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Résumé 

Les modèles pluie-débit sont des outils essentiels pour de nombreuses applications 

hydrologiques, notamment la prévision des crues. L’objet de cette thèse est d’examiner les 

performances d’un modèle événementiel distribué, dont l’intérêt est de résumer la 

représentation des processus à la phase de crue, et la condition initiale à un indice de 

saturation du bassin facilement observable ou accessible. Ce dernier dispense de modéliser 

la phase inter-crue, et simplifie la paramétrisation et le calage du modèle. Le modèle étudié 

combine une fonction de production type SCS et une fonction de transfert type lag and route, 

appliquées à une discrétisation du bassin en mailles carrées régulières. 

Le modèle est d’abord testé sur le bassin versant du Real Collobrier. Ce bassin 

méditerranéen est suivi depuis plus de 50 ans par l’IRSTEA, et dispose d’une exceptionnelle 

densité de mesures de pluies et de débits. Cet environnement favorable permet de limiter les 

incertitudes sur l’estimation des pluies et d’évaluer les performances intrinsèques du 

modèle.  Dans ces conditions, les crues sont bien reconstituées à l’aide d’un jeu de 

paramètres unique pour l’ensemble des épisodes testés, à l’exception de la condition initiale 

du modèle. Celle-ci apparaît fortement corrélée avec l’humidité du sol en début d’épisode, et 

peut être prédéterminée de façon satisfaisante par le débit de base ou l’indice w2 fourni par 

le modèle SIM de Météo-France.  Les performances du modèle sont ensuite étudiées en 

dégradant la densité des pluviomètres, et rendent compte du niveau de performances du 

modèle dans les cas que l’on rencontre le plus souvent. 

La variabilité spatiale des paramètres du modèle est étudiée à l’échelle de différents sous-

bassins du Real Collobrier. La comparaison a permis de mettre en évidence et de corriger un 

effet d’échelle concernant l’un des paramètres de la fonction de transfert. Les relations entre 

la condition initiale du modèle et les indicateurs d’humidités des sols en début d’épisode 

restent bonnes à l’échelle des sous-bassins, mais peuvent être significativement différentes 

selon les sous-bassins. Une seule relation ne permet pas de normaliser l’initialisation du 

modèle sur l’ensemble des sous-bassins, à une échelle spatiale de quelques km2 ou dizaines 

de km2. Dans le cas de l’indice d’humidité du sol w2, une explication possible est que cet 
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indice ne prend pas en compte suffisamment finement  les propriétés des sols. Enfin, la 

variabilité spatiale des paramètres du modèle est étudiée à l’échelle d’un échantillon d’une 

quinzaine de bassins méditerranéens de quelques centaines de km2, associés à des paysages 

et des fonctionnements hydrologiques divers. La comparaison montre qu’à cette échelle, le 

lien entre les indicateurs de saturation du bassin et la condition initiale peut rester stable 

par type de bassin, mais varie significativement d’un type de bassin à l’autre. Des pistes sont 

proposées pour expliquer cette variation. 

En conclusion, ce modèle événementiel distribué représente un excellent compromis 

entre performances et facilité de mise en œuvre. Les performances sont satisfaisantes pour 

un bassin donné ou pour un type de bassin donné. L’analyse et l’interprétation de la 

variabilité spatiale des paramètres du modèle apparaît cependant complexe, et doit faire 

l’objet du test d’autres indicateurs de saturation des bassins, par exemple mesures in situ ou 

mesures satellitaires de l’humidité des sols. 

Mots clés : Méditerranée, modèle pluie-débit, variabilité spatiale, les crues éclair 
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Abstract 

Rainfall-runoff models are essential tools for many hydrological applications, including 

flood forecasting. The purpose of this thesis was to examine the performances of a 

distributed event model for reproducing the Mediterranean floods. This model reduces the 

parametrization of the processes to the flood period and estimates the saturation of the 

catchment at the beginning of the event with an external predictor, which is easily 

observable or available. Such predictor avoids modeling the inter-flood phase and simplifies 

the parametrization and the calibration of the model. The selected model combines a 

distributed SCS production function and a Lag and Route transfer function, applied to a 

discretization of the basin in a grid of regular square meshes. 

The model was first tested on the Real Collobrier watershed. This Mediterranean basin 

has been monitored by IRSTEA for more than 50 years and has an exceptional density of 

rainfall and flow measurements. This favorable environment made it possible to reduce the 

uncertainties on the rainfall input and to evaluate the actual performances of the model. In 

such conditions, the floods were correctly simulated by using constant parameters for all the 

events, but the initial condition of the event-based model. This latter was highly correlated 

to predictors such as the base flow or the soil water content w2 simulated by the SIM model 

of Meteo-France. The model was then applied by reducing the density of the rain gauges, 

showing loss of accuracy of the model and biases in the model parameters for lower 

densities, which are representative of most of the catchments. 

The spatial variability of the model parameters was then studied in different Real 

Collobrier sub-basins. The comparison made it possible to highlight and correct the scale 

effect concerning one of the parameters of the transfer function.  The catchment saturation 

predictors and the initial condition of the model were still highly correlated, but the 

relationships differed from some sub-catchments. Finally, the spatial variability of the model 

parameters was studied for other larger Mediterranean catchments, of which area ranged 

from some tenth to hundreds of square kilometers.  Once more, the model could be efficiently 

initialized by the base flow and the water content w2, but significant differences were found 
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from a catchment to another. Such differences could be explained by uncertainties affecting 

as well as the rainfall estimation as the selected predictors. However, the relationships 

between the initial condition of the model and the water content w2 were close together for 

a given type of catchment. 

In conclusion, this distributed event model represents an excellent compromise between 

performance and ease of implementation. The performances are satisfactory for a given 

catchment or a given type of catchment. The transposition of the model to ungauged 

catchment is less satisfactory, and other catchment saturation indicators need to be tested, 

e.g. in situ measurements or satellite measurements of soil moisture. 

Keywords: Mediterranean, rainfall-runoff model, spatial variability, flash floods 
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Résumé étendu 

Introduction 

L'eau est l'un des éléments essentiels de la vie, sans laquelle les humains ne pourraient 

pas survivre. Cependant, les phénomènes d'origine hydrique peuvent également avoir de 

graves conséquences, par exemple les inondations, qui peuvent en effet endommager 

lourdement  les biens et entraîner des pertes de vies humaines. Parmi les différents types 

d'inondations, les crues éclair sont l'un des types les plus cruciaux en raison de leurs 

caractéristiques d'événement rapide. 

Les crues éclair causent de nombreux dommages aux communautés et aux 

infrastructures, et représentent la cause de la mortalité la plus élevée si on se réfère à une 

évaluation mondiale des victimes des inondations (Jonkman, 2005). En France, la région 

méditerranéenne  est la région la plus touchée par les crues éclair pour plusieurs raisons : 

les pluies très intenses et concentrées dans le temps de la Méditerranée; la petite superficie 

des bassins méditerranéens, limitée à quelques centaines de kilomètres carrés (Camarasa-

Belmonte, 2016; Creutin et al., 2009), avec des réponses hydrologiques rapides 

(généralement moins de 6 heures de retard entre l'intensité maximale des précipitations et 

le débit maximal en aval); la faible perméabilité ou la faible profondeur des sols, et les pentes 

abruptes des régions montagneuses de l'arrière-pays méditerranéen. 

Pour faire face aux inondations en général et aux crues éclair en particulier, l’une des 

méthodes les plus efficaces consiste à mettre en place des systèmes de prévision, basés sur 

des modèles pluie-débit. Les performances des modèles doivent être évaluées par leur 

capacité à simuler les crues observées, et par leur aptitude à être transposés à des bassins 

non jaugés. Ce dernier point correspond au concept de régionalisation,  proposé pour 

faciliter la prévision dans les zones pour lesquelles les données ne sont pas disponibles 

(Blöschl et Sivapalan, 1995). Ce concept exprime la possibilité de transfert d’un ou de 

plusieurs modèles particuliers de modèles pluie-débit,  du bassin versant déjà modélisé au 

nouveau bassin (c’est-à-dire celui pour lequel il n’existe pas de données observées). Le 



viii 
 

processus de régionalisation comprend deux étapes principales. La première étape consiste 

à sélectionner un modèle pluie-débit suffisamment performant  pour simuler les crues éclair. 

La recherche des meilleurs modèles est encore un objectif important en hydrologie. La 

deuxième étape consiste à comprendre la variabilité spatiale des paramètres, ce qui permet 

d’appliquer la régionalisation. Plusieurs études portant sur la régionalisation ont été 

réalisées en France (Perrin, 2000 ; Oudin et al., 2010 ; Vannier et al., 2014 ; Garambois et al., 

2016 ; Aubert et al., 2014). Notre travail vise à compléter ces travaux antérieurs en analysant 

la variabilité spatiale des paramètres de ruissellement dans les bassins versants de petites 

et de grandes superficies (de quelques kilomètres à quelques centaines de kilomètres 

carrés). 

Le bassin versant de Real Collobrier est un site idéal pour tester  les modèles pluie-débit. 

Ce bassin est étudié depuis plus de 50 ans par IRSTEA (Folton et al., 2018) et de nombreuses 

données sont directement disponibles par Internet. Dix-sept pluviomètres ont été installés 

sur le plus grand bassin versant (70 km2), et les débits ont été mesurés aux exutoires de onze 

sous-bassins, ce qui permet de comparer la calibration du modèle à l'échelle de quelques 

kilomètres carrés ou dizaines de kilomètres carrés dans une zone géographique réduite et 

d'évaluer la variabilité spatiale des paramètres. Dans cette étude, nous avons retenu 4 sous-

bassins versants: Pont de Fer (70 km2), Rimbaud (1,5 km2), Maurets (8,4 km2) et Malière 

(12,4 km2) pour étudier également la variabilité spatiale des paramètres du modèle. Ces 

sous-bassins ont fait l’objet de nombreuses études et ont permis de mieux comprendre ce 

qui a permis de répondre à de nombreuses questions. (Taha et al., 1997 ; Gresillon et al., 

1995) 

Les performances du modèle peuvent être soigneusement estimées, tant en termes de 

capacité à reproduire les crues qu'en termes de variabilité spatiale des paramètres. En outre, 

les performances du modèle peuvent également être évaluées pour différentes densités de 

pluviomètres, ce qui donne une estimation des poids des incertitudes liées aux précipitations 

et des limites du modèle. L'objectif de cette thèse était d’appliquer un modèle pluie-débit 

distribué spécifique pour étudier les points suivants: (i) la capacité d'un modèle 

événementiel distribué,  à simuler les crues éclair en climat méditerranéen, (ii) les règles de 

variabilité spatiale et temporelle des paramètres du modèle (iii) la capacité de modèle à être 

appliqué à des bassins non  jaugés. L’étude a porté non seulement sur les bassins versants 
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de Real Collobrier, mais également sur d’autres bassins versants de la Méditerranée (Figure 

1), afin d’envisager une autre échelle de bassins dont la superficie couvre des centaines de 

kilomètres carrés et d’obtenir un échantillon cohérent de bassins pour la comparaison des 

performances et des paramètres du modèle. Sept bassins versants supplémentaires ont été 

étudiés (Gardon à Anduze, Ardèche à Vogüe, Allier à Langogne, Tarnon à Florac, Vidourle à 

Sommières, Verdouble à Tautavel, Aille à Vidauban). Des données sur ces bassins ont déjà 

été traitées dans la base de données de bassins versants de la plate-forme de modélisation 

ATHYS (www.athys-soft.org). 

Différents modèles ont été testés en zone méditerranéenne : TOP MODEL (Piñol et al., 

1997, Blöschl et al., 2008; Durand et al., 1992; Saulnier et Le Lay, 2009); MARINE (Estupina-

Borrell et al., 2006; Roux et al., 2011). Le modèle événementiel distribué SCS-LR a été 

sélectionné dans notre étude, en raison de son caractère parcimonieux et de sa structure 

extrêmement simplifiée. 

 

 

Figure 1 : Localisation des bassins versants sélectionnés dans la région Méditerranéenne 

 

http://www.athys-soft.org/
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Principaux résultats 

Calibration du modèle SCS-LR sur le bassin du Real Collobrier à Pont de 

Fer 

Une étude de sensibilité préalable montre que le modèle SCS-LR comporte 2 paramètres 

principaux : S, la capacité maximale de stockage en eau au débit de l’épisode, et K0 un 

coefficient réglant la diffusion de la crue au cours du transfert (ou dans certains cas, V0 la 

vitesse de transfert). À Pont de Fer, la calibration a été effectuée sur la base de 34 événements 

pluie-débit. Les paramètres du modèle ont été optimisés pour chaque événement. Avec les 

paramètres optimisés, l’erreur commise sur la simulation des débits variait de 0.27 à 0.99 au 

sens du critère de Nash-Sutcliffe (NS) pour l’ensemble des événements (médiane = 0.96, 

quartile inférieur = 0.87). Les plus faibles valeurs de NS correspondaient à des événements 

se produisant dans les conditions de sol initiales les plus sèches. Dans ces cas, les valeurs de 

faible débit ont été surestimées, alors que les valeurs de débit de pointe ont été sous-

estimées. 

Relation avec les conditions initiales 

Après la calibration du modèle, il est apparu que S était le paramètre le plus variable et le 

plus influent pour les simulations. S correspond au déficit en eau au début de l’événement, 

de sorte qu’il devait être fortement dépendant des événements précédents et de l’état initial 

de saturation du sol. Nous avons donc essayé de trouver des relations entre S et deux indices 

supposés exprimer la teneur en eau initiale: le débit de base et la teneur en eau volumétrique 

w2 au début de l’événement simulé. Pour le bassin du Real Collobrier à Pont de Fer, les deux 

indices ont donné lieu à une corrélation relativement forte avec la rétention d’eau maximale, 

avec un coefficient de corrélation R2 =0.85 entre S et log10Qb et 0.77 entre S et w2.  

Score prédictif du modèle 

Ces relations peuvent être utilisées pour évaluer la précision réelle du modèle en mode 

projet. La précision réelle du modèle doit en effet être estimée par le NS calculé avec les 

valeurs prédites de S, au lieu des valeurs optimisées de S. On calcule dans ce cas de NS 

prédictif (pour tous les événements, la valeur médiane de K0 a été utilisée). Le NS prédictif 

médian était de 0.83 en utilisant la relation entre S et le débit de base et de 0.77 en utilisant 
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la relation entre S et la teneur en eau w2 (au lieu 0.94 pour le NS médian calculé avec les 

valeurs optimales de S et de la valeur médiane de K0). 

Incertitude des précipitations 

De plus, le grand nombre de postes pluviométriques installés sur le Real Collobrier nous 

a permis de tester l’effet de la densité de pluviomètres sur la calibration et la qualité du 

modèle. Les résultats ont montré que la réduction de la densité des pluviomètres influait à 

la fois sur la fonction d’erreur NS du modèle et sur l‘évaluation des paramètres du modèle. 

Lorsqu’on utilise un seul pluviomètre pour la calibration du modèle, les estimations de S 

peuvent varier de 250 à plus de 600 mm pour les sols initialement secs et de 50 à plus de 

150 mm pour les sols initialement humides, en fonction du pluviomètre sélectionné. Les 

scores prédictifs NS du modèle évoluent entre  0.44 et 0.81 lorsqu’on ne considère qu’un seul 

des 17 pluviomètres sur le bassin. 

Calibration du modèle sur les sous-bassins du Real Collobrier 

Le modèle a ensuite été calibré sur trois sous-bassins supplémentaires du Real Collobrier : 

Rimbaud, Maurets, Malière.  Les performances du modèle sont légèrement moindres que sur 

le bassin du Real à Pont de Fer, mais restent comparables. Les valeurs médianes de S 

diminuent avec les coefficients de ruissellement médians. On note toutefois que le bassin de 

Maurets présente un coefficient médian supérieur aux autres bassins et un S médian 

également supérieur. Les régressions entre S et les descripteurs w2 et débit de base sont très 

voisines pour Pont de Fer et Rimbaud d’une part, et Maurets et Malière d’autre part. Les 

différences de Rimbaud avec Malière et Maurets pourraient être dues au fait que Rimbaud 

est représentatif de versants amont pentus productifs, alors que Malière et Maurets  

comprennent à la fois les mêmes versants pentus que Rimbaud à l’amont, et des unités peu 

productives à l’aval. La variabilité spatiale du paramètre K0 a été attribuée à un effet d’échelle 

affectant la version initiale du modèle, qui a été corrigé. 

Variation spatiale du paramètre S dans les bassins méditerranéens  

La calibration du modèle a finalement été étendue à des bassins méditerranéens de plus 

grandes superficies. La valeur médiane de S variait d'un bassin à l'autre (Figure 2). La valeur 

la plus élevée de S appartenait à l’Allier, alors que le bassin versant d’Aille avait la valeur la 

plus faible. L'une des raisons de la valeur élevée du paramètre S dans le bassin de l'Allier 
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pourrait être due au fait que les sols de ce bassin sont très perméables. Ils peuvent donc 

absorber une forte proportion de précipitations et alimenter des aquifères profonds. Le 

bassin versant de l'Aille est un bassin, dont la géologie est différente de celle des autres: on 

sait que ces grès du Permien génèrent des sols peu perméables de couleur rouge, comme 

dans la région de Lodève et Salagou, dans le département de l'Hérault (Brunet et Bouvier, 

2017). 

 

Figure 2 : Variabilité du paramètre S sur 11 bassins versants 

La comparaison de la valeur S médiane et du coefficient de ruissellement médian pour 

chaque bassin montre cependant que ces variables sont peu corrélées. Cela pourrait 

s'expliquer par le fait que le coefficient de ruissellement intègre la réponse rapide et la 

réponse lente du bassin, tandis que S n'exprime que la réponse rapide du bassin. Par 

exemple, les bassins versants de l’Allier et de l’Aille ont un coefficient de ruissellement élevé 

similaire, mais pour des raisons différentes: les sols du bassin de l’Allier étaient supposés 

avoir une grande capacité de stockage de l’eau, mais aussi une grande capacité à produire de 

l’écoulement retardé par drainage des sols, alors que les sols peu perméables du bassin de 

l’Aille génèrent principalement du ruissellement superficiel ; ils ne peuvent stocker  
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beaucoup d'eau en raison de leur imperméabilité, et par conséquent ne libèrent que peu 

d’écoulement retardé. Ceci souligne le rôle de la contribution des écoulements souterrains 

dans la simulation des débits. Nous avons donc conclu que l’interprétation S devait tenir 

compte du type de ruissellement dans le bassin versant. 

Afin de prendre en compte des facteurs secondaires spécifiques sur les bassins, 

notamment les conditions initiales de saturation des sols et leur impact sur la variabilité 

spatiale de S, nous avons ensuite considéré la variabilité spatiale des régressions entre S et 

les prédicteurs de la saturation des sols, débit de base et indice Hu2 (équivalent à w2). 

Indice Hu2/w2 

 Les régressions entre les indices S et Hu2 de tous les événements sont significatives pour 

chaque bassin versant. Pour preuve, 9 des 11 bassins varient un coefficient de corrélation R2 

supérieur à 0.5. La comparaison des droites de régression pour l’ensemble des bassins 

(Figure 3) montre des divergences de pentes et d’intercepts. Les régressions semblent être 

divisées en 2 groupes: 

Allier, Maurets et Malière ont  des pentes similaires, plus fortes que les autres. Les 

intercepts sont cependant différents. 

Les autres bassins versants ont des pentes similaires, avec toutefois des intercepts 

différents, la valeur minimale étant obtenue pour le bassin de l’Aille, et la valeur maximale 

pour le bassin de l’Ardèche. 
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Figure 3 : Comparaison des régressions S-Hu2pour l’ensemble des bassins versants. 

 

Débit de base 

Le débit de base peut être considéré comme un autre indice pour expliquer la variabilité 

des événements du paramètre S. Les corrélations entre S et le débit de base sont 

généralement significatives, mais médiocres dans certains cas, notamment le bassin du 

Vidourle (R2=0). Les meilleurs scores ont été obtenus pour les bassins versants du Real 

Collobrier (0.61 à 0.86), alors que les autres bassins versants de la Méditerranée avaient un 

R2 inférieur à 0.5. La comparaison des régressions sur l’ensemble des bassins (Figure 4) 

montre que les relations peuvent être très différentes d’un bassin à l’autre, et ne font pas 

apparaître un schéma régional (même si Allier, Gardon et Ardèche sont géographiquement 

proches et montrent des régressions similaires). Pour tenir compte des différentes 

superficies des bassins, le débit de base a été rapporté à la superficie du bassin, et désigne 

donc le débit spécifique de base.  
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Figure 4 : Comparaison des régressions S-Qb pour l’ensemble des bassins versants  

 

D'autres tentatives ont été faites pour utiliser un débit de base normalisé en divisant par 

le débit de base moyen, sans pour autant permettre de faire clarifier le schéma régional. 

 

Discussion et conclusion 

Le présent travail a permis une analyse détaillée des performances du modèle SCS-LR sur 

un ensemble de bassins méditerranéens, tant sur le plan de la capacité du modèle à simuler 

les crues que sur la variabilité spatiale des paramètres du modèle. Pour répondre aux 

questions énumérées dans les parties objectives du chapitre 1, nous présentons ici les 

principales conclusions et résultats, en premier lieu, pour le bassin versant de Real 

Collobrier: 

1) Les résultats de notre étude ont prouvé que le modèle SCS-LR pouvait simuler une crue 

éclair en Méditerranée avec une grande précision. Le modèle ne nécessite qu’un petit 

nombre de paramètres et peut être calibré avec des données facilement accessibles. La 

calibration du modèle sur le Real Collobrier et d'autres bassins méditerranéens a donné des 

résultats positifs avec des valeurs élevées de NS ainsi que des valeurs élevées de R2 pour la 
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corrélation entre S et les prédicteurs de la saturation initiale du bassin dans la plupart des 

cas. 

2) les données de précipitations denses sur le  Real Collobrier, nous ont permis de tester 

l’effet de la densité des pluviomètres sur les résultats de la simulation. Les résultats ont 

montré que la réduction de la densité des pluviomètres influait à la fois sur la régression avec 

les conditions initiales et sur les paramètres calibrés du modèle. La diminution du nombre 

de pluviomètre a entraîné le changement des paramètres du modèle et la diminution du 

coefficient de corrélation R2. Ce résultat conduit à la conclusion que la comparaison des 

performances du modèle d’un bassin à l’autre peut être faussée lorsque les densités 

pluviométriques sont différentes 

3) La variabilité spatiale du paramètre de transfert K0 dans le modèle initial était 

initialement due à un effet d’échelle. La solution proposée a consisté à modifier la relation 

entre le temps de propagation Tm et le temps de diffusion Km du modèle Lag et Route. La 

variabilité spatiale de K0 apparaît ainsi considérablement diminuée, et peut finalement être 

reliée à la pente du bassin versant. 

4) pour les bassins versants du Real Collobrier, la variabilité spatiale du paramètre de 

production S dans a été jugée cohérente avec la variabilité spatiale du coefficient de 

ruissellement. Cette relation n’a pas été vérifiée pour tous les bassins méditerranéens, et a 

conduit à penser que l’interprétation de S est dépendante du type de ruissellement généré 

dans le bassin. 

5) La variation spatiale des régressions entre S et Hu2/w2 (ou débit de base) a conduit à 

la conclusion qu'il était difficile de régionaliser ces régressions. Cet échec peut trouver son 

origine dans de multiples raisons : 

- les incertitudes associées au prédicteur Hu2/w2, qui pourraient être dues au fait que les 

mailles  du modèle SIM sont trop grandes pour représenter les spécificités de petits 

bassins, ou au fait que les propriétés du sol utilisées dans SIM ne sont pas vraiment 

appropriées ou suffisamment précises pour représenter les propriétés réelles du sol. 

- La mauvaise qualité de la mesure des débits de base, compte tenu de l’éventualité de 

mouvements des lits des rivières et de détarages fréquents de la courbe d’étalonnage des 

débits en basses-eaux, que des jaugeages trop peu nombreux ne permettent pas de suivre. 
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- De même, l’extrapolation de la courbe de tarage vers les débits de hautes-eaux est 

susceptible de générer sur certains bassins une forte incertitude, qui affecte directement 

l’estimation du paramètre S. Dans certains cas en effet (Gardon et Ardèche, par exemple), 

seulement quelques jaugages ont été utilisés pour établir la courbe de tarage. 

- La raison peut aussi  être liée aux incertitudes des précipitations. À l'exception du Real 

Collobrier, les autres bassins n'avaient pas une densité très élevée de pluviomètres. La 

variation de toutes les pentes et intercepts des régressions S-Hu2 ou S-Qb pour les bassins 

méditerranéens est  assez similaire à celle des régressions établies en n’utilisant qu’un 

seul pluviomètre sur le Real Collobrier à Pont de Fer. 

- La calibration des paramètres secondaires du modèle peut aussi être un problème. 

L’utilisation de Ia/S = 0.2, l’utilisation de paramètres constants, l’utilisation de S uniforme 

pour tout le bassin peuvent également conduire à une erreur lors de la calibration du 

paramètre S, puis affaiblir la corrélation entre S et les conditions initiales. 

 

En conclusion et perspective, la calibration du modèle SCS-LR à l’aide d’observations 

pluies et débits permet de simuler les crues méditerranéennes avec une efficacité qui 

dépend de la densité des postes pluviométriques présents sur le bassin. La variabilité 

spatiale des paramètres du modèle reste difficile à interpréter, dans l’état des 

connaissances que nous avons des pluies, des débits et des caractéristiques hydrologiques 

des bassins versants. Les pistes d’amélioration consistent à tester de nouveaux 

indicateurs ou de mieux caractériser les propriétés des sols pour estimer la saturation 

initiale du bassin, à intégrer l’apport du radar météorologique pour la mesure des pluies, 

et à tester différentes spatialisations du paramètre S au sein des bassins.  
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List of abbreviations 

 

Abbreviation Full name 

ATHYS  L'ATelier HYdrologique Spatialisé 

CLC  Corine land cover 

CN  Curve Number 

DEM Digital Elevation Model 

EM-DAT  Emergency Events Database 

IRD  Institut de Recherche pour le Développement 

IRSTEA Institut National de Recherche en Sciences et 
Technologies pour l’Environnement et l’Agriculture 

LR   Lag & Route 

NSE  Nash–Sutcliffe Efficiency 

RR  Rainfall Runoff 

SCHAPI  Service Central d'Hydrométéorologie et d'Appui à 
la Prévision des Inondations 

SCS  Soil Conservation Services – Lag & Route 

SIM SAFRAN-ISBA-MODCOU 

UT  Universal Time 
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General introduction 

Water is one of the essential elements of life, which without it humans cannot survive. 

However, the water-originated phenomena can also cause huge consequences, e.g. floods. 

Indeed, floods can severely damage both human lives and properties. This natural disaster 

is also inevitable, as currently there has not been any perfect way yet to prevent floods from 

occurring. Among different types of floods, flash flood is one of the most crucial types 

because of its characteristics of fast occurring. 

According to the USA National Weather Service, “Flash flood is a flood caused by heavy or 

excessive rainfall in a short period of time, generally less than 6 hours. Flash floods are 

usually characterized by raging torrents after heavy rains that rip through river beds, urban 

streets, or mountain canyons sweeping everything in front of them. They can occur within 

minutes or a few hours of excessive rainfall. They can also occur even if no rain has fallen, 

for instance after a levee or dam has failed, or after a sudden release of water by a debris or 

ice jam” (https://www.weather.gov/mrx/flood_and_flash)  

Flash flood causes many damages to the communities and the infrastructure (Gruntfest 

and Handmer, 2001). This type of natural phenomena has been shown to cause the highest 

mortality in a global assessment of flood-related casualties (Jonkman, 2005). In order to deal 

with floods in general and flash floods in particular, one of the most effective methods is to 

build the prediction systems. Many efforts have been invested in generating the database for 

flood researches and prediction. For instance, the Hydrometeorological Data Resources and 

Technologies for Effective Flash Flood Forecasting (HYDRATE) project was established in 

2006 to understand better the hydro-meteorological processes leading to flash floods, which 

involves a multidisciplinary team of 17 organizations from 10 EU countries, China, USA, and 

South Africa. This project was also associated with the publicly accessible European Flash 

Flood Database, which aggregated all hydrometeorological data from the project (Borga et 

al., 2011). Moreover, the Hydrological Cycle in Mediterranean Experiment (HyMeX) program 

is a 10-year experimental effort (from 2010 to 2020) aiming to improve our understanding 

of the Mediterranean water cycle and its variability at different scales, which specially 

https://www.weather.gov/mrx/flood_and_flash
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focuses on hydro-meteorological  extreme events and the associated social and economic 

vulnerability in the Mediterranean region (Drobinski et al., 2013). This program involves 

more than 400 scientists working in atmospheric sciences, hydrology, oceanography and 

social sciences from over 20 countries. An important part of the Hymex project - the 

Cévennes-Vivarais Mediterranean Hydro-meteorological Observatory aims to improve the 

knowledge and capabilities of hydrological risk prediction, which involves scientists from 

various disciplines, including meteorology, hydrology, geophysics, geography, applied 

mathematics and social sciences (Boudevillain et al., 2011). In addition, the EuroMedeFF 

dataset has collected flash flood hydrometeorological and geographical data, including high-

resolution radar rainfall estimates and flood hydrographs from 49 high-intensity flash floods 

in the western and central Mediterranean, the Alps region and Continental Europe 

(Amponsah et al., 2018).  

In spite of many efforts, current knowledge in flash flood prediction and risk assessment 

are still limited, which is mainly due to the lack of effective monitoring. Another 

inconvenience is the fact that the rain and stream gauges can be damaged when floods 

happen, which causes difficulties in maintaining the continuity of collected data, thus 

affecting the performance of flood simulating model. Moreover, the most vulnerable areas 

by flash floods are often where there is no data observed.  

Thus, the concept of regionalization was proposed to help the prediction in the areas 

without available data (Blöschl and Sivapalan, 1995). This concept relies on the transfer of 

one or more particular parameters flood models from the catchment that have been already 

modeled to the new catchment (i.e. the one that lacks observed data). The regionalization 

process consists of two main steps. The first step is selecting a flood model which is sufficient 

for flash flood prediction. The possibility of improving this model should not be neglected. 

The second step is applying the selected model to at least one catchment to test their 

performance. The most important thing is the understanding of the variability of the 

parameters, thereby we can apply the regionalization. Several studies dealing with 

regionalization have been performed in France : Perrin, 2000 aimed to automatically 

calibrate several models over more than 1000 catchments, and relate the parameters to the 

catchments main characteristics (Perrin, 2000);  Oudin et al., tested the performances of 

several regionalization methods such as geographical proximity, hydrological similarity and 
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multi-linear relationships with the catchment characteristics (Oudin et al., 2010); Vannier et 

al., dealt with the regionalization of the recession curves in Mediterranean catchments 

(Vannier et al., 2014); Garambois et al. compared the regionalization methods used by Oudin 

in a small set of Mediterranean catchments (Garambois et al., 2016). Besides, The SHYREG 

method (Aubert et al., 2014) which is a flood frequency analysis method was applied to 1605 

basins in the French metropolitan territory for flood risk management. Our work intends to 

complete these previous works by analyzing the spatial variability of the runoff parameters 

in catchments of small and large areas (from a few to hundreds of square kilometers).  

Several models have been developed to study flash floods at various scales which was 

reported in (Javelle et al., 2018; Roux et al., 2011). However, there is still a debate on the 

question of which model is preferable, and which is not: continuous or event-based, 

empirical or physically-based, lumped or distributed models. As pointed out by (Oudin et al., 

2010), a major concern about regionalization is due to equifinality of the parameters 

(Bardossy and Singh, 2008), that is a multiplicity of parameters satisfying to the goodness of 

the model. Equifinality can result from over parametrization of the model, thus it will be 

preferable to use parsimonious models when aiming to regionalization objectives. In 

addition, many uncertainties affect the input data used by the rainfall-runoff models, and can 

possibly originate artificial biases in the estimation of the model parameter, and their 

comparison from a catchment to another. So that each model would have to be tested and 

evaluated in highly documented sites where input and output data are observations are 

available and reliable, and where the uncertainties can be reduced as far as can be. It allows 

estimating in the one hand the actual performances of the model, and in the other hand 

simulating the impact of rainfall uncertainties for lower rain gauges density, which are 

representative of most of the catchments.  

As a matter of fact, The Real Collobrier catchment is such a convenient site for modeling 

workbench. This catchment has been studied for more than 50 years by IRSTEA (Folton et 

al., 2018), and a lot of data are directly available from a website. Seventeen rain gauges have 

been settled over the larger catchment (70 km2). The discharges have been monitored in 

eleven sub-catchments, which allows comparing the model calibration at the scale of some 

square kilometers or dozen of square kilometers in a reduced geographical area and assess 

the spatial variability of the parameters. In such case, the performances of the model can be 
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carefully estimated, as well in terms of ability to reproduce the floods as in terms of applying 

the model in ungauged catchments. In addition, the performances of the model can also be 

compared for different dense rain gauges device, which gives an estimation of the weights of 

the rainfall uncertainties and the limitations of the model. The objective of this Ph.D. was to 

study a specific event-based distributed model in firstly the Real Collobrier to answer the 

following questions (i) how appropriate is an event-based distributed, but parsimonious 

model for flash flood prediction in Mediterranean climate, (ii) what is the impact of the 

uncertainty to the model calibration and (iii) how to explain the variability of these model’s 

parameters? The study dealt not only with the Real Collobrier catchments but also with other 

Mediterranean catchments, in order to consider another scale of catchments of which area 

covers hundreds of square kilometers and to obtain a consistent sample of catchments for 

the comparison of the model performances and parameters. 7 additional catchments have 

been considered (Gardon at Anduze, Ardèche at Vogüe, Allier at Langogne, Tarnon at Florac, 

Vidourle at Sommières, Verdouble at Tautavel, Aille at Vidauban. Data of these catchments 

have already been processed in the catchment database of the ATHYS platform www.athys-

soft.org.   

To fulfill the above objectives, the works are defined and described in this Ph.D. document 

is the composition of the following chapters: 

Chapter 1 is a review of the literature and theoretical concepts on which the Ph.D. thesis 

is based. It introduces the water cycle’s processes, flood processes and the main factor that 

can affect flood. This chapter also mentions about Mediterranean flash floods and these 

consequences. Moreover, the hydrological model is described: the rainfall-runoff 

classification, modeling process and examples of rainfall-runoff model dealing with 

Mediterranean flash floods. 

Chapter 2 provides the methodology of a parsimonious event-based rainfall-runoff model 

Soil Conservation Services – Lag & Route (SCS-LR) which are selected in the study. It also 

brings out the sensitivity test, the method of parameters assessment of the model.  

Chapter 3 presents the Real Collobrier catchment and the results of the calibration of the 

model on the Pont de Fer sub-catchment. The chapter deals with various aspects: how the 

initial condition of the event-based model has to be set for each event, what is the actual 

performance of the model when using the predicted initial condition, what are the effects of 

http://www.athys-soft.org/
http://www.athys-soft.org/
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a reduction of the rain gauge density on the performances of the model as well as the 

parameters assessment.  

Chapter 4 presents the spatial variability of the parameters at the sub-catchment scale. 

The results of the sub-catchments in Real Collobrier such as Pont de Fer, Rimbaud, Maurets, 

Malière are used. The range of area allows to test the hypothesis if the parameters are stable 

or not at this scale of the catchment, and if not, how can be explained the differences, for 

example in terms of numerical effects or hydrological effects.  

Chapter 5 described the spatial variability of the parameters of the models at a higher 

scale, between Mediterranean catchments of which area extends from tenth to hundreds of 

square kilometers. The possibility of using predictors for applying the model in ungauged 

catchments is judged.  

The document ends with a general conclusion and further perspectives. 
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1 Introduction  

This chapter presents the theoretical background and state of the art underpinning this 

work. The issue of the hydrological processes is reviewed in Section 1.1. In Section 1.2, the 

overview of the flood is indicated with the flood processes and the main factors affecting 

flood process. Then, the part of the model in general, hydrological model, model’s operation 

and the scaling issues and spatial-temporal variabilities is presented in Section 1.3. The 

following Section 1.4 reviews the knowledge about Mediterranean floods, as well as several 

previous studies about floods modeling in this region and the concept of regionalization. 

1.1. Theoretical background: hydrological 
processes in the drainage area 

It has been well-known that the total mass of water on Earth does not significantly change 

over time (Skinner and Murck, 2011). However, the distribution of water into different forms 

and reservoirs is greatly variable, which mostly depends on the changes in climatic 

conditions. Indeed, water continuously moves and transforms between different reservoirs 

on Earth, including rivers, oceans, and atmospheres, via different physical processes, at the 

same time it transforms between different physical forms: liquid, solid and vapor. The 

continuous movement of water around the surface of the Earth is described by a concept 

called the water cycle. The water cycle involves the exchange of mass and energy and is also 

essential for the maintenance of all lives and ecosystems on this planet. 
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Figure 1.1: The water cycle on the catchment scale (From Winkler et al. 2010). 

 

The different physical processes involved in the water cycle include precipitation, 

interception, evapotranspiration, condensation, infiltration, and percolation (Figure 1.1). 

Firstly, precipitation is the falling of any product of the condensed atmospheric water vapor 

under gravity (Deodhar, 2008), which occurs under the saturation of the atmosphere portion 

with water vapor. Precipitation can be divided into different categories based on the state of 

the water that falls off, including rain, drizzle, and snow (UNESCO and World Meteorological 

Organization, 1999). There are three mechanisms in which precipitation can occur, which 

differs in the direction of air movement, intensity, and duration, including convective, 

stratiform and orographic rainfall (Anagnostou, 2004; Dore et al., 2006).  

However, only a part of precipitated water can reach the ground directly, while the rest is 

intercepted by vegetation and other surfaces. Interception is the interruption of movement 

of water from precipitation to stream channels, and it slows down the effect of precipitation. 

The precipitation that reaches the ground is called net precipitation. The part of the water 

that does not reach the ground directly can subsequently slide or drip from these surfaces to 

the ground, or it can be lost through evaporation. A part of water can fall to the forest floor 
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(through fall), run down branches and stems (stem flow), be absorbed by the vegetation, or 

remain on the surface of the foliage and branches and evaporate after the storm. The rain 

interception depends on storm intensity and duration, weather conditions (wind speed, air 

temperature, humidity), and amount and type of vegetation present (Crockford and 

Richardson, 2000). 

The amount of precipitated water that reaches the ground directly or indirectly can be 

infiltrated into the soil. Infiltration is the movement of water through the boundary between 

the atmosphere and the soil, which is largely dependent on the soil surface conditions 

(Maidment, 1993). In particular, the porosity of the soil and the permeability of the soil 

affects the transfer of water. The infiltration rate also depends on the impact of the 

raindrops, the texture and structure of the soil, the initial soil moisture content. The 

maximum rate at which water can infiltrate into the soil is called the infiltration capacity 

(Winkler et al., 2010).  

Infiltrated and stored water in the soil can later become subsurface runoff and contribute 

to streamflow. Streamflow is the flow or discharge of water along a defined natural channel. 

Streamflow is generated by a combination of runoff from the upstream watershed and return 

flow from the groundwater aquifer. Streamflow reflects the volume of the supplying water 

to a watershed (can be accounted by precipitation, evapotranspiration, infiltration) and also 

changes in the volume of other storages (lakes, aquifers, soil moisture). The streamflow rate 

at a particular point in time and space integrates all the hydrologic processes and storages 

upstream of that point. It depends on the sequence and size of rainfall events; seasonal 

distribution and nature of precipitation; the extent, type, and transpiration of covered 

vegetation; the soil infiltration capacity; and the topography of the watershed. (Maidment, 

1993). 

Infiltrated water can also percolate into deeper soil and rock layers through different 

layers of the soil due to gravity and capillary forces, then go to the groundwater. 

Groundwater is the water in the zone of saturation and completely fills the pores (Meinzer, 

1923). Groundwater not only contributes to the stream base flow but also buffers peak flow 

when the bank sediments are sufficiently permeable (Winter et al., 2003). Depending on the 

relative water level, water can move from the groundwater to the stream or vice versa. The 

discharge of groundwater moving to the streams is commonly called base flow. This type of 
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flow occurs during the dry time of the year without specific storm events and seasonal 

phenomena. 

The other part of precipitated water which is not infiltrated can directly contribute to 

stream flow or can also be stored in various type of water bodies such as lakes, swamps, 

ponds, and icebergs. A part of groundwater can also be considered as stored water. 

The water which is infiltrated, stored, intercepted, and free in streamflow can return to 

the atmosphere by evapotranspiration in the form of water vapor. Evapotranspiration 

contains two main processes, evaporation and transpiration. Evaporation is the movement 

of water from intercepted rain and snow, as well as water bodies such as ponds, lakes, 

streams and even bare soil. Different important conditions are required for evaporation 

including (i) the availability of water, (ii) the humidity at the evaporative surface must be 

higher than that of the surrounding air, (iii) the energy to evaporate the water and (iv) the 

movement, or transfer, of water vapor away from the evaporative surface (Winkler et al., 

2010). Therefore, the evaporation rate will increase when factors that induce those 

conditions occur, such as increasing solar radiation, air temperature, wind speed and 

decreasing atmospheric humidity (Condie and Webster, 1997). Transpiration accounts for 

the transfer of water from plant leaves through the stomata. The rate of this process depends 

strongly on the stomata, thus different plant species have different ability to regulate water 

loss. For example, trees usually have higher stomatal resistance to water loss than shrubs 

and grass (Kelliher et al., 1995). It is worth to note that transpiration rates decrease during 

rainfall due to the decreased vapor pressure gradient. 

The amount of water that comes back to the atmosphere in the form of vapor can 

transform back to the liquid state by a process called condensation, forming dew, fog or 

clouds (McNaught and Wilkinson, 1997). Condensation occurs when the temperature of the 

air decreases or the amount of vapor increases up to its saturation points. This process 

releases an amount of heat which is previously required for evaporation. The most active 

particles forming clouds are sea salts, the atmospheric ions caused by lightning and the 

combustion products containing sulfurous and nitrous acids. These condensed water waits 

for the ideal condition to contribute to the water cycle as precipitation. 
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1.2. Overview of floods 

1.2.1. Floods process 
Extreme hydrological phenomena, including floods, are partly caused by the unequal 

geographical and geological distribution and movement of water. To decrease the damage of 

flood to humanity, the understanding of flood processes is very important. Initially, the 

definition of flood is expressed as the temporary rise in the level of a river. The flooding 

process can be explained below: 

There are several mechanisms involved in the generation of runoffs (Figure 1.2). Each 

mechanism responds differently to rainfall in the flood variables: runoff volume, peak 

discharge and the timing of stream flow’s contributions in the channel. Climate, geology, 

topography, soil characteristic, vegetation, land use, and the intensity of events can also 

affect the relative dominance of each process. 

 

Figure 1.2: Classification of runoff generation mechanisms (Beven, 2012) 
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1.2.1.1. Infiltration excess overland flow 

Firstly, we have to mention the infiltration excess overland flow mechanism (Figure 1.3a). 

This mechanism is also called Hortonian overland flow because it was referred to by Robert 

E. Horton, one of the quantitative hydrology’s founding father in 1933. It was claimed that 

there is a maximum limiting rate for the soil in a given condition can absorb surface water 

input, so-called infiltration capacity. The excess water of the surface water input firstly 

accumulates on the soil surface and fills small depressions when it exceeds infiltration 

capacity. This part of water will evaporate or infiltrate later, thus it does not contribute 

directly to the overland runoff. However, if the surface water input continues to increase, the 

depression storage will also be filled, and the amount of water accumulated on the soil will 

start moving downslope, contributing to the overland runoff. 

Infiltration excess runoff does not necessarily happen over a whole drainage basin area. 

Due to the spatial variability of the rainfall and soil properties, the area which contributed to 

infiltration excess runoff can only be a small part of the watershed (Betson, 1964). This 

concept is known as the partial-area infiltration excess overland flow. 

The infiltration excess overland flow can occur anywhere that the water input excesses 

the infiltration capacity, most frequently in the area with having thin of devoid of plant cover. 

We can also see this process where the soil has been compacted or topsoil removed and in 

an urban area. 

1.2.1.2. Saturation excess overland flow 
In the place where infiltration capacity is very high, and the water input does not exceed 

infiltration capacity, overland flow can still occur by the water input on the area that is 

already saturated. Such mechanism is referred to as saturation excess overland flow (Figure 

1.3b). This mechanism occurs when the infiltrated water has completely saturated the soil, 

or due to the rising of the water table, which make all surface water input become overland 

flow runoff.  

Saturation excess overland flow is not restricted to near stream saturated zone although 

it is the most critical area. Saturation excess overland flow can also occur: 

 where soil layers conducting subsurface flow are thin 
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 where there are slope concavities which subsurface flow converge, thus water flows in 

faster than it can be transmitted downslope 

 where the hydraulic gradient that induces subsurface flow in upslope is greater than that 

inducing downslope transmission 

 where percolated water accumulates above the low-conductivity soil layers, forming 

perched zones of saturation due to decreasing hydraulic conductivity gradually with 

depth 

1.2.1.3. Subsurface flow 
The subsurface flow was mentioned above in the part of saturation excess overland flow. 

So, what is subsurface flow?  Subsurface flow comes from the subsurface hydrologic 

processes, which are very complicated and unable to observe directly.  The subsurface 

hydrologic processes are driven by many factors that influence the paths and rates of water 

movement. Therefore, subsurface flow is the major source of uncertainty in hydrologic 

models (Beven, 2012). 

Subsurface flow occurs when water moves down a hillslope through soil layers or 

permeable bedrock to contribute to the runoff (Figure 1.3c-g). This process requires that the 

hydraulic lateral conductivity of the environment is larger than the vertical conductivity. 

Besides, subsurface flow is favored by the presence of impermeable shallow soil layers.  

Subsurface flow can play the key role of flood runoff in humid environments and steep 

terrain with conductive soils (Anderson and Burt, 1990). We can see the subsurface flow in 

most upland terrain, and it may be dominant in humid regions with vegetal covering and 

well-drained soils. Meanwhile, this process can occur only under certain extreme conditions 

in lowland regions and in drier climates, for example, under high rainfall and high antecedent 

soil moisture.  
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Figure 1.3: (Rinderer et al., 2012) Different types of surface and subsurface runoff processes. (a) 
Overland flow is generated when the infiltration capacity of the soil layers at or near the surface 
is exceeded; (b) Overland flow can also be generated when the storage capacity of the soil layers 
at or near the surface is exceeded, (c) Lateral subsurface runoff increases when ground water rises 
into more transmissive soil layers, (d) Groundwater table tends to be low and soil water can 
percolate deep down into the soil or bedrock when the soil has coarse and highly permeable 
texture, (e) The flow rates toward the nearest stream channel can be high and subsurface runoff 
is generated when there are horizontal macropores, (f) A perched water table will form leading 
to lateral subsurface flow within the saturated soil layer when there exists water restricting layer 
in the soil profile, (g) lateral subsurface flow can also occur when there are water-restricting layers 
at the soil-bedrock interface.  

The subsurface flows can accompany these mechanisms: 

Piston effect: The piston effect assumes that water that falls on a slope is transmitted 

downstream with a quasi-instantaneous pressure wave. It may cause a sudden exfiltration 

on the watershed.  

Gravitational subsurface flow in macropores 

Subsurface flow may be carried through macro pores which lead the water to unsaturated 

areas. Macropores are pores in which the capillarity phenomena do not exist. We can 

distinguish four types of macropores: 

 Natural macropores: these macropores appear due to high initial hydraulic 

conductivity. 
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 Pores which formation is the result of micro soil fauna: these pores normally locate 

in the superior soil layer (0-100 cm) with a dimension of 1-50 mm. 

 Pores which formation is due to vegetation roots. These pores normally become 

free when the plants die. Therefore, the structure of the macropores network of 

this type will depend on both the type of vegetation and its growing state. 

 Cracks. 

 

Figure 1.4: Pathways followed by a subsurface runoff on hillslopes (Kirkby, 1978) 

Detailed cross-section through a hillslope that exposes in the pathways infiltrated water 

may follow as described in Figure 1.4. Infiltrated water may flow through the structural voids 

in the soil matrix, which are either small or large (macropores), including the opened 

passage in the soil caused by decaying roots and animals. Among these passages, subsurface 
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flow is favored by macropores. The different permeability of the horizontal soil matrix may 

lead to the build-up of a saturated wedge above a soil horizon interface. Water can either 

flow laterally from these saturated wedges through the soil matrix or enter the macropores 

in the soil, before going to the stream. Both processes mentioned above result in the 

subsurface flow called interflow. 

Pipe flow 

Another mechanism of subsurface flow is pipe flow. Pipe flow leads water to an 

unsaturated environment. This mechanism is similar to macro-pore to some extent, 

however, pipes are considered to be larger and more connective than macropores, as they 

can form a continuous network in the soil.  

Transmissivity feedback  

Subsurface flow can also occur by a mechanism called transmissivity feedback (Weiler 

and McDonnell, 2004). This phenomenon happens when water infiltrates rapidly along 

preferential pathways. This leads to the rapid rising of groundwater, reaching the highly 

permeable soil layers or macro-pore networks. As a consequent, water is then transmitted 

downslope (Figure 1.5).  

 

Figure 1.5: (Tarboton, 2003) Schematic illustration of the macropore network being activated 
due to the rise in groundwater resulting in rapid lateral flow  

 

Rapid lateral flow at the soil-bedrock interface 

Another mechanism of subsurface flow, called lateral flow at the soil-bedrock interface 

(Weiler and McDonnell, 2004), occurs in regions with steep terrain, low permeability 
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bedrock and thin soil cover (Figure 1.6). In these regions, water can move rapidly through 

the thin soil layer and perch at the soil-bedrock interface. The addition of only a small 

amount of rainfall is enough to produce saturation at the soil-bedrock or soil-impeding layer 

interface because moisture content near the bedrock interface is often close to saturated.  

 

Figure 1.6: Rapid lateral flow at the soil-bedrock interface (Tarboton, 2003) 

Subsurface stormflow by groundwater ridging 

 

Figure 1.7: Groundwater ridging subsurface stormflow processes in an area of high infiltration 
(Tarboton, 2003). The shaded areas represent graphs of soil moisture at the base, middle and 
near the top of the hillslope (a) before the onset of rainfall; (b) as an initial response to rainfall; 
and (c) after continuing rainfall. 
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The processes involved in the generation of subsurface stormflow by groundwater 

ridging are illustrated in Figure 1.7. Before the onset of rainfall, the water table slopes 

slightly towards the channel to maintain the base flow of the stream (Figure 1.7a). When the 

rain starts, initially the water input leads the water table to rise near the stream but keep 

further upslope unchanged (Figure 1.7b). This leads to the increase of hydraulic gradient 

between groundwater and stream, resulting in the subsurface flow into the stream. As the 

rain continues, the water table rises to the surface over the lower part of the hillslope and 

the saturated area is expanding uphill. The water arises from this saturated area and runs 

downslope called return flow (Figure 1.7c). In this case, there is also direct precipitation onto 

the saturated zone which forms saturation excess runoff. 

1.2.2. Main factors affecting flood process 
It is widely recognized that the two most important climate variables influencing runoff 

generation during floods are rainfall and initial condition. Therefore, in the following section, 

rainfall and soil moisture will be discussed in detail. 

1.2.2.1. Rainfall 

1.2.2.1.1. Rainfall characteristic 
The most important factor that drives flood is precipitation. Flood properties have been 

shown that be influenced by a combination of precipitation characteristics including the 

amount, intensity, duration, and spatial distribution. Moreover, the time of the rains and the 

area covered by the rain are also essential. The importance of each factor is not easy to 

separate and evaluate. 

Rainfall intensities are one of the important factor leading to flooding generation in all 

catchment sizes (Costa, 1987; Pitlick, 1994; Schick, 1988). The higher rainfall intensity likely 

leads to higher potential runoff. Short and intense storms can generate the highest channel 

discharge, despite low total rainfall and storms with long durations or with greatest total 

rainfalls in the condition of uniform spatial distributions tended to produce moderate 

discharge events (Martı́n-Vide et al., 1999). However, it was reported that floods can be 

related to the total rainfall occurring than to intensity of an event (Bracken et al., 2008).  
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The spatial distribution of rainfall can affect flood at any scale catchments (Arnaud et al., 

2002). It influences runoff volume, peak flow and also the time shift of hydrograph (Dawdy 

and Bergmann, 1969; Krajewski et al., 1991; Troutman, 1983; Wilson et al., 1979). Even for 

very small catchments (5 ha), rainfall variability must be taken into account because it is not 

always representative to use the information from a single measuring point (Faurès et al., 

1995). However, it was also found that in the case in which the rainfall volume at each time 

interval is preserved, spatial rainfall variability does not significantly influence the flood 

response for basin areas up to about 3500 km2  (Nicótina et al., 2008). 

The effects of spatial rainfall can be assessed by comparison of rainfall–runoff responses 

between events within a catchment (Bell and Moore, 2000; Cole and Moore, 2008) or 

between catchments covering different hydrological regimes (Smith et al., 2012). Besides, 

implementing observed rainfall data through models representing idealized catchments or 

implementing realizations of synthetic rainfall patterns through a calibrated hydrological 

model can also help to investigate spatial rainfall effects (Arnaud et al., 2002). 

The spatial rainfall-runoff relationship varies significantly for different climatic regimes. 

In arid and semi-arid regions, the sensitivity of runoff to the spatial-temporal characteristics 

of the rainfall event was tested at various catchment scales (Syed et al., 2003), with the 

conclusion that the sensitivity being decreased for frontal compared to convective 

precipitation (Koren et al., 1999; Vischel and Lebel, 2007). 

The spatial rainfall-runoff relationship can also be affected by catchment perviousness 

and antecedent catchment conditions (Pechlivanidis et al., 2017). This study showed that 

spatial rainfall is less sensitive to runoff volume and peak flow in less impermeable 

catchments. In addition, the runoff prediction errors are generally considerably lower for 

wet than for dry conditions (Zehe et al., 2005). 

1.2.2.1.2. Rainfall measurement 

The precipitation can be measured with the help of devices: rain-gauges, radar, and 

satellite. Rain gauges are popular from the beginning of hydrological science. Rain gauges 

provide a direct and most accurate measurement (relative to other sensors), however, they 

are associated with small sampling area. Moreover, they can be damaged or suffered from 

errors depend on the wind, temperature, and type of precipitation (rain or snow), etc. It is 
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difficult to accurately measure the dynamics of a flash flood-inducing storms that are highly 

localized and spatially and temporally variable because of the usually low density of rain 

gauge networks, especially over complex terrain areas (Creutin and Borga, 2003). However, 

nowadays, with the development of space and information technologies, rainfall can be 

measured by radar or satellite. 

Weather radar technology was developed as an outcome of the intensive work on radar 

technology during World War II. This technology is useful in addressing the coverage and in 

monitoring precipitation, as it provides continuous and spatially distributed rainfall fields at 

high resolution (Nikolopoulos et al., 2012). For instance, the network used by the UK Met 

Office includes 13 weather radars. This network provides 2x2 km gridded radar data at the 

5-minute interval and a real-time extrapolation based on radar data every 30 minutes. It also 

provides precipitation forecasts every 6 hours (Sun et al., 2000). A national river 

forecasting system has been operated by the US Weather Bureau since the early 

1990s. This system combines weather forecasts with flood prediction models to give 

warnings for floods (Sun, 2005). These improvements enhance notably the flood warning 

systems, and the predictive understanding of flash floods (Borga et al., 2007; Delrieu et al., 

2005; Ogden et al., 2000; Vivoni et al., 2007). 

The idea of using satellite rainfall for flood modeling has been implemented since the late 

1970s (Scofield and Oliver, 1977). The direct use of satellite rainfall estimations into 

hydrologic models can be apply in large basin scale with daily to monthly time scales (Artan 

et al., 2007; Behrangi et al., 2011; Bitew and Gebremichael, 2010; Collischonn et al., 2008; 

Grimes and Diop, 2003; Guetter et al., 1996; Su et al., 2008; Tsintikidis et al., 1999; Wilk et 

al., 2006; Wu et al., 2012) and small-scale basins (100–1200 km2) with 1–3-h time scales 

(Bitew et al., 2011; Gourley et al., 2011; Nikolopoulos et al., 2010, 2012). 

The relationship between precipitation inputs and flood outputs has been described 

differently in different studies. However, these differences may be caused by the differences 

in climate and drainage basin area. It was pointed out that there is no direct relationship 

between runoff production and connected channel flow (Sharma, 1998). There are many 

different factors that could result in this variability, including the heterogeneity existing in 

surface crusting and roughness (Auzet et al., 1995; Helming et al., 1998; Singer and Le 
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Bissonnais, 1998) and within soils themselves (Fitzjohn et al., 1998), the density and type of 

vegetation (Bergkamp et al., 1996; Imeson et al., 1992), the catchment morphometry (Yair 

and Raz-Yassif, 2004), the rock exposures (Yair and Kossovsky, 2002), the transmission 

losses in tributaries and main channels (Reid and Frostick, 1997) and land use (Bull et al., 

2000; Lasanta et al., 2000). 

1.2.2.1.3. Rainfall uncertainty 
The rainfall observation can be affected by many partial uncertainties which depend on 

the type of measurement (Stransky et al., 2007). 

The rainfall observation by rain gauge uncertainty can be caused by random and 

systematic errors. Random errors mainly derive from a mechanical and electrical 

disturbance in the gauge, data transmission, and tipping bucket clogging. Meanwhile, 

systematic errors are mainly the results of wind, wetting of internal walls, splashing, 

evaporation, and rain gauge design. These errors can cause underestimation of the rainfall 

volume of about 3% to 30% (Rauch et al., 1998). 

Using radar leads to a number of error sources which relate to radar calibration, 

atmospheric attenuation, the variability of the relationship between radar reflectivity and 

rainfall rate, ground clutter, vertical reflectivity profile, and beam blockage effect (Krajewski 

and Smith, 2002). The errors affect extremely in radar observations over complex terrain 

areas and in real-time radar-rainfall applications (Gourley et al., 2011). Error in remotely 

sensed precipitation data would be transmitted, leading to the uncertainty in associated with 

hydrological model structure and parameters(Chen et al., 2016).  

There are also two types of uncertainties associated with satellite precipitations products: 

the systematic and random errors. There are different factors that affect these errors, 

including the sensor observation, the algorithms that produce the rain estimated from the 

observations and the sampling process. The random errors are mainly resulted from the 

sensor sampling design, while the systematic errors can derive from problems such as the 

inclusion of gauge information (Huffman, 1997). However, the complete removal of both 

systematic and random errors is impossible due to the lack of high-quality reference datasets 

to estimate these uncertainties, despite current efforts in that direction(Maggioni et al., 

2016).  
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1.2.2.2. Initial condition 

1.2.2.2.1. Soil moisture 
Soil moisture has great effects on hydrological and meteorological processes; in 

particular, it controls the process of partitioning rainfall into runoff and infiltration. The 

magnitude of the flood event is strongly influenced by the initial soil moisture conditions of 

the catchment (Tramblay et al., 2010). Thus, it is necessary to accurately estimate soil 

moisture for a range of hydrological applications, including floods and drought forecasting 

and assessment. The content of water in the first active meters of soil plays a central role in 

the regulation of the hydraulic and energy transfers between the soil, the surface and the 

atmosphere (Vischel et al., 2008). Thus, it is very important to have a realistic representation 

of the spatial variability of near-surface soil moisture to represent the hydrological fluxes in 

the subsurface at various scales (Zehe and Blöschl, 2004) and to link between hydrological 

and atmospheric processes (Montaldo and Albertson, 2003; Ronda et al., 2002). 

However, it is challenging to obtain an accurate estimation of soil moisture due to its high 

spatial and temporal variability (Western and Blöschl, 1999). In small scale, among other 

factors, this variability mainly depends on topography, soil type, precipitation and 

vegetation (Western et al., 2002). Besides, the spatial variability of soil moisture also 

strongly controls the runoff. In particular, the dominant flow path varies under different soil 

moisture conditions, which in turn affects the runoff peaks and response time (Patil et al., 

2014; Penna et al., 2011). 

Information about soil moisture with increasing temporal and spatial resolutions 

(Wagner et al., 2007) are currently available from different sources, including the in situ 

measurements (for example the International Soil Moisture Network ISMN (Dorigo et al., 

2011)), satellite sensors information (for example the Advanced Microwave Scanning 

Radiometer for Earth observation AMSRE (Owe et al., 2008), the Advanced SCATterometer 

ASCAT (Bartalis et al., 2007), the Soil Moisture and Ocean Salinity Mission SMOS (Kerr et al., 

2010)), and from land surface models (for example, the ERA-Interim/Land data set (Balsamo 

et al., 2015)).  

Soil moisture can also be used as a proxy to assess the wetness state of the catchment to 

predict flood hydrographs. Many studies have been investigating the assimilation of soil 
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moisture observations into rainfall-runoff (RR) modeling (Brocca et al., 2008; Javelle et al., 

2016; Massari et al., 2014; Tramblay et al., 2012). Besides, Yu et al. used the output of the 

daily SWAT continuous model embedded in an event-based sub-daily SWAT model (Yu et al., 

2018). Field monitoring of soil moisture was also used (Tramblay et al., 2010) and satellite 

soil moisture data were suggested  (Tramblay et al., 2012). At this point, the relationship 

between the initial condition of the model and the external predictors remains however little 

known and needs further exploration. 

Among the others, the SIM model is one of the French models which can produce soil 

moisture daily data (Habets et al., 2008; Quintana Seguí et al., 2009). 

SIM model 

The SIM model is the combination of three independent models: SAFRAN which provides 

atmospheric forcing analysis, IBSA which computes the surface water and energy budgets, 

and MODCOU which computes the evolution of the aquifer and the river flow. The SIM model 

system was firstly tested for France catchment in 1999. It was extended for all over France 

since 2002 and has been used operationally at Meteo-France to monitor the near real-time 

water resources since 2003.  

For the ISBA model which give the output of the soil moisture, most of the parameter is 

defined by the soil and vegetation classification except the subgrid runoff parameter and the 

subgrid drainage parameter. The soil classification derived from ECOCLIMAP database 

(Champeaux et al., 2005). The vegetation classification based on CLC 1990 database, 

associated with a climate map. It is claimed that quite correct for the forested areas, 

vineyards, and urban area but not distinguish the various crops that are aggregated into a 

single class (Habets et al., 2008).  

The information of soil which the origin comes from FAO-UNESCO soil map of the word 

gave the three qualitative properties of soil: soil color (light, medium, dark), soil texture (fine, 

medium, coarse) and drainage (free, medium, impeded). Soil depth is related to the root zone 

of the plant, which derived from the type of vegetation. 

The SIM model supplied output indexes once a day at 6 UT, over an 8x8 km2 grid mesh of 

France, for three layers (Boone et al., 1999): the surface layer (1cm deep), the root layer and 

the deep layer (depths depending on the type of vegetation).  
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1.2.2.2.2. Base flow 
Another initial condition index we can consider is base flow. Base flow is generated by the 

amount of precipitation that infiltrates through the subsurface and discharges to the 

streams. Various basin characteristics, including catchment geology, climate, soils, 

topography and land cover, can affect the amount of base flow that discharges to the streams. 

High rates of infiltration, recharges and groundwater storage can increase base flow, while 

high rates of evapotranspiration and runoff can reduce base flow (Brutsaert, 2005). The 

subsurface storage and drainage network structures are strongly dependent on the 

geological characteristics (Price et al., 2011), while the rate of infiltration, hydraulic 

conductivity, and groundwater recharge depend on soil characteristics (Pirastru and Niedda, 

2013). Besides, the topographic characteristics can also influence base flow by affecting the 

movement of water across the surface and subsurface, which in turn can influence the 

infiltration, flow process and rates of water transmission (McGuire et al., 2005). Moreover, 

the vegetation can also affect the base flow by changing the rate of interception, 

evapotranspiration, infiltration, and recharge of subsurface storage (Nie et al., 2011). Last 

but not least, temperature, precipitation, and other climatic factors can have impacts on base 

flow as they can change the rate of evaporation, infiltration, and recharge. These climatic 

factors can also cause snowmelt runoff, which can also alter the base flow (Tague and Grant, 

2009). 

Information about baseflow can be obtained by inferring from field measurements of 

different characteristics, including temperature, tracer concentrations and flow by seepage 

meters which are installed in the stream beds (Becker et al., 2004). However, these 

techniques are often challenging to be applied over an entire catchment. Baseflow is thus 

often estimated using different baseflow separation methods. The estimation of baseflow can 

be based on either the linear storage-discharge relationship between aquifer and stream 

(Barnes, 1939; Hall, 1968) or nonlinear storage-discharge relationship (Wittenberg, 2003; 

Wittenberg and Sivapalan, 1999), depending on the characteristics of the catchments. 

Besides, baseflow can also be estimated using hydrological reasoning without physically-

based mathematical framework, including four main categories of methods: (i) graphical 

separation (Sloto and Crouse, 1996), (ii) conceptual models (Eckhardt, 2005; Huyck et al., 
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2005) (iii) recession analysis (Tallaksen, 1995) and (iv) recursive digital filters (Arnold and 

Allen, 2007; Nathan and McMahon, 1990). 

1.3. Hydrological model 
Nowadays, with the development of hydrological science and information technology, 

flash floods, and floods, in general, can be simulated and predicted by models. It helps people 

in the understanding flood and most importantly, reducing damages of floods.    

1.3.1. Definition – why we need models 
A model is a representation of one or more concepts that may be realized in the physical 

world (Friedenthal et al., 2014). Consequently, a model always describes the basic and most 

important components of a complex system. Modeling supports the conceptual exploration 

of the behavior of object or process and their interaction. Modeling is a mean of better 

understanding and generating hypotheses; it also supports the experiments in which 

hypotheses can be tested, and the outcomes can be predicted (Gregory, 1998). Modeling is 

also a good way to reproduce data which are difficult to measure (e.g. floods) from data 

which are more easily available (rainfalls, catchment geography).  

The hydrologic real-word system can be simplified and characterized using a RR model. 

By modeling runoff, we can better understand the hydrologic phenomena, as well as how 

those phenomena affect the hydrological cycle (Xu, 2002). RR models also help to reproduce 

floods in any situation which cannot be observed, or which is difficult to observe: for 

example, extrapolation to extreme floods, floods in ungauged catchments, forecast of floods. 

A runoff model can be defined as a set of equations which helps estimate the amount of 

rainfall that turns into runoffs (Devia et al., 2015).  These equations involve input variable 

(e.g. rainfall, slopes, etc.), output variable (here, various characteristics of the flood: runoff 

volume, peak flow, rising time, etc.), and parameters which describe the watershed. A 

variable in a hydrological system is understood to be a characteristic which may be 

measured, which assumes different values when measured at different times. Daily rainfall, 

runoff, evaporation, temperature, infiltration, soil moisture, etc. are some of the examples 

(Xu, 2002). A parameter is a quantity characterizing a system. The parameter is internal to 

the model and it can be estimated from data. It may or may not remain constant in time. 
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Since the first runoff prediction model appeared in the 19th century, RR models continued 

to develop until now. The major development of RR models is made thank to the availability 

of the learning data sets which were used to calibrate the nonlinear behavior of those 

models. Currently, a wide range of RR models are used, which applications highly depend on 

the purpose of modeling. Those models can be helpful in decision making by providing a 

means of quantitative extrapolation or prediction. RR models can be classified and divided 

into different types based on spatial resolution, input/output type, model simplicity, etc. 

Despite the different classification, not all models fit into a single category because they are 

normally developed for different purposes (Singh, 2012). The selection of an appropriate RR 

models needs to be based on the modeling purposes, for instance, to understand and answer 

a specific question about hydrological processes, to assess the frequency of runoff events, to 

estimate the runoff generated for management (Vaze et al., 2011). Choosing the most 

appropriate models also based on the data availability, time and budget for modeling. 

The first way to classify RR models is based on the model structure, which determines 

how runoff is calculated, by which RR models are categorized into empirical, conceptual and 

physical models. Some RR models can involve a few variables while others may require a 

large number of interconnecting variables. The model can have the structure varying simple 

to complex depending on the equations. The empirical model is the simplest type, while the 

physical mechanistic model is the most complex type of RR model. The application of both 

physical and conceptual models requires an understanding of the physical process involving 

in the movement of surface water in the hydrological cycle (Srinivasulu and Jain, 2008). The 

differences between the three types of models are explained in detail in Table 1.1. 

. 
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Table 1.1: Comparison of the basic structure for rainfall-runoff models (Sitterson et al., 2017)  

 Empirical Conceptual Physical 

Method 

Non-linear 
relationship between 
inputs and outputs, 
black box concept  

Simplified equations 
that represent water 
storage in catchment 

Physical laws and 
equations based on real 
hydrologic responses 

Strengths 

Small number of 
parameters needed, 
can be more accurate, 
fast run time 

Easy to calibrate, 
simple model 
structure 

Incorporates spatial and 
temporal variability, very 
fine scale 

Weaknesses 

No connection 
between physical 
catchment, input data 
distortion 

Does not consider 
spatial variability 
within catchment 

Large number of 
parameters and 
calibration needed, site-
specific 

Best Use 

In ungauged 
watersheds, runoff is 
the only output 
needed 

When computational 
time or data are 
limited 

Have great data 
availability on a small 
scale 

Examples 
Curve Number, 
Artificial Neural 
Networks[a] 

HSPF[b], 
TOPMODEL[a], 
HBV[a], Stanford[a] 

MIKE-SHE[a], 
KINEROS[c], VIC[a], 
PRMS[d] 

[a] (Devia et al., 2015) 

[b] (Johnson et al., 2003) 

[c] (Woolhiser, 1989) 

[d](Singh, 2012) 

 

There is another classification system for RR models, which is based on the spatial 

interpretation of the model’s catchment area. The spatial interpretation of the catchment 

area is based on input data and the way in which runoff is generated and routed over the 

catchment (Figure 1.8). Following this classification, RR models are categorized into lumped, 

semi-distributed and distributed models. These models differ in consideration of variability 

in geology, soils, vegetation, and topography of a catchment which affect the relationship 

between rainfall and runoff (Beven, 2012)  
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Figure 1.8: Visualization of the spatial structure in runoff models. A: Lumped model, B: Semi-
Distributed model by sub-catchment, C: Distributed model by grid cell (Sitterson et al., 2017) 

In particular, the lumped model does not consider the spatial variability within a 

catchment, while the semi-distributed model does consider some spatial variability, and 

distributed models consider and process spatial variability via the grid cells. In other words, 

different types of model consider different spatial processes and produce different output 

type. The detailed differences between those three types of models are presented in Table 

1.2. 

Table 1.2: Comparison of the spatial structures in rainfall-runoff models (Sitterson et al., 2017)  

 Lumped Semi-Distributed Distributed 

Method 

Spatial variability is 
disregarded; entire 
catchment is modeled as 
one unit 

Series of lumped and 
distributed parameters 

Spatial variability is 
accounted for 

Inputs 
All averaged data by 
catchment 

Both averaged and 
specific data by sub-
catchment 

All specific data by cell 

Strengths 
Fast computational 
time, good at simulating 
average conditions 

Represents important 
features in catchment 

Physically related to 
hydrological processes 

Weaknesses 

A lot of assumptions, 
loss of spatial 
resolution, not ideal for 
large areas 

Averages data into sub-
catchment areas, loss of 
spatial resolution 

Data-intense, long 
computational time 

Examples Empirical and 
conceptual models, 

Conceptual and some 
physical models, 

Physically distributed 
models, MIKESHE[c], 
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machine learning TOPMODEL[a], SWAT[b] VELMA[d] 

[a] (Devia et al., 2015) 

[b] (Beven, 2012) 

[c] (Singh, 2012) 

[d] (McKane, R. et al., 2014) 

 

The final classification that is mentioned in this report is continuous/event-based RR 

models. Depending on how the model chooses the required initial condition, hydrological 

models will be categorized as continuous or event-based. The continuous approach requires 

an initialization, or warm-up period, in which the model is run until its state reaches a value 

that is no longer dependent on an arbitrarily selected initial value. The duration of this 

initialization period depends on the memory of previous conditions of the catchment and on 

the model. The duration of this period may last for a few months (Kitanidis and Bras, 1980b) 

or for one climatic cycle, however, for certain catchments with large aquifers feed 

streamflow, this period needs up to several years (Le Moine, 2008). This data requirement 

leads to one major drawback of continuous approach in operational forecasting perspective, 

as it is often difficult to provide the long continuous precipitation time series up to the day 

of interest due to difficulties in real-time data repatriation. Thus, it is necessary to gather a 

sufficiently long data series before making the first forecast in a new location if the 

continuous approach is used.  

On the contrary, event-based models use a different method to obtain the initial value of 

the model states. There are different methods that are used in the event-based approach. 

The values can be defined based on the climatology if the model states reliably represent 

measurable physical quantities. For instance, the event-based SCS-CN model can be 

integrated with soil moisture measurements for flow simulation on the small catchment 

(Brocca et al., 2009), however, the results should be generalized. Although continuous 

models have been applied a rigorous approach to estimate the initial conditions for a long 

time (Kitanidis and Bras, 1980a), event-based models are often preferred in real-time 

operational applications (Lamb and Kay, 2004). This is partly because event-based models 

are simpler, as they do not require all the necessary process as in continuous models, thus 

this type of models is more suitable to limited data. Besides, it is often challenging to look for 
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high time resolution series, as it is difficult to maintain and validate automatic measurements 

networks over a long period of time in many countries. Nalbantis once suggested the use of 

coarser data series (e.g. daily) to estimate fine initial conditions to overcome this challenge 

(Nalbantis, 1995). Furthermore, the event-based approach may be culturally favored by 

some people who are traditional users of hydraulic propagation methods. Due to the reasons 

mentioned above, event-based models are becoming more widely used by practitioners. 

Moreover, event-based models are useful for other purposes rather than flood forecasting, 

such as torrential flood modeling. 

As opposed to continuous modeling which simulates streamflow over a long period 

(Stephens et al., 2018), the event-based approach considers each individual rainfall-runoff 

event separately. As precipitation and streamflow data are rarely collected at hourly or finer 

scales for a long period due to limited data availability, continuous hydrologic models are 

usually applied at daily scale. Meanwhile, event-based hydrologic models can be applied at 

sub-daily time scale (Yao et al., 2014), such as hourly or finer scale.  

The continuous approach considers some flow components, including for example 

evapotranspiration and subsurface flow. Meanwhile, these flow components might be 

excluded to some extent or become less important in event-based approach, in which their 

underlying processes are not active for the considered rainfall-runoff events (Huang et al., 

2016). The event-based models have advantages such as using limited data or reducing the 

complexity of the model and the number of parameters. However, they need to be initialized 

for each event, and the initial condition of the model has to be derived from an external 

variable, which expresses the state of the catchment at the beginning of the rain event. A 

comparison of event-based and continuous models was performed elsewhere (Berthet et al., 

2009). It showed that both types of model were more or less equivalent. Recently, another 

study also compared continuous and event-based models and showed that event-based 

models are suitable for climate change impact (Stephens et al., 2018). However, event-based 

models are often the only option in many cases, when a complete series of data are not 

available.  
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1.3.2. Model’s operation 

1.3.2.1. Calibration of the model 
Most models contain two types of parameters: physical parameters (defining the physical 

structure of the system) and process parameters (defining the order of the process’s 

magnitude). Defining of the process parameters is known as calibration of the model. When 

the model is physically based, these process parameters can be defined by the measurement, 

otherwise, they are calibrated using an optimization process (Kirkby et al., 1993). 

In the calibration, we must pay attention to the sensitivity of the parameters, with 

carefully calibrating the sensitive parameters to ensure the reliable outcomes of the model. 

Trial-and-error is the simplest form of model optimization. In this approach, the model 

parameters are changed; then a metric of model accuracy will be measured and noted. This 

process will be repeated until the best possible fit of prediction and observation is obtained. 

The selecting of the calibration parameters and techniques is depended on the purpose to 

which the model will be put (Wainwright and Mulligan, 2013). 

Furthermore, the results obtained from model calibration depend strongly on the 

function and objectives. Indeed, a model that is calibrated for predicting the peak flow will 

be very different from that predicting total flow (Botterweg, 1995). The prior information on 

the range of the parameters is also essential for model calibration, thus a preliminary 

sensitivity or uncertainty test are usually implemented before model calibration. The range 

of the parameter and the agreement of the model makes a relationship called the calibration 

curve for that parameter. A parameter that has a significant change in error with the 

changing of its value is the sensitive parameter (Wainwright and Mulligan, 2013). 

Model parameters are often highly interdependent in most models, which can make 

optimum parameterization become more challenging. Especially, in the distributed model, 

calibration is even more difficult due to a large number of parameters involved (Eckhardt 

and Arnold, 2001).  

1.3.2.2. Sensitivity test   
Sensitivity analysis is the process of defining how the magnitude of model output affected 

by changes in model input parameters. Sensitivities test often carries out before the 
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calibration because it can act as a check on the model logic and the robustness of the 

simulation and it can define the importance of the parameter. The measurement of the 

sensitivity test to a parameter can also help to understand the impact of the uncertainty of 

this parameter on the model outcomes. If sensitivities analysis show that the model has too 

many sensitive parameters, this may indicate over-parameterization and the need for the 

model simplification. Sensitivities analysis is also made for understanding the impact of 

parameter forcing, and its interaction/dependence (Michaelides and Wainwright, 2002).  

In most sensitivity test, a single parameter is varied around its normal value when the 

other parameters keep unchanged (Saltelli et al., 2009). Then, the changes in model outputs 

in response to the changes in those parameters are recorded. Model sensitivity is defined as 

the proportional change in model output per unit of change of the input parameter. Besides, 

the sensitivity of models to a parameter could also be affected by the values of other 

parameters. It is important to recognize the different trend for parameter change in 

sensitivity analysis: to reach a threshold of value, the change of the parameter can have the 

other effect on the model output. In this case, it is necessary to have appropriately assessed 

the range of parameter variation, as well as the values of varying and non-varying 

parameters during the sensitivity test.  

1.3.2.3. Error, uncertainty, and equifinality 
All the measurements are made with error, which should be cited so that the implication 

can be considered during the interpretation of results. This is especially important when a 

secondary dataset, in which little is known about its data collection and quality control, is 

used. In particular, field measurements are often error-prone due to the difficulties in data 

collection. Indeed, specific problems can arise during the measurement of features with 

fractal characteristics or when the system is sensitive to initial conditions due to the lack of 

precision. Therefore, it is important to consider modeling requirements to decide the 

precision of measurement.  

Error leads to the uncertainty in modeling. Zimmerman (2000) defines six causes of 

uncertainty in the modeling process: lack of information, an abundance of information, 

conflict evidence, ambiguity, measurement, and belief (Zimmermann, 2000). Lack of 

information demands to collect more information, but it is worth to know the quality of this 
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information. The abundance of information relates to our inability to perceive a large 

amount of complex information, and it requires the simplification of information. Conflicting 

information need the application to evaluate and control the quality of information, and to 

find the source of conflict that comes from errors or the wrong use of the model. Ambiguity 

may result in confusion during the reporting of information. Measurement uncertainty can 

be reduced by the involvement of more precise techniques. Uncertainty can also be caused 

by beliefs in data interpretation, as the different outcome can arise from the same starting 

point. 

Errors are considered as an important part of modeling, which must be integrated into 

the framework and uncertainty evaluation of all realistic modeling approach. The 

uncertainty is needed to concern in all modeling cases; it has significant impacts on model 

applications (Beck, 1987). The implication of error and uncertainty is that we need to 

improve the basic inputs into the model as much as possible, not only the quantity but the 

quality of the data.   

The main operation to deal with uncertainty is parameter identifiability. When a given 

model with a set of data can constrain the parameters, we can identify the maximum 

likelihood values of the parameters which means that those parameters are identifiable. 

Inversely, there is an issue of equifinality in data assimilation (Beven, 2006). Equifinality 

means that different models, or different parameter values of a model, maybe equally well-

fitted to the data without the ability to distinguish which models or parameter values are 

better than others (Luo et al., 2009). 

In hydrological models, equifinality arises when many different parameter sets are 

equally good at reproducing an output signal. This normally happens with distributed 

models with a large number of parameters which are quite good at describing hydrological 

behavior but are unable to predict what will happen if certain characteristics of the 

catchment change (Savenije, 2001).  

To deal with errors, uncertainties and equifinality, the validation step is needed to check 

the quality of a model. 
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1.3.2.4. Validation 
Validation is the process to test the model output to confirm the results that should be 

produced for the same inputs in reality (Fishman and Kiviat, 1968). The dataset for the 

validation must be independent of the dataset which is used for the calibration. Rykiel 

(1996) distinguishes validation into three types: (i) operational or whole- model validation 

(correspondence of model output with real-world observation); (ii) conceptual validation 

(evaluation of underlying theories and assumption); and (iii) data validation (evaluation of 

the data to test the model) (Rykiel, 1996). There also are many sorts of the procedure can be 

applied for the validation, and all of these procedures provides the support for the model 

acceptant. The more tests a model can successfully pass, the more confidence we can have 

for the model. The model test aims to assess (i) the simplifications upon which the model is 

based, (ii) the optimal set of parameters obtained and (iii) the level of similarities between 

model output and test data. The evaluation process should be iterative throughout the 

modeling. 

1.3.3. Scaling issues and spatial-temporal variabilities 

1.3.3.1. Scaling issues 
The scaling issues have been previously summarized by Zhang et al. (2013). Briefly, the 

scaling issues arise from the variation due to space, time or other dimensions in the real 

world. Following this concept, finite and discrete measurements are used to understand the 

infinite variables and the continuous system. Thereby, information about environmental 

features can be stored, recalled and analyzed. There are three types of scale: operation scale, 

measurement scale, and modeling scale. An operation scale is a scale which concerns the 

operation of a physical process in a natural environment. A measurement scale concerns the 

spatial resolution used to determine an object. There are two extents of a measurement scale 

for a data set: spatial (the space between samples) and temporal (the integration time).  

Besides, a modeling scale relates to both the natural process and the applied models. A 

modeling scale can involve four different extents, including geographic scale (the research 

area), temporal scale (the time period of research), measurement scale of parameters (the 

resolution of input data) and the model scale (the temporal and spatial scale when a model 
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was established). The spatial scales can be local or plot scale (~1m), hillslope or research 

scale (~100m), catchment scale (~10km) and regional scale (~1000km), while the temporal 

scales can be event scale (~1 day), seasonal scale (~1 year) or long-term scale (~100 years). 

There are many causes leading to scaling problem (Harvey, 2000; Heuvelink, 1998). The 

most common and fundamental cause is the existence of spatial heterogeneity and relevant 

process nonlinearities. Indeed, the spatial scale depends on both climatic input data and 

land-surface parameters, which are in turn derived from various measurements including 

temperature, precipitation, topography, land uses, soil physical and chemical properties and 

other hydrological properties. Thus, it is difficult to aggregate large-scale behavior from local 

processes. The second reason is that the predominant processes can differ in different scales. 

The correlations derived at one scale might not be applicable to another scale. Therefore, 

more processes need to be considered by the scaling method. The third cause is the cross-

scale interactions between small-scale and large-scale parameters, suggesting that scaling 

should be only applied over a limited range of scales and specific context. Another cause for 

scaling problems is the lack of information on process linkages in a dynamic environment. 

The alterations of the scale measurement can significantly influence the variability of 

model parameters. The physical meaning of model parameters is associated with its 

corresponding processed. If a parameter is estimated at its process scale, its value will be 

able to approximate the reality. Otherwise, its value will be less realistic if the measurement 

scale is larger or smaller than the process scale. 

1.3.3.2. The temporal variability 
The temporal variability of hydrological phenomena can be caused by climatic and human 

factors. There are different types of temporal variability, including the diurnal, annual, inter-

annual or irregular temporal variations. Among those, diurnal and seasonal characteristics 

are the important source of variations that affect directly the flood process. 

The diurnal variability of hydrological phenomena can result in changes in river pattern, 

for example, due to snowmelt, evaporation or water management operations. The diurnal 

variability can influence the behavior of discharges in terms of timing, relative magnitude, 

and shape (Lundquist and Cayan, 2002). For example, in rivers where water is added 

diurnally, the discharges will be characterized by daily sharp runoff rise and gradual decline. 
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Meanwhile, in rivers where water is removed diurnally, the discharges will be characterized 

by daily gradual runoff rise and sharp decline. 

The seasonal variability of hydrological phenomena can differ across different area. In 

particular, this type of variability also depends on climatic factors, for example, on seasonal 

snow accumulation and release, or seasonal rainfall changes. The inter-annual variability is 

also caused by climatic phenomena, such as the atmospheric-ocean phenomena like El Nino 

or Pacific Decadal Oscillation (Woods, 2006). 

Another important type of spatial variability is caused by irregular phenomena, including 

storms and floods (Woods, 2006). These extreme weather phenomena can affect the 

streamflow directly. Especially, this type of temporal variability is now becoming more 

important nowadays, due to the more frequent extremes foreseen under the climate change 

conditions. 

1.3.3.3. The spatial variability 
The spatial variability of hydrological phenomena are the results of spatial patterns in 

climate, land use, topography, geology, and soil characteristics. 

Climate factors are indeed an important cause of spatial variability. Climate conditions 

vary across different regions, which strongly affect hydrological processes. For example, 

rainfall accumulation tends to be higher in the high mountainous area than in the downhill 

area. Climate conditions can also vary within a specific region. For instance, rainfall 

accumulation can be greatly different between the upwind and downwind side of the 

mountains, due to differences in air moisture (Woods, 2006). 

Geological and soil characteristics are characterized by complex spatial variability. This 

type of variability can affect hydrogeological characteristics such as porosity and 

permeability, which in turn affect the rate of infiltration and water movement throughout 

soil layers. The variation of topography within and across the region can also affect 

hydrological processes, as it can influence the streamflow direction and velocity. Last but not 

least, vegetation is also an important source of spatial variability, as it can affect water 

transport, evapotranspiration, soil water content. The presence of plants in different regions 

also reflect the climatic conditions.  
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1.4. Mediterranean flash floods 

1.4.1. Characteristics of Mediterranean flash floods 
The Mediterranean region is a large area with more than 4,000 km along from the west to 

the east and 1,500 km from the south to the north. The distribution in climatic patterns and 

population densities in this region are very spatially variable (Gaume et al., 2016). 

Flood is one of the most dangerous meteorological hazards affecting the Mediterranean 

countries. Floods in some Mediterranean regions such as southern France, Italy; eastern 

Spain; and the west of the Balkan Peninsula, are such frequent enough to be considered as a 

component of the local climate (Llasat et al., 2010). These regions have widespread and 

intense economic activity and high population densities. Thus, the frequency and the impact 

of floods on the entire Mediterranean region are not homogeneous over the entire area. 

The Mediterranean floods are mostly fast floods, often called "flash floods" which are 

induced by short duration (less than one hour to 24 hours) and caused by the very intense 

and concentrated in time Mediterranean rains (typically 100 mm or more rainfall 

accumulated over a few hours) (Creutin et al., 2009). Moreover, the Mediterranean basins 

are often small which limited to a few hundred square kilometers (Camarasa-Belmonte, 

2016; Creutin et al., 2009), with rapid hydrological responses (generally less than 6 hours of 

delay between the peak rainfall intensity and the peak discharge downstream) is also one of 

the conditions for flash flood. The most important floods usually occur in autumn, when the 

Mediterranean Sea is still warm and liable to evaporate humid and unstable water bodies 

towards the continental surfaces (Anquetin et al., 2004; Pensieri et al., 2018). 

Besides, the Mediterranean basins are often characterized by low permeability, highly 

erodible soils and steep slopes that are susceptible to landslides. Thus, the fast response 

runoff of these basins considerably favors the formation of flash floods (Creutin et al., 2009). 

Flash floods can cause huge damage for the Mediterranean regions not only because it can 

bring a high content of solid materials (e.g. mud, debris, and timber) from the riverbed and 

soil slips, but also due to the high population density of the coastal regions. It is very difficult 

to predict the area that will be affected by flash floods with high accuracy, even when there 

is more precise weather forecasting for civil protection purposes.  
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1.4.2. Recent flash flood events 
Flash floods have caused billions of euros of damages and several dozens of casualties in 

the South of France near the Mediterranean Sea over the last two decades (Gaume et al., 

2004). In September 1992, a flash flood occurred in Vaucluse, Vaison-la-Romaine causing 32 

deaths (Rebora et al., 2013). A flash flood took place in Aude, Languedoc-Roussillon leading 

to the death of 35 people in November 1999 (Bechtold and Bazile, 2001). In addition, another 

flash flood happened in Gard, Languedoc-Roussillon in September 2002 causing 22 deaths 

(Delrieu et al., 2005). Moreover, in the flash flood in June 2010, after a storm hitting South-

East France, The casualties list were 25 people (Javelle et al., 2016). 

 

 

Figure 1.9: Changes in the number of damaging floods and the number of fatalities in the 
countries in the Mediterranean regions documented in the EM-DAT database (source: emdat.be) 

Several floods database were created in recent years (Figure 1.9). For example, the 

Emergency Events Database EM-DAT collects information on disastrous events, including 

floods, which meet one of the following criteria: at least ten deaths, 100 people affected, a 

declaration of a state of emergency and whether there was a call for international assistance. 



40 
 

The number of floods documented by this database has increased since its creation. 

However, the total number of reported annual fatalities does not increase over time. This 

inconsistency suggests that there might be a large number of moderate floods included in 

the databases since the start of data collection by EM-DAT, and the number of catastrophic 

events does not significantly change. 

Table 1.3: The contents of the database of most notable Mediterranean flash flood events for the 
period 1940-2015 based on their estimated discharges or to the number of deaths. When no 
estimated discharge was available, events with more than ten deaths were selected, except for 
Greece for which a larger dataset was available (Gaume et al., 2016). 

Country  
Number 
of 
events 

With 
discharge 
estimates 

Sources 

Algeria  20  1  (Recouvreur, 2005; Sardou et al., 2016), press 

Egypt  3  0  Internet and press 

France  40  38  Hydrate, recent surveys by the authors, press 

Greece  22  5  
Hydrate, press, (Diakakis and Deligiannakis, 2017; 

Papagiannaki et al., 2013) 

Israel  11  11  (Tarolli et al., 2012) 

Italy  46  36  
Hydrate, (Anselmo, 1985), (Barredo, 2007), recent 
surveys, press 

Lebanon  1  0  Press 

Morocco  7  7  Hymex database 

Portugal  1  0  Press 

Slovenia  1  1  Survey by (Gaume et al., 2016) 

Spain  16  11  Hydrate, (Llasat et al., 2013), (Barredo, 2007) 

Tunisia  3  2  Press and technical reports 

Turkey  1  0  Press 

Total  172  112  

 

As a type of flood, a flash flood is also mainly sensitive to rainfall accumulation, intensities, 

the shape and position of the maximum rainfall within the episode, to the previous rainfall 

that conditions the basin response. Besides, the total rainfall amounts, land use, soil, and 
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bedrock types and the initial soil moisture content strongly affect the responses of the 

catchments to heavy rainfall events, especially their runoff rates (which is defined as the 

estimated proportion of the incident rainfall contributing to the observed stream 

discharges). During flash floods, runoff rates can reach 100% in some rare cases, especially 

when the watersheds are saturated due to large cumulated rainfall amounts (Marchi et al., 

2010). The complex interaction between the characteristics of the rainfall events (in terms 

of maximum intensities, duration, spatial extent) and the factors that control the response of 

the catchments (e.g. rainfall rates) has resulted in the observed variability of flood 

frequencies and discharge magnitudes.   

1.4.3. Flash flood modeling applications and the concept of 

regionalization 

1.4.3.1. Flash flood modeling applications 
Many scientists have also researched this kind of phenomena in the previous time, and 

they also pointed out that there are many problems to solve. PiÑOl et al. used TOP MODEL 

to simulate the hydrological event in Spanish catchments and they realized that the spatial 

soil depth heterogeneity, as well as the characteristics and the localized nature of downslope 

flows of water in the soil, are the most difficult to be described in the model (Piñol et al., 

1997). They also pointed out that models with very large numbers of parameters would not 

be easy to calibrate. Many applications using TOP MODEL have been made in the 

Mediterranean area and lead to promising data and results although there is a need for 

improvement for wetting up period or extreme events such as storm (Blöschl et al., 2008; 

Durand et al., 1992; Saulnier and Le Lay, 2009). 

Another study has claimed that flash flood forecasting could not be characterized via only 

the deterministic and mechanistic approach, due to the complicated processes involved in 

its generation and propagation (Montz and Gruntfest, 2002). Many other applications of real-

time flash flood forecasting have been proposed to describe the flood process. Indeed, a more 

recent research has introduced a semi-distributed model with empirical SCS concept on a 

hill slope and a Muskingum scheme (reservoir-type model) in the river into presenting flash 
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flood, in which the key parameters are derived from topographic conventional data, land 

cover maps and field surveys (Foody et al., 2004). 

Another application is proposed using a spatially distributed model base in the physical 

process of the water cycle and flood genesis (Moussa and Chahinian, 2009). When the surface 

runoff is dominated in the hydrology process, this model is well-adapted; however, in the 

results, it is shown that the performance of the model decreases without the intense flood 

events. Thus, there is a question for the model to be well-represented for hydrological 

processes during both drought and flood periods. 

Because of numerous and complex processes involved in a flash flood, the notion of the 

model framework including different concepts for each process of generation and 

propagation in flash flood was suggested to use. Each model can be a simplified hydrological 

physically-based model taking into account the spatial variability of different processes 

combines with the runoff process over hill-slopes derived from the kinematic wave 

approximation. The built model called MARINE stands for Model of Anticipation of Runoff 

and INondations for Extreme events (Estupina-Borrell et al., 2006; Roux et al., 2011). 

1.4.3.2. The concept of regionalization 
Although rainfall-runoff models are crucial tools for prediction and flood forecast, they 

must still be improved in order to gain for temporal and spatial extrapolation. 

Regionalization aims to transpose models from gauged catchments to ungauged one, and 

many regionalization studies have been performed up to now (McIntyre et al., 2005; Merz and 

Blöschl, 2004; Oudin et al., 2008; Young, 2006). Several methodologies can be used for 

regionalization:  

Regionalization based on regression: it allows for defining a posteriori relationship 

between catchment attributes and model parameters at gauged catchments. After 

determination of these relationships, one can define parameters in ungauged catchments 

based on its physio-climatic characteristics. 

Regionalization based on spatial proximity: this approach considers that the same 

parameter values can be associated with geographic neighbors with an assumption that 

physio-climatic characteristics of the explored region are homogeneous.Regionalization 

based on physical similarity: This type of regionalization approach represents the 
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combination of the previous two. It is based on a hydrologic similarity between an ungauged 

and gauged site where parameter transfer is not geographically based but rather in terms of 

similar catchment descriptors behavior. 

However, previous studies revealed a poor efficiency of the models when transposed to 

ungauged catchments (Aubert et al., 2014; Bastola et al., 2008; Lee et al., 2005; Norbiato et al., 

2009; Viviroli et al., 2009). The failure of regionalization may be mainly attributable to the 

equifinality, which makes that several sets of parameters can be accepted for modeling 

rainfall-runoff relationship; and makes difficult the spatial comparison and the 

interpretation of those parameters. Another difficulty in regionalization is due to the lack of 

appropriate descriptors of the catchment properties (mainly the soil properties) when using 

methods such as multivariable relationships (Oudin et al., 2010). In addition, scaling 

problems can interact with the interpretation of the parameters: scaling means that the 

parameters are not independent of the size of the catchment, for several possible reasons: 

heterogeneity of the surface (and possibly subsurface) features, change in the dominant 

processes, inadequacy of the equations at different scales, mismatch between the local field 

data and the aggregated parameters (Blöschl, 2001; Gentine et al., 2012; Vinogradov et al., 

2011). Thus, further researches are needed to improve the performance of the 

regionalization. 

1.5. Conclusion 
The hydrological processes, flood processes, an overview of the model, Mediterranean 

floods and the applications of several models on Mediterranean floods have been described 

in this chapter, which provided the theoretical background for our study. In the next chapter, 

we will detail the methodology which is applied for Mediterranean flood forecasting. It is the 

combination of two widely-used models SCS production model and LR routing model. 
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2. Description of the SCS-LR model 

This chapter describes the SCS-LR model used for the study. After a brief justification of 

the selection of the model, the main part of this chapter gives the information about the 

overview, previous application as well as the formulation of each function of the model. We 

also describe the main steps for using SCS-LR and the ATHYS platform, where SCS-LR was 

run within. 

 

2.1. Introduction 
The previous chapter showed that RR rainfall-runoff models are essential for flood 

forecasting or other hydrological applications, but that there were many RR models. The 

selection of the model was made from several considerations: 

- The idea was not only reproducing floods, but also comparing the parameters in 

different catchments, over parametrization and equifinality must be avoided as far as 

can be, and the model must be parsimonious. 

- Due to the poor knowledge about soil properties or other physical properties of the 

catchments, the model should be more conceptual than physically-based, which could 

be said in other terms that it is not worth to integrate additional wrong or uncertain 

data if not necessary.  

- Distributed models are potentially more efficient than lumped models, but we should 

consider a reasonable level of distribution for not increasing too much the number of 

parameters. Accounting for the spatial distribution of the rainfalls is for example 

recommended, because it does not add complexity to the model parametrization; it 

would not be the case when using soil spatial distribution, which would bring 

additional model parameters. 

-  Because of the objective aims at flood forecasting, an event-based structure could be 

preferable, easier-to-use and easier-to-calibrate. 
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- Popular or widely used models could be better in order to the benefit of the previous 

experience relative to the model performance as well as the estimation of the 

parameters. 

 

The SCS-LR model filled all the above criteria and was thus selected to be used as the 

reference model in this study. 

2.2. State of the art of the SCS model 
The SCS model was proposed in the mid-1950s by the United State Department of 

Agriculture. The model was designed from numerous infiltrometer experiments led during 

the 1930-40’ in the USA. This model aims to demonstrate and evaluate the design and 

construction of soil and water conservation project. The method quickly became widely 

applied in hydrologic practice in the US and other countries due to its simplicity, 

predictability, stability. 

Initially, the equation of the SCS model was: 

Equation 1:  

𝑄 =  
(𝑃 − 𝐼𝑎)2

𝑃 − 𝐼𝑎 + 𝑆
 

where Q denotes the cumulated runoff at the event scale, P the cumulated precipitation at 

the event scale, Ia the initial ponding losses before the runoff starts, S the potential maximum 

retention or storage. 

The SCS model relies on the concept that the ratio of the cumulated runoff Q and the 

cumulated precipitation P-Ia equals the ratio of the cumulated infiltration F to the maximum 

potential retention S: 

Equation 2: 

𝑄

𝑃−𝐼𝑎
=  

𝐹

𝑆
Equation 1 was obtained by combining Equation 2 with the equation of the budget: 

Equation 3: 

𝑃 = 𝐼𝑎 + 𝑄 + 𝐹 

Equation 1 turns into Equation 4: 
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𝑄 =  
(𝑃 − 0.2𝑆)2

𝑃 + 0.8𝑆
 

when considering that  

Equation 5: 

𝐼𝑎 =  0.2𝑆 

Equation 2 is an empirical equation which involves variables having physical meaning. SCS 

thus appears like a conceptual model.  

 

From the beginning, the SCS model considered only one parameter, in which the potential 

maximum retention of post-initial abstraction retention 𝑆 is determined from the scaled 

values of CN derived from the tables of the National Engineering Handbook. The Curve 

Number CN was computed as a function of S (expressed in mm): 

Equation 6: 

𝐶𝑁 =  
25400

𝑆 + 254
 

This CN values depend on the soil type, land use, initial abstraction, antecedent moisture 

condition, hydrologic condition, climate and the characteristics of the rainfall, including 

intensity, duration, and turbidity. 

(Mockus, 1964) defined S as being equivalent to the maximum differences between P and 

Q (𝑃 − 𝑄). This difference corresponds to the maximum possible infiltration capacity of the 

soil, ignoring other losses including initial abstractions. (Yu, 1998) defined S as the product 

of the spatially averaged infiltration rate and storm duration during the attempt to 

theoretically justify the basis of the SCS hypothesis. (McCuen, 2002) defined S as the 

representation of volumetric retention, distinguished from in the filtration rate. 

(Collis‐George, 1977) described S by the relations of negative pressure-moisture content 

and hydraulic conductivity-moisture content, which characterize the moisture movement in 

unsaturated porous soil. These relations also represented the physical characteristics of the 

soil-vegetation-land use complex. According to this definition, the physical significance of S 

was explained by the linear Fokker-Planck equation for infiltration. This equation related S 

to the storage and transmission properties of the soil.  

Since its first formulation, the SCS model was widely developed: 
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- As the SCS model was initially working with the cumulated runoff and rainfall at the 

event scale, several studies have pointed out the fact that this method did not consider 

any expression of time, so that it ignored the impact of rainfall intensity and its 

temporal distribution. Further formulations made it possible to predict infiltration 

rates and build runoff hydrograph (Aron et al., 1977; Gaume et al., 2004). 

- The SCS was originally built as a lumped model which aggregated spatial and 

temporal variation into the total infiltration depth’s calculation for a given storm and 

a watershed. However, since it was developed as an infiltration loss model, it can be 

distributed as well. The distributed model can describe local and/or instantaneous 

infiltration rates, by that a total infiltration depth can be obtained by appropriate 

integration in time and space. 

- (Hawkins, 1993) noted that CN values could vary in a given catchment, according to 

the cumulated rainfall of the event. He explained that catchments could have three 

different types of asymptotic behavior: (i) complacent behavior: observed CN decline 

steadily with increasing rainfall depth. In this case, no constant value can be found for 

the curve numbers; (ii) standard behavior: it is the most common behavior which 

observing CN declines with increasing storm size. In this case, the CN approach 

maintains a near – constant value with the increasing of storm size and (iii) violent 

behavior: CN rise suddenly and asymptotically approach and apparent constant 

value. Thus, the watersheds are classified with their asymptotic behavior. SCS seemed 

to fail with some kind of watersheds, which have a complacent situation.  

- Although widely used, the value 0.2 of the proportion between Ia and S has been 

frequently questioned (Hawkins et al., 2002). The value of 0.3 was recommended to 

use for most regions of India by (Central Unit for Soil Conservation, 1972). (Aron et 

al., 1977) and (Golding, 1979) suggested many other values for urban watersheds. 

Value of 0.2 was reported as not appropriate for both arid and humid watersheds and 

needed caution in use for other watersheds (Springer et al., 1980).  Ia/S = 0 was the 

best fit to the dataset of (Cazier and Hawkins, 1984), and (Bosznay, 1989) suggested 

to treat a random value of Ia. (Chen, 1982) expressed Ia/S as the square root of the 

ratio of initial and final infiltration rates, and it could vary from 0 to 1.(Mishra and 

Singh, 2003) described Ia/S as the degree of atmospheric saturation and did not use 
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a proportional relationship between Ia and S. (Mishra et al., 2006) proposed different 

formulations of Ia/S depending of the soil type or the antecedent conditions. 

- Initially, the SCS-CN method was developed and best performed in the computation 

of the amount of direct surface runoff (or rainfall excess) from a given storm rainfall 

which occurs on agriculture sites (Ponce and Hawkins, 1996) and urban 

environments (SCS, 1975). Steenhuis et al., (1995) proposed an interpretation of the 

SCS model in terms of runoff generated by variable source area processes. 

- Michel et al., (2005) reformulated the time-dependent SCS model by directly relating 

the runoff coefficient to the level in a soil reservoir. This improvement allowed using 

the SCS model as a continuous model. It also made easier the integration of soil 

drainage. 

- Theoretically, the SCS-CN method is applicable to catchments in any size as long as 

the measured runoff corresponds to the observed rainfall amount. However, in the 

large catchment (e.g. more than 250 km2), there is a need to couple with routing 

model which plays an important role in converting the rainfall-excess to the surface 

runoff hydrograph produced at the outlet of the basin (Ponce and Hawkins, 1996). 

- Using theoretical arguments, the SCS-CN method can be applied for long-term 

hydrologic simulation (Mishra and Singh, 2013). The SCS models have been applied in 

long-term hydrologic simulation in different studies with varying degrees of success 

(Hawkins, 1978; Knisel, 1980; Williams and LaSeur, 1976; Woodward and Gburek, 1992). 

- One weakness of the method was due to the fact that only 3 discontinuous AMC 

(antecedent moisture condition) were used for estimating S or CN values. In addition, 

the classical criteria that determine these AMC were based on rainfall amounts during 

the five previous days, which were found to be inefficient in many cases (Huang et al., 

2007). (Durbude et al., 2011) indicated that a continuous AMC could be more efficient 

to predict CN. (Tramblay et al., 2010) also related continuously the S or CN values to 

measurements or estimations of the water content. (Coustau et al., 2012) used 

piezometric levels to constrain S values. 

- (Coustau et al., 2012) integrated drainage of the cumulated rainfall, resulting in a 

decrease of the runoff coefficient within a dry period. They also considered a delayed 
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runoff as a fraction of the drainage of the soil reservoir, increasing the accuracy of the 

recession of the floods. 

2.3. SCS model formulation 
The model that we used was the formulation of the SCS given by Michel et al., (2005), in 

which were added the drainage and delayed runoff proposed by Coustau et al., (2012) (Fig 

2.1). The model can be applied in both event-based and continuous mode. The model was 

run within the ATHYS platform modeling www.athys-soft.org. 

 

Figure 2.1: Scheme of adjusted Soil Conservation Service (SCS) model operating for each mesh of 
the basin. 

http://www.athys-soft.org/
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The effective rainfall (or runoff) intensity R(t)[L/T] at a given time t can be calculated as 

followed: 

Equation 7:   𝑅(𝑡) = 𝐶(𝑡). 𝑖(𝑡)         

  

in which, i(t) [L/T] denotes the rain intensity at time t, and C(t) [-] is the runoff coefficient, 

as (Michel et al., 2005):  

Equation 8:   {
𝐶(𝑡) =

𝐻(𝑡)−𝑆𝑎

𝑆
. (2 −

𝐻(𝑡)−𝑆𝑎

𝑆
) 𝑤ℎ𝑒𝑛 𝑆(𝑡) > 𝑆𝑎

𝐶(𝑡) =  0 otherwise
 

In the equation above, t is the time, H[L] denotes the level of the soil reservoir; S[L] the 

maximum water capacity of the reservoir; Sa[L] the Michel’s initial abstraction, equal to the 

sum of the initial water level in the soil reservoir H0[L] and the Ia[L] abstraction in the classical 

SCS:  

Equation 9:     𝑆𝑎 = 𝐻0 + 𝐼𝑎     

  

𝑆𝑎 should be independent of the event, which means that Ia is event-dependent, and that 

the variability of Ia is compensated by the variability of H0.  

The water level in the soil reservoir is governed by the infiltration and the drainage: the 

infiltration fills the reservoir, and the drainage makes that the runoff coefficient decreases 

when it does not rain (due to water evaporation near the soil surface, lateral subsurface flow 

or deep drainage at lower layers). The infiltration f(t) equals: 

Equation 10:   𝑓(𝑡) = (1 − 𝐶(𝑡)). 𝑖(𝑡) 

The drainage Vid(t)[L/T], so-called “the vertical flow”, is assumed to be a linearly dependent 

on the level H(t) in the reservoir: 

Equation 11:   𝑉𝑖𝑑(𝑡) = 𝑑𝑠. 𝐻(𝑡)      

  

where ds[1/T] is a proportionality coefficient.      

The level of the reservoir is finally computed by: 

Equation 12:    
𝑑𝐻(𝑡)

𝑑𝑡
= 𝑓(𝑡) − 𝑉𝑖𝑑(𝑡) 

     𝐻(𝑡0) = 𝐻0                    
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Moreover, a delayed runoff provided by subsurface runoff or exfiltration is generated as 

a part of the drainage of the soil reservoir. This runoff, Exf(t) [L/T], so-called the “lateral flow”, 

is assumed to be a constant fraction ω of the drainage:   

Equation 13:    𝐸𝑥𝑓(𝑡) = 𝜔. 𝑉𝑖𝑑(𝑡)     

    

Thus, the total runoff Rtot(t)[L/T] produced by a cell at time t is given by: 

Equation 14:    𝑅𝑡𝑜𝑡(𝑡) = 𝑅(𝑡) + 𝐸𝑥𝑓(𝑡) − 𝐸𝑣(𝑡)  

Ev(t) is the function of evapotranspiration of the selected catchment. However, when 

using the event-based model, the evapotranspiration is not important comparing to other 

abstractions and can be neglected (Rossi et al., 2012; Xie et al., 2019). 

Finally, the SCS model operates in distributed mode over a grid mesh of regular cells 

Figure 2.2. Each cell is thus able to produce runoff, according to the selected parameters S, ω 

and ds which can vary for each cell, or not.   

 

Figure 2.2: Distributed SCS model over a grid mesh of regular cells 
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(Coustau et al., 2012) pointed out an important point concerning the drainage. They 

argued that using the same reservoir discharge ds before and after the rain was not 

convenient, because the discharge mostly comes from the groundwater before the flood, 

from the near-surface layers during the recession of the flood. The corresponding discharge 

rates are supposed to be different, slow before the flood, fast during the recession. Thus, the 

drainage should be differentiated before and after the rain/flood. For event-based models, 

several solutions can be proposed to represent the dual discharge of the soil reservoir, such 

as considering two ds coefficients instead of one or introducing a threshold of the amount of 

the rain or the level in the reservoir, which activated either the slow or the fast drainage. 

Finally, the adopted solution was here to consider as (Coustau et al., 2012) that the initial 

storage H0 was always 0 at the beginning of the event, making that the drainage is null before 

the rainfall started and the reservoir filled up. The hypothesis that there is no drainage of the 

soil reservoir before the rain starts seems to be convenient in most cases. This hypothesis 

also makes it possible to reduce the number of parameters of the model by removing H0, 

whereas the other solutions require additional parameters. Consequently, according to the 

hypothesis H0 = 0, i) S is no longer the maximal storage capacity of the reservoir soil, but the 

initial water deficit of the reservoir, which should vary from an event to another, ii). Sa is 

similar to Ia, which is set as a function of S: Ia = 0.2S. 

(Coustau et al., 2012) also indicated that ω and S were linked by linear regression, with a 

negative slope. That means the higher S, the lower ω. In other terms, the delayed runoff was 

low when the soil was initially dry, and high when the soil was initially wet. This is coherent 

with the fact that free water in the soil depends on the water content. In order to reduce the 

equifinality, it was thus decided to express ω as the ratio of a water storage threshold ω’[L] 

and the S water storage capacity of the soil at the beginning of the event, ω = ω’/S when S > 

ω’, and ω = 1 when S < ω’. The ω’ parameter substituted to the ω parameter in the calibration 

of the model and was expected to be uniform for all the events. 

2.4. Coupling SCS and Lag and Route model  
For the transfer of flow from each cell to the outlet, in this study, we used the Lag and 

Route (LR) model. The LR model was built with two components: the translation (route) and 

diffusion (lag) through a reservoir. The reservoir can be a linear reservoir or a quadratic 
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reservoir (see Bentura and Michel, 1997). These components are conceptual tools which are 

acceptable and popular among hydrologists. 

The LR model operated as a cell-based model, implemented by dividing the catchment 

into equal cells, which are connected. The specific algorithm routes the water from one cell 

to another and finally to the outlet of the watershed. Using the cell-to-cell model, a watershed 

can be represented as a single cell, a cascade of n equal cells, or a network of n equal cells 

(Singh, 1988). Working as a system, all the cells represent the flow pattern of this catchment.  

The digital elevation model (DEM) is the product of digital mapping technique. It can 

automatically extract from raster elevation data topographic variables, such as basin 

geometry, stream networks, slope, flow direction, etc. (Jain et al., 2004). In three schemes of 

DEM data structuring as triangulated irregular networks, grid networks and vector or 

contour based networks (Moore and Grayson, 1991), the most widely used is the grid 

network.  

For grid network model operation, the catchment is separated into cell or grid areas. For 

each cell of the catchment, besides the information about the topography, we can also 

integrate other information such as soil, land use, etc. with the help of GIS. The cell represents 

an area with an average of all properties. Flow from one cell to other neighbor cell is 

identified by using the eight-direction pour point algorithm which chooses the direction of 

the steepest descent among the eight permitted choices. When the flow of all the cells are 

determined, a unique cell-to-cell flow path is established to the catchment outlet (Maidment, 

1993). 

There are several applications that use both grid/cell approach and GIS (Beven and Freer, 

2001; Grayson et al., 1992; Wang and Hjelmfelt, 1998; Watson et al., 1998) which are highly 

evaluated with the capability of quantifying the effect on runoff of variability in physical 

characteristics of the catchment. 

The LR model was used in several studies for flood simulating (Bouvier and Delclaux, 

1996; Coustau et al., 2012; Lhomme et al., 2004). Similar models have also been proposed by 

(Maidment, 1993; Olivera and Maidment, 1999; Zech et al., 1994). 

The LR model was applied for each cell of the catchment (Figure 2.3). 

 



54 
 

 

Figure 2.3: Scheme of Lag-and-Route model operating for each mesh of the basin. 

From each cell m, the runoff at time 𝑡0 generated an elementary hydrograph Qm(t) at the 

outlet of the catchment. The lag process operates through a linear reservoir model, of which 

the diffusion time Km is the parameter so that the elementary hydrograph at the outlet may 

be expressed as: 

Equation 15:  𝑄𝑚(𝑡) = {

𝑞(𝑡0)

𝐾𝑚
𝑒𝑥𝑝 (−

𝑡−(𝑡0+𝑇𝑚)

𝐾𝑚
) ∗ 𝐴 𝑤ℎ𝑒𝑛 𝑡 ≤ 𝑡0 + 𝑇𝑚

0 𝑤ℎ𝑒𝑛 𝑡 > 𝑡0 + 𝑇𝑚

  

where q(𝑡0) denotes the runoff from the cell at the date t0, Tm and Km represent 

respectively the travel time (route) and the diffusion time (lag) of the initial input along the 

travel paths, and A is the area of the cell (Figure 2.3).  

The travel time Tm was computed by 

Equation 16:  𝑇𝑚 = 𝛴𝑘
𝑙𝑘

𝑉0
         

in which, lk is the length of the kth cells between the cell m and the outlet; V0 denotes the 

velocity of travel, which was considered here as uniform over the whole catchment. Note 

that the distributed LR model performs a linear transformation of the effective rainfall, in 

the sense that the velocities may vary for each cell, but do not vary in time at the event scale. 

The diffusion time Km was assumed to be proportional to the travel time Tm, with the slope 

equal to K0, as follows: 

Equation 17:  𝐾𝑚 = 𝐾0. 𝑇𝑚   
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The diffusion increases linearly with the travel time means that the flow moving from one 

cell to another cell is equal to the flow routing between these two cells through an 

intermediate cell. 

Finally, all the elementary hydrographs derived from any time and any cell were 

added to obtain the total hydrograph (Olivera and Maidment, 1999). The model, although not 

physically based, has several advantages: short computation times, slight dependence on the spatial 

resolution (because it does not rely on cells slopes), possibility to give a physical interpretation to 

the parameters. However, the concept only retrieves the hydrograph at the outlet of the catchment, 

but not the internal flows at the cell scale. This is due to the fact that the elementary hydrographs 

are only added at the outlet of the catchment, but not in the upstream cells. For this reason, the 

model cannot work for any storage in the cells, which requires an actual budget at any time in the 

given cells.    

2.5. Model calibration 
As mentioned above, we opt to use the combination of the SCS production model and the 

LR routing model to simulate a flood. The complete event-based SCS-LR model finally dealt 

with three parameters for the production function: 𝑆 (initial water deficit), d𝑠 (drainage 

coefficient of the reservoir), ω’ (related to the fraction ω = ω’/S of the drainage 

corresponding to the delayed runoff), and two parameters for the transfer function: V0 

(velocity of travel), K0 (coefficient of the linear relationship between the travel time and the 

diffusion time). However, the effect of each parameter to the hydrograph is different. Thus, 

the sensitivity test is initially needed for the understanding of each parameter’s role. 

2.5.1. Sensitivity test 
Calibrating too many model parameters can generate non-uniqueness and uncertainties 

of the estimated parameters. Indeed, quantifying the level of uncertainties in model 

parameters calibration has become an important issue recently (Abbaspour et al., 2004; 

Beven and Binley, 1992; Gupta et al., 2003; Yapo et al., 1998). Thus, we will not definitely 
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calibrate all of the parameters. Through the sensitivities test, we can detect the most influent 

or independent parameters which will be calibrated for each event. 

The sensitivity test is implemented as we investigate how the simulation of our 

hydrological model would be affected when each parameter varied while the others were 

kept unchanged. The most sensitive parameters, in other words, were the one which 

modification affected the greatest on the model simulation should be focused during the 

calibration stage. 

2.5.2. Model calibration 
After the sensitivity test, we move to the calibration. In this step, some parameters were 

kept constant for all the events, whereas others were allowed to vary from one event to 

another, depend on the decision made for the sensitivity test. The calibration will compare 

the observed flow and the simulated flow through the quality of Nash–Sutcliffe Efficiency 

(NSE, Nash and Sutcliffe, 1970) value. The calibration of the model was driven event-by-

event, aiming to maximize the NSE value for each event:   

Equation 18:   𝑁𝑆𝐸 = 1 −
∑ (𝑄0 

𝑡 − 𝑄𝑐
𝑡)

2
 𝑇

𝑡=1

∑ (𝑄0 
𝑡 − 𝑄0̅̅̅̅ )

2
 𝑇

𝑡=1

   

where 𝑄0 is the mean of observed discharges during the event, 𝑄𝑐
𝑡 is the calculated 

discharge and 𝑄0 
𝑡   is the observed discharge at time t during the event. 

Nash–Sutcliffe efficiency can take values from −∞ to 1.  An efficiency of 1 (NSE = 1) implies 

a perfect match of modeled discharge to the observed data. The value of 0 (NSE = 0) indicates 

that the model predictions are as accurate as the mean of the observed data, whereas the 

negative value (NSE < 0) occurs when the observed mean during the event is a better 

predictor than the model or, in other words, when the residual variance is larger than the 

data variance. Essentially, the closer the value of NSE is to 1, the more accurate the prediction 

is. Note that NSE was computed only for the time steps corresponding strictly positive 

observed discharge during the event (after subtraction of the base flow). The algorithm used 

for the maximization of NSE was the simplex algorithm (Rao, 2009). 
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2.5.3. Model efficiency 
When using an event-based model, the calibration of the model event-by-event leads to 

the optimal NSE of the model, i.e. the NSE obtained with the optimal values of the calibrated 

parameters. But the predictive score of the model must account either for the best 

adjustment of the simulated floods to the observed one and for the better adjustment of the 

relationship between the initial condition of the model and the external predictors. In other 

terms, the predictive NSE of the model should be the NSE constrained by the predicted value 

of the initial condition of the model. The so-called predictive NSE indeed assesses the 

accuracy of the event-based model. The goodness of the model will be thus expressed by the 

quartiles (upper, median, lower) of the predictive NSE values of all the events, the initial 

condition being predicted by the relationship with the external predictors (base flow, the 

output of the SIM model). The model efficiency will also be controlled by split-sample cross-

validation, in order to check the stability of both the calibration and goodness of the model. 

For the event-based models, note that the split-sample cross-validation needs to compare 

the predictive NSE of both calibration and validation samples. 

2.5.3.1. Base flow 
The base flow here in the model is the “memory” of the catchment, due to the previous 

rainfalls, before the event. In the SCS-LR event-based model used as above, no base flow 

could be simulated, because the initial water level in the reservoir was 0 so that the drainage 

and delayed runoff were also null until the rainfall begins during the event. The simulated 

flow was only due to the rainfall of the event. Thus, the simulated discharges must be 

compared to the total observed discharges, minus the base flow. This base flow was 

estimated by fitting an exponential decrease with time, between the first discharge of the 

event Q0 and the last continuously decreasing discharge Qi (i.e. Qi such as Qk<Qk-1, for any 

1<k<i), before the rising of the flood: Qk=Q0.exp(-α(ti-t0)), with α = Ln((Qi-Q0)/(ti-t0)). The base 

flow was then computed with this exponential decrease for the whole event, and subtracted 

to the observed discharge, to be compared to the simulated discharge.  
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2.5.3.2. Water content predictors/ Soil moisture index 
In addition to the base flow, the w volumetric water content or the soil moisture index 

output of the SIM model (Habets et al., 2008; Quintana Seguí et al., 2009) was used as another 

predictor of the initial condition of the model.  

The volumetric water content is calculated according to the soil hydraulic properties 

(water content at saturation wsat, water content at the wilting point, wwilt, and water content 

at field capacity wfc). wsat is the maximum amount of water that a given soil can hold (Clapp 

and Hornberger, 1978). Field capacity wfc is the soil water content at which gravitational 

drainage effectively ceases, corresponding to a hydraulic conductivity of 0.1 mm/day (Wetzel 

and Chang, 1987). The wilting point wwilt is the soil water content below which it is assumed 

that plants are unable to pump water from the root zone to stomatal cells, calculated as water 

potential of -15 bar.  

The percentage of soil saturation is calculated by 

Equation 19 

𝐻𝑢 =  
θ

θ𝑆
100% 

where θ denotes the soil moisture and θS the saturated volumetric soil moisture 

(Marchandise and Viel, 2009). 

In the scope of this study, we only considered the indicator from the second soil layer, 

w2/Hu2, because of the shallow depth of the soils in the catchment and because it is a priori 

the most representative moisture index of the superficial deposits (Coustau et al., 2012). The 

values used for w2/Hu2 correspond to the average of all the pixels that comprise the Real 

Collobrier basin. 

2.6. ATHYS platform 
ATHYS is a modeling platform that the French Institut de Recherche pour le 

Développement (IRD) have been developing since 1995 with the aim of "bringing together 

in a friendly and homogenous environment a set of hydrological models associated with 

hydrodynamic data processing climate and geography". With the basic principle as a 

hydrological environment for distributed modeling, ATHYS contains a series of models 
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(production and transfer), DEM processing, hydrological and rainfall data, and geographical 

display, spatial data interpolation.  

ATHYS consists of four modules to prepare the geometric and hydro-meteorological data 

and format them as required by the rain-flow model: 

- The MERCEDES module "Square Regular Elemental Mesh for the Study of Superficial 

Flows" is a space-based modeling platform designated for the study of rain-flow 

transformation. Its advantage is that it is applicable to the basin of different sizes. 

- VISHYR module "Visualization of Hydrological Data" which gathers a set of pre and 

post-data processing of hydro-climatic stations such as correction, calculation, 

management, and visualization operations. 

- The VICAIR module "Visualization of Raster Cards and Images" which groups 

together a set of pre and post-processing spatialized spatial data such as correction, 

analysis, and visualization operations. 

- The SPATIAL is a module for spatial interpolation of rain. 

The MERCEDES menu gives the possibility to use the pair of the production model and 

transfer model to simulate floods. Among many available combinations, the SCS-LR model 

was selected due to its wide application and its ability to forecast Mediterranean floods. 
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Figure 2.4: ATHYS interface 

2.7. Conclusion 
This chapter helps to understand the history, the development and how the model works 

for this study. For the production model, the SCS is selected due to its simplicity, popularity 

and its ability to forecast floods which were proved in many other studies. We also adjusted 

it following another suggesting of (Michel et al., 2005) among many solutions to use the 

model. This adjustment enhanced the model that it can be more physically interpreted. For 

the transfer model, we directly use a model which was successfully used to simulate floods 

with ease in many other studies: the Lag and Route model. 
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After selecting and adjusting the appropriate model, we will apply it to simulate 

Mediterranean floods, firstly in Real Collobrier catchment. The results will be presented in 

the next chapter. 
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3. Calibration of the model on Real 

Collobrier catchment 

This chapter describes the Mediterranean Real Collobrier. The Real Collobrier has been 

studying for more than 50 years by IRSTEA and supplies an ideal rainfall and runoff database, 

which will be used to study the performance of the SCS-LR model as well as the impact of the 

uncertainties of the rainfall estimation on the model performance and parametrization. The 

Real Collobrier at Pont de Fer was considered here, as the larger catchment of the nested 

device of rainfall and runoff data. The catchment and the previous studies in Real Collobrier 

are first described in section 3.1, the event database is then presented and analyzed from a 

hydrological point of view in section 3.2, section 3.3 summarizes the calibration of the model 

and the relationships existing between the model parameters and the characteristics of the 

catchment or the events initial conditions, calibration of the model, and section 3.4 analyzes 

the impact of the reduction of rain gauges density on the performances and the 

parametrization of the model.  

3.1. Introduction 
Real Collobrier site consists of a nested device of sub-catchments, of which area range 

from 1.5 to 70.4 km2. The site has been studying for more than 50 years by IRSTEA so that it 

is one of the most well-documented sites which can be found in the Mediterranean area. Real 

Collobrier was the object of numerous studies in the past or recent years: 

As a long period of observation is now available, Real Collobrier was investigated for detecting 

trends of the impact of the climate change on rainfalls and floods (Folton et al., 2018), 

Real Collobrier catchments were used as a benchmark for several models. Obled et al. (1994) 

applied a semi-distributed version of TOPMODEL using an hourly time step and a series of 

independent events, Parkin et al., used a physically-based, distributed catchment modelling system 

named SHETRAN (1996), which quantified the uncertainty of four different predicted features, 

including continuous hydrograph, peak flow rates, monthly and total runoff, then compared the 
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observed with predicted features. Andréassian et al. (2001) used Real Collobrier data to test three 

model, including a three-parameter GR3J model and six-parameter TOPMODEL and IHACRES 

models at daily time step, Taha et al. (1997) developed a two dimensional unsaturated – saturated 

model of the hillslope-channel cross-section profile to explain the high proportion of storm 

discharges coming from old water. Nevertheless, such studies were limited to the local scale or 

intended no more than calibrating exercise, so that it still lacks a complete modeling framework of 

the Real Collobrier. 

Real Collobrier was also tested for assessing the impact of the density of the rain gauges on the 

calibration and the performances of models. Andréassian et al., (2001) proposed an approach to 

analyze the sensitivity of RR models to the lack of rainfall data input, by comparing between the 

efficiency ratings, the values of model parameters and the quality of rainfall input estimations. 

Obled et al. (1994) also assessed the performance of their models on the comparison of two 

different densities of networks, which includes a different number of gauges. 

Hydrological processes were investigated at various scales. Gresillon et al. (1995) showed that 

runoff was locally generated by saturation of the vertical profile of the soil. Marc et al. (1995) used 

geochemical tracers to differentiate the generation of runoff in Maurets and Rimbaud catchments. 

Travi et al. (1994) also used geochemical tracers for estimating the impact of the fire in Rimbaud 

catchment. Martin et al., (2004) measured and compared the floods in the upstream and 

downstream part of the Maurets catchment, proving that the upstream part supplied the main 

contribution to the flood. 

All these studies helped a lot to understand the behavior of the Real Collobrier and brought the 

possibility to improve the physical meaning of the model parameters. 

3.2. Real Collobrier catchment 

3.2.1. Location 
Real Collobrier is a Southern French basin which includes 11 sub-basins (Figure 3.1). It is 

about 16 km long and 9.6 km wide. The general axis of flow is east-west oriented, beginning 

in the reliefs on the eastern edge of the basin. The altitudes decrease from the east (770m 

maximum) to the west (80m at the outlet). The highest peaks of the Massif (770 m at the top 

of the Sauvette) are located in the northern ridge, which is higher than the southern one. The 
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largest catchment in Real Collobrier is controlled by the Pont de Fer steam gauge and covers 

70 km2. 

 

Figure 3.1: Maps of the Real Collobrier catchment. Relief (from IGN ALTI database at 25m 
spatial resolution) and rain gauges location. 

3.2.2. Geology and soil  
The geological formations are mainly crystalline, with metamorphism increasing from 

east to west: gneiss, schists, phyllites (Folton et al., 2012). Alluvial deposits are limited to the 

western part of the plain of Real Collobrier. Soils have sandy clay characteristics, more or 

less pebbly, with their thickness varying dependently on the bedrock and topography: the 

gneiss soils are shallow, the phyllites-soils are thicker, and the alluvium soils can reach 

several meters. Some bare rock areas appear at particularly high altitude. 

The average proportions in sand and clay in Real Collobrier are 633 g/kg and 162 g/kg 

(Figure 3.2 and Figure 3.3) (from Geosol https://webapps.gissol.fr/geosol/). Parkin et al. 

(1996) gave a description of the soil in the Rimbaud sub-catchment: the soils are generally 

sandy, and contain a significant proportion of gravel and broken rock; there is considerable 

local variation in soil depth from nothing (at bedrock outcrops) to a meter or more in 

bedrock depressions, but depths are generally less than 1 m; the deepest and most 
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homogeneous soils occur in the chestnut plantation near the catchment outlet, where soil 

depths may reach 2 m; plant roots generally extend over the full depth of the shallow soils. 

The shallow soils seem to have high hydraulic conductivities at saturation, up to 100         

mm.h-1 (Parkin et al., 1996), and low water retention (Taha et al., 1997). 

 

Figure 3.2: Map of clay in Real Collobier catchment 

 

Figure 3.3: Map of sand in Real Collobier catchment 
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3.2.3. Land use 
As the geological components are crystalline, the vegetation is essentially calcifuge, such 

as chestnut and cork oaks. In a small portion of the surface in the plain Real Collobrier, 

vineyards are grown. The land use map of Real Collobrier is presented in Figure 3.4. 

 

Figure 3.4: Maps of the Real Collobrier catchment: Land use (from Corine Land Cover database). 

3.2.4. Climate 
The climate in this area is the humid Mediterranean type with a remarkable dry period, 

autumn with strong intensity of rainfall, and rainy spring. The eastern topographic boundary 

of the basin has a predominant role on the spatial distribution of rainfall, which generally 

orderly decreases from the east to the west. The annual average rainfall ranges from 750 mm 

to 1200 mm. 

The general characteristics strongly fluctuate annually. The strong fluctuation of the 

annual average rainfall is not caused by the lengthening of the rainy season, but by the 

increase of the average rain intensity. It is also found that there is the same spatial 

distribution for daily rainfall. Rainfalls observed in summer usually accompany with a storm 

event. The most intense rainfall (up to 100 mm per hour) happens in the fall season. The 
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spatial distribution of rainfall infers a high variability in the runoff, although rainfall only 

partly contributes to the fluctuating flows. Other reason can be due to descriptive physical 

characteristics also strongly influences the hydrological basins. 

 

 

 

Figure 3.5: Average seasonal flow in station Pont de Fer. (Folton et al. 2012) 

Flow in Real Collobrier is coupled with seasonal variability. Figure 3.5 showed the average 

seasonal flow in station Pont de Fer in four periods of time: 1967-1978; 1979- 1989; 1990-

2000; 2000-2001. We can see in all the periods, the winter months seemed to have the 

strongest average flows, while the summer month (from June to August) had flowed nearly 

0.  

3.2.5. The measuring device 
The initial measuring device in 1966 included 25 tipping bucket rain gauges and 11 flow 

monitoring stations. It was downgraded in 1989, and the number of rain gauges was reduced 

to 17, distributed up- and downstream of each basin. On average, one rain station covers 5 

km2, of the Real Collobrier at Pont de Fer, which makes it a quite dense system. To date, the 

hydrological data measured in Real Collobrier catchment are one of the most comprehensive 

datasets collected in France. 
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3.2.6. Rainfall-runoff events 
Both rainfall and runoff data were obtained from IRSTEA (https://bdoh.irstea.fr/REAL-

COLLOBRIER/) and were used with 30 minutes time step. We considered here the 

discharges at Pont de Fer station, which controls a catchment of 70 km2. In this catchment, 

17 rain gauges were available for the rainfall data. The events were delimited by considering 

several conditions: i) a new event was defined when occurred a period of 48 hours without 

amount exceeding 0.5 mm during a 30minutes-time step; a 48 hours period was enough to 

consider that discharge came back to the initial value before the rain, ii) the rainfall during 

the event had to exceed 50 mm in at least one rain gauge; ; the threshold 50 mm was found 

necessary for flood triggering, iii) the peak flow during the event had to exceed 30 m3/s, 

which corresponded to the 1-year return period peak flow.  

The method led to select 34 events from 1968 to 2006 (Table 3.1). All the rain gauges did 

not always work together, as shown in Table 3.1, but 31 out of 34 events have more than 12 

rain gauges working together. The cumulated mean areal rainfall of the events ranged from 

49 to 318 mm, with an average of 166 mm. The spatial variability of the rainfall during the 

event was expressed by the coefficient of variation CV (ratio of the spatial standard deviation 

and the spatial average) of the cumulated rainfalls at the rain gauges, CV’s varying from 0.11 

to 0.84. The ratio between the maximal and the minimal cumulated rainfalls at the rain 

gauges were more than 2 for 25 events out of 34, more than 3 for 10 events out of 34. The 

correlation coefficients between the cumulated rainfalls of the events at the different gauges 

ranged from 0.14 to 0.97 (Table 3.2). They regularly decreased with the distances between 

gauges (Figure 3.6), but gauges 6 and 8 were less correlated to some others. As a matter of 

fact, these gauges are located in the upper northeastern part of the catchment and seem to 

be sensitive to local orographic effects. As an example of a median case, the correlation 

coefficient between the cumulated rainfalls at gauges Mouton (gauge 5) and Portaniére 

(gauge 12) was r = 0.69, the distance between the gauges being 10.7 km.  

https://bdoh.irstea.fr/REAL-COLLOBRIER/
https://bdoh.irstea.fr/REAL-COLLOBRIER/
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Figure 3.6: Correlation coefficients between the rainfall amounts measured for the 34 events at 
each rain gauge. Gauges 6 and 8 were the worst correlated gauges to the other ones. 

The maximal peak flow was 91 m3/s. The response time was computed for some single-

peak floods and ranged between 1 and 2 hours, considering the time between the main 

rainfall intensity and the peak flow. The runoff coefficients (Rc) ranged between 4 and 56%, 

34% on average. The lowest runoff coefficients (≤10%) corresponded to the events which 

occurred right after long dry periods. In spite of their low runoff coefficients, these events 

gave high peak flow, e.g. the maximum value 91 m3/s on the 13/09/1968. The initial 

moisture of the catchment was expressed for each event either by the base flow and the 

volumetric water content at the second soil layer, w2.  
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Table 3.1: Main characteristics of the rainfall-runoff events in Pont de Fer. # gauges: Number of 
gauges in the considered catchment; P: cumulated precipitation; CV: coefficient of spatial 
variation of the precipitation; Vr: runoff volume; Rc: runoff coefficient; Imax: maximal rainfall 
intensity during one-time step; w2: volumetric water content of the root layer. 

Event Starting date 
Finishing 

date 
P 

(mm) 
# 

gauges 
CV 

Vr 
(103.m3) 

Rc 
(%) 

Imax 
(mm.h-1) 

Peak 
flow 

(m3.s-1) 

w2 

(cm3.cm-3) 

Base 
flow 

(m3.s-1) 

1 12/4/1968 17/04/1968 142.4 16 0.27 2082.7 17 11.3 30.4 0.21 0.06 

2 13/09/1968 15/09/1968 177.2 14 0.18 1025.3 9 64.9 91.4 0.19 0.02 

3 2/1/1972 5/1/1972 68.5 11 0.29 1961.5 36 11.6 39.6 0.25 2.33 

4 1/2/1972 7/2/1972 125.1 16 0.40 3948.3 37 8.9 40.1 0.23 0.77 

5 17/02/1972 23/02/1972 207.8 15 0.25 8864.3 56 13.7 60.7 0.23 1.64 

6 13/02/1973 23/02/1973 168.2 15 0.84 3850.8 36 12.5 39.1 0.22 0.44 

7 13/10/1973 15/10/1973 104.9 15 0.21 1512.7 19 29.7 45.7 0.22 0.06 

8 26/01/1974 5/2/1974 247.8 13 0.32 8920.6 40 12.4 76.6 0.22 0.43 

9 12/2/1974 21/02/1974 212.6 13 0.25 8286.4 46 10.6 59.8 0.23 1.22 

10 26/02/1974 7/3/1974 163.6 16 0.16 7321.0 53 8.9 63.1 0.24 1.88 

11 18/09/1974 22/09/1974 123.6 15 0.27 373.5 4 44.2 44.8 0.15 0 

12 5/2/1975 9/2/1975 160.1 12 0.18 3395.4 27 8.1 40.8 0.22 0.12 

13 29/01/1976 8/2/1976 260.3 15 0.15 5095.0 22 16.9 39.8 0.21 0.16 

14 15/04/1976 19/04/1976 145 12 0.35 4288.4 37 15.4 77.4 0.22 0.31 

15 24/10/1976 31/10/1976 318.7 15 0.31 11191.6 44 14.9 68.3 0.24 0.50 

16 1/1/1977 3/1/1977 49.1 13 0.25 1966.9 46 7.2 31.5 0.24 3.30 

17 6/12/1977 11/12/1977 178.1 13 0.11 3142.4 22 17.5 43.3 0.23 0.13 

18 11/1/1978 19/01/1978 244.1 13 0.30 10043.5 49 12.3 77.5 0.23 0.20 

19 8/2/1978 13/02/1978 125.9 15 0.26 5467.2 52 8.1 41.6 0.22 0.76 

20 25/10/1979 31/10/1979 191.8 12 0.13 6182.4 41 13.6 50.7 0.23 0.21 

21 30/11/1984 4/12/1984 77.9 13 0.22 1488.4 22 17.9 31.9 0.23 0.41 

22 28/01/1986 7/2/1986 280.5 13 0.23 7037.4 30 13.1 53.7 0.21 0.06 

23 13/01/1988 17/01/1988 116.4 14 0.37 3325.5 33 11.1 73.4 0.23 0.30 

24 20/04/1993 4/5/1993 221.2 10 0.16 6106.0 31 25.4 38.7 0.21 0.25 

25 5/1/1994 9/1/1994 109.6 14 0.16 2400.7 23 15.9 33.5 0.21 0.12 

26 1/2/1994 8/2/1994 131.8 15 0.12 4192.2 33 19.3 31.1 0.22 0.64 

27 10/1/1996 19/01/1996 147.9 14 0.28 5646.6 54 14.6 48.7 0.24 1.62 

28 20/01/1996 31/01/1996 209.4 14 0.29 8816.0 50 12.6 58.3 0.24 1.50 

29 6/1/1997 13/01/1997 97.1 13 0.27 3266.7 44 10.2 59.9 0.25 4.05 

30 13/11/2000 28/11/2000 176.9 13 0.23 4388.0 29 21.5 29.9 0.24 0.37 

31 24/12/2000 29/12/2000 134.6 14 0.22 4107.1 37 21.7 44.1 0.22 0.39 

32 24/01/2001 31/01/2001 88.3 13 0.19 2749.5 22 9.2 33.4 0.23 0.83 

33 5/9/2005 12/09/2005 231.4 8 0.35 2541.8 10 64.2 60.9 0.15 0.003 

34 26/01/2006 1/2/2006 202.7 13 0.32 5760.2 34 16.7 34.5 0.22 0.15 
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Table 3.2: Correlation matrix calculated with rain-gauge data of events. NA = not available 
when there is no common event at both gauges. 

Gauge 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1 1.00                 

2 0.91 1.00                

3 0.92 0.89 1.00               

4 0.93 0.96 0.91 1.00              

5 0.83 0.88 0.89 0.89 1.00             

6 0.88 0.92 0.69 0.81 0.73 1.00            

7 0.95 0.89 0.94 0.86 0.93 0.70 1.00           

8 0.82 0.77 0.48 0.58 0.42 0.90 0.49 1.00          

9 0.94 0.97 0.76 0.91 0.59 0.47 0.91 0.14 1.00         

10 0.91 0.90 0.63 0.81 0.75 0.61 0.87 0.29 0.95 1.00        

11 0.84 0.83 0.51 0.67 0.75 0.61 0.88 0.36 0.92 0.84 1.00       

12 0.90 0.90 0.75 0.82 0.69 0.59 0.83 0.37 0.94 0.90 0.91 1.00      

13 0.90 0.84 0.76 0.75 0.71 0.89 0.82 0.84 0.72 0.71 0.69 0.67 1.00     

14 0.85 0.90 0.69 0.86 0.88 0.64 0.89 0.36 0.93 0.84 0.87 0.88 0.66 1.00    

15 0.96 0.94 0.97 0.95 0.91 0.80 0.93 0.62 0.78 0.82 0.72 0.80 0.81 0.81 1.00   

16 0.77 0.78 0.60 0.70 0.68 0.51 0.72 0.35 0.79 0.80 0.78 0.89 0.61 0.85 0.68 1.00  

17 0.91 0.85 0.97 0.85 0.94 0.93 0.96 0.94 NA NA 0.72 0.79 0.95 0.82 0.97 0.47 1.00 

Gauge 1 – Babaou, 2 – Bonnaux, 3 – Anselme, 4 – Guerin, 5 – Mouton, 6 – Fourches, 7 – Lambert, 8 – Louviere, 9 – 
Martels, 10 – Bourjas, 11 – Peyrol, 12 – Portaniere, 13 – Rimbaud, 14 – Vaudreches, 15 – Bourdins, 16 – Davids, 17 – 
Boussic 
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Figure 3.7:  Correlation between each pair of indexes in the Pont de Fer catchment. Pmoy: average 
areal cumulated precipitation (mm); Flow: runoff volume (103.m3); Rc: runoff coefficient (%); w2: 
volumetric water content of the root layer (cm3.cm-3); logQdeb: log10 base flow (log10 m3.s-1); 
Imax: Maximum rainfall intensity (mm.h-1); PeakFlow: peak flow (m3.s-1) 

We tried to find the correlation between the runoff coefficient and the other hydrological 

indexes of the catchments. As we can see in Figure 3.7, the correlation coefficient R2 from the 

regression between Rc and these indexes showed that Rc was very little correlated with P 

and peak flow, but much more with the initial condition w2 and base flow. More information 

was shown in Figure A 1 to Figure A 5 in the Appendix. Thus, the runoff coefficient can be 

influenced by the initial condition more than the rainfall.    
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3.3. Calibration and goodness of the model when 

using all the rain gauges 

3.3.1. The sensitivity of the model to the parameters 
Sensitivity tests were performed in order to detect the most influential or independent 

parameters as said in the methodology section. The sensitivity analysis aimed to investigate 

how the simulation of our hydrological model would be affected when each parameter varied 

while the others were kept unchanged. The most sensitive parameters, in other words, were 

the one which modification affected the greatest on the model simulation should be focused 

during the calibration stage. The event n°5 has been selected for this test, as a multi-peak 

event. The a priori values and boundaries of the parameters for this event have been set as 

far as possible from physical or empirical methods. The reference set of parameters used for 

the sensitivity test was finally S =140 mm, ω’=60 mm, ds = 0.4 d-1, V0= 2.5 m.s-1, K0 = 3, which 

led to a good simulation of the observed flood. 

S parameter 

S is equivalent to CN as usual, S(mm) = 25400/CN – 254 and can be derived from the Soil 

Conservation Service (SCS) National Engineering Handbook Section 4: Hydrology (NEH-4) 

and Technical Release 20 (TR-20). CN is known to be related to the land use, the hydrologic 

condition, the type of soil and the antecedent moisture condition. However, as shown in 

further discussion, the optimal values of S - or CN can be very different than those supplied 

by the SCS Handbook. The sensitivity analysis was performed by using S = 75 mm and S = 

400 mm as probable boundaries of the S parameter in the Mediterranean area. The model 

was very sensitive to the range of variation of S (Figure 3.8), so this parameter was calibrated 

for each event. Changes in S mainly affected the peak height in the hydrograph. Specifically, 

decreases in the value of S increased the height of the peaks, which means higher flow rates 

in flood events. 
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Figure 3.8: Sensitivity test of S parameter 

ds parameter 

As a mathematical property of the model, the discharge coefficient of the reservoir, ds, is 

equivalent to the recession coefficient α used in the Maillet’s law:  

Equation 20   𝑄(𝑡)  =  𝑄0. 𝑒−𝛼∗𝑡   

where α is the drainage coefficient and Q0 initial base flow. The recession coefficient ds 

was calculated for all the events, fitting an exponential recession on the terminal part of the 

floods (See Equation 20) The mean value was 0.4 d-1, with a 0.1 d-1 standard deviation. The 

min and max values were respectively 0.2 and 0.7 d-1. The sensitivity test was thus 

performed with the reference set of parameters, by using ds = 0.2, 0.4, 0.7 d-1. The first peak 

was not sensitive to ds (<1%) but the second one was much more (more than 20% between 

the min and max). That showed that the ds parameter was important in case of multiple 

peaks flood (Figure 3.9), but most of the events exhibit single peak, so the ds parameter was 

set constant in first approximation, ds = 0.4 d-1. 
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Figure 3.9: Sensitivity test of the ds parameter 

We can see in Figure 3.9, modifying ds did not change either the height of the peaks or the 

height of the recession, but it slightly altered the slope of the recession 

V0 and K0 parameter 

The V0 parameter should be interpreted as the maximal velocity in a cross-section. Thus, 

V0 can be derived from the slope, friction and hydraulic radius of the streams or channels. 

Although the velocity in a cross section is far to be constant in space (and time) at a small 

scale, it is not unrealistic to assume that V0 is globally constant over the catchment: roughly 

speaking, it results from the fact that the slopes are steep and the hydraulic radius low 

upstream, whereas the slopes are low and the hydraulic radius high downstream. In other 

terms, the variability of the slopes compensates the variability of the hydraulic radius for 

stabilizing the velocity values. In addition, V0 was used to compute the travel time Tm 

between a given cell and the outlet of the catchment (Equation 17) and must be seen as a 

mean value along this trajectory: this is another reason why the hypothesis of V0 uniform in 

space could be reasonable.  

The transfer parameters V0 and K0 were found to be strongly dependent (Figure 3.10). In 

this example (event n°5), it can be seen that there is a very wide range of pairs (V0, K0) which 
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satisfy NSE > 0.8, the other parameters being S = 140 mm, ω’ = 60 mm, ds = 0.4 d-1. Thus, it is 

necessary to set one of these two parameters to avoid their artificial variation. As the V0 

parameter was somewhat more physically-based, we chose to set V0 = 2.5 m.s-1: this is indeed 

close to the value that would give the Manning-Strickler formula used in a rectangular cross-

section with a Strickler friction coefficient 20 m1/3.s-1, a slope 0.015 m.m-1, a width 20 m, a 

water level 1 m high, which seems to be realistic according to the available observations. 

 

Figure 3.10: NSE values depending on V0 and K0 (the other parameters were S = 140 mm, ω’ = 60 
mm, ds = 0.4 d-1), event n°5. The wide area where NSE > 0.8 showed a high dependency between 
V0 and K0 parameters. 

The K0 parameter governs the relationship between the translation time Tm and the 

diffusion time Km. The diffusion time Km displays a complex role and serves both as a real 

diffusion since the velocity through a cross-section is not uniform, and as an artificial way to 

make the real velocity varies in time, whereas V0 does not. Therefore, there is no physical 

evidence to set a priori the K0 value, and it was necessary to calibrate K0. To know more about 
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the influence of K0, the sensitivity test was performed with the reference set of parameters, 

by using K0 = 0, 2.4 and 4.5, which were respectively the a posteriori minimal, median and 

maximal values of the calibrated K0 (Figure 3.11). K0 mainly acted in the reduction of the peak 

flow, and to some extent, in the time position. However, despite the modification of K0 

influenced both peak height and the recession of the hydrographs, the sensitivity of the model to 

K0 seemed to be less than the sensitivity to S. 

 

Figure 3.11: Sensitivity test of K0 parameter 

ω parameter 

There is no physical evidence for the ω parameter. Then, the other parameters S, ω and 

V0 had first to be calibrated for the 34 events. An optimized set of values was found for each 

event, by optimization of the NSE computed with the observed and computed discharges 

(Figure 3.12):  

 S parameter ranged from 80 to 420 mm with the average approximately equal to 180 

mm,  

 K0 value was mainly between 1 and 6 with an average of about three except for some 

special events.  
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 ω fluctuated from 0 to about 1, and the average was approximately 0.3  

 NSE average value was 0.9, ranging from 0.3 to 1. 

 

Figure 3.12: Variations of the calibrated values of S, K0, ω, and NSE for the events 

 

Figure 3.13: Relationship between S and ω 

 



79 
 

 

Figure 3.14: Sensitivity test of the ω parameter 

ω and S were significantly dependent as already pointed out by Coustau et al. (2012). In 

our case, ω and S were linked by linear regression (R2 = 0.51, Figure 3.13). That means that 

the higher S, the lower ω. In other terms, the delayed runoff is low when the soil is initially 

dry, and high when the soil is initially wet. This is coherent with the fact that free water in 

the soil depends on the water content. We can also see that due to Figure 3.12 and Figure 

3.14, the variation of ω appeared not to greatly affect the height of the peaks, however, it affected 

the height of the recession. 

In order to reduce the equifinality, it was thus decided to express ω as the ratio of a water 

storage threshold ω’ and the S maximal water storage capacity of the soil at the beginning of 

the event, ω = ω’/S of S > ω’, ω = 1 if not. The ω’ parameter (in mm) substituted to the ω 

parameter in the calibration of the model and was expected to be uniform for all the events. 

The ω’ parameter was set as the product of the median value of ω (0.3) and the median value 

of S (190 mm), thus ω’ was approximately 60 mm.  

Modeling with ω’/S did not perform worse than with optimized ω. The median NSE value 

improved for most of the case especially the events which were in dry condition whether 

calibrating S and K0 with ω and or with ω’/S. The values of the S and K0 parameters did not 
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change much: when calibrating S and V0 with ω’/S instead of calibrating S, ω and K0, S values 

reduced in an average of 10 %, and K0 values almost kept the same (Figure 3.15).  

 

Figure 3.15: Comparison of S, K0, and NSE between using ω and ω’. The box plots feature median, 
upper and lower quartiles, (Q3 and Q1, respectively), minimum and maximum values without 
outliers, and outliers (outliers are defined as data points that fall out of the range [Q1-1.5*(Q3-
Q1), Q3+1.5*(Q3-Q1)] (Tukey, 1977) 

 

Figure 3.16: Result of simulation for episode 11 with y-axis is flow discharge in m3/s and x-axis is 
30 minutes time step with the use of ω (left) and ω’ (right). In the flow plots, blue lines represent 
observed flow, and the red line represents flow simulated using the model with the corresponding 
values of ω and ω’. The plotted rainfall corresponds to the rainfall measured in gauge 4 (Guérin) 
located near the center of the catchment. 
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Moreover, modeling with ω’/S improved significantly the NSE value of the special events 

which happened in dry condition. Figure 3.16 describes both cases where we used ω and ω’, 

apply for a special event. It is shown that the use of ω’ decreased the peak of the simulated 

flow, but it made the total hydrograph fit better with the observation.  

 

Figure 3.17: Comparison between using ω and ω’ for all events 

The comparison of using ω and ω’ for all the events was described in Figure 3.17, led to 

the conclusion that the use of ω’ is better for the simulation. Finally, the ω’= 60 mm were 

finally kept for the calibration and now the model ran with two parameters calibrated. 

3.3.2. Model calibration 
The parameters S and K0 had to be calibrated for the 34 events. An optimized set of values 

was found for each event, by optimization of the NSE computed with the observed and 

computed discharges (Figure 3.18). The S calibrated parameter values ranged from 75 to 

400 mm (median = 181 mm), K0 between 0 and 4.5 (median =2.4), and the NSE ranged from 

0.27 to 0.99 (median = 0.96, lower quartile = 0.87) (Figure 3.18). The simulated hydrographs 
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indeed proved to be very similar to the observed one (Figure A 9). The two worst values of 

NSE corresponded to events occurring in the driest initial soil conditions (18/09/74 and 

05/09/2005). In these cases, the low flow values were overestimated, whereas the peak flow 

values were underestimated. 

 

Figure 3.18: Calibrated values of S and K0 and corresponding NSE for the events. 

The sensitivity test performed above gave an idea of the impact of such variabilities, and 

the model was supposed to be more sensitive to S than to K0, at the event scale. It is, however, 

worth to note that the K0 low value normally appears in dry condition (high value of S) while 

the high value of K0 is often in wet condition (low value of S) (Figure 3.19). In dry initial 

condition, the shape of the flood would be sharper because the delayed runoff should be 

smaller; thus, K0 will tend to be reduced in order to fit the shape of the flood. Finally, the fact 

that the model was not very sensitive to K0 made that we could use the median value to 

simulate floods without significant loss of accuracy. 
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Figure 3.19: Relationship between S and K0. 

3.3.2.1. Event variability of the K0 parameter 
In the parameter sensitivity section above, we saw it clearly that the part of recession 

which mainly contributed by the subsurface flow was controlled by the two main parameters 

ω (for the height of the recession) and ds (for the slope of the recession). However, because 

of the variability of the K0 parameter, we can see the role of the K0 parameter with the 

subsurface flow could be more than the production parameters in the case of the dry 

condition. Thus, the K0 was related to initial conditions. However, the results show that the 

K0 was not strongly correlated with these indexes (R2 ~ 0.3, Figure 3.20). For events that are 

not in the dry condition, we can still have the varied K0 value. 

K0 was also tried to correlate with all the internal characteristics of the storm events, 

however, we did not find any strong correlation with any index (Figure A 10 to Figure A 12 

in the Appendix) 
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Figure 3.20: Correlation between K0 and external characteristics of the events. 

As S and K0 were found to be more or less dependent, another test was performed to 

answer the question of the actual impact of the parameter’s variability over the whole range 

of the events. The analysis was led by using the median value of each parameter (S then K0) 

and by recalibrating the other parameters of the model (Figure 3.21). For each calibration, 

the loss in NSE and the differences in S or K0 expressed the sensitivity of the model to a given 

parameter. The highest loss in NSE was found when using the median S parameter and 

calibrating K0: in this case, the median NSE decreased to 0.78 instead of 0.96 when calibrating 

both S and K0, and the median K0 increased to 3 instead of 2.4. 

Meanwhile, using the median of parameter K0 resulted in marginal changes of the median 

NSE (0.94 instead of 0.96) and median S (178 instead of 181 mm). Thus, the parameter S can 

be considered as the key parameter of the model, of which the variability at the event scale 

must be accounted for. The variability of the K0 parameter seemed to have less impact on the 

flood simulations, although the impact could be important for some events.  
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Figure 3.21: Sensitivity of the model to the variability of each parameter. (a): change in calibrated 
S when using either median or calibrated K0, (b): change in calibrated K0 when using either median 
or calibrated S, (c): changes in NSE when two parameters calibrated and using one median. 

More details were shown at the event scale, comparing the calibrated values of S using 

either median or calibrated K0, or the calibrated values of K0 using either median or 

calibrated S (Figure 3.22). The calibrated S values were found to be stable when using 

median K0, whereas the calibrated values changed a lot. Thus, the variability of K0could be 
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neglected and using the median value would be enough, as well for the model score than for 

the S parameter estimation. 

 

 

 

Figure 3.22: Sensitivity of the model to the variability of each parameter: (a) changes in NSE and 
calibrated K0 when using either median or calibrated S;(b) changes in NSE and calibrated S when 
using either median or calibrated K0. Lines represent the values of S in mm, while points represent 
the value of NSE in each event. 

a 

b 
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3.3.2.2. Event variability of S parameter 
After the calibration of the model, it appeared that S was the most variable and most 

influent parameter for the simulations. Firstly, the calibrated S is related to the internal 

characteristics of the storm events such as the mean areal rainfall and the runoff coefficient. 

As we can see from the results (reported in Figure A 6 to Figure A 8 in the Appendix), the 

event variability of the S parameter was not correlated with either mean areal rainfall 

(Figure A 6) or peak flow (Figure A 8), with R2 ~ 0 but had a moderate positive relationship 

with the runoff coefficient (Figure A 7, R2 = 0.58).  Moreover, S corresponds to the water 

deficit at the beginning of the event, so that it is expected to be highly dependent on the 

previous events and the initial state of saturation of the soil. Therefore, we tried to find 

relationships between S and two indexes supposed to express the initial water content: the 

base flow and the w2 volumetric water content at the beginning of the simulated event. 

Both indexes gave rise to a relatively strong correlation with maximum water retention, 

presented by the correlation coefficient R2 (0.85 between S and log10(Qb) and 0.77 between 

S and w2, Figure 3.23). To allow the computation of the logarithms, the null base flows were 

changed to 0.001 m3/s. 

 

Figure 3.23: Relationship between maximum water retention and base flow (A) and volumetric 
water content (B). 
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These relationships should be used to assess the actual accuracy that could have the 

model in calibration mode. The actual accuracy of the model should be indeed estimated by 

the NSE computed with the predicted values of S instead of the optimized values of S, i.e. the 

predictive NSE. Figure 3.24 showed that using the predicted values of S instead of the 

optimized one reduced the NSE values (for all the events, the median value of K0 was used): 

the median predictive NSE was 0.83 when using the relationship between S and the base 

flow and 0.77 when using the relationship between S and the water content w2 (instead of 

0.94 for the median optimal NSE, derived from optimal values of S and median value of K0). 

This shows that the S-base flow relationship performs better than the S-w2 relationship, in 

order to simulate the flood. 

 

Figure 3.24: NSE value when using either S calibrated, S derived from the w2 index or from the 
base flow. The NSE values are sorted in descendant order for the 34 events. 
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3.3.3. Validation of the model 
The validation of the model was performed using cross-validation. Firstly, all the events 

were split into three samples: sample 1 included the 11 first events; sample 2 contained the 

events 12 to 22 and sample 3 was constituted of the 12 remaining events. For each predictor 

(w2 or base flow), the model was first calibrated (S and K0) on the set containing the 

calibration events, and the regression between S and two predictors was designed from the 

calibrated values of S. Then the model was applied on the set containing the remaining events 

(Table 3.3), by using the S values derived from the regression previously designed in the 

calibration phase and the median value of K0 obtained with the calibration sample. The 

median predictive NSE was finally computed for both calibration and validation events (the 

median value of K0 was also used for the calibration sample to calculate the median 

predictive NSE). 

Table 3.3: Results of the split sample tests performed with the two predictors (w2 index, base flow 
Qb). “a”, “b” and “R2” are respectively the slope, the intercept and the determination coefficient 
of the regression designed between the initial condition S and the given predictor using the events 
of the calibration sample. 

Predictors 
Calibration 

events 
Validation 

events 
a b R2 

Median 
predictive NSE 
for calibration 

Median 
predictive NSE 
for validation 

w2 

1-22 23-34 -2429.9 835 0.71 0.78 0.83 

1-11,23-34 12-22 -2740.2 797.45 0.90 0.88 0.76 

12-34 1-11 -2680.4 788.36 0.69 0.71 0.71 

Log10Qdeb 

1-22 23-34 -81.77 140.73 0.85 0.89 0.76 

1-11,23-34 12-22 -77.49 153.51 0.87 0.9 0.78 

12-34 1-11 -88.91 146.05 0.83 0.81 0.92 

 

The correlation coefficient R2 was the highest for the second sample (0.9 for w2 and 0.87 

for base flow). One possible reason is that this sample contains all the dry events (i.e. events 

that occurred in dry soil conditions), and the corresponding extremely low values of S could 

artificially increase the correlation coefficient R2. However, the other R2 values were also 

very good (≥0.69), which showed a good correlation between the S parameter and the 

predictors. The coefficients a and b of the relationships did not differ a lot and were also very 
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close to those obtained for the whole sample of events, meaning that a stable relationship 

could be used for estimating S whatever the calibration sample was. The median predictive 

NSE were closed for the calibration and the validation samples, even sometimes higher for 

the validation sample than for the calibration sample. There was no significantly better 

sample for the comparison of the median predictive NSE for calibration and validation. 

Besides, the median predictive NSE were better for the base flow than the w2, for both the 

calibration and the validation samples. Finally, to summarize, these results gave acceptable 

confidence for the performance and the robustness of the model, and for the possibility to 

apply it for other events than those used in this study. 

3.4. The sensitivity of the model to rain gauges 

density 

 

Figure 3.25: Maps of rain gauges that were selected for the test of data contribution. The density 
of gauges was one in 4 km2, one in 8 km2, one in 18 km2 and one in 70 km2, corresponding to 
100%, 53%, 23% and 6% of the total gauges, respectively. 

As mentioned above, the Real Collobrier catchment is one of the most-documented 

catchments in France. In other catchments, however, much fewer data are available. 
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Therefore, to assess how the model would perform for these less documented catchments, 

we decreased the density of gauges for calibrating the model: instead of all the rain gauges, 

we used 9, 4 and only one rain gauges. The gauges were selected in order to respect the 

optimal coverage of the catchment (Figure 3.25). We also considered the quality of the 

gauges, i.e. when we have gauges close together, the chosen gauge is the one which has more 

data available. The calibration of the model was carried out following the method above (S 

and K0 were the parameters to be calibrated, whereas was kept ω’= 60 mm). When the 

number of rain gauges decreased from all the gauges to one single gauge, the median of both 

the initial water deficit S and K0 did not change remarkably while the median NSE criteria 

decreased from 0.95 to 0.91, the R2 between S and the base flow decreased from 0.85 to 0.62 

(Figure 3.26), and the R2 between S and the soil water content w2 decreased from 0.77 to 

0.59 (Figure 3.27). It was consistent with the fact that a higher number of rain gauges could 

improve the performance of the model, in other words, more rain data would help the model 

become more predictive. As seen above, insufficient data mainly affected the relationships 

between water retention and the external parameters (soil wet condition, base flow, etc.). 

Nevertheless, the parameters of the model stayed robust in spite of the decrease of the rain 

gauge density. 

 

Figure 3.26: Distribution of the maximum water retention (a), the velocity of travel (b) and NSE 
(c) calculated from SCS-LR calibration with different number of rain gauges  
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Figure 3.27: The coefficient of determination (R2) between maximum water retention and base 
flow (left) and soil water content (right) when using all, 9, 4 and 1 gauges, respectively 

 

Moreover, we can also test the effect of the spatial rainfall distribution by testing the 

calibration of the model when using each gauge. The density of rain gauge when we used 9 

or 4 gauges was still more than what we usually had in most of the cases. Thus, in the case of 

Real Collobrier, we should test further the effect or each rain gauge to the output of the 

model.   

The rainfall uncertainty was then tested by using only one gauge at a time for model 

calibration. We implemented the calibration of the model following the method mentioned 

above (S and K0 were the parameters to be calibrated for each event, whereas we kept 𝜔′ = 

60 mm, ds = 0.4 d-1, V0 = 2.5 m.s-1). The results were given in Table 3.4, in which the regression 

and the predictive score were calculated for two predictors (w2 and base flow). 
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Table 3.4: Results of using each rain gauge performed with the three predictors (w2 index, base 
flow Qb). “a”, “b” and “R2” are respectively the slope, the intercept and the determination 
coefficient of the regression established between the initial condition S and the given predictor 
using the events of the calibration sample; PM is the median predicted NSE of the model. 

Gauge 
# Events 
available 

Median 

S 

W2 Base flow 

a b R2 PM a b R2 PM 

All 34 181.0 -2924.91 839.52 0.77 0.80 -85.30 145.85 0.85 0.91 

Babaou 28 197.8 -2961.43 858.72 0.65 0.74 -90.49 154.05 0.76 0.79 

Bonnaux 27 191.7 -3324.64 919.27 0.72 0.66 -97.20 129.07 0.79 0.72 

Anselme 24 244.8 -2027.36 692.43 0.27 0.51 -64.51 207.92 0.42 0.68 

Guerin 28 215.5 -2782.46 827.45 0.59 0.66 -79.37 167.31 0.61 0.70 

Mouton 25 225.1 -5479.90 1465.77 0.27 0.57 -148.82 169.17 0.41 0.58 

Fourches 27 197.4 -5204.81 1385.53 0.23 0.44 -135.17 156.16 0.39 0.52 

Lambert 26 184.1 -2328.31 704.18 0.51 0.67 -66.07 153.42 0.63 0.74 

Louviere 27 252.7 -2124.46 724.16 0.29 0.47 -68.85 215.55 0.39 0.51 

Martels 15 153.6 -2421.10 683.62 0.64 0.58 -69.67 113.06 0.77 0.70 

Bourjas 18 182.4 -4423.16 1152.60 0.87 0.76 -113.00 115.49 0.91 0.81 

Peyrol 25 119.6 -2020.89 571.91 0.6 0.64 -55.28 95.13 0.68 0.72 

Portaniére 26 143.6 -3365.36 890.62 0.71 0.64 -85.63 99.40 0.74 0.67 

Rimbaud 29 221.9 -2321.87 735.02 0.41 0.60 -73.25 181.66 0.52 0.64 

Vaudreches 26 136.6 -5648.03 1412.75 0.63 0.63 -140.77 79.17 0.68 0.71 

Bourdins 21 233.4 -2557.44 798.06 0.41 0.69 -69.58 194.86 0.47 0.72 

Davids 28 111.8 -2124.44 586.36 0.52 0.58 -59.78 83.17 0.64 0.59 

Boussic 11 233.8 -2304.99 743.57 0.67 0.71 -74.80 199.50 0.69 0.71 

 

The median S values ranged from 112 to 252 mm when using only one rain gauge for 

calibrating the model (it was 181 mm when using all the rain gauges). The R2 of the 

relationship between S and w2 (resp. S and Qb) ranged from 0.87 to 0.23 (resp. 0.91 to 0.39). 

The median predictive NSE of the model ranged from 0.76 to 0.44 (resp. 0.81 to 0.51) when 

estimating S from the relationship with w2 (resp. with Qb).  The results also indicated that 

there were differences in both slope and intercept when we considered the regression of the 

calibrated S parameter and predictors in each rain gauge and in all gauges (Figure 3.28). 

Figure 3.28 also showed the possible bias of the S parameter estimates, at a given density of 

rain gauges (here, 1 out of 70 km2). It showed that for dry soil, let’s say w2 = 0.18 cm3.cm-3 or 

Qb = 0.01 m3/s, the S estimates could range from nearly 250 mm to more than 600 mm, even 
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more for w2, depending on the selected rain gauge used for the calibration of the model.  For 

wet soil, let’s say w2 = 0.24 cm3.cm-3 or Qb = 10 m3/s, the S estimates could range between 

nearly 50 and 150, even 200 mm. 

This is consistent with the fact that a higher number of rain gauges could improve the 

performance of the model, in other words, more rain data would help the model become 

more predictive. As seen above, insufficient data affected both the performance of the model 

(predictive NSE) and the parameters of the model (median, dry and wet values of S). 

 

Figure 3.28: Relationship between S and base flow (a) and between S and w2 (b) when using all 
gauges or only one gauge for the model calibration. The regression obtained when using all the 
gauges was presented in black, while the regression obtained by using each single gauge were 
shown in colors. 

The effect of the rain gauges did depend on their position in the catchment so that the best 

R2 were obtained for the gauges Bonnaux and Bourjas. Bonnaux can be considered as the 

most central gauge in the catchment. Bourjas exhibited the best R2, probably because only 

half of the events could be recorded (18/34), which could artificially increase the R2. In 

addition, most of the gauges led to equivalent both R2 and slopes in the relationships 

between S and the saturation index (base flow or w2), but different intercepts. This is due to 

the fact that all these gauges are correlated, but that rainfalls have different mean values, 
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probably due to orographic effects. Conversely, the worst R2 were found for the gauges 

Fourches and Louviere, which were known to be poorly representative of the whole 

catchment (see Table 3.2 and Figure 3.6).  

We can also see that when considering the relationship with the initial condition, the most 

different slope come from three gauges: Vaudreches, Fourches, and Mouton which are close 

together (Figure 3.28).  The problem could possibly come from a numerical error to calibrate 

a special dry event (event 11) which make the excessive value of S parameter or the error 

from the gauges in differentiated places. If we remove these values of S, the regression 

between S and base flow and w2 close with the others (Figure 3.29). Thus, these slopes should 

be considered to be due to the calibration uncertainty rather than to the rainfall uncertainty. 

Besides, we can also see the importance of the S calibrating of the special events to the 

regression with the initial condition.  

 

 

Figure 3.29: Relationship between S and base flow (a) and between S and w2 (b) when using all 
gauges or only one gauge for the model calibration, when the event with numerical error has 
been removed. The regression obtained when using all the gauges were presented in black, while 
the regression obtained by using each single gauge were shown in colors. 
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3.5. Discussion 
The S parameter was first compared to the estimated value that can be derived from the 

SCS Handbook. Real Collobrier can be described as mostly forestall, with pines, chestnuts, 

and oaks, in fair hydrologic condition. The most appropriate hydrologic soil group according 

to the high hydraulic conductivity of the shallow soil (> 100 mm.h-1) was A, therefore the S 

value in medium conditions of soil moisture should be 459 mm when referring the SCS 

method guide. This value is far above the median calibrated value, S = 210 mm. As the 

calibration of S was shown to be robust, this difference should not result from equifinality or 

any other bias generated by the values of the other parameters, and there should be a more 

physical explanation. This is probably due to the fact that shallow soil does not have 

sufficient depth to allow such higher water storage capacity. The hydrological soil group D 

would be preferable to account for this limited capacity, but in this case, the S value in 

medium conditions of soil moisture would be 68 mm, which highly underestimates the actual 

calibrated S value.   

 Moreover, S was poorly correlated with the classical previous 5-days cumulated rainfall 

(Huang et al., 2007), P5D, as shown in Figure 3.30, and the large and continuous variability 

of the calibrated S also shows that the predicted values of S cannot be reduced to only three 

values corresponding to antecedent moisture conditions (AMC) AMCI, AMCII, and AMCIII, as 

proposed in the SCS guide.  The above comments illustrate the difficulty of predicting S from 

the method guide. 
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Figure 3.30: Comparison between calibrated S values and 5-days previous rainfall amounts P5D, 
for the 34 events 

Similar relationships between S and the water content estimates have been found before 

when modeling floods at a sub-daily time step. In the small Mediterranean Valescure 

catchment (4 km2, Δt = 30 minutes), Tramblay et al. (2010) found a high correlation (R2 > 

0.7) between S and either the field monitoring of water content, the base flow, the previous 

rainfalls or the output of the SIM model. In the Mdouar catchment in Morocco (635 km2, Δt = 

1 h), Tramblay et al. (2012) also found a high correlation (R2 ~0.8-0.9) between S and either 

the antecedent precipitation index or the output of the GR4J daily model, whereas only four 

rain gauges operated over the catchment. This high correlation was probably due to the local 

oceanic climate, generating large-extended spatial rainfall. The correlation between the 

event cumulative rainfalls of 2 sites distant from 50 km was estimated to r = 0.96, which is 

much higher than in the Mediterranean climate. In a larger catchment such as the Wangjiaba 

catchment in China (30630 km2, 139 operative rain gauges), under Moonson climate, Yu et 

al. (2018) found predictive NSE values varying between 0.66 and 0.95 for 24 flood events (Δt 

= 2 h), when using predicted values of S. But in several Mediterranean catchments, weak 

correlations or predictive NSE have been found between S and the water content predictors 

(see in the ATHYS catchment database http://www.athys-soft.org/bassins). It seems to be due 

to the high spatial variability of the rainfall, and the low density of rain gauges in these 

http://www.athys-soft.org/bassins
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catchments. As an example, the Gardon at Anduze (545 km2, Δt = 1 h) indeed exhibited a 

weak correlation between S and the SIM output or the base flow (R2 < 0.5). The present study 

indicates that it could be due to the relatively low density of rain gauges (7 rain gauges) on 

the catchment. 

The R2 of the relationship between S and w2 or the base flow is not only affected by the 

rainfall uncertainties, but also by many other uncertainties, such as the ones related to the 

base flow, the w2, the calibration protocol and the accuracy of the model.  As the discharge at 

the Pont de Fer stream gauge was controlled by a downstream spillway, the low flow rating 

curve was assumed to be stable, and the base flow correctly measured. The calibration of the 

model was performed in different conditions which showed that the calibrated S values were 

stable whatever the other parameters values were. The uncertainty on the medium and high 

flows rating curve could also affect the S values, but this kind of uncertainty should generate 

a rather systematic than a randomized error, which should not affect the R2 of the 

relationships between S and the base flow or w2. Thus, it was reasonable to assume that the 

main uncertainty which could affect the relationships between S and the base flow or w2 was 

due to the rainfall and that the R2 mainly reflected this uncertainty. 

3.6. Conclusion 
The results of our study proved that SCS-LR model could simulate flash flood in Real 

Collobrier catchment with good accuracy. The calibration and the validation of the model 

were mainly based on the rainfall and runoff data corresponding to 34 events of Real 

Collobrier catchment in the period of 1968 – 2006. The sensitivity test and parameters 

dependency test allowed reducing the number of parameters to be calibrated. Some 

parameters could be set constant for all the events, by considering either numerical 

properties of the parameters (in case of ds or V0) or empirical assumptions (for ω’). The 

maximum water retention S and diffusion time K0 were calibrated for each event, and the 

variability of S exhibited a wider impact on the simulated flows than the variability than K0. 

K0 could be set to its median value without significant loss of quality in NSE values, nor 

change in S values. The variability of S was significantly correlated with the predictors of the 

basin wetness state: the soil water content and the base flow. The regression coefficient 

values (R2) were high for both cases (0.85 and 0.77). The calibration protocol showed that 
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the estimated S values were robust and that the variability of these values was not dependent 

on the other parameters of the model. The median NSE equals 0.94 when using the optimal 

calibrated values and reduces to respectively 0.83 and 0.77 when using the predicted S 

values given by respectively the relationship with the base flow or w2. These latter values 

are representative of the accuracy of the model at the event scale, as it can be expected for 

any further application of the model. 

Moreover, the dense rainfall data gave us the possibility to test the effect of the rain gauge 

density on the calibration and the goodness of the model. The results proved that the 

reduction of the density of the rain gauges affected both the regression with the initial 

condition and the calibrated parameters of the model. When using a single rain gauge for the 

calibration of the model, the estimates of S can vary from 250 to more than 600 mm for 

initially dry soils, and from 50 to more than 150 mm for initially wet soils, depending on the 

selected rain gauge. 

In the next chapter, we assess the performance of this model in other sub-catchments of 

the Real Collobrier, as well as study the spatial variability of the model parameters in the 

sub-catchment scale.  
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4. Spatial variability of the model parameters 

in the Real Collobrier sub-catchments 

This chapter focuses on the spatial variability of the model parameters in Real Collobrier 

on four sub-catchments of the Real Collobrier: Rimbaud (1.5 km2), Maurets (8.4 km2), 

Marlière (12.4 km2) and Pont de Fer (70 km2). These sub-catchments are different not only 

in the scale but also in characteristics.    

4.1. Presentation of the selected sub-catchments 

4.1.1. Physio-geographical characteristics 
The Pont de Fer watershed is the main catchment, which drains the other sub-catchments. 

For the analysis, we compared catchments of smaller areas: Rimbaud (1.5 km²); the Maurets 

catchment (8.4 km²); Malière (12.4 km² receiving the flows of the Rimbaud watershed) 

(Figure 4.1) 

 

Figure 4.1: Map of the selected catchments in Real Collobrier. 
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4.1.1.1. Rimbaud 
Rimbaud (1.5 km2) is located in the south-east of Real Collobrier. The altitudes range 

between 470 and 622m. The slopes have an average value of 9-10°, but they can often exceed 

20° in canyons carved out by the rivers. The basin of the Rimbaud is made up of relatively 

homogenous, entirely gneiss bedrock affected to a very strong dip towards the North-West 

(Figure 4.2A). Shallow stony soils with a sandy texture and lumpy structure belong to 

ranker’s class. The soil is normally less than 30 cm deep, with frequent occurrence of bedrock 

at the surface (Figure 4.1B). The small depths of the superficial formations make that the 

stream of the Rimbaud reacts violently to precipitation. Before the wildfire in August 1990, 

the catchment was covered by a dense matorral and sparse cork-oak. The fire affected 84% 

of the basin watershed (Puech et al., 1991), by destroying a maquis with cork oaks and pines. 

A small chestnut grove, located in the downstream part, escaped the fire. The revegetation, 

essentially made from pine, made a fast recovery on burnt areas, and by August 1993 already 

covered around 50% of the catchment. The characteristics and the correlation among 

indexes of all events in this catchment were reported in Table A 1 and Figure A 13 in the 

Appendix. 

 

Figure 4.2: The topography of Rimbaud sub-catchment. (A) The map of slope of the area and (B) 
soil thickness and superficial formations (Béguin, 1993) 

4.1.1.2. Maurets 
Maurets (8.4 km2) locates in the north-east of Real Collobrier. The elevation ranges from 

209 m to 770 m. The average slope is greater than 10°. The topography of the basin is mixed 
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between high-sloped and planar structures. The highest slope in the basin can reach to more 

than 30° (Figure 4.3). The area is covered with forests of oaks, chestnuts, and pines. The 

understory soil surface in Maurets is covered with dense grassland. The basin is made up of 

metamorphic geological composition. The northern part composed of large outcrops of 

phyllites. There are two forms of phyllites in this part of Maurets: the alternating quartz and 

schist in the north-western part and the shales in the North-eastern part. Amphibolites, 

associated with leptynites, are found only in the downstream part. In this part, gneiss and 

mica schists are also found (Figure 4.3). Amphibolites are extremely sensitive to the 

weathering, whereas the phyllades are very resistant (Martin et al., 2004). The nature of the 

topsoil also highly varies from skeletal soil to brown soil and alluvium (with the thickness of 

several meters). The characteristics of all events in this catchment were reported in Table A 

2 and Figure A 14 in the Appendix. 

 

Figure 4.3: The map of slope of the Maurets sub-catchment 
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4.1.1.3. Malière 
Malière (12.4 km2) located in the south-east of Real Collobrier. The average elevation is 

386 m. The geology included bedrock metamorphic composed of gneiss, mica-schist, 

amphibolite, and phyllade. The majority of the area has a slope greater than 10o (Figure 4.4). 

The cover vegetation was the same with Maurets as maquis of heath, cork-oak, maritime pine 

and groves of chestnut. The characteristics of all events in this catchment were reported in 

Table A 3 and Figure A 15 in the Appendix. 

 

Figure 4.4: The map of slope of the Malière sub-catchment 

4.1.2. Hydrological behaviors 
The Rimbaud and Maurets sub-catchments have been widely studied in the past years. 

Soil properties have been monitored in one hillslope in the Maurets catchment. From Guelph 

permeameters multi-disc infiltrometers, Taha et al. (1997) found hydraulic conductivity at 

saturation of 100 mm.h-1 in average at the surface and 10-15 mm.h-1 in average at 60 cm 

deep (Figure 4.5). Soil porosity was 0.51 at the surface and 0.29 at the depth 60 cm. Head 

pressures ranged from some hundreds of cm to 0, according to the soil water content. Such 
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values were considered to lead to produce runoff by saturation of the whole vertical profile 

of the soil (Gresillon et al., 1995).  

 

Figure 4.5: Measured hydraulic conductivity as a function of depth (Taha et al., 1997). 

Marc et al. (1995) compared Maurets and Rimbaud runoff production during one flood by 

using geochemical tracers and stable water isotopes. They estimated that flood runoff in 

Maurets was due for 80% of pre-existing water (of which 60% was shallow soil water) 

whereas rainwater (new water) was only 20% (Figure 4.6). In Rimbaud, the contributions 

were significantly different, with only 40% of old water. The high percentage of old water in 

Maurets suggests that first, soils have a high storage capacity, and second that the infiltrated 

water is able to produce much runoff, as delayed runoff. Soils in Maurets thus have a much 

higher capacity to store water than in Rimbaud, but also higher capacity to be drained and 

produce runoff.  

 

Figure 4.6: Three-component hydrograph separation in the Maurets basin (Marc et al., 1995) 
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The Maurets catchment was itself divided into sub-catchments during the 1992-1999 

period. Four stream gauges delimited nested catchments, of which area were 0.26, 0.56, 5.75 

and 8.37 km2 (Figure 4.7). The hydrological responses of the three upstream catchments 

were found similar, whereas the more downstream part contributed very little to the runoff 

production (Figure 4.8). Both the slopes (steep in the upstream part, smooth in the 

downstream part) and the angles between the slopes and the planar structures of the rock 

could explain those differences (Martin et al., 2004). 

 

Figure 4.7: Geological map of Maurets and sub-catchment (Martin et al., 2004) 
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Figure 4.8: Daily flows (top) and specific daily flows (bottom) during the flood of February 5, 
1994 

4.1.3. Flood characteristics 
The Rimbaud sub-catchment included thirty-two events from 1968 to 2002 applying the 

criteria: i) a new event was defined when occurred a period of 48 hours without amount 

exceeding 0.25 mm during a 15mn-time step, ii) the rainfall during the event had to exceed 

30 mm in at least one rain gauge, iii) the peak flow during the event had to exceed 1 m3/s. 

The cumulated rainfall was 73 – 365 mm, the peak flow reached 14.2 m3/s. In this sub-

catchment, the runoff coefficients ranged from 23.4 to 87% with an average of 62.3%.   
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Thirty-two events in the period 1970 – 2008 were obtained in Maurets sub-catchments 

with the same criteria than above, but the peak flow threshold was 3 m3/s instead of 1 m3/s 

in Rimbaud. The mean areal cumulated rainfall from 87 to 357 mm, the maximum peak flow 

was 7.8 m3/s. The runoff coefficients ranged from 9 to 61% with an average of 37.5%.  

In Malière sub-catchment, the selection method gave a series of 21 events from 1966 to 

2008, with the same criteria than those used in Maurets. The cumulated rainfall ranged 

between 36-324 mm with the median of 165mm. The peak flow reached 25.6 m3/s. The 

runoff coefficient of this sub-catchment ranged between 25 and 75%, with an average of 

45%. Table 4.1 summarises the characteristics of four sub-catchments in the Real Collobrier. 

Table 4.1: The hydrological and geological characteristics of four sub-catchments in Real 
Collobrier, including Pont de Fer, Rimbaud, Maurets, and Malière. 

Catchment Area #events 
Pmoy Rc Peak flow 

Geology Vegetation 
Range Median Range Median Range Median 

Pont de Fer 70 32 
 

49-319 

 

162 

 

4-56 

 

35 
30-91 44 

Crystalline rocks 
with 

decreasing 
metamorphism 

from east to west 
(gneiss, 

mica-schist, 
phyllads) 

Calcifuge 
vegetation 

(maritime pine, 
cork oak, 

chestnut, scrub) 
and 10% 

of cultivated 
areas 

(vineyard) 

Rimbaud 1.5 32 73-365 166 23.4-87 62.3 2-14.2 3 A gneiss bedrock 
A dense 
scrubland 

Maurets 8.4 32 87-357 182 9-61 37.5 3-7.8 4.7 

Bedrock 
metamorphic 

composed of 
phyllade and 

amphibolite Maquis of 
heath, cork-oak, 

maritime pine 
and groves 

of chestnut 
Malière 12.4 21 93-324 167 25-74 45 7.8-25.6 11.4 

Bedrock 
metamorphic 

composed of 
gneiss, 

mica-schist, 
amphibolite and 

phyllad. 

 

It is shown that the mean areal cumulated rainfall of all the sub-catchments was almost 

equivalent for except a slightly higher for Maurets. Furthermore, the peak flow was logically 
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highest for Pont de Fer because it had the largest area. However, the highest for all of the 

events in Rimbaud was higher than Maurets (14.2 m3/s to 7.8 m3/s).   

 

Figure 4.9: Comparison of Runoff coefficient across four selected catchments 

Figure 4.9 showed a comparison of the runoff coefficient for four selected catchments. As 

we can see, the lowest value was for Pont de Fer although it was not so far with Maurets or 

Malière, whereas the runoff coefficient in Rimbaud was so far greater than the others. The 

reason could be due to the contrast between the higher runoff produced by the upstream 

areas and the lower runoff produced by the downstream areas, which originates in different 

soil depth, slopes, and planar rock structure. Rimbaud features a homogeneous headwater 

catchment, as could be the upstream part of the Maurets catchment (Martin et al., 2004), 

whereas parts of the other catchments seem to be much less productive, e.g. downstream 

area in Maurets. 

Comparing the specific discharges in the catchments shows that Rimbaud catchment is 

more productive than the others, as well during the floods as during the recession phase ( 

Figure 4.10).  
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Figure 4.10: Comparison of the specific discharges among four sub-catchments of the Real 

Collobrier 

4.2. Model calibration 
The methodology was the same than used in Pont de Fer catchment. The model combined 

SCS distributed runoff model with LR transfer model, which counts with five parameters: S, 

ω’, ds, V0, K0. 

The ds parameter was derived by the analyses of the recession coefficient of all the events 

form each sub-catchment, as the median value of the coefficients of all the events. It is known 

that the model is little sensitive to the ds value.  

 

Figure 4.11: Comparison of ds parameters across the 4 selected sub-catchments. 
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As we can see in the figure, the median of the ds parameter was equal in Malière, Maurets, 

and Pont de Fer and slightly higher in Rimbaud (Figure 4.11). Due to the sensitivity test for 

the ds parameter above, the median value of the ds parameter could be kept for all the events. 

Thus, we used the value of ds as 0.5 for Rimbaud and 0.4 for the rest sub-catchments. 

The ω’ parameter was initially calibrated for each sub-catchment, it was shown that it 

should vary from one event to another. However, the sensitivity of the model to this 

parameter is quite low, at least for simulating the peak flow, and this justifies the choice of a 

constant value in time and space for ω’. Thus, ω’ was set as the median calibrated value for 

each sub-catchment. 

The value used for each sub-catchment was different: ω’= 70 mm for Rimbaud; ω’= 35 mm 

for Maurets; ω’ = 90 mm for Malière. The differences will be commented later after that S has 

been estimated for each catchment. 

The transfer parameter V0 and K0 are known to be strongly dependent (see chapter 

before), and one of these parameters need to be set to avoid artificial variation. As we could 

consider as a hypothesis of the model that the V0 parameter is constant over the catchment, 

it was reasonable to keep V0 unchanged (2.5 m/s as the same as the value used in Pont de 

Fer for the last chapter). The optimization was then run with the calibration of the two 

parameters S and K0 for each catchment. 

The median NSE values were 0.95 for Pont de Fer, 0.9 for Maurets and Rimbaud, and 0.88 

for Malière (Figure 4.12). These high values of NSE indicated a very high predictive power of 

the model over all the nested sub-catchments. 
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Figure 4.12: Comparison of the NSE values across the four selected sub-catchments  

S parameter 

The S parameter varied between different events and between different sub-catchments. 

The median S was the lowest in Rimbaud (115 mm); while it was higher in Pont de Fer and 

Maurets (180 mm), and the highest was in Malière (200 mm). The spatial variability of the 

median S values was in agreement to the calculated runoff coefficients in the case of 

Rimbaud: this catchment exhibited indeed higher runoff coefficients than the others. The 

three other sub-catchments had relatively similar runoff coefficients; however, Malière had 

higher S than Pont de Fer and Maurets (Figure 4.13). Although a difference of 20 mm could 

not really be significant for S, the difference could also be due to that the runoff coefficient 

accounts for the surface runoff as well as the delayed runoff, whereas S is associated only to 

the surface runoff. S and the runoff coefficient could indeed not be equivalent. As Malière 

exhibited the larger median runoff coefficient with a higher median value of S, it would mean 

that the direct runoff was less in Malière than in Pont de Fer and Maurets, but the delayed 

runoff was more important in Malière than in Pont de Fer and Maurets. 
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Figure 4.13: Comparison of S parameters across four selected sub-catchments 

ω’ parameter 

The delayed runoff was expressed as a fraction ω = ω’/S of the drainage of the soil 

reservoir, equaling itself a fraction ds of the soil reservoir level (Equation 11 and Equation 

13). As ds soil drainage parameters and median S values were similar for the catchments 

Maurets, Malière and Pont de Fer, the delayed runoff in those catchments directly related to 

the ω parameter. The estimated median ω would thus be 35/180 = 0.19 in Maurets and 

90/200 = 0.45 in Malière. It would be 60/180 = 0.33 in Pont de Fer (see the previous 

chapter). Thus, Malière seems to produce more delayed runoff than Pont de Fer and Maurets, 

which confirms what was found above (Figure 4.10 of the comparison of the floods in Pont 

de Fer, Malière, Maurets, and Rimbaud).  

In Rimbaud, the estimated median ω would be 70/115 ~ 0.60. It means that more 

infiltrated water flows laterally in Rimbaud than in the other catchments. It could be 

interpreted as the fact that the Rimbaud substratum is probably less fractured or weathered 

than the Malière and Maurets ones, so that water cannot infiltrate deeply in Rimbaud, and 
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tends to drain laterally, whereas water percolates deeper Malière and Maurets, and could no 

more flow superficially. 

  

K0 parameter 

The K0 parameter was higher in Maurets and Rimbaud (29 and 18 for median K0, 

respectively), while the value was much lower in Pont de Fer and Malière (median K0 = 3 and 

3.5) (Figure 4.14). The spatial variability of K0 could be interpreted in different ways: 

- Firstly, it could be some pure scale effect, due to the formulation of the relationship 

between Tm and Km: Km = K0. Tm, which could be inappropriate to be applied for any 

catchment area. The position of Maurets shows however that the catchment area is not 

the only factor to be considered for explaining the variability of K0. 

- It is known that the floods in Maurets and Rimbaud have different shapes, much 

smoother in Maurets (Marc et al., 1995). This seems to be due to deeper soils and higher 

water storage capacity, which also generates more subsurface flows in this catchment. 

Thus, in addition to numerical scale effects, there is probably also to account for 

dominant hydrological processes to explain the variability of K0: subsurface flows 

processes are dominant at hillslope scale, so they are much more to be considered in 

small headwater catchments than in Pont de Fer, where subsurface flows are less 

influential due to the larger area of the catchment.  

- The hypothesis that V0 is constant in time and space over all the cells of the nested 

catchments could also not be adequate, and able to generate an artificial shift in the K0 

values.  
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Figure 4.14: Comparison of K0 parameters across 4 selected sub-catchments. 

We mainly focused here on the first hypothesis. Thus, we performed another K0 

calibration, after having modified the relationship 𝐾𝑚 = 𝐾0. 𝑇𝑚  into 𝐾𝑚 = 𝐾0. 𝑇𝑚
𝛼, where 

α is a constant. After several trials, α = 0.33 led to similar K0 values (approximately 60) in 

Pont de Fer, Malière, and Rimbaud, whereas Maurets had a higher value (K0 = 150) (Figure 

4.15). The use of this new relationship between Km and Tm did not modify the other calibrated 

parameters. 

The difference in Maurets could be due to the higher subsurface flow in this sub-

catchment. This new formulation of the relationship between Km and Tm will be checked with 

catchments of larger areas in the next chapter. 
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Figure 4.15: Comparison of K0 parameters generated using different values of α (α = 0.2, 0.33 
and 0.5) across 4 selected sub-catchments. 

 

4.3. Temporal variability of parameters at sub-

catchment scale 
In each sub-catchment, S was the most variable parameter. As we also indicated in the 

previous chapter, the variation of K0 was not significantly correlated with any index as well 

as could be neglected when comparing with the variation of S parameter. Thus, for the 

temporal variability of parameters at the sub-catchment scale, we have just focused on the S 
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parameter. The temporal variation of parameter S was related to the initial condition of these 

sub-catchments. 

 

Figure 4.16: The linear relationship between S parameter and w2 for each of the four selected 
sub-catchments   

The parameter S was firstly related to the w2 index. Figure 4.16 shows a relatively strong 

correlation between S and w2 index, as all the correlation coefficients R2 are more than 0.5. 

The comparison between the relationships of S and w2 in the catchments divided into two 

groups with similar slopes, but different intercepts: Pont de Fer and Rimbaud; Maurets and 

Malière.  
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Figure 4.17: The linear relationship between S parameters and the base flow for each of the four 
selected sub-catchments 

Maximum water retention S was also expected to be correlated with the base flow, as 

shown for Pont de Fer. In Rimbaud, Malière, and Maurets, the correlation coefficient R2 

between S and base flow were less than in Pont de Fer, however, it still implied a relatively 

strong positive linear correlation (Figure 4.17). The value of R2 was 0.61 in Rimbaud 

catchment, 0.61 in Maurets catchment, 0.63 in the Malière catchment. The relationships 

between S and the base flow for all the sub-catchments also divided into two groups: a 

steeper slope for Pont de Fer and Rimbaud, but different intercept; gentler slopes in Maurets 

and Malière, and closer intercepts. As the base flow is depended on the area of the catchment, 

a new predictor was considered: the specific base flow, i.e. the base flow that divides the area 

of the catchment (Figure 4.18).  
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Figure 4.18: The linear relationship between S parameter (mm) and the base flow normalized by 
area for each of the four selected sub-catchments. 

This predictor was able to reduce the difference in the intercept so that Rimbaud and Pont 

de Fer exhibited very near relationships. This should be considered as a positive result, 

which shows that the same relationship could fit in catchments having very different 

properties such as areas or runoff coefficients. But the specific base flow failed to explain the 

difference in the slope among sub-catchments.  

4.4. Discussion and conclusion 
To summary, the SCS-LR model showed the ability to simulate floods in Rimbaud, 

Maurets, Malière sub-catchments of the Real Collobrier. Those catchments exhibited similar 

median runoff coefficients, but previous studies highlighted that hydrological processes 

could be different not only from a catchment to another but also within a given catchment. 
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The temporal variability of the S parameter was correlated with the base flow and w2 

index, with high values of R2. It confirms that the event variability of the S parameter is 

mainly explained by the initial soil wetness conditions, whereas rainfall characteristics such 

as amounts, intensities or durations do not significantly impact the S estimations. From this 

point of view, Real Collobrier catchments are “violent” catchments (Hawkins, 1993). The 

median predictive NSE from w2 /baseflow were respectively 0.77 /0.83 in Pont de Fer, 0.65/ 

0.5 in Maurets and 0.63/0.65 in Malière; in comparison, the median predictive NSE was 

higher in Rimbaud, 0.82 /0.83. 

  

The spatial variability of the K0 parameter was attributed to an incorrect relationship 

between the propagation time Tm and the diffusion time Km of the Lag and Route model. 

Although several other hypotheses could be made about the spatial variability of K0, we 

decided to adopt a new relationship, which we will have to be validated a posteriori in the 

next chapter.  

The spatial variability of the median S parameter was coherent with the spatial variability 

of the runoff coefficient. The higher the runoff coefficient was, the smaller the S parameter.  

As being the maximum storage capacity, S should depend on the soil depths, porosities and 

water content along with the vertical profile of the soils. As the w2 index integrated all these 

data, it was expected that the same relationship between S and w2 could have been 

convenient for all the catchments. But this was not the case: Pont de Fer and Rimbaud 

exhibited similar slopes, but different intercepts, as well as Maurets and Malière; but slopes 

were different in Pont de Fer and Rimbaud on the other hand, in Maurets and Malière on the 
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other hand; slopes or intercepts, or both of them made that the relationships were different 

for each catchment. This could be due to the fact that the tiles of the SIM model which 

supplied the w2 values were too large for representing the specificities of those small 

catchments. It could also be due to the fact that the soil properties that SIM used were not 

really appropriate or accurate enough to represent the actual soil properties. Unfortunately, 

we could not know what values were used within SIM, and we cannot comment furthermore 

the convenience of the properties of the soil. We, however, think that improving the 

knowledge of the soil properties such as soil depths and soil porosities and water content 

along the vertical profile would greatly help to improve the understanding of the spatial 

variability of the S parameter (Oudin et al., 2010). 

The base flow was another predictor expected to integrate all the factors explaining the S 

values so that the relationship between S and the base flow could be the same for all the 

catchments. To avoid scale effects, the base flow had to be turned into the specific base flow. 

The relationships were close together for Pont de Fer and Rimbaud in the one hand and for 

Maurets and Malière on the other hand. The possibility to find similar relationships for such 

different catchments as Rimbaud and Pont de Fer seems to be positive in order to use the 

specific base flow as an index of not only the spatial variability but also of the spatial 

variability of the S parameter.  

Additional hypothesis concerning the failure of finding a unique relationship between S 

and the soil moisture predictors could be that the S estimates were biased because the S 

parameter was considered as uniform over the whole catchments. This assumption could 

hold for a homogeneous headwater catchment like the Rimbaud catchment, but it is not 

realistic for more heterogeneous catchments such as Maurets, Malière, and Pont de Fer, 

which contain different geomorphological units. Unfortunately, we did not have time to 

deepen such hypothesis, but it might be a promising direction for a better understanding of 

the S spatial variability. 

Finally, a question arises with the small area of the catchments we considered in this 

chapter. That’s why the next chapter deals with larger Mediterranean catchments. 
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5. Variability of the parameters in catchment 

scale 

This chapter aims to answer the following questions (i) how do the parameters vary from 

a catchment to another, for a sample Mediterranean catchments of which areas cover several 

hundreds of km2, (ii) is it possible to derive this variability from a few available predictors 

and to supply a uniform relationship to relate parameters and predictors, at least for 

Mediterranean catchments that are close together? 

The spatial variability in catchment-scale was investigated by considering the results of a 

set of Mediterranean catchments, including Aille, Ardèche, Allier, Gardon Anduze, Tarnon, 

Verdouble, and Vidoule. These catchments have been studied in previous works between 

HSM and SCHAPI, and the data are now available in the ATHYS database “Bassins” 

http://www.athys-soft.org/bassins. Each catchment was described in the database, as well for 

the geographic features as for the modeling results when using SCS-LR model.  Those data 

have been processed again to suit the last improvements of the model.  

5.1.  Presentation of the selected catchments 
In the analysis of this chapter, we consider 7 other catchments which locate within the 

Mediterranean regions. These catchments include Aille (Vibaudan, department Var), Allier 

(Langogne, department Lozère), Ardèche (Vogüé, department Ardèche), Gardon (Anduze, 

department Gard), Tarnon (Florac, department Lozère), Verdouble (Tautavel, department 

Pyrénées-Orientales) and Vidourle (Sommières, department Gard) (Figure 5.1).  

http://www.athys-soft.org/bassins
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Figure 5.1: Locations of the selected catchments within the Mediterranean region. 

 

All the information about the characteristics of these catchments can be found in detail in 

the ATHYS database “Bassins”. Table 5.1 summarizes the main characteristics of these 

catchments, including the area of the basins, number of rain gauges and rating curve gauging 

installed in the catchment, the density of the rain gauges (the area that one rain gauge 

represents), the elevation, average slope, geology and the component of vegetation 

presented in the catchment. Each catchment has at least 3 rain gauges. One rain gauge is in 

charge of representing an area from 37 to 108 km2. Plus 4 sub-catchments of the Real 

Collobrier, a total of 11 catchments are analyzed in this section.  
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Table 5.1: Characteristics of the 7 selected catchments. # rain gauges: the number of rain gauges installed in the catchment; # rating 
curve gauging: the number of rating curve gauging installed in the catchment 

Catchment 
Area 

(km2) 
# rain 
gauges 

Rain 
gauge 

density 

Elevation (m)  

Average 
slope 

# rating 
curve 

gauging 
Geology Vegetation 

Range Average 

Aille 228 5 46 43-731 200 8.47° 48 
Sedimentary rocks (68%) 

(Permian sandstone, dolomites 
and the sands of the Holocene) 

Forest (63%); agriculture uses 
(29%), artificial purpose, 

including urban area (5%). 

Allier 324 3 108 900 - 1482 1174 8.1° - 
The magmatic, volcanic and 

metamorphic rocks 

Mostly forest and semi-natural 
zone (82%). 15% used for 

agriculture purpose 

Ardèche 629 7 90 140 – 1535 711 18.7° 2 

Northern part: plutonic and 
magmatic rocks. Central and 

western part: metamorphic rocks 
(gneiss and mica schists). 

Southern part: Jurassic limestone 

Mainly covered by forests (70%); 
vineyards, orchards and some 

urban areas (5%) 

Gardon 544 6 91 124-1202 528 20.3° 7 

Mainly metamorphic rocks (shale, 
gneiss and mica schist); granite 
(25%) and Jurassic limestone 

(25%) 

Forests and heaths (80%); 
vineyards and orchards 

Tarnon 256 7 37 554 - 1560 954 19° 226 
Schists (two-thirds of the area), 

granite (central and western 
part), limestone. (Eastern part) 

Dominated by coniferous forests 
and deciduous forests (80%); 

agriculture activity (5%) 

Verdouble 299 6 50 107 - 959 407 14.4° 24 

Mostly calcareous soils (Early, 
Late Cretaceous and Jurassic), 

early Triassic marl-limestone soil, 
Devonian, Ordovician, and Late 

Visean clay and shale soils 

Mediterranean scrubland (70%), 
agricultural activity, (viticulture -

10%), some forests and 
meadows 

Vidourle 600 6 100 20 - 975 135.5 4.9° 7 

The Western and North-Western 
part: Cretaceous marl-limestone 
and Jurassic limestone. The plain 

of Bénovie: marly and clay 

Agricultural zone, gardens, 
arboriculture, vineyards; 

scrubland (the Northern part); 
riparian forest system along the 

river. 
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5.2. Variabilities of the hydrological indexes for all 

the catchments 
Figure 5.2 described the great variability of runoff coefficients across 11 catchments in 

the Mediterranean region. Among those catchments, Rimbaud and Allier were the 

catchments with the highest median runoff coefficient, while Pont de Fer, Tarnon and 

Ardèche were the catchments with lowest median runoff coefficient among all 

catchments. Especially, there was one event which had the runoff coefficient higher than 

100% in Ardèche catchment. This phenomenon was caused by the way of separation of 

this event and the previous event. 

The peak flow strongly depended on the area of the catchments. Figure 5.3 thus 

reported the variability of specific peak flow, which was calculated as the peak flow 

divided by area.  Indeed, we could see in the figure that catchments with large area (such 

as Gardon, Ardèche, Verdouble) usually had high values of peak flow. Meanwhile, 

catchments with small area, such as that of Real Collobrier often had much lower peak 

flow. The highest median specific peak flow was in Rimbaud, while Allier had the lowest 

median specific peak flow. 

Figure 5.4 indicated the variability of average rainfall across 11 catchments. Similar to 

the other two parameters, the results showed strong variability of average rainfall. Among 

all catchments, Gardon was the catchment with the highest median of average rainfall 

across all flood events, while Vidourle and Aille were the two catchments with the lowest 

median average rainfall among all catchments. 

The complete information about the events and the correlation among indexes can be 

found in Section C of the Appendix. Besides the great variability across all catchments, the 

results also showed the variability of these three indexes across all the flood events in 

each catchment.  
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Figure 5.2: The variability of runoff coefficients across 11 catchments 

 

Figure 5.3 : The variability of specific peak flow across 11 catchments 
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Figure 5.4: The variability of average rainfall across 11 catchments 

5.3. Calibration of the model on Mediterranean 

catchments 
The ds value was calculated for each catchment as the median value of the recession 

coefficient, for each event. The ds parameter varied between 0.3 and 0.5 d-1 for all the 

catchments Table 5.2. This variability is known to have a small impact on the flood 

simulation, as shown by the sensitivity tests performed in Chapter 3.  

The ω’ value was first calibrated at the event scale, at the same time that S and V0, and 

then was set to its median value, as it was done in Chapter 4. Doing so, ω’ ranged from 10 

mm in the Aille catchment to 200 mm in the Allier catchment. This variability was related 

to the variability of the S parameter. 

For the 11 Mediterranean catchments of our sample, the V0 parameter was not 

considered as uniform because the landscapes and the slopes could vary a lot, from flat 

areas in the plains to steep hillslopes in the Cevennes Mountains. To avoid equifinality in 

estimating the LR model parameters, the K0 parameter was set to a constant value. A first 

attempt consisted of using the LR model with Equation 17, by setting K0 = 2, as it was done 

in the first studies of those catchments in BD ATHYS.  
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The optimization was then run with the calibration of the two parameters S and V0 

while K0 was set as 2. Figure 5.5 shows that in this case, V0 was mainly related to the area 

of the catchment (R2=0.78), which seems to confirm that the scale effect influenced the 

transfer function's parameters. 

 

Figure 5.5: Correlation between the median V0 and the area of all selected catchments with 
K0 = 2 

Thus, to avoid this scale effect, we changed the relationship 𝐾𝑚 = 𝐾0. 𝑇𝑚  into          

 𝐾𝑚 = 𝐾0. 𝑇𝑚
𝛼, with α =0.33 as we did in Real Collobrier catchments. The calibration was 

finally made with 2 parameters S and V0 while K0 was set as 60, for all the events of each 

catchment (Table 5.2).  

Table 5.2: The parameters of the calibrated SCS-LR model for each of the selected 
catchments 

Catchment 
No of 

events 

S 
ω' V0 ds K0 Median NSE 

Range Median 

Aille 28 9-164 41 10 2 0.4 60 0.92 

Allier 11 193-542 332 200 2.2 0.4 60 0.90 

Ardèche 18 120-508 193 160 4.5 0.3 60 0.90 

Gardon 19 92-391 210 110 3.6 0.3 60 0.84 

Tarnon 22 57-431 136 36 2.9 0.5 60 0.91 

Verdouble 11 11-319 87 21 2 0.5 60 0.88 



129 
 
 

Vidourle 11 0-144 83 60 2.5 0.4 60 0.91 

Pont de Fer 34 93-384 165 60 2.5 0.4 60 0.96 

Rimbaud 32 52-289 112 70 2.5 0.4 60 0.88 

Maurets 32 105-513 182 35 2.5 0.4 60 0.91 

Malière 21 111-483 174 90 0.7 0.4 60 0.82 

 

As we can see, the calibration gave positive simulations for these catchments with very 

high values of NSE (>0.84). However, the values of the set of parameters were not the 

same for all the catchments and had to be analyzed from a spatial point of view.  

5.4. Spatial variability of the parameters 

5.4.1. V0 parameter 
In most of the cases, the value of V0 ranged from 2-2.5 except Maurets, Gardon, Ardèche, 

and Tarnon. The scale dependency of V0 was decreased with the use of new formulation 

with K0 equal to 60 (Figure 5.6).  

 

Figure 5.6: Correlation between the median V0 and the area of all selected catchments with 
K0 = 60 
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As the V0 parameter denotes the maximal velocity on a cross-section, the spatial 

variability of this parameter was expected to be depended on the catchment 

characteristics. We can see in Figure 5.7, the catchment which had a high value of V0 

accompanied by a high value of the average slope. Without the case of Maurets, where the 

difference of transfer function parameter was explained as the role of subsurface flow, we 

can see the relationship between V0 and the average slope of each catchment with a 

moderate correlation. However, the main issue of variability of the model is about the 

maximum water retention S parameter.  

 

 

Figure 5.7 : Correlation between the median V0 and the average slope of all selected 
catchments with K0 = 60 
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5.4.2. S parameter 

 

Figure 5.8: The variability of the S parameter across 11 catchments 

The calibration of S the parameter showed that in general, the S median value varied 

between catchments (Figure 5.8). The highest value of S belonged to Allier, while the 

catchment Aille had the lowest S value. One of the reason for the high value of S parameter 

in Allier catchment could be due to the soil in this basin is highly permeable, thus it can 

absorb a high proportion of precipitation and supply deep aquifers. The Aille catchment 

is the specific catchment, which has different geology than the others: such Permian 

sandstones are known to generate red impervious soils like in the Lodeve and Salagou 

area, in the Herault department (Brunet and Bouvier, 2017). But other reasons could be 

considered: first, it is known that the S parameter sometimes depends on the rainfall 

amounts (Bouvier et al., 2018; Hawkins, 1993). In the Aille catchment, as we showed 

before, the median rainfall was lower than in the other catchments.  So we looked for a 

possible relationship with the rainfall amount, by considering the S calibrated values and 

the cumulated mean areal rainfall for each event in the Aille catchment and the other 

catchments (Figure 5.9). The regression coefficient R2 were small (< 0.25 for 9 out of the 
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11 catchments), and did not confirm such relationship between S and that rainfall amount. 

It also confirmed that Mediterranean catchments are “violent” catchments.  

 

Figure 5.9: Correlation between average rainfall and S calibrated for all events of each of the 
selected catchments. 

Then, we compared the median S value and the median runoff coefficient for all the 

catchment (Figure 5.10).  There was not any correlation between these two values. This 

could be explained by the fact that the runoff coefficient can be due to both the fast and 

slow responses of the catchment, while S expresses only the fast response of the 

catchment. For example, Allier and Aille catchment have similar high runoff coefficient, 

but for different reasons : soils in Allier were supposed to have a high water storage 

capacity, but also a high capacity to release runoff in form of delayed runoff, whereas soils 

in Aille did probably store much water due to their imperviousness, and consequently 

could not release much water. So one more time, it emphasized the role of subsurface flow 

contribution in the runoff process. Thus, we concluded that S interpretation must account 

for the kind of runoff generation in the catchment. 
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Figure 5.10: The correlation between median runoff-coefficient and median S of all 
catchments 

5.5. Temporal variability of the parameters in 

catchments scale  
Besides the concerns about the quantity of S parameter, we were also interested in 

considering the relationship between S and external indexes of the catchments. We would 

like to investigate whether we can have a regional scheme for Mediterranean catchments. 

Thus we compared the relationships between the S values and the soil moisture 

predictors in all the catchments. 

One problem arose with the w2 predictor, which was used in Real Collobrier 

catchments but was not available in our database of the other Mediterranean catchments. 

Those catchments had used the Hu2 predictor, which is another output index of the Meteo 

France SIM model, calculated as Equation 19. The Hu2 is the index in the second layer as the 

same as w2. This index is available for all the catchments except Real Collobrier, where we 

only had data for a few years. Thus, we tried to compare these two indexes. Hu2 could be 

derived from w2 when knowing s.   

Hu2 and w2 were thus compared during the year 2001 when both predictors were 

available (Figure 5.11),  



134 
 
 

  

 

Figure 5.11: Comparison of Hu2 and w2 index in the year of 2001 for Real Collobrier. 

The correlation coefficient (R2=0.99) claimed that Hu2 and w2 could be considered as 

equivalent. Therefore, we derived Hu2 of Real Collobrier from the w2 index for all the 

events. In this case, the s water content at saturation in Real Collobrier should be 0.43, 

which is coherent within the range reported by Taha et al., 1997.       

5.5.1. S and Hu2 correlation for all catchments 
We next investigated the correlation between the median S and the median Hu2 

(Figure 5.12). The result showed that we did not find a strong correlation for all 

Mediterranean cases. However, for most of the cases, we normally had a high S 

accompanied by the low Hu2 index. 
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Figure 5.12: The correlation between median Hu2 index and median S of all catchments 

The regression between S and Hu2 index of all events for each catchment was also 

integrated in Figure 5.13, and the corresponding sets of values for intercept, slope and 

correlation coefficient were reported in Table 5.3. The calibrated S parameter in selected 

catchments was found to be correlated with Hu2 index. For a piece of evidence, 9/11 had 

the correlation coefficient R2 higher than 0.5. We can also see the divergence of both slope 

and intercept for all the catchments. The regression seems to be divided into 2 groups as 

we found in the case of Real Collobrier sub-catchments:   

Allier, Maurets, and Malière had similar slopes which were gentler compare with the 

others. The intercepts of these catchments were also not so far together. 

The other group with the rest of the catchments which had similar slopes. However, 

their intercepts varied a lot with the minimum was Aille and the maximum belonged to 

Ardèche.  
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Figure 5.13: The correlation between Hu2 index and S calibrated of all events for each of the 
selected catchments. 

 

Table 5.3: The values of slopes, intercepts and correlation coefficients of the linear regression 
between S and Hu2 index and between S and base flow for each of the selected catchments 

Catchment 
S-Hu2 S-base flow (log) 

Intercept Slope R2 Intercept Slope R2 

Aille 413.34 -6.36 0.66 36.90 -18.20 0.48 

Allier 1162.63 -16.54 0.23 508.73 -210.13 0.43 

Ardèche 852.01 -10.38 0.65 376.16 -94.79 0.21 

Gardon 740.70 -9.29 0.41 345.12 -99.40 0.27 

Vidourle 550.56 -7.36 0.56 72.22 4.21 0.00 

Tarnon 730.04 -10.18 0.47 150.76 -42.80 0.48 

Verdouble 961.83 -12.85 0.59 104.70 -33.33 0.32 

Pont de Fer 814.83 -12.39 0.79 131.74 -83.52 0.86 

Rimbaud 574.81 -8.74 0.48 41.60 -49.49 0.61 

Maurets 1103.42 -17.83 0.53 76.46 -97.89 0.61 

Malière 1609.06 -27.43 0.63 71.77 -132.89 0.63 
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The following reasons can explain the variability of S-Hu2 relationships: 

- First, the soil properties which are used within the SIM model derive from synthetic 

information or relationships that could not retrieve the actual properties of the soils: 

the hydraulic properties of the soils indeed derive from the percentages of sand and 

clay, supplied by the FAO map soil; the soil depths depend on the land use and 

vegetation of Corine Land Cover. Thus, the Hu2 values could be biased and/or unable 

to account for the actual spatial variability of the water content.  

- Second, the divergence could be due to the rain gauge uncertainty which can affect 

the S parameter (see chapter 3). In most of the catchments, the rain gauge density 

was low, 1 rain gauge per more than 90 km2. This was equivalent conditions to those 

of the Real Collobrier in Pont de Fer when using 1 single rain gauge. It was shown 

how was able to vary the intercepts, and at a lesser point, the slopes (see Figure 3.28 

and Figure 3.29 in Chapter 3). The interesting point is that we had again similar 

slopes for most of the catchments, but different intercepts.   

- Third, the rating curves could be affected by errors in the determination of the high 

water-levels discharges. In most of the cases indeed, few gauging has been 

performed and the rating curves must be largely extrapolated. For example, in the 

cases of Gardon and Vidourle, the calibration curve was established with only 7 

gaugings and for Ardèche with 2 gaugings. The highest gauged discharge value was 

often much lower than the highest observed discharge so that uncertainty could 

happen in the extrapolation of the rating curve to high flows and affected the model 

parameters. 

- Fourth, the calibration protocol could also be responsible for bias in the estimation 

of S: for the calibration of all events in each catchment, we used a constant value for 

almost the parameters excepts S and V0. Although in general, the effects of using 

median value of these parameters are unremarkable (as we can see in the sensitivity 

test), it can really affect the estimating of the calibrated parameters in some case. 

For example, using of initial abstraction Ia/S = 0.2 for all the catchments may be not 

convenient because, in many previous studies, it was claimed that each catchment 

have different behavior and the recommendation was to use a specific value for each 

catchment (Mishra and Singh, 2003).  
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However, the trend of the high value of S accompanied by the low value of Hu2 (in drier 

condition) can be concluded for the Mediterranean catchments. We can conclude that Hu2 

is locally a suitable predictor for the capability of S, but not to create the regional scheme 

for all Mediterranean catchments.  

5.5.2. S and base flow correlation for all catchments 

 

Figure 5.14: The correlation between base flow and S calibrated of all events for each of the 
selected catchments. 

The base flow could be considered as another index to explain the event variability of 

the S parameter. However, we did not have a strong relationship for most of the 

catchments (Figure 5.14). The worst score was obtained for the Vidourle catchment. The 

best scores were obtained for the Real Collobrier catchments (0.61 to 0.86), whereas the 

other Mediterranean catchments had R2 less than 0.5.  

Moreover, the relationships were very different from catchment to another. Regional 

classification of the relationships would be based on 2 groups of catchments which are 

geographical neighborhood (except Verdouble which are far from others): the first group 

contained Allier, Tarnon, Ardèche, and Gardon; Aille and all Real Collobrier belonged to 
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the second group.  For the first group, in spite of the neighbor of location and geographical 

features, the regressions were only similar in Ardèche and Gardon. The second group was 

also not stable in all cases. 

Other attempts were made for using normalized base flow, reducing the value by the 

area of the catchment or the mean base flow value. When using the specific base flow 

(base flow normalized by catchment area -Figure 5.16), or normalizing the base flow with 

its average base flow value (Figure 5.15), the regressions were closer together than when 

had not normalized especially for the case of Ardèche and Gardon, but it still failed to 

create the region scheme for Mediterranean catchments.  

Several reasons can be found to explain the scatter of the relationships: 

- First, as for the S-Hu2 relationships, the density of rain gauges could originate 

bias in the estimation of the S parameter. 

- Second, the base flow as a low flow is subject to many uncertainties due to the 

erosion or sediment accumulation in the gauging section. In most cases, the 

number of gauging is not sufficient to characterize such changes. 

- Third, it seems that the base flow could be a fair index for relating the S 

parameter at the event scale in a given catchment but could not be significant 

from a spatial point of view. A higher base flow leads indeed to a lower S 

parameter values at the event scale, but a higher median base flow could 

suggest that the catchment is prone to dominant subsurface flows, which does 

not guarantee a low median value of the S parameter (rather the opposite). 

Thus, it is not surprising that normalizing the base flow with the area or with 

the median value does not improve the scatter of the relationships between S 

and the base flow. 

- The bias could also come from the rainfall uncertainty, which made the weak 

correlation between base flow and the S parameter. We need further research 

on integrating catchments’ characteristics on this index. 

Finally, the conclusion is that it was not easy to regionalize the parameter with either 

internal or external indexes of the catchments. The difficulties were that the uncertainty 

could affect the model, as well as the indexes, could not integrate the information of the 

important characteristic of the catchments (especially the soil properties). 
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Figure 5.15: The correlation between base flow normalized by average value and S calibrated 
of all events for each of the selected catchments. 

 

 

Figure 5.16: The correlation between base flow normalized by the catchment area and S 
calibrated of all events for each of the selected catchments. 
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5.6.  The predictive score of the model  
The relationship between Hu2/baseflow and S were then used to calculate the 

predictive score of the model. We used the regression to predicted the parameter, by that 

calculated the NSE value for each event in each catchment. The values of NSE from Hu2 

and baseflow was reported in Figure 5.17 and Figure 5.18. For the predicted NSE from 

base flow, the median NSE of all events was lowest in Maurets (0.5) and highest in Pont 

de Fer. In the other case with predicted NSE from Hu2, the median NSE of all events range 

from 0.63 ( in the cases of Ardèche and Malière) to 0.82 (Rimbaud). The case of Vidourle 

when we had the R2=0 with the relationship between S and baseflow, the predictive NSE 

value still quite high (0.8). The reason could be due to that because the regression of the 

S and baseflow have a flat slope, thus, the predicted S was not so far from the calibrated S 

even the correlation are low. Indeed, the value of calibrated S in Vidourle mainly ranged 

from 60 mm to 100 mm with the median as 80 mm while predicted S from baseflow 

ranged from 70 mm to 80  mm with the median as 78mm. Thus, we maybe need more 

than the using of median predicted NSE to really express the accuracy of the model. 

Besides, in general, the predicted NSE from Hu2 had higher values compared with the 

predicted NSE from baseflow. We also noted that in the case of Ardèche and Allier where 

had the lowest density of rain gauge, the predicted NSE is generally lower than the others.  

 

Figure 5.17: The variability of the predictive NSE derived from base flow across 11 
catchments 
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Figure 5.18: The variability of the predictive NSE derived from Hu2 index across 11 
catchments 

5.7. Conclusion 
To summary, the results of this chapter show that the SCS-LR model can simulate the 

floods in Mediterranean catchments with high efficiency. The variability of the transfer 

function parameters V0 in the catchment scale depended on the different characteristics 

of each catchment. The variability of the S parameter was not found to be related to the 

runoff coefficient of rainfall amount. It could due to the kind of runoff generation in the 

catchment.  

It was not possible to derive the variability of the model parameters from the Hu2/base 

flow index. Hu2 finally performs better than base flow from a spatial point of view. A 

uniform relationship between parameters and Hu2/base flow was not possible to obtain 

for Mediterranean catchment. However, the calibrated S parameter in two catchments 

Allier and Ardèche which are geographical neighbor had a very close regression with the 

base flow. The case of Aille catchment could be considered as an example for the 

difficulties of the regionalization of Mediterranean catchments when this case has 

different behavior with the others but it was not expressed in any hydrological index of 

the catchment (runoff coefficient, base flow, Hu2).  
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6. Conclusions and Perspectives 

6.1. Summary 
In this study, we show the interest in using a parsimonious distributed event-based 

model in forecasting the Mediterranean floods. The model is under the ATHYS platform 

and the results contribute to the work of floods forecasting in the HSM-IRD co-ordination. 

The model is first applied to a very well-documented Mediterranean catchment (Real 

Collobier) and then enlarge to other catchments. Thanks to the previous work of 

collecting data in Real Collobrier catchment, we can also measure the rain-gauge 

uncertainty. Then, the variabilities of the model's parameters are explained by applying 

the model in Real Collobrier sub-catchments and further Mediterranean catchments. 

These findings hopefully can contribute to the concept of regionalization for 

Mediterranean catchments.  

6.2. Main results   
The present work has allowed a detailed analysis of the Real Collobrier catchment 

characteristics and hydrological data. The Real Collobrier catchment is highly 

heterogeneous and gives very different characteristics of floods in these sub-catchments. 

The high rainfall variabilities across this catchment are highlighted throughout the 

manuscript. The other Mediterranean catchments hydrological characteristics are also 

described generally.  

To answer the questions that listed in the objective part in Chapter 1, we give here the 

main conclusions and results, firstly, for Real Collobrier catchment: 

1) The improvement of SCS-LR model by integrating Michel’s formulation was 

convenient to use to simulate flash flood. 

2) The results of our study proved that adjusted SCS-LR model could simulate 

Mediterranean flash flood with high accuracy. The model requires a small number of 

parameters, and it can be set up with accessible data. The calibration of the model 

based on the rainfall and runoff data corresponding Real Collobrier and other 
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Mediterranean catchments gave the positive results with high values of NSE as well as 

high values of R2 for the correlation between S and the initial condition in most of the 

cases.  

3) Moreover, the dense rainfall data in Real Collobrier gave us the possibility to test the 

effect of the rain gauge density on the results of the simulation. The results proved that 

the reduction of the density of the rain gauges affected both the regression with the 

initial condition and the calibrated parameters of the model. The decrease in the 

number of rain gauge led to the change of model’s parameters and the decrease of 

correlation coefficient R2. This result leads to the conclusion that the comparison of 

the parameters from a catchment to another can be affected by the rain gauge density. 

4) The result of the rain gauge density also proved that calibration uncertainty could 

affect the regression of S parameter and initial condition more than the rainfall 

uncertainty with the error of special event calibration. However, when using only one 

gauge in Real Collobrier catchment, we had a large variety of S parameter. 

Furthermore, when we applied the model to Real Collobrier sub-catchments and further 

other Mediterranean catchments (Aille, Allier, Ardèche, Gardon, Tarnon, Verdouble, and 

Vidourle): 

5) The spatial variability of the transfer model’s parameter can be due to the scale effect. 

The solution is to reduce by the relationship between the propagation time Tm and the 

diffusion time Km of the Lag and Route model. Besides, it can also be affected by the 

catchment’s characteristic of e.g. the slope of the catchment. 

6) The spatial variability of the production model’s S parameter in Real Collobrier sub-

catchments was concluded to coherent with the spatial variability of the runoff 

coefficient. Further with other Mediterranean catchments, we generally had a high S 

accompanied by low SIM output index. We also found that Mediterranean catchments 

are “violent” catchments according to (Hawkins, 1993) point of view and the S 

interpretation must account for the kind of runoff generation in the catchment. 

7) The temporary variation of S parameter (regression between S and SIM output/base-

flow) led to the conclusion that it was difficult to regionalize the parameter of SCS-LR 

model to predict flash flood in Mediterranean catchments due to the reason that we 

did not find a stable case despite we had some positive results as the trend of high S – 
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low value of SIM output or the similarity in the regression S – base flow of Ardèche 

and Gardon. The output of the SIM model performed worse than the base flow in 

deriving S parameter in the case of Real Collobrier catchment but better in other 

Mediterranean catchments. The failure of the regionalization could be due to: 

- For the output of the SIM model, the reason could be due to the fact that the tiles 

of the model supplied too large values for representing the specificities of small 

catchments or the soil properties that SIM used were not really appropriate or 

accurate enough to represent the actual soil properties.  

- The bias from estimating base flow or its inability to represent the spatial 

variability between catchments could be the case for the base flow. 

- The bias in extrapolating flows could also affect the simulation. In some cases 

(e.g. Gardon and Ardèche) there were a few gauging to establish the rating 

curve. Thus, the uncertainty can happen in the extrapolation of the rating curve 

to high flows and change the model’s parameters. 

- The reason can also due to the rainfall uncertainty. Except for the case of Real 

Collobrier, the others had not the very high density of rain gauge. The variation 

of all the slopes and intercepts for the Mediterranean was quite similar to the 

case when we use only 1 single gauge in Real Collobrier when the S for minimum 

and maximum value of initial condition could vary a lot. 

- The calibration of the parameters can be the problem. The use of Ia/S = 0.2, the 

use of constant parameters, the use of uniform S for the whole catchment can 

also lead to the error in calibrating S parameter, then weaken the correlation 

between S and initial conditions. 

6.3. Perspectives 
There are still points to be developed in the framework of this Ph.D. thesis and several 

perspectives can be proposed. The perspectives enclose the following aspects: developing 

or finding a descriptor to transpose the parameter from gauged to ungauged 

Mediterranean catchments; (comparing the event-based model and the continuous 

model); continuing to apply the model to catchments in various climate.  
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6.3.1. Developing or finding a descriptor to transpose the 

parameter from gauged to ungauged Mediterranean 

catchments 
As we showed above, the base-flow and Hu2 (w2) index were not possible to create a 

regional scheme for generally Mediterranean catchments. The reason could be due to 

their own characteristic. Further researches on integrating these indexes with other soil 

information (soil depth for example) or developing a new index which contains soil 

information are needed to solve this problem. 

In the case of small catchments, the data of Hu2 (w2) index should have been calculated 

in a smaller resolution than 8x8 km2 to have more accurate information. 

Another reason for the failure of having a regional scheme for Mediterranean 

catchments could be the rainfall uncertainty. The benefits of the rainfall radar in case of 

the low density of rain gauges should be investigated.   

6.3.2. Applying SCS-LR to catchments in various climate  
The model can be applied on Orgeval, another well-documented catchment which 

located 70 km from the East of Paris, with a moderate oceanic climate. The catchment 

includes 7 stream gauges, 8 rain gauges (hourly basis), and soil moisture data (3 TDR 

stations, hourly basis). The data is also collected by IRSTEA from 1962.   

Another catchment which floods can also be simulated is Dong Cao, which located in 

North Vietnam. This is a tropical watershed which IRD has taken charged for several years 

on the experiment. This can be the basin which I will work with after the Ph.D. in the 

contract with the university where I will work when coming back to Vietnam. It is also 

planned that I can work in collaboration with the IRD and the international laboratory 

LOTUS, to be in charge of studies carried out for Dong Cao basin. 
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Appendix 

A. Supplementary results for model calibration on 

Real Collobrier catchment (chapter 3) 

 

Figure A 1: Correlation between runoff coefficient 

and peak flow of the events in Pont de Fer 
catchment 

 

Figure A 2: Correlation between runoff 
coefficient and maximum rainfall intensity of 

the events in Pont de Fer catchment 

 

Figure A 3: Correlation between runoff coefficient 

and average rainfall of the events in Pont de Fer 
catchment 

 

Figure A 4: Correlation between runoff 
coefficient and base flow of the events in Pont 

de Fer catchment 
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Figure A 5: Correlation between runoff coefficient 

and volumetric water content of the events in 
Pont de Fer catchment 

 

Figure A 6: Correlation between S and average 
rainfall of the events in Pont de Fer catchment. 

 

 

Figure A 7: Correlation between S and runoff 
coefficient of the events in Pont de Fer catchment. 

 

 

Figure A 8: Correlation between S and peak 
flow of the events in Pont de Fer catchment 
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Figure A 9 : Observed and simulated hydrographs at the 30-minutes time step for the first 11 
events, the plotted rain corresponded to the rainfall measured in gauge 4 (Guérin) located near 
the center of the catchment. 
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Figure A 10: Correlation between K0 and peak 
flow of the events in Pont de Fer catchment. 

 

 

Figure A 11: Correlation between K0 and runoff 
coefficient of the events in Pont de Fer 
catchment. 

 

 

Figure A 12: Correlation between K0 and 
average rainfall of the events in Pont de Fer 
catchment. 

 

 

B. Supplementary results for spatial variability on 

sub-catchment scale (chapter 4) 
 



176 
 
 

Table A 1: The characteristics of all flood events in Rimbaud sub-catchment. P: cumulated 
precipitation; Vr: runoff volume; Rc: runoff coefficient; w2: volumetric water content of the root 
layer. 

Event Starting date Finishing date P (mm) 
Vr 

(103.m3) 
Rc  

(%) 

Peak 
flow 

(m3.s-1) 

w2 
(cm3.cm-3) 

Base flow 
(m3.s-1) 

1 13/09/1968 19:45 17/09/1968 23:45 187.6 110.7 41.0 14.2 0.20 0.00 

2 01/01/1972 00:00 05/01/1972 03:00 80.5 100.5 86.7 1.9 0.25 0.52 

3 01/02/1972 19:45 07/02/1972 05:15 177.7 174.7 68.3 2.2 0.22 0.04 

4 26/12/1972 01:00 31/12/1972 00:00 315.8 299.6 65.9 3.4 0.22 0.01 

5 14/01/1973 21:30 19/01/1973 19:15 170.7 159.5 64.9 2.9 0.23 0.07 

6 02/10/1973 14:30 05/10/1973 03:00 150.6 50.7 23.4 7.5 0.16 0.00 

7 13/10/1973 07:30 15/10/1973 23:00 139.7 98.2 48.8 2.7 0.21 0.00 

8 02/02/1974 00:45 05/02/1974 15:45 149.6 154.0 71.5 2.9 0.25 0.15 

9 16/02/1974 11:15 21/02/1974 10:00 178.3 175.2 68.2 2.9 0.24 0.14 

10 04/02/1976 07:00 06/02/1976 17:00 119.5 107.6 62.5 2.9 0.25 0.16 

11 15/04/1976 14:45 18/04/1976 06:45 161.3 142.3 61.3 4.2 0.21 0.02 

12 24/10/1976 02:45 31/10/1976 21:30 364.9 370.1 70.4 2.9 0.23 0.06 

13 01/01/1977 08:00 03/01/1977 16:00 73 45.7 43.4 2.0 0.23 0.42 

14 06/12/1977 03:00 10/12/1977 21:45 245.6 219.4 62.0 2.4 0.22 0.01 

15 26/10/1979 00:30 30/10/1979 14:00 241.9 240.7 69.1 3.4 0.22 0.02 

16 28/01/1986 22:45 01/02/1986 23:45 200.6 144.1 49.9 2.9 0.21 0.01 

17 09/11/1987 16:30 12/11/1987 07:00 112.1 84.8 52.5 2.6 0.22 0.02 

18 24/11/1990 08:15 01/12/1990 02:30 120.7 110.7 63.7 2.7 0.21 0.00 

19 08/12/1990 23:00 13/12/1990 18:15 98.4 104.5 73.7 5.9 0.22 0.03 

20 12/10/1991 10:30 17/10/1991 09:30 81.7 69.0 58.6 2.2 0.20 0.14 

21 17/10/1992 02:00 19/10/1992 09:00 75.6 61.5 56.5 2.8 0.22 0.03 

22 30/10/1992 12:00 04/11/1992 04:15 136.7 137.5 69.9 3.7 0.22 0.02 

23 24/04/1993 15:45 04/05/1993 13:30 208.1 240.5 80.3 2.8 0.21 0.01 

24 06/01/1994 02:45 09/01/1994 08:15 122.9 100.4 56.7 2.2 0.21 0.01 

25 10/01/1996 04:45 14/01/1996 15:30 189.6 215.6 79.0 2.9 0.23 0.10 

26 20/01/1996 10:45 27/01/1996 20:00 224.8 276.0 85.3 2.0 0.23 0.05 

27 17/09/1996 19:15 24/09/1996 18:30 199.9 119.1 41.4 2.1 0.19 0.00 

28 16/11/1996 05:30 19/11/1996 23:30 99.2 116.5 81.6 3.8 0.23 0.08 

29 06/01/1997 21:15 11/01/1997 05:30 110.4 74.8 47.1 2.2 0.24 0.17 

30 29/04/1998 15:15 04/05/1998 17:15 202.4 173.1 59.4 4.5 0.19 0.00 

31 17/01/1999 07:30 20/01/1999 06:00 189.5 151.4 55.5 4.3 0.23 0.04 

32 09/10/2002 02:00 13/10/2002 00:30 253.6 169.3 46.4 9.5 0.20 0.00 
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Table A 2: The characteristics of all flood events in Maurets sub-catchment. P: cumulated 
precipitation; Vr: runoff volume; Rc: runoff coefficient; w2: volumetric water content of the root 
layer. 

Event Starting date Finishing date P (mm) 
Vr 

(103.m3) 
Rc  

(%) 

Peak 
flow 

(m3.s-1) 

w2 
(cm3.cm-3) 

Base flow 
(m3.s-1) 

1 08/01/1970 12:30 17/01/1970 17:30 261.0 635.7 29.0 2.9 0.232 0.189 

2 25/12/1970 10:15 31/12/1970 20:15 179.3 269.3 17.9 3.3 0.193 0.0051 

3 01/01/1972 01:15 06/01/1972 12:30 87.0 280.2 38.3 6.5 0.244 2.09 

4 01/02/1972 16:30 07/02/1972 08:00 135.9 583.2 51.1 3.7 0.221 0.14 

5 17/02/1972 13:15 23/02/1972 19:45 249.8 1285.8 61.3 7.3 0.228 0.409 

6 19/12/1973 11:30 27/12/1973 21:30 242.4 574.7 28.2 3.9 0.19 0.0061 

7 26/01/1974 07:15 05/02/1974 16:00 258.1 809.2 37.3 4.8 0.217 0.087 

8 26/02/1974 12:45 07/03/1974 15:00 196.1 694.4 42.2 5.3 0.232 0.478 

9 24/10/1976 01:30 01/11/1976 01:30 356.7 1401.8 46.8 7.1 0.228 0.0806 

10 11/01/1978 12:00 23/01/1978 16:45 313.9 1515.5 57.5 7.8 0.211 0.0251 

11 08/02/1978 22:00 13/02/1978 08:15 159.4 704.2 52.6 6.2 0.215 0.208 

12 23/10/1979 11:45 31/10/1979 4:00 245.8 590.6 28.6 4.1 0.219 0.0219 

13 30/11/1984 11:15 03/12/1984 23:00 101.8 198.2 23.2 4.5 0.219 0.059 

14 04/03/1985 12:15 14/03/1985 08:45 101.3 457.8 53.8 4.6 0.228 0.127 

15 13/01/1988 13:15 17/01/1988 07:00 139.7 434.9 37.1 5.4 0.216 0.0494 

16 24/04/1993 13:00 04/05/1993 15:30 233.4 774.3 39.5 5.3 0.208 0.0212 

17 04/01/1994 15:00 09/01/1984 13:15 109.2 308.8 33.7 5.2 0.204 0.0175 

18 03/02/1994 16:15 08/02/1994 01:45 133.9 478.1 42.5 3.6 0.211 0.0527 

19 19/10/1994 14:00 25/10/1994 12:15 218.0 250.8 13.7 3.7 0.183 0.0015 

20 10/01/1996 04:00 18/01/1996 09:15 163.9 685.9 49.8 6.2 0.232 0.157 

21 20/01/1996 10:45 31/01/1996 10:00 250.9 1039.1 49.3 3.5 0.233 0.2 

22 10/11/1996 09:00 29/11/1996 19:00 175.6 378.4 25.6 3.3 0.21 0.0153 

23 01/01/1997 00:30 11/01/1997 13:45 183.9 639.6 41.4 6.5 0.232 0.546 

24 17/01/1999 06:30 20/01/1999 08:15 132.8 338.9 30.4 6.0 0.227 0.0418 

25 17/10/1999 13:15 27/10/1999 01:30 246.1 308.5 14.9 3.9 0.182 0.0019 

26 05/11/2000 22:00 12/11/2000 06:00 105.9 151.4 17.0 4.4 0.213 0.009 

27 12/11/2000 07:15 25/11/2000 21:30 165.4 468.7 33.7 4.7 0.231 0.0356 

28 24/12/2000 05:15 31/12/2000 01:45 145.9 547.1 44.6 4.2 0.213 0.0364 

29 24/01/2001 03:15 31/01/2001 09:30 113.9 387.5 40.5 4.9 0.221 0.105 

30 09/10/2002 01:15 13/10/2002 07:30 223.4 176.3 9.4 4.4 0.179 0.0001 

31 26/01/2006 12:30 01/02/2006 23:45 255.0 823.9 38.5 5.2 0.205 0.0102 

32 12/12/2008 18:15 18/12/2008 13:15 185.8 565.0 36.2 4.7 0.24 0.17 



178 
 
 

Table A 3: The characteristics of all flood events in Malière sub-catchment. P: cumulated 
precipitation; Vr: runoff volume; Rc: runoff coefficient; w2: volumetric water content of the root 
layer. 

Event Starting date Finishing date 
Pmoy 
(mm) 

Vr 
(103.m3) 

Rc  
(%) 

Peak 
flow 

(m3.s-1) 

w2 
(cm3.cm-3) 

Base 
flow 

(m3.s-1) 

1 10/2/1966 23:15 15/02/1966 17:15 159.4 776.8 39 24.2 0.215 0.079 

2 30/10/1966 18:00 08/11/1996 13:00 133.5 741.9 45 13 0.221 0.1 

3 17/02/1972 13:15 23/02/1972 20:00 213.5 1674.2 63 11.4 0.228 0.4 

4 11/01/1973 11:15 20/01/1973 04:15 166.65 1014.6 49 8.2 0.216 0.22 

5 12/02/1974 02:15 21/02/1974 15:45 246.3 1692 55 7.8 0.227 0.33 

6 26/02/1974 12:45 07/03/1974 15:15 177.3 1626.2 74 12.8 0.23 0.37 

7 05/02/1975 02:00 09/02/1975 06:15 155.5 868.4 45 10.3 0.216 0.03 

8 24/10/1976 01:30 01/11/1976 01:30 324.25 1964.8 49 12.7 0.231 0.136 

9 01/01/1977 03:00 09/01/1977 03:45 143.6 1143.8 64 8.1 0.233 0.91 

10 06/12/1977 02:00 11/12/1977 15:15 244.6 1008.4 33 17.3 0.223 0.03 

11 13/01/1988 13:15 17/01/1988 07:00 109.9 425.4 31 9.1 0.216 0.08 

12 08/12/1990 23:00 13/12/1990 18:45 93.6 291.1 25 8.7 0.224 0.08 

13 24/04/1993 13:00 04/05/1993 15:30 203.6 1082.7 43 8.1 0.218 0.04 

14 10/01/1996 04:00 18/01/1996 09:15 167.4 1126.2 54 11.4 0.232 0.36 

15 20/01/1996 10:45 31/01/1996 10:00 264.6 1808.2 55 10.5 0.231 0.24 

16 10/11/1996 09:00 29/11/1996 19:00 164.6 698.2 34 13.6 0.211 0.04 

17 01/01/1997 00:30 11/01/1997 13:45 200.1 1596.4 64 12.2 0.232 1.05 

18 29/04/1998 14:00 05/05/1998 17:30 185.7 581.9 25 13.9 0.193 0.02 

19 17/01/1999 06:30 20/01/1999 08:15 164.2 736.2 36 9.6 0.232 0.09 

20 24/12/2000 05:15 31/12/2000 01:45 145.3 764.1 42 25.6 0.214 0.05 

21 13/12/2008 18:15 18/12/2008 13:15 185.8 1308.7 57 14.5 0.24 0.25 
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Figure A 13: Correlation between each pair of indexes in the Rimbaud catchment. w2: 
volumetric water content (cm3.cm-3); logQdeb: log10 base flow (log10 m3.s-1); Rc: runoff 
coefficient (%); Pmoy: average areal cumulated precipitation (mm);  PeakFlow: peak flow 
(m3.s-1); Vr: runoff volume (103.m3). 

 

Figure A 14: Correlation between each pair of indexes in the Maurets catchment. w2: 
volumetric water content (cm3.cm-3); logQdeb: log10 base flow (log10 m3.s-1); Rc: runoff 
coefficient (%); Pmoy: average areal cumulated precipitation (mm);  PeakFlow: peak flow 
(m3.s-1); Vr: runoff volume (103.m3). 



180 
 
 

 

Figure A 15: Correlation between each pair of indexes in the Malière catchment. w2: volumetric 
water content (cm3.cm-3); logQdeb: log10 base flow (log10 m3.s-1); Rc: runoff coefficient (%); 
Pmoy: average areal cumulated precipitation (mm);  PeakFlow: peak flow (m3.s-1); Vr: runoff 
volume (103.m3). 
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C. Supplementary results for spatial variability on 

catchment scale (chapter 5) 
 

Table A 4: The characteristics of all flood events in Aille catchment. P: cumulated precipitation; 
Vr: runoff volume; Rc: runoff coefficient. 

Event Starting date Finishing date P (mm) 
Vr 

(103.m3) 

Rc 

(%) 

Base 
flow 

(m3.s-1) 

Hu2 index 

(%) 

Peak flow 

(m3.s-1) 

1 07/01/1997 00:00 13/01/1997 22:00 46.8 8485.2 0.79 11 66 194 

2 17/01/1999 00:00 23/01/1999 00:00 93.3 12055 0.56 1 61.7 260 

3 18/10/1999 01:00 27/10/1999 23:00 231.6 21155.4 0.4 0 56 278 

4 22/12/2000 00:00 31/12/2000 23:00 139.5 19705 0.62 1 58.4 291 

5 26/01/2001 00:00 04/02/2001 00:00 75.7 10245.4 0.59 3 59.4 152 

6 19/01/2003 23:00 29/01/2003 00:00 35.1 3010.4 0.37 1 59 46 

7 01/09/2005 00:00 17/09/2005 23:00 203.9 11189.1 0.24 0 42.4 168 

8 02/12/2005 00:00 07/12/2005 23:00 60.6 5498.2 0.4 1 59.3 119 

9 20/01/2006 00:00 09/02/2006 23:00 115 17143.8 0.65 1 57.1 112 

10 03/11/2008 00:00 08/11/2008 22:00 90.2 11909.1 0.58 13 60 237 

11 09/12/2008 00:00 20/12/2008 21:00 159.4 33730.8 0.92 1 60.1 207 

12 21/10/2009 01:00 28/10/2009 19:00 99.5 9745.9 0.43 0 52.7 320 

13 14/06/2010 00:00 21/06/2010 23:00 237.5 28681.6 0.53 0 50.4 520 

14 01/11/2011 23:00 11/11/2011 23:00 353.2 62469.8 0.77 0 53.9 306 

15 25/10/2012 23:00 27/10/2012 23:00 86.9 9467.2 0.47 1 55.9 312 

16 09/11/2012 00:00 13/11/2012 00:00 47.5 5039.1 0.46 1 60.4 106 

17 26/11/2012 12:00 30/11/2012 11:00 92.7 14839.2 0.7 1 59.3 278 

18 12/12/2012 23:00 15/12/2012 23:00 64.7 10962 0.74 1 59.1 193 

19 19/01/2013 00:00 25/01/2013 12:00 85.6 14522.4 0.74 1 58.3 149 
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Table A 5: The characteristics of all flood events in Allier catchment. P: cumulated precipitation; 
Vr: runoff volume; Rc: runoff coefficient. 

Event Starting date Finishing date P (mm) 
Vr 

(103.m3) 

Rc 

(%) 

Base 
flow 

(m3.s-1) 

Hu2 
index 

(%) 

Peak 
flow 

(m3.s-1) 

1 11/11/1996 00:00 14/11/1996 00:00 321.5 36682 0.35 2.79 48.7 436.01 

2 17/05/1999 00:00 22/05/1999 12:00 338.8 47122 0.43 7.2 51.8 360.2 

3 20/10/1999 00:00 26/10/1999 00:00 182.1 23910 0.41 4.8 49.2 156.47 

4 10/10/2000 00:00 22/10/2000 00:00 105.5 15577 0.46 7.8 51.1 37.5 

5 29/11/2000 00:00 11/12/2000 00:00 89.3 22360 0.77 17.6 56.4 60.5 

6 17/10/2001 00:00 26/10/2001 00:00 228.2 38566 0.52 1.3 44.8 393.17 

7 20/11/2002 00:00 30/11/2002 00:00 135.7 33336 0.76 14.7 53.6 129.3 

8 26/12/2002 00:00 01/01/2003 00:00 55.3 12016 0.67 18.5 52.8 67.7 

9 21/11/2003 00:00 29/11/2003 00:00 196 47453 0.75 9.7 49 334.3 

10 29/11/2003 00:00 09/12/2003 00:00 235.4 66454 0.87 24.4 55.4 335.9 

11 30/03/2004 00:00 08/04/2004 00:00 117.8 24329 0.64 8.3 48.2 68.3 

12 18/10/2006 00:00 23/10/2006 00:00 138.1 20084 0.45 4.2 48.3 153.32 

13 30/10/2008 00:00 08/11/2008 00:00 410.8 81425 0.61 4 46.7 682 

 

Table A 6: The characteristics of all flood events in Verdouble catchment. P: cumulated 
precipitation; Vr: runoff volume; Rc: runoff coefficient. 

Event Starting date Finishing date P (mm) 
Vr 

(103.m3) 

Rc 

(%) 

Base 
flow 

(m3.s-1) 

Hu2 
index 

(%) 

Peak 
flow 

(m3.s-

1) 

1 08/03/1987 12:30 13/03/1987 19:00 48.4 6805.5 0.47 3.3 64 58.1 

2 14/12/1995 22:30 17/12/1995 23:30 83.2 23904.4 0.96 2.6 69 754.1 

3 01/02/1996 03:30 05/02/1996 23:30 74.4 19578.7 0.88 22 74 426 

4 05/12/1996 21:30 08/12/1996 07:00 130.1 16341.7 0.42 2.5 71 600.8 

5 09/11/1999 21:30 16/11/1999 17:00 357.5 43132.9 0.4 0.2 55 898.8 

6 20/12/2000 19:30 26/12/2000 22:30 192.7 19190.9 0.33 0.1 62 258.8 

7 08/04/2002 21:30 14/04/2002 00:00 164.2 17950.7 0.36 0.001 68 285.3 

8 01/12/2003 21:30 05/12/2003 22:30 155.5 12422 0.27 0.001 65 212.6 

9 19/02/2004 23:00 23/02/2004 22:00 63.3 7239.9 0.38 1.7 63 127.7 

10 14/11/2005 00:30 16/11/2005 00:00 192.7 34075.1 0.59 8.7 70 979.9 

11 28/01/2006 15:30 31/01/2006 08:00 177.7 36380.9 0.68 3.5 64 594.3 

  



183 
 
 

Table A 7: The characteristics of all flood events in Ardèche catchment. P: cumulated 
precipitation; Vr: runoff volume; Rc: runoff coefficient. 

 

  

Event Starting date Finishing date P (mm) 
Vr 

(103.m3) 

Rc 

(%) 

Base 
flow 

(m3.s-1) 

Hu2 
index 

(%) 

Peak 
flow 

(m3.s-1) 

1 21/09/1992 08:00 23/09/1992 08:00 340.8 35928 0.17 49 46 2111 

2 18/05/1993 23:00 22/05/1995 08:00 78.5 17982 0.37 29 56 271 

3 09/10/1993 23:00 13/10/1993 12:00 99.6 20314.6 0.33 153 71 379.2 

4 13/10/1993 12:00 16/10/1993 00:00 54.8 15086.5 0.45 188 72 311.7 

5 15/10/1993 23:00 18/10/1993 08:00 75.5 7899.1 0.17 145 71 97.2 

6 18/09/1999 23:00 22/09/1999 00:00 188 19104.2 0.16 7 44 418.3 

7 22/09/1999 23:00 24/09/1999 12:00 49.3 5134.5 0.17 41 61 102.2 

8 18/10/1999 00:00 22/10/1999 08:00 154.4 41659.8 0.44 42 60 679.7 

9 22/10/1999 08:00 24/10/1999 03:00 96.5 19278.2 0.32 165 70 366.9 

10 27/09/2000 23:00 06/10/2000 00:00 145.9 22095.4 0.24 30.1 50 329.9 

11 08/11/2000 23:00 19/11/2000 23:00 203.5 122712 0.97 77 62 1049.1 

12 15/10/2001 23:00 19/10/2001 19:00 140.1 19140.1 0.22 14 56 456 

13 19/10/2001 19:00 27/10/2001 11:00 119.4 52880.6 0.72 122 66 813.6 

14 07/09/2002 23:00 13/09/2002 00:00 69.6 11174.6 0.26 6.3 53 164.6 

15 11/11/2002 23:00 19/11/2002 22:00 179.6 78662 0.71 7.6 57 294.9 

16 19/11/2002 22:00 23/11/2002 05:00 86.5 25794.7 0.48 80 65 498.6 

17 23/11/2002 05:00 05/12/2002 00:00 181.4 126278 1.12 132 68 569.3 

18 21/11/2003 02:00 29/11/2003 07:00 127.6 72785 0.92 43 62 428 

19 16/08/2004 23:00 19/08/2004 09:00 142 14487.2 0.16 3 47 707.5 

20 24/10/2004 23:00 27/10/2004 11:00 70 14592.4 0.34 9.6 57 216 

21 27/10/2004 11:00 01/11/2004 23:00 217.6 102288 0.76 52 64 869.1 

22 01/11/2004 23:00 08/11/2004 12:00 114.3 68901.1 0.97 72 70 520.9 
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Table A 8: The characteristics of all flood events in Gardon catchment. P: cumulated 
precipitation; Vr: runoff volume; Rc: runoff coefficient. 

Event Starting date Finishing date P (mm) 
Vr 

(103.m3) 

Rc 

(%) 

Base 
flow 

(m3.s-1) 

Hu2 
index 

(%) 

Peak 
flow 

(m3.s-1) 

 

1 22/09/1994 01:00 26/09/1994 11:00 268.2 39802.3 0.27 9.7 49 663.5  

2 19/10/1994 06:00 24/10/1994 11:00 317.9 80019 0.46 16.3 56 843.7  

3 02/11/1994 09:00 09/11/1994 04:00 304.4 94644 0.57 34 62 666  

4 18/09/1995 05:00 22/09/1995 01:00 169 41763.6 0.45 41 56 909  

5 03/10/1995 02:00 06/10/1995 20:00 261.2 71553.6 0.5 38 56 1572  

6 13/10/1995 02:00 15/10/1995 03:00 195.3 47559.6 0.45 27 61 1383  

7 03/11/1997 04:00 10/11/1997 00:00 340.3 100247.4 0.54 4.5 54 805.5  

8 16/12/1997 11:00 24/12/1997 05:00 395.7 177134 0.82 10.6 56 1139.4  

9 14/04/1998 23:00 19/04/1998 22:00 117.4 25315.6 0.4 3.9 55 466.1  

10 29/04/1998 13:00 06/05/1998 12:00 130.6 47206.1 0.66 19.2 58 480.8  

11 17/05/1999 05:00 25/05/1999 11:00 174.5 64375.9 0.68 13.5 55 606.5  

12 19/10/1999 21:00 27/10/1999 06:00 201.5 41299.4 0.38 37 57 622.6  

13 28/09/2000 10:00 01/10/2000 04:00 213.3 32379.8 0.28 3.4 51 1186.6  

14 09/10/2002 02:00 13/10/2002 16:00 201.2 52527.6 0.48 35 53 445  

15 23/11/2002 13:00 27/11/2002 07:00 91.4 33284 0.67 103 62 605.4  

16 09/12/2002 07:00 16/12/2002 15:00 233.1 89557.2 0.71 45 57 605  

17 30/09/2003 12:00 04/10/2003 02:00 145.1 16902.7 0.21 9.3 43 510.7  

18 15/11/2003 11:00 20/11/2003 10:00 158 52147.1 0.61 21.2 58 668.8  

19 21/11/2003 08:00 27/11/2003 20:00 206.1 84165 0.75 40 63 1028.8  

20 29/11/2003 18:00 06/12/2003 08:00 318.1 144968.5 0.84 46 67 1112.6  
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Table A 9: The characteristics of all flood events in Tarnon catchment. P: cumulated 
precipitation; Vr: runoff volume; Rc: runoff coefficient. 

 

  

Event Starting date Finishing date P (mm) 
Vr 

(103.m3) 

Rc 

(%) 

Base 
flow 

(m3.s-1) 

Hu2 
index 

(%) 

Peak flow 

(m3.s-1) 

1 22/04/1993 06:00 03/05/1993 06:00 236.5 29652.5 0.49 0.8 52 108.5 

2 20/09/1994 23:00 29/09/1994 06:00 281.2 27986 0.39 0.2 50 568.9 

3 17/10/1994 19:00 23/10/1994 23:00 197.4 19165.2 0.38 1 56 127.8 

4 24/11/1995 05:00 30/11/1995 23:00 145.9 18327.7 0.49 3.3 57 205.4 

5 19/01/1996 16:00 24/01/1996 17:00 279.5 63965.7 0.89 8 62 681.4 

6 27/01/1996 02:00 31/01/1996 22:00 124.5 13466.3 0.42 30 69 119.1 

7 14/10/1996 02:00 17/10/1996 12:00 128.9 9888.5 0.3 2 55 99 

8 10/11/1996 22:00 14/11/1996 23:00 169.5 18785.2 0.43 1.2 56 335.8 

9 03/12/1996 07:00 09/12/1996 01:00 206.5 24118.3 0.46 2.9 60 120.1 

10 17/12/1997 10:00 21/12/1997 09:00 180.1 34152.8 0.74 1 56 559 

11 17/05/1999 11:00 22/10/1999 11:00 145.1 14970.2 0.4 0.8 56 389.2 

12 19/10/1999 17:00 22/10/1999 04:00 126.9 7536.4 0.23 0.3 51 165 

13 11/11/1999 22:00 16/11/1999 22:00 154.3 10327 0.26 0 54 80 

14 26/09/2000 23:00 02/10/2000 05:00 231.1 8142.3 0.14 0 47 258.3 

15 17/10/2001 23:00 25/10/2001 00:00 304.1 25969.4 0.33 0 46 504.6 

16 09/10/2002 05:00 11/10/2002 13:00 230.1 11358.6 0.19 0 46 235 

17 19/11/2002 23:00 01/12/2002 02:00 163.1 14782.3 0.35 0.8 57 183.4 

18 15/11/2003 22:00 19/11/2003 06:00 105.3 7856.9 0.29 0 54 116 

19 20/11/2003 08:00 27/11/2003 08:00 317.1 58822.1 0.72 3 58 763.8 

20 30/11/2003 20:00 03/12/2003 01:00 123.8 11887.2 0.37 5 64 119 

21 02/12/2003 10:00 06/12/2003 05:00 168.1 31884.3 0.74 88 70 593.9 

22 30/03/2004 09:00 04/04/2004 13:00 211.6 20086.9 0.37 0.5 53 120.5 

23 29/04/2004 06:00 01/05/2004 16:00 141.4 12771 0.35 1 55 315 

24 30/10/2005 22:00 02/11/2005 22:00 47.6 3716 0.3 3 53 74.6 

25 03/11/2005 23:00 06/11/2005 07:00 32.7 1374.6 0.16 4.2 56 24.7 

26 27/01/2006 22:00 31/01/2006 05:00 110.6 14507.3 0.51 0.3 53 109.7 

27 22/09/2006 21:00 26/09/2006 15:00 151.7 4871 0.13 1.4 52 164.7 
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Table A 10: The characteristics of all flood events in Vidourle catchment. P: cumulated 
precipitation; Vr: runoff volume; Rc: runoff coefficient. 

 

  

Event Starting date Finishing date P (mm) 
Vr 

(103.m3) 

Rc 

(%) 

Base 
flow 

(m3.s-1) 

Hu2 
index 

(%) 

Peak flow 

(m3.s-1) 

1 19/10/1994 17:00 26/10/1994 23:00 139.4 72244 0.82 3.94 64.8 566.76 

2 21/09/1994 23:00 26/09/1994 12:00 178 38593 0.34 0.39 60.9 562.31 

3 02/10/1995 21:00 07/10/1995 10:00 103 26863 0.41 5.89 61.9 406.81 

4 24/11/1995 16:00 29/11/1995 05:00 76 17394 0.36 19.56 67.6 327.64 

5 13/10/1995 08:00 17/10/1995 21:00 126.3 42579 0.54 5.21 65.5 480.99 

6 18/12/1996 23:00 22/12/1996 01:00 136.9 56321 0.65 25.57 70.1 790.43 

7 17/12/1997 08:00 23/12/1997 00:00 92.8 63267 1.08 0.81 67.4 549.99 

8 28/05/1998 06:00 30/05/1998 00:00 73.2 9908 0.21 3.94 59.1 181.3 

9 20/10/1999 19:00 23/10/1999 01:00 72.4 15356 0.34 25.57 66.4 219.6 

10 17/05/1999 05:00 21/05/1999 18:00 72.1 19252 0.42 30.89 63.6 131.31 

11 24/12/2000 10:00 27/12/2000 00:00 96.9 34298 0.56 20.7 67.3 485.6 

12 28/09/2000 07:00 02/10/2000 20:00 90.3 14756 0.26 13.31 54.8 185.79 

13 28/01/2001 02:00 02/02/2001 00:00 61.3 25231 0.65 25.57 67.9 277.79 

14 08/03/2001 01:00 12/03/2001 00:00 60.8 20381 0.53 24.31 65.2 249.17 
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Figure A 16: Correlation between each pair of indexes in the Aille catchment. Pmoy: average 
areal cumulated precipitation (mm); Flow: runoff volume (103.m3); Rc: runoff coefficient (%); 
HU2: Hu2 soil moisture index (%); logQdeb: log10 base flow (log10 m3.s-1); PeakFlow: peak flow 
(m3.s-1) 
 

 

Figure A 17: Correlation between each pair of indexes in the Allier catchment. Pmoy: average 
areal cumulated precipitation (mm); Flow: runoff volume (103.m3); Rc: runoff coefficient (%); 
HU2: Hu2 soil moisture index (%); logQdeb: log10 base flow (log10 m3.s-1); PeakFlow: peak flow 
(m3.s-1) 
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Figure A 18: Correlation between each pair of indexes in the Aille catchment. Pmoy: average 
areal cumulated precipitation (mm); Flow: runoff volume (103.m3); Rc: runoff coefficient (%); 
HU2: Hu2 soil moisture index (%); logQdeb: log10 base flow (log10 m3.s-1); PeakFlow: peak flow 
(m3.s-1) 

 

Figure A 19: Correlation between each pair of indexes in the Gardon catchment. Pmoy: average 
areal cumulated precipitation (mm); Flow: runoff volume (103.m3); Rc: runoff coefficient (%); 
HU2: Hu2 soil moisture index (%); logQdeb: log10 base flow (log10 m3.s-1); PeakFlow: peak flow 
(m3.s-1) 
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Figure A 20: Correlation between each pair of indexes in the Vidourle catchment. Pmoy: 
average areal cumulated precipitation (mm); Flow: runoff volume (103.m3); Rc: runoff 
coefficient (%); HU2: Hu2 soil moisture index (%); logQdeb: log10 base flow (log10 m3.s-1); 
PeakFlow: peak flow (m3.s-1) 

 

Figure A 21: Correlation between each pair of indexes in the Tarnon catchment. Pmoy: average 
areal cumulated precipitation (mm); Flow: runoff volume (103.m3); Rc: runoff coefficient (%); 
HU2: Hu2 soil moisture index (%); logQdeb: log10 base flow (log10 m3.s-1); PeakFlow: peak flow 
(m3.s-1) 
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Figure A 22: Correlation between each pair of indexes in the Verdouble catchment. Pmoy: 
average areal cumulated precipitation (mm); Flow: runoff volume (103.m3); Rc: runoff 
coefficient (%); HU2: Hu2 soil moisture index (%); logQdeb: log10 base flow (log10 m3.s-1); 
PeakFlow: peak flow (m3.s-1) 
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Flood modeling using the distributed event-based SCS-LR model in the Mediterranean 

Real Collobrier catchment 

 

Abstract  

Event-based models are often used for flood prediction because they require fewer 

data than more complex models and account for few parameters. Here we present 

the performance of such model in simulating Mediterranean floods, with a focus on 

the initialization and the impact of the rainfall uncertainties on the calibration of 

the model. The distributed event-based parsimonious Soil Conservation Service 

Lag-and-Route model was applied in the Real Collobrier catchment, which contains 

a very high density of rain gauges. The initial condition of the model was highly 

correlated with predictors such as the base-flow or the soil water content. The 

reduction of the rain gauges density can change remarkably the calibration of the 

model. As the density of rain gauge is generally low in most catchments, the 

uncertainties associated with the rainfall measurement are thus expected either to 

mask the actual accuracy of the model or to alter the model parameters.  

Keywords: Flash flood, model SCS-LR, Event-based model initialization, 

Mediterranean catchment, Precipitation uncertainty 

1. Introduction 

The Mediterranean area is prone to flash floods, generating heavy damages and losses of 

human lives (Amponsah et al., 2018). The water levels can rise more than a dozen meters in less 

than a few hours, because of rainfalls exceeding some hundreds of millimeters a day (Delrieu et 

al., 2005). The most effective way to mitigate risk due to flash floods may be to implement real-

time flood forecast systems. As a result, rainfall-runoff models are crucial tools.  Several models 

have already been tested for flash floods modelling (Durand et al., 1992; Piñol et al., 1997; 

Blöschl et al., 2008; Moussa and Chahinian, 2009; Saulnier and Le Lay, 2009; Vincendon et al., 

2010; Roux et al., 2011). Those models are either event-based models or continuous models. The 

event-based models have advantages such as using limited data or reducing the complexity of 

the model and the number of parameters. However, they need to be initialized for each event, 

and the initial condition of the model has to be derived from an external variable, which 

expresses the state of the catchment at the beginning of the rain event. A comparison of event-

based and continuous models was performed by Berthet et al., 2009. It showed that both types 
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of model were more or less equivalent. However, event-based models are often the only option 

in many cases, when a complete series of data are not available. Recently, another study also 

compared continuous and event-based models and showed that event-based models are suitable 

for climate change impact (Stephens et al., 2018). 

When using event-based models, the relationship between the initial condition of the 

model and the external predictors remains critical. For example, it is known that cumulated 

rainfalls occurring in some previous days are often inefficient for predicting the S –or CN 

parameter- of the SCS model (Huang et al., 2007; Tramblay et al., 2010; Durbude et al., 2011). 

Alternative predictors have been proposed in order to improve the assessment of the initial 

condition of event-based models: antecedent discharge (Tramblay et al., 2012), piezometric 

levels (Coustau et al., 2012), output soil wetness of the Safran-Isba-Modcou (SIM) model of 

Meteo-France (Tramblay et al., 2010; Roux et al., 2011), output of the daily SWAT continuous 

model embedded in an event-based sub-daily SWAT model (Yu et al., 2018). Field monitoring of 

soil moisture was also used (Tramblay et al., 2010) and satellite soil moisture data were 

suggested (Tramblay et al., 2012). At this point, the relationship between the initial condition of 

the model and the external predictors remains however little known and needs further 

exploration. As a matter of fact, the relationship can be affected as well by the structure of the 

model as by uncertainties associated to the input data, and it is not possible yet to estimate their 

respective influence. Thus, testing the models with highly documented input data was necessary 

to get a reliable estimation of the goodness of the models. 

The question this paper addresses is to assess the performance of a distributed event-

based parsimonious rainfall-runoff model in simulating Mediterranean floods. Namely, it focuses 

on two main aspects: firstly, the impact of the initial soil water content in the response of the 

catchment, and secondly, the impact of the rainfall uncertainties on both the goodness and the 

calibration of the model. In order to deal with these questions, the SCS-LR model has been used 

within a highly documented Mediterranean catchment, the Real Collobrier, which contains 17 

rain gauges over 70 km2. This rain gauge density indeed allows efficiently grabbing the typical 

spatial variability of the Mediterranean storms (Anquetin et al., 2010). The SCS-LR model is a 

parsimonious event-based distributed model, which combines the SCS runoff model and the Lag 

and Route routing model, both operating within a grid mesh of cells over the catchment. The 

model accounts for the spatial distribution of the rain without increase of complexity (i.e. 

without increase of the number of the parameters). Both runoff and routing parameters can vary 

in space, but using uniform parameters makes the model parsimonious, and the calibration 

easier (Willems et al., 2014). The Real Collobrier provides the opportunity to assess the accuracy 
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of the model within a dense network of rain gauges, reducing the uncertainties of the areal 

rainfall. The paper also intends to give an example of the event-based model calibration, which is 

not a trivial task (Awol et al., 2018). In addition, the impact of the density of rain gauges on the 

calibration and the goodness of the model was assessed by reducing the density of rain gauges. 

Because many catchments are monitored with a low density of rain gauges, the sensitivity of the 

model to the rainfall uncertainties will help to compare the results in several catchments, within 

the scope of a regionalization study for example. 

The paper was organized as follows : section 1 described the characteristics of the 

model, emphasizing the assumptions which were expected to bring an optimal result in 

simulating floods, as well as the calibration protocol of the model; section 2 presented the 

geographical and hydrological characteristics of the study site; section 3 dedicated to the results 

of the calibration and the goodness of the model, when using all the rain gauges available in the 

catchment, i.e. 17 rain gauges; section 4 assessed the impact of the rain gauges density on the 

goodness and the calibration of the model, evaluated by considering each gauge as a single gauge 

in the catchment; section 5 discussed the results comparing to other studies dealing with the 

initialization of event-based models. 

2. Methodology 

2.1. Runoff model 

The Soil Conservation Service (SCS) model was established in the mid-1950s by the United 

State Department of Agriculture (USDA), aiming to demonstrate and evaluate the design and 

construction of soil and water conservation project. To date, the SCS method is one of the most 

popular runoff models and was the object of many improvements as well in the formulation of the 

model as in the interpretation of its parameters (Mishra and Singh, 2013; Ponce Victor M. and 

Hawkins Richard H., 1996).  

Although it was first defined to relate cumulated runoff and rainfall at the event scale, it is 

possible to integrate time into this model to predict infiltration rates (Aron et al., 1977; Gaume et 

al., 2004). Coustau et al. (2012) implemented drainage of the cumulated rainfall and delayed 

runoff within the SCS model: the drainage of the cumulated rainfall led to a decrease in the runoff 

coefficient within a period without rain, whereas the delayed runoff performed more accurate 

recession of the floods. Michel et al. (2005) proposed a direct relationship between the runoff 

coefficient and the storage in a soil reservoir (instead of the cumulated rainfall), which made 

easier to account for the decrease of the runoff coefficient and the delayed runoff in SCS (Michel 

et al. 2005).  
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Figure 1 - HERE 

The model used here was the formulation of the SCS given by Michel et al. (2005), in which 

were added the drainage and delayed runoff proposed by Coustau et al. (2012). Although it was 

not within the scope of this paper, such formulation was also adapted to run the model in 

continuous mode. The model was run within the ATHYS platform modeling www.athys-soft.org, 

as described hereafter. 

The effective rainfall (or runoff) intensity R(t)[L/T] at a given time t can be calculated as 

followed (Fig. 1): 

𝑅(𝑡) = 𝐶(𝑡). 𝑖(𝑡)          (1) 

in which, i(t) [L/T] denotes the rain intensity at time t, and C(t) [-] is the runoff coefficient, as 

(Michel et al., 2005):  

𝐶(𝑡) =
𝐻(𝑡) − 𝑆𝑎

𝑆
. (2 −

𝐻(𝑡) − 𝑆𝑎

𝑆
) 𝑤ℎ𝑒𝑛 𝑆(𝑡) > 𝑆𝑎 

C(t) = 0 otherwise  

(2) 

  

In the equation above, t is the time, H[L] denotes the level of the soil reservoir; S[L] the 

maximum water capacity of the reservoir; Sa[L] the Michel’s initial abstraction, equal to the sum of 

the initial water level in the soil reservoir H0[L] and the Ia[L] abstraction in the classical SCS:  

𝑆𝑎 = 𝐻0 + 𝐼𝑎         (3) 

𝑆𝑎 should be independent of the event, which means that Ia is event-dependent, and that 

the variability of Ia is compensated by the variability of H0.  

The water level in the soil reservoir is governed by the infiltration and the drainage: the 

infiltration fills the reservoir, and the drainage makes that the runoff coefficient decreases when 

it does not rain (due to water evaporation near the soil surface, lateral sub-surface flow or deep 

drainage at lower layers). The infiltration f(t) equals: 

𝑓(𝑡) = (1 − 𝐶(𝑡)). 𝑖(𝑡)         (4) 

The drainage Vid(t)[L/T], so-called “the vertical flow”, is assumed to be a linearly dependent 

on the level H(t) in the reservoir: 

𝑉𝑖𝑑(𝑡) = 𝑑𝑠. 𝐻(𝑡)        (5) 

where ds[1/T] is a proportionality coefficient.      

The level of the reservoir is finally computed by: 

𝑑𝐻(𝑡)

𝑑𝑡
= 𝑓(𝑡) − 𝑉𝑖𝑑(𝑡) 

𝐻(𝑡0) = 𝐻0                   (6) 
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Moreover, a delayed runoff provided by sub-surface runoff or exfiltration is generated as 

a part of the drainage of the soil reservoir. This runoff, Exf(t) [L/T], so-called the “lateral flow”, is 

assumed to be a constant fraction ω of the drainage:   

𝐸𝑥𝑓(𝑡) = 𝜔. 𝑉𝑖𝑑(𝑡)        (7) 

Thus, the total runoff Rtot(t)[L/T] produced by a cell at time t is given by: 

𝑅𝑡𝑜𝑡(𝑡) = 𝑅(𝑡) + 𝐸𝑥𝑓(𝑡)       (8) 

Finally, the SCS model operates in distributed mode over a grid mesh of regular cells. Each 

cell is thus able to produce runoff, according to the selected parameters S, ω and ds, which can 

vary for each cell, or not.   

Coustau et al. (2012) pointed out an important point concerning the drainage. They 

argued that using the same reservoir discharge ds before and after the rain was not convenient, 

because the discharge mostly comes from the groundwater before the flood, from the near-surface 

layers during the recession of the flood. The corresponding discharge rates are supposed to be 

different, slow before the flood, fast during the recession. Thus, the drainage should be 

differentiated before and after the rain/flood. For event-based models, several solutions can be 

proposed to represent the dual discharge of the soil reservoir, such as considering two ds 

coefficients instead of one or introducing a threshold of the amount of the rain or the level in the 

reservoir, which activated either the slow or the fast drainage. Finally, the adopted solution was 

here to consider as Coustau et al. (2012) that the initial storage H0 was always 0 at the beginning 

of the event, making that the drainage is null before the rainfall started and the reservoir filled up. 

The hypothesis that there is no drainage of the soil reservoir before the rain starts seems to be 

convenient in most cases. This hypothesis also makes it possible to reduce the number of 

parameters of the model by removing H0, whereas the other solutions require additional 

parameters. Consequently, according to the hypothesis H0 = 0, i) S is no longer the maximal storage 

capacity of the reservoir soil, but the initial water deficit of the reservoir, which should vary from 

an event to another, ii). Sa is similar to Ia, which is set as a function of S: Ia = 0.2S. 

Coustau et al. (2012) also indicated that ω and S were linked by a linear regression, with 

a negative slope. That means the higher S, the lower ω. In other terms, the delayed runoff was low 

when the soil was initially dry, and high when the soil was initially wet. This is coherent with the 

fact that free water in the soil depends on the water content. In order to reduce the equifinality, it 

was thus decided to express ω as the ratio of a water storage threshold ω’[L] and the S water 

storage capacity of the soil at the beginning of the event, ω = ω’/S when S > ω’, and ω = 1 when S < 

ω’. The ω’ parameter substituted to the ω parameter in the calibration of the model and was 

expected to be uniform for all the events. 

2.2. Routing model 
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Figure 2 - HERE 

The runoff from each cell was then routed to the outlet by a linear lag-and-route model 

(Bouvier and Delclaux 1996). From each cell m, the runoff at time t0 generated an elementary 

hydrograph Qm(t) at the outlet of the catchment:  

𝑄𝑚(𝑡) =
𝑞(𝑡0)

𝐾𝑚
𝑒𝑥𝑝 (−

𝑡−(𝑡𝑜+𝑇𝑚)

𝐾𝑚
) ∗ 𝐴     (9) 

where q(t0) denotes the runoff from the cell at the date t0, Tm and Km represent respectively 

the travel time (route) and the diffusion time (lag) of the initial input along the travel paths, and 

A is the area of the cell (Fig. 2).  

The travel time Tm was computed by 

𝑇𝑚 = 𝛴𝑘
𝑙𝑘

𝑉0
        (10) 

in which, lk is the length of the kth cells between the cell m and the outlet; V0 denotes the 

velocity of travel, which was considered here as uniform over the whole catchment. The diffusion 

time Km was assumed to be proportional to the travel time Tm, with the slope equal to K0, as 

follows: 

𝐾𝑚 = 𝐾0. 𝑇𝑚        (11) 

Finally, all the elementary hydrographs derived from any time and any cell were added to 

obtain the total hydrograph (Olivera and Maidment, 1999). The model, although not physically 

based, has several advantages: short computation times, slight dependence on the spatial 

resolution (because it does not rely on cells slopes), possibility to give a physical interpretation to 

the parameters. However, the concept only retrieves the hydrograph at the outlet of the 

catchment, but not the internal flows at the cell scale. This is due to the fact that the elementary 

hydrographs are only added at the outlet of the catchment, but not in the upstream cells. For this 

reason, the model cannot work for any storage in the cells, which requires an actual budget at any 

time in the given cells.    

The complete model finally dealt with three parameters for the production function: 𝑆 

(initial water deficit), d𝑠 (drainage coefficient of the reservoir), ω’ (related to the fraction ω = ω’/S 

of the drainage corresponding to the delayed runoff), and two parameters for the transfer 

function: V0 (velocity of travel), K0 (coefficient of the linear relationship between the travel time 

and the diffusion time).  

2.3. Base flow 

The base flow is the “memory” of the catchment, due to the previous rainfalls, before the 

event. In the SCS-LR event-based model used as above, no base flow could be simulated, because 

the initial water level in the reservoir was 0 so that the drainage and delayed runoff were also null 
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until the rainfall begins during the event. The simulated flow was only due to the rainfall of the 

event. Thus, the simulated discharges must be compared to the total observed discharges, minus 

the base flow. This base flow was estimated by fitting an exponential decrease with time, between 

the first discharge of the event Q0 and the last continuously decreasing discharge Qi (i.e. Qi such as 

Qk<Qk-1, for any 1<k<i), before the rising of the flood: Qk=Q0.exp(-α(ti-t0)), with α = Ln((Qi-Q0)/(ti-

t0)). The base flow was then computed with this exponential decrease for the whole event, and 

subtracted to the observed discharge, to be compared to the simulated discharge.  

2.4. Water content predictors 

In addition to the base flow, the w volumetric water content output of the SIM model 

(Habets et al., 2008; Quintana Seguí et al., 2009) was used as another predictor of the initial 

condition of the model. The SIM model supplied water content w computed once a day at 6 TU, 

over an 8x8 km2 grid mesh of France, for three layers (Boone et al., 1999): surface layer (1cm 

deep), root layer and deep layer (depths depending on the type of vegetation), according the soil 

hydraulic properties (water content at saturation wsat, water content at wilting point, wwilt, water 

content at field capacity wfc). The latter derives from the percentages of sand and clay, supplied 

by the 1-km resolution INRA soil map.  In the scope of this study, we only considered the indicator 

from the second soil layer, w2, because of the shallow depth of the soils in the catchment. 

2.5. Model calibration 

The calibration of the model was driven event-by-event, aiming to maximize the Nash–

Sutcliffe Efficiency (NSE, Nash and Sutcliffe, 1970) value for each event:   

𝑁𝑆𝐸 = 1 −
∑ (𝑄0 

𝑡 − 𝑄𝑐
𝑡)

2
 𝑇

𝑡=1

∑ (𝑄0 
𝑡 − 𝑄0̅̅̅̅ )

2
 𝑇

𝑡=1

      (12)  

where 𝑄0 is the mean of observed discharges during the event, 𝑄𝑐
𝑡 is the calculated 

discharge and 𝑄0 
𝑡   is the observed discharge at time t during the event. 

Nash–Sutcliffe efficiency can take values from −∞ to 1.  An efficiency of 1 (NSE = 1) implies 

a perfect match of modeled discharge to the observed data. An efficiency of 0 (NSE = 0) indicates 

that the model predictions are as accurate as the mean of the observed data, whereas an efficiency 

less than zero (NSE < 0) occurs when the observed mean during the event is a better predictor 

than the model or, in other words, when the residual variance is larger than the data variance. 

Essentially, the closer the model efficiency is to 1, the more accurate the model is. Note that NSE 

was computed only for the time steps corresponding strictly positive observed discharge during 

the event (after subtraction of the base flow, see above).  
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Some parameters were kept constant for all the events, whereas others were allowed to 

vary from one event to another (see section 4.1). The algorithm used for the maximization of NSE 

was the simplex algorithm (Rao, 2009). 

2.6. Model efficiency 

When using an event-based model, the calibration of the model event-by-event leads to 

the optimal NSE of the model, i.e. the NSE obtained with the optimal values of the calibrated 

parameters. But the predictive score of the model must account either for the best adjustment of 

the simulated floods to the observed one and for the better adjustment of the relationship 

between the initial condition of the model and the external predictors. In other terms, the 

predictive NSE of the model should be the NSE constrained by the predicted value of the initial 

condition of the model. The so-called predictive NSE thus assesses the accuracy of the event-based 

model. The goodness of the model will be thus expressed by the quartiles (upper, median, lower) 

of the predictive NSE values of all the events, the initial condition being predicted by the 

relationship with the external predictors (base flow, the output of the SIM model). The model 

efficiency will also be controlled by split-sample cross-validation, in order to check the stability of 

both the calibration and goodness of the model. For the event-based models, note that the split-

sample cross-validation needs to compare the predictive NSE of both calibration and validation 

samples. 

3. Study site and data 

3.1. Real Collobrier catchment 

Real Collobrier is located in the South of France, near the Mediterranean Sea, and has been 

monitored since 1968 by IRSTEA. Discharge data are available for 11 sub-basins, with areas 

ranging from 0.7 km2 to 70 km2. In the larger catchment, at Pont de Fer (Fig. 3), the altitudes 

decrease from the east (770m maximum) to the west (80m at the outlet). The geological 

formations are mainly crystalline, with metamorphism increasing from east to west: gneiss, 

schists, phyllites (Folton et al., 2012). Vegetation includes chestnut, cork or green oaks, pines 

forests; vineyards are grown in a small portion of the area. The average proportions in sand and 

clay in Real Collobrier are 633 g/kg and 162 g/kg (from Geosol 

https://webapps.gissol.fr/geosol/). Parkin et al. (1996) gave a description of the soil in the 

Rimbaud sub-catchment: the soils are generally sandy, and contain a significant proportion of 

gravel and broken rock; there is considerable local variation in soil depth from nothing (at 

bedrock outcrops) to a meter or more in bedrock depressions, but depths are generally less than 

1 m; the deepest and most homogeneous soils occur in the chestnut plantation near the catchment 
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outlet, where soil depths may reach 2 m; plant roots generally extend over the full depth of the 

shallow soils. The shallow soils seem to have high hydraulic conductivities at saturation, up to 100 

mm.h-1 (Parkin et al., 1996), and low water retention (Taha et al., 1997) . 

The climate of this area is typically Mediterranean with a dry and hot summer, heavy 

rainstorms in autumn, generated by south winds coming from the Mediterranean Sea (rainfall 

intensities up to 100 mm per hour), and rainy winter and spring. The annual average rainfall 

ranges from 750 mm to 1200 mm depending on the elevation. 

Figure 3 - HERE 

3.2. Rainfall-runoff data 

Both rainfall and runoff data were obtained from IRSTEA (https://bdoh.irstea.fr/REAL-

COLLOBRIER/),  and were used with 30 minutes time step. We considered here the discharges at 

Pont-de-Fer station, which controls a catchment of 70 km2. In this catchment, 17 rain gauges were 

available for the rainfall data. The events were delimited by considering several conditions: i) a 

new event was defined when occurred a period of 48 hours without amount exceeding 0.5 mm 

during a 30minutes-time step; a 48 hours period was enough to consider that discharge came back 

to the initial value before the rain, ii) the rainfall during the event had to exceed 50 mm in at least 

one rain gauge; ; the threshold 50 mm was found necessary for flood triggering, iii) the peak flow 

during the event had to exceed 30 m3/s, which corresponded to the 1-year return period peak 

flow.  

The method led to select 34 events from 1968 to 2006 (Table 1). All the rain gauges did 

not always work together, as shown in Table 1, but 31 out of 34 events have more than 12 rain 

gauges working together. The cumulated mean areal rainfall of the events ranged from 49 to 318 

mm, with an average of 166 mm. The spatial variability of the rainfall during the event was 

expressed by the coefficient of variation CV (ratio of the spatial standard deviation and the spatial 

average) of the cumulated rainfalls at the rain gauges, CV’s varying from 0.11 to 0.84. The ratio 

between the maximal and the minimal cumulated rainfalls at the rain gauges were more than 2 

for 25 events out of 34, more than 3 for 10 events out of 34. The correlation coefficients between 

the cumulated rainfalls of the events at the different gauges ranged from 0.14 to 0.97 (Table 2). 

They regularly decreased with the distances between gauges (Fig. 4), but gauges 6 and 8 were less 

correlated to some others. As a matter of fact, these gauges are located in the upper northeastern 

part of the catchment and seem to be sensitive to local orographic effects. As an example of a 

median case, the correlation coefficient between the cumulated rainfalls at gauges Mouton (gauge 

5) and Portaniére (gauge 12) was r = 0.69, the distance between the gauges being 10.7 km.  

Figure 4 - HERE 

https://bdoh.irstea.fr/REAL-COLLOBRIER/
https://bdoh.irstea.fr/REAL-COLLOBRIER/
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The maximal peak flow was 91 m3/s. The response time was computed for some single-

peak floods and ranged between 1 and 2 hours, considering the time between the main rainfall 

intensity and the peak flow. The runoff coefficients ranged between 4 and 56%, 34% on average. 

The lowest runoff coefficients (≤10%) corresponded to the events which occurred right after long 

dry periods. In spite of their low runoff coefficients, these events gave high peak flow, e.g. the 

maximum value 91 m3/s on the 13/09/1968. The initial moisture of the catchment was expressed 

for each event firstly by the baseflow and secondly by the w2 volumetric water content derived 

from the SIM model. Those two indexes are closely related with a linear correlation between the 

logarithm of the base flow and w2 (R2 = 0.75, the points with null base flow were not taken into 

account). 

4. Calibration and goodness of the model when using all the rain gauges 

4.1. Sensitivity of the model to the parameters 

Sensitivity tests were performed in order to detect the most influential or independent 

parameters. The event n°5 has been selected for this test, as a multi-peak event. The a priori values 

and boundaries of the parameters for this event have been set as far as possible from physical or 

empirical methods. The reference set of parameters used for the sensitivity test was finally S =140 

mm, ω’=60 mm, ds = 0.4 d-1, V0= 2.5 m.s-1, K0 = 3, which led to a good simulation of the observed 

flood. 

S is equivalent to CN as usual, S(mm) = 25400/CN – 254 and can be derived from the Soil 

Conservation Service (SCS) National Engineering Handbook Section 4: Hydrology (NEH-4) and 

Technical Release 20 (TR-20). CN is known to be related to the land use, the hydrologic condition, 

the type of soil and the antecedent moisture condition. However, as shown in further discussion, 

the optimal values of S - or CN can be very different than those supplied by the SCS Handbook. The 

sensitivity analysis was performed by using S = 75 mm and S = 400 mm as probable boundaries 

of the S parameter in the Mediterranean area. The model was very sensitive to the range of 

variation of S (Fig. 5a), so this parameter was calibrated for each event. 

There is no physical evidence for the ω’ parameter. However, ω = ω’/S should be close to 

0 in driest condition, and close to 1 in the highest moisture condition. As the range of S parameter 

was a posteriori found between 75 and 400 mm, the value ω’= 60 mm was set in the first 

approximation. The sensitivity test was applied with the reference set of parameters, by using ω’ 

= 30, 60 and 90 mm, respectively. The result showed that the ω’ parameter mainly affected the 

recession of the flood, in a range 40% for the low flows, while the peak flows were less impacted, 

less than 20% (Fig. 5b). As we were mainly interested in the peaks, the ω’ parameter was set 

constant for all the events in the first approximation, ω’= 60 mm. 
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Figure 5 - HERE 

As a mathematical property of the model, the discharge coefficient of the reservoir, ds, is 

equivalent to the recession coefficient α used in the Maillet’s law:  

𝑄(𝑡)  =  𝑄0. 𝑒−𝛼∗𝑡  (13) 

where α is the drainage coefficient and Q0 initial base flow. The recession coefficient ds 

was calculated for all the events, fitting an exponential recession on the terminal part of the floods 

(see Eq.13). The mean value was 0.4 d-1, with a 0.1 d-1 standard deviation. The min and max values 

were respectively 0.2 and 0.7 d-1. The sensitivity test was thus performed with the reference set 

of parameters, by using ds = 0.2, 0.4, 0.7 d-1. The first peak was not sensitive to ds (<1%) but the 

second one was much more (more than 20% between the min and max). That showed that the ds 

parameter was important in case of multiple peaks flood (Fig. 5c), but most of the events exhibit 

single peak, so the ds parameter was set constant in first approximation, ds = 0.4 d-1. 

The V0 parameter should be interpreted as the maximal velocity in a cross-section. Thus, 

V0 can be derived from the slope, friction and hydraulic radius of the streams or channels. 

Although the velocity in a cross section is far to be constant in space (and time) at small scale, it is 

not unrealistic to assume that V0 is globally constant over the catchment: roughly speaking, it 

results from the fact that the slopes are steep and the hydraulic radius low upstream, whereas the 

slopes are low and the hydraulic radius high downstream. In other terms, the variability of the 

slopes compensates the variability of the hydraulic radius for stabilizing the velocity values. In 

addition, V0 was used to compute the travel time Tm between a given cell and the outlet of the 

catchment (Eq.10) and must be seen as a mean value along this trajectory: this is another reason 

why the hypothesis of V0 uniform in space could be reasonable.  

The transfer parameters V0 and K0 were found to be strongly dependent (Fig. 6). In this 

example (event n°5), it can be seen that there is a very wide range of pairs (V0, K0) which satisfy 

NSE > 0.8, the other parameters being S = 140 mm, ω’ = 60 mm, ds = 0.4 d-1. Thus, it is necessary 

to set one of these two parameters to avoid their artificial variation. As the V0 parameter was 

somewhat more physically-based, we chose to set V0 = 2.5 m.s-1: this is indeed close to the value 

that would give the Manning-Strickler formula used in a rectangular cross-section with a Strickler 

friction coefficient 20 m1/3.s-1, a slope 0.015 m.m-1, a width 20 m, a water level 1 m high, which 

seems to be realistic according to the available observations. 

Figure 6 - HERE 

The K0 parameter governs the relationship between the translation time Tm and the 

diffusion time Km. The diffusion time Km displays a complex role and serves both as a real diffusion 

since the velocity through a cross-section is not uniform, and as an artificial way to make the real 

velocity varies in time, whereas V0 does not. Therefore, there is no physical evidence to set a priori 
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the K0 value, and it was necessary to calibrate K0. To know more about the influence of K0, the 

sensitivity test was performed with the reference set of parameters, by using K0 = 0, 2.and 4.5, 

which were respectively the a posteriori minimal, median and maximal values of the calibrated 

K0. K0 mainly acted in the reduction of the peak flow, and to some extent, in the time position. 

However, the sensitivity of the model to K0 seemed to be less than the sensitivity to S. 

4.2. Model calibration 

Then, the parameters S and K0 had to be calibrated for the 34 events. An optimized set of 

values was found for each event, by optimization of the NSE computed with the observed and 

computed discharges (Fig. 7a). The S calibrated parameter values ranged from 75 to 400 mm 

(median = 181 mm), K0 between 0 and 4.5 (median =2.4), and the NSE ranged from 0.27 to 0.99 

(median = 0.96, lower quartile = 0.87). The simulated hydrographs indeed proved to be very 

similar to the observed one (Fig. 7b). The two worst values of NSE corresponded to events 

occurring in the driest initial soil conditions (18/09/74 and 05/09/2005). In these cases, the low 

flow values were overestimated, whereas the peak flow values were underestimated. 

Figure 7 - HERE 

The sensitivity test performed in section 4.1 gave an idea of the impact of such 

variabilities, and the model was supposed to be more sensitive to S than to K0, at the event scale. 

Another test was performed to answer the question of the actual impact of the parameter’s 

variability over the whole range of the events. The analysis was led by using the median value of 

each parameter (S then K0) and by recalibrating the other parameter of the model (Fig. 8). For 

each calibration, the loss in NSE and the differences in S or K0 expressed the sensitivity of the 

model to a given parameter. The highest loss in NSE was found when using the median S 

parameter and calibrating K0: in this case, the median NSE decreased to 0.78 instead of 0.96 when 

calibrating both S and K0, and the median K0 increased to 3 instead of 2.4. Meanwhile, using the 

median parameter K0 resulted in marginal changes of the median NSE (0.94 instead of 0.96) and 

median S (178 instead of 181 mm). Thus, the parameter S can be considered as the key parameter 

of the model, of which the variability at the event scale must absolutely be accounted for. The 

variability of the K0 parameter seemed to have less impact on the flood simulations, although the 

impact could be important for some events. It is, however, worth to note that the K0 low value 

normally appears in dry condition (high value of S) while the high value of K0 is often in wet 

condition (low value of S). In dry initial condition, the shape of the flood would be sharper because 

the delayed runoff should be smaller (see comment on ’ in section 2.1); thus, Ko will tend to be 

reduced in order to fit the shape of the flood. Finally, the fact that the model was not very sensitive 
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to K0 made that we could use the median value to simulate floods without significant loss of 

accuracy. 

Figure 8 - HERE  

4.3.  Relating S to initial conditions 

After the calibration of the model, it appeared that S was the most variable and most 

influential parameter for the simulations. S corresponds here to the water deficit at the beginning 

of the event, so that it is expected to be highly dependent on the previous events and the initial 

state of saturation of the soil. Therefore, we tried to find relationships between S and two indexes 

supposed to express the initial water content: the base flow and the w2 volumetric water content 

at the beginning of the simulated event. 

Both indexes gave rise to a relatively strong correlation with maximum water retention, 

presented by the correlation coefficient R2 (0.85 between S and log10(Qb) and 0.77 between S and 

w2, Fig. 9). To allow the computation of the logarithms, the null base flows were changed to 0.001 

m3/s. 

Figure 9 - HERE 

These relationships should be used to assess the actual accuracy that could have the model 

in calibration mode. The actual accuracy of the model should be indeed estimated by the NSE 

computed with the predicted values of S instead of the optimized values of S, i.e. the predictive 

NSE (see section 2.6). Figure 10 showed that using the predicted values of S instead of the 

optimized one reduced the NSE values (for all the events, the median value of K0 was used): the 

median predictive NSE was 0.83 when using the relationship between S and the base flow and 

0.77 when using the relationship between S and the water content  w2 (instead of 0.94 for the 

median optimal NSE, derived from optimal values of S and median value of K0). This shows that 

the S-base flow relationship performs better than the S-w2 relationship, in order to simulate the 

flood. 

Figure 10 - HERE 

4.4. Validation of the model 

The validation of the model was performed using cross-validation. Firstly, all the events 

were split into three samples: sample 1 included the 11 first events; sample 2 contained the events 

12 to 22 and sample 3 was constituted of the 12 last events. For each predictor (w2 or base flow), 

the model was first calibrated (S and K0) on the set containing the calibration events, and the 

regression between S and 2 predictors was designed from the calibrated values of S. Then the 

model was applied on the set containing the remaining events (Table 3), by using the S values 
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derived from the regression previously designed in the calibration phase and the median value of 

K0 obtained with the calibration sample. The median predictive NSE were finally computed for 

both calibration and validation events (the median value of K0 was also used for the calibration 

sample to calculate the median predictive NSE). 

The correlation coefficient R2 were the highest for the second sample (0.9 for w2 and 0.87 

for base flow). One possible reason is that this sample contains all the dry events (i.e. events that 

occurred in dry soil conditions), and the corresponding extremely low values of S could artificially 

increase the correlation coefficient R2. However, the other R2 values were also very good (≥0.69), 

that showed a good correlation between the S parameter and the predictors. The coefficients a 

and b of the relationships did not differ a lot and were also very close to those obtained for the 

whole sample of events (see Fig.9), meaning that a stable relationship could be used for estimating 

S whatever the calibration sample was. The median predictive NSE were closed for the calibration 

and the validation samples, even sometimes higher for the validation sample than for the 

calibration sample. There was no significantly better sample for the comparison of the median 

predictive NSE for calibration and validation. Besides, the median predictive NSE were better for 

the base flow than the w2, for both the calibration and the validation samples. Finally, to 

summarize, these results gave acceptable confidence for the performance and the robustness of 

the model, and for the possibility to apply it for other events than those used in this study. 

4.5. Sensitivity of the model to rain gauges density 

The rainfall uncertainty was then tested by using only one gauge at a time for model 

calibration. We implemented the calibration of the model following the method mentioned above 

(S and K0 were the parameters to be calibrated for each event, whereas we kept 𝜔′ = 60 mm, ds = 

0.4 d-1, V0 = 2.5 m.s-1). The results were given in table 4, in which the regression and the predictive 

score were calculated for two predictors (w2 and base flow): 

The median S values ranged from 112 to 252 mm when using only one rain gauge for 

calibrating the model (it was 181 mm when using all the rain gauges). The R2 of the relationship 

between S and w2 (resp. S and Qb) ranged from 0.87 to 0.23 (resp. 0.91 to 0.39). The results also 

indicated that there were differences in both slope and intercept when we considered the 

regression of the calibrated S parameter and predictors in each rain gauge and in all gauges (Fig. 

11). Figure 11 also showed the possible bias of the S parameter estimates, at a given density of 

rain gauges (here, 1 out of 70 km2). It showed that for dry soil, let’s say w2 = 0.18 cm3.cm-3 or Qb = 

0.01 m3/s, the S estimates could range from nearly 250 mm to more than 600 mm, even more for 

w2, depending on the selected rain gauge used for the calibration of the model.  For a wet soil, let’s 
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say w2 = 0.24 cm3.cm-3 or Qb = 10 m3/s, the S estimates could range between nearly 50 and 150, 

even 200 mm. 

This is consistent with the fact that a higher number of rain gauges could improve the 

performance of the model, in other words, more rain data would help the model become more 

predictive. As seen above, insufficient data affected both the performance of the model (predictive 

NSE) and the parameters of the model (median, dry and wet values of S). 

Figure 11 - HERE  

The effect of the rain gauges did depend on their position in the catchment so that the best 

R2 were obtained for the gauges Bonnaux and Bourjas. Bonnaux can be considered as the most 

central gauge in the catchment. Bourjas exhibited the best R2, probably because only half of the 

events could be recorded (18/34), which could artificially increase the R2. In addition, most of the 

gauges led to equivalent both R2 and slopes in the relationships between S and the saturation 

index (base flow or w2), but different intercepts. This is due to the fact that all these gauges are 

correlated (as shown in Table 2 and Figure 4), but that rainfalls have different mean values, 

probably due to orographic effects. Conversely, the worst R2 were found for the gauges Fourches 

and Louviere, which were known to be poorly representative of the whole catchment (see Table 

2 and Figure 4). ). In addition, relationships S-w2 or S-log(Qb) exhibited different slopes for gauges 

Fourches, Mouton and Vaudreches, which are close together (Figure 11). Such slopes were the 

consequence of uncertainties in calibrating S for a single event  occurring  in extremely dry conditions, 

for these gauges. If we did not consider the S values for this event and for these gauges, the slopes would 

have been quite similar to the others. Thus, these slopes should be considered to be due to the calibration 

uncertainty rather than to the rainfall uncertainty. 

. 

5. Discussion 

The S parameter was first compared to the estimated value that can be derived from the 

SCS Handbook. Real Collobrier can be described as mostly forestall, with pines, chestnuts, and 

oaks, in fair hydrologic condition. The most appropriate hydrologic soil group according to the 

high hydraulic conductivity of the shallow soil (> 100 mm.h-1) was A, therefore the S value in 

medium conditions of soil moisture should be 459 mm when referring the SCS method guide. This 
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value is far above the median calibrated value, S = 210 mm. As the calibration of S was shown to 

be robust, this difference should not result from equifinality or any other bias generated by the 

values of the other parameters, and there should be a more physical explanation. This is probably 

due to the fact that shallow soil does not have sufficient depth to allow such higher water storage 

capacity. The hydrological soil group D would be preferable to account for this limited capacity, 

but in this case, the S value in medium conditions of soil moisture would be 68 mm, which highly 

underestimates the actual calibrated S value.   

 Moreover, S was poorly correlated with the classical previous 5-days cumulated rainfall 

(Huang et al., 2007), P5D, as shown in Fig. 12, and the large and continuous variability of the 

calibrated S also shows that the predicted values of S cannot be reduced to only three values 

corresponding to antecedent moisture conditions (AMC) AMCI, AMCII, and AMCIII, as proposed in 

the SCS guide.  The above comments illustrate the difficulty of predicting S from the method guide. 

Figure 12 - HERE  

Similar relationships between S and the water content estimates have been found before 

when modeling floods at sub-daily time step. In the small Mediterranean Valescure catchment (4 

km2, Δt = 30 minutes), Tramblay et al. (2010) found a high correlation (R2 > 0.7) between S and 

either the field monitoring of water content, the base flow, the previous rainfalls or the output of 

the SIM model. In the Mdouar catchment in Morocco (635 km2, Δt = 1 h), Tramblay et al. (2012) 

also found a high correlation (R2 ~0.8-0.9) between S and either the antecedent precipitation 

index or the output of the GR4J daily model, whereas only 4 rain gauges operated over the 

catchment. This high correlation was probably due to the local oceanic climate, generating large-

extended spatial rainfall. The correlation between the event cumulative rainfalls of 2 sites distant 

from 50 km was estimated to r = 0.96, which is much higher than in the Mediterranean climate. In 

a larger catchment such as the Wangjiaba catchment in China (30630 km2, 139 operative rain 

gauges), under Moonson climate, Yu et al. (2018) found predictive NSE values varying between 

0.66 and 0.95 for 24 flood events (Δt = 2 h), when using predicted values of S. But in several 

Mediterranean catchments, weak correlations or predictive NSE have been found between S and 

the water content predictors (see in the ATHYS catchment database http://www.athys-

soft.org/bassins). It seems to be due to the high spatial variability of the rainfall, and the low 

density of rain gauges in these catchments. As an example, the Gardon at Anduze (545 km2, Δt = 1 

h) indeed exhibited a weak correlation between S and the SIM output or the base flow (R2 < 0.5). 

The present study indicates that it could be due to the relatively low density of rain gauges (7 rain 

gauges) on the catchment. 

The R2 of the relationship between S and w2 or the base flow is not only affected by the 

rainfall uncertainties, but also by many other uncertainties, such as the ones related to the base 

http://www.athys-soft.org/bassins
http://www.athys-soft.org/bassins
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flow, the w2, the calibration protocol and the accuracy of the model.  As the discharge at the Pont-

de-Fer stream gauge was controlled by a downstream spillway, the low flow rating curve was 

assumed to be stable, and the base flow correctly measured. The calibration of the model was 

performed in different conditions which showed that the calibrated S values were stable whatever 

the other parameters values were. The uncertainty on the medium and high flows rating curve 

could also affect the S values, but this kind of uncertainty should generate a rather systematic than 

a randomized error, which should not affect the R2 of the relationships between S and the base 

flow or w2. Thus, it was reasonable to assume that the main uncertainty which could affect the 

relationships between S and the base flow or w2 was due to the rainfall and that the R2 mainly 

reflected this uncertainty. 

6. Conclusion 

The results of our study proved that SCS-LR model could simulate Mediterranean flash 

flood with good accuracy. The calibration and the validation of the model were mainly based on 

the rainfall and runoff data corresponding to 34 events of Real Collobrier catchment in the period 

of 1968 – 2006. The sensitivity test and parameters dependency test allowed reducing the number 

of parameters to be calibrated. Some parameters could be set constant for all the events, by 

considering either numerical properties of the parameters (in case of ds or V0) or empirical 

assumptions (for ω’). The maximum water retention S and diffusion time K0 were calibrated for 

each event, and the variability of S exhibited a wider impact on the simulated flows than the 

variability than K0. K0 could be set to its median value without significant loss of quality in NSE 

values, nor change in S values. The variability of S was significantly correlated with the predictors 

of the basin wetness state: the soil water content and the base flow. The regression coefficient 

values (R2) were high for both cases (0.85 and 0.77). The calibration protocol showed that the 

estimated S values were robust and that the variability of these values was not dependent on the 

other parameters of the model. The median NSE equals 0.94 when using the optimal calibrated 

values and reduces to respectively 0.83 and 0.77 when using the predicted S values given by 

respectively the relationship with the base flow or w2. These latter values are representative of 

the accuracy of the model at the event scale, as it can be expected for any further application of 

the model. 

Moreover, the dense rainfall data gave us the possibility to test the effect of the rain gauge 

density on the calibration and the goodness of the model. The results proved that the reduction of 

the density of the rain gauges affected both the predictive scores of the model and the calibrated 

parameters of the model. When using a single rain gauge for the calibration of the model, the 

estimates of S can vary from 250 to more than 600 mm for initially dry soils, and from 50 to more 
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than 150 mm for initially wet soils, depending on the selected rain gauge. This result shows that 

the calibrated parameters could be strongly biased by the density of rain gauges so that the 

comparison of the calibrated parameters between two catchments would be significant if both 

catchments have an equivalent density of rain gauges.   

The model requires a small number of parameters, and it can be set up with accessible 

data. Although more research is needed to have a better understanding and to test the ability to 

apply the model in the other Mediterranean or other types of catchments, this study shows a 

promising application for flash flood prediction. Further objectives would be to assess the model 

in other catchments, in the Mediterranean or other climates. Such model has also to be compared 

to other models, including continuous models. The benefits of the rainfall radar in case of the low 

density of rain gauges should be investigated.   
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Table 1: Main characteristics of the rainfall-runoff events in Pont de Fer. P: cumulated 
precipitation; CV: coefficient of spatial variation of the precipitation; Vr: runoff volume; Rc: runoff 
coefficient; Imax: maximal rainfall intensity during one-time step; w2: volumetric water content of 
the root layer. 

Event 
Starting 

date 
Finishing 

date 
P 

(mm) 
No of 

gauges 
CV 

Vr 
(103.m3) 

Rc 
(%) 

Imax 
(mm.h-1) 

Peak 
flow 

(m3.s-1) 

w2 
(cm3.cm-3) 

Base 
flow 

(m3.s-1) 

1 12/4/1968 17/04/1968 142.4 16 0.27 2082.7 17 11.3 30.4 0.21 0.06 

2 13/09/1968 15/09/1968 177.2 14 0.18 1025.3 9 64.9 91.4 0.19 0.02 

3 2/1/1972 5/1/1972 68.5 11 0.29 1961.5 36 11.6 39.6 0.25 2.33 

4 1/2/1972 7/2/1972 125.1 16 0.40 3948.3 37 8.9 40.1 0.23 0.77 

5 17/02/1972 23/02/1972 207.8 15 0.25 8864.3 56 13.7 60.7 0.23 1.64 

6 13/02/1973 23/02/1973 168.2 15 0.84 3850.8 36 12.5 39.1 0.22 0.44 

7 13/10/1973 15/10/1973 104.9 15 0.21 1512.7 19 29.7 45.7 0.22 0.06 

8 26/01/1974 5/2/1974 247.8 13 0.32 8920.6 40 12.4 76.6 0.22 0.43 

9 12/2/1974 21/02/1974 212.6 13 0.25 8286.4 46 10.6 59.8 0.23 1.22 

10 26/02/1974 7/3/1974 163.6 16 0.16 7321.0 53 8.9 63.1 0.24 1.88 

11 18/09/1974 22/09/1974 123.6 15 0.27 373.5 4 44.2 44.8 0.15 0 

12 5/2/1975 9/2/1975 160.1 12 0.18 3395.4 27 8.1 40.8 0.22 0.12 

13 29/01/1976 8/2/1976 260.3 15 0.15 5095.0 22 16.9 39.8 0.21 0.16 

14 15/04/1976 19/04/1976 145 12 0.35 4288.4 37 15.4 77.4 0.22 0.31 

15 24/10/1976 31/10/1976 318.7 15 0.31 11191.6 44 14.9 68.3 0.24 0.50 

16 1/1/1977 3/1/1977 49.1 13 0.25 1966.9 46 7.2 31.5 0.24 3.30 

17 6/12/1977 11/12/1977 178.1 13 0.11 3142.4 22 17.5 43.3 0.23 0.13 

18 11/1/1978 19/01/1978 244.1 13 0.30 10043.5 49 12.3 77.5 0.23 0.20 

19 8/2/1978 13/02/1978 125.9 15 0.26 5467.2 52 8.1 41.6 0.22 0.76 

20 25/10/1979 31/10/1979 191.8 12 0.13 6182.4 41 13.6 50.7 0.23 0.21 

21 30/11/1984 4/12/1984 77.9 13 0.22 1488.4 22 17.9 31.9 0.23 0.41 

22 28/01/1986 7/2/1986 280.5 13 0.23 7037.4 30 13.1 53.7 0.21 0.06 

23 13/01/1988 17/01/1988 116.4 14 0.37 3325.5 33 11.1 73.4 0.23 0.30 

24 20/04/1993 4/5/1993 221.2 10 0.16 6106.0 31 25.4 38.7 0.21 0.25 

25 5/1/1994 9/1/1994 109.6 14 0.16 2400.7 23 15.9 33.5 0.21 0.12 

26 1/2/1994 8/2/1994 131.8 15 0.12 4192.2 33 19.3 31.1 0.22 0.64 

27 10/1/1996 19/01/1996 147.9 14 0.28 5646.6 54 14.6 48.7 0.24 1.62 

28 20/01/1996 31/01/1996 209.4 14 0.29 8816.0 50 12.6 58.3 0.24 1.50 

29 6/1/1997 13/01/1997 97.1 13 0.27 3266.7 44 10.2 59.9 0.25 4.05 

30 13/11/2000 28/11/2000 176.9 13 0.23 4388.0 29 21.5 29.9 0.24 0.37 

31 24/12/2000 29/12/2000 134.6 14 0.22 4107.1 37 21.7 44.1 0.22 0.39 

32 24/01/2001 31/01/2001 88.3 13 0.19 2749.5 22 9.2 33.4 0.23 0.83 

33 5/9/2005 12/09/2005 231.4 8 0.35 2541.8 10 64.2 60.9 0.15 0.003 

34 26/01/2006 1/2/2006 202.7 13 0.32 5760.2 34 16.7 34.5 0.22 0.15 
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Table 2: Correlation matrix calculated with rain-gauge data of events. NA = not available when there 
is no common event at both gauges. 

Gauge 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1 1.00                 

2 0.91 1.00                

3 0.92 0.89 1.00               

4 0.93 0.96 0.91 1.00              

5 0.83 0.88 0.89 0.89 1.00             

6 0.88 0.92 0.69 0.81 0.73 1.00            

7 0.95 0.89 0.94 0.86 0.93 0.70 1.00           

8 0.82 0.77 0.48 0.58 0.42 0.90 0.49 1.00          

9 0.94 0.97 0.76 0.91 0.59 0.47 0.91 0.14 1.00         

10 0.91 0.90 0.63 0.81 0.75 0.61 0.87 0.29 0.95 1.00        

11 0.84 0.83 0.51 0.67 0.75 0.61 0.88 0.36 0.92 0.84 1.00       

12 0.90 0.90 0.75 0.82 0.69 0.59 0.83 0.37 0.94 0.90 0.91 1.00      

13 0.90 0.84 0.76 0.75 0.71 0.89 0.82 0.84 0.72 0.71 0.69 0.67 1.00     

14 0.85 0.90 0.69 0.86 0.88 0.64 0.89 0.36 0.93 0.84 0.87 0.88 0.66 1.00    

15 0.96 0.94 0.97 0.95 0.91 0.80 0.93 0.62 0.78 0.82 0.72 0.80 0.81 0.81 1.00   

16 0.77 0.78 0.60 0.70 0.68 0.51 0.72 0.35 0.79 0.80 0.78 0.89 0.61 0.85 0.68 1.00  

17 0.91 0.85 0.97 0.85 0.94 0.93 0.96 0.94 NA NA 0.72 0.79 0.95 0.82 0.97 0.47 1.00 

1 – Babaou, 2 – Bonnaux, 3 – Anselme, 4 – Guerin, 5 – Mouton, 6 – Fourches, 7 – Lambert, 8 – 

Louviere, 9 – Martels, 10 – Bourjas, 11 – Peyrol, 12 – Portaniere, 13 – Rimbaud, 14 – Vaudreches, 

15 – Bourdins, 16 – Davids, 17 – Boussic 
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Table 3: Results of the split sample tests performed with the two predictors (w2 index, base flow Qb). 
“a”, “b” and “R2” are respectively the slope, the intercept and the determination coefficient of the 
regression designed between the initial condition S and the given predictor using the events of the 
calibration sample. 

Predictors 
Calibration 

events 
Validation 

events 
a b R2 

Median 
predictive NSE  
for calibration 

Median 
predictive 

NSE for 
validation 

w2 

1-22 23-34 -2429.9 835 0.71 0.78 0.83 

1-11,23-34 12-22 -2740.2 797.45 0.90 0.88 0.76 

12-34 1-11 -2680.4 788.36 0.69 0.71 0.71 

Log10Qdeb 

1-22 23-34 -81.77 140.73 0.85 0.89 0.76 

1-11,23-34 12-22 -77.49 153.51 0.87 0.9 0.78 

12-34 1-11 -88.91 146.05 0.83 0.81 0.92 
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Table 4: Results of using each rain gauge performed with the three predictors (w2 index, base flow 
Qb). “a”, “b” and “R2” are respectively the slope, the intercept and the determination coefficient of 
the regression established between the initial condition S and the given predictor using the events of 
the calibration sample. 

Gauge 
# Events 
available 

Median 
S 

W2 Base flow 

a b R2 a b R2 

All 34 181.0 -2924.91 839.52 0.77 -85.30 145.85 0.85 

Babaou 28 197.8 -2961.43 858.72 0.65 -90.49 154.05 0.76 

Bonnaux 27 191.7 -3324.64 919.27 0.72 -97.20 129.07 0.79 

Anselme 24 244.8 -2027.36 692.43 0.27 -64.51 207.92 0.42 

Guerin 28 215.5 -2782.46 827.45 0.59 -79.37 167.31 0.61 

Mouton 25 225.1 -5479.90 1465.77 0.27 -148.82 169.17 0.41 

Fourches 27 197.4 -5204.81 1385.53 0.23 -135.17 156.16 0.39 

Lambert 26 184.1 -2328.31 704.18 0.51 -66.07 153.42 0.63 

Louviere 27 252.7 -2124.46 724.16 0.29 -68.85 215.55 0.39 

Martels 15 153.6 -2421.10 683.62 0.64 -69.67 113.06 0.77 

Bourjas 18 182.4 -4423.16 1152.60 0.87 -113.00 115.49 0.91 

Peyrol 25 119.6 -2020.89 571.91 0.6 -55.28 95.13 0.68 

Portaniére 26 143.6 -3365.36 890.62 0.71 -85.63 99.40 0.74 

Rimbaud 29 221.9 -2321.87 735.02 0.41 -73.25 181.66 0.52 

Vaudreches 26 136.6 -5648.03 1412.75 0.63 -140.77 79.17 0.68 

Bourdins 21 233.4 -2557.44 798.06 0.41 -69.58 194.86 0.47 

Davids 28 111.8 -2124.44 586.36 0.52 -59.78 83.17 0.64 

Boussic 11 233.8 -2304.99 743.57 0.67 -74.80 199.50 0.69 
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Figure .1: Modified Soil Conservation Service (SCS) model operating for each mesh of the basin (from 

www.athys-soft.org). 

 

Figure 2: Lag-and-Route model operating for each mesh of the basin. 

http://www.athys-soft.org/
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Figure 3: Maps of the Real Collobrier catchment: (a) Relief (from IGN ALTI database at 25m spatial 

resolution) and rain gauges location, (b) Land use (from Corine Land Cover database). 
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Figure 4: Correlation coefficients between the rainfall amounts measured for the 34 events at each 

rain gauge. Gauges 6 and 8 were the worst correlated gauges to the other ones. 
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Figure 5: Sensitivity of the model to the parameters S, ’, ds, K0, event n°5. (a): S parameter, (b): ω’ 

parameter, (c): ds parameter, (d): K0 parameter. The plotted hydrographs were obtained by 

modifying each parameter from a reference set of parameters (S =140 mm, ω’=60 mm, ds = 0.4 d-1, 

V0 = 2.5 m.s-1, K0= 3).  
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Figure 6 : NSE values depending on V0 and K0 (the other parameters were S = 140 mm, ω’ = 60 mm, 

ds = 0.4 d-1), event n°5. The wide area where NSE > 0.8 showed a high dependency between V0 and K0 

parameters. 
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Figure 7 : Calibration results (a): Calibrated values of S and K0 and corresponding NSE for the events, 

(b): Observed and simulated hydrographs at the 30-minutes time step for the first 11 events, the 

plotted rain corresponded to the rainfall measured in gauge 4 (Guérin) located near the center of 

the catchment. 
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Figure 8: Sensitivity of the model to the variability of each parameter. (a): calibrated S when using 

either median or calibrated K0, (b): calibrated K0 when using either median or calibrated S, (c): 

corresponding NSE values. The box plots feature median, upper and lower quartiles, (Q3 and Q1, 

respectively), minimum and maximum values without outliers, and outliers (outliers are defined as 

data points that fall out of the range [Q1-1.5*(Q3-Q1), Q3+1.5*(Q3-Q1)] (Tukey, 1977) 
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Figure 9: Relationship between S calibrated values and base flow (a), between S calibrated values 

and volumetric water content w2 (b). 

 

Figure 10: NSE value when using either S calibrated, S derived from w2 index or from base flow. The 

NSE values are sorted in descendant order for the 34 events. 
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Figure 11: Relationship between S and base flow (a) and between S and w2 (b) when using all gauges 

or only one gauge for the model calibration. The regression obtained when using all the gauges was 

presented in black, while the regression obtained by using each single gauge were shown in colors. 

 

Figure 12: Comparison between calibrated S values and 5-days previous rainfall amounts P5D, for 

the 34 events 

 

 


