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Abstract

Multiple sclerosis is an inflammatory disorder of the central nervous system. Quantitative MRI
has huge potential to provide intrinsic and normative value to tissue properties useful for diagno-
sis, prognosis and ultimately clinical trials of this disease. However, there is a large discrepancy
between the clinical observations and how the pathology is exhibited on brain scans. Complemen-
tary to brain imaging, the study of MS lesions in the spinal cord has recently gained interest as a
potential marker for the early physical impairment. Therefore, investigating how the spinal cord
is damaged using quantitative imaging, and in particular diffusion MRI, becomes an acute chal-
lenge. Acquiring and processing Diffusion MRI in spinal cord present inherent challenges. Local
differences in magnetic susceptibility between soft tissues, air and bone make the magnetic field
within the spinal cord non-uniform and inhomogeneous. Also, given the small cross-sectional
area of the spinal cord and the lack of visible anatomical landmarks (similar to cortical sulci and
gyri in the brain) to help identification of tracts or spinal cord levels, the characterization of MRI
metrics is difficult.

In our work, we propose several contributions for the processing and statistical analysis of
diffusion MRI data acquired in the spinal cord. First, we do a comparative study of distortion
correction methods for the spine. Second, using a cohort of MS patients and healthy controls, we
study the link between diffusion measures and the presence or absence in a given vertebral level
of lesion, and we show that we can predict the latter with good accuracy with a multivariate linear
learning on the diffusion measures. Last, we show the feasibility of performing longitudinal study
of the evolution of diffusion MRI metrics by performing a reproducibility study using a test-retest
dataset, and apply it to the 2 first timepoints (M0 and M12) of our cohort of patients.

Evaluation of distortion correction methods Various procedures were proposed for correcting
susceptibility distortion in brain data. We focus on the comparative evaluation of these distortion
correction methods for spine imaging using reversed gradient polarity technique on spinal cord.
We propose a novel geometric metrics to measure the alignment of the reconstructed diffusion
model with the apparent centerline of the spine. In the spinal cord white matter, the local dis-
placement of water molecules is mainly aligned with longitudinal fibers, which themselves follow
a path parallel to the centerline of the spinal cord. Therefore, we can expect that the principal
eigenvector of the diffusion tensor is locally aligned tangentially with the centerline of the spine.
However, the susceptibility distortion affects the apparent shape of the spine without altering the
direction of the tensor. This results in a poorer alignment of the diffusion tensor with the spine,
locally. We describe a method to measure how the diffusion tensors and the centerline of spinal
cord align with each other.
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Prediction of lesion using diffusion measures Once diffusion MRI data is preprocessed, we
calculate several diffusion-based metrics depending on the reconstruction method and then extract
average values of these metrics for each vertebral level using an atlas-based approach. From this
data, we study the possibility to predict the presence of multiple sclerosis abnormalities. Diffusion
MRI is sensitive to demyelination and structural changes and provides potentially non-invasive
biomarkers of pathology and lesions in white matter. Statistical analyses were performed to test
the sensitivity of computed metrics to pathology in multiple sclerosis.

Longitudinal evolution of diffusion measures Last, we investigate how diffusion MRI metrics
vary in the different cervical regions with the progression of the disease. We first study the repro-
ducibility of diffusion MRI on healthy volunteers with a test-retest procedure using both standard
diffusion tensor imaging (DTI) and multi-compartment Ball-and-Stick models. Based on the test
re-test quantitative calibration, we provide quantitative figures of pathology evolution between M0
and M12 in the cervical spine, exhibiting how the pathology damage spans in the cervical spinal
cord.
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6 Chapter 1. Introduction

1.1 General context
Magnetic resonance imaging (MRI) is a non-invasive medical imaging technology used for creat-
ing multi-dimensional anatomical and physiological images of the body. MRI offers a powerful
and sensitive technique for characterizing Multiple sclerosis (MS) disease and often provides an
important para-clinical tool for lesion detection, diagnosis and treatment monitoring. MS is an
inflammatory disorder of the central nervous system. Quantitative MRI has huge potential to
provide intrinsic and normative value to tissue properties useful for diagnosis, prognosis and ulti-
mately clinical trials of this disease.

1.2 EMISEP project
EMISEP, Early Spinal Cord Lesions and Late Disability in Relapsing Remitting Multiple Sclerosis
Patients, is a project promoted by the Rennes University Hospital and founded by the French
Ministry of Health (Programme hospitalier de recherche clinique – PHRC). EMISEP project is
investigated principally by the Professor Gilles Edan, PU-PH, Neurologue, CHU Pontchaillou,
Rennes, France. The project is also associated by several investigators: CHU of Bordeaux, Dijon,
Lyon, Marseille, Nancy, Paris, Reims, Strasbourg, Toulouse, as part of the Observatoire Français
de la Sclérose En Plaques (OFSEP). The context of this project is the MS disease which is the most
frequent acquired neurological disease affecting young adults, around 1/1000 people in France,
and leading to impairment. EMISEP focuses on physical impairment and especially on the ability
to walk. Early and well adapted treatment is essential in patients presenting aggressive forms of
MS.

Some studies demonstrated that several factors were likely to announce aggressive develop-
ment of the disease, such as age, number of focal lesions on baseline MRI, and clinical activity.
However, these factors explain partially the physical impairment progression which prevents their
use at the individual level. Spinal cord is often affected in MS. Yet, early radiological depiction
of spinal cord lesions is not always correlated with clinical symptoms. The investigation of a pre-
liminary cervical spinal cord data of reduced number of patients, diffusion MRI or magnetization
transfer, have shown that diffuse spinal cord injury would be correlated with physical impairment
as evaluated by the EDSS score. Besides, the role of early spinal cord affection (first two years)
in the evolution of physical impairment remains unknown. The spinal cord is a clinically com-
mon and eloquent site frequently involved in MS (Wheeler-Kingshott et al., 2014). The EMISEP
project proposes to address these different issues and perform a longitudinal study on Relapsing-
remitting MS (RRMS) patients, recruited in the first year of the disease. The realization of this
project is facilitated by the OFSEP cohort study started in 2011.

The main objective of EMISEP project is to evaluate the potential of focal and diffuse lesions
observed using MRI early in the disease course to predict the physical impairment at 5 years in
RRMS patients. Then as secondary objectives, doing the previous objective on diffuse lesions
only in several centers and comparing focal and diffuse lesions.

1.3 Diffusion MRI of the spine: challenges and application to
patients follow-up in MS

In the context of EMISEP project, the main objective of this PhD thesis is to focus on the dif-
fusion MRI part of EMISEP. Despite advancement is being made, only few research laboratory
in the World are actively studying and investigating human spinal cord imaging (Stroman et al.,
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2014). This can be explained by the specific anatomical arrangement of the spinal cord and the
surrounding structures which limit its accessibility for research (Stroman et al., 2014).

First, acquiring diffusion MRI scan in spinal cord site is especially challenging due to the
presence of various surrounding tissue types: bone, CSF, gray and white matter, muscle, fat and
air. This non-uniform magnetic field environment causes loss of signal intensity and susceptibility
distortion. Secondly, the elongated shape of the spinal cord anatomy requires a large field of view
(FOV) in the superior-inferior direction and its small cross-sectional size requires high spatial
resolution. The third challenge for spinal cord imaging arises from the physiological motion
within the spinal canal (Stroman et al., 2014). Last, diffusion MRI models provide complex data
related to the microstructure, which require adapted statistical analysis.

In our work, we propose several contributions for the processing and statistical analysis of
diffusion MRI data acquired in the spinal cord. First, we do a comparative study of distortion
correction methods for the spine. Second, using a cohort of MS patients and healthy controls,
we study the link between diffusion measures and the presence or absence of lesion in a given
vertebral level and we show that we can predict the latter with good accuracy with a multivariate
linear learning on the diffusion measures. Last, we show the feasibility of performing longitudinal
study of the evolution of diffusion MRI metrics by performing a reproducibility study using a test-
retest dataset, and apply it to the 2 first timepoints (M0 and M12) of our cohort of patients.

1.4 Manuscript organization
In Chapter. 3, we start this manuscript by a state-of-the-art, we first describe MS disease followed
by an overview of human spinal cord anatomy. Then, we introduce the MRI modality from the
spin of hydrogen nuclei to signal recovery and diffusion image reconstruction. We also present
the potential impact of MRI for diagnosis and treatment monitoring in MS as shown in several
studies. Last, we introduce different models of water diffusion estimated from diffusion MRI
sequence which will be useful for the remaining of the manuscript. In particular, we highlight the
strengths and weaknesses of the models selected in the context of our work.

In Chapter. 4, we begin by presenting different methods which were proposed for correcting
susceptibility-induced distortion in brain data. Few attempts and studies in neuroimaging applica-
tions have tailored and incorporated the use of these techniques in spinal cord imaging. We focus
on the comparative evaluation of these distortion correction methods using reversed gradient po-
larity technique on spinal cord. We propose and describe novel geometric metrics to measure the
alignment of the reconstructed diffusion model with the apparent centerline of the spine. We use
these geometric metrics along with comparison with a reference anatomical scan to compare and
evaluate the impact of distortion correction. All steps of work-flow of this study are explained
with details then various tables show Tukey’s test comparison are presented.

In Chapter. 5, we give a critical overview about existing approaches for quantifying diffusion
metrics. Then we present available MRI data, number of healthy volunteers and MS patients,
MRI protocols and quantitative data about MS lesions in these patients. We present the process-
ing pipeline for computing maps of diffusion indices and extracting level- and subject-specific
averages of these indices using atlas-based approach. Last, we show how this data can be used
to predict the presence of multiple sclerosis abnormalities. The sensitivity and specificity of the
proposed lesion detection are evaluated.

In Chapter. 6, we investigate how diffusion MRI metrics vary in the different cervical regions
with the progression of the disease. We first study the reproducibility of diffusion MRI on healthy
volunteers with a test-retest procedure using both standard diffusion tensor imaging (DTI) and
multi-compartment Ball-and-Stick models. Based on the test re-test quantitative calibration, we
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provide quantitative figures of pathology evolution between M0 and M12 in the cervical spine,
exhibiting how the pathology damage spans in the cervical spinal cord. We relate these changes
to clinical and radiological data of the same subjects.

In Chapter. 7, we give the general conclusion of this manuscript, and put the contributions
of our work related to distortion correction and the characterization of MS abnormalities within
cervical spinal cord. We also propose some perspectives.
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2.1 Contexte

2.1.1 Sclérose en plaques

L’imagerie par résonance magnétique (IRM) est une technologie d’imagerie médicale non inva-
sive utilisée pour créer des images multidimensionnelles anatomiques et physiologiques du corps.
L’IRM offre une technique puissante et sensible pour caractériser la maladie de sclérose en plaques
(SEP) et constitue souvent un outil para-clinique important pour la détection, le diagnostic et le
suivi du traitement des lésions. La SEP est une maladie démyélinisante et inflammatoire pertur-
bant le flux d’informations au sein du système nerveux central (SNC) et entre le SNC et le corps
(Hachinski et al., 2006). Le système immunitaire attaque et endommage par erreur la couche qui
recouvre les nerfs, appelée gaine de myéline. Cela perturbe les messages voyageant le long des
nerfs, provoquant divers symptômes. Figure.2.1 illustre un exemple de cellules nerveuses saines
et touchées présentant le statut de gaine de myéline.

Les lésions spécifiques sont déterminées par l’emplacement des lésions dans le SNC et peu-
vent englober une altération de la sensation ou une perte de sensibilité, y compris une difficulté à
marcher, de la fatigue, une sensation de fatigue, une douleur chronique, des problèmes émotion-
nels, une vision floue, des difficultés de pensée, entre autres (Compston and Coles, 2008).

L’IRM quantitative a un potentiel énorme pour conférer une valeur intrinsèque et normative
aux propriétés des tissus utiles au diagnostic, au pronostic et finalement aux essais cliniques de
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Figure 2.1: Exemples illustratifs de cellules nerveuses saines et affectées dans la SEP.

cette maladie. Cependant, il existe un écart important entre les observations cliniques et la manière
dont la pathologie est présentée sur les scanners du cerveau.

Complémentaire à l’imagerie cérébrale, l’étude des lésions de SEP dans la moelle épinière
a récemment suscité l’intérêt comme marqueur potentiel de la déficience physique précoce. Par
conséquent, rechercher la façon dont la moelle épinière est endommagée à l’aide d’une imagerie
quantitative, et en particulier d’une IRM par diffusion, devient un véritable défi. L’acquisition et
le traitement de l’IRM par diffusion dans la moelle épinière présentent des défis inhérents. Les
différences locales de susceptibilité magnétique entre les tissus mous, l’air et les os rendent le
champ magnétique dans la moelle épinière non uniforme et inhomogène. De plus, étant donné
la petite section transversale de la moelle épinière et l’absence de repères anatomiques visibles
(similaires aux sulci corticaux et au gyri dans le cerveau) facilitant l’identification des voies ou
des niveaux de la moelle épinière, il est difficile de caractériser les paramètres d’IRM.

2.1.2 Projet EMISEP
EMISEP est un projet promu par le CHU de Rennes et fondé par le ministère français de la Santé
(PHRC). Le projet est également associé par plusieurs enquêteurs: CHU de Rennes, Bordeaux, Di-
jon, Lyon, Marseille, Nancy, Paris, Reims, Strasbourg, Toulouse, dans le cadre de l’Observatoire
Français de la Clause (OFSEP). Le contexte de ce projet est la maladie SEP, qui est la maladie neu-
rologique acquise la plus fréquente chez les jeunes adultes, environ 1/1 000 personnes en France,
et conduisant à une déficience. EMISEP se concentre sur les déficiences physiques et en partic-
ulier sur la capacité de marcher. Un traitement précoce et bien adapté est essentiel chez les patients
présentant des formes agressives de SEP. L’objectif principal du projet EMISEP est d’évaluer le
potentiel des lésions focales et diffuses observées en utilisant l’IRM au début de l’évolution de
la maladie pour prédire la déficience physique à 5 ans chez les patients atteints de SEP-RR. Puis
comme objectifs secondaires, faire l’objectif précédent sur les lésions diffuses uniquement dans
plusieurs centres et comparer les lésions focales et diffuses.

Dans le cadre du projet EMISEP, l’objectif principal de cette thèse de doctorat est de se con-
centrer sur la partie IRM de diffusion d’EMISEP. Malgré les progrès réalisés, seuls quelques
laboratoires de recherche dans le monde étudient et étudient activement l’imagerie de la moelle
épinière humaine (Stroman et al., 2014). Cela peut s’expliquer par la disposition anatomique
spécifique de la moelle épinière et des structures environnantes, qui limite son accessibilité à la
recherche (Stroman et al., 2014).

Premièrement, l’acquisition de l’IRM par diffusion dans le site de la moelle épinière est parti-
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culièrement difficile en raison de la présence de différents types de tissus environnants: os, LCR,
substance grise et blanche, muscle, graisse et air. Cet environnement de champ magnétique non
uniforme provoque une perte d’intensité du signal et une distorsion de susceptibilité. Deuxième-
ment, la forme allongée de l’anatomie de la moelle épinière nécessite un grand champ de vision
dans la direction supérieure-inférieure et sa petite taille en coupe transversale nécessite une réso-
lution spatiale élevée. Le troisième défi pour l’imagerie de la moelle épinière provient du mou-
vement physiologique dans le canal rachidien (Stroman et al., 2014). Enfin, les modèles d’IRM
par diffusion fournissent des données complexes relatives à la microstructure, qui nécessitent une
analyse statistique adaptée.

2.2 Méthodes
Dans notre travail, nous proposons plusieurs contributions pour le traitement et l’analyse statis-
tique des données de diffusion IRM acquises dans la moelle épinière. Premièrement, nous effec-
tuons une étude comparative des méthodes de correction de distorsion pour la colonne vertébrale.
Deuxièmement, en utilisant une cohorte de patients atteints de sclérose en plaques et de témoins
sains, nous étudions le lien entre les mesures de diffusion et la présence ou l’absence d’un niveau
de lésion vertébral donné, et nous montrons que nous pouvons prédire cette dernière avec une
bonne précision avec un apprentissage linéaire multivarié sur les mesures de diffusion. Enfin, nous
montrons la faisabilité d’une étude longitudinale de l’évolution des métriques IRM de diffusion
en réalisant une étude de reproductibilité à l’aide d’un jeu de données test-retest, et l’appliquons
aux 2 premiers moments (M0 et M12) de notre cohorte de patients.

2.2.1 Evaluation des méthodes de correction de la distorsion
Différentes procédures ont été proposées pour corriger la distorsion de la susceptibilité dans les
données cérébrales. Nous nous concentrons sur l’évaluation comparative de ces méthodes de cor-
rection de distorsion pour l’imagerie de la colonne vertébrale en utilisant une technique de polar-
ité à gradient inversé sur la moelle épinière. Nous proposons une nouvelle métrique géométrique
pour mesurer l’alignement du modèle de diffusion reconstruit avec la ligne centrale apparente de
la colonne vertébrale. Dans la substance blanche de la moelle épinière, le déplacement local des
molécules d’eau est principalement aligné avec les fibres longitudinales, qui suivent elles-mêmes
un chemin parallèle à la ligne médiane de la moelle épinière. Par conséquent, on peut s’attendre
à ce que le vecteur propre principal du tenseur de diffusion soit localement aligné tangentielle-
ment à l’axe de la colonne vertébrale. Cependant, la distorsion de susceptibilité affecte la forme
apparente de la colonne vertébrale sans modifier la direction du tenseur. Cela se traduit par un
alignement plus faible du tenseur de diffusion avec la colonne vertébrale, localement.

Nous nous concentrons sur l’évaluation comparative de 4 méthodes de correction de distor-
sion: Matching (BM) (Hedouin et al., 2017), correction d’artefact de sensibilité hyper-élastique
(HySCO) (Ruthotto et al., 2012), TOPUP (Andersson et al., 2003) et Voss (Voss et al., 2006) .
Dans cette section, nous donnons un aperçu de chacune de ces méthodes.

2.2.2 Prévision de lésion à l’aide de mesures de diffusion
Une fois les données d’IRM de diffusion pré-traitées, nous calculons plusieurs métriques basées
sur la diffusion en fonction de la méthode de reconstruction, puis extrayons les valeurs moyennes
de ces métriques pour chaque niveau vertébral en utilisant une approche basée sur un atlas. À par-
tir de ces données, nous étudions la possibilité de prédire la présence d’anomalies de la sclérose
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en plaques. L’IRM de diffusion est sensible à la démyélinisation et aux changements structurels et
fournit des biomarqueurs potentiellement non invasifs de pathologies et de lésions de la substance
blanche. Des analyses statistiques ont été effectuées pour tester la sensibilité des paramètres cal-
culés à la pathologie de la sclérose en plaques.

2.2.3 Evolution longitudinale des mesures de diffusion
Enfin, nous étudions comment les métriques IRM de diffusion varient dans les différentes régions
cervicales en fonction de l’évolution de la maladie. Nous étudions d’abord la reproductibilité de
l’IRM par diffusion sur des volontaires sains à l’aide d’une procédure test-retest utilisant à la fois
des méthodes classiques d’imagerie par tenseur par diffusion (DTI) et des modèles Ball-and-Stick
à plusieurs compartiments. Sur la base du nouvel étalonnage quantitatif des tests, nous fournissons
des chiffres quantitatifs de l’évolution de la pathologie entre M0 et M12 dans la colonne cervicale,
montrant la portée des dommages causés par la pathologie dans la moelle épinière cervicale.

2.3 Conclusion
Nous avons proposé deux nouvelles métriques géométrie pour étudier et evaluer l’impact de la
correction de distorsion dans l’IRM de diffusion de la moelle épinière. Partant de l’hypothèse que
la distorsion n’affecte que la forme apparente de l’épine dorsale et non la direction du tenseur,
nous avons proposé deux nouvelles statistiques qui tiennent en compte de l’alignement du tenseur
de diffusion sur l’axe central apparent de la moelle épinière. Cette évaluation géométrique a été
réalisée sur 95 acquisitions pour comparer quatre méthodes de correction de distorsion: Block-
Matching (BM) (Hedouin et al., 2017), HySCO (Ruthotto et al., 2012), TOPUP (Andersson et al.,
2003) et Voss (Voss et al., 2006). La fragmentation par niveaux de la colonne montre l’impact
différent de la distorsion entre les bords (C1, C2, T1, T2) et le centre (C3, C4) de la fenêtre
d’acquisition. Cette évaluation locale fournit une mesure de performance complémentaire à la
comparaison classique avec une image anatomique de référence.

Nous avons aussi proposé un pipeline pour extraire les mesures dMRI moyennes par niveau
vertébral dans la moelle épinière et nous avons effectué une analyse statistique pour montrer leur
sensibilité associée à la présence et à l’évolution des lésions de SEP dans le même niveau vertébral.
Les mesures de diffusion impliquées sont extraites des modèles du tenseur de diffusion et des
modèles à boule. Nous montrons que FWW, Stick-AD, FA, MD et DR présentent une différence
significative entre les volontaires en bonne santé et les patients atteints de SEP dans la région [C2-
C4] de la moelle épinière cervicale. En ce qui concerne FA, MD et RD, d’autres études portant sur
la moelle épinière ont déjà été montrées (Valsasina et al., 2005; ?; ?; ?). Notre travail comporte
de nombreux ajouts à d’autres études portant sur la moelle épinière; des données relativement
volumineuses, neuf évaluateurs, radiologues et lecteurs expérimentés, décrivant les lésions seg-
mentaires sous MS, quantification des mesures de diffusion à l’aide d’une approche atlas exempte
de biais de délinéation manuelle et lors de l’extraction métrique, un effet volume partiel est pris
en compte, ainsi qu’un contrôle de qualité pipeline afin de garantir une bonne qualité de l’analyse
et l’exactitude des résultats. Nous montrons que le modèle à plusieurs compartiments B & S peut
fournir de nouvelles informations sur l’évolution de la microstructure tissulaire chez les patients
atteints de SEP et doit être inclus dans le processus de traitement et le protocole clinique.

En outre, une autre contribution importante est la manière dont nous avons proposé, l’apprentissage
multivarié, d’utiliser les données de diffusion IRM pour détecter automatiquement la présence
d’une lésion MS. Sur la base d’une sélection de métriques extraites de la diffusion, nous avons ap-
pris un classifieur linéaire à l’aide d’une analyse discriminante linéaire (LDA) et nous avons réduit
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la dimension du vecteur de caractéristiques à l’aide de deux stratégies différentes. (1) sélection-
ner manuellement un ensemble de mesures avec une corrélation croisée limitée, (2) effectuer une
analyse en composantes principales (APC), puis apprendre un classifieur linéaire sur l’ensemble
réduit d’APC, les deux premiers composants expliquant plus de 65% du la variance. Tout au
long de ces stratégies, nous avons évalué les résultats de la classification en utilisant l’aire sous
la courbe (AUC) de la courbe de fonctionnement du récepteur (ROC). Nous avons constaté que
la combinaison de certaines métriques permet d’atteindre le score de prédiction d’une telle lésion
MS et est plus performante que l’utilisation indépendante de chaque métrique. Nous avons mon-
tré qu’une combinaison de 3 mesures [FA, MD, DR] et d’une combinaison de 4 mesures [FWW,
MD, Stick-AD, RD] donne le meilleur score AUC ROC entre les volontaires en bonne santé et les
patients MS atteints de lésion. Ainsi, le choix d’un sous-ensemble de métriques qui apportent des
informations complémentaires a considérablement augmenté le score de prédiction de la présence
de cette maladie.
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3.1 General context

3.1.1 Multiple Sclerosis
Multiple sclerosis (MS) is a demyelinating and inflammatory disease disrupting the flow of infor-
mation within the central nervous system (CNS) and between CNS and the body (Hachinski et al.,
2006). The immune system attacks and damages mistakenly the layer that covers the nerves, called
the myelin sheath. This disrupts messages traveling along the nerves causing various symptoms.
The specific ones are determined by the locations of the lesions within CNS, and may enclose
alteration in sensation or loss of sensitivity including difficulty walking, fatigue, feeling tired,
chronic pain, emotional problems, blurred vision, difficulties thinking, among others (Compston
and Coles, 2008). For the spinal cord specifically, symptoms are weakness, bladder dysfunction,
erectile impotence, constipation, stiffness and painful spasms (Compston and Coles, 2008). The
main method for quantifying disability and severity in MS is the Kurtzke Expanded Disability
Status Scale (EDSS). EDSS is based on a neurological examination by a clinician assessed by
assigning a score to 8 functional systems such as sensory and visual (Kurtzke, 1983).

MS disease is characterized by 3 main features which interact in a complex way; formation
of MS lesions in CNS, inflammation, and the destruction of myelin sheaths of neurons. MS
lesions in CNS may affect white matter (WM) in the brain stem, the optic nerve and the spinal
cord. The peripheral nervous system is also infrequently involved. The role of WM is to carry
signals between cortical areas, deep gray matter and the rest of the body. Specifically, MS involves
the loss of oligodendrocytes which provides insulation and support to axons in CNS by creating
the myelin sheath. Depending on the disease progress, the neuron becomes unable to conduct
electrical signals as a result of a partially or completely loss of myelin (Compston and Coles,
2008). Figure.3.1 illustrates an example of healthy and affected nerve cells with the status of
myelin sheath.

Figure 3.1: Illustrative examples of healthy and affected nerve cells in MS. Image source pemf-tech.com

Inflammation is another sign of the MS disease caused by T cells. These cells have an im-
portant function in the body’s defense. T cells can penetrate into the CNS via disruptions in the
blood-brain barrier (BBB) and attack myelin. BBB is responsible of preventing the penetration of
T cells into the CNS; it may become permeable in case of an infection by a virus or a bacteria.

This behavior of the immune system is still the topic of active research; the cause and the
etiology of MS are still unknown. But scientists believe in a combination of genetic, epigenetic,
environmental and lifestyle factors (Muñoz-Culla et al., 2013). Today more than 2.3 million
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people around the world are affected by this disease (Vos et al., 2016). MS patients are mostly
in countries further away from the equator, and as shown in Figure.3.2, it is more widespread
and common in northern Europe (Inglese and Bester, 2010; Koriem, 2016). The origin of this
geographical variation and pattern are not yet understood. Some theory attempts tried to combine
the data of MS patients into probable explanations, but none has proved definitive. For example,
decreased vitamin D production as a result of low sunlight exposure (Koch et al., 2013) and
the season of birth which is more mostly in May comparing to November (Kulie et al., 2009).
Vaccinations and smoking were studied as risk factor but no association was shown (Marrie, 2004;
Ascherio and Munger, 2007).

Figure 3.2: Geography of multiple sclerosis: The world map is represented to indicate regions with low
prevalence of MS (blue), medium prevalence (orange), high prevalence (red), and absence of regions means
the lack of information. The variation of colors is to show the geographical trends. Arrows shows the
important migration between low-risk and high-risk zones. Image source: (Compston and Coles, 2008).

Currently, there is no available cure for MS (Hachinski et al., 2006). Existing treatments
attempt to ameliorate the situation of MS patients, to help control and to prevent the appearance
of new disability or attacks. MS is diagnosed in conjunction with the apparition of specific signs
and symptoms and using medical imaging and laboratory testing. Some times, it is diffcult to
confirm MS disease regarding the similarity of those signs and symptoms with other diseases. The
McDonald criteria is mainly used in diagnosis (Organization et al., 2008). Actually, the National
Multiple Sclerosis Society 1 and the Multiple Sclerosis International Federation 2 describe four
types or pattern of progression of MS :

• Clinically isolated syndrome (CIS)

• Relapsing-remitting MS (RRMS)

• Primary progressive MS (PPMS)

• Secondary progressive MS (SPMS)

These patterns are characterized by different longitudinal progression of the disease, as depicted
on Figure.3.3.

1https://www.nationalmssociety.org/
2https://www.msif.org/

https://www.nationalmssociety.org/
https://www.msif.org/
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Figure 3.3: Graphics shows the kinds of disease activity that can occur in PPMS, RRMS and SPMS over
time. Image source: www.nationalmssociety.org.

3.1.2 Magnetic resonance imaging (MRI)

Magnetic resonance imaging (MRI) is a non-invasive medical imaging technology used for creat-
ing multi-dimensional anatomical and physiological images of the body. MRI is a medical appli-
cation of a physical phenomenon known as nuclear magnetic resonance (NMR). The MR scanner
excites protons (hydrogen atoms) in water molecule naturally present in the human body using a
strong magnetic field and radio-frequency excitation, then measures their response to this excita-
tion. As MRI doesn’t use damaging radiation, it is considered non-invasive and can be performed
on the CNS, including brain and spinal cord.

MRI offers a powerful and sensitive technique for characterizing MS and provides an impor-
tant para-clinical tool for lesion detection and treatment monitoring. MRI is now integrated into
the McDonald criteria for diagnosis. However, according to the National Multiple Sclerosis Soci-
ety, about 5% of MS patients have normal MRI, without lesions, when the disease is diagnosed.

Figure 3.4: Approximatif image: An operator uses the control console to perform a scan on a patient using
Magnetic resonance imaging (MRI) scanner.

Structural (or conventional) MRI, a category of MRI scan, provides a 3D image with a typical
resolution of 1mm, where anatomical structures are visible via T1- or T2-weighted contrast, to
emphasize contrast between cerebrospinal fluid, gray and white matter. These different contrast
are obtained with specific sequences and sets of parameters such as repetition time (TR) and echo
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time (TE). This category of MRI is increasingly used and integrated into the clinical routine as a
new criteria for the diagnosis of MS. It has a huge impact on this disease by enabling an earlier
diagnosis. However, despite its growing role in scientific and clinical investigation of MS, this
type of MRI shows poor associations with histological information and/or clinical disability of
the MS patient. In addition, it has been shown in (Miller et al., 1998; Filippi and Grossman, 2002;
Rovaris et al., 2006) that some regions in white matter appear normal using conventional MRI
while they are involved in MS process. Conventional MRI has low specificity with MS pathology
and low sensitivity to diffuse tissue injury in normal-appearing white matter (NAWM).

In contrast, quantitative MRI (qMRI) has shown a huge potential to provide intrinsic and
normative value to tissue properties useful for diagnosis, prognosis and ultimately clinical trials
in MS. MS has benefited mostly from advanced quantitative spinal cord MRI such as functional
MRI (fMRI), magnetization transfer ratio (MTR) and diffusion MRI (dMRI) (Agosta et al., 2007a;
Inglese and Bester, 2010; Abdel-Aziz and Ciccarelli, 2014). The qMRI techniques commonly
used for spinal cord are:

Diffusion MRI (dMRI) is sensitive to microstructural tissue damage, including axonal orienta-
tion and demyelination.

Magnetization transfer ratio (MTR) imaging provides information on the structural integrity
of the spinal cord and is most often used to derive information regarding myelination status.

Spinal functional MRI (fMRI) has been used to produce high spatial resolution maps of neu-
ronal activity at vertebral levels in response to various stimuli by detecting associated changes
in blood flow.

3.1.3 The human spinal cord imaging
CNS consists principally of the brain and the spinal cord which is continuous with the brain and
protected by the vertebrae. The spinal cord possesses a thin, long, tubular and mobile structure.
It extends from the brain stem to the lumbar region of the vertebral column. According to the
surrounding vertebrae, the spinal cord is divided from head to foot into: cervical part [C1 - C7],
thoracic part [T1 - T12], lumbar part [L1 - L5], sacral part and coccyx part as illustrated in Fig-
ure.3.5. Along its length, the spinal cord varies in width, ranging from 13 mm thickness in the
cervical and lumbar parts to 6.4 mm thickness in thoracical part. The average length of the spine
is about 45 cm for adults men and around 43 cm for adults women (Goto and Otsuka, 1997; Stro-
man et al., 2014). In axial view, the spinal cord has an elliptical form. It is protected by the bony
structures of the vertebral column and is located inside the vertebral canal. The gray matter (GM)
has a butterfly form and located in center of the spinal cord around central canal which contains
cerebrospinal fluid (CSF). GM is composed by nerve cell bodies and surrounding by a peripheral
region that contains neuronal white matter (WM) tracts. Figure.3.5 presents a model labeled of a
cross-section of the spinal cord.

CNS coordinates human actions by transmitting signals to and from CNS and the peripheral
nervous system (PNS). As a part of the CNS, the spinal cord is the main pathway that connects
the brain to PNS. Spinal cord controls the transmission and the reception of nerve signals from
the motor cortex to the body, and from the afferent fibers to the sensory cortex.The spinal cord
contains the motor neurons which controls both voluntary and reflex movements such as walking.

The spinal cord is a clinically common and eloquent site frequently involved in MS. Spinal
cord lesions in MS patients are frequent in the cervical part, restricted to two vertebral levels in
length, fill less than half of the cross sectional area of the spinal cord and are generally peripheral
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Figure 3.5: Illustration of the anatomy of the human spinal cord. Axial view (left) and lateral view (right)
of spinal cord. Images source: www.courses.lumenlearning.com and www.bey-om-sin.com

(Wheeler-Kingshott et al., 2014). However, contrary to the brain, there are few studies and non-
invasive investigation to enhance our understanding of human spinal cord function affected by
MS.

Relatively few research laboratory in the world are actively studying and investigating spinal
cord imaging (Stroman et al., 2014). This can be explained by the specific anatomical arrange-
ment of the spinal cord and the surrounding structures which limits its accessibility for research
(Stroman et al., 2014). Firstly, acquiring MRI scan in spinal cord site is especially challenging due
to the presence of various surrounding tissue types: bone, CSF, gray and white matter, muscle, fat
and air. This non-uniform environment causes loss of signal intensity and susceptibility-induced
distortion. Secondly, the elongated shape of the spinal cord anatomy requires a large field of view
(FOV) in the superior-inferior direction and its small cross-sectional size requires high spatial res-
olution. The third challenge for spinal cord imaging arises from the physiological motion within
the spinal canal (Stroman et al., 2014).

The prevalence of spinal cord abnormalities in MS patients is about 74-85% and can reach up
to 90% of patients with definite MS. This range is explained by differences in the imaging tech-
nique, clinical analysis and the MS patients group. For patients with clinically isolated syndrome
(CIS), the ratio is around 30-40% (Lycklama et al., 2003; Wheeler-Kingshott et al., 2014). Such
study confirmed for 5% of MS patients the value of additional spinal cord MRI when brain MRI
is normal (Thorpe et al., 1996). Other studies found a correlation between atrophy of cervical part
of the spinal cord and EDSS (Lin et al., 2004). Table. 3.1 summarizes some diffusion MRI studies
established on MS patients. Note that the following are some parameters of diffusion MRI will be
explained in next sections, AD: axial diffusivity; FA: fractional anisotropy; MD: mean diffusivity;
RD: radial diffusivity.

3.2 Principles of diffusion MRI

Diffusion MRI is a relatively recent field of research, the first in vivo application of diffusion NMR
was performed in the mid 80’s (Le Bihan and Breton, 1985). There is a growing interest for dMRI
because it helps understand the structural architecture of the brain and spinal cord connexions,
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Studies Data ROI Findings in MS patients
(Valsasina et al.,
2005)

44 patients,
17 controls

C1-C5 FA decreases and the average cord FA corre-
lates with EDSS

(Agosta et al.,
2007a; Agosta
et al., 2007b)

42 patients,
9 controls

C2,C3 FA and cross-sectional area decrease, MD in-
crease

(Hesseltine et al.,
2006)

24 patients,
24 controls

C2-C3 In NASC, FA is lower significantly in lateral,
posterior and central.

(Miraldi et al.,
2013)

32 patients,
17 controls

C2,C7 For NASC right column, FA decrease and RD
increase in C2 and at C7, MD increase. No sig-
nificant correlation with EDSS.

(von Meyenburg
et al., 2013)

41 patients,
28 controls

C2,C7 For NASC right column, FA decrease and RD
increase in C2 and at C7, MD increase.

Table 3.1: Summary of clinical imaging studies of multiple sclerosis using diffusion MRI parameters. AD:
axial diffusivity; FA: fractional anisotropy; MD: mean diffusivity; RD: radial diffusivity; NASC: normal-
appearing spinal cord.

in neuroscience imaging, surgical planning and in other medical applications. Diffusion MRI is a
non-invasive MRI method that measures the local mobility profile of water molecules, from which
we can describe and characterize the geometry of the underlying tissue micro-structure. To do so,
diffusion MRI measures the average diffusion of water molecules, which probes the structure of
the biological tissue at scales much smaller than the imaging resolution. In an environment without
any hindrance, e.g. a glass of water, the diffusion of water molecules is Brownian. But in fibrous
tissue such as white matter, water molecules tend to diffuse preferentially along the fibers. Using
this physical phenomenon, researchers are able to obtain information about the neural architecture
in vivo and provide models for brain and spinal cord connectivity.

3.2.1 Diffusion basics
At the microscopic scale, water molecules in tissues are in motion and collide with each other as a
result of their thermal agitation. Water molecules are not static over time, they undergo Brownian
motion (Brown, 1828). This effect, water molecules motion, can be characterized by the so-
called diffusion coefficient D. In free water, this displacement is equal whatever the direction
of observation. This type of diffusion is named as isotropic diffusion. However, in fibrous tissue
space, the water molecule motion is restricted and hindered by tissue structures. The displacement
is faster along one specific direction and lower along others. This type of diffusion is named as
anisotropic diffusion. Figure.3.6 shows an example of these diffusions in tissue.

These differences in diffusion can be measured using MRI; at each spatial position (each voxel
in the image), the motion of water molecules can be encoded and formulated by sensitizing the
MRI scanner to the mean displacement done during a certain time. In order to explain more
diffusion MRI of spinal cord, we explore the basic physical principles describing the diffusion
process. So, the flux of water molecules in each direction in such area can be written in function
of the diffusion coefficient D using Fick’s first law (Fick, 1855):

J =−D∇C (3.1)

where J is the mass flux (units: mass/time), D is the diffusion coefficient (units: area/time) and
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Figure 3.6: A model of diffusion type in different tissue environment. Isotropic diffusion (blue): Brownian
motion in free space. Anisotropic diffusion; Restricted (green): motion is restricted within an intra-axonal
space, Hindered diffusion (red): free motion but within extra-axonal space. Image source: (Schneider and
Wheeler-Kingshott, 2014)

C is the concentration of water molecules (units: mass/volume). The minus sign embodies the
notion that molecules move from area with high concentration to area with low concentration. J is
proportional to C and D. But, D is an intrinsic property that proportional to quantity of diffusing
protons, microstructural features and the temperature of the medium.

Figure.3.7 shows an illustrative experience of diffusion. A drop of red ink was introduced into
a glass of water. In the beginning, the ink remains concentrated at the point of release, but by the
time the ink spreads radially and spherically. By the time, the concentration of the ink particles
becomes uniform in the glass and the net flux of particles turns off.

Figure 3.7: Diffusion at the macroscopic scale: net flux of ink molecules from a region of high concentra-
tion to a region of low concentration. Image source: Ben Jeurissen’s PhD report.

The concentration of water protons is described in terms of probability of their motion across
both space and time. Einstein introduced the diffusion probability density function, p(r0|r, t),
which quantifies the displacement net vector from the initial position r0 to r (units: m) within a
certain diffusion time t (units: s). Assuming that function follows a Gaussian distribution, Ein-
stein’s equation for mean displacement applies (Einstein, 1956):

〈r− r0〉=
√

6Dt (3.2)

and it results in the solution:

p(r0|r, t) =
1√

4πDt)2
e−
〈r−r0〉2

4tD (3.3)

Then, to have to have the basis of diffusion MRI, we have to apply the Gaussian distribution of
water protons into the Bloch equations (Cohen-Adad and Wheeler-Kingshott, 2014).
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3.2.2 The Apparent Diffusion Coefficient

The estimated value of the diffusion coefficient in MRI in such tissue is often referred to as an
apparent diffusion coefficient (ADC) (Le Bihan et al., 1986). When there is unordered tissue mi-
crostructure, ADC is equal no matter in which direction it is estimated. By the turn, p takes the
form of a sphere which means isotropic diffusion. However, when there ordered fibers microstruc-
ture, ADC depends on the orientation these fibers. Thus, p takes the form of an ellipsoid which
means anisotropic diffusion. The general diffusion displacement probability density function of
water molecules is extremely complex. The most popular proposed model of diffusion is diffusion
tensor imaging (DTI) model (Basser et al., 1994b) which can generalize Einstein’s and Fick’s law
of diffusion. The scalar diffusion coefficient can be replaced by a diffusion tensor D which is
related to the covariance matrix of spins displacement as follows:

D =
〈r · rT〉

6t
=

Dxx Dxy Dxz
Dxy Dyy Dyz
Dxz Dyz Dzz

 . (3.4)

D is a symmetric and positive-definite matrix and therefore it contains only 6 unique elements.

3.2.3 Diffusion in neural tissue

Neural tissue of spinal cord is built from nerve cells or neurons which transmit information by
electrical and chemical signaling. It is formed by three parts: cell body, the dendrites and the axon
(Figure.3.8). From the cell body, many dendrites extend. Both of them receive chemical signals
from other neurons and process the information. The axon transmits the received information from
the cell body towards other nerve cells using electrical conduction. The speed of axon transmission
is raised by the insulator named myelin sheet. At the macroscopic level, the spinal cord is made
up of three major components: cerebrospinal fluid (CSF), GM and WM. WM consists mostly of
myelinated axons passing to and from brain, or different segments of the spinal cord. GM consists
of nerve cell bodies and inter-neurons.

Figure 3.8: Structure of typical neuron. Image source: www.socratic.org

WM is composed of bundles of axons which contributes to diffusion anisotropy inside it; As
seen previously, diffusion is more fluid and less restricted along the axon than perpendicular to
it. Basing on this property, it will be possible to extract specific geometric and structural features
about the WM medium (Figure.3.9).
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Figure 3.9: Schematic representation of a single axon (left) and its surrounded substance. A bundle of
axons (right) typically found in the WM. Diffusion is more effective parallel to the WM bundles than
perpendicular to it. Image source: Ben Jeurissen’s PhD report.

3.2.4 Measuring diffusion with MRI

Nuclear Magnetic Resonance

NMR was firstly used to measure properties of substances in chemistry to perform NMR spec-
troscopy. Its principles were described by Felix Bloch and Edward Mills Purcell (Bloch, 1946;
Purcell et al., 1946). The essential property of nuclei such as hydrogen (proton) is their intrinsic
magnetic moment. When the spin of such proton is immersed into a strong magnetic field B0
(units: T), the spin will tend to align with this field and the moment of each spin precesses with a
given frequency around this field called the Larmor frequency (units: rad/s):

ω0 = γ||B0|| (3.5)

where γ is the gyro-magnetic ratio (units: rad/(sT)) (see Figure.3.10). The human body is made
up at 80% by water which contains protons. For 3T clinical scanner, the Larmor frequency is
127.6 MHz. At resting or normal state, the spins do not rotate in phase and the transverse contri-
butions of them tends to cancel each other. The net magnetization, M, is aligned with the magnetic
field B0. As soon as we excite spins by a radio signal B1 oscillating with pulsation ω0, these spins
begin to rotate in phase and to precess away from the B0 axis. The flip angle, θ, is proportional to
the duration and the magnitude of the radio frequency pulse (see Figure.3.10).

Magnetic field gradients

The magnetic field can be made to vary over the spinal cord or the brain in order to reconstruct
a 3D image. This can be done by the addition of a linear magnetic field gradient G on top of the
main magnetic field B0 (Carr and Purcell, 1954; Tuch et al., 2003):

B(x) = B0 +Gx (3.6)

where x is the position along the gradient direction as shown in Figure.3.11. By the way, given
Equation. 3.5, the precessional frequency of the spins in such position x can be described as:

ω(x) = γB(x) = γ(B0 +Gx). (3.7)

The precession frequency which depends on the position x is the basis of spatial and diffusion
encoding in MRI.
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Figure 3.10: Net magnetization in presence of a strong magnetic field (1st line). Spin in rest state (2nd
line,left). Spin under RF excitation(2nd line,right). Net magnetization in presence of a strong magnetic
field. Images source: E. Caruyer’s PhD report.

3.2.5 Diffusion MRI
Diffusion MRI (dMRI) is an imaging technique based on the physical principles of diffusion
NMR. It permits the measuring of water diffusion within a spatial space in in vivo tissue. To
measure diffusion, we need an MRI sequence with two diffusion-encoding gradients positioned
symmetrically around the 180◦ RF pulse (Stejskal and Tanner, 1965). Consider two rectangular
diffusion gradient pulses g(t) along the z-direction. The dephasing gradient pulse induces a phase
shift φ1 of the spin transverse magnetization:

φ1 = γ

∫
δ

0
gz(t)z(t)dt = γδgzz1 (3.8)

where δ is the duration time of g(t) and z(t) = z1, spin position, is assumed to be constant during
the short pulse duration δ. The duration δ and the strength gz of the gradient define the amount of
dephasing. Equivalently, the rephasing gradient pulse induces a phase shift φ2:

φ2 =−γ

∫
∆+δ

∆

gz(t)z(t)dt =−γδgzz2 (3.9)

where the minus sign reflects the application of the 180◦ RF pulse and ∆ is the time between the
two diffusion gradient pulses. When spins are not undergoing any diffusion along the gradient
direction (z1 = z2), the net induced phase shift φ will be zero:

φ = φ1 +φ2 = γδgz(z1− z2) = 0 (3.10)

Conversely, spins which undergo diffusion along the gradient direction during ∆ will experi-
ence a net phase shift:

φ = γδgz(z1− z2) 6= 0 (3.11)

These spins are not completely refocused, resulting a signal loss (Cercignani and Horsfield, 2001;
Bammer, 2003). Generally, the signal loss at position r, called pulsed gradient spin-echo signal
(PGSE) S is given by:

S = S0〈eiφ〉 ≤ S0 (3.12)
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Figure 3.11: Effect of field gradient on spins. B0 only, all spins precess at the same frequency (left).
B0 +Gx : precession frequency depends upon position. Image source: (McRobbie et al., 2017).

where S0 is the signal intensity in the absence of a diffusion-encoding gradient, i.e. g = 0 and 〈eiφ〉
represents the ensemble average of the spin population.

As presented in Section 3.2, the spin displacement distribution pursues the Brownian Motion
which means that the phase of the spins also is randomly distributed. (Stejskal and Tanner, 1965)
showed that the signal attenuation S/S0 can be written as the 3D Fourier transform F of p(r | r0,τ):

S/S0 =
∫

p(r | r0,τ)eiqT (r0−r) dr = F [p(r)] (3.13)

where q = γδg is the q-vector and g is the applied diffusion gradient vector. The space of all possi-
ble 3D q-vectors is the so-called q-space. Moreover, for isotropic microstructure, the conditional
probability density function p(r | r0,τ) is defined as:

p(r | r0,τ) =
1√

[4πτD]3
e−
||r−r0||2
4τD(r) (3.14)

Combining Eq. 3.13 and 3.14, we can relate the signal attenuation S/S0 to the diffusion coefficient
D (ADC value) of the underlying tissue, it is also so-called Stejskal-Tanner relation:

S/S0 = e−bD (3.15)

where b is the diffusion weighting tensor factor introduced by (Le Bihan et al., 1986):

b = γ
2
δ

2(∆− δ

3
)‖g‖2 . (3.16)

A schematic illustration of the previous steps of framework acquisition is introduced in Fig-
ure.3.12. For anisotropic medium such as WM in spinal cord, the diffusion coefficient D depends
on the direction and the strength of g, ∆ and δ. In clinical practice, dMRI scan are usually acquired
using Echo-Planar Imaging (EPI) sequence (Stehling et al., 1991) which offers faster acquisition
with less motion artifacts but more risk of distortion. The first attempt of studying anisotropic
water diffusion in CNS for a cat using dMRI was by (Moseley et al., 1990) in which it was
demonstrated the anisotropic water diffusion in WM and the isotropic water diffusion in GM. In
parallel, (Chenevert et al., 1990) confirmed the anisotropic water diffusion in in vivo human WM.
Later, other study found the anisotropic water diffusion in spinal cord (Barker, 2001).
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Figure 3.12: A schematic illustration of the diffusion MRI sequence. The length of the colored vertical
arrows indicates the strength of the magnetic field B which is non-uniform during the application of the
gradients g. After the first gradient application following the 90◦ RF pulse, signals lose their uniform phase
(’Dephasing’: the vector sum of the magnetic spin moments M decreases) because each proton starts to
precess at different rates ω depending on its position in space (the color-encoding represents the amount of
this precession rate). After the second gradient application following the 180◦ RF pulse, the system restores
the uniform phase (’Rephasing’: M increases). This rephasing is complete only when spins do not undergo
a random motion (i.e., do not diffuse) during the time ∆ in between the two applications of the gradients
(‖M1‖ ≥ ‖M2‖). Image and paragraph source: A. Leemans’s PhD report.

3.3 Modeling the diffusion properties

Several reconstruction techniques were developed for diffusion MRI such as DTI, Ball-and-Stick
(B&S), neurite orientation dispersion and density imaging (NODDI) and Q-Ball Imaging (QBI).
This section will review the models we used in our work. Detailed reviews on reconstruction mod-
els are available in (Hagmann et al., 2006; Alexander, 2005). It is important to emphasize that the
type of reconstruction model is strongly related to acquisition parameters of the dMRI sequence
(q-space sampling). Figure.3.13 gives a general overview of some reconstruction models for dif-
fusion MRI data with the recommended q-space sampling, modeling constraints and acquisition
time.

3.3.1 Diffusion Tensor Imaging (DTI)

Based on Equation. 3.3, Equation 3.13 can be modified to estimate the full diffusion tensor (Basser
et al., 1994a):

S(r)/S0(r) = e−qT Dq(∆− δ

3 ) = e−b ( g
‖g‖ )

T D( g
‖g‖ ) (3.17)

This equation grants the estimation of the apparent diffusion tensor D from a selection of dMRI
images S(r) on different gradients directions and a reference image S0(r). As described previously,
D contains only 6 unique elements, at least 6 dMRI scans are required.
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Figure 3.13: General overview of some reconstruction models for diffusion MRI data. B&S model pro-
vides the orientation and magnitude for various anisotropic compartments. DTI is the simplest model with
the fast acquisition. Image source: (Cohen-Adad and Wheeler-Kingshott, 2014).

The probability density function p(r | r0,τ) given by Eq. 3.3 characterizes the molecular dif-
fusion. From this equation, the diffusion tensor field D is considered as a covariance matrix
describing the translational displacement of this diffusion. Hence, to consider the physical in-
terpretation of D, the probabilistic iso-surface shape of molecular diffusion is represented by an
ellipsoid shape. As D is a symmetric and positive definite second-rank tensor, it can be decom-
posed into real eigenvalues and eigenvectors:

D = E ·Λ ·E−1 (3.18)

with

E =
(
e1 e2 e3

)
and Λ =

λ1 0 0
0 λ2 0
0 0 λ3

 (3.19)

are respectively the matrix of orthonormal eigenvectors ei and the diagonal matrix of eigenvalues
λi, with i ∈ {1,2,3}. In general, the first eigenvector e1 (i.e., corresponding with λ1) describes the
predominant diffusion direction. Figure.3.14 illustrates an example of diffusion tensor imaging
(DTI).

In addition to the directional information, other scalar measures can be computed from eigen-
values which can reach our access to the tissue microstructure. Here we summarize the most
popular measures (please refer to (Westin et al., 2002) for a good review of other measures):

Mean diffusivity (MD) which measures the average displacement of the water molecules. MD
is much higher in CSF than in WM and GM.

MD =
λ1 +λ2 +λ3

3
= 〈λ〉 (3.20)

Fractional anisotropy (FA) which measures the degree of diffusion anisotropy. FA is much
higher in WM than in CSF and GM. Since to the organized structure of WM, FA is reg-
ularly used as a delegate marker for it.

FA =

√
3
2

√
(λ1−〈λ〉)2 +(λ2−〈λ〉)2 +(λ3−〈λ〉)2√

λ2
1 +λ2

2 +λ2
3

(3.21)
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Figure 3.14: Ellipsoidal representation of the diffusion tensor field. Note that every voxel corresponding
to position r of a dMRI scan, is described by the eigenvectors ei(r) and eigenvalues λi(r) of the diffusion
tensor D(r). Image source: A. Leemans’s PhD report.

Axial diffusivity (AD) λ‖, which measures the diffusion along the first eigenvector:

AD = λ1 (3.22)

Radial diffusivity (RD) λ⊥, which measures the average diffusion perpendicular to the first eigen-
vector:

RD =
λ2 +λ3

2
(3.23)

DTI model is increasingly used to characterize neuropathology such as MS. Recently, exten-
sive research and studies have greatly advanced our knowledge about the usefulness of several
measures extracted by DTI model as we present in previous section in Table. 3.1. These studies
demonstrated the sensitivity of these features to MS lesions in WM medium for spinal cord. MS
lesion and inflammation are characterized by subsequent microstructural changes in WM. These
affect the diffusion signals and the microstructural composition of a voxel. Depending on the neu-
ropathology disease, several cases of DTI profile take place by influencing the value of λ⊥ and λ‖
(Wang et al., 2011; Zhang et al., 2012). Figure.3.15 illustrates how the neuropathology can affect
DTI measures.

While DTI model has an unprecedented ability for characterizing WM properties of the in
vivo human spinal cord and brain, findings can sometimes be ambiguous. Indeed, the DTI model
is inaccurate in the case of multiple WM fibers cross or merge within a voxel (Alexander et al.,
2001; Tuch et al., 2002; Wheeler-Kingshott and Cercignani, 2009). DTI is inadequate to describe
multiple fiber orientation within an individual voxel which can be considered as averaging of
different oriented fibers. This effect, called the Partial Volume Effect (PVE), is taking place when
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Pathology:

DTI 

simplification:

Key:
Healthy axons Injured axons Myelin sheath Injured Myelin sheath Infiltrating cells

Figure 3.15: Schematic diagrams illustrating how neuropathology may affect DTI measures. Dashed blue
ellipsoid represents DTI profile for normal myelinated with λ‖ > λ⊥. Black drawings (elipsoid and circle)
represent new DTI profile for abnormal tissue. (a) Normal myelinated axons and the corresponding DT,λ‖,
λ⊥. (b,c) Axon and myelin injury with and without infiltrating cells. (d,e) Axon and myelin injury with
axonal loss, with and without cell infiltrating cells.

the imaging protocol has a coarse resolution or when acquiring small structures. By the way,
DTI is only well-founded for unidirectional fiber bundles and we need higher order model to be
able to describe non-Gaussian distributions. Also, by considering Figure.3.15, one can understand
that DTI measures are not sufficient to investigate pathology properties. Thus, more sophisticated
diffusion MRI models are necessary.

3.3.2 Ball-and-Stick Model
The Ball-and-Stick (B&S) model was introduced by (Behrens et al., 2003; Behrens et al., 2007)
and there are several numerical implementations freely available. B&S is a multiple tensor (multi
compartment) model. The first compartment is stick, anisotropic component, which has fiber
direction n and diffusivity d as parameters (Behrens et al., 2003). The stick compartment describes
diffusion in an idealized cylinder with zero radius(λ⊥ = 0). The signal for this component is:

S1 = exp
(
−bd(n ·G)2) (3.24)

The second compartment is ball, an isotropic component which has only the diffusivity d0 as
parameter in its signal:

S2 = exp(−bd0) (3.25)

The global signal model is
S/S0 = (1− f )S1 + f S2, (3.26)

where f is the free water weight (FWW), the volume fraction of free water in the corresponding
voxel. B&S is the most popular multi tensor model as it reduces the number of requested param-
eters (4 parameters in total). However, B&S doesn’t provide information about radial diffusivity.
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Model Form Degrees of freedom
Intra-axonal compartment models

S = exp
(
−bd(n ·G)2) d,θ,Φ

Extra-axonal compartment models

D = dI d

D = d||nnT +d⊥1n⊥1nT
⊥1 ++d⊥2n⊥2nT

⊥2 d||,d⊥1,d⊥2, θ, Φ, α

Table 3.2: Intra-axonal compartment models. The fibre orientation n is defined by the angles θ,Φ

3.4 Conclusion
In this chapter, we have presented a review of state-of-the-art for the most important topics and
themes involved in our work. Firstly, we describe the multiple sclerosis disease within its signs,
some of symptoms, pattern of progression, and world distribution. Secondly, we give an overview
about the magnetic resonance imaging and its potential to characterize MS. Thirdly, we describe
briefly the spinal cord anatomy and its prevalence of abnormalities in MS patients. We summarize
also several spinal cord clinical imaging studies of multiple sclerosis using diffusion MRI param-
eters. Fourthly, we explain the principles of diffusion MRI modality from the basic. Finally, we
describe two reconstruction techniques for diffusion MRI used in thus manuscript: Diffusion Ten-
sor Imaging and Ball-and-Stick Models. In addition, we introduce each contribution chapter by
more detailed and specific state-of-the-art.
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4.1 Introduction
Echo-Planar-Imaging (EPI) is a fast and efficient magnetic resonance imaging (MRI) acquisition
technique that has been increasingly used in medical imaging applications (Stehling et al., 1991).
Besides the substantial reduction of scan time, EPI is desirable for diffusion-weighted imaging
(DWI) and functional MRI in neuroscience as it produces images with high signal-to-noise ratio
(SNR). However, EPI suffers from its high sensitivity to the B0 field inhomogeneities. B0 field
inhomogeneities are caused by the local susceptibility variations in the human body; therefore
they depend on the strength of the magnetic field, the subject and his orientation in the scanner.

In this respect, in vivo spinal cord imaging is especially challenging due to the presence of
various surrounding tissue types: bone, CSF, gray and white matter, muscle, fat and air. Be-
sides, the elongated shape of the spinal cord anatomy requires a large field of view (FOV) in the
superior-inferior direction and its small cross-sectional size requires high spatial resolution. These
requirements extend the readout durations in EPI which in turn distorts and blurs the image along
the phase-encoding direction (PED). Also, a wide echo-spacing (ESP) (i.e., interval between two
consecutive k-space lines) creates distortions due to B0 field inhomogeneity.

These effects deform the shape of the reconstructed spine image so that a voxel normally at
position r appears at a position r+ dPED(r). Depending on its location in an EPI image, the
displacement dPED(r) can be expressed (Cohen-Adad and Wheeler-Kingshott, 2014) as:

dPED(r) =
∆ f (r) ESP FOVPED

Nint R
, (4.1)

where ∆ f (r) (in Hertz) represents the B0 field inhomogeneity observed at position r, ESP (in
seconds) is the echo-spacing, FOVPED is the FOV in PED (in m), Nint is the number of interleaves
in EPI and R is the acceleration factor for parallel imaging. The displacement caused by distortion
is proportional to the local magnetic field inhomogeneity. The relatively long times between
sampling points in phase-encoding direction (PED) makes spatial distortion appears mainly along
this direction. Thus, distortion is practically limited to PED and negligible in others directions
(Jezzard and Balaban, 1995; Macdonald and Ruthotto, 2016). In addition to the spatial distortion
presented above, there also is an intensity distortion in EPI (Jezzard and Balaban, 1995).

As seen in Eqn 4.1, increased B0 field inhomogeneity, increased ESP and a large FOV in
the PED give a share to geometric distortion. For example, with typical values in the spine for
the EMISEP imaging protocol: ESP = 0.95ms, FOVPED = 16cm, local B0 field inhomogeneity
∆ f (r) = 754.28Hz and acceleration factor (GRAPPA parallel imaging) R = 2 could create local
displacement up to 5.73cm for a single-shot EPI (Nint = 1) (Cohen-Adad and Wheeler-Kingshott,
2014).

Various acquisition-based solutions have been proposed to reduce susceptibility artifacts for
spinal cord imaging but many of them are not available on clinical scanners. As seen in Eqn 4.1,
some imaging parameters can be adjusted to reduce dPED(r). For example, in addition to reduce
FOV, one can reduce echo spacing (ESP) (Wheeler-Kingshott et al., 2002). This can be achieved
by increasing the readout EPI bandwith, acquiring data during the gradient ramps and segmenting
k-space trajectory (Bammer et al., 2002). Also, further to adjusting the imaging parameters, repo-
sitioning the subject and reorienting the slice can decrease field inhomogeneity and render image
more usable. For example, slices must been orthogonal to the cord to minimize partial volume
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effect in axial imaging. Supporting the patient’s head by a foam pads can reduce the natural curva-
ture in the neck and hence the spinal cord be quasi-straight (Cohen-Adad and Wheeler-Kingshott,
2014).

In addition to optimizing the acquisitions parameters, spinal cord imaging quality has been
shown to benefit from post-processing distortion correction techniques. Compared to brain imag-
ing, few attempts and studies in neuroimaging applications have tailored and incorporated the use
of these techniques in spinal cord imaging. There is a number of distortion correction techniques,
most of them employ the distortion model derived in (Chang and Fitzpatrick, 1992), including co-
registration, field map correction, point spread function (PSF), reversed gradient polarity method
(RGP). In post-processing step, most of these techniques require an additional specific acquisition.

The first technique, co-registration, uses an anatomical reference image, typically a T2-weighted
acquisition. Applying non-linear registration, this technique warps the dMRI image onto the T2-
weighted image, which is much less affected by geometric distortions. The first step to registration
generally consists in segmenting the ROI (here the spine) to estimate a non rigid deformation field.
Comparing to others, this technique is advantageous as standard protocols generally contains by
default a reference anatomical image. However, this way to correct distortion is difficult since the
contrast and FOV of the anatomical and diffusion scans are quite different. To increase robustness
to contrast changes, we generally use as a pixel-wise difference optimization metric the mutual in-
formation or cross-correlation between the two images (Andersson and Skare, 2010; Huang et al.,
2008).

The second technique, field map correction, is popular and implemented in widely used soft-
wares such as FSL1. This technique relies on a 2 minutes acquisition of the background magnetic
field inhomogeneity, known as B0 field map, usually based on the phase difference of a pair of
conventional images (e.g. T2-weighted) at two different echo times (Jezzard and Balaban, 1995;
Reber et al., 1998). This map is in turn used to generate a warping field which will be applied to
the EPI series. However, this field is exposed to large errors since it is sensitive to subject motion
during acquisition. Furthermore, the phase maps are sensitive to high variation in the magnetic
field. In this respect, several studies shown its impairments to correct distortion in several areas
(Andersson et al., 2003; Holland et al., 2010).

Another technique is point spread function (PSF) mapping. An extra acquired scan is given
by the convolution of the undistorted image with PSF of imaging system. PSF mapping provides
information about intensity distribution and distortions for each voxel. Distortions due to suscep-
tibility effects are quantified and corrected by considering the displacement field incorporated in
the PSF. (Lundell et al., 2013) shown that this technique provides better anatomical consistency of
fiber tractography in cervical spinal cord. However, this technique suffers from a relatively long
acquisition time. PSF technique has been combined with parallel imaging and optimized for faster
imaging (Zaitsev et al., 2004; Speck et al., 2008).

The last technique, commonly referred to as reversed gradient polarity (RGP), uses two EPI
acquired with an opposite phase encoding direction - one head-feet and the other one feet-head
(i.e., it is rotated 180◦) for example, with the same FOV and matrix size (Chang and Fitzpatrick,
1992). According to Eqn 4.1, this inversion in PED causes a negative sign of ∆ f (r). Thus, one
can exploit the fact if two images were acquired with inverse polarity phase-encoding gradient,
the corresponding displacement maps will have equal magnitude, but will be reversed from one
image to another. The corrected image is therefore midway between the two distorted acquisitions.
Some studies consider this technique as an alternative to field map correction as the field map here
is estimated using an additional EPI. This last technique is distinctive by requiring only a quick
additional EPI acquisition to correct distortion, just a few seconds. Furthermore, Cohen-Adad et

1https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FUGUE/Guide

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FUGUE/Guide
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al. shown its accurate estimation of both geometric and intensity distortion comparing to PSF,
field map and co-registration (Cohen-Adad et al., 2009).

In this chapter, we focus on the use of this last technique, RGP, and we propose a compara-
tive evaluation of post-processing techniques using this acquisition for correcting distortion. We
first give an overview of the state-of-the-art methods we will evaluate. Then, we introduce a new
geometric measure of alignment between the centerline of the spine and the reconstructed prin-
cipal direction of diffusion. Finally, we compare these methods on a database of 95 subjects (29
controls and 66 MS patients) using the newly introduced measure of alignment, together with a
comparison (cross-correlation) to the anatomical T2-weighted image. To the best of our knowl-
edge, although these methods have already been benchmarked for brain MRI, this is the first time
such a comparison is made for spine imaging.

4.2 Reversed gradient polarity technique

In this chapter, we focus on the comparative evaluation of field inhomogeneity-induced distor-
tion correction methods using the RGP technique. More precisely we will compare 4 distortion
correction methods: Block-Matching (BM) (Hedouin et al., 2017), Hyper-elastic Susceptibility
artefact correction (HySCO) (Ruthotto et al., 2012), TOPUP (Andersson et al., 2003) and Voss
(Voss et al., 2006). In this section, we give an overview of each of these methods.

4.2.1 Distortion model

A pair of spin-echo EPI are acquired in head-feet (HF) and feet-head (FH) phase encoding direc-
tion (PED), corresponding to the y-axis. Let IF denote the forward gradient EPI image, acquired
traversing k-space in the positive y-direction HF, and IB (for backward) the oppositely-distorted
reverse gradient image acquired traversing in the negative y-direction FH. The corrected image IC
is therefore midway between IF and IB. The problem is to find the deformation field from IF (or
equivalently from IB) to IC .

4.2.2 Method 1: Block-Matching

The block-matching (BM) strategy for field inhomogeneity-induced distortion in EPI (Hedouin
et al., 2017) looks for a transformation by finding local correspondence between a small block
(typically 3×3×3 voxels) in the original and the target image (Ourselin et al., 2000; Commowick
et al., 2012). The method follows the registration method introduced in (Avants et al., 2008) in
which, instead of looking for a transformation T between two images, the transformation T1/2 is
sought so that IB ◦T−1/2 and IF ◦T1/2 match as much as possible:

IF ◦T1/2 ≈ IB ◦T−1/2 ≈ IC (4.2)

BM (Hedouin et al., 2017) adapts the approach to block matching algorithm presented by (Ourselin
et al., 2000; Commowick et al., 2012) by constraining T1/2 to be aligned with the PED. The reg-
istration uses the cross-correlation metric as a measure of similarity. BM method is implemented
and available in Anima2, an open-source software for medical image processing.

2https://github.com/Inria-Visages/Anima-Public/

https://github.com/Inria-Visages/Anima-Public/
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4.2.3 Method 2 : HySCO
The Hyper-elastic Susceptibility artefact COrrection method (HySCO) (Ruthotto et al., 2012;
Macdonald and Ruthotto, 2016) is based on the physical distortion model derived in (Chang and
Fitzpatrick, 1992). HySCO estimates the field inhomogeneity b : Ω→ R by minimizing the fol-
lowing distance functional:

D[b] =
1
2

∫
Ω

(
IF(x+b(x)v)(1+ v>∇b(x))− IB(x−b(x)v)(1− v>∇b(x))

)2
dx (4.3)

where v denotes the PED, v= (0,1,0)>, Ω the rectangular region of interest, b(x) is the magnitude
of the field inhomogeneity at x ∈ Ω. Since this minimization is an ill-posed problem, HySCO
considers a smoothness regularizer as following:

S(b) =
1
2

∫
Ω

‖∇b(x)‖2 dx (4.4)

with imposing a constraint on the Jacobian determinant where −1≤ v>∇b(x))≤ 1 for almost all
x ∈Ω to ensure that the Jacobian determinants are strictly positive for both PEDs. Following Eqn.
4.3 and using the registration framework FAIR (Modersitzki, 2009), the field inhomogeneity is
estimated by solving:

min
b∈B

:= D[b]+α S [b] (4.5)

where B denotes the closed ball and the parameter α balances between the regularity of the solu-
tion and minimization of the distance.

HySCO is implemented as a part of ACID 3 toolbox and integrated as a batch tool in the
Statistical Parametric Mapping (SPM) 4 toolbox.

4.2.4 Method 3: TOPUP
An alternative application of RGP, called TOPUP, is proposed by (Andersson et al., 2003). TOPUP
uses two images with opposite PEDs and estimates a transformation field which will be used to
obtain the undistorted image IC. Iteratively, TOPUP suggests a transformation field, calculates dis-
placements maps, corrects IF and IB and evaluates the difference between both corrected images.
TOPUP repeats these steps until the maximization of a computed similarity defined as the sum-
of-squared differences between the corrected IF and IB. This similarity is a crucial bit because it
allows TOPUP to estimate another transformation field using Gauss-Newton algorithm.

This distortion correction method is implemented on TOPUP algorithm, available within the
FSL package 5. Notice that when applying TOPUP algorithm on data, extreme slices of image
volume are collapsed. We applied TOPUP with its default parameters except for resampling, we
used Jacobian method.

4.2.5 Method 4: Voss
Voss et al (Voss et al., 2006) proposed a distortion correction method to reduce geometric and
intensity distortions. For given image coordinates x and z, let denote Lx,z

F (·) = IF(x, ·,z) be the
intensity line (intensity profile) along the PED, y, for the forward image IF . Similarly, we can

3http://www.diffusiontools.com/
4https://www.fil.ion.ucl.ac.uk/spm/
5https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup

http://www.diffusiontools.com/
https://www.fil.ion.ucl.ac.uk/spm/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup
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define Lx,z
B for the backward image, IB. The Voss method tries to find a transformation Ux,z along

the direction y to align the normalized cumulated intensity lines, defined as:

Nx,z
i (y) =

1
α

x,z
i

∫ y

0
Lx,z

i (y′)dy′ for i = F,B. (4.6)

In the above, α
x,z
i is the normalization, defined as:

αi =
∫

∞

0
Lx,z

i (y)dy for i = F,B (4.7)

The cumulated intensity lines are then aligned by seeking a deformation Ux,z such that

Nx,z
F (y+Ux,z(y)) = Nx,z

B (y−Ux,z(y)). (4.8)

Note that this method realigns every line independently, so in order to increse the coherence
between consecutive lines, a 3D Gaussian smoothing is applied to the deformation U .

This method, Voss algorithm, is available in Anima software. We used the method with default
parameters in our comparison.

4.3 Geometric measure of alignment
In order to evaluate the impact of geometric distortion correction, we introduce in this section a
measure of alignment between the geometry of the spine, represented by its centerline, and the
principal direction of diffusion. In previous studies (Lundell et al., 2013; Voss et al., 2006; Cohen-
Adad et al., 2009), one of the criterion used for the evaluation or the validation of distortion-
correction was to use fiber tractography in the spine. We hypothesize that measuring the alignment
of the diffusion direction and the spine geometry is an alternative, more direct way to evaluate the
consistency between the diffusion anisotropy and the underlying image geometry.

The diffusion tensor model relates the local displacement of water molecules with the sur-
rounding tissue microstructure. In the spinal cord white matter, it is mainly aligned with longitu-
dinal fibers (Cohen-Adad et al., 2008b), which themselves follow a path parallel to the centerline
of the spinal cord. We can therefore expect that the principal eigenvector of the diffusion tensor is
locally aligned tangentially with the centerline of the spine. However, when the image is distorted,
the apparent shape of the spine is affected, while the direction of the tensor is not. This results
in a locally poorer alignment of the diffusion tensor with the spine. In what follows, we describe
a method to measure how the diffusion tensors and the centerline of spinal cord align with each
other.

4.3.1 Centerline extraction and modeling

We first segment the diffusion image to obtain a binary mask of the spinal cord (De Leener et al.,
2014; De Leener et al., 2015). This segmentation is purely image-based, following the recommen-
dation of the spinal cord toolbox (SCT), we computed the segmentation from the mean diffusion-
weighted images. Using this binary mask of the spine, we compute the centerline in two steps:
first, for every axial slice, we compute the barycenter of the mask within this slice; then we fit a
degree-3 smoothing spline to the set of barycenters. This provides us with a continuous, differen-
tiable representation of the centerline, from which we can compute the Frenet frame.
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Let x(t) ∈ R3 be a curve parametrized by t ∈ R+. Also, let v(t) = x(t)′ denotes the velocity.
We define the curvilinear abscissa s as:

s(t) =
∫ t

0
|x′(τ)|dτ, (4.9)

The Frenet frame at time t is defined as the orthogonal frame (T,N,B) where T is the tangent,
N is the normal and B is the binormal (see Figure.4.2).
The tangent unit vector T is defined as:

T =
dx/ds
‖dx/ds‖

=
x′(t)
‖x′(t)‖

=
v(t)
‖v(t)‖

; (4.10)

the normal unit vector N is defined as:

N =
dT/ds
‖dT/ds‖

=
T′

‖T‖
; (4.11)

the binormal unit vector B is defined as the cross product between T and N :

B =
T×N
‖T×N‖

. (4.12)

Figure 4.1: A spline model (a) and its Frenet frame (b). Image adapted from (Tang et al., 2018).

4.3.2 Measuring the alignment diffusion model within the cord
For every voxel at position r within the spinal cord, the binary mask, we first compute the the
closest point x(t0) to r along the centerline where t0 is defined as follows:

t0 = argmin
t
{||x(t)− r||}. (4.13)

Then we compute the coordinates of the principal eigenvector of the diffusion tensor, e1(r),
in the Frenet frame computed at x(t0). In order to summarize the distribution of the principal
eigenvectors e1(r) within a region Ω, we compute the covariance matrix of these directions as
follows:

M =
1

V (Ω)

∫
Ω

e1(r)e1(r)>dr (4.14)
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where V (Ω) is the volume of Ω. Intuitively, the matrix M will characterize the statistics of the
angular deviation between the diffusion direction and the tangent to the centerline. From the
eigendecomposition of the symmetric matrix, M, we extract two statistics:

Mean angle direction (MAD) defined as the angle in degrees between the principal eigenvector
of M and [1,0,0], which corresponds to

−→
T in the Frenet frame

Angular concentration of directions (ACD) defined as the first eigenvalue of M. Being the av-
erage of rank-1 non-negative symmetric matrices with eigenvalues (1,0,0), M has eigenval-
ues in the range of [0,1]. The more concentrated around the mean direction the closer to 1
is the ACD.

These statistics were computed for Ω ∈ {Brain stem, C1, . . . , C7, T1, T2} corresponding to
every cervical and thoracic vertebral levels in the acquisition window.

Figure 4.2: (left) T1 image with segmented spinal cord for reference; (right) barycenters of the spline mask
(red dots), fitted centerline (black line) and the Frenet frame (blue arrows).

4.3.3 Centerline smoothing

When fitting the spline to the set of barycenters, we can control the smoothness of the fitted curve.
In order to select the optimal smoothing parameters, we study its impact on the average MAD and
ACD along the spine. We compare polynomial fitting and spline methods for fitting with several
smoothing factors as shown in Figure. 4.3. This positive smoothing factor s used to choose the
number of control points (knots) which in turn will be increased until a smoothing condition is
satisfied. If s = 0, spline will interpolate through all data points.

4.4 Data acquisition

Data were acquired on 3T scanners at four sites in France: Marseille, Rennes, Strasbourg and
Montpellier.
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Figure 4.3: Distribution of mean angle directions (MAD) and angular concentration of directions (ACD)
per vertebral level for cervical part (estimated with kernel density estimation).s is the smoothing factor.

4.4.1 Patients and healthy volunteers
29 healthy volunteers (mean age = 32.83±7.13, 18F/11M) and 66 MS patients (mean age =
32.20±6.30 ,42F/24M) were recruited in the study approved by the local research ethics com-
mittee. All participants provided informed written consent. Table. 4.1 illustrates more details
about MRI scanner, centers and subjects characteristics.

Center Marseille Rennes Strasbourg Montpellier TOTAL
3T Siemens MRI Verio Verio Verio Skyra -
Volunteers 4 18 3 4 29
Gender F/3M 10F/8M 3F 4F 18F/11M
MS Patients 7 44 8 7 66
Gender 4F/3M 28F/16M 5F/3M 5F/2M 42F/24M

95 (60F/35M)

Table 4.1: Demographic information for all participating subjects, healthy volunteers and MS patients from
several centers and total study cohort.

4.4.2 MRI data acquisition
Diffusion MRI

Images were acquired on 3T Siemens Verio and Skyra scanners (see Table 4.1 for the details).
Thirty non-collinear diffusion-weighted images (DWI) were acquired at b= 900 s·mm−2, six non-
DWI (b = 0) measurements and one non-DWI (b = 0) with an opposite phase encoding direction
(PED) were also acquired. This was repeated three times successively in order to increase the
signal-noise ratio (SNR). Scans were performed in sagittal orientation and head-feet (HF) PED.
The pulse sequence used for diffusion MRI is a single-shot Echo-planar imaging (ss-EPI) using
parallel imaging (GRAPPA, acceleration factor 2). The reduced-FOV (field-of-view) technique
was employed to reduce sensitivity of EPI to susceptibility artifacts. Sixteen slices were acquired
with the following parameters without inter-slice gap: TR/TE = 3600/90 ms, with 2x2x2 mm3 as
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the resolution, and image matrix 80x80. The total acquisition time for the dMRI sequence was
approximately 7 minutes.

Figure 4.4: Gradient directions of diffusion MRI acquisition.

Anatomical reference MRI

The protocol also includes the following two high-resolution anatomical references:

T1-weighted scan in sagittal orientation, magnetization-prepared rapid acquisition gradient echo
(MPRAGE) sequence with an isotropic 1x1x1 mm3 resolution, TR/TE = 1800/2.79 ms and
FoV = 250 mm,

T2-weighted scan in sagittal orientation, with anisotropic 0.7x0.7x2.75 mm3 resolution, TR/TE
= 3000/68.0 ms and Fov = 260 mm.

4.5 Methods

4.5.1 MRI Data pre-processing

Motion correction

dMRI data consist in a collection of several volumes ((6 b0+30 DWI)x3) acquired during 7 min-
utes. In case of subject motion over the course of this acquisition, the collection of volumes have
to be registered together. As it is often in anterior-posterior direction of the spinal cord, motion
between DWI were corrected with allowing only slice-wise transformations in axial plane using
SCT toolbox (Xu et al., 2013; De Leener et al., 2017). This way of realigning all volumes was
shown to be more robust and accurate (Mohammadi et al., 2013).

Distortion correction

Then, dMRI data were corrected for susceptibility distortion using the cited four methods : Block-
Matching (BM) available in Anima-Public, HySCO as implemented in SPM-ACID toolbox, TOPUP
implemented in FSL package and Voss method implemented in Anima. We computed a displace-
ment field using one non-DWI (b = 0) for each PED. Then, this field were applied on the whole
of dMRI volume. We chose these two non-DWI (b = 0) carefully in such way they are close as
possible in acquisition time to limit the effect of motion.
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Segmentation of the cord and identification of vertebral level

Using SCT toolbox (De Leener et al., 2017), whole spinal cord segmentation was carried out on
T1-weighted, on T2-weighted, on the mean of uncorrected DWI (b = 900 s·mm−2) and on the
mean of corrected DWI by each method. Then, we identify manually two vertebral levels, C3 and
T1 as a requirement information for registering to PAM50 template.

4.5.2 Computing geometric metrics by vertebral level

Here, our aim is to compute statistics on geometric measures for each vertebral level. To do so,
we register the PAM50 template (De Leener et al., 2018) and the T1-weighted anatomical data and
the mean diffusion-weighted image. Firstly, T1-weighted anatomical data were registered to the
PAM50 spinal cord template (De Leener et al., 2018). This generates forward and inverse warping
fields from one to the other. Next, we register the PAM50-T1 template (De Leener et al., 2018) to
the mean DWI using the inverse warping field from the previous step as an initial warping field.
Here, we preferred to use T1-weighted image rather than the T2-weighted since the former has
isotropic resolution, which makes the registration more effective. Alignment with the template
provides robust definition of the inter-vertebral levels for the spine. This enables computation of
the average metrics in spinal cord using the atlas-based approach introduced in (Lévy et al., 2015).
As a result, we can quantify diffusion-based metrics averaged for each inter-vertebral level from
C1 to T2. The processing pipeline is summarized in Figure. 4.5.

Registration to
PAM 50 template

Registered template + forward 
and inverse warping fields

Spinal cord 
segmentation on T1

Diffusion
MRI

Segmentation of the 
cord on DWI mean

PAM 50 template

Labeled mask for 
diffusion data

Registration of 
PAM50 to DWI 

mean

Manual identification 
of two vertebral levels 

C3.

.T1

Distortion & motion 
correction

File.csv with 
geometric 

metrics value 
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Computing 
geometric metrics

Figure 4.5: Illustration of the automated analysis pipeline. (1) Segmentation of the cord on T1-weighted.
(2) Manual identification of two vertebral levels. (3) Registration to the PAM50 template. (4) Motion and
distortion correction of dMRI data. (5) Segmentation of the cord using DWI mean data. (6) Registration
of PAM50-T1 registered to DWI mean data using the inverse warping field from previous registration as an
initial warping field. (7) Computing MAD and ACD by vertebral level of the cervical part.
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4.5.3 Computing cross-correlation and mutual information
Complementary to the geometric measure of alignment, we also compute the similarity between
the corrected b = 0 image and the T2-weighted image. Firstly, we rigidly registered T2-weighted
scan to the first b = 0 volume of the uncorrected and corrected dMRI scans. We then apply this
rigid transform to the binary mask of the spinal cord obtained by segmenting T2-weighted, which
is now warped to the first b = 0 volume of the uncorrected and dMRI scans. Finally, we compute
the cross-correlation (CC) and mutual information (MI) between the T2-weighted image and the
b = 0 volume only within the spinal cord region.

Cross-correlation The cross-correlation, also referred to as Pearson correlation coefficient, is a
measure of the linear correlation between two variables x and y. This coefficient has a value in
[−1,1], where -1 and 1 are total negative and positive linear correlation respectively and 0 is no
linear correlation. This coefficient is commonly represented by rxy and defined as:

rxy =
∑

n
i=1(xi− xm)(yi− ym)√

∑
n
i=1(xi− xm)2 ∑

n
i=1(yi− ym)2

(4.15)

where n is the size of the mask in voxels, xi and yi are the intensities at voxel i of the T2-weighted
and dMRI images, xm and ym are their sample mean over the same ROI.

Mutual information The mutual information (MI) is a measure of the mutual dependence be-
tween two variables x and y. It quantifies the amount of information obtained about x through
observing y. MI of x and y is given as:

MI(x,y) =
n

∑
i=1

n

∑
i=1

p(xi,yi) log
(

p(xi,yi)

p(xi)p(yi)

)
, (4.16)

where p(x,y) is the joint probability function of x and y, and p(x) and p(y) are the marginal
probability distribution functions of x and y, respectively.

Preliminary version of this comparison Note that, there are some differences between the
work we present in this chapter, and the preliminary versions we published in (Snoussi et al.,
2019) and in (Snoussi et al., 2017). The first difference is the number of acquisitions, in (Snoussi
et al., 2017) we compare the methods on a database of 69 subjects, in (Snoussi et al., 2019) on
95; in this chapter we use the same database as for the latter, but we removed 20 acquisitions after
the quality check done on the registration of the binary mask to the first b=0 volume of dMRI
data step, as described in paragraph 4.6.2. The second difference is in the processing pipeline. In
this work and (Snoussi et al., 2017), we computed CC and MI within the rigidly registered mask
of T2-weighted to the first b = 0 volume of dMRI data. For (Snoussi et al., 2017), the registered
mask was dilated by one voxel. However, in (Snoussi et al., 2019), CC and MI were computed
within the overlap between the rigidly registered mask of T2-weighted to first b = 0 volume of
dMRI data and another binary mask obtained by segmenting mean DWI of dMRI data.

4.6 Quality Control
To ensure that the results are immune to image artefacts, and to identify problems during the
processing pipelines, we performed a careful quality control (QC) on the raw data and after each
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processing step. This is time-consuming process since it is mostly a manual procedure, and in
our case the dataset consisted in more than 100 subjects, acquired several times (longitudinal
follow-up at M0, M12, M24 and M36) with multiple image modalities. However, we believe it
is a crucial step for the quality of the analysis and the accuracy of the results. In this section, we
briefly describe the QC procedures in our pipeline.

4.6.1 Raw data

Size and volume For each subject, volunteer or patient, NIfTI files are organized into subfolders
according to the different center names, acquisition dates and modalities. For each center, we used
a uniform naming scheme for files and directories. We also checked whether all expected image
modalities were present and had expected dimensions for each subject. For this part, we mainly
used medInira (medical image processing and visualization software) 6 to visualize and choose
the best image when an acquisition was repeated or redone. For diffusion MRI modality, we also
checked whether both oppositely-phase encoding images, HF and FH, had the same affine matrix.

Conversion from DICOM to NIfTI In the conversion from DICOM to NIfTI format, one must
also have access to the b-values and b-vectors, which correspond to the diffusion weighting factors
and gradient directions.

Typically, it is common to have a mismatch between the orientation of the b-vectors and the
image, which impacts the subsequent analysis of diffusion data. We compared using dcm2nii 7

and mrconvert, which is a part of MRtrix package 8, and manually checked that tensor orientation
were consistent with the underlying spine structure. Figure 4.6 shows an example of the difference
of tensors orientation between data converted by dcm2nii and mrconvert for the same image. We
concluded that few tools are better suited for modern DICOM scans and using some classic tools
is obsolete. Note that just recently some softwares as FSL noticed this important remark 9.

Figure 4.6: DICOM conversion influences DTI tensors orientation. Computed tractography superimposed
on dMRI data converted by dcm2nii (left) and by mrconvert (right).

6https://med.inria.fr/
7https://www.nitrc.org/plugins/mwiki/index.php/dcm2nii:MainPage
8http://www.mrtrix.org/
9http://people.cas.sc.edu/rorden/mricron/dcm2nii.html

https://med.inria.fr/
https://www.nitrc.org/plugins/mwiki/index.php/dcm2nii:MainPage
http://www.mrtrix.org/
http://people.cas.sc.edu/rorden/mricron/dcm2nii.html
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Ghosting data In order to not bias distortion correction comparison study, we did a QC to be
sure that there is no artifacts related to motion or ghosting in the selected data. Note that RGP
technique of distortion correction is not effective if original images are overly distorted. A quality
check was performed in order to keep normal data and discard unusable data. Some examples of
discarded data in this QC step are reported in Figure.4.7.

Figure 4.7: Examples of discarded data due to a problem during the acquisition related to motion or
ghosting

4.6.2 Processing pipeline

Segmentation of spinal cord for anatomical images The propagated segmentation of the spine
fails occasionally due to the presence of low contrast variations between the spinal cord and the
surrounding cerebro-spinal fluid (CSF). Generated masks were reviewed by one rater (H.S.) and
manual adjustments were made to correct some segmentation failures. Possible solutions to amend
the generated masks include:

• smoothing the image along the centerline of the spinal cord to minimize leaking problems,

• providing a centerline binary mask with many points to ensure a correct orientation of the
propagated segmentation

• adjusting other parameters.

In total, 7 T1-weighted images out of 95, 6 T2-weighted images out of from 95 and approximately
135 dMRI out of 95×5 were adjusted. Figure 4.8 illustrates some failed segmentation before and
after adjusting.

Labeling of T1-weighted and template registration For registering the data to the template, the
manual localization of two vertebral levels is required. In the Spinal Cord Toolbox (SCT), there
are two ways for generating the cord segmentation labeled with vertebral level. The first way is
fast and automatic but fails occasionally as shown in Figure. 4.9. The second way is by selecting
manually two referring labels using a viewer. Although it is more time-consuming, we followed
the latter procedure then we checked and reviewed visually all labeling masks by one rater (H.S).
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Figure 4.8: Examples of failures in segmentation (red box) and the result after changes (green box) for
T2-weighted images (first line), and for T1-weighted images (second line).

Figure 4.9: Checking of labeling

Registration of mask T2-weighted to diffusion image Quality of the registration of the binary
mask obtained from T2-weighted to the first b = 0 volume were checked by visual inspection.
After this step of QC, we only kept out of 95 dMRI data for computing cross-correlation and
mutual information.
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Figure 4.10: Examples of b = 0 volume corrected by various methods; the mask of the spinal cord com-
puted using T2-weighted and registered to diffusion image is overlaid. Failed and effective registration are
in red and green box respectively.

4.7 Results

4.7.1 Geometric statistics

For every distortion correction method, geometric statistics were computed for every cervical and
thoracic levels in the acquisition window. Results of mean and standard deviation of each metric,
MAD and ACD, for brain stem (BS) and each vertebral level are presented in tables 4.2 and 4.3.
Paired Tukey test was computed to compare the performance of each method to the non-corrected
dMRI. For colors in tables, dark green means that p-value shows significant improvement and
inferior to 10−3, weak green means that p-value shows significant improvement but 10−3 < p-
value < 5.10−2, dark red means that p-value shows significant deterioration and inferior to 10−3,
and weak red means that p-value shows significant deterioration but 10−3 < p-value < 5.10−2.

Mean Angle Direction (MAD)
Block-Matching HySCO TOPUP Voss Uncorrected

Levels Mean STD Mean STD Mean STD Mean STD Mean STD
BS 4.50 3.59 4.86 3.48 5.58 4.61 4.61 3.76 5.04 3.94
C1 4.18 5.75 3.83 3.89 3.84 2.39 3.58 2.89 4.06 2.83
C2 3.07 1.98 2.90 2.04 2.82 1.70 2.71 2.01 2.36 1.44
C3 2.39 1.64 2.44 1.55 2.74 1.75 2.41 1.56 2.71 1.61
C4 2.34 1.91 2.49 1.82 2.96 1.81 2.41 1.63 2.56 1.71
C5 2.39 1.61 2.93 2.29 3.34 2.13 2.89 1.77 2.58 1.44
C6 2.96 2.10 3.06 2.04 3.55 2.16 3.07 2.26 3.13 2.13
C7 3.25 2.82 3.77 3.83 3.89 3.50 3.62 4.08 3.78 3.21
T1 4.31 4.40 4.42 4.25 5.32 7.59 6.36 6.20 5.19 4.64
T2 11.31 10.72 10.68 10.05 16.22 17.43 15.26 12.28 14.19 14.76

Table 4.2: Mean and standard deviation for Mean Angle Direction (MAD) metric for data corrected by
Block-Matching, HySCO, TOPUP and Voss and uncorrected data. Weak green means that p-value shows

significant improvement with 10−3 < p-value < 5.10−2, weak red means that p-value shows significant
deterioration. BS: brain stem.
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Angular Concentration of directions (ACD)
Block-Matching HySCO TOPUP Voss Uncorrected

Levels Mean STD Mean STD Mean STD Mean STD Mean STD
BS 84.32 8.66 82.06 8.57 78.10 9.46 84.96 8.01 80.22 8.71
C1 96.49 4.96 95.93 4.56 95.60 5.84 96.06 3.92 95.10 5.76
C2 97.75 2.14 97.23 2.29 97.68 2.20 97.57 2.21 97.25 2.55
C3 97.91 2.08 97.80 2.01 97.82 1.89 97.83 2.23 97.71 2.23
C4 97.73 2.34 97.77 1.82 97.59 2.33 97.93 1.57 97.83 1.69
C5 97.62 1.68 97.35 2.06 97.83 1.64 97.76 1.44 97.48 1.63
C6 96.08 4.03 95.80 3.75 96.53 3.56 96.57 3.19 96.02 3.31
C7 94.63 6.17 93.69 6.52 94.84 7.44 95.03 5.05 94.32 6.08
T1 93.09 7.92 91.37 7.49 91.88 9.17 91.61 7.70 89.99 9.58
T2 83.56 12.66 80.23 14.47 85.00 13.99 84.67 11.40 77.59 16.15

Table 4.3: Mean and standard deviation multiplied by 102 for ACD metric for data corrected by Block-
Matching, HySCO, TOPUP and Voss and uncorrected data. Dark green means that p-value shows signif-

icant improvement with p-value < 10−3, weak green means that p-value shows also significant improve-
ment but 10−3 < p-value < 5.10−2. BS: brain stem.

Figure.4.11 shows the MAD and ACD by vertebral level. This way of representation shows
that extreme vertebral level of the acquisition window are more affected by distortion. Note that
for MAD, a decrease is considered as an improvement (less bias in the direction), while for ACD,
an increase is considered as an improvement (higher concentration around the mean direction).

Figure 4.11: Mean MAD (in degree) and mean ACD (× 100) by vertebral level. This way of representation
shows that extreme vertebral level of the acquisition window are more affected by distortion.

4.7.2 Comparison with anatomical images
Since T2-weighted image is not affected by distortion, it can be considered as a gold-standard
for the evaluation of distortion correction. So, we also compare the corrected volume (b = 0) of
dMRI data by each method to the T2-weighted image. We report results of cross-correlation and



50 Chapter 4. Distortion correction

mutual information. Note that results presented here are slightly different to the study reported in
(Snoussi et al., 2017) because of difference in pipeline treatment and dataset (N = 69 vs. N = 75).

Cross-correlation study

A Paired Tukey test was performed on the cross-correlation scores and reported in Table. 4.4. In
Figure.4.12 results are reported using box plots.

Cross-correlation
Methods BM HySCO TOPUP Voss Uncorrected

Mean 0.185 0.242 0.179 0.148 0.160
STD 0.114 0.119 0.150 0.115 0.107

P-value 0.029 2.10−4 0.189 0.173 -
t-statistic 2.215 7.303 1.325 -1.375 -

Table 4.4: Paired Tukey test for Block-Matching, HySCO, TOPUP and Voss for Cross-correlation for
the whole of the spinal cord region. Dark green means that p-value shows significant improvement and

inferior to 10−3, weak green means that p-value shows significant improvement but 10−3 < p-value <

5.10−2.

Mutual information study

A Paired Tukey test was performed also on the mutual information scores and reported in Ta-
ble. 4.5. In Figure.4.12 results in boxplot format.

Mutual information
Methods BM HySCO TOPUP Voss Uncorrected

Mean 0.304 0.330 0.312 0.293 0.277
STD 0.051 0.049 0.064 0.053 0.054

P-value 10−5 4.10−14 6.10−7 9.10−4 -
t-statistic 4.652 9.198 5.433 3.449 -

Table 4.5: Paired Tukey test for Block-Matching, HySCO, TOPUP and Voss for Mutual information for
the whole of the spinal cord region. Dark green means that p-value shows significant improvement and

inferior to 10−3, weak green means that p-value shows significant improvement but 10−3 < p-value <

5.10−2.
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Figure 4.12: Boxplots graphics of cross-correlation (left) and mutual information (right) between T2 and
corrected b=0 diffusion images.

4.7.3 Vertebral level volume
Further more, we computed the volume in mm3 of each vertebral level for uncorrected and cor-
rected data as shown in Table. 4.6. This table contains also results of paired Tukey test to compare
the volume of each method to the non-corrected dMRI. This will be useful to study the effect of
these distortion methods on the volume vertebral level and also to have an idea about the quantity
of region in which we apply our geometric metrics.

BM HySCO TOPUP Voss Uncorrected
Level Mean STD Mean STD Mean STD Mean STD Mean STD
C1 560.5 123 583.9 106 555.9 118 555.8 110 568.7 104
C2 530.7 118 552.0 101 528.7 123 526.8 103 538.7 108
C3 913.2 155 967.6 165 911.5 173 934.8 146 917.8 155
C4 959.8 157 1021 163 923.0 175 949.4 142 943.4 152
C5 855.4 158 901.6 150 823.3 170 837.3 143 835.5 150
C6 777.3 137 810.8 126 725.1 161 753.7 141 749.6 134
C7 743.6 127 764.4 120 681.7 134 710.4 132 732.6 127
T1 790.4 138 820.9 153 722.3 158 742.8 173 757.6 158
T2 456.9 277 501.0 283 363.7 265 339.5 283 397.9 271

Table 4.6: Volume of every vertebral level (in mm3) of spinal cord, segmented mask, corrected by Block-
Matching, HySCO, TOPUP, Voss and uncorrected. Dark red means that p-value shows significant differ-
ence and inferior to 10−3, weak red means that p-value shows significant difference but 10−3 < p-value
< 5.10−2.

4.8 Discussion and conclusion
In this Chapter we have proposed a novel geometric based metrics and framework for studying
the impact of distortion correction in diffusion MRI of the spinal cord. We showed a difference in
geometric alignment after correcting with one method or another.
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For Block-Matching method, as shown in Table. 4.2, we can remark that it performs signifi-
cantly better in T1 vertebral levels. However, there is a significant deterioration in C2 as HySCO.
For ACD metric, BM improves the concentration significantly in brain stem region, C1, C2, T1
and T2.

For HySCO method, as shown in Table. 4.2, for MAD metric we can observe that it performs
significantly better than uncorrected in T1 and T2 vertebral levels. But, this method has significant
deterioration at C2 vertebral level, as BM, but mean MAD of HySCO is more close the uncor-
rected. For ACD metric, we remark a significant improvement at edges of the spinal cord (brain
stem, C1, C7 and T1 regions) as shown in Table. 4.3.

For TOPUP method, we consider significant deterioration in MAD in C2 and C5 vertebral
levels without any significant improvement. For ACD metric, there is significant improvement at
C2, C5, C6 and T2 vertebral levels.

For Voss method, there is a significant improvement in MAD metric for C1 vertebral level and
significant deterioration in T1 vertebral level. But, there is a very remarkable amelioration for
ACD in all vertebral levels, except C3 and C4 which are in the middle of the field-of-view of the
acquisition.

Complementary to the geometric measure of alignment, we also compute the similarity be-
tween the corrected b = 0 image and the T2-weighted image. For cross-correlation, there is a
significant amelioration only for Block-Matching and HySCO as demonstrated in Table. 4.4. For
mutual information, there is a significant amelioration for all methods as shown in Table. 4.5.

Further more, we computed the volume in mm3 of each vertebral level for uncorrected and
corrected data as shown in Table. 4.6. A paired Tukey’s test was performed in the mean of volume
of each vertebral level of dMRI corrected and uncorrected. We consider that all methods have a
remarkable significant impact on the volume in mm3. For Voss there is significant decrease of
volume for C1, C7 and T1. For TOPUP, there is also significant decrease of volume in C7 and
T1. For HySCO there is a significant increase of all vertebral level volume except C2. For BM,
there is a significant increase in vertebral level volume for C6, T1 and T2. Causes of these results
may be related to the re-sampling step necessary after unwarping. These significant difference
of volume may affect and reorient such analysis as they include new voxels/new information in
vertebral level.

Otherwise, a clinically useful details to note that the mean time per subject is about 2 seconds
for HySCO algorithm, 5 seconds for Voss algorithm, 170 seconds for Block-Matching algorithm
(multi-threaded) and 500 seconds for TOPUP algorithm. These mean times were obtained on an
Intel CORE i7.

The novel statistics we propose, based on the quantifying the alignment of diffusion directions
with the spine macroscopic structure, provide a new light to the evaluation of distortion correction
methods. Based on the assumption that the distortion only affects the apparent shape of spine and
not the direction of tensor, we proposed two novel statistics which take into account the alignment
of the diffusion tensor with the apparent centerline of the spinal cord. This geometric evaluation
was used to compare four distortion correction methods conducted on 95 scans. The fragmentation
by levels of the spine shows the different impact of distortion between edges (C1, C2, T1, T2) and
center (C3,C4) of the imaging window. This local evaluation provides a performance measure
complementary to classical comparison with a reference anatomical image. We can also report
per-level statistics, and provide a measure different and complementary to the comparison with an
anatomical reference image. This idea of metric is only relevant to spinal cord as it has a simple
apparent geometry.

One conclusion when considering these results is that these methods of distortion correction
have different impact on the raw data. This difference confirm the necessity to do such study for
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comparing and evaluating with more details these results. In addition, we show that the impact of
each method affect the characterization of the angular deviation between the diffusion direction
and the tangent to the centerline. Therefore, the choice of such method is crucial step in a pipeline
analysis. Furthermore, a possible next step could be to introduce these geometric metric in the
method of distortion correction as a registration or convergence criterion.

In our work, using diffusion MRI acquired in sagittal way with Head-Feet (HF-FH) PED, we
show that distortion is limited only for extremes of FOV, especially those in PED. The extremes of
FOV in HF-FH contain brain stem, C1, C2 and C7, T1 and T2. However, acquisition in Anterior-
Posterior (AP-PA) PED, the extremes of FOV will be empty but the acquisition will may be
hampered by more distortion as result of perpendicular inhomogeneity field depending the size
of matrix. One interest perpective of our work is to apply the current evaluation of distortion
correction and compare between them.
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5.1 Introduction
Spinal cord is a clinically common and eloquent structure frequently involved in MS. Spinal cord
lesions in MS patients are frequent in the cervical part, commonly restricted to two vertebral levels
in length, fill less than half of the cross sectional area of the spinal cord and generally peripheral
(Stroman et al., 2014). In clinical practice, conventional MRI (including T2-weighted and T1-
weighted scans) of the brain and spine is increasingly used and integrated as a new criteria in the
diagnosis and follow-up of MS patients (Amélie et al., 2015). It has a huge impact on this disease
by enabling an earlier diagnosis, an a precise follow-up of the evolution of lesions in patients.
However, despite its growing role in scientific and clinical investigation of MS, conventional MR
images show little correlation with histological findings and clinical disability of the MS patients
(Barkhof, 2002). In addition, some regions in white matter appear normal using conventional
MRI while they are involved in the MS process (Miller et al., 1998; Filippi and Grossman, 2002;
Rovaris et al., 2006). This suggests that conventional MRI has a relatively low specificity with
respect to MS pathology and low sensitivity to diffuse tissue injury in normal-appearing white
matter (NAWM). In this context, the development of quantitative MRI, and in particular diffusion
MRI (dMRI), has recently shown its potential to provide intrinsic and normative value to tissue
properties useful for diagnosis, prognosis and ultimately clinical trials in MS. MS has benefit
mostly from advanced quantitative spinal cord MRI such as fMRI, MTR and dMRI (Agosta et al.,
2007a; Inglese and Bester, 2010).

While in general brain MRI has received detailed attention over the past years, the interest for
quantitative MRI of the spine is relatively recent. One of the challenges of analyzing diffusion
MRI data is that it is multivariate in nature. This requires the use of statistical tools adapted to this
kind of data. In this chapter, we propose a pipeline to extract average dMRI metrics per vertebral
level, and we perform a statistical analysis to show their changes associated with the presence and
evolution of MS lesions within the same vertebral level. The pipeline is generic in nature, and it
is applied to metrics extracted from the diffusion tensor and the ball-and-stick models (Behrens
et al., 2003).

5.2 Quantifying metrics in the spinal cord
WM in the spinal cord is organized into myelinated axon bundles that ensure adequate commu-
nication between the peripheral and the central nervous system. The cord is divided into four
different parts: the cervical, thoracic, lumbar and sacral parts. Each part is also divided into sev-
eral vertebral levels. For MS patients, a damage caused to a spinal pathway can lead to neuropathic
pain or motor and sensory deficits. Given that each spinal axon bundle is associated to specific
functions, the diagnosis or promotion of functional recovery depends on the type, the extent and
location of the damaged pathways. The first methodological question for a group-based statistical
analysis is how to define a common spatial reference across subjects.

In this section, we discuss three possible choices: either using manual-drawn regions of in-
terest (ROI), identifying major tracts using tractography or using an atlas. In what follows, we
present the details of each solution and we summarize the comparison of these in Table. 5.1

5.2.1 ROI-based approach
A region of interest (ROI), defined as a binary mask, can be manually drawn by selecting voxels
on each axial slice in an MR image by an anatomical expert. In parallel, one can improve the
gray/white matter separation using automated segmentation methods (Ellingson et al., 2007a).
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From this, metrics averaged within each ROI can be computed to report values specific to a given
tract or region. Although this is a standard method in neuroimaging (Ciccarelli et al., 2007;
Cohen-Adad et al., 2008a; Onu et al., 2010), ROI-based approach has several limitations: (i) very
time-consuming, in particular for large populations, (ii) the definition of a specific axon bundles
is biased by the anatomy knowledge of the expert, (iii) ROIs masks don’t compensate for partial
volume effect (PVE) with surrounding gray matter and CSF, which is a problem for low spatial
resolution typical in dMRI.

5.2.2 Tractography-based approach
Tractography is a 3D representation of the WM fiber architecture reconstructed using dMRI data.
By following the principal directions of diffusion reconstructed locally, it artificially connects
neighboring voxels with coherent principal diffusion direction. Performing the tractography in
the spinal cord facilitates retrieving and tracking major axon bundles and longitudinal pathways
(Wheeler-Kingshott et al., 2002; Ciccarelli et al., 2007; Ellingson et al., 2007b). Once the fiber
bundles are reconstructed, diffusion MRI metrics can be quantified within voxels that include spe-
cific segment or tract (Van Hecke et al., 2008). Several tractography methods have been proposed
differences mainly in the adjacent information used to estimate and reconstruct posterior trajectory
(Mori and Van Zijl, 2002). Various implementations of tractography algorithms are available in
software packages such as TrackVis 1, Camino (Cook et al., 2006) or medInria 2. Tractography is
a semi-automatic procedure, and therefore offers the potential to reduce user bias when compared
to the ROI-based approach described in section 5.2.1. However, there is a number of challenges
to tractography in the spinal cord.

First, in order to quantify metrics specific to WM, white and gray matter must be segmented
prior to tractography using the diffusion MRI data (Ellingson et al., 2007a). Besides, tractography
is sensitive to the geometric distortions, and the reconstructed tracts may terminate prematurely
as an effect of the distortion. In addition, pathological changes in MS may lead to increased water
mobility and decrease anisotropy in WM (Song et al., 2005), which can cause an interruption or
a discontinuity of the reconstructed WM fibers at the site of an MS lesion. Last, to improve trac-
tography, it is generally recommended to acquire images with isotropic resolution (Caan, 2016).
In these images, the small cross-sectional of the cord implies PVE with the surrounding CSF,
GM and the non-longitudinal branches in GM and through spinal segments, which contributes in
reducing the specificity of the estimated principal directions of diffusion.

5.2.3 Atlas-based approach
This approach consists in registering the subject’s spinal cord to a template, where ROIs have
been manually labelled, in order to quantify metrics specific to each ROI. For spinal cord, a tem-
plate was created (Fonov et al., 2014; Leener et al., 2018) with an anatomical labelling to extract
per-ROI average metrics using partial volume correction (Lévy et al., 2015). The principal moti-
vation for using this approach is to provide an automated framework to defined a common spatial
reference for quantifying MRI data within spinal cord pathways.

This approach solves many issues existing in ROI and tractography approaches. The atlas is
aligned with PAM50 template (Fonov et al., 2014) which is a symmetric and straight anatomical
template of the spinal cord that involves vertebral levels from C1 to T6 and has isotropic resolution
(0.5 mm). Thus, after registration of the dMRI data to the template, the warping field is applied to

1http://trackvis.org/
2https://med.inria.fr/

http://trackvis.org/
https://med.inria.fr/
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white matter atlas which is in turn aligned in native space with the spinal cord of the subject. The
intensity value of each voxel in the WM atlas represents the fractional volume (in the range [0,1])
of a specific tract, normalized by the probability to be in the WM (Taso et al., 2014). Therefore,
during metric extraction partial volume effect is accounted for using Gaussian mixture models.
Also, this approach facilitates multi-center and longitudinal studies. We would like to thank the
authors of (Lévy et al., 2015) and developers of the spinal cord toolbox for the discussions and
their help in optimizing the pipeline.

ROI-based approach
⊕ Better control (accuracy increase) 	Manual procedure : time consuming
⊕ Adapted to axial acquisition 	Manual delineation bias

	 PVE not accounted
	 Large bias on small tract

Tractography-based approach
⊕ Semi-automatic procedure: fast 	 Sensible to susceptibility distortions
⊕ Relative lower user bias 	 Not applicable with gapped slices
⊕ Typically isotropic resolution and sagittal
acquisition (Already in EMISEP protocol)

	 PVE not accounted

Atlas-based approach
⊕ Free from manual delineation bias 	 In the process of discovering them...
⊕ PVE accounted during metric extraction
⊕ Less sensibility to susceptibility distortions
⊕Higher accuracy and precision for L/R CST
comparing to ROI-based

Table 5.1: Quantification of dMRI metrics approaches. PVE: Partial volume effect, CST: corticospinal
tract

5.3 Data acquisition

Data were acquired on 3T scanners at four sites in France: Marseille, Rennes, Strasbourg and
Montpellier.

5.3.1 Multiple sclerosis patients and healthy volunteers

29 healthy volunteers (mean age = 32.83±7.13, 18F/11M) and 66 MS patients (mean age =
32.20±6.30 ,42F/24M) were recruited in the study approved by the local research ethics com-
mittee. All participants provided informed written consent. Healthy volunteers and MS patients
are from 4 hospitals in France: Marseille, Rennes, Strasbourg and Montpellier. Details about MRI
scanners, centers and subjects characteristics are reported on Table. 5.2.
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Center Marseille Rennes Strasbourg Montpellier TOTAL
3T Siemens MRI Verio Verio Verio Skyra -
Volunteers 4 18 3 4 29
Gender F/3M 10F/8M 3F 4F 18F/11M
Mean age(year) 34.0±4.74 32.61±7.97 34.67±5.25 31.25±5.67 32.83±7.13
Mean weight(kg) 72.5 ± 6.7 65.4 ± 11.4 65.0 ± 7.5 56.0 ± 4.1 65.0 ± 10.7
Mean size(m) 1.75 ± 0.03 1.72 ± 0.09 1.66 ± 0.06 1.64 ± 0.04 1.71 ± 0.08
MS Patients 7 44 8 7 66
Gender 4F/3M 28F/16M 5F/3M 5F/2M 42F/24M
Mean age(year) 32.57±8.30 31.43±6.14 34.0±5.29 34.57±4.78 32.20±6.30
Mean weight(kg) 72.3 ± 11.6 70.9 ± 16.3 67.2 ± 7.7 69.1 ± 13.6 70.4 ± 14.8
Mean size(m) 1.70 ± 0.09 1.70 ± 0.10 1.70 ± 0.09 1.68 ± 0.06 1.70 ± 0.09

95 (60F/35M)

Table 5.2: Demographic and clinical information for all participating subjects, healthy volunteers and MS
patients in the EMISEP cohort.

5.3.2 MRI Acquisition
Scans were acquired on Siemens 3T MRI scanners (Verio and Skyra). We give a brief presentation
of each MR modality we processed in what follows.

Diffusion MRI

Thirty diffusion-weighted images (DWI) were acquired at b = 900 s·mm−2 with non-collinear
gradient directions, six non-DWI (b= 0) measurements and one non-DWI (b= 0) with an opposite
phase encoding direction (PED) were also acquired. This was repeated three times successively
in order to increase the signal-noise ratio (SNR). Scans were performed in sagittal orientation
and head-feet (HF) PED. The pulse sequence used for diffusion MRI is a single-shot echo-planar
imaging (ss-EPI) using parallel imaging (GRAPPA, acceleration factor 2). The reduced-FOV
(field-of-view) technique was employed to reduce sensitivity of EPI to susceptibility artifacts.
Sixteen slices were acquired with the following parameters without inter-slice gap: TR/TE =
3600/90 ms, with 2×2×2 mm3 as the resolution, and image matrix 80×80. The total acquisition
time for the dMRI sequence was approximately 7 minutes.

Anatomical reference MRI

The protocol also includes two high-resolution anatomical references:

T1-weighted scan in sagittal orientation, magnetization-prepared rapid acquisition gradient echo
(MPRAGE) sequence with an isotropic 1× 1× 1 mm3 resolution, TR/TE = 1800/2.79 ms
and FoV = 250 mm

T2-weighted scan in sagittal orientation, with anisotropic 0.7×0.7×2.75 mm3 resolution, TR/TE
= 3000/68.0 ms and Fov = 260 mm

In addition to T2-weighted scan, other modality was acquired for segmentation of MS lesions:
sagittal T2*-weighted.
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5.3.3 Segmentation of MS lesion
For 53 MS patients (out of the 66), the MS lesions were segmented manually by 9 neurological
expert, as described in (Eden et al., 2019). In brief, lesion were segmented manually using both
axial T2 and sagittal T2*-weighted by 9 raters including radiologists and experienced readers using
ITK-SNAP Toolbox v3.6.0. From these segmentations, we computed for each vertebral level:

• the number of MS lesions within the vertebral level,

• the total volume of lesions, normalized by the volume of the vertebral level.

We report on Figure.5.1 the histogram of volume lesions, for the range of cervical levels [C1-C7]
and [C2-C4], respectively.
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Figure 5.1: Distribution of lesion’s volume in [C1-C7] and [C2-C4] regions.

5.4 Methods

5.4.1 MRI Data pre-processing
In this section, we present the processing pipeline, from the raw images to extracted diffusion
measures per subject and per vertebral level. The whole processing pipeline is depicted on Fig-
ure.5.2.

Motion and distortion correction

Motion between DWI were corrected using the method presented in (Xu et al., 2013) and im-
plemented in the Spinal Cord Toolbox (SCT). Then, dMRI data were corrected for susceptibility
distortion using HySCO (Hyperelastic Susceptibility Artefact Correction) method as implemented
in SPM toolbox (ACID branch) presented in (Ruthotto et al., 2012). HySCO had the efficient per-
formance for diffusion MRI of spinal cord as shown in Chapter. 4 and (Snoussi et al., 2017;
Snoussi et al., 2019).
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Segmentation of the cord and identification of vertebral level

Using SCT toolbox (De Leener et al., 2017), the whole spinal cord segmentation was carried
out on T1-weighted, as well as on the mean of DWI (b = 900 s·mm−2) corrected for distortion.
Then, we manually identified two vertebral levels, C3 and T1, to fulfill the requirements for the
registration to the PAM50 template.

5.4.2 Computation of diffusion-based metrics
The diffusion-weighted signal in white matter was modelled in the spinal cord using Diffusion
Tensor Imaging (DTI) in the one hand and Ball-and-Stick (B&S) model (Behrens et al., 2007) in
the other hand, which we briefly describe in the sequel.

Diffusion tensor model The diffusion tensor model assumes that the probability of water molecules
displacement follows a zero-mean 3D Gaussian. The diffusion tensor, directly related to the co-
variance matrix, is a 3×3 symmetric, positive-definite matrix. From its eigenvalue decomposition,
we can extract rotation-invariant indices. In this chapter, we focussed on the radial diffusivity
(RD), the axial diffusivity (AD), the mean diffusivity (MD) and the fractional anisotropy (FA).
Note that MD can be expressed as a combination of AD and RD:

MD =
AD+2 RD

3
(5.1)

Ball-and-stick model Contrary to the diffusion tensor model, the ball-and-stick model is a two-
compartment model, where each compartment provides a normalized MR signal S1 and S2. These
signal models correspond to intra- and extra-axonal diffusion, respectively. For the intra-axonal
compartment, S1 refers to signals coming from water inside the axons in which the diffusion is
restricted. For the extra-axonal compartment, S2 refers to signals coming from water outside the
axons. For ball-and-stick model, the first compartment is a stick, anisotropic component, which
has fiber direction n and diffusivity d as parameters (Behrens et al., 2003). The stick compartment
describes diffusion in an idealized cylinder with zero radius. The signal for this component is:

S1(d,n;b,G) = exp
(
−bd(n ·G)2) , (5.2)

where b is the diffusion-weighting parameter and G is the gradient direction.
The second compartment, called a ball, is an isotropic component which has only the diffusiv-

ity d0 as parameter in its signal described as:

S2(b) = exp(−bd0). (5.3)

In our implementation, d0 is fixed to 3.0 · 10−3 mm2/s, which corresponds to the free diffusion
coefficient of water.

The signal model is therefore

S(d,n, f ;b,G) = (1− f )S1(d,n;b,G)+ f S2(b).

The parameters of interest we extracted from this model are f , the free water weight (FWW), and
d, the stick axial diffusivity (or Stick-AD).

In addition to these metrics we also computed the mean angle direction (MAD) and angular
concentration of directions (ACD), the geometric measures of alignment of the diffusion direction



62 Chapter 5. Characterization of multiple sclerosis

with the local orientation of the spine introduced in Chapter 4. MAD and ACD were computed
using both diffusion reconstruction models, DTI and B&S. A summary of the extracted metrics is
reported in Table 5.3.

Type of metric Diffusion Tensor Imaging (DTI) model Ball-and-Stick (B&S) model

Scalar metrics
AD, FA FWW
MD, RD Stick-AD

Geometric metrics
MAD-DTI MAD-B&S
ACD-DTI ACD-B&S

Table 5.3: Computed scalar and geometric metrics using both diffusion reconstruction models: 10 metrics.

5.4.3 Quantification of metrics per vertebral level

Here, our aim is to compute the mean of metrics for each vertebral level. To do so, we proposed a
processing pipeline to align the labels defined in the PAM50 template (De Leener et al., 2018) to
the native DWI space of each subject, as summarized in Figure.5.2.

First, the T1-weighted anatomical image was registered to the PAM50-T1 spinal cord template
(De Leener et al., 2018); this generates forward and inverse warping field between them. Next, the
PAM50-T1 template (De Leener et al., 2018) was registered to the mean DWI using the inverse
warping field from previous registration as an initial warping field.

Here, we preferred T1-weighted to T2-weighted since its isotropic resolution made the registra-
tion more effective. Alignment with the template provides robust definition of the inter-vertebral
levels for the spine. This enables computation of the average metrics in spinal cord using the atlas-
based approach introduced in (Lévy et al., 2015), which overcome biases related to partial volume
effects. As a result, we can quantify diffusion-based metrics averaged for each inter-vertebral level
in cervical part. Especially for scalar metrics, we quantify them only in white matter referring to
PAM50 template. The processing pipeline is summarized in Figure.5.2.
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Figure 5.2: Illustration of the automated analysis pipeline. (1) Segmentation of the cord on T1. (2) Manual
identification of two vertebral levels. (3) Registration to the PAM50 template. (4) Motion and distortion
correction of dMRI data. (5) Segmentation of the cord using DWI mean data. (6) Registration of PAM50-
T1 registered to DWI mean data using the inverse warping field from previous registration as an initial
warping field. (7) Computing DTI and Ball&Stick metrics. (8) Quantification of metrics by vertebral level
of the cervical part.

5.4.4 Quality Control
As we described in Chapter.4, Section.4.6, we performed a careful quality control (QC) on the raw
data and after each processing step in order to ensure the quality of the analysis and the accuracy
of the results.

5.5 Classical statistical analysis
From the processing pipeline we just described, we obtain data specific to every vertebral level
of every subject in our cohort. In this section, we report results of a statistical analysis between
patients and controls, for each metric separately.

5.5.1 Pairwise comparisons
The EMISEP cohort is comprised of 29 healthy volunteers and 53 MS patients with segmented
lesions. This sample size is relatively small compared to the number of metrics we extracted, and
the relatively small volume of the regions of interest across which we computed the mean. In
this section, we study the opportunity to pool data from several vertebral levels to increase the
statistical power of our analysis.

To do so, we performed a two-way analysis of variance between vertebrae levels for each
metric to illustrate the interaction term between them. We compare all pairs of vertebrae levels
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of one subject, for each level of all the other subjects. This test reveals the degree to which one
subject is differentially effective at each vertebrae level of a second subject. This test can be
performed using the Estimated Marginal Means (EMMs), sometimes called least-squares means,
are predictions from a linear model over a reference grid; or marginal averages thereof.
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Figure 5.3: Estimated marginal means (x axis) for each metric in cervical vertebral levels (y axis) for
healthy volunteers data. The blue bars are confidence intervals for the EMMs, and the red arrows are
for the comparisons among them. If an arrow from one level overlaps an arrow from another level, the
difference is not significant (p-value > 0.05). Else, the difference is significant (p-value< 0.05).
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Figure.5.3 summarizes graphically this comparisons for all 10 metrics computed only on
healthy volunteers data. The blue bars are confidence intervals for the EMMs, and the red ar-
rows are for the comparisons among them. If an arrow from one level overlaps an arrow from
another level, the difference is not significant and p-value between them is superior to 0.05. Al-
ternatively, if there is no overlap between two red arrows, this means that the difference between
these two vertebral levels is significant and p-value inferior to 0.05.

Table 5.4 summarizes intervals of vertebral levels in which there is no significance difference.
We remark that for all metrics, the [C2,C4] interval shows no significance difference. This leads
to the possibility of merging metrics quantified in C2, C3 and C4 vertebral levels.

Metric Interval without significance difference
MAD-B&S [C1-C3] or [C2-C7]
ACD-B&S [C1-C2] or [C2-C5] or [C3-C5]
MAD-DTI [C1-C3] or [C2-C7]
ACD-DTI [C1-C2] or [C2-C6] or [C5-C7]
FWW [C1-C5] or [C6-C7]
Stick-AD [C1-C2] or [C2-C4] or [C4-C7]
AD [C1-C2] or [C2-C4] or [C5-C7]
FA [C1-C5] or [C6-C7]
MD [C1-C4] or [C4-C7]
RD [C1-C6] or [C6-C7]
Common interval [C2-C4]

Table 5.4: Summary of the pairwise comparisons for each metric between all vertebrae levels for healthy
volunteers data

5.5.2 Unpaired t-test between healthy volunteers and MS patients
We perform Welch’s t-test between healthy volunteers and MS patients data in [C2,C4] region.
This t-test is an adaptation of Student’s t-test and is more reliable when the two samples have
unequal variances and/or unequal sample sizes. It is often referred to as unpaired or independent
samples t-tests. In this statistic test and as illustrated in Equation. 5.4, for each metric i, we have
29× 3 vertebral levels considered as 87 healthy controls in Vi, 66× 3 vertebral levels consid-
ered as all MS patients in ALL i, 86 vertebral levels considered as vertebral level without lesion
detected in N AW M i, and 36 vertebral levels posses lesion with volume superior to 5% of the
corresponding vertebral level volume in M S i(5). More details about these in following equation:

Vi =

[
volunteer1

[
mi(c2),mi(c3),mi(c4)

]
, ...,volunteer29

[
mi(c2),mi(c3),mi(c4)

]]
ALL i =

[
patient1

[
mi(c2),mi(c3),mi(c4)

]
, ..., patient66

[
mi(c2),mi(c3),mi(c4)

]]
N AW M i =

[
patient1

[
mi(c j)

]
, ..., patient66

[
mi(c j)

]]
, cj∈(2,3,4) without lesion

M S i(thr%) =

[
patient1

[
mi(c j)

]
, ..., patient66

[
mi(c j)

]]
, cj∈(2,3,4) with lesion > thr%

(5.4)
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where, mi is the chosen metric with its index i∈ {1, ..,10}, c2, c3 and c4 are the vertebral level and
thr is threshold of volume lesion. Note that we refer to vertebral level as normal-appearing white
matter (NAWM) when there is no lesion detected by 9 raters. Mean, standard deviation and t-test
results for these vectors are presented in Table. 5.5.

For both geometric metrics and AD, there is no detectable difference between values in healthy
controls and MS patients even without lesion. In contrast, FWW significantly increases in MS
patients, regardless of the presence and the volume of lesions. For the second component of Ball-
and-Stick model, Stick-AD, there is significant decrease on MS patients. FA shows significant
decrease on all MS patients and those whom possess lesions > 5% of the corresponding vertebral
level volume. RD increases significantly with all MS patients and those have lesion > 5%. Finally,
MD shows significant increase on MS patients having lesion when compared to healthy volunteers.
Otherwise, for ACD-DTI, we remark that there is a significant difference on N AW M comparing
to healthy volunteers without any significant on MS patients with lesions.

Note that for this t-test we fixed the threshold of volume lesion as compromise with the size of
available data. FWW, FA, MD and RD of MS patients still have significant difference for various
threshold until 22%, but Stick-AD has a p-value < 0.05 until 12% and p-value < 0.07 until 16%.

Data Healthy volunteers MS patients
Vi (n=87) ALL i (n=198) N AW M i (n=86) M S i(5%) (n=36)

Metric Mean STD Mean STD Mean STD Mean STD
MAD-B&S 2.4152 1.8907 2.6798 1.7963 2.5939 1.8188 2.7365 1.6500
ACD-B&S 0.9720 0.0294 0.9669 0.0270 0.9639 0.0271 0.9672 0.0234
MAD-DTI 2.4272 1.8977 2.7089 1.7963 2.6386 1.8352 2.7830 1.5926
ACD-DTI 0.9800 0.0209 0.9748 0.0201 0.9731 0.0184 0.9756 0.0166
FWW 0.1594 0.0431 0.1849 0.0669 0.1774 0.0672 0.2076 0.0735
Stick-AD 0.0011 0.0003 0.0011 0.0003 0.0011 0.0003 0.0010 0.0002
AD 0.0017 0.0002 0.0016 0.0002 0.0016 0.0003 0.0017 0.0002
FA 0.6899 0.0800 0.6584 0.0941 0.6774 0.0941 0.6150 0.0908
MD 0.0008 0.0001 0.0009 0.0002 0.0008 0.0002 0.0009 0.0002
RD 0.0004 0.0001 0.0005 0.0002 0.0004 0.0002 0.0005 0.0002

Table 5.5: For C2, C3 and C4 levels, mean and STD of each metric for healthy volunteers, for MS patients
with or without lesions and for MS patients with lesion >5%. Dark green means that there is a significant

difference between healthy volunteers and MS patients and p-value is inferior to 10−2, weak green means
that p-value shows significant difference but 10−2 < p-value < 5.10−2. n represents the number of vertebral
level data available in [C2,C4] region.The unit of FWW, Stick-AD, AD, MD and RD is mm2/s, for MAD-
DTI and MAD-B&S is degree.

5.6 Multivariate learning for the detection of MS lesions
In this section, we propose to use the diffusion MRI data to automatically detect the presence of a
lesion. Based on a selection of metrics extracted from diffusion, we learn a linear classifier using
linear discriminant analysis. In order to reduce the dimension of the feature vector, we present
two different strategies :

• We manually select a set of measures with limited cross-correlation
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• We perform a principal component analysis (PCA) and then learn a linear classifier on the
reduced set of PCA components which explain more than 90% of the variance.

Throughout this section, we will evaluate classification results using the area under the curve
(AUC) of the receiver operating characteristic curve (ROC). When applicable, we report mean and
standard deviation of ROC AUC for 1,000 splits of the dataset into training and testing parts, rep-
resenting respectively 67% and 33% of the original dataset. More details of how this is computed
is summarized in section 5.A.

5.6.1 Univariate classification using diffusion metrics

Complementary to the t-tests presented in section 5.5.2, we computed the classification score
when using each individual metric as a criterion for classification. To compute the ROC AUC for
each metric independently, we follow Algorithm. 1. The data vector X and label vector Y of each
metric is constructed as follows:

Xi(thr) =
[[

Vi

]
,
[
M S i(thr%)

]]
, with thr ∈ {2%,4%, . . . ,20%}

Yi(thr) =
[[

0, ..,0
]
,
[

1, ..,1
]] (5.5)

where, i ∈ {1, ..,10} is the index of the chosen metric, and thr is the threshold of volume lesion.

Algorithm 1 ROC AUC for each metric independently

I. We fix thr from {0.02,0.04,..,0.20}

II. We construct the data vector X and its label vector Y. We give 0 to healthy volunteers and 1
to MS patients.

III. We standardize X to get Xscaled by centering to the mean and component wise scale to unit
variance.

IV. We compute ROC AUC score between Xscaled and Y.

Results are presented in Figure.5.4; we remark that FA, MD and RD have the best perfor-
mance of classification between vertbral levels of healthy volunteers and MS patients. FA reaches
0.8 score of ROC AUC from 12% of lesion volume, RD reaches the same score from 15% and
MD from 18%. These 3 metrics have monotonic increasing ROC AUC as a function of lesion
volume. FWW reaches 0.75 score of ROC AUC at 10% of volume lesion and remains in the range
[0.68,0.75] along the various thresholds. However, MAD-B&S, MAD-DTI, ACD-B&S, ACD-
DTI and Stick-AD have a poor score of ROC AUC and remains in [0.57,0.70]. This is in line with
the p-values reported above in section 5.5.2.
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Figure 5.4: ROC AUC for scalar and geometric metrics between MS patients and healthy volunteers.
Lesion volume is the part of the vertebral volume occupied by a lesion.

5.6.2 Linear discriminant analysis of native diffusion features

In order to build a classifier which combines a set of metrics, we use Linear discriminant analysis
(LDA) (Ripley, 2002), which is a generalization of Fisher’s linear discriminant (Fisher, 1936).
LDA is a method used to find a linear combination of features that separates or characterizes two
or more classes of objects. The resulting combination may be used as a linear classifier.

Learning and testing a linear classifier The full experience setup is summarized in algo-
rithm 2. So, the data vector Xcomb and label vector Ycomb is constructed as following:

Xcomb(thr) =
[[

Xi(thr)
]
, ..,
[
X j(thr)

]]
Ycomb(thr) =

[[
Yi(thr)

]
, ..,
[
Yi(thr)

]] (5.6)

where i and j are the index of the chosen metrics and thr is threshold of volume lesion.
Note that depending on the volume lesion threshold, the number of vertebral level we have in

the patient group by differ. In fact, Xcomb contains vertebral levels of healthy volunteers (29×3)
and vertebral levels of MS patients that possess lesion. Figure.5.5 shows the count of vertebral
levels having lesion for different threshold of percentage lesion volume cumulatively in [C2-C4]
region. This figure gives an idea about the sample size of training/testing datasets used in the
following analysis.
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Algorithm 2 ROC AUC for a combination of metric

I. We fix thr from {0.02,0.04,..,0.20}

II. We construct the data vector Xcomb and its label vector Ycomb. For label vector, we give 0 to
healthy volunteers and 1 to MS patients.

III. We standardize Xcomb to get Xscaled by centering to the mean and component wise scale to
unit variance.

IV. We split Xscaled 1000 consecutive times in different Xtrain (67%) and Xtest (33%) with their
corresponding Ytrain and Ytest .

IV.1. We fit LDA using Xtrain and Ytrain.

IV.2. Using the fitted LDA, we predict confidence score on Xtest to obtain YLDA.

IV.3. We compute ROC AUC score between Ytest and YLDA.

V. We calculate the mean and variance of ROC AUC scores which is computed in 1,000 con-
secutive times.
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Figure 5.5: Distribution of lesion’s volume in [C2-C4] region in 10 thresholds.

Selecting a subset of measures As mentionned earlier, since the sample size is relatively small,
we need to reduce the degrees of freedom of our linear classifier by choosing a subset of metrics.
We will try to choose a subset of metrics which bring complementary information; to do so,
we first calculate the normalized covariance matrix for all metrics in [C2-C4] region on healthy
volunteers V , N AW M , M S(5%) and M S(10%) as shown in Figure.5.6. Dark blue square
shows strong correlation between 2 metrics and white square indicates no relationship between
them.
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Figure 5.6: Normalized covariance matrix of metrics in [C2-C4] levels for healthy volunteers (1st line
left), NAWM (1st line right), M S(5%) (2nd line left), M S(10%) (2nd line right). Dark blue square shows
strong correlation between the two metrics and white square indicates no relationship between them.

Based on these correlations, we can propose in Table 5.6 combinations of metrics to be stud-
ied. We restrict ourselves to metrics with high potential because they show good classification
(see section 5.6.1) and/or present significant difference between MS patients and controls (see
section 5.5.2).

FWW RD
2 metrics FWW MD

FWW FA
Stick-AD MD
Stick-AD RD
Stick-AD FWW

FA MD
FA RD

FA RD FWW
3 metrics FA RD MD

FA AD RD
FA MD FWW
AD RD FA

FWW MD Stick-AD
FA RD Stick-AD

4 metrics FA RD MD FWW

Table 5.6: Proposed combinations of 2, 3 and 4 metrics to be studied.

Results of linear discriminant analysis In Figure.5.7 and Figure.5.8, we show ROC AUC mean
and its variance of each combination superposed by ROC AUC each metric used in this combina-
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tion. This superposition is useful since it shows whether using a combination of metrics improves
on using each metric separately.
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Figure 5.7: ROC AUC for various combinations of 2 metrics between MS patients and healthy volunteers.

Figure.5.7 shows that when combining FWW and Stick-AD metrics, ROC AUC mean score
to separate controls and MS patients is better then using each metric independently. Also, when
combining Stick-AD by MD or RD, ROC AUC mean score still better then that of Stick-AD.
For [FA, FWW] and [FA, MD], the combination is slightly better as the ROC AUC score of each
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metric still in the variance margin of ROC AUC score of combination. For [RD, FWW], [MD,
FWW], [RD, FA] and [RD, Stick-AD], ROC AUC mean is similar or close the ROC AUC of each
metric composed this combination. With M S(10%− 20%) and, the best scores of classification
are approximately in [0.83,0.87] using [FA,FWW] and [Stick-AD,FWW].
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Figure 5.8: ROC AUC for various combinations of 3 and 4 metrics between MS patients and healthy
volunteers.

In Figure.5.8, we show the mean and the variance of ROC AUC score for combination of 3
metrics : [RD,FWW,FA], [RD,MD,FA], [FWW,MD,Stick-AD] and [FWW,MD,FA].

For these combination, we remark that for both of [RD,MD,FA] and [FWW,MD,Stick-AD],
the ROC AUC mean of combination is better than ROC AUC score of each metric indepen-
dently. For M S(10%− 20%), [FWW,MD,Stick-AD] has ROC AUC mean in [0.82,0.86] and
[RD,MD,FA] in [0.86,0.90] which is an interesting result. For [RD,FWW,FA] and [FWW,MD,FA],
there is no remarkable difference. Otherwise, we present also in Figure.5.8, two combination of 4
metrics: [RD,FWW,FA,MD] and [FWW,Stick-AD,MD,RD]. For M S(10%−20%), [RD,FWW,FA,MD]
has ROC AUC mean in [0.84,0.86] and [FWW,Stick-AD,MD,RD] has ROC AUC mean in [0.87,0.91].
In Figure.5.9, we overlaid various combinations in order to have more compare between them.

To sum up, we can deduce that from all combinations, the combinations [RD,MD,FA] and
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[FWW,Stick-AD,MD,RD] give the best score of prediction between healthy volunteers and MS
patients with lesion.
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Figure 5.9: Overlays of ROC AUC mean for the best combinations.

5.6.3 Principal component analysis prior to LDA
In order to reduce the dimension of the feature vector, an alternative to manually selecting a subset
of metrics, as done in the previous section, is to use principal component analysis (PCA). PCA
will compute a linear, orthogonal transform of the original feature vector into a new space of
features, which will be ranked by their decreasing variance. In this space, keeping the first few
components generally gives a good approximation of the original data. The vector data XPCA and
vector label YPCA for PCA are computed as follows:

XPCA(thr) =
[[

X1(thr)
]
, ..,
[
X9(thr)

]]
YPCA(thr) =

[[
Y1(thr)

]
, ..,
[
Y9(thr)

]] (5.7)

Note that only kept 9 metrics out of 10: we removed AD (computed from DTI) since it is linearly
related to MD and RD (see Eq. 5.1). In fact, this collinearity renders the interpretation of the
LDA estimated coefficients impossible. For example, if an increase in AD, is associated with an
increase in MD and they both decrease variable X, every change in AD will be compensated by a
change in MD and the effect of AD on X or on LDA classification will be underestimated.

In Algorithm. 3, we present steps followed to compute ROC AUC of PCA components on
various thresholds of percentage for volume lesion. The cumulative sum for percentage of variance
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explained by the 9 components of PCA fitted in [C2-C4] region is presented in Table. 5.7.

Algorithm 3 Principal Component Analysis

I. We fix thr from {0.02,0.04,..,0.20}

II. We construct the data vector XPCA(thr) and its label vector YPCA(thr). For label vector, we
give 0 to healthy volunteers and 1 to MS patients.

III. We standardize XPCA to get Xscaled by centering to the mean and component wise scale to
unit variance.

IV. We split Xscaled 1000 consecutive times in different Xtrain (67%) and Xtest (33%) with their
corresponding Ytrain and Ytest .

IV.1. We define PCA model with k components, where k is in {1,..,9}

IV.2. We fit PCA with Xtrain and apply the dimensionality reduction on Xtrain to obtain
Xtrain_PCA.

IV.3. We transform Xtest using PCA from training set to obtain Xtest_PCA.

IV.4. We define LDA model and fit it using Xtrain_PCA and Ytrain.

IV.5. Using the fitted LDA, predict confidence score on Xtest_PCA to obtain YLDA.

IV.6. We compute ROC AUC score between Ytest and YLDA.

V. We calculate the mean and variance of ROC AUC scores which is computed in 1000 con-
secutive times.

Data cumulative sum for percentage
1st 2nd 3rd 4th 5th 6th 7th 8th 9th

V +M S(02%) 41% 67% 85% 94% 98% 100% 100% 100% 100%
V +M S(10%) 39% 65% 85% 93% 98% 100% 100% 100% 100%
V +M S(20%) 40% 65% 86% 93% 98% 100% 100% 100% 100%

Table 5.7: The cumulative sum for percentage of variance explained by the 9 components of PCA fitted in
[C2-C4] region. V is data of healthy volunteers, M S(thr) is data of MS patients patients possess lesion >
thr% and ALL is data of all MS patients with/without lesion.

First two PCA components

ROC AUC mean for PCA components is presented in Figure.5.10. In previous section, we found
that a combination of 3 metrics [FA,MD, RD] and a combination of 4 metrics [FWW,MD,Stick-
AD,RD] give the best ROC AUC score, so we will focus only on the two components PCA as
though a dimensionality reduction algorithm. In addition of this reason, we remarked that the
classification accuracy of PCA drop after the second components, even though 99% of the total
variance is covered as shown in Figure.5.11. For M S(10%− 20%), 2 components of PCA has
ROC AUC mean in [0.80,0.85]. However, we remark that [FA,MD, RD] and [FWW,MD,Stick-
AD,RD] of metrics have a prediction score better than 2 components of PCA.
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In Figure.5.12, the two first components of PCA for data including M S(5%), M S(10%),
M S(15%) and M S(20%).
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Figure 5.10: ROC AUC mean for PCA components trained on 9 metrics.
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Figure 5.11: Variation of ROC AUC score of PCA using various number of components for volume lesion
> to 6%, 10% and 14%.
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Figure 5.12: First two components [64%-67%] of PCA trained on 9 metrics.

Weights of each metric

After doing the LDA on the PCA data, having a way to interprete the results (the weights of the
LDA) could be useful. Here, we re-project the weights of the LDA back to the original feature
space. To do so, we follow steps explained in Algorithm. 4.

Algorithm 4 Weights of scalar and geometric metrics

I. We fix thr from {0.02,0.04,..,0.20}

II. We construct the data vector XPCA(thr) and its label vector YPCA(thr). For label vector, we
give 0 to healthy volunteers and 1 to MS patients.

III. We standardize XPCA to get Xscaled by centering to the mean and component wise scale to
unit variance.

IV. We define PCA model with 2 components.

V. We fit PCA with Xscaled and apply the dimensionality reduction on Xscaled to obtain X f itted .

VI. We define LDA model and fit it using X f itted and YPCA(thr).

VII. Using the PCA, we transform back the weights vectors of LDA to its original space.
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Table. 5.8 presents the LDA weights of each metrics which confirm that RD, MD, FA and
FWW are representative metrics. This results is in correlation with the previous section in which
we found [FA,MD, RD] and [FWW,MD,Stick-AD,RD] as a best combinations.

Data LDA Weights Score
V +M S(0) 0.01 -0.02 0.19 -0.05 0.02 -0.02 -0.20 0.23 0.24 0.71
V +M S(4) 0.00 -0.07 0.17 -0.09 0.01 -0.07 -0.23 0.22 0.25 0.70
V +M S(8) -0.02 -0.01 0.26 -0.08 -0.02 -0.02 -0.28 0.34 0.35 0.75
V +M S(12) -0.02 -0.05 0.29 -0.13 -0.02 -0.06 -0.36 0.41 0.45 0.79
V +M S(16) -0.01 -0.05 0.29 -0.13 -0.01 -0.07 -0.36 0.42 0.45 0.82
V +M S(20) -0.03 -0.07 0.32 -0.16 -0.02 -0.09 -0.42 0.47 0.51 0.85

MAD ACD FWW StickAD MAD ACD FA MD RD
B&S metrics DTI metrics

Table 5.8: LDA weights and score on the first 2 components of PCA trained on 9 metrics.

5.7 Discussion and Conclusion
In this chapter we have proposed a pipeline to extract average dMRI metrics per vertebral level
in spinal cord and we performed a statistical analysis to show their sensitivity associated with
the presence and evolution of MS lesions within the same vertebral level. Diffusion measures
involved are extracted from the diffusion tensor and the ball-and-stick models.

We show that FWW, Stick-AD, FA, MD and RD have a significant difference between healthy
volunteers and MS patients within [C2-C4] region in cervical spinal cord. In regards to FA, MD
and RD, there are already showed in other studies involved in spinal cord (Valsasina et al., 2005;
Agosta et al., 2007a; Agosta et al., 2007b; von Meyenburg et al., 2013). However, we have many
additions to them; firstly the size of the used data to validated these results is relatively large.
Secondly, 9 raters including radiologists and experienced readers how are segment MS lesions
in anatomical scans which guarantee high accuracy. Third, the proposed pipeline especially the
way that we chose to quantify diffusion measures, atlas approach, is semi-automated and free
from manual delineation bias. This method also accounts for partial volume effect using Gaussian
mixture models. Fourth, we did a strict quality check of each step of the pipeline as a crucial step
for the quality of the analysis and the accuracy of the results.

Beyond our study using DTI metrics, we also investigated the sensitivity of multi-compartment
models, in particular FWW and Stick-AD, to detect lesions in MS patients. We show that the B&S
multi-compartment model can provide novel information about the evolution of tissue microstruc-
ture, and should be included in the processing workflow. This also suggests that the acquisition
protocol should be design to enable richer multi-compartment models, including several b-values
(Scherrer and Warfield, 2012). To our knowledge, only neurite orientation dispersion and density
imaging (NODDI) the multi-compartmental diffusion models have been used to measure and in-
vestigate microstructure and characterizing abnormalties on MS patients (By et al., 2017). But,
this study used only one slice of cervical spine to investigate the sensitivity and feasibility of
NODDI in patients with MS.

In our work, we performed a two-way analysis of variance between vertebrae levels for each
metric to illustrate the interaction term between them. Table.5.4 summarizes intervals of vertebral
levels in which there is no significance difference and we found the [C2,C4] interval shows no
significance inter-difference for all 10 metrics. In fact, as we select best representative metric
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for underlying microstructure of MS strucutre in t-test Table.5.5, it was possible to pool [C2-C5]
instead of [C2,C4] for FWW, Stick-AD, FA, MD and RD. However, for MD metric, we found
that p-value between C3 and C5 equals to 0.065, close to significant, as illustrated in Figure. 5.3.
Thus, we prefered to keep [C2,C4] interval.

Furthermore, another important contribution is the way that we proposed, multivariate learn-
ing, to use the diffusion MRI data to automatically detect the presence of a MS lesion. Based
on a selection of metrics extracted from diffusion, we learned a linear classifier using linear dis-
criminant analysis (LDA) and we reduced the dimension of the feature vector using two different
strategies. Throughout these strategies, we evaluated the classification results using the area under
the curve (AUC) of the receiver operating characteristic curve (ROC).

The first strategy is to select manually a set of measures with limited cross-correlation. We
found that combining some metrics reaches up the prediction score of such MS lesion and more
performing than using each metric independently as shown in Figure. 5.7, 5.8 and 5.9. Also,
we consider that a combination of 3 metrics [FA,MD, RD] and a combination of 4 metrics
[FWW,MD,Stick-AD,RD] give the better ROC AUC score between healthy volunteers and MS
patients with lesion. For M S(10%− 20%), MS patients with lesion volume between 10% and
20%, [RD,MD,FA] has ROC AUC mean score in [0.86,0.90] and [FWW,Stick-AD,MD,RD] has
ROC AUC mean in [0.87,0.91]. These intervals of prediction score demonstrate that the classi-
fication accuracy is good and close to excellent (see section 5.A for more information about the
traditional guide for classifying accuracy of ROC AUC).

The second strategy is to perform a principal component analysis (PCA) and then learn a
linear classifier on the reduced set of PCA, first two components which explain more than 65% of
the variance. For M S(10%− 20%), 2 components of PCA has ROC AUC mean in [0.80,0.85].
This prediction score is good but not better than the [FA,MD, RD] and [FWW,MD,Stick-AD,RD]
combinations of metrics. In addition, Figure.5.12 illustrates the two first components of PCA
for data including M S(5%), M S(10%), M S(15%) and M S(20%). This way of representation
facilities a visual inspection to reassure our findings. In addition, we re-project the weights of
the LDA back to the original feature space (Algorithm. 4) and we interpreted the LDA weights
of each metric used in PCA. Results presented in Table. 5.8 is in correlation with our previous
findings and confirm that RD, MD, FA and FWW are representative metrics.

In conclusion, we demonstrated the grade of sensitivity to underlying microstructure changes
in MS of each metrics including DTI and Ball-and-Stick reconstruction models. Multi-compartment
model can provide novel information about the evolution of tissue microstructure. We showed
also that choosing a subset of metrics which bring complementary information has significantly
increase the prediction score of the presence of this disease.
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5.A Evaluating the classification results

5.A.1 Receiver operating characteristic curve analysis

Receiver operating characteristic (ROC) curve, is a graphical plot that illustrates the performance
of a binary classification as its discrimination threshold is varied (McClish, 1989; Fawcett, 2006).
It is the probability of detection (true-positive rate (TPR)) as a function of the probability of false
alarm (false-positive rate (FPR)) at various threshold settings as shown in the illustrative example
in Figure. 5.13.

Figure 5.13: An illustrative example of the Receiver operating characteristic (ROC) curve. (adapted from
commons.wikimedia.org).

As comparison of different classifiers in the ROC curve is not easy, one can reduces ROC curve
to a scalar value that describes the expected accuracy by computing Area under the ROC curve,
often refereed to AUC. AUC is the probability that a classifier will rank a randomly chosen positive
instance higher than a randomly chosen negative one. Therefore, ROC AUC analysis involves
evaluation of how much such classifier is efficient of distinguishing between classes and thus to
select the optimal classifier and discard suboptimal ones. Higher the AUC, better the classifier
is at predicting class 1 as class 1 and class 2 and class 2. The AUC score is always belongs
to [0,1], when equals to 1 represents perfect classification and worthless classification if equals
to 0.5 (Tharwat, 2018). Otherwise, there is no a standard scale or guide of ROC AUC score to
segregate the quality of a classifier and still depending on the context. Traditional academic point
system can be an approximative guide for classifying accuracy 3 : [0.5−0.6]:fail, [0.6−0.7]:poor,
[0.7−0.8]:fair, [0.8−0.9]:good, [0.9−1.0]:excellent.

5.A.2 Training and testing data

Training a classifier and testing or evaluating it on the same data is a methodological mistake: a
model that would just repeat the labels of the samples that it has just seen would have a perfect
score but would fail to predict anything useful on yet-unseen data. To avoid over-fitting, we have
to split our data into two different sets: a training set, 67% of data, which is used for learning the
parameters of LDA, and a testing set, 33% of data, which is used for evaluating the fitted LDA.

Nevertheless, by defining these two sets of data, the prediction score may depend on the par-
ticular random choice for the pair of training and testing sets. To resolve this issue, we use random
permutation cross-validation iterator. We split the whole data 1,000 consecutive times in different

3http://gim.unmc.edu/dxtests/roc3.htm

http://gim.unmc.edu/dxtests/roc3.htm
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training and testing sets, then we return the averaged and the variance values of the 1,000 pre-
diction scores obtained with these different sets. In our case, we use a cross-validation strategy
available in Scikit-Learn in which random splits do not guarantee that all folds will be different.
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6.1 Introduction

Multiple Sclerosis (MS) is a neuro-inflammatory disease associated with a range of clinical symp-
toms and progressive physical disability. The use of non-invasive MRI techniques is key to a
better understanding and follow-up of the pathology. However, there is usually a poor correla-
tion between the radiological observation and the clinical outcome, a large discrepancy between
the clinical observations and how the pathology is exhibited on brain images, something which is
known as the clinical-radiological paradox (CRP). One of the hypotheses is that the clinical deficit
may be more related to the spinal cord damage than the number or location of lesions in the brain.
The prevalence of spinal cord abnormalities is about 74-85% and can reach up to 90% of patients
with definite MS. These differences across patients can be explained by variations of the imaging
technique, clinical analysis and the MS patients group. For CIS patients, the rate of lesions in
spinal cord is around 30-40% (Lycklama et al., 2003; Wheeler-Kingshott et al., 2014). It is now
accepted that for 5% of MS patients, there is a value to an additional spinal cord MRI when brain
MRI is normal (Thorpe et al., 1996).

One of the potential improvements in our understanding of the pathology is using advanced
quantitative MRI as well as investigate the extent of tissue damage in the cervical spinal cord
(Barkhof, 2002). Focal lesions are visible and detectable on conventional MRI (T1- and T2-
weighted). But, diffusion MRI is known to provide quantitative information about tissue mi-
crostructure in vivo and figures of neuronal degeneration and axonal loss, in the brain as well as
in the spinal cord (Clark et al., 2000).

Over the past decade, several groups started working on the improvement of MRI techniques
for the spinal cord (Cohen-Adad and Wheeler-Kingshott, 2014). Theses studies involve several
metrics extracted from the diffusion MRI measurements as biomarkers of the pathology such as
FA, RD, MD, and FWW using DTI or multi-compartment models. However, in general, one
can share these studies of involvement of diffusion metrics in two way of investigation: the first
way is as we did in the previous Chapter. 5, determination and selection of the best diffusion
metrics that characterize MS lesions using anatomical data sets as a gold-standard and radiological
reference. The second way is to perform longitudinal study to check the temporal evolution of MS
pathology between two diffusion MRI acquisitions, at baseline time and after such specific period.
Few longitudinal diffusion MRI studies have been performed in MS patients (Caramia et al.,
2002; Agosta et al., 2007a; Oreja-Guevara et al., 2005; Théaudin et al., 2012). The objective of
longitudinal follow-up is to show correspondence between lesions progression in the MR images
and the evolution of the EDSS score.

In this chapter, we propose to study the EMISEP cohort and provide quantitative figures of
pathology evolution between M0 and M12 in the cervical spine, exhibiting how the pathology
damage spans in the cervical spinal cord. We first investigate how reproducible diffusion metrics
are for each vertebral level in the cervical spine, using a test-retest dataset on a group of 8 healthy
subjects. Then, based on the test re-test quantitative calibration, we compute these measures on a
group of 31 MS patients, and follow their longitudinal evolution between baseline and follow-up
12 months later.

6.2 Data acquisition

Data were acquired on 3T scanners at one site in Rennes in France, please refer to Chapter 4 for a
complete description of the imaging protocol.
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6.2.1 MS Patients and healthy volunteers
8 healthy volunteers (4 females, 4 males, median age 31 years, range 21-35) and 31 MS patients
(21 females, 10 males, median age 30 years, range 20-49) were recruited in the study approved by
the local research ethics committee. All participants provided informed written consent.

6.2.2 MRI Acquisition
MS patients and healthy volunteers were scanned on a 3T Siemens Verio scanner. Each subject
was scanned twice with the same acquisition protocol. For MS patients, the second acquisition
was performed within 12 months of the first one, however for healthy volunteers both acquisitions
were performed few minutes apart with new reposition.

Thirty non-collinear diffusion-weighted images (DWI) were acquired at b = 900 s·mm−2, six
non-DWI (b = 0) measurements and one non-DWI (b = 0) with an opposite phase encoding direc-
tion (PED) were also acquired. Scans were performed in sagittal orientation and head-feet (H-F)
PED. The pulse sequence used for diffusion MRI is echo planar imaging (EPI). The reduced-FOV
(field-of-view) technique was employed to reduce sensitivity of EPI to susceptibility artifacts.
Sixteen slices were acquired with the following parameters without inter-slice gap: TR/TE =
3600/90 ms, with 2x2x2 mm3 as the resolution, and image matrix 80x80. The total acquisition
time for the dMRI sequence was approximately 7 minutes.

The protocol also includes high-resolution T1-weighted image for anatomical reference with
an isotropic 1x1x1 mm3 resolution.

6.2.3 EDSS score and the appearance of new lesion
In the context of the EMISEP project, the lesions in the brain of each MS patient were segmented
at the baseline M0 on Fluid-attenuated inversion recovery (FLAIR) MRI sequence. Besides, the
number and localization of new lesion appeared in spinal cord at M12 were annotated after seg-
mentation on sagital T2*-weighted. In addition, The Kurtzke Expanded Disability Status Scale
(EDSS) scores at M0 and M12 were provided. The EDSS is based on a neurological examination
by a clinician by assigning a score in eight functional systems such as sensory and visual (Kurtzke,
1983). Table. 6.1 summarizes the MS patients in this group with most noticeable evolution (EDSS
change or new lesions).

Patient EDSS M0 EDSS M12 Nb new lesion in SC Nb lesion in brain M0
MS Patient08-04 1 1 1 in C3 1
MS Patient08-06 0 0 1 in C4-C5 0
MS Patient08-10 0 3 2 in C2-C3 3
MS Patient08-28 0 1 0 4
MS Patient08-39 0 1 1 in C1 0
MS Patient08-61 1.5 2.5 0 0
MS Patient08-62 2 2.5 0 2
MS Patient08-79 0 2 0 0

Table 6.1: Evolution of EDSS score between baseline M0 and 12-months M12 follow-up. The 4th column
presents the number of new lesions in spinal cord at M12. The 5th column presents the number of lesions in
brain at baseline M0. Boxcolors mean MS patients with EDSS increase , with New lesion in SC at M12
and with EDSS increase + New lesion in SC at M12 .
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6.3 Methods
We preprocess data in this chapter as we did in Chapter 5: motion correction using SCT, distor-
tion correction using HySCO, segmentation of the cord on T1-weighted and DWI mean, manual
identification of two vertebral level, C3 and T1, as a requirement information for registering to
PAM50 template, registration of PAM50-T1 registered to DWI mean data and finally computing
and quantifying DTI and Ball&Stick metrics for each vertebral level of the cervical part. We sum-
marize in Figure.6.1 the processing pipeline. Here we only computed metrics that have significant
difference between MS patients and healthy volunteers in Table.5.5 as found in Chapter 5: FWW,
Stick-AD, FA, MD and RD.

Registration 
to PAM50 template

Registered template + forward 
and inverse warping fields

Spinal cord 
segmentation on T1

Diffusion
MRI data

Segmentation 
of the cord on 

DWI mean
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C3.
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Computing 
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Figure 6.1: Illustration of the automated analysis pipeline. (1) Segmentation of the cord on T1. (2) Manual
identification of two vertebral levels. (3) Registration to the PAM50 template. (4) Motion and distortion
correction of dMRI data. (5) Segmentation of the cord using DWI mean data. (6) Registration of PAM50-
T1 registered to DWI mean data using the inverse warping field from previous registration as an initial
warping field. (7) Computing DTI and Ball&Stick metrics. (8) Quantification of metrics by vertebral level
of the cervical part.

6.4 Results

6.4.1 Inter-subject and intra-subject variability

In Figure.6.2, we show boxplots representation of each metric for scan (s) and re-scan (r) of the 8
healthy volunteers. Table 6.2 shows the standard deviation of difference between scan and re-scan
for each level, and standard deviation of scan and re-scan each metric averaged on each vertebral
level. Figure.6.2 and Table 6.2 demonstrate that the variance inter-scan and re-scan is inconstant
especially for C1, C6 and C7. Also, the inter-subject variance is not constant. For some metric,
the variance is higher in C7, C5 or C1. This can be explained by the fact that larger distortions
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Levels
Metrics C1 C2 C3 C4 C5 C6 C7

STD of difference between scan and re-scan (multiplied by 1000)
FWW 59.41 45.09 36.01 54.21 29.73 77.35 102.61

Stick-AD 0.09 0.16 0.15 0.20 0.21 0.24 0.26
FA 81.79 39.73 54.59 59.08 56.74 43.84 62.14
MD 0.19 0.12 0.09 0.12 0.09 0.10 0.19
RD 0.18 0.11 0.12 0.13 0.09 0.10 0.13

STD for both of scan and re-scan (multiplied by 1000)
FWW 72.56 40.82 44.64 50.64 78.85 128.77 134.30

Stick AD 0.15 0.21 0.14 0.14 0.11 0.14 0.15
FA 79.76 52.86 47.43 48.23 83.35 117.92 118.16
MD 0.15 0.12 0.08 0.08 0.11 0.15 0.18
RD 0.16 0.10 0.10 0.09 0.13 0.18 0.19

Table 6.2: Standard Deviation of difference between scan and re-scan, and Standard Deviation of scan and
re-scan (multiplied by 1000) of DTI and Ball-and-Stick metrics averaged on each vertebral level. Diffusiv-
ities are measured in mm2/s.

are observed in images at the top and the bottom of the field of view. In Figure.6.3, which shows
boxplots representation of each metric for scan M0 and M12 of the 31 MS patietns, we remark by
a visual inspection that the variance inter-scan re-scan and inter-subject is more stable.

Otherwise, in previous Chapter. 5, we performed a two-way analysis of variance between ver-
tebrae levels of 29 healthy volunteers for each metric to illustrate the interaction term between
them. Table. 5.4 summarizes intervals of vertebral levels in which there is no significance differ-
ence. We remarked that for all metrics, even just the selected five one in this Chapter, the [C2,C4]
interval shows no significance difference which leads to the possibility of merging metrics quan-
tified in C2, C3 and C4 vertebral levels.

However, in such reproducibility study, the absence of significance difference of variance
between vertebral levels is not as critical as in the previous chapter. In this part of work, if we
merge vertebral levels, we will likely increase the overall variance and we will be stricter in our
Bland-Altman diagram. Thus we propose to merge all cervical levels from C1 to C7.
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Figure 6.2: Distribution of FWW, Stick-AD, FA, MD and RD for healthy volunteers at scan (s) and re-scan.
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Figure 6.3: Distribution of FWW, Stick-AD, FA, MD and RD for MS patients at M0 and M12.

6.4.2 Bland-Altman analysis
The reproducibility of the DTI and Ball-and-Stick metrics for white matter on healthy volunteers
were assessed and visualized using Bland-Altman (Bland and Altman, 1986). The Bland-Altman
plots were computed on the 8 healthy volunteers × 7 levels for each metric. For this analysis,
the computed average of each metric within each vertebral level gives a single data point for
every metric, cervical level of every subject and scan. The solid blue line represents the average
difference between re-scan (scan2) and scan (scan1) and the dashed blue lines indicate the 95%
confidence interval (CI). These Bland-Altman plots, presented in Figure.6.4, defines confidence
intervals for each metrics. We overlaid on these Bland-Altman plots in red color corresponding
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values for MS patients, which allows identification of significant evolution of a given metric in a
given vertebral level between scan and rescan for each MS patient. In Figure.6.4, we can therefore
identify significant longitudinal evolution of diffusion-based measures between baseline (M0) and
12 months follow-up (M12).
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Figure 6.4: Blue: Bland-Altman plot for healthy volunteers (scan and re-scan) for chosen metrics. Asso-
ciated confidence interval is represented by the dashed lines. Red: overlaid metrics difference Scan(M12)-
Scan(M0) for MS patients; data points falling outside the 95% confidence interval correspond to significant
evolution between M0 and M12.



6.4. Results 89

6.4.3 Patient-based longitudinal evolution
Detailed results of the significant longitudinal evolution (SLE) are reported on Table 6.3 for spe-
cific patients, for which several metrics show significant evolution between M0 and M12. In
Table 6.3, we reported patients for which at least three diffusion metrics evolved significantly
between M0 and M12, with respect to the confidence intervals reported in Figure.6.4.

Note that we consider SLE in M12 compared to M0, when FWW, MD and RD increase, Stick-
AD and FA decreases. In Chapter. 5, we deduced that from all combinations, the combinations
[RD,MD,FA] and [FWW,Stick-AD,MD,RD] give the best score of prediction between healthy
volunteers and MS patients with lesion. Thus, in Table 6.3, we present all MS patients by each
vertebral level that have SLE for [RD,MD,FA] and [FWW,Stick-AD,MD,RD], for 4 and 3 from
the computed five metrics.

Out of the 8 MS patients presented in Table. 6.1, which having new lesion in spinal cord or
increased EDSS score, 6 patients stand out in the Bland-Altman analysis:

Patient08-04 [C1-C5] levels have SLE on [RD,MD,FA], {C1,C4,C5} have SLE on 4 metrics and
{C2,C3,C6} have SLE on 3 metrics. This patient has a lesion in C3. So, C3 which contains
a lesion has SLE on [RD,MD,FA]

Patient08-10 [C3-C6] levels have SLE on [RD,MD,FA], {C3,C5} have SLE on 4 metrics and
{C4,C6} have SLE on 3 metrics. This patient has two lesions in [C2-C3] and EDSS score
which reach up from 0 to 3. So, C3 has SLE on [RD,MD,FA] and a another combination of
4 metrics.

Patient08-28 {C6} and {C7} have SLE on 4 and 3 metrics respectively. This patient has an EDSS
score which reach up to 1 on M12.

Patient08-39 {C1,C3} have SLE on 3 metrics. This patient has a lesion in C1 and an EDSS score
which reach up to 1 on M12. So

Patient08-61 {C7} have SLE on 3 metrics. This patient has an EDSS score which reach up from
1.5 to 2.5 on M12.

Patient08-79 [C5-C7] levels have SLE on [RD,MD,FA], [C5-C7] have SLE on 4 metrics. This
patient has an EDSS score which reach up from 0 to 2 on M12.

We note the absence in Bland-Altman analysis of two patients: Patient08-06 which has a
lesion shared in [C4-C5] and Patient08-62 which has an EDSS score reach up slightly from 2
to 2.5 on M12 but with two lesions in brain in M0. The sensitivity of this technique is therefore
relatively good.

In the other hand, we also note several that MS patients, with neither increase in EDSS score
nor new appearance of lesion in spinal cord, appear to have SLE in the diffusion metrics. Out of
the 30 vertebral levels of MS patients that have SLE, this is the case for 12 vertebral levels of 7
subjects. This is a relatively good specificity, though, and to find a possible explanation of these
false positive, we present in Table. 6.4 additional data about these patients.

Patient08-01 {C7} have SLE on [RD,MD,FA] with a constant EDSS score at 1 and without
lesion in brain.

Patient08-03 and Patient08-67 have SLE on [FA,MD,RD] in {C2} and {C4} respectively. These
two patients have 0 as EDSS score in M0 and M12 and without any lesion in brain in M0.
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Patient08-16 {C6} have SLE on 4 metrics, Patient08-71: {C6,C7} have SLE on 4 metrics,
Patient08-74: {C7} have SLE on [RD,MD,FA]. These three patients have a constant EDSS
score, 1, 1.5 and 0 respectively. However, all of them possess 4, 6 and 1 lesions in brain at
M0 respectively.

Patient08-35 {C1,C2} have SLE on 3 metrics and {C5,C6,C7} have SLE on [FA,MD,RD]. This
patient has a special case with a decrease EDSS score

Subjects have SLE on [FA,MD,RD]
Patient08-01-C7 Patient08-03-C2 Patient08-04-C1 Patient08-04-C2 Patient08-04-C3
Patient08-04-C4 Patient08-04-C5 Patient08-16-C6 Patient08-10-C3 Patient08-10-C4
Patient08-10-C5 Patient08-10-C6 Patient08-35-C5 Patient08-35-C6 Patient08-35-C7
Patient08-71-C7 Patient08-71-C6 Patient08-74-C7 Patient08-79-C5 Patient08-79-C6
Patient08-79-C7

Subjects have SLE on [FWW, Stick-AD, MD,RD]
Any Patient

Subjects have SLE on 4 metrics from FWW, Stick-AD, FA, MD,RD
Patient08-01-C7 Patient08-04-C1 Patient08-04-C5 Patient08-04-C4 Patient08-10-C5
Patient08-10-C3 Patient08-16-C6 Patient08-28-C6 Patient08-35-C5 Patient08-35-C6
Patient08-35-C7 Patient08-71-C7 Patient08-71-C6 Patient08-74-C7 Patient08-79-C5
Patient08-79-C6 Patient08-79-C7

Subjects have SLE on 3 metrics from FWW, Stick-AD, FA, MD,RD
Patient08-03-C2 Patient08-04-C2 Patient08-04-C3 Patient08-04-C6 Patient08-39-C3
Patient08-39-C1 Patient08-67-C4 Patient08-35-C2 Patient08-35-C1 Patient08-10-C6
Patient08-10-C4 Patient08-28-C7 Paient08-61-C7

Table 6.3: MS patients with significant longitudinal evolution (SLE) for several metrics con-
jointly. Boxcolors means MS patients with EDSS increase , with New lesion in M12 and with
EDSS increase + New lesion in M12

Patient EDSS M0 EDSS M12 Nb new lesion in SC Nb lesion in brain M0
MS Patient08-01 1 1 0 0
MS Patient08-03 0 0 0 0
MS Patient08-16 1 1 0 4
MS Patient08-35 1 0 0 0
MS Patient08-67 0 0 0 0
MS Patient08-71 1.5 1.5 0 6
MS Patient08-74 0 0 0 1

Table 6.4: Evolution of EDSS score between baseline M0 and 12-months M12 follow-up. The 4th column
presents the number of new lesions in spinal cord at M12. The 5th column presents the number of lesions
in brain at baseline M0.
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6.5 Discussion and conclusion
In this work, we proposed a framework for studying the evolution of microstructure-related pa-
rameters measured with diffusion MRI in the spinal cord white matter of MS patients. Based
on a group of 8 healthy controls, we were able to define confidence intervals for diffusion-based
metrics for vertebral levels in the cervical spine. Our work includes a definition of confidence
intervals for cervical vertebral levels. Using these confidence intervals, we can follow the longitu-
dinal evolution of the same metrics for each patient, and identify abnormal trajectories associated
with the pathology. In this Bland Altman analysis, we were strict in two ways: by merging all
vertebral levels, we potentially increase the confidence intervals; second, we considered longitu-
dinal evolution to be significant if at least 3 relevant diffusion metrics were affected in a vertebral
level. These metrics, FWW, Stick-AD, FA, MD and RD showed a significant difference between
vertebral levels of healthy controls and MS patients in Chapter 5.

In the Bland Atlman analysis done on 31 MS patients × 7 vertebral levels, there are 30 verte-
bral levels with significant longitudinal evolution, out of which 18 (60%) correspond to disability
changes or the appearance of new lesion. For the rest, the 12 vertebral levels, 5 have a decreased
EDSS score, 3 have a constant 0 or 1 EDSS score and 4 have already lesions in brain at baseline
M0.

In terms of patient, our reproducibility test found 13 MS patients with significant longitudinal
evolution in at least one vertebral level, only 5 (38%) have increased EDSS score, 3 (23%) have
new lesion in spinal cord in M12, 3 (23%) have already a lesion in brain in M0. Bland Altman
analysis succeeded in detecting 5 patients from 6 (83%) that have an increased EDSS score be-
tween M0 and M12. In addition, this analysis succeeded also in detecting 3 patients out of 4
(75%) that have the appearance of new lesion in the cervical part of spinal cord. Otherwise, one
can explain the failed outputs of our reproducibility analysis by the fact that larger distortions are
observed in images at the top and the bottom of the field of view.

Another important issue to be addressed is that the comparison metrics based on DTI and Ball-
and-Stick suggests that both models provide complementary information. Some for MS patients,
we validate the significant longitudinal evolution and its correlation by such changes over times
only if we include and merge both of these metrics.

Recently, an increased studies that interested to apply advanced reconstruction models for
diffusion MRI data in human spinal cord in vivo. This suggests that even for clinical data, multi-
compartment models provide novel information about the evolution of tissue microstructure, and
should be included in the processing workflow. To our knowledge, only neurite orientation disper-
sion and density imaging (NODDI) the multi-compartmental diffusion models have been used to
measure and investigate microstructure and characterizing abnormalties on MS patients (By et al.,
2017). However, in this study, only one slice of cervical spine was acquired in order to investigate
the sensitivity and feasibility of NODDI in patients with MS.

To conclude, we showed a significant correlation of cord diffusion MRI measures with disabil-
ity changes over time at the scale of 83%, and with the appearance of new lesion in spinal cord
at 75% scale. Furthermore, we found other correspondence of these diffusion metrics with the
presence of lesion in the brain at M0 even the EDSS score is constant over time. Further studies
with more scan rescan data of healthy volunteers are required to investigate and validate more how
the evolution of diffusion MRI indices correlate with clinical scores.
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7.1 Contributions summary
In the following, we summarize the major contributions of this thesis.

7.1.1 Distortion correction of diffusion MRI
We have proposed a new geometric based metrics and framework for studying the impact of dis-
tortion correction in diffusion MRI of the spinal cord. Based on the assumption that the distortion
only affects the apparent shape of spine and not the direction of tensor, we proposed two novel
statistics which take into account the alignment of the diffusion tensor with the apparent center-
line of the spinal cord. This geometric evaluation was conducted on 95 scans to compare four
distortion correction methods: Block-Matching (BM) (Hedouin et al., 2017), Hyper-elastic Sus-
ceptibility artefact correction (HySCO) (Ruthotto et al., 2012), TOPUP (Andersson et al., 2003)
and Voss (Voss et al., 2006).

The fragmentation by levels of the spine shows the different impact of distortion between edges
(C1, C2, T1, T2) and center (C3,C4) of the imaging window. This local evaluation provides a
performance measure complementary to classical comparison with a reference anatomical image.
This work led to several publications including in international peer-reviewed conferences:
Comparison of inhomogeneity distortion correction methods in diffusion MRI of the spinal cord.
Haykel Snoussi, Emmanuel Caruyer, Olivier Commowick, Elise Bannier, Anne Kerbrat, Christian
Barillot.
In ESMRMB-34th Annual Scientific Meeting European Society for Magnetic Resonance in Medecine
and Biology, Barcelona, Spain, 2017, October.

Geometric evaluation of distortion correction methods in diffusion MRI of the spinal cord.
Haykel Snoussi, Emmanuel Caruyer, Julien Cohen-Adad, Olivier Commowick, Benoit Combes,
Elise Bannier, Anne Kerbrat, Christian Barillot.
In IEEE International Symposium on Biomedical Imaging (ISBI), Venice, Italy, 2019, April.

In addition, a journal version of this work is under preparation for submission.
Distortion correction in diffusion MRI of the spinal cord : Evaluation and impact.
Haykel Snoussi, Emmanuel Caruyer, Julien Cohen-Adad, Olivier Commowick, Benoit Combes,
Elise Bannier, Anne Kerbrat, Christian Barillot.

7.1.2 Characterization of Multiple Sclerosis Abnormalities within the Cer-
vical Spinal Cord

In this chapter.we have proposed a pipeline to extract average dMRI metrics per vertebral level
in spinal cord and we performed a statistical analysis to show their sensitivity associated with
the presence and evolution of MS lesions within the same vertebral level. Diffusion measures
involved are extracted from the diffusion tensor and the ball-and-stick models.

We show that FWW, Stick-AD, FA, MD and RD have a significant difference between healthy
volunteers and MS patients within [C2-C4] region in cervical spinal cord. In regards to FA, MD
and RD, there are already showed in other studies involved in spinal cord (Valsasina et al., 2005;
Agosta et al., 2007a; Agosta et al., 2007b; von Meyenburg et al., 2013).

Our workflow have many additions regarding other studies that involved in spinal cord; rel-
atively large data, 9 raters including radiologists and experienced readers how are segment MS
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lesions, quantification of diffusion measures using atlas approach which is free from manual de-
lineation bias and during metric extraction partial volume effect is accounted for, and the quality
check of each step of the pipeline in order to guarantee good quality of the analysis and the
accuracy of the results. We show that the B&S multi-compartment model can provide novel in-
formation about the evolution of tissue microstructure within MS patients, and should be included
in the processing workflow and clinical protocol.

Furthermore, another important contribution is the way that we proposed, multivariate learn-
ing, to use the diffusion MRI data to automatically detect the presence of a MS lesion. Based
on a selection of metrics extracted from diffusion, we learned a linear classifier using linear dis-
criminant analysis (LDA) and we reduced the dimension of the feature vector using two different
strategies; (1) select manually a set of measures with limited cross-correlation, (2) perform a prin-
cipal component analysis (PCA) and then learn a linear classifier on the reduced set of PCA, first
two components which explain more than 65% of the variance. Throughout these strategies, we
evaluated the classification results using the area under the curve (AUC) of the receiver operat-
ing characteristic curve (ROC). We found that combining some metrics reaches up the prediction
score of such MS lesion and more performing than using each metric independently. We showed
that a combination of 3 metrics [FA, MD, RD] and a combination of 4 metrics [FWW,MD,Stick-
AD,RD] give the better ROC AUC score between healthy volunteers and MS patients with lesion.
Thus, choosing a subset of metrics which bring complementary information has significantly in-
creased the prediction score of the presence of this disease.

In this context, one publication is under preparation for submission to a peer-reviewed inter-
national journal:

Characterization of Multiple Sclerosis Abnormalities within the Cervical Spinal Cord
Haykel Snoussi, Emmanuel Caruyer, Julien Cohen-Adad, Olivier Commowick, Benoit Combes,
Elise Bannier, Anne Kerbrat, Christian Barillot.

7.1.3 Reproducibility and Evolution of Diffusion MRI Measurements within
the Cervical Spinal Cord in Multiple Sclerosis

In this chapter, we proposed a framework for studying the evolution of microstructure-related
parameters measured with diffusion MRI in the spinal cord white matter of MS patients. Based
on a group of 8 healthy controls, we were able to define confidence intervals for diffusion-based
metrics for vertebral levels in the cervical spine using Bland Altman analysis. Our work include
a definition of confidence intervals for cervical vertebral levels. Using these confidence intervals,
we followed the longitudinal evolution of the same metrics for each patient, and identify abnormal
trajectories associated with the pathology.

We showed a significant correlation of cord diffusion MRI measures with disability changes
over time at the scale of 83%, and with the appearance of new lesion in spinal cord at 75%
scale. Furthermore, we found other correlation of these diffusion metrics with the presence of
lesion in the brain at M0 despite the EDSS score is constant over time. However, there is some
incomprehensible correlations with such patients; one have only constant EDSS score at 1 and
other her score reach down to 0 at M12. Further studies with more scan rescan data of healthy
volunteers are required to investigate and validate more how the evolution of diffusion MRI indices
correlate with clinical scores.
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7.2 Perspectives
In Chapter.4, we have proposed novel geometric based metrics and framework for studying the
impact of distortion correction in diffusion MRI of the spinal cord. One perspective can introduce
these geometric metric to such method of distortion correction as a registration or converging
criteria. We showed that ’classic’ metrics such cross-correaltion and mutual information are not
sufficient to evaluate the correction of distortions. In addition, using diffusion MRI acquired in
sagittal way with Head-Feet (HF-FH) PED, we show that distortion is limited only for extremes
of FOV, especially those in PED. The extremes of FOV in HF-FH contain brain stem, C1, C2 and
C7, T1 and T2. However, acquisition in Anterior-Posterior (AP-PA) PED, the extremes of FOV
will be empty but the acquisition will hampered by more distortion as result of perpendicular
inhomogeneity field depending the size of matrix. One interest perpective of our work is to apply
the current evaluation of distortion correction and compare between them.

In Chapter.5, we demonstrate the sensitivity of FWW and Stick-AD, as metrics from a two-
components model, with the damage of MS lesion in spinal cord. Thus Ball-and-Stick multi-
compartment model can provide novel information about the evolution of tissue microstructure,
and should be included in the processing workflow and clinical protocol despite the technical
challenge of acquiring scan in spinal cord. To do so, we have to propose and use other diffusion
MRI protocol that permit the application of other complicated multi compartment models.

In Chapter.6, we showed a significant correlation of cord diffusion MRI measures with dis-
ability changes over time at the scale of 83%, and with the appearance of new lesion in spinal cord
at 75% scale. However, we found various failed outputs of our reproducibility analysis. Further
studies with more scan rescan data of healthy volunteers are required to investigate and validate
more how the evolution of diffusion MRI indices correlate with clinical scores.
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ROI Region Of Interest
RD Radial diffusivity
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ROI Region of Interest
ROC Receiver Operating Characteristic

S.
SPMS Secondary Progressive Multiple Sclerosis
SPM Statistical Parametric Mapping
SCT Spinal Cord Toolbox
SNR Signal-Noise Ratio
ss-EPI single-shot Echo-Planar Imaging
Stick-AD Stick Axial Diffusivity
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T.
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Titre : Population imaging and diffusion MRI for characterizing multiple sclerosis in the 
human spinal cord 

Mots clés : IRM de diffusion, moelle épinière, sclérose en plaques 

Résumé : L'IRM quantitative a un potentiel 
énorme pour fournir une valeur intrinsèque et 
indirecte aux propriétés des tissus utiles au 
diagnostic, au pronostic et aux essais cliniques 
de la sclérose en plaques (SEP), qui est une 
maladie inflammatoire du système nerveux 
central. Complémentaire à l’imagerie cérébrale, 
étudier l’impact de la maladie sur la moelle 
épinière grâce à l’imagerie quantitative, en 
particulier l’IRM de diffusion, devient un véritable 
défi. L'acquisition et le traitement de ce type de 
données posent des problèmes inhérents en 
raison de la distorsion de susceptibilité, de la 
petite section transversale de la moelle et 
l’absence de repères anatomiques visibles qui 
permettant d'identifier des voies ou du niveau 
vertébral. Dans ce contexte, nous proposons 
plusieurs contributions pour le traitement et 
l'analyse statistique de ces données. 

Tout d'abord, nous proposons de nouvelles 
métriques géométriques pour évaluer et 
comparer différentes méthodes de correction 
de distorsion en mesurant l'alignement du 
modèle de diffusion reconstruit avec l'axe 
central apparent de la moelle épinière. 
Deuxièmement, en utilisant une cohorte de 
patients atteints de SEP et de témoins sains, 
nous étudions le lien entre les mesures de 
diffusion et la présence ou l'absence de lésion 
dans un niveau vertébral donné et nous 
montrons que nous pouvons prédire ce dernier 
avec une bonne précision en utilisant un 
apprentissage linéaire multivarié. Enfin, nous 
montrons la faisabilité d’une étude longitudinale 
de l’évolution des métriques d'IRM de diffusion 
en réalisant une étude de reproductibilité à 
l’aide d’un ensemble de données test-retest, et 
l’appliquons aux 2 premières acquisitions (M0 
et M12) de notre cohorte de patients. 

 

Title : Population imaging and diffusion MRI for characterizing multiple sclerosis in the 
human spinal cord 
Keywords : Diffusion MRI, Spinal Cord, Multiple sclerosis 

Abstract : Quantitative MRI has huge potential 
to provide intrinsic and normative value to tissue 
properties useful for diagnosis, prognosis and 
ultimately clinical trials in multiple sclerosis (MS) 
which is an inflammatory disorder of the central 
nervous system. Complementary to brain 
imaging, investigating how the spinal cord is 
damaged using quantitative imaging, and in 
particular diffusion MRI, becomes an acute 
challenge. Acquiring and processing this type of 
data present inherent challenges due to the 
susceptibility distortion,  the small cross-
sectional area of the spine and the lack of visible 
anatomical landmarks to help identification of 
tracts or vertebral level. In this context, we 
propose several contributions for the processing 
and statistical analysis of this data. 

First, we propose novel geometric metrics to 
evaluate and compare different distortion 
correction methods by measuring the 
alignment of the reconstructed diffusion model 
with the apparent centerline of the spine. 
Second, using a cohort of MS patients and 
healthy controls, we study the link between 
diffusion measures and the presence or 
absence of lesion in a given vertebral level and 
we show that we can predict the latter with 
good accuracy by learning a multivariate linear 
classifier. Last, we show the feasibility of 
longitudinal study of the evolution of diffusion 
MRI metrics by performing a reproducibility 
study using a test-retest dataset and apply it to 
the 2 first timepoints (M0 and M12) of our 
cohort of MS patients. 
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