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Chapter 1

Introduction

1.1 Random point patterns and repulsiveness

One of the main topic of spatial statistics is the study of datasets consisting of a
finite set of points falling into an observation window that is a compact subset of Rd
(where, usually, d = 1, 2 or 3). The earliest and probably most known example is the
study in 1854 of the physician John Snow [95] of the spatial distribution of cases of
Cholera during an outbreak in London which allowed him to trace back its origin to
a contaminated water pump. In practice, a lot of spatial point patterns are observed
in a wide variety of scientific disciplines. Some examples are given in Figure 1. The
mathematical models that serve to study these kind of spatial data are point processes.

The simplest way to describe a point process on Rd is as a probability measure on the
σ-algebra of locally finite subset of Rd, where a subset X of Rd is said to be locally finite
if for all bounded subsets A of Rd the set X ∩A is finite. The most commonly studied
point process is the Poisson point process (or PPP). A PPP X is defined by a locally
integrable function ρ called its intensity such that the number N(A) of points of the
PPP that falls into a subset A of Rd follows a Poisson distribution with mean

∫
A ρ(x)dx

and, for any disjoint sets A1, · · · , An ⊂ Rd, the random variables N(A1), · · · , N(An)
are mutually independent. As a consequence, conditionally to N(A), all points of X∩A
are independent and identically distributed for any set A ⊂ Rd. This is why PPPs are
used to model spatial data consisting of points that can be considered to be independent
from each other.

The main limitation of PPPs is obviously the assumption that all points are inde-
pendently distributed and therefore have no interaction between each others whereas a
lot of point patterns in practice feature some positive dependency (attractiveness) or
negative dependency (repulsiveness) between points. A simulation of a PPP is shown
in the top left of Figure 2. In comparison, some examples of point patterns with a
repulsive behaviour are given in Figure 1. This is why more complex models of point
processes have been developed in order to model attractive or repulsive point patterns.
In this thesis, we focus mainly on the study of repulsive point patterns. The main
models for these kind of data are Matérn’s hardcore point processes, perturbed lattice
point processes, Gibbs point processes and, the main focus of this thesis, determinantal
point processes.
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Figure 1: Examples of spatial point patterns. The top left figure shows the location of
the centres of 42 biological cells in an histological section. The top right figure shows
the location of 68 Messor ants nests at a site in Greece. The bottom left picture shows
the location of 71 pine saplings in a Swedish forest. The bottom right picture shows
the location of the 28 polling places in the French commune of Rennes. The first three
datasets are provided in the spatstat.data package [5] of R [87]. The last dataset is
provided by the website https://data.rennesmetropole.fr.

Matérn’s hardcore point processes are defined by taking a PPP and removing points
so that no pair of points are closer than a certain distance R (called the hardcore radius)
from each other while perturbed lattice point processes are defined by randomly shifting
a lattice by i.i.d. random variables. Both models are easy to simulate and convenient
to use but are too restrictive for a lot of statistical applications. On the opposite, Gibbs
point processes are a more general class of point processes that offer a large variety of
interactions between points and have been extensively used for modeling repulsiveness
but they are generally difficult to work with. For example, they can only be simulated
by MCMC methods, their density involves an intractable constant making maximum
likelihood inference difficult and no closed form is known for their moments. More
details can be found in [77, 100]

DPPs on the other hand are a more restrictive family than Gibbs point processes
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[44] but are generally easier to work with while still being very flexible and allowing a
large variety of interactions between points. Compared to Gibbs point processes, they
can be exactly simulated and they have a closed form expression for their moments
and Janossy densities. This allows the inference of DPPs by maximum likelihood
estimation or various methods of moments. This is why DPPs present themselves as a
nice alternative to model repulsive point patterns. Examples of simulations of DPPs,
Gibbs point processes and Matérn’s hardcore point processes are shown in Figure 2.

Figure 2: Examples of simulations of four different types of point processes on the
window W = [0, 1]2. The top left figure is a realization of an homogeneous PPP with
intensity ρ = 100. The top right figure is a realization of a DPP with Bessel-type kernel
(4.4.1) with parameters ρ = 100 and α = 0.05. The bottom left figure is a realization
of a type II Matérn’s point process with hardcore radius R = 0.1. The bottom right
figure is a realization of a Strauss point process (a special type of Gibbs point process
defined in [98]) with parameters β = 100, γ = 0.2 and R = 0.1. All simulations have
been done in R [87] using the spatstat [7] package.
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1.2 Preliminaries on point processes

1.2.1 Definition of a point process

We consider (simple) point processes on the measured space (Rd,B(Rd), µ) where d ∈ N
is a constant, B(Rd) is the set of Borel subsets of Rd and µ is a Radon measure. Let
Ω be the space of locally finite subsets of Rd:

Ω := {X ⊂ Rd : ∀S ∈ B0, card(X ∩ S) < +∞}

where B0 denotes the space of bounded Borel sets of Rd. We then consider F , the
σ-algebra generated by the sets

{X ∈ Ω, card(X ∩ S) = m}

for all S ∈ B0 and m ∈ N. A (simple) point process X is then defined as a measurable
application from a measured space into (Ω,F). We write X = ∅ when X corresponds
to the empty point pattern and we denote by N(S) the random variables N(S) :=
card(X ∩ S). General properties about point processes can be found in [31, 100] for
example.

Several ways of defining a point process include using joint intensity functions,
Janossy densities, void probabilities or the Laplace functional. Joint intensity functions
of a point process are defined the following way:

Definition 1.2.1. Let X ∈ Ω be a point process and n > 1 be an integer. If there
exists a non-negative function ρn : (Rd)n → R such that

E

 6=∑
x1,··· ,xn∈X

f(x1, · · · , xn)

 =
∫

(Rd)n
f(x1, · · · , xn)ρn(x1, · · · , xn)dµ(x1) · · · dµ(xn)

for all locally integrable functions f : (Rd)n → R, where the symbol 6= means that the
sum is done for distinct xi, then ρn is called the n-th order joint intensity function of
X.

Thus, ρn is defined as the density of the factorial moment measures (see [31]) of X
with respect to µ. Therefore, ρn(x1, · · · , xn)dµ(x1) · · · dµ(xn) can be simply interpreted
as the probability of X having a point in each of the infinitesimal balls centered at xi
with volume dµ(xi). Janossy densities on the other hand are defined the following way:

Definition 1.2.2. Let X ∈ Ω be a point process and S ∈ B0(Rd). If there exists
non-negative functions jSn : (Rd)n → R for all integers n > 1 such that

E[f(X ∩ S)] =
∑
n>0

1
n!

∫
Sn
f(x)jSn (x)dµn(x)

for all locally integrable functions f :
⋃
n>0 S

n → R, then the functions jSn are called
the Janossy densities of X.

For Janossy densities of a point process X, jSn (x1, · · · , xn)dµ(x1) · · · dµ(xn) can be
interpreted as the probability of X having exactly n points in S, one in each of the
infinitesimal balls centered at xi with volume dµ(xi). Void probabilities are defined as
the probabilities P(X∩S = ∅) for all S ∈ B0. Since the set of events {{X∩S = ∅}, S ∈
B0} generates the σ-algebra F then the knowledge of void probabilities is enough to
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define a point process. Finally, the Laplace functional of a point process X is defined
as the functional

L : f 7→ E
[
exp

(
−
∑
x∈X

f(x)
)]

for all measurable non-negative functionals f with bounded support. This is the point
process equivalent of the Laplace transform for real random variables.

1.2.2 Determinantal point processes

The introduction of DPPs under their current form comes from Macchi [75] to model
fermion systems. Even if instances of DPPs can be found in earlier papers [67, 46],
Macchi is the first one to have introduced them under the general form that is mostly
used today.

A DPP is defined by a function K : (Rd)2 → C called the kernel of the DPP. The
most common way of defining a DPP is by its joint intensity functions:

Definition 1.2.3. Let K : (Rd)2 → C. X is said to be a determinantal point process
on (Rd,B(Rd), µ) with kernel K if its joint intensity functions exist and satisfy

ρn(x1, · · · , xn) = det (K[x]) (1.2.1)

for all integer n and for all x1, · · · , xn ∈ Rd where K[x] is defined as the matrix
(K(xi, xj))16i,j6n.

A first consequence of Definition 1.2.3 is that the first order intensity of a DPP
writes ρ1(x) = K(x, x) which shows that the local density of the point process is given
by the diagonal values of its kernel. A second consequence is that ρ2(x, y)−ρ(x)ρ(y) =
−|K(x, y)|2 < 0 showing that any pair of points has less chance to appear than both
points individually causing points to repel each other. In particular, the higher |K(x, y)|
is, the stronger the repulsion is, so the off-diagonal values of the kernel of a DPP show
the pairwise repulsion between points. More generally, for any configuration of points
(x1, · · · , xn), the closer two points xi and xj are from each other, the closer the i-th
and j-th rows and columns of the matrix K[x] will be, and the lower the values of the
determinant and ρn are, which shows that DPPs favor configurations of points that
are distant from each other. This explains the repulsive nature of determinantal point
process.

The main issue with the general definition 1.2.3 is that it is not clear for which
kernel K a DPP is well-defined. The usual assumptions considered on K for the DPP
to be well-defined are the following:
Condition H: The function K : (Rd)2 → C is a continuous locally square integrable
hermitian measurable function such that its associated integral operator on L2(Rd, µ)

K : f 7→
(
Kf : x 7→

∫
Rd
K(x, y)f(y)dµ(y)

)
is locally of trace class with eigenvalues in [0, 1].

Here, L2(Rd, µ) denotes the space of square integrable functions on Rd. Under
Condition H, it is also possible to define DPPs through their void probabilities or their
Laplace transform:

Proposition 1.2.4 ([94]). Let X be a DPP with kernel K satisfying condition H, then
for all S ∈ B0,

P(X ∩ S = ∅) = det(Id−KS)
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where det refers to the Fredholm determinant, Id is the identity operator on L2(Rd, µ)
and KS is the projection of K on L2(S, µ). Moreover, the Laplace transform of X writes

L(f) = det(Id−K[f ])

where K[f ] is the integral operator with kernel

K[f ](x, y) :=
√

1− e−f(x)K(x, y)
√

1− e−f(y).

In order to get the Janossy densities of a DPP, it is worth noting that since K is
assumed to be a non-negative hermitian function under Condition H then, by Mercer’s
theorem, for all compact set S ⊂ Rd there exists a sequence of eigenvalues λSi ∈ [0, 1]
and orthonormal eigenfunctions φSi of L2(S, µ) such that

K(x, y) =
∑
i

λSi φ
S
i (x)φi

S(y)

for almost all (x, y) ∈ S2. When all λSi ∈ [0, 1[, we define the kernel

LS(x, y) :=
∑
i

λSi
1− λSi

φSi (x)φi
S(y)

and we can express the Janossy densities of X the following way:

Proposition 1.2.5 ([75, 97]). Let X be a DPP with kernel K satisfying condition H
and let S ⊂ Rd be a compact set. If the eigenvalues of KS are in [0, 1[ then, for all
integers n,

jSn (x1, · · · , xn) = det(Id−KS) det(LS [x]).

Finally, DPPs are mostly studied under two different settings. When µ is a counting
measure over a finite space then the DPP is said to be discrete. Discrete DPPs have
found applications for example in machine learning [68] to remove redundancies and
get a diverse subset of a dataset, in sampling theory [72] to get a fixed size sampling
design with fixed first order inclusion probability and some control over the second
order inclusion probability or in graph theory as the distribution of uniform spanning
trees [28]. When µ is absolutely continuous with respect to the Lebesgue measure then
the DPP is said to be continuous. Continuous DPPs also appear in various probability
fields as the eigenvalue’s distribution of some families of random matrices [46], as a
combinatoric tool to study the asymptotic of the longest increasing subsequence of
random perturbations [21], position of non-intersecting Brownian motions with given
starting point and end point [67], zeros of some families of random analytic functions
[82] and also as the distribution of Fermion systems in quantum physics [75] to give a few
examples. From a statistical perspective, continuous DPPs have found applications in
telecommunication [36, 76, 47] to model the spatial configuration of wireless networks,
in biology [1] to model the spatial distribution of epidermal nerve fibers, in forestry [69]
to model the spatial distribution of trees in a forest and in computational statistics as
a tool to get fast Monte Carlo methods [11].

1.2.3 Parametric families of determinantal point processes

There exists several ways to create parametric families of DPPs. One of the most
common one is the following result from [69] :
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Proposition 1.2.6. Let C : Rd 7→ Rd be a square integrable symmetric function on Rd
such that its Fourier transform

Ĉ : x 7→
∫
Rd
C(t) exp(−2iπt · x)dt

takes values in [0, 1]. Then, the function K(x, y) = C(y−x) is a DPP kernel on (Rd, µ)
where µ is the Lebesgue measure.

Since symmetric functions C with non negative Fourier transform are covariance
functions, this proposition implies that we can consider as many parametric families of
DPPs as there are parametric families of covariance functions. The assumption that
Ĉ 6 1 simply adds a bound on the parameters of the family. A well-known example is
the Gaussian-type DPP kernel family that writes{

Kρ,α(x, y) = ρ exp
(
−‖y − x‖

2

α2

)
, 0 6 ρ(

√
πα)d 6 1

}

where ‖.‖ is the euclidean norm of Rd. In this family, the parameter ρ controls the
intensity of the point process while the parameter α controls its range of interaction.
The constraint ρ(

√
πα)d 6 1 is a consequence of the bound Ĉ 6 1 and means that a

trade-off is needed between the repulsiveness of the DPP and the number of points it
can generate. More examples of parametric families of stationary DPP kernels can be
found in [15, 69]

Furthermore, we can also construct non-stationary DPP families by considering
location dependent thinning of stationary DPPs. The following result is an immediate
consequence from the definition of DPPs:

Proposition 1.2.7. Let X be a DPP with kernel K and ρ : Rd → Rd be a function
taking values in [0, 1]. Let X ′ be the point process obtained by retaining all x ∈ X
independently and with probability ρ(x), then X ′ is a DPP with kernel

K ′(x, y) :=
√
ρ(x)K(x, y)

√
ρ(y).

We can then work with parametric families of non-stationary DPPs with kernels of
the form

{Kθ(x, y) :=
√
ρθ(x)Cθ(y − x)

√
ρθ(y), ‖Ĉθ‖∞‖ρθ‖∞ < 1}.

They are called second-order intensity reweighted stationary [6, 103] since their second
order properties are translation-invariants even if their first order intensity is inhomo-
geneous.

Finally, a last general method to obtain parametric families of DPPs is to start from
one DPP and consider all its thinned and scaled versions. This is, for example, how is
defined the family of scaled β-Ginibre DPPs [36].

Proposition 1.2.8. Let X be a DPP with kernel K, ρ ∈ [0, 1] and α ∈ R∗+. Let X ′
be the point process obtained from retaining, independently and with probability ρ, each
point of X and then applying the homothety of ratio α to the remaining points. Then
X ′ is a DPP with kernel

Kρ,α = ρ

αd
K

(
x

α
,
y

α

)
.
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1.3 Outline of the PHD

In this thesis, we focus on the asymptotic inference of continuous DPPs in a specific
framework called increasing domain asymptotic. Let (Wn)n>0 be a sequence of increas-
ing bounded subsets of Rd, meaning that Wn ⊂ Wn+1 for all integers n. Unlike the
classical iid framework, when working in the increasing domain asymptotic framework
we consider a unique observation of a point process within a given window Wn. There-
fore, the asymptotic is considered on the size of the window and, as a consequence,
on the number of point observed. This is why we also usually consider that either⋃
n>0Wn = Rd or, more simply, that the d-dimensional volume of Wn goes to ∞. In

most applications, windows are rectangular but in order to get results as general as
possible, we will usually consider windows of any shape provided that their boundaries
are not too distorted as to limit edge effects.

The main problem in the increasing domain asymptotic setting for DPPs is that,
since all points repel each other, we need to control their spatial dependency. To this
goal, we study mixing properties of DPPs. We use these results to deduce a general
central limit theorem (CLT) for a wide class of statistics on both stationary and non-
stationary DPPs. We then apply this CLT to get asymptotic results on moment-based
estimating equations. Finally, we consider the problem of proving the consistency and
approximating the maximum likelihood estimator of stationary DPPs. All results of
the PHD are detailed in Section 1.5.

1.4 Quantifying dependency in a point process

1.4.1 α-mixing and β-mixing

There exists a lot of different ways to measure dependency, some of the most common
ones can be found in [23]. We study in Chapters 2 and 3 α-mixing and β-mixing for
DPPs, the two most basic notions of dependency of a stochastic process. Introduced
by Rosenblatt in [91] for the α-mixing and by Rozanov and Volkonskii in [92] for the
β-mixing, they have been extensively used in the literature to get asymptotic properties
of random processes, random fields and point processes. Some examples can be found
in [30, 86, 103] for α-mixing and [9, 101] for β-mixing.

The α-mixing and β-mixing coefficients of two σ-algebras are defined the following
way:

Definition 1.4.1. Consider a probability space (E, T ,P) and A ,B two sub σ-algebras
of T . Let PA and PB be the respective restrictions of P to A and B and define
the probability PA⊗B on the product σ-algebra by PA⊗B(A × B) = P(A ∩ B) for all
A ∈ A and B ∈ B. The α-mixing coefficient and β-mixing coefficient are defined as
the following measures of dependence between A and B:

α(A ,B) := sup{|P(A ∩B)− P(A)P(B)| : A ∈ A , B ∈ B}
β(A ,B) := ‖PA⊗B − PA ⊗ PB‖TV

where ‖.‖TV is the total variation metric.

An immediate consequence of their definition is that α(A ,B) = 0 iff β(A ,B) = 0
iff A and B are independent. So, the smaller the α-mixing and β-mixing are, the
closer to independence the σ-algebras can be considered to be. Moreover, the mixing
coefficients satisfy 2α(A ,B) 6 β(A ,B). α-mixing is more often used but β-mixing
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implies stronger covariance inequalities [89] as well as a coupling theorem known as
Berbee’s Lemma [13].

The definitions of the mixing coefficients are adapted to point processes the fol-
lowing way. We write σ(X) for the σ-algebra generated by a random variable X and
dist(A,B) := infx∈A,y∈B ‖y − x‖ for the distance between two sets A and B.

Definition 1.4.2. Let X be a point process on (Rd,B(Rd), µ). The α-mixing and β-
mixing coefficients of X associated to the sizes p and q and to the distance r are defined
by

αp,q(r) := sup{α(σ(X ∩A), σ(X ∩B)) : µ(A) 6 p, µ(B) 6 q, dist(A,B) > r},
βp,q(r) := sup{β(σ(X ∩A), σ(X ∩B)) : µ(A) 6 p, µ(B) 6 q, dist(A,B) > r},

for all p, q, r ∈ R+. We also define

αp,∞(r) := sup
q
αp,q(r), βp,∞(r) := sup

q
βp,q(r),

α∞,∞(r) := sup
p,q

αp,q(r), β∞,∞(r) := sup
p,q

αp,q(r),

for all p ∈ R+.

In most applications, the coefficients α∞,∞(r) and β∞,∞(r) tend to be impractical
to use. This is why the parameters p and q have been introduced to control the size
of the sets considered in the definition of the mixing coefficients. However, the main
information carried by these coefficients is their rate of decay with respect to r. It
shows how fast events that happen further and further away from each others become
independent. As an example of application, one of the most well-known result on α-
mixing random variables is the central limit theorem by Bolthausen [20] that can be
adapted to point processes under the main assumption that

∀p ∈ R+,
∑
r∈N

rd−1αp,∞(r) < +∞.

1.4.2 Positive and negative association

A different kind of dependency property satisfied by DPPs is negative association. It
is defined the following way:

Definition 1.4.3. A point process X on (Rd,B(Rd), µ) is called negatively associated
if it satisfies for all disjoint sets A,B ∈ B0(Rd) and functions f, g : Ω → R increasing
with respect to the inclusion (i.e. X ⊂ Y ⇒ f(X) 6 f(Y )),

Cov(f(X ∩A), g(X ∩B)) 6 0.

A direct consequence of the negative association property is that the random vari-
ables N(A) and N(B) are negatively correlated for any pair of bounded disjoint sets
A,B. Since the covariance between N(A) and N(B) can be written as

Cov(N(A), N(B)) =
∫
A×B

(ρ2(x, y)− ρ1(x)ρ1(y))dµ(x)dµ(y)

therefore ρ2(x, y)− ρ1(x)ρ1(y) is negative almost everywhere as a consequence of neg-
ative association which shows that any pair of points will repel each other. Thus,
negative association can be interpreted as a stronger property than pairwise repulsive-
ness. The negative association of discrete DPPs has been proved in [73] using algebraic
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tools. A more probabilistic proof is provided in Appendix A.1. As for continuous DPPs,
one can deduce from the previous references and [45, 74] that they remain negatively
associated. Just like α-mixing and β-mixing, the negative association property has
been used to prove central limit theorems but only in the case of random fields [27].
Instead, it has been used in [18, 19] to deduce various properties of random geometric
models driven by DPPs. We will show in Chapter 2 that a CLT for point processes can
also be obtained from negative association.

Also of note is the analogous property for attractive point processes which is called
positive association and defined the following way:

Definition 1.4.4. A point process X on (Rd,B(Rd), µ) is called positively associated
if it satisfies for all sets A,B ∈ B0(Rd) and increasing functions f, g : Ω→ R

Cov(f(X ∩A), g(X ∩B)) > 0.

Note that the sets A and B are not restricted to be disjoint in the definition of
positive association compared to negative association. This is because Cov(f(X ∩
A), f(X ∩ A)) is always non-negative which is why we only consider disjoint sets for
negative association but not necessarily for positive association. Another difference is
that positive association can be deduced from the FKG inequality for discrete point
processes and its analogous equivalent [29] for continuous point processes while no such
result exists for negative association. This is why positive association tends to be easier
to prove than negative association in general.

1.5 Presentation of the PHD’s results
In Chapter 2 we show a general central limit theorem for functionals of stationary and
non-stationary DPPs that write as a sum of a test function over all subsets of the point
process. In Chapter 3 we prove a β-mixing inequality for point processes that only
depends on their joint intensity functions and apply it to DPPs. In Chapter 4 we prove
the asymptotic normality of estimators of stationary and non-stationary DPPs built
from a wide class of estimating functions. Finally, we study the asymptotic properties
of the maximum likelihood estimator for stationary DPPs in Chapter 5 and give a
tractable asymptotic approximation of the DPPs likelihood as well as a proof of its
consistency.

1.5.1 Chapter 2

We start by showing that association (positive or negative) of a point process implies a
general covariance inequality that only depends on the covariance between the number
of points of the point process between different sets:

Theorem 1.5.1. Let X be an associated point process and A,B ⊂ Rd be two disjoint
bounded subsets. Let f : Ω → R and g : Ω → R be two functions such that f(X ∩ A)
and g(X ∩B) are bounded, then

|Cov(f(X ∩A), g(X ∩B))| 6 ‖f‖A‖g‖B|Cov(N(A), N(B))|

where ‖.‖A is the Lipschitz semi-norm defined by

‖f‖A := sup
X∈Ω,X⊂A

x∈A

|f(X)− f(X ∪ {x})|.

Moreover, if X is positively associated then it also satisfies the same inequality for all
A,B ⊂ Rd not necessarily disjoint.



1.5. PRESENTATION OF THE PHD’S RESULTS 15

As a consequence, we get that association implies an α-mixing bound that only
depends on the first two joint intensity functions of the point process:

Proposition 1.5.2. Let X be an associated point process on Rd whose first two inten-
sity functions are well-defined, then for all p, q > 0,

αp,q(r) 6 pq sup
‖x−y‖>r

|ρ2(x, y)− ρ(x)ρ(y)|,

αp,∞(r) 6 psd

∫ ∞
r

td−1 sup
‖x−y‖=t

|ρ2(x, y)− ρ(x)ρ(y)|dt.

where sd is the area of the d-dimensional sphere.

Therefore, the rate of decay of the α-mixing coefficients in each cases only depends
on the pairwise repulsion of the point process. In the case of DPPs, since |ρ2(x, y) −
ρ(x)ρ(y)| = |K(x, y)|2 then we deduce that the αp,q(r) coefficients decay at least at the
same rate than the kernel squared does when ‖y − x‖ goes to infinity. We even show
that this rate of decay is optimal for a wide class of DPPs by giving a lower bound
on the α-mixing coefficients with the same rate of decay. Unfortunately, the rates of
decay of the αp,∞(r) coefficients are not as good and applying the CLT by Bolthausen
and Guyon [20, 50] for α-mixing random variables would force us to exclude the most
repulsive DPPs that have the slowest decaying kernel. In order to solve this issue, we
prove a more general CLT, based not on α-mixing but on the covariance inequality
in Theorem 1.5.1, which can be applied to all the parametric families of DPP kernels
commonly used in spatial statistics.

Theorem 1.5.3. Let X be a DPP with bounded kernel K satisfying H. Let τ > 0 and
f : Ω→ R be a function of the form

f(X) :=
∑
S⊂X

f0(S)

where f0 is a bounded function vanishing when supx,y∈S ‖y−x‖ > τ . Let (Wn)n∈N be a
sequence of increasing subsets of Rd such that |Wn| → ∞ and let σ2

n := Var(f(X∩Wn)).
Assume that there exists ε > 0 and ν > 0 such that the following conditions are satisfied:

(H1) |∂Wn ⊕ (τ + ν)| = o(|Wn|);

(H2) sup
‖y−x‖>r

|K(x, y)| = o(r−(d+ε)/2);

(H3) lim infn |Wn|−1σ2
n > 0.

Then,
1
σn

(f(X ∩Wn)− E[f(X ∩Wn)]) L−→ N (0, 1).

Here, ∂Wn ⊕ (τ + ν) denotes the set of points at distance less than τ + ν from the
boundary of Wn.

1.5.2 Chapter 3

In this chapter, we show the following general inequality on β-mixing coefficients of
point processes depending uniquely on their n-th order intensity functions:
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Theorem 1.5.4. Let X be a point process on (Rd,B(Rd), µ) such that E[4|X∩A|] < +∞
for all bounded sets A ⊂ Rd. Then, for all p, q, r ∈ R+,

βp,q(r) 6 sup
µ(A)<p,µ(B)<q

dist(A,B)>r

 +∞∑
m,n=0

2n+m−1

m!n!

∫
Am×Bn

|ρm(x)ρn(y)− ρm+n(x, y)|dµm(x)dµn(y)

 .
Since the expressions (ρm(x)ρn(y)− ρm+n(x, y))/ρm(x)ρn(y) can be interpreted as

the correlation between X having points at the locations x1, · · · , xm and X having
points at the locations y1, · · · , yn then Theorem 1.5.4 shows that the faster these cor-
relations decrease when the distance between the points goes to infinity the faster the
decay of the β-mixing coefficients is. When applied to determinantal point processes,
we get the following β-mixing inequality:

Theorem 1.5.5. Let X be a DPP with bounded kernel K satisfying H, then

βp,q(r) 6 2pq(1 + 2p‖K‖∞)(1 + 2q‖K‖∞)e2‖K‖∞(p+q) sup
‖y−x‖>r

|K(x, y)|2.

Note that the rate of decay of the β-mixing coefficients in Theorem 1.5.5 is the
same as the rate of decay of the α-mixing coefficients in Proposition 1.5.2. The main
drawback of this result, compared to the α-mixing inequality in Proposition 1.5.2, is
the exponential dependency of the bound on the βp,q(r) with respect to p, q making it
impractical to use in most applications.

1.5.3 Chapter 4

Chapter 4 focuses on asymptotic properties of estimators built from estimating func-
tions. Given a family of continuous point processes {Pθ, θ ∈ Θ}, where Θ ⊂ Rp for
some p ∈ N, and an increasing sequence of observation windows (Wn)n>0, we say that
a function en is an estimating function when θ is estimated by a solution (or one of the
solutions) θ̂n of the equation e(θn) = 0. This is a very general statistical framework
that encompass other methods like minimum contrast estimation (when the contrast is
differentiable) or maximum likelihood estimation (when the likelihood is differentiable).
In particular, we say that en is a k-th order estimating function if it is of the form

en(X) =
6=∑

x1,··· ,xk∈X∩Wn

f0(x1, · · · , xk; θ)−
∫
Wk
n

f0(t; θ)ρk(t; θ)dµ(t),

where f0 : (Rd)k × Θ → Rp is a test function. In this chapter, we consider the more
general framework of combinations of estimating functions of various orders:

en(θ) =


∑6=
x1,··· ,xq1∈X∩Wn

f1(x1, · · · , xq1 ; θ)−
∫
W
q1
n
f1(x; θ)ρ(q1)(x; θ)dµ(x)

...∑ 6=
x1,··· ,xql∈X∩Wn

fl(x1, · · · , xql ; θ)−
∫
W
ql
n
fl(x; θ)ρ(ql)(x; θ)dµ(x)

 .
where each fi : (Rd)qi ×Θ→ Rki is a test function and

∑
i ki = p. We show that under

some regularity assumptions on the observation windows, the test functions and the
point process then there exists a µ(Wn)-consistent sequence of roots θ̂n of the equation
en(θ) = 0 that is also asymptotically normally distributed. More precisely, for all ε > 0,
there exists A > 0 such that

P(∃θ̂n : en(θ̂n) = 0 and µ(Wn) ‖θ̂n − θ∗‖ < A) > 1− ε
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for a sufficiently large n and

µ(Wn)Var(en(θ∗))−1/2Hn(θ∗)(θ̂n − θ∗)
L−→ N (0, Ip),

where Ip is the p× p identity matrix and

Hn(θ∗) := 1
µ(Wn)


∫
W
q1
n
f1(x; θ∗)∇θρ(q1)(x; θ∗)Tdµ(x)

...∫
W
ql
n
fl(x; θ∗)∇θρ(ql)(x; θ∗)Tdµ(x)

 .
We then focus in particular on the case of second-order estimating functions (l = 1

and q1 = 2) and two-step estimation (l = 2, q1 = 1 and q2 = 2) of determinantal point
processes and show how the various assumptions on X and the test functions fi are
simplified in both cases.

For second-order estimating functions, one of the main assumptions considered on
the test function f is that f(u, v) = 0 if ‖v − u‖ is greater than some constant R. In
practical applications, the choice of this R is very important. If R is chosen too small
then the estimating function will ignore a lot of pairs of points but taking R to high
will make the estimating functions consider pair of points that are so far from each
other they are nearly uncorrelated and will contribute mostly as noise. If we define
g(u, v; θ) := ρ2(u, v; θ)/ρ1(u; θ)ρ1(v; θ) as the pair correlation function between u and
v then we know that g(u, v; θ) converges towards 1 when the distance between u and v
goes to infinity. Following the idea that we only want to take into account pair of points
that are correlated enough, we want to keep pairs of point (u, v) such that g(u, v; θ)−1
is higher than some fraction of g(u, u; θ) − 1 and g(v, v; θ) − 1. This means that we
want to choose R such that

‖v − u‖ > R⇔
∣∣∣∣g(u, v; θ∗)− 1
g(u, u; θ∗)− 1

∣∣∣∣ < ε and
∣∣∣∣g(u, v; θ∗)− 1
g(v, v; θ∗)− 1

∣∣∣∣ < ε

for a small ε (for example ε = 1%). A common approach to choose such an R is to
inspect a non-parametric estimation of the pair correlation function as in [8, 51, 103].
The issue with this approach is that, not only it requires extra work from the user, this
complex method of choosing R makes it difficult to get any theoretical result on the
estimating equation. In order to solve this issue, we propose instead to modify the test
function to be of the form

fadap(u, v; θ) = w

(
ε

max(g(u, u; θ)− 1, g(v, v; θ)− 1)
g(u, v; θ)− 1

)
f0(u, v; θ)

for some test function f0 and weight function w of bounded support [−1, 1]. Then, we
show that not only fadap fits our consistency result and central limit theorem but we
show in some simulation studies that it performs as well as test functions of the form

f(u, v; θ) = 1‖v−u‖6Rf0(u, v; θ)

with an optimal choice of R but without the need for the user to find this optimal R.

1.5.4 Chapter 5

In the final chapter of this manuscript, we consider the problem of maximum likelihood
estimation (MLE for short) of stationary determinantal point processes. Given a family
{Pθ, θ ∈ Θ} of continuous DPPs on an increasing sequence of compact observation
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windows (Wn)n>1, as a consequence of Proposition 1.2.5 the (normalized) log-likelihood
of this DPP family can be expressed as

ln(θ|X) = 1 + 1
µ(Wn)

(
logdet(Id−KθWn

) + logdet(LθWn
[X ∩Wn])

)
.

Both the expression of LθWn
and the Fredholm determinant of Id−KθWn

depend on the
spectral decomposition of the projection of K on L2(Wn, µ). Computing this spectral
decomposition is not an issue for discrete DPPs where K is a finite matrix but cannot be
done for continuous DPPs. We propose in this chapter an asymptotic approximation of
the likelihood of continuous stationary DPPs based on the fact that stationary DPPs
have kernels of the form K(x, y) = K0(y − x) and when K0 is square integrable, it
admits a Fourier transform taking values in [0, 1] by Proposition 1.2.6. We use the
following asymptotic approximations:

LWn(x, y) ≈
∫
Rd

K̂0(t)
1− K̂0(t)

exp(2iπt · (y − x))dµ(t)

and
1

µ(Wn) logdet(Id−K
θ
Wn

) ≈
∫
Rd

log(1− K̂0(x))dµ(x),

to get an approximation l̃n(θ|X) of ln(θ|X) that does not depend on the spectral
decomposition of the kernels but only on their Fourier transform which are explicitly
known for all classical parametric families of stationary DPP kernels used in spatial
statistics.

The main issue with an asymptotic approximation of the likelihood is that it ignores
any kind of edge effect of the DPP, worsening the inference of the most repulsive DPPs
that have the stronger edge effects. As a fix to this issue in the case of rectangular
window, we consider the idea of replacing the window with a flat torus, bringing points
on the edge closer to each other in order to mitigate the edge effect. We show in a
simulation study that the approximated likelihood l̃n(θ|X) with the edge effect correc-
tion gives better result than DPP inference with more common moment methods like
minimum contrast estimation based on the pair correlation function.

Another issue with the MLE is the difficulty to get any theoretical result about
its consistency. One of the main problem is that det(LθWn

[X]) vanishes when two
points of X get arbitrarily close to each other. Unfortunately, no relationship between
how close some points of X are from each other and the value of the determinant is
known, making the likelihood difficult to control unless we can force all points of the
DPP to be at a distance at least ε from each other. This motivates the idea to work
with approximations of DPPs on (εZ)d, ε > 0, an arbitrary small regular grid of Rd,
with kernels εdKθ[(εZ)d]. We show that for any small enough ε > 0 and under weak
assumptions on the DPP family {Pθ, θ ∈ Θ} the MLE and our approximated MLE are
equivalent and converges to the true parameter θ.

1.5.5 Appendix

In this section, we give two complementary results to the PHD. In [74], Lyons proved
the negative association of general DPPs as a consequence of the negative association
of discrete DPPs. The proof of the negative association of discrete DPPs is done using
various exterior algebra properties making the proof difficult to understand for those
who are not familiar with this algebraic formalism. Our first result is a modified version
of Lyon’s proof that only uses probabilistic tools.
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Our second result is a generalization of the Cramér-Wold device. The Cramér-
Wold device is used, among others, as a way to generalize unidimensional CLTs to
multidimensional CLTs. Unfortunately, it only works when the variance in the CLT
is convergent which is not assumed in Theorems 2.3.1 and 2.4.4 where we need it.
Therefore, we show that the Cramér-Wold device can be extended to the case of non-
convergent variance.
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Chapter 2

Mixing properties and central
limit theorem for associated
point processes

This chapter is an article [84] accepted for publication in Bernoulli journal so some con-
siderations and definitions are redundant with the introduction. For the same reason,
some notations are specific to this chapter.

2.1 Introduction
Positive association (PA) and negative association (NA) [3, 41] are properties that
quantify the dependence between random variables. They have found many applica-
tions in limit theorems for random fields [26, 104]. Even if the extension of PA to point
processes have been used in analysis of functionals of random measures [29, 42], there
are no general applications of PA or NA to limit theorems for point processes. We con-
tribute in this chapter to this aspect for spatial point processes on Rd. We especially
discuss in detail the case of determinantal point processes (DPPs for short), that are
an important example of negatively associated point processes. DPPs are a type of
repulsive point processes that were first introduced by Macchi [75] in 1975 to model
systems of fermions in the context of quantum mechanics. They have been extensively
studied in Probability theory with applications ranging from random matrix theory to
non-intersecting random walks, random spanning trees and more (see [61]). From a
statistical perspective, DPPs have applications in machine learning [68], telecommuni-
cation [36, 76, 47], biology, forestry [69] and computational statistics [11].

As a first result, we relate the association property of a point process to its α-mixing
properties. First introduced in [91], α-mixing is a measure of dependence between ran-
dom variables, which is actually more popular than PA or NA. It has been used exten-
sively to prove central limit theorems for dependent random variables [20, 37, 50, 62, 91].
More details about mixing can be found in [23, 37]. We derive in Section 2.2 an impor-
tant covariance inequality for associated point processes (Theorem 2.2.5), that turns
out to be very similar to inequalities established in [39] for weakly dependent contin-
uous random processes. We show that this inequality implies α-mixing and precisely
allows one to control the α-mixing coefficients by the first two intensity functions of
the point process. This result for point processes is in contrast with the case of random
fields where it is known that association does not imply α-mixing in general (see Exam-
ples 5.10-5.11 in [26]). However, this implication holds true for integer-valued random
fields (see [38] or [26]). As explained in [38], this is because the σ-algebras generated
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by countable sets are much poorer than σ-algebras generated by continuous sets. In
fact, by this aspect and some others (for instance our proofs boil down to the control
of the number of points in bounded sets), point processes are very similar to discrete
processes.

We then establish in Section 2.3 a general central limit theorem (CLT) for random
fields defined as a function of an associated point process (Theorem 2.3.1). A standard
method for proving this kind of theorem is to rely on sufficiently fast decaying α-mixing
coefficients along with some moment assumptions. We use an alternative procedure
that exploits both the mixing properties and the association property. This results in
weaker assumptions on the underlying point process, that can have slower decaying
mixing coefficients. This improvement allows in particular one to include all standard
DPPs, some of them being otherwise excluded with the first approach (like for instance
DPPs associated to the Bessel-type kernels [15]).

Section 2.4 discusses in detail the case of DPPs, where we derive a tight explicit
bound for their α-mixing coefficients and prove a central limit theorem for certain
functionals of a DPP (Theorem 2.4.4). Specifically, these functionals write as a sum
of a bounded function of the DPP, over subsets of close-enough points of the DPP. A
particular case concerns sums over p-tuple of close enough points of the DPP, which
are frequently encountered in asymptotic inference. Limit theorems in this setting have
been established in [97] when p = 1, and in [14] for stationary DPPs and p > 1. We thus
extend these studies to sums over any subsets and without the stationary assumption.
As a statistical application, we consider the parametric estimation of second-order
intensity reweighted stationary DPPs. These DPPs have an inhomogeneous first order
intensity, but translation-invariant higher order (reweighted) intensities. We prove that
the two-step estimator introduced in [103], designed for this kind of inhomogeneous
point process models, is consistent and asymptotically normal when applied to DPPs.

2.2 Associated point processes and α-mixing

2.2.1 Notation

In this chapter, we consider locally finite simple point processes on Rd, for a fixed d ∈ N.
Some theoretical background on point processes can be found in [31, 77]. We denote
by Ω the set of locally finite point configurations in Rd. For X ∈ Ω and A ⊂ Rd, we
write

N(A) := card(X ∩A)

for the random variable representing the number of points of X that fall in A. We
also denote by B(A) the Borel σ-algebra of A and by E(A) the σ-algebra generated by
X ∩A, defined by

E(A) := σ({X ∈ Ω : N(B) = m}, B ∈ B(A),m ∈ N).

The notation |.| will have a different meaning depending on the object it is applied.
For x ∈ Rd, |x| stands for the euclidean norm. For a set A ⊂ Rd, |A| :=

∫
A dx is the

euclidean volume of A, and for a set I ⊂ Zd we write |I| for the cardinal of I. For A,B
two subsets of Rd (resp. Zd) we define dist(A,B) as infx∈A,y∈B |y − x| and diam(A)
as supx,y∈A |y − x| where |.| is the associated norm on Rd (resp. Zd). For i ∈ Zd, |i|1
denotes the `1-norm. Finally, we write B(x, r) for the euclidean ball centered at x with
radius r and ‖.‖p for the p-norm of random variables and functions where 1 6 p 6∞.

We recall that the intensity functions of a point process (when they exist), with
respect to the Lebesgue measure, are defined as follows.
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Definition 2.2.1. Let X ∈ Ω and n > 1 be an integer. If there exists a non-negative
function ρn : (Rd)n → R such that

E

 6=∑
x1,··· ,xn∈X

f(x1, · · · , xn)

 =
∫

(Rd)n
f(x1, · · · , xn)ρn(x1, · · · , xn)dx1 · · · dxn

for all locally integrable functions f : (Rd)n → R then ρn is called the nth order intensity
function of X.

In particular, ρn(x1, · · · , xn)dx1 · · · dxn can be viewed as the probability that X
has a point in each of the infinitesimally small sets around x1, · · · , xn with volumes
dx1, · · · , dxn respectively.

We further introduce the notation

D(x, y) := ρ2(x, y)− ρ1(x)ρ1(y). (2.2.1)

This quantity is involved in the following equality, deduced from the previous definition
and used several times throughout the chapter:

Cov(N(A), N(B)) =
∫
A×B

D(x, y)dxdy. (2.2.2)

2.2.2 Negative and positive association

Our goal in this section is to prove a crucial covariance inequality and to deduce an
α-mixing property for associated point processes. We recall that associated point pro-
cesses are defined the following way (see Definitions 2.11-2.12 in [19] for example).

Definition 2.2.2. A point process X is said to be negatively associated (NA for short)
if, for all families of pairwise disjoint Borel sets (Ai)16i6k and (Bi)16i6l such that

(∪iAi) ∩ (∪jBj) = ∅ (2.2.3)

and for all coordinate-wise increasing functions F : Nk 7→ R and G : Nl 7→ R it satisfies

E[F (N(A1), · · · , N(Ak))G(N(B1), · · · , N(Bl))]
6 E[F (N(A1), · · · , N(Ak))]E[G(N(B1), · · · , N(Bl))]. (2.2.4)

Similarly, a point process is said to be positively associated (PA for short) if it satis-
fies the reverse inequality for all families of pairwise disjoint Borel sets (Ai)16i6k and
(Bi)16i6l (but not necessarily satisfying (2.2.3)).
If a point process is NA or PA it is said to be associated.

The main difference between the definition of PA and NA is the restriction (2.2.3)
that only affects NA point processes. Notice that without (2.2.3), E[N(A)]2 6 E[N(A)2]
contradicts (2.2.4) hence the need to consider functions depending on disjoint sets for
NA point processes.

These inequalities extend to the more general case of functionals of point processes.
The first thing we need is a more general notion of increasing functions. We associate
to Ω the partial order X 6 Y iff X ⊂ Y and then call a function on Ω increasing if
it is increasing respective to this partial order. The association property can then be
extended to these functions. A proof in a general setting can be found in [74, Lemma
3.6] but we give an alternative elementary one in Appendix 2.A.
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Theorem 2.2.3. Let X be a NA point process on Rd and A,B be disjoint subsets of
Rd. Let F : Ω 7→ R and G : Ω 7→ R be bounded increasing functions, then

E[F (X ∩A)G(X ∩B)] 6 E[F (X ∩A)]E[G(X ∩B)]. (2.2.5)

If X is PA then, for all A,B ⊂ Rd not necessarily disjoint,

E[F (X ∩A)G(X ∩B)] > E[F (X ∩A)]E[G(X ∩B)]. (2.2.6)

Association is a very strong dependence condition. As proved in the following the-
orem, it implies a strong covariance inequality that is only controlled by the behaviour
of the first two intensity functions of X (assuming their existence). To state this result,
we need to introduce the following seminorm for functionals over point processes.

Definition 2.2.4. For any A ⊂ Rd, ‖.‖A is the seminorm on the functions f : Ω 7→ C
defined by

‖f‖A := sup
X∈Ω,X⊂A

x∈A

|f(X)− f(X ∪ {x})|.

Note that ‖.‖A is a Lipschitz norm in the sense that it controls the way f(X) changes
when a point is added to X ∩A.

Theorem 2.2.5. Let X be an associated point process and A,B ⊂ Rd be two disjoint
bounded subsets. Let f : Ω → R and g : Ω → R be two functions such that f(X ∩ A)
and g(X ∩B) are bounded, then

|Cov(f(X ∩A), g(X ∩B))| 6 ‖f‖A‖g‖B|Cov(N(A), N(B))|. (2.2.7)

Moreover, if X is PA then it also satisfies the same inequality for all A,B ⊂ Rd not
necessarily disjoint.

Proof. The proof mimics the one from [25] for associated random fields. We only
consider the case of NA point processes but the PA case can be treated in the same
way.
Consider the functions f+, f− : Ω → R, E(A)-measurable, and g+, g− : Ω → R, E(B)-
measurable, defined by {

f±(X) = f(X ∩A)± ‖f‖AN(A),
g±(X) = g(X ∩B)± ‖g‖BN(B).

For all x ∈ A\X, f+(X ∪ {x}) − f+(X) = f(X ∪ {x} ∩ A) − f(X ∩ A) + ‖f‖A which
is positive by definition of ‖f‖A. f+ is thus an increasing function. With the same
reasoning, g+ is also increasing and f−, g− are decreasing. f+ is not bounded but it
is non-negative and almost surely finite so it can be seen as an increasing limit of the
sequence of functions min(f+, k) when k goes to infinity. These functions are non-
negative, increasing and bounded so for any k and any bounded increasing function
g, (2.2.5) applies where F is replaced by min(f+, k). By a limiting argument, the same
inequality holds true for f = f+. We can also treat the other functions the same way
and we get from (2.2.5)

Cov(f+(X), g+(X)) 6 0 and Cov(f−(X), g−(X)) 6 0.

Since these expressions are equal to

Cov(f±(X), g±(X)) = Cov(f(X ∩A), g(X ∩B)) + ‖f‖A‖g‖BCov(N(A), N(B))
± (‖g‖BCov(f(X ∩A), N(B)) + ‖f‖ACov(N(A), g(X ∩B))),
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adding these two expressions together yields the upper bound in (2.2.7):

Cov(f(X ∩A), g(X ∩B)) 6 −‖f‖A‖g‖BCov(N(A), N(B)).

The lower bound is obtained by replacing f by −f in the previous expression.

A similar inequality as in Theorem 2.2.5 can also be obtained for complex-valued
functions since ‖<(f)‖A and ‖=(f)‖A are bounded by ‖f‖A, where <(f) and =(f) refer
to the real and imaginary part of f respectively.

Corollary 2.2.6. Let X be an associated point process and A,B ⊂ Rd be two disjoint
bounded subsets. Let f : Ω → C and g : Ω → C be two functions such that f(X ∩ A)
and g(X ∩B) are bounded, then

|Cov(f(X ∩A), g(X ∩B))| 6 4‖f‖A‖g‖B|Cov(N(A), N(B))|.

Moreover, if X is PA then it also satisfies the same inequality for all A,B ⊂ Rd not
necessarily disjoint.

If the first two intensity functions of X are well-defined then D in (2.2.1) is well-
defined. As a consequence of Theorem 2.2.5 and from (2.2.2), if |D(x, y)| vanishes fast
enough when |y − x| goes to infinity then any two events respectively in E(A) and
E(B) will get closer to independence as dist(A,B) tends to infinity, as specified by the
following corollary.

Corollary 2.2.7. Let X be an associated point process on Rd whose first two inten-
sity functions are well-defined. Let A,B be two bounded disjoint sets of Rd such that
dist(A,B) > r. Then, for all functions f : Ω → R and g : Ω → R such that f(X ∩ A)
and g(X ∩B) are bounded,

|Cov(f(X ∩A), g(X ∩B))| 6 sd|A| ‖f‖A‖g‖B
∫ ∞
r

td−1 sup
|x−y|=t

|D(x, y)|dt, (2.2.8)

where sd is the (d−1)-dimensional area measure of the unit sphere in Rd. Moreover, if
f and/or g are complex-valued functions, the same inequality holds true with an extra
factor 4 on the right hand side.

Proof. Consider A,B to be two bounded disjoint sets of Rd such that dist(A,B) > r
then, from (2.2.2),

|Cov(N(A), N(B))| =
∣∣∣∣∫
A×B

D(x, y)dxdy
∣∣∣∣

6 |A| sup
x∈A

∫
B
|D(x, y)|dy

6 |A| sup
x∈A

∫
B(x,r)c

|D(x, y)|dy

6 |A| sup
x∈A

∫
B(x,r)c

sup
u∈Rd

|u−x|=|y−x|

|D(x, u)|dy

6 |A|sd
∫ ∞
r

td−1 sup
|u−v|=t

|D(u, v)|dt.

The final result is then a consequence of Theorem 2.2.5 and Corollary 2.2.6.
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2.2.3 Application to α-mixing

Let us first recall some generalities about mixing. Consider a probability space (X ,F ,P)
and A ,B two sub σ-algebras of F . The α-mixing coefficient is defined as the following
measure of dependence between A and B:

α(A ,B) := sup{|P(A ∩B)− P(A)P(B)| : A ∈ A , B ∈ B}.

In particular, A and B are independent iff α(A ,B) = 0. This definition leads to the
essential covariance inequality due to Davydov [32] and later generalized by Rio [88]:
For all random variables X,Y measurable with respect to A and B respectively,

|Cov(X,Y )| 6 8α1/r(A ,B)‖X‖p‖Y ‖q, where p, q, r ∈ [1,∞] and 1
p

+ 1
q

+ 1
r

= 1.
(2.2.9)

This definition is adapted to random fields the following way (see [37] or [50]). Let
Y = (Yi)i∈Zd be a random fields on Zd and define

αp,q(r) := sup{α(σ({Yi, i ∈ A}), σ({Yi, i ∈ B})) : |A| 6 p, |B| 6 q,dist(A,B) > r}

with the convention αp,∞(r) = supq αp,q(r). The coefficients αp,q(r) describe how close
two events happening far enough from each other are from being independent. The pa-
rameters p and q play an important role since, in general, we cannot get any information
directly on the behaviour of α∞,∞(r).

We can adapt this definition to point processes the following way. For a point
process X on Rd, define

αp,q(r) := sup{α(E(A), E(B)) : |A| 6 p, |B| 6 q,dist(A,B) > r}

with the convention αp,∞(r) = supq αp,q(r).
As a consequence of Corollary 2.2.7, the α-mixing coefficients of an associated point

process tend to 0 when D(x, y) vanishes fast enough as |y − x| goes to infinity. More
precisely, we have the following inequalities.

Proposition 2.2.8. Let X be an associated point process on Rd whose first two inten-
sity functions are well-defined, then for all p, q > 0,

αp,q(r) 6 pq sup
|x−y|>r

|D(x, y)|,

αp,∞(r) 6 psd

∫ ∞
r

td−1 sup
|x−y|=t

|D(x, y)|dt.
(2.2.10)

Proof. We can write

α(E(A), E(B)) = sup
A ∈E(A)
B∈E(B)

Cov(1A (X ∩A),1B(X ∩B))

so Proposition 2.2.8 is a direct consequence of Theorem 2.2.5 and Corollary 2.2.7 applied
to indicator functions.

2.3 Central limit theorem for associated point processes
Consider the lattice (xi)i∈Zd defined by xi = R · i, where R > 0 is a fixed constant. We
denote by Ci, i ∈ Zd, the d-dimensional cube with center xi and side length s, where
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s > R is another fixed constant. Note that the union of these cubes forms a covering
of Rd. Let X be an associated point process and (fi)i∈Zd be a family of real-valued
measurable functions defined on Ω. We consider the centered random field (Yi)i∈Zd
defined by

Yi := fi(X ∩ Ci)− E[fi(X ∩ Ci)], i ∈ Zd, (2.3.1)

and we are interested in this section in the asymptotic behavior of Sn :=
∑
i∈In Yi,

where (In)n∈N is a sequence of strictly increasing finite domains of Zd.
As a consequence of Proposition 2.2.8, we could directly use one of the different

CLT for α-mixing random fields that already exist in the literature [20, 37, 50] to get
the asymptotic distribution of Sn. But, the coefficients αp,∞ decreasing much slower
than the coefficients αp,q, this would imply an unnecessary strong assumption on D.
Precisely, this would require D(x, y) to decay at a rate at least o(|y − x|−2(d+ε) 2+δ

δ ),
where ε > 0 and δ is a positive constant depending on the behaviour of the moments
of X. In the next theorem, we bypass this issue by exploiting both the behaviour of
the mixing coefficients αp,q when p < ∞ and q < ∞, and the association property
through inequality (2.2.8). We show that we can still get a CLT when D(x, y) decays
at a rate o(|y − x|−(d+ε) 2+δ

δ ). This improvement is important to include DPPs with
a slow decaying kernel, thus inducing more repulsiveness, such as Bessel-type kernels,
see the applications to DPPs in Section 2.4.2 and especially the discussion at the end
of the section. Let us also remark that another technique, based on the convergence
of moments, is sometimes used to establish a CLT for point processes. This has been
exploited especially for Brillinger mixing point processes in [66, 54] and other papers.
As an example, DPPs have been proved to be Brillinger mixing in [14, 53]. However,
this condition applies to stationary point processes only.

Theorem 2.3.1. Consider the random field Y given by (2.3.1), a sequence (In)n∈N of
strictly increasing finite domains of Zd and Sn =

∑
i∈In Yi. Let σ

2
n := Var(Sn). Assume

that for some ε, δ > 0 the following conditions are satisfied:

(C1) X is an associated point process on Rd whose first two intensity functions are
well-defined;

(C2) supi∈Zd ‖Yi‖2+δ = M <∞;

(C3) sup|x−y|>r |D(x, y)| = o
r→∞

(r−(d+ε) 2+δ
δ ) where D is given by (2.2.1);

(C4) lim infn |In|−1σ2
n > 0.

Then
1
σn
Sn

L−→ N (0, 1).

Proof. First, we notice that Y inherits its strong mixing coefficients from X. This is
due to the fact that we have σ({Yi : i ∈ I}) ⊂ E(

⋃
i∈I Ci) for all I ⊂ Zd as a consequence

of (2.3.1). Moreover, we have dist(Ci, Cj) > 1√
d
(|i − j|1R − sd) as a consequence of

Lemma 2.B.2, and since |
⋃
i∈I Ci| 6 sd|I|, this gives us the inequality

∀p, q > 0, ∀r > sd

R
, αYp,q(r) 6 αXpsd,qsd

( 1√
d

(rR− sd)
)
,

where we denote by αX , αY the α-mixing coefficients of X and Y respectively. In
particular, conditions (C1), (C3) and identity (2.2.10) yields

∀p, q > 0, αYp,q(r) = o
r→∞

(r−(d+ε) 2+δ
δ ). (2.3.2)
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We deal with the proof in two steps: first, we consider the case of bounded variables
and then we extend the result to the more general case.

The first step of the proof follows the approach used by Bolthausen [20] and
Guyon [50], while the second step exploits elements from Ibragimov and Linnik [62].
The main difference lies in the way we deal with the term A3 that appears later on in
the proof.

First step: Bounded variables. Without loss of generality, we consider that E[fi(X∩
Ci)] = 0 for all i ∈ Zd. Suppose that we have supi ‖Yi‖∞ := supi ‖fi(. ∩ Ci)‖∞ = M <
∞ instead of Assumption (C2). Since αYp,q(r) is non increasing in r and is a o(r−d)
by (2.3.2), we can choose a sequence (rn)n∈N such that

αYp,q(rn)
√
|In| → 0 and r−dn

√
|In| → ∞.

For i ∈ Zd, define

Si,n =
∑
j∈In

|i−j|16rn

Yj , S∗i,n = Sn − Si,n, an =
∑
i∈In

E[YiSi,n],

S̄n = 1
√
an
Sn and S̄i,n = 1

√
an
Si,n.

We have σ2
n = Var(Sn) = an +

∑
i∈In E[YiS∗i,n] and, as a consequence of the typical

covariance inequality (2.2.9) for α-mixing random variables, we get∣∣∣∣∣∣
∑
i∈In

E[YiS∗i,n]

∣∣∣∣∣∣ 6
∑
i,j∈In
|i−j|1>rn

|Cov(Yi, Yj)| 6 8M2 ∑
i,j∈In
|i−j|1>rn

αY1,1(|i− j|1)

6 8M2|In|
∑
r>rn

|{k ∈ Zd : |k|1 = r}|αY1,1(r).

The number of k ∈ Zd satisfying |k|1 = r is bounded by 2(2r + 1)d−1. This is because
each of the d − 1 first coordinates of k takes its values in {−r, · · · , r} and the last
coordinate is fixed by the other ones, up to the sign, since |k|1 = r. Therefore,∣∣∣∣∣∣

∑
i∈In

E[YiS∗i,n]

∣∣∣∣∣∣ 6 16M2|In|
∑
r>rn

(2r + 1)d−1αY1,1(r).

By Assumption (2.3.2), this quantity is o(|In|) and thus σ2
n ∼ an as a consequence of

Assumption (C4). We then only need to prove the asymptotic normality of Sn. More-
over, since supn E[S2

n] < ∞ then this will be a consequence of the following condition
(see [17, 20])

lim
n→∞

E[(iλ− Sn) exp(iλSn)] = 0, ∀λ ∈ R.

We can split this expression into (iλ− Sn) exp(iλSn) = A1 −A2 −A3 where

A1 = iλ exp(iλSn)

1− 1
an

∑
j∈In

YjSj,n

 ,
A2 = 1

√
an

exp(iλSn)
∑
j∈In

Yj
(
1− iλSj,n − exp(−iλSj,n)

)
,

A3 = 1
√
an

∑
j∈In

Yj exp
(
iλ(Sn − Sj,n)

)
.
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It was proved by Bolthausen [20] that E[A2
1] and E[|A2|] vanish when n goes to infinity

if
∑
rd−1αYp,q(r) <∞ for p+q 6 4 which is the case here. We show that E[A3] vanishes

at infinity using (2.2.8). Notice that we have

|E[A3]| 6 |In|√
an

sup
j∈In

∣∣∣∣∣∣∣∣Cov
fj(X ∩ Cj), exp

 iλ
√
an

∑
k∈In

|k−j|1>rn

fk(X ∩ Ck)



∣∣∣∣∣∣∣∣ .

Define the function

gj : X 7→ exp

 iλ
√
an

∑
k∈In

|k−j|1>rn

fk(X ∩ Ck)

 .
This function is bounded by 1 and E(Bj)-measurable where Bj :=

⋃
k∈In, |k−j|1>rn Ck

is a bounded set and dist(Cj , Bj) > (Rrn − sd)/
√
d (see Lemma 2.B.2). We have

‖fj‖Cj 6 2M and for all X ∈ Ω, for all x ∈ Bj , if we denote by Jx = {k : x ∈ Ck} the
set of cubes that contain x then

|gj(X ∪ {x})− gj(X)|

=

∣∣∣∣∣∣1− exp

 iλ
√
an

∑
k∈Jx

(fk(X ∩ Ck ∪ {x})− fk(X ∩ Ck))

∣∣∣∣∣∣ 6 2λM |Jx|√
an

.

Lemma 2.B.2 gives us the bound |Jx| 6 (2sd/R+1)d and thus ‖gj‖Bj 6 2λM(2sd/R+
1)d/√an. Finally, using Corollary 2.2.7 we get

|E[A3]| 6 4|In|sd√
an
|Cj |‖fj‖Cj‖gj‖Bj

∫ ∞
dist(Bj ,Cj)

td−1 sup
|x−y|>t

|D(x, y)|dt

6 16sdM2
(

2s2d

R
+ s

)d
λ
|In|
an

∫ ∞
1√
d

(Rrn−sd)
td−1 sup

|x−y|>t
|D(x, y)|dt. (2.3.3)

By assumption (C3) we have that td−1 sup|x−y|>t |D(x, y)| is integrable and by assump-
tion (C4) we have |In| = O(an) which shows that limn→∞ E[A3] = 0 concluding the
proof of the theorem for bounded variables.

Second step: General Case. For N > 0, we define{
S1,n :=

∑
i∈In(FN (Yi)− E[FN (Yi)]) where FN : x 7→ x1|x|6N ,

S2,n :=
∑
i∈In(F̃N (Yi)− E[F̃N (Yi)]) where F̃N : x 7→ x1|x|>N .

Let σ2
n(N) := Var(S1,n), from the first step of the proof we have σn(N)−1S1,n

L−→
N (0, 1). Let 1 > γ > (1 + ε

d(1 + δ
2))−1 and define CN := supi ‖Yi1|Yi|>N‖2+δγ . By

assumption (C2) we have that CN vanishes when N →∞ and by assumption (C4) we
have that |In| 6 cσ2

n for a sufficiently large n, where c is a positive constant. By (2.2.9),
1
σ2
n

Var(S2,n) = 1
σ2
n

∑
i,j∈In

Cov(F̃N (Yi), F̃N (Yj))

6
|In|
σ2
n

C2
N sup
i∈In

∑
j∈In

8αY1,1(|i− j|1)
δγ

2+δγ

6 16 cC2
N

∞∑
r=0

(2r + 1)d−1αY1,1(r)
δγ

2+δγ .
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By assumption (C3) and the choice of γ we have
∑

(2r + 1)d−1αY1,1(r)
δγ

2+δγ < ∞ so
σ−1
n S2,n converges in mean square to 0 when N goes to infinity, uniformly in n. With

the same reasoning, we also get the inequality

1
σ2
n

|Cov(S1,n, S2,n)| 6 16 cMCN

∞∑
r=0

(2r + 1)d−1αY1,1(r)
δγ

2+δγ ,

where the right hand side tends to 0 when N goes to infinity, uniformly in n. Hence
σ2
n(N) tends to σ2

n uniformly in n as N goes to infinity.
Finally, for all constants ν > 0 arbitrary small, we chooseN such that E[σ−1

n |S2,n|] 6
ν and |1 − σn(N)/σn| 6 ν for all n sufficiently large. By looking at the characteristic
function of σ−1

n Sn we get∣∣∣∣E(e ixSnσn

)
− e−

1
2x

2
∣∣∣∣ 6 ∣∣∣∣E(e ixS1,n

σn

)
− E

(
e
ixS1,n
σn(N)

)∣∣∣∣+ ∣∣∣∣E(e ixS1,n
σn(N)

)
− e−

1
2x

2
∣∣∣∣

+
∣∣∣∣E(e ixS2,n

σn − 1
)∣∣∣∣

6 xE
(∣∣∣∣ S1,n
σn(N)

∣∣∣∣) ∣∣∣∣1− σn(N)
σn

∣∣∣∣+ o(1) + xν

6 2xν + o(1)

concluding the proof.

2.4 Application to determinantal point processes

In this section, we give a CLT for a wide class of functionals of DPPs. This result is a key
tool for the asymptotic inference of DPPs. As an application treated in Section 2.4.3,
we get the consistency and the asymptotic normality of the two-step estimation method
of [103] for a parametric inhomogeneous DPP.

2.4.1 Negative association and α-mixing for DPPs

We recall that a DPP X on Rd is defined trough its intensity functions with respect to
the Lebesgue measure that must satisfy

∀n ∈ N, ∀x ∈ (Rd)n, ρn(x1, · · · , xn) = det(K[x]) with K[x] := (K(xi, xj))i,j∈{1,··· ,n}.

The function K : (Rd)2 → C is called the kernel of X and is assumed to satisfy the
following standard general condition ensuring the existence of X.

Condition H: The function K : (Rd)2 → C is a locally square integrable hermitian
measurable function such that its associated integral operator K is locally of trace class
with eigenvalues in [0, 1].

This condition is not necessary for existence, in particular there are examples of DPPs
having a non-hermitian kernel. It is nonetheless very general and is assumed in most
studies on DPPs. Basic properties of DPPs can be found in [61, 94, 74]. In particular,
from [45, Theorem 1.4] and [74, Theorem 3.7], we know that DPPs are NA.

Theorem 2.4.1 ([45, 74]). Let K satisfy Condition H, then a DPP with kernel K is
NA.
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By definition, for a DPP with kernel K we have D(x, y) = −|K(x, y)|2 where D is
introduced in (2.2.1). Hence, using the last theorem and Proposition 2.2.8 we get the
following strong mixing coefficients of a DPP, where we define

ω(r) := sup
|x−y|>r

|K(x, y)|. (2.4.1)

Corollary 2.4.2. Let X be a DPP with kernel K satisfying H. Then, for all p, q > 0,
αp,q(r) 6 sup

|A|<p,|B|<q
dist(A,B)>r

∫
A×B |K(x, y)|2dxdy 6 pqω(r)2,

αp,∞(r) 6 psd
∫∞
r ω2(t)td−1dt.

(2.4.2)

It is worth noticing that this result, and so the covariance inequality (2.2.7), is
optimal in the sense that for a wide class of DPPs, the α-mixing coefficient αp,q(r)
do not decay faster than sup|A|<p,|B|<q

dist(A,B)>r
|Cov(N(A), N(B))| when r goes to infinity, as

stated in the following proposition.

Proposition 2.4.3. Let X be a DPP with kernel K satisfying H. We further assume
that K is bounded, takes its values in R+ and is such that ‖K‖ < 1 where ‖.‖ is the
operator norm. Then, for all p, q, r > 0,

(1− ‖K‖)
(p+q)‖K‖∞
‖K‖ sup

|A|<p,|B|<q
dist(A,B)>r

∫
A×B

|K(x, y)|2dxdy 6 αp,q(r)

6 sup
|A|<p,|B|<q
dist(A,B)>r

∫
A×B

|K(x, y)|2dxdy. (2.4.3)

Proof. The upper bound for αp,q(r) is just the one in (2.4.2). The lower bound is
obtained through void probabilities. Let p, q, r > 0 and A,B ⊂ Rd such that |A| < p,
|B| < q and dist(A,B) > r. By definition, for any such sets A and B, αp,q(r) >
|P(N(A) = 0)P(N(B) = 0) − P(N(A ∪ B) = 0)|. The void probabilities of DPPs are
known (see [94]) and equal to

P(N(A) = 0) = exp

−∑
n>1

Tr(KnA)
n


where KA is the projection of K on the set of square integrable functions f : A → R.
Moreover, P(N(A) = 0)P(N(B) = 0)− P(N(A ∪ B) = 0) > 0 by negative association,
and we have

P(N(A) = 0)P(N(B) = 0)− P(N(A ∪B) = 0)

= exp

−∑
n>1

Tr(KnA∪B)
n

exp

∑
n>1

Tr(KnA∪B)− Tr(KnA)− Tr(KnB)
n

− 1


> exp

−∑
n>1

Tr(KnA∪B)
n

∑
n>1

Tr(KnA∪B)− Tr(KnA)− Tr(KnB)
n

. (2.4.4)

Using the classical trace inequality we get

Tr(KnA∪B) 6 ‖KA∪B‖n−1Tr(KA∪B) 6 ‖K‖n−1
∫
A∪B

K(x, x)dx 6 ‖K‖n−1(p+ q)‖K‖∞,
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thus

exp

−∑
n>1

Tr(KnA∪B)
n

 > (1− ‖K‖)
(p+q)‖K‖∞
‖K‖ . (2.4.5)

Moreover, since A and B are disjoint sets, we can write

Tr(KnA∪B)−Tr(KnA)−Tr(KnB) =
∫

(A∪B)n
K(x1, x2) · · ·K(xn−1, xn)K(xn, x1)dx1 · · · dxn

−
∫

An∪Bn
K(x1, x2) · · ·K(xn−1, xn)K(xn, x1)dx1 · · · dxn, (2.4.6)

which vanishes when n = 1, is equal to 2
∫
A×B |K(x, y)|2 when n = 2 and is non-negative

for n > 3 since K is assumed to be non-negative. Finally, by combining (2.4.4), (2.4.5)
and (2.4.6) we get the lower bound in (2.4.3).

2.4.2 Central limit theorem for functionals of DPPs

We investigate the asymptotic distribution of functions that can be written as a sum
over subsets of close enough points of X, namely

f(X) :=
∑
S⊂X

f0(S), (2.4.7)

where f0 is a bounded function vanishing when diam(S) > τ for a certain fixed constant
τ > 0. The typical example, encountered in asymptotic inference, concerns functions
f0 that are supported on sets S having exactly p elements, in which case (2.4.7) often
takes the form

f(X) = 1
p!

6=∑
x1,··· ,xp∈X

f0(x1, · · · , xp), (2.4.8)

where the sum is done over ordered p-tuples of X and the symbol 6= means that we
consider distinct points. The asymptotic distribution of (2.4.8) has been investigated
in [97] when p = 1 and in [14] for general p and stationary DPPs.

In the next theorem, we extend these settings to functionals like (2.4.7) applied to
general non stationary DPPs. Some discussion and comments are provided after its
proof. We use Minkwoski’s notation and write A⊕ r for the set

⋃
x∈A B(x, r).

Theorem 2.4.4. Let X be a DPP associated to a kernel K that satisfies H and that
is further bounded. Let τ > 0 and f : Ω→ R be a function of the form

f(X) :=
∑
S⊂X

f0(S)

where f0 is a bounded function vanishing when diam(S) > τ . Let (Wn)n∈N be a sequence
of increasing subsets of Rd such that |Wn| → ∞ and let σ2

n := Var(f(X∩Wn)). Assume
that there exists ε > 0 and ν > 0 such that the following conditions are satisfied:

(H1) |∂Wn ⊕ (τ + ν)| = o(|Wn|);

(H2) ω(r) = o(r−(d+ε)/2);

(H3) lim infn |Wn|−1σ2
n > 0.

Then,
1
σn

(f(X ∩Wn)− E[f(X ∩Wn)]) L−→ N (0, 1).
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Proof. In order to apply Theorem 2.3.1, we would like to rewrite f as a sum over
cubes of a lattice. Unfortunately, for disjoint sets A,B ⊂ Rd, f(X ∩A) + f(X ∩B) 6=
f(X ∩ (A ∪ B)) in general. Instead, we apply Theorem 2.3.1 to an auxiliary function,
close to f , as follows. Define S0 as the barycenter of the set S. We write

fW (X) =
∑
S⊂X

f0(S)1W (S0) (2.4.9)

for the sum over the subsets of points of X with barycenter in W ⊂ Rd. Now, we split
Rd into little cubes the following way. Let C0 be a given d-dimensional cube with a
given side-length 0 < s 6 ν/

√
d. For all i ∈ Zd, let Ci be the translation of C0 by

the vector s · i. Let In := {i : Ci ⊕ τ ⊂ Wn} and W̃n =
⋃
i∈In Ci. An illustration

of these definitions is provided in Figure 3. Since f
W̃n

(X) =
∑
i∈In fCi(X) and each

fCi are E(Ci⊕ τ)-measurable then f
W̃n

is the ideal candidate to use Theorem 2.3.1 on.
Thus, we first prove that the difference between f

W̃n
and f(X ∩Wn) is asymptotically

negligible and then that f
W̃n

satisfies the conditions of Theorem 2.3.1.

Figure 3: Example of illustration of the definition of W̃n. Here, the black border is
∂Wn, the grey area corresponds to (∂Wn ⊕ τ)∩Wn and the square lattice corresponds
to W̃n.

First of all, notice that dist(Ci, ∂Wn) > τ for all i ∈ In. Therefore, for any point
in Wn at a distance greater than τ + s

√
d from ∂Wn, the cube Ci of side-length s

containing it is at a distance at least τ from ∂Wn, hence it is one of the Ci in W̃n and
we get

|Wn\W̃n| 6 |∂Wn ⊕ (τ + s
√
d)|.

Hence, by Assumption (H1), |Wn| ∼ |W̃n|. Now,

f(X ∩Wn)− f
W̃n

(X) =
∑

S⊂X∩Wn

f0(S)1
Wn\W̃n

(S0). (2.4.10)

Since f0 vanishes when two points of S are at distance further than τ , then the sum
in (2.4.10) only concerns the subsets S of X ∩ ((Wn\W̃n)⊕ τ)∩Wn). By Lemma 2.B.6,
the variance of f(X ∩Wn) − f

W̃n
(X) is then a O(|(Wn\W̃n) ⊕ τ |), whence a o(|Wn|)

and finally a o(σ2
n) by Assumption (H3). Therefore, σ−1

n (f(X ∩Wn)− E[f(X ∩Wn)])
has the same limiting distribution as σ−1

n (f
W̃n

(X)− E[f
W̃n

(X)]). Moreover, we have

|Cov(f
W̃n

(X), f(X ∩Wn)− f
W̃n

(X))|

6 σn
√
Var(f(X ∩Wn)− f

W̃n
(X)) = σno

(√
|Wn|

)
= o(σ2

n)

by Assumptions (H1), (H3) and Lemma 2.B.6 proving that σ−1
n (f(X ∩Wn)−E[f(X ∩

Wn)]) has the same limiting distribution as Var(f
W̃n

(X))−1/2(f
W̃n

(X)− E[f
W̃n

(X)]).
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We conclude by showing that the random variables Yi = fCi(X) − E[fCi(X)] sat-
isfy the assumptions of Theorem 2.3.1. A rough bound on f gives us |fCi(X)| 6
‖f0‖∞2N(Ci⊕τ) so, by Lemma 2.B.5,

∀n ∈ N, sup
i∈Zd

E[|Yi|n] <∞.

This means that the Yi’s satisfy Assumption (C2) for all δ > 0 and thus (C3) as a
consequence of (H2). Finally, since |In| = s−d|W̃n| = O(|Wn|) and Var(f

W̃n
(X)) ∼ σ2

n,
we have

lim inf
n
|In|−1Var(f

W̃n
(X)) > 0

by Assumption (H3), which concludes the proof of the theorem.

We highlight some extensions of this result.

i) Since the superposition of independent PA (respectively NA) point processes re-
mains a PA (respectively NA) point process, then Theorem 2.4.4 holds true for
α-determinantal point processes where α ∈ {−1/m : m ∈ N∗}, see [94] for more
information about α-DPPs.

ii) Theorem 2.4.4 also extends to Rq-valued functions f where q > 2. Let Σn :=
Var(f(X ∩Wn)). If we replace (H3) by

lim inf
n
|Wn|−1λmin(Σn) > 0

where λmin(Σn) denotes the smallest eigenvalue of Σn, then Theorem 2.4.4 holds
true with the conclusion

Σ−1/2
n (f(X ∩Wn)− E[f(X ∩Wn)]) L−→ N (0, Idq)

where Idq is the q×q identity matrix. Since Σn does not necessary converge, this
result is not a direct application of the Cramér-Wold device. Instead, a detailed
proof is given in Lemma A.2.1.

iii) In (2.4.7), f0 only depends on finite subsets of Rd and not on the order of the
points in each subset. Nonetheless, we can easily extend (2.4.7) to functions of
the form

f(X) =
∑
n>0

1
n!

6=∑
x1,··· ,xn∈X

f0(x1, · · · , xn)

where f0 is a bounded function on
⋃
n>0(Rd)n that vanishes when two of its

coordinates are at a distance greater than τ . Then f still satisfy Theorem 2.4.4.
This is because we can write

f(X) =
∑
S⊂X

fsym0 (S)

where f sym0 is the symmetrization of f0 defined by

fsym0 ({x1, · · · , xn}) := 1
n!

∑
σ∈Sn

f0(xσ(1), · · · , xσ(n))

where Sn is the symmetric group on {1, · · · , n}. Since fsym0 is also bounded and
vanishes when diam(S) > τ then it satisfies the required assumptions for Theorem
2.4.4.
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Let us comment the assumptions of Theorem 2.4.4.

• Condition (H1) makes clear the idea thatWn must grow to Rd as n→∞, without
being a too irregular set. In the simple case where Wn is the Cartesian product
of intervals, i.e. Wn = ∆(1)

n × · · · ×∆(d)
n , then (H1) is equivalent to |∆(k)

n | → ∞
for all k.

• Condition (H2) is not really restrictive and is satisfied by all classical kernel fami-
lies. For example, the kernels of the Ginibre ensemble and of the Gaussian unitary
ensemble (see [61]) have an exponential decay. Moreover, all translation-invariant
kernels used in spatial statistics (see [69] and [15]) satisfy ω(r) = O(r−(d+1)/2):
the Gaussian and the Laguerre-Gaussian covariance functions have an expo-
nential decay; the Whittle-Matérn and the Cauchy covariance functions satisfy
ω(r) = o(r−d); and in the case of the most repulsive DPP in dimension d (as de-
termined in [69, 15]), which is the slowest decaying Bessel-type kernel, its kernel
is given by

K(x, y) =

√
ρΓ(d2 + 1)

π
d
4

J d
2
(2
√
πΓ(d2 + 1)

1
d ρ

1
d ||y − x||)

||y − x||
d
2

⇒ ω(r) = O
(
r−

d+1
2
)
,

where ρ > 0 is a constant. While this DPP satisfies Condition (H2), we point out
that its α-mixing coefficients decay too slowly to be able to derive a CLT only
from them, see the discussion before Theorem 2.3.1. This justifies the importance
of Condition (C3) in this theorem, obtained by the NA property, and which leads
to Condition (H2).

• Condition (H3) is harder to control in the broad setting of Theorem 2.4.4, but
we can get sufficient conditions in some particular cases. For example, if f0(S) =
1|S|=1 and K is a translation-invariant continuous kernel then it was shown in [97]
that Condition (H3) holds when K is not the Fourier transform of an indicator
function. In the peculiar case where K is the Fourier transform of an indicator
function, [97] proved that the limiting distribution is still Gaussian but the rate of
convergence is different. As another example extending the previous one, assume
that f0 is a non-negative function supported on the set {S ⊂ X : |S| = p} for
a given integer p > 0 and assume that the highest eigenvalue of the integral
operator K associated to K is less than 1. Then, we show in Proposition 2.B.7
that

lim inf
n

1
|Wn|

∫
W p
n

f0(x) det(K[x])dx > 0

implies (H3) and is much easier to verify.

2.4.3 Application to the two-step estimation of an inhomogeneous
DPP

In this section, we consider DPPs on R2 with kernel of the form

Kβ,ψ(x, y) =
√
ρβ(x)Cψ(y − x)

√
ρβ(y), ∀x, y ∈ R2, (2.4.11)

where β ∈ Rp and ψ ∈ Rq are two parameters, Cψ is a correlation function and ρβ is
of the form ρβ(x) = ρ(z(x)βT ) where ρ is a known positive strictly increasing function
and z is a p-variate bounded function called covariates. This form implies that the
first order intensity, corresponding to ρβ(x), is inhomogeneous and depends on the
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covariates z(x) through the parameter β. But all higher order intensity functions once
normalized, i.e. ρ(n)(x1, . . . , xn)/(ρβ(x1) . . . ρβ(xn)), are translation-invariant for n > 2.
In particular, the pair correlation (the case n = 2) is invariant by translation. This kind
of inhomogeneity is sometimes named second-order intensity reweighted stationarity
and is frequently assumed in the spatial point process community.

Existence of DPPs with a kernel like above is for instance ensured if ρβ(x) is bounded
by ρmax and Cψ is a continuous, square-integrable correlation function on Rd whose
Fourier transform is less than 1/ρmax, see [69]. For later use, we call H′ this latter
assumptions on Kβ,ψ.

Consider the observation of a DPP X with kernel Kβ∗,ψ∗ , along with the covariates
z, within a windowWn := [an, bn]×[cn, dn] where b > a and d > c. Waagepetersen and
Guan [103] have proposed the following two-step estimation procedure of (β∗, ψ∗) for
second-order intensity reweighted stationary models. First, β̂n is obtained by solving

un,1(β) :=
∑

u∈X∩Wn

∇ρβ(u)
ρβ(u) −

∫
Wn

∇ρβ(u)du = 0.

where ∇ρβ denotes the gradient with respect to β. In the second step, ψ̂n is obtained
by minimizing mn,β̂n

where

mn,β(ψ) :=
∫ r

rl

 ∑
u,v∈X∩Wn

1{0<|u−v|6t}
ρβ(u)ρβ(v)|Wn ∩Wn,u−v|

c −Kψ(t)c
2

dt.

Here rl, r and c are user-specified non-negative constants, Wn,u−v is Wn translated by
u− v and Kψ is the Ripley K-function defined by

Kψ(t) :=
∫
‖u‖6t

gψ(u)du

where gψ(u) := 1− Cψ(u)2/Cψ(0)2 is the pair correlation function of X. If we define

un,2(β, ψ) := −|Wn|
∂mn,β(ψ)

∂ψ
,

then the two-step procedure amounts to solve

un(β, ψ) := (un,1(β), un,2(β, ψ)) = 0.

The asymptotic properties of this two-step procedure are established in [103], under
various moments and mixing assumptions, with a view to inference for Cox processes.
We state hereafter the asymptotic normality of (β̂n, ψ̂n) in the case of DPPs with kernel
of the form (2.4.11). This setting allows us to apply Theorem 2.4.4 and get rid of some
restrictive mixing assumptions needed in [103].

The asymptotic covariance matrix of (β̂n, ψ̂n) depends on two matrices defined
in [103, Section 3.1], where they are denoted by Σ̃n and In. We do not reproduce their
expression, which is hardly tractable. An assumption in [103] ensures the asymptotic
non-degeneracy of this covariance matrix and we also need this assumption in our
case, see (W4) below. Unfortunately, as discussed in [103], it is hard to check this
assumption for a given model, particularly because it depends on the covariates z.
We are confronted by the same limitation in our setting. On the other hand, the
other assumptions of the following theorem are not restrictive. In particular almost all
standard kernels satisfy (W3) below, see the discussion after Theorem 2.4.4.
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Theorem 2.4.5. Let X be a DPP with kernel Kβ∗,ψ∗ given by (2.4.11) and satisfying
H′. Let (β̂n, ψ̂n) the two-step estimator defined above. We assume the following.

(W1) rl > 0 if c < 1; otherwise rl > 0,

(W2) ρβ and Kψ are twice continuously differentiable as functions of β and ψ,

(W3) sup‖x‖>r Cψ∗(x) = O(r−1−ε),

(W4) Condition N3 in [103] (concerning the matrices In and Σ̃n) is satisfied.

Then, there exists a sequence {(β̂n, ψ̂n) : n > 1} for which un(β̂n, ψ̂n) = 0 with a
probability tending to one and

|Wn|1/2[(β̂n, ψ̂n)− (β∗, ψ∗)]InΣ̃−1/2
n

L−→ N (0, Id).

Proof. Let ρk be the kth intensity function of the DPP with kernel (x, y) 7→ Cψ∗(y−x).
In order to apply Theorem 1 in [103] we need to show that

(i) ρ2, ρ3 are bounded and there is a constant M such that for all u1, u2 ∈ R2,∫
|ρ3(0, v, v + u1)− ρ1(0)ρ2(0, u1)|dv < M

and ∫
|ρ4(0, u1, v, v + u2)− ρ2(0, u1)ρ2(0, u2)|dv < M,

(ii) ‖ρ4+2δ‖∞ <∞ for some δ > 0,

(iii) αa,∞(r) = O(r−d) for some a > 8r2 and d > 2(2 + δ)/δ.

The first property (i) is a consequence of (W3). This is because we can write

|ρ3(0, v, v + u1)− ρ1(0)ρ2(0, u1)|
= |2Cψ∗(v)Cψ∗(u1)Cψ∗(v + u1)− Cψ∗(0)(Cψ∗(v + u1)2 + Cψ∗(v)2)|

which is bounded by 2|Cψ∗(0)|(Cψ∗(v + u1)2 + Cψ∗(v)2) and∫
R2
Cψ∗(v)2dv 6 2π

∫ ∞
0

r sup
‖x‖=r

|Cψ∗(x)|2dr

which is finite by Assumption (W3). The term ρ4(0, u1, v, v + u2) − ρ2(0, u1)ρ2(0, u2)
can be treated the same way. For a DPP, (ii) is satisfied for any δ > 0. Finally,
(iii) is the one that causes an issue since, as stated before, the α-mixing coefficient we
get in Corollary 2.4.2 decreases slower than what we desire. But, the only place this
assumption is used in [103] is to get a CLT for some functionals of the same form as in
our Theorem 2.4.4 leading to the asymptotic normality of (β̂n, ψ̂n) in their Lemma 5.
The same result can then also be derived as a consequence of our Theorem 2.4.4 with
Assumption (W3). A formal proof of a more general result, namely Theorem 4.3.1, is
given in Chapter 4.
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2.A Proof of Theorem 2.2.3
We use the following variant of the monotone class theorem (see [34, Theorem 22.1]).

Theorem 2.A.1. Let S be a set of bounded functions stable by bounded monotone
convergence and uniform convergence. Let C be a subspace of S such that C is an
algebra containing the constant function 1̃. Then, S contains all bounded functions
measurable over σ(C).

Now, let A,B1, · · · , Bk be pairwise distinct Borel subsets of Rd and g : Nk 7→ R be
a coordinate-wise increasing function. We denote by ΩA the set of locally finite point
configurations in A and we define S as the set of functions f : ΩA 7→ R such that

E[f̂(X ∩A)g(N(B1), · · · , N(Bk))] 6 E[f̂(X ∩A)]E[g(N(B1), · · · , N(Bk)], (2.A.1)

where f̂(X) := supY 6X f(Y ). Note that f̂ is an increasing function and that f is
increasing iff f̂ = f . Our goal is to prove that S contains all bounded functions
supported over A. Because of the definition of NA point processes (2.2.4), we know
that S contains the set C of functions of the form f(N(A1), · · · , N(Ak)) where the Ai
are pairwise disjoints Borel subsets of A. In particular, since point processes over A are
generated by the set of random vectors {(N(A1), · · · , N(Ak)) : Ai ⊂ A disjoints, k ∈ N},
then we only need to verify that S and C satisfy the hypothesis of Theorem 2.A.1 to
conclude.

• Stability of S by bounded monotonic convergence: Since (2.A.1) is invariant if we
add a constant to f and f is bounded then we can consider f to be positive. Now,
notice that for all functions h and k, h 6 k ⇒ ĥ 6 k̂ and h > k ⇒ ĥ > k̂. So,
if we take a positive bounded monotonic sequence fn ∈ S that converges to
a bounded function f , then f̂n is also a positive bounded monotonic sequence
that consequently converges to a function g. Suppose that (fn)n is an increasing
sequence (the decreasing case can be treated similarly) and let us show that g = f̂ .
Let X ∈ ΩA, for all Y ⊂ X, fn(Y ) 6 f(Y ). Taking the supremum then the limit
gives us g(X) 6 f̂(X). Moreover, for all Y ⊂ X, g(X) > f̂n(X) > fn(Y ). Taking
the limit gives us that g(X) > f(Y ) for all Y ⊂ X so g(X) > f̂(X) which proves
that g = f̂ . Using the monotone convergence theorem we conclude that

E[f̂n(X ∩A)]→ E[f̂(X ∩A)]
and E[f̂n(X ∩A)g(N(B1), · · · , N(Bk))]→ E[f̂(X ∩A)g(N(B1), · · · , N(Bk))],

(2.A.2)

which proves that f ∈ S

• Stability of S by uniform convergence: Let fn be a sequence over S converging
uniformly to a function f then, by Lemma 2.B.1, f̂n also converges uniformly
(and therefore in L1) to f̂ . As a consequence, (2.A.2) is also satisfied in this case
so f ∈ S.

• C is an algebra: It is easily shown that C is a linear space containing 1̃ so we only
need to prove that C is stable by multiplication. Let A1, · · · , Ar and A′1 · · · , A′s
be two sequences of pairwise distinct Borel subsets of A. Let f ∈ C of the form
f(N(A1), · · · , N(Ar)) and h ∈ C of the form h(N(A′1), · · · , N(A′r)). We can write

N(Ai) = N(Ai\∪jA′j)+
∑
j

N(Ai∩A′j) andN(A′i) = N(A′i\∪jAj)+
∑
j

N(A′i∩Aj),
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so f · h can be expressed as a function of the number of points in the subsets
Ai\ ∪j A′j , A′i\ ∪j Aj and Ai ∩ A′j that are all pairwise distinct Borel subsets of
A, proving that C is stable by multiplication.

This concludes the proof that S contains all bounded functions supported over
ΩA. By doing the same exact reasoning on the set of bounded functions g satisfying
E[f(X ∩A)g(X ∩B)] 6 E[f(X ∩A)]E[g(X ∩B)] for a fixed f we obtain the same result
which concludes the proof.

2.B Auxiliary results

Lemma 2.B.1. Let E be a set and f, g : E → R be two functions, then∣∣∣∣∣sup
x∈E

f(x)− sup
y∈E

g(y)
∣∣∣∣∣ 6 ‖f − g‖∞

Proof. The proposition becomes trivial once we write

f(x) 6 g(x) + ‖f − g‖∞ 6 sup
y∈E

g(y) + ‖f − g‖∞

Taking the supremum yields the first inequality. Moreover, by symmetry of f and g
the second one follows similarly.

Lemma 2.B.2. Let i, j ∈ Zd such that |i− j|1 :=
∑d
l=1 |il − jl| = r. Let s,R > 0 and

Ci, Cj be the d-dimensional cubes with side length s and respective center xi = R · i and
xj = R · j. Then,

dist(Ci,Cj) >
1√
d

(rR − sd).

Moreover, each cube intersects at most (2sd/R)d other cubes with centers on R ·Zd and
side length s.

Proof. Since each point of a d-dimensional square with side length s is at distance at
most s

√
d/2 from its center, we get

dist(Ci, Cj) >
√

(Ri1 −Rj1)2 + · · ·+ (Rid −Rjd)2 − s
√
d

which takes its minimum when |il − jl| = r/d for all 1 6 l 6 d hence dist(Ci, Cj) >
rR/
√
d− s

√
d.

In particular, if |i− j|1 > sd/R then Ci ∩ Cj = ∅, hence for all i ∈ Zd

|{j ∈ Zd : Ci ∩ Cj 6= ∅, i 6= j}| 6 |{j : 0 < |i− j|1 6 sd/R}| 6
(2sd
R

+ 1
)d

Lemma 2.B.3. Let M and N be two n × n semi-positive definite matrices such that
0 6M 6 N−1 where 6 denotes the Loewner order. Then,

det(Id−MN) > 1− Tr(MN)
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Proof. First, let us consider the case where N = Id. If Tr(M) > 1 then det(Id−M) >
0 > 1 − Tr(M). Otherwise, we denote by Sp(M) the spectrum of M and since all
eigenvalues are in [0,1[, we can write

det(Id−M) =
∏

λ∈Sp(M)

exp(log(1− λ))

=
∏

λ∈Sp(M)

exp
(
−
∞∑
n=0

λn

n

)

= exp
(
−
∞∑
n=0

Tr(Mn)
n

)

> exp
(
−
∞∑
n=0

Tr(M)n

n

)
= exp(log(1− Tr(M)))
= 1− Tr(M). (2.B.1)

Getting back to the general case, we can write N as STS and by Sylvester’s determinant
identity we get that det(Id −MN) = det(Id − SMST ). Since we assumed that 0 6
M 6 N−1 then 0 6 SMST 6 Id and by applying (2.B.1) this concludes the proof:

det(Id−MN) = det(Id− SMST ) > 1− Tr(SMST ) = 1− Tr(MN).

Proposition 2.B.4. Let M be a n× n semi-definite positive matrix of the form M =(
M1 N
NT M2

)
where M1 is a k×k semi-definite positive matrix, M2 is a (n−k)×(n−k)

semi-definite positive matrix and N is a k×(n−k) matrix. We define ||A||∞ := sup |ai,j |
for any matrix A. Then,

0 6 det(M1) det(M2)− det(M) 6 k(n− k)Tr(NTN)||M ||n−2
∞ .

Proof. First, we assume that M1 and M2 are invertible. Using Schur’s complement, we
can write

det(M) = det(M1) det(M2) det(Id−M−1
1 NTM−1

2 N)

where 0 6 NTM−1
2 N 6 M1 with 6 being the Loewner order. NTM−1

2 N being semi-
definite positive implies

det(M) 6 det(M1) det(M2),

while the inequality NTM−1
2 N 6M1 gives us (see Lemma 2.B.3)

det(M) > det(M1) det(M2)(1− Tr(M−1
1 NTM−1

2 N)).

Therefore,

0 6 det(M1) det(M2)− det(M) 6 Tr(adj(M1)NT adj(M2)N)

6 Tr(adj(M1))Tr(adj(M2))Tr(NTN) =
k∑
i=1

∆i(M1)
n−k∑
j=1

∆j(M2)Tr(NTN),

where ∆i(M1) means the (i, i) minor of the matrix M1 and adj(M1) is the transpose
of the matrix of cofactor of M1. But, since all principal sub-matrices of M1 and M2
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are positive definite matrices then their determinant is lower than the product of their
diagonal entries, meaning that ∆i(M1) 6

∏
j 6=iM1(j, j) 6 ||M ||k−1

∞ . Doing the same
thing for the terms ∆j(M2) gives us the desired result.

If M1 or M2 is not invertible, a limit argument using the continuity of the determi-
nant leads to the same conclusion.

Lemma 2.B.5. Let X be a DPP with bounded kernel K satisfying H, s > 0 and n > 0,
then

sup
A⊂Rd,|A|=s

E[2nN(A)] <∞

Proof. Let n ∈ N and A ⊂ Rd such that |A| = s. Since the determinant of a positive
semi-definite matrix is always smaller than the product of its diagonal coefficients we
get

E[2nN(A)] = E
[ ∞∑
k=0

(
N(A)
k

)
(2n − 1)k

]

=
∞∑
k=0

(2n − 1)k

k!

∫
Ak

det(K[x])dx

6 e(2n−1)‖K‖∞|A| <∞.

Lemma 2.B.6. Let X be a DPP on Rd with bounded kernel K satisfying H such that
ω(r) = O(r−

d+ε
2 ) for a certain ε > 0. Then, for all bounded Borel sets W ⊂ Rd and all

bounded functions g :
⋃
p>0(Rd)p → R such that g(S) vanishes when diam(S) > τ for

a given constant τ > 0,

Var
( ∑
S⊂X∩W

g(S)
)

= O(|W |). (2.B.2)

Proof. Since W is bounded then N(W ) is almost surely finite and we can write

∑
S⊂X∩W

g(S) =
∑
p>0

∑
S⊂X∩W
|S|=p

g(S) a.s.

Looking at the variance of each term individually, we start by developing

E

( ∑
S⊂X∩W

g(S)1|S|=p

)2

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as

p∑
k=0

E

 ∑
S,T⊂X∩W

|S|=|T |=p,|S∩T |=k

g(S)g(T )



=
p∑

k=0
E

 ∑
U⊂X∩W
|U |=2p−k

∑
S′⊂S⊂U
|S′|=k,|S|=p

g(S)g(S′ ∪ (U\S))


=

p∑
k=0

1
(2p− k)!

∫
W 2p−k

∑
S′⊂S⊂{x1,··· ,x2p−k}
|S′|=k,|S|=p

g(S)g(S′ ∪ (U\S))ρ2p−k(x1, · · · , x2p−k)dx1 · · · dx2p−k

=
p∑

k=0

(p
k

)(2p−k
p

)
(2p− k)!

∫
W 2p−k

g(x1, · · · , xp)g(x1, · · · , xk, xp+1, · · · , x2p−k)ρ2p−k(x)dx. (2.B.3)

Since the determinant of a positive semi-definite matrix is smaller than the product of
its diagonal terms, we have |ρ2p−k(x)| 6 ‖K‖2p−k∞ . Moreover, as a consequence of our
assumptions on g, each term for k > 1 in (2.B.3) is bounded by

1
p!(p− k)!

(
p

k

) ∫
W 2p−k

‖g‖2∞‖K‖2p−k∞ 1{06|xi−x1|6τ, ∀i}dx

6
|W |
p!

(
p

k

)
‖g‖2∞‖K‖2p−k∞ |B(0, τ)|2p−k−1

6
|W |
p!

(
p

k

)
‖g‖2∞(1 + ‖K‖∞)2p(1 + |B(0, τ)|)2p.

Hence,

p∑
k=1

E

 ∑
S,T⊂X∩W

|S|=|T |=p,|S∩T |=k

g(S)g(T )

 6 |W |‖g‖2∞
Cp1
p! (2.B.4)

where C1 = 2(1 + ‖K‖∞)2(1 + B(0, τ))2 is a constant independent from p and W .
However, even if all terms for k > 1 in (2.B.3) are O(|W |), this is not the case of the
term for k = 0 which is a O(|W |2). Instead of controlling this term alone, we consider
its difference with the remaining term in the variance we are looking at, that is

1
(p!)2

∫
W 2p

g(x)g(y)ρ2p(x, y)dxdy − E
[( ∑

S⊂X∩W
g(S)1|S|=p

)]2

= 1
(p!)2

∫
W 2p

g(x)g(y)(ρ2p(x, y)− ρp(x)ρp(y))dxdy.

Using Proposition 2.B.4, we get

|ρ2p(x, y)− ρp(x)ρp(y)| 6 p2‖K‖2p−2
∞

∑
16i,j6p

K(xi, yj)2.
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Now, notice that for all y ∈ Rd and 1 6 i 6 p,∫
W p

1{0<|xk−xj |6τ, ∀j,k}|K(xi, y)|2dx 6 |B(0, τ)|p−1
∫
W
|K(xi, y)|2dxi

6 |B(0, τ)|p−1sd

∫
Rd
rd−1ω(r)2dr

which is finite because of our assumption on ω(r). Thus, we obtain the inequality∫
W 2p

g(x)g(y)|K(xi, yj)|2dxdy 6 ‖g‖∞|B(0, τ)|p−1
∫
W p+1

g(x)|K(xi, y1)|2dxdy1

6 |W |‖g‖2∞|B(0, τ)|2p−2sd

∫
Rd
rd−1ω(r)2dr. (2.B.5)

By combining (2.B.4) and (2.B.5), we get the bound

Var

 ∑
S⊂X∩W
|S|=p

g(S)

 6 |W |‖g‖2∞

(
Cp1
p! + C2

p!

)

where

C2 :=
(

sup
p>0

p4‖K‖2p−2
∞ |B(0, τ)|2p−2

p!

)
sd

∫
Rd
rd−1ω(r)2dr

is a constant independent from p and W . Finally,

∑
p>0

Var

 ∑
S⊂X∩W
|S|=p

g(S)

 = O(|W |)

and

∑
p>q>0

Cov

 ∑
S⊂X∩W
|S|=p

g(S),
∑

S⊂X∩W
|S|=q

g(S)

 6 |W |‖g‖2∞
∑
p,q>0

√√√√(Cp1
p! + C2

p!

)(
Cq1
q! + C2

q!

)

which is O(|W |) concluding the proof.

Proposition 2.B.7. Let p ∈ N, f : Rp → R+ be a symmetrical measurable function
and define

F (X) =
∑
S⊂X
|S|=p

f(S).

Let X be a DPP with kernel K satisfying Condition H such that ‖K‖ < 1 where ‖K‖ is
the operator norm of the integral operator associated with K. If, for a given increasing
sequence of compact sets Wn ⊂ Rd,

lim inf
n

1
|Wn|

∫
W p
n

f(x) det(K[x])dx > 0, (2.B.6)

then
lim inf

n

1
|Wn|

Var(F (X ∩Wn)) > 0.
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Proof. Let W be a compact subset of Rd. The Cauchy-Schwartz inequality gives us

Cov(F (X ∩W ), N(W ))2 6 Var(F (X ∩W ))Var(N(W )).

We showed in Lemma 2.B.6 that |W |−1Var(N(W )) is bounded by a constant C > 0
so we are only interested in the behaviour of Cov(F (X ∩ W ), N(W )). We start by
developing E[F (X ∩W )N(W )] as

E

 ∑
S⊂X∩W
|S|=p

f(S)
∑

x∈X∩W
1



= E

 ∑
S⊂X∩W
|S|=p+1

∑
x∈S

f(S\{x}) + p
∑

S⊂X∩W
|S|=p

f(S)


= 1

(p+ 1)!

∫
W p+1

p+1∑
i=1

f(z\{zi}) det(K[z])dz + 1
p!

∫
W p

pf(x) det(K[x])dx

= 1
p!

(∫
W p

f(x)
(
pdet(K[x]) +

∫
W

det(K[x, a])da
)

dx
)
.

We also have

E[F (X ∩W )]E[N(W )] = 1
p!

∫
W p

f(x) det(K[x])dx
∫
W
K(a, a)da,

hence

Cov(F (X ∩W ), N(W ))

= 1
p!

∫
W p

f(x) det(K[x])
(
p−

∫
W

(
K(a, a)− det(K[x, a]) det(K[x])−1)da) dx.

(2.B.7)

Using Schur’s complement, we get

K(a, a)− det(K[x, a]) det(K[x])−1 = KaxK[x]−1KT
ax (2.B.8)

where we define Kax as the vector (K(a, x1), · · · ,K(a, xp)). Moreover, since we look at
our point process in a compact window W , a well-known property of DPPs (see [61])
is that there exists a sequence of eigenvalues λi in [0, ‖K‖] and an orthonormal basis of
L2(W ) of eigenfunctions φi such that

K(x, y) =
∑
i

λiφi(x)φ̄i(y) ∀x, y ∈W.

As a consequence, ∀x, y ∈W ,∫
W
K(x, a)K(a, y)da =

∑
i

λ2
iφi(x)φ̄i(y)

which we define as L(x, y). Therefore, for all x ∈ W p, L[x] 6 ‖K‖K[x] where 6 is the
Loewner order for positive definite symmetric matrices and we get∫

W
KaxK[x]−1KT

axda = Tr
(
K[x]−1

∫
W
KT
axKaxda

)
= Tr(K[x]−1L[x]) 6 p‖K‖.

(2.B.9)
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Finally, since f is non negative, by combining (2.B.7), (2.B.8) and (2.B.9) we get the
lower bound

Var(F (X ∩W )) > Cov(F (X ∩W ), N(W ))2

Var(N(W ))

>
(1− ‖K‖)2

C(p− 1)!2|W |

(∫
W p

f(x) det(K[x])dx
)2

which proves the proposition.
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Chapter 3

A bound of the β-mixing
coefficient for point processes in
terms of their intensity functions

This chapter is an article [83] published in Statistics & Probability Letters so some con-
siderations and definitions are redundant with the introduction. For the same reason,
some notations are specific to this chapter.

3.1 Introduction
In asymptotic inference for dependent random variables, it is necessary to quantify the
dependence between σ-algebras. Some of the first measures of dependence that have
been introduced are the alpha-mixing coefficients [91] and the beta-mixing coefficients
[92]. They have been used to establish moment inequalities, exponential inequalities
and central limit theorems for stochastic processes (see [23, 80, 89] for more details
about mixing) with various applications in statistics, see for instance [22, 33]. In this
chapter, we focus on spatial point processes. As detailed below, for these models, alpha-
mixing has been widely studied and exploited in the literature, but not beta-mixing
in spite of its stronger properties. In a lesser extent, some alternative measures of
dependence have also been used for spatial point processes, namely Brillinger mixing
[14, 58] (which only applies to stationary point processes but has been established in [58]
under suitable conditions on the β-mixing coefficients) and association as in Chapter
2.

The main models used in spatial point processes are Gibbs point processes, Cox
processes and determinantal point processes, see [79] for a recent review. An α-mixing
inequality is established for Gibbs point processes in the Dobrushin uniqueness region
in [43]. It has been used to show asymptotic normality of maximum likelihood and
pseudo-likelihood estimates [65]. Similarly, some inhomogeneous Cox processes like
the Neyman-Scott process have also been showed to satisfy α-mixing inequalities in
[103]. These inequalities are at the core of asymptotic inference results in [30, 86, 103].
Finally, an α-mixing inequality has also been showed for determinantal point processes
in (2.4.2) and used to get the asymptotic normality of a wide class of estimators of
these models.

On the other hand, β-mixing is a stronger property than α-mixing. It implies
stronger covariance inequalities [89] as well as a coupling theorem known as Berbee’s
Lemma [13] used in various limit theorems (for example in [9, 101]). Nevertheless,
it rarely appears in the literature in comparison to α-mixing. This is especially true
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for point processes where there has been no β-mixing property established for any of
the above examples. Nethertheless, β-mixing coefficients have still been used several
times in random geometry and point process statistics [52, 56, 55, 57]. In particular,
it is argued in [55] that the β-mixing coefficient cannot be replaced by the α-mixing
coefficient when used to obtain bounds for point process characteristics related with
the Palm distribution. Our goal is to establish a general inequality for the β-mixing
coefficients of a point process in terms of its intensity functions.

We begin in Section 3.2 by recalling the basic definitions and properties of the α-
mixing and β-mixing coefficients and we introduce the lower sum transform which is
the main technical tool that we use throughout the chapter. Then, a general inequality
for the β-mixing coefficients of a point process that depends only on its n-th order
intensity functions is proved in Section 3.3. As an example, we deduce a β-mixing
inequality in the special case of determinantal point processes (DPPs) in Section 3.4
whose rate of decay is optimal for a wide class of DPPs.

3.2 Preliminaries

3.2.1 Intensities of point processes

In this chapter, we consider simple point processes on (Rd,B(Rd), µ) equipped with
the euclidean norm ‖.‖ where d is a fixed integer, B(Rd) the Borel-σ-algebra and µ the
Lebesgue measure (more information on spatial point processes can be found in [31, 77]).
We denote by Ω (resp. ΩF ) the set of locally finite (resp. finite) point configurations in
Rd. For all functions f : ΩF → R, n ∈ N and x = (x1, · · · , xn) ∈ (Rd)n, we write f(x)
for f({x1, · · · , xn}) by an abuse of notation. Finally, we write |A| for the cardinal of a
finite set A and ‖f‖∞ for the uniform norm of a function f .

We begin by recalling that the n-th order intensity functions (also called n-th order
product density) are defined the following way (see [77]).

Definition 3.2.1. Let X be a simple point process on Rd and n > 1 be an integer. If
there exists a non negative function ρn : (Rd)n → R such that

E

 6=∑
x1,··· ,xn∈X

f(x1, · · · , xn)

 =
∫

(Rd)n
f(x)ρn(x)dµn(x). (3.2.1)

for all locally integrable functions f : (Rd)n → R then ρn is called the nth order intensity
function of X.

In the rest of the chapter, all point processes will be considered to admit bounded
n-th order intensity function for all n > 1.

3.2.2 Mixing

Consider a probability space (X ,F ,P) and A ,B two sub σ-algebras of F . Let PA and
PB be the respective restrictions of P to A and B and define the probability PA⊗B on
the product σ-algebra by PA⊗B(A × B) = P(A ∩ B) for all A ∈ A and B ∈ B. The
α-mixing and β-mixing coefficients (also called strong-mixing and absolute regularity
coefficients) are defined as the following measures of dependence between A and B
[80, 89]:

α(A ,B) := sup{|P(A ∩B)− P(A)P(B)| : A ∈ A , B ∈ B}, (3.2.2)
β(A ,B) := ‖PA⊗B − PA ⊗ PB‖TV , (3.2.3)
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where ‖.‖TV is the total variation of a signed norm.
For a given point process X and a bounded set A ⊂ Rd, we denote by µ(A) :=

∫
A dµ(x)

the volume of A and E(A) the σ-algebra generated by X∩A. Finally, for all A,B ⊂ Rd,
we write dist(A,B) for the infimum of ‖y − x‖ where (x, y) ∈ A × B. The β-mixing
coefficients of the point process X are then defined by

βp,q(r) := sup{β(E(A), E(B)) : µ(A) 6 p, µ(B) 6 q,dist(A,B) > r},

and we say that the point process X is beta-mixing if βp,q(r) vanishes when r → +∞
for all p, q > 0. The α-mixing coefficients can be defined in a similar way.

Our goal is to prove that under appropriate assumptions over the intensity functions
ρn of X we have a β-mixing property.

3.2.3 Lower sum transform

The main tool we use throughout this chapter is the so-called lower sum operator (see
[2]). Notice that when f is a symmetric function the term in the expectation in (3.2.1)
can be written as n!

∑
Z⊂X f(Z)1|Z|=n. This motivates the following definition:

Definition 3.2.2. Let f be a real function defined over ΩF . The lower sum of f is the
linear operator defined by

f̂ : X 7→
∑
Z⊂X

f(Z). (3.2.4)

As shown in Example 4.19 in [2], this operator admits the following inverse trans-
form.
Proposition 3.2.3 ([2, Theorem 4.18]). The operator (3.2.4) admits an inverse trans-
form f̌ , called the lower difference of f , defined by

f̌ : X 7→
∑
Z⊂X

(−1)|X\Z|f(Z). (3.2.5)

These definitions extend to functions over Ω2
F by defining

f̂ : (X1, X2) 7→
∑

Z1⊂X1,Z2⊂X2

f(Z1, Z2)

and
f̌ : (X1, X2) 7→

∑
Z1⊂X1,Z2⊂X2

(−1)|X1\Z1|+|X2\Z2|f(Z1, Z2).

In a similar way, we could also extend these definitions to Ωn
F for any n but we will

only need the case n 6 2 for the remaining of the chapter. These operators allow us to
give an explicit expression for the expectation of a functional of a point process with
respect to its intensity functions.
Proposition 3.2.4. If X is an almost surely finite point process such that E[4|X|] <
+∞, then

E[f(X)] =
+∞∑
n=0

1
n!

∫
(Rd)n

f̌(x)ρn(x)dµn(x) (3.2.6)

for all bounded functions f : ΩF → R. Moreover, if X ′ is a point process independent
from X satisfying the same assumptions than X and with n-th order intensity functions
ρ′n, then

E[f(X,X ′)] =
+∞∑
m,n=0

1
m!n!

∫
(Rd)m+n

f̌(x, y)ρm(x)ρ′n(y)dµm(x)dµn(y) (3.2.7)

for all bounded functions f : Ω2
F → R.



50 CHAPTER 3. BETA-MIXING BOUND FOR DPPS

Proof. Using the bound |f̌(x)| 6 ‖f‖∞card{Z,Z ⊂ X} = ‖f‖∞2|x| we get

∑
n>0

E


∣∣∣∣∣∣∣∣
∑
Z⊂X
|Z|=n

f̌(Z)

∣∣∣∣∣∣∣∣
 6

∑
n>0

E
[
2|X|

(
|X|
n

)]
‖f‖∞ = ‖f‖∞E

[
4|X|

]
< +∞. (3.2.8)

Since we can write

f(X) = ˆ̌
f(X) =

∑
Z⊂X

f̌(Z) =
∑
n>0

∑
Z⊂X
|Z|=n

f̌(Z) a.s.,

then

E[f(X)] =
∑
n>0

E

 ∑
Z⊂X
|Z|=n

f̌(Z)

 =
+∞∑
n=0

1
n!

∫
(Rd)n

f̌(x)ρn(x)dµn(x)

where the inversion of the first sum and the expectation is a consequence of (3.2.8).
Similarly, for all functions f : Ω2

F → R we have

E[f(X,X ′)] = E[E[f(X,X ′)|X ′]]

= E
[+∞∑
m=0

1
m!

∫
(Rd)m

(∑
z⊂x

(−1)m−|z|f(z,X ′)
)
ρm(x)dµm(x)

]

=
+∞∑
m,n=0

1
m!n!

∫
(Rd)m+n

f̌(x, y)ρm(x)ρ′n(y)dµm(x)dµn(y),

where all inversions of expectation with sum and integrals can be justified in a similar
way than (3.2.8).

3.3 β-mixing of point processes with known intensity func-
tions

Our main result is the following inequality showing that if ρm(x)ρn(y) − ρm+n(x, y)
vanish fast enough when ‖y − x‖ → +∞ for all m,n ∈ N, then the underlying point
process is β-mixing.

Theorem 3.3.1. Let X be a simple point process on (Rd, µ) such that E[4|X∩A|] < +∞
for all bounded subsets A ⊂ Rd. Then, for all p, q, r ∈ R+,

βp,q(r) 6 sup
µ(A)<p,µ(B)<q

dist(A,B)>r

 +∞∑
m,n=0

2n+m−1

m!n!

∫
Am×Bn

|ρm(x)ρn(y)− ρm+n(x, y)|dµm(x)dµn(y)

 .
(3.3.1)

Before giving the proof of Theorem 3.3.1, we need the following lemmas showing
the behaviour of f(X ∩ A,X ∩ B) and f(X ∩ A,X ′ ∩ B) under the lower difference
operator.

Lemma 3.3.2. Let A ⊂ Rd, f : ΩF → R and define fA : X 7→ f(X ∩A). Then,

|fA(X) = f̌(X)1X⊂A.
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Proof. If X ⊂ A then the result is trivial. Otherwise, there exists x ∈ X\A and we can
write

|fA(X) =
∑

Z⊂X,Z3x
(−1)|X\Z|f(Z ∩A) +

∑
Z⊂X,Z 63x

(−1)|X\Z|f(Z ∩A)

=
∑

Z⊂X,Z 63x
(−1)|X\Z|−1f

(
(Z ∪ {x}) ∩A

)
+

∑
Z⊂X,Z 63x

(−1)|X\Z|f(Z ∩A)

=
∑

Z⊂X,Z 63x
(−1)|X\Z|−1f(Z ∩A) +

∑
Z⊂X,Z 63x

(−1)|X\Z|f(Z ∩A) = 0.

This result can be extended to multivariate functions: The lower difference of
(X1, X2)→ f(X1 ∩A1, X2 ∩A2) is f̌(X1, X2)1{X1⊂A1}1{X2⊂A2}.

Lemma 3.3.3. For all f : Ω2
F → R and A,B disjoint subsets of Rd, let us define the

function g : X 7→ f(X ∩A,X ∩B). The lower difference of g satisfies

ǧ(X) = f̌(X ∩A,X ∩B)1{X⊂A∪B}.

Proof. Using Lemma 3.3.2 we get that ǧ(X) = 0 whenever X is not a subset of A∪B.
Otherwise, since A and B are disjoint sets,

ǧ(X) =
∑
Z⊂X

(−1)|X\Z|f(Z ∩A,Z ∩B) =
∑

U⊂X∩A
V⊂X∩B

(−1)|(X∩A)\U |+|(X∩B)\V |f(U, V )

which, by definition, is equal to f̌(X ∩A,X ∩B).

We now have the necessary tools required for the proof of Theorem 3.3.1.

Proof of Theorem 3.3.1. Let p, q > 0 and A,B be two disjoint subsets of Rd such that
µ(A) 6 p and µ(B) 6 q. Using one of the characterizations of the total variation
distance, the β-mixing coefficient between E(A) and E(B) can be expressed as

β(E(A), E(B)) = 1
2 sup
‖f‖∞=1

∣∣E[f(X ∩A,X ∩B)]− E[f(X ∩A,X ′ ∩B)]
∣∣

where X ′ is an independent copy of X. Since X ∩A, X ′ ∩B and X ∩B are finite a.s.
we can apply (3.2.7) which, combined with Lemma 3.3.2, gives us

E[f(X ∩A,X ′ ∩B)] =
+∞∑
m,n=0

1
m!n!

∫
Am×Bn

f̌(x, y)ρm(x)ρn(y)dµm(x)dµn(y). (3.3.2)

On the other hand, by combining (3.2.6) with Lemma 3.3.3, we get

E[f(X ∩A,X ∩B)] =
+∞∑
n=0

1
n!

∫
(A∪B)n

f̌(x ∩A, x ∩B)ρn(x)dµn(x).

Since A and B are disjoint sets and by symmetry of f̌(x ∩ A, x ∩ B)ρn(x), we can
simplify the above expression into

E[f(X ∩A,X ∩B)] =
+∞∑
n=0

n∑
m=0

1
n!

(
n

m

)∫
Am×Bn−m

f̌(x, y)ρn(x, y)dµm(x)dµn−m(y)

=
+∞∑
m,n=0

1
m!n!

∫
Am×Bn

f̌(x, y)ρm+n(x, y)dµm(x)dµn(y). (3.3.3)
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Combining (3.3.2) and (3.3.3) yields that |E[f(X ∩A,X ∩B)]− E[f(X ∩A,X ′ ∩B)]|
is equal to∣∣∣∣∣∣

+∞∑
m,n=0

1
m!n!

∫
Am×Bn

f̌(x, y)(ρm(x)ρn(y)− ρm+n(x, y))dµm(x)dµn(y)

∣∣∣∣∣∣
which is bounded by

+∞∑
m,n=0

2n+m

m!n!

∫
Am×Bn

|ρm(x)ρn(y)− ρm+n(x, y)|dµm(x)dµn(y)

when ‖f‖∞ = 1 and where we used the bound |f̌(x, y)| 6 2|x|+|y|.

3.4 Application to determinantal point processes
We can directly apply Theorem 3.3.1 to determinantal point processes. First introduced
in [75] under its current form to model fermion systems, DPPs are a broad class of
repulsive point processes. We recall that a DPP X with kernel K : (Rd)2 → R is
defined by its intensity functions

ρn(x1, · · · , xn) = det(K[x]) ∀x ∈ (Rd)n, ∀n ∈ N

where we denote by K[x] the matrix (K(xi, xj))16i,j6n. Existence and uniqueness
conditions as well as general information on DPPs can be found in [61]. The application
of Theorem 3.3.1 to DPPs gives us the following β-mixing condition:
Theorem 3.4.1. Let X be a DPP with kernel K and define

ω(r) := sup
‖y−x‖>r

|K(x, y)|.

If K is bounded and ω(r) −→
r→+∞

0 then X is β-mixing. In particular,

βp,q(r) 6 2pq(1 + 2p‖K‖∞)(1 + 2q‖K‖∞)e2‖K‖∞(p+q)ω(r)2.

Unfortunately, this result does not give a bound for βp,∞(r) which yet is necessary
in almost all limit theorems based on beta-mixing.

Proof. Since E[4|X∩A|] < +∞ for all bounded sets A (see Lemma 2.B.5) then the
β-mixing coefficients of X satisfy (3.3.1) by Theorem 3.3.1. Let x = (x1, · · · , xn)
and y = (y1, · · · , ym), we need to control | det(K[x]) det(K[y]) − det(K[x, y])| where
‖x− y‖ > r. By Lemma 2.B.4, we get the bound

0 6 det(K[x]) det(K[y])− det(K[x, y]) 6 nm‖K‖n+m−2
∞

n∑
i=1

m∑
j=1

K(xi, yj)2.

Injecting this bound into (3.3.1) gives us

βp,q(r) 6
+∞∑
n,m=0

n2m22n+m−1pn−1qm−1‖K‖n+m−2
∞

n!m! sup
|A|<p,|B|<q
dist(A,B)>r

∫
A×B

|K(x, y)|2dµ(x)dµ(y)

(3.4.1)

6
+∞∑
n,m=0

n2m22n+m−1pnqm‖K‖n+m−2
∞

n!m! ω(r)2

= 2pq(1 + 2p‖K‖∞)(1 + 2q‖K‖∞)e2(p+q)‖K‖∞ω(r)2.

In particular, if ω(r) vanishes when r → +∞ then X is β-mixing.
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In conclusion, the β-mixing coefficients of DPPs decay at the same rate as |K(x, y)|2
does when x and y deviate from each other. For example, kernels of the Ginibre ensem-
ble or the Gaussian unitary ensemble have an exponential decay (see [61]). Moreover,
among translation-invariant kernels used in spatial statistics (see [15, 69]), all kernels
of the Laguerre-Gaussian family also have an exponential decay while kernels of the
Whittle-Matérn and Cauchy family satisfy ω(r) = o(r−d) and kernels of the Bessel
family satisfy ω(r) = o(r−(d+1)/2).

It is also worth noticing that Theorem 3.3.1 is optimal in the sense that for a
wide class of DPPs, the β-mixing coefficients βp,q(r) do not decay faster, when r goes
to infinity, than the supremum of

∫
A×B |K(x, y)|2dµ(x)dµ(y) for all A,B such that

µ(A) 6 p, µ(B) 6 q and dist(A,B) > r as stated in the following proposition.

Proposition 3.4.2. Let X be a DPP with a non-negative bounded kernel K such that
the eigenvalues of its associated integral operator are all in [0,M ] where M < 1. Then,
for all p, q, r > 0,

2(1−M)
(p+q)‖K‖∞

M sup
µ(A)<p,µ(B)<q

dist(A,B)>r

∫
A×B

|K(x, y)|2dµ(x)dµ(y) 6 βp,q(r)

6 2(1+2p‖K‖∞)(1+2q‖K‖∞)e2(p+q)‖K‖∞ sup
µ(A)<p,µ(B)<q

dist(A,B)>r

∫
A×B

|K(x, y)|2dµ(x)dµ(y).

Proof. The first inequality is a consequence of the fact that βp,q(r) > 2αp,q(r) and
Proposition 2.4.3. The second inequality is equivalent to (3.4.1) once the sum has been
developed.
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Chapter 4

Adaptive estimating function
inference for non-stationary
determinantal point processes

This chapter is a work that has been submitted to a mathematics journal so some con-
siderations and definitions are redundant with the introduction. For the same reason,
some notations are specific to this chapter.

4.1 Introduction

A common feature of spatial point process models (except for the Poisson process case)
is that the likelihood function is not available in a simple form. Numerical approxi-
mations of the likelihood function are available (see e.g. [77, 78, for reviews]) but the
approaches are often computationally demanding and the distributional properties of
the approximate maximum likelihood estimates may be difficult to assess. Therefore
much work has focused on establishing computationally simple estimation methods that
do not require knowledge of the likelihood function.

In this chapter we focus on estimation methods for point processes which have
known joint intensity functions. This includes many cases of Cox and cluster point
process models [77, 63, 7] as well as determinantal point processes [75, 97, 94, 69].
These classes of models are quite different since realizations of Cox and cluster point
processes are aggregated while determinantal point processes produce regular point
pattern realizations.

Knowledge of an nth order joint intensity enables the use of the so-called Campbell
formulae for computing expectations of statistics given by random sums indexed by
n-tuples of distinct points in a point process. Unbiased estimating functions can then
be constructed from such statistics by subtracting their expectations. So far mainly
the cases of first and second order joint intensities have been considered where the first
order joint intensity is simply the intensity function.

Theoretical results have been established in a variety of special cases of first and
second order estimating functions for Cox and cluster processes [93, 48, 102, 49, 103]
and for the closely related Palm likelihood estimators [99, 86, 85]. The common general
structure of the estimating functions on the other hand calls for a general theoretical
set-up which is the first contribution of this chapter. Our set-up also covers third
or higher order estimating functions and combinations of such estimating functions,
providing a general unifying framework.
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The literature on statistical inference for continuous determinantal point processes
is quite limited. A Bayesian approach is considered in [1], while likelihood and mini-
mum contrast estimation methods are discussed in [69]. Consistency and asymptotic
normality of the associated estimator are so far only available in case of minimum con-
trast estimation for stationary determinantal point processes [16]. Based on the general
set-up our second main contribution is to provide a consistency and asymptotic nor-
mality result of estimating function estimators for general non-stationary determinantal
point processes.

Specializing to second-order estimating functions, a common approach [48, 99] is to
restrict the random sum to pairs of R-close points for some user-specified R > 0. This
may lead to faster computation and improved statistical efficiency. The properties of
the resulting estimators depend strongly on R but only ad hoc guidance is available
for the choice of R. Moreover, it is difficult to account for ad hoc choices of R when
establishing theoretical results. Our third contribution is a simple intuitively appealing
adaptive choice of R which leads to a theoretically tractable estimation procedure and
we demonstrate its usefulness in simulation studies for determinantal point processes
as well as an example of a cluster process.

4.2 Estimating functions based on joint intensities
A point process X on Rd, d ≥ 1, is a locally finite random subset of Rd. For B ⊆ Rd,
we let N(B) denote the random number of points in X ∩B and |B| the Lebesgue mea-
sure of B. That X is locally finite means that N(B) is finite almost surely whenever
B is bounded. The so-called joint intensities of a point process are described in Sec-
tion 4.2.1. In this chapter we mainly focus on determinantal point processes, detailed
in Section 4.3. A prominent feature of determinantal point processes is that they have
known joint intensity functions of any order.

4.2.1 Joint intensity functions and Campbell formulae

For integer n ≥ 1, the joint intensity ρ(n) of nth order is defined by

E
6=∑

u1,...,un∈X
1u1∈B1,...,un∈Bn =

∫
×ni=1Bi

ρ(n)(u1, . . . , un)du1 · · · dun (4.2.1)

for Borel sets Bi ⊆ Rd, i = 1, . . . , n, assuming that the left hand side is absolutely
continuous with respect to Lebesgue measure on Rd. The 6= over the summation sign
means that the sum is over pairwise distinct points in X. Of special interest are the
cases n = 1 and n = 2 where the intensity function ρ = ρ(1) and the second order
joint intensity ρ(2) determine the first and second order moments of the count variables
N(B), B ⊆ Rd. The pair correlation function g(u, v) is defined as

g(u, v) = ρ(2)(u, v)
ρ(u)ρ(v)

whenever ρ(u)ρ(v) > 0 (otherwise we define g(u, v) = 0). The product ρ(u)g(u, v)
can be interpreted as the intensity of X at u given that v ∈ X. Hence g(u, v) > 1
(g(u, v) < 1) means that presence of a point at v increases (decreases) the likeliness of
observing yet another point at u. The Campbell formula

E
6=∑

u1,...,un∈X
f(u1, . . . , un) =

∫
f(u1, . . . , un)ρ(n)(u1, . . . , un)du1 · · · dun
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follows immediately from the definition of ρ(n) for any non-negative function f .

4.2.2 A general asymptotic result for estimating functions

Consider a parametric family of distributions {Pθ : θ ∈ Θ} of point processes on
Rd, where Θ is a subset of Rp. We assume a realization of the point process X with
distribution Pθ∗ , θ∗ ∈ Int(Θ), is observed on a bounded windowWn ⊂ Rd. We estimate
the unknown parameter θ∗ by the solution θ̂n of en(θ) = 0 (or one of the solutions if
there are many) where

en(θ) =


∑ 6=
u1,··· ,uq1∈X∩Wn

f1(u1, · · · , uq1 ; θ)−
∫
W
q1
n
f1(u; θ)ρ(q1)(u; θ)du

...∑6=
u1,··· ,uql∈X∩Wn

fl(u1, · · · , uql ; θ)−
∫
W
ql
n
fl(u; θ)ρ(ql)(u; θ)du


for l given functions fi : (Rd)qi ×Θ→ Rki such that

∑
i ki = p.

A basic assumption for the following theorem is that a central limit theorem is
available for en(θ∗) (assumption (X3)). In addition to this, a number of technical
assumptions (F1) through (F3) (or (F3’)), (X1) and (X2) regarding existence and
differentiability of joint intensities as well as differentiability of the fi are needed. All
these conditions as well as the proof of the following theorem are given in Section 4.A
of the appendix.
Theorem 4.2.1. Under Assumptions (F1) through (F3) (or (F3’)), (X1) and (X2),
with a probability tending to one as n→∞, there exists a |Wn|-consistent sequence of
roots θ̂n of the estimating equations en(θ) = 0. Precisely, for all ε > 0, there exists
A > 0 such that

P(∃θ̂n : en(θ̂n) = 0 and |Wn| ‖θ̂n − θ∗‖ < A) > 1− ε

for a sufficiently large n.
Moreover, if (X3) holds true, then

|Wn|Σ−1/2
n Hn(θ∗)(θ̂n − θ∗)

L−→ N (0, Ip),

where Σn = Var(en(θ∗)), Hn(θ∗) is defined in (F3), and Ip is the p× p identity matrix.
Remark 4.2.2. While the parameter θ∗ is generally uniquely defined (in the sense
that θ 7→ Pθ is injective) and verifies E(en(θ∗)) = 0, the solution to en(θ) = 0 may
not be unique. The above theorem states that there exists a consistent and asymptot-
ically Gaussian sequence of solutions, but uniqueness is not guaranteed. This draw-
back is unfortunately common in most asymptotic results for estimating functions in-
ference, see the references in introduction, [96], or the handbook by C. Heyde [59].
Nonetheless it can be proved that the solution is unique for n sufficiently large whenever
limn→∞ en(θ)/|Wn| admits a unique zero, see [64]. But to ensure the latter condition,
we would need some very strong additional properties on the parametric form of the test
functions and of the joint intensity functions.

4.2.3 Second order estimating functions

Referring to the previous section, much attention has been devoted to instances of the
case l = 1, q1 = 2 and k1 = p. In this case we obtain a second-order estimating function
of the form

en(θ) =
6=∑

u,v∈X∩Wn

f(u, v; θ)−
∫
W 2
n

f(u, v; θ)ρ(2)(u, v; θ)dudv. (4.2.2)
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In [48], Y. Guan noted that for computational and statistical efficiency it may be
advantageous to use only close pairs of points rather than all pairs of points. Thus
in (4.2.2) it is common practice to introduce an indicator 1‖u−v‖≤R for some constant
0 < R or choose f so that f(u, v) = 0 whenever ‖u− v‖ > R. We discuss a method for
choosing R in Section 4.2.4.

The general form (4.2.2) includes e.g. the score functions of second-order composite
likelihood [48, 102] and Palm likelihood functions [99, 86, 85] as well as score functions
of minimum contrast object functions based on non-parametric estimates of summary
statistics as the K or the pair correlation function. For the second-order composite
likelihood in [48],

f(u, v; θ) = ∇θρ
(2)(u, v; θ)

ρ(2)(u, v; θ)
−
∫
W 2 ∇θρ(2)(u, v; θ)dudv∫
W 2 ρ(2)(u, v; θ)dudv

while
f(u, v; θ) = ∇θρ

(2)(u, v; θ)
ρ(2)(u, v; θ)

for the second-order composite likelihood proposed in [102]. The score of the Palm
likelihood as generalized to the inhomogeneous case in [85] is obtained with

f(u, v; θ) =
∇θ ρ

(2)(u,v;θ)
ρ(u;θ)

ρ(2)(u, v; θ)/ρ(u; θ)
− 1
N(W )− 1

∫
W
∇θ

(
ρ(2)(u,w; θ)
ρ(u; θ)

)
dw.

In [85], the authors also regarded the second-order composite likelihood proposed in
[102] as a generalization of the stationary case Palm likelihood but the interpretation
as a second-order composite likelihood given in [102] is more straightforward.

Considering a class of estimating functions of the form (4.2.2) a natural question is
what is the optimal choice of f? A solution to this problem is provided in [35] where
an approximation of the optimal f is obtained by solving numerically a certain integral
equation. This yields a statistically optimal estimation procedure but is computation-
ally demanding and requires specification of third and fourth order joint intensities.
When computational speed and ease of use is an issue, there is still scope for simpler
methods. Moreover, given several (simple) estimation methods, it is possible to com-
bine them adaptively in order to build a final estimator that achieves better properties
than each initial estimator, see [70, 71].

4.2.4 Adaptive version

Consider second-order composite likelihood using only R close pairs. The weight func-
tion f is then of the form

fR(u, v; θ) = 1‖u−v‖≤R
∇θρ(2)(u, v; θ)
ρ(2)(u, v; θ)

. (4.2.3)

As mentioned in the previous section, using only R close pairs may be beneficial both
for statistical efficiency and computational tractability. However, the performances de-
pends strongly on the chosen R. Simulation studies such as in [85] and [35] usually
compare results for several values of R corresponding to different multiples of some
parameter associated with ‘range of correlation’. For a cluster process this parameter
could e.g. be the standard deviation of the distribution for dispersal of offspring around
parents. For a determinantal point process the parameter would typically be a correla-
tion scale parameter in the kernel of the determinantal point process, see Section 4.3. In
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practice these parameters are not known and among the quantities that need to be es-
timated. In [48] it is suggested to choose an R that minimizes a goodness of fit criterion
for the fitted point process model while the choice of R in [103] is done by inspection of
a non-parametric estimate of the pair correlation function (a similar appproach is sug-
gested by [51] and [8] in the context of pairwise composite likelihood for random fields).
Both approaches imply extra work and ad hoc decisions by the user and it becomes very
complex to determine the statistical properties of the resulting parameter estimates. A
typical behaviour of many pair correlation functions is that g(u, v; θ) converges to the
limiting value of 1 when ‖u− v‖ increases and |g(u, v; θ)− 1| ≤M(u, v; θ) where

M(u, v; θ) = max
s∈{u,v}

|g(s, s; θ)− 1|.

Note that for DPPs, M(u, v; θ) = 1 (see the next section) and for stationary point
processes, M(u, v; θ) does not depend on u and v. If g(u, v; θ) = 1 for ‖u − v‖ > r0
then counts of points are uncorrelated when they are observed in regions separated by
a distance of r0.

Following the idea that R should depend on some range property of the point process
we therefore suggest to replace the constraint ‖u− v‖ < R in (4.2.3) by the constraint

|g(u, v; θ)− 1|
M(u, v; θ) > ε,

for a small ε. If e.g. ε = 1% this means that we only consider pairs of points (u, v)
so that the difference between g(u, v; θ) and the limiting value 1 is within 1% of the
maximal value M(u, v; θ). Note that this choice of pairs of points is adaptive in that it
depends on θ.

We then modify the function fR to be

fadap(u, v; θ) = w

(
ε
M(u, v; θ)
g(u, v; θ)− 1

) ∇θρ(2)(u, v; θ)
ρ(2)(u, v; θ)

(4.2.4)

where w is some weight function of bounded support [−1, 1]. Later on, when establish-
ing asymptotic results, we will also assume that w is differentiable. A common example
of admissible weight function is w(r) = e1/(r2−1) for −1 6 r 6 1, while w(r) = 0 oth-
erwise. The user needs to specify a value of ε but in contrast to the original tuning
parameter R, ε has an intuitive meaning independent of the underlying point process.
We choose ε = 1%. In the simulation study in Section 4.4.1 we also consider ε = 5%
in order to investigate the sensitivity to the choice of ε.

We emphasize that choosing ε = 1% or 5% is not necessarily optimal. An optimal ε
might be found by maximizing the Godambe information as a function of ε but this is
not straightforward and the computational advantages of our approach would be lost.
In fact, if Godambe optimality is key, we suggest to consider the previously mentioned
approach by [35] to identify an optimal second order estimating function.

4.3 Asymptotic results for determinantal point processes
A point process X is a determinantal point process (DPP for short) with kernel K :
Rd × Rd → R if for all n ≥ 1, the joint intensity ρ(n) exists and is of the form

ρ(n)(u1, . . . , un) = det[K](u1, . . . , un)

for all {u1, . . . , un} ⊂ Rd, where [K](u1, . . . , un) is the matrix with entries K(ui, uj).
The intensity function is thus ρ(u) = K(u, u), u ∈ Rd. If a determinantal point process



60 CHAPTER 4. ESTIMATING FUNCTION INFERENCE FOR DPPS

with kernel K exists it is unique. General conditions for existence are presented in [69].
In particular, if K admits the form

K(u, v) =
√
ρ(u)ρ(v)C(u− v)

for a function C : Rd → R with C(0) = 1, then a sufficient condition for existence of
a DPP with kernel K is that ρ is bounded and that C is a square integrable continu-
ous covariance function with spectral density bounded by 1/‖ρ‖∞. The normalization
C(0) = 1 ensures that ρ is the intensity of the DPP.

We now consider a parametric family of DPPs on Rd with kernels Kθ where θ ∈ Θ
and Θ ⊆ Rp (see [69, 15, for examples of such families]). Henceforth, we assume thatKθ

is symmetric, continuous and the DPP with kernel Kθ exists for all θ ∈ Θ. Note that
in general, it is possible that two different kernels generate the same DPP distribution.
This identifiability issue especially arises in the case of a discrete state space, where the
distribution of a DPP is only identified up to flips of the signs of the rows and columns
of its matrix kernel (see [40] or [90]). However, in the continuous case, corresponding
to our framework, the kernel of a DPP is uniquely determined whenever the intensity
function is positive, see Proposition 4.C.1 and its corollary in the appendix. Assuming
a positive intensity function is not restrictive for statistical applications of DPPs.

An expression for the likelihood of a DPP on a bounded window is provided in
[69], where likelihood based inference for stationary DPPs is discussed. However, the
expression depends on a spectral representation of K which is rarely known in practice
and must be approximated numerically. Letting n denote the number of observed
points, the likelihood further requires the computation of an n×n dense matrix which
can be time consuming for large n. As an alternative, minimum contrast estimation is
considered in [15], based on the pair correlation function or Ripley’s K-function, but
only for stationary DPPs. In the following, we consider general non-stationary DPPs
and the estimator θ̂n obtained by solving en(θ) = 0 where en is given by (4.2.2). Note
that the distribution for any classical parametric DPP model showcased in [69, 15]
is uniquely determined by its first two order intensity functions, in the sense that
θ 7→ (ρ(.; θ), ρ(2)(., .; θ)) is injective. This justifies the use of second order estimating
functions for DPPs.

We establish in Section 4.3.1 using Theorem 4.2.1 the asymptotic properties of the
estimate θ̂n where en is given by (4.2.2) for a wide class of test functions f . In Section
4.3.2, we focus on a particular case of the DPP model, where the parameter θ = (β, ψ)
can be separated into a parameter β only appearing in the intensity function and a
parameter ψ only appearing in the pair correlation function. Following [103], it is
natural to consider a two-step estimation procedure where in a first step β is estimated
by a Poisson likelihood score estimating function, and in a second step the remaining
parameter ψ is estimated by a second order estimating function as in (4.2.2), where β
is replaced by β̂n obtained in the first step. The asymptotic properties of this two-step
procedure again follow as a special case of Theorem 4.2.1.

4.3.1 Second order estimating functions for DPPs

In this part and in the rest of the chapter, we consider the following notation. For
any set W ⊂ Rd and r > 0, we write W ⊕ r :=

⋃
x∈W B(x, r) and W 	 r := {x ∈

W,B(x, r) ⊂ W} for the dilation and erosion of the set W where B(x, r) denotes the
ball centered in x with radius r.

We assume a realization of a DPP X with kernel Kθ∗ , θ∗ ∈ Int(Θ), is observed on a
bounded window Wn ⊂ Rd. We estimate the unknown parameter θ∗ by the solution θ̂n
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of en(θ) = 0 where en(θ) is given by (4.2.2) for a given Rp-valued function f . Therefore,
we are in a special case of the set-up in Section 4.2.2 with l = 1, q1 = 2, k1 = p and
we assume that f1 = f satisfies the assumptions (F1) through (F3) (or (F3’)) listed
in Appendix 4.A. The condition (F1) in this case demands that θ 7→ f(u, v; θ) is twice
continuously differentiable in a neighbourhood of θ∗ and for θ in this neighbourhood,
the derivatives are bounded with respect to (u, v) uniformly in θ. Moreover, from (F2),
there exists R > 0 such that for all θ in a neighbourhood of θ∗,

f(u, v; θ) = 0 if ‖u− v‖ > R. (4.3.1)

Concerning (F3) (or (F3’)), this condition controls the asymptotic behaviour of the
matrix Hn(θ) given by

Hn(θ) = 1
|Wn|

∫
W 2
n

f(u, v; θ)∇θρ(2)(u, v; θ)Tdudv,

where we recall that in this setting

ρ(2)(u, v; θ) = Kθ(u, u)Kθ(v, v)−Kθ(u, v)2. (4.3.2)

The assumptions (F3) and (F3’) are technical and needed for the consistency of
the estimation procedure. When Hn is a symmetric matrix, assumption (F3) seems
simpler to verify than (F3’). As an important example, when f is defined as in (4.2.4),
we prove in Lemmas 4.3.2 and 4.3.3 that (F3) is generally satisfied even if X is not
stationary.

Finally, as shown in the proof of Theorem 4.3.1 below, the assumptions (X1) through
(X3) in Theorem 4.2.1 are implied by the following:

(D1) θ 7→ Kθ(u, v) is twice continuously differentiable in a neighborhood of θ∗, for all
u, v ∈ Rd. Moreover, the first and second derivative of Kθ with respect to θ are
bounded with respect to u, v ∈ Rd uniformly in θ in a neighborhood of θ∗.

(D2) The kernel Kθ∗ satisfies, for some ε > 0,

sup
‖u−v‖>r

Kθ∗(u, v) = o(r−(d+ε)/2).

(D3) lim infn λmin(|Wn|−1Σn) > 0 where Σn := Var(en(θ∗)) and λmin(|Wn|−1Σn) de-
notes the smallest eigenvalue of |Wn|−1Σn.

(W) ∃ε > 0 s.t. |∂Wn ⊕ (R + ε)| = o(|Wn|), where ∂ in this context denotes the
boundary of a set, R is defined in (4.3.1), and |Wn| → ∞, as n→∞.

Let us briefly comment on these assumptions. (D1) is a standard regularity as-
sumption. Condition (D2) is not restrictive since all standard parametric kernel fami-
lies satisfy sup‖u−v‖>rKθ(u, v) = O(r−(d+1)/2), including the most repulsive stationary
DPP (see [69, 15]). Condition (D3) ensures that the asymptotic variance in the central
limit theorem below is not degenerated. Finally, Assumption (W) makes specific the
fact that Wn is not too irregularly shaped and is not bounded in any direction. It is
for instance fulfilled if Wn is a Cartesian product of d intervals whose lengths tends to
infinity.
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Theorem 4.3.1. Under Assumptions (D1) and (D2), if assumptions (F1) through (F3)
(or (F3’)) are satisfied for f1 = f , with a probability tending to one as n → ∞, there
exists a |Wn|-consistent sequence of roots θ̂n of the estimating equations en(θ) = 0. If
moreover (W) and (D3) holds true, then

|Wn|Σ−1/2
n Hn(θ∗)(θ̂n − θ∗)

L−→ N (0, Ip).

Proof. We deduce from (4.3.2) that (D1) implies (X1). Moreover, it was shown in the
proof of Lemma 2.B.6 that (X2) is a consequence of (D2) and that (X3) is a consequence
of (D2), (D3) and (W). Thus, we can conclude by applying Theorem 4.2.1 in the case
l = 1 and q1 = 2.

In the case of a stationary X and f given by (4.2.4), the following lemma shows
that (F3) is satisfied under mild assumptions that are violated only in degenerate cases.
For instance, if p = 1, the last assumption boils down to ∇θρ(2)(0, t; θ∗) 6= 0 for some
t 6= 0 such that |Kθ∗(t)| >

√
εKθ∗(0). In particular it is not difficult to verify these

assumptions for the stationary parametric kernels considered in our simulation study
of Section 4.4, namely the Bessel-type and the Gaussian kernels, see Section 4.D of the
appendix.

Lemma 4.3.2. Assume (W) and (D2), suppose X is stationary and let f be as in
(4.2.4). Assume that w is positive on [0, 1), t 7→ f(0, t; θ∗) is integrable and

span{∇θρ(2)(0, t; θ∗) : |Kθ∗(t)| >
√
εKθ∗(0)} = Rp,

then (F3) is satisfied.

Proof. By definition of w and (D2), there exists R > 0 such that f(0, t; θ∗) = 0 when
‖t‖ > R. By Lemma 4.A.1, since t 7→ f(0, t; θ∗) is integrable then Hn(θ∗) converges
towards the positive semi-definite matrix H(θ∗) =

∫
‖t‖<R h(t)dt where the function

h : Rd → Rp×p is defined by

h(t) = w

(
εKθ∗(0)2

Kθ∗(t)2

)
∇θρ(2)(0, t; θ∗)∇θρ(2)(0, t; θ∗)T

ρ(2)(0, t; θ∗)
.

In this case, proving (F3) is equivalent to showing that φTH(θ∗)φ = 0 only if φ = 0.
For this, let A be the set of t such that |Kθ∗(t)| >

√
εKθ∗(0), φ ∈ Rp and note that since

w(εKθ∗(0)2/Kθ∗(t)2) > 0 for t ∈ A and h(t) is continuous and positive semi-definite,

φTH(θ∗)φ = 0 ⇔ ∀t ∈ A, φTh(t)φ = 0
⇔ ∀t ∈ A, ∇θρ(2)(0, t; θ∗)Tφ = 0

⇔ φ ∈
(
span{∇θρ(2)(0, t; θ∗) : t ∈ A}

)⊥
.

By assumption span{∇θρ(2)(0, t; θ∗) : t ∈ A} = Rp whereby φ = 0, which concludes
the proof.

Similarly, we can show that even in the non-stationary case, condition (F3) is
satisfied for the function in (4.2.4) but under some slightly stronger assumptions on
∇θρ(2)(u, v; θ∗). Namely, we demand that all functions v 7→ ∇θρ(2)(u, v; θ∗) are not
contained in a single hyperplane of Rp nor confined around 0. This is similar in essence
to what we have assumed in the previous corollary but with the need of a uniform con-
dition with respect to u. Functions that do not satisfy these requirements are arguably
degenerate. In particular, a straightforward calculus carried out in the appendix shows
that the non-stationary Bessel-type kernel used in our simulation study satisfies these
assumptions.
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Lemma 4.3.3. Assume (W), (D2) and that Kθ∗ is bounded. Let f be as in (4.2.4) and
define h : (Rd)2 → Rp×p by

h(u, v) = w

(
εKθ∗(u, u)Kθ∗(v, v)

Kθ∗(u, v)2

) ∇θρ(2)(u, v; θ∗)∇θρ(2)(u, v; θ∗)T

ρ(2)(u, v; θ∗)
.

Assume that w is positive on [0, 1[. If supu∈Rd ‖
∫
Rd h(u, v)dv‖ < +∞ and if there exists

µ > 1 and δ > 0 such that for all u ∈ Rd and for all unit vectors φ of Rp there exists
a subset A of {v : Kθ∗(u, v)2 > µεKθ∗(u, u)Kθ∗(v, v)} of positive Lebesgue measure
|A| > 0 and satisfying

∀v ∈ A, |φT∇θρ(2)(u, v; θ∗)| > δ

then (F3) is satisfied.

Proof. By definition of w, (D2) and the fact that Kθ∗ is bounded, there exists R > 0
such that h(u, v) = 0 when ‖v − u‖ > R. The integral in (F3) writes

Hn(θ∗) = 1
|Wn|

∫
W 2
n

h(u, v)1‖u−v‖≤Rdvdu = 1
|Wn|

∫
Wn	R

∫
Wn

h(u, v)1‖u−v‖≤Rdvdu+εn

where
εn = 1

|Wn|

∫
Wn\(Wn	R)

∫
Wn

h(u, v)1‖u−v‖≤Rdvdu.

By (W), we have

‖εn‖ 6
|Wn \ (Wn 	R)|

|Wn|
sup
u∈Rd

∫
Rd
‖h(u, v)‖dv

≤ |∂Wn ⊕R|
|Wn|

sup
u∈Rd

∫
Rd
‖h(u, v)‖dv → 0,

and for all φ,

φT
(∫

Wn	R

∫
Wn

h(u, v)1‖u−v‖≤Rdudv
)
φ =

∫
Wn	R

(∫
‖u−v‖≤R

φTh(u, v)φdv
)

du.

By our assumption on ∇θρ(2), there exists a set A of positive Lebesgue measure such
that

∀v ∈ A, |φT∇θρ(2)(u, v; θ∗)| > δ and w

(
εKθ∗(u, u)Kθ∗(v, v)

Kθ∗(u, v)2

)
> inf

x∈[0,1/µ]
w(x)

Hence for ‖φ‖ = 1,

1
|Wn|

φT
(∫

Wn	R

∫
Wn

h(u, v)1‖u−v‖≤Rdudv
)
φ

>
infx∈[0,1/µ]w(x)
|Wn|‖ρ(2)(., .; θ∗)‖∞

∫
Wn	R

(∫
A
|φT∇θρ(2)(u, v; θ∗)|2dv

)
du

>
|Wn 	R||A|δ2 infx∈[0,1/µ]w(x)

|Wn|‖ρ(2)(., .; θ∗)‖∞

=
( |Wn| − |Wn ∩ (∂Wn ⊕R)|

|Wn|

) |A|δ2 infx∈[0,1/µ]w(x)
‖ρ(2)(., .; θ∗)‖∞

→
|A|δ2 infx∈[0,1/µ]w(x)
‖ρ(2)(., .; θ∗)‖∞

> 0

where the limit is a consequence of (W). Since the limit does not depend on φ, then
(F3) is satisfied.
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4.3.2 Two-step estimation for a separable parameter

We consider a family of kernels

Kθ(u, v) =
√
ρ(u;β)C(u, v;ψ)

√
ρ(v;β),

where θ := (βT , ψT )T ∈ Θ ⊂ Rp+q with β ∈ Rp and ψ ∈ Rq, ρ(.;β) are non-negative
functions, and C(·, ·;ψ) are correlation functions, in particular C(u, u;ψ) = 1 for any
ψ. Note that in this case the DPP with kernel Kθ has intensity ρ(.;β) and its pair
correlation function is g(u, v;ψ) = 1− C2(u, v;ψ).

As in the preceding section, we assume a DPP X with kernel Kθ∗ , θ∗ ∈ Int(Θ), is
observed on a bounded window Wn ⊂ Rd. In the spirit of [103], we estimate θ∗ in two
steps. First, β∗ is estimated as the solution β̂n of sn(β) = 0 where

sn(β) =
∑

u∈X∩Wn

∇βρ(u;β)
ρ(u;β) −

∫
Wn

∇βρ(u;β)du

is the score function for a Poisson point process. Then, we estimate ψ∗ by the solution
ψ̂n of un(β̂n, ψ) = 0 where

un(θ) =
6=∑

u,v∈X∩Wn

f(u, v; θ)−
∫
W 2
n

f(u, v; θ)ρ(2)(u, v; θ)dudv

for a given Rq-valued function f and where

ρ(2)(u, v; θ) = ρ(2)(u, v;β, ψ) = ρ(u;β)ρ(v;β)(1− C2(u, v;ψ))

in this case. Here and in the following, for convenience of notation, we identify un(β, ψ)
with un(θ) when θ = (βT , ψT )T .

This two-step procedure is a particular estimating equation procedure, since θ̂n :=
(β̂Tn , ψ̂Tn )T is obtained as the solution of en(θ) = 0 where en(θ) = (sn(β)T , un(β, ψ)T )T .
Thus, this is a particular case of the setting in Section 4.2.2 where l = 2, q1 = 1, q2 = 2,
f1 = ∇βρ(u;β)/ρ(u;β) and f2 = f .

We assume in the following theorem the same conditions on the DPP X as in the
previous section. Similarly, we assume that (F1) through (F3) (or (F3’)) are satisfied
for f1 and f2. In this particular case, the matrix Hn involved in (F3) simply writes

Hn(β, ψ) =
(
H1,1
n (β, ψ) 0

H2,1
n (β, ψ) H2,2

n (β, ψ)

)

where

H1,1
n (β) = 1

|Wn|

∫
Wn

∇βρ(u;β)∇βρ(u;β)T

ρ(u;β) du,

H2,1
n (β, ψ) = 1

|Wn|

∫
W 2
n

f(u, v;β, ψ)∇βρ(2)(u, v;β, ψ)Tdudv,

H2,2
n (β, ψ) = 1

|Wn|

∫
W 2
n

f(u, v;β, ψ)∇ψρ(2)(u, v;β, ψ)Tdudv.

Since it is a non symmetric matrix, condition (F3’) is more applicable than (F3). Mild
conditions ensuring (F3’) in the stationary case are provided in Lemma 4.3.5.
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Theorem 4.3.4. Under Assumptions (D1) and (D2), if assumptions (F1) through (F3)
(or (F3’)) are satisfied for f1 = ∇βρ(u;β)/ρ(u;β) and f2 = f , then with a probability
tending to one as n → ∞, there exists a |Wn|-consistent sequence of roots θ̂n of the
estimating equations en(θ) = 0. If moreover (W) and (D3) hold true, then

|Wn|Σ−1/2
n Hn(θ∗)(θ̂n − θ∗)

L−→ N (0, Ip+q).

Proof. The proof follows the same lines as the proof of Theorem 4.3.1.

The next lemma is similar to Lemma 4.3.2. When q = 1 the last technical condition
boils down to ∇ψ(1−C2(0, t;ψ∗)) 6= 0 for some t such that C(0, t;ψ∗) >

√
εC(0, 0;ψ∗).

In particular, the stationary kernels in Section 4.4 satisfy the required assumptions, see
Section 4.D.

Lemma 4.3.5. Assume that for all θ, Kθ(u, v) only depends on u − v, in which case
ρ(u;β) = β with β > 0 and C(u, v;ψ) = C(0, v − u;ψ) with ψ ∈ Rq. Then the output
of the first step is β̂n = N(X ∩Wn)/|Wn|. In the second step, assume

f(u, v;β, ψ) =w
(

ε

1− g(u, v;ψ)

) ∇ψρ(2)(u, v;β, ψ)
ρ(2)(u, v;β, ψ)

=w
(

ε

C(0, v − u;ψ)2

) ∇ψ(1− C2(0, v − u;ψ))
1− C2(0, v − u;ψ) .

Assume that w is positive on [0, 1), t 7→ f(0, t; θ∗) is integrable and that span{∇ψ(1 −
C2(0, t;ψ∗)) : C(0, t;ψ∗) >

√
ε} = Rq, then (F3’) is satisfied under (W), (D1) and

(D2).

Proof. By definition of w and (D2), there exists R > 0 such that f(0, t; θ∗) = 0 when
‖t‖ > R. Since Kθ and f are invariant by translation and t 7→ f(0, t; θ∗) is integrable
then Hn(θ) converges by Lemma 4.A.1. In particular, we have

H1,1
n (β)→ 1

β
,

H2,2
n (β, ψ)→ β2

∫
‖t‖6R

h(t;ψ)dt,

H2,1
n (β, ψ)→ 2β

∫
‖t‖6R

w

(
ε

C(0, t;ψ)2

)
∇ψ(1− C2(0, t;ψ))dt.

where the function h(.;ψ) : Rd → Rp×p is defined by

h(t;ψ) = w

(
ε

C(0, t;ψ)2

) ∇ψ(1− C2(0, t;ψ))∇ψ(1− C2(0, t;ψ))T

1− C2(0, t;ψ) .

The limit of Hn(θ) is continuous by (D1). In this case, proving (F3’) is equivalent to
showing that the limit of Hn(θ∗) is invertible. Since this matrix is block triangular and
β > 0 then it is invertible if and only if the limit of H2,1

n (θ∗) is invertible. This is done
the same way as in Lemma 4.3.2.

4.4 Simulation study
In this section we use simulation studies to investigate the performance of our adaptive
estimating function and to compare two-step estimation with simultaneous estimation.
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4.4.1 Performance of adaptive estimating function

In order to assess the adaptive test function (4.2.4) against the truncated test function
(4.2.3) with a prescribed R, we consider a DPP model in R2 with a Bessel-type kernel

K(u, v) =
√
ρ(u)ρ(v) J1(2‖u− v‖/α)

‖u− v‖/α
, (4.4.1)

where J1 denotes the Bessel function of the first kind, ρ is the intensity and α controls
the range of interaction of the DPP. For existence, ρ and α must satisfy

α2‖ρ‖∞ 6
1
π
. (4.4.2)

This relation shows the tradeoff between the expected number of points and the strength
of repulsiveness that we can obtain. This model is a particular instance of the Bessel-
type DPP introduced in [15]. It covers a large range of repulsiveness, from the Poisson
point process (when α is close to 0) to the most repulsive DPP (when α = 1/

√
π‖ρ‖∞).

For this model, we consider three constant values of ρ, ρ ∈ {50, 100, 1000}, cor-
responding to homogeneous DPPs, and an inhomogeneous situation where ρ(u) =
ρ(x, y) = 20 exp(4x) when u ∈ [0, 1]2. The latter case corresponds to a log-linear
intensity function involving two parameters. For each ρ, three values of α are consid-
ered: a small one, a medium one, and a last one close to the maximal possible value
satisfying (4.4.2). Examples of point patterns simulated on [0, 1]2 are displayed in Fig-
ure 4. All simulations are carried out using R [87], in particular the library spatstat
[7].

We estimate ρ and α by a two-step procedure as studied in Section 4.3.2 from
realizations of the DPP onW = [0, 1]2. The alternative global approach of Section 4.3.1
is discussed in the next section. In the first step, the parameters arising in ρ are
estimated by the score function for a Poisson point process. This gives ρ̂ = N(X ∩
W )/|W | in the homogeneous cases. In the second step, we consider the estimating
equation based on (4.2.3) where θ is α in this setting and when R ∈ {0.05, 0.1, 0.25},
and based on the adaptive test function (4.2.4) with ε = 0.01 and the weight function
w given at the end of Section 4.2.4. This yields four different estimators of α. The
root mean square errors (RMSEs) of these estimators and the mean computation time
estimated from 1000 replications are summarised in Table 1. Boxplots are displayed in
Figure 5 in the appendix. Note that the codes have not been optimised, but the same
computational strategy has been used for all methods, making the comparison of the
mean computation time meaningful.

The Bessel-type kernel and the aforementioned test functions used in the two-step
estimation procedure fulfill the assumptions of Theorem 4.3.4 and Lemma 4.3.5 (for the
homogeneous case), ensuring nice asymptotic properties of the estimators considered
in this section. This is confirmed by the estimated RMSE’s reported in Table 1, that
decrease when the intensity ρ increases which mimics the effect of an increasing window
since rescaling the window by a factor 1/k is equivalent to change ρ into k2ρ and α
into α/k, see (2.4) in [69]. Moreover, these RMSE’s show that the best choice of R in
the test function (4.2.3) clearly depends on the range of interaction of the underlying
process. This emphasizes the importance of a data-driven approach to choosing R since
the range is unknown in practice. Fortunately, the performance of the adaptive method
is always better than the worst choice of R and very close to the best R except for the
case ρ = 100, α = 0.01. For the exceptional case, the small differences in performance
can be explained by Monte Carlo error. Further, use of the adaptive method implies
only little or no extra computional effort. In presence of many points, the adaptive
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version is in fact much faster to compute than the estimator based on (4.2.3) with the
choice of a too large R, see for instance the results for ρ = 1000 and R = 0.25.

Table 3 in the appendix shows the root mean square errors of the adaptive estimator
using ε = 0.05. The RMSEs obtained with ε = 0.05 are bigger than those obtained
with ε = 0.01. Nevertheless, the adaptive method with ε = 0.05 still performs well
in the sense that it usually performs better than the worst R and usually almost as
good as the best R. Because the above estimation methods sometimes fail to converge,
we also report in Table 2 in the appendix the percentages of times each method has
converged in our simulation study. These percentages are similar for all methods. Note
that the results in Table 1 and in Figure 5 are based on 1000 simulations where all four
methods have converged.

4.4.2 Two-step versus simultaneous

Most models used in spatial statistics involve a separable parameter θ = (β, ψ) where
β only appears in the intensity function and ψ only appears in the pair correlation
function. This makes the two-step procedure described in Section 4.3.2 available, as
exploited in the previous simulation study. However a simultaneous second order es-
timating equation approach might be a better alternative. It is not easy to compare
the respective performance of the two approaches through the asymptotic variances ob-
tained in Section 4.3.1 and Section 4.3.2. In this section, we show through an example
why the two-step procedure seems preferable.

We consider a stationary model with parameter θ = (ρ, ψ), where ρ is the intensity
and the pair correlation function writes g(u, v; θ) = g(r;ψ) with r = ‖u − v‖. In this
case the two-step procedure, based on the observation X ∩W and using the adaptive
test function (4.2.4), provides ρ̂ = N(X ∩W )/|W | and ψ̂ is the root of

e2(ψ) =
∑
rij

w

(
ε
g(0;ψ)− 1
g(rij ;ψ)− 1

)
∇ψg(rij ;ψ)
g(rij ;ψ)

−N(X ∩W )2
∫
W
w

(
ε
g(0;ψ)− 1
g(r;ψ)− 1

)
∇ψg(r;ψ)dF (r). (4.4.3)

Here F denotes the cumulative distribution function of R = ‖U − V ‖ where U and V
are independent variables uniformly distributed onW and {rij} is the set of all pairwise
distances of X ∩W . On the other hand, by a simultaneous procedure using the same
test function, we get that ψ̂ is the root of

e(ψ) =
∑
rij

w

(
ε
g(0;ψ)− 1
g(rij ;ψ)− 1

)
∇ψg(rij ;ψ)
g(rij ;ψ)

−
∑
rij w

(
ε g(0;ψ)−1
g(rij ;ψ)−1

)
∫
w
(
ε g(0;ψ)−1
g(rij ;ψ)−1

)
g(r;ψ)dF (r)

∫
w

(
ε
g(0;ψ)− 1
g(rij ;ψ)− 1

)
∇ψg(r;ψ)dF (r), (4.4.4)

while ρ̂ is given by

ρ̂2 = 1
|W |2

∑
rij w

(
ε g(0;ψ̂)−1
g(rij ;ψ̂)−1

)
∫
w

(
ε g(0;ψ̂)−1
g(rij ;ψ̂)−1

)
g(r; ψ̂)dF (r)

. (4.4.5)

The more complicated expression of (4.4.4) in comparison with (4.4.3) implies that
e(ψ) can be highly irregular in ψ. Figure 6 in the appendix shows an example for
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ρ = 1000, α = 0.005 ρ = 1000, α = 0.01 ρ = 1000, α = 0.015

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

ρ = ρ(u), α = 0.005 ρ = ρ(u), α = 0.01 ρ = ρ(u), α = 0.015

Figure 4: Examples of point patterns simulated from a Bessel-type DPP on [0, 1]2 for different
values of ρ and α. For the last row, ρ(x, y) = 20 exp(4x).
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ρ α R = 0.05 R = 0.1 R = 0.25 Adaptive R̂

50 0.02 rmse: 5.84 5.83 6.29 5.97 0.047
(0.15) (0.17) (0.19) (0.18) (0.020)

time: 0.43 0.48 0.68 0.64
0.04 rmse: 15.60 9.18 9.19 9.25 0.106

(0.44) (0.20) (0.22) (0.21) (0.037)
time: 0.48 0.50 0.68 0.73

0.07 rmse: 13.32 8.25 8.22 8.15 0.147
(0.33) (0.23) (0.24) (0.24) (0.050)

time: 0.50 0.45 0.59 0.72

100 0.01 rmse: 2.44 2.45 2.58 2.63 0.024
(0.08) (0.08) (0.09) (0.09) (0.009)

time: 0.44 0.57 1.22 0.70
0.03 rmse: 5.34 5.12 5.28 5.27 0.064

(0.13) (0.13) (0.14) (0.13) (0.019)
time: 0.40 0.47 0.98 0.70

0.05 rmse: 5.78 4.43 4.50 4.53 0.139
(0.12) (0.12) (0.10) (0.12) (0.022)

time: 0.52 0.56 1.16 0.95

1000 0.005 rmse: 0.67 0.88 0.83 0.72 0.015
(0.02) (0.02) (0.02) (0.02) (0.003)

time: 3.83 19.04 110.07 9.38
0.01 rmse: 0.57 0.59 0.61 0.56 0.028

(0.01) (0.02) (0.01) (0.01) (0.005)
time: 2.68 10.40 60.79 6.84

0.015 rmse: 0.47 0.46 0.52 0.47 0.026
(0.01) (0.01) (0.01) (0.01) (0.002)

time: 2.53 9.81 55.78 7.75

Inhom 0.005 rmse: 1.58 1.65 1.66 1.61 0.014
(0.04) (0.04) (0.04) (0.04) (0.005)

time: 0.89 2.50 10.30 1.19
0.01 rmse: 1.34 1.36 1.36 1.32 0.025

(0.03) (0.03) (0.03) (0.03) (0.008)
time: 0.76 1.86 7.66 1.22

0.015 rmse: 1.43 1.47 1.48 1.40 0.030
(0.03) (0.03) (0.03) (0.03) (0.006)

time: 0.86 1.90 7.46 1.40

Table 1: Estimated root mean square errors (×103) and mean computation time (in seconds) of
α̂ for a Bessel-type DPP on [0, 1]2, for different values of ρ and α. The 3 first estimators use the
test function (4.2.3) with R = 0.05, R = 0.1 and R = 0.25 respectively, while the last estimator
is the adaptive version based on (4.2.4). The standard errors of the RMSE estimations are given
in parenthesis. The last column gives the averages of "practical ranges" (i.e. maximal solution
to |g(r) − 1| = 0.01) used for the adaptive estimator, along with their standard deviations in
parenthesis. For each value of ρ and α, these quantities are computed from 1000 simulations
where all four estimation methods have converged.
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one realization of a DPP with a Gaussian kernel with range ψ. For this example e(ψ)
exhibits many different roots, although the dataset contains a fairly large number of
points (about 1000). The consequence is an extreme sensitivity to the initial parameter
when we try to solve e(ψ) = 0. In contrast e2(ψ) = 0 has one clear solution. This
advocates the use of the two-step approach.

Due to the aforementioned very strong sensitivity to the initial value of ψ, con-
clusions from comparison of the simultaneous estimate of ψ with the two-step esti-
mate of ψ can be quite arbitrary. However, we report in Figure 7 in the appendix
the distribution of estimates of ρ from 1000 simulations of a Bessel-type DPP with
ρ = 1000 and ψ = α = 0.01, using either (4.4.5) from the simultaneous approach or
ρ̂ = N(X ∩ W )/|W | from the two-step approach. For the simultaneous method we
either chose the true value α = 0.01 as the starting point for the numerical solution
of e(α) = 0 to get α̂, or fix α̂ at the true value, i.e. α̂ = 0.01, in (4.4.5). The esti-
mate ρ̂ = N(X ∩W )/|W | is unequivocally better than (4.4.5) in terms of root mean
square error, even when the true value of α is used for α̂ in (4.4.5). This confirms our
recommendation.

The simultaneous estimation approach in this example is covered by our theoretical
results in Sections 4.3.1 and 4.3.2. It shows that while our consistency result guarantees
the existence of a consistent sequence of parameter estimates (roots) there could also
exist other non-consistent sequences.

4.5 Discussion

In this chapter we provide a very general asymptotic framework for estimating function
inference for spatial point processses with known joint intensities. Specific asymptotic
results are obtained for determinantal point processes.

The performance of second order estimating functions depends strongly on a tuning
parameter R that controls which pairs of points are used in the estimation. Although
not statistically optimal, our adaptive procedure for selecting this tuning parameter is
intuitively appealing and easy to implement. The method depends on a new tuning
parameter ε for which it is easier to identify reasonable values than for the original
tuning parameter R. The resulting estimation procedure is computationally tractable
and performs well in terms of mean squared error in the simulation studies considered.
It moreover seamlessly integrates with the asymptotic results where the use of the
adaptive method poses no extra theoretical difficulties.

Though we focus in this chapter on determinantal point processes, the adaptive
method is applicable for any spatial point process with known pair correlation function.
As an example we provide in Section 4.E of the appendix a simulation study in case of
a cluster process.

4.A Assumptions and proof of Theorem 4.2.1

Our general Theorem 4.2.1 depends on a number of assumptions. The setting is the
same as in Section 4.2.2. We moreover define diam(x) as the largest distance between
two coordinates of x. The assumptions (F1) through (F3) are mainly related to the
test functions fi, while for X we assume (X1) through (X3).

(F1) For all i = 1, . . . , l and for all x ∈ (Rd)qi , θ 7→ fi(x; θ) is twice continuously
differentiable in a neighbourhood of θ∗. Moreover, the first and second derivative
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of fi with respect to θ are bounded with respect to x ∈ (Rd)qi uniformly in θ
belonging to this neighbourhood.

(F2) There exists a constant R > 0 such that for all θ in a neighbourhood of θ∗, all
functions x 7→ fi(x; θ) vanish when diam(x) > R.

Define the matrices Hn(θ) by

Hn(θ) =

 H1
n(θ)
...

H l
n(θ)

 ,
where for all i

H i
n(θ) := 1

|Wn|

∫
W
qi
n

fi(x; θ)∇θρ(qi)(x; θ)Tdx.

(F3) The matrices Hn(θ∗) satisfy

lim inf
n→∞

(
inf
‖φ‖=1

φTHn(θ∗)φ
)
> 0.

(F3’) There exists a neighbourhood of θ∗ such that for all n high enough and all θ
in this neighbourhood, Hn(θ) is invertible and ‖Hn(θ)−1‖ is uniformly bounded
with respect to n and θ, where ‖ · ‖ stands for any matrix norm.

(X1) For all θ in a neighbourhood of θ∗ and all qi, i = 1, . . . , l, the intensity functions
x 7→ ρ(qi)(x; θ) are well-defined and bounded. Moreover, θ 7→ ρ(qi)(x; θ) is twice
continuously differentiable in a neighbourhood of θ∗, for all x ∈ (Rd)qi . Finally,
the first and second derivative of ρ(qi) with respect to θ are bounded with respect
to x ∈ (Rd)qi uniformly in θ belonging to this neighbourhood.

(X2) For all qi, i = 1, . . . , l, the intensity functions ρ(qi)(·; θ∗), · · · , ρ(2qi)(·; θ∗) of X are
well-defined. Moreover, the intensity functions ρ(qi)(·; θ∗), · · · , ρ(2qi−1)(·; θ∗) are
bounded and for all bounded sets W ⊂ Rd there exists a constant C0 > 0, so that∫
W ϕi(x1)dx1 < C0, i = 1, . . . , l where ϕi is the function

ϕi : x1 7→ sup
diam(x)<R

sup
diam(y)<R

sup
y1∈W

ρ(2qi)(x1, x2, · · · , xqi , y1, · · · , yqi ; θ∗)

− ρ(qi)(x1, x2, · · · , xqi ; θ∗)ρ(qi)(y1, · · · , yqi ; θ∗)

with R coming from (F2).

(X3) X satisfies the central limit theorem

Σ−1/2
n en(θ∗) L−→ N (0, Ip),

where en is defined in Section 4.2.2 and Σn = Var(en(θ∗)).

Assumptions (F1) and (F2) are basic regularity conditions on the fi’s. Similarly
(X1) and (X2) ensure that the intensity functions of X exist and are sufficiently regu-
lar. The technical assumptions are in fact (F3) (or (F3’)) and (X3). While the latter
strongly depends on the underlying point process (see [103] for Cox processes and The-
orem 2.4.4 for DPPs), the former can be simplified in some cases. For example, if
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Hn(θ∗) are symmetrical matrices for all n then (F3) writes lim infn λmin(Hn(θ∗)) > 0
where λmin(Hn(θ∗)) denotes the smallest eigenvalue of Hn(θ∗). If the matrices Hn(θ∗)
are not symmetrical, Assumption (F3’) will be preferred since (F3) does not translate
well for non-symmetrical matrices. Furthermore, if X is stationary, all fi’s are invariant
by translation, and the sequence of windows {Wn}n≥1 satisfies (W) in Section 4.3.1,
then Hn(θ) converges, towards a matrix H(θ) explicitly given in Lemma 4.A.1 below.
Assumption (F3) thus simply becomes inf‖φ‖=1 φ

TH(θ∗)φ > 0 and (F3’) is satisfied
whenever H(θ∗) is invertible by continuity of H(θ). In specific applications of Theo-
rem 4.2.1, further conditions on the sequence of observation windows {Wn}n≥1 may be
required, see e.g. (W) in Section 4.3.1.

Lemma 4.A.1. Assume (W), (X1), (F2) and let θ ∈ Rp. Suppose that all ρ(qi)(·; θ)’s
and fi(·; θ)’s are invariant by translation, i.e. fi(u1, u; θ) = fi(0, u − u1; θ) where we
denote by u the vector (u2, · · · , uqi). If u 7→ fi(0, u; θ) is integrable for all i such that
qi > 2, then Hn(θ) converges to a matrix H(θ). In particular, for all i we have

lim
n→∞

H i
n(θ) =

∫
‖t‖6R

fi(0, t; θ)∇θρ(qi)(0, t; θ)Tdt.

This lemma is verified in Section 4.B. We now turn to the proof of the theorem.
To prove the consistency of θ̂n and get its rate of convergence we apply the following
result, where ‖.‖ stands for any matrix norm.

Theorem 4.A.2 ([103]). Suppose that en(θ) is continuously differentiable with respect
to θ and define

Jn(θ) := − d
dθT en(θ) := −

(
∂

∂θj
en(θ)i

)
16i,j6p

.

Suppose that for all α > 0

sup
θ∈Mα

n (θ∗)

∥∥∥∥ 1
|Wn|

(Jn(θ)− Jn(θ∗))
∥∥∥∥ P−→ 0, (4.A.1)

where

Mα
n (θ∗) :=

{
θ ∈ Θ : ‖θ − θ∗‖ 6 α√

|Wn|

}
,

and suppose that there exists l > 0 such that

P
(

1
|Wn|

inf
‖φ‖=1

φTJn(θ∗)φ < l

)
→ 0. (4.A.2)

Assume, moreover, that the class of random vectors{
1√
|Wn|

en(θ∗) : n ∈ N
}

is stochastically bounded. Then, for all ε > 0, there exists A > 0 such that

P(∃θ̂n : en(θ̂n) = 0 and |Wn|‖θ̂n − θ∗‖ < A) > 1− ε (4.A.3)

for a sufficiently large n.
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We now verify the assumptions of Theorem 4.A.2. There is no loss in generality by
assuming that all fi are symmetric functions. Otherwise we can just replace fi(x) by
its symmetrized version (qi!)−1∑

u∈π(x) fi(u) where π(x) denotes the set of all vectors
obtained by permuting the components of x. This does not change the value of en(θ)
and each symmetrized function still satisfies Assumptions (F1) through (F3). We will
use at several places the following result.

Lemma 4.A.3. Let X be a point process satisfying Assumption (X2). Consider any
i ∈ {1, · · · , l}, any bounded set W ⊂ Rd, and any symmetric bounded function g :
(Rd)qi → Rki vanishing when two of its components are at a distance greater than R
for a given constant R > 0. Then∥∥∥∥∥∥Var

 6=∑
x1,··· ,xqi∈X∩W

g(x1, · · · , xqi)

∥∥∥∥∥∥ = O(|W |).

Proof. Since g is a symmetric function, then g(x1, · · · , xqi) does not depend on the
order of the xi. Thus, for any set of qi points S = {x1, · · · , xqi}, we can write g(S) for
the value of g at an arbitrary order of the points in S and we write

6=∑
x1,··· ,xqi∈X∩W

g(x1, · · · , xqi) = qi!
∑

S⊂X∩W
g(S)1|S|=qi

where |S| denotes the cardinality of S.
We start by expanding E

[(∑
S⊂X∩W g(S)1|S|=qi

) (∑
S⊂X∩W gT (S)1|S|=qi

)]
as

qi∑
k=0

E

 ∑
S,T⊂X∩W

|S|=|T |=qi,|S∩T |=k

g(S)gT (T )



=
qi∑
k=0

E

 ∑
U⊂X∩W
|U |=2qi−k

∑
S′⊂S⊂U
|S′|=k,|S|=qi

g(S)gT (S′ ∪ (U\S))


=

qi∑
k=0

1
(2qi − k)!

∫
W 2qi−k

∑
S′⊂S⊂{x1,··· ,x2qi−k}
|S′|=k,|S|=qi

g(S)gT (S′ ∪ ({x1, · · · , x2qi−k}\S))ρ(2qi−k)(x; θ∗)dx

=
qi∑
k=0

(qi
k

)(2qi−k
qi

)
(2qi − k)!

∫
W 2qi−k

g(x1, · · · , xqi)gT (x1, · · · , xk, xqi+1, · · · , x2qi−k)ρ(2qi−k)(x; θ∗)dx.

(4.A.4)

By Assumption (X2), the functions ρ(qi), · · · , ρ(2qi−1) are all bounded. Moreover, as a
consequence of our assumptions on g, each entry of each term for k > 1 in (4.A.4) is
bounded by

1
qi!(qi − k)!

(
qi
k

) ∫
W 2qi−k

‖g‖2∞‖ρ(2qi−k)‖∞1{06|xi−x1|6R, ∀i}dx

which is O(|W |). However, we are unable to get a similar control for k = 0. Therefore,
instead of controlling this term alone, we consider its difference with the remaining
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term in the variance we are looking at, that is

1
(qi!)2

∫
W 2qi

g(x)gT (y)ρ(2qi)(x, y; θ∗)dxdy

− E
[ ∑
S⊂X∩W

g(S)1|S|=qi

]
E
[ ∑
S⊂X∩W

g(S)1|S|=qi

]T

= 1
(qi!)2

∫
W 2qi

g(x)gT (y)(ρ(2qi)(x, y; θ∗)− ρ(qi)(x; θ∗)ρ(qi)(y; θ∗))dxdy.

All of its components are bounded by

‖g‖2∞|W ||B(O,R)|2qi−2

(qi!)2

∫
W

sup
diam(x)<R
diam(y)<R

sup
y1∈W

(
ρ(2qi)(x1, x2, · · · , xqi , y1, · · · , yqi ; θ∗)

− ρ(qi)(x1, x2, · · · , xqi ; θ∗)ρ(qi)(y1, · · · , yqi ; θ∗)
)

dx1

which is O(|W |) by Assumption (X2).

The regularity conditions on en(θ) in Theorem 4.A.2 are consequences of (F1), (X1).
The stochastic behavior of en(θ∗) is easily deduced from the previous lemma.

Lemma 4.A.4. The class of random vectors{
1√
|Wn|

en(θ∗) : n ∈ N
}

is stochastically bounded.

Proof. The result follows by showing that each component ein(θ∗) of en(θ∗) is stochas-
tically bounded. By Chebyshev’s inequality, we just need to bound |Wn|−1Var(ein(θ∗)).
Letting

ein(θ) :=
6=∑

x1,··· ,xqi∈X∩Wn

fi(x1, · · · , xqi ; θ)−
∫
W
qi
n

fi(x; θ)ρ(qi)(x; θ)dx,

we know that Var(ein(θ∗)) is O(|Wn|) by Lemma 4.A.3 under Assumptions (X2) and
(F2).

To apply Theorem 4.A.2 under Assumptions (F1) through (F3), it remains to show
the following lemma.

Lemma 4.A.5. Under Assumptions (F1) through (F3), (X1) and (X2) we have for all
α > 0,

sup
θ∈Mα

n (θ∗)

∥∥∥∥ 1
|Wn|

(Jn(θ)− Jn(θ∗))
∥∥∥∥ P−→ 0. (4.A.5)

where Mα
n (θ∗) is defined as in Theorem 4.A.2 and there exists l > 0 such that

P
(

1
|Wn|

inf
‖φ‖=1

φTJn(θ∗)φ < l

)
→ 0.
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Proof. Let α > 0 and an integer n big enough such that Mα
n (θ∗) is a neighbourhood of

θ∗ where Assumptions (F1), (F2) and (X1) are satisfied. For all θ ∈Mα
n (θ∗), we write

Jn(θ) =

 J1
n(θ)
...

J ln(θ)

 := −


d

dθT e
1
n(x; θ)
...

d
dθT e

l
n(x; θ)


For all i, the derivative of x 7→ fi(x; θ)ρ(qi)(x; θ) is bounded on W qi

n . So, we can write

J in(θ) = −qi!
∑

x⊂X∩Wn
|x|=qi

d
dθT fi(x; θ) +

∫
W
qi
n

d
dθT fi(x; θ)ρ(qi)(x; θ)dx

+
∫
W
qi
n

fi(x; θ)∇θρ(qi)(x; θ)Tdx. (4.A.6)

Now, recall that fi, d
dθT fi, ρ

(qi) and ∇θρ(qi) are all continuously differentiable with re-
spect to θ by Assumption (F1) and (X1). Moreover, the first and second derivatives of
fi and ρ(qi) with respect to θ are bounded with respect to x and θ by the same assump-
tions. Therefore, since Mα

n (θ∗) is a decreasing sequence of compact sets, there exist
constants C1, C2 > 0 not depending on n, x and θ such that by a Taylor expansion,

sup
θ∈Mα

n (θ∗)
‖J in(θ)− J in(θ∗)‖ 6 α√

|Wn|

C1
∑

x⊂X∩Wn
|x|=qi

1diam(x)6R + C2

∫
W
qi
n

1diam(x)6Rdudv


where the indicator functions arise as a consequence of Assumption (F2). Moreover,

E

 ∑
x⊂X∩Wn
|x|=qi

1diam(x)6R

 =
∫
W
qi
n

ρ(qi)(x; θ∗)1diam(x)6Rdx = O(|Wn|)

since ρ(qi) is bounded by Assumption (X2). This shows that E[supθ∈Mα
n (θ∗) ‖J in(θ) −

J in(θ∗)‖] is O(
√
|Wn|).

It remains to prove that there exists l > 0 such that (4.A.5) holds. By Assumption
(F3) choose ε > 0 so that lim infn→∞ φTHn(θ∗)φ > ε and let l = ε/2. In the case where
θ = θ∗, the second term in (4.A.6) is just the expectation of the first one and the third
term is equal to |Wn|H i

n(θ∗) which is deterministic. Thus when θ = θ∗, the L2 norm of
the first two terms in (4.A.6) is equal to√√√√√√√Var

 ∑
x⊂X∩Wn
|x|=qi

d
dθT fi(x; θ∗)


which is O(

√
|Wn|) by Lemma 4.A.3. Hence it vanishes in probability when divided

by |Wn|. Denote by an the first two terms in φTJn(θ∗)φ/|Wn| and by bn the last term
which is φTHn(θ∗)φ. Then

lim
n→∞

P
(

1
|Wn|

inf
‖φ‖=1

φTJn(θ∗)φ < l

)
≤ lim

n→∞
P
(

inf
‖φ‖=1

bn − ε/2 < l, |an| < ε/2
)

≤ lim
n→∞

P
(

inf
‖φ‖=1

bn < ε

)
= 0

which concludes the proof.
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To apply Theorem 4.A.2 under the alternative Assumption (F3’) instead of (F3), we
proceed as follows. Consider n to be large enough and θ to be in a neighbourhood of θ∗
such that Hn(θ) is invertible and Hn(θ)−1 is uniformly bounded with respect to n and
θ. Let ẽn(θ) = Hn(θ)−1en(θ) and let us show that we can apply Theorem 4.A.2 to ẽn.
Obviously, ẽn has the same roots as en, is continuously differentiable since θ 7→ Hn(θ)
and θ 7→ Hn(θ)−1 are continuously differentiable from Assumptions (F1) and (F2), and
the family {ẽn(θ∗)/

√
|Wn| : n ∈ N} is stochastically bounded. Let J̃n(θ) = − d

dθT ẽn(θ).
It remains to show the following lemma.

Lemma 4.A.6. Under Assumptions (F1), (F2), (F3’), (X1) and (X2) we have

sup
θ∈Mα

n (θ∗)

∥∥∥∥ 1
|Wn|

(J̃n(θ)− J̃n(θ∗))
∥∥∥∥ P−→ 0. (4.A.7)

and
P
(

lim
n→∞

1
|Wn|

inf
‖φ‖=1

φT J̃n(θ∗)φ < 1/2
)

= 0. (4.A.8)

Proof. We have

J̃n(θ) = Hn(θ)−1Jn(θ)− Tn(θ) where Tn(θ)i,j =
p∑

k=1

∂

∂θj
Hn(θ)−1

i,k en(θ)k. (4.A.9)

For any θ ∈ Mα
n (θ∗), since all terms in (4.A.6) are bounded by Assumptions (F1) and

(X1), using Assumption (F2) we get

E[|en(θ)− en(θ∗)|] 6 α√
|Wn|

E
(

sup
θ∈Mα

n (θ∗)
‖Jn(θ)‖

)
= O(

√
Wn).

By (F1), (X1) and (F3’), ∂
∂θj
Hn(θ)−1 = ( ∂

∂θj
Hn(θ))Hn(θ)−2 is bounded on Mα

n (θ∗) for
a large enough n. It follows for all i, j,

1
|Wn|

sup
θ∈Mα

n (θ∗)

∥∥∥∥∥
p∑

k=1

∂

∂θj
Hn(θ)−1

i,k en(θ∗)k − Tn(θ)i,j

∥∥∥∥∥ P−→ 0.

Moreover,

sup
θ∈Mα

n (θ∗)

p∑
k=1

∂

∂θj
Hn(θ)−1

i,k

en(θ∗)k
|Wn|

P−→ 0

as a consequence of Lemma 4.A.4. Hence |Wn|−1 supθ∈Mα
n (θ∗) ‖Tn(θ)‖ P−→ 0 and

thus |Wn|−1‖Tn(θ∗)‖ P−→ 0. Therefore, we only need to look at the behaviour of
Hn(θ)−1Jn(θ).

From Lemma 4.A.5 we know that

sup
θ∈Mα

n (θ∗)

∥∥∥∥ 1
|Wn|

Hn(θ∗)−1(Jn(θ)− Jn(θ∗))
∥∥∥∥ P−→ 0.

Finally, we observe that

E
(

sup
θ∈Mα

n (θ∗)
‖(Hn(θ)−1 −Hn(θ∗)−1)Jn(θ)‖

)

6
α√
|Wn|

E
(

sup
θ∈Mα

n (θ∗)
‖Jn(θ)‖

)
sup

θ∈Mα
n (θ∗)

sup
16j6p

∥∥∥∥∥ ∂

∂θj
Hn(θ)−1

∥∥∥∥∥ = O(
√
Wn)
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where the boundedness of ∂Hn(θ)−1/∂θj for each j was noted above and the bounded-
ness of E

(
supθ∈Mα

n (θ∗) ‖Jn(θ)‖
)
follows by considerations in the last part of the proof of

Lemma 4.A.5 as a consequence of the regularity assumptions imposed on Hn(θ) by As-
sumption (F3’). This finishes proving (4.A.7). The result (4.A.8) is then a consequence
of the fact that Hn(θ∗)−1Jn(θ∗) converges towards Ip when n goes to infinity.

Finally, by Lemmas 4.A.4, 4.A.5 and 4.A.6, we can apply Theorem 4.A.2 and the
first part in the statements of Theorem 4.2.1 is deduced.

Now, for each n ∈ N, we define θ̂n as the closest root of en to θ∗, if en has any,
otherwise let θ̂n = 0. Theorem 4.A.2 tells us that P(en(θ̂n) = 0)→ 1 and

√
|Wn|(θ̂n−θ∗)

is bounded in probability.
To prove the asymptotic normality, we use the Taylor expansion en(θ̂n) = en(θ∗) +

Jn(θ0
n)(θ̂n − θ∗) where ‖θ0

n − θ∗‖ 6 ‖θ̂n − θ∗‖, which implies

en(θ̂n)√
|Wn|

= en(θ∗)√
|Wn|

+ Jn(θ∗)
|Wn|

√
|Wn|(θ̂n − θ∗)

+ 1
|Wn|

(Jn(θ0
n)− Jn(θ∗))

√
|Wn|(θ̂n − θ∗).

We know that en(θ̂n)/
√
|Wn| converges in distribution towards 0 and by Theorem 4.A.2

we also know that ∥∥∥∥ 1
|Wn|

(Jn(θ0
n)− Jn(θ∗))

∥∥∥∥ P−→ 0

because θ0
n is closer to θ∗ than θ̂n with probability tending to 1. Moreover, we saw

at the end of the proof of Theorem 4.A.2 that the variance of the first two terms of
|Wn|−1Jn(θ∗) vanishes when n → ∞ and the last term is equal to Hn(θ∗). Finally,
by Assumption (X3) and since |Wn|−1Var(en(θ∗)) is stochastically bounded (Lemma
4.A.4), it follows by Slutsky’s lemma that

|Wn|Σ−1/2
n Hn(θ∗)(θ̂n − θ∗)

L−→ N (0, Ip).

4.B Proof of Lemma 4.A.1
For all i, if qi = 1 then H i

n(θ) is constant. Otherwise, since fi and X are stationary,
the integral in (F3) writes

H i
n(θ) = 1

|Wn|

∫
Wn

∫
W
qi−1
n

fi(u1, u; θ)∇θρ(qi)(u1, u; θ)Tdudu1

= 1
|Wn|

∫
Wn	R

∫
W
qi−1
n

fi(0, u− u1; θ)∇θρ(qi)(0, u− u1; θ)Tdudu1 + εn

where

εn = 1
|Wn|

∫
Wn\(Wn	R)

∫
W
qi−1
n

fi(0, u− u1; θ)∇θρ(qi)(0, u− u1; θ)Tdudu1.

By integrability of fi, (W), (X1) and (F2), we have

|εn,kl| 6
1
|Wn|

∫
Wn\(Wn	R)

∫
(Rd)qi−1

|fi(0, u− u1; θ)k|‖∇θρ(qi)(.; θ)‖∞dudu1

= |Wn \ (Wn 	R)|
|Wn|

‖∇θρ(qi)(.; θ)‖∞
∫
‖t‖6R

|fi(0, t; θ)k|dt

6
|∂Wn ⊕R|
|Wn|

‖∇θρ(qi)(.; θ)‖∞
∫
‖t‖6R

|fi(0, t; θ)k|dt→ 0,
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where εn,kl denotes the klth entry of the matrix εn and fi(·)k the kth component of
the vector fi(·). Moreover,

1
|Wn|

∫
Wn	R

∫
Wn

fi(0, u− u1; θ)∇θρ(qi)(0, u− u1; θ)Tdudu1

= |Wn 	R|
|Wn|

∫
‖t‖6R

fi(0, t; θ)∇θρ(qi)(0, t; θ)Tdt

→
∫
‖t‖6R

fi(0, t; θ)∇θρ(qi)(0, t; θ)Tdt,

as n→∞. This proves the convergence of Hn(θ).

4.C Identifiability of the kernel of a continuous DPP

In this section, we show that most continuous DPP kernels are uniquely characterized
by their associated DPP distribution. In particular, DPPs with positive first order
intensity function are characterized by a unique continuous kernel. This is for instance
the case for any stationary DPP with intensity ρ > 0.

Proposition 4.C.1. Let K and K̃ be two continuous DPP kernels generating the same
DPP distribution. Then, there exists a closed set A such that

K̃(x, y) =
{
K(x, y) if (x, y) ∈ A2⋃(Ac)2

−K(x, y) if (x, y) ∈ A×Ac
⋃
Ac ×A.

In particular, K(x, y) = K̃(x, y) = 0 for all (x, y) ∈ ∂A×Rd
⋃
Rd× ∂A and K(x, x) =

K̃(x, x) = 0 for all x ∈ ∂A since K and K̃ are continuous.

Proof. Since K and K̃ are continuous then their n-th order intensity functions are
also continuous and are thus equal everywhere. In particular, for any finite set D,
the matrices (K(x, y))x,y∈D and (K̃(x, y))x,y∈D are symmetrical and have the same
principal minors. As shown in [90] using a result of [40], we get that there exists
a function s(x) taking values in {±1} such that K̃(x, y) = s(x)K(x, y)s(y) for all
x, y ∈ D. Since this is true for any finite set D, this result can directly be extended to
any countable dense subset D of Rd. Now, let A be the closure of s−1({1}), then, by
continuity of K and K̃,

K̃(x, y) =
{
K(x, y) if (x, y) ∈ A2⋃(Ac)2

−K(x, y) if (x, y) ∈ A×Ac
⋃
Ac ×A.

Corollary 4.C.2. Any DPP distribution on Rd with positive first order intensity func-
tion admits at most one continuous kernel generating it.

Proof. By proposition 4.C.1, for any pair of continuous kernel K, K̃ generating the
same DPP distribution there exists a closed set A such that K(x, y) = K̃(x, y) if x and
y are both in A or its complementary and K(x, x) = K̃(x, x) = 0 on the boundary of
A. But, since K(x, x) > 0 everywhere then ∂A = ∅ and K = K̃ everywhere.
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4.D Examples of DPP families satisfying (F3) or (F3’)
We illustrate the use of Lemmas 4.3.2, 4.3.3 and 4.3.5 through two examples which
correspond to the kernel families used in our simulation study.

(i) As a first example, we consider the stationary Gaussian kernel on Rd

K(u, v) = ρ exp(−‖v − u‖2/α2)

with parameters θ = (ρ, α) where 0 < ρ 6 (
√
πα)−d in which case the test

function considered in Lemma 4.3.2 (which is also the one used in our simulation
study) writes

f(u, v; θ) = ω

(
εg(0, 0; θ)
g(u, v; θ)

) ∇θρ(2)(u, v; θ)
ρ(2)(u, v; θ)

= ω
(
ε exp(2‖v − u‖2/α2)

)( 2
ρ

−4‖v−u‖2 exp(−2‖v−u‖2/α2)
α3(1−exp(−2‖v−u‖2/α2))

)
.

Since u 7→ f(0, u; θ) has bounded support and lim‖v−u‖→0 f(u, v; θ) =
(

2/ρ
−2/α

)
then u 7→ f(0, u; θ) is integrable for any θ.
Moreover, since one entry of the vectors ∇θρ(2)(u, v; θ)/ρ(2)(u, v; θ) is constant
and the other one is not, then

span{∇θρ(2)(0, u; θ), ‖u‖2 6 −α2 log(ε)/2} = R2

for all θ. This proves that the assumptions of Lemma 3.2 are satisfied, which
in turn implies (F3). Similarly, if we consider the two-step estimation with the
same kernels and the same f , then the same reasoning shows that we can apply
Lemma 3.5 and get that (F3’) is satisfied in that case. All classical families of
stationary DPP kernels can be treated in a similar way.

(ii) As a second example, we consider the non stationary DPP on R2 used in our
simulation study, with kernel

K(u, v) =
√
ρ(u)ρ(v)J1(2‖v − u‖/α)

‖v − u‖/α

where we assume that ρ is bounded and satisfies ρ(u) > C for some constant
C > 0 and all u ∈ Rd and where the parameter is α where 0 < α 6 (π‖ρ‖∞)−1/2.
Using a second order estimating function with the same f as before, we get that
the function h in Lemma 3.3 writes

h(u, v) = w

(
ε

( ‖v − u‖/α∗

J1(2‖v − u‖/α∗)

)2)

×
√
ρ(u)ρ(v) 16

(α∗)2

(
J2(2‖v−u‖/α∗)J1(2‖v−u‖/α∗)

‖v−u‖/α∗
)2

1−
(
J1(2‖v−u‖/α∗)
‖v−u‖/α∗

)2

whereby

∣∣∣∣∫
Rd
h(u, v)dv

∣∣∣∣ 6 16‖ρ‖∞
(α∗)2

∫
Rd

(
J2(2‖t‖/α∗)J1(2‖t‖/α∗)

‖t‖/α∗
)2

1−
(
J1(2‖t‖/α∗)
‖t‖/α∗

)2 1{
√
ε‖t‖/α∗6J1(2‖t‖/α∗)}dt.
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ρ α R = 0.05 R = 0.1 R = 0.25 Adaptive
50 0.02 0.75 0.72 0.72 0.72

0.04 0.97 0.85 0.80 0.85
0.07 0.92 1.00 0.99 0.98

100 0.01 0.66 0.69 0.72 0.64
0.03 0.99 0.96 0.89 0.93
0.05 1.00 1.00 1.00 1.00

1000 0.005 1.00 0.95 0.95 0.95
0.01 1.00 1.00 1.00 1.00

0.015 1.00 1.00 1.00 1.00
Inhom 0.005 0.93 0.92 0.95 0.93

0.01 0.98 0.98 0.98 0.96
0.015 1.00 1.00 1.00 1.00

Table 2: Percentage of times the estimation methods have converged for the models
and estimators considered in Section 4.4.

The expression inside the integral is a O(‖t‖2) when ‖t‖ → 0 (it can be shown by
a Taylor expansion) and equal to 0 outside a compact set, hence

sup
u

∣∣∣∣∫
Rd
h(u, v)dv

∣∣∣∣ <∞.
Moreover,

∇αρ(2)(u, v;α∗) 6 −4C
α∗

J2(2‖v − u‖/α∗)J1(2‖v − u‖/α∗)
‖v − u‖/α∗

which is negative when ‖v− u‖ is greater than 0 but lower than α∗j1/2 where j1
denotes the first zero of J1. Therefore, we can always choose constants ε1, ε2, δ
such that |∇αρ(2)(u, v;α∗)| > δ and ε‖v − u‖/α∗ 6 J1(2‖v − u‖/α∗) for all u, v
such that ε1 > ‖v − u‖ > ε2. This shows that the assumptions of Lemma 3.3 are
satisfied which implies (F3).

4.E Supplementary tables for Section 4.4.1
For the simulation study carried out in Section 4.4, considering estimation for a DPP
model with a Bessel-type kernel, we report in Figure 5 the boxplots representing the
distribution of the estimators and in Table 2 the percentages of times each estimation
method has converged in our simulation study. These percentages are similar for all
estimation methods. Table 3 displays the root mean square errors of the estimators
considered in Section 4.1 where, for comparison, we also include results for the adaptive
estimator using ε = 0.05. Conclusions based on these tables are given in Section 4.4.

Two-step versus simultaneous
Referring to Section 4.4.2, Figure 6 shows how irregular the contrast function e(ψ) for
the simultaneous approach can be in comparison with the contrast function e2(ψ) for
the two-step approach. The underlying point pattern is displayed on the left. This is
a realisation on the unit square of a homogeneous DPP with a Gaussian kernel, with
intensity ρ = 1000 and range α = 0.01.



4.E. SUPPLEMENTARY TABLES FOR SECTION 4.4.1 81

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●●●●

●●
●●

●

●

●●

●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●
●
●●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

−
0.

02
−

0.
01

0.
00

0.
01

0.
02

0.
03

●
●

●

●

●●
●●●

●
●
●
●●

●
●

●

●

●

●
●
●

●
●
●●●
●
●

●

●

●●
●
●

●
●

●

●

●●●

●

●

●

●

●
●
●

●●

●

●

●●●

●

●●●
●

●

●

●

●

●
●

●

●

●

●●
●
●

●
●

−
0.

02
0.

00
0.

02
0.

04
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●
●

−
0.

05
−

0.
04

−
0.

03
−

0.
02

−
0.

01
0.

00
0.

01

ρ = 50, α = 0.02 ρ = 50, α = 0.04 ρ = 50, α = 0.07

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●
●
●

●

●

●

●

●●

●
●

●

●

●

●

●
●●

●

●

●
●

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

0.
01

0
0.

01
5

●

●

●

●

●
●

●

●

●
●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

−
0.

02
−

0.
01

0.
00

0.
01

0.
02

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

−
0.

02
0

−
0.

01
5

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

0.
01

0

ρ = 100, α = 0.01 ρ = 100, α = 0.03 ρ = 100, α = 0.05
●
●

●
●
●

●

●

●

●

●●

●

●
●●

●

●

●

●●

●

●

●

●

−
0.

00
2

−
0.

00
1

0.
00

0
0.

00
1

0.
00

2

●

●

●

●●
●
●
●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●●

●

●

●

●

●●

●●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●
●

●
●

●
●●
●

●●
●

●

●

●

●

●●

●

●

●●

●●●

●

●

●

●
●●

−
0.

00
15

−
0.

00
05

0.
00

05
0.

00
10

0.
00

15
0.

00
20

●

●

●
●●●

● ●

●●●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

−
0.

00
20

−
0.

00
10

0.
00

00
0.

00
05

0.
00

10

ρ = 1000, α = 0.005 ρ = 1000, α = 0.01 ρ = 1000, α = 0.015
●

●
●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●●
●

●

●

●

●

●

●

−
0.

00
4

−
0.

00
2

0.
00

0
0.

00
2

0.
00

4
0.

00
6

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

−
0.

00
4

−
0.

00
2

0.
00

0
0.

00
2

0.
00

4

●●
●●●

●

●●
●
●●

●●
● ●

●
●

●

●
●●

−
0.

00
4

−
0.

00
2

0.
00

0
0.

00
2

ρ = ρ(u), α = 0.005 ρ = ρ(u), α = 0.01 ρ = ρ(u), α = 0.015

Figure 5: Distribution of α̂−α for a Bessel-type DPP on [0, 1]2 for different values of ρ and α.
In each subfigure, the 3 first estimators on the left use the test function (4.2.3) with R = 0.05,
R = 0.1 and R = 0.25 respectively, while the last estimator is the adaptive version based on
(4.2.4).
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ρ α R = 0.05 R = 0.1 R = 0.25 ε = 0.01 ε = 0.05
50 0.02 5.49 5.45 5.95 5.53 7.13

0.04 14.92 8.81 8.79 8.87 8.71
0.07 13.08 8.10 8.07 8.04 8.82

100 0.01 2.30 2.27 2.45 2.49 2.77
0.03 5.05 4.99 5.16 5.10 5.27
0.05 5.75 4.40 4.47 4.50 5.10

1000 0.005 0.68 0.87 0.83 0.73 0.73
0.01 0.57 0.59 0.61 0.56 0.59

0.015 0.47 0.46 0.52 0.47 0.51
Inhom 0.005 1.58 1.65 1.66 1.61 1.57

0.01 1.34 1.36 1.36 1.32 1.37
0.015 1.43 1.47 1.48 1.40 1.46

Table 3: RMSE (×103) for the same simulations as in Table 1, with the addition
of the adaptive estimator using ε = 0.05. These quantities are computed from 1000
simulations where all five estimation methods have converged (explaining the differences
with Table 1).
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Figure 6: Realization of a DPP (left) and plots of the contrast function e(ψ) (see
(4.4.4)) of the simultaneous procedure (middle) and of the contrast function e2(ψ) (see
(4.4.3)) of the two-step procedure (right) obtained for the data in the left plot.

Figure 7 reports the distributions of estimates of ρ over 1000 realisations on the
unit square of a DPP with a Bessel-type kernel with ρ = 1000 and α = 0.01. The
two first estimators come from the simultaneous approach, see equation (4.4.5) where
ψ̂ = α̂ in this setting. For the first one, the numerical solution of e(α) = 0 to get α̂ was
initialized at the true value 0.01 of α. For the second one, α̂ was fixed to the true value,
i.e. α̂ = 0.01. The last estimator on the right of Figure 7 is simply ρ̂ = N(X∩W )/|W |,
corresponding to the first step of the two-step procedure. The respective root mean
square errors are 33.6, 31.4 and 26.

Some simulations for the Thomas model

The adaptive estimating function is also useful for clustered point processes. Here we
consider a Thomas model on [0, 1]2, with parent intensity κ = 100, offspring intensity
µ = 10 and various values of the dispersal kernel standard deviation σ. The same
three estimation methods as in Section 4.4 have been evaluated, where for the adaptive
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Figure 7: Distribution of estimates of ρ obtained from 1000 realisations of the Bessel-
type DPP onW = [0, 1]2 with ρ = 1000 and α = 0.01. Left: the simultaneous estimator
as given in equation (4.4.5) with initial value for the numerical solution given by the
true value 0.01 of α. Middle: as left but using the true value of α instead of α̂. Right:
ρ̂ = N(X ∩W )/|W | corresponding to the first step of a two-step procedure.
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σ R = 0.05 R = 0.1 R = 0.25 ε = 0.01 ε = 0.05 K clik Palm
0.02 κ̂ 17 21 21 21 20 23 28 21

(0.40) (0.48) (0.47) (0.48) (0.47) (0.54) (0.70) (0.49)
σ̂ 1.04 1.84 1.94 1.79 1.51 2.60 1.54 1.92

(0.02) (0.06) (0.08) (0.07) (0.04) (0.09) (0.03) (0.09)
0.035 κ̂ 35 31 40 38 35 33 121 35

(0.79) (0.75) (0.95) (0.89) (0.85) (0.81) (4.20) (0.90)
σ̂ 4.80 5.54 7.92 6.24 4.59 5.76 8.04 5.50

(0.09) (0.14) (0.32) (0.21) (0.10) (0.14) (0.07) (0.12)
0.05 κ̂ 54 49 53 47 53 35 554 39

(1.24) (0.92) (2.05) (1.74) (1.89) (1.55) (13.64) (1.02)
σ̂ 18.30 36.47 12.17 11.22 8.94 8.12 23.69 19.47

(1.28) (1.47) (0.41) (0.53) (0.61) (0.25) (0.13) (0.74)

Table 4: For the Thomas model, estimated root mean square errors of various estimators of κ
and σ (×103). The 3 first estimators use the test function (4.2.3) with R = 0.05, R = 0.1 and
R = 0.25 respectively; the fourth and fifth estimators are the adaptive version based on (4.2.4)
where ε = 0.01 and ε = 0.05; the three last estimators are from the library spatstat: based
on K, on Guan’s composite likelihood (clik) and on Palm likelihood - all with default settings.
The standard errors of the MSE estimations are given in parenthesis.

version both ε = 0.01 and ε = 0.05 have been considered. A point pattern sample and
the distribution of the estimators of κ and σ based on 1000 replications are shown in
Figure 4.E for σ = 0.02, σ = 0.035 and σ = 0.05 respectively. Estimators of the library
spatstat [7] of R [87] with default settings have also been added. These are: minimum
contrast estimation based on the K-function, Guan’s composite likelihood, and Palm
likelihood, see also Section 4.2.3. Table 4 summaries the estimated root mean square
errors for each estimation method.

Also for the Thomas process, the adaptive method, both with ε = 0.01 and ε = 0.05,
performs well compared with the three fixed R estimators. In fact for σ = 0.05, the
adaptive versions are better than any of the fixed R estimators. The adaptive method
also has good stable performance compared with the three spatstat methods. In par-
ticular, the adaptive method performs much better than Guan’s composite likelihood
with default settings.
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Figure 8: First row: Examples of point patterns simulated from a Thomas model on [0, 1]2

for κ = 100, µ = 10 and from left to right σ = 0.02, 0.035, 0.05. Second row: Distribution of
estimates of κ based on 1000 replications. In each plot, the 3 first boxplots are for estimates
obtained with the test function (4.2.3) with R = 0.05, R = 0.1 and R = 0.25 respectively; the
fourth and fifth boxplots (in grey) are for the adaptive version based on (4.2.4) where ε = 0.01
(left) and ε = 0.05 (right); the three last boxplots are for methods from spatstat: based on K
(red), on Guan’s composite likelihood (green) and on Palm likelihood (blue) - all with default
settings. Third row: Distribution of estimates of σ based on 1000 replications, using the same
estimation methods.
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Chapter 5

Consistency and approximation
of the likelihood of stationary
continuous determinantal point
processes

5.1 Introduction

Expressions of the densities of determinantal point processes are known since they were
first described as a model of fermion systems in [75]. For DPPs defined on finite spaces,
the expression of its likelihood can be easily computed and its asymptotic properties in
an iid setting have been well studied [24]. On the opposite, the likelihood expression of
continuous DPPs is hardly tractable. Computing the likelihood requires the knowledge
of a function that can only be obtained by solving an integral equation or by knowing
the spectral representation of any projection of the locally trace class operator defined
from the DPP kernel. Both methods are not feasible in practice. Moreover, part of the
likelihood writes as the log-determinant of a random kernel matrix whose behavior is
difficult to control. However, some results on the maximum likelihood estimator (MLE)
of continuous DPPs are known in the iid setting [10], but because of the aforementioned
difficulties no asymptotic result is known in the case of increasing domain asymptotic
inference of continuous DPPs.

In the stationary case, one alternative solution to compute the likelihood proposed
in [69] is to consider a Fourier series approximation of the DPP kernel on rectangular
observation windows. Since the spectral decomposition of a Fourier series is explicit,
the associated likelihood can then be computed. Another alternative solution given in
[12] is to use a Markov chain Monte Carlo inference method based on bounds on the
likelihood that does not depend on the spectral decomposition of its kernel. Neither of
these two contributions studies the consistency of their approach.

In this chapter, we give an asymptotic approximation of the DPP likelihood as well
as a way to correct the edge effects arising as a consequence of this approximation and
we show that it improves upon [69]. We also prove that the MLE is consistent for any
DPP defined on a small enough regular grid of Rd as an approximation of the actual
DPP.

The remainder of the chapter is as follows. In Section 5.2, we recall the form of the
likelihood of DPPs and we suggest an asymptotic approximation of this likelihood as
well as an edge correction method. In Section 5.3, we use various simulations of DPPs
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to compare our approximate MLE to common minimum contrast inference method.
Section 5.4 contains the proof of the MLE consistency. Finally, the appendix 5.A
contains some technical results needed in Section 5.4.

5.2 Likelihood of DPPs

5.2.1 Likelihood expression

Let X be a DPP on (Rd, µ) with kernel Kθ∗ and associated integral operator Kθ∗ . Here,
µ will either be the Lebesgue measure on Rd or the counting measure on a regular grid
of Rd and Kθ∗ belongs to a parametric family {Kθ, θ ∈ Θ} where Θ is a compact subset
of Rp for some integer p > 1. We consider an increasing domain asymptotic framework,
meaning that we want to estimate θ∗ from a unique observation of X∩Wn whereWn is
an increasing sequence of subsets of Rd and we write N(Wn) for the number of points
of X ∩Wn. Moreover, for all finite sets X ⊂ Rd and functions F : (Rd)2 → R, we write
F [X] for the matrix (F (x, y))x,y∈X . If F (x, y) only depends on y − x then we write
F (x, y) = F0(y − x). Similarly, if F (x, y) only depends on ‖y − x‖ then we also write
F (x, y) = F0(‖y−x‖) by an abuse of notation. When the kernel of a DPP satisfies the
former property then the DPP is stationary and when it satisfies the latter, the DPP
is isotropic. We also denote by F̂0 the Fourier transform of F0 on (Rd, µ) defined by

F̂0(x) :=
∫
Rd
F0(t) exp(−2iπt · x)dµ(t).

Finally, for all finite hermitian matrices M we write λmin(M) (resp. λmax(M)) for the
lowest (resp. highest) eigenvalue of M . If M has a countable number of rows and
columns then by an abuse of notation we denote by λmin(M) (resp. λmax(M)) the
infimum (resp. supremum) of the eigenvalues of M .

We recall that for all compact sets W , the projection KW of a DPP kernel K on
L2(W,µ) is a compact operator whose kernel can be written by Mercer’s theorem as

KW (x, y) =
∑
i

λWi φ
W
i (x)φ̄Wi (y)

where the λWi are the eigenvalues of KW and the φWi are the corresponding family of
orthonormal eigenfunctions (see [61] for more details). When ‖K‖ < 1, we define the
operator L = K(I − K)−1 with kernel L and for all compact sets W we define the
operator LW = KW (IW −KW )−1 with kernel

LW (x, y) :=
∑
i

λWi
1− λWi

φWi (x)φ̄Wi (y). (5.2.1)

Note that, unlike with K, the kernel LW is different from the restriction of L to
L2(W,µ). Nevertheless, if we consider a sequence Wn of increasing subsets of Rd such
that

⋃
nWn = Rd then LWn(x, y) converges to L(x, y) for all x, y ∈ Rd. Therefore, we

later show that we can consider L(x, y) as an approximation of LW (x, y) when x, y ∈W .
Another difference between LW and L is that, when X is a stationary (resp. isotropic)
DPP, L(x, y) only depends on y−x (resp. ‖y−x‖) but this is not true for LW . Finally,
we write I for the identity operator on L2(Rd, µ) and IW for its restriction on L2(W,µ)
and we recall that the expression of the likelihood of DPPs results from the following
property:
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Theorem 5.2.1 ([75, 97]). Let X be a DPP on a compact set W with eigenvalues in
[0, 1[, then X is absolutely continuous with respect to the homogeneous Poisson point
process with intensity 1, and has density

f(x) = exp(µ(W )) det(IW −KW ) det(LW [x])

for all x ∈ ∪n(Rd)n.
In the above expression, the first determinant corresponds to the Fredholm determi-

nant of the operator IW−KW which is equal to
∏
i(1−λWi ) while the second determinant

is the matrix determinant of (LW (xi, xj))i,j . The (normalized) log-likelihood of X∩Wn

is therefore:

ln(θ|X) = 1 + 1
µ(Wn)

(
logdet(IWn −KθWn

) + logdet(LθWn
[X ∩Wn])

)
(5.2.2)

and a maximum likelihood estimate is

θ̂n ∈ {arg max
θ∈Θ

ln(X|θ)}.

5.2.2 Approximation of the likelihood for stationary DPPs

As can be seen in the expression of (5.2.2), computing the log-likelihood of a family
of DPPs requires knowing the spectral decomposition of KθWn

for all n, θ to get the
expression of LθWn

by (5.2.1). This is possible in the case of discrete DPPs whose
kernels are finite matrices, but the spectral decomposition is usually not known for
continuous DPPs. This motivates the idea in [69] to approximate stationary kernels by
a truncated Fourier series on rectangular windows. For example, if W = [−1/2, 1/2]d
then the approximation writes

Kθ(x, y) ≈
∑
k∈Zd
‖k‖<N

cke
i2πk·(y−x), where ck =

∫
W
Kθ

0(t)e−i2πk·tdµ(t)

for some truncation constant N . Since the eigenvalues and eigenvectors of this kernel
approximation are explicitly known, then the log-likelihood can be computed.

Our approximation is based on a different expression of (5.2.2) in terms of the con-
volution products of the function (x, y) 7→ 1Wn(x)Kθ(x, y)1Wn(y) through the following
two identities (see [94] for example):

logdet(IWn −KθWn
) = −

∞∑
k=1

1
k

∫
Wk
n

Kθ(x1, x2) · · ·Kθ(xk−1, xk)Kθ(xk, x1)dµk(x)

(5.2.3)
and for all x, y ∈Wn

LθWn
(x, y) = Kθ(x, y) +

∞∑
k=1

∫
Wk
n

Kθ(x, z1)Kθ(z1, z2) · · ·Kθ(zk−1, zk)Kθ(zk, y)dµk(z).

(5.2.4)
These convolution products are not known either in the general case, but for sta-

tionary DPPs satisfying ‖Kθ‖ < 1 then L̂θ0 = K̂θ
0/(1− K̂θ

0) as a consequence of (5.2.4)
and an asymptotic approximation (see Proposition 5.2.2) gives

LθWn
(x, y) ≈ Lθ0(y − x) =

∫
Rd

K̂θ
0(t)

1− K̂θ
0(t)

exp(2iπt · (y − x))dµ(t),

1
µ(Wn) logdet(IWn −KθWn

) ≈
∫
Rd

log(1− K̂θ
0(x))dµ(x).
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This motivates the use of the following approximation for the log-likelihood:

l̃n(θ|X) := 1 +
∫
Rd

log(1− K̂θ
0(x))dµ(x) + 1

µ(Wn) logdet(L
θ
0[X ∩Wn]), (5.2.5)

and this approximation can be computed from K̂θ
0 which is known for all classical

family of stationary DPPs built from covariance functions [69]. Moreover, we introduce
in Section 5.2.4 a correction to l̃n(θ|X) that fixes the edge effects introduced by the
asymptotic approximation.

In some cases, an analytic expression for Lθ0 is also known making its computation
easier. For example, Gaussian-type kernels of the form

K(x, y) = ρ exp
(
−‖y − x‖

2

α2

)
, 0 < ρ 6 (

√
πα)−d

satisfy

L(x, y) =
∑
n>1

ρn
(
√
πα)d(n−1)

nd/2
exp

(
−‖y − x‖

2

nα2

)
.

Moreover, the most repulsive (see [15]) Bessel-type kernels have the form

K(x, y) = ρ2d/2Γ(d/2 + 1)
Jd/2(

√
2d‖y − x‖/α)

(
√

2d‖y − x‖/α)d/2
, 0 < ρ 6

dd/2

(2π)d/2αdΓ(d/2 + 1)
,

where J denotes the Bessel function of the first kind, and satisfy

L(x, y) = ρ2d/2Γ(d/2 + 1)
1− ρ (2π)d/2αdΓ(d/2+1)

dd/2

Jd/2(
√

2d‖y − x‖/α)
(
√

2d‖y − x‖/α)d/2
.

Finally, when d = 1, Whittle-Matérn-type kernels of the form

K(x, y) = ρ exp
(
−|y − x|

α

)
, 0 < ρ 6

1
2α

satisfy

L(x, y) = ρ√
1− 2ρα exp

(
−
√

1− 2ρα
α

|y − x|
)
.

All these expression are easily obtained from the fact that L̂0 = K̂0/(1 − K̂0) =∑
n>1(K̂0)n.

5.2.3 Consistency of the MLE

The deterministic part of the log-likelihood (5.2.2) has a straightforward asymptotic:

Proposition 5.2.2. Let X be a stationary DPP on (Rd, µ) with kernel K with eigen-
values in [0, 1[ and let Wn be an increasing sequence of compact subsets of Rd such that⋃
n>0Wn = Rd, then

1
µ(Wn) logdet(IWn −KWn) −→

n→+∞

∫
Rd

log(1− K̂0(x))dµ(x).



5.2. LIKELIHOOD OF DPPS 91

The stochastic part of the log-likelihood (5.2.2) is a random kernel matrix whose
behavior is more difficult to control. The main issue is that det(LθWn

[X]) vanishes
when two points of X gets arbitrary close to each other but no relationship between
how close some points of X are from each other and the value of the determinant is
known, making the likelihood difficult to control. To the author’s knowledge, the only
related result is that, in most cases, the lowest eigenvalue of LθWn

[X] is non zero iff
infx,y∈X ‖y−x‖ > 0 (see [4]). This motivates the idea to only consider approximations
of DPPs on (εZ)d, ε > 0, an arbitrary small regular grid of Rd, with kernels εdK[(εZ)d].
These DPPs approximate continuous DPPs and since all points are at a distance at
least ε from each other then we can bound the logarithm of both the highest and
lowest eigenvalue of the stochastic part of the likelihood for all point configurations X
of (εZ)d, a property that is essential for most of our results. This approximation on a
small regular grid is the main limitation of our contribution. Other weaker assumptions
on the DPP kernels that we consider are:

Condition H: {Kθ, θ ∈ Θ} is a compact family of non-negative stationary kernels on
(Rd, µ) such that K̂θ

0(x) exists and is positive for all x ∈ Rd and θ ∈ Θ and satisfy

sup
θ∈Θ
‖K̂θ

0‖∞ < 1.

Moreover, there exists constants C,C ′, α, α′ > 0 such that for all x ∈ Rd and θ ∈ Θ

|Kθ
0(x)| 6 C

1 + ‖x‖α+d ,
∣∣∣∇xKθ

0(x)
∣∣∣ 6 C ′

1 + ‖x‖α′+d . (5.2.6)

Finally, for all x ∈ Rd, θ 7→ Kθ
0(x) and θ 7→ Lθ0(x) are continuous on Θ.

Most of these assumptions are not too restrictive. The continuity assumptions for
θ 7→ Kθ

0 and θ 7→ Lθ0 and positiveness of K̂θ
0 are satisfied by most translation-invariant

kernel families defined from covariance function that are used in spatial statistics (see
[15, 69] for more details) such as Gaussian, Laguerre-Gaussian, Whittle-Matérn, Cauchy
or Bessel-type kernels, the exception being the most repulsive [15] Bessel-type kernel
whose Fourier transform is an indicator function. The rate of decay (5.2.6) needed
for K0 and ∇xK0 is a little bit more restrictive. All previously mentioned kernel
families satisfy this condition to the exception of Bessel-type kernels whose associated
covariance function is not integrable, excluding some of the most repulsive kernels. The
assumption of non-negativity seems unnecessarily restrictive. It is only used in Lemma
5.A.5 to transfer properties of the continuous DPPs to their discrete approximation
and not in the proof of consistency of the MLE itself. This is why we think it is not a
necessary assumption. This point is still under investigation.

Similarly, some weak assumptions are also needed on the sequence of observation
windows (Wn)n∈N:

Condition W: Wn is an increasing sequence of compact subsets of Rd such that⋃
n>0Wn = Rd and there exists an increasing sequence rn → +∞ such that

µ((∂Wn ⊕ rn) ∩Wn) = o(µ(Wn)). (5.2.7)

Moreover, ∑
n>0

exp(−δµ(Wn)) < +∞ (5.2.8)

for all δ > 0.
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Note that condition (5.2.7) is not really restrictive and is satisfied when the bound-
ary of Wn is not too irregular. For example, if µ is the Lebesgue measure on Rd,
(Wn)n>0 is a sequence of increasing convex sets with inradius Rn → +∞, then con-
dition (5.2.7) is always satisfied by taking rn =

√
Rn. Similarly, condition (5.2.8) is

also unrestrictive and will be satisfied, for example, if there exists C,α > 0 such that
µ(Wn) > Cnα.

Under these assumptions, we first have the following approximation of the stochastic
part of the log-likelihood.

Proposition 5.2.3. Let {Kθ, θ ∈ Θ} be a family of DPP kernels satisfying condition
(H), (Wn)n∈N be an increasing sequence of subsets of Rd satisfying condition (W) and
let X be the realization of a DPP on (εZ)d with kernel Kθ∗

ε,Wn
:= εdKθ∗

Wn
. Then, for all

θ ∈ Θ and small enough ε > 0,

Eθ∗
[ 1
µ(Wn)

∣∣logdet(Lθε[X ∩Wn])− logdet(Lθε,Wn
[X ∩Wn])

∣∣] −→
n→+∞

0

Furthermore, we also get that the MLE of any DDP restricted to a small enough
regular grid of Rd is consistent

Theorem 5.2.4. Let {Kθ, θ ∈ Θ} be a family of DPP kernels satisfying condition (H)
and (Wn)n∈N be an increasing sequence of subsets of Rd satisfying condition (W). Let
θ̂ε,n be the MLE associated to an observation of a DPP Xε on (εZ)d with kernel εdKθ∗

Wn

where θ∗ ∈ Θ, then the function

lε : θ 7→ lim
n→∞

ln(θ|Xε ∩Wn)

is well-defined on Θ almost surely for any small enough ε. Assuming that this function
admits a unique maximum then

θ̂ε,n
a.s.−→ θ∗

for any small enough ε.

Note that the assumption that the function lε admits a unique maximum is likely
superfluous but we were unable to prove it.

5.2.4 Correcting edge effects

The main issue of the asymptotic approximation of the likelihood is that it ignores edge
effects. As shown in Section 5.3, this does not affect DPPs with low repulsion since
their edge effects are minimal but has a more prominent impact in the inference of
more repulsive DPPs. One way to correct this issue for isotropic DPPs (i.e. K(x, y) =
K0(‖y − x‖)) and rectangular windows (i.e. W = [a1, b1]× · · · × [ad, bd]) is to consider
the observation window as the flat torus TW := R\(b1−a1)Z×· · ·×R\(bd−ad)Z. This
way, points close to the border of the window are brought close to each other in order
to compensate edge effects.

More precisely, we replace all instances of Lθ0(‖y − x‖) in the determinant in the
stochastic part of (5.2.5) by Lθ0(‖y − x‖TW ) where ‖.‖TW is the flat torus metric on
TW . This is equivalent to replacing Lθ0 by a periodic version of itself on the observation
window. The approximate likelihood then writes

l̃ T
n (θ|X) = 1+

∫
Rd

log(1−K̂0(x))dµ(x)+ 1
µ(Wn) logdet

((
Lθ0(‖y−x‖TWn )

)
x,y∈Wn

)
(5.2.9)
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Note that, since we consider a periodic version of Lθ0 on the observation window
then it can be approximated by its Fourier series which was the idea first described in
[69]. This is why both (5.2.9) and the approximate likelihood used in [69] are nearly
equal (see figure 9) but approximating LWn directly by L0 instead of a truncation of
its Fourier series leads to a smoother likelihood and overall slightly better results, as
well as a more computationally efficient method when an analytic expression of Lθ is
known.

Figure 9: Comparison between two different approximations of α 7→ l(ρ∗, α|X) where
X is simulated from a DPP with Gaussian-type kernel (5.3.1) with true parameters
ρ∗ = 100 and α∗ = 0.05 in [0, 1]2. The solid line is obtained when LWn is approximated
by its Fourier series with the truncation described in [69, Section 5.1] while the dashed
line is obtained when LWn is approximated by L0 with the correction described in
Section 5.2.4.

5.2.5 Estimation of the intensity by MLE

In this section, we assume that we estimate parameters of homogeneous DPP kernels
of the form

Kρ,θ(x, y) = ρK̃θ(x, y) (5.2.10)

such that K̃θ(x, x) = 1 for all x. The parameter ρ corresponds here to the intensity of
the DPP. When jointly estimating (ρ, θ) by the approximate MLE, simulations usually
show that the estimate of ρ appears to be very close to N(Wn)/µ(Wn). One explanation
given in [69] is that, by doing a first order convolution approximation in (5.2.3) and
(5.2.4), we get

ln(X ∩Wn) ≈ 1− nρ+ log(ρ)N(Wn)
µ(Wn) + logdet(K̃θ

Wn
[X ∩Wn])

and the maximum point of this approximation is ρ̂ = N(X ∩Wn)/µ(Wn). We even
show in Proposition 5.A.6 that, in the case of Bessel type DPP kernels with parameters
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(ρ, α), ρ̂ = N(X ∩ Wn)/µ(Wn) is always the maximum point of ρ 7→ l̃n(X|ρ, α) for
any α. This result suggests that, instead of jointly estimating ρ and θ, it is more
computationally efficient to directly estimate ρ by ρ̂ = N(X ∩Wn)/µ(Wn) and then θ
by an argument of the maximum of θ 7→ l̃n(X|ρ̂, θ).

5.3 Simulation study
In this section we perform a simulation study to investigate the performance of our
approximate MLE, with and without edge effect correction, and compare it to minimum
contrast estimators based on Ripley’s K function or on the pair correlation function.

5.3.1 Performance of the approximate MLE for Gaussian-type DPPs

We consider a Gaussian family of DPP kernels in R2

Kρ,α(x, y) = ρ exp
(
−‖y − x‖

2

α2

)
(5.3.1)

where πρα2 6 1. Here, the parameter ρ controls the number of points of the point
process while α controls its repulsiveness. The bound on πρα2 is a consequence of
the eigenvalues of K being in [0, 1], it can be interpreted as a trade-off between the
repulsiveness of the DPP and how dense it is. It is easy to see that the exponential
decay of Kρ,α

0 makes this family satisfy Condition (H) when πρα2 is bounded by a
constant strictly lower than 1. Moreover, since this family satisfy (5.2.10) then, as
explained in Section 5.2.5, we will not jointly estimate (ρ, α) directly by MLE but we
estimate ρ by ρ̂ = N(X ∩ Wn)/µ(Wn) and α by the argument of the maximum of
α 7→ l̃n(X|ρ̂, α).

Figure 10: Examples of realization of a Gaussian-type DPP on [0, 1]2 with parameters
ρ∗ = 100 and α∗ ∈ {0.01, 0.03, 0.05}

We consider realizations of a DPP with Gaussian kernel where ρ∗ = 100, α∗ ∈
{0.01, 0.03, 0.05} and the observation window is either [0, 1]2, [0, 2]2 or [0, 3]2. When
ρ∗ = 100, α takes values in ]0, (10

√
π)−1 ≈ 0.056[. Therefore, α∗ = 0.01 corresponds

to a weakly repulsive Gaussian DPP, close to a Poisson point process, while α∗ =
0.03 corresponds to a mildly repulsive DPP and α∗ = 0.05 corresponds to a strongly
repulsive DPP. Examples of such realizations are shown in Figure 10. We estimate
α∗ by the approximate MLE defined in (5.2.5) and compare it to its edge-corrected
version defined in (5.2.9) as well as minimum contrast estimators (MCE) based on the
pair correlation function (pcf) or Ripley’s K function (see [16]), both being common
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second-order moment estimators used in spatial statistics. All simulations of the DPP
have been done in R [87] using the spatstat [7] package and both moment estimators
were computed by the function dppm of the same package.

Boxplots of the difference between the estimators α̂ and the true value α∗ for 500
simulations in the nine different cases are displayed in Figure 11 and corresponding
mean square errors are displayed in Table 5.

Figure 11: Boxplots of α̂−α∗ generated from 500 simulations of Gaussian-type DPPs
(5.3.1) on windows W = [0, 1]2, [0, 2]2 or [0, 3]2 with true parameters ρ∗ = 100 and
α∗ = 0.01, 0.03 or 0.05. The first two estimators are the approximate MLE from
l̃ T
n (X|ρ̂, α) and l̃n(X|ρ̂, α), while the last two are MCE based on the pair correlation
function and Ripley’s K function.

Note that, when α∗ = 0.01 and α∗ = 0.03, inference based on the approximate
likelihood l̃n(X|ρ̂, α) outperforms moment based inference for windows bigger than
[0, 2]2. These results are expected from maximum likelihood based inference and shows
that hundreds of points are enough for l̃n(X|ρ̂, α) to be a good enough approximation
of the true likelihood when the underlying DPP is not too repulsive. The issue lies
within the case α∗ = 0.05 where the estimation is heavily biased due to strong edge
effects making l̃n(X|ρ̂, α) not a good approximation of the true likelihood for low values
of n. As can be seen in Figure 12, l̃n(X|ρ̂, α) will usually be decreasing with respect to
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α Window MLE based on l̃ T MLE based on l̃ MCE (pcf) MCE (K)

0.01 [0, 1]2 0.83 1.25 0.86 1.81
[0, 2]2 0.21 0.24 0.31 0.74
[0, 3]2 0.090 0.095 0.17 0.48

0.03 [0, 1]2 0.81 1.75 0.77 1.17
[0, 2]2 0.18 0.23 0.27 0.46
[0, 3]2 0.079 0.10 0.17 0.23

0.05 [0, 1]2 0.41 0.54 0.74 0.51
[0, 2]2 0.088 0.28 0.23 0.21
[0, 3]2 0.051 0.20 0.19 0.12

Table 5: Estimated mean square errors (x104) of α̂ for Gaussian-type DPPs on different
windows and with different values of α, each computed from 500 simulations. The first two
columns corresponds to estimators based on the approximate MLEs (5.2.5) and (5.2.9). The
last two columns corresponds to MCE estimators based on the pcf and Ripley’s K function.

α when the underlying DPP is very repulsive and therefore it often estimates α by the
highest value the parameter can take, which is 1/

√
πρ̂, explaining its behaviour.

Figure 12: Comparison between −l̃n(X|100, α) (solid lines) and −l̃ T
n (X|100, α)

(dashed lines) with respect to α where X has been simulated from a DPP on [0, 1]2
with a Gaussian-type kernel (5.3.1) with true parameters ρ∗ = 100 and, from left to
right, α∗ = 0.01, 0.03 or 0.05.
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On the other hand, the correction introduced in (5.2.9) gives more accurate values
of the likelihood for high values of α as can be seen in Figure 12. This explains why this
estimator outperforms the others in nearly every cases and especially the most repulsive
ones. The main issue of this correction is that it is limited to rectangular windows but
these results suggest that, for a window with a different shape, using a similar idea
of replacing the euclidean distance in the expression of ln(X|θ) with a distance that
brings points on the edge closer to each other should give similar results.

Finally, the main drawback with the MLE is its heavy computation time required
due to the need to optimize a function defined as the log-determinant of an n×nmatrix,
where n is the number of points observed. For comparison, each MCE took less than
1 second on a regular computer to compute one estimator in each case considered
in Figure 11 but each computation of the approximate MLE took about a second
when W = [0, 1]2, about 20 seconds when W = [0, 2]2 and about 100 seconds when
W = [0, 3]2.

5.4 Proofs of Section 5.2
In this section, we give the proofs of the propositions stated in Section 5.2. We will use
several times these two expressions of the expectation of a functional of X:

Eθ∗ [f(X ∩W )] = det(Id−KθW )
∑
k>0

1
k!

∫
Wk

f(x) det(Lθ∗W [x])dµ(x) (5.4.1)

Eθ∗

 6=∑
x1,··· ,xk∈X∩W

f(x1, · · · , xk)

 =
∫
Wk

f(x) det(Kθ∗ [x])dµ(x) (5.4.2)

for all W compact, f :
⋃
n>0W

n → R symmetrical and integrable and where the
symbol 6= in the second expression means that the sum is over p-tuples of distinct
points of X ∩W . Here, (5.4.1) is the consequence of Theorem 5.2.1 while (5.4.2) is the
definition of the k-th order intensity function of a determinantal point process. In the
proofs of Propositions 5.2.3 and 5.2.4, as explained in Section 5.2, we work with DPPs
on ((εZ)d, µ), where µ is the counting measure on εZd and with kernels Kθ

ε (x, y) :=
εdKθ(x, y). In this case, the associated integral operator Kε is simply the infinite
matrix Kε[(εZ)d] and Lε can be simply defined as the infinite matrix Kε[(εZ)d](Id −
Kε[(εZ)d])−1 when ‖Kε‖ < 1. Finally, by Lemma 5.A.5, ε is chosen small enough such
that the DPPs are well-defined and satisfy the following assumptions

Condition Hε: {Kθ
ε , θ ∈ Θ} is a compact family of stationary kernels on ((εZ)d, µ),

where µ is the counting measure on εZd, satisfying

inf
θ∈Θ

λmin(Kθε) > 0 and sup
θ∈Θ

λmax(Kθε) < 1.

Moreover, there exists constants C,C ′, α, α′ > 0 such that for all x ∈ (εZ)d and θ ∈ Θ

|Kθ
0,ε(x)| 6 C

1 + ‖x‖α+d and |Lθ0,ε(x)| 6 C ′

1 + ‖x‖α′+d . (5.4.3)

In the proofs of Propositions 5.2.3 and 5.2.4, we mostly avoid using ε in indices as
to avoid a clutter of notations. And finally, we will consider the following constants:

λθm := λmin(Kθε), λθM := (1−λmax(Kθε))−1 and AΘ := sup
Θ

max(| log(λθm)|, | log(λθM )|).

In particular, AΘ < +∞ under condition Hε.
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5.4.1 Proof of Proposition 5.2.2

In this section, we give a proof of a stronger Proposition than 5.2.2 that will be needed
later for the proof of the consistency of θ̂:

Proposition 5.4.1. Let X be a DPP on (Rd, µ) whose kernel Kθ belong to a family
satisfying Condition (H) and let (Wn)n>0 be an increasing sequence of compact subsets
of Rd such that

⋃
n>0Wn = Rd, then

1
µ(Wn) logdet(IWn −KθWn

) −→
n→+∞

∫
Rd

log(1− K̂θ
0(x))dµ(x)

uniformly in θ and the limit is continuous with respect to θ.

Proof. Let θ ∈ Θ, since all eigenvalues of KθWn
are in [0, 1[ then we can expand the

logarithm of the Fredholm determinant into

logdet(IWn−KθWn
) =−

∑
k>1

Tr((KθWn
)k)

k
= −

∑
k>1

1
k

∫
Wk
n

Kθ(x1, x2) · · ·Kθ(xk, x1)dµk(x).

Now, we know that for any x1 ∈ Rd the function

(x2, · · · , xk) 7→ Kθ(x1, x2) · · ·Kθ(xk, x1)

is integrable and its integral is equal to (Kθ
0)∗k(0) where (Kθ

0)∗k is the k-th time self-
convolution of Kθ

0 . Moreover, since these functions are all dominated by (5.4.3) then

sup
θ∈Θ

∣∣∣∣∣ 1
µ(Wn)

∫
Wk
n

Kθ(x1, x2) · · ·Kθ(xk, x1)dµk(x)− (Kθ
0)∗k(0)

∣∣∣∣∣
6

1
µ(Wn)

∫
Wn×(Rd)k−1\(Wn)k−1

Ck

(1 + ‖x2 − x1‖d+α) · · · (1 + ‖x1 − xk‖d+α)dµ(x1) · · · dµ(xk)

which vanishes when n→ +∞ by Lemma 5.A.4. Finally, since
1

µ(Wn) |Tr((K
θ
Wn

)k)| 6 1
µ(Wn)‖K

θ‖k−1Tr(KθWn
) 6 C(sup

θ∈Θ
‖Kθ‖)k−1

which is summable with respect to k and doesn’t depend on n and θ, therefore

1
µ(Wn) logdet(IWn −KθWn

) −→
n→+∞

−
∑
k>1

(Kθ
0)∗k(0)
k

=
∫
Rd

log(1− K̂θ
0(x))dµ(x)

uniformly in θ by the dominated convergence theorem. Moreover, since θ 7→ Kθ
0(x) is

continuous for all x ∈ Rd and Tr((KθWn
)k)/k is bounded by µ(Wn)C(supΘ ‖Kθ‖)k−1/k

which is summable, then the dominated convergence theorem also gives us the conti-
nuity of θ 7→ logdet(IWn − KθWn

) for all n ∈ N hence θ 7→
∫
Rd log(1 − K̂θ

0(x))dµ(x) is
continuous as a uniform limit of continuous functions.

5.4.2 Proof of Proposition 5.2.3

By Lemma 5.A.5, we consider a DPP X on (εZ)d with kernel Kε from a parametric
family satisfying Condition (Hε) and a sequence of observation windows (Wn)n>0 satis-
fying Condition (W). In order to prove Proposition 5.2.3, we start by showing that the
stochastic part of the likelihood gets close to its expectation when n → +∞ with the
help of the concentration inequality [81] from Pemantle and Peres. One of the results
we will need is the following bound on the eigenvalues of the random matrices involved
in the likelihood:
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Lemma 5.4.2. Let X be a DPP on (εZ)d with kernel K and W ⊂ (εZ)d, then

λmin(L[X ∩W ]) > λmin(K), λmin(LW [X ∩W ]) > λmin(K)

and

λmax(L[X ∩W ]) 6 (1− λmax(K))−1, λmax(LW [X ∩W ]) 6 (1− λmax(K))−1

Proof. Since L[X ∩W ] is a sub-matrix of L[(εZ)d] := L = K(Id − K)−1 then by [60,
Theorem 4.3.28], we know that λmax(L[X ∩W ]) 6 λmax(L) 6 (1 − λmax(K))−1 and
λmin(L[X ∩W ]) > λmin(L) > λmin(K). We get the second set of inequalities with the
same reasoning applied to LW and by using the fact that λmin(KW ) > λmin(K) and
λmax(KW ) 6 λmax(K) since KW is a sub-matrix of K.

Lemma 5.4.3. Under the same assumptions as Proposition 5.2.3, for all θ ∈ Θ,

1
µ(Wn)

(
logdet(LθWn

[X ∩Wn])− Eθ∗ [logdet(LθWn
[X ∩Wn])]

) a.s.−→ 0

Proof. Let X ⊂Wn and a ∈Wn\X, then for all θ ∈ Θ,

logdet(LθWn
[X ∪{a}∩Wn])− logdet(LθWn

[X ∩Wn]) = log
(

det(LθWn
[X ∪ {a} ∩Wn])

det(LθWn
[X ∩Wn])

)
.

By Lemma 5.4.2 and [60, Theorem 4.3.28], we get

λθm 6 λmin(LθWn
[X ∪ {a} ∩Wn]) 6

det(LθWn
[X ∪ {a} ∩Wn])

det(LθWn
[X ∩Wn])
6 λmax(LθWn

[X ∪ {a} ∩Wn]) 6 λθM .

This shows that µ(Wn)−1logdet(LθWn
[.]) is a Lipschitz function on the finite point con-

figurations in Wn with constant AΘ/µ(Wn). By Theorem 3.5 of [81], we get for all
a ∈ R+

Pθ∗
( 1
µ(Wn)

∣∣logdet(LθWn
[X ∩Wn])− Eθ∗ [logdet(LθWn

[X ∩Wn])]
∣∣ > a

)
6 5 exp

(
− a2µ(Wn)2/A2

Θ
16(aµ(Wn)/AΘ + 2Eθ∗ [N(Wn)])

)
. (5.4.4)

Since Eθ∗ [N(Wn)] = Kθ∗
0 (0)µ(Wn) then the right term in (5.4.4) is O(exp(−a2µ(Wn)))

and vanishes when n goes to infinity uniformly in θ giving us the convergence in prob-
ability. Additionally, since Wn satisfies (5.2.8) then by the Borel-Cantelli Lemma the
convergence holds almost surely.

Now, it only remains to show that

1
µ(Wn)

(
logdet(Lθ[X ∩Wn])− logdet(LθWn

[X ∩Wn])
)

(5.4.5)

converges in mean towards 0 to conclude the proof of Proposition 5.2.3. This is done
by showing the existence of an operator N θ

Wn
whose trace is o(µ(Wn)) and such that

0 6 Lθ|Wn − LθWn
6 N θ

Wn
,

where Lθ|Wn is the projection of Lθ on L2(Wn).
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Lemma 5.4.4. Let X be a DPP on ((εZ)d, µ) with kernel K such that ‖K‖ < 1 and
let W be a compact of Rd. Define the operator M := (L + Id)−1 = Id − K and the
operator NW with kernel

NW (x, y) =
∫
WC

L(x, z)L(z, y)dµ(z) ∀x, y ∈W.

Finally, if we write L|W the projection of L on L2(W ) then

0 6 L|W − LW 6 NW .

Proof. We denote by P the projection on L2(W ), P⊥ the projection on L2(W c), Id
the identity operator on L2(Rd), IdW the identity operator on L2(W ) and IdWC the
identity operator on L2(WC). Since KW is by definition equal to the projection of K
on L2(W ), with these notations we can write

M =
(
IdW −KW −PKP⊥
−P⊥KP IdWC −KWC

)
=
(

(LW + IdW )−1 −PKP⊥
−P⊥KP (LWC + IdWC )−1

)

and

M−1 =
(
L|W + IdW PLP⊥
P⊥LP L|WC + IdWC

)
.

Then, using the Schur complement we get

0 6 L|W − LW = PLP⊥(L|WC + IdWC )−1P⊥LP.

Finally, since NW is defined as (PLP⊥)(P⊥LP) and (L|WC + IdWC )−1 6 IdWC this
concludes the first part of the lemma.

Now, we rewrite (5.4.5) as

Eθ∗
[ 1
µ(Wn)

∣∣logdet(Id+ (Lθ[X ∩Wn]− LθWn
[X ∩Wn])LθWn

[X ∩Wn]−1)∣∣] .
By Lemma 5.4.4 we know that

0 6 Lθ[X ∩Wn]− LθWn
[X ∩Wn] 6 N θ

Wn
[X ∩Wn]

where N θ is defined as in Lemma 5.4.4. Therefore, using Lemma 5.A.3 we obtain the
expression

0 6 logdet(Lθ[X ∩Wn])− logdet(LθWn
[X ∩Wn]) 6 Tr(Nθ

Wn
[X ∩Wn]LθWn

[X ∩Wn]−1).

But, since λmin(LθWn
[X ∩Wn]) > λθm by Lemma 5.4.2 then

Eθ∗ [Tr(N θ
Wn

[X ∩Wn]LθWn
[X ∩Wn]−1)] 6 (λθm)−1Eθ∗ [Tr(Nθ

Wn
[X ∩Wn])]

= (λθm)−1Eθ∗

 ∑
x∈X∩Wn

N θ
Wn

(x, x)


= (λθm)−1

∫
Wn

N θ
Wn

(x, x)Kθ∗
0 (0)dµ(x)

= (λθm)−1‖Kθ∗‖∞Tr(N θ
Wn

).
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Finally, we write

1
µ(Wn)Tr(N

θ
Wn

) = 1
µ(Wn)

∫
Wn×W c

n

Lθ0(y − x)2dµ(x)dµ(y).

But, by Condition (Hε), Lθ0 is a square integrable function on (εZ)d for all θ, ε. There-
fore, by Lemma 5.A.4,

1
µ(Wn)

(∫
Wn×Rd

Lθ0(y − x)2dµ(x)dµ(y)−
∫
Wn×Wn

Lθ0(y − x)2dµ(x)dµ(y)
)
−→

n→+∞
0

hence µ(Wn)−1Tr(N θ
Wn

) vanishes when n→ +∞ concluding the proof.

5.4.3 Proof of Theorem 5.2.4

In order to prove Theorem 5.2.4, we first show that the likelihood converges to a
continuous limit θ 7→ l(θ) admitting a unique maximum in θ∗. We then conclude by
showing that the convergence is uniform in θ. Once again, X is considered to be a DPP
on (εZ)d from a parametric family satisfying Condition (Hε) and the the sequence of
observation windows (Wn)n>0 satisfy Condition (W).

Lemma 5.4.5. Under the same assumptions as Theorem 5.2.4, µ(Wn)−1Eθ∗ [ln(X|θ)]
converges to a limit l(θ) for all θ ∈ Θ. Moreover, the function l is continuous on Θ.

Proof. We saw in section 5.4.1 that the deterministic part of ln(X|θ) converges uni-
formly to a continuous function. Moreover, we showed in Section 5.4.2 that

lim
n→+∞

1
µ(Wn)

(
Eθ∗ [log det(LθWn

[X ∩Wn])]− Eθ∗ [logdet(Lθ[X ∩Wn])]
)

= 0

so we only need to show the convergence of µ(Wn)−1Eθ∗ [logdet(Lθ[X ∩ Wn])] to a
continuous function to prove the theorem. Using the power series expression of the
matrix logarithm of Id − Lθ[X ∩Wn]/eAΘ (which has all its eigenvalues in [0, 1[), we
get

logdet(Lθ[X ∩Wn])) = Tr(log(Lθ[X ∩Wn]))
= N(Wn)AΘ + Tr

(
log(Id− (Id− Lθ[X ∩Wn]/eAΘ))

)
= N(Wn)AΘ −

∑
k>1

1
k
Tr
(
(Id− Lθ[X ∩Wn]/eAΘ)k

)
.

We know that µ(Wn)−1Eθ∗ [N(Wn)AΘ] = Kθ∗
0 (0)AΘ. Moreover, by Lemma 5.4.2 we

get the bound

1
kµ(Wn)

∣∣∣Eθ∗ [Tr((Id− Lθ[X ∩Wn]/eAΘ)k)
]∣∣∣ (5.4.6)

6
Eθ∗ [N(Wn)]
kµ(Wn) λmax(Id− Lθ[X ∩Wn]/eAΘ)k

6
Kθ∗

0 (0)
k

(
1− λθm

eAΘ

)k

6
Kθ∗

0 (0)
k

(
1− e−2AΘ

)k
. (5.4.7)

Since (5.4.7) does not depend on n nor θ then by dominated convergence we only need to
show that µ(Wn)−1Eθ∗ [Tr((Id−Lθ[X ∩Wn]/eAΘ)k)], and thus µ(Wn)−1Eθ∗ [Tr(Lθ[X ∩
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Wn]k)], converges for all k to conclude. Moreover, the dominated convergence theo-
rem also tells us that after proving the convergence, we will only need to show that
limn→+∞ µ(Wn)−1Eθ∗ [Tr(Lθ[X ∩Wn]k)] is continuous for all k to prove the continuity
of the limit function.

We can develop the trace the following way:

Tr(Lθ[X ∩Wn]k) =
∑

x1,··· ,xk∈(X∩Wn)k
fθ(x1, · · · , xk)

where we define the function fθ : (Rd)k → R by

fθ : x→ Lθ0(x2 − x1)Lθ0(x3 − x2) · · ·Lθ0(xn − xn−1)Lθ0(x1 − xk).

Since we only know an expression of the expectation when the sum is over distinct
points of X ∩Wn we need to split the sum into all the different cases possible. Let Vk
be the set of partitions of {1, · · · , k}. For all V = {V1, · · · , Vl} ∈ Vk, we write vji for
the elements of Vi where 1 6 j 6 |Vi|. We also define the function fθV : (Rd)l → R
where we made identical all variables in fθ(x) whose indices are in a same subset of V
(an example is given in 5.4.6). We also define the function hV the same way, where h
is the function dominating all Lθ0 in Condition (Hε). Finally, we write δV (x) for the
function equal to 1 if, for all 1 6 i, j 6 k, xi = xj when i and j are in the same subset
of V and xi 6= xj when i and j are in different subsets, and 0 otherwise. With these
notations, we can use (5.4.2) to express the expectation of Tr(Lθ[X ∩Wn]k) as

Eθ∗ [Tr(Lθ[X ∩Wn]k)] = Eθ∗

 ∑
x1,··· ,xk∈(X∩Wn)k

∑
V ∈Vk

fθ(x)δV (x)


=
∑
V ∈Vk

∫
W
|V |
n

fθV (y) det(Kθ∗ [y])dµ(y).

We want to show that all fθV are integrable with respect to their |V |−1 last coordinates
in order to apply Lemma 5.A.4. We say that two sets Vi and Vj of the partition V are
connected if there exists a ∈ Vi and b ∈ Vj such that |a− b| = 1 (mod k). This way, we
define a graph G = (V,E) where E = {(Vi, Vj), Vi and Vj are connected} (an example
is given in 5.4.6). It is easy to show that this graph is connected. Thus, we can write

|fθV (y)| 6 ‖Lθ‖k−|E|∞
∏

(Va,Vb)∈E
|Lθ0(yb − ya)|.

For all i ∈ {1, · · · , |V |}, we define G[i] = (V [i], E[i]) as the graph induced by cutting
the vertex Vi. Since we assumed that Lθ ∈ L1((εZ)d, µ) and we know that Vi is not an
isolated vertex, we get∫
Rd
|fθV (y)|dµ(yi) 6 ‖Lθ0‖k−|E|∞

∏
(Va,Vb)∈E[i]

|Lθ0(yb − ya)|
∫
Rd

∏
{j:(Vi,Vj)∈E}

|Lθ0(yj − yi)|dµ(yi)

6 ‖Lθ‖1‖Lθ‖k−|E[i]|−1
∞

∏
(Va,Vb)∈E[i]

|Lθ0(yb − ya)|.

So, we can keep integrating with respect to other variables yj as long as Vj is not an
isolated vertex of G[i]. Thus, proving that fθV is integrable with respect to its |V | − 1
last coordinates is equivalent to showing that there exists a sequence of removal of all
but one vertices from G that doesn’t make the graph unconnected at any step. This
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can be done by only removing non articulation points. Since any connected graph with
more than 2 points has at least 2 non articulation points this can always be done. By
induction, this shows that∫

Rd
|fθV (y)|dy2 · · · dyl 6 ‖Lθ‖

|V |−1
1 ‖Lθ‖k−(|V |−1)

∞ (5.4.8)

and thus all fθV are integrable with respect to their |V | − 1 last coordinates. Moreover,
since fθV and Kθ∗ are translation invariant, then

lim
n→+∞

1
µ(Wn)

∫
Wn×(Rd)l−1

fθV (y) det(Kθ∗ [y])dµ(y)

=
∫

(Rd)l−1
fθV (0, z2, · · · , zl) det(Kθ∗ [0, z2, · · · , zl])dµ(z2) · · · dµ(zl)

by Lemma 5.A.4 which shows the convergence. Finally, the function

θ 7→ fθV (0, z2, · · · , zl) det(Kθ∗ [0, z2, · · · , zl])

is continuous for all zi and is bounded by ‖Kθ∗‖l∞hV (0, z2, · · · , zl) which is integrable
and doesn’t depends on θ, proving that the limit is continuous.

Example 5.4.6. If n = 8 and V = {{1, 4}, {2}, {3}, {5, 7, 8}, {6}} then fV is written

fθV (y1, y2, y3, y4, y5)
= fθ(y2− y1)fθ(y3− y2)fθ(y1− y3)fθ(y4− y1)fθ(y5− y4)fθ(y4− y5)fθ(0)fθ(y1− y4)

and the associated graph is

y1

y2 y3

y4 y5

This result, combined with Lemma 5.4.4, shows that the function

l : θ 7→ lim
n→∞

ln(θ|Xε ∩Wn)

is well-defined almost surely for all θ ∈ Θ and continuous. We assumed that this
function has a unique maximum and since we know that

Eθ∗ [ln(θ∗|X)− ln(θ|X)] = 1
µ(Wn)DKL(Pθ∗Wn

‖PθWn
) > 0

where DKL is the Kulback-Leibler divergence and PθWn
is the probability measure as-

sociated with the DPP with kernel Kθ
Wn

, taking the limit yields that

l(θ∗) > l(θ)
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for all θ ∈ Θ. Therefore, θ∗ is the unique maximum of l.
Finally, in order to conclude, we need to show that the almost sure convergence of

the likelihood towards l is uniform in θ. We showed that l is continuous and we also
showed in Section 5.4.1 that the deterministic part of the likelihood uniformly converges
with respect to θ. Thus, it remains to prove the uniform convergence of the stochastic
part of the likelihood. Consider the function

φθ0(η) = lim sup
n→+∞

sup
|θ−θ0|6η

1
µ(Wn) |logdet(L

θ
Wn

[X ∩Wn])− logdet(Lθ0Wn
[X ∩Wn])|.

Let Θd be a countable dense subset of Θ and θ1 ∈ Θd such that |θ1 − θ0| 6 η. Then,

φθ0(η) 6 2 lim sup
n→+∞

sup
|θ−θ1|62η

1
µ(Wn) |logdet(L

θ
Wn

[X ∩Wn])− logdet(Lθ1Wn
[X ∩Wn])|

6 2 lim sup
n→+∞

sup
|θ−θ1|62η

1
µ(Wn) |logdet(L

θ[X ∩Wn])− logdet(Lθ1 [X ∩Wn])|

+ 2 lim sup
n→+∞

sup
θ∈Θ

1
µ(Wn) |logdet(L

θ[X ∩Wn])− logdet(LθWn
[X ∩Wn])|.

By Lemma 5.A.2, we get

1
µ(Wn) |logdet(L

θ[X ∩Wn])− logdet(Lθ1 [X ∩Wn])|

6
eAΘ

√
N(Wn)

µ(Wn) Tr
(
(Lθ[X ∩Wn]− Lθ1 [X ∩Wn])2)

=eAΘ

√
N(Wn)
µ(Wn)

N(Wn)
µ(Wn) |L

θ
0(0)− Lθ10 (0)|2

+ 1
µ(Wn)

6=∑
x,y∈X∩Wn

|Lθ0(y − x)− Lθ10 (y − x)|2
1/2

.

Then, by the strong law of large number in Lemma 5.A.1, we obtain that

lim sup
n→+∞

sup
|θ−θ1|62η

|logdet(Lθ[X ∩Wn])− logdet(Lθ1 [X ∩Wn])|

is bounded by

eAΘ
√
C

(
C sup
|θ−θ1|62η

|Lθ0(0)− Lθ10 (0)|2

+
∫
Rd

sup
|θ−θ1|62η

|Lθ0(z)− Lθ10 (z)|2(Kθ∗
0 (0)2 −Kθ∗

0 (z)2)dµ(z)
)1/2

where the bound is true for all event on a set with probability 1 since we applied the law
of large number twice for each θ1 ∈ Θd which are countable. Finally, |Lθ(0)− Lθ1(0)|2
vanishes when |θ − θ1| → 0 by continuity of θ 7→ Lθ(x) for all x and the integral also
vanishes by dominated convergence since all Lθ are dominated by a square integrable
function.
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Using the same reasoning as in the proof of Theorem 5.2.3, we also get

1
µ(Wn) sup

Θ
|logdet(Lθ[X ∩Wn])− logdet(LθWn

[X ∩Wn])|

6 sup
Θ

(λθm)−1

µ(Wn) Tr(N
θ
Wn

[X ∩Wn])

6
eAθ

µ(Wn)
∑

x∈X∩Wn

∫
W c
n

sup
θ∈Θ

Lθ(x, y)2dµ(y). (5.4.9)

Since all Lθ are uniformly bounded in Condition (Hε) by a square integrable function h
then (5.4.9) is a Lipschitz function of X with coefficient µ(Wn)−1eAΘ‖h‖L2 . Moreover,
the expectation of (5.4.9) also vanishes when n → +∞ by Lemma 5.A.4 hence, by
using Pemantle and Peres result [81] as in the proof of Theorem 5.4.3, (5.4.9) vanish
when n goes to infinity almost surely.
We then conclude that for all θ0 ∈ Θ, φθ0(η)→ 0 when η → 0 almost surely. Moreover,
since the convergence doesn’t depend on θ0 then for all countable subset Θd of Θ,
supΘd φθ(η)→ 0 when η → 0 almost surely.

Now, let g(θ) := limn→+∞ µ(Wn)−1logdet(LθWn
[X ∩ Wn]). Since g is continuous

on Θ by Theorem 5.4.5 and Θ is compact then g is equicontinuous. Then, for all
θ ∈ Θ and all integer k > 1, let θk1 , · · · , θkqk such that Θ ⊂

⋃
i B(θki , 1/k) and let

Θd =
⋃
k>1{θk1 , · · · , θkqk}. Up to relabeling the θji we can consider that |θ − θk1 | 6 1/k

for all k therefore

|logdet(LθWn
[X ∩Wn])− g(θ)| 6 |logdet(LθWn

[X ∩Wn])− logdet(Lθ
k
1
Wn

[X ∩Wn])|

+ |logdet(Lθ
k
1
Wn

[X ∩Wn])− g(θk1)|+ |g(θk1)− g(θ)|

and then

sup
θ∈Θ
|logdet(LθWn

[X∩Wn])−g(θ)| 6 sup
Θd

φθ(1/k)+ max
16i6qk

|logdet(Lθ
k
i
Wn

[X∩Wn])−g(θki )|

+ sup
|θ−θ′|<1/k

|g(θ′)− g(θ)|.

Finally, we can choose k such that supθ∈Θd φθ(1/k) and sup|θ−θ′|<1/k |g(θ′)− g(θ)| are

arbitrary small with probability 1 and since max16i6qk |logdet(L
θki
Wn

[X ∩Wn])− g(θki )|
vanishes for all k also with probability 1 then

sup
θ∈Θ
|logdet(LθWn

[X ∩Wn])− g(θ)| a.s.−→ 0.

Finally, we can conclude about the consistency of θ̂n by first assuming that θ̂n
doesn’t converge almost surely towards θ∗. In that case, for all event ω in a set of
probability > 0 there exist a subsequence φ(n) and ε > 0 such that |θ̂φ(n)(ω)− θ∗| > ε.
But, since Θ is compact, then there also exists a subsequence θ̂ψ(n)(ω) of θ̂φ(n)(ω) that
converges towards a certain θ0(ω) ∈ Θ. We know that for all θ ∈ Θ,

lψ(n)(θ̂ψ(n)(ω)|X) > lψ(n)(θ|X).

The right term converges almost surely to l(θ) and the left term converges almost surely
to l(θ0(ω)) by uniform convergence and continuity of l. Thus, θ0(ω) = θ∗ almost surely
by uniqueness of the maximum which contradict our previous assumption. Therefore,
θ̂n converges almost surely towards θ∗.
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5.A Technical Lemmas
When Wn is a convex averaging sequence, the following Lemma is a well-known result
as a consequence of DPPs being ergodic. Since our setting is slightly different, we
provide a different proof.

Lemma 5.A.1. Let X be a stationary DPP on (Rd, µ) with kernel K0(.) ∈ L2(Rd, µ)
and assume that Wn satisfies Condition (W). Then,

N(Wn)
µ(Wn)

a.s.−→ K0(0).

and for all bounded function f ∈ L1(Rd, µ),

1
µ(Wn)

6=∑
x,y∈X∩Wn

f(y − x) a.s.−→
∫
Rd
f(x)(K0(0)2 −K0(x)2)dµ(x)

Proof. We have E[µ(Wn)−1N(Wn)] = K0(0) and since N(Wn) is a 1-Lipschitz function
then by Pemantle and Peres [81] inequality, we get

Pθ∗
(∣∣∣∣N(Wn)
µ(Wn) −K0(0)

∣∣∣∣ > 1
k

)
6 5 exp

(
− µ(Wn)2

16(kµ(Wn) + 2k2K0(0)µ(Wn))

)

which is summable w.r.t. k by our assumption onWn hence µ(Wn)−1N(Wn) a.s.−→ K0(0)
by Borel-Cantelli’s lemma.

For the second expression, we define

SW :=
6=∑

x,y∈X∩W
f(y − x).

and we first assume that f is non-negative. We can get the limit of the expectation of
µ(Wn)−1Sn by Lemma 5.A.4 since Wn satisfies (5.2.7):

E
[
SWn

µ(Wn)

]
= 1
µ(Wn)

∫
W 2
n

f(y − x) det(K[0, y − x])dµ(x)dµ(y)

−→
n→+∞

∫
Rd
f(x) det(K0(0)2 −K0(x)2)dµ(x).

We can also develop the variance into

Var
(
SWn

µ(Wn)

)
= 1
µ(Wn)2

2
∫
W 2
n

f(y − x)2 det(K[0, y − x])dµ(x)dµ(y)

+ 4
∫
W 3
n

f(y − x)f(z − x) det(K[0, y − x, z − x])dµ3(x, y, z)

+
∫
W 4
n

f(y − x)f(t− z)
(

det(K[x, y, z, t])− det(K[x, y]) det(K[z, t])
)
dµ4(x, y, z, t)

 .
(5.A.1)

The first term in (5.A.1) is bounded by

2µ(Wn)‖K‖2∞
∫
Rd
f(z)2dµ(z) = O(µ(Wn)).
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Similarly, the second term in (5.A.1) is bounded by

4µ(Wn)‖K‖3∞
∫
Rd
f∗2(z)dµ(z) = O(µ(Wn)).

In order to bound correctly the last term, we remark that

det(K[x, y, z, t])− det(K[x, y]) det(K[z, t])

can be expanded into 20 terms, each bounded by ‖K‖3∞|K(y − t)|, ‖K‖3∞|K(y − z)|,
‖K‖3∞|K(x− t)| or ‖K‖3∞|K(x− z)|. Moreover, we have∫

W 4
n

f(y − x)f(t− z)|K0(y − t)|dµ(x)dµ(y)dµ(z)dµ(t)

6 µ(Wn)
∫
Rd

(f ∗ |K0| ∗ f)(x)dµ(x) = O(µ(Wn)) (5.A.2)

and all other terms can be dealt the same way. Finally, the variance (5.A.1) is
O(µ(Wn)−1) which is summable if µ(Wn) ∼ n2. In that case,

1
µ(Wn)

6=∑
x,y∈X∩Wn

f(y − x) a.s.−→
∫
Rd
f(x) det(K0(0)2 −K0(x)2)dµ(x)

using Bienaymé-Tchebychev’s inequality and Borel-Cantelli’s lemma. In the more gen-
eral case, since µ(Wn) → +∞ then we can choose a sequence (Vn)n∈N such that
µ(Vn) ∼ n2 and for all n there exists a unique m such that Wm ⊂ Vn ⊂ Wm+1.
Now, for all k, there exists n such that Vn ⊂ Wk ⊂ Vn+1 and since SW is increasing
then

SVn
µ(Vn)

µ(Vn)
µ(Vn+1) 6

SWk

µ(Wk)
6

SVn+1

µ(Vn+1)
µ(Vn+1)
µ(Vn) .

The right and left term of the inequality converges almost surely towards their expec-
tation since µ(Vn) ∼ n2 which conclude the proof when f is non-negative. The general
case is obtained by decomposing f into its positive and negative part and applying the
previous result to each part.

Lemma 5.A.2. For all n× n symmetrical positive definite matrix A,B,

|logdet(A)− logdet(B)| 6
√
n‖A−B‖F max(λmin(A)−1, λmin(B)−1)

where ‖.‖F is the Froebenius norm.

Proof. Let f : t 7→ logdet(tA+ (1− t)B). It’s derivative is equal to

f ′(t) = Tr((A−B)(tA+ (1− t)B)−1).

Moreover, λmin(tA+ (1− t)B) > tλmin(A) + (1− t)λmin(B) > min(λmin(A), λmin(B))
therefore

sup
[0,1]
|f ′(t)| 6 ‖A−B‖F ‖(tA+(1−t)B)−1‖F 6

√
n‖A−B‖F max(λmin(A)−1, λmin(B)−1).

Since f(0) = logdet(B) and f(1) = logdet(A) we get the desired bound.

Lemma 5.A.3. Let n ∈ N and A,B be two n×n positive semi-definite matrices. Then,

0 6 logdet(I +AB) 6 Tr(AB)
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Proof. We first assume that B is the identity matrix. Let λ1, · · · , λn be the eigenvalues
(with multiplicity) of A. Then,

0 6 logdet(I +M) =
n∑
i=1

log(1 + λi) 6
n∑
i=1

λi = Tr(A).

In the general case, Sylvester’s determinant identity gives us

0 6 logdet(I +AB) = logdet(I +A1/2BA1/2) 6 Tr(A1/2BA1/2) = Tr(AB).

Lemma 5.A.4. Let f : (Rd)k 7→ R be a translation invariant function integrable with
respect to its k−1 last coordinates and the background measure µ. Let Wn be a sequence
of increasing compact subsets of Rd such that

µ((∂Wn ⊕ rn) ∩Wn) = o(µ(Wn)),

then

1
µ(Wn)

∫
Wk
n

f(x)dµ(x) −→
n→+∞

∫
(Rd)k−1

f(0, x2, · · · , xk)dµ(x2) · · · dµ(xk) (5.A.3)

Proof. We write Wn � rn for the set Wn\(∂Wn ⊕ rn) of points at distance at least
rn from the boundary of Wn. Since f is translation invariant then the right term in
(5.A.3) is equal to

1
µ(Wn)

∫
Wn×(Rd)k−1

f(x)dµ(x).

Then,∣∣∣∣∣
∫

(Rd)k−1
f(0, x2, · · · , xk)dµ(x2) · · · dµ(xk)−

1
µ(Wn)

∫
Wk
n

f(x)dµ(x)
∣∣∣∣∣

= 1
µ(Wn)

∫
Wn×Rd(k−1)\(Wk−1

n )
f(x)dµ(x)

= 1
µ(Wn)

∫
Wn�rn

∫
Rd(k−1)\(Wk−1

n )
f(x)dµ(x)

+ 1
µ(Wn)

∫
(∂Wn⊕rn)∩Wn

∫
Rd(k−1)\(Wk−1

n )
f(x)dµ(x)

6
1

µ(Wn)

∫
Wn�rn

(∫
(Rd)k−1

f(0, y)1{∀i, ‖yi‖>rn}dµ(y)
)

dµ(x)

+ 1
µ(Wn)

∫
(∂Wn⊕rn)∩Wn

(∫
(Rd)k−1

f(0, y)dµ(y)
)

dµ(x)

6
∫
B(0,rn)k−1

f(0, y)dµ(y) + µ((∂Wn ⊕ rn) ∩Wn)
µ(Wn) ‖f(0, .)‖L1

which converges to 0 because f is integrable with respect to its last k−1 variables.

Lemma 5.A.5. Let {Kθ, θ ∈ Θ} be a compact family of DPP kernels on Rd (with
the Lebesgue measure) satisfying Condition (H) and, for all ε, define Kθ

ε (x, y) :=
εdKθ(x, y). Then, for small enough ε, {Kθ

ε , θ ∈ Θ} is a compact family of DPP kernels
on (εZ)d (with the counting measure µ) satisfying condition (Hε).
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Proof. First, we need to show that supΘK
θ
ε [(εZ)d] is an hermitian matrix with eigen-

values in [0, 1] for a small enough ε. This property is part of Condition (Hε) but also
implies that the associated DPP is well defined. By Gershgorin circle theorem and the
positiveness of Kθ, the eigenvalues of Kε := Kθ

ε [(εZ)d] are bounded by∑
x∈(εZ)d

εdKθ
0(x).

Moreover, we can write

sup
Θ

∣∣∣∣∣∣∣
∑

x∈(εZ)d
εdKθ

0(x)−
∫
Rd
Kθ

0(x)dx

∣∣∣∣∣∣∣ 6
ε
√
d

2 εd
∑

x∈(εZ)d
sup

Θ
sup
x∈Cx,ε

∣∣∣∇xKθ
0(x)

∣∣∣
6
ε
√
d

2 εd
∑

x∈(εZ)d
sup
t∈Cx,ε

C ′

1 + ‖t‖α′+d

where Cx,ε is the d-dimensional hypercube centered in x with side length ε and the last
inequality is obtained as a consequence of Condition (H). If ‖x‖ > 3ε

√
d/2 then we

can write

sup
t∈Cx,ε

C ′

1 + ‖t‖α′+d 6
C ′

1 + (‖x‖ − ε
√
d/2)α′+d

6 inf
t∈Cx,ε

C ′

1 + (‖t‖ − ε
√
d)α′+d

6 ε−d
∫
Cx,ε

C ′

1 + (‖x‖ − ε
√
d)α′+d

dx

hence

sup
Θ

∣∣∣∣∣∣∣
∑

x∈(εZ)d
εdKθ

0(x)−
∫
Rd
Kθ

0(x)dµ(x)

∣∣∣∣∣∣∣
6
ε
√
d

2

εd
∑

x∈(εZ)d

‖x‖63ε
√
d/2

sup
t∈Cx,ε

C ′

1 + ‖t‖α′+d +
∫
Rd

C ′

1 + ‖x‖α′+ddx


which vanishes when ε→ 0. Therefore, the largest eigenvalue of Kε uniformly converges
to K̂θ

0(0) < 1 hence, we can find a small enough ε such that supΘ ‖Kθ
ε [(εZd)]‖ < 1 and

the associated DPPs are all well-defined. Moreover, it is proved in [4] that, under the
assumption that

|Kθ
0(x)| 6 C

1 + ‖x‖α+d and ∀x ∈ Rd, inf
Θ
K̂θ

0(x) > 0,

both being satisfied as a consequence of Condition (H), then infΘ λmin(Kθ
ε [(εZd)]) > 0.

Finally, in order to show the bound (5.4.3) on L0, recall that we can write

L0,ε(x) =
∑
n>1

K0,ε(x)∗n

where ∗n denotes the n-th self discrete convolution on Zd. Therefore,

sup
x
|Lθ0,ε(x)| 6 C

∑
n>0

εd ∑
x∈(εZd)

|Kθ
0(x)|

n .
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But, since ε has been chosen such that

sup
Θ
εd

∑
x∈(εZ)d

Kθ
0(x) < 1

and Kθ
0 is positive, we get a uniform bound for Lθ0,ε. Now,

Kθ
0,ε(x)∗n = εnd

∑
y1,··· ,yn∈(εZ)d

Kθ(y1)Kθ(y2 − y1) · · ·Kθ(x− yn)

and since at least one element of {‖y1‖, ‖y2− y1‖, · · · , ‖x− yn‖} is greater than ‖x‖/n,
then

|Kθ
0,ε(x)∗n| 6 n

Cnα+d

‖x‖α+d

εd ∑
x∈(εZd)

|Kθ
0(x)|

n .
But, since ε has been chosen such that

sup
Θ
εd

∑
x∈(εZ)d

Kθ
0(x) < 1

then

sup
Θ

∑
n>0

Cnα+d+1

εd ∑
x∈(εZd)

|Kθ
0(x)|

n < +∞

giving us the desired bound on Lθ0,ε.

Proposition 5.A.6. Let X be a DPP with Bessel kernel

Kρ,α(x, y) = ρ2d/2Γ(d/2 + 1)
Jd/2(

√
2d‖y − x‖/α)

(
√

2d‖y − x‖/α)d/2
,

then, for all α > 0,
N(Wn)
µ(Wn) ∈ arg max

0<ρ<vα
d

l̃n(X|ρ, α) (5.A.4)

where
vαd = dd/2

(2πα2)d/2Γ(d/2 + 1)
is the upper bound for ρ for which X is well-defined.

Proof. The Fourier transform of the Bessel kernel is known:

K̂0(x) = ρ

vαd
1
‖x‖6

√
d

2π2α2

By noticing that vαd is the volume of the d-dimensional ball with radius
√

d
2π2α2 , we get

that ∫
Rd

log(1− K̂ρ,α
0 (x))dµ(x) = vαd log(1− ρ/vαd ).

Moreover, Lρ,α can be written as ρ
1−ρ/vα

d
Fα, where Fα is a function not depending on

ρ. Therefore, logdet(Lρ,α[X ∩Wn]) can be expressed as the sum of

N(Wn) log
(

ρ

1− ρ/vαd

)
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and an expression not depending on ρ. Finally, l̃n(X|ρ, α) is twice differentiable with
respect to ρ with derivative

−1
1− ρ/vαd

+ N(Wn)
µ(Wn)ρ(1− ρ/vαd ) .

It is easy to see that this expression vanishes only when ρ = N(Wn)/µ(Wn) with the
second derivative being negative at this point, concluding the proof.



112 CHAPTER 5. MLE FOR CONTINUOUS DPPS



113

Appendix A

Supplementary Results

A.1 Negative association of finite DPPs

In this section, we denote by X a discrete determinantal process on [n] := {1, · · · , n},
|X| its cardinality, K its matrix kernel and Xi the Bernoulli random variables equal to
1 when i ∈ X. Our goal is to prove that X is negatively associated:

Theorem A.1.1. Let X be a DPP on [n] and F,G : P([n])→ R be increasing function
(with respect to the inclusion). For all A,B disjoint subsets of [n],

E[F (X ∩A)G(X ∩B)] 6 E[F (X ∩A)]E[G(X ∩B)]. (A.1.1)

Note that the functions F and G can be expanded the following way.

Lemma A.1.2. Let F : P([n]) → R be an increasing function and let A ⊂ [n]. We
call an event A increasing if its indicator function is increasing. Then, F (X ∩A) can
be written as

F (X ∩A) = c+
k∑
i=1

ai1Ai(X)

where c is a constant, ai > 0 for all i and the events Ai are increasing and in the
σ-algebra generated by X ∩A.

Proof. Let c = min(F ) and F̃ (X) = F (X ∩ A)− c. F̃ is non-negative and we call 0 =
b0 < b1 < · · · < bk the different values taken by F̃ . Consider the events Ai = {F̃ > ai}.
The Ai are increasing events of σ(X ∩A) and we can write

F̃ =
k∑
i=1

(bi − bi−1)1Ai ,

proving the lemma.

A proof of Theorem A.1.1 is given in [73] using exterior algebra properties. Our goal
is to give a detailed proof that only uses probabilistic tools. We recall a few properties
of discrete DPPs.

Proposition A.1.3. Let X be a DPP on [n] with kernel K. Its complementary X̄ :=
[n]\X is also a DPP on [n] with kernel I −K.
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Proof. Let A ⊂ [n], by using the inclusion–exclusion principle we get

P(A ⊂ X̄) = P(A ∩X = ∅)
= 1− P({i} ⊂ X for some i ∈ A)

= 1−
|A|∑
k=1

(−1)k−1 ∑
i1<···<ik∈A

P({i1, · · · , ik} ⊂ X)

=
∑
S⊂A

(−1)|S| det(KS)

= det((I −K)A).

Proposition A.1.4. Let X be a DPP on [n] with kernel K, where K is a projection
matrix with rank k. Then, |X| = k almost surely. Such a DPP is called a projection
DPP.

Proof. Let A ⊂ [n] such that |A| > k. Then, P(A ⊂ X) = det(KA) = 0 since K is of
rank k. So, |X| 6 k almost surely. Moreover,

E[|X|] =
n∑
i=1

P(i ∈ X) = Tr(K) = k

concluding the proof.

Finally, an immediate consequence of the identity

det
(
A B
BT C

)
= det(C) det(A−BC−1BT )

is that a DPP X stays determinantal when conditioned by the absence or presence of
points in X.

Proposition A.1.5. Let X be a DPP on [n] with kernel K. Let A ⊂ [n] such that
P(A ⊂ X) > 0 then, conditionally to {A ⊂ X}, X\A is a determinantal process on
[n]\A with kernel

KA := KAc −KAcAK
−1
A KT

AcA where KAcA = (Ki,j)i∈Ac,j∈A.

Let A ⊂ [n] such that P(A ∩X = ∅) > 0 then, conditionally to {A ∩X = ∅}, X is a
determinantal process on [n]\A with kernel I − (I −K)A. Moreover, projection DPPs
under both conditioning stays projection DPPs.

We now give a probabilistic proof of Theorem A.1.1.

Proof of Theorem A.1.1. Let F,G : P([n]) → R be increasing functions and A,B be
two disjoints subsets of [n]. Using Proposition A.1.2 we can write F (X ∩ A) and
G(X ∩ B) as the sum of a constant and a positive linear combination of indicator
functions of increasing events of, respectively, σ(X ∩ A) and σ(X ∩ B). Considering
that the constant doesn’t affect the inequality (A.1.1), negative association only has to
be proved for functions F = 1A and G = 1B where A and B are increasing events in,
respectively, σ(X ∩A) and σ(X ∩B). This is done in three steps. In the first step, we
consider the case where X is a projection DPP and where F = 1A and G = Xi. In the
second step, we extend the result to the case where F = 1A and G = 1B. Finally, we
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conclude in the last step. We also say that an event A ignores i (or does not depends
on i) if A ∈ σ(X\{i}). This is equivalent to saying that for all X ∈ A , X ∪ {i} ∈ A
and X\{i} ∈ A .

Step 1: In the first step of the proof, we consider that X is a projection DPP (see
Proposition A.1.4) and that F = Xi and G = 1A where A is an increasing event
ignoring i. In this case, the negative association property (A.1.1) can be written as

E[Xi1A ] 6 E[Xi]P(A ). (A.1.2)

If E[Xi] = 0 or 1 the result is trivial so we consider that E[Xi] ∈]0, 1[. This inequality is
then equivalent to P(A |i ∈ X) 6 P(A ) as well as P(A ) 6 P(A |i /∈ X). By combining
these two inequalities we get that (A.1.2) is also equivalent to P(A |i ∈ X) 6 P(A |i /∈
X). In the end, we obtained three inequalities equivalent to the one we want to prove
that we use throughout the proof.

(A.1.2)⇔ P(A |i ∈ X) 6 P(A )
⇔ P(A ) 6 P(A |i /∈ X)
⇔ P(A |i ∈ X) 6 P(A |i /∈ X). (A.1.3)

We show that X satisfies these inequalities by induction on the size of [n]. The key
property making the induction work is Proposition A.1.5 stating that the measures
P(.|i /∈ X) and P(. ∪ {i}|i ∈ X) are still projection determinantal measures on [n]\{i}
for all i ∈ [n].
n=1: In this case, Xi = X1 so A = ∅ or P([1]). If A = ∅ then Xi1A = 0 and otherwise
P(A) = 1 so the negative association is satisfied in both cases.
n-1 → n: We consider that all projection DPPs on [l], where l 6 n−1, satisfies (A.1.2).
If we consider the case where P(i, j ∈ X) = 0 for all j 6= i, we get

P(A |i ∈ X) = P(A |X = {i}) =
{

1 if {i} ∈ A
0 otherwise.

If P(A |i ∈ X) = 0 then (A.1.2) is satisfied. Otherwise, {i} ∈ A and since A ignore i
then ∅ ∈ A and thus, because A is increasing, we get A = P([n]) which implies (A.1.2).
We then consider the case where the set C := {j ∈ [n], P(i, j ∈ X) = 0} contains an
element distinct from i. The fact that

∑
j Xj = k =

∑
j P(j ∈ X) gives us

∑
j∈[n]
j 6=i

E[Xj1A |i ∈ X] = (k − 1)P(A |i ∈ X) =

∑
j∈[n]
j 6=i

P(j ∈ X|i ∈ X)

P(A |i ∈ X).

But, if j ∈ C then, conditionally to i ∈ X, j /∈ X a.s. so the previous equality stays
true if we consider sums on [n]\C instead. In particular, we can choose a j /∈ C distinct
from i such that

E[Xj1A |i ∈ X] > E[Xj |i ∈ X]P(A |i ∈ X).
This inequality correspond to the reverse of (A.1.2) conditionally to i ∈ X. We can
especially deduce that we have the same equivalence as (A.1.3) but with opposite signs,
hence j satisfies

P(A |i, j ∈ X) > P(A |i ∈ X, j /∈ X). (A.1.4)
Since we took j such that P(i, j ∈ X) 6= 0, when conditioning P(A |i ∈ X) by j we

get

P(A |i ∈ X) = P(A |i, j ∈ X)P(j ∈ X|i ∈ X) + P(A |i ∈ X, j /∈ X)P(j /∈ X|i ∈ X)
(A.1.5)
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where we consider the right term as being zero if P(i ∈ X, j /∈ X) = 0. Since X satisfies

P(j ∈ X|i ∈ X) = K(i, i)K(j, j)−K(i, j)2

K(i, i) 6 K(j, j) = P(j ∈ X)

then (A.1.3) is satisfied for the event A = {j ∈ X} therefore

P(j ∈ X|i ∈ X) 6 P(j ∈ X|i /∈ X).

Then, by combining this result with (A.1.4), we can bound (A.1.5) by

P(A |i, j ∈ X)P(j ∈ X|i /∈ X) + P(A |i ∈ X, j /∈ X)P(j /∈ X|i /∈ X) (A.1.6)

because the difference between (A.1.6) et (A.1.5) is then equal to

(P(A |i, j ∈ X)− P(A |i ∈ X, j /∈ X))(P(j ∈ X|i /∈ X)− P(j ∈ X|i ∈ X)) > 0

The only thing left to do is applying the induction hypothesis on the measures
P(.|j /∈ X) and P(.|j ∈ X) on σ(X\{j}). In order to do that, we use the following
lemma.

Lemma A.1.6. Let A be an increasing event of P([n]) ignoring i and j 6= i ∈ [n]. We
define the events A /j = {X ∈ A : j ∈ X} and A \j = {X ∈ A : j /∈ X} in σ(X\{j}).
These events are increasing and ignore i.

Proof. Let’s start by showing that they are increasing. Let X ∈ A /j and Y ⊂ [n]
containing X. Since A is increasing and j ∈ X then Y ∈ A and j ∈ Y so Y ∈ A /j
which shows that A /j is increasing. Similarly, let X ∈ A \j and X ⊂ Y ⊂ [n]\{j}.
Then j /∈ Y and since A is increasing then Y ∈ A so Y ∈ A \j and we can conclude
that A \j is increasing.

Now, let’s show that they ignore i. Let X ∈ A /j and thus X ∈ A and j ∈ X.
Since A ignores i then X ∪ {i} and X\{i} are also elements of A that contains j so
X ∪ {i} ∈ A /j and X\{i} ∈ A /j hence A /j ignores i. Similarly, let X ∈ A \j and
thus j /∈ A . Since A ignore i then X ∪ {i} and X\{i} are also element of A that
doesn’t contain j so X ∪ {i} ∈ A \j and X\{i} ∈ A \j hence A \j ignores i.

This lemma allows us to apply the induction hypothesis to P(A /j|j ∈ X) and
P(A \j|j /∈ X). As a consequence, we get

P(A |i, j ∈ X) = P(A /j|i, j ∈ X) 6 P(A /j|i /∈ X, j ∈ X) = P(A |i /∈ X, j ∈ X)

as well as

P(A |i ∈ X, j /∈ X) = P(A \j|i ∈ X, j /∈ X) 6 P(A \j|i, j /∈ X) = P(A |i, j /∈ X).

By applying these two inequalities to (A.1.6), we get the result we were looking for:

P(A |i ∈ X) 6 P(A |i /∈ X, j ∈ X)P(j ∈ X|i /∈ X)
+ P(A |i /∈ X, j /∈ X)P(j /∈ X|i /∈ X) = P(A |i /∈ X).

Step 2: In the second step of the proof, we consider that F = 1A and G = 1B

where A and B are increasing events in, respectively, σ(X ∩ A) and σ(X ∩ B). If
P(B) = 0 the result is trivial so we consider the case where P(B) > 0. The negative
association property (A.1.1) can be written in this case as

P(A )P(B) > P(A ∩B)⇔ P(A ) > P(A |B).
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This inequality is proved by induction on the size of [n].
n=1: By symmetry, we suppose that A depends on X1 and B ignores 1. The only
increasing event of P({1}) depending on 1 is {1 ∈ X} so 1A = X1 which was done in
step 1.
n-1 → n: In this case, by using the fact that

∑
j Xj = k =

∑
j P(j ∈ X) we get that∑

j∈[n]
P(j ∈ X|B) = k =

∑
j∈[n]

P(j ∈ X). (A.1.7)

We showed in the first step that if i is ignored by B then P(i ∈ X|B) 6 P(i ∈ X)
meaning that we can choose an i ∈ [n] that is not ignored by B such that

P(i ∈ X|B) > P(i ∈ X) > 0,

because, if P(i ∈ X) = 0 then P(i ∈ X|B) = 0 too and so both quantities doesn’t
change the sum (A.1.7). By conditioning on i, we obtain

P(A |B) = P(A |B, i ∈ X)P(i ∈ X|B) + P(A |B, i /∈ X)P(i /∈ X|B)

where we consider the second term as zero is P(i /∈ X) = 0. By using the induction
hypothesis on P(.|i /∈ X) and P(. ∪ {i}|i ∈ X) combined with the lemma A.1.6 we get

P(A |B, i /∈ X) 6 P(A |i /∈ X) and P(A |B, i ∈ X) 6 P(A |i ∈ X)

so P(A |B) is bounded by

P(A |i ∈ X)P(i ∈ X|B) + P(A |i /∈ X)P(i /∈ X|B). (A.1.8)

In the first step we saw that

P(A |i ∈ X) 6 P(A |i /∈ X)

because i is ignored by A . Combined with the choice of i, we deduce that P(A |B) is
bounded by

P(A |i ∈ X)P(i ∈ X) + P(A |i /∈ X)P(i /∈ X) = P(A ) (A.1.9)

because the difference between (A.1.9) and (A.1.8) is equal to

(P(A |i /∈ X)− P(A |i ∈ X))(P(i ∈ X|B)− P(i ∈ X)) > 0,

which conclude our theorem when X is a projection DPP.
Step 3: Let’s get back to the more general case where X is a determinantal process

whose matrix kernel K is symmetric with eigenvalues in [0, 1]. We can build R and R′
as the positive semi-definite square root of K and I−K. We define Z as the projection
DPP with matrix kernel (

K RR′

R′R I −K

)

symmetrical and idempotent, defined on [2n] by Z = X ∪ X̄ where X̄ is a copy of the
complementary of X independent from X. This is a consequence of Propositions A.1.4
and A.1.3. The distribution of Z is then

P(Z = A) =
{

P(X = A ∩ [n]) if |A| = n
0 otherwise.
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Let Pz be the associated measure of Z then

P(A ) = Pz(Ā ) where Ā = {A ∪B, A ∈ A and |A|+ |B| > n}.

Moreover, we can easily check that A and Ā depends on the same set of variables
and that A increasing implies Ā increasing. Since Z satisfies the negative association
property then it shows that X satisfies it too for all functions F = 1A and G = 1B

where A and B are increasing events depending on a distinct set of variables and thus
for all increasing functions by Proposition A.1.2 concluding the proof.

A.2 Generalized Cramér-Wold device
This result is part of an article [17] published in Statistics and Probability Letters.

The Cramér-Wold device is a useful statistical tool to extend one dimensional CLT to
a multi-dimensional setting. Let Xn be a sequence of p-dimensional random variables.
The Cramér-Wold device states that Xn converges in distribution to a random variable
X iff for all a ∈ Rp, aTXn converges in distribution to aTX. In statistical applications
we often want to show that Var(Xn)−1/2Xn converges in distribution to a standard
normal distribution for some sequence of statistics Xn. When Var(Xn) converges to a
fixed positive definite matrix, a direct consequence of the Cramér-Wold device is that

Var(Xn)−1/2Xn
L−−−→

n→∞
N (0, Ip)⇔ ∀a ∈ Rp, Var(aTXn)−1/2aTXn

L−−−→
n→∞

N (0, 1)
(A.2.1)

where Ip is the p× p identity matrix. Therefore, the multidimensional CLT on Xn can
be deduced by the unidimensional CLT on all its projections. When Var(Xn) does not
converges, as in Theorems 2.3.1 and 2.4.4, this result does not hold. Thus, we give a
proof of (A.2.1) under the assumptions that the eigenvalues of Var(Xn) are bounded.

Lemma A.2.1. Let {Xn}n∈N be a sequence of random variables in Rp such that

0 < lim inf
n→∞

λmin(Var(Xn)) < lim sup
n→∞

λmax(Var(Xn)) <∞,

where for a symmetrical matrix M , λmin(M) and λmax(M) denote the minimal and
maximal eigenvalues of M .

Then, Var(Xn)−1/2Xn
L−−−→

n→∞
N (0, Ip) if for all a ∈ Rp,

(
aTVar(Xn)a

)− 1
2 aTXn

L−−−→
n→∞

N (0, 1).

Assume by contradiction that Var(Xn)−1/2Xn
L−−−→

n→∞
Y ∼ N (0, Ip) does not hold.

Then there exists a bounded and continuous function f such that Ef(Var(Xn)−1/2Xn)−
Ef(Y ) does not converge toward 0. Thus, there exists ε > 0 and a strictly increasing
function b : N→ N such that for all n ∈ N,∣∣∣Ef(Var(Xb(n))−1/2Xb(n))− Ef(Y )

∣∣∣ > ε. (A.2.2)

Further, since for all a ∈ Rp,
(
aTVar(Xn)a

)− 1
2 aTXn

L−−−→
n→∞

N (0, 1), we also have

(
aTVar(Xb(n))a

)− 1
2 aTXb(n)

L−−−→
n→∞

N (0, 1)
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for any a ∈ Rp. Since the sequence of eigenvalues of the matrices Var(Xn) is bounded,
there exists by the Bolzano-Weierstrass theorem a strictly increasing function c : N→ N
such that {c(n)}n∈N ⊂ {b(n)}n∈N, and a matrix Σ such that

Var(Xc(n)) −−−→n→∞
Σ.

Since (
aTVar(Xc(n))a

)− 1
2 aTXc(n)

L−−−→
n→∞

N (0, 1)

we obtain by multiplying with aTVar(Xc(n))a and using Slutsky lemma, that

aTXc(n)
L−−−→

n→∞
aTN (0,Σ).

Hence, by the Cramér-Wold device,

Xc(n)
L−−−→

n→∞
N (0,Σ)

Therefore, by Slutsky lemma,

Var(Xc(n))−
1
2Xc(n)

L−−−→
n→∞

N (0, Ip).

From this we can conclude∣∣∣Ef(Var(Xc(n))−1/2Xc(n))− Ef(Y )
∣∣∣ ≤ ε

for n large enough which contradicts (A.2.2).
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Titre : Statistiques asymptotiques des processus ponctuels déterminantaux station-
naires et non stationnaires
Mot clés : Processus ponctuel déterminantal, Théorème limite central, Statistiques
spatiales

Resumé : Ce manuscrit est dédié à
l’étude de l’estimation paramétrique d’une
famille de processus ponctuels appelée
processus déterminantaux. Ces proces-
sus sont utilisés afin de générer et mo-
déliser des configurations de points pos-
sédant de la dépendance négative, dans
le sens où les points ont tendance à se
repousser entre eux. Dans une première
partie, nous montrons un théorème limite
central pour une classe générale de statis-
tiques sur les processus déterminantaux.
Dans une seconde partie, nous montrons

une inégalité de béta-mélange générale
pour les processus ponctuels. Dans une
troisième partie, nous appliquons le théo-
rème limite central obtenu à la première
partie à une classe générale de fonctions
estimantes basées sur des méthodes de
moments. Finalement, dans la dernière
partie, nous donnons une approximation
asymptotique de la log-vraisemblance des
processus déterminantaux qui est calcu-
lable numériquement et nous étudions la
consistance de son maximum.

Title : Asymptotic inference of stationary and non-stationary determinantal point pro-
cesses
Keywords : Determinantal point process, Central limit theorem, Spatial statistics

Abstract : This manuscript is devoted to
the study of parametric estimation of a
point process family called determinantal
point processes. These point processes
are used to generate and model point pat-
terns with negative dependency, meaning
that the points tend to repel each other.
In the first chapter, we prove a central li-
mit theorem for a wide class of statistics
on determinantal point processes. In the

second chapter, we show a general beta-
mixing inequality for point processes. In
the third chapter, we apply the central li-
mit theorem showed in the first chapter to
a wide class of moment-based estimating
functions. Finally, in the last chapter, we
give an asymptotic approximation of the
log-likelihood that is computationally trac-
table and we study the consistency of its
maximum.



Résumé étendu de la thèse

Introduction

Un des sujets d’étude principaux des statistiques spatiales est l’étude de jeux de données
constitués d’un ensemble fini de points dans une fenêtre d’observation qui est un compact
de Rd (en général, d = 1, 2 ou 3). L’exemple le plus ancien et probablement le plus connu
est l’étude par le médecin John Snow [8] de la répartition spatiale de cas de choléra lors
d’une épidémie à Londres ce qui lui a permis de remonter à une pompe à eau contaminée
qui en était la source. En pratique, de nombreux jeux de données ponctuel spatiaux sont
observés dans toutes les disciplines scientifiques. Quelques exemples sont donnés dans la
figure 1. Le modèle mathématique utilisé pour modéliser ce type de donnée est appelé un
processus ponctuel.

La façon la plus simple de décrire un processus ponctuel sur Rd est en tant que mesure
de probabilité sur l’ensemble Ω des ensembles localement finis de Rd, où un sous-ensemble
X de Rd est dit localement fini si pour tout sous-ensemble borné A de Rd l’ensemble X ∩A
est fini. Le processus ponctuel le plus connu et le plus étudié est le processus ponctuel
de Poisson (ou PPP). Un PPP X est défini par une fonction ρ localement intégrable
appelée "intensité" telle que le nombre N(A) de points du PPP observés dans un sous-
ensemble A de Rd suit une loi de poisson de paramètre

∫
A ρ(x)dx et, pour tout ensembles

disjoints A1, · · · , An ⊂ Rd, les variables aléatoires N(A1), · · · , N(An) sont mutuellement
indépendantes. En conséquence, conditionnellement à N(A), les points de X ∩ A sont
mutuellement indépendant et identiquement distribués pour tout A ⊂ Rd. C’est pourquoi
les PPPs sont utilisés pour modéliser tout jeu de données spatiales constitué de points qui
peuvent être considérés comme étant indépendant les uns des autres.

Évidemment, les PPPs sont limités par le fait que tous les points n’ont aucune interac-
tion les uns avec les autres alors qu’en pratique de nombreux jeux de données présentent
de la dépendance positive (attraction) ou négative (répulsion) entre leurs points. Une sim-
ulation d’un PPP est présentée en haut à droite de la Figure 2. En comparaison, divers
exemples de données ponctuels exhibant un comportement répulsif sont présentés dans
la Figure 1. C’est pourquoi des modèles de processus ponctuels plus complexes ont été
développés afin de pouvoir étudier ce genre de donnée. Dans cette thèse, nous nous concen-
trons sur l’étude de processus ponctuels répulsifs. Les principaux modèles existants sont
les processus ponctuels de Matérn (aussi appelé "hardcore"), les grilles perturbées, les pro-
cessus ponctuels de Gibbs et, le sujet principal de cette thèse, les processus déterminantaux
(où DPPs).

Les processus ponctuels de Matèrn sont défini à partir des PPPs en retirant des points
de sorte qu’aucune paire de point ne soit à distance plus petite qu’une constante R (appelé
le rayon hardcore) alors que les grilles perturbées sont définies en déplaçant de façon
aléatoire les points d’une grille régulière par des variables aléatoires iid. Ces deux modèles
sont faciles à simuler et assez simple à manipuler mais trop restrictifs pour la plupart
des applications statistiques. Au contraire, les processus ponctuels de Gibbs forment une
famille très générale de processus ponctuels qui offrent une importante gamme possible
d’interactions entre les points et ont été beaucoup utilisés pour modéliser de la répulsion
mais sont en général difficiles à manipuler. Par exemple, ils ne peuvent être simulés qu’à
partir de méthodes MCMC, leur densité fait intervenir une constante impossible à calculer
facilement ce qui rend difficile une estimation par maximum de vraisemblance et aucune
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Figure 1: Exemples de données ponctuelles spatiales. La figure en haut à gauche corre-
spond à l’emplacement du centre de 42 cellules biologiques dans une coupe histologique.
La figure en haut à droite correspond à l’emplacement de 68 nids de fourmis moissonneuses
sur un site en Grèce. La figure en bas à gauche correspond à l’emplacement de 71 plants
de pin dans une forêt suédoise. La figure en bas à droite correspond à l’emplacement des
28 bureaux de vote dans la commune de Rennes. Les trois premiers jeux de données font
partie du package spatstat.data [1] du logiciel R [7]. Le dernier jeu de données est fourni
par le site internet https://data.rennesmetropole.fr.

expression de forme fermée n’est connue pour leurs moments. Pour plus de détails, voir
[6, 10].

D’un autre côté, les DPPs sont une famille plus restrictive que les processus ponctuels
de Gibbs [4] mais sont plus faciles à manipuler tout en étant une famille très flexible qui
offre une large gamme d’interactions possibles entre les points. Comparé aux processus de
Gibbs, ils peuvent être simulés de façon exacte et possèdent une expression de forme fermée
pour leurs moments et leurs densités de Janossy. Cela permet d’utiliser des méthodes de
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moment ainsi que le maximum de vraisemblance pour leur estimation. C’est pourquoi
les DPPs se présentent comme une bonne alternative pour modéliser les jeux de données
ponctuelles possédant de la répulsion. On trouvera un exemple de simulation des DPPs,
des processus ponctuels de Gibbs et des processus ponctuels de Matérn dans la figure 2.

Figure 2: Exemples de simulation de 4 differents types de processus ponctuels sur la
fenêtre W = [0, 1]2. En haut à gauche se trouve une simulation d’un PPP homogène
d’intensité ρ = 100. En haut à droite se trouve une simulation d’un DPP de noyau de type
Bessel de paramètres ρ = 100 et α = 0.05. En bas à gauche se trouve une simulation d’un
processus ponctuel de Matèrn de rayon hardcore R = 0.1. En bas à droite se trouve une
simulation d’un processus ponctuel de Strauss (un cas particulier d’un processus ponctuel
de Gibbs défini dans [9]) de paramètres β = 100, γ = 0.2 et R = 0.1. Toutes les simulations
ont été réalisées sur R [7] avec le package spatstat [2].

Nous rappelons qu’un DPP continu est défini par ses fonctions d’intensité jointe que
l’on note ρn. Si on considère une fonction K : (Rd)2 → C satisfaisant l’hypothèse
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H: K est une fonction continue, localement de carré intégrable et hermitienne telle que
son opérateur intégral associé sur L2(Rd, µ)

K : f 7→
(
Kf : x 7→

∫
Rd
K(x, y)f(y)dµ(y)

)
est localement de trace classe à valeurs propres dans [0, 1].

alors un processus ponctuel X est dit DPP de noyau K s’il vérifie

ρn(x1, · · · , xn) = det ((K(xi, xj))16i,j6n)

pour tout entier n.
Dans cette thèse, nous nous concentrons sur l’étude des statistiques asymptotiques de

DPPs continus dans un cadre spécifique appelé "increasing domain asymptotic". Consid-
érons (Wn)n>0 une suite croissante de sous-ensemble de Rd, c’est-à-dire que Wn ⊂ Wn+1
pour tout entier n. À la différence du cadre iid, nous considérons l’observation d’une
unique réalisation du processus ponctuel dans la fenêtre Wn. Dans ce cas-là, les propriétés
asymptotiques dépendent de la taille de la fenêtre et donc indirectement du nombre de
points observés. C’est pour cela que l’on suppose en général que

⋃
n>0Wn = Rd où, plus

simplement, que le volume d-dimensionnel de Wn tend vers l’infini. Dans la plupart des
applications, les fenêtres sont considérées comme étant rectangulaires mais, afin d’obtenir
des résultats aussi généraux que possibles, nous considérons que les fenêtres peuvent avoir
n’importe quelle forme du tant que leur frontière ne soit pas trop distordue afin de limiter
les effets de bord.

La difficulté principale de ce cadre d’étude pour les DPPs est que comme tous les points
générés par un DPP se repoussent les uns les autres, alors il y a besoin de contrôler leur
dépendance spatiale pour obtenir des résultats asymptotiques. Dans ce but, nous étudions
les propriétés de mélange des DPPs. Nous utilisons ces résultats pour établir un théorème
limite central (TLC) pour une large famille de statistiques sur les DPPs stationnaires et
non-stationnaires. Nous appliquons ensuite ce TLC pour obtenir des résultats asymp-
totiques sur les equations estimantes basées sur des méthodes de moment. Enfin, nous
considérons le problème de prouver la consistance et de trouver une bonne approximation
du maximum de vraisemblance d’un DPP stationnaire. Nous allons maintenant détailler
les divers résultats de la thèse.

Chapitre 2

Nous commençons par montrer que la propriété d’association (positive ou négative) d’un
processus ponctuel implique une inégalité de covariance générale qui ne dépend que de
la covariance entre le nombre de points du processus ponctuel qui se trouvent dans des
ensembles disjoints:

Theorem 1. Soit X un processus ponctuel associé et A,B ⊂ Rd deux ensembles bornés.
Soit f : Ω → R et g : Ω → R deux fonctions telles que X 7→ f(X ∩ A) et X 7→ g(X ∩ B)
soient bornés, alors

|Cov(f(X ∩A), g(X ∩B))| 6 ‖f‖A‖g‖B|Cov(N(A), N(B))|
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où ‖.‖A est la semi-norme de Lipschitz définie par

‖f‖A := sup
X∈Ω,X⊂A

x∈A

|f(X)− f(X ∪ {x})|.

De plus, si X est positivement associé alors il vérifie la même inégalité avec A,B ⊂ Rd
pas forcement disjoint.

En conséquence, on en déduit que l’association implique une borne sur les coefficients
d’α-mélange qui ne dépend que des deux premières fonctions d’intensité jointe du processus
ponctuel.

Proposition 2. Soit X un processus ponctuel associé sur Rd dont les deux premières
fonctions d’intensité jointe soient bien définies, alors pour tout p, q > 0,

αp,q(r) 6 pq sup
‖x−y‖>r

|ρ2(x, y)− ρ(x)ρ(y)|,

αp,∞(r) 6 psd

∫ ∞
r

td−1 sup
‖x−y‖=t

|ρ2(x, y)− ρ(x)ρ(y)|dt.

où sd est l’aire de la sphère d-dimensionnelle.

En conséquence, la vitesse de décroissance des coefficients de α-mélange dans chaque
cas ne dépend que de la répulsion des paires de points du processus ponctuel. Dans le cas
des DPPs, puisque |ρ2(x, y)− ρ(x)ρ(y)| = |K(x, y)|2 alors on en déduit que les coefficients
αp,q(r) décroissent au moins à la même vitesse que le noyau du DPP au carré lorsque
‖y − x‖ tend vers l’infini. Nous prouvons également que cette vitesse de décroissance est
optimale pour une large classe de DPPs en exhibant une borne inférieure pour les coeffi-
cients d’α-mélange avec la même vitesse de décroissance. Malheureusement, les vitesses de
décroissance des coefficients αp,∞(r) ne sont pas aussi bonnes et si on devait appliquer le
TLC de Bolthausen et Guyon [3, 5] pour les variables aléatoires α-mélangeante, cela nous
forcerait d’exclure les DPPs les plus répulsifs qui sont ceux avec les noyaux qui décroissent
le moins vite. Afin de parer à ce problème, nous prouvons un TLC plus général basé non
pas sur les coefficients de α-mélange mais sur l’inégalité de covariance du Théorème 1. Le
TLC obtenu peut s’appliquer à toutes les familles paramétriques classiques de noyaux de
DPPs communément utilisés en statistiques spatiales.

Theorem 3. Soit X un DPP de noyau borné K satisfaisant H. Soit τ > 0 et f : Ω→ R
une fonction de la forme

f(X) :=
∑
S⊂X

f0(S)

où f0 est une fonction bornée qui s’annule sur l’ensemble supx,y∈S ‖y − x‖ > τ . Soit
(Wn)n∈N une suite croissante de sous-ensembles de Rd telle que |Wn| → ∞ et soit σ2

n :=
Var(f(X ∩Wn)). Supposons qu’il existe ε > 0 et ν > 0 tels que les conditions suivantes
soient satisfaites:

(H1) |∂Wn ⊕ (τ + ν)| = o(|Wn|);

(H2) sup
‖y−x‖>r

|K(x, y)| = o(r−(d+ε)/2);
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(H3) lim infn |Wn|−1σ2
n > 0.

Alors,
1
σn

(f(X ∩Wn)− E[f(X ∩Wn)]) L−→ N (0, 1).

Ici, ∂Wn ⊕ (τ + ν) correspond à l’ensemble des points à distance inférieure à τ + ν de la
frontière de Wn.

Chapitre 3

Dans ce chapitre, nous prouvons une inégalité sur les coefficients de β-mélange d’un pro-
cessus ponctuel qui ne dépend que de ses fonctions d’intensité jointe.

Theorem 4. Soit X un processus ponctuel sur (Rd,B(Rd), µ) tel que E[4|X∩A|] < +∞
pour toute ensemble borné A ⊂ Rd. Alors, pour tout p, q, r ∈ R+,

βp,q(r) 6 sup
µ(A)<p,µ(B)<q

dist(A,B)>r

 +∞∑
m,n=0

2n+m−1

m!n!

∫
Am×Bn

|ρm(x)ρn(y)− ρm+n(x, y)|dµm(x)dµn(y)

 .
Comme les identités (ρm(x)ρn(y)−ρm+n(x, y))/ρm(x)ρn(y) peuvent s’interpréter comme

la corrélation entre X ayant un point en x1, · · · , xm et X ayant des points en y1, · · · , yn
alors Théorème 4 prouve que plus ces corrélations décroissent vite lorsque la distance entre
les xi et yj tend vers l’infini, plus les coefficients de β-mélange décroissent rapidement.
Lorsque ce résultat est appliqué aux DPPs, on obtient l’inégalité de β-mélange suivante:

Theorem 5. Soit X un DPP de noyau borné K satisfaisant H, alors

βp,q(r) 6 2pq(1 + 2p‖K‖∞)(1 + 2q‖K‖∞)e2‖K‖∞(p+q) sup
‖y−x‖>r

|K(x, y)|2.

Il est à noter que la vitesse de décroissance des coefficients de β-mélange dans le
Théorème 5 est la même que celle des coefficients de α-mélange dans la Proposition 2. Le
gros défaut de ce résultat, comparé à l’inégalité sur les coefficients de α-mélange obtenue
dans la Proposition 2, est la dépendance exponentielle de la borne sur les βp,q(r) par
rapport à p et q ce qui la rend inutilisable dans la plupart des applications.

Chapitre 4

Dans le chapitre 4, nous nous intéressons aux propriétés asymptotiques des estimateurs
construits à partir de fonctions estimantes. Considérons une famille de processus ponctuels
continus {Pθ, θ ∈ Θ}, où Θ ⊂ Rp pour un certain p ∈ N, ainsi qu’une suite croissante de
fenêtres d’observation (Wn)n>0, on dit que la fonction en est une fonction estimante lorsque
θ est estimé par la solution (où l’une des solutions) θ̂n de l’équation en(θn) = 0. C’est un
cadre statistique très général qui englobe d’autres méthodes telles que l’estimation par
minimum de contraste (lorsque le contraste est dérivable) où l’estimation par maximum de
vraisemblance (lorsque la vraisemblance est dérivable). En particulier, on dit que en est
une fonction estimante d’ordre k si elle s’écrit sous la forme

en(X) =
6=∑

x1,··· ,xk∈X∩Wn

f0(x1, · · · , xk; θ)−
∫
Wk

n

f0(t; θ)ρk(t; θ)dµ(t),
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où f0 : (Rd)k × Θ → Rp est une fonction test. Dans ce chapitre, on s’intéresse à un
cadre plus général où l’on combine des fonctions estimantes d’ordre différents.

en(θ) =


∑6=
x1,··· ,xq1∈X∩Wn

f1(x1, · · · , xq1 ; θ)−
∫
W

q1
n
f1(x; θ)ρ(q1)(x; θ)dµ(x)

...∑6=
x1,··· ,xql

∈X∩Wn
fl(x1, · · · , xql

; θ)−
∫
W

ql
n
fl(x; θ)ρ(ql)(x; θ)dµ(x)

 .
où chaque fi : (Rd)qi ×Θ→ Rki est une fonction test et

∑
i ki = p. Nous montrons que

sous certaines hypothèses de régularité sur les fenêtres d’observation, les fonctions tests et
le processus ponctuel alors il existe une suite µ(Wn)-consistante de racines θ̂n de l’équation
en(θ) = 0 qui sont asymptotiquement normaux. Plus précisément, pour tout ε > 0, il
existe A > 0 tel que

P(∃θ̂n : en(θ̂n) = 0 and µ(Wn) ‖θ̂n − θ∗‖ < A) > 1− ε

pour un n assez grand, et

µ(Wn)Var(en(θ∗))−1/2Hn(θ∗)(θ̂n − θ∗)
L−→ N (0, Ip),

où Ip est la matrice identité de taille p× p et

Hn(θ∗) := 1
µ(Wn)


∫
W

q1
n
f1(x; θ∗)∇θρ(q1)(x; θ∗)Tdµ(x)

...∫
W

ql
n
fl(x; θ∗)∇θρ(ql)(x; θ∗)Tdµ(x)

 .
Chapitre 5

Dans le dernier chapitre de cette thèse, nous nous concentrons sur le problème de l’estimation
par maximum de vraisemblance de DPPs stationnaires. Si on considère une famille {Pθ, θ ∈
Θ} de DPPs continus observée sur une suite croissante de fenêtres d’observation compactes
(Wn)n>1, alors la log-vraisemblance (renormalisée) de la famille de DPPs s’écrit

ln(θ|X) = 1 + 1
µ(Wn)

(
logdet(Id−KθWn

) + logdet(LθWn
[X ∩Wn])

)
.

où LθWn
et le déterminant de Fredholm de Id−KθWn

sont deux éléments dont le calcul
fait intervenir la décomposition spectrale de la projection de K sur L2(Wn, µ). Ce n’est
pas possible numériquement pour les DPPs continus car cette décomposition n’est jamais
explicitement connue. Nous proposons dans ce chapitre une approximation asymptotique
de la vraisemblance de DPPs continus stationnaires basé sur le fait que ces DPPs ont un
noyau de la forme K(x, y) = K0(y − x) et lorsque K0 est de carré intégrable, il admet
une transformée de Fourier K̂0 prenant à valeurs dans [0, 1]. Nous montrons alors les
approximations suivantes:

LWn(x, y) ≈
∫
Rd

K̂0(t)
1− K̂0(t)

exp(2iπt · (y − x))dµ(t)
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et
1

µ(Wn) logdet(Id−K
θ
Wn

) ≈
∫
Rd

log(1− K̂0(x))dµ(x),

afin d’obtenir une approximation l̃n(θ|X) de ln(θ|X) qui ne dépend pas de la décompo-
sition spectrale des noyaux mais seulement de leur transformée de Fourier qui est connue
explicitement pour toutes les familles classiques de DPPs stationnaires utilisées en statis-
tiques spatiales.

Le défaut principal d’une approximation asymptotique de la vraisemblance est qu’elle
ignore toute sorte d’effet de bord du DPP ce qui est problématique pour les DPPs les plus
répulsifs qui subissent les effets de bord les plus forts. Afin de remédier à ce problème, nous
nous intéressons à l’idée de remplacer cette fenêtre par un tore plat afin de rapprocher les
points qui se trouvent sur des bords opposés de la fenêtre dans le but de mitiger ces effets
de bord. Nous montrons par diverses simulations que cette approximation du maximum
de vraisemblance avec la correction des effets de bord permet d’obtenir de meilleurs résul-
tats que les méthodes d’inférence plus classiques telles que l’estimation par minimum de
contraste basée sur le fonction K de Ripley ou la fonction de corrélation par paires.
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