x) and r(x, y) 2 A

r(y, w) 2 R
x

since r " (x, y) and r(y, w) 2 A

r(x, z) 2 R
x

since r " (x, x) and r(x, z) 2 A

yields R
x

= {r(x, y), r(y, w), r(x, z)}

(3) makes a copy CopyR of R
x

from which we will sequentially remove the last

elements of each path. (4) establishes as the candidates CandR to be tested all
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Algorithm 1 MinAbox

1: input: (x,C(x) = >,A)

2: R
x

= {r(y, z) | r " (x, y), r(y, z) 2 A}
3: CopyR = R

x

4: CandR = {r(y, z) 2 R
x

| 6 9w s.t. r(z, w) 2 R
x

}
5: C

x

= {D(z) 2 A | z = x or 9y s.t. r(y, z) 2 R
x

}
6: while CandR 6= ; do
7: for r(y, z) 2 CandR do

8: if C(x) = > w.r.t. (R
x

\ {r(y, z)}) [ C
x

then

9: remove r(y, z) from R
x

10: end if

11: remove r(y, z) from CopyR
12: end for

13: CandR = {r(y, z) 2 CopyR | 6 9w s.t. r(z, w) 2 CopyR}
14: end while

15: for D 2 C
x

do

16: if C(x) = > w.r.t. (C
x

\ {D}) [R
x

then

17: remove D from C
x

18: end if

19: end for

20: return: A
x

= R
x

[ C
x
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those role assertions that do not have further outgoing edges (that is, the last

elements of a path):

CandR = {r(y, w), r(x, z)}
(5) creates the set of all concept assertions about all the individuals that take part

in a role in R
x

, this is necessary to establish if a concept assertion is necessary

for the final A-Box. In our example this set is empty. Then the while loop starts,

which tests all assertions for necessity until no more candidates are found. (7)

takes one candidate at the time, and (8) tests if it is necessary. Recall that a

role assertion is unnecessary if C(x) holds when the assertion is removed from

the A-Box. The unnecessary assertions are removed from R
x

(9), which at the

end of the algorithm will contain only necessary role assertions. Any assertion

already tested is removed from CopyR by (11) in order no to test them twice.

In our example we test CandR = {r(y, w), r(x, z)} for necessity:

Initially R
x

= {r(x, y), r(y, w), r(x, z)}

Test r(y, w) for necessity :

C(x) = > w.r.t. {R
x

\ r(y, w)} [ C
x

, then we remove r(y, w)

R
x

= {r(x, y), r(x, z)}
CopyR = {r(x, y), r(x, z)}

Test r(x, z) for necessity :

C(x) = > w.r.t. {R
x

\ r(x, z)} [ C
x

, then we remove r(x, z)

R
x

= {r(x, y)}
CopyR = {r(x, y)}
Once all identified candidates are tested, the set CandR is re-computed (13)

considering only those assertions remaining in CopyR,

CandR = {r(x, y)}

A second run of the while loop yields:

Test r(x, y) for necessity :

C(x) = ? w.r.t. {R
x

\ r(x, y)} [ C
x

, then we keep r(x, y)

R
x

= {r(x, y)}
CopyR = {}

Since there are no more candidates to test for necessity the while loop ends and

the modified set R
x

is a minimal set of necessary role assertions for C(x) = >.
Until this point we have tested all role assertions in A for necessity, but we

have kept all class assertions C
x

related to x. The final for loop (15) tests each

class assertion in C
x

for necessity, to keep only the necessary ones. This is where
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the algorithms stops, and the output A
x,C

(20) is then a set of minimal role and

class assertions, a minimal A-Box, necessary for C
x

to hold:

A
x,C

= {r(x, z)}

From the set A
x,C

we can easily construct Leaves
x,C

and Ext
x,C

, following their

definitions. Consider again: C ⌘ 9r.> and A = {r(x, y), r(y, w), r(x, z)}, we have
the output (of one run) of algorithm 1 A

x,C

= {r(x, y)} from where we obtain:

Leaves
x,C

= {x, y}

and

Ext
x,C

= {r(y, w), r(x, z)}

where the possible extensions to specialize C are r(y, w), r(x, z), which is the

intended answer.

Soundness of Algorithm 1 . We show that the output of Algorithm 1, A
x,C

, a

minimal A-Box that entails C(x). The first part of the proof, follows from Lines

8 and 16 in Algorithm 1 which remove from A
x,C

only those assertions that are

unnecessary for C(x). That is, assertions will be removed from A
x,C

only as

long as A
x,C

|= C(x), thus at the end of the process A
x,C

|= C(x) is ensured.

For the second part, we proceed by contradiction. If A
x,C

is not minimal, it

implies that there exists another A-Box A0 6= A, with A0 ⇢ A
x,C

and A0 |= C(x)

(A0 is minimal). Since A0 ⇢ A
x,C

there must be an assertion � 2 A
x,C

such

that � 62 A0. Lines 8 and 16 in Algorithm 1 test each assertion for necessity.

Therefore � 2 A
x,C

implies that A
x,C

\ � 6|= C(x). ELO is monotonic. Thus,

A
x,C

\ � 6|= C(x) implies A0 \ � 6|= C(x), because A0 ⇢ A
x,C

. Since � 62 A0,
A0 \ � = A0. Thus A0 6|= C(x), a contradiction.

Note that, a minimal A-Box is not unique, but several might exist. The other

minimal A-Boxes can be obtained by subsequent runs of algorithm 1 in the

fashion of [Kalyanpur et al., 2007] via Hitting Set Tree search.

The minimal A-Box allows to select the unnecessary assertions, which can

be used to construct concepts that represents situations in the ontology.

3.3.1.3 Computing Refinements

In this section, we introduce the process of computing concept refinements. From

a constructive point of view, a refinement C0 is a modified version of C, where
a part of the original concept C has been replaced by a more specific ELO
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expression. This modification depends on the leaf and the extension selected.

The output of Algorithm 2 is a set of refinements of the form:

↵
x

(C) = {C0
1, . . . , C0

n

}.

Before we present the algorithm for the refinement process, we need to intro-

duce the notion of reason for a leaf. This is important because in the refinement

process we start by a concept C, and construct new concept expressions by

modifying C. The modifications are related to the leafs, and take place in a

specific position within C. Thus, the link between a position in C and a leaf, has

to be established. This notion is captured by the following definition.

Definition 3.24 (Leaf reason). Given a complex concept C, the set {D1, . . . , Dn

}
of its sub-concepts, an instance x of C and a leaf l 2 Leaves

x,C

. An let D
i

be

the shortest concept for which it holds:

l is necessary for C(x) , but

l is unnecessary for C|
Di!>(x)

The reason for l, in symbols R
l

, is defined by:

if D
i

is of the form 9r.B, then R
l

= B, or

R
l

= D
i

otherwise.

For the case l = x we have R
l

= C.

The idea behind the refinement process is that given the leafs for C(x), we

can use the unnecessary properties of the leafs (role and class assertions) to

obtain specializations of C. To this end, we must first identify the part of the

complex concept C that refers to a leaf l (that is the reason for l), and then by

adding constraints to this reference, we ensure the resulting concept requires

more properties from l than the original C.

Example 3.7 (Reason of a leaf). Consider the following A-Box:

A4 = {r1(x, y), r2(x, z), A(y), B(y), D(z)}

and the concept:

C ⌘ 9r1.A u 9r2.D
where its sub-concepts are:

C 0
1 ⌘ 9r1.A u 9r2.D

C 0
2 ⌘ 9r1.A

C 0
3 ⌘ 9r2.D

C 0
4 ⌘ A

C 0
5 ⌘ D
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we find that C 0
4 ⌘ A is the reason for leaf y, since for the concept

C|
C

0
4

!> ⌘ > u 9r2.D

where C 0
4 is replaced by >, y is no longer necessary nor a leaf. If we would make

the replacement using C 0
1, y would also become unnecessary, but C 0

1 is not the

shortest.

Given the reason C 0
4 ⌘ A, if we want to specialize C by establishing that any

individual connected to x through role r1 should not only be of class A (9r1.A) but

additionally of class B, we can achieve this by replacing C 0
4 with a conjunction

of C 0
4 and B:

C 0 ⌘ 9r1.(A uB) u 9r2.D
In this way we obtain C 0 which is a modified version of C, for which it holds:

C 0(x) and C 0 v C

We now formally define the refinement operator in Algorithm 2.

Algorithm 2 Operator ↵

1: input: (x,C,O = {T ,A})
2: Ref = ;
3: A0 = MinAbox(x,C,A)

4: Leafs
x,C

= {l1, . . . , ln}
5: Ext

x,C

= {r1(l1, y1), . . . , rm(l
n

, y
k

), B1(l1), . . . , Bh

(l
n

)}
6: for l 2 Leaves

x,C

do

7: Obtain R
l

(the reason for l)

8: for B(l) 2 Ext
x,C

do

9: C 0 = C |Rl!RluB

10: add C 0 to Ref

11: end for

12: for r(l, z) 2 Ext
x,C

do

13: C 0 = C |Rl!Rlu9r.>
14: add C 0 to Ref

15: end for

16: end for

17: return: Ref

Let us use the following example to illustrate Algorithm 2.

Example 3.8 (Refinements of a concept C). Consider the following concept C,

its instance x and the A-Box A5 as an input for our algorithm:
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C ⌘ 9r1.>
A5 = {r1(x, y), A(y),

r2(x, z), B(z)}
x

y
A

z
B

r1

r2

In Algorithm 2 we initialize the set of refinements Ref to ; (Line 2). Then

we compute the minimal A-Box for C(x) (Line 3) using algorithm 1, from where

we can obtain the leaves (Line 4) and the extensions (Line 5) of x with respect

to C.
(2) Ref = ;
(3) A0 = {r1(x, y)}
(4) Leaves

x,C

= {x, y}
(5) Ext

x,C

= {r2(x, z), A(y)}
Next, for each leaf l (6) we first obtain the position in C to make the specialization,

that is the reason R
l

(7) for the leaf l. Within the extensions of each leaf, we find

two types: concept assertions and role assertions. If the extension is a concept

assertion of the form B(l) (8), then the corresponding refinement C 0 is a copy of

C where the reason R
l

has been replaced by the expression R
l

uB (9). That is,

besides imposing that the leaf l is of type R
l

, C 0 imposes now that it additionally

has the type B. Each C 0 is a new concept name, which is added to the set of

refinements (10). If the extension is of the form r(l, z), the loop in (12) works

in a similar way. The di↵erence is that instead of imposing a new type for l, it

imposes that l has to be connected to some individual z through a role r (13).

(6) For x 2 Leaves
x,C

: R
x

= C

(12) For r2(x, z) 2 Ext
x,C

: C 0
1 ⌘ 9r1.> u 9r2.>

(6) For y 2 Leaves
x,C

: R
y

= >
(8) For A(y) 2 Ext

x,C

: C 0
2 ⌘ 9r1.(> uA)

(17) Ref = {C 0
1, C

0
2}

Finally we return the set Ref containing the refinements (17). It is easy to see

that C 0
1 and C 0

2 are proper refinements, since for both it holds:

C 0
1 v C and C 0

2 v C, and

A5 |= C 0
1(x) and A5 |= C 0

2(x)

Note that C 0
1 ⌘ 9r1.> u 9r2.> imposes that any instance of C 0

1 needs to be

connected to some individual by a role r2. From A-Box A5 we know that r2(x, z)

and B(z), thus a refinement could also impose that the range of such role r2

should be of type B (i.e. 9r2.B). This refinement can be obtained, if the operator

is iterated.
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We consider some properties of a refinement of a concept C, formalized next.

Definition 3.25. Given an ontology O, a concept C and x, an instance of C,

we say that a concept C 0 is a refinement of C if it holds:

O |= C 0(x) and C 0 v C

Additionally we say that C 0 is a direct refinement of C, if:

|Sub(C 0)|� |Sub(C)| = 1

The operator is intended to provide access to the concepts describing sets

of individuals in a top-down manner. That is from more general (capturing

more individuals) to more specific (capturing less individuals). This can be

achieved by iterating the operator. At each iteration of ↵, we have to ensure

that no intermediate concept expressions are left unexplored, ensuring that the

operator is sound and complete. The operator is sound if: x is an instance of

each refinement C 0 of C, and each C 0 is more specific than C. The operator is

complete if no refinements C 0 are left unexplored. These properties are precised

in the following.

Proposition 3.7. Given an ontology O = {T ,A}, a concept C, an instance x

of C, and ↵
x

(C) = {C 0
1, . . . , C

0
n

}. Let C 0 2 ↵
x

(C) be one of the refinements of

C. Then it holds:

O |= C 0(x)

and

C 0 v C

Proof. For the first part of the proof, concerning O |= C 0(x), we start by the

observation that C is of the form:

C ⌘ D1 uD2 u · · · uD
n

Where for C(x) to hold, each D
i

(x) must hold as well. Without loss of generality4,

each D
i

is a concept of the form:

D
i

⌘ 9r1.9r2. . . . 9rn.Rl

Since D
i

(x) holds, there exists a path r1, r2, . . . , rn from x to an individual

l of type R
l

. This implies that the A-Box A must contain axioms of the form:

r
n

(u, l) 2 A and R
l

(l) 2 A. If R
l

is to be replaced by a new expression R0
l

,

4
The case Di = Rl and the cases where each existential restriction might be of the form

9.r.(A u 9r...), the concept Rl will always refer to the type of leaf l.
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resulting in D0
i

and C 0 respectively, we must ensure that l is also an instance of

R0
l

. That is if R0
l

(l) holds, D0
i

(x) and C 0(x) hold as well.

Algorithm 2 will replace R
l

by R0
l

in one of the following two forms:

R0
l

⌘ R
l

uB where B(l) 2 Ext
x,C

or

R0
l

⌘ R
l

u 9r
j

.> where r
j

(l, l0) 2 Ext
x,C

Thus, necessarily O |= R0
l

(l). This ensures that D
i

(x) holds, and since this is

the only modification in C, we have that C 0(x) holds as well.
For the second part of the proposition C 0 v C, we have to prove that

the replacement R0
l

v R
l

. Note that a replacement is always of the form

R0
l

⌘ R
l

uB, where B is a (possibly complex) concept expression. Thus we find

that y 2 R0
l

! y 2 R
l

, but y 2 R
l

9 y 2 R0
l

. This implies R0
l

✓ R
l

, which in

DL notation becomes R0
l

v R
l

, from which follows D0
i

v D
i

and C 0 v C.

Proposition 3.8. Let C be a concept, x be an instance of C, and O be an ontol-

ogy such that O |= C(x). Then C 0 2 ↵
x

(C) implies that C 0 is a direct refinement of C.

Proof. Given C, there exists a minimal A-Box, A
x

for x w.r.t. C. If C 0 is a

refinement of C, then it was constructed by ↵
x

using some extension � for x. This

implies there exists an axiom � 62 A
x

, but � 2 A0
x

, where A0
x

is the minimal A-Box

for x w.r.t. C 0. For each such �, the operator ↵ will replacement a sub-concept

D 2 Sub(C), by a new concept D0, where D0 is of the form D0 ⌘ D u 9r.> or

D0 ⌘ D uB, for some named concept B. Thus, |Sub(D0)|� |Sub(D)| = 1. Since

this is the only change made to C, then it follows |Sub(C 0)|� |Sub(C)| = 1.

Proposition 3.9. Given an ontology O = {T ,A} and an individual x 2 O. Let

A0 ⇢ A, be a tree with root x, and let C
A

0 be the most specific concept for x

w.r.t. A0, then C
A

0 can be obtained by ↵
x

.

Proof. Given an individual x, let A
n

⇢ A, where A
n

is a tree with root in x. We

have to prove that the MSC for A
n

can be obtained by ↵. The MSC need to

comply with two conditions. Let C
n

be the MSC for A
n

, then it holds:

A
n

|= C
n

(x), and

it does not exist another concept D such that

D @ C
n

and A
n

|= D
n

(x)

Let A
n�1 be a subtree of A

n

rooted as well in x, with

(1)A
n

= A
n�1 [ �
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where � is an assertion in A, and let C
n�1 be the MSC of A

n�1. Note that

because C
n�1 is the MSC, A

n�1 is the minimal A-Box for C
n�1, and thus

necessarily � 2 Ext
x,Cn�1

. If we apply the operator ↵
x

to C
n�1 , it yields:

↵
x

(C
n�1) = {C 0

1, C
0
2, . . . , C

0
m

}

where some C 0
i

was constructed using �. Because C 0
i

@ C
n�1, the minimal A-Box

of C 0
i

needs at least all assertions in A
n�1. But since C

n�1 is already the MSC

for A
n�1, the minimal A-Box for C 0

i

has to be larger than A
n�1:

|A
C

0
i
| > |A

n�1|

From ↵ and (1) we know that A
n�1 [ � |= C 0

i

(x), thus A
n�1 [ � is a minimal

A-Box for C 0
i

(x).

A
Ci

= A
n�1 [ � = A

n

Therefore A
n

|= C 0
i

(x).

For the second condition, assume another concept D @ C 0
i

exists with

A
n

|= D(x). This implies that A
D

> A
C

0
i
, but since A

C

0
i
= A

n

it follows that

A
D

> A
n

, and thus D can not be the MSC for A
n

.

3.3.2 Algorithms for Situation Discovery

In this section, we will apply the refinement operator for computing situations,

consisting of two components: refinement over one instance and refinement over

a set of instances. The first component is used in the second to find situations.

We have seen that multiple concepts can exists in a situation. To characterize

the maximal details of a situation, it is interesting to the most specific concept

in a situation defined below.

Definition 3.26 (Most Specific Representative MSR). Given a set of individ-

uals X = {x1, . . . , xn

} and the set of its representative concepts ||X || = {S |
S represents X}, the Most Specific Representative of the set X , written MSRX ,

is the concept S
i

2 ||X || such that:

8S
j

2 ||X ||, we find S
i

v S
j

.

Example 3.9 (Most Specific Refinement). As an example consider � =

{x, y, z, z0}, the set X = {x} and the A-Box:

A3 = {r(x, y), r(z, z0), A(y), B(y), C(z0)}

57



and the concepts:

S0 ⌘ 9r.> = {x, z}
S1 ⌘ 9r.A = {x}
S2 ⌘ 9r.{y} = {x}
S3 ⌘ 9r.(A uB u {y}) = {x}
S4 ⌘ 9r.(A uB u {y}) u 9r.A = {x}

We find that S0 62 ||X || since z 2 S0. In contrast, all other concepts do represent

X , thus we have S1,S2,S3,S4 2 ||X || (note that the set SX can be infinite).

The subsumption relation between them is given by:

S3 v S1,S2,S4

S4 v S1,S2,S3

S3 ⌘ S4

Two of these concepts are more specific than the rest: S3 and S4, and equivalent

to each other. To select between S3 and S4 we prefer shorter concepts, since

|S3| < |S4|, the most specific representative MSRX is S3. Given yet another

concept :

S5 ⌘ 9r.({y} uA uB)

We have that S5 ⌘ S3 and |S5| = |S3|, thus they are two versions of the same

concept.

3.3.2.1 Refinements of One Individual

If we apply ↵ to each refinement iteratively we can traverse the space of refine-

ments of C, as given in Algorithm 3. From Propositions 3.7 and 3.9 we have that

each refinement obtained by ↵ is the most specific concept of an equivalence

class w.r.t. x, therefore using ↵ we traverse the space of equivalence classes of

x. The space of possible refinements is a lattice (Fig. 3.6), where each node’s

descendants are as well sub-sets of their predecessors, since the refinements

go from more general to more specific. In this way we can find the MSR for

{x}. Note that, even though applying ↵ to two di↵erent refinements C 0 and C 00

will not output the same sets, it su�ces to choose only one refinement in each

iteration to arrive to the MSR for {x}. This is because the MSR has to consider

all possible properties of x, and by continuously applying ↵ to any refinement C 0

we will leave no necessary properties unexplored. By selecting any of the output

refinements of ↵(C) as the input of the next iteration, we will arrive to the MSR

when the output of ↵ is empty.

Without loss of generality, we consider that each role in the A-Box is unique.

Then each refinement C 0 obtained by the operator will make a unnecessary asser-

tion in the A-Box for C, necessary for C 0. Since the A-Box is finite, iterating the
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Algorithm 3 Computing the MSR for an instance x of C

1: input: (x,C,O)

2: C
i

= C

3: while ↵
x

(C
i

) 6= ; do
4: Set C

i

to any C 0 2 ↵
x

(C
i

)

5: end while

6: return: C
i

Figure 3.6: The lattice of refinements of C w.r.t. x.

operator with Algorithm 4 will become all unnecessary assertions will necessary.

At this point the set of extensions Ext
x,C

will become empty, and the iteration

process will stop.

In Algorithm 4, regardless of the refinement chosen to continue the iteration

process (Line 4) all extensions in Ext
x,C

will be explored by ↵. And thus if the

iteration process is allowed to finish, a version of the MSR will be obtained in

the end.

3.3.2.2 Refinements of a Set of Individuals

From Proposition 3.9 it follows that using ↵
x

we can the most specific repre-

sentative for a situation to which a single instance x 2 X belongs. But this

does not necessarily hold for a set of instances X . The instances in X might

share a limited number of properties, thus the MSR of x does not necessarily

represent X . There might exist several refinements found by ↵
x

that represent

X , but from which none is the MSR of X . This is because the refinements found

by ↵, depend on the instance chosen. Using an instance x2 2 X , with x 6= x2
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might give di↵erent results. This implies that even if we find all the most specific

refinements that represent X using x, none of them might be the most specific

with respect to the whole set. Therefore, a priori, we would have to explore all

of the refinements of all the instances in X .

To find the refinements that best represent X we assign a rank to them,

based on their recall of X .

The first observation here is that, since for each refinement C 0 of C it holds

C 0 ✓ C, whenever C 0 no longer represents X (i.e. some individual in X is not an

instance of C 0) it implies no descendant of C 0 can represent X , and therefore we

do not require to further refine C 0. The second observation is that, from all the

refinements of ↵
x

with 100% recall, we can not, a priori, discard any of them as

candidates for the iteration process. Consider the following case:

Example 3.10. The MSR of a set of individuals X

X = {x, x0}

A6 : {r1(x, y), r2(y, w), r3(y, z)} [

{r1(x0, y0), r1(x0, z0), r2(y0, w0), r3(z0, u0)}

x y

w

z

x0
y0 w0

z0 u0

r1
r2

r3

r1

r1

r2

r3

Figure 3.7: The graph representation of individuals x and x0.

If we refine a concept S = 9r1.> guided by x. Applying ↵
x

(S ) we find two

refinements S1 and S2 with a recall for X of 100%, where:

S1 = 9r1.(9r2.>)

S2 = 9r1.(9r3.>)
The iteration process will stop here, since any further refinement will require the

individuals w or z (not connected to x0) or be of the form:

S3 = 9r1.(9r2.> u 9r3.>)
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The recall of S3 is 50%, since x0 62 S3 (i.e. A6 6|= S3(x0)). Guided by x we can

not find better representatives than S1 and S2 for X , nevertheless there exists a

concept that represents X which is more specific than both :

S4 = 9r1.9r2.> u 9r1.9r3.>

This concept can not be found by ↵ using x. The operator ↵ is designed to provide

the MSR for the given minimal A-Box. We can see that A
x,S

3

= A
x,S

4

, and

since S3 v S4, ↵x

will prefer S3. But we find that this is not true with respect

to x0. In other words, to find S4 we need to use x0.

Definition 3.27. Let X be a set of instances and O be an ontology. Given a

concept C, the recall of C is defined as recall(C) = |{x2X | O|=C(x)}|
|X | .

At a first sight, this would mean that we have either to test all individuals

in X or somehow select the correct individual from the beginning to find the

concept we are looking for. Two observations can help us to avoid this exhaustive

search in a more clever way: first, the MSR of a set X , if it exists, is necessarily

a refinement of ↵ for some individual x 2 X and second, given a refinement S 0

that represents X obtained by applying ↵ to S using an arbitrary x, the MSR

of the set X is necessarily a refinement of ↵
x

0(S 0) for some x0. This implies we

can select any individual x 2 X to refine the input concept S , and as soon as

we do not find any more refinements with a 100% recall guided by the current

individual x, we can continue the process by selecting a di↵erent individual x0. If
this process is continued, we will arrive to the MSR for X . This is the intuition

behind Algorithm 4 presented next.

Algorithm 4 Get-MSRX
1: input: (C,O,X )

2: S  C

3: for x 2 X do

4: Best={S }
5: while Best 6= ; do
6: S  any C 0 2 Best

7: Best = {C 0 2 ↵
x

(S ) | recall(C 0) = 100%}
8: end while

9: end for

10: return: S

In Algorithm 4 we obtain all those refinements of S with a recall of 100%

and hold them in the set Best (4,7). Initially, the set Best contains only the

input concept C (2,4). As long as this set is not empty (5), we select any of
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its elements (which are ensured to be concepts with a 100% recall) as the next

concept S to be refined (6). In (7) we use the operator ↵ guided by the current

individual x to obtain all refinements of S with a 100% recall, and store them in

the set Best. If we can still find such kind of refinements, this process is repeated

(5). Once we do not find any best refinement, the set Best is empty and the while

loop in (5) stops. At his point S is the last best refinement found. Then, the for

loop in (3) will select another element in the input set X and repeat the process,

until all individuals in X are explored. Finally, S holds the 100% refinement for

the set X verified by all instances, which is returned as the output (10).

Continuing with the previous example, from all the refinements of C we find

two types: those for which the recall of the set X is 100%, and those for which

the recall is below. Once no more 100% concepts are found, algorithm 4 stops,

and a set of all of those concepts that are immediate refinements of a 100%

concept is available (i.e. ↵
x

(S )). Each concept in this set, represents a (possibly

overlapped) subset of individuals of X that share some common features.

Proposition 3.10. Given a set of individuals X , whenever the output of Algo-

rithm 4 S 6= ;, S is the MSR for X .

Proof. From Line 7 in Algorithm 4, the output S holds:

O |= S (x) for all x 2 X .

We have to show that there does not exist S 0 v S , s.t. for all x 2 X , O |= S 0(x).
We proceed by contradiction. Assume such S 0 exists. Since every D

i

2 ↵
x

is

the most specific concept w.r.t. ADi
x

, and since the output S was obtained by

↵
x

, it means that S is as well the msc for some x0 2 X . This implies that

|AS 0

x

0 | > |AS
x

0 |. Thus there exists an axiom � 2 AS 0

x

0 with � 62 AS
x

0 . This implies

� is an extension of x0 w.r.t. S . From Proposition 3.9 for every such minimal

A-Box AD

x

0 w.r.t. some concept D, the operator ↵
x

0 produces the msc
x

0 . But

Line 7 tests each such concept, and thus msc
x

0 w.r.t. AS does not have a recall

100%. Thus O 6|= S 0(x) for some x 2 X .

In fact, using a initial set of “samples”, and the operator ↵ we can find all the

representable set of individuals and thus obtaining the situations characterizing

them.

Proposition 3.11. Given a set of individuals X , an A-Box A and a concept

D such that 8x 2 X we find A |= D(x). Then, D is a refinement of ↵ for some

x 2 X .

Proof. 8x 2 X ,A |= D(x) implies D 2 ||X ||. Thus for each x, there exists

a minimal A-Box w.r.t D s.t. AD

x

|= D(x). For each minimal A-Box, ↵
x

will
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generate the most specific concept s.t. AD

x

is minimal . Let D
x

2 ↵
x

be a

refinement obtained guided by x, for which AD

x

is minimal. If D
x

62 ||X ||, it
implies that for some x0 2 X , we find ADx

x

0 6|= D
x

(x0).
The set X represented by D, implies D

x

@ D. Since D is not the most specific

concept for AD

x

, but AD

x

is the minimal A-Box for D, there must exist another

minimal A-Box of another individual x0 2 X for which D is the most specific

concept. Since otherwise D
x

would su�ce. This implies D is a refinement for

some x0 2 X .

Once we can obtain the MSR for a set of individuals X , we know that any

refinement of such MSR obtained by the operator ↵ w.r.t. some x will define

a strict subset X 0 ⇢ X . Since all these individuals in X 0 are instances of the

obtained refinement, the set X 0 defines a situation. By iterating this process

over each subset found, and for each corresponding MSR, we can obtain all the

situations in X . Algorithm 5 specifies this process.

Algorithm 5 SD(X )

1: input: (C,O,X )

2: ⌅ = {X}
3: ToRefine = {X}
4: while ToRefine 6= ; do
5: for Y 2 ToRefine do

6: for y 2 Y do

7: for D 2 ↵
y

(Get-MSR(Y )) do

8: Inst
D

= {y 2 Y | O |= D(y)}
9: Add Inst

D

to ToRefine

10: end for

11: end for

12: remove Y from ToRefine

13: end for

14: Add ToRefine to ⌅

15: end while

16: return: ⌅

In Algorithm 5 the set of all situations ⌅ is initialized with X (Line 2),

since C representing X implies X 2 ⌅. Next we define a set ToRefine of all

those sets that need to be analyzed to look for sub-situations (Line 3). For each

such set Y (Line 5) we obtain its MSR computed by Algorithm 4, and for each

individual in Y (Line 6), we refine MSR(Y ). In this fashion, we obtain the

representable subsets of Y . Intuitively, if there exists a subset of Y that can

be represented, there exists a concept D @ MSR. This concept can be found

63



by applying ↵
y

(MSR) for some y 2 Y . For every such refinement found, we

record the sets its instances in Inst
D

(Line 8). Because there exists a concept

D for each one of these sets, they define a situation. And thus all the di↵erent

sub-sets are added to ToRefine (Lien 9), to explore if sub-situations can be

found. Since all subsets found this way are representable, we add all of them to

⌅. This process is repeated for the MSR every subs set found, and refined with

every instance in such sets. Finally, when no more subsets can be found. The

refinements of every MSR will be empty (there exists no concepts that are more

specific than those found for the discovered sets) and thus the while loop (Line

5) will stop. The output of Algorithm 5 is the set of all situations in X .

Proposition 3.12. Given an ontology O, a concept C and the set of its instances

X , all elements in the output ⌅ of Algorithm 5 are situations in X .

Proof. We have to prove that every subset X 0 ⇢ X that belongs to ⌅ can

be represented. If there exists a subset X 0 ⇢ X s.t. X 0 is representable, then

there exists its most specific representative MSRX 0 . From X 0 ⇢ X we have

MSRX 0 @ MSRX .

From Proposition 3.9 we have that the MSR of a set Y , is a refinement

obtained by ↵
y

for some y 2 Y . That is if Y is representable, its MSR can be

found by ↵. In Algorithm 5 for all x 2 X 0 (Line 6) we obtain all the immediate

refinements D v MRSX (Line 7). Thus MSRX 0 ✓ D for some D. In (8) we

obtain all those individuals that are represented by D, and the iteration process

obtains its MSR. Thus every X 0 ⇢ X added to ⌅ is representable.

3.4 Summary

We have presented an approach to discover interesting subsets of individuals in

an ontology O called situations. Each situation in O defines a set of individuals

that can be described by a DL concept, and that might have an infinite number

of concepts associated. To uniquely characterize each situation, we adapted the

notions of justifications in ontologies and the notion of most specific concepts.

We have presented an algorithm to compute a minimal A-Box, based on the

notions of necessity. The minimal A-Box allows us to construct refinements of a

given input concept, with respect to one of its instances. To this end we have

presented a sound and complete algorithm, in the form of a refinement operator,

to obtain the immediate refinements of a given concept. The operator allows to

characterize all the situations in O to which the given input instance belongs.

This process is then extended from a single instance, to obtain the MSR of a

set of instances. Finally we have presented how to characterize all the situations

present in the input set, where for each situation a MSR can be obtained, thus
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solving the situation discovery problem defined at the beginning of this chapter,

in Section 3.2. The algorithms and processes detailed in this chapter allow for

concept learning in an unsupervised fashion. We do not use positive nor negative

samples, and provide the most general and complete version of our operator to

traverse a search space, characterized by the notion of situation in O. In this

respect, the specifications in this chapter are highly customizable and can be

adapted to solve a problem where automatic descriptions for sets of instances

need to be discovered. The selection of which of these descriptions are to be

kept, is case dependent, and in this regard the approach provides the shortest

and most specific concepts, that provide access to situations in O.

In Chapter 4 the relation between situations and failure signatures is es-

tablished, showing how the general approach presented in this chapter can be

adapted for Signature Analysis (SA).
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Chapter 4

Situation Discovery in

Avionics Maintenance

In this chapter we detail how the refinement process presented in chapter 3 can

be used in the avionics maintenance domain. There are two main functions the

prototype should provide to support the technician on the diagnosis process :

1) Consult the knowledge base to obtain suggested corrective actions, and 2)

Enrich the knowledge base through the users feedback on whether or not the

given suggestions were relevant. The enrichment of the knowledge base requires

not only to consider the possibly new corrective actions, but also to discover

new failure signatures. This chapter specifies the results these processes should

yield, and how these results can be obtained. To this end, we first present the

constructed ontology for avionics maintenance on which the approach is based.

The ontology has been designed considering the two main data sources: the .AR

files and the corrective actions, detailed in the next section. Next we explain how

the signature of a failure can be defined as a situation in the ontology, enabling

the situation discovery process presented in chapter 3 to be used to solve the

problem of discovering failure signatures. Finally, we present how to integrate the

technician’s feedback into the knowledge base, before turning to the summary.

4.1 The Data and The Ontology

In this section we present the data that was provided for the approach and

the ontology constructed to capture its most relevant features. The ontology

is to represent the information of the diagnosis process, in terms of concept

names and role names, which are combined using the DL language constructors

(conjunction, existential restriction, nominals) to create concept definitions.
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These definitions conform the terminological knowledge or T-Box of the ontology.

Once these concept definitions are available, we can populate the ontology by

adding assertions to the A-Box, which denote facts expressed according to the

terminology in the T-Box.

The information about the diagnosis process has two main sources: the .AR

files containing the results of the tests made to each equipment, and the corrective

actions associated to each such test. This information has been modeled in the

ontology Thales Avionics Maintenance Ontology (TAMO), aided by the Thales

Avionics experts.

We start by detailing the structure of the .AR files and the ontology to

describe them.

4.1.1 The All Results (.AR) files

In the diagnosis process the technician tests the ELAC in a special unit called

a Test-Bench. This unit checks exhaustively all the ELAC functions, and the

output of this process is an .AR file (All Results). The .AR files are the main

source of information for the ontology. They are presented in plain text format

and contain up to thousands of lines. Each line of an .AR file represents an

individual test on a specific function of the ELAC, with the sanction GO or

NOGO which indicates if the test was passed. Thus, an .AR file is a set of

individual test results (thus the name All Results files). Each .AR file is divided

in three main sections:

1. The header, with information about the context of the test, including: the

equipment to be tested, the time and date, the type of test.

2. The test results, which are organized in three levels: part, function and

sub-function. This section contains the individual tests on the functions of

the ELAC.

3. The footer, summarizing the results and length of the full test.

Figure 4.1 shows an extract of the header of an .AR file. On the very top we

find the title of the file ”ALL RESULTS FILE”. Next, we have the ”SMART

TEST PROGRAM” section, where the manufacturer, the part-number of the

tested equipment, the corresponding maintenance manual with the specification

of the equipment, and the specific test program run for this examination are

shown.

The ”OPERATOR LOG” section, is concerned with the parameters given by

the operator to run the test: characteristics of the tested equipment (amendment),

the operator (technician) who made the test, the justification of the test (whether
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it is a initial test, a loop test or a final test), and the date-time when the test

was started.

Each .AR file can test a specific set of functions from the ELAC. The section

”START OF CURRENT SELECTION” in the header, provides the first and

last entry point of the test, i.e. which functions are tested. The functions tested

by the test-bench are organized in parts. The parts to be tested, depend on the

equipment and the program selected. It is for the operator to decide if he/she

wants to test all parts, just a sub-set of them, and how many times. In the

specific case of the ELAC, there are fourteen parts that can be tested. In the

initial test and final tests, it is mandatory that all fourteen parts are checked.

After an initial examination, it is possible that a test of all the parts does not

detect any failure. If nevertheless the technician suspects a failure is still present

in a specific function, he/she can choose to test one specific part, several times

to stress the equipment and find the failure. This is called a loop test.
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Once the context of the full test is set in the header, the second section of

the .AR file (figure 4.2) shows the results of the individual tests, hierarchically

organized in parts, functions, and sub-functions. The largest sub-section of the

results is the part. An ELAC .AR file can have between one and fourteen parts.

In figure 4.2 it is shown part 8: ARINC INPUTS/OUTPUTS, where two tests are

made at the level of the function ARINC MESSAGE RECEPTION and three

tests made at the level of the sub-function COM ARINC reception CHANNEL1).

Each individual test, is presented in a single line with the following format: first

a code (eg. 180203) and a designation (eg. T1DGIO08 080030), which allows to

identify the corresponding entry in the CMM to interpret the test result. The

designation has two levels, and is divided in designation 1 (e.g. T1DGIO08) and

designation 2 (e.g. 080030). Next, we have the measurements (e.g. 40AC HEX

EQ 40AC) obtained by the test-bench on the specific function. The type and

format of the measurements depend on the specific functions being checked, and

are usually ranges of voltage values. If the measurement of the voltage value is

within the expected range, the test is passed, otherwise is failed. In figure 4.2

the measurement 40AC HEX EQ 40AC on line with code 180203, indicates that

the obtained value is 40AC (left) and it should be equal to 40AC (right). Since

they are equal, the result of the test is GO. In the next line (code 180206), the

expected value is also 40AC but the read value is 50AC, and thus the test is not

passed, and the result is NOGO.

Figure 4.2: An extraction of the structure of an .AR file.

Finally, the footer section (figure 4.3) presents the summary of the results. It

is divided in two sub-sections: END OF CURRENT SELECTION and END OF

UUT TEST. In case a loop test is run, the technician can instruct the test-bench
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to test a sub-set of parts any given number of times. This is called a selection.

Once the selected parts have been tested, the section END OF CURRENT

SELECTION summarizes its results: the first and last tested parts, the number

of individual tests made, the number of failed tests and the date/time when the

test was finished.

The second section in the footer of the .AR file is ”END OF UUT TEST”

and it displays the aggregated results of each selection of parts. This section

shows, the total number of individual tests made, the total number of failures,

and the date/time of the conclusion of the whole test.
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4.1.2 Modelling AR Files in the Ontology TAMO

In this section, we present the part of Thales Avionics Maintenance Ontology

(TAMO) coming from the analysis of the .AR files.

The concepts and role definitions of TAMO are represented in Description

Logics in form of a T-Box. Once the T-Box is built, the A-Box of TAMO can be

populated through instantiation of terms of the T-Box. The T-Box along with

the A-Box constitute the knowledge base KB.

Figure 4.4 and 4.5 detail the main concept names and role names, respectively,

to represent the .AR tests in the ontology.

Figure 4.4: The concepts chosen to represent the tests in TAMO.

As seen before, there are several levels of test in an .AR file. The .AR file

itself is a test, denoted by TestMain and each individual line in an .AR file

is as well a test, denoted by TestLogLine. Each TestLogLine can belong to a

TestPart, a TestFunction and/or a TestSubFunction within the .AR file. Besides

the location of each TestLogLine within the file, we consider its most significant

properties: its TestCode, the two TestDesignations, and the TestResult. We do

not consider the measurements of the TestLogLine, because they refer to numeric

real values which would require additional processing (determine if they are in a

range, if they are greater or smaller than, etc.) which would require to increase

the expressiveness of the language chosen for the ontology. Thus we consider
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only if the test was passed or not.

Our approach focuses on the tests made on the ELAC computer. The ontology

(Figure 4.10) is able to represent more information than the one considered

relevant for the current use case, but we have selected a subset of concepts

and roles that are relevant for our scenario. Because of this, there is no need

to consider the manufacturer, the part number, nor the serial number of the

equipment. We have also omitted the first entry point and last entry point fields,

since the TestPart is already associated to each TestLogLine.

Once the concepts are defined, we need to establish the relations between

them. We do this by introducing roles. Intuitively, a role defines a binary relation

between two individuals in the form of R(a, b). The domain of the role R

establishes the type of individuals allowed as the first component (a) and the

range defines the type of individuals allowed as the second component (b). Figure

4.5 presents the role domain, the role name, the role range, and a description for

the main roles selected in TAMO.

Figure 4.5: The roles chosen to represent the tests in TAMO.

The concept names and role names introduced so far constitute the T-Box of

TAMO, that is the terminological knowledge represented in the ontology. The

T-Box alone contains no information about any particular .AR test. It defines

the vocabulary we can use to describe them, and what form these descriptions

should have, but it does not contain the descriptions themselves. To add the

.AR tests to the ontology (i.e. populate the ontology) we assert facts about the

.AR files in the form of axioms in the A-Box. The A-Box constitutes all the facts

we know about our domain.
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Since the A-Box contains only unary and binary relations, it can be repre-

sented as a graph, which can be a useful representation for visualization and

processing. Consider the following A-Box corresponding to some of the lines

from the .AR file in figure 4.6.

A-Box1 = {
TestMain(t1), TestFile(ELAC.AR),TestLogLine(L1),

TestDesignation(T1DGIO08),TestDesignation(080050),TestResult(NOGO),

TestPart(8 : ARNIC...), TestFunction(ARNICMESSAGE...),

TestSubfunction(COM ARNIC...),TestPart(TS), TestCode(180215),

hasTestFile(t1, ELAC.AR),hasTestLine(t1, L1),

lineHasSubfunction(l1, COM ARNIC...), hasTestResult(l1, NOGO),

lineHasPart(l1, 8: ARNIC...),lineHasFunction(l1, ARNICMESSAGE...),

hasTestDes1(l1, T1DGIO08),hasTestDes2(l1, 080050),hasTestCode(l1, 180215)}

Then A-Box1 can be represented as a graph, as shown in figure 4.7.

Figure 4.6: The extract of the .AR file corresponding to A-Box1.
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Figure 4.7 shows an example of the extract of an .AR file represented as a

graph. The graph represented corresponds to A-Box1. The nodes of the graph

are the individuals, the labels below the nodes correspond to concepts names,

and the edges between the nodes are the relations between the individuals. The

example in figure 4.7 shows a partial representation of the .AR file, where the

TestMain t1 has a single TestLogLine l1 and seven properties.

4.1.3 The Corrective Actions

On the other hand we have the corrective actions. In avionics maintenance

there are multiple types of maintenance actions (repair, cleaning, preventive

maintenance tasks, upgrades, etc) which we call the event of the maintenance

action. From these types of maintenance actions, we have selected the replace-

ments of the components in the ELAC as the actions to be modeled, since these

components have a direct influence in the results of the .AR files. Each ELAC

is a computer composed of several boards (six plus two interface boards), and

each board has hundreds of components of di↵erent types that can be replaced.

Figure 4.8 illustrates the structure of an ELAC and a set of corrective actions,

as extracted from the workshop systems. The actions are divided per SRU (Shop

Replacement Unit), which in our case are each one of the boards in the ELAC.

The types of boards are: POWER MON, MPU ANA, MSP DG, CSP DG, CPU

ANA, POWER COM, LSP and INTER UNIT.

In the sample data in figure 4.8 the corrective action for each file is given

by the board (SRU1 Type), the specific position (repere topo) and the type of

component (SRU1 component) to be replaced. These three elements are necessary

for the technician to identify the replacement. In the example, the corrective

action for file 20094-777-777.AR is to replace components U30 and U44 of type

AMPLI in the board MPU ANA. Therefore an individual corrective action must

denote the board, the position of the component and the type of component to

be replaced. Formally:

Definition 4.1 (Individual corrective action). An individual corrective action

ia is a tuple:

ia = (board, component, type)

where board is the board in the ELAC computer where the replacement takes

place, component is the position of the replaced component and type is the type

of the replaced component.

Each time a repair is needed several such replacements can take place, in

several boards, therefore a complete corrective action is a set of individual

repairs.
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Figure 4.8: The association between the .AR files and the repair actions. From

left to right: the .AR file name, the board, the type of component and the

position of the replaced component. Diagram extracted from ELAC product

specification sheet.

Definition 4.2 (Composed corrective action). A composed corrective action a

is as a set:

a = {ia1, ia2, . . . , ian}

where each ia
i

is an individual corrective action.

For example, the file 20030-777-777.AR, has associated a composed corrective

action a = {ia1, ia2, ia3} where :

ia1 = (MSP DG, U25, EPLD)

ia2 = (MSP DG, U35, RAM)

ia3 = (MSP DG, U36, RAM)

4.1.4 Modeling Corrective Actions in TAMO

The model of the actions is simpler than that of the .AR files, since we consider

a specific type of corrective action (replacement) and the three elements that

identify them: the board, the component position (topo) and the component type.
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The T-Box with the concept names and role names to represent the corrective

actions is shown in figure 4.9.

Figure 4.9: The T-Box to represent the corrective actions: on the top, the concepts

names, on the bottom the role names.

Note that a technician might perform several tasks during the investigations

of the cause of the failure, and might replace suspicious components, which do not

really solve the failure. Thus, if these components were listed in the replacements

that solve the failure, some unrelated replacements would be suggested. The

data we use for training is filtered, and only the root causes for each failure are

taken into account.

The ontology TAMO was designed to provide a generic vocabulary and a

basis for domain specific ontologies. TAMO allows to represent information

about the tests, the corrective actions, the items associated and contextual

information about the maintenance process. Since in our scenario we test a single

equipment family (ELAC) and the interest is focused solely on the test results,

the information about the type of equipment, the operator that ran the test, the

aircraft involved, etc., was not considered a priority 1 and was left as possible

extensions for future work. The ontology in Figure 4.10 shows the sub-part of

TAMO directly related to the tests and actions previously detailed.

1
This information might also be subject to restrictions, like the airplane logs, since they

belong to the client, i.e. the airline.
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4.2 Failure Signatures as Situations in O
In avionics maintenance, the signature of a failure is characterized by the

properties (results, context) of the test files that detect the failure. Thus what we

want to achieve is to extract the relevant properties from the test files, that allow

us to define a failure signature. Such a set of properties, enable us to distinguish

a set of tests files from the rest, and therefore finding these sets of test, provides

the basis to construct a failure signature. Recall that a situation in O, is a set

of individuals that can be described by a DL concept. The sets of individuals

are the sets of tests, and the DL concepts, are the descriptions of the signatures.

Under this perspective, a failure signature defines a situation in O, as presented

in chapter 3. This section formalizes the relation between failure signatures and

situations, and shows how to obtain them.

We start by quoting a definition for the Failure Signature from the Global

Standards for the Microelectronics Industry [JEDEC, 2018]:

The necessary and su�cient information about a failure that estab-

lishes a strong relationship between failure characteristics and failure

mechanism. This necessary and su�cient information can include

emission microscopy results, morphology data, test data, IV-curves,

environmental history, etc. and therefore can be either electrical

or physical in nature. The scope of application can be time-based,

lot-based, package-based, design-based, etc.

Regarding the .AR test files, the information available to define a signature

are all the features of the test: the TestLogLines, the TestCode of each line, the

TestPart and TestFunction to which each line belongs, etc.

The possible ways in which we can combine the properties of the .AR files

grow exponentially with respect to the number of features they present. But

only some of the sets of .AR files we find this way, will indeed represent a failure

signature. Nevertheless, a failure signature necessarily has to be represented by

one or more of these sets of .AR tests. Any such set of .AR tests that can be

described by a DL concept in O defines a situation in O, thus the situations in

O provide the means to define the failure signatures : every failure signature is a

situation. Therefore our problem is reduced to finding situations in O.

Nevertheless, not all the situations in O define a failure signature. Some of

them are too general, in that they do not properly separate a set of files from the

rest, and can be seen as approximations for the signatures. Thus we look for the

more specific description for each situation in O, given by the MSR. The MSR

provides the most detailed DL description for a situation in O. If the situation is

too general, any refinement of the MSR will lead to the discovery of new, more
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specific situations (if they exist). These are the reasons why we search for the

MSR: it provides the most precise characterization for each signature, it allows

us to define the limit of the current situation and enables us to continue the

refinement process. Thus every situation that represents a set of files {f1, . . . , fn}
in O is characterized by its MSR, which we call the signature for {f1, . . . , fn}.
This notion is captured by the following definition:

Definition 4.3 (Signature in O). Given a set of .AR files {f1, . . . , fn} and an

ontology O, the signature S of {f1, . . . , fn} is their MSR.

To illustrate this notion consider example 4.1, where on the left of figure

4.11 we have the graph representation of files f1, f2, f3 and on the right the

corresponding A-Box.

Given the set of individuals � = {f1, f2, f3} the following DL concept defini-

tions are examples of refinements we can obtain using ↵:

S0 ⌘ 9hasTestLine.(9hasTestResult.{NOGO})
S1 ⌘ 9hasTestLine.(9hasTestCode.{1234})
S2 ⌘ 9hasTestLine.(9hasTestCode.{1234} u 9hasTestResult.{NOGO})
S3 ⌘ 9hasTestLine.(9hasTestCode.{1234} u 9hasTestResult.{NOGO}

u9hasTestPart.{Part1})

Each of the above refinements is obtained by ↵(>) guided by f1. The concepts are

selected to show that the refinements become each time more specific, that many

situations can be found guided by one sample, and that for each situation several

di↵erent concepts might exist. When several concepts represent a situation, the

most specific is selected.

From the above concept definitions, we find that S0 = {f1, f2, f3} and

S1,S2,S3 = {f2, f3}, thus these four concepts define two situations in O (i.e.

{f1, f2, f3} and {f2, f3}).The signature for {f1, f2, f3} is S0, but we have three

candidates for the signature of {f2, f3}: S3,S2,S1. Note that S3 v S2 v S1.

Following definition 4.3, we select S3 as the signature for {f2, f3} since it is the

more specific.

The signatures found are added to the KB, so that they can be further used

for consulting. The consulting phase, is detailed in the next section.
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Example 4.1.

Graph A-Box

1234 hasTestCode(l1, 1234)

f1 l1
NOGO hasTestLine(f1, l1), hasTestResult(l1, NOGO)

Part1 hasTestPart(l1, Part1)

1234 hasTestCode(l2, 1234)

f2 l2
NOGO hasTestLine(f2, l2), hasTestResult(l2, NOGO)

l3
Part1 hasTestLogLine(f2, l3), hasTestPart(l2, Part1),

2345 hasTestCode(l3, 2345), hasTestResult(l3, NOGO)

5678 hasTestCode(l4, 5678)

f3 l4
NOGO hasTestLine(f3, l4), hasTestResult(l4, NOGO)

Part2 hasTestPart(l4, Part2)

Figure 4.11: Graph representation and corresponding A-Box for files f1, f2, f3.
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4.3 Obtain suggestions for a new sample (Con-

sult)

A set of samples of the relation between the tests and the actions is given by

an expert. From the technicians experience, we can evidence that for each file,

more than one individual corrective action can take place, and in more than one

board.

Figure 4.12 shows a subset of the samples of the relation between the .AR

files and the corresponding corrective actions:

Figure 4.12: The association between the .AR files and the repair actions. From

left to right: the .AR file, board, type of component, position of component

replaced in SRU1, and in SRU 2.

The relation between files and actions is represented by the set FA of pairs

(f, a), where each f is an .AR file and each a is a composed action. Thus the

actions associated to a specific file f are defined by:

Definition 4.4 (File Actions).

A
f

= {a | (f, a) 2 FA}

As an example consider the set: FA = {(f1, a1), (f2, a2), (f3, a3)}, then

A
f

1

= {a1}.
We can extend this definition in a similar way to obtain the actions of a

signature S .

Definition 4.5 (Signature Actions). Let S = {f1, . . . , fn} be a signature in O,

and let FA be the set correlating files and actions. Then the actions associated

to S are defined by:

AS = {a | (f, a) 2 AF and f 2 S }

Consider again the set: FA = {(f1, a1), (f2, a2), (f3, a3)}, and let S =

{f2, f3}, then AS = {a2, a3}.
When the KB is used to obtain suggestions for a new file f

x

, we first obtain

the most specific signature in O, then we obtain the files already in the KB

85



that belong to this signature, and finally obtain the actions associated to each

file, thanks to the set FA. These actions represent the suggestions for f
x

. These

three steps are detailed in the following.

Let � = {f1, . . . , fn} be the set of all .AR files in O, and assume O has

been enriched (trained) using the refinement process in chapter 3, where all

signatures for a situation in O have been discovered and added to O. Given a new

file f
x

62 �, our task is to find the set ASfx
of actions that can be associated to f

x

.

Step 1: Obtain the most specific signature for an .AR file The file f
x

,

might belong to more than one signature in O, thus we select the most specific

one, since it provides the most detailed description for the failure signature.

Definition 4.6 (Most Specific Signature). Given an .AR file f
x

and an ontology

O that contains learned signatures. Let f
x

2 S1, . . .Sn

be the signatures for f
x

.

A most specific signature for f
x

is defined by:

S
fx = S

i

| 6 9S
j

with S
j

@ S
i

Consider again example 4.1, and let f
x

⌘ f3 (meaning that both files have

exactly the same test results). Then the signatures for f
x

are:

f
x

2 S0,S3

Following definition 4.6, the most specific signature of f
x

(in symbols S
fx
) is

S3.

Step 2: Obtain all the files in KB that belong to the selected signature

Once we have selected the signature for f
x

the second step is to obtain all files

that belong to the signature. That is the files in O that are instances of the

signature. In our example we have:

S
fx

= S3 = {f2, f3}

Step 3: Obtain the actions associated to each file in the signature Once

we obtain the .AR files that belong to the most specific signature S
fx

= {f2, f3}
for f

x

, we use the set FA to obtain its suggestions. Consider again the set:

FA = {(f1, a1), (f2, a2), (f3, a3)}. We have found that S
fx

= {f2, f3}, then
according to definition 4.4 we have ASfx

= {a2, a3}.
Finally, all those corrective actions associated to the signature S

fx
form the

suggestions of file f
x

:

Suggestions
fx

= ASfx

Figure 4.13 illustrates the relations between the files, the signatures and the

actions from example 4.1 in this section.
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S3

� = {f1, f2, f3} (file,action) A� = {a1, a2, a3}

f1 a1

f2 a2

f3 a3

t2

S0 = {f1, f2, f3}
S3 = {f2, f3}
AS

3

= {a2, a3}

AS0

(f1, a1)

(f2, a2)

(f3, a3)

Figure 4.13: Illustration of the relation between signatures, .AR files and correc-

tive actions.

4.4 A more fine-grained KB through feedback

(Feedback)

In this section we detail the acquisition and integration of new information into

the KB, through the technicians feedback. In the previous section, we have shown

how to consult the knowledge base and obtain the suggested actions for a new

.AR file f
x

. After the file is consulted, and the suggestions are proposed to the

technician, an investigations & repair phase follows. During this process, the

technician resolves the failure detected by the .AR file. Once the true corrective

action is known, we can start the next process.

The feedback process has two main tasks:

1. It aims to integrate and validate the feedback from the technician by

recording the true corrective action and associate it to the corresponding

.AR file. In this way it is made available for future consultations.

2. The .AR file in the feedback might contain information not seen before in

the training stage (other properties). The second task of the feedback is to

analyze this new .AR file, in search for new signature descriptions, and, if

found, integrate these descriptions in the knowledge base.

As a result of this process, we obtain a more fine grained ontology and a larger

set of corrective actions that can be suggested. These two tasks are described in

the following.

Integrate the true corrective action This step is simple. The feedback of the

user is given by the consulted .AR file f
x

and the individual corrective actions
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that solved the failure: ia1, ia2, . . . ian. The full composed corrective action a
fx

associated to the .AR file, is the set containing all the individual actions:

a
fx = {ia1, ia2, . . . ian}

This information is added to the KB. Finally the set FA (of files-actions) is

modified to link the file f
x

to the composed corrective action a
fx
, by adding the

pair (f
x

, a
fx
) to FA.

Analyze the new .AR file in search for new signatures Since the signa-

tures discovered in O depend on the .AR file analyzed, it is possible that new

signatures are found following the arrival of a new .AR file. This is the case when

the technician provides the feedback 2. Intuitively, this process is a continuation

of the learning phase, which is ”restarted” from a specific point. The signature

learning process explained previously in this chapter, in section 4.2, requires

to specify: the file to guide the learning, the initial set of tests and the initial

concept to refine. These three parameters are given by:

• Once the new file f
x

is presented to the KB, we obtain the most specific

signature S
fx

for f
x

, where S
fx

is the concept to be refined.

• We obtain all files in S
fx

= {f1, . . . , fn}, and set � = {f1, . . . , fn}. This
is the initial set of individuals for which we want to find sub-signatures.

• The refinement process is guided by f
x

.

2
We do not integrate new files when they are consulted, because the true corrective actions

are not yet known.
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Example 4.2. Assume a new .AR file f4, detailed in figure 4.14, for which we

want to obtain its signature. Continuing example 4.1, if we consult the KB for the

Graph A-Box

7890 hasTestCode(l5, 7890)

f4 l5
NOGO hasTestLine(f4, l5), hasTestResult(l5, NOGO)

Part2 hasTestPart(l5, Part2)

hasTestLine

hasTestCode

hasTestResult

hasTestPart

Figure 4.14: The graph representation and the corresponding A-Box of a new

file f4 presented to the KB for learning.

signature of f4, we find that its most specific signature (out of {S0,S1,S2,S3})
is S0:

S0 ⌘ 9hasTestLine.(9hasTestResult.{NOGO})
And thus :

S
f

4

= S0 = {f1, f2, f3, f4}
Since f4 is a new .AR file, we can use it to search for new signatures. If we

refine the current signature found for f4, we obtain a set of refinements of the

form:

↵
f

4

(S0) = {S 0
1, . . . ,S

0
n

}
One of such refinements, S 0

1, is defined by:

S 0
1 ⌘ 9hasTestLine.(9hasTestResult.{NOGO} u 9hasTestPart.{Part2})

Where the instances of S 0
1 are :

S 0
1 = {f3, f4}

Since S 0
1 is also the MSR for {f3, f4}, we record this new signature in the KB,

making it available for further consultation.

If f4 would be consulted again, its MSR will no longer be S0:

S
f

4

= S 0
1 = {f3, f4}

This example illustrates how new signatures can emerge in the presence of

new samples.
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From the above example, it is clear that new samples might lead to the

discovery of new signatures. This process can go on continuously, and the

resulting KB will become each time more ”fine-grained”, in the sense that

more signatures that capture each time a more specific set of files can be made

available.

We are interested in this evolution, since the more fine grained the knowledge

becomes the more precise the corrective actions related to each signature can be.

The following and final example shows how the more signatures we find,

allows us to minimize the set of corrective actions for the suggestions.

Example 4.3. We are given the set of .AR files � = {f1, f2, f3}, the set of ac-

tions A� = {a1, a2, a3}, the relations between them FA = {(f1, a1), (f2, a2), (f3, a3)}
and a concept that captures all files S0 = �. In time t0 we are presented with

a new file f
x

⌘ f3 (meaning f
x

and f3 have the exact same results) for which

we want to obtain the suggested corrective actions. We find that f
x

2 S0 (since

f
x

⌘ f3) and the associated corrective actions are (a1, a2, a3). This is illustrated

in Figure 4.15. In time t1 we obtain S1 as a refinement of S0. The operator

f
x

⌘ f3 � = {f1, f2, f3} (file,action) A� = {a1, a2, a3}

S0 = � f1 a1

f2 a2

f3 a3

t0

f
x

2 S0

MSC
fx

= S0

AS
0

= {a1, a2, a3}

AS0

(f1, a1)

(f2, a2)

(f3, a3)

Figure 4.15: The state of the KB in time t0.

↵ ensures that S1 ✓ S0 and thus S1 can only contain equal or less elements

than S0. Since the actions associated to each signature depend on the files in

the signature, the suggestions for a refinement S 0 can only be equal or less than

the suggestions of S0. In time t1 we find f
x

2 S0,S1. We select again the

MSR (S1) and thus the suggestions are AS
1

= {a2, a3} (Figure 4.16 ). In t3 the

operator ↵ is applied to S1 and the suggestions for f
x

become AS
2

= {a3}. The
modifications to the knowledge base, the set of actions, and the files in signature

S2 are shown in Figure 4.17.

The next section of this chapter, presents the summary and the conclusions.
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f
x

⌘ f3 � = {f1, f2, f3} (file,action) A� = {a1, a2, a3}

↵(S0) = S1 f1 a1

f2 a2

f3 a3

t1

f
x

2 S0,S1

MSC
fx

= S1

AS
1

= {a2, a3}

AS0

S1
(f1, a1)

(f2, a2)

(f3, a3)

Figure 4.16: The state of the KB in time t1.

f
x

⌘ f3 � = {f1, f2, f3} (file,action) A� = {a1, a2, a3}

↵(S1) = S2 f1 a1

f2 a2

f3 a3

t2

f
x

2 S0,S1,S2

MSC
fx

= S2

AS
2

= {a3}

AS0

S1

S2

(f1, a1)

(f2, a2)

(f3, a3)

Figure 4.17: The state of the KB in time t2.

4.5 Summary

In this chapter we have presented the relation between the approach for situation

discovery introduced in chapter 3 and the problem of approximating failure

signatures stated in the introduction in chapter 1. We have first detailed the

.AR files, their sections, properties and the relevant features that are taken

into account to model them and provide their representation in the ontology,

called Thales Avionics Maintenance Ontology (TAMO). We have next made an

analysis of the corrective actions we are required to provide as suggestions, and

we have similarly established their main features to be considered and modeled.

As explained before, in this work we are focused in the process of diagnosis

and repair of the ELAC equipment in the maintenance workshop. Nevertheless,

the design of TAMO is conceived to provide the basis to model maintenance

for any other equipment, consider more types of tests, more complex corrective
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actions and attach contextual information. This has been left out of the scope

of the thesis, to establish limits for our problem. Nevertheless, for the sake of

completeness, the main concepts and relations related to tests and corrective

actions available in TAMO are also shown in figure 4.10.

With the details on the data sources, the mapping to the ontology concepts,

and the structure of the ontology, we have proceeded to apply situation discovery

to approximate signatures in TAMO, where the .AR tests modeled in TAMO are

sets of individuals, and the signatures are DL descriptions for some of these sets.

By refining the initial concept TestMain from which all .AR files are instances,

we obtain the features that allow us to distinguish between them. These features

tell us what are the elements of the tests results they have in common, expressed

in the language of the ontology. For each set of files that can be described, we

select a single concept (the most specific) as the representative for the signature

of those files. The signature has in consequence associated the corrective actions

corresponding to those files. These actions become, in turn, the suggested actions

for any new file that is classified as belonging to the mentioned signature.

We have seen that there are two main tasks we need to consider when new,

unseen .AR files are presented to the KB: consulting the KB to obtain the

suggestions, and enrich the KB. For the consulting phase, we ask the ontology

what is the most specific signature for the new file, and then the associated

actions become the suggestions for the new file. For the feedback phase, we use

the new .AR file to guide a new refinement process in search for new signatures.

In the next chapter, we specify how these processes (consulting and feedback)

are implemented.
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Chapter 5

Prototype

In this section we present the implementation of the approach, where a prototype

to support avionics maintenance diagnosis has been designed and deployed. To

start we briefly recall the maintenance diagnosis process for the ELAC and detail

some important aspects. Then we explain the origin of the data, the context

in Thales where the implemented prototype takes place, and its requirements.

Next, we present the architecture of the system in a distributed environment

allowing massive data processing and remote access. Then for the two main

functions of the system : consult and feedback, we detail the implemented

procedures and show how the final user interacts with the tool. The prototype

had several versions, to improve its features. These are outlined before turning

to the summary.

5.1 The diagnosis process

This section briefly recalls the diagnosis process for the ELAC equipment and

explains the environment in which the implemented tool is expected to be used.

5.1.1 The Maintenance Procedure

Aviation maintenance is a rich, complex and highly technical domain. As such,

it involves a diversity of locations, companies, services and actors with tight

interaction and interdependence. The diversity of stakeholders and its distributed

nature is reflected on the systems that compose it.

Our approach focuses on the maintenance workshop, whose clients are the

airlines. When an equipment in an aircraft is found faulty, it is removed and

replaced by another unit with the same capabilities. The removed unit is sent to

a workshop, where it has to be diagnosed, repaired and certified.
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Client FrontDesk Technician TestBench

SRU

SRU

SRU

.AR

Investigations

Failure Causes
Repair

Verification

SRU repaired

SRU

Figure 5.1: Sequence diagram for the repair of a SRU (Shop Replacement Unit).

Figure 5.1 illustrates the process: the Client (top left) sends the faulty

equipment, called a Shop Replacement Unit (SRU) to the workshop to be

repaired. The SRU is received in the workshop via the FrontDesk, along with the

cause of removal of the SRU from the aircraft and other contextual information,

like the aircraft type, the status of the systems of the aircraft, etc. The FrontDesk

gathers all this information and creates a Work Order for the equipment. Once

received and registered, the SRU is then transferred to the technician along

with the Work Order, and the technician proceeds to test the equipment in the

Test-Bench to verify if he can detect the same failure detected by the client, and

determine its origin. The Test-Bench outputs the corresponding .AR file (All

Results) with the test results. Out of these tests, a series of investigations take

place (not necessarily by the same technician) to determine the exact failure

causes and the corresponding maintenance actions to return the unit to a fully

functional state. Once the repair process takes place, it has to be verified (again

using the testbench) and if all tests are passed it is certified, returned to the

FrontDesk, and finally returned to the client. All the actions performed by the

technician for repair are filled in a report, and the more relevant parts of this

report (like the list of components replaced and the root cause of the failure)

are registered in a distributed system called ISEDIS.
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5.1.2 The Investigations to Diagnose and Repair an Equip-

ment

The investigations involve many processes and vary from equipment to equipment.

In this section we explain in more detail how the technician uses the results

of the test bench and what resources he has available to determine the failure

causes for an ELAC equipment. This provides an insight on the complexity of the

task, a better understanding of the procedure, and how exactly the implemented

tool is intended to support him.

The investigations start with the analysis of the test results. The Test-Bench

is a station designed to test a series of functions of the equipment and the

results of the tests are presented to the technician as a text file. Each such file

is composed of thousands of lines, where each line tests a specific function of

the equipment. (for an illustration refer to Figure 4.2). The level of the tests is

very low, in the sense that they test a functional chain, that is a specific circuit

inside the equipment. If the circuit is working properly, the corresponding line

in the test presents a result of GO, whereas if the test is not passed, the line

presents a sanction of NOGO. Therefore a test file is composed of thousands of

sub-tests (around 4000 sub-tests) each one with a result of either GO or NOGO.

Once the test results are available (Figure 5.2), the individuals tests (each

line in the .AR file) with the result NOGO provides the technician with the

references to the functional bock involved. The functional block is a logic diagram

of interconnected components. In order to verify if they work properly, their

physical location has to be established. Once the functional block(s) involved

in the failure have been identified, the physical components are identified with

the help of some software tools and/or manuals (Orchestra, Individual Drawing,

CMM). The physical components provide a reference that allows to establish their

physical location in the equipment, thanks to the physical drawings. Through

this process the technician obtains a list of possibly problematic components,

and proceeds to the repair operation. Once the replacements and repairs are

finished, the technician reports in detail his/her actions, which are recorded

in the SAP\ERP 1 system, for reference. The information in the SAP comes

from several sources (WorkShop Order, Maintenance Report) and many of its

fields are in textual form. i.e. they are not structured. From the records in the

SAP module (and other sources) another technician selects the most relevant

information regarding the repair process (main cause, components replaced, etc.)

and feeds the tool for reliability and technical support ISEDIS. The advantage

in ISEDIS is that a bigger part of the information is structured in proper fields

(no longer as plain text).

1
SAP\ERP is an enterprise resource planning software.
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Figure 5.2: The systems and tasks involved in the maintenance process, from

the point of view of the technician.

A limitation found in our case was that there is no direct correlation between

the test obtained from the test-bench and the final report recorded in the ISEDIS

system, that can be automatically exploited. The systems and the procedures are

independent from each other, and thus reliable access to correlate both (the .AR

files and the replaced components listed in ISEDIS) is not explicitly given. The

correlation between the historical data of the tests and the corrective actions

in ISEDIS system had to be ”manually’ established by an expert, and was not

possible in all cases.

Reducing the investigations time, to determine the list of possible faulty

components, is traduced in more e�ciency in the repair process.

5.1.3 The format of the data sources

Regarding the format of the data, the .AR files are presented as plain text, and

thus can be accessed through any standard text editor.

To include an .AR file in the ontology we need to map it to the model defined

by the ontology. We can not do this directly. First the .AR files are parsed into

a structured JSON format, and then a second process creates an OWL version
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of the files, to be used by the ontology.

The JSON format is the preferred format to exchange information between

the modules of our tool. The files representing the ontology, the T-Box, the

A-Box, and intermediary files (temporal representations, discovered knowledge)

are all in OWL2 format. The correlation between the .AR files and the corrective

actions is given as an Excel file.

Finally, a copy of each .AR file consulted using our tool, and their struc-

tured JSON representations, are stored in Cassandra, ensuring we register all

information provided to the system.

5.1.4 The e-Diag initiative

In order to support the technician in diagnosis and maintenance, the e-Diag

(electronic diagnosis) initiative within Thales was launched. e-Diag aims to

provide a knowledge base that allows the technician to obtain suggestions

of the components to be repaired, a visualization tool that allows the easy

physical location of the component and a dysfunctional model, to determine the

mechanism of the failures. Within this context, our approach provides a solution

for constructing and exploiting a knowledge base, to provide repair suggestions.

The e-Diag project forms part of the e↵orts in Thales for digitalization of

the information they already hold in their key market areas, such as avionics.

This digitalization process is aimed to add value to their current procedures and

provide new revenue out of the exploitation of the digitalized information.

5.2 Requirements

The requirements presented in this section are concerned with the expected

interaction of the user with the tool, its input and outputs, and the environment

in which the system should be deployed.

5.2.1 Use Cases

To support the technician in the diagnosis task, two main use cases have been

identified: consult the KB to obtain suggestions, and update/enrich the KB with

new .AR files and corrective actions, which we call the feedback from the user.

Use Case: Consult

The tool should enable the user to provide an .AR file as an input, and

receive the corresponding suggested actions as output. The suggested actions

should be grouped by composed corrective actions, since it is interesting for
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the technician to see when repairs that were made together solved the failure

detected by the .AR file. Additionally for each suggestion, besides the listing of

the components to be replaced, the number of cases seen where this suggestion

is related to the failure have to be displayed. This value is also considered as the

confidence of the suggestion. This use case of the tool is called consulting the

knowledge base and is illustrated in figure 5.3.

Technician TAMO

.AR

Parse file

f

Get signature

S
f

Get actions

A
f

Suggestions

Figure 5.3: Interaction between the end user and TAMO. Case: Consult the

knowledge base.

Use Case: Acquire Feedback

On a second phase, once the technician has obtained the suggestions and made

the repair, he/she has determined the real corrective action (which might di↵er

from the suggested one) and we can update the ontology using this feedback

(figure 5.4) to increase the confidence on the given suggestion, or associate

new corrective actions to failure signatures. The technician is to return to the

tool, and provide the true corrective action for a previously consulted .AR file.

Intuitively, if the suggestion provided when the file was consulted was correct,

the confidence of the given answer should increase. If the suggestion was not

correct, the true corrective action has to be acquired and integrated into the

system. Finally, once the feedback is received, the tool counts with a new .AR

file and its corrective actions. The system should analyze this new .AR file, to

determine if new signatures can be discovered.
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Technician TAMO

.AR + Actions

Acknowledge

Integrate actions

Discover new signatures

S
f

Figure 5.4: Interaction between the end user and TAMO. Case: Acquire users

feedback.

5.2.2 Environment

On both previously described cases, the technician is located in his own workshop.

Many repair workshops may exist. Thus the knowledge base has to be accessible

from all workshops, and should be able to respond to consults and acquire

feedback from technicians in any of these locations. Additionally in a full scale

implementation, the system should be able to handle a large quantity of data

to be consulted. Finally, as the information handled in avionics is sensible and

confidential, the system has to be deployed in a secure environment.

5.3 System Architecture

An overall diagram of the system for consulting the knowledge base is shown in

figure 5.5, where three di↵erent work groups are involved: to the left the end

user in Thales Avionics Workshop (TAV) who accesses the system functions

via the Human Machine Interface (HMI), and two teams to the right in Thales

Research and Technology (TRT). One team is in charge of the distributed

infrastructure and provides the web services that allow the end user to interact

with the knowledge base, and on the far right another work team is in charge of

the development, implementation and monitoring of the learning and reasoning

engine which directly accesses and modifies the knowledge base.
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In figure 5.5 we show the end user (technician) on the left who provides a new

.AR file (test) for which he/she requires a suggestion. The HMI is a web-based

interface, built using HTML and Javascript mainly. The technician uses the

HMI to upload the file, which is received and pre-processed in TRT. The server

in TRT is a Tomcat Server which allows for the Java coded web pages to be

served. The received .AR files, need to be transformed into a structured format

to enable the mapping of the information of the file carried into the ontology.

We have selected JSON as the format to structure the .AR file, because it is a

well known, simple format which can be easily exchanged and exploited through

several applications. Then, a reasoner is used (Hermit/JRDFox) to decide if the

uploaded .AR file is an instance of a known signature, in which case we can

obtain the associated repair actions. Once the analysis is ready, the answer of

the suggested repair actions is returned back to the web services, again in JSON

format. This information is finally returned to the end user via the web service.

The TRT cluster

The distributed system is mounted over a BigData architecture to allow

massive processing and distributed access. The platform is composed of a cluster

of five computers, plus a dedicated server to host the HMI, and the corresponding

proxies and firewalls required by Thales. In this setting, each request from the

HMI to the server in TRT, is associated to a stream of messages managed by

Kafka. Kafka is a messages manager which allows for distributed processing.

Intuitively, each request to the server is considered a message and a list of

messages is maintained by a central manager (broker). Each node in the cluster

is capable of requesting the central manager (broker) a message to process,

and once the processing is finished, the message is erased from the list. This

allows for parallel and distributed processing when the number of messages

are massive. Additionally, each message processed, involves the reception and

processing of an .AR file. The information generated in this process is registered

in Cassandra, which is a database with distributed capabilities. In Cassandra, the

data is distributed among the nodes in the cluster allowing for redundancy and

replication of the data. Redundancy refers to the existence of several nodes in the

system, thus if one node fails, another can continue to perform the required tasks.

Replication involves sharing information so as to ensure consistency between

redundant resources (nodes), this involves the synchronization of the nodes in a

cluster.

101



5.4 Technical specifications

The user interface is designed using HTML (V4) and JavaScript (1.7), and is

fully operational using any up-to-date web browser. In the implementation of

the prototype we have opted for FireFox (V 50 +) as the default browser. It is

to note that, since we are in a controlled and secure environment, the tool is

only accessible using a computer connected to the Thales internal network.

The learning engine of our approach, as well as the web service are imple-

mented in Java (V. 1.7). As reasoners we have used Hermit 1.3.8 and JRDFox

v6.

The system uses Cassandra as the Data Base Management System, and the

web server is provided by TomCat.

5.5 System Functions

In this section we detail the main functions of the system. We start by explaining

the initial setup of the system, and how the sample data was used to construct

a trained knowledge base. Once this knowledge base is available, we show the

implementation of the two main functions of the tool: consulting and feedback.

5.5.1 Access the system - Initial setup

Before deployment, the knowledge base has been trained using our approach and

the available training samples. In this initial setup the descriptions (signatures)

are discovered.

In the first connection to the system, the welcome screen appears. Once

inside the system, the main screen (figure 5.6) provides access to the two main

functions: Upload a file to consult the KB and obtain the suggestions, and

provide feedback for an already consulted file.
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5.5.2 Consult the KB

The main use of the system is to consult the knowledge base to find the failure

signature that best suits an .AR file test, and obtain the suggestions. This process

is detailed in figure 5.7.

In the top left of diagram in figure 5.7 we have the Human-Machine Interface

(HMI) and the preprocessing module. The HMI is an HTML-Javascript based

interface to allow the technician to interact with the system. It connects the

client machine with the web service coded in JAVA, and managed by a tomcat

server. The HMI enables the user to select and upload an .AR file which is then

transmitted to the preprocessing module in the server.

Once the file has been received, it is first parsed to JSON to provide a

structured and shareable representation of the .AR file. The structure of the

parsed file corresponds to the model for the files defined in the ontology. Once

the JSON file is available, a second module maps each entry in the JSON file

to an axiom that can be added to the ontology. This provides with an A-Box

representing the file, stored in OWL format in memory. The DL representation

of the file is represented by f in the diagram. The preprocessing module also

stores in the database (Cassandra) a copy of the file received in both: raw format

and in JSON.

Once f is available, it is transmitted to the classify module, where we use a

reasoner to consult the knowledge base, and obtain all the signatures S known

for f . Then, according to our preference criteria, we select the most specific

signature S
f

of f . Once the signature S
f

is selected, we consult again the

knowledge base to obtain all its instances S
f

= {f1, . . . , fn}, that is all known
files that share the same signature. The output of this module is the selected

signature along with the .AR files that comprise it.

The get suggestions module, consults the historical data in the database, to

retrieve the corrective actions associated to each file in S
f

, thus constructing the

set of corrective actions for the signature. The duplicates are eliminated and the

actions are formatted into JSON. The JSON file containing the suggestions is

returned to the HMI, which decodes the file and provides a visual representation

for the actions.

The next section shows the user interface for the consulting phase.
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HMI

In the consulting phase, first the technician uploads an .AR (All Results) file,

which is the output of the test-bench. Figure 5.8 shows the interface through

which the technician can upload the .AR file.

Figure 5.8: The upload file screen.

The ”CLICK TO SELECT THE .AR FILE” button, opens a pop-up window

to select the file from the desired location (hard disk drive, usb key, etc.). Once

the file is chosen, its name will be displayed on the top of the screen and a

”SEND” button will appear to start the analysis.

Depending on the type of file and the size of the knowledge base, the system

will take between a few seconds (20s) to several minutes (+5m) to analyze the

file, and retrieve the suggested actions. Figure 5.9 shows the suggestions provided

to the technician by the tool.
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Several suggested actions might correspond to a single file. In Figure 5.9

we see that three suggestions were found for this case. Each suggested action

displays:

• Number of suggestions.

• Confidence: the confidence assigned to this particular suggestion to repair

the failure, given by the number of similar cases found.

• Number of positive cases found: How many cases similar to the failure found,

were solved by this corrective action (proportional to the confidence).

• Replacements. These are the components to be replaced, identified by:

their board, location and type.

The consulting phase ends here. The technician may use the suggestions to help

him diagnose and repair the equipment.

5.5.3 Integrate Users Feedback

Once the technicians have made the repair, based or not on the proposition(s)

given by the consult phase, the right corrective action to repair the equipment

is known (which might di↵er from the suggested one). This feedback is used to

increase/decrease the confidence of the given suggestions, add new corrective

actions to the system, and analyzed the consulted .AR file to search for new

signatures. The implementation of this process is detailed in the following.

Figure 5.10 illustrates the process for acquiring the technicians feedback. On

the top left, we have the HMI as in the consulting phase, which enables the user

to select the previously consulted .AR file, to validate the given suggestions.

Since we already treated the file before, we already have a structured (JSON)

version of it and the file does not need to be uploaded again. Once its unique

identifier is selected through the HMI, the preprocessing module, retrieves its

JSON version from the database (Cassandra) and passes it to the OWL parser,

to obtain f , where f is the OWL representation of the .AR file. The file f and

the validated actions are then send to the add module.

In the add module, a first stage is concerned with adding the actions and

the .AR file permanently into the knowledge base and the database, where the

set AF of files-actions is stored.

The corrective action is split into its atomic components, i.e. the individual

corrective actions, and they are added to the database, each one as a pair (file,

actions). Next the file f is permanently added to the knowledge base’s A-Box.

Note that in the consulting phase, we did not add f to the KB, because we didn’t

know the corrective action and thus we could not associate it to any suggestions.
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It should also be noted, that the A-Box of the KB (at the bottom right of

the diagram) is composed of several sub A-Boxes. This is necessary to reduce

the load imposed to the reasoner when querying a large database. The intuition

behind this split A-Box structure is to provide to the reasoner with the minimal

necessary information, so it can provide an answer faster. Because of this, the

add module has to handle to which A-Box it is going to add the current .AR file.

Once the information is stored, a background learning phase takes place,

which no longer involves the user. The learn module receives the new file f and

uses it to discover new signatures. We first obtain the current signature S
f

and all its instances. This is done to avoid to use all files in the analysis. If f

belongs to S
f

and there exists a more specific signature, then this signature can

be found by refining S
f

. We obtain the refinements of S
f

using the operator

↵
f

(S
f

). All signatures found in this process are then added to a separate OWL

file ”New K” which can be seen as an extension of the T-Box in the knowledge

base. This structure allows to separate the original terminology (T-Box) from

the acquired knowledge (New K). Once the signatures learned, they are available

for further consulting.
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HMI

In this section we show and explain the user interface for the feedback process.

Once feedback has been selected in the initial screen (Figure 5.6, the system

displays to the technician a list of all the consulted files, for which the feedback

has not yet been given (figure 5.11), the user must select the correct file, and the

system will show the previously found suggestions, so that the user can validate

them.

The validation screen (figure 5.12) is similar to the one obtained in the

consulting phase, but this time the tool gives the user the chance to validate the

suggestions (meaning the suggested replacement action indeed solved the failure)

or to turn to manual feedback if no proposition was correct. Each proposed

suggestion presents a ”Validate” button, and if none of the suggested actions is

correct, the HMI provides a ”SWITCH TO MANUAL FEEDBACK” button, on

the bottom right of the screen. Manual feedback implies that none of the given

suggestions were correct or that they were not accurate.

If manual feedback is selected (figure 5.13), the user is presented with a form

to fill in the components replaced. For each component replaced he/she must fill

in: the board, the location and the type of each replaced component. Next, an

additional learning phase takes place to search for new signatures that could be

discovered, thanks to the new .AR file. All this process runs in the background

and is transparent to the user.

Finally, either through the automatic or manual feedback, the system will

acknowledge it has properly received the information from the technician with a

”Thank you” message. This ends the feedback phase of the prototype.

111



F
igu

re
5.11:

T
h
e
con

su
lted

fi
les

aw
aitin

g
valid

ation
.

112



F
ig
u
re

5.
12
:
T
h
e
va
li
d
at
io
n
sc
re
en
.

113



F
igu

re
5.13:

T
h
e
m
anu

al
feed

b
ack

screen
.

114



5.6 The di↵erent versions of the prototype

The prototype has passed through a series of iterations in its development which

can be summarized as follows.

• V1 Implements the algorithms and specifications of the approach. Serves

as a proof of concept and to determine the limits of the implementation.

• V2 Improves version one in the amount of data it can handle and in the

time needed for the consulting and feedback phases.

It is important to outline that the resulting trained KB from V1 and V2, follow

the same specification.

5.6.1 Version 1

The first version of the prototype (V1) serves as a proof of concept. This version

takes as input the ontology with an empty A-Box, a set of file samples with their

corresponding actions, and finds the signatures that can be derived from each

sample. This version is mainly intended to: verify that the results are inline with

the specifications of the algorithms, to select and format the output presented to

the end user, and to evaluate the scalability and limits of the solution. E�ciency

at this stage was not a main objective, but instead to evaluate the feasibility of

the implementation and identify its limits. The consultation times under this

version would vary from some seconds up to several (15+) minutes, and the

learning phase of one file could take between 20 minutes up to one day.

5.6.2 Version 2

Out of the tests and usage of the first prototype, we found several important

points to take into account for a better evaluation of the approach. First, we found

that the knowledge base grew very fast with a very small number of .AR files

and that it became challenging for the reasoner to provide answers after ˜20 files

were analyzed. Second, we identified some procedures, like the computation of

the minimal A-Box and the iteration process, which could be optimized. We also

found that it was challenging for the reasoner to handle concept definitions that

involved equivalences within the sub-concepts that conformed it. To overcome

these limitations, the second version (V2) considers the following extensions.

• We have analyzed up to which level we can split the knowledge base, in

order to provide to the reasoner only the amount of information strictly

necessary to perform the computations. Out of this analysis we have split

the ontology in several files. One file contains the original T-Box, another
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file contains the discovered knowledge given by the signatures, and the

A-Box is split in several files, each one containing a limited number of .AR

files. Out of the usage and experiments with version V1, we have found

that a limit for the reasoner arrived when the A-Box reached about 20 000

axioms. Thus the current implementation takes up to 5 .AR files in one

A-Box, before creating a new file. In this manner, we have increased the

limit size of the knowledge base, from 25 files on version one, to 50, 100

and 150 files in version two. An important feature of this division, is that

some of the processes, notably learning and consulting the knowledge base,

can be parallelized up to certain point. Implementing parallel computing

requires high expertise at a conceptual level, at an implementation level

and for the consideration of the underlying architecture of the system, thus

it is out of the scope of this thesis. Nevertheless, the analysis has been

made on the feasibility, and the second version of the prototype opens the

doors for implementing some of these processes in parallel.

• Out of the analysis made in version V1, we have evidenced that the calls

to the reasoner were the most time consuming tasks. We have reduced the

calls to the reasoner where possible in version V2.

• To evaluate whether the limitations for the reasoner were given by the types

of task given, or by the reasoner itself, we have developed two sub-versions

of V2. The first sub-version V.2.1 uses HermiT2 (v. 1.3.8) as the reasoner

and the second sub-version V.2.2 replaces the main calls to the reasoner

with RDFox3, which is a parallel, RDF4 based reasoner, for which Oxford

Labs has provided us with a research license for the experiments.

5.7 Summary

In this chapter we have specified the two main uses of the implemented system:

consult and feedback. We have started by describing the context under which

the diagnosis support tool takes place within Thales, and by describing how the

technician currently analyses, repairs and reports faulty ELAC equipment. These

considerations establish the requirements for the prototype. We have shown the

designed architecture for the system to overcome the distributed access, and to

leverage on BigData architecture, to enable scalability of the system. Within

this context, we have specified the modules that carry on each of the main

functions of the system, along with the interfaces that allow the user to interact

2
http://www.hermit-reasoner.com/

3
http://www.cs.ox.ac.uk/isg/tools/RDFox/

4
Resource Description Framework graphs
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with the tool. In the specification of the modules of the system, it is shown the

correspondence with the definitions and specifications made in Chapter 3 and

Chapter 4, where the approach and its application to our problematic is detailed.

Finally we have provided an insight on the di↵erent versions of the prototype

and the reasons why these versions took place.

This chapter allows not only to establish the characteristics of the prototype,

but enables to appreciate the overall path from the conception of a solution,

through the specification of the background theory and the development of the

necessary algorithms, to the design of a system and its implementation. This chap-

ter closes the gap between conception, formal specification and implementation

of a feasible solution.
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Chapter 6

Evaluation

In this chapter we present the evaluation of the approach through the imple-

mentation of the prototype. It is divided in three sections. Section 6.1 evaluates

the relevance and the number of suggestions proposed by the approach. Our

hypothesis here is that the more fine grained the knowledge base, the more

specific failure signatures1 we can find and therefore we can minimize the number

of suggested corrective actions. Next, in Section 6.2 we provide measurements

and analysis on the e�ciency of the implementation, given by the response times.

In Section 6.3 we compare our approach with DL-learner, which is a similar

tool used to discover concepts. Additionally, in Section ?? we present a survey

designed for user feedback 2.

Finally, in section 6.4 we present a summary of the obtained results and our

conclusions about the experiments.

6.1 Evaluation of the Relevance and the Num-

ber of Suggestions

In this section we evaluate a) how pertinent the suggestions are with respect to

the given sample data, and b) the number of responses obtained using di↵erent

versions of the knowledge base. These experiments aim to test our assumption

that the more files we analyze, the more specific failure signatures we can find

(traduced in minimizing the suggested actions) and the better the results we can

provide (whether the given suggestions suit the problem or not). To this end

we consult several versions of the knowledge base (trained with 25, 50 and 100

samples) and for each version we analyze the proposed suggestions versus the

1
Failure Signatures in defined in chapter5

2
At the moment of the redaction of the thesis this evaluation was ongoing.
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real corrective actions, and the number of suggestions proposed.

6.1.1 Key Performance Indicators

To evaluate the relevance and the number of suggestions, we have defined a

series of key performance indicators detailed in figure 6.1. Our approach aims

to discover failure signatures from a set of given samples, which are later used

to classify new unseen .AR tests. Our assumption is that the more knowledge

that is analysed, the richer the resulting knowledge base, which should traduce

in improving the quality of the discovered failure signatures. The quality of the

discovered signatures is given by the relevance of the associated suggestions, and

the specificity of the signatures.

Figure 6.1: The Key Performance Indicators (KPIs) for e�cacy.

Each signature has associated a set of suggested corrective actions. To

evaluate the relevance of the suggestions, we have established the first two

indicators in table 6.1: Relevance of composed actions, and Relevance of

individual actions. Recall that to return an equipment to a fully functional

state, several component replacements might take place. Each replacement is

called an individual action, and the set of all individual actions required to solve

a failure is called a composed action. Note that a composed action could also be

comprised of a single repair 3. These first two indicators allow to evaluate the

relevance of the suggestions for both cases. We assume that individual corrective

3
Composed and individual actions are defined in chapter 5 The Prototype
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actions are more frequently shared by .AR files than fully composed actions,

which would enable us to provide partial relevant suggestions, when no exact

composed actions can be found. The reason to evaluate both types of answers is

to asses if the rate of relevant suggestions increases when we consider as well the

individual actions.

The last two indicators in table 6.1: Number of files in failure signature

and Number of suggestions per consultation deal with the aspect of how

specific are the discovered signatures. When few information is available, we

expect that the discovered signatures would be too general. That is, too many

files will be associated to such signatures. When a file is consulted, and the

signature found is too general, it means that the knowledge base does not know

a better (more specific) signature for the consulted file. Better in this case is a

signature which is more specific since it should provide less suggestions, and to

which less files should be associated.

Before we introduce the methodology to evaluate these KPIs, let us present

some of the characteristics of the data available for our experiments.

6.1.2 The Characteristics of the Data

The data available for our experiments imposes several challenges. It is relatively

small, when considering the number of samples versus the number of features

the samples have, and when considering the number of possible resolutions

(corrective actions) that exist. We find that most of the files, do not share a

corrective action with another file. This implies that for some failures (and their

failure signatures) at most one sample can be used to learn the corresponding

signature. This fact is one of the factors that motivates an analytical based

learning, in contrast to a frequent pattern or statistical learning process. This

also implies that the prediction that can be achieved by a model based on the

experience of the technicians, reflected in the sample data, can not be 100 percent

accurate: if an expected corrective action is not present in the sample data, it is

not possible for the model to predict that action. Nevertheless, the motivation to

implement a prototype and its evaluation is to show up to which degree a model

based on our approach can provide satisfactory answers (if any), and to estimate

the applicability, benefits and challenges of such systems. These challenges reflect

the complexity of dealing with real data and provide on-filed evaluation of the

prototype.

In the following we highlight the main properties of the data that should be

considered when interpreting the results of the evaluation.

A summary of the information from the .AR files used in the evaluation is

given in figure 6.2 where it can be seen that there are only 15 composed actions
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Figure 6.2: A summary of the properties of the data to evaluate e�cacy. The

table shows a summary of the number of corrective actions (composed and

individual) associated to each file, and the amount of files that share corrective

actions.

that are shared by two or more samples (files). On the other hand, these 15

actions are associated to 45 files.

Any approach that uses this data set, will obtain the suggestions from the

correlated samples in the historical data given by the experts experience.

If the full set of 150 files is divided into a training set and a validation set,

to cross validate a model, a specific suggestion will only be available if the

corresponding file is within the training set. In this setting, from figure 6.2 it can

be seen that since only 45 files share composed actions, the remaining 105 files

(approx 70% of the 150), have no possibility to be given a correct suggestion.

Indeed, for a suggestion to be available, the associated file has to be in the

training set.

To further increase the di�culty of the problem, from the 45 files that do

share a composed action, 20 of them share the action with only one file. And thus

only 25 files share actions with more than one sample, which in turn corresponds

to only 5 corrective actions.

An alternative to overcome these figures is to consider partial corrective

actions (individual actions). Since our goal is to provide suggestions of repair

actions, these suggestions can be completely correct (for which few samples

exist), partially correct or not relevant at all.

If we consider individual actions, as partially correct suggestions, in the sense

that they give a hint or a partial resolution for the failure, these numbers change.
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There are 90 files that share an individual corrective action with another file,

representing 58 individual actions. Thus, we would expect that the number of

relevant suggestions increases if partial suggestions are made available.

To be able to compare the use of composed and individual actions, both are

considered in the evaluation of the relevance of the suggestions.

Our problem has an additional complication: multiple signatures may corre-

spond to multiple actions and di↵erent actions might solve the same test result.

This impacts the meaning of the signatures computed and the learning process.

If we know that for the set of tests {t1, t2, t3, t4} action A1 follows. Then we

would consider these tests as the positive samples of the signature S we are

looking for. Then, the task is to obtain the most specific signature such that

S = {t1, t2, t3, t4}. But we could find that t1 and t2 have one test result, and

t3, t4 have another, and that all of them are still solved by the same action

A1. Therefore we are looking for two signatures S1 and S2 ”hidden” in the

set of samples. Since we can not know this in advance, a strategy needs to be

implemented to consider these cases.

Considering the other direction: when a signature S is solved by multiple

actions A1,A2. We will have two sets of samples {t1, t2} for A1 and {t3, t4} for

A2, thus we will find two signatures S1 and S2. But if all samples belong to

the same signature, it should be the case that S1 ⌘ S2 = {t1, t2, t3, t4}, which
is the intended answer. This property has another implication in the learning

process: the fact that test t3 is not in the set of samples for S1 does not imply

it has a di↵erent signature, and we can not consider t3 as a negative sample

for S1. This is why we do not use negative samples to guide the search.

6.1.3 Methodology

To evaluate our previously defined KPIs, we need to establish how the set of sam-

ples will be used. Cross-validation o↵ers a methodology to select which parts of

the data that will be used for training and which ones for validation. Next, to esti-

mate how well the discovered signatures behave, we defined some metrics over the

defined KPIs. Both, cross-validation and the selected metrics are introduced next.

Cross Validation

When developing a model for classification, the accuracy of the model depends

on the samples that are used for training it. Once the model is trained, its accuracy

can be verified by using a second set of validation data. Out of this validation,

the generalization error can be determined (i.e. how well unseen samples can be

predicted).
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The objective of cross-validation is to estimate the generalization error, and

ultimately minimize it.

Given a set of samples, it is divided in several partitions and some of these

partitions are used as training data while others remain as validation data. In

this way we can estimate the error of the model with respect to the partitions.

It is evident that depending on the selected partition the results may vary, and

thus there are several ways of implementing cross-validation, like k-fold cross

validation and leave-one cross validation [James et al., 2013]. The main di↵er-

ence lies on how the training and validation sets are constructed, and on how

many times/partitions are tested. In this thesis we focus on k-fold cross validation.

k-Fold Cross Validation

In k-fold cross-validation, the original sample set is randomly partitioned into

k equal sized subsamples. A single subsample is retained as the validation data

for testing the model, and the remaining k-1 subsamples are used as training

data. The cross-validation process is then repeated k times, with each of the k

subsamples used exactly once as the validation data. The k results can then be

averaged to produce a single estimation.

Assume we have 100 data points. For k-fold cross validation, these 100 points

are divided into k equal sized and mutually-exclusive folds. For k=10, we might

assign points 1-10 to fold #1 , 11-20 to fold #2, and so on, finishing by assigning

points 91-100 to fold #10. Next, we select one fold to act as the validation set,

and use the remaining k-1 folds to form the training data. For the first run, we

might use points 1-10 as the test set and 11-100 as the training set. The next

run would then use points 11-20 as the validation set and train on points 1-10

plus 21-100, and so forth, until each fold is used once as the validation set.

Metrics

In pattern recognition, information retrieval and binary classification, preci-

sion (also called positive predictive value) is the fraction of relevant instances

among the retrieved instances, while recall (also known as sensitivity) is the

fraction of relevant instances that have been retrieved over the total amount of

relevant instances [Olson and Delen, 2008, Duda et al., 2012]. Both precision and

recall are therefore based on an understanding and measure of relevance, and

are applied to the first two KPIs defined in figure 6.1 (Relevance of composed

actions, and Relevance of individual actions).

These metrics are based on the notions of true/false positives and true/false

negatives. Before presenting how to compute these indicators, we first define
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how the positive and negative samples should be understood in our context.

Definition 6.1 (Positive, Negative, False Positive and False Negative Samples).

Given and .AR file f , a failure signature S , the correct corrective composed

action A
f

for f , and the set of actions ActionsS = {A1, . . . , An

} associated to

S , we say that file f is a:

• True positive (tp) for S , if S is the MSR for f and A
f

2 ActionsS .

• False positive (fp) for S , if S is the MSR for f but A
f

62 ActionsS .

• True Negative (tn) for S , if S is not the MSR for f and A
f

62 ActionsS .

• False negative (fn) for S , if S is not the MSR for f but A
f

2 ActionsS .

Precision is defined by:

P =
tp

tp + fp

Whereas recall is defined by:

R =
tp

tp + fn

The two measures can be used together in the F1 Score (or f-measure) to

provide a single measurement for a system. The f-measure combines precision

and recall as their harmonic mean. It is defined by:

F = 2 · P · R
P+ R

The above measures are defined at the level of the individual signatures in

the knowledge base. In our case, each discovered signature can be seen as a

binary classifier of which an .AR file is or is not an instance, but the tool as a

whole is a system composed of multiple binary classifiers. Once we obtain the

precision and recall for each relevant signature, we need to aggregate them since

we are interested on evaluating the system as a whole. This can be achieved by

the micro and macro average of the precision and the recall. Given n = number

of all signatures we want to evaluate, the Micro Average Precision (MicroAP)

and Micro Average Recall (MicroAR) are defined by:

MicroAP =

P
n

i=1 tpiP
n

i=1 tpi +
P

n

i=1 fpi

MicroAR =

P
n

i=1 tpiP
n

i=1 tpi +
P

n

i=1 fni

Similarly the Macro Average Precision (MacroAP) and Macro Average Recall

(MacroAR) are defined by:

MacroAP =

P
n

i=1 Pi

n

MacroAR =

P
n

i=1 Ri

n
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6.1.4 Experiments

The relevance of the provided suggestions and the specificity of the signatures

found, can be evaluated in di↵erent contexts. First we evaluate how well a model

trained using 100 samples performs (leaving a third of the samples to validate it)

and then we evaluate whether the results improve when more/less information

is used for training.

Thus this section is subdivided in two experiments:

• Relevance and Specificity of the Suggestions For this experiment,

we use cross validation. We partition the set of all samples in several sub

sets, and use each test as a validation set once.

• Evolution of the KB To estimate if the performance increases with the

evolution of the knowledge base, we obtain the KPIs for knowledge bases

of di↵erent sizes (25, 50 and 100 samples).

Experiment 1 - Relevance and Specificity of the Suggestions

In this first experiment, we evaluate the relevance of the returned suggestions

and the specificity of the discovered signatures. For both evaluations we use

k-fold cross validation with a size of k = 3, which represents a third of the

samples. This means that the full set of 150 samples is divided in three partitions

p1, p2 and p3, each one containing 50 .AR files. Each partition is used once as the

validation set, while the other two are used for training the knowledge base. The

size of k is selected considering that there are few samples that share composed

corrective actions (v 30%) and the time necessary to train each knowledge base.

The low rate of shared composed actions means that roughly, 1 out of 3 samples

has a chance to be correctly classified by a model. If we select a partition size

that is too small, it is possible that the validation set contains no classifiable files

(v 70% of files), and if the partition is too big it is possible that all classifiable

files are in the validation set, leaving the training set with only unclassifiable

files.

Using k = 3 provides us with three versions of the knowledge base: KBp

1

[p

2

100 ,

KBp

1

[p

3

100 and KBp

2

[p

3

100 . When the knowledge base KBp

1

[p

2

100 is obtained using

the partitions p1[p2, each file in p3 is consulted against KBp

1

[p

2

100 . For each such

consultation, the file is assigned a signature (given by the MSR). Each signature

has associated a) a set of corrective actions, that represent the suggestions, and

b) a set of files. Under these considerations, when consulting the samples in p3

we analyze:

• Per each file consulted:
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– the number of relevant composed actions suggested vs. the relevant

individual actions suggested, in figure 6.3 ,

– the relevant actions (composed and individual) suggested vs. the total

number of suggestions in figure 6.4, and

– the number of files per suggestion, and number of suggestions, in

figure 6.5.

• Additionally, per each signature found we analyze:

– the precision, recall and f-measure, shown in figure 6.6.

In the following, we provide the results and analysis corresponding to the

knowledge base KBp

1

[p

2

100 , and the aggregate results for the three versions of the

knowledge base. The full results for each version (KBp

2

[p

3

100 and KBp

1

[p

3

100 ) are

available in the Appendix B.

Results of experiment one for KBp

1

[p

2

100

Figure 6.3 shows the number of relevant composed actions and the number

of relevant individual actions for each consulted file in partition p3. Each file

has been consulted against the knowledge base trained with partitions p1 [ p2,

consisting of 100 samples (KBp1+p2
100 ). A correct composed action, means that

one of the suggestions proposed by the tool contains all the individual actions

(replacements) that are required to solve the failure detected by the consulted

.AR file. From the figure, we can see that this is the case only for 2 out of the 50

files in p3. In the analysis made in figure 6.2 we showed that only 30% of the files

have the possibility to be correctly classified if the set of samples is partitioned

into training and validation sets 4 and that only 15 composed corrective actions

are shared by more than one file. Thus assuming a ”lucky” partition where for

each predictable action, we have one sample on the training set, and one sample

in the validation set, at most 22 files could have a correct answer. And this

would only be the case if the model is able to perfectly learn with one sample

only, and if two samples having the same corrective action have the exact same

features. As we have seen, this is not the case (di↵erent samples may have the

same corrective action, and vice versa). This shows the low rate of full correct

answers expected. Nevertheless, in the awareness of these figures, the objective

of these experiments is to show if these estimations really hold, and if the model

can provide valuable suggestions even under these circumstances.

4
Most of the files (70%) are the only representatives for their corresponding composed

corrective action.
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To this purpose, we also consider partially correct suggestions, or correct

individual answers. These are given by the individual replacements in any of the

suggestions, that are inline with the expected results. From figure 6.3 it can be

can seen that the number of partial suggestions is much higher than considering

fully composed corrective actions only. The model has given a partial answer

for 14 out of the 50 files. This partial answer can either be a single replacement

or up to five replacements. This shows that if partial answers are considered,

more relevant information can be provided. This makes sense in the context of

suggested corrective actions, which do not intend to impose a repair, but to give

hints on its resolution.
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Figure 6.4 is built over the same graphic of figure 6.3 but adds the total

number of suggestions. For each file consulted, we first show the total number of

suggestions (corrective actions) found by the tool, and next to it we show the

relevant composed and individual actions suggested. A few files have associated

a large number of suggestions, thus the figure is limited to show only 25 files.

Nevertheless, on top of the total number of suggestions, figure 6.4 shows the

quantity.

Intuitively, if the suggestions are too many (more than 20) it is possible that

among them we find a correct or a partially correct answer, but to determine

which is the correct one the technician would have to test all of them. Thus a

reduced number of suggestions is acceptable and desirable, but more than 20

suggestions is considered useless.

There are two main results to note on this figure: the composed corrective

actions and the individual actions.

With respect to the composed corrective actions, in one case 5 suggestions

were given and in the other case 28, thus we consider the the first case is relevant,

and the second case needs further refinement.

Regarding the individual corrective actions, 8 out the 14 correct partial

suggestions have 20 or more suggestions, and thus only 6 of them are considered

relevant.

Although these numbers are relatively low, one has to bear in mind the small

amount of total samples, the small amount of shared actions between the files,

and the fact that the same type of file can be solved by di↵erent corrective

actions. The figure shows that the correct and partial suggestions can be found by

the approach, and that some of the suggestions may require further refinement,

to make them relevant.
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Figure 6.5 shows the number of files and number of suggestions (composed

corrective actions) associated to each file consulted. This aims to establish how

general or how specific are the signatures found.

The analysis made in Section 6.1.2 and figure 6.2 show that the types of

actions associated to each test (.AR file) are very di↵erent. Most of the files

(70%) have associated a unique corrective action. Thus, intuitively, the number

of files and the number of suggestions provide a measure on how general the

signatures are. We would expect that a very general signature, will capture a

large number of files and that will have a large number of corrective actions

associated, whereas more specific signatures will show these numbers reduced.

From figure 6.2 it can be seen that 10 out of the 50 consultations provided

more than 20 suggestions, thus the remaining 80% of the files had assigned an

acceptable number of suggestions. We can also see that for 31 files the suggestions

are 10 or less. Thus approximately (62%) of the signatures found, are specific

enough.

In figure 6.2 it can be seen that 4 consultations found very general signatures,

with 96 or even 98 files associated (out of 100). Unequivocally these signatures

are too general, in the sense that they do not properly separate a group of .AR

files from the rest. This is as well reflected in the high number of suggestions for

these consultations.

Note however, that the total files associated to each signature found in figure

6.5 has to be interpreted carefully. The fact that a large number of files is

associated to a signature, does not necessarily imply the signature is too general.

It could be the case that we count with many samples which present the exact

same results, and if a proper signature is discovered for these files, all of them

are expected to be associated to the signature. The relation between a large

number of files/actions and the specificity of the signatures, assumed in this

experiment, comes from the previous analysis made in Section 6.1.2 from which

we would expect a large number of files in general signatures.

In conclusion, we can see that with respect to the specificity of the signatures,

the results of the experiment provide desirable signatures.
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Figure 6.6 is divided in two parts. The top section shows the precision, recall

and f-measure for the partial suggestions (individual actions) whereas the bottom

section shows these results for the composed actions.

The 50 files consulted (belonging to partition p3) were assigned to 25 sig-

natures by the knowledge base KBp1+p2
100 . Figure 6.6 shows the recall, precision

and f-measure for each one of these signatures. As we have seen in figure 6.3, 14

out of the 50 files were given a partially correct suggestion. These 14 files are

captured by 9 signatures. This is shown in the top part of figure 6.6, where it can

be seen that 4 of those signatures (2,4,5 and 13) have a precision of 1, meaning

that they capture only .AR files for which the signature has the correct partial

answer associated. We can also see that only one signature (19) has a precision

below 0.5. Thus most of the signatures have good precision. The recall of the

signatures is not so good, but this has to be properly understood. We can see

the recall varies from 0.1 to 0.5, and that it does not get beyond these values. It

is expected that partial answers are shared by several di↵erent signatures. This

implies that di↵erent files, share some partial corrective actions. Because the

files are di↵erent, they should not belong to the same signature. Nevertheless,

given that they share some individual replacements, they are considered as false

negatives: a false negative is a file for which a partial suggestion can be given,

but it does not belong to the signature. This explains the low recall, and shows

that the results are inline with the expected behaviour of the system and the

analyzed data. In this setting, the most relevant metric is the precision, which

is high. Since the recall is low, and the f-measure provides the relation of the

precision and recall, the f-measure is also expected to be low.

On the bottom section of figure 6.6 , we see the same analysis, but this time

for composed corrective actions (full suggestions). As said before, only 2 .AR

files got relevant full suggestions. This is represented by signatures 2 and 24. We

have also seen that only one of them is relevant (6), since the other one (24) is

too general (it captures 31 files and 28 suggestions).

When considering composed corrective actions, the recall is more relevant

(although still there could be files with di↵erent results and exactly the same

correct actions). We can see that the score of signature 6 is perfect, since out

of the 50 files in p3 it captures only 1 file, and no other file in p3 is seen as a

false negative (no other file is expected to be captured by this signature). For

signature 24 it is the contrary, the precision is low (0.25) since it captures 4

files, and 3 of them are not provided a relevant suggestion. The recall is even

lower (0.14), meaning that other files (6) were expected to be captured by the

signature. Both values are reflected in the low value of the f-measure. In short,

the explanation for these low scores is that the signature is too general.
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Macro and Micro Precision and Recall

Let us now provide the analysis of the micro and macro precision and recall

from figure 6.7. The low average micro precision is explained by the fact that

the true positives are always a few (1 to 4) as opposed to several cases where

the false positives can be many times more (8 or 9). Since the micro average

precision puts all these results together, without regard of the signature to which

they belong, the numbers of false positives easily override the number of true

positives. This is similar for the micro average recall.

On the other hand, the macro average precision and recall, take into account

the signatures where the results are obtained from. And thus a ’bad’ performance

of a single signature, will not easily override the good performance of other

signatures. From figure 6.7 it can be seen that with respect to the macro

measures, KBp1+p2
100 has a good precision performance for both, individual and

composed actions, and it has an acceptable recall, for composed actions.

Figure 6.7: Evaluation of the relevance of the suggested actions. On the left:

aggregated results of macro and micro recall, and macro and micro precision.

On the right: the specificity of the discovered failure signatures, given by the

average and median files for all 50 consultations.

The experiments so far, show the relevance of the responses with respect

to one knowledge base KBp1+p2
100 , where we can see the relation between the

specificity of a signature and its score, as well as the usefulness of providing

partial answers. The experiments also show that the results are inline with the

initial analysis of the spare data and its high heterogeneity. Nevertheless, the

selection of the partitions can greatly influence the results obtained.

136



To reduce the bias of selecting one of the partitions (p3) as validation data

instead of any of the other two (p1, p2) we have made the same experiments with

the three versions of the knowledge base. These are included in the Appendix B.

We next present the aggregated analysis of the results of the three versions

available.

Aggregated results of experiment one for KBp

1

[p

2

100 , KBp

2

[p

3

100 and KBp

1

[p

3

100

The results presented so far concern only one of the three versions of the

knowledge base. The objective of cross-validation is to make multiple experiments

in similar conditions with di↵erent partitions of the data set, to estimate how

and if these results vary.

In experiment one, two main aspects of the trained knowledge bases are

evaluated: the relevance of the suggestions and their specificity. For the relevance,

we have provided an analysis of the number of relevant signatures found, and

for each of these, the precision, recall and f-measure were given. Finally, the

average macro and micro precision for the entire knowledge base was calculated

and explained. The next step is to obtain the same measurements for all three

versions of the knowledge base, and compare them.

Figure 6.8 shows, on the top the values of the Micro/Macro Average Precision

and the Micro/Macro Average Recall of the three KB versions. On the bottom,

the figure shows a graphic of such comparison. Each indicator is given for the

individual vs. the composed actions. From figure 6.8 it can be seen that the

micro average precision and the micro average recall are smaller for both types

of suggestions (individual and composed) than their macro versions.

From figure 6.8 it can be seen that in all three versions, the precision is in

general good (>0.5), and is always better when considering individual actions.

A better precision implies less false positives. The graphic shows that when con-

sidering individual actions most of the files captured by the signature are indeed

(partially) related to the signature’s corrective action. In contrast, many files

that share some individual replacements with those proposed by the signature,

are not captured by the signature. This means that they are considered as false

negatives, and thus the recall is lower than the precision.

If we consider only full suggestions (composed actions) as relevant answers,

these figures change. In all three cases, the recall is higher for composed actions,

meaning that most of the files for which the suggestion is relevant are indeed

captured by the signature. This translates in a low rate of false negatives,

increasing the recall. The precision for composed actions is not as high as the

precision for individual actions, but the macro results are, in all three cases,

much better than the micro average ones.
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As the final results for this experiment, figure 6.8 shows the aggregated results

for the specificity of the signatures. We have seen that given the high disparities

between the files in the data set, we can rely on the number of files that belong

to a signature as a measure on how general/specific the signature is. Figure 6.8

shows the average and median number of files captured by each signature, for

all 50 consultations made to each KB. The average value can be influenced by

non frequent but very high results. In figure 6.8 we can see that the average

files is above 20 files per consultation, which is undesirable. On the other hand,

the median provides the middle value over which half of the measurements are

encountered. This is a better estimator for our case (since it is less sensitive to

extreme and rare values) which shows that the median is way below 15 files that

belong to each signature found. These results are promising, since we have seen

the importance and the influence of the specificity of the signatures, and where

having more specific signatures is desirable.

Experiment 2 - Evolution of the KB

This second set of experiments, has the objective of evaluating whether there

exists an improvement in the quality of the knowledge base as more information

is presented to it, and to estimate the evolution of this improvement.

To evaluate the quality of the knowledge base we use two criteria: first,

precision and recall based on the ratio of positive and negative samples of

the signatures found, and second, the average and the median related to the

specificity of the signatures.

Three versions of the knowledge base are constructed: KB25, KB50 and

KB100 using training sets of size 25, 50 and 100, respectively, where each

knowledge base doubles the size of the previous one.

The knowledge base KB100 is selected as the best performing knowledge

base, from the three versions obtained in experiment one (cross-validation). The

best performing version is KBp

1

[p

2

100 . Since our goal is to assess if an evolution

takes place, it does not make sense to take any of the other two versions in

experiment one, as they underperform the former. This selection also provides

us with the evaluation set p3.

The knowledge base KB50 is obtained by randomly selecting 50 files from

KB100, ensuring that no file in KB50 overlaps p3. We do not cross-validate

these sub-versions, because computing many versions of the knowledge base is

expensive (in time and computer resources). Thus this second experiment is

not intended to provide an exhaustive test of all the possible versions of the

knowledge base, but to provide a trend, for which random selection of sub sets

of KB100 is fair.
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The knowledge base KB25 is also obtained by randomly selecting 25 files

from KB100.

An additional motivation for selecting a knowledge base of size 25, comes

from the fact that the first version of the prototype had a limit of around 25 files

for the training and consulting processes (depending on the files presented to the

KB). Above this number, the reasoner would timeout. Thus, this is the bigger

knowledge base we could handle before improving the code. We are interested in

evaluating if improvements on the quality of this KB can be achieved.

The three knowledge bases are consulted using partition p3, which is the

validation set for KB100. That is, all three KBs are consulted the same files.

Results - Evolution of the relevance of the knowledge base

To detail the behaviour of the KB100, KB50 and KB25 we first show the

recall, precision and f-measure for each relevant signature in each knowledge base.

This comparison is shown in figure 6.9. Then, we compare the macro and micro

precision and recall, along with the average number of files, for each version of

the KB. This second comparison is shown in figure 6.10.

We start the analysis of the results in figure 6.9 by the number of signatures

used for the 50 consultations to each KB. From all the signatures each KB

has discovered in the training phase, only some one of them are selected when

consulting a file, ie. the most specific. We can see that for the 50 files consulted

in each case, KB25 has only selected 10 signatures, compared to 21 signatures

selected by KB50 and 25 signatures selected by KB100. Evidently, the more files

used to train a KB, the more signatures it has available. From these, we would

expect that those found by smaller training sets (KB25) are more general than

those found by larger training sets (KB50, KB100).

If we focus on the individual actions (top graphic of each pair of results in

figure 6.9) we can see that for the 50 files, KB25 has been able to classify them

in 5 signatures, whereas KB50 had only selected 4 signatures. Thus it would

seem that KB25 can provide more relevant answers than KB50. Even though

the results from KB25 are very good for its size, its has to be noticed that from

the 10 files that are given a partial suggestion, for half of them (5 files) the

signatures are too general and provide all possible suggestions in KB25. This

is why ”so many” files are provided a ”correct” partial suggestion. This can be

partially seen by the precision, which would be much lower for the ”irrelevant”

signatures, if the size of KB25 would be bigger. In such scenario more undesired

files would belong these signatures, increasing the number of false positives. The

generality of the signatures in each KB will be shown in more detailed in the

evaluation in figure 6.10.
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Figure 6.9: From top to bottom, the comparison of the individual and composed

actions for three versions of the KB: KB25, KB50 and KB100. Each pair of

figures shows the precision, recall and f-measure for the individual (top) and

composed (bottom) actions for a version of the knowledge base. In all figures

the x-axis shows the signatures selected in the 50 consultations.
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The relation between the precision and the number of signatures selected is

more evident in KB100 where it can be seen that most of the partial suggestions

have a high precision, making them relevant. With respect to the full suggestions,

in all cases their scores remain low, this is explained by the analysis made in

figure 6.2 where we have seen that very few files in the full set of samples share

composed corrective actions. This is also true for the individual actions, but they

are more frequently shared than full corrective actions, which is reflected in all

three KBs in that more relevant suggestions are made at this level. Finally, one

should notice that for several files (all those signatures with no score) no relevant

suggestions were found. Regarding this last point, the figures show a tendency

of having each time more relevant suggestions as the KB training sets increase.

Results - Evolution of the specificity of the knowledge base

The aggregated results of the evolution on the relevance of the suggestions

are shown in figure 6.10. Regarding the aggregated precision and recall, we have

seen that the most indicative measure is the macro average precision. We can see

in all cases that this measure performs well, above 0.6 for KB25 and KB100, and

that this value is always higher for individual actions, highlighting the relevance

of providing partial suggestions, and the associated low rate of false positives.

On the other hand, the macro average recall for composed actions performs well

in all cases, and is always higher that its individual actions counterpart. We have

seen that few files share fully composed actions, a higher macro average recall

indicates that when a composed action is detected, most of the files that share

this action are captured by the selected signature.

Finally, on the right of each figure an analysis of the average and median

number of files for each KB is provided. These measurements are slightly di↵er-

ent than those shown in cross-validation, where the average and median were

calculated with respect to the files from each KB. In the evolution analysis, each

KB has a di↵erent set of files and of di↵erent sizes, nevertheless, all of the KB’s

are consulted the same set of files, i.e. p3. Thus the average and median are

calculated with respect to this set, to provide a fair estimation.

From figure 6.10 it can be seen that both, the average and median files

associated to each version of the knowledge base decrease as the size of the

training set grows. In average KB25 associated 4.2 files to each selected signature,

whereas half of the signatures selected by KB100 have associated exactly one file.

This shows that indeed, the more information that is presented to a knowledge

base, the more specific its signatures can be.
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Figure 6.10: Experimentation on the evolution of the KB. The figures show on

the left, the Micro Average Precision, the Micro Average Recall, the Macro

Average Precision and the Macro Average Recall. On the right, the Average and

Median number of files, out of the 50 files consulted. Both types of evaluation

are shown for each version KB25, KB50 and KB100 of the knowledge base.
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6.2 Evaluation of the Response Times and Scal-

ability

The second type of evaluation concerns e�ciency. We evaluate V1 vs V2 of the

prototype to determine the impact of the modifications in the e�ciency. The

limit of the first version (V1) regarding the number of files that could be used in

a single KB was 25 files. The changes made in the second version (V2) allowed

to handle all the files that in the sample dataset (150 files). These experiments

provide an insight on the e�ciency of the implementation and the scalability of

the approach, which is also relevant for systems with similar capabilities.

Objective

The main objective of our work is to provide solid foundations on the

techniques and algorithms used, and then to provide a prototype that serves

as a proof of concept. The prototype is meant to validate the hypothesis, and

help identify the key elements that allow or prevent the approach from being

implemented. The objective in this experiment is to determine such limits. To

this end we evaluate the consulting time between the first and the second version

of the prototype.

In the consulting phase the technician uploads an .AR file and the system

proposes the suggested corrective actions. It is important to determine the

response time, for several reasons: first, there is an evident limit: it should not

take more than the time the technician takes to solve the failure (the technician

can take a up to a few days to determine the failure). Second, consulting a larger

KB should take more time, therefore there is a limit on the amount of information

that can be handled in an acceptable time, and even a limit where no suggestions

can be given, thus the response times allow us to estimate these limits. Finally,

this provides us and the end user with the nominal waiting times for a response.

The user will expect a response in a given interval of time considered normal.

The learning phase is by far the most expensive task, computationally speak-

ing. In the development of the prototype V1, the first tests for learning took

several days (2-6), and the larger the KB became the more time this task required.

In fact this was the main motivation to implement a second version: to overcome

the limits of the KB that can be used.

The first version allowed us to identify key limits to the feasibility of the

approach. These are related to: the number of calls made to the reasoner, the

split of the knowledge base, and avoiding equivalent definitions to be added to

the knowledge base. Version two of the prototype has split the A-Box of the

knowledge base to avoid considering the whole information at the same time, and
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opens the possibility to parallelize consulting the knowledge base. We have also

included check on already learned equivalent signatures or parts of signatures.

These changes have allowed us to learn from more files, but this process is

still slow (we exhaustively analyze 100 files in approximately 7 days). Consulting

the knowledge base, is a sub process of learning, and is the main functionality

of the system (learning can be made o✏ine). Thus this experiment shows the

consulting times for p3 with respect to the above mentioned versions of the

prototype.

The limits on the consulting times, and ultimately the size of the knowledge

base that can be handled impacts the feasibility of a large scale implementation,

and enable us to verify if the changes made have had the desired e↵ect.

6.2.1 Key Performance Indicators

To evaluate the e�ciency of the implementation we evaluate the consulting time,

detailed in figure 6.11

Figure 6.11: Key Performance Indicator for e�ciency.

The consulting response time, is the more visible feature of the system and

assessing the time it takes is important for the implementation and for the

expectations of the end user. Consulting the ontology is also a sub-task of the

learning phase, since each learning cycle requires querying the knowledge base.

Thus improvements in this process improve as well the learning time.

The bigger the knowledge base, the more time consulting it should take.

We would like to evaluate or approximate the limits of this task in the current

implementation. Indeed, the first version of the prototype could only be trained

with up to 25 files, and consulting the knowledge base was in the order of

minutes. This indicator also allows us to assess if the changes made to the first

version of the prototype do impact the performance of the system.
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6.2.2 Experiments

Experiment 3

During the implementation of the first version, which is the more limited, we

evidenced that in both: the consulting phase and the feedback phase, the most

time was invested in calls to the reasoner. To overcome these limitations, the first

version was refined to reduce the reasoner calls and avoid equivalent signature

definitions. This allowed to handle up to 42 files in the learning phase, but this

limit could not be passed using a single knowledge base. This last implementation

of version 1 is used in this experiment. This knowledge base in denoted by KB42.

The second version of the prototype, has divided the A-Box in several

consistent sub-sets, so that each call to the reasoner has to work with a reduced

size of information. When using all the information at the same time (all data

in a single A-Box) in version one, we saw that consulting the KB could take

more than 20 minutes, and in some extreme cases answers wouldn’t be given for

several hours. The second version further reduces the calls to the reasoner, splits

the A-Box and is designed to be used in a server environment. To evaluate the

impact of these changes we show the consult time for each one of the files in p3

against KB42 and KB50 and KB100.

Figure 6.12 gathers the consult times of p3 against KB42, KB50 and KB100,

where KB42 is obtained and consulted with the last implementation of version

one of the prototype, and KB50 and KB100 are obtained and consulted using

version two of the prototype. The background surface represents the consulting

times for KB42, where it is evident that these times are several times longer

than those obtained by KB50 and KB100. The times on the y-axis are shown in

milliseconds, the figure has a limit of 25 000 milliseconds, or 25 seconds. Not

only a more than 50% of these files (29) are above this limit, but 13 files had a

consulting time longer than one minute (60000 ms) of which 9 had a timeout,

where the timeout was set to five minutes. In contrast 90% of the files consulted

for KB100 has a consult time below 5 seconds, with only 5 files above this mark,

where the highest time was 21 seconds. Additionally, one has to bear in mind

that these results are for a knowledge base twice the size of KB42. If we turn

our analysis to KB50 (the smaller surface) we can see that the times for KB100

are almost cut by half. The same files that take more time in KB100 take more

time as well in KB50.
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In this section we have seen the relation between the consulting times, the

size of the knowledge bases and the improvements on the implementation of the

prototype.

These elements are important to estimate the feasibility of the implementation

of the approach. It is not su�cient to establish whether or not the suggestions

can be relevant, but also real processing limits to the proposed solution. Special

attention should be put in the cases where the reasoner timed out, and in the

ability to split the A-Box.

Thanks to these experiments, we have seen that the identified improvements

indeed greatly upgrade the performance of the prototype, in that they reduce

the consulting time and allow to handle bigger knowledge bases. Files that time

out, do not only depend on the size of the consulting knowledge base but as well

on the files complexity, and the equivalences found among the signatures in the

KB, which make the reasoner task harder. This is evidenced by high reduction

of timeouts in the second version. Finally the results show that the limits on

the size of the KB can be further pushed, and the split of the A-Box shows that

implementing parallel processing is worth.

6.3 Comparison with similar Approaches

In this section we compare our tool to a state-of-the-art concept learning tool:

DL-learner. We use both tools to learn concepts from the same training set, and

evaluate the number of suggestions obtained.

Objective

We want to evaluate our approach versus a state of the art concept learning

tool. Our objective is to obtain the amount of suggestions that each tool provides,

to determine which one best minimizes the number of suggestions. Additionally,

as we have imposed a limit on how specific the concepts returned by our tool

(TAMO) should be, this experiment also allows us to asses if this limit is too

low to properly classify the set of samples.

6.3.1 Key Performance Indicators

The indicator for the comparison is the number of suggestions proposed by each

tool. We want to asses if our approach is more successful in minimizing the

proposed suggestions, than those obtained by DL-Learner.
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6.3.2 Methodology

For this experiment we have used DL-learner5, since it is ont of the most complete

and up-to-date tool for concept learning.

DL-Learner is a machine learning tool, designed for supervised learning

over DL-ontologies. It supports an extensive number of parameters, algorithms,

metrics and languages [Lehmann and Hitzler, 2010]. DL-Learner is designed

for supervised machine learning. Thus we argue that it does not exactly suits

our case. Nevertheless, the way it constructs concepts is similar to ours. Thus

we would like to compare how relevant are the concepts found by DL-Learner,

compared to our approach. To enable this comparison, we can regard our training

set as partially-labeled data, and DL-Learner can be used to approximate the sets

(signatures) we are looking for. DL-Learner provides a set of the best n concepts

that describe the samples having a particular corrective action. These concepts

depend on the underlying language, the time allowed to run the tool, the type

of problem (positives only or positives and negatives), etc. In DL-learner, class

expressions that are shorter are preferred.

On the other hand, using our approach in order to find the most specific

class for each failure signature, a limit in the length of the discovered concepts

has been imposed to be up to 35 subconcepts. The experiment also allows us

to determine whether this limit is enough to properly distinguish between the

tests. In other words, we consider up to 35 properties common to all tests to

form a failure signature, and we evaluate if this su�ces to arrange the number

of samples we handle.

Experiment 4

For the sake of clarity, in this section we refer to our approach as TAMO, to

di↵erentiate our results from those obtained with DL-Learner. For this experi-

ment we have selected a random subset of 25 files out of the total files available

(150). For each file, we have obtained the number of corrective actions assigned,

both with DL-learner and TAMO. Both DL-learner and TAMO, were trained

with a set of 50 files, obtained from cross validation, in Section 6.1.

Results TAMO vs DL-Learner

Since our goal is to minimize the number of suggested actions, we want to

evaluate how many actions are proposed by each tool to each file. In Figure

6.13 we show the number of actions returned using the concepts learned by

5
http://dl-learner.org
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DL-Learner and the concepts learned by TAMO, for each of the 25 selected files.

Each file may belong to one or more DL-Learner concepts, and therefore it will

be associated to all the actions those concepts represent. The concepts that are

too general, capture most/all instances. From the figure we can see that most

of the concepts from DL-Learner will associate around 20 actions to each file,

whereas in our case, most of the files are associated to 3 or less actions. There

are also a few cases where we associate more than 30 actions to a file, this is

mostly because those files were not related to the set of files we used, to create

our classes (learning phase).

The low precision of the DL-Learner concepts, can be explained by the fact

that the tests that are solved by the same action might be not only very di↵erent

from each other, but they might not even share anything in common among

them. Given that the underlying language is ELO, no disjunction is allowed

(which would help to capture files that are di↵erent by a single concept), there

is no single representation for all those tests in ELO and DL-learner returned

short but very imprecise concepts.

Figure 6.13: Number of actions suggested for each file. DL-Learner vs. TAMO.

6.4 Summary

In this chapter we have presented the evaluation of the approach, aided by the

implementation of a prototype.

We have provided an analysis on: the relevance and specificity of the signatures

found using cross validation to reduce the bias on the partitions selected. We

have seen that relevant answers can be given using our approach, even under the

high constraint the data impose: high variability and sparse data. We have also
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seen the benefits of considering not only full composed actions as suggestions,

but that considering partial suggestions increases the relevant answers we can

provide. Out of these experiments, we have obtained a performing knowledge

base trained with 100 samples. In a second set of experiments, we tested whether

there is an evolution in the knowledge base, as more information is presented to it.

By evolution we mean the KB is more fine grained, and that its answers are more

precise. We have seen from our experiments with 25, 50 and 100 samples, that

this is indeed the tendency. Then, we have proceeded to evaluate the e�ciency

of the implementation given by the response times. A high-performance system

is not the goal of this thesis, but identifying the main challenges and risks for an

full implementation are of high interest. Thus we have outlined the weak point we

have detected on the several versions of the implementation, provided guidance

on how these could be overcome, and evaluated the chosen improvements given by

the consultation response times. In a final set of experiments, we have compared

the concepts we learn with respect to those learned by a similar tool: DL-Learner.

Even though they are designed for di↵erent tasks, DL-learner could be used to

obtain concepts that approximate the signatures. We have seen that the precision

of the concepts obtained by our approach is better adapted to our needs than

those obtained using DL-learner. Finally, we have provided the designed survey

to obtain the users feedback on the experience of the tool. This last experiment

is ongoing at the moment of the writing of this thesis.
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Chapter 7

Conclusions and Further

Work

In this chapter we summarize the main contents of this thesis and the conclusions

regarding the most relevant features. Finally, we present directions for further

work.

7.1 Conclusions

We have presented an approach to provide concept definitions in DL for those

sets of individuals in an ontology O that can be distinguished between them.

Each one of these sets can be seen as a semantic cluster of individuals, since

for each of them there exists a concept expression (at least one) that describes

the cluster. In this thesis, each concept describing a set of individuals in O is

called a situation. We have provided upper bounds for computing a situation

in O and for computing all situations in O, which are exponential in the size

of the concepts. Nevertheless, these problems become polynomial if the size of

the concept expressions is bound by a constant. Since each set of individuals

can be described by more than one DL concept, we have proposed to prefer the

most specific among them. Thus for each representable set of individuals in O a

single concept representing the set is selected. This concept is called the MSR of

the set. Once these notions are defined, we have provided a sound and complete

algorithm to compute the situations. We have shown how to compute the MSR

for an single individual (which corresponds to its most specific concept), how

to compute the MSR of a set of instances, and we have provided a strategy to

obtain all situations in a set of individuals along with their correspondent MSR’s.

These algorithms allow us to solve the situation discovery problem.
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Our approach for concept discovery can be used to identify ”interesting” sets

of individuals of a given domain, and provide a meaningful description of the

main features shared by the individuals in each such set. The intuition behind

is that, if a set of individuals share some properties expressible in DL, a DL

definition for such a set of individuals can be provided by solving the situation

discovery problem.

In the avionics maintenance domain, the set of individuals to analyze is

the set of .AR files resulting from the Test-Bench, and the situations found

to describe sub-sets of .AR files serve to approximate failure signatures, thus

discovering situations in this specific ontology (TAMO) amounts to discover

failure signatures.

Once the signatures are available, we have shown how they can be used by

a diagnosis support tool. We have specified the context on which such a tool

should be deployed, explaining how the technician currently diagnoses equipment,

which are the resources he/she possesses for the maintenance operation, the

systems involved, and the format and origin of the data sources. Out of this

specification, the requirements of the prototype were established, resulting in

two main functions: a) consult the knowledge base to obtain suggested corrective

actions, and b) integrate the technicians feedback on the proposed suggestions to

enrich the knowledge base. A specification on which results these process should

yield, and how the system was implemented was also given.

As the prototype was implemented, we have evidenced limitations in the

amount of data it could handle, on the speed of the consultation and learning

phases, and constraints on the access and scalability for an industrial implemen-

tation. By reducing the calls to the reasoner, avoiding equivalent definitions in

the knowledge base and more importantly, splitting the A-Box of the ontology,

we have overcome many of these constraints. Besides the modifications made

to improve these processes, the prototype was adapted to be deployed under a

BigData platform, enhancing the scalability since it enables for future implemen-

tation of massive data processing and parallel processing. These improvements

have resulted in a second version of the prototype, which was being evaluated at

the moment of the redaction of this thesis.

Finally, with the implementation of the approach, we have run a series of

experiments that mainly evaluate the relevance of the proposed suggestions and

the specificity of the resulting knowledge base. We have additionally provided

an evaluation of the performance on the two versions of the prototype, given

by the response times when consulting the knowledge base. A final experiment,

compares the signatures found using DL-Learner and our approach.

In the evaluation of the relevance of the approach, we have seen that taking

into account partial suggestions can significantly increase the relevant proposed
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suggestions. Even though for many consulted files, no relevant suggestions were

found, due mostly to the sparse data in the sample set, we have seen that the

quality of the ontology shows an improvement as more knowledge is analyzed.

Moreover, given that the possible suggestions are exponential in the number of

failed tests in an .AR file, the evaluation shows that an implementation of such

a system is able to provide relevant suggestions, and that these would increase

with time.

To conclude, in this thesis we have provided a solution to approximate failure

signatures in avionics maintenance, using an ontology based approach. The work

in this thesis has a multidisciplinary background, since it is directly related to

system diagnosis, knowledge representation and reasoning, machine learning, and

description logics, among others. This broad reach is reflected in the stages and

results detailed throughout the thesis, where we have passed from the conception,

design, implementation, deploying and evaluation of the proposed ideas. This is

also a consequence of the nature of the thesis, which takes place under a CIFRE

convention, involving both: academia and industry.

In research and innovation there exits several levels of maturity of a project,

given by the Technology Readiness Level [Héder, 2017] starting from the very

idea in level 1 to the full industrialization of a product, in level 9. The works

in this thesis, have lead to an ”Initial Gate” approval in TRT, which means

that part of the technology developed in TRT has been transferred to another

entity, in our case Thales Avionics. Thus the work hereby presented involves

levels 1,2,3,4 and 5 of the TRL scale.

Finally, the thesis had lead to several internal (Thales and U-PSud) and

external presentations for the work, the development of a screencast (video

presentation) of the prototype, the proposal for a patent, and a review of the

process involved in maintenance by the experts and technicians involved in the

project.

7.2 Further Work

In the short term, the evaluation of the usability and acceptability of the

prototype is a main objective.

The tool that implements our approach has an impact on the work the

technicians do, and the way they interact with the knowledge base. Their

expectations and the acceptability of such a tool play a very important role

on estimating the feasibility, benefits and risks of stepping into a industrial

implementation.

At the moment of the redaction of this thesis, the last version of the prototype

was implemented and a group of ELAC technicians were granted access to it.
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The evaluation of the usability and acceptability, is a rich field, and we do not

intend to make a full analysis of it in this thesis, nevertheless we have developed,

with the help of colleagues in Thales Avionics, a survey designed to test the

usability and acceptance of the implemented system.

A sample of the designed survey is shown in Figure 7.1.

As future work we envisage the following directions:

• More expressive DLs The current approach is restricted to the ELO
language of DLs. Natural extensions to be considered are to allow the use

of disjunction (t) and negation (¬) as constructors in the DL language.

One implication of allowing disjunction regards the exponential grow on

the number of concepts that have to be explored. Even though this can

be limited when the search is guided by the instances, as in our approach,

the full implications and considerations remain to be studied. The case of

negation is similar, in the sense that to ensure that a negated argument

holds, all the cases where it does not hold have to be explored.

• Parallel Processing The modifications made in the second version of the

prototype, have split the A-Box in several consistent partitions, where each

of these A-Boxes is consulted independently by a sequential process and the

results aggregated in the end. Since the results of each the consultations are

independent from each other, each A-Box can be consulted by a separate

process (i.e. parallel processing) and then the results aggregated to provide

a single consolidated result, in a Map-Reduce fashion.

• Distance between the signatures To the moment, the signatures have

no further relation between them than that of subsumption. A distance

can be defined, with regard to the specific features considered by each

signature, to provide more flexibility on the results. Such a distance would

also allow for individuals that do not belong to a signature, to be closely

related to the signature, which can improve the suggestions provided.

• Model Extension Finally, the model considered in this thesis focuses

on the ELAC equipment, on the replacement of components, and on the

technician’s diagnosis process. The model can be extended to consider

more equipment, more maintenance tasks and more actors involved in the

maintenance process.

All these aspects, remain as further work.
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Appendix A

User Manual

I



e-Diag User Manual 
 

The e-Diag initiative has the goal of supporting diagnosis in avionics maintenance by identifying              
equipment failures and propose suggestions to experts on the corresponding repair actions. The             
prototype is implemented in a distributed environment involving a Thales Avionics Workshop in             
Châtellerault, and the BigData platform in Thales Research and Technology, in Palaiseau, both             
interconnected through a secure VPN (Virtual Private Network).  
 
On the side of the workshop we have the technician that performs the tests of the faulty equipment, and                   
in Thales R&T we count with a cluster of servers that run several web-services, host the database                 
(Cassandra3), the knowledge base (OWL files) and the learning engine (implemented in Java).These             
interactions are illustrated in the following figure: 
 
 

 
 

Before the prototype can be used for consulting, a preliminary phase of training the knowledge base has 
taken place. Once the training is complete, the system is ready to classify unseen tests, to provide 
suggested actions and to enrich its knowledge base through feedback. 
 
This version of the prototype is limited to the ​ELAC ​ (Elevator and Aileron Computer) test results as input, 
and ​component replacements are provided as output. ​. These component replacements are 
characterized by a board, a position and a component type 
  



 

Access the system 
 

The user interface is designed using HTML (V4) and JavaScript (1.7) , and works with any up-to-date web 
browser. We have used FireFox (V 50 +) for the tests.  Nevertheless, since we are in a controlled 
environment, the tool is only accessible using the station placed in the Châtellerault workshop connected 
to the BigData network in TRT.  
 
In the first connection to the system, the welcome screen appears: 
 

 

 

Once inside, the prototype provides two main functionalities: ​consulting​ and ​feedback​. 
 



 

  



 

Consulting the Knowledge Base 
The knowledge base is the ontology designed for the ELAC use case, plus all the types of failures learned 

by the system. We want to consult this knowledge base to find the type of failure that best suits the test 

file being consulted. Once this failure type is identified, we can retrieve the possible corrective actions. 

In the consulting phase, first the technician uploads an .AR (All Results) file, which is the output of the 
test-bench.  
 

 

 

Then, the system provides the user with a pop-up to select the .AR file to analyze from the desired 
location (hard disk drive, usb key, ​etc​.). Once the file chosen, its name will appear on the screen and a 
SEND ​ button will appear to start the analysis. 
 



 

  



 

Depending on the type of file and the size of the knowledge base, the system will take between a few                    
seconds (20s) to several minutes (+10mn) to analyze the file, and retrieve the suggested actions. More                
than one suggestion might be proposed for each consulted file. Each suggested  action is composed of:  
 

● Number of suggestion.First, second, etc. 
● Confidence: the confidence assigned to this particular suggestion to repair the failure. 
● Number of positive cases found: How many cases similar to the failure found, were solved by this                 

corrective action (proportional to the confidence). 
● Replacements: The components: their location and type, to be replaced. 

 

 

 

 

 

The consulting phase ends here. The technician may use the suggestions to help him diagnose 

and repair the equipment. 

  



Feedback 
 

Once the technicians have made the repair, based or not on the proposition(s) given by the consultation                 
phase, the right corrective action to repair the equipment is known (which might differ from the                
suggested one). This feedback is used to increase/decrease the confidence of the given suggestions. The               
system displays to the user a list of all the consulted files, for which the feedback has not yet been given.                     
The user must select the correct file, and the system will show the previously found suggestions, so that                  
the user can validate them. 
 

 

 

This screen is similar to the one obtained in the consulting phase, but this time the tool gives the user the                     

chance to validate the suggestions (meaning the suggested replacement action indeed solved the failure)              

or to turn to manual feedback if no proposition was correct. Manual feedback implied that none of the                  

suggestions were correct or that they were not accurate. 



 

  



If Manual Feedback is selected, the user is presented with a form to fill in the components replaced; for                   
each component replaced he/she must fill in: the board, the location and the type of each replaced                 
component. Since the initial suggestion was not correct, an additional learning phase takes place to               
verify if there exists a new type of failure, and to associate the new corrective actions. All this process                   
runs in the background and is transparent to the user. 
The background learning process analyses the test file, and tries to create a new failure description                
based on the information this new test contains. Once the new failure description is found, it is added to                   
the knowledge based and is made available for the subsequent consultations. 
 

 

Finally, either through the automatic or manual feedback, the system will acknowledge it has properly               

received the information from the technician with a “Thank you” message. This ends the feedback phase                

of the prototype. 
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Appendix B

Experiments Appendix

This appendix presents the results of the cross validation experiments for the

knowledge bases KBp1[p3
100 and KBp2[p3

100 , that were not shown in chapter 6.
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[Baader et al., 2007] Baader, F., Peñaloza, R., and Suntisrivaraporn, B. (2007).

Pinpointing in the description logic el.

XXIII



[Badea and Nienhuys-Cheng, 2000] Badea, L. and Nienhuys-Cheng, S.-H.

(2000). A refinement operator for description logics. In International Confer-

ence on Inductive Logic Programming, pages 40–59. Springer.

[Berners-Lee et al., 2001] Berners-Lee, T., Hendler, J., Lassila, O., et al. (2001).

The semantic web. Scientific american, 284(5):28–37.

[Bühmann and Lehmann, 2012] Bühmann, L. and Lehmann, J. (2012). Uni-

versal owl axiom enrichment for large knowledge bases. In International

Conference on Knowledge Engineering and Knowledge Management, pages

57–71. Springer.

[Bühmann and Lehmann, 2013] Bühmann, L. and Lehmann, J. (2013). Pattern

based knowledge base enrichment. In International Semantic Web Conference,

pages 33–48. Springer.

[C. Insaurralde, 2018] C. Insaurralde, C. (2018). Intelligent autonomy for

aerospace engineering systems. pages 1–10.

[Carlson et al., 2010] Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka,

E. R., and Mitchell, T. M. (2010). Toward an architecture for never-ending

language learning. In Twenty-Fourth AAAI Conference on Artificial Intelli-

gence.

[Cherkassky and Mulier, 2007] Cherkassky, V. and Mulier, F. M. (2007). Learn-

ing from data: concepts, theory, and methods. John Wiley & Sons.

[Chilton et al., 2013] Chilton, L. B., Little, G., Edge, D., Weld, D. S., and Lan-

day, J. A. (2013). Cascade: Crowdsourcing taxonomy creation. In Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems, pages

1999–2008. ACM.

[Cohen and Hirsh, 1994] Cohen, W. W. and Hirsh, H. (1994). Learning the

classic description logic: Theoretical and experimental results. KR, 94:121–

133.

[Consortium et al., 2012] Consortium, W. W. W. et al. (2012). Owl 2 web

ontology language document overview.

[De Kleer and Kurien, 2003] De Kleer, J. and Kurien, J. (2003). Fundamentals

of model-based diagnosis. IFAC Proceedings Volumes, 36(5):25–36.

[Dietz Saldanha et al., 2018] Dietz Saldanha, E.-A., Hölldobler, S., Kencana

Ramli, C. D. P., and Palacios Medinacelli, L. (2018). A core method for the

weak completion semantics with skeptical abduction. Journal of Artificial

Intelligence Research, 63:51–86.

XXIV



[Dittmann et al., 2004] Dittmann, L., Rademacher, T., and Zelewski, S. (2004).

Performing fmea using ontologies. In 18th International Workshop on Quali-

tative Reasoning. Evanston USA, pages 209–216.

[Duda et al., 2012] Duda, R. O., Hart, P. E., and Stork, D. G. (2012). Pattern

classification. John Wiley & Sons.

[Ebrahimipour et al., 2010] Ebrahimipour, V., Rezaie, K., and Shokravi, S.

(2010). An ontology approach to support fmea studies. Expert Systems

with Applications, 37(1):671–677.

[Ebrahimipour and Yacout, 2015] Ebrahimipour, V. and Yacout, S. (2015).

Ontology-based schema to support maintenance knowledge representation

with a case study of a pneumatic valve. IEEE Transactions on Systems, Man,

and Cybernetics: Systems, 45(4):702–712.

[Emmanouilidis et al., 2010] Emmanouilidis, C., Fumagalli, L., Jantunen, E.,

Pistofidis, P., Macchi, M., Garetti, M., et al. (2010). Condition monitor-

ing based on incremental learning and domain ontology for condition-based

maintenance. In 11th International Conference on Advances in Production

Management Systems, APMS.

[Fanizzi and d’Amato, 2007] Fanizzi, N. and d’Amato, C. (2007). A hierarchical

clustering method for semantic knowledge bases. In KES.

[Fanizzi et al., 2008a] Fanizzi, N., d’Amato, C., and Esposito, F. (2008a). Con-

ceptual clustering and its application to concept drift and novelty detection.

In European Semantic Web Conference, pages 318–332. Springer.

[Fanizzi et al., 2008b] Fanizzi, N., d’Amato, C., and Esposito, F. (2008b). Dl-

foil concept learning in description logics. In International Conference on

Inductive Logic Programming, pages 107–121. Springer.

[Fanizzi et al., 2004] Fanizzi, N., Iannone, L., Palmisano, I., and Semeraro, G.

(2004). Concept formation in expressive description logics. In European

Conference on Machine Learning, pages 99–110. Springer.

[Glimm et al., 2017] Glimm, B., Kazakov, Y., and Tran, T.-K. (2017). Ontology

materialization by abstraction refinement in horn shoif. In Thirty-First AAAI

Conference on Artificial Intelligence.

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016).

Deep learning. MIT press.

XXV



[Ha et al., 2012] Ha, Q.-T., Hoang, T.-L.-G., Nguyen, L. A., Nguyen, H. S.,

Sza las, A., and Tran, T.-L. (2012). A bisimulation-based method of concept

learning for knowledge bases in description logics. In Proceedings of the Third

Symposium on Information and Communication Technology, pages 241–249.

ACM.

[Hayes, 1981] Hayes, P. J. (1981). The logic of frames. In Readings in Artificial

Intelligence, pages 451–458. Elsevier.
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knowledge bases inspired by rough set theory. Fundamenta Informaticae,

148(1-2):35–50.

[Olson and Delen, 2008] Olson, D. L. and Delen, D. (2008). Advanced data

mining techniques. Springer Science & Business Media.

XXVIII



[Palacios Medinacelli et al., 2018] Palacios Medinacelli, L., Gaëlle, L., Yue, M.,

and Chantal, R. (2018). Knowledge discovery for avionics maintenance support.

In 2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC), pages

1–8. IEEE.

[Palacios Medinacelli et al., 2016] Palacios Medinacelli, L., Lortal, G., Laudy, C.,

Sannino, C., Simon, L., Fusco, G., Ma, Y., and Reynaud, C. (2016). Avionics

maintenance ontology building for failure diagnosis support. In Proceedings of

the 8th International Joint Conference on Knowledge Discovery, Knowledge

Engineering and Knowledge Management (IC3K 2016), pages 204–209.

[Palacios Medinacelli et al., 2017] Palacios Medinacelli, L., Ma, Y., Lortal, G.,

Laudy, C., and Reynaud, C. (2017). Data driven concept refinement to support

avionics maintenance. In Proceedings of the IJCAI Workshop on Semantic

Machine Learning.

[Pedrycz, 2005] Pedrycz, W. (2005). Knowledge-based clustering: from data to

information granules. John Wiley & Sons.
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Résumé : Dans cette thèse, nous étudions le
problème de l’analyse de signatures de pannes dans
le domaine de la maintenance avionique, afin d’iden-
tifier les défaillances au sein d’équipements en panne
et suggérer des actions correctives permettant de les
réparer. La thèse a été réalisée dans le cadre d’une
convention CIFRE entre Thales Research & Techno-
logy et l’Université Paris-Sud. Les motivations sont
donc à la fois théoriques et industrielles.
Une signature de panne fournit toutes les informations
nécessaires pour identifier, comprendre et réparer
la panne. Son identification doit donc être expli-
cable. Nous proposons une approche à base d’onto-
logies pour modéliser le domaine d’étude, permettant
une interprétation automatisée des tests techniques
réalisés afin d’identifier les pannes et obtenir les ac-
tions correctives associées. Il s’agit d’une approche
d’apprentissage de concepts permettant de découvrir
des concepts représentant les signatures de pannes.
Comme les signatures ne sont pas connues a priori,
un algorithme d’apprentissage automatique non su-

pervisé approxime les définitions des concepts. Les
signatures apprises sont fournies sous forme de
définitions de la logique de description (DL) et ces
définitions servent d’explications. Contrairement aux
techniques courantes d’apprentissage de concepts
conçues pour faire de l’apprentissage supervisé ou
basées sur l’analyse de patterns fréquents au sein
de gros volumes de données, l’approche proposée
adopte une perspective différente. Elle repose sur une
construction bottom-up de l’ontologie. Le processus
d’apprentissage est réalisé via un opérateur de raf-
finement appliqué sur l’espace des expressions de
concepts et le processus est guidé par les données,
c’est-à-dire les individus de l’ontologie. Ainsi, les no-
tions de justifications, de concepts plus spécifiques et
de raffinement de concepts ont été révisés et adaptés
pour correspondre à nos besoins. L’approche a en-
suite été appliquée au problème de la maintenance
avionique. Un prototype a été implémenté et mis en
œuvre au sein de Thales Avionics à titre de preuve
de concept.
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Abstract : In this thesis we explore the problem of
signature analysis in avionics maintenance, to iden-
tify failures in faulty equipment and suggest correc-
tive actions to resolve the failure. The thesis takes
place in the context of a CIFRE convention between
Thales R&T and the Université Paris-Sud, thus it has
both a theoretical and an industrial motivation. The si-
gnature of a failure provides all the information ne-
cessary to understand, identify and ultimately repair a
failure. Thus when identifying the signature of a fai-
lure it is important to make it explainable. We pro-
pose an ontology based approach to model the do-
main, that provides a level of automatic interpretation
of the highly technical tests performed in the equip-
ment. Once the tests can be interpreted, corrective
actions are associated to them. The approach is roo-
ted on concept learning, used to approximate des-
cription logic concepts that represent the failure si-
gnatures. Since these signatures are not known in
advance, we require an unsupervised learning algo-
rithm to compute the approximations. In our approach
the learned signatures are provided as description lo-

gics (DL) definitions which in turn are associated to
a minimal set of axioms in the A-Box. These serve
as explanations for the discovered signatures. Thus
providing a glass-box approach to trace the reasons
on how and why a signature was obtained. Current
concept learning techniques are either designed for
supervised learning problems, or rely on frequent pat-
terns and large amounts of data. We use a different
perspective, and rely on a bottom-up construction of
the ontology. Similarly to other approaches, the lear-
ning process is achieved through a refinement opera-
tor that traverses the space of concept expressions,
but an important difference is that in our algorithms
this search is guided by the information of the indivi-
duals in the ontology. To this end the notions of jus-
tifications in ontologies, most specific concepts and
concept refinements, are revised and adapted to our
needs. The approach is then adapted to the specific
avionics maintenance case in Thales Avionics, where
a prototype has been implemented to test and eva-
luate the approach as a proof of concept.
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