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Random point patterns and repulsiveness

One of the main topic of spatial statistics is the study of datasets consisting of a finite set of points falling into an observation window that is a compact subset of R d (where, usually, d = 1, 2 or 3). The earliest and probably most known example is the study in 1854 of the physician John Snow [START_REF] Snow | On the Mode of Communication of Cholera[END_REF] of the spatial distribution of cases of Cholera during an outbreak in London which allowed him to trace back its origin to a contaminated water pump. In practice, a lot of spatial point patterns are observed in a wide variety of scientific disciplines. Some examples are given in Figure 1. The mathematical models that serve to study these kind of spatial data are point processes.

The simplest way to describe a point process on R d is as a probability measure on the σ-algebra of locally finite subset of R d , where a subset X of R d is said to be locally finite if for all bounded subsets A of R d the set X ∩ A is finite. The most commonly studied point process is the Poisson point process (or PPP). A PPP X is defined by a locally integrable function ρ called its intensity such that the number N (A) of points of the PPP that falls into a subset A of R d follows a Poisson distribution with mean A ρ(x)dx and, for any disjoint sets A 1 , • • • , A n ⊂ R d , the random variables N (A 1 ), • • • , N (A n ) are mutually independent. As a consequence, conditionally to N (A), all points of X ∩A are independent and identically distributed for any set A ⊂ R d . This is why PPPs are used to model spatial data consisting of points that can be considered to be independent from each other.

The main limitation of PPPs is obviously the assumption that all points are independently distributed and therefore have no interaction between each others whereas a lot of point patterns in practice feature some positive dependency (attractiveness) or negative dependency (repulsiveness) between points. A simulation of a PPP is shown in the top left of Figure 2. In comparison, some examples of point patterns with a repulsive behaviour are given in Figure 1. This is why more complex models of point processes have been developed in order to model attractive or repulsive point patterns. In this thesis, we focus mainly on the study of repulsive point patterns. The main models for these kind of data are Matérn's hardcore point processes, perturbed lattice point processes, Gibbs point processes and, the main focus of this thesis, determinantal point processes. [START_REF] Kulesza | Determinantal point processes for machine learning[END_REF] Messor ants nests at a site in Greece. The bottom left picture shows the location of 71 pine saplings in a Swedish forest. The bottom right picture shows the location of the 28 polling places in the French commune of Rennes. The first three datasets are provided in the spatstat.data package [5] of R [START_REF] Core | R: A Language and Environment for Statistical Computing[END_REF]. The last dataset is provided by the website https://data.rennesmetropole.fr.

Matérn's hardcore point processes are defined by taking a PPP and removing points so that no pair of points are closer than a certain distance R (called the hardcore radius) from each other while perturbed lattice point processes are defined by randomly shifting a lattice by i.i.d. random variables. Both models are easy to simulate and convenient to use but are too restrictive for a lot of statistical applications. On the opposite, Gibbs point processes are a more general class of point processes that offer a large variety of interactions between points and have been extensively used for modeling repulsiveness but they are generally difficult to work with. For example, they can only be simulated by MCMC methods, their density involves an intractable constant making maximum likelihood inference difficult and no closed form is known for their moments. More details can be found in [START_REF] Møller | Statistical Inference and Simulation for Spatial Point Processes[END_REF][START_REF] Van Lieshout | Markov Point Processes And Their Applications[END_REF] DPPs on the other hand are a more restrictive family than Gibbs point processes [START_REF] Georgii | Conditional intensity and gibbsianness of determinantal point processes[END_REF] but are generally easier to work with while still being very flexible and allowing a large variety of interactions between points. Compared to Gibbs point processes, they can be exactly simulated and they have a closed form expression for their moments and Janossy densities. This allows the inference of DPPs by maximum likelihood estimation or various methods of moments. This is why DPPs present themselves as a nice alternative to model repulsive point patterns. Examples of simulations of DPPs, Gibbs point processes and Matérn's hardcore point processes are shown in Figure 2. 

Preliminaries on point processes 1.2.1 Definition of a point process

We consider (simple) point processes on the measured space (R d , B(R d ), µ) where d ∈ N is a constant, B(R d ) is the set of Borel subsets of R d and µ is a Radon measure. Let Ω be the space of locally finite subsets of R d :

Ω := {X ⊂ R d : ∀S ∈ B 0 , card(X ∩ S) < +∞}
where B 0 denotes the space of bounded Borel sets of R d . We then consider F, the σ-algebra generated by the sets {X ∈ Ω, card(X ∩ S) = m} for all S ∈ B 0 and m ∈ N. A (simple) point process X is then defined as a measurable application from a measured space into (Ω, F). We write X = ∅ when X corresponds to the empty point pattern and we denote by N (S) the random variables N (S) := card(X ∩ S). General properties about point processes can be found in [START_REF] Daley | An Introduction to the Theory of Point Processes, Volume I: Elementary Theory and Methods[END_REF][START_REF] Van Lieshout | Markov Point Processes And Their Applications[END_REF] for example.

Several ways of defining a point process include using joint intensity functions, Janossy densities, void probabilities or the Laplace functional. Joint intensity functions of a point process are defined the following way: Definition 1.2.1. Let X ∈ Ω be a point process and n 1 be an integer. If there exists a non-negative function ρ n : (R d ) n → R such that

E   = x 1 ,••• ,xn∈X f (x 1 , • • • , x n )   = (R d ) n f (x 1 , • • • , x n )ρ n (x 1 , • • • , x n )dµ(x 1 ) • • • dµ(x n )
for all locally integrable functions f : (R d ) n → R, where the symbol = means that the sum is done for distinct x i , then ρ n is called the n-th order joint intensity function of X.

Thus, ρ n is defined as the density of the factorial moment measures (see [START_REF] Daley | An Introduction to the Theory of Point Processes, Volume I: Elementary Theory and Methods[END_REF]) of X with respect to µ. Therefore, ρ n (x 1 , • • • , x n )dµ(x 1 ) • • • dµ(x n ) can be simply interpreted as the probability of X having a point in each of the infinitesimal balls centered at x i with volume dµ(x i ). Janossy densities on the other hand are defined the following way: Definition 1.2.2. Let X ∈ Ω be a point process and S ∈ B 0 (R d ). If there exists non-negative functions j S n : (R d ) n → R for all integers n 1 such that

E[f (X ∩ S)] = n 0 1 n! S n f (x)j S n (x)dµ n (x)
for all locally integrable functions f : n 0 S n → R, then the functions j S n are called the Janossy densities of X.

For Janossy densities of a point process X, j S n (x 1 , • • • , x n )dµ(x 1 ) • • • dµ(x n ) can be interpreted as the probability of X having exactly n points in S, one in each of the infinitesimal balls centered at x i with volume dµ(x i ). Void probabilities are defined as the probabilities P(X ∩ S = ∅) for all S ∈ B 0 . Since the set of events {{X ∩ S = ∅}, S ∈ B 0 } generates the σ-algebra F then the knowledge of void probabilities is enough to define a point process. Finally, the Laplace functional of a point process X is defined as the functional

L : f → E exp - x∈X f (x)
for all measurable non-negative functionals f with bounded support. This is the point process equivalent of the Laplace transform for real random variables.

Determinantal point processes

The introduction of DPPs under their current form comes from Macchi [START_REF] Macchi | The coincidence approach to stochastic point processes[END_REF] to model fermion systems. Even if instances of DPPs can be found in earlier papers [START_REF] Karlin | Coincidence probabilities[END_REF][START_REF] Ginibre | Statistical ensembles of complex, quaternion, and real matrices[END_REF], Macchi is the first one to have introduced them under the general form that is mostly used today.

A DPP is defined by a function K : (R d ) 2 → C called the kernel of the DPP. The most common way of defining a DPP is by its joint intensity functions: Definition 1.2.3. Let K : (R d ) 2 → C. X is said to be a determinantal point process on (R d , B(R d ), µ) with kernel K if its joint intensity functions exist and satisfy

ρ n (x 1 , • • • , x n ) = det (K[x]) (1.2.1)
for all integer n and for all x 1 , • • • , x n ∈ R d where K[x] is defined as the matrix (K(x i , x j )) 1 i,j n .

A first consequence of Definition 1.2.3 is that the first order intensity of a DPP writes ρ 1 (x) = K(x, x) which shows that the local density of the point process is given by the diagonal values of its kernel. A second consequence is that ρ 2 (x, y) -ρ(x)ρ(y) = -|K(x, y)| 2 < 0 showing that any pair of points has less chance to appear than both points individually causing points to repel each other. In particular, the higher |K(x, y)| is, the stronger the repulsion is, so the off-diagonal values of the kernel of a DPP show the pairwise repulsion between points. More generally, for any configuration of points (x 1 , • • • , x n ), the closer two points x i and x j are from each other, the closer the i-th and j-th rows and columns of the matrix K[x] will be, and the lower the values of the determinant and ρ n are, which shows that DPPs favor configurations of points that are distant from each other. This explains the repulsive nature of determinantal point process.

The main issue with the general definition 1.2.3 is that it is not clear for which kernel K a DPP is well-defined. The usual assumptions considered on K for the DPP to be well-defined are the following: Condition H: The function K : (R d ) 2 → C is a continuous locally square integrable hermitian measurable function such that its associated integral operator on L 2 (R d , µ)

K : f → Kf : x → R d K(x, y)f (y)dµ(y)
is locally of trace class with eigenvalues in [0, 1].

Here, L 2 (R d , µ) denotes the space of square integrable functions on R d . Under Condition H, it is also possible to define DPPs through their void probabilities or their Laplace transform: Proposition 1.2.4 ([94]). Let X be a DPP with kernel K satisfying condition H, then for all S ∈ B 0 ,

P(X ∩ S = ∅) = det(Id -K S )
where det refers to the Fredholm determinant, Id is the identity operator on L 2 (R d , µ) and K S is the projection of K on L 2 (S, µ). Moreover, the Laplace transform of X writes

L(f ) = det(Id -K[f ])
where K[f ] is the integral operator with kernel y) .

K [f ] (x, y) := 1 -e -f (x) K(x, y) 1 -e -f (
In order to get the Janossy densities of a DPP, it is worth noting that since K is assumed to be a non-negative hermitian function under Condition H then, by Mercer's theorem, for all compact set S ⊂ R d there exists a sequence of eigenvalues λ S i ∈ [0, 1] and orthonormal eigenfunctions φ S i of L 2 (S, µ) such that

K(x, y) = i λ S i φ S i (x)φ i S (y)
for almost all (x, y) ∈ S 2 . When all λ S i ∈ [0, 1[, we define the kernel

L S (x, y) := i λ S i 1 -λ S i φ S i (x)φ i S (y)
and we can express the Janossy densities of X the following way:

Proposition 1.2.5 ([75, 97]). Let X be a DPP with kernel K satisfying condition H and let S ⊂ R d be a compact set. If the eigenvalues of K S are in [0, 1[ then, for all integers n, j S n (x 1 , • • • , x n ) = det(Id -K S ) det(L S [x]).

Finally, DPPs are mostly studied under two different settings. When µ is a counting measure over a finite space then the DPP is said to be discrete. Discrete DPPs have found applications for example in machine learning [START_REF] Kulesza | Determinantal point processes for machine learning[END_REF] to remove redundancies and get a diverse subset of a dataset, in sampling theory [START_REF] Loonis | Determinantal sampling designs[END_REF] to get a fixed size sampling design with fixed first order inclusion probability and some control over the second order inclusion probability or in graph theory as the distribution of uniform spanning trees [START_REF] Burton | Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances[END_REF]. When µ is absolutely continuous with respect to the Lebesgue measure then the DPP is said to be continuous. Continuous DPPs also appear in various probability fields as the eigenvalue's distribution of some families of random matrices [START_REF] Ginibre | Statistical ensembles of complex, quaternion, and real matrices[END_REF], as a combinatoric tool to study the asymptotic of the longest increasing subsequence of random perturbations [START_REF] Borodin | Asymptotics of plancherel measures for symmetric groups[END_REF], position of non-intersecting Brownian motions with given starting point and end point [START_REF] Karlin | Coincidence probabilities[END_REF], zeros of some families of random analytic functions [START_REF] Peres | Zeros of the i.i.d. gaussian power series: a conformally invariant determinantal process[END_REF] and also as the distribution of Fermion systems in quantum physics [START_REF] Macchi | The coincidence approach to stochastic point processes[END_REF] to give a few examples. From a statistical perspective, continuous DPPs have found applications in telecommunication [START_REF] Deng | The ginibre point process as a model for wireless networks with repulsion[END_REF][START_REF] Miyoshi | A cellular network model with ginibre configured base stations[END_REF][START_REF] Gomez | A case study on regularity in cellular network deployment[END_REF] to model the spatial configuration of wireless networks, in biology [1] to model the spatial distribution of epidermal nerve fibers, in forestry [START_REF] Lavancier | Determinantal point process models and statistical inference[END_REF] to model the spatial distribution of trees in a forest and in computational statistics as a tool to get fast Monte Carlo methods [START_REF] Bardenet | Monte carlo with determinantal point processes[END_REF].

Parametric families of determinantal point processes

There exists several ways to create parametric families of DPPs. One of the most common one is the following result from [START_REF] Lavancier | Determinantal point process models and statistical inference[END_REF] : Proposition 1.2.6. Let C : R d → R d be a square integrable symmetric function on R d such that its Fourier transform

C : x → R d C(t) exp(-2iπt • x)dt
takes values in [0,1]. Then, the function K(x, y) = C(y -x) is a DPP kernel on (R d , µ) where µ is the Lebesgue measure.

Since symmetric functions C with non negative Fourier transform are covariance functions, this proposition implies that we can consider as many parametric families of DPPs as there are parametric families of covariance functions. The assumption that C 1 simply adds a bound on the parameters of the family. A well-known example is the Gaussian-type DPP kernel family that writes

K ρ,α (x, y) = ρ exp - y -x 2 α 2 , 0 ρ( √ πα) d 1
where . is the euclidean norm of R d . In this family, the parameter ρ controls the intensity of the point process while the parameter α controls its range of interaction.

The constraint ρ( √ πα) d 1 is a consequence of the bound C 1 and means that a trade-off is needed between the repulsiveness of the DPP and the number of points it can generate. More examples of parametric families of stationary DPP kernels can be found in [START_REF] Biscio | Quantifying repulsiveness of determinantal point processes[END_REF][START_REF] Lavancier | Determinantal point process models and statistical inference[END_REF] Furthermore, we can also construct non-stationary DPP families by considering location dependent thinning of stationary DPPs. The following result is an immediate consequence from the definition of DPPs: Proposition 1.2.7. Let X be a DPP with kernel K and ρ : R d → R d be a function taking values in [0, 1]. Let X be the point process obtained by retaining all x ∈ X independently and with probability ρ(x), then X is a DPP with kernel K (x, y) := ρ(x)K(x, y) ρ(y).

We can then work with parametric families of non-stationary DPPs with kernels of the form

{K θ (x, y) := ρ θ (x)C θ (y -x) ρ θ (y), Ĉθ ∞ ρ θ ∞ < 1}.
They are called second-order intensity reweighted stationary [6,[START_REF] Waagepetersen | Two-step estimation for inhomogeneous spatial point processes[END_REF] since their second order properties are translation-invariants even if their first order intensity is inhomogeneous.

Finally, a last general method to obtain parametric families of DPPs is to start from one DPP and consider all its thinned and scaled versions. This is, for example, how is defined the family of scaled β-Ginibre DPPs [START_REF] Deng | The ginibre point process as a model for wireless networks with repulsion[END_REF]. Proposition 1.2.8. Let X be a DPP with kernel K, ρ ∈ [0, 1] and α ∈ R * + . Let X be the point process obtained from retaining, independently and with probability ρ, each point of X and then applying the homothety of ratio α to the remaining points. Then X is a DPP with kernel

K ρ,α = ρ α d K x α , y α .

Outline of the PHD

In this thesis, we focus on the asymptotic inference of continuous DPPs in a specific framework called increasing domain asymptotic. Let (W n ) n 0 be a sequence of increasing bounded subsets of R d , meaning that W n ⊂ W n+1 for all integers n. Unlike the classical iid framework, when working in the increasing domain asymptotic framework we consider a unique observation of a point process within a given window W n . Therefore, the asymptotic is considered on the size of the window and, as a consequence, on the number of point observed. This is why we also usually consider that either n 0 W n = R d or, more simply, that the d-dimensional volume of W n goes to ∞. In most applications, windows are rectangular but in order to get results as general as possible, we will usually consider windows of any shape provided that their boundaries are not too distorted as to limit edge effects.

The main problem in the increasing domain asymptotic setting for DPPs is that, since all points repel each other, we need to control their spatial dependency. To this goal, we study mixing properties of DPPs. We use these results to deduce a general central limit theorem (CLT) for a wide class of statistics on both stationary and nonstationary DPPs. We then apply this CLT to get asymptotic results on moment-based estimating equations. Finally, we consider the problem of proving the consistency and approximating the maximum likelihood estimator of stationary DPPs. All results of the PHD are detailed in Section 1.5.

Quantifying dependency in a point process 1.4.1 α-mixing and β-mixing

There exists a lot of different ways to measure dependency, some of the most common ones can be found in [START_REF] Bradley | Basic properties of strong mixing conditions. a survey and some open questions[END_REF]. We study in Chapters 2 and 3 α-mixing and β-mixing for DPPs, the two most basic notions of dependency of a stochastic process. Introduced by Rosenblatt in [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF] for the α-mixing and by Rozanov and Volkonskii in [START_REF] Rozanov | Some limit theorems for random functions I[END_REF] for the β-mixing, they have been extensively used in the literature to get asymptotic properties of random processes, random fields and point processes. Some examples can be found in [START_REF] Coeurjolly | Variational approach for spatial point process intensity estimation[END_REF][START_REF] Prokešová | Asymptotic palm likelihood theory for stationary point processes[END_REF][START_REF] Waagepetersen | Two-step estimation for inhomogeneous spatial point processes[END_REF] for α-mixing and [9,[START_REF] Viennet | Inequalities for absolutely regular sequences: application to density estimation[END_REF] for β-mixing.

The α-mixing and β-mixing coefficients of two σ-algebras are defined the following way: Definition 1.4.1. Consider a probability space (E, T , P) and A , B two sub σ-algebras of T . Let P A and P B be the respective restrictions of P to A and B and define the probability P A ⊗B on the product σ-algebra by P A ⊗B (A × B) = P(A ∩ B) for all A ∈ A and B ∈ B. The α-mixing coefficient and β-mixing coefficient are defined as the following measures of dependence between A and B: where . T V is the total variation metric.

An immediate consequence of their definition is that α(A , B) = 0 iff β(A , B) = 0 iff A and B are independent. So, the smaller the α-mixing and β-mixing are, the closer to independence the σ-algebras can be considered to be. Moreover, the mixing coefficients satisfy 2α(A , B) β(A , B). α-mixing is more often used but β-mixing implies stronger covariance inequalities [START_REF] Rio | Asymptotic Theory of Weakly Dependent Random Processes[END_REF] as well as a coupling theorem known as Berbee's Lemma [START_REF] Berbee | Random walks with stationary increments and renewal theory[END_REF].

The definitions of the mixing coefficients are adapted to point processes the following way. We write σ(X) for the σ-algebra generated by a random variable X and dist(A, B) := inf x∈A,y∈B y -x for the distance between two sets A and B. Definition 1.4.2. Let X be a point process on (R d , B(R d ), µ). The α-mixing and βmixing coefficients of X associated to the sizes p and q and to the distance r are defined by α p,q (r) := sup{α(σ(X ∩ A), σ(X ∩ B)) : µ(A) p, µ(B) q, dist(A, B) > r}, β p,q (r) := sup{β(σ(X ∩ A), σ(X ∩ B)) : µ(A) p, µ(B) q, dist(A, B) > r}, for all p, q, r ∈ R + . We also define α p,∞ (r) := sup q α p,q (r), β p,∞ (r) := sup q β p,q (r), α ∞,∞ (r) := sup p,q α p,q (r), β ∞,∞ (r) := sup p,q α p,q (r), for all p ∈ R + .

In most applications, the coefficients α ∞,∞ (r) and β ∞,∞ (r) tend to be impractical to use. This is why the parameters p and q have been introduced to control the size of the sets considered in the definition of the mixing coefficients. However, the main information carried by these coefficients is their rate of decay with respect to r. It shows how fast events that happen further and further away from each others become independent. As an example of application, one of the most well-known result on αmixing random variables is the central limit theorem by Bolthausen [START_REF] Bolthausen | On the central limit theorem for stationnary mixing random fields[END_REF] that can be adapted to point processes under the main assumption that ∀p ∈ R + , r∈N r d-1 α p,∞ (r) < +∞.

Positive and negative association

A different kind of dependency property satisfied by DPPs is negative association. It is defined the following way: Definition 1.4.3. A point process X on (R d , B(R d ), µ) is called negatively associated if it satisfies for all disjoint sets A, B ∈ B 0 (R d ) and functions f, g : Ω → R increasing with respect to the inclusion (i.e. X ⊂ Y ⇒ f (X) f (Y )),

Cov(f (X ∩ A), g(X ∩ B)) 0.
A direct consequence of the negative association property is that the random variables N (A) and N (B) are negatively correlated for any pair of bounded disjoint sets A, B. Since the covariance between N (A) and N (B) can be written as Cov(N (A), N (B)) = A×B (ρ 2 (x, y) -ρ 1 (x)ρ 1 (y))dµ(x)dµ(y) therefore ρ 2 (x, y) -ρ 1 (x)ρ 1 (y) is negative almost everywhere as a consequence of negative association which shows that any pair of points will repel each other. Thus, negative association can be interpreted as a stronger property than pairwise repulsiveness. The negative association of discrete DPPs has been proved in [START_REF] Lyons | Determinantal probability measures[END_REF] using algebraic tools. A more probabilistic proof is provided in Appendix A.1. As for continuous DPPs, one can deduce from the previous references and [START_REF] Ghosh | Determinantal processes and completeness of random exponentials: the critical case[END_REF][START_REF] Lyons | Determinantal probability: Basic properties and conjectures[END_REF] that they remain negatively associated. Just like α-mixing and β-mixing, the negative association property has been used to prove central limit theorems but only in the case of random fields [START_REF] Bulinski | Central Limit Theorems for Weakly Dependent Random Fields[END_REF]. Instead, it has been used in [START_REF] Błaszczyszyn | Clustering and percolation of point processes[END_REF][START_REF] Błaszczyszyn | Clustering comparison of point processes with applications to random geometric models[END_REF] to deduce various properties of random geometric models driven by DPPs. We will show in Chapter 2 that a CLT for point processes can also be obtained from negative association. Also of note is the analogous property for attractive point processes which is called positive association and defined the following way:

Definition 1.4.4. A point process X on (R d , B(R d ), µ) is called positively associated if it satisfies for all sets A, B ∈ B 0 (R d ) and increasing functions f, g : Ω → R Cov(f (X ∩ A), g(X ∩ B)) 0.
Note that the sets A and B are not restricted to be disjoint in the definition of positive association compared to negative association. This is because Cov(f (X ∩ A), f (X ∩ A)) is always non-negative which is why we only consider disjoint sets for negative association but not necessarily for positive association. Another difference is that positive association can be deduced from the FKG inequality for discrete point processes and its analogous equivalent [START_REF] Burton | Scaling limits for associated random measures[END_REF] for continuous point processes while no such result exists for negative association. This is why positive association tends to be easier to prove than negative association in general.

Presentation of the PHD's results

In Chapter 2 we show a general central limit theorem for functionals of stationary and non-stationary DPPs that write as a sum of a test function over all subsets of the point process. In Chapter 3 we prove a β-mixing inequality for point processes that only depends on their joint intensity functions and apply it to DPPs. In Chapter 4 we prove the asymptotic normality of estimators of stationary and non-stationary DPPs built from a wide class of estimating functions. Finally, we study the asymptotic properties of the maximum likelihood estimator for stationary DPPs in Chapter 5 and give a tractable asymptotic approximation of the DPPs likelihood as well as a proof of its consistency.

Chapter 2

We start by showing that association (positive or negative) of a point process implies a general covariance inequality that only depends on the covariance between the number of points of the point process between different sets: Theorem 1.5.1. Let X be an associated point process and A, B ⊂ R d be two disjoint bounded subsets. Let f : Ω → R and g : Ω → R be two functions such that f (X ∩ A) and g(X ∩ B) are bounded, then

|Cov(f (X ∩ A), g(X ∩ B))| f A g B |Cov(N (A), N (B))|
where . A is the Lipschitz semi-norm defined by

f A := sup X∈Ω,X⊂A x∈A |f (X) -f (X ∪ {x})|.
Moreover, if X is positively associated then it also satisfies the same inequality for all A, B ⊂ R d not necessarily disjoint.

As a consequence, we get that association implies an α-mixing bound that only depends on the first two joint intensity functions of the point process: Proposition 1.5.2. Let X be an associated point process on R d whose first two intensity functions are well-defined, then for all p, q > 0,

       α p,q (r) pq sup x-y r |ρ 2 (x, y) -ρ(x)ρ(y)|, α p,∞ (r) ps d ∞ r t d-1 sup x-y =t |ρ 2 (x, y) -ρ(x)ρ(y)|dt.
where s d is the area of the d-dimensional sphere.

Therefore, the rate of decay of the α-mixing coefficients in each cases only depends on the pairwise repulsion of the point process. In the case of DPPs, since |ρ 2 (x, y)ρ(x)ρ(y)| = |K(x, y)| 2 then we deduce that the α p,q (r) coefficients decay at least at the same rate than the kernel squared does when y -x goes to infinity. We even show that this rate of decay is optimal for a wide class of DPPs by giving a lower bound on the α-mixing coefficients with the same rate of decay. Unfortunately, the rates of decay of the α p,∞ (r) coefficients are not as good and applying the CLT by Bolthausen and Guyon [START_REF] Bolthausen | On the central limit theorem for stationnary mixing random fields[END_REF][START_REF] Guyon | Random Fields on a Network[END_REF] for α-mixing random variables would force us to exclude the most repulsive DPPs that have the slowest decaying kernel. In order to solve this issue, we prove a more general CLT, based not on α-mixing but on the covariance inequality in Theorem 1.5.1, which can be applied to all the parametric families of DPP kernels commonly used in spatial statistics.

Theorem 1.5.3. Let X be a DPP with bounded kernel K satisfying H. Let τ > 0 and f : Ω → R be a function of the form

f (X) := S⊂X f 0 (S)
where f 0 is a bounded function vanishing when sup x,y∈S y -x > τ . Let (W n ) n∈N be a sequence of increasing subsets of R d such that |W n | → ∞ and let σ 2 n := Var(f (X ∩W n )). Assume that there exists ε > 0 and ν > 0 such that the following conditions are satisfied:

(H1) |∂W n ⊕ (τ + ν)| = o(|W n |); (H2) sup y-x >r |K(x, y)| = o(r -(d+ε)/2 ); (H3) lim inf n |W n | -1 σ 2 n > 0.
Then,

1 σ n (f (X ∩ W n ) -E[f (X ∩ W n )]) L -→ N (0, 1).
Here, ∂W n ⊕ (τ + ν) denotes the set of points at distance less than τ + ν from the boundary of W n .

Chapter 3

In this chapter, we show the following general inequality on β-mixing coefficients of point processes depending uniquely on their n-th order intensity functions:

Theorem 1.5.4. Let X be a point process on (R d , B(R d ), µ) such that E[4 |X∩A| ] < +∞ for all bounded sets A ⊂ R d .
Then, for all p, q, r ∈ R + ,

β p,q (r) sup µ(A)<p,µ(B)<q dist(A,B)>r   +∞ m,n=0 2 n+m-1 m!n! A m ×B n |ρ m (x)ρ n (y) -ρ m+n (x, y)|dµ m (x)dµ n (y)   .
Since the expressions (ρ m (x)ρ n (y) -ρ m+n (x, y))/ρ m (x)ρ n (y) can be interpreted as the correlation between X having points at the locations x 1 , • • • , x m and X having points at the locations y 1 , • • • , y n then Theorem 1.5.4 shows that the faster these correlations decrease when the distance between the points goes to infinity the faster the decay of the β-mixing coefficients is. When applied to determinantal point processes, we get the following β-mixing inequality: Theorem 1.5.5. Let X be a DPP with bounded kernel K satisfying H, then

β p,q (r) 2pq(1 + 2p K ∞ )(1 + 2q K ∞ )e 2 K ∞(p+q) sup y-x r |K(x, y)| 2 .
Note that the rate of decay of the β-mixing coefficients in Theorem 1.5.5 is the same as the rate of decay of the α-mixing coefficients in Proposition 1.5.2. The main drawback of this result, compared to the α-mixing inequality in Proposition 1.5.2, is the exponential dependency of the bound on the β p,q (r) with respect to p, q making it impractical to use in most applications.

Chapter 4

Chapter 4 focuses on asymptotic properties of estimators built from estimating functions. Given a family of continuous point processes {P θ , θ ∈ Θ}, where Θ ⊂ R p for some p ∈ N, and an increasing sequence of observation windows (W n ) n 0 , we say that a function e n is an estimating function when θ is estimated by a solution (or one of the solutions) θn of the equation e(θ n ) = 0. This is a very general statistical framework that encompass other methods like minimum contrast estimation (when the contrast is differentiable) or maximum likelihood estimation (when the likelihood is differentiable). In particular, we say that e n is a k-th order estimating function if it is of the form

e n (X) = = x 1 ,••• ,x k ∈X∩Wn f 0 (x 1 , • • • , x k ; θ) - W k n f 0 (t; θ)ρ k (t; θ)dµ(t), where f 0 : (R d ) k × Θ → R p is a test function.
In this chapter, we consider the more general framework of combinations of estimating functions of various orders:

e n (θ) =      = x 1 ,••• ,xq 1 ∈X∩Wn f 1 (x 1 , • • • , x q 1 ; θ) -W q 1 n f 1 (x; θ)ρ (q 1 ) (x; θ)dµ(x) . . . = x 1 ,••• ,xq l ∈X∩Wn f l (x 1 , • • • , x q l ; θ) -W q l n f l (x; θ)ρ (q l ) (x; θ)dµ(x)     
.

where each

f i : (R d ) q i × Θ → R k i is a test function and i k i = p.
We show that under some regularity assumptions on the observation windows, the test functions and the point process then there exists a µ(W n )-consistent sequence of roots θn of the equation e n (θ) = 0 that is also asymptotically normally distributed. More precisely, for all ε > 0, there exists A > 0 such that

P(∃ θn : e n ( θn ) = 0 and µ(W n ) θn -θ * < A) > 1 -ε
for a sufficiently large n and

µ(W n )Var(e n (θ * )) -1/2 H n (θ * )( θn -θ * ) L -→ N (0, I p ),
where I p is the p × p identity matrix and

H n (θ * ) := 1 µ(W n )     W q 1 n f 1 (x; θ * )∇ θ ρ (q 1 ) (x; θ * ) T dµ(x) . . . W q l n f l (x; θ * )∇ θ ρ (q l ) (x; θ * ) T dµ(x)     .
We then focus in particular on the case of second-order estimating functions (l = 1 and q 1 = 2) and two-step estimation (l = 2, q 1 = 1 and q 2 = 2) of determinantal point processes and show how the various assumptions on X and the test functions f i are simplified in both cases.

For second-order estimating functions, one of the main assumptions considered on the test function f is that f (u, v) = 0 if v -u is greater than some constant R. In practical applications, the choice of this R is very important. If R is chosen too small then the estimating function will ignore a lot of pairs of points but taking R to high will make the estimating functions consider pair of points that are so far from each other they are nearly uncorrelated and will contribute mostly as noise. If we define g(u, v; θ) := ρ 2 (u, v; θ)/ρ 1 (u; θ)ρ 1 (v; θ) as the pair correlation function between u and v then we know that g(u, v; θ) converges towards 1 when the distance between u and v goes to infinity. Following the idea that we only want to take into account pair of points that are correlated enough, we want to keep pairs of point (u, v) such that g(u, v; θ) -1 is higher than some fraction of g(u, u; θ) -1 and g(v, v; θ) -1. This means that we want to choose R such that

v -u > R ⇔ g(u, v; θ * ) -1 g(u, u; θ * ) -1 < ε and g(u, v; θ * ) -1 g(v, v; θ * ) -1 < ε
for a small ε (for example ε = 1%). A common approach to choose such an R is to inspect a non-parametric estimation of the pair correlation function as in [8,[START_REF] Heagerty | A composite likelihood approach to binary spatial data[END_REF][START_REF] Waagepetersen | Two-step estimation for inhomogeneous spatial point processes[END_REF]. The issue with this approach is that, not only it requires extra work from the user, this complex method of choosing R makes it difficult to get any theoretical result on the estimating equation. In order to solve this issue, we propose instead to modify the test function to be of the form

f adap (u, v; θ) = w ε max(g(u, u; θ) -1, g(v, v; θ) -1) g(u, v; θ) -1 f 0 (u, v; θ)
for some test function f 0 and weight function w of bounded support [-1, 1]. Then, we show that not only f adap fits our consistency result and central limit theorem but we show in some simulation studies that it performs as well as test functions of the form

f (u, v; θ) = 1 v-u R f 0 (u, v; θ)
with an optimal choice of R but without the need for the user to find this optimal R.

Chapter 5

In the final chapter of this manuscript, we consider the problem of maximum likelihood estimation (MLE for short) of stationary determinantal point processes. Given a family {P θ , θ ∈ Θ} of continuous DPPs on an increasing sequence of compact observation windows (W n ) n 1 , as a consequence of Proposition 1.2.5 the (normalized) log-likelihood of this DPP family can be expressed as

l n (θ|X) = 1 + 1 µ(W n ) logdet(Id -K θ Wn ) + logdet(L θ Wn [X ∩ W n ]) .
Both the expression of L θ Wn and the Fredholm determinant of Id -K θ Wn depend on the spectral decomposition of the projection of K on L 2 (W n , µ). Computing this spectral decomposition is not an issue for discrete DPPs where K is a finite matrix but cannot be done for continuous DPPs. We propose in this chapter an asymptotic approximation of the likelihood of continuous stationary DPPs based on the fact that stationary DPPs have kernels of the form K(x, y) = K 0 (y -x) and when K 0 is square integrable, it admits a Fourier transform taking values in [0, 1] by Proposition 1.2.6. We use the following asymptotic approximations:

L Wn (x, y) ≈ R d K0 (t) 1 -K0 (t) exp(2iπt • (y -x))dµ(t) and 1 µ(W n ) logdet(Id -K θ Wn ) ≈ R d log(1 -K0 (x))dµ(x),
to get an approximation l n (θ|X) of l n (θ|X) that does not depend on the spectral decomposition of the kernels but only on their Fourier transform which are explicitly known for all classical parametric families of stationary DPP kernels used in spatial statistics.

The main issue with an asymptotic approximation of the likelihood is that it ignores any kind of edge effect of the DPP, worsening the inference of the most repulsive DPPs that have the stronger edge effects. As a fix to this issue in the case of rectangular window, we consider the idea of replacing the window with a flat torus, bringing points on the edge closer to each other in order to mitigate the edge effect. We show in a simulation study that the approximated likelihood l n (θ|X) with the edge effect correction gives better result than DPP inference with more common moment methods like minimum contrast estimation based on the pair correlation function.

Another issue with the MLE is the difficulty to get any theoretical result about its consistency. One of the main problem is that det(L θ Wn [X]) vanishes when two points of X get arbitrarily close to each other. Unfortunately, no relationship between how close some points of X are from each other and the value of the determinant is known, making the likelihood difficult to control unless we can force all points of the DPP to be at a distance at least ε from each other. This motivates the idea to work with approximations of DPPs on (εZ) d , ε > 0, an arbitrary small regular grid of R d , with kernels

ε d K θ [(εZ) d ].
We show that for any small enough ε > 0 and under weak assumptions on the DPP family {P θ , θ ∈ Θ} the MLE and our approximated MLE are equivalent and converges to the true parameter θ.

Appendix

In this section, we give two complementary results to the PHD. In [START_REF] Lyons | Determinantal probability: Basic properties and conjectures[END_REF], Lyons proved the negative association of general DPPs as a consequence of the negative association of discrete DPPs. The proof of the negative association of discrete DPPs is done using various exterior algebra properties making the proof difficult to understand for those who are not familiar with this algebraic formalism. Our first result is a modified version of Lyon's proof that only uses probabilistic tools.

Our second result is a generalization of the Cramér-Wold device. The Cramér-Wold device is used, among others, as a way to generalize unidimensional CLTs to multidimensional CLTs. Unfortunately, it only works when the variance in the CLT is convergent which is not assumed in Theorems 2.3.1 and 2.4.4 where we need it. Therefore, we show that the Cramér-Wold device can be extended to the case of nonconvergent variance.

Chapter 2

Mixing properties and central limit theorem for associated point processes

Introduction

Positive association (PA) and negative association (NA) [3,[START_REF] Esary | Association of random variables, with applications[END_REF] are properties that quantify the dependence between random variables. They have found many applications in limit theorems for random fields [START_REF] Bulinski | Limit Theorems for Associated Random Fields and Related Systems[END_REF][START_REF] Yuan | A central limit theorem for random fields of negatively associated processes[END_REF]. Even if the extension of PA to point processes have been used in analysis of functionals of random measures [START_REF] Burton | Scaling limits for associated random measures[END_REF][START_REF] Evans | Association and random measures[END_REF], there are no general applications of PA or NA to limit theorems for point processes. We contribute in this chapter to this aspect for spatial point processes on R d . We especially discuss in detail the case of determinantal point processes (DPPs for short), that are an important example of negatively associated point processes. DPPs are a type of repulsive point processes that were first introduced by Macchi [START_REF] Macchi | The coincidence approach to stochastic point processes[END_REF] in 1975 to model systems of fermions in the context of quantum mechanics. They have been extensively studied in Probability theory with applications ranging from random matrix theory to non-intersecting random walks, random spanning trees and more (see [START_REF] Hough | Zeros of Gaussian Analytic Functions and Determinantal Point Processes[END_REF]). From a statistical perspective, DPPs have applications in machine learning [START_REF] Kulesza | Determinantal point processes for machine learning[END_REF], telecommunication [START_REF] Deng | The ginibre point process as a model for wireless networks with repulsion[END_REF][START_REF] Miyoshi | A cellular network model with ginibre configured base stations[END_REF][START_REF] Gomez | A case study on regularity in cellular network deployment[END_REF], biology, forestry [START_REF] Lavancier | Determinantal point process models and statistical inference[END_REF] and computational statistics [START_REF] Bardenet | Monte carlo with determinantal point processes[END_REF].

As a first result, we relate the association property of a point process to its α-mixing properties. First introduced in [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF], α-mixing is a measure of dependence between random variables, which is actually more popular than PA or NA. It has been used extensively to prove central limit theorems for dependent random variables [START_REF] Bolthausen | On the central limit theorem for stationnary mixing random fields[END_REF][START_REF] Doukhan | Mixing: Properties and Examples[END_REF][START_REF] Guyon | Random Fields on a Network[END_REF][START_REF] Ibragimov | Independant and stationnary sequences of random variables[END_REF][START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF]. More details about mixing can be found in [START_REF] Bradley | Basic properties of strong mixing conditions. a survey and some open questions[END_REF][START_REF] Doukhan | Mixing: Properties and Examples[END_REF]. We derive in Section 2.2 an important covariance inequality for associated point processes (Theorem 2.2.5), that turns out to be very similar to inequalities established in [START_REF] Doukhan | A new weak dependence condition and applications to moment inequalities[END_REF] for weakly dependent continuous random processes. We show that this inequality implies α-mixing and precisely allows one to control the α-mixing coefficients by the first two intensity functions of the point process. This result for point processes is in contrast with the case of random fields where it is known that association does not imply α-mixing in general (see Examples 5.10-5.11 in [START_REF] Bulinski | Limit Theorems for Associated Random Fields and Related Systems[END_REF]). However, this implication holds true for integer-valued random fields (see [START_REF] Doukhan | On weak dependence conditions: the case of discrete valued processes[END_REF] or [START_REF] Bulinski | Limit Theorems for Associated Random Fields and Related Systems[END_REF]). As explained in [START_REF] Doukhan | On weak dependence conditions: the case of discrete valued processes[END_REF], this is because the σ-algebras generated by countable sets are much poorer than σ-algebras generated by continuous sets. In fact, by this aspect and some others (for instance our proofs boil down to the control of the number of points in bounded sets), point processes are very similar to discrete processes.

We then establish in Section 2.3 a general central limit theorem (CLT) for random fields defined as a function of an associated point process (Theorem 2.3.1). A standard method for proving this kind of theorem is to rely on sufficiently fast decaying α-mixing coefficients along with some moment assumptions. We use an alternative procedure that exploits both the mixing properties and the association property. This results in weaker assumptions on the underlying point process, that can have slower decaying mixing coefficients. This improvement allows in particular one to include all standard DPPs, some of them being otherwise excluded with the first approach (like for instance DPPs associated to the Bessel-type kernels [START_REF] Biscio | Quantifying repulsiveness of determinantal point processes[END_REF]).

Section 2.4 discusses in detail the case of DPPs, where we derive a tight explicit bound for their α-mixing coefficients and prove a central limit theorem for certain functionals of a DPP (Theorem 2.4.4). Specifically, these functionals write as a sum of a bounded function of the DPP, over subsets of close-enough points of the DPP. A particular case concerns sums over p-tuple of close enough points of the DPP, which are frequently encountered in asymptotic inference. Limit theorems in this setting have been established in [START_REF] Soshnikov | Determinantal random point fields[END_REF] when p = 1, and in [START_REF] Biscio | Brillinger mixing of determinantal point processes and statistical applications[END_REF] for stationary DPPs and p 1. We thus extend these studies to sums over any subsets and without the stationary assumption. As a statistical application, we consider the parametric estimation of second-order intensity reweighted stationary DPPs. These DPPs have an inhomogeneous first order intensity, but translation-invariant higher order (reweighted) intensities. We prove that the two-step estimator introduced in [START_REF] Waagepetersen | Two-step estimation for inhomogeneous spatial point processes[END_REF], designed for this kind of inhomogeneous point process models, is consistent and asymptotically normal when applied to DPPs.

Associated point processes and α-mixing

Notation

In this chapter, we consider locally finite simple point processes on R d , for a fixed d ∈ N. Some theoretical background on point processes can be found in [START_REF] Daley | An Introduction to the Theory of Point Processes, Volume I: Elementary Theory and Methods[END_REF][START_REF] Møller | Statistical Inference and Simulation for Spatial Point Processes[END_REF]. We denote by Ω the set of locally finite point configurations in R d . For X ∈ Ω and A ⊂ R d , we write

N (A) := card(X ∩ A)
for the random variable representing the number of points of X that fall in A. We also denote by B(A) the Borel σ-algebra of A and by E(A) the σ-algebra generated by X ∩ A, defined by We recall that the intensity functions of a point process (when they exist), with respect to the Lebesgue measure, are defined as follows.

E(A) := σ({X ∈ Ω : N (B) = m}, B ∈ B(A), m ∈ N).
Definition 2.2.1. Let X ∈ Ω and n 1 be an integer. If there exists a non-negative function

ρ n : (R d ) n → R such that E   = x 1 ,••• ,xn∈X f (x 1 , • • • , x n )   = (R d ) n f (x 1 , • • • , x n )ρ n (x 1 , • • • , x n )dx 1 • • • dx n for all locally integrable functions f : (R d ) n → R then ρ n is called the nth order intensity function of X. In particular, ρ n (x 1 , • • • , x n )dx 1 • • • dx n can
be viewed as the probability that X has a point in each of the infinitesimally small sets around

x 1 , • • • , x n with volumes dx 1 , • • • , dx n respectively.
We further introduce the notation

D(x, y) := ρ 2 (x, y) -ρ 1 (x)ρ 1 (y). (2.2.1)
This quantity is involved in the following equality, deduced from the previous definition and used several times throughout the chapter:

Cov(N (A), N (B)) = A×B D(x, y)dxdy. (2.2.2)

Negative and positive association

Our goal in this section is to prove a crucial covariance inequality and to deduce an α-mixing property for associated point processes. We recall that associated point processes are defined the following way (see Definitions 2.11-2.12 in [START_REF] Błaszczyszyn | Clustering comparison of point processes with applications to random geometric models[END_REF] for example).

Definition 2.2.2.

A point process X is said to be negatively associated (NA for short) if, for all families of pairwise disjoint Borel sets

(A i ) 1 i k and (B i ) 1 i l such that (∪ i A i ) ∩ (∪ j B j ) = ∅ (2.2.3)
and for all coordinate-wise increasing functions F :

N k → R and G : N l → R it satisfies E[F (N (A 1 ), • • • , N (A k ))G(N (B 1 ), • • • , N (B l ))] E[F (N (A 1 ), • • • , N (A k ))]E[G(N (B 1 ), • • • , N (B l ))]. (2.2.4)
Similarly, a point process is said to be positively associated (PA for short) if it satisfies the reverse inequality for all families of pairwise disjoint Borel sets

(A i ) 1 i k and (B i ) 1 i l (but not necessarily satisfying (2.2.3)).
If a point process is NA or PA it is said to be associated.

The main difference between the definition of PA and NA is the restriction (2.2.3) that only affects NA point processes. Notice that without (2.2.3), E[N (A)] 2 E[N (A) 2 ] contradicts (2.2.4) hence the need to consider functions depending on disjoint sets for NA point processes.

These inequalities extend to the more general case of functionals of point processes. The first thing we need is a more general notion of increasing functions. We associate to Ω the partial order X Y iff X ⊂ Y and then call a function on Ω increasing if it is increasing respective to this partial order. The association property can then be extended to these functions. A proof in a general setting can be found in [74, Lemma 3.6] but we give an alternative elementary one in Appendix 2.A. Theorem 2.2.3. Let X be a NA point process on R d and A, B be disjoint subsets of R d . Let F : Ω → R and G : Ω → R be bounded increasing functions, then

E[F (X ∩ A)G(X ∩ B)] E[F (X ∩ A)]E[G(X ∩ B)].
(2.2.5)

If X is PA then, for all A, B ⊂ R d not necessarily disjoint, E[F (X ∩ A)G(X ∩ B)] E[F (X ∩ A)]E[G(X ∩ B)]. (2.2.6)
Association is a very strong dependence condition. As proved in the following theorem, it implies a strong covariance inequality that is only controlled by the behaviour of the first two intensity functions of X (assuming their existence). To state this result, we need to introduce the following seminorm for functionals over point processes.

Definition 2.2.4. For any

A ⊂ R d , . A is the seminorm on the functions f : Ω → C defined by f A := sup X∈Ω,X⊂A x∈A |f (X) -f (X ∪ {x})|.
Note that . A is a Lipschitz norm in the sense that it controls the way f (X) changes when a point is added to X ∩ A. Theorem 2.2.5. Let X be an associated point process and A, B ⊂ R d be two disjoint bounded subsets. Let f : Ω → R and g : Ω → R be two functions such that f (X ∩ A) and g(X ∩ B) are bounded, then

|Cov(f (X ∩ A), g(X ∩ B))| f A g B |Cov(N (A), N (B))|. (2.2.7)
Moreover, if X is PA then it also satisfies the same inequality for all A, B ⊂ R d not necessarily disjoint.

Proof. The proof mimics the one from [START_REF] Bulinski | Asymptotic behaviour of some functionals of positively and negatively dependent random fields[END_REF] for associated random fields. We only consider the case of NA point processes but the PA case can be treated in the same way.

Consider the functions f + , f -: Ω → R, E(A)-measurable, and g + , g -: Ω → R, E(B)measurable, defined by

f ± (X) = f (X ∩ A) ± f A N (A), g ± (X) = g(X ∩ B) ± g B N (B). For all x ∈ A\X, f + (X ∪ {x}) -f + (X) = f (X ∪ {x} ∩ A) -f (X ∩ A) + f A which
is positive by definition of f A . f + is thus an increasing function. With the same reasoning, g + is also increasing and f -, g -are decreasing. f + is not bounded but it is non-negative and almost surely finite so it can be seen as an increasing limit of the sequence of functions min(f + , k) when k goes to infinity. These functions are nonnegative, increasing and bounded so for any k and any bounded increasing function g, (2.2.5) applies where F is replaced by min(f + , k). By a limiting argument, the same inequality holds true for f = f + . We can also treat the other functions the same way and we get from (2.2.5)

Cov(f + (X), g + (X)) 0 and Cov(f -(X), g -(X)) 0.

Since these expressions are equal to

Cov(f ± (X), g ± (X)) = Cov(f (X ∩ A), g(X ∩ B)) + f A g B Cov(N (A), N (B)) ± ( g B Cov(f (X ∩ A), N (B)) + f A Cov(N (A), g(X ∩ B))),
adding these two expressions together yields the upper bound in (2.2.7):

Cov(f (X ∩ A), g(X ∩ B)) -f A g B Cov(N (A), N (B)).
The lower bound is obtained by replacing f by -f in the previous expression.

A similar inequality as in Theorem 2.2.5 can also be obtained for complex-valued functions since (f ) A and (f ) A are bounded by f A , where (f ) and (f ) refer to the real and imaginary part of f respectively. Corollary 2.2.6. Let X be an associated point process and A, B ⊂ R d be two disjoint bounded subsets. Let f : Ω → C and g : Ω → C be two functions such that f (X ∩ A) and g(X ∩ B) are bounded, then

|Cov(f (X ∩ A), g(X ∩ B))| 4 f A g B |Cov(N (A), N (B))|.
Moreover, if X is PA then it also satisfies the same inequality for all A, B ⊂ R d not necessarily disjoint.

If the first two intensity functions of X are well-defined then D in (2.2.1) is welldefined. As a consequence of Theorem 2.2.5 and from (2.2.2), if |D(x, y)| vanishes fast enough when |y -x| goes to infinity then any two events respectively in E(A) and E(B) will get closer to independence as dist(A, B) tends to infinity, as specified by the following corollary. Corollary 2.2.7. Let X be an associated point process on R d whose first two intensity functions are well-defined. Let A, B be two bounded disjoint sets of R d such that dist(A, B) r. Then, for all functions f : Ω → R and g : Ω → R such that f (X ∩ A) and g(X ∩ B) are bounded, 

|Cov(f (X ∩ A), g(X ∩ B))| s d |A| f A g B ∞ r t d-1 sup |x-y|=t |D(x, y)|dt, ( 2 
|A|s d ∞ r t d-1 sup |u-v|=t |D(u, v)|dt.
The final result is then a consequence of Theorem 2.2.5 and Corollary 2.2.6.

Application to α-mixing

Let us first recall some generalities about mixing. Consider a probability space (X , F, P) and A , B two sub σ-algebras of F. The α-mixing coefficient is defined as the following measure of dependence between A and B:

α(A , B) := sup{|P(A ∩ B) -P(A)P(B)| : A ∈ A , B ∈ B}.
In particular, A and B are independent iff α(A , B) = 0. This definition leads to the essential covariance inequality due to Davydov [START_REF] Davydov | On convergence of distributions which are generated by stationary random processes[END_REF] and later generalized by Rio [START_REF] Rio | Covariance inequalities for strongly mixing processes[END_REF]: For all random variables X, Y measurable with respect to A and B respectively,

|Cov(X, Y )| 8α 1/r (A , B) X p Y q , where p, q, r ∈ [1, ∞] and 1 p + 1 q + 1 r = 1.
(2.2.9) This definition is adapted to random fields the following way (see [START_REF] Doukhan | Mixing: Properties and Examples[END_REF] or [START_REF] Guyon | Random Fields on a Network[END_REF]). Let Y = (Y i ) i∈Z d be a random fields on Z d and define

α p,q (r) := sup{α(σ({Y i , i ∈ A}), σ({Y i , i ∈ B})) : |A| p, |B| q, dist(A, B) > r}
with the convention α p,∞ (r) = sup q α p,q (r). The coefficients α p,q (r) describe how close two events happening far enough from each other are from being independent. The parameters p and q play an important role since, in general, we cannot get any information directly on the behaviour of α ∞,∞ (r).

We can adapt this definition to point processes the following way. For a point process X on R d , define α p,q (r) := sup{α(E(A), E(B)) : |A| p, |B| q, dist(A, B) > r} with the convention α p,∞ (r) = sup q α p,q (r).

As a consequence of Corollary 2.2.7, the α-mixing coefficients of an associated point process tend to 0 when D(x, y) vanishes fast enough as |y -x| goes to infinity. More precisely, we have the following inequalities. Proposition 2.2.8. Let X be an associated point process on R d whose first two intensity functions are well-defined, then for all p, q > 0,

       α p,q (r) pq sup |x-y| r |D(x, y)|, α p,∞ (r) ps d ∞ r t d-1 sup |x-y|=t |D(x, y)|dt.
(2.2.10)

Proof. We can write

α(E(A), E(B)) = sup A ∈E(A) B∈E(B) Cov(1 A (X ∩ A), 1 B (X ∩ B))
so Proposition 2.2.8 is a direct consequence of Theorem 2.2.5 and Corollary 2.2.7 applied to indicator functions.

Central limit theorem for associated point processes

Consider the lattice (x i ) i∈Z d defined by x i = R • i, where R > 0 is a fixed constant. We denote by C i , i ∈ Z d , the d-dimensional cube with center x i and side length s, where s R is another fixed constant. Note that the union of these cubes forms a covering of R d . Let X be an associated point process and (f i ) i∈Z d be a family of real-valued measurable functions defined on Ω. We consider the centered random field (Y i ) i∈Z d defined by

Y i := f i (X ∩ C i ) -E[f i (X ∩ C i )], i ∈ Z d , (2.3.1)
and we are interested in this section in the asymptotic behavior of S n := i∈In Y i , where (I n ) n∈N is a sequence of strictly increasing finite domains of Z d . As a consequence of Proposition 2.2.8, we could directly use one of the different CLT for α-mixing random fields that already exist in the literature [START_REF] Bolthausen | On the central limit theorem for stationnary mixing random fields[END_REF][START_REF] Doukhan | Mixing: Properties and Examples[END_REF][START_REF] Guyon | Random Fields on a Network[END_REF] to get the asymptotic distribution of S n . But, the coefficients α p,∞ decreasing much slower than the coefficients α p,q , this would imply an unnecessary strong assumption on D. Precisely, this would require D(x, y) to decay at a rate at least o(|y -x| -2(d+ε) 2+δ δ ), where ε > 0 and δ is a positive constant depending on the behaviour of the moments of X. In the next theorem, we bypass this issue by exploiting both the behaviour of the mixing coefficients α p,q when p < ∞ and q < ∞, and the association property through inequality (2.2.8). We show that we can still get a CLT when D(x, y) decays at a rate o(|y -x| -(d+ε) 2+δ δ ). This improvement is important to include DPPs with a slow decaying kernel, thus inducing more repulsiveness, such as Bessel-type kernels, see the applications to DPPs in Section 2.4.2 and especially the discussion at the end of the section. Let us also remark that another technique, based on the convergence of moments, is sometimes used to establish a CLT for point processes. This has been exploited especially for Brillinger mixing point processes in [START_REF] Jolivet | Central limit theorem and convergence of empirical processes for stationary point processes[END_REF][START_REF] Heinrich | Central limit theorems for empirical product densities of stationary point processes. Statistical Inference for Stochastic Processes[END_REF] and other papers. As an example, DPPs have been proved to be Brillinger mixing in [START_REF] Biscio | Brillinger mixing of determinantal point processes and statistical applications[END_REF][START_REF] Heinrich | On the strong Brillinger-mixing property of α-determinantal point processes and some applications[END_REF]. However, this condition applies to stationary point processes only. n := Var(S n ). Assume that for some ε, δ > 0 the following conditions are satisfied: (C1) X is an associated point process on R d whose first two intensity functions are well-defined;

(C2) sup i∈Z d Y i 2+δ = M < ∞; (C3) sup |x-y| r |D(x, y)| = o r→∞ (r -(d+ε) 2+δ δ )
where D is given by (2.2.1);

(C4) lim inf n |I n | -1 σ 2 n > 0. Then 1 σ n S n L -→ N (0, 1).
Proof. First, we notice that Y inherits its strong mixing coefficients from X. This is due to the fact that we have σ({Y i : i ∈ I}) ⊂ E( i∈I C i ) for all I ⊂ Z d as a consequence of (2.3.1). Moreover, we have dist(C i , C j ) 

∀p, q > 0, ∀r > sd R , α Y p,q (r) α X ps d ,qs d 1 √ d (rR -sd) ,
where we denote by α X , α Y the α-mixing coefficients of X and Y respectively. In particular, conditions (C1), (C3) and identity (2.2.10) yields

∀p, q > 0, α Y p,q (r) = o r→∞ (r -(d+ε) 2+δ δ ). (2.3.2)
We deal with the proof in two steps: first, we consider the case of bounded variables and then we extend the result to the more general case.

The first step of the proof follows the approach used by Bolthausen [START_REF] Bolthausen | On the central limit theorem for stationnary mixing random fields[END_REF] and Guyon [START_REF] Guyon | Random Fields on a Network[END_REF], while the second step exploits elements from Ibragimov and Linnik [START_REF] Ibragimov | Independant and stationnary sequences of random variables[END_REF]. The main difference lies in the way we deal with the term A 3 that appears later on in the proof.

First step: Bounded variables. Without loss of generality, we consider that E

[f i (X ∩ C i )] = 0 for all i ∈ Z d . Suppose that we have sup i Y i ∞ := sup i f i (. ∩ C i ) ∞ = M < ∞ instead of Assumption (C2). Since α Y p,q (r) is non increasing in r and is a o(r -d ) by (2.3.2), we can choose a sequence (r n ) n∈N such that α Y p,q (r n ) |I n | → 0 and r -d n |I n | → ∞.
For i ∈ Z d , define

S i,n = j∈In |i-j| 1 rn Y j , S * i,n = S n -S i,n , a n = i∈In E[Y i S i,n ], Sn = 1 √ a n S n and Si,n = 1 √ a n S i,n .
We have

σ 2 n = Var(S n ) = a n + i∈In E[Y i S * i,n
] and, as a consequence of the typical covariance inequality (2.2.9) for α-mixing random variables, we get

i∈In E[Y i S * i,n ] i,j∈In |i-j| 1 >rn |Cov(Y i , Y j )| 8M 2 i,j∈In |i-j| 1 >rn α Y 1,1 (|i -j| 1 ) 8M 2 |I n | r>rn |{k ∈ Z d : |k| 1 = r}|α Y 1,1 (r).
The number of k ∈ Z d satisfying |k| 1 = r is bounded by 2(2r + 1) d-1 . This is because each of the d -1 first coordinates of k takes its values in {-r, • • • , r} and the last coordinate is fixed by the other ones, up to the sign, since

|k| 1 = r. Therefore, i∈In E[Y i S * i,n ] 16M 2 |I n | r>rn (2r + 1) d-1 α Y 1,1 (r).
By Assumption (2.3.2), this quantity is o(|I n |) and thus σ 2 n ∼ a n as a consequence of Assumption (C4). We then only need to prove the asymptotic normality of S n . Moreover, since sup n E[S 2 n ] < ∞ then this will be a consequence of the following condition (see [START_REF] Biscio | A note on gaps in proofs of central limit theorems[END_REF][START_REF] Bolthausen | On the central limit theorem for stationnary mixing random fields[END_REF])

lim n→∞ E[(iλ -S n ) exp(iλS n )] = 0, ∀λ ∈ R.
We can split this expression into (iλ

-S n ) exp(iλS n ) = A 1 -A 2 -A 3 where                      A 1 = iλ exp(iλS n )   1 - 1 a n j∈In Y j S j,n   , A 2 = 1 √ a n exp(iλS n ) j∈In Y j 1 -iλS j,n -exp(-iλS j,n ) , A 3 = 1 √ a n j∈In Y j exp iλ(S n -S j,n ) .
It was proved by Bolthausen [20] that E[A 2 1 ] and E[|A 2 |] vanish when n goes to infinity if r d-1 α Y p,q (r) < ∞ for p + q 4 which is the case here. We show that E[A 3 ] vanishes at infinity using (2.2.8). Notice that we have

|E[A 3 ]| |I n | √ a n sup j∈In Cov     f j (X ∩ C j ), exp     iλ √ a n k∈In |k-j| 1 >rn f k (X ∩ C k )         .
Define the function

g j : X → exp     iλ √ a n k∈In |k-j| 1 >rn f k (X ∩ C k )     .
This function is bounded by 1 and E(B j )-measurable where

B j := k∈In, |k-j| 1 >rn C k is a bounded set and dist(C j , B j ) (Rr n -sd)/ √ d (see Lemma 2.B.
2). We have f j C j 2M and for all X ∈ Ω, for all x ∈ B j , if we denote by J x = {k : x ∈ C k } the set of cubes that contain x then Second step: General Case. For N > 0, we define

|g j (X ∪ {x}) -g j (X)| = 1 -exp   iλ √ a n k∈Jx (f k (X ∩ C k ∪ {x}) -f k (X ∩ C k ))   2λM |J x | √ a n . Lemma 2.
|E[A 3 ]| 4|I n |s d √ a n |C j | f j C j g j B j ∞ dist(B j ,C j ) t d-1 sup |x-y| t |D(x, y)|dt 16s d M 2 2s 2 d R + s d λ |I n | a n ∞ 1 √ d (Rrn-sd) t d-
S 1,n := i∈In (F N (Y i ) -E[F N (Y i )]) where F N : x → x1 |x| N , S 2,n := i∈In ( F N (Y i ) -E[ F N (Y i )]) where F N : x → x1 |x|>N .
Let σ 2 n (N ) := Var(S 1,n ), from the first step of the proof we have 

σ n (N ) -1 S 1,n L -→ N (0, 1). Let 1 > γ > (1 + ε d (1 + δ 2 )) -
Cov( F N (Y i ), F N (Y j )) |I n | σ 2 n C 2 N sup i∈In j∈In 8α Y 1,1 (|i -j| 1 ) δγ 2+δγ 16 c C 2 N ∞ r=0 (2r + 1) d-1 α Y 1,1 (r) δγ 2+δγ .
By assumption (C3) and the choice of γ we have (2r + 1)

d-1 α Y 1,1 (r) δγ 2+δγ < ∞ so σ -1
n S 2,n converges in mean square to 0 when N goes to infinity, uniformly in n. With the same reasoning, we also get the inequality

1 σ 2 n |Cov(S 1,n , S 2,n )| 16 c M C N ∞ r=0 (2r + 1) d-1 α Y 1,1 (r) δγ 2+δγ ,
where the right hand side tends to 0 when N goes to infinity, uniformly in n. Hence σ 2 n (N ) tends to σ 2 n uniformly in n as N goes to infinity. Finally, for all constants ν > 0 arbitrary small, we choose 

N such that E[σ -1 n |S 2,n |] ν and |1 -σ n (N )/σ n |
+ E e ixS 1,n σn(N ) -e -1 2 x 2 + E e ixS 2,n σn -1 xE S 1,n σ n (N ) 1 - σ n (N ) σ n + o(1) + xν 2xν + o(1)
concluding the proof.

Application to determinantal point processes

In this section, we give a CLT for a wide class of functionals of DPPs. This result is a key tool for the asymptotic inference of DPPs. As an application treated in Section 2.4.3, we get the consistency and the asymptotic normality of the two-step estimation method of [START_REF] Waagepetersen | Two-step estimation for inhomogeneous spatial point processes[END_REF] for a parametric inhomogeneous DPP.

Negative association and α-mixing for DPPs

We recall that a DPP X on R d is defined trough its intensity functions with respect to the Lebesgue measure that must satisfy 

∀n ∈ N, ∀x ∈ (R d ) n , ρ n (x 1 , • • • , x n ) = det(K[x]) with K[x] := (K(x i , x j )) i,j∈{1,••• ,n} . The function K : (R d ) 2 → C is called
A×B |K(x, y)| 2 dxdy pqω(r) 2 , α p,∞ (r) ps d ∞ r ω 2 (t)t d-1 dt. (2.4.2)
It is worth noticing that this result, and so the covariance inequality (2.2.7), is optimal in the sense that for a wide class of DPPs, the α-mixing coefficient α p,q (r) do not decay faster than sup |A|<p,|B|<q dist(A,B)>r |Cov(N (A), N (B))| when r goes to infinity, as stated in the following proposition.

Proposition 2.4.3. Let X be a DPP with kernel K satisfying H. We further assume that K is bounded, takes its values in R + and is such that K < 1 where . is the operator norm. Then, for all p, q, r > 0, Proof. The upper bound for α p,q (r) is just the one in (2.4.2). The lower bound is obtained through void probabilities. Let p, q, r > 0 and A, B ⊂ R d such that |A| < p, |B| < q and dist(A, B) > r. By definition, for any such sets A and B, α p,q (r) |P(N (A) = 0)P(N (B) = 0) -P(N (A ∪ B) = 0)|. The void probabilities of DPPs are known (see [START_REF] Shirai | Random point fields associated with certain fredholm determinants i: fermion, poisson and boson point processes[END_REF]) and equal to

(1 -K ) (p+q) K ∞ K sup |A|<p,|B|<q dist(A,B)>r A×B |K(x, y)| 2 dxdy α p,q (r)
P(N (A) = 0) = exp   - n 1 Tr(K n A ) n  
where K A is the projection of K on the set of square integrable functions f : A → R. Moreover, P(N (A) = 0)P(N (B) = 0) -P(N (A ∪ B) = 0) 0 by negative association, and we have

P(N (A) = 0)P(N (B) = 0) -P(N (A ∪ B) = 0) = exp   - n 1 Tr(K n A∪B ) n     exp   n 1 Tr(K n A∪B ) -Tr(K n A ) -Tr(K n B ) n   -1   exp   - n 1 Tr(K n A∪B ) n   n 1 Tr(K n A∪B ) -Tr(K n A ) -Tr(K n B ) n . (2.4.4)
Using the classical trace inequality we get

Tr(K n A∪B ) K A∪B n-1 Tr(K A∪B ) K n-1 A∪B K(x, x)dx K n-1 (p + q) K ∞ , thus exp   - n 1 Tr(K n A∪B ) n   (1 -K ) (p+q) K ∞ K . (2.4.5)
Moreover, since A and B are disjoint sets, we can write 

Tr(K n A∪B )-Tr(K n A )-Tr(K n B ) = (A∪B) n K(x 1 , x 2 ) • • • K(x n-1 , x n )K(x n , x 1 )dx 1 • • • dx n - A n ∪B n K(x 1 , x 2 ) • • • K(x n-1 , x n )K(x n , x 1 )dx

Central limit theorem for functionals of DPPs

We investigate the asymptotic distribution of functions that can be written as a sum over subsets of close enough points of X, namely

f (X) := S⊂X f 0 (S), (2.4.7) 
where f 0 is a bounded function vanishing when diam(S) > τ for a certain fixed constant τ > 0. The typical example, encountered in asymptotic inference, concerns functions f 0 that are supported on sets S having exactly p elements, in which case (2.4.7) often takes the form

f (X) = 1 p! = x 1 ,••• ,xp∈X f 0 (x 1 , • • • , x p ), (2.4.8)
where the sum is done over ordered p-tuples of X and the symbol = means that we consider distinct points. The asymptotic distribution of (2.4.8) has been investigated in [START_REF] Soshnikov | Determinantal random point fields[END_REF] when p = 1 and in [START_REF] Biscio | Brillinger mixing of determinantal point processes and statistical applications[END_REF] for general p and stationary DPPs.

In the next theorem, we extend these settings to functionals like (2.4.7) applied to general non stationary DPPs. Some discussion and comments are provided after its proof. We use Minkwoski's notation and write A ⊕ r for the set x∈A B(x, r). Theorem 2.4.4. Let X be a DPP associated to a kernel K that satisfies H and that is further bounded. Let τ > 0 and f : Ω → R be a function of the form

f (X) := S⊂X f 0 (S)
where f 0 is a bounded function vanishing when diam(S) > τ . Let (W n ) n∈N be a sequence of increasing subsets of R d such that |W n | → ∞ and let σ 2 n := Var(f (X ∩W n )). Assume that there exists ε > 0 and ν > 0 such that the following conditions are satisfied:

(H1) |∂W n ⊕ (τ + ν)| = o(|W n |); (H2) ω(r) = o(r -(d+ε)/2 ); (H3) lim inf n |W n | -1 σ 2 n > 0. Then, 1 σ n (f (X ∩ W n ) -E[f (X ∩ W n )]) L -→ N (0, 1).
Proof. In order to apply Theorem 2.3.1, we would like to rewrite f as a sum over cubes of a lattice. Unfortunately, for disjoint sets

A, B ⊂ R d , f (X ∩ A) + f (X ∩ B) = f (X ∩ (A ∪ B)) in general.
Instead, we apply Theorem 2.3.1 to an auxiliary function, close to f , as follows. Define S 0 as the barycenter of the set S. We write

f W (X) = S⊂X f 0 (S)1 W (S 0 ) (2.4.9)
for the sum over the subsets of points of X with barycenter in W ⊂ R d . Now, we split R d into little cubes the following way. Let C 0 be a given d-dimensional cube with a given side-length 0 < s ν/ √ d. For all i ∈ Z d , let C i be the translation of C 0 by the vector s • i. Let I n := {i : C i ⊕ τ ⊂ W n } and W n = i∈In C i . An illustration of these definitions is provided in Figure 3. Since f Wn (X) = i∈In f C i (X) and each f C i are E(C i ⊕ τ )-measurable then f Wn is the ideal candidate to use Theorem 2.3.1 on. Thus, we first prove that the difference between f Wn and f (X ∩ W n ) is asymptotically negligible and then that f Wn satisfies the conditions of Theorem 2.3.1. First of all, notice that dist(C i , ∂W n ) τ for all i ∈ I n . Therefore, for any point in W n at a distance greater than τ + s √ d from ∂W n , the cube C i of side-length s containing it is at a distance at least τ from ∂W n , hence it is one of the C i in W n and we get

|W n \ W n | |∂W n ⊕ (τ + s √ d)|.
Hence, by Assumption (H1),

|W n | ∼ | W n |. Now, f (X ∩ W n ) -f Wn (X) = S⊂X∩Wn f 0 (S)1 Wn\ Wn (S 0 ). (2.4.10)
Since f 0 vanishes when two points of S are at distance further than τ , then the sum in (2.4.10) only concerns the subsets S of X ∩ ((

W n \ W n ) ⊕ τ ) ∩ W n ). By Lemma 2.B.6, the variance of f (X ∩ W n ) -f Wn (X) is then a O(|(W n \ W n ) ⊕ τ |), whence a o(|W n |) and finally a o(σ 2 n ) by Assumption (H3). Therefore, σ -1 n (f (X ∩ W n ) -E[f (X ∩ W n )]) has the same limiting distribution as σ -1 n (f Wn (X) -E[f Wn (X)]). Moreover, we have |Cov(f Wn (X), f (X ∩ W n ) -f Wn (X))| σ n Var(f (X ∩ W n ) -f Wn (X)) = σ n o |W n | = o(σ 2 n )
by Assumptions (H1), (H3) and Lemma 2.B.6 proving that σ

-1 n (f (X ∩ W n ) -E[f (X ∩ W n )]) has the same limiting distribution as Var(f Wn (X)) -1/2 (f Wn (X) -E[f Wn (X)]).
We conclude by showing that the random variables

Y i = f C i (X) -E[f C i (X)] sat- isfy the assumptions of Theorem 2.3.1. A rough bound on f gives us |f C i (X)| f 0 ∞ 2 N (C i ⊕τ ) so, by Lemma 2.B.5, ∀n ∈ N, sup i∈Z d E[|Y i | n ] < ∞.
This means that the Y i 's satisfy Assumption (C2) for all δ > 0 and thus (C3) as a consequence of (H2). Finally, since

|I n | = s -d | W n | = O(|W n |) and Var(f Wn (X)) ∼ σ 2 n , we have lim inf n |I n | -1 Var(f Wn (X)) > 0
by Assumption (H3), which concludes the proof of the theorem.

We highlight some extensions of this result.

i) Since the superposition of independent PA (respectively NA) point processes remains a PA (respectively NA) point process, then Theorem 2.4.4 holds true for α-determinantal point processes where α ∈ {-1/m : m ∈ N * }, see [START_REF] Shirai | Random point fields associated with certain fredholm determinants i: fermion, poisson and boson point processes[END_REF] for more information about α-DPPs.

ii) Theorem 2.4.4 also extends to R q -valued functions f where q

2. Let Σ n := Var(f (X ∩ W n )). If we replace (H3) by lim inf n |W n | -1 λ min (Σ n ) > 0
where λ min (Σ n ) denotes the smallest eigenvalue of Σ n , then Theorem 2.4.4 holds true with the conclusion

Σ -1/2 n (f (X ∩ W n ) -E[f (X ∩ W n )]) L -→ N (0, Id q )
where Id q is the q × q identity matrix. Since Σ n does not necessary converge, this result is not a direct application of the Cramér-Wold device. Instead, a detailed proof is given in Lemma A.2.1.

iii) In (2.4.7), f 0 only depends on finite subsets of R d and not on the order of the points in each subset. Nonetheless, we can easily extend (2.4.7) to functions of the form

f (X) = n 0 1 n! = x 1 ,••• ,xn∈X f 0 (x 1 , • • • , x n )
where f 0 is a bounded function on n 0 (R d ) n that vanishes when two of its coordinates are at a distance greater than τ . Then f still satisfy Theorem 2.4.4. This is because we can write

f (X) = S⊂X f sym 0 (S)
where f sym 0 is the symmetrization of f 0 defined by

f sym 0 ({x 1 , • • • , x n }) := 1 n! σ∈Sn f 0 (x σ(1) , • • • , x σ(n) )
where S n is the symmetric group on {1, • • • , n}. Since f sym 0 is also bounded and vanishes when diam(S) > τ then it satisfies the required assumptions for Theorem 2.4.4.

Let us comment the assumptions of Theorem 2.4.4.

• Condition (H1) makes clear the idea that W n must grow to R d as n → ∞, without being a too irregular set. In the simple case where W n is the Cartesian product of intervals, i.e. W n = ∆

(1)

n × • • • × ∆ (d) n , then (H1) is equivalent to |∆ (k) n | → ∞ for all k.
• Condition (H2) is not really restrictive and is satisfied by all classical kernel families. For example, the kernels of the Ginibre ensemble and of the Gaussian unitary ensemble (see [START_REF] Hough | Zeros of Gaussian Analytic Functions and Determinantal Point Processes[END_REF]) have an exponential decay. Moreover, all translation-invariant kernels used in spatial statistics (see [START_REF] Lavancier | Determinantal point process models and statistical inference[END_REF] and [START_REF] Biscio | Quantifying repulsiveness of determinantal point processes[END_REF]) satisfy ω(r) = O(r -(d+1)/2 ): the Gaussian and the Laguerre-Gaussian covariance functions have an exponential decay; the Whittle-Matérn and the Cauchy covariance functions satisfy ω(r) = o(r -d ); and in the case of the most repulsive DPP in dimension d (as determined in [START_REF] Lavancier | Determinantal point process models and statistical inference[END_REF][START_REF] Biscio | Quantifying repulsiveness of determinantal point processes[END_REF]), which is the slowest decaying Bessel-type kernel, its kernel is given by

K(x, y) = ρΓ( d 2 + 1) π d 4 J d 2 (2 √ πΓ( d 2 + 1) 1 d ρ 1 d ||y -x||) ||y -x|| d 2 ⇒ ω(r) = O r -d+1 2 ,
where ρ > 0 is a constant. While this DPP satisfies Condition (H2), we point out that its α-mixing coefficients decay too slowly to be able to derive a CLT only from them, see the discussion before Theorem 2.3.1. This justifies the importance of Condition (C3) in this theorem, obtained by the NA property, and which leads to Condition (H2).

• Condition (H3) is harder to control in the broad setting of Theorem 2.4.4, but we can get sufficient conditions in some particular cases. For example, if f 0 (S) =

1 |S|=1 and K is a translation-invariant continuous kernel then it was shown in [START_REF] Soshnikov | Determinantal random point fields[END_REF] that Condition (H3) holds when K is not the Fourier transform of an indicator function. In the peculiar case where K is the Fourier transform of an indicator function, [START_REF] Soshnikov | Determinantal random point fields[END_REF] proved that the limiting distribution is still Gaussian but the rate of convergence is different. As another example extending the previous one, assume that f 0 is a non-negative function supported on the set {S ⊂ X : |S| = p} for a given integer p > 0 and assume that the highest eigenvalue of the integral operator K associated to K is less than 1. Then, we show in Proposition 2.B.7 that lim inf

n 1 |W n | W p n f 0 (x) det(K[x])dx > 0 implies (H3)
and is much easier to verify.

Application to the two-step estimation of an inhomogeneous DPP

In this section, we consider DPPs on R 2 with kernel of the form

K β,ψ (x, y) = ρ β (x)C ψ (y -x) ρ β (y), ∀x, y ∈ R 2 , (2.4.11)
where β ∈ R p and ψ ∈ R q are two parameters, C ψ is a correlation function and ρ β is of the form ρ β (x) = ρ(z(x)β T ) where ρ is a known positive strictly increasing function and z is a p-variate bounded function called covariates. This form implies that the first order intensity, corresponding to ρ β (x), is inhomogeneous and depends on the covariates z(x) through the parameter β. But all higher order intensity functions once normalized, i.e. ρ (n) (x 1 , . . . , x n )/(ρ β (x 1 ) . . . ρ β (x n )), are translation-invariant for n 2.

In particular, the pair correlation (the case n = 2) is invariant by translation. This kind of inhomogeneity is sometimes named second-order intensity reweighted stationarity and is frequently assumed in the spatial point process community.

Existence of DPPs with a kernel like above is for instance ensured if ρ β (x) is bounded by ρ max and C ψ is a continuous, square-integrable correlation function on R d whose Fourier transform is less than 1/ρ max , see [START_REF] Lavancier | Determinantal point process models and statistical inference[END_REF]. For later use, we call H this latter assumptions on K β,ψ .

Consider the observation of a DPP X with kernel K β * ,ψ * , along with the covariates z, within a window W n := [an, bn]× [cn, dn] where b > a and d > c. Waagepetersen and Guan [START_REF] Waagepetersen | Two-step estimation for inhomogeneous spatial point processes[END_REF] have proposed the following two-step estimation procedure of (β * , ψ * ) for second-order intensity reweighted stationary models. First, βn is obtained by solving

u n,1 (β) := u∈X∩Wn ∇ρ β (u) ρ β (u) - Wn ∇ρ β (u)du = 0.
where ∇ρ β denotes the gradient with respect to β. In the second step, ψn is obtained by minimizing m n, βn where

m n,β (ψ) := r r l     u,v∈X∩Wn 1 {0<|u-v| t} ρ β (u)ρ β (v)|W n ∩ W n,u-v |   c -K ψ (t) c   2 dt.
Here r l , r and c are user-specified non-negative constants, W n,u-v is W n translated by u -v and K ψ is the Ripley K-function defined by

K ψ (t) := u t g ψ (u)du where g ψ (u) := 1 -C ψ (u) 2 /C ψ (0) 2 is the pair correlation function of X. If we define u n,2 (β, ψ) := -|W n | ∂m n,β (ψ) ∂ψ ,
then the two-step procedure amounts to solve

u n (β, ψ) := (u n,1 (β), u n,2 (β, ψ)) = 0.
The asymptotic properties of this two-step procedure are established in [START_REF] Waagepetersen | Two-step estimation for inhomogeneous spatial point processes[END_REF], under various moments and mixing assumptions, with a view to inference for Cox processes. We state hereafter the asymptotic normality of ( βn , ψn ) in the case of DPPs with kernel of the form (2.4.11). This setting allows us to apply Theorem 2.4.4 and get rid of some restrictive mixing assumptions needed in [START_REF] Waagepetersen | Two-step estimation for inhomogeneous spatial point processes[END_REF].

The asymptotic covariance matrix of ( βn , ψn ) depends on two matrices defined in [START_REF] Waagepetersen | Two-step estimation for inhomogeneous spatial point processes[END_REF]Section 3.1], where they are denoted by Σ n and I n . We do not reproduce their expression, which is hardly tractable. An assumption in [START_REF] Waagepetersen | Two-step estimation for inhomogeneous spatial point processes[END_REF] ensures the asymptotic non-degeneracy of this covariance matrix and we also need this assumption in our case, see (W4) below. Unfortunately, as discussed in [START_REF] Waagepetersen | Two-step estimation for inhomogeneous spatial point processes[END_REF], it is hard to check this assumption for a given model, particularly because it depends on the covariates z. We are confronted by the same limitation in our setting. On the other hand, the other assumptions of the following theorem are not restrictive. In particular almost all standard kernels satisfy (W3) below, see the discussion after Theorem 2.4.4.

Theorem 2.4.5. Let X be a DPP with kernel K β * ,ψ * given by (2.4.11) and satisfying H . Let ( βn , ψn ) the two-step estimator defined above. We assume the following.

(W1) r l > 0 if c < 1; otherwise r l 0, (W2) ρ β and K ψ are twice continuously differentiable as functions of β and ψ, [START_REF] Waagepetersen | Two-step estimation for inhomogeneous spatial point processes[END_REF] (concerning the matrices I n and Σ n ) is satisfied.

(W3) sup x r C ψ * (x) = O(r -1-ε ), (W4) Condition N3 in
Then, there exists a sequence {( βn , ψn ) : n 1} for which u n ( βn , ψn ) = 0 with a probability tending to one and

|W n | 1/2 [( βn , ψn ) -(β * , ψ * )]I n Σ -1/2 n L -→ N (0, Id).
Proof. Let ρ k be the kth intensity function of the DPP with kernel (x, y) → C ψ * (y -x). In order to apply Theorem 1 in [START_REF] Waagepetersen | Two-step estimation for inhomogeneous spatial point processes[END_REF] we need to show that (i) ρ 2 , ρ 3 are bounded and there is a constant M such that for all

u 1 , u 2 ∈ R 2 , |ρ 3 (0, v, v + u 1 ) -ρ 1 (0)ρ 2 (0, u 1 )|dv < M and |ρ 4 (0, u 1 , v, v + u 2 ) -ρ 2 (0, u 1 )ρ 2 (0, u 2 )|dv < M, (ii) ρ 4+2δ ∞ < ∞ for some δ > 0, (iii) α a,∞ (r) = O(r -d ) for some a > 8r 2 and d > 2(2 + δ)/δ.
The first property (i) is a consequence of (W3). This is because we can write

|ρ 3 (0, v, v + u 1 ) -ρ 1 (0)ρ 2 (0, u 1 )| = |2C ψ * (v)C ψ * (u 1 )C ψ * (v + u 1 ) -C ψ * (0)(C ψ * (v + u 1 ) 2 + C ψ * (v) 2 )| which is bounded by 2|C ψ * (0)|(C ψ * (v + u 1 ) 2 + C ψ * (v) 2 ) and R 2 C ψ * (v) 2 dv 2π ∞ 0 r sup x =r |C ψ * (x)| 2 dr which is finite by Assumption (W3). The term ρ 4 (0, u 1 , v, v + u 2 ) -ρ 2 (0, u 1 )ρ 2 (0, u 2 )
can be treated the same way. For a DPP, (ii) is satisfied for any δ > 0. Finally, (iii) is the one that causes an issue since, as stated before, the α-mixing coefficient we get in Corollary 2.4.2 decreases slower than what we desire. But, the only place this assumption is used in [START_REF] Waagepetersen | Two-step estimation for inhomogeneous spatial point processes[END_REF] is to get a CLT for some functionals of the same form as in our Theorem 2.4.4 leading to the asymptotic normality of ( βn , ψn ) in their Lemma 5. The same result can then also be derived as a consequence of our Theorem 2.4.4 with Assumption (W3). A formal proof of a more general result, namely Theorem 4.3.1, is given in Chapter 4.

2.A Proof of Theorem 2.2.3

We use the following variant of the monotone class theorem (see [START_REF] Dellacherie | Probabilities and Potential[END_REF]Theorem 22.1]). Theorem 2.A.1. Let S be a set of bounded functions stable by bounded monotone convergence and uniform convergence. Let C be a subspace of S such that C is an algebra containing the constant function 1. Then, S contains all bounded functions measurable over σ(C).

Now, let A, B 1 , • • • , B k be pairwise distinct Borel subsets of R d and g : N k →
R be a coordinate-wise increasing function. We denote by Ω A the set of locally finite point configurations in A and we define S as the set of functions f :

Ω A → R such that E[ f (X ∩ A)g(N (B 1 ), • • • , N (B k ))] E[ f (X ∩ A)]E[g(N (B 1 ), • • • , N (B k )], (2.A.1)
where f (X) := sup Y X f (Y ). Note that f is an increasing function and that f is increasing iff f = f . Our goal is to prove that S contains all bounded functions supported over A. Because of the definition of NA point processes (2.2.4), we know that S contains the set C of functions of the form

f (N (A 1 ), • • • , N (A k ))
where the A i are pairwise disjoints Borel subsets of A. In particular, since point processes over A are generated by the set of random vectors

{(N (A 1 ), • • • , N (A k )) : A i ⊂ A disjoints, k ∈ N},
then we only need to verify that S and C satisfy the hypothesis of Theorem 2.A.1 to conclude.

• Stability of S by bounded monotonic convergence: Since (2.A.1) is invariant if we add a constant to f and f is bounded then we can consider f to be positive. Now, notice that for all functions h and k, h k ⇒ ĥ k and h k ⇒ ĥ k. So, if we take a positive bounded monotonic sequence f n ∈ S that converges to a bounded function f , then fn is also a positive bounded monotonic sequence that consequently converges to a function g. Suppose that (f n ) n is an increasing sequence (the decreasing case can be treated similarly) and let us show that g = f . Let X ∈ Ω A , for all Y ⊂ X, f n (Y ) f (Y ). Taking the supremum then the limit gives us g(X) f (X). Moreover, for all Y ⊂ X, g(X) fn (X) f n (Y ). Taking the limit gives us that g(X) f (Y ) for all Y ⊂ X so g(X) f (X) which proves that g = f . Using the monotone convergence theorem we conclude that

E[ fn (X ∩ A)] → E[ f (X ∩ A)] and E[ fn (X ∩ A)g(N (B 1 ), • • • , N (B k ))] → E[ f (X ∩ A)g(N (B 1 ), • • • , N (B k ))], (2.A.2)
which proves that f ∈ S

• Stability of S by uniform convergence: Let f n be a sequence over S converging uniformly to a function f then, by Lemma 2.B.1, fn also converges uniformly (and therefore in L 1 ) to f . As a consequence, (2.A.2) is also satisfied in this case so f ∈ S.

• C is an algebra: It is easily shown that C is a linear space containing 1 so we only need to prove that C is stable by multiplication

. Let A 1 , • • • , A r and A 1 • • • , A s be two sequences of pairwise distinct Borel subsets of A. Let f ∈ C of the form f (N (A 1 ), • • • , N (A r )) and h ∈ C of the form h(N (A 1 ), • • • , N (A r ))
. We can write

N (A i ) = N (A i \∪ j A j )+ j N (A i ∩A j ) and N (A i ) = N (A i \∪ j A j )+ j N (A i ∩A j ),
so f • h can be expressed as a function of the number of points in the subsets A i \ ∪ j A j , A i \ ∪ j A j and A i ∩ A j that are all pairwise distinct Borel subsets of A, proving that C is stable by multiplication.

This concludes the proof that S contains all bounded functions supported over Ω A . By doing the same exact reasoning on the set of bounded functions g satisfying

E[f (X ∩ A)g(X ∩ B)] E[f (X ∩ A)]E[g(X ∩ B)]
for a fixed f we obtain the same result which concludes the proof.

2.B Auxiliary results

Lemma 2.B.1. Let E be a set and f, g : E → R be two functions, then

sup x∈E f (x) -sup y∈E g(y) f -g ∞ Proof.
The proposition becomes trivial once we write

f (x) g(x) + f -g ∞ sup y∈E g(y) + f -g ∞
Taking the supremum yields the first inequality. Moreover, by symmetry of f and g the second one follows similarly.

Lemma 2.B.2. Let i, j ∈ Z d such that |i -j| 1 := d l=1 |i l -j l | = r.
Let s, R > 0 and C i , C j be the d-dimensional cubes with side length s and respective center x i = R • i and

x j = R • j. Then, dist(C i , C j ) 1 √ d (rR -sd).
Moreover, each cube intersects at most (2sd/R) d other cubes with centers on R • Z d and side length s.

Proof. Since each point of a d-dimensional square with side length s is at distance at most s √ d/2 from its center, we get

dist(C i , C j ) (Ri 1 -Rj 1 ) 2 + • • • + (Ri d -Rj d ) 2 -s √ d which takes its minimum when |i l -j l | = r/d for all 1 l d hence dist(C i , C j ) rR/ √ d -s √ d. In particular, if |i -j| 1 > sd/R then C i ∩ C j = ∅, hence for all i ∈ Z d |{j ∈ Z d : C i ∩ C j = ∅, i = j}| |{j : 0 < |i -j| 1 sd/R}| 2sd R + 1 d Lemma 2.B.3.
Let M and N be two n × n semi-positive definite matrices such that 0 M N -1 where denotes the Loewner order. Then,

det(Id -M N ) 1 -Tr(M N )
Proof. First, let us consider the case where N = Id. If Tr(M ) 1 then det(Id -M ) 0 1 -Tr(M ). Otherwise, we denote by Sp(M ) the spectrum of M and since all eigenvalues are in [0,1[, we can write

det(Id -M ) = λ∈Sp(M ) exp(log(1 -λ)) = λ∈Sp(M ) exp - ∞ n=0 λ n n = exp - ∞ n=0 Tr(M n ) n exp - ∞ n=0 Tr(M ) n n = exp(log(1 -Tr(M ))) = 1 -Tr(M ). (2.B.1)
Getting back to the general case, we can write N as S T S and by Sylvester's determinant identity we get that det(Id -M N ) = det(Id -SM S T ). Since we assumed that 0 M N -1 then 0 SM S T Id and by applying (2.B.1) this concludes the proof:

det(Id -M N ) = det(Id -SM S T ) 1 -Tr(SM S T ) = 1 -Tr(M N ). Proposition 2.B.4. Let M be a n × n semi-definite positive matrix of the form M = M 1 N N T M 2 where M 1 is a k × k semi-definite positive matrix, M 2 is a (n -k) × (n -k)
semi-definite positive matrix and N is a k×(n-k) matrix. We define ||A|| ∞ := sup |a i,j | for any matrix A. Then,

0 det(M 1 ) det(M 2 ) -det(M ) k(n -k)Tr(N T N )||M || n-2 ∞ .
Proof. First, we assume that M 1 and M 2 are invertible. Using Schur's complement, we can write

det(M ) = det(M 1 ) det(M 2 ) det(Id -M -1 1 N T M -1 2 N ) where 0 N T M -1 2 N M 1 with being the Loewner order. N T M -1 2 N being semi- definite positive implies det(M ) det(M 1 ) det(M 2 ), while the inequality N T M -1 2 N M 1 gives us (see Lemma 2.B.3) det(M ) det(M 1 ) det(M 2 )(1 -Tr(M -1 1 N T M -1 2 N )).
Therefore,

0 det(M 1 ) det(M 2 ) -det(M ) Tr(adj(M 1 )N T adj(M 2 )N ) Tr(adj(M 1 ))Tr(adj(M 2 ))Tr(N T N ) = k i=1 ∆ i (M 1 ) n-k j=1 ∆ j (M 2 )Tr(N T N ),
where ∆ i (M 1 ) means the (i, i) minor of the matrix M 1 and adj(M 1 ) is the transpose of the matrix of cofactor of M 1 . But, since all principal sub-matrices of M 1 and M 2 are positive definite matrices then their determinant is lower than the product of their diagonal entries, meaning that ∆ i (M 1 )

j =i M 1 (j, j) ||M || k-1
∞ . Doing the same thing for the terms ∆ j (M 2 ) gives us the desired result.

If M 1 or M 2 is not invertible, a limit argument using the continuity of the determinant leads to the same conclusion.

Lemma 2.B.5. Let X be a DPP with bounded kernel K satisfying H, s > 0 and n > 0, then

sup A⊂R d ,|A|=s E[2 nN (A) ] < ∞ Proof. Let n ∈ N and A ⊂ R d such that |A| = s.
Since the determinant of a positive semi-definite matrix is always smaller than the product of its diagonal coefficients we get

E[2 nN (A) ] = E ∞ k=0 N (A) k (2 n -1) k = ∞ k=0 (2 n -1) k k! A k det(K[x])dx e (2 n -1) K ∞|A| < ∞. Lemma 2.B.6. Let X be a DPP on R d with bounded kernel K satisfying H such that ω(r) = O(r -d+ε 2 ) for a certain ε > 0.
Then, for all bounded Borel sets W ⊂ R d and all bounded functions g : p>0 (R d ) p → R such that g(S) vanishes when diam(S) > τ for a given constant τ > 0,

Var S⊂X∩W g(S) = O(|W |). (2.B.2)
Proof. Since W is bounded then N (W ) is almost surely finite and we can write

S⊂X∩W g(S) = p 0 S⊂X∩W |S|=p g(S) a.s.
Looking at the variance of each term individually, we start by developing

E   S⊂X∩W g(S)1 |S|=p 2   as p k=0 E      S,T ⊂X∩W |S|=|T |=p,|S∩T |=k g(S)g(T )      = p k=0 E      U ⊂X∩W |U |=2p-k S ⊂S⊂U |S |=k,|S|=p g(S)g(S ∪ (U \S))      = p k=0 1 (2p -k)! W 2p-k S ⊂S⊂{x 1 ,••• ,x 2p-k } |S |=k,|S|=p g(S)g(S ∪ (U \S))ρ 2p-k (x 1 , • • • , x 2p-k )dx 1 • • • dx 2p-k = p k=0 p k 2p-k p (2p -k)! W 2p-k g(x 1 , • • • , x p )g(x 1 , • • • , x k , x p+1 , • • • , x 2p-k )ρ 2p-k (x)dx. (2.B.3)
Since the determinant of a positive semi-definite matrix is smaller than the product of its diagonal terms, we have

|ρ 2p-k (x)| K 2p-k ∞ .
Moreover, as a consequence of our assumptions on g, each term for k 1 in (2.B.3) is bounded by

1 p!(p -k)! p k W 2p-k g 2 ∞ K 2p-k ∞ 1 {0 |x i -x 1 | τ, ∀i} dx |W | p! p k g 2 ∞ K 2p-k ∞ |B(0, τ )| 2p-k-1 |W | p! p k g 2 ∞ (1 + K ∞ ) 2p (1 + |B(0, τ )|) 2p .
Hence,

p k=1 E      S,T ⊂X∩W |S|=|T |=p,|S∩T |=k g(S)g(T )      |W | g 2 ∞ C p 1 p! (2.B.4)
where

C 1 = 2(1 + K ∞ ) 2 (1 + B(0, τ )) 2 is a constant independent from p and W . However, even if all terms for k 1 in (2.B.3) are O(|W |), this is not the case of the term for k = 0 which is a O(|W | 2 )
. Instead of controlling this term alone, we consider its difference with the remaining term in the variance we are looking at, that is

1 (p!) 2 W 2p g(x)g(y)ρ 2p (x, y)dxdy -E S⊂X∩W g(S)1 |S|=p 2 = 1 (p!) 2 W 2p g(x)g(y)(ρ 2p (x, y) -ρ p (x)ρ p (y))dxdy.
Using Proposition 2.B.4, we get

|ρ 2p (x, y) -ρ p (x)ρ p (y)| p 2 K 2p-2 ∞ 1 i,j p K(x i , y j ) 2 .
Now, notice that for all y ∈ R d and 1 i p,

W p 1 {0<|x k -x j | τ, ∀j,k} |K(x i , y)| 2 dx |B(0, τ )| p-1 W |K(x i , y)| 2 dx i |B(0, τ )| p-1 s d R d r d-1 ω(r) 2 dr
which is finite because of our assumption on ω(r). Thus, we obtain the inequality

W 2p g(x)g(y)|K(x i , y j )| 2 dxdy g ∞ |B(0, τ )| p-1 W p+1 g(x)|K(x i , y 1 )| 2 dxdy 1 |W | g 2 ∞ |B(0, τ )| 2p-2 s d R d r d-1 ω(r) 2 dr. (2.B.5)
By combining (2.B.4) and (2.B.5), we get the bound

Var     S⊂X∩W |S|=p g(S)     |W | g 2 ∞ C p 1 p! + C 2 p!
where

C 2 := sup p 0 p 4 K 2p-2 ∞ |B(0, τ )| 2p-2 p! s d R d r d-1 ω(r) 2 dr
is a constant independent from p and W . Finally,

p 0 Var     S⊂X∩W |S|=p g(S)     = O(|W |)
and

p>q 0 Cov     S⊂X∩W |S|=p g(S), S⊂X∩W |S|=q g(S)     |W | g 2 ∞ p,q 0 C p 1 p! + C 2 p! C q 1 q! + C 2 q! which is O(|W |) concluding the proof. Proposition 2.B.7. Let p ∈ N, f : R p → R + be a symmetrical measurable function and define F (X) = S⊂X |S|=p f (S).
Let X be a DPP with kernel K satisfying Condition H such that K < 1 where K is the operator norm of the integral operator associated with K. If, for a given increasing sequence of compact sets

W n ⊂ R d , lim inf n 1 |W n | W p n f (x) det(K[x])dx > 0, (2.B.6) then lim inf n 1 |W n | Var(F (X ∩ W n )) > 0.
Proof. Let W be a compact subset of R d . The Cauchy-Schwartz inequality gives us

Cov(F (X ∩ W ), N (W )) 2 Var(F (X ∩ W ))Var(N (W )).
We showed in Lemma 2.B.6 that |W | -1 Var(N (W )) is bounded by a constant C > 0 so we are only interested in the behaviour of Cov(F (X ∩ W ), N (W )). We start by developing E[F (X ∩ W )N (W )] as

E     S⊂X∩W |S|=p f (S) x∈X∩W 1     = E     S⊂X∩W |S|=p+1 x∈S f (S\{x}) + p S⊂X∩W |S|=p f (S)     = 1 (p + 1)! W p+1 p+1 i=1 f (z\{z i }) det(K[z])dz + 1 p! W p pf (x) det(K[x])dx = 1 p! W p f (x) p det(K[x]) + W det(K[x, a])da dx .
We also have

E[F (X ∩ W )]E[N (W )] = 1 p! W p f (x) det(K[x])dx W K(a, a)da, hence Cov(F (X ∩ W ), N (W )) = 1 p! W p f (x) det(K[x]) p - W K(a, a) -det(K[x, a]) det(K[x]) -1 da dx.
(2.B.7) Using Schur's complement, we get

K(a, a) -det(K[x, a]) det(K[x]) -1 = K ax K[x] -1 K T ax (2.B.8)
where we define K ax as the vector (K(a, x 1 ), • • • , K(a, x p )). Moreover, since we look at our point process in a compact window W , a well-known property of DPPs (see [START_REF] Hough | Zeros of Gaussian Analytic Functions and Determinantal Point Processes[END_REF]) is that there exists a sequence of eigenvalues λ i in [0, K ] and an orthonormal basis of L 2 (W ) of eigenfunctions φ i such that

K(x, y) = i λ i φ i (x) φi (y) ∀x, y ∈ W. As a consequence, ∀x, y ∈ W , W K(x, a)K(a, y)da = i λ 2 i φ i (x) φi (y)
which we define as L(x, y). Therefore, for all

x ∈ W p , L[x] K K[x]
where is the Loewner order for positive definite symmetric matrices and we get 

W K ax K[x] -1 K T ax da = Tr K[x] -1 W K T ax K ax da = Tr(K[x] -1 L[x]) p K . ( 2 
(F (X ∩ W )) Cov(F (X ∩ W ), N (W )) 2 Var(N (W )) (1 -K ) 2 C(p -1)! 2 |W | W p f (x) det(K[x])dx
Chapter 3

A bound of the β-mixing coefficient for point processes in terms of their intensity functions

This chapter is an article [START_REF] Poinas | A β-mixing inequality for point processes induced by their intensity functions[END_REF] published in Statistics & Probability Letters so some considerations and definitions are redundant with the introduction. For the same reason, some notations are specific to this chapter.

Introduction

In asymptotic inference for dependent random variables, it is necessary to quantify the dependence between σ-algebras. Some of the first measures of dependence that have been introduced are the alpha-mixing coefficients [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF] and the beta-mixing coefficients [START_REF] Rozanov | Some limit theorems for random functions I[END_REF]. They have been used to establish moment inequalities, exponential inequalities and central limit theorems for stochastic processes (see [START_REF] Bradley | Basic properties of strong mixing conditions. a survey and some open questions[END_REF][START_REF] Nahapetian | Limit Theorems and Some Applications in Statistical Physics[END_REF][START_REF] Rio | Asymptotic Theory of Weakly Dependent Random Processes[END_REF] for more details about mixing) with various applications in statistics, see for instance [START_REF] Bosq | Nonparametric Statistics for Stochastic Processes: Estimation and Prediction[END_REF][START_REF] Dedecker | Weak Dependence: With Examples and Applications[END_REF]. In this chapter, we focus on spatial point processes. As detailed below, for these models, alphamixing has been widely studied and exploited in the literature, but not beta-mixing in spite of its stronger properties. In a lesser extent, some alternative measures of dependence have also been used for spatial point processes, namely Brillinger mixing [START_REF] Biscio | Brillinger mixing of determinantal point processes and statistical applications[END_REF][START_REF] Heinrich | Absolute regularity and brillinger-mixing of stationary point processes[END_REF] (which only applies to stationary point processes but has been established in [START_REF] Heinrich | Absolute regularity and brillinger-mixing of stationary point processes[END_REF] under suitable conditions on the β-mixing coefficients) and association as in Chapter 2.

The main models used in spatial point processes are Gibbs point processes, Cox processes and determinantal point processes, see [START_REF] Møller | Some recent developments in statistics for spatial point patterns[END_REF] for a recent review. An α-mixing inequality is established for Gibbs point processes in the Dobrushin uniqueness region in [START_REF] Föllmer | A covariance estimate for gibbs measures[END_REF]. It has been used to show asymptotic normality of maximum likelihood and pseudo-likelihood estimates [START_REF] Jensen | Asymptotic normality of estimates in spatial point processes[END_REF]. Similarly, some inhomogeneous Cox processes like the Neyman-Scott process have also been showed to satisfy α-mixing inequalities in [START_REF] Waagepetersen | Two-step estimation for inhomogeneous spatial point processes[END_REF]. These inequalities are at the core of asymptotic inference results in [START_REF] Coeurjolly | Variational approach for spatial point process intensity estimation[END_REF][START_REF] Prokešová | Asymptotic palm likelihood theory for stationary point processes[END_REF][START_REF] Waagepetersen | Two-step estimation for inhomogeneous spatial point processes[END_REF]. Finally, an α-mixing inequality has also been showed for determinantal point processes in (2.4.2) and used to get the asymptotic normality of a wide class of estimators of these models.

On the other hand, β-mixing is a stronger property than α-mixing. It implies stronger covariance inequalities [START_REF] Rio | Asymptotic Theory of Weakly Dependent Random Processes[END_REF] as well as a coupling theorem known as Berbee's Lemma [START_REF] Berbee | Random walks with stationary increments and renewal theory[END_REF] used in various limit theorems (for example in [9,[START_REF] Viennet | Inequalities for absolutely regular sequences: application to density estimation[END_REF]). Nevertheless, it rarely appears in the literature in comparison to α-mixing. This is especially true for point processes where there has been no β-mixing property established for any of the above examples. Nethertheless, β-mixing coefficients have still been used several times in random geometry and point process statistics [START_REF] Heinrich | Normal approximation for some mean-value estimates of absolutely regular tessellations[END_REF][START_REF] Heinrich | Strong convergence of kernel estimators for product densities of absolutely regular point processes[END_REF][START_REF] Heinrich | Asymptotic goodness-of-fit tests for the palm mark distribution of stationary point processes with correlated marks[END_REF][START_REF] Heinrich | Central limit theorem for a class of random measures associated with germ-grain models[END_REF]. In particular, it is argued in [START_REF] Heinrich | Asymptotic goodness-of-fit tests for the palm mark distribution of stationary point processes with correlated marks[END_REF] that the β-mixing coefficient cannot be replaced by the α-mixing coefficient when used to obtain bounds for point process characteristics related with the Palm distribution. Our goal is to establish a general inequality for the β-mixing coefficients of a point process in terms of its intensity functions.

We begin in Section 3.2 by recalling the basic definitions and properties of the αmixing and β-mixing coefficients and we introduce the lower sum transform which is the main technical tool that we use throughout the chapter. Then, a general inequality for the β-mixing coefficients of a point process that depends only on its n-th order intensity functions is proved in Section 3.3. As an example, we deduce a β-mixing inequality in the special case of determinantal point processes (DPPs) in Section 3.4 whose rate of decay is optimal for a wide class of DPPs.

Preliminaries

Intensities of point processes

In this chapter, we consider simple point processes on (R d , B(R d ), µ) equipped with the euclidean norm . where d is a fixed integer, B(R d ) the Borel-σ-algebra and µ the Lebesgue measure (more information on spatial point processes can be found in [START_REF] Daley | An Introduction to the Theory of Point Processes, Volume I: Elementary Theory and Methods[END_REF][START_REF] Møller | Statistical Inference and Simulation for Spatial Point Processes[END_REF]). We denote by Ω (resp. Ω F ) the set of locally finite (resp. finite) point configurations in

R d . For all functions f : Ω F → R, n ∈ N and x = (x 1 , • • • , x n ) ∈ (R d ) n , we write f (x) for f ({x 1 , • • • , x n }
) by an abuse of notation. Finally, we write |A| for the cardinal of a finite set A and f ∞ for the uniform norm of a function f . We begin by recalling that the n-th order intensity functions (also called n-th order product density) are defined the following way (see [START_REF] Møller | Statistical Inference and Simulation for Spatial Point Processes[END_REF]). Definition 3.2.1. Let X be a simple point process on R d and n 1 be an integer. If there exists a non negative function

ρ n : (R d ) n → R such that E   = x 1 ,••• ,xn∈X f (x 1 , • • • , x n )   = (R d ) n f (x)ρ n (x)dµ n (x). (3.2.1)
for all locally integrable functions f

: (R d ) n → R then ρ n is called the nth order intensity function of X.
In the rest of the chapter, all point processes will be considered to admit bounded n-th order intensity function for all n 1.

Mixing

Consider a probability space (X , F, P) and A , B two sub σ-algebras of F. Let P A and P B be the respective restrictions of P to A and B and define the probability P A ⊗B on the product σ-algebra by P A ⊗B (A × B) = P(A ∩ B) for all A ∈ A and B ∈ B. The α-mixing and β-mixing coefficients (also called strong-mixing and absolute regularity coefficients) are defined as the following measures of dependence between A and B [START_REF] Nahapetian | Limit Theorems and Some Applications in Statistical Physics[END_REF][START_REF] Rio | Asymptotic Theory of Weakly Dependent Random Processes[END_REF]:

α(A , B) := sup{|P(A ∩ B) -P(A)P(B)| : A ∈ A , B ∈ B}, (3.2.2) β(A , B) := P A ⊗B -P A ⊗ P B T V , (3.2.3)
where . T V is the total variation of a signed norm. For a given point process X and a bounded set A ⊂ R d , we denote by µ(A) := A dµ(x) the volume of A and E(A) the σ-algebra generated by X ∩ A. Finally, for all A, B ⊂ R d , we write dist(A, B) for the infimum of y -x where (x, y) ∈ A × B. The β-mixing coefficients of the point process X are then defined by

β p,q (r) := sup{β(E(A), E(B)) : µ(A) p, µ(B) q, dist(A, B) > r},
and we say that the point process X is beta-mixing if β p,q (r) vanishes when r → +∞ for all p, q > 0. The α-mixing coefficients can be defined in a similar way.

Our goal is to prove that under appropriate assumptions over the intensity functions ρ n of X we have a β-mixing property.

Lower sum transform

The main tool we use throughout this chapter is the so-called lower sum operator (see [2]). Notice that when f is a symmetric function the term in the expectation in (3.2.1) can be written as n! Z⊂X f (Z)1 |Z|=n . This motivates the following definition: 

: (X 1 , X 2 ) → Z 1 ⊂X 1 ,Z 2 ⊂X 2 f (Z 1 , Z 2 ) and f : (X 1 , X 2 ) → Z 1 ⊂X 1 ,Z 2 ⊂X 2 (-1) |X 1 \Z 1 |+|X 2 \Z 2 | f (Z 1 , Z 2 ).
In a similar way, we could also extend these definitions to Ω n F for any n but we will only need the case n 2 for the remaining of the chapter. These operators allow us to give an explicit expression for the expectation of a functional of a point process with respect to its intensity functions.

Proposition 3.2.4. If X is an almost surely finite point process such that E[4 |X| ] < +∞, then E[f (X)] = +∞ n=0 1 n! (R d ) n f (x)ρ n (x)dµ n (x) (3.2.6)
for all bounded functions f : Ω F → R. Moreover, if X is a point process independent from X satisfying the same assumptions than X and with n-th order intensity functions ρ n , then

E[f (X, X )] = +∞ m,n=0 1 m!n! (R d ) m+n f (x, y)ρ m (x)ρ n (y)dµ m (x)dµ n (y) (3.2.7)
for all bounded functions f :

Ω 2 F → R. Proof. Using the bound | f (x)| f ∞ card{Z, Z ⊂ X} = f ∞ 2 |x| we get n 0 E     Z⊂X |Z|=n f (Z)     n 0 E 2 |X| |X| n f ∞ = f ∞ E 4 |X| < +∞. (3.2.8)
Since we can write

f (X) = f (X) = Z⊂X f (Z) = n 0 Z⊂X |Z|=n f (Z) a.s., then E[f (X)] = n 0 E     Z⊂X |Z|=n f (Z)     = +∞ n=0 1 n! (R d ) n f (x)ρ n (x)dµ n (x)
where the inversion of the first sum and the expectation is a consequence of (3.2.8).

Similarly, for all functions f : Ω 2 F → R we have

E[f (X, X )] = E[E[f (X, X )|X ]] = E +∞ m=0 1 m! (R d ) m z⊂x (-1) m-|z| f (z, X ) ρ m (x)dµ m (x) = +∞ m,n=0 1 m!n! (R d ) m+n f (x, y)ρ m (x)ρ n (y)dµ m (x)dµ n (y),
where all inversions of expectation with sum and integrals can be justified in a similar way than (3.2.8).

β-mixing of point processes with known intensity functions

Our main result is the following inequality showing that if ρ m (x)ρ n (y) -ρ m+n (x, y) vanish fast enough when y -x → +∞ for all m, n ∈ N, then the underlying point process is β-mixing.

Theorem 3.3.1. Let X be a simple point process on (R d , µ) such that E[4 |X∩A| ] < +∞ for all bounded subsets A ⊂ R d .
Then, for all p, q, r ∈ R + ,

β p,q (r) sup µ(A)<p,µ(B)<q dist(A,B)>r    +∞ m,n=0 2 n+m-1 m!n! A m ×B n |ρ m (x)ρ n (y) -ρ m+n (x, y)|dµ m (x)dµ n (y)    . (3.3.1)
Before giving the proof of Theorem 3.3.1, we need the following lemmas showing the behaviour of f (X ∩ A, X ∩ B) and f (X ∩ A, X ∩ B) under the lower difference operator.

Lemma 3.3.2. Let

A ⊂ R d , f : Ω F → R and define f A : X → f (X ∩ A). Then, | f A (X) = f (X)1 X⊂A .
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Proof. If X ⊂ A then the result is trivial. Otherwise, there exists x ∈ X\A and we can write

| f A (X) = Z⊂X,Z x (-1) |X\Z| f (Z ∩ A) + Z⊂X,Z x (-1) |X\Z| f (Z ∩ A) = Z⊂X,Z x (-1) |X\Z|-1 f (Z ∪ {x}) ∩ A + Z⊂X,Z x (-1) |X\Z| f (Z ∩ A) = Z⊂X,Z x (-1) |X\Z|-1 f (Z ∩ A) + Z⊂X,Z x (-1) |X\Z| f (Z ∩ A) = 0.
This result can be extended to multivariate functions: The lower difference of

(X 1 , X 2 ) → f (X 1 ∩ A 1 , X 2 ∩ A 2 ) is f (X 1 , X 2 )1 {X 1 ⊂A 1 } 1 {X 2 ⊂A 2 } . Lemma 3.3.3. For all f : Ω 2 F → R and A, B disjoint subsets of R d , let us define the function g : X → f (X ∩ A, X ∩ B). The lower difference of g satisfies ǧ(X) = f (X ∩ A, X ∩ B)1 {X⊂A∪B} . Proof. Using Lemma 3.3.2 we get that ǧ(X) = 0 whenever X is not a subset of A ∪ B. Otherwise, since A and B are disjoint sets, ǧ(X) = Z⊂X (-1) |X\Z| f (Z ∩ A, Z ∩ B) = U ⊂X∩A V ⊂X∩B (-1) |(X∩A)\U |+|(X∩B)\V | f (U, V ) which, by definition, is equal to f (X ∩ A, X ∩ B).
We now have the necessary tools required for the proof of Theorem 3.3.1.

Proof of Theorem 3.3.1. Let p, q > 0 and A, B be two disjoint subsets of R d such that µ(A) p and µ(B) q. Using one of the characterizations of the total variation distance, the β-mixing coefficient between E(A) and E(B) can be expressed as

β(E(A), E(B)) = 1 2 sup f ∞=1 E[f (X ∩ A, X ∩ B)] -E[f (X ∩ A, X ∩ B)]
where X is an independent copy of X. Since X ∩ A, X ∩ B and X ∩ B are finite a.s. we can apply (3.2.7) which, combined with Lemma 3.3.2, gives us

E[f (X ∩ A, X ∩ B)] = +∞ m,n=0 1 m!n! A m ×B n f (x, y)ρ m (x)ρ n (y)dµ m (x)dµ n (y). (3.3.2)
On the other hand, by combining (3.2.6) with Lemma 3.3.3, we get

E[f (X ∩ A, X ∩ B)] = +∞ n=0 1 n! (A∪B) n f (x ∩ A, x ∩ B)ρ n (x)dµ n (x).
Since A and B are disjoint sets and by symmetry of f (x ∩ A, x ∩ B)ρ n (x), we can simplify the above expression into

E[f (X ∩ A, X ∩ B)] = +∞ n=0 n m=0 1 n! n m A m ×B n-m f (x, y)ρ n (x, y)dµ m (x)dµ n-m (y) = +∞ m,n=0 1 m!n! A m ×B n f (x, y)ρ m+n (x, y)dµ m (x)dµ n (y). (3.3.3) Combining (3.3.2) and (3.3.3) yields that |E[f (X ∩ A, X ∩ B)] -E[f (X ∩ A, X ∩ B)]| is equal to +∞ m,n=0 1 m!n! A m ×B n f (x, y)(ρ m (x)ρ n (y) -ρ m+n (x, y))dµ m (x)dµ n (y)
which is bounded by

+∞ m,n=0 2 n+m m!n! A m ×B n |ρ m (x)ρ n (y) -ρ m+n (x, y)|dµ m (x)dµ n (y)
when f ∞ = 1 and where we used the bound | f (x, y)| 2 |x|+|y| .

Application to determinantal point processes

We can directly apply Theorem 3.3.1 to determinantal point processes. First introduced in [START_REF] Macchi | The coincidence approach to stochastic point processes[END_REF] under its current form to model fermion systems, DPPs are a broad class of repulsive point processes. We recall that a DPP X with kernel K : (R d ) 2 → R is defined by its intensity functions

ρ n (x 1 , • • • , x n ) = det(K[x]) ∀x ∈ (R d ) n , ∀n ∈ N
where we denote by K[x] the matrix (K(x i , x j )) 1 i,j n . Existence and uniqueness conditions as well as general information on DPPs can be found in [START_REF] Hough | Zeros of Gaussian Analytic Functions and Determinantal Point Processes[END_REF]. The application of Theorem 3. If K is bounded and ω(r) -→ r→+∞ 0 then X is β-mixing. In particular,

β p,q (r) 2pq(1 + 2p K ∞ )(1 + 2q K ∞ )e 2 K ∞(p+q) ω(r) 2 .
Unfortunately, this result does not give a bound for β p,∞ (r) which yet is necessary in almost all limit theorems based on beta-mixing.

Proof. Since E[4 |X∩A| ] < +∞ for all bounded sets A (see Lemma 2.B.5) then the β-mixing coefficients of X satisfy (3.3.1) by Theorem 3.3.

1. Let x = (x 1 , • • • , x n ) and y = (y 1 , • • • , y m ), we need to control | det(K[x]) det(K[y]) -det(K[x, y])| where x -y r. By Lemma 2.B.4, we get the bound 0 det(K[x]) det(K[y]) -det(K[x, y]) nm K n+m-2 ∞ n i=1 m j=1 K(x i , y j ) 2 .
Injecting this bound into (3.3.1) gives us

β p,q (r) +∞ n,m=0 n 2 m 2 2 n+m-1 p n-1 q m-1 K n+m-2 ∞ n!m! sup |A|<p,|B|<q dist(A,B)>r A×B |K(x, y)| 2 dµ(x)dµ(y) (3.4.1) +∞ n,m=0 n 2 m 2 2 n+m-1 p n q m K n+m-2 ∞ n!m! ω(r) 2 = 2pq(1 + 2p K ∞ )(1 + 2q K ∞ )e 2(p+q) K ∞ ω(r) 2 .
In particular, if ω(r) vanishes when r → +∞ then X is β-mixing.

In conclusion, the β-mixing coefficients of DPPs decay at the same rate as |K(x, y)| 2 does when x and y deviate from each other. For example, kernels of the Ginibre ensemble or the Gaussian unitary ensemble have an exponential decay (see [START_REF] Hough | Zeros of Gaussian Analytic Functions and Determinantal Point Processes[END_REF]). Moreover, among translation-invariant kernels used in spatial statistics (see [START_REF] Biscio | Quantifying repulsiveness of determinantal point processes[END_REF][START_REF] Lavancier | Determinantal point process models and statistical inference[END_REF]), all kernels of the Laguerre-Gaussian family also have an exponential decay while kernels of the Whittle-Matérn and Cauchy family satisfy ω(r) = o(r -d ) and kernels of the Bessel family satisfy ω(r) = o(r -(d+1)/2 ).

It is also worth noticing that Theorem 3.3.1 is optimal in the sense that for a wide class of DPPs, the β-mixing coefficients β p,q (r) do not decay faster, when r goes to infinity, than the supremum of A×B |K(x, y)| 2 dµ(x)dµ(y) for all A, B such that µ(A) p, µ(B) q and dist(A, B) r as stated in the following proposition. Proposition 3.4.2. Let X be a DPP with a non-negative bounded kernel K such that the eigenvalues of its associated integral operator are all in [0, M ] where M < 1. Then, for all p, q, r > 0,

2(1 -M ) (p+q) K ∞ M sup µ(A)<p,µ(B)<q dist(A,B)>r A×B |K(x, y)| 2 dµ(x)dµ(y) β p,q (r) 2(1 + 2p K ∞ )(1 + 2q K ∞ )e 2(p+q) K ∞ sup µ(A)<p,µ(B)<q dist(A,B)>r A×B |K(x, y)| 2 dµ(x)dµ(y).
Proof. The first inequality is a consequence of the fact that β p,q (r) 2α p,q (r) and Proposition 2.4.3. The second inequality is equivalent to (3.4.1) once the sum has been developed.

Chapter 4

Adaptive estimating function inference for non-stationary determinantal point processes

This chapter is a work that has been submitted to a mathematics journal so some considerations and definitions are redundant with the introduction. For the same reason, some notations are specific to this chapter.

Introduction

A common feature of spatial point process models (except for the Poisson process case) is that the likelihood function is not available in a simple form. Numerical approximations of the likelihood function are available (see e.g. [77, 78, for reviews]) but the approaches are often computationally demanding and the distributional properties of the approximate maximum likelihood estimates may be difficult to assess. Therefore much work has focused on establishing computationally simple estimation methods that do not require knowledge of the likelihood function.

In this chapter we focus on estimation methods for point processes which have known joint intensity functions. This includes many cases of Cox and cluster point process models [START_REF] Møller | Statistical Inference and Simulation for Spatial Point Processes[END_REF][START_REF] Illian | Statistical analysis and modelling of spatial point patterns[END_REF]7] as well as determinantal point processes [START_REF] Macchi | The coincidence approach to stochastic point processes[END_REF][START_REF] Soshnikov | Determinantal random point fields[END_REF][START_REF] Shirai | Random point fields associated with certain fredholm determinants i: fermion, poisson and boson point processes[END_REF][START_REF] Lavancier | Determinantal point process models and statistical inference[END_REF]. These classes of models are quite different since realizations of Cox and cluster point processes are aggregated while determinantal point processes produce regular point pattern realizations.

Knowledge of an nth order joint intensity enables the use of the so-called Campbell formulae for computing expectations of statistics given by random sums indexed by n-tuples of distinct points in a point process. Unbiased estimating functions can then be constructed from such statistics by subtracting their expectations. So far mainly the cases of first and second order joint intensities have been considered where the first order joint intensity is simply the intensity function.

Theoretical results have been established in a variety of special cases of first and second order estimating functions for Cox and cluster processes [START_REF] Schoenberg | Consistent parametric estimation of the intensity of a spatialtemporal point process[END_REF][START_REF] Guan | A composite likelihood approach in fitting spatial point process models[END_REF][START_REF] Waagepetersen | An estimating function approach to inference for inhomogeneous Neyman-Scott processes[END_REF][START_REF] Guan | A thinned block bootstrap procedure for modeling inhomogeneous spatial point patterns[END_REF][START_REF] Waagepetersen | Two-step estimation for inhomogeneous spatial point processes[END_REF] and for the closely related Palm likelihood estimators [START_REF] Tanaka | Parameter estimation and model selection for Neyman-Scott point processes[END_REF][START_REF] Prokešová | Asymptotic palm likelihood theory for stationary point processes[END_REF][START_REF] Prokešová | Two-step estimation procedures for inhomogeneous shot-noise Cox processes[END_REF]. The common general structure of the estimating functions on the other hand calls for a general theoretical set-up which is the first contribution of this chapter. Our set-up also covers third or higher order estimating functions and combinations of such estimating functions, providing a general unifying framework.

The literature on statistical inference for continuous determinantal point processes is quite limited. A Bayesian approach is considered in [1], while likelihood and minimum contrast estimation methods are discussed in [START_REF] Lavancier | Determinantal point process models and statistical inference[END_REF]. Consistency and asymptotic normality of the associated estimator are so far only available in case of minimum contrast estimation for stationary determinantal point processes [START_REF] Biscio | Contrast estimation for parametric stationary determinantal point processes[END_REF]. Based on the general set-up our second main contribution is to provide a consistency and asymptotic normality result of estimating function estimators for general non-stationary determinantal point processes.

Specializing to second-order estimating functions, a common approach [START_REF] Guan | A composite likelihood approach in fitting spatial point process models[END_REF][START_REF] Tanaka | Parameter estimation and model selection for Neyman-Scott point processes[END_REF] is to restrict the random sum to pairs of R-close points for some user-specified R > 0. This may lead to faster computation and improved statistical efficiency. The properties of the resulting estimators depend strongly on R but only ad hoc guidance is available for the choice of R. Moreover, it is difficult to account for ad hoc choices of R when establishing theoretical results. Our third contribution is a simple intuitively appealing adaptive choice of R which leads to a theoretically tractable estimation procedure and we demonstrate its usefulness in simulation studies for determinantal point processes as well as an example of a cluster process.

Estimating functions based on joint intensities

A point process X on R d , d ≥ 1, is a locally finite random subset of R d . For B ⊆ R d ,
we let N (B) denote the random number of points in X ∩ B and |B| the Lebesgue measure of B. That X is locally finite means that N (B) is finite almost surely whenever B is bounded. The so-called joint intensities of a point process are described in Section 4.2.1. In this chapter we mainly focus on determinantal point processes, detailed in Section 4.3. A prominent feature of determinantal point processes is that they have known joint intensity functions of any order.

Joint intensity functions and Campbell formulae

For integer n ≥ 1, the joint intensity ρ (n) of nth order is defined by

E = u 1 ,...,un∈X 1 u 1 ∈B 1 ,...,un∈Bn = × n i=1 B i ρ (n) (u 1 , . . . , u n )du 1 • • • du n (4.2.1)
for Borel sets B i ⊆ R d , i = 1, . . . , n, assuming that the left hand side is absolutely continuous with respect to Lebesgue measure on R d . The = over the summation sign means that the sum is over pairwise distinct points in X. Of special interest are the cases n = 1 and n = 2 where the intensity function ρ = ρ (1) and the second order joint intensity ρ (2) determine the first and second order moments of the count variables

N (B), B ⊆ R d . The pair correlation function g(u, v) is defined as g(u, v) = ρ (2) (u, v) ρ(u)ρ(v)
whenever ρ(u)ρ(v) > 0 (otherwise we define g(u, v) = 0). The product ρ(u)g(u, v) can be interpreted as the intensity of X at u given that v ∈ X. Hence g(u, v) > 1 (g(u, v) < 1) means that presence of a point at v increases (decreases) the likeliness of observing yet another point at u. The Campbell formula

E = u 1 ,...,un∈X f (u 1 , . . . , u n ) = f (u 1 , . . . , u n )ρ (n) (u 1 , . . . , u n )du 1 • • • du n
follows immediately from the definition of ρ (n) for any non-negative function f .

A general asymptotic result for estimating functions

Consider a parametric family of distributions {P θ : θ ∈ Θ} of point processes on R d , where Θ is a subset of R p . We assume a realization of the point process X with distribution P θ * , θ * ∈ Int(Θ), is observed on a bounded window W n ⊂ R d . We estimate the unknown parameter θ * by the solution θn of e n (θ) = 0 (or one of the solutions if there are many) where

e n (θ) =      = u 1 ,••• ,uq 1 ∈X∩Wn f 1 (u 1 , • • • , u q 1 ; θ) -W q 1 n f 1 (u; θ)ρ (q 1 ) (u; θ)du . . . = u 1 ,••• ,uq l ∈X∩Wn f l (u 1 , • • • , u q l ; θ) -W q l n f l (u; θ)ρ (q l ) (u; θ)du      for l given functions f i : (R d ) q i × Θ → R k i such that i k i = p.
A basic assumption for the following theorem is that a central limit theorem is available for e n (θ * ) (assumption (X3)). In addition to this, a number of technical assumptions (F1) through (F3) (or (F3')), (X1) and (X2) regarding existence and differentiability of joint intensities as well as differentiability of the f i are needed. All these conditions as well as the proof of the following theorem are given in Section 4.A of the appendix. Moreover, if (X3) holds true, then

|W n |Σ -1/2 n H n (θ * )( θn -θ * ) L -→ N (0, I p ),
where Σ n = Var(e n (θ * )), H n (θ * ) is defined in (F3), and I p is the p × p identity matrix.

Remark 4.2.2. While the parameter θ * is generally uniquely defined (in the sense that θ → P θ is injective) and verifies E(e n (θ * )) = 0, the solution to e n (θ) = 0 may not be unique. The above theorem states that there exists a consistent and asymptotically Gaussian sequence of solutions, but uniqueness is not guaranteed. This drawback is unfortunately common in most asymptotic results for estimating functions inference, see the references in introduction, [START_REF] Sørensen | On asymptotics of estimating functions[END_REF], or the handbook by C. Heyde [START_REF] Heyde | Quasi-likelihood and its application: a general approach to optimal parameter estimation[END_REF]. Nonetheless it can be proved that the solution is unique for n sufficiently large whenever lim n→∞ e n (θ)/|W n | admits a unique zero, see [START_REF] Jacod | A review of asymptotic theory of estimating functions[END_REF]. But to ensure the latter condition, we would need some very strong additional properties on the parametric form of the test functions and of the joint intensity functions.

Second order estimating functions

Referring to the previous section, much attention has been devoted to instances of the case l = 1, q 1 = 2 and k 1 = p. In this case we obtain a second-order estimating function of the form

e n (θ) = = u,v∈X∩Wn f (u, v; θ) - W 2 n f (u, v; θ)ρ (2) (u, v; θ)dudv. (4.2.2)
In [START_REF] Guan | A composite likelihood approach in fitting spatial point process models[END_REF], Y. Guan noted that for computational and statistical efficiency it may be advantageous to use only close pairs of points rather than all pairs of points. Thus in (4.2.2) it is common practice to introduce an indicator 1 u-v ≤R for some constant 0 < R or choose f so that f (u, v) = 0 whenever u -v > R. We discuss a method for choosing R in Section 4.2.4. The general form (4.2.2) includes e.g. the score functions of second-order composite likelihood [START_REF] Guan | A composite likelihood approach in fitting spatial point process models[END_REF][START_REF] Waagepetersen | An estimating function approach to inference for inhomogeneous Neyman-Scott processes[END_REF] and Palm likelihood functions [START_REF] Tanaka | Parameter estimation and model selection for Neyman-Scott point processes[END_REF][START_REF] Prokešová | Asymptotic palm likelihood theory for stationary point processes[END_REF][START_REF] Prokešová | Two-step estimation procedures for inhomogeneous shot-noise Cox processes[END_REF] as well as score functions of minimum contrast object functions based on non-parametric estimates of summary statistics as the K or the pair correlation function. For the second-order composite likelihood in [START_REF] Guan | A composite likelihood approach in fitting spatial point process models[END_REF],

f (u, v; θ) = ∇ θ ρ (2) (u, v; θ) ρ (2) (u, v; θ) -W 2 ∇ θ ρ (2) (u, v; θ)dudv W 2 ρ (2) (u, v; θ)dudv while f (u, v; θ) = ∇ θ ρ (2) (u, v; θ) ρ (2) (u, v; θ)
for the second-order composite likelihood proposed in [START_REF] Waagepetersen | An estimating function approach to inference for inhomogeneous Neyman-Scott processes[END_REF]. The score of the Palm likelihood as generalized to the inhomogeneous case in [START_REF] Prokešová | Two-step estimation procedures for inhomogeneous shot-noise Cox processes[END_REF] is obtained with

f (u, v; θ) = ∇ θ ρ (2) (u,v;θ) ρ(u;θ) ρ (2) (u, v; θ)/ρ(u; θ) - 1 N (W ) -1 W ∇ θ ρ (2) (u, w; θ) ρ(u; θ) dw.
In [START_REF] Prokešová | Two-step estimation procedures for inhomogeneous shot-noise Cox processes[END_REF], the authors also regarded the second-order composite likelihood proposed in [START_REF] Waagepetersen | An estimating function approach to inference for inhomogeneous Neyman-Scott processes[END_REF] as a generalization of the stationary case Palm likelihood but the interpretation as a second-order composite likelihood given in [START_REF] Waagepetersen | An estimating function approach to inference for inhomogeneous Neyman-Scott processes[END_REF] is more straightforward. Considering a class of estimating functions of the form (4.2.2) a natural question is what is the optimal choice of f ? A solution to this problem is provided in [START_REF] Deng | Second-order quasilikelihood for spatial point processes[END_REF] where an approximation of the optimal f is obtained by solving numerically a certain integral equation. This yields a statistically optimal estimation procedure but is computationally demanding and requires specification of third and fourth order joint intensities. When computational speed and ease of use is an issue, there is still scope for simpler methods. Moreover, given several (simple) estimation methods, it is possible to combine them adaptively in order to build a final estimator that achieves better properties than each initial estimator, see [START_REF] Lavancier | A general procedure to combine estimators[END_REF][START_REF] Lavancier | A tutorial on estimator averaging in spatial point process models[END_REF].

Adaptive version

Consider second-order composite likelihood using only R close pairs. The weight function f is then of the form

f R (u, v; θ) = 1 u-v ≤R ∇ θ ρ (2) (u, v; θ) ρ (2) (u, v; θ) . ( 4 

.2.3)

As mentioned in the previous section, using only R close pairs may be beneficial both for statistical efficiency and computational tractability. However, the performances depends strongly on the chosen R. Simulation studies such as in [START_REF] Prokešová | Two-step estimation procedures for inhomogeneous shot-noise Cox processes[END_REF] and [START_REF] Deng | Second-order quasilikelihood for spatial point processes[END_REF] usually compare results for several values of R corresponding to different multiples of some parameter associated with 'range of correlation'. For a cluster process this parameter could e.g. be the standard deviation of the distribution for dispersal of offspring around parents. For a determinantal point process the parameter would typically be a correlation scale parameter in the kernel of the determinantal point process, see Section 4.3. In practice these parameters are not known and among the quantities that need to be estimated. In [START_REF] Guan | A composite likelihood approach in fitting spatial point process models[END_REF] it is suggested to choose an R that minimizes a goodness of fit criterion for the fitted point process model while the choice of R in [START_REF] Waagepetersen | Two-step estimation for inhomogeneous spatial point processes[END_REF] is done by inspection of a non-parametric estimate of the pair correlation function (a similar appproach is suggested by [START_REF] Heagerty | A composite likelihood approach to binary spatial data[END_REF] and [8] in the context of pairwise composite likelihood for random fields). Both approaches imply extra work and ad hoc decisions by the user and it becomes very complex to determine the statistical properties of the resulting parameter estimates. A typical behaviour of many pair correlation functions is that g(u, v; θ) converges to the limiting value of 1 when u -v increases and |g(u, v; θ) -1| ≤ M (u, v; θ) where

M (u, v; θ) = max s ∈{u,v} |g(s, s; θ) -1|.
Note that for DPPs, M (u, v; θ) = 1 (see the next section) and for stationary point processes, M (u, v; θ) does not depend on u and v. If g(u, v; θ) = 1 for u -v > r 0 then counts of points are uncorrelated when they are observed in regions separated by a distance of r 0 .

Following the idea that R should depend on some range property of the point process we therefore suggest to replace the constraint u -v < R in (4.2.3) by the constraint

|g(u, v; θ) -1| M (u, v; θ) > ε,
for a small ε. If e.g. ε = 1% this means that we only consider pairs of points (u, v) so that the difference between g(u, v; θ) and the limiting value 1 is within 1% of the maximal value M (u, v; θ). Note that this choice of pairs of points is adaptive in that it depends on θ.

We then modify the function f R to be

f adap (u, v; θ) = w ε M (u, v; θ) g(u, v; θ) -1 ∇ θ ρ (2) (u, v; θ) ρ (2) (u, v; θ) (4.2.4)
where w is some weight function of bounded support [-1, 1]. Later on, when establishing asymptotic results, we will also assume that w is differentiable. A common example of admissible weight function is w(r) = e 1/(r 2 -1) for -1 r 1, while w(r) = 0 otherwise. The user needs to specify a value of ε but in contrast to the original tuning parameter R, ε has an intuitive meaning independent of the underlying point process.

We choose ε = 1%. In the simulation study in Section 4.4.1 we also consider ε = 5% in order to investigate the sensitivity to the choice of ε.

We emphasize that choosing ε = 1% or 5% is not necessarily optimal. An optimal ε might be found by maximizing the Godambe information as a function of ε but this is not straightforward and the computational advantages of our approach would be lost. In fact, if Godambe optimality is key, we suggest to consider the previously mentioned approach by [START_REF] Deng | Second-order quasilikelihood for spatial point processes[END_REF] to identify an optimal second order estimating function.

Asymptotic results for determinantal point processes

A point process X is a determinantal point process (DPP for short) with kernel K : R d × R d → R if for all n ≥ 1, the joint intensity ρ (n) exists and is of the form

ρ (n) (u 1 , . . . , u n ) = det[K](u 1 , . . . , u n ) for all {u 1 , . . . , u n } ⊂ R d , where [K](u 1 , . . . , u n ) is the matrix with entries K(u i , u j ). The intensity function is thus ρ(u) = K(u, u), u ∈ R d . If a determinantal point process
with kernel K exists it is unique. General conditions for existence are presented in [START_REF] Lavancier | Determinantal point process models and statistical inference[END_REF]. In particular, if K admits the form

K(u, v) = ρ(u)ρ(v)C(u -v)
for a function C : R d → R with C(0) = 1, then a sufficient condition for existence of a DPP with kernel K is that ρ is bounded and that C is a square integrable continuous covariance function with spectral density bounded by 1/ ρ ∞ . The normalization C(0) = 1 ensures that ρ is the intensity of the DPP.

We now consider a parametric family of DPPs on R d with kernels K θ where θ ∈ Θ and Θ ⊆ R p (see [69, 15, for examples of such families]). Henceforth, we assume that K θ is symmetric, continuous and the DPP with kernel K θ exists for all θ ∈ Θ. Note that in general, it is possible that two different kernels generate the same DPP distribution. This identifiability issue especially arises in the case of a discrete state space, where the distribution of a DPP is only identified up to flips of the signs of the rows and columns of its matrix kernel (see [START_REF] Engel | Matrices diagonally similar to a symmetric matrix[END_REF] or [START_REF] Rising | An efficient algorithm for the symmetric principal minor assignment problem[END_REF]). However, in the continuous case, corresponding to our framework, the kernel of a DPP is uniquely determined whenever the intensity function is positive, see Proposition 4.C.1 and its corollary in the appendix. Assuming a positive intensity function is not restrictive for statistical applications of DPPs.

An expression for the likelihood of a DPP on a bounded window is provided in [START_REF] Lavancier | Determinantal point process models and statistical inference[END_REF], where likelihood based inference for stationary DPPs is discussed. However, the expression depends on a spectral representation of K which is rarely known in practice and must be approximated numerically. Letting n denote the number of observed points, the likelihood further requires the computation of an n × n dense matrix which can be time consuming for large n. As an alternative, minimum contrast estimation is considered in [START_REF] Biscio | Quantifying repulsiveness of determinantal point processes[END_REF], based on the pair correlation function or Ripley's K-function, but only for stationary DPPs. In the following, we consider general non-stationary DPPs and the estimator θn obtained by solving e n (θ) = 0 where e n is given by (4.2.2). Note that the distribution for any classical parametric DPP model showcased in [START_REF] Lavancier | Determinantal point process models and statistical inference[END_REF][START_REF] Biscio | Quantifying repulsiveness of determinantal point processes[END_REF] is uniquely determined by its first two order intensity functions, in the sense that θ → (ρ(.; θ), ρ (2) (., .; θ)) is injective. This justifies the use of second order estimating functions for DPPs.

We establish in Section 4.3.1 using Theorem 4.2.1 the asymptotic properties of the estimate θn where e n is given by (4.2.2) for a wide class of test functions f . In Section 4.3.2, we focus on a particular case of the DPP model, where the parameter θ = (β, ψ) can be separated into a parameter β only appearing in the intensity function and a parameter ψ only appearing in the pair correlation function. Following [START_REF] Waagepetersen | Two-step estimation for inhomogeneous spatial point processes[END_REF], it is natural to consider a two-step estimation procedure where in a first step β is estimated by a Poisson likelihood score estimating function, and in a second step the remaining parameter ψ is estimated by a second order estimating function as in (4.2.2), where β is replaced by βn obtained in the first step. The asymptotic properties of this two-step procedure again follow as a special case of Theorem 4.2.1.

Second order estimating functions for DPPs

In this part and in the rest of the chapter, we consider the following notation. For any set W ⊂ R d and r > 0, we write W ⊕ r := x∈W B(x, r) and W r := {x ∈ W, B(x, r) ⊂ W } for the dilation and erosion of the set W where B(x, r) denotes the ball centered in x with radius r.

We assume a realization of a DPP X with kernel K θ * , θ * ∈ Int(Θ), is observed on a bounded window W n ⊂ R d . We estimate the unknown parameter θ * by the solution θn of e n (θ) = 0 where e n (θ) is given by (4.2.2) for a given R p -valued function f . Therefore, we are in a special case of the set-up in Section 4.2.2 with l = 1, q 1 = 2, k 1 = p and we assume that f 1 = f satisfies the assumptions (F1) through (F3) (or (F3')) listed in Appendix 4.A. The condition (F1) in this case demands that θ → f (u, v; θ) is twice continuously differentiable in a neighbourhood of θ * and for θ in this neighbourhood, the derivatives are bounded with respect to (u, v) uniformly in θ. Moreover, from (F2), there exists R > 0 such that for all θ in a neighbourhood of θ * ,

f (u, v; θ) = 0 if u -v > R. (4.3.1)
Concerning (F3) (or (F3')), this condition controls the asymptotic behaviour of the matrix H n (θ) given by

H n (θ) = 1 |W n | W 2 n f (u, v; θ)∇ θ ρ (2) (u, v; θ) T dudv,
where we recall that in this setting

ρ (2) (u, v; θ) = K θ (u, u)K θ (v, v) -K θ (u, v) 2 . (4.3.2)
The assumptions (F3) and (F3') are technical and needed for the consistency of the estimation procedure. When H n is a symmetric matrix, assumption (F3) seems simpler to verify than (F3'). As an important example, when f is defined as in (4.2.4), we prove in Lemmas 4.3.2 and 4.3.3 that (F3) is generally satisfied even if X is not stationary.

Finally, as shown in the proof of Theorem 4.3.1 below, the assumptions (X1) through (X3) in Theorem 4.2.1 are implied by the following:

(D1) θ → K θ (u, v) is twice continuously differentiable in a neighborhood of θ * , for all u, v ∈ R d .
Moreover, the first and second derivative of K θ with respect to θ are bounded with respect to u, v ∈ R d uniformly in θ in a neighborhood of θ * .

(D2) The kernel K θ * satisfies, for some ε > 0, Let us briefly comment on these assumptions. (D1) is a standard regularity assumption. Condition (D2) is not restrictive since all standard parametric kernel families satisfy sup u-v >r K θ (u, v) = O(r -(d+1)/2 ), including the most repulsive stationary DPP (see [START_REF] Lavancier | Determinantal point process models and statistical inference[END_REF][START_REF] Biscio | Quantifying repulsiveness of determinantal point processes[END_REF]). Condition (D3) ensures that the asymptotic variance in the central limit theorem below is not degenerated. Finally, Assumption (W) makes specific the fact that W n is not too irregularly shaped and is not bounded in any direction. It is for instance fulfilled if W n is a Cartesian product of d intervals whose lengths tends to infinity. 

sup u-v >r K θ * (u, v) = o(r -(d+ε)/2 ). (D3) lim inf n λ min (|W n | -1 Σ n ) > 0 where Σ n := Var(e n (θ * )) and λ min (|W n | -1 Σ n ) de- notes the smallest eigenvalue of |W n | -1 Σ n . (W) ∃ε > 0 s.t. |∂W n ⊕ (R + ε)| = o(|W n |),
|W n |Σ -1/2 n H n (θ * )( θn -θ * ) L -→ N (0, I p ).
Proof. We deduce from (4.3.2) that (D1) implies (X1). Moreover, it was shown in the proof of Lemma 2.B.6 that (X2) is a consequence of (D2) and that (X3) is a consequence of (D2), (D3) and (W). Thus, we can conclude by applying Theorem 4.2.1 in the case l = 1 and q 1 = 2.

In the case of a stationary X and f given by (4.2.4), the following lemma shows that (F3) is satisfied under mild assumptions that are violated only in degenerate cases. For instance, if p = 1, the last assumption boils down to ∇ θ ρ (2) (0, t; θ * ) = 0 for some t = 0 such that |K θ * (t)| > √ εK θ * (0). In particular it is not difficult to verify these assumptions for the stationary parametric kernels considered in our simulation study of Section 4.4, namely the Bessel-type and the Gaussian kernels, see Section 4.D of the appendix.

Lemma 4.3.2. Assume (W) and (D2), suppose X is stationary and let f be as in (4.2.4). Assume that w is positive on [0, 1), t → f (0, t; θ * ) is integrable and

span{∇ θ ρ (2) (0, t; θ * ) : |K θ * (t)| > √ εK θ * (0)} = R p , then (F3) is satisfied.
Proof. By definition of w and (D2), there exists R > 0 such that f (0, t; θ * ) = 0 when t R. By Lemma 4.A.1, since t → f (0, t; θ * ) is integrable then H n (θ * ) converges towards the positive semi-definite matrix H(θ * ) = t <R h(t)dt where the function h : R d → R p×p is defined by

h(t) = w εK θ * (0) 2 K θ * (t) 2 ∇ θ ρ (2) (0, t; θ * )∇ θ ρ (2) (0, t; θ * ) T ρ (2) (0, t; θ * ) .
In this case, proving (F3) is equivalent to showing that φ T H(θ * )φ = 0 only if φ = 0. For this, let A be the set of t such that |K θ * (t)| > √ εK θ * (0), φ ∈ R p and note that since w(εK θ * (0) 2 /K θ * (t) 2 ) > 0 for t ∈ A and h(t) is continuous and positive semi-definite,

φ T H(θ * )φ = 0 ⇔ ∀t ∈ A, φ T h(t)φ = 0 ⇔ ∀t ∈ A, ∇ θ ρ (2) (0, t; θ * ) T φ = 0 ⇔ φ ∈ span{∇ θ ρ (2) (0, t; θ * ) : t ∈ A} ⊥ .
By assumption span{∇ θ ρ (2) (0, t; θ * ) : t ∈ A} = R p whereby φ = 0, which concludes the proof.

Similarly, we can show that even in the non-stationary case, condition (F3) is satisfied for the function in (4.2.4) but under some slightly stronger assumptions on ∇ θ ρ (2) (u, v; θ * ). Namely, we demand that all functions v → ∇ θ ρ (2) (u, v; θ * ) are not contained in a single hyperplane of R p nor confined around 0. This is similar in essence to what we have assumed in the previous corollary but with the need of a uniform condition with respect to u. Functions that do not satisfy these requirements are arguably degenerate. In particular, a straightforward calculus carried out in the appendix shows that the non-stationary Bessel-type kernel used in our simulation study satisfies these assumptions.

Lemma 4.3.3. Assume (W), (D2) and that K θ * is bounded. Let f be as in (4.2.4) and define

h : (R d ) 2 → R p×p by h(u, v) = w εK θ * (u, u)K θ * (v, v) K θ * (u, v) 2 ∇ θ ρ (2) (u, v; θ * )∇ θ ρ (2) (u, v; θ * ) T ρ (2) (u, v; θ * ) .
Assume that w is positive on [0, 1[. If sup u∈R d R d h(u, v)dv < +∞ and if there exists µ > 1 and δ > 0 such that for all u ∈ R d and for all unit vectors φ of R p there exists a subset A of {v :

K θ * (u, v) 2 > µεK θ * (u, u)K θ * (v, v)} of positive Lebesgue measure |A| > 0 and satisfying ∀v ∈ A, |φ T ∇ θ ρ (2) (u, v; θ * )| > δ then (F3) is satisfied.
Proof. By definition of w, (D2) and the fact that

K θ * is bounded, there exists R > 0 such that h(u, v) = 0 when v -u R.
The integral in (F3) writes

H n (θ * ) = 1 |W n | W 2 n h(u, v)1 u-v ≤R dvdu = 1 |W n | Wn R Wn h(u, v)1 u-v ≤R dvdu+ε n where ε n = 1 |W n | Wn\(Wn R) Wn h(u, v)1 u-v ≤R dvdu.
By (W), we have

ε n |W n \ (W n R)| |W n | sup u∈R d R d h(u, v) dv ≤ |∂W n ⊕ R| |W n | sup u∈R d R d h(u, v) dv → 0,
and for all φ,

φ T Wn R Wn h(u, v)1 u-v ≤R dudv φ = Wn R u-v ≤R φ T h(u, v)φdv du.
By our assumption on ∇ θ ρ (2) , there exists a set A of positive Lebesgue measure such that

∀v ∈ A, |φ T ∇ θ ρ (2) (u, v; θ * )| > δ and w εK θ * (u, u)K θ * (v, v) K θ * (u, v) 2 > inf x∈[0,1/µ] w(x)
Hence for φ = 1,

1 |W n | φ T Wn R Wn h(u, v)1 u-v ≤R dudv φ inf x∈[0,1/µ] w(x) |W n | ρ (2) (., .; θ * ) ∞ Wn R A |φ T ∇ θ ρ (2) (u, v; θ * )| 2 dv du |W n R||A|δ 2 inf x∈[0,1/µ] w(x) |W n | ρ (2) (., .; θ * ) ∞ = |W n | -|W n ∩ (∂W n ⊕ R)| |W n | |A|δ 2 inf x∈[0,1/µ] w(x) ρ (2) (., .; θ * ) ∞ → |A|δ 2 inf x∈[0,1/µ] w(x) ρ (2) (., .; θ * ) ∞ > 0
where the limit is a consequence of (W). Since the limit does not depend on φ, then (F3) is satisfied.

Two-step estimation for a separable parameter

We consider a family of kernels

K θ (u, v) = ρ(u; β)C(u, v; ψ) ρ(v; β),
where θ := (β T , ψ T ) T ∈ Θ ⊂ R p+q with β ∈ R p and ψ ∈ R q , ρ(.; β) are non-negative functions, and C(•, •; ψ) are correlation functions, in particular C(u, u; ψ) = 1 for any ψ. Note that in this case the DPP with kernel K θ has intensity ρ(.; β) and its pair correlation function is

g(u, v; ψ) = 1 -C 2 (u, v; ψ).
As in the preceding section, we assume a DPP X with kernel K θ * , θ * ∈ Int(Θ), is observed on a bounded window W n ⊂ R d . In the spirit of [START_REF] Waagepetersen | Two-step estimation for inhomogeneous spatial point processes[END_REF], we estimate θ * in two steps. First, β * is estimated as the solution βn of s n (β) = 0 where

s n (β) = u∈X∩Wn ∇ β ρ(u; β) ρ(u; β) - Wn ∇ β ρ(u; β)du
is the score function for a Poisson point process. Then, we estimate ψ * by the solution ψn of u n ( βn , ψ) = 0 where

u n (θ) = = u,v∈X∩Wn f (u, v; θ) - W 2 n f (u, v; θ)ρ (2) (u, v; θ)dudv
for a given R q -valued function f and where

ρ (2) (u, v; θ) = ρ (2) (u, v; β, ψ) = ρ(u; β)ρ(v; β)(1 -C 2 (u, v; ψ))
in this case. Here and in the following, for convenience of notation, we identify u n (β, ψ) with u n (θ) when θ = (β T , ψ T ) T . This two-step procedure is a particular estimating equation procedure, since θn := ( βT n , ψT n ) T is obtained as the solution of e n (θ) = 0 where e n (θ) = (s n (β) T , u n (β, ψ) T ) T . Thus, this is a particular case of the setting in Section 4.2.2 where l = 2, q 1 = 1, q 2 = 2,

f 1 = ∇ β ρ(u; β)/ρ(u; β) and f 2 = f .
We assume in the following theorem the same conditions on the DPP X as in the previous section. Similarly, we assume that (F1) through (F3) (or (F3')) are satisfied for f 1 and f 2 . In this particular case, the matrix H n involved in (F3) simply writes

H n (β, ψ) = H 1,1 n (β, ψ) 0 H 2,1 n (β, ψ) H 2,2 n (β, ψ)
where

H 1,1 n (β) = 1 |W n | Wn ∇ β ρ(u; β)∇ β ρ(u; β) T ρ(u; β) du, H 2,1 n (β, ψ) = 1 |W n | W 2 n f (u, v; β, ψ)∇ β ρ (2) (u, v; β, ψ) T dudv, H 2,2 n (β, ψ) = 1 |W n | W 2 n f (u, v; β, ψ)∇ ψ ρ (2) (u, v; β, ψ) T dudv.
Since it is a non symmetric matrix, condition (F3') is more applicable than (F3). Mild conditions ensuring (F3') in the stationary case are provided in Lemma 4.3.5. Theorem 4.3.4. Under Assumptions (D1) and (D2), if assumptions (F1) through (F3) (or (F3')) are satisfied for f 1 = ∇ β ρ(u; β)/ρ(u; β) and f 2 = f , then with a probability tending to one as n → ∞, there exists a |W n |-consistent sequence of roots θn of the estimating equations e n (θ) = 0. If moreover (W) and (D3) hold true, then

|W n |Σ -1/2 n H n (θ * )( θn -θ * ) L -→ N (0, I p+q ).
Proof. The proof follows the same lines as the proof of Theorem 4.3.1.

The next lemma is similar to Lemma 4.3.2. When q = 1 the last technical condition boils down to ∇ ψ (1 -C 2 (0, t; ψ * )) = 0 for some t such that C(0, t; ψ * ) √ εC(0, 0; ψ * ). In particular, the stationary kernels in Section 4.4 satisfy the required assumptions, see Section 4.D. Lemma 4.3.5. Assume that for all θ, K θ (u, v) only depends on u -v, in which case ρ(u; β) = β with β > 0 and C(u, v; ψ) = C(0, v -u; ψ) with ψ ∈ R q . Then the output of the first step is βn = N (X ∩ W n )/|W n |. In the second step, assume

f (u, v; β, ψ) =w ε 1 -g(u, v; ψ) ∇ ψ ρ (2) (u, v; β, ψ) ρ (2) (u, v; β, ψ) =w ε C(0, v -u; ψ) 2 ∇ ψ (1 -C 2 (0, v -u; ψ)) 1 -C 2 (0, v -u; ψ) . Assume that w is positive on [0, 1), t → f (0, t; θ * ) is integrable and that span{∇ ψ (1 - C 2 (0, t; ψ * )) : C(0, t; ψ * ) > √ ε} = R q , then (F3'
) is satisfied under (W), (D1) and (D2).

Proof. By definition of w and (D2), there exists R > 0 such that f (0, t; θ * ) = 0 when t R. Since K θ and f are invariant by translation and t → f (0, t; θ * ) is integrable then H n (θ) converges by Lemma 4.A.1. In particular, we have

H 1,1 n (β) → 1 β , H 2,2 n (β, ψ) → β 2 t R h(t; ψ)dt, H 2,1 n (β, ψ) → 2β t R w ε C(0, t; ψ) 2 ∇ ψ (1 -C 2 (0, t; ψ))dt.
where the function h(.; ψ) : R d → R p×p is defined by T 1 -C 2 (0, t; ψ) .

h(t; ψ) = w ε C(0, t; ψ) 2 ∇ ψ (1 -C 2 (0, t; ψ))∇ ψ (1 -C 2 (0, t; ψ))
The limit of H n (θ) is continuous by (D1). In this case, proving (F3') is equivalent to showing that the limit of H n (θ * ) is invertible. Since this matrix is block triangular and β > 0 then it is invertible if and only if the limit of H 2,1 n (θ * ) is invertible. This is done the same way as in Lemma 4.3.2.

Simulation study

In this section we use simulation studies to investigate the performance of our adaptive estimating function and to compare two-step estimation with simultaneous estimation.

Performance of adaptive estimating function

In order to assess the adaptive test function (4.2.4) against the truncated test function (4.2.3) with a prescribed R, we consider a DPP model in R 2 with a Bessel-type kernel

K(u, v) = ρ(u)ρ(v) J 1 (2 u -v /α) u -v /α , ( 4.4.1) 
where J 1 denotes the Bessel function of the first kind, ρ is the intensity and α controls the range of interaction of the DPP. For existence, ρ and α must satisfy

α 2 ρ ∞ 1 π . (4.4.2)
This relation shows the tradeoff between the expected number of points and the strength of repulsiveness that we can obtain. This model is a particular instance of the Besseltype DPP introduced in [START_REF] Biscio | Quantifying repulsiveness of determinantal point processes[END_REF]. It covers a large range of repulsiveness, from the Poisson point process (when α is close to 0) to the most repulsive DPP (when α = 1/ π ρ ∞ ).

For this model, we consider three constant values of ρ, ρ ∈ {50, 100, 1000}, corresponding to homogeneous DPPs, and an inhomogeneous situation where ρ(u) = ρ(x, y) = 20 exp(4x) when u ∈ [0, 1] 2 . The latter case corresponds to a log-linear intensity function involving two parameters. For each ρ, three values of α are considered: a small one, a medium one, and a last one close to the maximal possible value satisfying (4.4.2). Examples of point patterns simulated on [0, 1] 2 are displayed in Figure 4. All simulations are carried out using R [START_REF] Core | R: A Language and Environment for Statistical Computing[END_REF], in particular the library spatstat [7].

We estimate ρ and α by a two-step procedure as studied in Section 4.3.2 from realizations of the DPP on W = [0, 1] 2 . The alternative global approach of Section 4.3.1 is discussed in the next section. In the first step, the parameters arising in ρ are estimated by the score function for a Poisson point process. This gives ρ = N (X ∩ W )/|W | in the homogeneous cases. In the second step, we consider the estimating equation based on (4.2.3) where θ is α in this setting and when R ∈ {0.05, 0.1, 0.25}, and based on the adaptive test function (4.2.4) with ε = 0.01 and the weight function w given at the end of Section 4.2.4. This yields four different estimators of α. The root mean square errors (RMSEs) of these estimators and the mean computation time estimated from 1000 replications are summarised in Table 1. Boxplots are displayed in Figure 5 in the appendix. Note that the codes have not been optimised, but the same computational strategy has been used for all methods, making the comparison of the mean computation time meaningful.

The Bessel-type kernel and the aforementioned test functions used in the two-step estimation procedure fulfill the assumptions of Theorem 4.3.4 and Lemma 4.3.5 (for the homogeneous case), ensuring nice asymptotic properties of the estimators considered in this section. This is confirmed by the estimated RMSE's reported in Table 1, that decrease when the intensity ρ increases which mimics the effect of an increasing window since rescaling the window by a factor 1/k is equivalent to change ρ into k 2 ρ and α into α/k, see (2.4) in [START_REF] Lavancier | Determinantal point process models and statistical inference[END_REF]. Moreover, these RMSE's show that the best choice of R in the test function (4.2.3) clearly depends on the range of interaction of the underlying process. This emphasizes the importance of a data-driven approach to choosing R since the range is unknown in practice. Fortunately, the performance of the adaptive method is always better than the worst choice of R and very close to the best R except for the case ρ = 100, α = 0.01. For the exceptional case, the small differences in performance can be explained by Monte Carlo error. Further, use of the adaptive method implies only little or no extra computional effort. In presence of many points, the adaptive version is in fact much faster to compute than the estimator based on (4.2.3) with the choice of a too large R, see for instance the results for ρ = 1000 and R = 0.25.

Table 3 in the appendix shows the root mean square errors of the adaptive estimator using ε = 0.05. The RMSEs obtained with ε = 0.05 are bigger than those obtained with ε = 0.01. Nevertheless, the adaptive method with ε = 0.05 still performs well in the sense that it usually performs better than the worst R and usually almost as good as the best R. Because the above estimation methods sometimes fail to converge, we also report in Table 2 in the appendix the percentages of times each method has converged in our simulation study. These percentages are similar for all methods. Note that the results in Table 1 and in Figure 5 are based on 1000 simulations where all four methods have converged.

Two-step versus simultaneous

Most models used in spatial statistics involve a separable parameter θ = (β, ψ) where β only appears in the intensity function and ψ only appears in the pair correlation function. This makes the two-step procedure described in Section 4.3.2 available, as exploited in the previous simulation study. However a simultaneous second order estimating equation approach might be a better alternative. It is not easy to compare the respective performance of the two approaches through the asymptotic variances obtained in Section 4.3.1 and Section 4.3.2. In this section, we show through an example why the two-step procedure seems preferable.

We consider a stationary model with parameter θ = (ρ, ψ), where ρ is the intensity and the pair correlation function writes g(u, v; θ) = g(r; ψ) with r = u -v . In this case the two-step procedure, based on the observation X ∩ W and using the adaptive test function (4.2.4), provides ρ = N (X ∩ W )/|W | and ψ is the root of

e 2 (ψ) = r ij w ε g(0; ψ) -1 g(r ij ; ψ) -1 ∇ ψ g(r ij ; ψ) g(r ij ; ψ) -N (X ∩ W ) 2 W w ε g(0; ψ) -1 g(r; ψ) -1 ∇ ψ g(r; ψ)dF (r). (4.4.3)
Here F denotes the cumulative distribution function of R = U -V where U and V are independent variables uniformly distributed on W and {r ij } is the set of all pairwise distances of X ∩ W . On the other hand, by a simultaneous procedure using the same test function, we get that ψ is the root of

e(ψ) = r ij w ε g(0; ψ) -1 g(r ij ; ψ) -1 ∇ ψ g(r ij ; ψ) g(r ij ; ψ) - r ij w ε g(0;ψ)-1 g(r ij ;ψ)-1 w ε g(0;ψ)-1 g(r ij ;ψ)-1 g(r; ψ)dF (r) w ε g(0; ψ) -1 g(r ij ; ψ) -1 ∇ ψ g(r; ψ)dF (r), (4.4.4)
while ρ is given by ρ2

= 1 |W | 2 r ij w ε g(0; ψ)-1 g(r ij ; ψ)-1 w ε g(0; ψ)-1 g(r ij ; ψ)-1 g(r; ψ)dF (r) . (4.4.5)
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ρ α R = 0.05 R = 0.1 R = 0.
The simultaneous estimation approach in this example is covered by our theoretical results in Sections 4.3.1 and 4.3.2. It shows that while our consistency result guarantees the existence of a consistent sequence of parameter estimates (roots) there could also exist other non-consistent sequences.

Discussion

In this chapter we provide a very general asymptotic framework for estimating function inference for spatial point processses with known joint intensities. Specific asymptotic results are obtained for determinantal point processes.

The performance of second order estimating functions depends strongly on a tuning parameter R that controls which pairs of points are used in the estimation. Although not statistically optimal, our adaptive procedure for selecting this tuning parameter is intuitively appealing and easy to implement. The method depends on a new tuning parameter ε for which it is easier to identify reasonable values than for the original tuning parameter R. The resulting estimation procedure is computationally tractable and performs well in terms of mean squared error in the simulation studies considered. It moreover seamlessly integrates with the asymptotic results where the use of the adaptive method poses no extra theoretical difficulties.

Though we focus in this chapter on determinantal point processes, the adaptive method is applicable for any spatial point process with known pair correlation function.

As an example we provide in Section 4.E of the appendix a simulation study in case of a cluster process.

4.A Assumptions and proof of Theorem 4.2.1

Our general Theorem 4.2.1 depends on a number of assumptions. The setting is the same as in Section 4.2.2. We moreover define diam(x) as the largest distance between two coordinates of x. The assumptions (F1) through (F3) are mainly related to the test functions f i , while for X we assume (X1) through (X3). (F1) For all i = 1, . . . , l and for all x ∈ (R d ) q i , θ → f i (x; θ) is twice continuously differentiable in a neighbourhood of θ * . Moreover, the first and second derivative of f i with respect to θ are bounded with respect to x ∈ (R d ) q i uniformly in θ belonging to this neighbourhood.

(F2) There exists a constant R > 0 such that for all θ in a neighbourhood of θ * , all functions x → f i (x; θ) vanish when diam(x) > R.

Define the matrices H n (θ) by

H n (θ) =    H 1 n (θ) . . . H l n (θ)    ,
where for all i

H i n (θ) := 1 |W n | W q i n f i (x; θ)∇ θ ρ (q i ) (x; θ) T dx. (F3) The matrices H n (θ * ) satisfy lim inf n→∞ inf φ =1 φ T H n (θ * )φ > 0.
(F3') There exists a neighbourhood of θ * such that for all n high enough and all θ in this neighbourhood, H n (θ) is invertible and H n (θ) -1 is uniformly bounded with respect to n and θ, where • stands for any matrix norm.

(X1) For all θ in a neighbourhood of θ * and all q i , i = 1, . . . , l, the intensity functions x → ρ (q i ) (x; θ) are well-defined and bounded. Moreover, θ → ρ (q i ) (x; θ) is twice continuously differentiable in a neighbourhood of θ * , for all x ∈ (R d ) q i . Finally, the first and second derivative of ρ (q i ) with respect to θ are bounded with respect to x ∈ (R d ) q i uniformly in θ belonging to this neighbourhood.

(X2) For all q i , i = 1, . . . , l, the intensity functions ρ

(q i ) (•; θ * ), • • • , ρ (2q i ) (•; θ * ) of X are well-defined. Moreover, the intensity functions ρ (q i ) (•; θ * ), • • • , ρ (2q i -1) (•; θ * ) are
bounded and for all bounded sets W ⊂ R d there exists a constant C 0 > 0, so that W ϕ i (x 1 )dx 1 < C 0 , i = 1, . . . , l where ϕ i is the function

ϕ i : x 1 → sup diam(x)<R sup diam(y)<R sup y 1 ∈W ρ (2q i ) (x 1 , x 2 , • • • , x q i , y 1 , • • • , y q i ; θ * ) -ρ (q i ) (x 1 , x 2 , • • • , x q i ; θ * )ρ (q i ) (y 1 , • • • , y q i ; θ * ) with R coming from (F2).
(X3) X satisfies the central limit theorem

Σ -1/2 n e n (θ * ) L -→ N (0, I p ),
where e n is defined in Section 4.2.2 and Σ n = Var(e n (θ * )).

Assumptions (F1) and (F2) are basic regularity conditions on the f i 's. Similarly (X1) and (X2) ensure that the intensity functions of X exist and are sufficiently regular. The technical assumptions are in fact (F3) (or (F3')) and (X3). While the latter strongly depends on the underlying point process (see [START_REF] Waagepetersen | Two-step estimation for inhomogeneous spatial point processes[END_REF] for Cox processes and Theorem 2.4.4 for DPPs), the former can be simplified in some cases. For example, if H n (θ * ) are symmetrical matrices for all n then (F3) writes lim inf n λ min (H n (θ * )) > 0 where λ min (H n (θ * )) denotes the smallest eigenvalue of H n (θ * ). If the matrices H n (θ * ) are not symmetrical, Assumption (F3') will be preferred since (F3) does not translate well for non-symmetrical matrices. Furthermore, if X is stationary, all f i 's are invariant by translation, and the sequence of windows {W n } n≥1 satisfies (W) in Section 4.3.1, then H n (θ) converges, towards a matrix H(θ) explicitly given in Lemma 4.A.1 below. Assumption (F3) thus simply becomes inf φ =1 φ T H(θ * )φ > 0 and (F3') is satisfied whenever H(θ * ) is invertible by continuity of H(θ). In specific applications of Theorem 4.2.1, further conditions on the sequence of observation windows {W n } n≥1 may be required, see e.g. (W) in Section 4.3.1. Lemma 4.A.1. Assume (W), (X1), (F2) and let θ ∈ R p . Suppose that all ρ (q i ) (•; θ)'s and f i (•; θ)'s are invariant by translation, i.e. f i (u 1 , u; θ) = f i (0, u -u 1 ; θ) where we denote by u the vector (u 2 , • • • , u q i ). If u → f i (0, u; θ) is integrable for all i such that q i 2, then H n (θ) converges to a matrix H(θ). In particular, for all i we have

lim n→∞ H i n (θ) = t R f i (0, t; θ)∇ θ ρ (q i ) (0, t; θ) T dt.
This lemma is verified in Section 4.B. We now turn to the proof of the theorem. To prove the consistency of θn and get its rate of convergence we apply the following result, where . stands for any matrix norm.

Theorem 4.A.2 ([103]

). Suppose that e n (θ) is continuously differentiable with respect to θ and define

J n (θ) := - d dθ T e n (θ) := - ∂ ∂θ j e n (θ) i 1 i,j p .
Suppose that for all α > 0 sup

θ∈M α n (θ * ) 1 |W n | (J n (θ) -J n (θ * )) P -→ 0, (4.A.1)
where

M α n (θ * ) := θ ∈ Θ : θ -θ * α |W n | ,
and suppose that there exists l > 0 such that

P 1 |W n | inf φ =1 φ T J n (θ * )φ < l → 0. (4.A.2)
Assume, moreover, that the class of random vectors

1 |W n | e n (θ * ) : n ∈ N
is stochastically bounded. Then, for all ε > 0, there exists A > 0 such that P(∃ θn : e n ( θn ) = 0 and

|W n | θn -θ * < A) > 1 -ε (4.A.3)
for a sufficiently large n.

We now verify the assumptions of Theorem 4.A.2. There is no loss in generality by assuming that all f i are symmetric functions. Otherwise we can just replace f i (x) by its symmetrized version (q i !) -1 u∈π(x) f i (u) where π(x) denotes the set of all vectors obtained by permuting the components of x. This does not change the value of e n (θ) and each symmetrized function still satisfies Assumptions (F1) through (F3). We will use at several places the following result. Lemma 4.A.3. Let X be a point process satisfying Assumption (X2). Consider any i ∈ {1, • • • , l}, any bounded set W ⊂ R d , and any symmetric bounded function g : (R d ) q i → R k i vanishing when two of its components are at a distance greater than R for a given constant R > 0. Then

Var   = x 1 ,••• ,xq i ∈X∩W g(x 1 , • • • , x q i )   = O(|W |).
Proof. Since g is a symmetric function, then g(x 1 , • • • , x q i ) does not depend on the order of the x i . Thus, for any set of q i points S = {x 1 , • • • , x q i }, we can write g(S) for the value of g at an arbitrary order of the points in S and we write

= x 1 ,••• ,xq i ∈X∩W g(x 1 , • • • , x q i ) = q i ! S⊂X∩W g(S)1 |S|=q i
where |S| denotes the cardinality of S.

We start by expanding E S⊂X∩W g(S)1 |S|=q i S⊂X∩W g T (S)1 |S|=q i as

q i k=0 E      S,T ⊂X∩W |S|=|T |=q i ,|S∩T |=k g(S)g T (T )      = q i k=0 E      U ⊂X∩W |U |=2q i -k S ⊂S⊂U |S |=k,|S|=q i g(S)g T (S ∪ (U \S))      = q i k=0 1 (2q i -k)! W 2q i -k S ⊂S⊂{x 1 ,••• ,x 2q i -k } |S |=k,|S|=q i g(S)g T (S ∪ ({x 1 , • • • , x 2q i -k }\S))ρ (2q i -k) (x; θ * )dx = q i k=0 q i k 2q i -k q i (2q i -k)! W 2q i -k g(x 1 , • • • , x q i )g T (x 1 , • • • , x k , x q i +1 , • • • , x 2q i -k )ρ (2q i -k) (x; θ * )dx. (4.A.4)
By Assumption (X2), the functions ρ (q i ) , • • • , ρ (2q i -1) are all bounded. Moreover, as a consequence of our assumptions on g, each entry of each term for k 1 in (4.A.4) is bounded by

1 q i !(q i -k)! q i k W 2q i -k g 2 ∞ ρ (2q i -k) ∞ 1 {0 |x i -x 1 | R, ∀i} dx which is O(|W |)
. However, we are unable to get a similar control for k = 0. Therefore, instead of controlling this term alone, we consider its difference with the remaining term in the variance we are looking at, that is

1 (q i !) 2 W 2q i g(x)g T (y)ρ (2q i ) (x, y; θ * )dxdy -E S⊂X∩W g(S)1 |S|=q i E S⊂X∩W g(S)1 |S|=q i T = 1 (q i !) 2 W 2q i g(x)g T (y)(ρ (2q i ) (x, y; θ * ) -ρ (q i ) (x; θ * )ρ (q i ) (y; θ * ))dxdy.
All of its components are bounded by

g 2 ∞ |W ||B(O, R)| 2q i -2 (q i !) 2 W sup diam(x)<R diam(y)<R sup y 1 ∈W ρ (2q i ) (x 1 , x 2 , • • • , x q i , y 1 , • • • , y q i ; θ * ) -ρ (q i ) (x 1 , x 2 , • • • , x q i ; θ * )ρ (q i ) (y 1 , • • • , y q i ; θ * ) dx 1 which is O(|W |) by Assumption (X2).
The regularity conditions on e n (θ) in Theorem 4.A.2 are consequences of (F1), (X1). The stochastic behavior of e n (θ * ) is easily deduced from the previous lemma. Proof. The result follows by showing that each component e i n (θ * ) of e n (θ * ) is stochastically bounded. By Chebyshev's inequality, we just need to bound |W n | -1 Var(e i n (θ * )). Letting

e i n (θ) := = x 1 ,••• ,xq i ∈X∩Wn f i (x 1 , • • • , x q i ; θ) - W q i n f i (x; θ)ρ (q i ) (x; θ)dx, we know that Var(e i n (θ * )) is O(|W n |) by Lemma 4.A.

under Assumptions (X2) and (F2).

To apply Theorem 4.A.2 under Assumptions (F1) through (F3), it remains to show the following lemma. Lemma 4.A.5. Under Assumptions (F1) through (F3), (X1) and (X2) we have for all α > 0, sup

θ∈M α n (θ * ) 1 |W n | (J n (θ) -J n (θ * )) P -→ 0. (4.A.5)
where M α n (θ * ) is defined as in Theorem 4.A.2 and there exists l > 0 such that

P 1 |W n | inf φ =1 φ T J n (θ * )φ < l → 0.
Proof. Let α > 0 and an integer n big enough such that M α n (θ * ) is a neighbourhood of θ * where Assumptions (F1), (F2) and (X1) are satisfied. For all θ ∈ M α n (θ * ), we write

J n (θ) =    J 1 n (θ) . . . J l n (θ)    := -     d dθ T e 1 n (x; θ) . . . d dθ T e l n (x; θ)    
For all i, the derivative of x → f i (x; θ)ρ (q i ) (x; θ) is bounded on W q i n . So, we can write

J i n (θ) = -q i ! x⊂X∩Wn |x|=q i d dθ T f i (x; θ) + W q i n d dθ T f i (x; θ)ρ (q i ) (x; θ)dx + W q i n f i (x; θ)∇ θ ρ (q i ) (x; θ) T dx. (4.A.6) Now, recall that f i , d dθ T f i , ρ (q i
) and ∇ θ ρ (q i ) are all continuously differentiable with respect to θ by Assumption (F1) and (X1). Moreover, the first and second derivatives of f i and ρ (q i ) with respect to θ are bounded with respect to x and θ by the same assumptions. Therefore, since M α n (θ * ) is a decreasing sequence of compact sets, there exist constants C 1 , C 2 > 0 not depending on n, x and θ such that by a Taylor expansion, sup

θ∈M α n (θ * ) J i n (θ) -J i n (θ * ) α |W n |     C 1 x⊂X∩Wn |x|=q i 1 diam(x) R + C 2 W q i n 1 diam(x) R dudv    
where the indicator functions arise as a consequence of Assumption (F2). Moreover,

E     x⊂X∩Wn |x|=q i 1 diam(x) R     = W q i n ρ (q i ) (x; θ * )1 diam(x) R dx = O(|W n |) since ρ (q i ) is bounded by Assumption (X2). This shows that E[sup θ∈M α n (θ * ) J i n (θ) - J i n (θ * ) ] is O( |W n |).
It remains to prove that there exists l > 0 such that (4.A.5) holds. By Assumption (F3) choose ε > 0 so that lim inf n→∞ φ T H n (θ * )φ > ε and let l = ε/2. In the case where θ = θ * , the second term in (4.A.6) is just the expectation of the first one and the third term is equal to |W n |H i n (θ * ) which is deterministic. Thus when θ = θ * , the L 2 norm of the first two terms in (4.A.6) is equal to 

Var     x⊂X∩Wn |x|=q i d dθ T f i (x; θ * )     which is O( |W n |) by
lim n→∞ P 1 |W n | inf φ =1 φ T J n (θ * )φ < l ≤ lim n→∞ P inf φ =1 b n -ε/2 < l, |a n | < ε/2 ≤ lim n→∞ P inf φ =1 b n < ε = 0
which concludes the proof.

To apply Theorem 4.A.2 under the alternative Assumption (F3') instead of (F3), we proceed as follows. Consider n to be large enough and θ to be in a neighbourhood of θ * such that H n (θ) is invertible and H n (θ) -1 is uniformly bounded with respect to n and θ. Let e n (θ) = H n (θ) -1 e n (θ) and let us show that we can apply Theorem 4.A.2 to e n . Obviously, e n has the same roots as e n , is continuously differentiable since θ → H n (θ) and θ → H n (θ) -1 are continuously differentiable from Assumptions (F1) and (F2), and the family { e n (θ * )/ |W n | : n ∈ N} is stochastically bounded. Let J n (θ) = -d dθ T e n (θ). It remains to show the following lemma. Lemma 4.A.6. Under Assumptions (F1), (F2), (F3'), (X1) and (X2) we have

sup θ∈M α n (θ * ) 1 |W n | ( J n (θ) -J n (θ * )) P -→ 0. (4.A.7)
and

P lim n→∞ 1 |W n | inf φ =1 φ T J n (θ * )φ < 1/2 = 0. (4.A.8)
Proof. We have

J n (θ) = H n (θ) -1 J n (θ) -T n (θ) where T n (θ) i,j = p k=1 ∂ ∂θ j H n (θ) -1 i,k e n (θ) k . (4.A.9)
For any θ ∈ M α n (θ * ), since all terms in (4.A.6) are bounded by Assumptions (F1) and (X1), using Assumption (F2) we get

E[|e n (θ) -e n (θ * )|] α |W n | E sup θ∈M α n (θ * ) J n (θ) = O( W n ).
By (F1), (X1) and (F3'), ∂ ∂θ j H n (θ) -1 = ( ∂ ∂θ j H n (θ))H n (θ) -2 is bounded on M α n (θ * ) for a large enough n. It follows for all i, j,

1 |W n | sup θ∈M α n (θ * ) p k=1 ∂ ∂θ j H n (θ) -1 i,k e n (θ * ) k -T n (θ) i,j P -→ 0. Moreover, sup θ∈M α n (θ * ) p k=1 ∂ ∂θ j H n (θ) -1 i,k e n (θ * ) k |W n | P -→ 0 as a consequence of Lemma 4.A.4. Hence |W n | -1 sup θ∈M α n (θ * ) T n (θ) P -→ 0 and thus |W n | -1 T n (θ * ) P -→ 0.
Therefore, we only need to look at the behaviour of

H n (θ) -1 J n (θ).
From Lemma 4.A.5 we know that sup

θ∈M α n (θ * ) 1 |W n | H n (θ * ) -1 (J n (θ) -J n (θ * )) P -→ 0.
Finally, we observe that

E sup θ∈M α n (θ * ) (H n (θ) -1 -H n (θ * ) -1 )J n (θ) α |W n | E sup θ∈M α n (θ * ) J n (θ) sup θ∈M α n (θ * ) sup 1 j p ∂ ∂θ j H n (θ) -1 = O( W n )
where the boundedness of ∂H n (θ) -1 /∂θ j for each j was noted above and the boundedness of E sup θ∈M α n (θ * ) J n (θ) follows by considerations in the last part of the proof of Lemma 4.A.5 as a consequence of the regularity assumptions imposed on H n (θ) by Assumption (F3'). This finishes proving (4.A.7). The result (4.A.8) is then a consequence of the fact that H n (θ * ) -1 J n (θ * ) converges towards I p when n goes to infinity. To prove the asymptotic normality, we use the Taylor expansion e n ( θn ) = e n (θ

* ) + J n (θ 0 n )( θn -θ * ) where θ 0 n -θ * θn -θ * , which implies e n ( θn ) |W n | = e n (θ * ) |W n | + J n (θ * ) |W n | |W n |( θn -θ * ) + 1 |W n | (J n (θ 0 n ) -J n (θ * )) |W n |( θn -θ * ).
We know that e n ( θn )/ |W n | converges in distribution towards 0 and by Theorem 4.A.2 we also know that 1

|W n | (J n (θ 0 n ) -J n (θ * )) P -→ 0
because θ 0 n is closer to θ * than θn with probability tending to 1. Moreover, we saw at the end of the proof of Theorem 4.A.2 that the variance of the first two terms of |W n | -1 J n (θ * ) vanishes when n → ∞ and the last term is equal to H n (θ * ). Finally, by Assumption (X3) and since |W n | -1 Var(e n (θ * )) is stochastically bounded (Lemma 4.A.4), it follows by Slutsky's lemma that

|W n |Σ -1/2 n H n (θ * )( θn -θ * ) L -→ N (0, I p ).

4.B Proof of Lemma 4.A.1

For all i, if q i = 1 then H i n (θ) is constant. Otherwise, since f i and X are stationary, the integral in (F3) writes

H i n (θ) = 1 |W n | Wn W q i -1 n f i (u 1 , u; θ)∇ θ ρ (q i ) (u 1 , u; θ) T dudu 1 = 1 |W n | Wn R W q i -1 n f i (0, u -u 1 ; θ)∇ θ ρ (q i ) (0, u -u 1 ; θ) T dudu 1 + ε n where ε n = 1 |W n | Wn\(Wn R) W q i -1 n f i (0, u -u 1 ; θ)∇ θ ρ (q i ) (0, u -u 1 ; θ) T dudu 1 .
By integrability of f i , (W), (X1) and (F2), we have

|ε n,kl | 1 |W n | Wn\(Wn R) (R d ) q i -1 |f i (0, u -u 1 ; θ) k | ∇ θ ρ (q i ) (.; θ) ∞ dudu 1 = |W n \ (W n R)| |W n | ∇ θ ρ (q i ) (.; θ) ∞ t R |f i (0, t; θ) k |dt |∂W n ⊕ R| |W n | ∇ θ ρ (q i ) (.; θ) ∞ t R |f i (0, t; θ) k |dt → 0,
where ε n,kl denotes the klth entry of the matrix ε n and f i (•) k the kth component of the vector f i (•). Moreover,

1 |W n | Wn R Wn f i (0, u -u 1 ; θ)∇ θ ρ (q i ) (0, u -u 1 ; θ) T dudu 1 = |W n R| |W n | t R f i (0, t; θ)∇ θ ρ (q i ) (0, t; θ) T dt → t R f i (0, t; θ)∇ θ ρ (q i ) (0, t; θ) T dt,
as n → ∞. This proves the convergence of H n (θ).

4.C Identifiability of the kernel of a continuous DPP

In this section, we show that most continuous DPP kernels are uniquely characterized by their associated DPP distribution. In particular, DPPs with positive first order intensity function are characterized by a unique continuous kernel. This is for instance the case for any stationary DPP with intensity ρ > 0.

Proposition 4.C.1. Let K and K be two continuous DPP kernels generating the same DPP distribution. Then, there exists a closed set A such that

K(x, y) = K(x, y) if (x, y) ∈ A 2 (A c ) 2 -K(x, y) if (x, y) ∈ A × A c A c × A.
In particular, K(x, y) = K(x, y) = 0 for all (x, y) ∈ ∂A × R d R d × ∂A and K(x, x) = K(x, x) = 0 for all x ∈ ∂A since K and K are continuous.

Proof. Since K and K are continuous then their n-th order intensity functions are also continuous and are thus equal everywhere. In particular, for any finite set D, the matrices (K(x, y)) x,y∈D and ( K(x, y)) x,y∈D are symmetrical and have the same principal minors. As shown in [START_REF] Rising | An efficient algorithm for the symmetric principal minor assignment problem[END_REF] using a result of [START_REF] Engel | Matrices diagonally similar to a symmetric matrix[END_REF], we get that there exists a function s(x) taking values in {±1} such that K(x, y) = s(x)K(x, y)s(y) for all x, y ∈ D. Since this is true for any finite set D, this result can directly be extended to any countable dense subset D of R d . Now, let A be the closure of s -1 ({1}), then, by continuity of K and K, Proof. By proposition 4.C.1, for any pair of continuous kernel K, K generating the same DPP distribution there exists a closed set A such that K(x, y) = K(x, y) if x and y are both in A or its complementary and K(x, x) = K(x, x) = 0 on the boundary of A. But, since K(x, x) > 0 everywhere then ∂A = ∅ and K = K everywhere.

K(x, y) = K(x, y) if (x, y) ∈ A 2 (A c ) 2 -K(x, y) if (x, y) ∈ A × A c A c × A.

4.D Examples of DPP families satisfying (F3) or (F3')

We illustrate the use of Lemmas 4.3.2, 4.3.3 and 4.3.5 through two examples which correspond to the kernel families used in our simulation study.

(i) As a first example, we consider the stationary Gaussian kernel on

R d K(u, v) = ρ exp(-v -u 2 /α 2 )
with parameters θ = (ρ, α) where 0 < ρ ( √ πα) -d in which case the test function considered in Lemma 4.3.2 (which is also the one used in our simulation study) writes

f (u, v; θ) = ω εg(0, 0; θ) g(u, v; θ) ∇ θ ρ (2) (u, v; θ) ρ (2) (u, v; θ) = ω ε exp(2 v -u 2 /α 2 ) 2 ρ -4 v-u 2 exp(-2 v-u 2 /α 2 ) α 3 (1-exp(-2 v-u 2 /α 2 ))
.

Since u → f (0, u; θ) has bounded support and lim v-u →0 f (u, v; θ) = 2/ρ -2/α then u → f (0, u; θ) is integrable for any θ.
Moreover, since one entry of the vectors ∇ θ ρ (2) (u, v; θ)/ρ (2) (u, v; θ) is constant and the other one is not, then

span{∇ θ ρ (2) (0, u; θ), u 2 -α 2 log(ε)/2} = R 2
for all θ. This proves that the assumptions of Lemma 3.2 are satisfied, which in turn implies (F3). Similarly, if we consider the two-step estimation with the same kernels and the same f , then the same reasoning shows that we can apply Lemma 3.5 and get that (F3') is satisfied in that case. All classical families of stationary DPP kernels can be treated in a similar way.

(ii) As a second example, we consider the non stationary DPP on R 2 used in our simulation study, with kernel

K(u, v) = ρ(u)ρ(v) J 1 (2 v -u /α) v -u /α
where we assume that ρ is bounded and satisfies ρ(u) C for some constant C > 0 and all u ∈ R d and where the parameter is α where 0 < α (π ρ ∞ ) -1/2 . Using a second order estimating function with the same f as before, we get that the function h in Lemma 3.3 writes The expression inside the integral is a O( t 2 ) when t → 0 (it can be shown by a Taylor expansion) and equal to 0 outside a compact set, hence

h(u, v) = w ε v -u /α * J 1 (2 v -u /α * ) 2 × ρ(u)ρ(v) 16 (α * ) 2 J 2 (2 v-u /α * )J 1 (2 v-u /α * ) v-u /α * 2 1 -J 1 (2 v-u /α * ) v-u /α * 2 whereby R d h(u, v)dv 16 ρ ∞ (α * ) 2 R d J 2 (2 t /α * )J 1 (2 t /α * ) t /α * 2 1 -J 1 (2 t /α * ) t /α * 2 1 { √ ε t /α * J 1 (2 t /α * )} dt. ρ α R = 0.05 R = 0.1 R = 0.
sup u R d h(u, v)dv < ∞.
Moreover,

∇ α ρ (2) (u, v; α * ) - 4C α * J 2 (2 v -u /α * )J 1 (2 v -u /α * ) v -u /α *
which is negative when v -u is greater than 0 but lower than α * j 1 /2 where j 1 denotes the first zero of J 1 . Therefore, we can always choose constants

ε 1 , ε 2 , δ such that |∇ α ρ (2) (u, v; α * )| > δ and ε v -u /α * J 1 (2 v -u /α * ) for all u, v such that ε 1 v -u ε 2
. This shows that the assumptions of Lemma 3.3 are satisfied which implies (F3).

4.E Supplementary tables for Section 4.4.1

For the simulation study carried out in Section 4.4, considering estimation for a DPP model with a Bessel-type kernel, we report in Figure 5 the boxplots representing the distribution of the estimators and in Table 2 the percentages of times each estimation method has converged in our simulation study. These percentages are similar for all estimation methods. Table 3 displays the root mean square errors of the estimators considered in Section 4.1 where, for comparison, we also include results for the adaptive estimator using ε = 0.05. Conclusions based on these tables are given in Section 4.4.

Two-step versus simultaneous
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Some simulations for the Thomas model
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Chapter 5

Consistency and approximation of the likelihood of stationary continuous determinantal point processes

Introduction

Expressions of the densities of determinantal point processes are known since they were first described as a model of fermion systems in [START_REF] Macchi | The coincidence approach to stochastic point processes[END_REF]. For DPPs defined on finite spaces, the expression of its likelihood can be easily computed and its asymptotic properties in an iid setting have been well studied [START_REF] Brunel | Maximum likelihood estimation of determinantal point processes[END_REF]. On the opposite, the likelihood expression of continuous DPPs is hardly tractable. Computing the likelihood requires the knowledge of a function that can only be obtained by solving an integral equation or by knowing the spectral representation of any projection of the locally trace class operator defined from the DPP kernel. Both methods are not feasible in practice. Moreover, part of the likelihood writes as the log-determinant of a random kernel matrix whose behavior is difficult to control. However, some results on the maximum likelihood estimator (MLE) of continuous DPPs are known in the iid setting [10], but because of the aforementioned difficulties no asymptotic result is known in the case of increasing domain asymptotic inference of continuous DPPs. In the stationary case, one alternative solution to compute the likelihood proposed in [START_REF] Lavancier | Determinantal point process models and statistical inference[END_REF] is to consider a Fourier series approximation of the DPP kernel on rectangular observation windows. Since the spectral decomposition of a Fourier series is explicit, the associated likelihood can then be computed. Another alternative solution given in [START_REF] Bardenet | Inference for determinantal point processes without spectral knowledge[END_REF] is to use a Markov chain Monte Carlo inference method based on bounds on the likelihood that does not depend on the spectral decomposition of its kernel. Neither of these two contributions studies the consistency of their approach.

In this chapter, we give an asymptotic approximation of the DPP likelihood as well as a way to correct the edge effects arising as a consequence of this approximation and we show that it improves upon [START_REF] Lavancier | Determinantal point process models and statistical inference[END_REF]. We also prove that the MLE is consistent for any DPP defined on a small enough regular grid of R d as an approximation of the actual DPP.

The remainder of the chapter is as follows. In Section 5.2, we recall the form of the likelihood of DPPs and we suggest an asymptotic approximation of this likelihood as well as an edge correction method. In Section 5.3, we use various simulations of DPPs to compare our approximate MLE to common minimum contrast inference method. Section 5.4 contains the proof of the MLE consistency. Finally, the appendix 5.A contains some technical results needed in Section 5.4.

Likelihood of DPPs

Likelihood expression

Let X be a DPP on (R d , µ) with kernel K θ * and associated integral operator K θ * . Here, µ will either be the Lebesgue measure on R d or the counting measure on a regular grid of R d and K θ * belongs to a parametric family {K θ , θ ∈ Θ} where Θ is a compact subset of R p for some integer p 1. We consider an increasing domain asymptotic framework, meaning that we want to estimate θ * from a unique observation of X ∩ W n where W n is an increasing sequence of subsets of R d and we write N (W n ) for the number of points of X ∩ W n . Moreover, for all finite sets X ⊂ R d and functions F : (R d ) 2 → R, we write F [X] for the matrix (F (x, y)) x,y∈X . If F (x, y) only depends on y -x then we write F (x, y) = F 0 (y -x). Similarly, if F (x, y) only depends on y -x then we also write F (x, y) = F 0 ( y -x ) by an abuse of notation. When the kernel of a DPP satisfies the former property then the DPP is stationary and when it satisfies the latter, the DPP is isotropic. We also denote by F0 the Fourier transform of F 0 on (R d , µ) defined by

F0 (x) := R d F 0 (t) exp(-2iπt • x)dµ(t).
Finally, for all finite hermitian matrices M we write λ min (M ) (resp. λ max (M )) for the lowest (resp. highest) eigenvalue of M . If M has a countable number of rows and columns then by an abuse of notation we denote by λ min (M ) (resp. λ max (M )) the infimum (resp. supremum) of the eigenvalues of M .

We recall that for all compact sets W , the projection K W of a DPP kernel K on L 2 (W, µ) is a compact operator whose kernel can be written by Mercer's theorem as

K W (x, y) = i λ W i φ W i (x) φW i (y)
where the λ W i are the eigenvalues of K W and the φ W i are the corresponding family of orthonormal eigenfunctions (see [START_REF] Hough | Zeros of Gaussian Analytic Functions and Determinantal Point Processes[END_REF] for more details). When K < 1, we define the operator L = K(I -K) -1 with kernel L and for all compact sets W we define the operator

L W = K W (I W -K W ) -1 with kernel L W (x, y) := i λ W i 1 -λ W i φ W i (x) φW i (y).
(5.2.1)

Note that, unlike with K, the kernel L W is different from the restriction of L to L 2 (W, µ). Nevertheless, if we consider a sequence W n of increasing subsets of R d such that n W n = R d then L Wn (x, y) converges to L(x, y) for all x, y ∈ R d . Therefore, we later show that we can consider L(x, y) as an approximation of L W (x, y) when x, y ∈ W . Another difference between L W and L is that, when X is a stationary (resp. isotropic) DPP, L(x, y) only depends on y -x (resp. y -x ) but this is not true for L W . Finally, we write I for the identity operator on L 2 (R d , µ) and I W for its restriction on L 2 (W, µ) and we recall that the expression of the likelihood of DPPs results from the following property:

The stochastic part of the log-likelihood (5.2.2) is a random kernel matrix whose behavior is more difficult to control. The main issue is that det(L θ Wn [X]) vanishes when two points of X gets arbitrary close to each other but no relationship between how close some points of X are from each other and the value of the determinant is known, making the likelihood difficult to control. To the author's knowledge, the only related result is that, in most cases, the lowest eigenvalue of L θ Wn [X] is non zero iff inf x,y∈X y -x > 0 (see [4]). This motivates the idea to only consider approximations of DPPs on (εZ) d , ε > 0, an arbitrary small regular grid of R d , with kernels

ε d K[(εZ) d ].
These DPPs approximate continuous DPPs and since all points are at a distance at least ε from each other then we can bound the logarithm of both the highest and lowest eigenvalue of the stochastic part of the likelihood for all point configurations X of (εZ) d , a property that is essential for most of our results. This approximation on a small regular grid is the main limitation of our contribution. Other weaker assumptions on the DPP kernels that we consider are: Condition H: {K θ , θ ∈ Θ} is a compact family of non-negative stationary kernels on (R d , µ) such that Kθ 0 (x) exists and is positive for all x ∈ R d and θ ∈ Θ and satisfy

sup θ∈Θ Kθ 0 ∞ < 1.
Moreover, there exists constants C, C , α, α > 0 such that for all x ∈ R d and θ ∈ Θ

|K θ 0 (x)| C 1 + x α+d , ∇ x K θ 0 (x) C 1 + x α +d .
(

Finally, for all x ∈ R d , θ → K θ 0 (x) and θ → L θ 0 (x) are continuous on Θ. Most of these assumptions are not too restrictive. The continuity assumptions for θ → K θ 0 and θ → L θ 0 and positiveness of Kθ 0 are satisfied by most translation-invariant kernel families defined from covariance function that are used in spatial statistics (see [START_REF] Biscio | Quantifying repulsiveness of determinantal point processes[END_REF][START_REF] Lavancier | Determinantal point process models and statistical inference[END_REF] for more details) such as Gaussian, Laguerre-Gaussian, Whittle-Matérn, Cauchy or Bessel-type kernels, the exception being the most repulsive [START_REF] Biscio | Quantifying repulsiveness of determinantal point processes[END_REF] Bessel-type kernel whose Fourier transform is an indicator function. The rate of decay (5.2.6) needed for K 0 and ∇ x K 0 is a little bit more restrictive. All previously mentioned kernel families satisfy this condition to the exception of Bessel-type kernels whose associated covariance function is not integrable, excluding some of the most repulsive kernels. The assumption of non-negativity seems unnecessarily restrictive. It is only used in Lemma 5.A.5 to transfer properties of the continuous DPPs to their discrete approximation and not in the proof of consistency of the MLE itself. This is why we think it is not a necessary assumption. This point is still under investigation.

Similarly, some weak assumptions are also needed on the sequence of observation windows (W n ) n∈N : Condition W: W n is an increasing sequence of compact subsets of R d such that n 0 W n = R d and there exists an increasing sequence r n → +∞ such that

µ((∂W n ⊕ r n ) ∩ W n ) = o(µ(W n )).
(5.2.7)

Moreover, n 0 exp(-δµ(W n )) < +∞ (5.2.8)
for all δ > 0.

Note that condition (5.2.7) is not really restrictive and is satisfied when the boundary of W n is not too irregular. For example, if µ is the Lebesgue measure on R d , (W n ) n 0 is a sequence of increasing convex sets with inradius R n → +∞, then condition (5.2.7) is always satisfied by taking r n = √ R n . Similarly, condition (5.2.8) is also unrestrictive and will be satisfied, for example, if there exists C, α > 0 such that µ(W n ) Cn α .

Under these assumptions, we first have the following approximation of the stochastic part of the log-likelihood. Proposition 5.2.3. Let {K θ , θ ∈ Θ} be a family of DPP kernels satisfying condition (H), (W n ) n∈N be an increasing sequence of subsets of R d satisfying condition (W) and let X be the realization of a DPP on (εZ) d with kernel

K θ * ε,Wn := ε d K θ * Wn .
Then, for all θ ∈ Θ and small enough ε > 0,

E θ * 1 µ(W n ) logdet(L θ ε [X ∩ W n ]) -logdet(L θ ε,Wn [X ∩ W n ]) -→ n→+∞ 0
Furthermore, we also get that the MLE of any DDP restricted to a small enough regular grid of R d is consistent Theorem 5.2.4. Let {K θ , θ ∈ Θ} be a family of DPP kernels satisfying condition (H) and (W n ) n∈N be an increasing sequence of subsets of R d satisfying condition (W). Let θε,n be the MLE associated to an observation of a DPP X ε on (εZ) d with kernel ε d K θ * Wn where θ * ∈ Θ, then the function

l ε : θ → lim n→∞ l n (θ|X ε ∩ W n )
is well-defined on Θ almost surely for any small enough ε. Assuming that this function admits a unique maximum then θε,n a.s.

-→ θ * for any small enough ε.

Note that the assumption that the function l ε admits a unique maximum is likely superfluous but we were unable to prove it.

Correcting edge effects

The main issue of the asymptotic approximation of the likelihood is that it ignores edge effects. As shown in Section 5.3, this does not affect DPPs with low repulsion since their edge effects are minimal but has a more prominent impact in the inference of more repulsive DPPs. One way to correct this issue for isotropic DPPs (i.e. K(x, y) = K 0 ( y -x )) and rectangular windows (i. More precisely, we replace all instances of L θ 0 ( y -x ) in the determinant in the stochastic part of (5.2.5) by L θ 0 ( y -x T W ) where . T W is the flat torus metric on T W . This is equivalent to replacing L θ 0 by a periodic version of itself on the observation window. The approximate likelihood then writes

l T n (θ|X) = 1+ R d log(1-K0 (x))dµ(x)+ 1 µ(W n ) logdet L θ 0 ( y-x T Wn ) x,y∈Wn (5.2.9) (ρ, α), ρ = N (X ∩ W n )/µ(W n
) is always the maximum point of ρ → l n (X|ρ, α) for any α. This result suggests that, instead of jointly estimating ρ and θ, it is more computationally efficient to directly estimate ρ by ρ = N (X ∩ W n )/µ(W n ) and then θ by an argument of the maximum of θ → l n (X|ρ, θ).

Simulation study

In this section we perform a simulation study to investigate the performance of our approximate MLE, with and without edge effect correction, and compare it to minimum contrast estimators based on Ripley's K function or on the pair correlation function.

Performance of the approximate MLE for Gaussian-type DPPs

We consider a Gaussian family of DPP kernels in R 2

K ρ,α (x, y) = ρ exp - y -x 2 α 2 (5.3.1)
where πρα 2 1. Here, the parameter ρ controls the number of points of the point process while α controls its repulsiveness. The bound on πρα 2 is a consequence of the eigenvalues of K being in [0, 1], it can be interpreted as a trade-off between the repulsiveness of the DPP and how dense it is. It is easy to see that the exponential decay of K ρ,α 0 makes this family satisfy Condition (H) when πρα 2 is bounded by a constant strictly lower than 1. Moreover, since this family satisfy (5.2.10) then, as explained in Section 5.2.5, we will not jointly estimate (ρ, α) directly by MLE but we estimate ρ by ρ = N (X ∩ W n )/µ(W n ) and α by the argument of the maximum of α → l n (X|ρ, α). 10. We estimate α * by the approximate MLE defined in (5.2.5) and compare it to its edge-corrected version defined in (5.2.9) as well as minimum contrast estimators (MCE) based on the pair correlation function (pcf) or Ripley's K function (see [START_REF] Biscio | Contrast estimation for parametric stationary determinantal point processes[END_REF]), both being common second-order moment estimators used in spatial statistics. All simulations of the DPP have been done in R [START_REF] Core | R: A Language and Environment for Statistical Computing[END_REF] using the spatstat [7] package and both moment estimators were computed by the function dppm of the same package.

Boxplots of the difference between the estimators α and the true value α * for 500 simulations in the nine different cases are displayed in Figure 11 and corresponding mean square errors are displayed in Table 5. Note that, when α * = 0.01 and α * = 0.03, inference based on the approximate likelihood l n (X|ρ, α) outperforms moment based inference for windows bigger than [0, 2] 2 . These results are expected from maximum likelihood based inference and shows that hundreds of points are enough for l n (X|ρ, α) to be a good enough approximation of the true likelihood when the underlying DPP is not too repulsive. The issue lies within the case α * = 0.05 where the estimation is heavily biased due to strong edge effects making l n (X|ρ, α) not a good approximation of the true likelihood for low values of n. As can be seen in Figure 12, l n (X|ρ, α) will usually be decreasing with respect to On the other hand, the correction introduced in (5.2.9) gives more accurate values of the likelihood for high values of α as can be seen in Figure 12. This explains why this estimator outperforms the others in nearly every cases and especially the most repulsive ones. The main issue of this correction is that it is limited to rectangular windows but these results suggest that, for a window with a different shape, using a similar idea of replacing the euclidean distance in the expression of l n (X|θ) with a distance that brings points on the edge closer to each other should give similar results.

Finally, the main drawback with the MLE is its heavy computation time required due to the need to optimize a function defined as the log-determinant of an n×n matrix, where n is the number of points observed. For comparison, each MCE took less than 1 second on a regular computer to compute one estimator in each case considered in Figure 11 but each computation of the approximate MLE took about a second when W = [0, 1] 2 , about 20 seconds when W = [0, 2] 2 and about 100 seconds when W = [0, 3] 2 .

Proofs of Section 5.2

In this section, we give the proofs of the propositions stated in Section 5.2. We will use several times these two expressions of the expectation of a functional of X:

E θ * [f (X ∩ W )] = det(Id -K θ W ) k 0 1 k! W k f (x) det(L θ * W [x])dµ(x) (5.4.1) 
E θ *   = x 1 ,••• ,x k ∈X∩W f (x 1 , • • • , x k )   = W k f (x) det(K θ * [x])dµ(x) (5.4.2)
for all W compact, f : n 0 W n → R symmetrical and integrable and where the symbol = in the second expression means that the sum is over p-tuples of distinct points of X ∩ W . Here, (5.4.1) is the consequence of Theorem 5.2.1 while (5.4.2) is the definition of the k-th order intensity function of a determinantal point process. In the proofs of Propositions 5.2.3 and 5.2.4, as explained in Section 5.2, we work with DPPs on ((εZ) d , µ), where µ is the counting measure on εZ d and with kernels K θ ε (x, y) := ε d K θ (x, y). In this case, the associated integral operator K ε is simply the infinite matrix K ε [(εZ) d ] and L ε can be simply defined as the infinite matrix Moreover, there exists constants C, C , α, α > 0 such that for all x ∈ (εZ) d and θ ∈ Θ

K ε [(εZ) d ](Id - K ε [(εZ) d ]) -1 when K ε < 1.
|K θ 0,ε (x)| C 1 + x α+d and |L θ 0,ε (x)| C 1 + x α +d .
(5.4.3)

In the proofs of Propositions 5.2.3 and 5.2.4, we mostly avoid using ε in indices as to avoid a clutter of notations. And finally, we will consider the following constants:

λ θ m := λ min (K θ ε ), λ θ M := (1 -λ max (K θ ε )) -1 and A Θ := sup Θ max(| log(λ θ m )|, | log(λ θ M )|).
In particular, A Θ < +∞ under condition H ε .

Lemma 5.4.2. Let X be a DPP on (εZ) d with kernel K and W ⊂ (εZ) d , then

λ min (L[X ∩ W ]) λ min (K), λ min (L W [X ∩ W ]) λ min (K) and λ max (L[X ∩ W ]) (1 -λ max (K)) -1 , λ max (L W [X ∩ W ]) (1 -λ max (K)) -1 Proof. Since L[X ∩ W ] is a sub-matrix of L[(εZ) d ] := L = K(Id -K) -1
then by [START_REF] Johnson | Matrix Analysis[END_REF]Theorem 4.3.28], we know that λ max (L[X ∩ W ]) λ max (L) (1 -λ max (K)) -1 and λ min (L[X ∩ W ]) λ min (L) λ min (K). We get the second set of inequalities with the same reasoning applied to L W and by using the fact that λ min (K W ) λ min (K) and λ max (K W ) λ max (K) since K W is a sub-matrix of K.

Lemma 5.4.3. Under the same assumptions as Proposition 5.2.3, for all θ ∈ Θ,

1 µ(W n ) logdet(L θ Wn [X ∩ W n ]) -E θ * [logdet(L θ Wn [X ∩ W n ])] a.s. -→ 0 Proof. Let X ⊂ W n and a ∈ W n \X, then for all θ ∈ Θ, logdet(L θ Wn [X ∪ {a} ∩ W n ]) -logdet(L θ Wn [X ∩ W n ]) = log det(L θ Wn [X ∪ {a} ∩ W n ]) det(L θ Wn [X ∩ W n ])
.

By Lemma 5.4.2 and [60, Theorem 4.3.28], we get

λ θ m λ min (L θ Wn [X ∪ {a} ∩ W n ]) det(L θ Wn [X ∪ {a} ∩ W n ]) det(L θ Wn [X ∩ W n ]) λ max (L θ Wn [X ∪ {a} ∩ W n ]) λ θ M .
This shows that µ(W n ) -1 logdet(L θ Wn [.]) is a Lipschitz function on the finite point configurations in W n with constant A Θ /µ(W n ). By Theorem 3.5 of [START_REF] Pemantle | Concentration of lipschitz functionals of determinantal and other strong rayleigh measures[END_REF], we get for all a ∈ R +

P θ * 1 µ(W n ) logdet(L θ Wn [X ∩ W n ]) -E θ * [logdet(L θ Wn [X ∩ W n ])] > a 5 exp - a 2 µ(W n ) 2 /A 2 Θ 16(aµ(W n )/A Θ + 2E θ * [N (W n )]) . (5.4.4) Since E θ * [N (W n )] = K θ * 0 (0)µ(W n ) then the right term in (5.4.4) is O(exp(-a 2 µ(W n ))
) and vanishes when n goes to infinity uniformly in θ giving us the convergence in probability. Additionally, since W n satisfies (5.2.8) then by the Borel-Cantelli Lemma the convergence holds almost surely. Now, it only remains to show that Finally, if we write L| W the projection of L on L 2 (W ) then

1 µ(W n ) logdet(L θ [X ∩ W n ]) -logdet(L θ Wn [X ∩ W n ]) (5.
0 L| W -L W N W .
Proof. We denote by P the projection on L 2 (W ), P ⊥ the projection on L 2 (W c ), Id the identity operator on L 2 (R d ), Id W the identity operator on L 2 (W ) and Id W C the identity operator on L 2 (W C ). Since K W is by definition equal to the projection of K on L 2 (W ), with these notations we can write

M = Id W -K W -PKP ⊥ -P ⊥ KP Id W C -K W C = (L W + Id W ) -1 -PKP ⊥ -P ⊥ KP (L W C + Id W C ) -1
and

M -1 = L| W + Id W PLP ⊥ P ⊥ LP L| W C + Id W C .
Then, using the Schur complement we get

0 L| W -L W = PLP ⊥ (L| W C + Id W C ) -1 P ⊥ LP.
Finally, since N W is defined as (PLP ⊥ )(P ⊥ LP) and (L|

W C + Id W C ) -1
Id W C this concludes the first part of the lemma. Now, we rewrite (5.4.5) as

E θ * 1 µ(W n ) logdet Id + (L θ [X ∩ W n ] -L θ Wn [X ∩ W n ])L θ Wn [X ∩ W n ] -1 .
By Lemma 5.4.4 we know that

0 L θ [X ∩ W n ] -L θ Wn [X ∩ W n ] N θ Wn [X ∩ W n ]
where N θ is defined as in Lemma 5.4.4. Therefore, using Lemma 5.A.3 we obtain the expression

0 logdet(L θ [X ∩ W n ]) -logdet(L θ Wn [X ∩ W n ]) Tr(N θ Wn [X ∩ W n ]L θ Wn [X ∩ W n ] -1 ). But, since λ min (L θ Wn [X ∩ W n ]) λ θ m by Lemma 5.4.2 then E θ * [Tr(N θ Wn [X ∩ W n ]L θ Wn [X ∩ W n ] -1 )] (λ θ m ) -1 E θ * [Tr(N θ Wn [X ∩ W n ])] = (λ θ m ) -1 E θ *   x∈X∩Wn N θ Wn (x, x)   = (λ θ m ) -1 Wn N θ Wn (x, x)K θ * 0 (0)dµ(x) = (λ θ m ) -1 K θ * ∞ Tr(N θ Wn ).
Finally, we write

1 µ(W n ) Tr(N θ Wn ) = 1 µ(W n ) Wn×W c n L θ 0 (y -x) 2 dµ(x)dµ(y).
But, by Condition (H ε ), L θ 0 is a square integrable function on (εZ) d for all θ, ε. Therefore, by Lemma 5.A.4,

1 µ(W n ) Wn×R d L θ 0 (y -x) 2 dµ(x)dµ(y) - Wn×Wn L θ 0 (y -x) 2 dµ(x)dµ(y) -→ n→+∞ 0 hence µ(W n ) -1
Tr(N θ Wn ) vanishes when n → +∞ concluding the proof.

Proof of Theorem 5.2.4

In order to prove Theorem 5.2.4, we first show that the likelihood converges to a continuous limit θ → l(θ) admitting a unique maximum in θ * . We then conclude by showing that the convergence is uniform in θ. Once again, X is considered to be a DPP on (εZ) d from a parametric family satisfying Condition (H ε ) and the the sequence of observation windows (W n ) n 0 satisfy Condition (W).

Lemma 5.4.5. Under the same assumptions as Theorem 5.2.4, µ(W n ) -1 E θ * [l n (X|θ)] converges to a limit l(θ) for all θ ∈ Θ. Moreover, the function l is continuous on Θ.

Proof. We saw in section 5.4.1 that the deterministic part of l n (X|θ) converges uniformly to a continuous function. Moreover, we showed in Section 5.4.2 that 

lim n→+∞ 1 µ(W n ) E θ * [log det(L θ Wn [X ∩ W n ])] -E θ * [logdet(L θ [X ∩ W n ])] = 0 so we only need to show the convergence of µ(W n ) -1 E θ * [logdet(L θ [X ∩ W n ])]
(L θ [X ∩ W n ])) = Tr(log(L θ [X ∩ W n ])) = N (W n )A Θ + Tr log(Id -(Id -L θ [X ∩ W n ]/e A Θ )) = N (W n )A Θ - k 1 1 k Tr (Id -L θ [X ∩ W n ]/e A Θ ) k . We know that µ(W n ) -1 E θ * [N (W n )A Θ ] = K θ * 0 (0)A Θ . Moreover, by Lemma 5.4.2 we get the bound 1 kµ(W n ) E θ * Tr((Id -L θ [X ∩ W n ]/e A Θ ) k ) (5.4.6) E θ * [N (W n )] kµ(W n ) λ max (Id -L θ [X ∩ W n ]/e A Θ ) k K θ * 0 (0) k 1 - λ θ m e A Θ k K θ * 0 (0) k 1 -e -2A Θ k . ( 5 
(W n ) -1 E θ * [Tr((Id -L θ [X ∩ W n ]/e A Θ ) k )], and thus µ(W n ) -1 E θ * [Tr(L θ [X ∩ W n ] k )]
, converges for all k to conclude. Moreover, the dominated convergence theorem also tells us that after proving the convergence, we will only need to show that lim

n→+∞ µ(W n ) -1 E θ * [Tr(L θ [X ∩ W n ] k )]
is continuous for all k to prove the continuity of the limit function.

We can develop the trace the following way:

Tr(L θ [X ∩ W n ] k ) = x 1 ,••• ,x k ∈(X∩Wn) k f θ (x 1 , • • • , x k )
where we define the function

f θ : (R d ) k → R by f θ : x → L θ 0 (x 2 -x 1 )L θ 0 (x 3 -x 2 ) • • • L θ 0 (x n -x n-1 )L θ 0 (x 1 -x k ).
Since we only know an expression of the expectation when the sum is over distinct points of X ∩ W n we need to split the sum into all the different cases possible. Let V k be the set of partitions of {1,

• • • , k}. For all V = {V 1 , • • • , V l } ∈ V k , we write v j i for the elements of V i where 1 j |V i |.
We also define the function f θ V : (R d ) l → R where we made identical all variables in f θ (x) whose indices are in a same subset of V (an example is given in 5.4.6). We also define the function h V the same way, where h is the function dominating all L θ 0 in Condition (H ε ). Finally, we write δ V (x) for the function equal to 1 if, for all 1 i, j k, x i = x j when i and j are in the same subset of V and x i = x j when i and j are in different subsets, and 0 otherwise. With these notations, we can use (5.4.2) to express the expectation of Tr

(L θ [X ∩ W n ] k ) as E θ * [Tr(L θ [X ∩ W n ] k )] = E θ *   x 1 ,••• ,x k ∈(X∩Wn) k V ∈V k f θ (x)δ V (x)   = V ∈V k W |V | n f θ V (y) det(K θ * [y])dµ(y).
We want to show that all f θ V are integrable with respect to their |V |-1 last coordinates in order to apply Lemma 5.A.4. We say that two sets V i and V j of the partition V are connected if there exists a ∈ V i and b ∈ V j such that |a -b| = 1 (mod k). This way, we define a graph G = (V, E) where E = {(V i , V j ), V i and V j are connected} (an example is given in 5.4.6). It is easy to show that this graph is connected. Thus, we can write

|f θ V (y)| L θ k-|E| ∞ (Va,V b )∈E |L θ 0 (y b -y a )|. For all i ∈ {1, • • • , |V |}, we define G[i] = (V [i], E[i]
) as the graph induced by cutting the vertex V i . Since we assumed that L θ ∈ L 1 ((εZ) d , µ) and we know that V i is not an isolated vertex, we get

R d |f θ V (y)|dµ(y i ) L θ 0 k-|E| ∞ (Va,V b )∈E[i] |L θ 0 (y b -y a )| R d {j:(V i ,V j )∈E} |L θ 0 (y j -y i )|dµ(y i ) L θ 1 L θ k-|E[i]|-1 ∞ (Va,V b )∈E[i] |L θ 0 (y b -y a )|.
So, we can keep integrating with respect to other variables y j as long as V j is not an isolated vertex of G[i]. Thus, proving that f θ V is integrable with respect to its |V | -1 last coordinates is equivalent to showing that there exists a sequence of removal of all but one vertices from G that doesn't make the graph unconnected at any step. This can be done by only removing non articulation points. Since any connected graph with more than 2 points has at least 2 non articulation points this can always be done. By induction, this shows that

R d |f θ V (y)|dy 2 • • • dy l L θ |V |-1 1 L θ k-(|V |-1) ∞ (5.4.8)
and thus all f θ V are integrable with respect to their |V | -1 last coordinates. Moreover, since f θ V and K θ * are translation invariant, then

lim n→+∞ 1 µ(W n ) Wn×(R d ) l-1 f θ V (y) det(K θ * [y])dµ(y) = (R d ) l-1 f θ V (0, z 2 , • • • , z l ) det(K θ * [0, z 2 , • • • , z l ])dµ(z 2 ) • • • dµ(z l )
by Lemma 5.A.4 which shows the convergence. Finally, the function

θ → f θ V (0, z 2 , • • • , z l ) det(K θ * [0, z 2 , • • • , z l ])
is continuous for all z i and is bounded by

K θ * l ∞ h V (0, z 2 , • • • , z l )
which is integrable and doesn't depends on θ, proving that the limit is continuous.

Example 5.4.6. If n = 8 and V = {{1, 4}, {2}, {3}, {5, 7, 8}, {6}} then f V is written

f θ V (y 1 , y 2 , y 3 , y 4 , y 5 ) = f θ (y 2 -y 1 )f θ (y 3 -y 2 )f θ (y 1 -y 3 )f θ (y 4 -y 1 )f θ (y 5 -y 4 )f θ (y 4 -y 5 )f θ (0)f θ (y 1 -y 4 )
and the associated graph is

y 1 y 2 y 3 y 4 y 5
This result, combined with Lemma 5.4.4, shows that the function

l : θ → lim n→∞ l n (θ|X ε ∩ W n )
is well-defined almost surely for all θ ∈ Θ and continuous. We assumed that this function has a unique maximum and since we know that

E θ * [l n (θ * |X) -l n (θ|X)] = 1 µ(W n ) D KL (P θ * Wn P θ Wn ) 0
where D KL is the Kulback-Leibler divergence and P θ Wn is the probability measure associated with the DPP with kernel K θ Wn , taking the limit yields that

l(θ * ) l(θ)
for all θ ∈ Θ. Therefore, θ * is the unique maximum of l. Finally, in order to conclude, we need to show that the almost sure convergence of the likelihood towards l is uniform in θ. We showed that l is continuous and we also showed in Section 5.4.1 that the deterministic part of the likelihood uniformly converges with respect to θ. Thus, it remains to prove the uniform convergence of the stochastic part of the likelihood. Consider the function

φ θ 0 (η) = lim sup n→+∞ sup |θ-θ 0 | η 1 µ(W n ) |logdet(L θ Wn [X ∩ W n ]) -logdet(L θ 0 Wn [X ∩ W n ])|.
Let Θ d be a countable dense subset of Θ and

θ 1 ∈ Θ d such that |θ 1 -θ 0 | η. Then, φ θ 0 (η) 2 lim sup n→+∞ sup |θ-θ 1 | 2η 1 µ(W n ) |logdet(L θ Wn [X ∩ W n ]) -logdet(L θ 1 Wn [X ∩ W n ])| 2 lim sup n→+∞ sup |θ-θ 1 | 2η 1 µ(W n ) |logdet(L θ [X ∩ W n ]) -logdet(L θ 1 [X ∩ W n ])| + 2 lim sup n→+∞ sup θ∈Θ 1 µ(W n ) |logdet(L θ [X ∩ W n ]) -logdet(L θ Wn [X ∩ W n ])|. By Lemma 5.A.2, we get 1 µ(W n ) |logdet(L θ [X ∩ W n ]) -logdet(L θ 1 [X ∩ W n ])| e A Θ N (W n ) µ(W n ) Tr (L θ [X ∩ W n ] -L θ 1 [X ∩ W n ]) 2 =e A Θ N (W n ) µ(W n )   N (W n ) µ(W n ) |L θ 0 (0) -L θ 1 0 (0)| 2 + 1 µ(W n ) = x,y∈X∩Wn |L θ 0 (y -x) -L θ 1 0 (y -x)| 2   1/2 .
Then, by the strong law of large number in Lemma 5.A.1, we obtain that lim sup

n→+∞ sup |θ-θ 1 | 2η |logdet(L θ [X ∩ W n ]) -logdet(L θ 1 [X ∩ W n ])| is bounded by e A Θ √ C C sup |θ-θ 1 | 2η |L θ 0 (0) -L θ 1 0 (0)| 2 + R d sup |θ-θ 1 | 2η |L θ 0 (z) -L θ 1 0 (z)| 2 (K θ * 0 (0) 2 -K θ * 0 (z) 2 )dµ(z) 1/2
where the bound is true for all event on a set with probability 1 since we applied the law of large number twice for each θ 1 ∈ Θ d which are countable. Finally, |L θ (0) -L θ 1 (0)| 2 vanishes when |θ -θ 1 | → 0 by continuity of θ → L θ (x) for all x and the integral also vanishes by dominated convergence since all L θ are dominated by a square integrable function.

and then

sup θ∈Θ |logdet(L θ Wn [X ∩W n ])-g(θ)| sup Θ d φ θ (1/k)+ max 1 i q k |logdet(L θ k i Wn [X ∩W n ])-g(θ k i )| + sup |θ-θ |<1/k |g(θ ) -g(θ)|.
Finally, we can choose k such that sup θ∈Θ d φ θ (1/k) and sup |θ-θ |<1/k |g(θ ) -g(θ)| are arbitrary small with probability 1 and since max

1 i q k |logdet(L θ k i Wn [X ∩ W n ]) -g(θ k i )| vanishes for all k also with probability 1 then sup θ∈Θ |logdet(L θ Wn [X ∩ W n ]) -g(θ)| a.s.
-→ 0.

Finally, we can conclude about the consistency of θn by first assuming that θn doesn't converge almost surely towards θ * . In that case, for all event ω in a set of probability > 0 there exist a subsequence φ(n) and ε > 0 such that | θφ(n) (ω) -θ * | > ε. But, since Θ is compact, then there also exists a subsequence θψ(n) (ω) of θφ(n) (ω) that converges towards a certain θ 0 (ω) ∈ Θ. We know that for all θ ∈ Θ,

l ψ(n) ( θψ(n) (ω)|X) > l ψ(n) (θ|X).
The right term converges almost surely to l(θ) and the left term converges almost surely to l(θ 0 (ω)) by uniform convergence and continuity of l. Thus, θ 0 (ω) = θ * almost surely by uniqueness of the maximum which contradict our previous assumption. Therefore, θn converges almost surely towards θ * .

5.A Technical Lemmas

When W n is a convex averaging sequence, the following Lemma is a well-known result as a consequence of DPPs being ergodic. Since our setting is slightly different, we provide a different proof. Lemma 5.A.1. Let X be a stationary DPP on (R d , µ) with kernel K 0 (.) ∈ L 2 (R d , µ) and assume that W n satisfies Condition (W). Then,

N (W n ) µ(W n ) a.s.
-→ K 0 (0). Pemantle and Peres [81] inequality, we get

and for all bounded function

f ∈ L 1 (R d , µ), 1 µ(W n ) = x,y∈X∩Wn f (y -x) a.s. -→ R d f (x)(K 0 (0) 2 -K 0 (x) 2 )dµ(x) Proof. We have E[µ(W n ) -1 N (W n )] = K 0 (0) and since N (W n ) is a 1-Lipschitz function then by
P θ * N (W n ) µ(W n ) -K 0 (0) > 1 k 5 exp - µ(W n ) 2 16(kµ(W n ) + 2k 2 K 0 (0)µ(W n )) which is summable w.r.t. k by our assumption on W n hence µ(W n ) -1 N (W n ) a.s.
-→ K 0 (0) by Borel-Cantelli's lemma.

For the second expression, we define

S W := = x,y∈X∩W f (y -x).
and we first assume that f is non-negative. We can get the limit of the expectation of µ(W n ) -1 S n by Lemma 5.A.4 since W n satisfies (5.2.7):

E S Wn µ(W n ) = 1 µ(W n ) W 2 n f (y -x) det(K[0, y -x])dµ(x)dµ(y) -→ n→+∞ R d f (x) det(K 0 (0) 2 -K 0 (x) 2 )dµ(x).
We can also develop the variance into

Var S Wn µ(W n ) = 1 µ(W n ) 2   2 W 2 n f (y -x) 2 det(K[0, y -x])dµ(x)dµ(y) + 4 W 3 n f (y -x)f (z -x) det(K[0, y -x, z -x])dµ 3 (x, y, z) + W 4 n f (y -x)f (t -z) det(K[x, y, z, t]) -det(K[x, y]) det(K[z, t]) dµ 4 (x, y, z, t)    . (5.A.1)
The first term in (5.A.1) is bounded by

2µ(W n ) K 2 ∞ R d f (z) 2 dµ(z) = O(µ(W n )).
Similarly, the second term in (5.A.1) is bounded by

4µ(W n ) K 3 ∞ R d f * 2 (z)dµ(z) = O(µ(W n )).
In order to bound correctly the last term, we remark that

det(K[x, y, z, t]) -det(K[x, y]) det(K[z, t])
can be expanded into 20 terms, each bounded by

K 3 ∞ |K(y -t)|, K 3 ∞ |K(y -z)|, K 3 ∞ |K(x -t)| or K 3 ∞ |K(x -z)|. Moreover, we have W 4 n f (y -x)f (t -z)|K 0 (y -t)|dµ(x)dµ(y)dµ(z)dµ(t) µ(W n ) R d (f * |K 0 | * f )(x)dµ(x) = O(µ(W n )) (5.A.2)
and all other terms can be dealt the same way. Finally, the variance (5

.A.1) is O(µ(W n ) -1 ) which is summable if µ(W n ) ∼ n 2 . In that case, 1 µ(W n ) = x,y∈X∩Wn f (y -x) a.s. -→ R d f (x) det(K 0 (0) 2 -K 0 (x) 2 )dµ(x)
using Bienaymé-Tchebychev's inequality and Borel-Cantelli's lemma. In the more general case, since µ(W n ) → +∞ then we can choose a sequence (V n ) n∈N such that µ(V n ) ∼ n 2 and for all n there exists a unique m such that W m ⊂ V n ⊂ W m+1 . Now, for all k, there exists n such that V n ⊂ W k ⊂ V n+1 and since S W is increasing then

S Vn µ(V n ) µ(V n ) µ(V n+1 ) S W k µ(W k ) S V n+1 µ(V n+1 ) µ(V n+1 ) µ(V n ) .
The right and left term of the inequality converges almost surely towards their expectation since µ(V n ) ∼ n 2 which conclude the proof when f is non-negative. The general case is obtained by decomposing f into its positive and negative part and applying the previous result to each part.

Lemma 5.A.2. For all n × n symmetrical positive definite matrix A, B,

|logdet(A) -logdet(B)| √ n A -B F max(λ min (A) -1 , λ min (B) -1 )
where . F is the Froebenius norm.

Proof. Let f : t → logdet(tA + (1 -t)B). It's derivative is equal to f (t) = Tr((A -B)(tA + (1 -t)B) -1 ). Moreover, λ min (tA + (1 -t)B) tλ min (A) + (1 -t)λ min (B) min(λ min (A), λ min (B)) therefore sup [0,1] |f (t)| A-B F (tA+(1-t)B) -1 F √ n A-B F max(λ min (A) -1 , λ min (B) -1 ).
Since f (0) = logdet(B) and f (1) = logdet(A) we get the desired bound. In the general case, Sylvester's determinant identity gives us 0 logdet(I + AB) = logdet(I + A 1/2 BA 1/2 ) Tr(A 

⊕ r n ) ∩ W n ) = o(µ(W n )), then 1 µ(W n ) W k n f (x)dµ(x) -→ n→+∞ (R d ) k-1 f (0, x 2 , • • • , x k )dµ(x 2 ) • • • dµ(x k ) (5.A.3)
Proof. We write W n r n for the set W n \(∂W n ⊕ r n ) of points at distance at least r n from the boundary of W n . Since f is translation invariant then the right term in

(5.A.3) is equal to 1 µ(W n ) Wn×(R d ) k-1 f (x)dµ(x).
Then,

(R d ) k-1 f (0, x 2 , • • • , x k )dµ(x 2 ) • • • dµ(x k ) - 1 µ(W n ) W k n f (x)dµ(x) = 1 µ(W n ) Wn×R d(k-1) \(W k-1 n ) f (x)dµ(x) = 1 µ(W n ) Wn rn R d(k-1) \(W k-1 n ) f (x)dµ(x) + 1 µ(W n ) (∂Wn⊕rn)∩Wn R d(k-1) \(W k-1 n ) f (x)dµ(x) 1 µ(W n ) Wn rn (R d ) k-1 f (0, y)1 {∀i, y i >rn} dµ(y) dµ(x) + 1 µ(W n ) (∂Wn⊕rn)∩Wn (R d ) k-1 f (0, y)dµ(y) dµ(x) B(0,rn) k-1 f (0, y)dµ(y) + µ((∂W n ⊕ r n ) ∩ W n ) µ(W n ) f (0, .) L 1
which converges to 0 because f is integrable with respect to its last k -1 variables.

Lemma 5.A.5. Let {K θ , θ ∈ Θ} be a compact family of DPP kernels on R d (with the Lebesgue measure) satisfying Condition (H) and, for all ε, define K θ ε (x, y) := ε d K θ (x, y). Then, for small enough ε, {K θ ε , θ ∈ Θ} is a compact family of DPP kernels on (εZ) d (with the counting measure µ) satisfying condition (H ε ).

Proof. First, we need to show that sup Θ K θ ε [(εZ) d ] is an hermitian matrix with eigenvalues in [0, 1] for a small enough ε. This property is part of Condition (H ε ) but also implies that the associated DPP is well defined. By Gershgorin circle theorem and the positiveness of K θ , the eigenvalues of K

ε := K θ ε [(εZ) d ] are bounded by x∈(εZ) d ε d K θ 0 (x).
Moreover, we can write sup

Θ x∈(εZ) d ε d K θ 0 (x) - R d K θ 0 (x)dx ε √ d 2 ε d x∈(εZ) d sup Θ sup x∈Cx,ε ∇ x K θ 0 (x) ε √ d 2 ε d x∈(εZ) d sup t∈Cx,ε C 1 + t α +d
where C x,ε is the d-dimensional hypercube centered in x with side length ε and the last inequality is obtained as a consequence of Condition (H

). If x 3ε √ d/2 then we can write sup t∈Cx,ε C 1 + t α +d C 1 + ( x -ε √ d/2) α +d inf t∈Cx,ε C 1 + ( t -ε √ d) α +d ε -d Cx,ε C 1 + ( x -ε √ d) α +d dx hence sup Θ x∈(εZ) d ε d K θ 0 (x) - R d K θ 0 (x)dµ(x) ε √ d 2       ε d x∈(εZ) d x 3ε √ d/2 sup t∈Cx,ε C 1 + t α +d + R d C 1 + x α +d dx      
which vanishes when ε → 0. Therefore, the largest eigenvalue of K ε uniformly converges to Kθ 0 (0) < 1 hence, we can find a small enough ε such that sup Θ K θ ε [(εZ d )] < 1 and the associated DPPs are all well-defined. Moreover, it is proved in [4] that, under the assumption that

|K θ 0 (x)| C 1 + x α+d and ∀x ∈ R d , inf Θ Kθ 0 (x) > 0,
both being satisfied as a consequence of Condition (H), then inf Θ λ min (K θ ε [(εZ d )]) > 0. Finally, in order to show the bound (5.4.3) on L 0 , recall that we can write

L 0,ε (x) = n 1 K 0,ε (x) * n
where * n denotes the n-th self discrete convolution on Z d . Therefore,

sup x |L θ 0,ε (x)| C n 0   ε d x∈(εZ d ) |K θ 0 (x)|   n . But, since ε has been chosen such that sup Θ ε d x∈(εZ) d K θ 0 (x) < 1
and K θ 0 is positive, we get a uniform bound for L θ 0,ε . Now,

K θ 0,ε (x) * n = ε nd y 1 ,••• ,yn∈(εZ) d K θ (y 1 )K θ (y 2 -y 1 ) • • • K θ (x -y n ) and since at least one element of { y 1 , y 2 -y 1 , • • • , x -y n } is greater than x /n, then |K θ 0,ε (x) * n | n Cn α+d x α+d   ε d x∈(εZ d ) |K θ 0 (x)|   n . But, since ε has been chosen such that sup Θ ε d x∈(εZ) d K θ 0 (x) < 1 then sup Θ n 0 Cn α+d+1   ε d x∈(εZ d ) |K θ 0 (x)|   n < +∞
giving us the desired bound on L θ 0,ε . Proposition 5.A.6. Let X be a DPP with Bessel kernel

K ρ,α (x, y) = ρ2 d/2 Γ(d/2 + 1) J d/2 ( √ 2d y -x /α) ( √ 2d y -x /α) d/2 , then, for all α > 0, N (W n ) µ(W n ) ∈ arg max 0<ρ<v α d l n (X|ρ, α) (5.A.4)
where

v α d = d d/2 (2πα 2 ) d/2 Γ(d/2 + 1)
is the upper bound for ρ for which X is well-defined.

Proof. The Fourier transform of the Bessel kernel is known:

K0 (x) = ρ v α d 1 x d 2π 2 α 2
By noticing that v α d is the volume of the d-dimensional ball with radius

d 2π 2 α 2 , we get that R d log(1 -Kρ,α 0 (x))dµ(x) = v α d log(1 -ρ/v α d ).
Moreover, L ρ,α can be written as

ρ 1-ρ/v α d F α
, where F α is a function not depending on ρ. Therefore, logdet(L ρ,α [X ∩ W n ]) can be expressed as the sum of

N (W n ) log ρ 1 -ρ/v α d
and an expression not depending on ρ. Finally, l n (X|ρ, α) is twice differentiable with respect to ρ with derivative

-1 1 -ρ/v α d + N (W n ) µ(W n )ρ(1 -ρ/v α d )
.

It is easy to see that this expression vanishes only when ρ = N (W n )/µ(W n ) with the second derivative being negative at this point, concluding the proof.

conclude in the last step. We also say that an event A ignores i (or does not depends on i) if A ∈ σ(X\{i}). This is equivalent to saying that for all X ∈ A , X ∪ {i} ∈ A and X\{i} ∈ A .

Step 1: In the first step of the proof, we consider that X is a projection DPP (see Proposition A.1.4) and that F = X i and G = 1 A where A is an increasing event ignoring i. In this case, the negative association property (A.1.1) can be written as

E[X i 1 A ] E[X i ]P(A ). (A.1.2)
If E[X i ] = 0 or 1 the result is trivial so we consider that E[X i ] ∈]0, 1[. This inequality is then equivalent to P(A |i ∈ X) P(A ) as well as P(A ) P(A |i / ∈ X). By combining these two inequalities we get that (A.1.2) is also equivalent to P(A |i ∈ X) P(A |i / ∈ X). In the end, we obtained three inequalities equivalent to the one we want to prove that we use throughout the proof.

(A.1.2) ⇔ P(A |i ∈ X) P(A ) ⇔ P(A ) P(A |i / ∈ X) ⇔ P(A |i ∈ X) P(A |i / ∈ X). (A.1.3)
We show that X satisfies these inequalities by induction on the size of [n]. The key property making the induction work is Proposition A.1.5 stating that the measures P(.|i / ∈ X) and P(. ∪ {i}|i ∈ X) are still projection determinantal measures on [n]\{i} for all i ∈ [n]. n=1: In this case, X i = X 1 so A = ∅ or P( [1]). If A = ∅ then X i 1 A = 0 and otherwise P(A) = 1 so the negative association is satisfied in both cases. n-1 → n: We consider that all projection DPPs on [l], where l n -1, satisfies (A.1.2). If we consider the case where P(i, j ∈ X) = 0 for all j = i, we get

P(A |i ∈ X) = P(A |X = {i}) = 1 if {i} ∈ A 0 otherwise. If P(A |i ∈ X) = 0 then (A.1.
2) is satisfied. Otherwise, {i} ∈ A and since A ignore i then ∅ ∈ A and thus, because A is increasing, we get A = P([n]) which implies (A.1.2).

We then consider the case where the set C := {j ∈ [n], P(i, j ∈ X) = 0} contains an element distinct from i. The fact that j X j = k = j P(j ∈ X) gives us

j∈[n] j =i E[X j 1 A |i ∈ X] = (k -1)P(A |i ∈ X) =      j∈[n] j =i P(j ∈ X|i ∈ X)      P(A |i ∈ X).
But, if j ∈ C then, conditionally to i ∈ X, j / ∈ X a.s. so the previous equality stays true if we consider sums on [n]\C instead. In particular, we can choose a j / ∈ C distinct from i such that

E[X j 1 A |i ∈ X] E[X j |i ∈ X]P(A |i ∈ X).
This inequality correspond to the reverse of (A.1.2) conditionally to i ∈ X. We can especially deduce that we have the same equivalence as (A.1.3) but with opposite signs, hence j satisfies

P(A |i, j ∈ X) P(A |i ∈ X, j / ∈ X). (A.1.4)
Since we took j such that P(i, j ∈ X) = 0, when conditioning P(A |i ∈ X) by j we get

P(A |i ∈ X) = P(A |i, j ∈ X)P(j ∈ X|i ∈ X) + P(A |i ∈ X, j / ∈ X)P(j / ∈ X|i ∈ X) (A.1.5)
Lemma A.1.6. Let A be an increasing event of P([n]) ignoring i and j = i ∈ [n]. We define the events A /j = {X ∈ A : j ∈ X} and A \j = {X ∈ A : j / ∈ X} in σ(X\{j}). These events are increasing and ignore i.

Proof. Let's start by showing that they are increasing. Let X ∈ A /j and Y ⊂ [n] containing X. Since A is increasing and j ∈ X then Y ∈ A and j ∈ Y so Y ∈ A /j which shows that A /j is increasing. Similarly, let X ∈ A \j and X ⊂ Y ⊂ [n]\{j}. Then j / ∈ Y and since A is increasing then Y ∈ A so Y ∈ A \j and we can conclude that A \j is increasing. Now, let's show that they ignore i. Let X ∈ A /j and thus X ∈ A and j ∈ X. Since A ignores i then X ∪ {i} and X\{i} are also elements of A that contains j so X ∪ {i} ∈ A /j and X\{i} ∈ A /j hence A /j ignores i. Similarly, let X ∈ A \j and thus j / ∈ A . Since A ignore i then X ∪ {i} and X\{i} are also element of A that doesn't contain j so X ∪ {i} ∈ A \j and X\{i} ∈ A \j hence A \j ignores i.

This lemma allows us to apply the induction hypothesis to P(A /j|j ∈ X) and P(A \j|j / ∈ X). As a consequence, we get

P(A |i, j ∈ X) = P(A /j|i, j ∈ X) P(A /j|i / ∈ X, j ∈ X) = P(A |i / ∈ X, j ∈ X)
as well as

P(A |i ∈ X, j / ∈ X) = P(A \j|i ∈ X, j / ∈ X) P(A \j|i, j / ∈ X) = P(A |i, j / ∈ X).
By applying these two inequalities to (A.1.6), we get the result we were looking for:

P(A |i ∈ X) P(A |i / ∈ X, j ∈ X)P(j ∈ X|i / ∈ X) + P(A |i / ∈ X, j / ∈ X)P(j / ∈ X|i / ∈ X) = P(A |i / ∈ X).
Step 2: In the second step of the proof, we consider that F = 1 A and G = 1 B

where A and B are increasing events in, respectively, σ(X ∩ A) and σ(X ∩ B). If P(B) = 0 the result is trivial so we consider the case where P(B) > 0. The negative association property (A.1.1) can be written in this case as P(A )P(B) P(A ∩ B) ⇔ P(A ) P(A |B).

This inequality is proved by induction on the size of [n]. n=1: By symmetry, we suppose that A depends on X 1 and B ignores 1. The only increasing event of P({1}) depending on 1 is {1 ∈ X} so 1 A = X 1 which was done in step 1. n-1 → n: In this case, by using the fact that j X j = k = j P(j ∈ X) we get that We showed in the first step that if i is ignored by B then P(i ∈ X|B) P(i ∈ X) meaning that we can choose an i ∈ [n] that is not ignored by B such that P(i ∈ X|B) P(i ∈ X) > 0, because, if P(i ∈ X) = 0 then P(i ∈ X|B) = 0 too and so both quantities doesn't change the sum (A.1.7). By conditioning on i, we obtain P(A |B) = P(A |B, i ∈ X)P(i ∈ X|B) + P(A |B, i / ∈ X)P(i / ∈ X|B)

where we consider the second term as zero is P(i / ∈ X) = 0. By using the induction hypothesis on P(.|i / ∈ X) and P(. ∪ {i}|i ∈ X) combined with the lemma A. In the first step we saw that P(A |i ∈ X) P(A |i / ∈ X) because i is ignored by A . Combined with the choice of i, we deduce that P(A |B) is bounded by P(A |i ∈ X)P(i ∈ X) + P(A |i / ∈ X)P(i / ∈ X) = P(A ) (A. 1.9) because the difference between (A.1.9) and (A.1.8) is equal to (P(A |i / ∈ X) -P(A |i ∈ X))(P(i ∈ X|B) -P(i ∈ X)) 0, which conclude our theorem when X is a projection DPP.

Step 3: Let's get back to the more general case where X is a determinantal process whose matrix kernel K is symmetric with eigenvalues in [0, 1]. We can build R and R as the positive semi-definite square root of K and I -K. We define Z as the projection DPP with matrix kernel K RR R R I -K symmetrical and idempotent, defined on [2n] by Z = X ∪ X where X is a copy of the complementary of X independent from X. This is a consequence of Propositions A. In the first chapter, we prove a central limit theorem for a wide class of statistics on determinantal point processes. In the second chapter, we show a general betamixing inequality for point processes. In the third chapter, we apply the central limit theorem showed in the first chapter to a wide class of moment-based estimating functions. Finally, in the last chapter, we give an asymptotic approximation of the log-likelihood that is computationally tractable and we study the consistency of its maximum.

Résumé étendu de la thèse Introduction

Un des sujets d'étude principaux des statistiques spatiales est l'étude de jeux de données constitués d'un ensemble fini de points dans une fenêtre d'observation qui est un compact de R d (en général, d = 1, 2 ou 3). L'exemple le plus ancien et probablement le plus connu est l'étude par le médecin John Snow [8] de la répartition spatiale de cas de choléra lors d'une épidémie à Londres ce qui lui a permis de remonter à une pompe à eau contaminée qui en était la source. En pratique, de nombreux jeux de données ponctuel spatiaux sont observés dans toutes les disciplines scientifiques. Quelques exemples sont donnés dans la figure 1. Le modèle mathématique utilisé pour modéliser ce type de donnée est appelé un processus ponctuel. La façon la plus simple de décrire un processus ponctuel sur R d est en tant que mesure de probabilité sur l'ensemble Ω des ensembles localement finis de R d , où un sous-ensemble X de R d est dit localement fini si pour tout sous-ensemble borné A de R d l'ensemble X ∩ A est fini. Le processus ponctuel le plus connu et le plus étudié est le processus ponctuel de Poisson (ou PPP). Un PPP X est défini par une fonction ρ localement intégrable appelée "intensité" telle que le nombre N (A) de points du PPP observés dans un sousensemble A de R d suit une loi de poisson de paramètre A ρ(x)dx et, pour tout ensembles disjoints A 1 , • • • , A n ⊂ R d , les variables aléatoires N (A 1 ), • • • , N (A n ) sont mutuellement indépendantes. En conséquence, conditionnellement à N(A), les points de X ∩ A sont mutuellement indépendant et identiquement distribués pour tout A ⊂ R d . C'est pourquoi les PPPs sont utilisés pour modéliser tout jeu de données spatiales constitué de points qui peuvent être considérés comme étant indépendant les uns des autres.

Évidemment, les PPPs sont limités par le fait que tous les points n'ont aucune interaction les uns avec les autres alors qu'en pratique de nombreux jeux de données présentent de la dépendance positive (attraction) ou négative (répulsion) entre leurs points. Une simulation d'un PPP est présentée en haut à droite de la Figure 2. En comparaison, divers exemples de données ponctuels exhibant un comportement répulsif sont présentés dans la Figure 1. C'est pourquoi des modèles de processus ponctuels plus complexes ont été développés afin de pouvoir étudier ce genre de donnée. Dans cette thèse, nous nous concentrons sur l'étude de processus ponctuels répulsifs. Les principaux modèles existants sont les processus ponctuels de Matérn (aussi appelé "hardcore"), les grilles perturbées, les processus ponctuels de Gibbs et, le sujet principal de cette thèse, les processus déterminantaux (où DPPs).

Les processus ponctuels de Matèrn sont défini à partir des PPPs en retirant des points de sorte qu'aucune paire de point ne soit à distance plus petite qu'une constante R (appelé le rayon hardcore) alors que les grilles perturbées sont définies en déplaçant de façon aléatoire les points d'une grille régulière par des variables aléatoires iid. Ces deux modèles sont faciles à simuler et assez simple à manipuler mais trop restrictifs pour la plupart des applications statistiques. Au contraire, les processus ponctuels de Gibbs forment une famille très générale de processus ponctuels qui offrent une importante gamme possible d'interactions entre les points et ont été beaucoup utilisés pour modéliser de la répulsion mais sont en général difficiles à manipuler. Par exemple, ils ne peuvent être simulés qu'à partir de méthodes MCMC, leur densité fait intervenir une constante impossible à calculer facilement ce qui rend difficile une estimation par maximum de vraisemblance et aucune 1 Figure 1: Exemples de données ponctuelles spatiales. La figure en haut à gauche correspond à l'emplacement du centre de 42 cellules biologiques dans une coupe histologique. La figure en haut à droite correspond à l'emplacement de 68 nids de fourmis moissonneuses sur un site en Grèce. La figure en bas à gauche correspond à l'emplacement de 71 plants de pin dans une forêt suédoise. La figure en bas à droite correspond à l'emplacement des 28 bureaux de vote dans la commune de Rennes. Les trois premiers jeux de données font partie du package spatstat.data [1] du logiciel R [7]. Le dernier jeu de données est fourni par le site internet https://data.rennesmetropole.fr. expression de forme fermée n'est connue pour leurs moments. Pour plus de détails, voir [6,10]. D'un autre côté, les DPPs sont une famille plus restrictive que les processus ponctuels de Gibbs [4] mais sont plus faciles à manipuler tout en étant une famille très flexible qui offre une large gamme d'interactions possibles entre les points. Comparé aux processus de Gibbs, ils peuvent être simulés de façon exacte et possèdent une expression de forme fermée pour leurs moments et leurs densités de Janossy. Cela permet d'utiliser des méthodes de moment ainsi que le maximum de vraisemblance pour leur estimation. C'est pourquoi les DPPs se présentent comme une bonne alternative pour modéliser les jeux de données ponctuelles possédant de la répulsion. On trouvera un exemple de simulation des DPPs, des processus ponctuels de Gibbs et des processus ponctuels de Matérn dans la figure 2. Dans cette thèse, nous nous concentrons sur l'étude des statistiques asymptotiques de DPPs continus dans un cadre spécifique appelé "increasing domain asymptotic". Considérons (W n ) n 0 une suite croissante de sous-ensemble de R d , c'est-à-dire que W n ⊂ W n+1 pour tout entier n. À la différence du cadre iid, nous considérons l'observation d'une unique réalisation du processus ponctuel dans la fenêtre W n . Dans ce cas-là, les propriétés asymptotiques dépendent de la taille de la fenêtre et donc indirectement du nombre de points observés. C'est pour cela que l'on suppose en général que n 0 W n = R d où, plus simplement, que le volume d-dimensionnel de W n tend vers l'infini. Dans la plupart des applications, les fenêtres sont considérées comme étant rectangulaires mais, afin d'obtenir des résultats aussi généraux que possibles, nous considérons que les fenêtres peuvent avoir n'importe quelle forme du tant que leur frontière ne soit pas trop distordue afin de limiter les effets de bord.

La difficulté principale de ce cadre d'étude pour les DPPs est que comme tous les points générés par un DPP se repoussent les uns les autres, alors il y a besoin de contrôler leur dépendance spatiale pour obtenir des résultats asymptotiques. Dans ce but, nous étudions les propriétés de mélange des DPPs. Nous utilisons ces résultats pour établir un théorème limite central (TLC) pour une large famille de statistiques sur les DPPs stationnaires et non-stationnaires. Nous appliquons ensuite ce TLC pour obtenir des résultats asymptotiques sur les equations estimantes basées sur des méthodes de moment. Enfin, nous considérons le problème de prouver la consistance et de trouver une bonne approximation du maximum de vraisemblance d'un DPP stationnaire. Nous allons maintenant détailler les divers résultats de la thèse.

Chapitre 2

Nous commençons par montrer que la propriété d'association (positive ou négative) d'un processus ponctuel implique une inégalité de covariance générale qui ne dépend que de la covariance entre le nombre de points du processus ponctuel qui se trouvent dans des ensembles disjoints: En conséquence, on en déduit que l'association implique une borne sur les coefficients d'α-mélange qui ne dépend que des deux premières fonctions d'intensité jointe du processus ponctuel.

Proposition 2. Soit X un processus ponctuel associé sur R d dont les deux premières fonctions d'intensité jointe soient bien définies, alors pour tout p, q > 0, En conséquence, la vitesse de décroissance des coefficients de α-mélange dans chaque cas ne dépend que de la répulsion des paires de points du processus ponctuel. Dans le cas des DPPs, puisque |ρ 2 (x, y) -ρ(x)ρ(y)| = |K(x, y)| 2 alors on en déduit que les coefficients α p,q (r) décroissent au moins à la même vitesse que le noyau du DPP au carré lorsque y -x tend vers l'infini. Nous prouvons également que cette vitesse de décroissance est optimale pour une large classe de DPPs en exhibant une borne inférieure pour les coefficients d'α-mélange avec la même vitesse de décroissance. Malheureusement, les vitesses de décroissance des coefficients α p,∞ (r) ne sont pas aussi bonnes et si on devait appliquer le TLC de Bolthausen et Guyon [3,5] pour les variables aléatoires α-mélangeante, cela nous forcerait d'exclure les DPPs les plus répulsifs qui sont ceux avec les noyaux qui décroissent le moins vite. Afin de parer à ce problème, nous prouvons un TLC plus général basé non pas sur les coefficients de α-mélange mais sur l'inégalité de covariance du Théorème 1. Le TLC obtenu peut s'appliquer à toutes les familles paramétriques classiques de noyaux de DPPs communément utilisés en statistiques spatiales. 

(H3) lim inf n |W n | -1 σ 2 n > 0. Alors, 1 σ n (f (X ∩ W n ) -E[f (X ∩ W n )])
L -→ N (0, 1).

Ici, ∂W n ⊕ (τ + ν) correspond à l'ensemble des points à distance inférieure à τ + ν de la frontière de W n .

Chapitre 3

Dans ce chapitre, nous prouvons une inégalité sur les coefficients de β-mélange d'un processus ponctuel qui ne dépend que de ses fonctions d'intensité jointe. Il est à noter que la vitesse de décroissance des coefficients de β-mélange dans le Théorème 5 est la même que celle des coefficients de α-mélange dans la Proposition 2. Le gros défaut de ce résultat, comparé à l'inégalité sur les coefficients de α-mélange obtenue dans la Proposition 2, est la dépendance exponentielle de la borne sur les β p,q (r) par rapport à p et q ce qui la rend inutilisable dans la plupart des applications.

Chapitre 4

Dans le chapitre 4, nous nous intéressons aux propriétés asymptotiques des estimateurs construits à partir de fonctions estimantes. Considérons une famille de processus ponctuels continus {P θ , θ ∈ Θ}, où Θ ⊂ R p pour un certain p ∈ N, ainsi qu'une suite croissante de fenêtres d'observation (W n ) n 0 , on dit que la fonction e n est une fonction estimante lorsque θ est estimé par la solution (où l'une des solutions) θn de l'équation e n (θ n ) = 0. C'est un cadre statistique très général qui englobe d'autres méthodes telles que l'estimation par minimum de contraste (lorsque le contraste est dérivable) où l'estimation par maximum de vraisemblance (lorsque la vraisemblance est dérivable). En particulier, on dit que e n est une fonction estimante d'ordre k si elle s'écrit sous la forme 

e n (θ) =      = x 1 ,••• ,xq 1 ∈X∩Wn f 1 (x 1 , • • • , x q 1 ; θ) -W q 1
n f 1 (x; θ)ρ (q 1 ) (x; θ)dµ(x) . . . = x 1 ,••• ,xq l ∈X∩Wn f l (x 1 , • • • , x q l ; θ) -W q l n f l (x; θ)ρ (q l ) (x; θ)dµ(x) n f 1 (x; θ * )∇ θ ρ (q 1 ) (x; θ * ) T dµ(x) . . .

     . où chaque f i : (R d ) q i × Θ → R k i est

W q l

n f l (x; θ * )∇ θ ρ (q l ) (x; θ * ) T dµ(x)     .

Chapitre 5

Dans le dernier chapitre de cette thèse, nous nous concentrons sur le problème de l'estimation par maximum de vraisemblance de DPPs stationnaires. Si on considère une famille {P θ , θ ∈ Θ} de DPPs continus observée sur une suite croissante de fenêtres d'observation compactes (W n ) n 1 , alors la log-vraisemblance (renormalisée) de la famille de DPPs s'écrit

l n (θ|X) = 1 + 1 µ(W n ) logdet(Id -K θ Wn ) + logdet(L θ Wn [X ∩ W n ]) .
où L θ Wn et le déterminant de Fredholm de Id -K θ Wn sont deux éléments dont le calcul fait intervenir la décomposition spectrale de la projection de K sur L 2 (W n , µ). Ce n'est pas possible numériquement pour les DPPs continus car cette décomposition n'est jamais explicitement connue. Nous proposons dans ce chapitre une approximation asymptotique de la vraisemblance de DPPs continus stationnaires basé sur le fait que ces DPPs ont un noyau de la forme K(x, y) = K 0 (y -x) et lorsque K 0 est de carré intégrable, il admet une transformée de Fourier K0 prenant à valeurs dans [0, 1]. Nous montrons alors les approximations suivantes:

L Wn (x, y) ≈ R d K0 (t) 1 -K0 (t) exp(2iπt • (y -x))dµ(t) et 1 µ(W n ) logdet(Id -K θ Wn ) ≈ R d
log(1 -K0 (x))dµ(x), afin d'obtenir une approximation l n (θ|X) de l n (θ|X) qui ne dépend pas de la décomposition spectrale des noyaux mais seulement de leur transformée de Fourier qui est connue explicitement pour toutes les familles classiques de DPPs stationnaires utilisées en statistiques spatiales.

Le défaut principal d'une approximation asymptotique de la vraisemblance est qu'elle ignore toute sorte d'effet de bord du DPP ce qui est problématique pour les DPPs les plus répulsifs qui subissent les effets de bord les plus forts. Afin de remédier à ce problème, nous nous intéressons à l'idée de remplacer cette fenêtre par un tore plat afin de rapprocher les points qui se trouvent sur des bords opposés de la fenêtre dans le but de mitiger ces effets de bord. Nous montrons par diverses simulations que cette approximation du maximum de vraisemblance avec la correction des effets de bord permet d'obtenir de meilleurs résultats que les méthodes d'inférence plus classiques telles que l'estimation par minimum de contraste basée sur le fonction K de Ripley ou la fonction de corrélation par paires.

Figure 1 :

 1 Figure 1: Examples of spatial point patterns. The top left figure shows the location of the centres of 42 biological cells in an histological section. The top right figure shows the location of 68 Messor ants nests at a site in Greece. The bottom left picture shows the location of 71 pine saplings in a Swedish forest. The bottom right picture shows the location of the 28 polling places in the French commune of Rennes. The first three datasets are provided in the spatstat.data package [5] of R [87]. The last dataset is provided by the website https://data.rennesmetropole.fr.

Figure 2 :

 2 Figure 2: Examples of simulations of four different types of point processes on the window W = [0, 1] 2 . The top left figure is a realization of an homogeneous PPP with intensity ρ = 100. The top right figure is a realization of a DPP with Bessel-type kernel (4.4.1) with parameters ρ = 100 and α = 0.05. The bottom left figure is a realization of a type II Matérn's point process with hardcore radius R = 0.1. The bottom right figure is a realization of a Strauss point process (a special type of Gibbs point process defined in [98]) with parameters β = 100, γ = 0.2 and R = 0.1. All simulations have been done in R [87] using the spatstat [7] package.

  α(A , B) := sup{|P(A ∩ B) -P(A)P(B)| : A ∈ A , B ∈ B} β(A , B) := P A ⊗B -P A ⊗ P B T V

  The notation |.| will have a different meaning depending on the object it is applied. For x ∈ R d , |x| stands for the euclidean norm. For a set A ⊂ R d , |A| := A dx is the euclidean volume of A, and for a set I ⊂ Z d we write |I| for the cardinal of I. For A, B two subsets of R d (resp. Z d ) we define dist(A, B) as inf x∈A,y∈B |y -x| and diam(A) as sup x,y∈A |y -x| where |.| is the associated norm on R d (resp. Z d ). For i ∈ Z d , |i| 1 denotes the 1 -norm. Finally, we write B(x, r) for the euclidean ball centered at x with radius r and . p for the p-norm of random variables and functions where 1 p ∞.

Theorem 2 . 3 . 1 .

 231 Consider the random field Y given by (2.3.1), a sequence (I n ) n∈N of strictly increasing finite domains of Z d and S n = i∈In Y i . Let σ 2

  sup |A|<p,|B|<q dist(A,B)>r A×B |K(x, y)| 2 dxdy. (2.4.3)

Figure 3 :

 3 Figure 3: Example of illustration of the definition of W n . Here, the black border is ∂W n , the grey area corresponds to (∂W n ⊕ τ ) ∩ W n and the square lattice corresponds to W n .

Theorem 3 . 4 . 1 .

 341 3.1 to DPPs gives us the following β-mixing condition: Let X be a DPP with kernel K and define ω(r) := sup y-x r |K(x, y)|.

Theorem 4 . 2 . 1 .

 421 Under Assumptions (F1) through (F3) (or (F3')), (X1) and (X2), with a probability tending to one as n → ∞, there exists a |W n |-consistent sequence of roots θn of the estimating equations e n (θ) = 0. Precisely, for all ε > 0, there exists A > 0 such that P(∃ θn : e n ( θn ) = 0 and |W n | θn -θ * < A) > 1 -ε for a sufficiently large n.

  where ∂ in this context denotes the boundary of a set, R is defined in (4.3.1), and |W n | → ∞, as n → ∞.

Theorem 4 . 3 . 1 .

 431 Under Assumptions (D1) and (D2), if assumptions (F1) through (F3) (or (F3')) are satisfied for f 1 = f , with a probability tending to one as n → ∞, there exists a |W n |-consistent sequence of roots θn of the estimating equations e n (θ) = 0. If moreover (W) and (D3) holds true, then

Figure 4 :

 4 Figure 4: Examples of point patterns simulated from a Bessel-type DPP on [0, 1] 2 for different values of ρ and α. For the last row, ρ(x, y) = 20 exp(4x).

  ) and mean computation time (in seconds) of α for a Bessel-type DPP on [0, 1] 2 , for different values of ρ and α. The 3 first estimators use the test function (4.2.3) with R = 0.05, R = 0.1 and R = 0.25 respectively, while the last estimator is the adaptive version based on (4.2.4). The standard errors of the RMSE estimations are given in parenthesis. The last column gives the averages of "practical ranges" (i.e. maximal solution to |g(r) -1| = 0.01) used for the adaptive estimator, along with their standard deviations in parenthesis. For each value of ρ and α, these quantities are computed from 1000 simulations where all four estimation methods have converged.

Lemma 4 .A. 4 .

 44 The class of random vectors 1 |W n | e n (θ * ) : n ∈ N is stochastically bounded.

  Lemma 4.A.3. Hence it vanishes in probability when divided by |W n |. Denote by a n the first two terms in φ T J n (θ * )φ/|W n | and by b n the last term which is φ T H n (θ * )φ. Then

Finally, by Lemmas 4

 4 .A.4, 4.A.5 and 4.A.6, we can apply Theorem 4.A.2 and the first part in the statements of Theorem 4.2.1 is deduced. Now, for each n ∈ N, we define θn as the closest root of e n to θ * , if e n has any, otherwise let θn = 0. Theorem 4.A.2 tells us that P(e n ( θn ) = 0) → 1 and |W n |( θn -θ * ) is bounded in probability.

Corollary 4 .C. 2 .

 42 Any DPP distribution on R d with positive first order intensity function admits at most one continuous kernel generating it.

Figure 5 :

 5 Figure 5: Distribution of α -α for a Bessel-type DPP on [0, 1] 2 for different values of ρ and α. In each subfigure, the 3 first estimators on the left use the test function (4.2.3) with R = 0.05, R = 0.1 and R = 0.25 respectively, while the last estimator is the adaptive version based on (4.2.4).

Figure 6 :

 6 Figure 6: Realization of a DPP (left) and plots of the contrast function e(ψ) (see (4.4.4)) of the simultaneous procedure (middle) and of the contrast function e 2 (ψ) (see (4.4.3)) of the two-step procedure (right) obtained for the data in the left plot.

Figure 7 :

 7 Figure 7: Distribution of estimates of ρ obtained from 1000 realisations of the Besseltype DPP on W = [0, 1] 2 with ρ = 1000 and α = 0.01. Left: the simultaneous estimator as given in equation (4.4.5) with initial value for the numerical solution given by the true value 0.01 of α. Middle: as left but using the true value of α instead of α. Right: ρ = N (X ∩ W )/|W | corresponding to the first step of a two-step procedure.

  2.3) with R = 0.05, R = 0.1 and R = 0.25 respectively; the fourth and fifth estimators are the adaptive version based on (4.2.4) where ε = 0.01 and ε = 0.05; the three last estimators are from the library spatstat: based on K, on Guan's composite likelihood (clik) and on Palm likelihood -all with default settings. The standard errors of the MSE estimations are given in parenthesis.

Figure 8 :

 8 Figure 8: First row: Examples of point patterns simulated from a Thomas model on [0, 1] 2 for κ = 100, µ = 10 and from left to right σ = 0.02, 0.035, 0.05. Second row: Distribution of estimates of κ based on 1000 replications. In each plot, the 3 first boxplots are for estimates obtained with the test function (4.2.3) with R = 0.05, R = 0.1 and R = 0.25 respectively; the fourth and fifth boxplots (in grey) are for the adaptive version based on (4.2.4) where ε = 0.01 (left) and ε = 0.05 (right); the three last boxplots are for methods from spatstat: based on K (red), on Guan's composite likelihood (green) and on Palm likelihood (blue) -all with default settings. Third row: Distribution of estimates of σ based on 1000 replications, using the same estimation methods.

  e. W = [a 1 , b 1 ] × • • • × [a d , b d ]) is to consider the observation window as the flat torusT W := R\(b 1 -a 1 )Z × • • • × R\(b d -a d )Z.This way, points close to the border of the window are brought close to each other in order to compensate edge effects.

Figure 10 :

 10 Figure 10: Examples of realization of a Gaussian-type DPP on [0, 1] 2 with parameters ρ * = 100 and α * ∈ {0.01, 0.03, 0.05}

Figure 11 :

 11 Figure 11: Boxplots of α -α * generated from 500 simulations of Gaussian-type DPPs (5.3.1) on windows W = [0, 1] 2 , [0, 2] 2 or [0, 3] 2 with true parameters ρ * = 100 and α * = 0.01, 0.03 or 0.05. The first two estimators are the approximate MLE from l T n (X|ρ, α) and l n (X|ρ, α), while the last two are MCE based on the pair correlation function and Ripley's K function.

  Finally, by Lemma 5.A.5, ε is chosen small enough such that the DPPs are well-defined and satisfy the following assumptionsCondition H ε : {K θ ε , θ ∈ Θ}is a compact family of stationary kernels on ((εZ) d , µ), where µ is the counting measure on εZ d , satisfying inf θ∈Θ λ min (K θ ε ) > 0 and sup θ∈Θ λ max (K θ ε ) < 1.

4 . 5 )Lemma 5 . 4 . 4 .

 45544 converges in mean towards 0 to conclude the proof of Proposition 5.2.3. This is done by showing the existence of an operator N θ Wn whose trace is o(µ(W n )) and such that0 L θ | Wn -L θ Wn N θ Wn ,whereL θ | Wn is the projection of L θ on L 2 (W n ).Let X be a DPP on ((εZ) d , µ) with kernel K such that K < 1 and let W be a compact of R d . Define the operator M := (L + Id) -1 = Id -K and the operator N W with kernelN W (x, y) = W CL(x, z)L(z, y)dµ(z) ∀x, y ∈ W.

  to a continuous function to prove the theorem. Using the power series expression of the matrix logarithm of Id -L θ [X ∩ W n ]/e A Θ (which has all its eigenvalues in [0, 1[), we get logdet

Lemma 5 .A. 3 .

 53 Let n ∈ N and A, B be two n×n positive semi-definite matrices. Then,0 logdet(I + AB) Tr(AB)Proof. We first assume that B is the identity matrix. Let λ 1 , • • • , λ n be the eigenvalues (with multiplicity) of A.

1 . 6

 16 we getP(A |B, i / ∈ X) P(A |i / ∈ X) and P(A |B, i ∈ X) P(A |i ∈ X) so P(A |B) is bounded by P(A |i ∈ X)P(i ∈ X|B) + P(A |i / ∈ X)P(i / ∈ X|B).(A.1.8) 

  1.4 and A.1.3. The distribution of Z is thenP(Z = A) = P(X = A ∩ [n]) if |A| = n 0 otherwise.for any a ∈ R p . Since the sequence of eigenvalues of the matrices Var(X n ) is bounded, there exists by the Bolzano-Weierstrass theorem a strictly increasing function c : N → N such that {c(n)} n∈N ⊂ {b(n)} n∈N , and a matrix Σ such that Var(X c(n) ) ---→ multiplying with a T Var(X c(n) )a and using Slutsky lemma, thata T X c(n) I p ).From this we can concludeEf (Var(X c(n) ) -1/2 X c(n) ) -Ef (Y ) ≤ εfor n large enough which contradicts (A.2.2).

  Title : Asymptotic inference of stationary and non-stationary determinantal point processes Keywords : Determinantal point process, Central limit theorem, Spatial statistics Abstract : This manuscript is devoted to the study of parametric estimation of a point process family called determinantal point processes. These point processes are used to generate and model point patterns with negative dependency, meaning that the points tend to repel each other.

Figure 2 :

 2 Figure 2: Exemples de simulation de 4 differents types de processus ponctuels sur la fenêtre W = [0, 1] 2 . En haut à gauche se trouve une simulation d'un PPP homogène d'intensité ρ = 100. En haut à droite se trouve une simulation d'un DPP de noyau de type Bessel de paramètres ρ = 100 et α = 0.05. En bas à gauche se trouve une simulation d'un processus ponctuel de Matèrn de rayon hardcore R = 0.1. En bas à droite se trouve une simulation d'un processus ponctuel de Strauss (un cas particulier d'un processus ponctuel de Gibbs défini dans [9]) de paramètres β = 100, γ = 0.2 et R = 0.1. Toutes les simulations ont été réalisées sur R [7] avec le package spatstat [2].

Theorem 1 .

 1 Soit X un processus ponctuel associé etA, B ⊂ R d deux ensembles bornés. Soit f : Ω → R et g : Ω → R deux fonctions telles que X → f (X ∩ A) et X → g(X ∩ B) soient bornés, alors |Cov(f (X ∩ A), g(X ∩ B))| f A g B |Cov(N (A), N (B))|où . A est la semi-norme de Lipschitz définie parf A := sup X∈Ω,X⊂A x∈A |f (X) -f (X ∪ {x})|.De plus, si X est positivement associé alors il vérifie la même inégalité avec A, B ⊂ R d pas forcement disjoint.

  p,q (r) pq supx-y r |ρ 2 (x, y) -ρ(x)ρ(y)|, α p,∞ (r) ps d ∞ r t d-1 sup x-y =t |ρ 2 (x, y) -ρ(x)ρ(y)|dt.où s d est l'aire de la sphère d-dimensionnelle.

Theorem 3 .

 3 Soit X un DPP de noyau borné K satisfaisant H. Soit τ > 0 et f : Ω → R une fonction de la forme f (X) := S⊂X f 0 (S) où f 0 est une fonction bornée qui s'annule sur l'ensemble sup x,y∈S y -x > τ . Soit (W n ) n∈N une suite croissante de sous-ensembles de R d telle que |W n | → ∞ et soit σ 2 n := Var(f (X ∩ W n )). Supposons qu'il existe ε > 0 et ν > 0 tels que les conditions suivantes soient satisfaites: (H1) |∂W n ⊕ (τ + ν)| = o(|W n |); (H2) sup y-x >r |K(x, y)| = o(r -(d+ε)/2 );

Theorem 4 .Theorem 5 .

 45 Soit X un processus ponctuel sur (R d , B(R d ), µ) tel que E[4 |X∩A| ] < +∞ pour toute ensemble borné A ⊂ R d . Alors, pour tout p, q, r ∈ R + , β p,q (r) sup µ(A)<p,µ(B)<q dist(A,B)>r   +∞ m,n=0 2 n+m-1 m!n! A m ×B n |ρ m (x)ρ n (y) -ρ m+n (x, y)|dµ m (x)dµ n (y)   .Comme les identités (ρ m (x)ρ n (y)-ρ m+n (x, y))/ρ m (x)ρ n (y) peuvent s'interpréter comme la corrélation entre X ayant un point en x 1 , • • • , x m et X ayant des points en y 1 , • • • , y n alors Théorème 4 prouve que plus ces corrélations décroissent vite lorsque la distance entre les x i et y j tend vers l'infini, plus les coefficients de β-mélange décroissent rapidement. Lorsque ce résultat est appliqué aux DPPs, on obtient l'inégalité de β-mélange suivante: Soit X un DPP de noyau borné K satisfaisant H, alors β p,q (r) 2pq(1 + 2p K ∞ )(1 + 2q K ∞ )e 2 K ∞(p+q) sup y-x r |K(x, y)| 2 .

  e n (X) = = x 1 ,••• ,x k ∈X∩Wn f 0 (x 1 , • • • , x k ; θ) -W k n f 0 (t; θ)ρ k (t; θ)dµ(t), où f 0 : (R d ) k × Θ → R p estune fonction test. Dans ce chapitre, on s'intéresse à un cadre plus général où l'on combine des fonctions estimantes d'ordre différents.

  une fonction test et i k i = p. Nous montrons que sous certaines hypothèses de régularité sur les fenêtres d'observation, les fonctions tests et le processus ponctuel alors il existe une suite µ(W n )-consistante de racines θn de l'équation e n (θ) = 0 qui sont asymptotiquement normaux. Plus précisément, pour tout ε > 0, il existe A > 0 tel queP(∃ θn : e n ( θn ) = 0 and µ(W n ) θn -θ * < A) > 1 -ε pour un n assez grand, et µ(W n )Var(e n (θ * )) -1/2 H n (θ * )( θn -θ * ) L -→ N (0, I p ),où I p est la matrice identité de taille p × p et H n (θ * ) := 1 µ(W n )

  

  

  

  1 and defineC N := sup i Y i 1 |Y i |>N 2+δγ . By

	assumption (C2) we have that C N vanishes when N → ∞ and by assumption (C4) we
	have that |I n | cσ 2 n for a sufficiently large n, where c is a positive constant. By (2.2.9),
	1 σ 2 n	Var(S 2,n ) =	1 σ 2 n i,j∈In

  the kernel of X and is assumed to satisfy the following standard general condition ensuring the existence of X.

	By definition, for a DPP with kernel K we have D(x, y) = -|K(x, y)| 2 where D is
	introduced in (2.2.1). Hence, using the last theorem and Proposition 2.2.8 we get the
	following strong mixing coefficients of a DPP, where we define
			ω(r) := sup	|K(x, y)|.	(2.4.1)
			|x-y| r
	Corollary 2.4.2. Let X be a DPP with kernel K satisfying H. Then, for all p, q > 0,
	  	α p,q (r)	sup |A|<p,|B|<q
			dist(A,B)>r
	 		
	Condition H: The function K : (R d ) 2 → C is a locally square integrable hermitian
	measurable function such that its associated integral operator K is locally of trace class
	with eigenvalues in [0, 1].	
	This condition is not necessary for existence, in particular there are examples of DPPs
	having a non-hermitian kernel. It is nonetheless very general and is assumed in most
	studies on DPPs. Basic properties of DPPs can be found in [61, 94, 74]. In particular,
	from [45, Theorem 1.4] and [74, Theorem 3.7], we know that DPPs are NA.
	Theorem 2.4.1 ([45, 74]). Let K satisfy Condition H, then a DPP with kernel K is
	NA.		

  1 

Definition 3.2.2.

  Let f be a real function defined over Ω F . The lower sum of f is the linear operator defined by

	Proposition 3.2.3 ([2, Theorem 4.18]). The operator (3.2.4) admits an inverse trans-
	form f , called the lower difference of f , defined by	
	f : X →	(-1) |X\Z| f (Z).	(3.2.5)
	Z⊂X		
	These definitions extend to functions over Ω 2 F by defining	
	f		

f : X → Z⊂X f (Z).

(3.2.4)

As shown in Example 4.19 in

[2]

, this operator admits the following inverse transform.

Table 1 :

 1 Estimated root mean square errors (×103 

	25 Adaptive	R

Table 2 :

 2 Percentage of times the estimation methods have converged for the models and estimators considered in Section 4.4.

	25 Adaptive

Table 3 :

 3 RMSE (×10 3 ) for the same simulations as in Table

		.02	5.49	5.45	5.95	5.53	7.13
		0.04	14.92	8.81	8.79	8.87	8.71
		0.07	13.08	8.10	8.07	8.04	8.82
	100	0.01	2.30	2.27	2.45	2.49	2.77
		0.03	5.05	4.99	5.16	5.10	5.27
		0.05	5.75	4.40	4.47	4.50	5.10
	1000 0.005	0.68	0.87	0.83	0.73	0.73
		0.01	0.57	0.59	0.61	0.56	0.59
		0.015	0.47	0.46	0.52	0.47	0.51
	Inhom 0.005	1.58	1.65	1.66	1.61	1.57
		0.01	1.34	1.36	1.36	1.32	1.37
		0.015	1.43	1.47	1.48	1.40	1.46

Table 4 :

 4 For the Thomas model, estimated root mean square errors of various estimators of κ and σ (×10 3 ). The 3 first estimators use the test function (4.

	02 κ	17	21	21	21	20	23	28	21
		(0.40)	(0.48)	(0.47)	(0.48)	(0.47) (0.54)	(0.70) (0.49)
	σ	1.04	1.84	1.94	1.79	1.51	2.60	1.54	1.92
		(0.02)	(0.06)	(0.08)	(0.07)	(0.04) (0.09)	(0.03) (0.09)
	0.035 κ	35	31	40	38	35	33	121	35
		(0.79)	(0.75)	(0.95)	(0.89)	(0.85) (0.81)	(4.20) (0.90)
	σ	4.80	5.54	7.92	6.24	4.59	5.76	8.04	5.50
		(0.09)	(0.14)	(0.32)	(0.21)	(0.10) (0.14)	(0.07) (0.12)
	0.05 κ	54	49	53	47	53	35	554	39
		(1.24)	(0.92)	(2.05)	(1.74)	(1.89) (1.55) (13.64) (1.02)
	σ	18.30	36.47	12.17	11.22	8.94	8.12	23.69 19.47
		(1.28)	(1.47)	(0.41)	(0.53)	(0.61) (0.25)	(0.13) (0.74)

  1/2 BA 1/2 ) = Tr(AB). Let f : (R d ) k → R be a translation invariant function integrable with respect to its k -1 last coordinates and the background measure µ. Let W n be a sequence of increasing compact subsets of R

	Lemma 5.A.4.

d such that µ((∂W n

  Titre : Statistiques asymptotiques des processus ponctuels déterminantaux stationnaires et non stationnaires Mot clés : Processus ponctuel déterminantal, Théorème limite central, Statistiques spatialesResumé : Ce manuscrit est dédié à l'étude de l'estimation paramétrique d'une famille de processus ponctuels appelée processus déterminantaux. Ces processus sont utilisés afin de générer et modéliser des configurations de points possédant de la dépendance négative, dans le sens où les points ont tendance à se repousser entre eux. Dans une première partie, nous montrons un théorème limite central pour une classe générale de statistiques sur les processus déterminantaux. Dans une seconde partie, nous montrons une inégalité de béta-mélange générale pour les processus ponctuels. Dans une troisième partie, nous appliquons le théorème limite central obtenu à la première partie à une classe générale de fonctions estimantes basées sur des méthodes de moments. Finalement, dans la dernière partie, nous donnons une approximation asymptotique de la log-vraisemblance des processus déterminantaux qui est calculable numériquement et nous étudions la consistance de son maximum.

which proves the proposition.

Remerciements

Theorem 5.2.1 ([75, 97]). Let X be a DPP on a compact set W with eigenvalues in [0, 1[, then X is absolutely continuous with respect to the homogeneous Poisson point process with intensity 1, and has density

In the above expression, the first determinant corresponds to the Fredholm determinant of the operator I W -K W which is equal to i (1-λ W i ) while the second determinant is the matrix determinant of (L W (x i , x j )) i,j . The (normalized) log-likelihood of X ∩W n is therefore:

and a maximum likelihood estimate is θn ∈ {arg max θ∈Θ l n (X|θ)}.

Approximation of the likelihood for stationary DPPs

As can be seen in the expression of (5.2.2), computing the log-likelihood of a family of DPPs requires knowing the spectral decomposition of K θ Wn for all n, θ to get the expression of L θ Wn by (5.2.1). This is possible in the case of discrete DPPs whose kernels are finite matrices, but the spectral decomposition is usually not known for continuous DPPs. This motivates the idea in [START_REF] Lavancier | Determinantal point process models and statistical inference[END_REF] to approximate stationary kernels by a truncated Fourier series on rectangular windows. For example, if W = [-1/2, 1/2] d then the approximation writes (y-x) , where c k = W K θ 0 (t)e -i2πk•t dµ(t)

for some truncation constant N . Since the eigenvalues and eigenvectors of this kernel approximation are explicitly known, then the log-likelihood can be computed.

Our approximation is based on a different expression of (5.2.2) in terms of the convolution products of the function (x, y) → 1 Wn (x)K θ (x, y)1 Wn (y) through the following two identities (see [START_REF] Shirai | Random point fields associated with certain fredholm determinants i: fermion, poisson and boson point processes[END_REF] for example):

(5.2.4) These convolution products are not known either in the general case, but for stationary DPPs satisfying K θ < 1 then Lθ 0 = Kθ 0 /(1 -Kθ 0 ) as a consequence of (5.2.4) and an asymptotic approximation (see Proposition 5.2.2) gives

This motivates the use of the following approximation for the log-likelihood:

and this approximation can be computed from Kθ 0 which is known for all classical family of stationary DPPs built from covariance functions [START_REF] Lavancier | Determinantal point process models and statistical inference[END_REF]. Moreover, we introduce in Section 5.2.4 a correction to l n (θ|X) that fixes the edge effects introduced by the asymptotic approximation.

In some cases, an analytic expression for L θ 0 is also known making its computation easier. For example, Gaussian-type kernels of the form

Moreover, the most repulsive (see [START_REF] Biscio | Quantifying repulsiveness of determinantal point processes[END_REF]) Bessel-type kernels have the form

,

where J denotes the Bessel function of the first kind, and satisfy

Finally, when d = 1, Whittle-Matérn-type kernels of the form

All these expression are easily obtained from the fact that L0 = K0 /(1 -K0 ) = n 1 ( K0 ) n .

Consistency of the MLE

The deterministic part of the log-likelihood (5. 

Note that, since we consider a periodic version of L θ 0 on the observation window then it can be approximated by its Fourier series which was the idea first described in [START_REF] Lavancier | Determinantal point process models and statistical inference[END_REF]. This is why both (5.2.9) and the approximate likelihood used in [START_REF] Lavancier | Determinantal point process models and statistical inference[END_REF] are nearly equal (see figure 9) but approximating L Wn directly by L 0 instead of a truncation of its Fourier series leads to a smoother likelihood and overall slightly better results, as well as a more computationally efficient method when an analytic expression of L θ is known. 

Estimation of the intensity by MLE

In this section, we assume that we estimate parameters of homogeneous DPP kernels of the form

The parameter ρ corresponds here to the intensity of the DPP. When jointly estimating (ρ, θ) by the approximate MLE, simulations usually show that the estimate of ρ appears to be very close to N (W n )/µ(W n ). One explanation given in [START_REF] Lavancier | Determinantal point process models and statistical inference[END_REF] is that, by doing a first order convolution approximation in (5.2.3) and (5.2.4), we get

and the maximum point of this approximation is α when the underlying DPP is very repulsive and therefore it often estimates α by the highest value the parameter can take, which is 1/ √ π ρ, explaining its behaviour.

Figure 12:

Comparison between -l n (X|100, α) (solid lines) and -l T n (X|100, α) (dashed lines) with respect to α where X has been simulated from a DPP on [0, 1] 2 with a Gaussian-type kernel (5.3.1) with true parameters ρ * = 100 and, from left to right, α * = 0.01, 0.03 or 0.05.

Proof of Proposition 5.2.2

In this section, we give a proof of a stronger Proposition than 5.2.2 that will be needed later for the proof of the consistency of θ: Proposition 5.4.1. Let X be a DPP on (R d , µ) whose kernel K θ belong to a family satisfying Condition (H) and let (W n ) n 0 be an increasing sequence of compact subsets of

uniformly in θ and the limit is continuous with respect to θ.

Proof. Let θ ∈ Θ, since all eigenvalues of K θ Wn are in [0, 1[ then we can expand the logarithm of the Fredholm determinant into

Now, we know that for any

is integrable and its integral is equal to (K θ 0 ) * k (0) where (K θ 0 ) * k is the k-th time selfconvolution of K θ 0 . Moreover, since these functions are all dominated by (5.4.3) then

which vanishes when n → +∞ by Lemma 5.A.4. Finally, since

which is summable with respect to k and doesn't depend on n and θ, therefore

uniformly in θ by the dominated convergence theorem. Moreover, since θ → K θ 0 (x) is continuous for all x ∈ R d and Tr((

/k which is summable, then the dominated convergence theorem also gives us the continuity of θ → logdet(I Wn -K θ Wn ) for all n ∈ N hence θ → R d log(1 -Kθ 0 (x))dµ(x) is continuous as a uniform limit of continuous functions.

Proof of Proposition 5.2.3

By Lemma 5.A.5, we consider a DPP X on (εZ) d with kernel K ε from a parametric family satisfying Condition (H ε ) and a sequence of observation windows (W n ) n 0 satisfying Condition (W). In order to prove Proposition 5.2.3, we start by showing that the stochastic part of the likelihood gets close to its expectation when n → +∞ with the help of the concentration inequality [START_REF] Pemantle | Concentration of lipschitz functionals of determinantal and other strong rayleigh measures[END_REF] from Pemantle and Peres. One of the results we will need is the following bound on the eigenvalues of the random matrices involved in the likelihood:

Using the same reasoning as in the proof of Theorem 5.2.3, we also get

(5.4.9)

Since all L θ are uniformly bounded in Condition (H ε ) by a square integrable function h then (5.4.9) is a Lipschitz function of

Moreover, the expectation of (5.4.9) also vanishes when n → +∞ by Lemma 5.A.4 hence, by using Pemantle and Peres result [START_REF] Pemantle | Concentration of lipschitz functionals of determinantal and other strong rayleigh measures[END_REF] as in the proof of Theorem 5.4.3, (5.4.9) vanish when n goes to infinity almost surely.

We then conclude that for all θ 0 ∈ Θ, φ θ 0 (η) → 0 when η → 0 almost surely. Moreover, since the convergence doesn't depend on θ 0 then for all countable subset Θ d of Θ, sup

). Since g is continuous on Θ by Theorem 5.4.5 and Θ is compact then g is equicontinuous. Then, for all θ ∈ Θ and all integer k

Supplementary Results

A.1 Negative association of finite DPPs

In this section, we denote by X a discrete determinantal process on [n] := {1, • • • , n}, |X| its cardinality, K its matrix kernel and X i the Bernoulli random variables equal to 1 when i ∈ X. Our goal is to prove that X is negatively associated:

Let X be a DPP on [n] and F, G : P([n]) → R be increasing function (with respect to the inclusion). For all A, B disjoint subsets of [n]

,

Note that the functions F and G can be expanded the following way.

Lemma A.1.2. Let F : P([n]) → R be an increasing function and let A ⊂ [n].

We call an event A increasing if its indicator function is increasing. Then, F (X ∩ A) can be written as

where c is a constant, a i > 0 for all i and the events A i are increasing and in the σ-algebra generated by X ∩ A.

The A i are increasing events of σ(X ∩ A) and we can write

proving the lemma.

A proof of Theorem A.1.1 is given in [START_REF] Lyons | Determinantal probability measures[END_REF] using exterior algebra properties. Our goal is to give a detailed proof that only uses probabilistic tools. We recall a few properties of discrete DPPs.

, by using the inclusion-exclusion principle we get

Proposition A.1.4. Let X be a DPP on [n] with kernel K, where K is a projection matrix with rank k. Then, |X| = k almost surely. Such a DPP is called a projection DPP.

Proof.

Finally, an immediate consequence of the identity

is that a DPP X stays determinantal when conditioned by the absence or presence of points in X.

Proposition A.1.5. Let X be a DPP on [n] with kernel K. Let A ⊂ [n] such that P(A ⊂ X) > 0 then, conditionally to {A ⊂ X}, X\A is a determinantal process on

[n]\A with kernel We now give a probabilistic proof of Theorem A.1.1.

Proof of Theorem A.1.1. Let F, G : P([n]) → R be increasing functions and A, B be two disjoints subsets of [n]. Using Proposition A.1.2 we can write F (X ∩ A) and G(X ∩ B) as the sum of a constant and a positive linear combination of indicator functions of increasing events of, respectively, σ(X ∩ A) and σ(X ∩ B). Considering that the constant doesn't affect the inequality (A.1.1), negative association only has to be proved for functions F = 1 A and G = 1 B where A and B are increasing events in, respectively, σ(X ∩ A) and σ(X ∩ B). This is done in three steps. In the first step, we consider the case where X is a projection DPP and where F = 1 A and G = X i . In the second step, we extend the result to the case where F = 1 A and G = 1 B . Finally, we where we consider the right term as being zero if P(i ∈ X, j / ∈ X) = 0. Since X satisfies

3) is satisfied for the event A = {j ∈ X} therefore

Then, by combining this result with (A.1.4), we can bound (A.1.5) by

because the difference between (A.1.6) et (A.1.5) is then equal to

The only thing left to do is applying the induction hypothesis on the measures P(.|j / ∈ X) and P(.|j ∈ X) on σ(X\{j}). In order to do that, we use the following lemma.

Let P z be the associated measure of Z then P(A ) = P z ( Ā ) where Ā = {A ∪ B, A ∈ A and |A| + |B| n}.

Moreover, we can easily check that A and Ā depends on the same set of variables and that A increasing implies Ā increasing. Since Z satisfies the negative association property then it shows that X satisfies it too for all functions F = 1 A and G = 1 B where A and B are increasing events depending on a distinct set of variables and thus for all increasing functions by Proposition A.1.2 concluding the proof.

A.2 Generalized Cramér-Wold device

This result is part of an article [START_REF] Biscio | A note on gaps in proofs of central limit theorems[END_REF] published in Statistics and Probability Letters.

The Cramér-Wold device is a useful statistical tool to extend one dimensional CLT to a multi-dimensional setting. Let X n be a sequence of p-dimensional random variables. The Cramér-Wold device states that X n converges in distribution to a random variable X iff for all a ∈ R p , a T X n converges in distribution to a T X. In statistical applications we often want to show that Var(X n ) -1/2 X n converges in distribution to a standard normal distribution for some sequence of statistics X n . When Var(X n ) converges to a fixed positive definite matrix, a direct consequence of the Cramér-Wold device is that

(A.2.1) where I p is the p × p identity matrix. Therefore, the multidimensional CLT on X n can be deduced by the unidimensional CLT on all its projections. When Var(X n ) does not converges, as in Theorems 2.3.1 and 2.4.4, this result does not hold. Thus, we give a proof of (A.2.1) under the assumptions that the eigenvalues of Var(X n ) are bounded. 

A.2. GENERALIZED CRAMÉR-WOLD DEVICE