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Abstract

Parallel manipulators (PMs) have been there for more than half a century and they have
been subject of intensive research. In comparison with their serial counterparts, PMs consist of
several kinematic chains that connect the fixed base to the moving platform. The interest in
such architectures is due to the several advantages they offer, among which we mention: high
rigidity and payload-to-weight ratio, elevated dynamical capabilities due to reduced moving
masses (especially when the actuators are at or near the base), better precision, higher proper
frequencies, etc. Nevertheless, despite of the aforementioned merits, their exploitation as
machine tools is still timid and limited, in which they most often do not exceed the research
and prototyping stages at university laboratories and machine tool manufacturers. The main
drawbacks that hinder the widespread of parallel kinematic machines (PKMs) are the following:
limited operational workspace and tilting capacity, presence of singular configurations, design
complexities, calibration difficulties, collision-related problems, sophistication of control
(especially in the case of actuation redundancy), etc. Besides, though PMs have met a great
success in pick-and-place applications, thanks to their rapidity (acceleration capacity), still their
precision is less than what has been initially anticipated. On the other hand, extremely precise
PMs exist, but unfortunately with poor dynamic performance. Starting from the
aforementioned problematics, the current thesis focuses on obtaining PKMs with a good
compromise between rapidity and precision. We begin by providing a survey of the available
literature regarding PKMs and the major advancements in this field, while emphasizing the
shortcomings on the level of design as well as performance. Moreover, an overview on the
state of the art regarding performance evaluation is presented, and the inadequacies of
classical measures, when dealing with redundancy and heterogeneity predicaments, are
highlighted. In fact, if finding the proper architectures is one of the prominent issues hindering
PKMs’ widespread, the performance evaluation and the criteria upon which these PKMs are
dimensionally synthesized are of an equal importance. Therefore, novel performance indices
are proposed to assess precision, kinetostatic, and dynamic capabilities of general
manipulators, while overcoming the aforementioned dilemmas. Subsequently, several novel
architectures with 3T-2R and 3T-1R degrees of freedom (T and R signify translational and
rotational degrees of freedom), namely MachLin5, ARROW V1, and ARROW V2 with its mutated
versions ARROW V2 M1/M2, are presented. Furthermore, the dimensional synthesis of the
executed PKM, namely ARROW V2 M2, is discussed with its preliminary performances and
possible future enhancements, particularly regarding precision amelioration.

Key words:

Parallel kinematic machines (PKMs), rapidity, precision, large operational workspace, large
tilting capacity, actuation redundancy, kinematic redundancy, performance indices, 3T-2R and
3T-1R PKMs, MachLin5 PKM, ARROW V1 PKM, ARROW V2 PKM, ARROW V2 M1/M2 PKMs



Résumé

Les machines paralleles (MPs) existent depuis plus d'un demi-siécle et ils ont fait |'objet
d’études intensives. Par opposition avec leurs homologues de structure série, ces mécanismes
sont constitués de plusieurs chaines cinématiques qui relient la base fixe a la plateforme
mobile. L'intérét de ces architectures s’explique par les nombreux avantages qu'elles offrent,
parmi lesquels: une rigidité élevée, un rapport important charge/poids global, des capacités
dynamiques élevées en raison des masses en mouvement réduites (en particulier lorsque les
actionneurs sont sur ou pres de la base), une meilleure précision, des fréquences propres plus
élevées, etc. Néanmoins, leur exploitation comme machines-outils reste timide et limitée, et le
plus souvent elles ne dépassent pas le stade d’étude et de prototype de laboratoires
universitaires ou de fabricants de machines-outils. Les principaux inconvénients qui entravent
la généralisation des MPs dans l'industrie sont les suivants: un espace de travail limité, des
débattements angulaires réduits, la présence de configurations singulieres, la complexité de
conception, les difficultés d'étalonnage, les problémes causés par les collisions, la complexité
du contréle/commande (en particulier dans le cas de redondance a actionnement), etc. De plus,
si les MPs ont rencontré un grand succés dans les applications de pick-and-place grace a leur
rapidité (capacité d’accélération), leur précision reste inférieure a ce qui a été prévu
initialement. Par ailleurs, on trouve également des MPs de tres précision, mais
malheureusement avec de faibles performances dynamiques. En partant du constat précédant,
cette thése se concentre sur l'obtention de MPs avec un bon compromis entre rapidité et
précision. Nous commencons par donner un apercu de la bibliographie disponible concernant
MPs et les avancées majeures dans ce domaine, tout en soulignant les limites de performance
des MPs, ainsi que les limites des outils de conception classique. En outre, nous insistons sur les
outils d’évaluation des performances, et montrons leurs limites des gqu’il s’agit de traiter le cas
de la redondance ou I'hétérogénéité des degrés de liberté (ddl). En effet, si la synthese
architecturale est un point dur de la conception de MPs, la synthese dimensionnelle reposant
sur des indices de performances réellement significatifs I'est également. Par conséquent, de
nouveaux indices de performance sont proposés pour évaluer la précision, les capacités
cinétostatiques et dynamiques des manipulateurs de maniere générale qui apportent des
solutions aux difficultés évoquées ci-dessus. Par la suite, plusieurs nouvelles architectures 3T-
2R et 3T-1R (T: signifie ddl en translation et R signifie un ddl de rotation) sont présentées, a
savoir MachLin5, ARROW V1, et ARROW V2 et ses versions dérivées ARROW V2 M1 et M2. En
outre, la synthese dimensionnelle d’ARROW V2 M2 est réalisée, et les performances de la
machine sont évaluées. Finalement, des améliorations futures concernant la précision sont
proposées au regard de premiers résultats obtenus sur le prototype.

Mots clés:

Machines paralléles (MPs), rapidité, précision, grand espace de travail opérationnel, grande
capacité d'inclinaison, redondance a actionnement, redondance cinématique, indices de
performance, 3T-2R et 3T-1R MPs, MachLin5 MP, ARROW V1 MP, ARROW V2 MP, ARROW V2
M1/M2 MPs
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General Introduction

In these few pages, we provide a general overview on the thesis context within the inclusive
ARROW project, clarifying the motivations and major contributions.

The ARROW project is a French project financed by the French National Research Agency
(ANR) under the number ANR 2011 BS3 006 01. Its main objectives can be summarized as the
design of Accurate and Rapid Robots with large Operational Workspace, from which the
acronym “ARROW” has been derived. The project embraces three partners:

1. IRCCyN (Institut de Recherche en Communication et Cybernétique de Nantes);

2. LIRMM (Laboratoire d'Informatique, de Robotique et de Microélectronique de
Montpellier);

3. And Tecnalia France.

The current PhD thesis falls within the Industrial Conventions for Research Training CIFRE
(Conventions Industrielles de Formation par la Recherche in French), and it has been financed
by Tecnalia France, and in a part by the ANR.

Context

The recent decades have witnessed an increased industrial interest in parallel manipulators
(PMs). Undeniably, this increase has been due to the great success of the Delta robot
introduced by (CLAVEL, 1991), and which opened a new era of lightweight robots (or so-called
Delta-like robots). Unfortunately, despite of that, the major implementation of PMs in industry
has been limited to pick-and-place applications, with rather few and shy exploitations in other
industrial operations, such as machining processes.

In fact, the rapidity and highly decreased cycle times achievable by PMs, allowed them to be
highly competitive compared with serial counterparts in the field of pick-and-place operations,
especially where the precision demand is not that high.

However, in applications demanding both rapidity and elevated precision, the available PMs
fall short of supplying these requirements. In fact, we have been able to design ultra-rapid
robots with mediocre or poor precision on one hand, and high-precision robots but with almost
quasi-static performance on the other hand. As exemplification on the former robots, we
mention: Adept Quattro (PIERROT, et al., 2008) (the fastest pick-and-place industrial robot with
up to 15 g acceleration?!), Par2 (BARADAT, et al., 2008) (with acceleration that reaches 43 g),

1 wunm,

g”: corresponds to gravitational acceleration (1g =10 m/s2 ).
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General Introduction

and the exceptional R4 (CORBEL, et al., 2010) with its incredible 100 g acceleration capability
(CHEMORI, et al., 2013). As for high-precision robots, we mention the hexapods of Pl company
that are designed for micro-positioning purposes (refer to
http://www.physikinstrumente.com/en/products/prdetail.php?sortnr=1000770).

Based on this argument, the ARROW project has been initiated in the year 2011, with the
aim of achieving rapid and precise parallel kinematic machines (PKMs). For this ultimate goal,
two different scenarios have been proposed:

1. The first scenario has considered the development of robots with large acceleration
capacity, small cycle time, and elevated precision only at the end-points of a given
trajectory. The intended application of such robots is the assembly of electronic
components and the alike. This scenario has been approached by IRCCyN.

2. The second scenario has been concerned with the development of robots with high
acceleration capability and elevated precision following any trajectory within a desired
workspace. Such robots can be implemented in industrial applications as laser or water-
jet cutting, welding, rapid prototyping, etc. This scenario has been dealt with by LIRMM
and Tecnalia.

This latter objective constitutes the main subject of the current PhD thesis that details the
major achievements and contributions in this aspect.

Motivations

As it has been mentioned above, we have targeted the establishment of a PKM with high
dynamic capability and precision. The numerical set goals have been achieving up to 20 g

regarding linear acceleration and less than 20 um absolute accuracy. As for the PKM'’s

operational degrees of freedom (dofs), they are supposed to be five dofs (3T-2R)?, as they are
sufficient for most industrial applications.

However, although acceleration and precision are the main targets, they are not the sole
ones. Actually, the PKM must be characterized by large singularity-free workspace and tilting
capacity. This is not to mention the design simplicity that is essential, not just for having simple
models, but also to facilitate the manufacturing of this PKM.

Based on all the above, several mechanisms have been synthesized and studied after the
establishment of suitable performance measures, which constitute one of the major
contributions of this research in addition to the PKM itself. These contributions will be detailed
in the upcoming section.

2“T” and “R” stand for translational and rotational dofs respectively.
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Contributions

In the scope of the work to accomplish the preset objectives, the following contributions
have been made:

1. Establishment of original performance measures: These can be used for the assessment
and dimensional synthesis of a general robot based on precision, kinetostatic, and/or
dynamic performances. They overcome two major issues as compared with the classical
available ones, namely redundancy (whether of actuation or kinematic type) and
heterogeneity relative to operational dofs or actuator types (i.e. having rotational and
prismatic actuators at the same time). The generality of the approach embraces: serial,
parallel, and hybrid robots. Furthermore, the approach is applicable on not only rigid
manipulators, but also cable-driven ones.

2. Synthesis of several novel parallel architectures: Among these, we mention the MachLin5,
ARROW V1, and ARROW V2 with its mutated versions, ARROW V2 M1/M2. MachLin5 is a
five-dof (3T-2R) manipulator; whereas the rest are four-dof (3T-1R) redundantly actuated
PKMs.

Finally, in what follows, we describe the general outline of the dissertation:

1. The first chapter will provide some generalities and basic definitions regarding PMs. Then,
an exposition of the state of art regarding PMs and implemented PKMs will be
presented, emphasizing the merits and demerits of some particular designs. After that,
the issue of performance evaluation and the corresponding available literature will be
discussed while highlighting the major encountered limitations, especially when dealing
with redundant or heterogeneous-dof robots.

2. The second chapter will be dedicated to the presentation of the newly established
approach for the performance assessment and optimization of general manipulators,
relative to precision, kinetostatics, and/or dynamics. Besides, two case studies will be
provided to demonstrate the methodology. The first analysis will be done on DUAL V
(WIK, et al., 2013), a redundantly actuated rigid robot with planar motion (three dofs,
2T-1R). As for the second study, it will be carried on a fully constrained cable-driven
parallel robot (CDPR), with planar motion (three dofs, 2T-1R) and four active cables.

3. The third chapter will be devoted for the presentation of several novel mechanisms. This
presentation will include geometric models, Jacobians, and singularity analysis. Also, the
manufacturing procedure and the necessarily modifications done on the chosen robot
for execution, will be discussed. Moreover, the dimensional synthesis of the
implemented PKM and another architecture will be provided.

4. The fourth chapter will emphasize some points regarding the control of the ARROW PKM
and the possible error compensations that can be made in the future.

5. Ultimately, the dissertation ends with general conclusions and perspectives regarding
possible future research directions.
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Notations

In this thesis, the equations are numbered in order of appearance and depending on the
chapter number. Moreover, the following notations are adopted:

e Scalar variables are italicized and numbers are written in a regular font, for example: i,
j, 1,2, etc

e Vectors and matrices are italicized in bold, for example: v, M, etc.

e 1 . denotesthe nxn identity matrix.

e (0 _ . denotesthe mxn zero matrix.

e M and M" correspond to the inverse and transpose of matrix M, respectively.
e M’ denotes the pseudo-inverse of matrix M .

° diag(/l,) designates the nxn diagonal matrix whose diagonal terms are A, with

i=1..n.
. eigs( Matrix) denotes the list of eigenvalues of the square matrix Matrix.

. sing( Matrix) denotes the list of singular values of the matrix Matrix .

e val and val correspond to lower and upper bounds of the term val .

e f and g represent the time derivative of the function, f, and the vector, q,

respectively. Similarly, f and G represent the second time derivatives of the
aforementioned terms.

* e,e, and e, are the unit vectors along the X, y, and z axes of the base frame.

1 0 0
e Rot (6,)=|0 cos(6,) —sin (6, ) |: is the rotation matrix in the case of a rotation of 6,
10 sin(6,) cos(6,)
about the X-axis.
i cos(6,) 0 sin(6,)
e Rot,(6,)= 0 1 0 |:is the rotation matrix in the case of a rotation of

—sin(6,) 0 cos(,)

y

X7

6, about the y -axis.

cos(6,) —sin(6,) 0
e Rot,(6,)=|sin(g,) cos(6,) 0]:is the rotation matrix in the case of a rotation of 6,

z

0 0 1

about the z -axis.

XiX



Notations

u; (1-¢c,)+c,  u.u,(1-¢,)-u,s, ucu,(1-c,)+u,s,
. Rot(u,@): Uy (I-c)+u,s,  us(1-c,)+c, u,u, (1-c,)-u,s, | : is the
U, (1-¢,)-u,s, u,u, (I-c,)+u, s,  u;(l-c,)+c,

T
rotation matrix in the case of & rotation about an axis of direction u= (uX u, uz) .

0 -a, a

~ . X T

e a=| a, 0 -a |: is the pre-cross product matrix of vector a:(ax a, az) ,
-a, a, 0

meaning axb=a b where b=(b, b bZ)T.

Also, graph diagrams are used to depict mechanism topologies. For this purpose, the
following notations are adopted:

e R, U,S, C, H, and P stand for revolute, universal, spherical, cylindrical, helical, and
prismatic joints, respectively.

° and represent passive and actuated joints, respectively.

e X means that the joint X is equipped with a position sensor.

Finally, several acronyms are frequently used in the report. These are supplied here to serve
as a quick reference for the reader:

e AR, KR, and TR: stand for actuation, kinematic, and task redundancies, respectively.

e NRM, RAM, KRM, and MRM: stand for non-redundant, redundantly actuated,
kinematically redundant, and mixed-redundancy manipulators or machines, respectively.

e |BAR and BAR: stand for in-branch and branch actuation redundancies, respectively.

e IGM and DGM: stand for inverse and direct geometric models.

e |KM and DKM: stand for inverse and direct kinematic models.

e DM (SDM): corresponds to dynamic model (respectively simplified dynamic model).

e |IDM and DDM: stand for inverse and direct dynamic models.

e DWS: means desired workspace.

e TPAF and OPAF: correspond to translational and orientation amplification factors,
respectively.

o WTPAFpws: is the worst value of TPAF over DWS, i.e. the maximum value.

e |LA and PLA: are respectively the isotropic and peak linear accelerations starting from
rest, and in the absence of any external non-gravitational wrench.

o WILApws: is the worst value of ILA over DWS, i.e. the minimum value.

XX



Chapter 1: State of the Art

In this chapter:

Available literature is rich with parallel manipulators (PMs), and some have found their
way into industrial applications. However, the number of parallel kinematic machines
(PKMs) that has been implemented so far is still very low. This poor exploitation is due to
several reasons. In this chapter, an overview on the state of art of PMs and available
industrial PKMs will be exposed, highlighting the problematics that hinder their widespread.
In addition, the available literature on performance evaluation of manipulators will be
discussed, emphasizing the major limitations encountered in the case of robots with
heterogeneous degrees of freedom (dofs) and/or with redundancy (whether of actuation or
kinematic type). This latter problematic is crucial as the synthesis of both, the architecture
and its geometrical dimensions, are supposed to be based on solid criteria well interpretable
and that fit machine tool basic requirements. Starting from the aforementioned points, the
thesis problematics will be clarified by the end of the chapter and the approach to overcome
them will be outlined.
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1.1- Generalities and Definitions

1.1.1- A Brief History on the First Parallel Robots and Parallel
Kinematic Machine Tools

In most articles, it has been reported that the first PMs were the tyre-testing machine of
(GOUGH & WHITEHALL, 1962) (see Fig. 1-1) and the flight simulator of (STEWART, 1965).
However, according to (BONEV, 2003), the first PM perhaps dates back to 1931 (GWINNETT,
1931) and it has been proposed as an amusement device; but it is not known whether the
aforementioned architecture has been built or not. Nevertheless, it is undeniable that Gough-
Stewart platforms have played an essential role in popularizing PMs and inspiring new ones.

Actually, parallel robots at their earlier beginnings, were of full mobility! and mainly based
on the Gough-Stewart architectures. As for the trend towards lower mobility? parallel
mechanisms, it can be traced back, according to (ANGELES, 2004), to the work of (HUNT, 1983)
and after which planar, spherical, and later spatial mechanisms have been synthesized.

Moreover, another remarkable milestone in the world of parallel mechanisms is perhaps the
Delta robot introduced by (CLAVEL, 1991) (see Fig. 1-2). This robot not only has been vastly
industrialized, but also it inspired many new ones with similar features.

According to (KRUT, 2003), one can speak of two generations of parallel mechanisms: the
first being described by Gough-Stewart platforms and based upon architectures, while the
second being embodied by Delta-like or lightweight structures. In fact, thanks to the features

Fig. 1-1: Original Gough platform and shortly before its transfer into the British National
Museum of Science and Industry in 2000 (Dunlop Tyres).

1 With six dofs

2 With the number of dofs less than six
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present in the latter manipulators, such as fixed actuators at the base and lightweight
components and parallelograms, exceptional performances with up to 10 m/s in speed and

15 gin acceleration can be reached, even more!

This was a very short briefing regarding parallel robots. Concerning machine tools, the first
one based on parallel kinematics, as contrasted to the conventional or serial counterparts, was
the Variax3 of Giddings & Lewis (see Fig. 1-3). It has been presented publically in 1994 within
the International Machine Tool Show held at Chicago. It was based on the Gough-Stewart idea
and intended for milling applications.

Afterwards, many industries started researching and developing parallel kinematic machine
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Fig. 1-3: Variax parallel kinematics machine tool (Giddings & Lewis).

3 A video regarding this machine is available at: https://www.youtube.com/watch?v=7TowJZQi-qY .

3




Chapter 1: State of the Art

tools (PKMs) in parallel with university laboratories. Among these PKMs, we mention: HOH600
(Ingersoll), 6X Hexapod (Mikromat), G500 and G1000 (Geodetics), Cosmo Center PM-600
(Okuma), Tornado 2000 (Hexel), HEXACT (developed by INA and IFW), Hexapode 300 (CMW),
Triaglide (Mikron), Quickstep (Krause & Mauser), UraneSX (Renault Automation/Comau), Georg
V of IFW (University of Hanover), Eclipse (Seoul National University), etc. In (COMPANY, 2000)
and (WECK & STAIMER, 2002), a more elaborate information is presented regarding the history
and state of the art of machine tools in general, and PKMs in particular. Later in this chapter,
we will expose only a sample of these machines that exhibit some interesting features.

However, despite the increased interest in PKMs, their spread in industrial and machining
applications is rather shy, and still conventional or serial kinematic machines (SKMs) are the
highly dominant, with PKMs not exceeding research stages. In fact, comparing the number of
theoretically synthesized architectures to that of the implemented ones, clearly shows the huge
gap between theory and industrial needs. While the higher motion coupling and insufficiency of
the processors’ capabilities were a major hinder for PKMs spread before 1994, the present
status, where large advancement in electronics yielded highly performant controllers, shows
that other constraints have come into the light presenting new challenges and obstacles to
overcome. This will become clear by the end of the chapter.

Nevertheless, before going any further in the world of parallel mechanisms, it is
indispensable to provide some definitions to clarify their notion and particularities as compared
to serial ones, emphasizing the merits and drawbacks of each. These are discussed in the
following sections.

1.1.2- Serial Robots

The most industrial robots built until now are serial manipulators (SMs). An SM is an open
chain formed by a series of links interconnected one to another by an actuated joint. An
example of such manipulators is shown in Fig. 1-4.

While SMs are characterized by large workspaces and being rather simple to deal with
regarding control, they suffer from the following drawbacks:

e High moving masses which limit their dynamic capability;

e Poor rigidity as a result of the series configuration and which leads to cumulative errors
regarding the end-effector pose;

o Wear of the power and sensor connections (cables, flexible tubes) and which might lead
to hazardous consequences;
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Fig. 1-4: Robot IRB 7600-150 (ABB Robotics): photo and graph diagram.
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Fig. 1-5: Hexamove system (OHE Hagenbuch AG): photo and graph diagram.

1.1.3- Parallel Robots

A parallel manipulator (PM) is defined, according to (MERLET, 2006), as a closed-loop
kinematic chain mechanism whose end-effector is linked to the base by several independent
kinematic chains. Examples on such manipulators are those in Fig. 1-1, Fig. 1-2, Fig. 1-3, and Fig.
1-5.

Such mechanisms have their interesting features that made them suitable candidates to
overcome the limitations of SMs. Unfortunately, they are not without their own demerits. In
the upcoming subsections, we expose these virtues and hindrances.

A- Advantages

In general, PMs are characterized by the following advantages:
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High payload-to-weight ratio;

High stiffness due to the parallel structure;

High dynamic capabilities due to small moving masses, especially when the actuators are

placed at or near the base;

Improved accuracy due to the parallel structure and in which unlike SMs, the end-

effector pose errors are non-cumulative;

Higher proper frequency due to elevated rigidity and therefore, lessened repeatability

errors due to the uncontrolled structural oscillations;

Moreover, the possibility of placing the actuators at the base allows for the following

additional benefits:

» Higher flexibility regarding the choice of motors and/or gearboxes, as their masses
do not highly influence the eventual inertia of the robot (particularly the moving
inertia);

» Reduction of the problems arising from cable connections between the motors,
sensors, and controller.

> Enhanced cooling of the actuators resulting in reduced errors due to thermal
expansions;

> Easier isolation of the motors from the possible detrimental environmental
conditions that might be present in the workspace (e.g. applications that might
require heavy water rinsing).

It is worth emphasizing that the above-mentioned features might not necessarily be present
in all PMs. In fact, the premiere designs experienced problems of precision and rigidity (KRUT,

2003).

B- Inconveniences

Despite the interesting features described above, PMs suffer usually from the following
inconveniences:

Reduced workspace and tilting capacity: This results from the parallel structure itself, as
the end-effector workspace is the intersection of the regions permissible by the
individual kinematic chains. Another cause of this reduction is the possibility of inter-
collisions. Additionally, we mention the usually rather complex shapes of the feasible
workspaces, especially when internal singularities (i.e. inside the geometrically
accessible workspace) exist.

Singularities: Unlike SMs, PMs present, in addition to serial-type singularities, other
singularity types with more subtleties regarding their identification and classification.
These singularities are critical and can lead to uncontrollable motion of the platform
(end-effector) or the deterioration of the mechanical system. The avoidance of such
singularities constitutes an essential challenge in the design of a PM. This will be
discussed in the subsequent part.

The difficulty of having closed-form solution for the direct geometric model (DGM): This
is nowadays less severe as numerical solutions can be implemented without influencing
computation time. This is due to the advanced performance of modern controllers.
Calibration difficulties whether relative to geometry, elasticity, and/or dynamics: This is
due to the high coupling between the different chains and the large number of
parameters involved as compared with SMs.
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e High motion coupling and control complexity: Currently, with the advancement in
electronics and development of highly performant processing units, these have become
less critical.

C- Singularities of PMs

Singularities of PMs and their study constitute one of the prominent fields of research in
robotics. In fact, the first attempt to set a general framework regarding singularity analysis of
PMs can be traced back to (GOSSELIN & ANGELES, 1990). It has been based on the

differentiation of the constraint equations, F(q,x) =0, relating the joint positions, ¢, to the
end-effector pose, x. This leads to the following relation between the joint velocities, ¢, and
the operational twist?®, ¢, (the reduced n-dimensional twist for an n-dof robot):

J, g=J 1 (1.2).

x “red

According to (GOSSELIN & ANGELES, 1990), three types of singularities exist depending on
the rank deficiency of Jq and/or J . These are described as follows:

a) Type-1 singularity (aka® inverse kinematic or serial singularity): It occurs when J, is rank

deficient. In such a case, the actuators can move while the platform is fixed.
b) Type-2 singularity (aka direct kinematic or parallel singularity): It corresponds to the case
where J_is rank deficient; meaning that the platform can move even when the

actuators are fixed (at least one of the dofs is uncontrollable). We mention that type-2
singularity can be also termed as force singularity according to (MULLER, 2013), since
certain operational wrenches cannot be supported by the manipulator in such a
situation.

c) Type-3 singularity: It is the case where both matrices, J, and J, are simultaneously

singular. The two phenomena described in types 1 and 2 can be noticed.

However, the above study does not embrace all possible singularities. An example on that is
the well-known 3-UPU translational PM of Seoul National University (SNU). The mechanism was
suggested by (TSAI, 1996) as a three-dof translational robot with actuated P joints. But the
developed PM revealed peculiar motion for the case of equal limbs and fixed actuators. This
was despite the absence of parallel singularities. The phenomenon was investigated by several
researchers ((BONEV & ZLATANOV, 2001), (GREGORIO & PARENTI-CASTELLI, 2002), (JOSHI &
TSAI, 2002), (WOLF, et al.,, 2002)) and became a popular example to demonstrate the
insufficiency of considering only input-output kinematic relation in singularity analysis. Its
singularity is what (BONEV & ZLATANOQV, 2001) referred to as a constraint singularity.

T
*In the general case, we have ¢, :(vT wT) for a six-dof robot, with v and @ being the linear and angular
T
velocities, respectively. The twist ¢,,, of a translational three-dof robotis ¢, =v = (vX v, Vz) .

>“aka”: also known as
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A more generalized study was proposed by ((ZLATANOV, et al., 1995), (ZLATANOV, et al.,
1998)). Unlike (GOSSELIN & ANGELES, 1990), the study of (ZLATANOV, et al., 1995) includes the
passive joint velocities in the play. Accordingly, six types of singularities have been defined
based on the solvability of the instantaneous forward and inverse kinematic problems: (IFKP)
and (lIKP), respectively. Actually, the IFKP starts from given actuated joint velocities to establish
both, the end-effector twist and the passive joint velocities. The failure of deriving a definite
solution for any of the latter two quantities corresponds to a singularity. Similarly, starting from
the end-effector twist, the IIKP seeks the establishment of definite actuated and passive joint
velocities. Having any of the latter quantities indefinite implies a singularity as well. Therefore,
a non-singular configuration of the mechanism is a one that does not present either type of
singularities. Based on the above, the six singularity types are: redundant input (RI), redundant
output (RO), redundant passive motion (RPM), impossible input (Il), impossible output (10), and
increased instantaneous mobility (IIM). Moreover, n -order singularity types have been
investigated by (WOHLHART, 1999) and (LIU, et al., 2003); however, they are rather difficult to
put into practical use. In addition, another taxonomy of singularities has been suggested
recently by (CONCONI & CARRICATO, 2009). For more information on singularities and their
theory, the reader may refer to (MERLET, 2006) and (DONELAN, 2007).

In this section, we present the recommended singularity study following the general
approach of (ZLATANOV, et al., 1998), but considering the full end-effector twist?,

T
t= (vT wT) (instead of the full-cycle’ or n-dimensional one in the general case of an n-dof

robot). Denote by y and ¢ the passive and actuated joint velocities, respectively. Also,

consider the decomposition of ¢ into: ¢, and ¢, . The term 7,,, denotes the n-dimensional
twist for a mechanism whose full-cycle mobility is n (HUNT, 1978). As for ¢, , it is the
complementary twist® of ¢,,, or in other words, the constrained part of 7.
Then, the differential equation relating ¢, ¢, and ¥ is of the form:
L g+L,y+L t=0 (1.2).
Relation (1.2) can also be written simply as below:
L(§" 4" ) =0 (1.3).

6 t:(vT wT) , Where v and w are respectively the linear and angular velocities in the three-dimensional
space.

7 Full-cycle mobility is the minimum instantaneous mobility of the platform for all the possible configurations
(HUNT, 1978).

T
8 For instance, the complementary twist of a three-dof translational robotis . = :(wX o, wz) , i.e. the

comp
angular velocity. If at the considered configuration there is no instantaneous increase of mobility, we should have
t.=wm=0 forthe aforementioned robot.

comp
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Therefore, we categorize three singularity types, which are:

a)

b)

Redundant input singularity (RI): In this case, there exists ¢ # 0 for which £ =0. This is
identical to type-1 singularity of (GOSSELIN & ANGELES, 1990) and indicates that the IIKP
is not solvable.

Redundant output singularity (RO): In this case, for ¢ =0, a non-zero twist, t =0, is
possible. In fact, RO embraces the type-2 singularity of (GOSSELIN & ANGELES, 1990),
but the converse is not necessarily true. In particular, RO corresponds to type-2 only if

t,, #0.However, if ¢t #0andt,, =0,itisan RO singularity that cannot be detected

comp
utilizing the classical input-output kinematic relation. Such a case is referred to as
constraint singularity ((BONEV & ZLATANOV, 2001) and (ZLATANOV, et al., 2001)).
Moreover, it is possible to distinguish a particular type of constraint singularities, namely
the architectural ones. These occur when the motion of the travelling platform is finite
and in this case, the robot is coined as self-motion robot (e.g. (KARGER, 2003)).
Redundant passive motion singularity (RPM): Despite having the actuators and the
platform fixed (i.e. § =0 and ¢#=0), the passive joint velocities are not necessarily zero
(¥ #0). Such singularity has been referred to as an actuator singularity in the work of
(HAN, et al., 2002). An easy example would be having an arm between two passive
spherical (S) joints. Then, although the extremities are fixed, the arm can rotate freely
about the axis joining the centers of these two S-joints. Theoretically speaking, such a
singularity would not produce a motion of the end-effector, but practically it must be
rather circumvented due to the unavoidable imperfections in the joints (MERLET, 2006).

With the above, a non-exhaustive but sufficient overview on the PMs’ singularities has been
given. Also, the general approach based on (ZLATANOV, et al., 1998) has been clarified. The
essence to be kept in mind is what follows. To assure the absence of singularities of any type at

a certain configuration, it is sufficient to show the following three points:

a)

b)

c)

t. =0: meaning that the undesired motion of the platform is always constrained and

comp
therefore, the end-effector twist is always the n-dimensional one associated with the
full-cycle mobility, n;

For each ¢, , there exist unique definite ¢ and v ;

And finally for each ¢, there exist unique definite ¢,,, and y, with ¢, =0 necessarily.

comp

It is worth mentioning that different tools can be used to verify the aforementioned ideas,

whether linear algebra that we are going to use later in the analysis of our mechanisms, or
Grassmann geometry (e.g. (MERLET, 2006), (BEN-HORIN & SHOHAM, 2009 ), (MBAREK, et al.,
2007)).
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Fig. 1-6: Singularities: series singularity (or Rl singularity) (left), parallel singularity (or RO
singularity) (middle), and internal singularity (or RPM singularity) (right).

Furthermore, it is important to emphasize that in most of the studies of singularities done at
LIRMM, the nomenclature as adopted by (KRUT, 2003) is usually used. This nomenclature
categorizes singularities into: series singularities or under-mobilities, parallel singularities or
over-mobilities, and the rest being called internal singularities. Note that the “internal”
adjective used in this context refers to the internal structure of the mechanism and its internal
mobilities, and not in the sense of having the singularity inside the accessible workspace.

The different three types of singularities are illustrated in Fig. 1-6. In the left drawing, the
second slider can perform an infinitesimal motion while the TCP? is fixed, which indicates series
singularity. In the middle diagram, the TCP can do an infinitesimal motion along the X-axis
while the actuators are fixed indicating a parallel-type singularity. In the right hand side of the
same figure, we can fix both, the actuator and the TCP, but still the point B can do an
infinitesimal motion along X (indicating an infinitesimal rotation of the passive revolute at B);
this is an internal/RPM singularity.

1.2- State of the Art of PMs: Between Theoretical
Synthesis and Industrial Implementation

1.2.1- Type Synthesis of Parallel Mechanisms

Before exploring the available PMs, it is important to talk first on their type synthesis. In fact,
the existing approaches can be classified into three main classes ((MERLET, 2006), (SICILLIANO
& KHATIB, 2008)):

a) Approaches based on graph theory (e.g. (EARL & ROONEY, 1983)): For a given number of
dofs, these methods assume a set of finite number of possible kinematic pairs, and then
enumerate all the possible architectures that can be obtained by the different
combinations of these pairs. Such methods utilize classical mobility formulae, e.g.

° Tool Center Point
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Chebychev—Griibler—Kutzbach formula, to establish a relation between the structural
parameters (number of joints, joint constraints, number of links) and the end-effector
dofs. Nonetheless, as these formulae do not account for the geometrical constraints,
they might not correctly predict the actual number of dofs (refer to (GOGU, 2005a)).
Therefore, synthesis based strictly on graph theory can yield limited results and has been
largely outdated.
Approaches based on group theory (e.g. (HERVE, 1995), (SPARACINO & HERVE, 1993),
(ANGELES, 2004), (LI, et al., 2004)): These methods make use of the fact that rigid body
displacements can be described by the structure of a group, referred to as displacement
group. Within it, we have different subgroups, such as the spatial translations and the
Schonflies (3T-1R) motion. However, not all body displacements form a subgroup, such
as the 3T-2R motion. Therefore, 3T-2R mechanisms, for instance, cannot be synthesized
using this method. The methodology of synthesis, based on this approach, is done in the
following manner:

i. First, the subgroup S that describes the desired end-effector motion is

determined.

ii. Then, all the possible subgroups whose intersection is S are established.

iii. Eventually, all the motion generators of these subgroups are considered. These
will constitute the kinematic chains of the PM.

Approaches based on screw theory (e.g.: (FRISOLI, et al., 2000), (KONG & GOSSELIN,
2001), (KONG & GOSSELIN, 2004a), (FANG & TSAl, 2002), (HUANG & LI, 2002),
(CARRICATO, 2005)): In these approaches, the wrench system S that is reciprocal to the
desired end-effector twist T is determined in a first step. Then, the wrenches of the
kinematic chains of the PM whose union spans S are enumerated. These latter
wrenches will be used to determine all the possible structures of the kinematic chains
constituting the PM. Nevertheless, as these wrenches and twists are instantaneous, it is
mandatory to verify that the platform mobility is the full-cycle mobility and not only the
instantaneous one (for more details, refer to (KONG & GOSSELIN, 2007)).

We may add here a fourth approach, which is that based on the theory of linear

transformations adopted primarily in the synthesis of the mechanisms described by ((GOGU,
2004a), (GOGU, 2007), (GOGU, 2009)) and several books for the same author. In these works,
the new mobility and spatiality formulae, which have been established in (GOGU, 2005b), are
used to overcome the limitations of the classical mobility formulations.

Based on the above methods, thousands of mechanisms are and can be synthesized, and it is

rather impossible to keep track of even the fewer interesting ones emphasized in literature. In
this aspect, it is sufficient, for instance, to look on the gathered lists of articles and patents on
the webpages'® of Dr. BONEV and Dr. MERLET to know the massiveness of these contributions,

10 See the following webpages: http://www.parallemic.org/ and http://www-sop.inria.fr/members/Jean-
Pierre.Merlet/merlet eng.html.

11
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reflecting both the interest and hopes held on such parallel structured architectures; also, they
sadly highlight the gap between theory and industry.

Among the synthesized mechanisms, it is worth stopping at some intriguing architectures
based on more recent trend towards maximally regular®!, fully isotropic'?, uncoupled?'?, or
decoupled™® motions. Such mechanisms, especially the first three types, are interesting in the
sense of their simplicity regarding control and energy saving (GOGU, 2007). This is due to that
in the case of a unidirectional motion along one axis, only one motor is working while the
others are locked. Nevertheless, such mechanisms are not fully virtuous and have their
drawbacks, which we are going to emphasize at the end of the section. First, let us present
some samples of such architectures, mainly with 3T, 3T-1R, and 3T-2R motions.

N“._-\_- ",

Fig. 1-7: Two fully isotopic translational PMs: the left is one of the T3 family (it is more
precisely maximally regular), whereas on the right is a type Il of T4 family (CARRICATO &
PARENTI-CASTELLI, 2002).

Fig. 1-8: The isotropic 3-CRR translational PM (KONG & GOSSELIN, 2002).

11 Meaning with identity Jacobian matrix throughout the workspace.
12 Meaning with diagonal Jacobian matrix such that the diagonal entries are the same throughout the workspace.

13 Meaning with diagonal Jacobian matrix such that the diagonal entries are not necessarily equal throughout the
workspace.

14 n this case, the Jacobian is a triangular matrix throughout the workspace.

12
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Fig. 1-9: Schematics of the Pantopteron (fully isotropic translational PM) (BRIOT &
BONEV, 2009).

Fig. 1-10: Pantopteron with four-dof (3T-1R) uncoupled PM (BRIOT & BONEV, 2009).

Regarding translational mechanisms, (CARRICATO & PARENTI-CASTELLI, 2002) presented a
topological synthesis for fully isotropic symmetric PMs with 3T motion. Their approach has
been based on constraint and direct singularity investigation, in the purpose of their
elimination. Two examples of such PMs are depicted in Fig. 1-7. Among other works, we
mention, for instance, the fully isotropic version of the 3-CRR of (KONG & GOSSELIN, 2002) (Fig.
1-8), the fully isotropic 3-PRRR manipulator of (KIM & TSAI, 2002), the fully decoupled (more
precisely fully isotropic) Pantopteron of (BRIOT & BONEV, 2009), and the synthesized fully
isotropic translational PMs of (GOGU, 2004c). In Fig. 1-9, an illustration of the Pantopteron is
given. This manipulator has been synthesized for pick-and-place applications and is
characterized by the use of pantograph linkages to amplify the actuators’ displacements. Also, a
four-dof (3T-1R) version with uncoupled motions has been presented in (BRIOT & BONEV,
2009) as well and is depicted in Fig. 1-10.

13
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Fig. 1-11: Models of two fully isotropic mechanisms for Schoenflies motion (CARRICATO,
2005).

HEHEHs=Ho5H,
626,55,56:56 .
HG=r é e

Fig. 1-12: Example of basic kinematics structure of PM with decoupled Schonflies motions:
Isoglide4-T3R1-A5 schematic and its constructed prototype at the French Institute of
Advanced Mechanics (GOGU, 2007).

As for fully isotropic parallel manipulators with Schonflies motion, they have been proposed
in ((GOGU, 2004b), (GOGU, 2005c), (CARRICATO, 2005), (GOGU, 2007)) for the first time. Also,
other uncoupled and decoupled PMs with 3T-1R motions have been suggested in (GOGU,
2007). In Fig. 1-11, two examples of the PMs suggested by (CARRICATO, 2005) are depicted,
while in Fig. 1-12, Fig. 1-13, and Fig. 1-14, examples on decoupled, uncoupled and fully
isotropic PMs among those synthesized in (GOGU, 2007) are given.
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Fig. 1-13: Uncoupled (PMs) with Schonflies motion: Isoglide4-T3R1-B5 (GOGU, 2007). Note
that this (PM) is similar to Isoglide4-T3R1-A5 in Fig. 1-12, except that 2¢ =1p.

ay

Fig. 1-14: Example of kinematic structure of fully isotropic PM with Schonflies motions:
Isoglide4-T3R1-C5-2 (GOGU, 2007).

This was regarding 3T and 3T-1R PMs. In what concerns five-dof (3T-2R) PMs, the
synthesized architectures are rather few in comparison with others (e.g. (FANG & TSAI, 2002),
(GAOQ, et al., 2002), (HUANG & LI, 2002)) and are mostly coupled. In fact, the synthesis of the
first maximally regular non-redundant or redundantly actuated PMs of 3T-2R motion can be
tracked back to the recent work of ((GOGU, 2006a), (GOGU, 2006b), (GOGU, 2006c), and
(GOGU, 2009)). In (GOGU, 2009), some decoupled and uncoupled five-dof (3T-2R) PMs, in
addition to the maximally regular ones, have been synthesized as well. In Fig. 1-15, several
examples of such PMs are presented.
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Fig. 1-15: From left to right and top to bottom: Isoglide5-T3R2-A1 (5-PPPRR-type)
(decoupled), Isoglide5-T3R2-B1 (uncoupled), Isoglide5-T3R2-C1 (maximally regular), and
Isoglide5-T3R2-C3 (maximally regular) (GOGU, 2009).

As we have given an overview on particular types of synthesized mechanisms, with
decoupled and uncoupled motions, it important to make some points in this aspect. In fact,
despite the interesting features that uncoupled mechanisms provide, they suffer from the
following limitations:

e Most of these mechanisms are characterized by large number of passive joints and links.
This is discouraged from industrial perspective. The reasons behind that are the added
complexity, increased masses, reduced stiffness, and reduced precision, especially when
there are joint clearances.

e Most of these designs have limited workspaces due in one part to chain complexities
and possible collisions, and in another part to the use of prismatic joints with non-
parallel axes and/or use of rotational actuators.

In brief, this section has provided a summary on the type synthesis of PMs and highlighted
some recent trends in this domain. In fact, while the innovative approaches of synthesis of the
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last decades have led to thousands of architectures, yet those that have been implemented and
adopted for industrial applications are extremely few and countable. This clearly highlights the
huge gap between theory and application.

In the next section, we will present some of the parallel robots and parallel kinematic
machine tools that have been so far implemented. In addition, we will talk about some
contributions that have been made in this scope.

1.2.2- Some Parallel Robots and Parallel Kinematic Machine
Tools

In this part, we are going to expose several industrial machine tools based on parallel
kinematics, as well as some other implemented prototypes or industrial parallel robots. The
exposition is done based on the number of dofs. The list presented is a non-exhaustive one.
Here, we focus on four-dof (3T-1R), five-dof (3T-2R), and six-dof (3T-3R) designs only.

In fact, most industrial applications do not require more than five dofs of 3T-2R nature. In
others, fewer might be even sufficient. However, these five dofs can be achieved via different
means:

e Six-dof (3T-3R) design: In this case, one of the rotational dofs, particularly that whose
axis is parallel to that of the spindle, is disregarded. The result is task redundancy, which
helps in enlarging the workspace. Such machines have been firstly designed, yet not all
made proper use of the aforementioned redundancy.

e Five-dof (3T-2R) structure: In this case, the design is intended for the real need of five
axis machining or other industrial applications.

Note that within each of the above two categories, hybrid structure, whether in the form of
series-parallel or right-hand left-hand paradigm (branched structure), can be used. Our
presentation starts with six dofs down to four dofs, which constitute the scope of the current
thesis.

A- Six DoFs (3T-3R)
In addition, to the Gough-Stewart (aka hexapod) based designs (e.g. Fig. 1-1, Fig. 1-3, Fig. 1-

5), some others with slight or major modifications have been implemented in recent decades.
Here, we are going to focus only on those that have some interesting features.

Hexa, HexaM, Hexaglide, Dynamil, and Lambda Kinematics

In fact, after the introduction of Delta robot and the great success it achieved, many
researchers investigated the possibility of extending this idea to the synthesis of other types of
PMs. In ((PIERROT, 1991), (PIERROT, et al., 1991a), (PIERROT, et al., 1991b)), the design of a six
dof (3T-3R) robot, assimilating the features of Delta regarding rapidity and lightness, has been
investigated and led to Hexa robot, which is depicted in Fig. 1-16. Later, the aforementioned
robot has been industrialized by Toyoda Machine Works Ltd. under the name of HexaM

17
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(PIERROT & SHIBUKAWA, 1999), and it was intended for milling applications. The graph diagram
and CAD drawing of HexaM are shown in Fig. 1-17. Compared with Hexa, the rotary actuators
have been replaced by prismatic ones to avoid the high bending on the actuated arms. Thanks
to having the actuators at the base and the light structure, HexaM is very similar in
performance to Delta robot. It is worth mentioning here that HexaM, as compared with
classical hexapods, has the placement of the prismatic and first universal joints interchanged in
each kinematic chain (we have 6-PUS instead of 6-UPS).

Another interesting six-dof PKM is Hexaglide (WIEGAND, et al., 1996), a concept developed
at the Institute of Machine Tools of the Swiss Federal Institute of Technology Zurich, for milling
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Fig. 1-17: HexaM Machine Tool (Toyoda): CAD drawing, graph diagram and photo.
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applications as well. The machine is similar to HexaM. The difference is in having all the linear
actuators along one direction and hence, allowing independent motion along this axis. The
schematic of the PKM is illustrated in Fig. 1-18.

Similar machines to the aforementioned ones exist. These have same graph diagram, but
different geometric configurations (e.g.: Paralix PKM of IFW at Stuttgart and Dynamil PKM of
ISW at Aachen, which is depicted in Fig. 1-19).

The Lambda Kinematics PKM, introduced in the Mach21% project, is a slight variant of the
aforementioned concepts. Instead of connecting the arms directly from the base into the
platform, the arms are considered in pairs. In each pair, one of the arms is connected into the
other that is then articulated to the platform. This limits the risk of internal collisions (see Fig. 1-
20).

Unfortunately, still such machines suffer from workspace limitations and/or reduced tilting
capacity, as it is the case with the classical hexapods.
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Fig. 1-19: Dynamil PKM (ISW): photo and graph diagram.

15 Mach21 (Multipurpose and cross-sectorial modernization of manufacturing processes through parallel
kinematics) is a European research program that involved 12 partners: Fatronik (currently Tecnalia), WZL, INA,
IWU, Karl Mayer, LIRMM, Anayak, Gamesa, ISW, Comau, Arjal, and Lernsttat. It began in January 2000 and ended
in January 2003.
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Fig. 1-20: Lambda Kinematics machine tool: CAD drawing and graph diagram.

r k
-

}«Hi_?r
B

Fig. 1-21: Fanuc M-3iA robot (http://www.fanucrobotics.fr/fr/countries/frfr/news/m3ia).

Fanuc M-3iA Robot

A different six-dof variant from the above and explicitly implementing the Delta structure
exists. It is the Fanuc industrial robot with up to six dofs (3T dofs and up to 3R dofs). Actually, it
is a Delta robot equipped with a wrist and it has been developed as high-speed and assembly
robot (see Fig. 1-21). The actuators of the wrist are placed on the parallelograms, next to the
actuated arms, as to have them as closer to the base as possible and hence, reducing their
impact regarding dynamics. It is characterized by a cycle time of 0.3s for 0.1kg load and a
pick-and-place path of 25 mmx200 mmx 25 mm. Note that this robot is a complex parallel

structure and not a hybrid one. This is because the actuation of the wrist dofs is not done in
place, but by means of transmission chains from the actuators on the parallelograms.

Hexapteron

Finally, we end the panorama on six-dof 3T-3R category by highlighting an interesting
recently introduced design, the Hexapteron of (SEWARD & BONEV, 2014). It is characterized by
a simple direct geometric model and can be used for machining or rapid prototyping
applications. The prototype for 3D printing application is under construction. First simulations
show a tilting capacity of 45° about any direction. The manipulator is depicted in Fig. 1-22.
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Fig. 1-22: Hexapteron: schematic drawing, the under-construction mechanical design, and
the close-up view of the mobile platform at an extreme orientation (SEWARD & BONEV,
2014).

Such a machine might suffer from inter-collisions and therefore, a considerable attention for
parts design must be paid. Furthermore, the different directions of actuators and the limits
imposed by singularities highly constrict the workspace.

B- Five DoFs (3T-2R)
Seyanka

Seyanka is a five-axis milling machine designed by Tekniker, as a prototype to demonstrate
the suitability of PKMs for high-speed milling applications (HERRERO, et al., 2000). The machine
was publically presented in the Machine Tool Show of Bilbao in 2000 (BIEMH 2000). In this
design, the usually unused rotation of the platform (i.e. that about the same axis of the spindle)
has been removed, thanks to the passive chain (see Fig. 1-23). Also, compared to other
machines with similar structure, the configuration of the actuators in the initial position is done
with 90° symmetry instead of 120°. This is more suitable for the intended application, since it
allows the working volume to be almost prismatic-shaped. According to (HERRERO, et al.,
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Fig. 1-23: Seyanka (Tekniker): photo and graph diagram.
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Fig. 1-24: P 800 (Metrom): photo and graph diagram.

2000), the machine is characterized by a speed of 60 m/min and an acceleration of 10 m/s2

(i.,e. 1g).
P 800

In Fig. 1-24, we depict the P 800 (Metrom) machine. It obeys the right-hand left-hand
paradigm, where a five-axis (3T-2R) parallel module is incorporated with a one-dof (1R)
turntable. This machine is characterized by elevated tilting capacity, but the workspace is highly
irregular, mainly due to arm inter-collisions. Actually, this was the reason behind equipping the
machine with a turntable. The mechanism is kinematically redundant and perhaps, the only one
so far that intentionally makes use of such redundancy to enhance the angular motion

capability.
Tricept and Exechon

Among the successful five-axis machines based on parallel kinematics is the Tricept (Neos
Robotics AB), which is depicted in Fig. 1-25. It is a typical hybrid machine with parallel structure
followed by a series wrist, which therefore, allows large rotational motion. The machine, like
the Seyanka, utilizes a passive kinematic chain (the U-P chain) to constrain the platform of the
parallel structure. Among the characteristics of the machine, we mention the following:

+50 pm accuracy, +10 um repeatability, 90 m/min maximum feed rate, and 2 g maximum
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acceleration?®. The applications of this PKM range from light machining (e.g. cutting aluminum,
plastic, wood, composites) to applications where the required path accuracy and/or high
process force cannot be handled by conventional robots (e.g. friction welding) (DONG, 2002).

Nevertheless, Tricept is not stiff enough for some high-precision manufacturing tasks, such
as aircraft assembly (NEUMANN, 2006). To overcome this limitation, another machine tool,
called Exechon (see Fig. 1-26), has been developed by Exechon AB. It is also formed of a parallel
module followed by a series wrist. Exechon has shown better performance as compared to

Tricept (JIN, et al., 2012).
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Fig. 1-26: Exechon (Exechon AB): photo and graph diagram.

Sprint Z3 and Hermes

Another hybrid PKM, the Sprint Z3 (DS Technology), is depicted in Fig. 1-27. The PKM has
been developed for aeronautical industrial applications. It consists of series—structured carrier
providing the Xxy-motion. On this carrier, a parallel module is fixed. The latter provides the
wrist motions (two rotations) and the translational motion along the z -axis (the direction of
the prismatic actuators). The design is quite simple, and it has met a real commercial success.
Concerning its capabilities, it can achieve 50 m/min speed, 1g acceleration along each axis,

6See: http://www.pkm-news.de/deu/tricepttmc845.html .
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+40° orientation (A/B)Y7, 80°/s maximum rotational speed (A/B), and 6850/s2 rotational
acceleration (A/B). It is worth mentioning here that the Z3 head belongs to the group of so-
called 3-[PP]-S* parallel mechanisms, defined as those whose three spherical joints move in
vertical planes intersecting at a common line (LIU & BONEV, 2008). Such architectures are
referred to as zero-torsion!® mechanisms, and they are characterized by simple kinematic
models (see (BONEV, 2002)).

Inspired by Sprint Z3, another similar PKM has emerged, which is Hermes (Fatronik, now
Tecnalia). The PKM and its graph diagrams are shown in Fig. 1-28. As it can be clearly noticed,
the only difference is using (U-S); instead of R-S chains.

Dumbo

It is another hybrid machine (one dof carrier + parallel module + series wrist) developed at
IFW of University of Hannover (Germany). It is presented in Fig. 1-29. Such a machine though
has the advantages of large workspace and tilting capacity, it falls in the trap of a serial
structure and the pyramidal effect regarding moving masses, thus influencing dynamics.
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Fig. 1-28: Hermes (Fatronik, now Tecnalia): photo and graph diagram.

174p” and “B” are the designation of rotations about x and y axes respectively (nomenclature adopted in machine
tools)

18 [PP] denotes any combination of joints that allows two-dof planar motion (adapted from (BONEV, 2008)).

19 Tilt-and-Torsion (T&T) is an orientation representation, like Euler angles, but that allows better interpretation
and simpler presentation. For details, refer to (BONEV, 2002, pp. 75-97).
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Fig. 1-30: Orthoglide five-axis version (IRCCyN): schematic, graph diagram, simplified CAD
drawing, and prototype photo.

Orthoglide Five-Axis Version
An interesting five-dof (3T-2R) prototype, namely the Orthoglide five-axis version ?°
(CHABLAT & WENGER, 2003), has been implemented at IRCCyN. The design combines the

20 See videos available at: http://www.irccyn.ec-nantes.fr/fr/plateformes/orthoglide .
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Fig. 1-31: VERNE machine (Fatronik, now Tecnalia): a photo and a schematic depicting the
top view of the parallel module along its direction (from (KANAAN, et al., 2009)).

Orthoglide three-axis version ((WENGER & CHABLAT, 2000), (CHABLAT & WENGER, 2003)) and
the two-dof (2R) Agile Eye (GOSSELIN, et al., 1996), with the former being a translational
parallel mechanism and the latter a parallel spherical wrist. The Orthoglide represents a
complex parallel architecture, and not a hybrid one (similar to the Fanuc robot in Fig. 1-21). This
becomes clear by inspecting its graph diagram. In fact, if the actuation of the wrist were done in
place, we would had a hybrid structure. Here, it is not the case. Instead, two transmission
chains are used to transfer the motion from the rotary motors at the base to the wrist (see Fig.
1-30).

VERNE

VERNE is a hybrid branched-structure machine developed by Fatronik (now Tecnalia). It
consists of three-dof parallel module and two-dof (2R) turntable (see Fig. 1-31). For the first
glance, the parallel module seems to be a Delta structure, but a closer look reveals that this is
partially true. In fact, unlike Delta where all the three arms are parallelograms, VERNE is
characterized by having one arm being a trapezium and the others being classical
parallelograms. Also, the trapezium individual rods are shorter than the other ones. This
asymmetric structure of VERNE results in a coupled rotation of the tool about one of the axes
with its translational motion (KANAAN, et al., 2009).

Hita-STT

The Hita-STT hybrid machine introduced by (CLAVEL, 2002) falls also within the category of
left-hand right-hand structures. It is composed of four-dof (3T-1R) PM (see Fig. 1-32) and a one-
dof (1R) turntable. An interesting feature of this PM is having parallel sliders and thus, allowing
independent motion along their direction. This PM is capable of £60° rotation and its stiffness
is ensured in any position. Despite of that, it is not able to handle large parts due to the vertical
axis of the rotary table (ANCUTA, 2008). Another disadvantage is the complicated mechanism in
the architecture that provides rotation. Possible applications can be light finishing operations,
such as polishing or deburring.
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Fig. 1-33: A five-dof (3T-2R) PKM: global schematic, fifth limb illustration, and machine
photo (GAO, et al., 2006).

Other Interesting Machines

Among other interesting five-dof (3T-2R) machines, we mention that of (GAO, et al., 2006)
(see Fig. 1-33). It is composed of five limbs: four of them are of PSU type and the remaining fifth
limb is a complex one denoted by PU*U. In all the limbs, the P-joint is actuated. The fifth limb
can be described precisely as P-(U-U)s-U, where (U-U)s corresponds to U* between the slider
and the U joint. This fifth chain is the constraining one, which allows having the five dofs (3T-
2R).

27



Chapter 1: State of the Art

We terminate the section with the Reconfigurable Gantry-Tau PKM (ABB Robotics) and the
ROBOTEX/Spider4 machine tool recently developed at LIRMM. The actuators in the former (Fig.
1-34) are: three fixed parallel electrically driven linear ball screws for positioning and two piston
type electrically driven ball screws for tool orientation. The main reason for the industrial
interest in this structure is that high machining performance can be obtained without needing
the very heavy, expensive and difficult to install serial gantry robots used today. Moreover, its
accessible workspace is larger than that based on serial kinematics (for more information, refer
to (HUNT, 2007)). In fact, having the three positioning linear actuators along one direction,
allows for independent motion along this direction, only limited by the available stroke. As for
ROBOTEX/Sipder4, it consists of three-dof (3T) redundantly actuated parallel structure and two-
dof (2R) series wrist. The former structure is inherited from R4 robot (CORBEL, et al., 2010) that
has been also developed at LIRMM and that achieved incredible acceleration of 100 g

(CHEMORI, et al., 2013). The actuation redundancy helps in eliminating singularities as well as

Base
actuator 2

Base
actuator 1

actuator 3

Fig. 1-34: The five-dof Gantry-Tau PKM (ABB Robotics): schematic and photo (from
(TYAPIN & HOVLAND, 2013)).

Fig. 1-35: ROBOTEX machine (LIRMM): CAD drawing and photo.
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homogenizing and elevating dynamic performance over the workspace. In numbers, it is
expected to achieve an acceleration of about 4-5g, but still real performance is to be
evaluated. The machine is depicted in Fig. 1-35. As it can be noticed, it is equipped with
measuring struts to better measure the pose of the robot and hence, promote its precision
characteristics. Finally, we mention that at LIRMM, two other designs that incorporate five dofs
(3T-2R) in one non-hybrid structure and exploit both, actuation redundancy and parallel linear
actuators at the base, have been suggested by (KRUT, et al., 2003) and (ANCUTA, 2008)(see Fig.
1-36 and Fig. 1-37). The former is interesting regarding its workspace, performance
homogeneity, and large tilting capacity, but the main limitation is in the use of gear or tendon
based mechanism that may influence accuracy. Regarding the second, the collision related
aspect and its impact on tilting capacity could be a drawback, though it has the advantage of
large spatial workspace and performance homogeneity. A more recent design by (SHAYYA, et
al., 2014a) has been also proposed. It utilizes an articulated platform and parallel linear
actuators, but this time with only five motors. This will be discussed later in Chapter 3.
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Fig. 1-36: Eureka (KRUT, et al., 2003): CAD design and graph diagram.
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Fig. 1-37: Five-dof (3T-2R) manipulator (ANCUTA, 2008): schematic and graph diagram.
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C- Four DoFs (3T-1R)

Perhaps, it is classical to start with the well-known and industrialized Delta robot with RUPU
chain of (CLAVEL, 1991) (see Fig. 1-2). As early mentioned, thanks to the fixed actuators,
lightweight components and use of parallelograms with simple technology, such robot is
characterized by an exceptional performance (10 m/s speed and 15 g for 1kg charge?!). As for
positional repeatability, it is about 0.1 mm 2. Moreover, the robot is characterized by large
workspace, especially if linear Delta is considered (i.e. using linear actuators instead of rotary
ones for the parallelograms). Nonetheless, this workspace remains restricted by the RUPU
chain and particularly the available stroke for its corresponding prismatic joint. Also, the
rotational stiffness can be impaired due to the use of universal joints; this is not to mention the
vibration issues. These latter shortcomings have motivated some researchers in the quest for
even better designs.

In the work of (ROLLAND, 1999), two robots, called Manta and Kanuk, have been introduced
for industrial handling purposes. These are depicted in Fig. 1-38 and Fig. 1-39, respectively. In
both designs, the two undesired rotational motions are constrained, thanks to the pair of
parallelograms that does not permit except one rotational motion (specifically that about the
common axis). Their interesting features are the parallel linear actuators that help enlarge the
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Fig. 1-38: Manta (ROLLAND, 1999): schematic and graph diagram.
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Fig. 1-39: Kanuk (ROLLAND, 1999): schematic and graph diagram.

21 see for example:
http://www05.abb.com/global/scot/scot241.nsf/veritydisplay/c1b594e2b0a6f035c¢1257403005371b2/Sfile/Fiche
%201RB%20360%20FR%20revl.pdf .
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workspace along their direction on one hand, and having the sliders in the same plane on the
other hand, which contributes to design simplicity. Moreover, the first robot, which has been
implemented, has its rotation provided by a rotary actuator placed on the linear one and
transmitted by a UU chain. Hence, its rotational capacity is unlimited and does not restrict the
workspace, as compared with what we had in the case of Delta. Yet, it suffers from the possible
impact on stiffness, in addition to the vibration issue. As for the Kanuk, the structure is fully
parallel and replaces the PRUU chain by two PSS chains. This robot may be better than Manta
for two reasons: the first is getting rid of the UU chain and the second is reducing the number
of slider guides yielding an even simpler design, with fewer parameters. The latter point is
particularly interesting, especially when dealing with calibration-related issues. Nevertheless,
the Kanuk, as compared with Manta, is characterized by a limited rotational capacity.

In the same scope and in the attempt to eliminate the use of RUPU chain in Delta robot,
several works have been done at LIRMM embodied in the doctoral theses of (COMPANY, 2000),
(KRUT, 2003), (NABAT, 2007), and (ANCUTA, 2008). In fact, among the interesting contributions
of (COMPANY, 2000), is the idea of articulated platforms and that led to the H4 family of
symmetric and asymmetric robots. Later then, H4 concept evolved within the work of (KRUT,
2003) to the 14 version and afterwards, the concept of Par4 emerged with the work of (NABAT,
2007). This latter version has been industrialized under the name of Adept Quattro and is the
world’s fastest-pick-and-place industrial robot. In (ANCUTA, 2008), an extension of those works
has been done, and architectures with Schonflies motion and rigid platform have been
proposed. In what follows, we emphasize some points regarding the aforementioned works.

Concerning the H4 robot, it consists of four parallelogram arms connected to three-part
articulated platform. The H4 prototype is depicted in Fig. 1-40. The rotary actuators can be
replaced with prismatic ones, and the platform can be substituted by another one including a
gear sub-mechanism to amplify the rotational capability (see Fig. 1-41). Furthermore, in the
latter case, a redundant sensor to measure the rotational angle can be added; this version is
depicted in Fig. 1-42. Nonetheless, H4 has the following limitations:

e The conditioning of the Jacobian matrix may vary considerably with tool orientation and
hence, implying a change in machine behavior (KRUT, et al., 2003).

e Depending on the practical design, internal collisions might occur.

e Also, as discussed in (PIERROT & COMPANY, 1999), the relative positions of the four
“spatial parallelograms” must be properly selected to avoid singularities (particularly
internal ones). Specifically, placing them at 90° from each other is not recommended,
though it would be interesting to have a symmetrical design with respect to the vertical
axis for practicality reasons.
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Fig. 1-40: H4 robot (COMPANY, 2000): photo and graph diagram.
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Fig. 1-41: H4 articulated platform: basic platform (left) and modified platform including
amplification gear assembly (right) (image from (KRUT, 2003)).
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Fig. 1-42: H4 modified version (KRUT, 2003): photo and graph diagram.

Starting from the aforementioned issues, the 14 family has been suggested by (KRUT, et al.,
2003). The basic idea behind 14, as compared with H4, is the replacement of pivot joints by
prismatic ones and gears by rack-and-pinion assembly. In Fig. 1-43, I4L (“L” meaning with linear
actuators) is shown with its graph diagram. However, for high-speed applications, the use of
prismatic joints in the mobile platform is less recommended due to short-life service. Based on
this, Par4 has been developed later by (NABAT, et al., 2005) utilizing only revolute joints in the
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Fig. 1-43: 14L prototype (KRUT, 2003): photo, platform close-up view, CAD drawing, and
graph diagram.

@

Fig. 1-44: Par4 (NABAT, 2007): CAD drawing, graph diagram and the two platforms with
gear and cable-pulley amplification mechanisms.

articulated platform. Also, two amplification systems for rotation have been proposed: the first
utilizes a gear assembly and the other exploits pulleys and cables. The generic CAD drawing and
graph diagrams are depicted in Fig. 1-44, and the industrialized version is shown in Fig. 1-45.
Another robot, also proposed by (NABAT, 2007), is the Héli4. The idea of this latter robot is to
achieve the four dofs (3T-1R) by a compact simple platform. This has been accomplished by
means of two-part platform joined by screw-nut system. The Héli4 prototype and its graph

33



Chapter 1: State of the Art

Organe teminal

Fig. 1-46: Héli4 (NABAT, 2007): CAD drawing, graph diagram, prototype photo, and close-
up view of the platform.
diagram are depicted in Fig. 1-46. The robot has been later industrialized by Penta Robotics
under the name of Veloce?? (see Fig. 1-47). The robot has rotational capacity of up to 180°. Its
cycle time is 0.32s, for a 0.2kg load and a pick-and-place path  described by

22 See : http://pentarobotics.com/products/. Notice also that the slight difference between Veloce and Héli4 is the
presence of prismatic guides in the former connecting the two parts of the platform.
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Fig. 1-47: Veloce (Penta Robotics): photo and platforms (on the left corresponds to the
case of three dofs (3T), and on the right corresponds to the case of four dofs (3T-1R)).
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Fig. 1-48: A-Quadriglide-V1 (ANCUTA, 2008): schematic, graph diagram and prototype
photo.
25 mmx 305 mmx 25 mm . Positional repeatability of Veloce is about 0.1 mm (according to the
technical specifications provided by Penta Robotics??). We end the overview on the LIRMM
robots by presenting the A-Quadriglide-V1 of (ANCUTA, 2008). In (ANCUTA, 2008), the demerits
of articulated platforms, such as reduced stiffness and accuracy, were the motive behind
seeking a rigid-platform-based manipulator while maintaining large workspace and design
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Fig. 1-49: The SMG of McGill University (ANGELES, et al., 2006): CAD drawing and clarifying
schematic.

simplicity. The result of this work was the A-Quadriglide-V1 consisting of parallel linear
actuators and crank-like platform (see Fig. 1-48). In this design, two parallelogram arms are
used to constrain undesired rotations with the other chains being of simple type. An interesting
point in this mechanism is the pairing of arms, which is done in A-shaped scheme, rendering it
more feasible from manufacturability point of view. In this case, the use of spherical joints
based on ball-socket and spring technology is eliminated together with their undesirable
effects. The angular motion limits are in the vicinity of £45°.

We end the panorama of four-dof (3T-1R) robots by the Schonflies Motion Generator (SMG)
(ANGELES, et al., 2006) developed at McGill University, and the robot introduced by (KIM, et al.,
2009). The SMG (see Fig. 1-49) consists of two RT[TIR chains with the TJ indicating a
parallelogram linkage playing the role of a kinematic pair, termed TJ-joint. In each chain, the
revolute and the first T] (one revolute of T]) are active. The robot has been designed with the
target of achieving a pick-and-place cycle within at most 500 ms for the path described by
25 mmx300 mmx 25 mm, with a concomitant 180° turn. However, such design may suffer
from poor rigidity and vibration. As for the robot of (KIM, et al., 2009) (see Fig. 1-50), it utilizes
similar but non-identical kinematic chains. Each is composed of a simple actuated arm in series
with a parallelogram one. The parallelogram is connected to the platform with a revolute joint
parallel to the axis of rotation of the platform, as depicted in Fig. 1-50. However, having
identical chains results in an architectural singularity, which occurs at the center of the
workspace. Thus, to get rid of such singularity, an asymmetric design must be considered
(similar to what we have in H4). Consequently, this would result in a highly inhomogeneous
performance.

Finally, we mention that a more recent four-dof (3T-1R) PKM with actuation redundancy has
been introduced and studied by ((SHAYYA, et al., 2013a), (SHAYYA, et al., 2013b), (SHAYYA, et
al., 2014c) and (SHAYYA, et al., 2014b)). This PKM and its different modifications will be
discussed later in Chapter 3.
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Fig. 1-50: Four-dof (3T-1R) parallel manipulator (KIM, et al., 2009): photo of exemplary
device, clarifying schematic, and graph diagram.
With this, we end the overview on PKMs. In the next part, the performance evaluation
regarding the precision of LIRMM rapid prototypes will be discussed.

1.3- Precision-Related Performances of Some Prototypes

In order to have insights on the precision-related performances of the most rapid parallel
manipulators, a precision evaluation of several prototypes and industrial robots has been done
at LIRMM. This assessment considered accuracy?® and repeatability?*, not only for static poses
but also in dynamics, i.e. as the robot follows a pre-specified trajectory. Moreover, multi-

Bt is the distance between the mean of the attained poses and the commanded one. The closer it is to zero, the
better.

241t is the radius of the smallest sphere centered at the mean pose and circumscribing all the attained ones.
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directional variation of accuracy?®, in the case of statics, has been investigated as well. The
norm adopted for all the aforementioned tests is [ISO 9283; 1998 (F)].

The study considered the following robots: Quattro, Par2, DUAL V, and Veloce (the
prototype). However, regarding dynamic performance (path following), not all robots were
possible to evaluate due to technical issues and constraints.

In this section, we are not interested in detailing the results but rather synthesizing the main
points, and emphasizing the major aspects and conclusions. For more details and clarifications,
refer to Appendix A.

Briefly, in the light of the aforementioned static and dynamic precision evaluation, we have
concluded that the positional accuracies and repeatabilities are in the order of millimeters and
tenths of millimeters. As for orientation errors, the accuracies and repeatabilities are mainly
degraded for the controlled rotation. Regarding the constrained orientations, their accuracies
and repeatabilities are usually very small and due to assembly errors. Furthermore, the static
repeatability results of Par2 and DUAL V, being between 10 um and 25um, are quite
interesting®®, though their accuracies do not differ much from the other robots. In particular,
the good overall performance of DUAL V has been of great impact and provided many insights.
It accentuated that actuation redundancy is not problematic, especially when well treated on
the control level. Based on the results of Quattro with rigid platform, such a conclusion is not
possible to make. In addition, the use of revolute joints, in comparison with the joint
technology used for parallelogram spherical joints in Quattro and Veloce, has been an essential
factor in promoting DUAL V precision?’, and particularly its repeatability. We add to this, the
use of direct actuation that eliminates backlash problems, which are usually inherent with the
use of gear trains. Furthermore, the results of Veloce and Quattro (in its articulated version)
emphasize the limitations of articulated platforms.

Based on the above, it becomes obvious that though the aforementioned robots are
characterized by high rapidity, their precision is not sufficient for high-speed and high-precision
applications. Thus, reaching a good compromise between rapidity and precision, the target of
the ARROW project, should be planned along three directions:

1. The first direction is synthesizing the ideal mechanical structure and design of the PKM,
while considering large workspace requirements and design simplicity.

2. The second direction is the proper choice of the optimization criteria for the dimensional
synthesis of the geometric parameters of the PKM. This is essential and presents some

% |t is the largest distance between the means of attained poses along different directions.

%6 Note that the repeatability of the measurement device is about 10 um. Note also that accuracy results,
especially for DUALV, are not very reliable due to several technical issues (refer to Appendix A).

27 precision, as referred to in several places in literature, is more related to repeatability than accuracy. Here, we
will use the words “precision” and “precise” to refer globally to all terms, such as accuracy, repeatability and
resolution (operational resolution), which we will discuss later in Chapter 2.
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barriers to overcome. We expose this issue, highlighting the state of the art in this
matter, in the upcoming section.

3. The final point is the proper control strategy, in which different advanced control laws
are to be investigated. This point is not within the scope of the current thesis.

1.4- Performance Criteria and Parallel Kinematic
Machine Tools

Thus far, we have exposed a non-exhaustive overview on parallel mechanisms and some of
their precision evaluation. The main conflict that can be concluded regarding their poor
exploitation in industry is the lack of architectures that have large singularity-free workspace,
large tilting capacity, high stiffness, and design simplicity. Besides, so far we cannot find a PM
that is both rapid and acceptably precise for handling high-speed and high-precision
applications, such as laser cutting, welding, etc. Nevertheless, if finding the proper
architectures is one of the prominent issues hindering PKMs’ wide-spread, the performance
evaluation and the criteria upon which these PKMs are dimensionally synthesized are of an
equal importance. As (WECK & STAIMER, 2002) mentioned, “A poor topology but optimally
designed may perform better than a mechanism with appropriate topology, but poor design.”
Moreover, if classically established performance measures have been more or less suitable for
the synthesis of non-redundant robots with homogeneous dofs and same nature of actuators,
still they are most often inadequate and debatable for robots characterized by redundancy or
heterogeneous dofs. Actually, performance evaluation, despite of its importance and the rich
research done in this scope, remains an open issue.

In this section, we discuss a non-extensive list of the available measures and their suitability
for design and dimensional synthesis.

In general, these measures deal with singularity, precision, kinetostatics, dynamics, stiffness,
natural frequencies, etc. In this thesis, we will be focusing on the first four domains, in which
our contribution mostly falls.

Among the precision and kinetostatic measures, we mention for exemplification: the
condition number x (SALISBURY & CRAIG, 1982), the manipulability index z (YOSHIKAWA,
1985b), the global conditioning index GCI (GOSSELIN & ANGELES, 1991), the motion/force
transmissibility indices ((XIE, et al., 2011), (CHEN & ANGELES, 2007), (WANG, et al., 2010)), the
minimum singular value (STOUGHTON & KOKKINIS, 1987), the use of semi-axes lengths of
largest inscribed ellipsoid and pseudo-condition numbers ((KRUT, et al., 2004b) (KRUT, et al.,
2002), (KRUT, et al., 2004a)), etc. It is worth mentioning that the aforementioned indices hold
also some singularity significance, particularly concerning singularities related to the Jacobian
matrix. Even some of them (e.g. condition number, manipulability, etc.) have been established
primarily with the target of measuring the quality of the pose and its farness from singularity,
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all while embracing some physical significance. Nevertheless, as other types of singularities?®
are not detectable by these measures, we prefer listing them under the aforementioned
category, at least in what concerns PMs.

In fact, most of these works ((SALISBURY & CRAIG, 1982), (YOSHIKAWA, 1985b), (GOSSELIN
& ANGELES, 1991), (STOUGHTON & KOKKINIS, 1987), (KRUT, et al., 2002), (KRUT, et al., 2004a),
(KRUT, et al., 2004b)) have been based on quantifying the isotropy of kinetostatic performance
(variation of force, velocity and accuracy?® capabilities with direction), but from two different
perspectives that only become distinguishable upon studying redundant robots. For example, in
((SALISBURY & CRAIG, 1982), (YOSHIKAWA, 1985b), (GOSSELIN & ANGELES, 1991),
(STOUGHTON & KOKKINIS, 1987)), the indices provide a measure of the variation of
transmission values with direction, while in ((KRUT, et al., 2002), (KRUT, et al., 2004a), (KRUT, et
al., 2004b)), the target has been quantifying the maximal output performance with direction,
i.e. an isotropy measure of output performance based on zonotope approximation by largest
inscribed ellipsoid (mathematically referred to as John’s Ellipsoid3® (BALL, 1992)). In non-
redundant robots, however, both concepts coexist naturally3!. So while singular values and
based upon indices serve well regarding singularity, precision, and kinetostatic performances in
non-redundant robots, their kinetostatic significance, as described in ((KRUT, et al., 2002),
(KRUT, et al.,, 2004a), (KRUT, et al., 2004b)), is lost in redundant ones. This is because the
minimum and maximum output performances are not necessarily along the directions of the
minimum and maximum transmission values. Not far from that, (MERLET, 2006) has revisited
the concept of condition number and manipulability in the case of PMs, in which some
important remarks regarding accuracy and the norms to be used have been pointed out. More
precisely, the assumption that joint errors are described by unit-radius sphere has been
criticized being non-realistic and therefore, its substitution by a unit-half-side cube has been
favored. In addition, a comparison and a discussion on the suitability of the condition number
and manipulability indices have been made. In (KLEIN & BLAHO, 1987), a survey of the various
local kinematic dexterity measures is provided and definitions for positional, orientation, and
spatial isotropies are given in (KLEIN & MIKLOS, 1991). In (PARK & KIM, 1998), the choice of the
Riemannian metric to establish the manipulabity of closed kinematic chains, including those
with redundancy, has been discussed. To end the scrutiny on the above-cited works, we
emphasize that motion/force transmissibility indices as compared with others, always serve as

28 Such as constraint singularities in parallel manipulators.

29 Note that accuracy and velocity are similarly treated as they are both related by the Jacobian matrix. In fact, they
are antagonist. Improving velocity leads to deteriorating accuracy, as it means error transmission value is
increased.

30t is important to mention that John’s Ellipsoid is unique for any convex compact region. This uniqueness is
important feature added to the methodology of using the largest inscribed ellipsoid semi-axis lengths and the
pseudo-condition numbers, as they are unique as well.

31 Because the largest inscribed ellipsoid in the operational zonotope (whether velocity or force) is the image of
the unit-radius sphere in the joint zonotope.
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a measure to qualify good or bad transmission, but not indicative regarding the extreme output
performances.

In a recent work (GUAY, et al.,, 2013), an index called “minimum degree of constraint
satisfaction,” has been introduced and applied on cable-driven parallel robots (CDPRs) to assess
the capability of producing a specified set of wrenches. It can be applied on rigid robots equally
well. It considers the minimum distance between the specified set to the zonotope boundary.
However, to deal with the case of heterogeneous-dof robots, an arbitrary homogenization has
been adopted and hence, falling as most other indices in the debate that accompanies such
procedure.

Actually, in addition to redundancy that has been particularly treated for example by the
works of (KRUT, et al., 2004b) (KRUT, et al., 2002), (KRUT, et al., 2004a) and (XIE, et al., 2011),
the heterogeneity problem (case of robots with heterogeneous dofs or actuators) has
constituted another dilemma that attracted numerous researchers as well. For instance, among
the homogenization techniques, we mention the use of some sort of weighting/normalizing
matrix or characteristic length, as in ((MA & ANGELES, 1991), (ANGELES, 1992), (STOCCO, et al.,
1998)). In other works, such as ((GOSSELIN, 1992), (KIM & RYU, 2003), (KIM & RYU, 2004),
(POND & CARRETERO, 2006)), the homogenization of the Jacobian has been achieved by
considering the velocities (or forces) of two or three points situated on the end-effector, after
relating them to the actuated joint velocities (or torques). Such methods are characterized by
arbitrariness and lack of direct interpretable kinetostatic significance. Particularly, such
homogenization would not affect highly the singularity assessment, though numerical value
varies with the arbitrary homogenization. This is since if we are using, for instance, singular
values to assess singularity, then theoretically and regardless of the homogenization
technique??, the singular configurations remain invariant and occur for zero or infinite singular
value. As for kinetostatics, the indication of the homogenized vector is not easy to interpret or
relate to the end-effector twist (or wrench). In more recent works ((MANSOURI & OUALI, 2009),
(MANSOURI & QUALI, 2011)), the issue has been addressed based on the apparent power
concept to achieve homogeneous formulation of the problem. The methodology introduces
some weighting factors K and K., the ratio of which is important. Then, a minimization of
some quantity is carried out to get a unique value of g=K, /K, ,upon which the final power

manipulabity depends. However, the relation of the established measures to the operational
twist and wrench is rather vague. This is not to mention the associated complexity.

In fact, the arbitrariness involved in dealing with heterogeneity conflict is inevitable
consequence of the absence of a natural metric for the geometry of SE(3) as stated by (PARK &
KIM, 1998), although in the work of (PARK, 1995) some insight on homogenization technique
has been provided. Actually, (PARK, 1995) has discussed left and right invariant distance
metrics, and proved the non-existence of a bi-invariant one. Furthermore, a discussion on the

32 As long as the homogenized matrix and the initial one are equivalent regarding their rank.

41



Chapter 1: State of the Art

invariance issue of manipulability indices can be found in (STAFFETTI, et al., 2002). Therefore,
an intuitive approach to get rid of such predicament would be to study translational and
rotational performances separately. This has been suggested by (YOSHIKAWA, 1991) through
the translational and rotational manipulabilities, defined in the weak and strong senses. In a
more recent work, Direction-Selective Indices (DSls) have been proposed by (BOSCHETTI, et al.,
2011). In this approach, the manipulabilities of the individual translational dofs are studied
independently. Such method can be used equally with rotational and heterogeneous-dof
robots. However, the individual study of translational and rotational performances resembles
the redundancy situation; therefore, classical indices become less significant in this sense. In
another work, the Force-Velocity Isotropy Index and the treatment of heterogeneous-dof
robots by proper separation of translation and rotation have been discussed by (SHAYYA, et al.,
2014d). This will be detailed later in Chapter 2. In the scope of precision, a similar approach can
be considered. For example, the kinematic-sensitivity indices that separate orientation and
position errors have been suggested by (CARDOU, et al., 2010). In this work, for bounded p-
norm of joint errors, the maximal p-norm of orientation and positional errors are considered as
to overcome the heterogeneity issue. This means if we consider, say infinity norm for joint
errors, we end with same norm regarding orientation and positional ones. Therefore, the
orientation (or positional) errors are geometrically interpreted as rectangular parallelepiped.
Likewise, in the case of using Euclidean norm on joint errors, we end with an ellipsoid
representing orientation (or positional) errors. In either cases (Euclidean norm or infinity norm),
only the realistic aspect of one of the two errors, either joint or operational errors, is
considered properly. More precisely, the infinity norm is the reasonable to use for joint errors,
being generally independent®3. However, it is not consistent for those of the operational space.
As the translation (similarly rotation) is a coupled motion, the Euclidean norm is the more
consistent to use, as the spatial accuracy is the more interesting and not the axial one. This idea
is what we are going to present and discuss in Chapter 2. An additional point to make is that
while the proper separation of translation and rotation for precision evaluation is always
justifiable, it is not the case regarding kinetostatics for only one exception. This is the case
where the robot performs the two motions (or supports force and moment) in separate phases.
Apart from that, such decomposition is not indicative. That is why a relevant approach to co-
assess simultaneous performance in translation and rotation has been investigated in this
thesis (see Chapter 2).

While most of the works were concentrated on investigating input-output performance,
(BRIOT, et al., 2013) suggested the study of reactional forces in the passive joints. This is
indispensable in the design of any manipulator. Nevertheless, it remains an intermediate step
that influences dynamics. Knowing the magnitudes of these forces, proper sizing of the joints
and components to sustain stiffness and prevent failure can be done. The impact would be

33 The independency of joint errors is true only for non-redundant robots. When the robot is redundantly actuated,
some dependency relations exist and therefore, its accuracy analysis must account for this particularity.
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embodied then in the inertia whose effect can be inferred via dynamic measures. Therefore,
considering these forces by themselves as an objective is less favored.

Moreover, in (VOGLEWEDE & EBERT-UPHOFF, 2005), the authors investigated different
indices in the attempt to identify the most suitable ones that can detect singularities (the
classical ones), while providing both: a sort of distance measure to singularity on one hand, and
interesting relevant physical significance on the other. They concluded that while power and
input torque measures are not sufficient to detect all singularities, the natural frequency does
and more importantly merges stiffness and mass inertia together.

Stiffness, whether the control-related one or that of the physical structure itself, is
undeniably essential and especially for machine tools. The same applies for natural frequency.
However, such criteria can be fulfilled at the design stage of the parts through both: their
proper dimensioning (for structural stiffness and natural frequency), and tuning of the
controller (for control-related stiffness). Based on this, such indices are not that critical to
consider as main objectives.

It remains finally to discuss the literature in what concerns dynamics. Among the available
indices, we exemplify: the dynamic manipulability (YOSHIKAWA, 1985a), the dynamic
conditioning index ((MA & ANGELES, 1990), (MA & ANGELES, 1993)), the generalized inertia
ellipsoid as means of evaluation of the capability of changing end-effector velocity in different
directions for the given kinetic energy ((ASADA, 1983), (ASADA, 1984)), the maximum singular
value of the generalized inertia matrix or its row vector matrix ((LI, et al., 2005), (HUANG, et al.,
2005)), the acceleration radius (GRAETTINGER & KROGH, 1988), the acceleration hyper-
parallelepiped (KHATIB & BURDICK, 1987), the Dynamic Load Carrying Capacity (DLCC) ( (WANG
& RAVANI, 1988a), (WANG & RAVANI, 1988b)), the Acceleration Set Theory (KIM & DESA,
1993), the motion isotropy hypersurface (BOWLING & KHATIB, 1998), the actuation efficiency
measure (BOWLING & KHATIB, 2000), the actuator-selection criteria based on dynamic
performance discussed by (BOWLING & KHATIB, 2003), the maximum-required-torque-based
indices of (ZHAO & GAO, 2009), etc.

Unfortunately, each of these measures, in addition to its features, has its own drawbacks.
For example, in ((YOSHIKAWA, 1985a), (MA & ANGELES, 1990), (MA & ANGELES, 1993),
(ASADA, 1983), (ASADA, 1984), (LI, et al., 2005), (HUANG, et al., 2005)), the velocity and gravity
terms are not considered. This makes them less suited for high-speed manipulators or heavy
ones used for applications with large load requirements. Also, the arbitrary homogenization
needed in ((YOSHIKAWA, 1985a), (MA & ANGELES, 1990), (MA & ANGELES, 1993), (ASADA,
1983), (ASADA, 1984), (LI, et al., 2005), (HUANG, et al., 2005), (GRAETTINGER & KROGH, 1988),
(KHATIB & BURDICK, 1987)) to deal with heterogeneous-dof robots renders these measures less
significant. The Acceleration Set Theory (KIM & DESA, 1993) does not address the
heterogeneity problem. As for DLCC ( (WANG & RAVANI, 1988a), (WANG & RAVANI, 1988b)), it
is not influenced by heterogeneity conflict, but it is trajectory-based measure. It considers
performance required to move in one direction along a particular path and therefore, it is more
suitable for pick-and-place applications than machine tools. As for (ZHAO & GAO, 2009), an
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implicit homogenization, in the case of heterogeneous-dof robots, is considered via the
assumption of ||x||§=1 (where y is six-dimensional velocity or acceleration vector).

Furthermore, the computation of the maximum torques is done assuming sole translation along
or rotation about one of the coordinate axes with unitary value (in velocity or acceleration), as
implied by the use of infinite-matrix norm. Hence, the suggested indices of (ZHAO & GAO, 2009)
suffer from the same limitations and arguments accompanying arbitrary homogenization.

In the work of (BOWLING & KHATIB, 1998), the approach of overcoming arbitrary
homogenization by decomposing each of the acceleration and twist into their composing
translational and rotational parts is remarkable. However, the isotropy hypersurface itself is not
that easy to use. For this purpose, the same authors introduced the actuation efficiency
measure and discussed actuator-selection criteria in (BOWLING & KHATIB, 2000) and
(BOWLING & KHATIB, 2003), respectively.

The actuation efficiency in (BOWLING & KHATIB, 2000), as its name indicates, is more
suitable to assess actuation but cannot give an insight on the isotropic accelerations
themselves. This is not to mention the complexity, as volume integration is required for the
calculation of the aforementioned measure. The approach discussed in (BOWLING & KHATIB,
2003) allows the user to inspect whether the pre-specified performance at a configuration is
attainable or not (depending on having ¢; or «; superior or inferior to one). An additional

feature is including external forces and moments in the play, which is quite interesting. Among
the cited works, (BOWLING & KHATIB, 2003) is the closer to our proposed methodology in
Chapter 2. However, unlike (BOWLING & KHATIB, 2003), our indices tell not only whether
certain dynamic performances are applicable simultaneously in all directions, but also the
extreme that can be reached in each aspect while fulfilling the others. Thus, more interesting
options and features are available, permitting better design optimization. Besides, the
approach is not restricted to rigid manipulators, and its extension to deal with CDPRs is
formulated as well.

With this, we end the overview on performance evaluation and the available literature. It
remains to state the general outline of the thesis, the subject of the next section.

1.5- Thesis Outline

Having exposed the state of art of PMs and the literature concerning performance measures,
the following chapters detail the different steps taken towards the achievement of the preset
goals. The rest of the thesis is planned as follows:

e Chapter 2 details the establishment of adequate precision, kinetostatic, and dynamic
measures that consider machine tool requirements. In addition, their formulation to
treat CDPRs is provided as well.

o Afterwards, Chapter 3 presents several interesting novel architectures that have been
synthesized during the course of the thesis. Additionally, the dimensional syntheses
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concerning two of them are provided, among which is that of the final implemented
ARROW PKM.

Chapter 4 exposes the geometric sensitivity of the eventual PKM and suggests some
possible methodologies of compensation for geometric and elastic errors. This would be
a second step to go for further amelioration of precision performance.

Ultimately, a separate part concludes the major accomplishments and discusses the
possible future research directions.
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Chapter 2: Performance Evaluation of General
Manipulators

In this chapter:

This chapter introduces a relevant novel methodology to tackle the performance
evaluation of general manipulators and machine tools, regardless of being based on serial,
parallel or hybrid kinematics. The presented measures fall within precision, kinetostatic, and
dynamic performance fields. They overcome two main quandaries that have been
highlighted in the previous chapter, namely: heterogeneity problem (heterogeneous dofs or
actuators) and redundancy. Regarding the latter issue, only manipulators with either pure
actuation or kinematic redundancy are discussed. Therefore, robots that exhibit both types
of redundancy are beyond the scope of the current chapter. However, the methodology is
not restricted to rigid manipulators, but extensible to cable-driven ones equally well. The
mathematical formulation for both cases are elaborated and supported by case studies.
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2.1- Introduction

Before introducing our approach, we need to talk first of some generalities regarding
manipulator kinetostatic relations. While such relations are straightforward for non-redundant
manipulators, few particularities are worth emphasizing in what concerns redundancy.
Moreover, it is equally important to discuss the latter’s major benefits and types. This is the
subject of the current section.

While actuation redundancy (AR) is only applicable to PMs, kinematic redundancy (KR) is
applicable to both serial and parallel structured mechanisms (SMs and PMs). A common point
between the two is having at least one extra actuator as compared with the end-effector dofs.
Thus, if we assume m and N the respective numbers of actuators and operational dofs?, then
in the case of redundancy, we have m>n. We emphasize here that redundancy and its
definition can be slightly misleading as highlighted in (CONKUR & BUCKINGHAM, 1997). In
particular, kinematic and task redundancies might be messed up. In what follows, we attempt
to make all these terms as clear as possible.

2.1.1- Kinematic Redundancy (KR)

According to (CONKUR & BUCKINGHAM, 1997), a kinematically redundant manipulator
(KRM) is a one whose joint-space dimension is greater than that of the end-effector. The joint
space meant here is the consistent one, with consistency being related to the kinematic
constraints. While in SMs the consistent joint space is always of dimensionm, it is not the case
with PMs (case of AR for instance).

This means that in the case of a KRM, for each end-effector pose, X, there corresponds
infinite possible values of actuated-joint configurations, q. The same can be translated

regarding kinematics by considering the end-effector twist, t, and the actuated-joint velocities,
g.

This type of redundancy helps reducing or even eliminating serial-type singularities,
enlarging the workspace, and elevating speed capacity. Yet, it adds additional moving masses
that impairs dynamics. Moreover, while ¢ are freely chosen, the actuators torques, 7, are
subject to (m— n) dependency relations. This indicates that load capability cannot directly be
optimized in this sense. Nevertheless, the possibility of having different joint configurations for

the same pose can be used as an alternative to change the torque distributions in the
actuators.

An example of PMs with KR is the three-dof (3T) robot, called Speed-R-Man (depicted in Fig.
2-1), of (REBOULET, et al., 1992). The robot is characterized by an important working volume
and speed capacity. It utilizes six prismatic actuators and therefore, the aforementioned

! Meaning that of the end-effector.
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advantages come with the drawbacks embodied by the additional costs (three extra actuators)
and the added complexity at the control level.

To end this part, we highlight another type of redundancy that might be confused with KR,
and which is task redundancy (TR). If only r dofs (with r <n) of the end-effector are used for
particular application, the redundancy is referred to as TR. This redundancy enhances the task
accomplishment and improves accessibility. However, it has nothing to do with the mechanical
structure itself or its intrinsic properties, but with the intended task. Such redundancy has been
already highlighted in the previous chapter in the use of six-dof PKMs for five-axis machining. In
the scope of this report, we will not be dealing with it.

2.1.2- Actuation Redundancy (AR)

A redundantly actuated manipulator (RAM) is one that has greater number of actuators than
its end-effector dofs (i.e. mM> n), and in which there exists infinite possible values of actuated
joint torques, 7, to counteract an external wrench, W, on the end-effector (FIRMANI, et al.,
2008).

More precisely, in the case of an AR, we have m> n with (m— n) dependency relations

imposed on (. These latter conditions are usually referred to as synchronization relations.

Therefore, commanding an RAM to move without respecting the aforementioned constraints
would lead to system damage.

Furthermore, two main subtypes of AR can be distinguished, namely: in-branch actuation
redundancy (IBAR) and branch actuation redundancy (BAR) (FIRMANI, et al.,, 2008). In the
former (i.e. IBAR), one or more passive joints in the initially non-redundant PM are actuated.
While this preserves the initial workspace, it adds more moving masses and as a result, can be
less desirable. As for the latter case (i.e. BAR), additional chains with actuated joints are added

Fig. 2-1: Speed-R-Man (from http://www.onera.fr/fr/dcsd/robots-paralleles?page=2).
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to the structure. Though their added influence regarding moving masses may be less severe
(not necessarily always), it restricts more the workspace.

Many examples on AR exist and we already mentioned several of them in the first chapter
(see for instance Fig. 1-35, Fig. 1-36, and Fig. 1-37).

The major benefits of AR are reducing or eliminating parallel-type singularities,
homogenizing performances, and improving wrench capabilities as well as dynamics. Moreover,
it can be utilized to reduce the influence of passive joint clearances and backlashes, thanks to
the possibility of applying pre-stress on the structure (MULLER, 2005).

2.1.3- Mixed-Redundancy Manipulators (MRMs)

An MRM is a one that exhibits both kinematic and actuation redundancies. To most of our
knowledge, MRMs are not being researched as they combine the demerits of both types of
redundancy rather than their virtues. But to make their idea clear, perhaps an example can be
enough for this purpose. In Fig. 2-2, a simple example, yet sufficient to demonstrate the
complexity, is shown.

The kinematic relation for the mechanism is expressed by:
G+Q,=0¢=X (2.1).
Thus, infinite solutions are possible for the inverse kinematics. These are obtained by

choosing any value for @, (or ¢,) and adapting the other ¢, (or ¢,) to satisfy (2.1). This explains

the KR in the exemplified mechanism. However, not every combination of joint velocities is
permissible. In particular, choosing g, # ¢, +(, leads to system damage and implies the

presence of AR as well. More clearly, we can explain AR by considering the force relationships.
If we have a force f acting on the platform, then the forces of the actuators should satisfy the

following:

{Tl N (2.2).

| P (The TCP)

—
X

—

q;

Fig. 2-2: A simple example on mixed redundant manipulators: two series prismatic joints
in parallel with another prismatic joint (one dof and three actuators).
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From (2.2), it is clear that infinite possible distributions of forces among the actuators exist
to counteract the same external force. These distributions consist of arbitrary choosing 7, =7,
or 7,, while satisfying the 2" relation of (2.2). Hence, at the control level, we must deal with

two problems, specifically the optimal choice of joint velocities, and that of actuation forces.
Thus with this, we have clarified the concept of mixed redundancy and its inherent intricacy.

It is worth mentioning that another type of redundancy called metrological or measurement
redundancy exists. This type of redundancy is characterized by having extra number of sensors
than needed. For instance, if we have five sensors in a four-dof robot, then the robot is said to
be metrologically redundant. Despite that such redundancy can help improve pose calculation
(via simplifying direct geometric model), the way the measurements are exploited in control
constitutes a non-trivial issue. A final word in this aspect is that in the case of RAMs, where all
actuated joints are equipped with feedback sensors, we have also measurement redundancy.

These were the major points to emphasize regarding redundancy. The rest of the chapter is
outlined as follows. First, rigid manipulators are considered and their precision, kinetostatic,
and dynamic performances are addressed. Afterwards, cable-driven parallel robots (CDPRs) are
considered and the extension of the proposed kinetostatic and dynamic measures is done.
Alongside, case studies are provided to make better sense of the concepts and their
implementations. Also, few remarks are made, and recommendations concerning design
optimization are discussed. The chapter is eventually concluded by highlighting some essential
points.

2.2- General Rigid Manipulators

2.2.1- Generalities on the Kinetostatics of Redundant and Non-
Redundant Manipulators

Consider any rigid manipulator with the following system of constraint equations describing
its kinematic structure:

F(q, x) =0, with:
dim(qg) =m, dim(x)=n, (2.3).
dim(F(g,x))=n,, nsn<m

The differentiation of (2.3) with respect to time yields the following well-known kinematic
relation:

{Jq g=J,t, with:
(2.4).

dim(J,)=n,xm, dim(J,)=nxn
In the case of non-redundant manipulator (NRM), both J  and J, are square matrices (i.e.

n, =n=m). Nonetheless, in the situation of redundancy (KR or AR), we have m> n and at least
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one of the aforementioned matrices is rectangular. In specific, if J, is only rectangular, then
pure KR exists. On the other hand, having J, solely non-square corresponds to pure AR. Having
both matrices rectangular (i.e. N<n, < m) results in mixed redundancy (KR and AR), and in

which we are not concerned.

In what follows, we give the generally known kinetostatic relations for NRM, KRM, and RAM.
Starting with NRMs, we always have (at regular non-singular pose?):

g=J,tort=Jq, with:
1 1 (2.5)
3,=323, and1 =377,
and3
w=J rorr=J"w (2.6).

The terms J, and J are respectively the inverse and direct/forward Jacobian matrices.
While both, J,. and J, are naturally available* in NRMs, this is not the case with KRMs and
RAMs where only one of the two is available —the other requiring pseudo-inversion operation

based on some assumptions.

In the case of a KRM, we naturally have J as the forward kinematic problem is unique,
unlike the inverse one. Therefore, only the forms of the kinetostatic relations ((2.5) and (2.6))
that are based on J are directly applicable. As for the inverse kinematic and forward static
problems, they are expressed as follows:

g=J" t+[null(3)] 2, withAOR™" (arbitrary) (2.7)
and

w=J"Tz, withz' [ null(J)]=0 (2.8).

1x(m-n)
The term [nuII(J )] corresponds to a null space basis vector of J. Note that as we are

always considering regular non-singular pose, nulI(J) is of exactly (m— n) dimension.

On the other hand, in the case of RAMs, only the forms of the kinetostatic relations ((2.5)
and (2.6)) that are based on J, are directly applicable, in contrast with what we had for KRMs.

Additionally, the forward kinematic and inverse static solutions are given respectively by:

2 Which is the always-assumed case throughout the chapter.

3 Note that under the form of (2.6), we are describing how the actuators torques are transmitted into the
operational space and vice-versa. In this sense, w is the opposite of the real applied wrench. This form is
considered here for convenience. However, later in cable-driven robots, the equilibrium form will be used instead,
i.e.. w+ J; 7 =0 (platform equilibrium) or 7+J7 w =0 (actuators equilibrium).

4 Meaning they are computable with no assumptions, by means of matrix inversion operations (no pseudo-inverse
procedure).
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t=J, q withq" | null(J7)]=0

1x(m-n)

(2.9)
and
r=J" w+[nuII(J;)J 2, With AOR™" (arbitrary) (2.10).

The relations (2.7) and (2.10) show that when dealing with KR and AR, one should get rid of
the arbitrariness of 4. One way to do that is considering the solutions of ¢ and 7 that do not

have any component along the null spaces of J and J; respectively; this means setting 4 =0.

These are mathematically referred to as minimum norm solutions. Note that choosing A Z0
results in antagonist forces that can deform the robot structure; these forces are referred to as
internal preloads and can be used to eliminate the influence of clearances and to control
stiffness (MULLER, 2006).

The particular solutions with 4 =0 will be assumed in the kinetostatic analysis, and they can
be practically achieved by control means (refer to §4.2 in Chapter 4 for more information on
the methodology). Therefore, for rigid manipulators, regardless of being redundant or not, both
forms of the relations ((2.5) and (2.6)) are applicable with the following assumption:

R (2.11).
J=J,, if RAM

m?

{Jm =J", if KRM

Nonetheless, in what concerns precision evaluation, the particularities of redundancy must
be considered, as we are going to see in the following part. As for dynamics, a similar approach
to deal with redundancy is adopted as well. This will be made clear later in place. It remains just
to emphasize that we will consider the following decompositions of J., and J:

I = [T Jimo

S, [5 (2.12).
1

The subscripts “p” and “0” in (2.12) are used to denote the respective translational/positional
and orientation/rotational parts of J_, and J.

2.2.2- Precision-Related Performance Measures

When dealing with machine tool design, among the most important aspects to consider is
precision. This precision embraces several terms, such as accuracy, repeatability, and
operational resolution. The first two have been previously discussed and explained in Chapter
1, with further information being provided in Appendix A. It remains to shed the lights on the
operational resolution of a robot or machine.

In fact, one is more familiar with measurement resolution of some measuring device, such as
a scale. For instance, consider a ruler with 1 mm graduations. Then, we cannot measure any

length inferior to this resolution. In fact, every measurement of a length L using the
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aforementioned device is done with roughly +1 mm error and thus, the resolution stands also
for the measurement uncertainty (CORBEL, 2008).

If we consider the same notion applied to an actuator, the latter’s resolution is the smallest
step that it can perform. According to (CORBEL, 2008), the resolution of a motor can be seen in
several ways. The most common is to consider it equal to that of the associated encoder.
However and according to the same reference, this value adopted for resolution is not
necessarily equal to the physical one of the motor, but it may be lower or higher. (CORBEL,
2008) supports this idea by considering the results of the work of (BRETHE & LEFEBVRE, 2007),
in which the granular space structure of some industrial robots has been discussed. Our opinion
in this matter is quite different. From our point of view, the actuator resolution is not only the
smallest step that can be done, but also detected. The necessity of detection makes resolution
a characteristic of the actuator-encoder system rather than the actuator itself. As a result, it
should be a multiple of the encoder resolution.

Regarding the robot, its operational resolution is the smallest detectable step that the end-
effector can do in the operational space. In conventional machines where each axis of motion is
activated by a sole actuator, we may speak of axial resolution, i.e. the smallest step that can be
done along each Cartesian axis. Nonetheless, in machines based on parallel kinematics, though
resolutions along particular directions can be defined, they are less indicative. This is due to the
coupled nature of the end-effector motion. Consequently, it is preferable to speak of
operational translational and orientation resolutions instead.

In the following, we define theoretical resolutions as well as accuracies and repeatabilities
for all robots (NRMs, KRMs, and RAMs). But what we will be interested in later, is replacing
those three measures by a single one, though this is possible only for the particular situation of
having the same type of actuators.

A- Theoretical Accuracy, Repeatability, and Resolution

In this section, we assume that the actuators’ resolutions, accuracies, and repeatabilities are
all sufficiently small to have the following assumption valid:

0g=J, ox orox=J dq (2.13).

Relation (2.13) means that for very small errors (which is usually the case for machine tools),
the relation in the vicinity of the considered pose is linear. In this case, the actuated-joint
displacement zonotope® is transformed into an operational one. However, attention must be
paid regarding RAMs and the synchronization imposed on their joint-displacements.

To calculate the theoretical operational resolutions at non-singular pose for given actuators’
resolutions, denoted by R (0i =1..m), we define the following joint zonotope Z,:

1t is a rectangular parallelepiped in the case of NRMs and KMRs only. In the case of RAMs and due to
synchronization constraints, it is part of a rectangular parallelepiped.
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0qOR™; |0g|< Reg, 0 i=1..m
and|[ nui(37)] 6q=0

or:

{0qDR™; |5g|< Reg, O E1...0h, if NRM or KRM

, If RAM
(2.14).

Then, the theoretical translational (orientation) resolution is the smallest translational
(orientation) step detectable in the operational space. In other words, it is the radius of the
smallest sphere that circumscribes the translational (orientation) zonotope, the image of Z,

under the mapping described by J, (correspondingly J,). Denoting translational and

orientation resolutions by Res and Reg respectively, we get:

Res = max{|J, ocf)

(2.15).
Res = max(||J, od])

o002,

Based on the above, Reg (Reg) is the maximal Euclidean distance from the origin of the

translational (orientation) zonotope to the corresponding vertices (the image of those of Z).

Denoting the N vertices of Z, by V, (Oi =1..N ), we can rewrite (2.15) as:

Res =max(|3, Vi)

Res =max(|2, /) e

i=1..N

A similar approach can be used to estimate the theoretical translational or orientation
accuracies and repeatabilities. This is done by replacing Reg; by E; (i-th joint accuracy) to get

the translational (orientation) accuracy E, (respectively E ). On the other hand, replacing
Reg; by Rep; (i-th joint repeatability), we get the estimated translational and orientation
repeatabilities, denoted by Rep, and Rep respectively. It is worth mentioning here that

regarding accuracy and repeatability, another statistical approach exists. This is done by
assuming a certain statistical distribution for joint errors with a specific mean and standard
deviation, then establishing the mean and standard deviation of the operational error based on
(2.13) (e.g. (BRETHE & LEFEBVRE, 2007)). However, it can be rather complex, especially that in
the case of RAMs, the joint errors are dependent. Also in this scope, we mention the work of
(MERLET & DANEY, 2005), in which interval analysis has been used in the design of a robot with
a specified accuracy over a given workspace. This has been done while taking into account not
only the actuated-joint errors, but also the tolerances on the geometric parameters. Despite
that theoretically such approach is the most relevant, putting it into practice is undeniably
difficult and presents computational complexities. This is not to mention being time-expensive.
Besides, in the design of machine tools, the geometric errors are supposedly small, and they are
later compensated by means of calibration.
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So far, we have presented the methodology in the general case, yet our focus will be on the
particular situation where all actuators are of same nature, meaning either linear or rotational.

In such a case, we set Reg = max(maX(RE‘%i)), being the worst resolution among the
xODwWs\i=1..m
actuators and over the whole desired workspace, DWS. The following step is to replace the

above definition of Z, by:

oqOR™; |og|< R, Di=1..m,

T , if RAM
- and| nul{37)] 6q=0 (2.17)
or:

{0qOR™; |oq|< R, Oi=1.n}, if NRM or KRM

Then, we can calculate the operational resolutions, accuracies, and repeatabilities® via the

same equation (2.16), and where Eq:XrQD%)é(inl%((Eqi)) and ReQ:XrQD%V)é(iTl%%((ReQi)).

Hence, we define what we may call precision amplification factors in translation and
orientation, denoted by TPAF and OPAF correspondingly:

TPAF:E:_EP:E)
Rey & Rep (2.18).
Reg Ig Rep

Note that the calculation of TPAF and OPAF does not necessitate the knowledge of Reg,
E,, or Rep,. This is very interesting, especially at the design level where we might have these

terms still unknown. Optimizing any design in the sense of minimizing ryDé\}v)é(TPAF) and
X

rEIDévlv)é(OPAF) results in a precise robot. This is what we are going to employ later in the
X

dimensional synthesis of ARROW PKM in Chapter 3.

B- Precision and Peak Operational Speeds

Perhaps, it is worth emphasizing the relation between peak operational speeds on one side,
and precision measures on the other side, though this relation can be intuitively noticed.

To demonstrate the case, the simplest way is to consider a robot with identical actuators of
maximal speed being ¢, .. Then, one can easily show that the peak linear v ., and angular

Wyear SPEES are related to precision measures as follows:

6 Regarding accuracy and repeatability, replace Re% by Eq and RegI respectively.
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Y
—E = TPAF

j;“ax , all actuators being identic (2.19).
—b2 = OPAF

qmax

Hence, improving precision (i.e. reducing TPAF and OPAF) is accompanied by decreasing
peak speed capacities. While the relation is straightforward in the case of identical actuators, it
becomes less direct in the general situation, being more or less coupled. For machine tools, the
peak speeds are not the interesting ones to maximize, but rather the isotropic ones (those that
can be attained in all directions). The antagonism between the latter speeds and precision
factors is more intriguing and to be compromised in the optimization of a robotic design, in
which rapidity and precision are among the sought goals.

As the main points in what concerns precision have been clarified, it remains to present a

case study, the subject of the upcoming section.

C- Case Study: DUAL V

In Fig. 2-3, DUAL V is depicted with simplified schematic and CAD drawings. It is a
redundantly actuated PM with three dofs (2T-1R), and four identical actuators. Its complete
description with its models can be found in (WK, et al., 2013).

Its inverse Jacobian matrix J, is given by:

J.=373, (2.20),
with:
J, =diag(BC (e,x AB)), dim(J,)=4x 4 (2.21)
and

BlclT € BICI g€ - Blch (PCl X Pt)

J.=| : : , dim(J,)=4x3 (2.22).
B,C,e BC,e, -BC,(PC,xe)

The TPAF and OPAF for DUAL V have been calculated for the case of 8=0°. The results

are depicted in Fig. 2-4. The actuators are of type ETEL RTMB0140-100. According to the data
sheet, the accuracy and repeatability are about 25 arcseiand 5arcse(, respectively. This

means that the expected worst translational accuracy and repeatability are about 54 umand
11pum respectively (considering max(TPAF): 0.4%). However, these values do not account

for control errors and only serve as rough estimate. In Table Ap-12 of Appendix A.2, we can
only consider repeatability, as accuracy is not that reliable due to the technical difficulties
explained therein. Aside from pose B, the results are somehow in close agreement. We should

keep in mind the existence of other factors, such as the measurement device repeatability,
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Fig. 2-3: DUAL V: prototype, CAD drawing and simplified schematic diagram showing the
principal geometric parameters.
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Fig. 2-4: DUAL V: translational and orientation precision amplification factors TPAF (left)
and OPAF (right), for the case of zero rotation.

experimentation imperfections, etc. Also, we should know that the datasheet values are given
for certain environmental conditions that can slightly differ from those at experimentation
time.

By this case study, we end up the discussion on precision assessment measures. It remains
to discuss kinetostatic measures regarding twists and static wrenches, before moving into
dynamics.
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2.2.3- Kinetostatic Performance Evaluation

In the design of machine tools, the most important points to investigate are the twist and
static wrench capabilities. But as these are direction-dependent, possibly a relevant approach
would be only to consider the isotropic capacities; i.e. the maximal values that can be achieved
by the manipulator irrespective of direction. This part concentrates on these aspects. We start
by considering a robot with homogeneous dofs and end with the most generic case of robots
with heterogeneous dofs.

A- Kinetostatic Measures: Case of Robots with Homogeneous DoFs

Let us consider a manipulator with homogeneous dofs, say a translational one. Then,
depending on the intended task, a certain minimal value of speed and static force are usually

required to be achieved in all directions. So why do not we consider isotropic speed, V_ , and

iso’

force, f._, as kinetostatic measures?!

iso’

In fact, the first step we have done to deal with homogeneous-dof robots was considering
the aforementioned values in one composite measure, the Force-Velocity Isotropy index ( FVI)
and that includes also the minimal requirements in speed and static force, denoted by v,,, and

freq respectively. It is given as follows:

FVI =mi Yoo oo 2.23
=min Vreq’f (2.23).

req

As for v ( f

o it is nothing other than the maximum value that can be achieved regardless of

(f

sphere inscribed in the operational velocity (respectively force) zonotope. Mathematically, v

Viso r:q (HC} J (224)

1SO )

velocity (respectively force) direction. Geometrically, Vv, ) is the radius of the largest

iso IS0

and f, are calculated as follows’:

and

=) e

with j,. and j, being the i-th row and column vectors of J,, and J respectively, and where

g

(ie. |g|<q
based on the assumption (2.11). It can be easily shown that if the general solution with

max

and 7™ are the corresponding maximal speed and torque capacities of the i-th actuator

" and |ri|s ™). Note that regarding redundant manipulators, the calculation is

7 The derivation is very simple and trivial. However, one can find it in 2.2.3.C as a special case.
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arbitrary 4 is considered ((2.7) and (2.10)) in the case of KRMs and RAMs, then the isotropic
speed will be larger than or equal to that of (2.24) for a KRM, and the isotropic static force will
be greater than or equal to that of (2.25) for an RAM. This is since the minimum norm solution
set (i.e. the case in which 4=0) is a subset of the general one. Thus, with (2.24) and (2.25) the
guaranteed minimum isotropic values are computed. Yet, later and after dealing with CDPRs,
one will become capable of computing the isotropic values for the general solution with
arbitrary 4, although we do not recommend it for rigid manipulators.

Finally, it remains to highlight that when v, - O (or f_ — 0), we are close to series-type

singularity (correspondingly parallel-type singularity). Thus, the higher FVI is, the better the
robot is regarding isotropic kinetostatic capabilities, and the farther the pose is from classical
singularities. In particular, when FVI =1, it means that all the requirements have been fulfilled.
In this sense, v, and f . serve as numerical tolerance to indicate singularity, in the same way

one puts a tolerance on singular values. Nevertheless, unlike what we had in the case of
singular values and especially with redundant robots, v, and freq are clear and physically

significant.

Despite the ease of their computation, these isotropic values necessitate arbitrary
homogenization for heterogeneous-dof robots, and as the debate of Chapter 1 concluded, the
result is lack of direct physical significance.

Therefore, to overcome this issue, one suggestion is to consider translation and rotation
separately. This is justifiable as long as translation and rotation occur in two separate phases
(e.g. pick-and-place applications®). This is the subject of the upcoming section.

B- Kinetostatic Performance Evaluation by Separation of Translation
and Rotation

Let us consider now a heterogeneous-dof robot regardless of being redundant or not. Then,
to use the above-defined FVI index, a prior homogenization is needed. However, unlike
classical indices, such as those based on singular values, the homogenization required is only
regarding the operational dofs; meaning no particular treatment is demanded in the case of
having actuators of different nature.

Nevertheless, the FVI index based on homogenization, called FVI,, maintains only the

significance regarding classical series and parallel type singularities. Regarding kinetostatics, the
physical interpretation is no more concrete and is rather difficult to interpret. That is why
studying translational and rotational performances separately, but in proper manner, is
favored.

For instance, one can define pure isotropic linear speed, V' , for the case where angular

velocity is assumed null (i.e. @ =0). Also, we may define the pure static isotropic force, f°

iso’

8 Where pure rotation occurs at the end-points and pure translation in between.
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that can be supported by the manipulator in the case where no external moment is acting on

the end-effector (i.e. m=0). Likewise, we define pure isotropic angular speed, w’ , and pure

isotropic static moment, m’,. The aforementioned terms can be easily derived to get as a

result:
VP = min{ 3 ] (2.26),
i=1..m Hjmpﬁ
o . - qimax
Wy, = min| = (2.27),
i=1..m ‘Jmori
] T_max
f2 =min| (2.28)
i=1..m Jpq H
and
) Z_imax
me, = L‘I‘”(J‘_] (2.29).
=L.m oG

The terms j .. (]no ) and j,. (], ) correspond to the i-th row and column vectors of J |
(J,,)and J, (J,) respectively.
Thus, based on the requirements, one can define different FVI indices. For example, we

can define translational and orientation indices, denoted by FVI and FVI respectively.

These are expressed as follows:

. (vP o P
FVI, = mun(%,%;’j (2.30)
Vreq freq
and
_ P mP
FVI, =min| —%,—* (2.31).
req mreq

The terms Vi, and @y, are the minimum required pure isotropic linear and angular speeds.

Similarly, f2 and m?, are the minimal required pure static isotropic force and moment to be

supported by the robot.

Note that other combinations of pure isotropic values can be used depending on what the
user needs. However, indices built on the aforementioned values do not necessarily exhibit a
singularity significance, but solely a kinetostatic one. To be more clear, having one of the
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isotropic values zero, say V2. =0, implies a series-type singularity’. Nonetheless, having v°, # 0

is not sufficient to prove the non-existence of series-type singularity. Similar note can be made

regarding f" and parallel-type singularity.

IS0

The exploitation of pure isotropic values is justifiable only when translation and rotation
motions are done separately and/or when only pure force or moment is being counteracted at
a time. As for the other cases where simultaneous motion is to be done or a mixed-type
wrench!® is to be supported, another alternative must be investigated. The subsequent section
is dedicated for discussing this second alternative, which is founded on the simultaneous
isotropic kinetostatic performance evaluation.

C- Kinetostatic Isotropic Performance Co-Assessment: A Novel Approach
that Overwhelms Heterogeneity Predicament and Fits Adequately
Machine Tools

The kinetostatic performance measures that we are to introduce here, not only respond
directly to the requirements to be satisfied when designing a machine tool, but also overcome
the dilemma embodied in both: heterogeneity and redundancy. Actually, a machine tool is
designed to perform a coupled heterogeneous motion (simultaneous translation and rotation)
on one hand, and to support an external mixed-type wrench (force and moment) on the other
hand. Thus, based on the type of application or machining task, one can set minimum
requirements for isotropic linear and angular speeds, static force, and static moment that must
be achievable by the manipulator simultaneously and regardless of direction. Denote these in

(4]

respective order by: v, deqr freq @Nd M, -

eq’

Starting from the aforementioned requirements and to assess simultaneous mixed
kinetostatic performances in translation and rotation, a novel concept has been introduced. It is
the notion of specific isotropic values. These values will be discussed in the ensuing subsection.

Description and Mathematical Formulation

In what follows, we define isotropic values and derive their formulae. For instance, the

specific isotropic linear speed, V", is the maximal linear speed attainable in all directions while

allowing the angular velocity, o, to reach w

req

in all directions. Analogous definitions can be

specific isotropic static force, f >, and specific

iso /

made for specific isotropic angular speed, @’

1so ’

isotropic static moment, m??. These terms not only hold a physical kinetostatic interpretation,

but also a singularity one as it will become clear by the end of the section.

%In this case, the origin of the operational twist zonotope belongs to its boundary, i.e. the twist zonotope is
collapsed, and which corresponds to series-type singularity.

10'We mean by mixed-type wrench the one with non-zero force and non-zero moment.
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iso’

To calculate V¥, we consider the condition |¢| < g™, Ji=1..m and which can be rewritten

as:
=Q" <G = o VF ey @9, Ti=1..m (2.32).

Let us consider the right-hand side of the double inequality (2.32). It can be written as:

s max

Jopr VS Q™ = 1o @ Oi=1..m (2.33).

Then, to calculate v2°, we need to consider the worst case of (2.33) in terms of V and o,

iso’

such that ||w|| < @,,- This corresponds to having ™ - jnT]Ori @ minimal and j;pri V maximal and

eq”

which obviously occurs for:

w=@wJ@L,wwmﬁ¢o
o (2.34)
indifferent ofw ,if | jno[ =0
and
V=V ith v = [V 20, if | e | £ 0
H mpg (2.35).
indifferentof v, if |[jne[ =0
Hence, substituting (2.34) and (2.35) in (2.33) yields:
e [ V< 4™ = i oy | &g Ti=1..m (2.36).

As Hjmp,i v=0, it is mandatory to have qimaX—Hjmori

robot cannot initially fulfill the rotational motion requirement in the absence of translation. In

W, 2 0. Otherwise, it means that the

this latter case, V* does not really exist and it is set to zero by convention. Aside from that, we

iso

get:
v< AY, with:
0,if a <0
N:'ﬁi—JfWWH¢OMMdZQ[ﬁ:Lm (2.37).
mpy
o , otherwig
ai+ :qmax_HJmOI‘l a?eq, Di :1...m

Proceeding in the same manner with left-hand inequality of (2.32), we obtain:
v A, with A= A (2.38),

or simply we can say (based on (2.37) and (2.38)), we have:
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v A, with:
0,if a<0
A= HJL if [jny|#0anda = 0 Di=1..m (2.39).
mpr,
o , oherwise
3 =0~ | G, D=L

As v is the largest attainable isotropic linear speed while allowing angular speed to reach

iso

. N % : _
W, in all directions, vy is then:

Veo =min(A), with:
0, if <0

A= HJ;LW if ||jmp|#0anda = Q Di=1..m (2.40).
o , otherwig

8 = 4" = imot | @eq» DI =1..m

Following the same lead, the mathematical expressions of the other specific isotropic terms
are as follows:

* =min(B,), with:
i=1.m
0,ifh<0
B = _qu it |ino | #0 @ndg 2 Q Di=1..m (2.41),
o , otherwse
B = 4" = mpr || Vieq DI =1..m
f.op :irg.i.ﬂ (C)), with:
0,ifc <0
C= —Hjc' i if is|#0andc 2 Qni=1.m (2.42)
PG
o , othervise
C =" ~|log || Mo Di=1..m

and
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me = r_nln(Di), with:
,ifd, <0

D = _d—i, if
I Joq

oo , otherwig

d = 7™ | e feq: Oi =1..m

Jg||#0@ndd, =2 Q Oi=1..m (2.43).

To better understand the above values and have some insight on their geometrical
interpretation, illustrations for the cases of two-dof (1T-1R) and three-dof (2T-1R) robots are
provided in Fig. 2-5 and Fig. 2-6, respectively.

In these figures, the operational twist zonotopes as well as the geometrical interpretation of
vl and wf

ISO 1SO

are illustrated. Note that the interpretation of v’ and @

o ro that appears as
rectangular regions in the case of (1T-1R) must be carefully understood, as it can be misleading.
That is why, the second example of (2T-1R) robot has been provided in the hope of eliminating
any ambiguity. Perhaps, an even better example would be to consider the case of at least (2T-
2R) manipulator, but unfortunately, such a case is graphically impossible to represent or
comprehend. Nonetheless, with Fig. 2-6, a deeper insight on the true nature of the regions

described by:

2 ={tOR"; o)< @, and|v| < v,
% ={tOR"; o] < @, and|v] < vz} (2.44)
7, ={tOR"; M < vieg ande] < i}

can be achieved.

The Interesting Features of Specific Isotropic Values

It remains to discuss some interesting features of specific isotropic values. First, we

emphasize that it is enough to consider one specific isotropic speed (Vv:? or w) to verify that

ISO ISsO
both translational and rotational speed requirements are fulfilled simultaneously. This is done
by checking if its value is greater or equal to the corresponding requirement. Likewise, it is
sufficient to know one of the specific isotropic static loads (i.e. .2’ or m®) to verify whether

the mixed external wrench capacity requirements are satisfied or not. In fact, we can easily
prove that specific isotropic values satisfy the following properties!!

1. v5p>v - a)s">w

IsO 1SO

1 The proof is as follows. For instance, let us consider the first property. As V:° > v__, then we can guarantee that

iso req”’

we can simultaneously and isotropically achieve at least Weq and v__ (see definition of V). Then, based on the

req iso
definition of @

1so ’/

this latter is necessarily greater or equal to @, ; otherwise, we have contradiction. For better

req ;

understanding, the reader may refer to Fig. 2-5.
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Operational Velocity Zonotope: Case of 2 DoFs (1T-1R) Robot
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Fig. 2-5: Geometrical interpretation of specific isotropic values in the case of two-dof (1T-
1R) robot.

Operational Velocity Zonotope and Specific Isotropic Values : Case of 3 DoFs (2T-1R) Robot

Within the magenta cylinder (radius = vreq):
lIvll = Vieq Operational Velocity Zonotope

f

i

. Between the 2 planes:
-

.||||r||I | o ||ea]] < LI
Within the green cylinder (radius = v:’l , Ny ////
semi-height = - ): \\\ I -
v can reach up to vi¥ in all directions \“\ T <
while allowing e to reach up to L in all directions | \\\ /{,((\/ N
ko T N v _(mis)

v_(mis)
¥ e Within the red cylinder {radius = v
semi-height = m®® ):
g @ can reach up to «F in all directions
The black cyﬁl]der (radius = v_, while allowing v to reach up to Y in all directions

q7

res
semi-height = mmq) is the intersection af red ang green cylinders

Q

Fig. 2-6: Geometrical interpretation of specific isotropic values in the case of three-dof (2T-
1R) robot.

sp sp
2. fozf = mi=2m .

iso iso =
sp p
fiso < fiso'

aw_n

3. Vo<V and M2 < mf, with the terms having “p” superscript and

iso iso’

P p
SO < a)ISO’

“is0” subscript indicating the same meaning and definition as introduced in §2.2.3.B. It is
clear that v2 , «? , f.P, and mP are special cases of the specific isotropic values. They

iso’ 1so / iso’
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correspond to the case where @, =0, v, =0, m =0, and f_, =0, respectively. This

re

can be directly noticed from equations (2.40) through (2.43).
4. Vg 2V, (or @it 2 @,,) implies that all speed requirements are fulfilled and the pose is

|so req

sufficiently far from series-type singularity. Similarly, f> > f . (or m® = m,) indicates

satisfaction of mixed wrench requirements and that the pose is adequately far from
classical parallel-type singularity.

It is worth emphasizing that v, and @, serve as some sort of numerical tolerances for

feq
series-type singularity. To clarify thls further, consider the set £ .Then, to assure that the pose
is sufficiently distant from series-type singularity, the aforementioned region should be
included in the operational-twist zonotope. The region &£ is the grey rectangle and the black
cylinder in Fig. 2-5 and Fig. 2-6, respectively. Similar argument can be considered regarding
static wrench capacities and parallel-type singularity.

Ultimately, to be able to co-assess simultaneous mixed motion, mixed static wrench
capacities, and assure farness from classical series and parallel type singularities, we need to

build an index using at least one specific isotropic speed (V¥ or w)!?and one specific

1SO IS0

isotropic static load ( f.F or m)®. In fact, the choice depends on what the roboticist needs or

favors. For example, if he/she is interested in obtaining the utmost of robot capability in linear

speed and static moment capacity, then it is recommended to use v’ and m®. In this case,

1ISO

optimizing for V¥ and m2, by maximizing the composite index Cl = mln( |so/vreq SS‘;/ meq)

1SO

for instance, will elevate Vi and m:> without caring for maximizing &> and f.°. But surely,

these latter two cannot drop below ), and f respectively. This is due to the mutuality

r req’
described by the first and second properties above. Of course, if one would like to elevate all,
then he/she should combine them all in a composite index, and this does not lead to any
computational expenses, as all are very simple to get. Note also that to globally assess or
optimize a robot over a desired workspace, DWS, it is sufficient to consider the worst values of

the aforementioned local measures over DWS.

Hence, it is obvious that with these novel measures, we can assess and optimize
heterogeneous-dof manipulators with confidence regarding classical singularity and
kinetostatic aspects. Using this approach, one knows well what he/she is optimizing or
assessing a robot for, as compared to the available techniques based on arbitrary
homogenization.

Case Study: DUAL V

Now, as the mathematical formulation of the new kinetostatic measures has been made, we
proceed by performing a case study on DUAL V to concretize the concepts. The actuator

12 To assess the twist capacity and the farness from series-type singularity.

13 To assess the wrench capability and the farness from parallel-type singularity.
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Table 2-1: DUAL V actuators’ characteristics and the desired kinetostatic requirements.*

Symbol Quantity Value
qm Actuator’s Maximum Speed 550 rpm= 57 rad
rm Actuator’s Maximum Torque 127 N'm
Vieq Required Linear Speed 0.2¢g™ L=3.2nf ¢
Weq Required Angular Speed 0.2¢g™ =110 rpme 11.5rad
freq Required Static Force Capacity 0.2 TmaX/L =90.6 N
Meq Required Static Moment Capacity 0.2r™ =25.4Nm

*All actuators are identical of type ETEL RTMB-0140-100.

characteristics and the desired minimum requirements in translation and rotation are given in
Table 2-1.

The specific isotropic values and the satisfactory regions are presented in Fig. 2-7, in terms

s max

of g™ and ™. In this analysis, the rotation is fixed to 8 =0° to allow visualization. Note that

. sp
the regions where v_

p . . . .
2V, and @l 2 @, are the same. Similar observation can be mentioned

regarding the regions where 2> f . and m@ > m,,. These concurrences are expected as

1SO

discussed previously (first and second properties).

At the end of the kinetostatic evaluation section, we mention that the introduced measures
can be sufficient as sole performance criteria only in the case where the manipulator under
study works in quasi-static conditions. An example would be a machining application where we
have two phases: a transient phase and a machining one. In the transient phase, the end-
effector is supposed to move fast, usually at constant speed, from the current position to
nearby the piece. Afterwards, the machining stage starts in which the tool moves at low speeds
but counteracts considerable external wrenches due to material removal. Thus, considering
only kinetostatic measures in such situations is valid. Nevertheless, in the case where the
application involves considerable acceleration, speed, and external wrenches at the same time,
a dynamic assessment is inevitable to evaluate the expected capabilities of the manipulator.
This will be dealt with in the next part.
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Fig. 2-7: DUAL V kinetostatic performance evaluation: the specific isotropic values (a) and
the satisfactory regions (b).
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2.2.4- Dynamic Performance Evaluation: A Novel Approach
Based on Multi-Assessment of Isotropic Dynamic Capabilities

When the intended task of the manipulator or machine tool cannot be assumed quasi-static,
it is then mandatory to put the dynamics of the whole system into the play. Considering the
dynamic model (DM), an estimation of the isotropic simultaneous dynamic performances can
be established. This establishment follows a similar methodology to that adopted for
kinetostatics.

The complexity of the method is rather that of obtaining the DM itself. In fact, once the DM
in the required form is obtained, the dynamic measures can be computed or estimated
effortlessly via analytical formulae. Only in the case of heterogeneous-dof manipulators, where
the effects of linear and angular velocities are coupled in the DM, the computation of the exact
values necessitates a numerical optimization. Nevertheless, this numerical optimization can be
done relatively at ease or can be replaced by analytical lower bounds, as a safe approximation.
Although this latter point can be considered as a drawback, it is not that severe considering the
various benefits the method provides. This will become clear by the end of the section.

In what follows, we will establish the analytical lower bounds of the dynamic specific
isotropic values in the most general case of heterogeneous-dof robots. These lower bounds
become the exact values in the situation of homogeneous dofs or uncoupled velocity effects.

A- Generalities and Assumptions

As a starting point, we assume that the DM of the robot has been obtained as a function of
the operational variables and actuated-joint torques only. In this aspect, several methods exist
and are classified into four main categories (ZHAO & GAO, 2009): Newton-Euler method (e.g.,
(KHALIL & GUEGAN, 2002), (HARIB & SRINIVASAN, 2003)), Lagrangian method (e.g., (PANG &
SHAHINPOOR, 1994), (LEE & LEE, 2003)), Kane’s method (e.g. (BEN-HORIN, et al., 1998), (LIU, et
al., 2000)), and virtual work principle based method (e.g. (WANG & GOSSELIN, 1998),
(SOKOLOV & XIROUCHAKIS, 2007)). We further mention that in the case of redundant
manipulators, a pseudo-inversion would be needed to acquire the DM in the aforementioned
form. This can be done by assuming the solution with zero components along the null space of
the considered matrix.

Anyway, we should have the DM as follows:

M(x)p+C(xt)t+z,(x)+D(x)w, =7 (2.45).

e

The terms p =(aT aT)T, T, (X), and W, =( feT ml)T correspond orderly to the operational

accelerations (a=V and ¢ =w ), the torques due to gravitational forces, and the non-
gravitational external wrench!* acting on the end-effector (external force, f,, and external

14 This is the wrench due to machining, for instance.
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moment, m,). M (X) is the generalized mx n inertia matrix, whereas C(X,t):C(X, t)t
represents the generalized Coriolis and centrifugal effects, with C(x,t) being of mxn

dimension. As for D(X), it is an MX N matrix as well. The rest of symbols hold exactly the same

meanings as before. Notice that in (2.45), friction is not considered. This has been done to
simplify the analysis, as we are interested in evaluating the preliminary expected performances.
Yet, the effect of friction can be included if it can be written under a similar form as any of the
aforementioned terms.

Note that C( X, t) can be written under the following form:

c(xt)=(t" Hyt - tTH_t) =h (xt)+h”(x,t)+h(x,t) (2.46),

with:
hV(x,v):(vT H'v - Vv HY v)T (2.47),
h*(x,0)=(0' H? © - o H,‘n"w)T (2.48)

and
he(xt)=(2v" H* & - 2V H* o) (2.49).

The terms H,, H', H”, and H” are pose-dependent!® matrices of respective dimensions:
nxn, dim(v)xdim(v), dim(e)xdim(w), and dim(v)*dim(e).
As a result, (2.45) can be written as:

K §+hv+h‘“+hv‘“+rg =7 (2.50),

where K =K (x)=[M(x) D(x)]and &=(p WJ)T. This is the favorable form for our
analysis. Henceforth, we are going to drop the (X) and (X,t) notations in K, h", etc. for
readability purpose.

Concerning the constraints on actuators’ capabilities, we only account for the following
speed and torque limits:

, Oi=1.m (2.51).

{|qu <™

|Z.|| < Z.imax

Based on these hypotheses, the subsequent section describes briefly the approach to
analyze the dynamic performance.

15 Function of pose, X, only.
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B- Brief Description and Mathematical Formulation

Suppose that based on the intended application, the machine tool must be able to achieve

simultaneously certain minimal isotropic requirements in: @, @, V, @, f,, and m,. Denote

them in corresponding order by: da,eq, dareq, dv,eq, da),eq, ‘ fereqr @nd drTL}reqlf‘, all of which

being positive scalars.

Then, we may define the specific dynamic isotropic values as means of dynamic assessment.

For instance, the specific isotropic linear acceleration, “a*, is defined as the maximal value of

iso 7
linear acceleration attainable by the robot regardless of direction, while allowing @, v, ®, f_,

and m, to reach their corresponding requirements in all directions. Similarly, we define the

specific isotropic angular acceleration, ‘a’, the specific isotropic linear speed, v, the

specific isotropic angular speed, ‘@, the specific isotropic force, * f?, and the specific

sp 16
iso *

isotropic moment, °

As mentioned earlier, in the general case of heterogeneous-dof robots, we can consider

some particular lower bounds for the specific isotropic values. These are denoted by: "a;g,

d,sp dysp d_, sp dgsp
aisol Visol S0 / feisol

and “m® . The computation of all these terms is done starting from

iso *

definition and considering the following system of relations:
K¢&+h"+h”+h™ +7 =7
g=J,t

2.52).
¢|< g™, Oi=1..m (2:52)

r|< 7™, Oi =1..m

Based on (2.52) and following the procedure detailed in Appendix B.1 and Appendix B.2, we
get the following compact forms for the different specific isotropic values (note that
val =a,a, f,,m, and vel=vw ):

1 le

16 The superscript “d” is used to indicate the case of dynamics as distinguished from kinetostatics, particularly for:
linear and angular speeds, external force, and external moment.
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O |f valq—>0 O, |f Valq+<0
val ~+
- val val +
IEi = kvj if valq <0 and kval IEi = kva| if valq+>0 and kval
o0, otherwise o0, otherwise
Valq— ==+ Sumcu min; (dvreq)z_ r?w)ini (da)req)2+20-r\1/1aa)>q dVreq dC’“)req_z-g
val + 2 w 2 A7)
lq _+T _Sumal Zma)q (d qu) _Zmax (da)req) _Zama, dVreq da)req_rg
Oi=1..m
and
dvelP > ve|3p—rr11|n( Veliﬂ, E Ve'E) with:
vel,, if *& <0, val # 0, and/ i =
g - vel,, if g <0, ¢y #0, andvd;,> 0
o, if ¥ <0,val = 0, and/ i, =0
0, otherwise
vely,, if *¥'g" 20, val # 0, and,;, = O
gt vely,, if “'g" 20, ¢y, #0, andvef,= 0
E £ ovel o+ _ vel _
o, if g 20, va| =0, and{,,,, = O
0, otherwise
_vel - va _\/ va 2+Zr\1/w?rl1. vel -
Vel(;i1=—q, vel., = L ( Ue| . 8
2Vall Zr\:ﬂni
e =" K g, + Mo M~ v -7
veIq _Vall+\/(V&|1)2+ r\:g)g vel +
Vel(;ril = ' Vegiz = el
2val, ¢ o
v q+ T'max - 1 ‘ fereq ereq_ Va!% -7 g
Oi=1..m
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o, otherwise

“val 2 ‘ag = mln(Kc,Va' E " E) with:
! If kv'zz < dvfeq (Or w|§g< %oreq)
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Table 2-2: The significance of the general terms used in relations (2.53) and (2.54).

Definition of the terms appearing in relation (2.53)
val sum,
a krlr da!req +‘ krife ‘ fereq+ kr:ne ‘ dmereq
a ks daTeq +‘ krife ‘ fereq krr,ne ‘ dmerec
fe k:“ daTeq + kra da,req+‘ krr,n dmereq
rne kl? daTEq + kr{ll ‘ dareq + krife ‘ ferec
Definition of the terms in relation (2.54)
vel val, val, val,
d 2 2
\" o-r\xgx a)req Zri)ini (da%eq) Zf?‘)aﬁ (da%EJQ)
d 2 2
w a-r\r/gx Vreq Zr\T/ﬁni (dvreq) Zr\r/m)q (dvreq)
with:
v = n}in(A), such that:
I1=1l..m
0,if a<0
A= & if Hjmpn #0anda =0
Hjmpﬁ , (2.55),
o , otherwse
a = Qimax _‘ jmoq da)rgq
Oi=1..m
‘el = min (B;), suchthat:
0,ifb<0
= L if |[] 0 andb = (
B = T " [Ine#0 and 2 (2.56)
o , aherwise
b =¢™ - jmpli dVreq
Oi=1..m
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and?’

v, =min(eiggH') . .¢%, = mak eigH)) Jo,

min :min(eigs(Hi‘") () ¢ max :max( eigiHiw) ()) di= 1m (2.57).
ando,., = max(sing(HiV‘"))

As for the significance of the terms val, sumy,, vel, val, val,, and val, in (2.53) and (2.54),

refer to Table 2-2. Also, for explicit formulae of specific isotropic values, they are given in
Appendix B.1.

Hence, we have established some particular lower bounds for the specific isotropic values in
dynamics. These lower bounds become the exact values in the following cases:

1. Homogeneous-dof manipulators;
2. Heterogeneous-dof manipulators with h*” =0 (uncoupled effect of Vv and w);

3. And heterogeneous-dof manipulators with dVreq =0or dageq =0.

We emphasize that knowing one of the specific isotropic values in dynamics is sufficient to
test for the fulfillment of all dynamic requirements. The same applies regarding the computed
lower bounds. For instance, we have:

d . sp d dy, sp d s
d.sp d aiso 2 areq ! Visoz ({/req ' a)is.ci))2 g4‘)req
N — (2.58).
__1s0 eq d fsp d dpnq SP
feiso 2 fereq ’ and meisoZ (h] ereq

Regarding design optimization or assessment, the roboticist can choose one or more of the
specific isotropic values, depending on his/her interest. Finally, a case study on DUAL V is
presented in Appendix B.3.

2.3- Cable-Driven Parallel Robots (CDPRs)

2.3.1- Few Words on CDPRs

CDPRs have been extensively investigated in the last decades, due to several merits as
compared to classical rigid PMs. Perhaps, the most intriguing of these features are large
workspace volume with respect to global machine size, design simplicity, low cost, high payload
to weight ratio, flexibility, and ease of reconfiguration. Also, having low moving inertia® allows
high dynamical performances to be achievable (e.g. the FALCON robot with a peak linear speed

17 Recall that eigs( Mat) and Sing(Mat) denote the lists of eigenvalues and singular values of the matrix Mat,

respectively.

18 Due to having only cables connecting the platform with the actuators instead of rigid limbs.
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of 13 m/ ¢ and peak linear acceleration of 43 g (KAWAMURA, et al., 1995)). Besides, most often

the wires can be considered massless and inextensible, which simplifies their modeling.

Yet, CDPRs are not without their own limitations. In particular, when cables become lengthy,
their mass cannot be any more ignored. Also, when high tension forces exist, the hypothesis of
inextensibility is no more justifiable. All these complicate the modeling of CDPRs, as sagging and
deformations are to be necessarily considered. Furthermore, as cables can only pull and not
push, the feasibility of a pose is not only dependable on length admissibility of the wires and
collision avoidance, but also on the possibility of having static equilibrium. Actually, the
problem of tension distribution in CDPRs is a non-trivial issue and one of the key research topics
in this field. This is not to mention the challenges that CDPRs present on the control level.
Additionally, CDPRs are usually characterized by poor precision and stiffness as compared to
rigid robots. The major sources of precision errors are the incomplete modeling, deformations,
and sagging of wires. These errors become higher with the increase of payload. For more
information regarding CDPRs, their state-of-art, applications, and advancements, the reader
may refer to (LAMAURY, 2013), (TANG, 2014), the articles cited here and therein.

This was a brief overview on CDPRs. It remains to talk a little about their classification.
Generally, we may distinguish three groups of CDPRs, namely the partially constrained, the fully
constrained, and the underactuated ones.

In the case of partially constrained CDPRs (e.g. (ALBUS, et al., 1993)), their functioning
depends on an external action such as gravity, which helps put all cables under tension. In fully
constrained CDPRs (e.g. (LAFOURCADE & LLIBRE, 2002), (KAWAMURA, et al., 2000)), additional
active cables are added to fully constrain the moving platform. As for underactuated ones,
these are characterized by having fewer active cables than the number of dofs of the end
effector, such as the Winch-Bot presented in (CUNNINGHAM & H. H. ASADA, 2009). These
latter CDPRs are beyond our scope. In fact, we only consider in the current report CDPRs having
M active cables and N controllable dofs such that m= n.

In what follows, we only deal with the kinetostatic and dynamic analysis of CDPRs following
the same paradigm used for rigid manipulators, but after doing the necessarily mathematical
reformulations. As for precision, though the methodology used for rigid robots can be adopted
here, it is unreasonable as control errors are not the primary source of pose inaccuracy. In fact,
regarding this latter issue, the other sources of error, such as elasticity and sagging, are more
worth to focus on.

2.3.2- Generalities on the Kinetostatics of CDPRs

Consider a CDPR with m active cables and n controllable dofs for the end-effector, such
that m= n. Then, the kinetostatic relations at a feasible pose and that are always available for
CDPRs are:
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4 4, A,

Platform's Weight: m, g

Fig. 2-8: A partially constrained CDPR with three dofs (2T-1R) in the vertical plane: x, zand ©
(rotation about y-axis) motion.

g=J,t (2.59)
and

w+J, =0 (2.60),
with all symbols carrying the same meaning as before.

As for the direct Jacobian, J, it is usually not available except in the case where we have
M= n, as in the case of the partially constrained CDPR depicted in Fig. 2-8. Such CDPR can
perform a planar motion (2T-1R) in the vertical plane and have the additional two equations at
a feasible pose:

t=Jq (2.61)

and
+J"w=0 (2.62),

with J=J.".
Other CDPRs with m> n have their forward kinematic and inverse static models given by:

t=J,,q with " | null( J7)]=0,, (2.63)

and
t=-J" w+[nuII(J;)] 2, A0R™"(quasi-arbitrary (2.64).

This case resembles redundantly actuated rigid manipulators. Yet, it is not quite the same. As

the cables can only pull, 4 is not fully but quasi arbitrary. This is due to the fact that 4 must be
T

chosen in such a way to have positive cable tensions, f, :(fCl fcm) . Thus, choosing

2 =0 asinrigid robots is not justifiable anymore.

In the case of statics, the positiveness condition of cable tensions:
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O<f™s<f <f™, Oi=1.m (2.65),
can be written in terms of actuators’ torques as below:
o<r™ <r <™, 0Oi=1.m (2.66).

This is since in statics, the cable tensions and actuators’ torques are related by ¥, a diagonal
matrix of positive entries'?, i.e.:

T=Y f (2.67).

As for the bounds 7™ and 7™ in (2.66), they depend on fq_mi", f.™, and the maximal torque

capacity of the i-th actuator for i =1..m.

Thus, with this basic knowledge, we can proceed with the formulation of the kinetostatic
analysis in terms of the operational twist and wrench.

2.3.3- Kinetostatic Performance Evaluation of CDPRs: An
Extension of the Approach Applied on Rigid Manipulators

In this section, we seek to extend the notion of kinetostatic isotropic values defined for rigid

manipulators into the realm of CDPRs. Regarding specific isotropic speeds, v’ and w®

iso (o4 they
can be computed exactly as in the case of rigid manipulators, since they depend on (2.59) and
the maximal speeds of the actuators, g™ (with i =1..m). This is valid provided the pose is

feasible. The formulae for these speeds are found in (2.40) and (2.41).

Therefore, it only remains to establish the mathematical formulation of specific isotropic
force and moment. For this purpose, we consider the two generic cases. The first case (A) is
having CDPRs with m= n, whereas the second one (B) is having CDPRs with m> n.

For both cases, we need first to decompose the external wrench, W, into two parts: the

T

T . . T
g) and non-gravitational w, = (fJ m7) external wrenches. In

gravitational W =( fg m
the case of suspended partially constrained CDPRs, the presence of w, is indispensable for the

functioning of the robot, whereas it is not the case for fully constrained ones. Thus, the study is
now transformed from W-space into the w,-space.

In all what follows, we assume that the demanded simultaneous minimum external force

and moment requirements are: f . >0and m, >0, respectively. So, how to calculate the

ereq

specific isotropic force f:* and moment m:? ?

eiso iso *

1% Note that to have ¥ with positive diagonal terms, we should choose the positive sense of actuator torque as to
generate tension in the corresponding cable.
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A- Specific Isotropic Force and Moment for CDPRs with Square Inverse
Jacobian Matrices

In this situation, the calculation is straightforward and almost the same as what we have
done for rigid robots, except that we need to account for w, and the modified torque limits

described in (2.66).

Considering the static model in (2.62) and replacing W by W, +Ww,, we get:
t=-3"w, +7, (2.68),

with 7, = =J7 W, . Then, the inequalities of (2.66) can be reformed as below:

z.min
i

S=jpo femiogm 7, <7, Oi=1.m (2.69),

where 7, is the i-th component of 7. Then, to calculate f:* when the static moment can

eiso
reach m,, in all directions, we need to rewrite (2.69) isolating the term containing f_ as

follows:

I™ + joo M—7, <=j i fsi™+jim ~r,, Oi=1.m (2.70).

e

Hence, considering each side of the double inequality of (2.70) in the worst case, we get

certain upper bounds on f, :|| fe” over the region described by m, :||me|| <m As this step

ereq*
is analogous to the already detailed one in the case of rigid manipulators, we directly provide
the result, which is:

fP = izmrinrln)(li", E') , with:

0, ife" <0 0, ifeg <0

_+=_q—+,if j..||#0 ande” = Q .‘:_q—_,ifj_;thn.‘z C

E ijq H H PG H 8 E ijq H H PG H & (2.71).
o0, otherwise o , otherwise

Q+ =7 - joq Myeq ~ Ty, € :_Timin_ joq Myeq + 7

Oi =1..(m=n)

Similarly, we get the value of mS;, to be:
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2,= min (H,H"), with:

iso —

i=1..(m=n)
0, ifh <0 0, ifh <0
P I 1 T . K 1l _
H'=3—, If |[lc|Z0andn 2 QH; =<{—— , if |[Jo.||# Oand) = (
™ — TR — (2.72).
o, otherwise o , otherwise
h+ = Timax _H J PG ‘ fereq - Tgi ! hi_ = _Timin _H J PG ‘ fereq + Tgi
Oi=1..(m=n)

Note that in (2.71) and (2.72), the terms qu and jOq hold the same significance as before?°,

As it can be noticed, only slight dissimilarities exist in comparison with the formulae of (2.42)
and (2.43). Now, it is time to deal with the more generic case, which is having m> n.

B- Specific Isotropic Force and Moment for CDPRs with Non-Square
Inverse Jacobian Matrices

For this case, we need to consider (2.59) after substituting w = w, + w, to have:
w=w,+w,=-J 7 (2.73).

Then, to be able to calculate 3 and m:®

eiso iso’

it is compulsory to get the operational wrench

zonotope boundaries based on (2.66) and (2.73). For this purpose, we implement the quite
efficient and quick method suggested by (BOUCHARD, et al., 2008). This procedure is described
in Appendix C. It yields the following system of inequalities describing the operational wrench
zonotope:

ne WS i, Wy, Ok=1...2n, (2.74),

with #, being the unit outward normal of the k-th hyperplane, w,, a point on this plane, and

2n, the total number of boundary planes.

The system of inequalities (2.74) can be rewritten under the following form:

ny fotm, motne wo<n W, Ok=1....2n, (2.75),

eiso

with #, being expressed as #, :(n;k ’7; )Tfor k:l...2np. Based on (2.75), the terms f3*

and m., are derived in a similar fashion as before to get the following formulae:

20 That is the i-th column vectors of J o (translational/positional part of J ) and J, (rotational/ orientation part of

J ), respectively.
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feb = min (@), with:
i=1.2n,
0, if g <0
% = H;’—H f o] %0 andg = Qri=1..2n, (2.76)
5
o, otherwise
¢i =']|T WOi _H”q H rnereq_”iT Wg' DI =1"'2np

and
Sp — H ) HP
me, i:rlr.]..'znnp(w')’ with:
0, if g <0
W = ﬂ, if |ny||#0andy; = Q0 =1.2n, (2.77).
o, otherwise
W= Wy _H”n‘ fereq_’7iT wy, Li=1..2n,

With this, we terminate the mathematical formulation of the kinetostatic performance
measures in the case of CDPRs. We emphasize that these measures admit the same properties
discussed in §2.2.3.C. As a summary, this extension of specific isotropic values, though have
necessitated some additional steps, still it is rather simple and computationally efficient. We
also highlight that although we have treated case (A) separately, still it can be approached as in
case (B) without any problem. This means that one can use the approach in (B) to evaluate all
CDPRs having m= n, with relatively no noticeable computational impact. In the following
section, we provide a case study on a fully constrained CDPR to further clarify the methodology.

C- Case Study: A Fully Constrained CDPR

In Fig. 2-9, we depict the fully constrained CDPR that will be analyzed in this part. It can
perform a planar motion (2T-1R) in the horizontal plane and consists of four active cables
connected to the mobile platform. Straight-line models of the tensioned cables are assumed,
while neglecting the deformation due to tension (so in this case, it is similar to a rigid robot
except that the cables must be under tension).

Here, the gravitational wrench is not included in the study, as it has no effect (i.e.

W, :(fgx fo ng)T =0). The cables are wound on reels of equal radii of value r, =0.1m,

and the actuated-joint variables are defined as follows:

ref _

' r

e
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Fully-Constrained CDPR with 3 DoFs (2T-1R) in Horizontal Plane

T T T
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- m PoF ooz ip '
0.5+ 5 g _ EETe 1
] ‘P {thg TCP) :
0.4} N WO ; e e .
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Fig. 2-9: A fully constrained CDPR with horizontal planar motion (2T-1R) (grey configuration
corresponds to zero rotation).

with L™ =0.71m for i =1...4 (i.e. positive rotation of the actuator winds the cable),
Xppa=~Xap3=0.5mM, ¥y, =—VY,,,=0.5m, and B B,B,B, a square of side ||Ble|| =0.05m
and center P=TCP (see Fig. 2-9).

The inverse Jacobian matrix is given by:
J,=J;3 (2.79),
with?!:
J, =-diag(r,,..r) , din(Jq) =4x4 (2.80),
n -n/(PB,xe)

J, = : , dim(J,)=4x3 (2.81),
n, -n, (PB,xg)

and n, the unit vector along AB, fori=1...4.

21 To derive Jq , J.,and J_, we assume that when ¢ >0, the cable is being wound on the pulley and thus, the
velocity of point A is in the opposite sense to n for i=1..4 . This means

v, =-rg=n"v, =n (v—( PBx¢g) 92) for i =1...4 and as a result, relations (2.80) and (2.81) follow.
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Table 2-3: The speed and static load requirements for the CDPR in Fig. 2-9*

Symbol Significance Value

qm Maximum Actuator’s Speed 550 rpm= 57 rad
™ Maximum Actuator’s Torque 127 N'm
rm Positive Minimum Allowed Torque 0.1r™

Vieq Required Linear Speed 0.65¢™r,
Weq Required Angular Speed 0.45¢g™

fereq Required Static Force Capacity O.5Tm5"‘/re
Myreq Required Static Moment Capacity 0.57™

*All actuators are identical. The positive sense of the actuator torque is that of the positive
sense of rotation that leads to shortening of the cable.

Sp - - Sp - -
viP/y =fct(x,y,0=0) misolmreq-fct(x,y,e-(l)

iso req

0.2

1.16
1.15

1.14

y (m)

o

1.13

02 1.12

U 02 0 02 04
x {m}) x (m)

1.1

P /f  =fet(x,y,0=0) mP fm_  =fet{x,y,0=0)
0.4

eiso " ‘ereq iso ereq

0.4
0.2 1 0.2

0

y (m)
y (m)

0

-0.2 0.4 -0.2

U 02 0 0z 04 ° U 02 0 0.2 04
X (m) X (m)

Fig. 2-10: Ratios of specific isotropic values to corresponding requirements for the CDPR in
Fig. 2-9.

For this study, we have considered the requirements regarding speeds and static force and
moment as given in Table 2-3. The plots depicting the specific isotropic values are shown in Fig.
2-10, as ratios relative to their corresponding requirements for the ease of comprehension.
Notice that the study has been done as a function of X and y, while maintaining d=0°.

Moreover, the satisfactory regions regarding kinetostatic requirements are shown in Fig. 2-11.
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Satisfactory Region Regarding Speeds
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Fig. 2-11: Satisfactory regions in terms of kinetostatic performances based on specific
isotropic values for the CDPR in Fig. 2-9.

It is worth emphasizing that the variation of performances of the CDPR along X and y

directions, for 8=0°, are not the same (see Fig. 2-10 and Fig. 2-11). This is due to the
asymmetry in the cable connections at the platform level (see the grey configuration in Fig. 2-
9). Also, it can be noticed clearly from Fig. 2-11 that the region in which the CDPR fulfills both
kinetostatic requirements in terms of twist and external wrench coincides with the wrench
satisfactory one (i.e. the region in the second graph of Fig. 2-11).

With this case study, we end the kinetostatic performance assessment of CDPRs. This
evaluation is sufficient as long as the intended application falls within the quasi-static field.
Aside from that, it is not enough and a dynamic analysis is necessary. This is the objective of the
upcoming section.

2.3.4- Dynamic Performance Analysis of CDPRs: An Extension of
the Approach Applied on Rigid Manipulators

In this section, we provide the reformulation of the dynamic measures introduced in §2.2.4
in order to deal with CDPRs. For this purpose, the DM should be written under the following
compact form?? (notice that friction is neglected here as in §2.2.4):

22 This is applicable to all CDPRs with m= n.
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KE+h"+h* +h” —w, =&y, with:
. _ T
K= M 1n><n ,é:: p ,W - Wgeq ,¢= ‘Jm Onxm ’y: T
1,3, O, W, o\ Wy, 1.. 7 f.
, t" H, t
h:hV+hV‘“+h‘”:{ C. }t: : ,
1,J .
t Hn+mt
(2.82).
H'(x) H"™(x
Hio=H (x)=|, o Oi=1..(n +m)
(H™(x) He(x)
h=h"(x,v)=(vI HYv - V' HY, v)T
h® =h‘”(x,w)=(wT HY o - o H;‘imw)T
h =h*(x,t)=(2v" H}* & --- 2vTH,¥‘+”mcu)T

In (2.82), M' =M (x ), C' =C'(X,t), Wy, = W, ,( X), and w, :( fr mT)T correspond to

e

the generalized inertia matrix, generalized Coriolis and centrifugal effects matrix, the total
gravitational wrench as seen from the platform, and the external non-gravitational wrench

acting on the platform, respectively. On the other hand, Ia=|a(X) and Wga:Wga(X)

represent the mxm diagonal inertia matrix of the actuators and the corresponding
gravitational wrenches acting on them due to their proper weight. The dimension of w_, is

mx1. Regarding Y’=Y’(X), it is the mx mdiagonal matrix that relates 7, §, and f_. As for

the other symbols, they hold the same meanings as defined earlier?>. For more details on the
establishment of (2.82), refer to Appendix D.1. It is worth emphasizing that (2.82) is similar to

(2.50) except for the term @&y, where @ is an (n+ m)><2m matrix. This difference

necessitates a slight modification that resembles what have been done in the case of
kinetostatics (§2.3.3.B).

Regarding the imposed constraints, we have:
G|< g™, Oi=1..m (2.83),

and

T T

T T
23 Meaning:p=(aT aT) =(\'/ a')T) (operational linear and angular accelerations), and '[=(VT wT)

(operational twist).
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Y <y < y™ Oi=1...2m
with:
[ itism (g™ ifism (2.84)
d _{fqr_”:‘, otherwise _{qu‘:x , otherwis
i =1...2m

To be able to acquire the specific isotropic values, or more precisely their lower bounds in
the most generic case, we need to determine the zonotope described by:

fo=dy (2.85),

and for the limits provided in (2.84). This can be easily done following the same method
suggested by (BOUCHARD, et al., 2008) and which is summarized in Appendix C. As a result, we
get the f,-zonotope expressed as:

uwofosy fu, Oi=1.n, (2.86),
with |, and f,, being the unit outward normal and a point belonging to the i-th hyperplane.

As for ng, it is the total number of hyperplanes that constitute the aforementioned zonotope.

Substituting f, =K &+h"+h™ +h” —w, in (2.86), we get:

(/,’f‘)T a+(/,’i“)T az+(ﬂife)T f +(ﬂi’“e)T m_ +v' I1'v (2.87),
+o' II” o+ V2T o<¢ - f3°

with:

B=(0K) B =0 h=v I, =y =0 o
IBivw:UiT h* =2v' m” o, 5° :_U'iT Wy, G = UiT foo
ms= % wHL "= % WH m"= % yH"’

j=1..{n+m) j=1.(n+m) = 1.(n+m)

H; * J]-th component ofjy

Oi=1.n, (2.88).

Based on the relations (2.59), (2.83), and (2.87), it is possible to assess the dynamic
capabilities. The derivation is similar to what has been described in Appendix B.1.

In brief, suppose that the dynamic simultaneous requirements are given by daTeq, dareq,

dVreq, dcqeq, ¢ foreqr @nd dmereq, with all symbols baring the same significance as before. Then,

we get the following compact formulation of the specific isotropic values, or their lower bounds
in the most generic case (note that val =a,a, f,, m, and vel= v,w):
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"val3 2 “valg= min (Kci) with (Ji=1..n, ):
0, if "g<0
P SP val
:{oo Ifot\r::r:\,,s:q fortzs dwreq)' '== | ivj , if LZO and| g # ((2.89),
oo, otherwise
g =6 =B =Sy~ (“Viea) i (W) 205 Vi ‘g
and
vl 2 *velip= min (“vel,* B ), with Qi=1..n, )
vel,,, if *'e>0, va]# 0, and( %, =
WE = vel,,, if *'¢20, £, #0, andve,2 0
— |, 'fEZO’ val =0, and(rvn'“;'xi =0 (2.90),
0, otherwise
i —vall+\/(val) +Zve| g
RERFTER iE
e =6 =4 ] ey 18] Crra 8| a7 Mg v,
with:

O :max( eigg 11" ()
« . =max(eigg/7°) .0 Oi= 1n, (2.91).
O e, :max( sing(IIiV‘”))

As for v and “@®, they

have the same expressions as given in (2.55) and (2.56),

respectively. Regarding the significance of the terms val, sum,, vel, val, and val,, refer to
Table 2-4.

Hence, the dynamic measures have been established for CDPRs. Despite the fact that a new
reformulation has been required to deal with their particularities, these dynamic measures are

still possible to compute or estimate analytically. Finally, to demonstrate the methodology, a
case study on a fully constrained CDPR is provided in Appendix D.
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Table 2-4: The significance of the general terms used in relations (2.89) and (2.90).

Definition of the terms appearing in relation (2.89)

val sumy,

a 1] @+ 85 *Ferea 7] M
a 18] ‘e + 18] ¢ fuea* 8] “Mere
fe 182] “aveq + 8] “@rea* [ B™]| “Mereq
m, 187 “aeq + 187 "o+ (8] * Foec

Definition of the terms in relation (2.90)

vel val, val,
vow d w @ d 2
\ Jmax req max, a‘?’eq
vow d \Y d 2
w Jmax Vreq max Vreq

2.4- Few Remarks

In all the kinetostatic and dynamic measures based on the notion of specific isotropic values,
we have these latter values always positive. This positiveness is imposed by definition. More
precisely, a specific isotropic value is the maximum attainable norm of a vectorial quantity in all
directions, while allowing other vectorial quantities to reach their minimum required norms
irrespective of their directions. Nevertheless, for the purpose of optimization, we can ignore

the test on positiveness. For instance, V> in kinetostatics can be computed as follows:

Vio =min((A). with:
Hi it [ #0
mpr -
A%, it | impe| =0 anda <0’ J=tm (2.92)
+00, otherwse
& =G = Jmoq | @eq i =1..m

regardless of having @ positive or negative. With the form given in (2.92), the optimization

problem defined by:
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Actuator Limits

Torque

Zone 1 Zone 2

Speed

Fig. 2-12: Actuator limits illustration.

r@ax(xég\i/vns(v;‘;(x ,fg))) , With:

(2.93)
vgg(x,é‘g): Vo at pose  and geometric parameggr

is easier to do in comparison with initial definition given in (2.40).

Additionally, in all the presented dynamic evaluations, we have considered the actuators’
speeds and torques to be independent. This is implied by using:

. S .max
:q||< qmax, Oi=1..m (2.94).
hisT

Such region corresponds to “zone 1” in Fig. 2-12. However, the more general case is to have the
actuator limits bounded by several segments, like the case of considering the union of zones 1
and 2 for instance (see Fig. 2-12). This latter case can be generalized as follows (for
Mactuators):

o} . .
5 [rjséf g Oi=1.m,0j=1.n, (2.95),
I

with g; representing the unit-outward normal of the j-th limiting segment, ¢, being a point
on this segment, and May corresponding to the number of limiting segments for the i-th

actuator.
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These general limits in (2.95) can be easily accounted for in the dynamic study. Yet, we do
not recommend it, especially if the region where the speed and torque are independent
constitutes a large proportion of the global available one.

Another worthy point to mention is concerning the acceleration limits imposed on the
actuators. So far, we presumed there are no restrictions in this matter. Nonetheless, it might
not always be the case. Actually, if limits exist, they can be directly utilized or after some
simplification. In particular, if the limits are constants or pose-dependent, then their

incorporation is a straightforward problem. It is done through considering =J, p +Jm t, and
the inequalities |q'i| < g™ for i =1..m. Aside from that, it might be more complex and/or time

demanding.

2.5- General Guidelines and Recommendations for the
Design Optimization of Machine Tools

Thus far, we have presented several performance indices related to precision, kinetostatics,
and dynamics. But how to optimize a given design based on one or more of the aforementioned
criteria?

In fact, while the approach is straightforward for single criterion optimization, it is more
debatable in the case of multi-objective one. In this latter case, several methodologies exist in
literature. These can be classified into two main categories (UNAL, et al., 2008): scalarization
and Pareto methods.

Scalarization addresses the multi-criteria optimization problem in an indirect manner,
through altering it into a single or a series of single objective problems. As instantiation on this,
we mention the hierarchical optimization approach (HAYWARD, et al., 1994), the sequential
optimization technique ((ALICI & SHIRINZADEH, 2004), (RISOLI, et al., 1999)), the probabilistic
weighting strategy (MCGHEE, et al., 1994), the use of composite index (LEE, et al., 2001), etc.
Nonetheless, such methods possess the inherent detriment of requiring preferences or weights
to be determined apriori; i.e. before the results of the optimization process are actually known.
Since assigning proper weights or prioritizing different criteria is a problem-dependent and a
non-trivial task, these techniques fall short of providing a general framework to the design
process.

Therefore, we do not recommend such approaches. Instead, we suggest the Pareto-based
methods. These incorporate all performance criteria within the optimization process and
address them simultaneously to find a set of non-dominated solutions in the objective space
(UNAL, et al., 2008). Once the hypersurface resolving the design trade-offs is obtained, an
appropriate solution can then be selected. Such techniques are transparent, highly efficient,
and do not require high expertise. As examples on this approach, we mention the works of
((KREFFT & HESSELBACH, 2005), (COURTEILLE, et al., 2009), (UR-REHMAN, et al., 2010)), and the
recent dimensional synthesis we have done on ARROW V1 (SHAYYA, et al., 2014b), which will
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be discussed later in Chapter 3. Finally, we point out that in the case where the number of
objectives is greater than three, there are some tools that can help visualize the solution sets,
such as the use of parallel coordinates for instance (INSELBERG & DIMSDALE, 1990).
Nevertheless, it is always favored to keep the number of the criteria as low as possible.

2.6- Conclusion

In this chapter, the performance evaluation of general manipulators has been addressed
from non-classical perspective. It has been founded on newly suggested precision, kinetostatic,
and dynamic measures that overcome two main predicaments: redundancy and heterogeneity.

Among the prominent features of the approach, we recall the following: applicability to
different types of robots (whether of rigid or cable-driven nature), embracing physical
significance, computational simplicity, and direct relation with the needs of roboticist, engineer,
or end-user.

Furthermore, some refinements concerning these measures have been emphasized, and
general recommendations on the design optimization have been made.

In the next chapter, we present some synthesized parallel architectures, the dimensional
synthesis of two of them, and the manufactured ARROW prototype.
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and ARROW PKM

In this chapter:

In this chapter, few novel architectures, among the synthesized PMs, are discussed. These
include mechanisms with five and four dofs of respective 3T-2R and 3T-1R nature. Their
exposition embraces: geometric and kinematic models, singularity analysis, and workspace
evaluation. Moreover, the dynamic models of two of them are detailed, and their
dimensional syntheses are presented. In particular, only one of the suggested architectures is
considered for implementation. The practical execution procedure and its required
modifications are detailed, and the eventual ARROW PKM is exposed.
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3.1- Introduction

In the quest for rapid and precise PKMs, several essential points must be considered, starting
from the architecture itself, passing through the manufacturing procedure, and ending with the
control approach. These three points are not completely separable and one can influence the
other, especially the first two. This will become clear when we discuss the prototyped PKM.

Concerning the architecture, certain requirements are to be met. These are derived from the
targets of the ARROW project that can be summarized as follows: large singularity-free
workspace, high tilting capacity, performance homogeneity over the workspace, design
simplicity, and rigidity.

As for manufacturing procedure, the execution of each joint, especially the complex ones
(e.g. universal and spherical joints), must be carefully thought of. This consideration should
assure maintaining high stiffness and minimizing clearances, as they are indispensable for
having a precise machine. Furthermore, the quality control of the manufacturing as well as the
assembly of the different components is necessary. It not only aids in having a machine with
good initial performances, but also permits future enhancements or refinements, via geometric
calibration for instance.

Regarding control, it is indisputably of great prominence. In fact, having a good architecture
but with poor control will eventually lead to a poor-performance PKM. As a result, control can
be the weakest or the strongest point in any machine tool. Nevertheless, this point is beyond
the scope of the current thesis.

For our intended PKM, it should be capable of performing any machining task, although the
main target applications have been the contactless ones, such as laser cutting and the alike.
These latter applications are among the potential candidates that usually demand or benefit
from rapidity, in addition to precision. Nevertheless, all these applications do not require more
than five dofs of 3T-2R nature. These dofs can be achieved by various means, for instance: one
parallel structure (complex or fully parallel), left-hand right-hand paradigm (i.e. branched
structure), or series-parallel hybrid design.

In our case, we have focused mainly on implementing left-hand right-hand paradigm, in
which a four-dof (3T-1R) PM is equipped with a one-dof (1R) turntable. However, this does not
mean we did not consider five-dof (3T-2R) solutions. In fact, we have synthesized some five-dof
mechanisms, among which is MachLin5 described in (SHAYYA, et al., 2014a).

In this chapter, we do not intend detailing all the synthesized mechanisms, but rather
discussing the most prominent ones for the sake of compactness.

Finally, the current chapter is organized as follows. First, the five-dof (3T-2R) mechanism,
namely Machlin5, is presented. Then, the study of two simple four-dof (3T-1R) PKMs, called
ARROW V1 and ARROW V2, follows and some of the mutated versions of ARROW V2 are
described. In particular, the mutated version ARROW V2 M2 is ultimately implemented after
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some detailed analysis and verifications. Eventually, the chapter is concluded by re-emphasizing
the substantial aspects.

3.2- MachLin5: A 5-DoF (3T-2R) Parallel Mechanism
with Articulated Platform

Having a PKM with all its desired dofs embedded in one parallel structure has its rewards, as
compared with the generally referred to hybrid machines, those implementing series-parallel
design or left-hand right-hand paradigm (branched structures). In fact, series-parallel
architectures (e.g. Tricept in Fig. 1-25, Exechon in Fig. 1-26, Sprint Z3 in Fig. 1-27, Hermes in Fig.
1-28, Dumbo in Fig. 1-29, etc.) are not a recommendable choice, as they often possess
increased moving masses due to having additional actuators on the platform. Thus, not only
their dynamic performance is impaired, but also their global precision and stiffness.

On the other hand, branched-structure mechanisms (e.g. P 800 in Fig. 1-24, VERNE in Fig. 1-
31, HITA-STT whose parallel module is shown in Fig. 1-32, etc.) are more favored than series
parallel designs since they overcome the latter’s aforementioned downsides. But depending on
the design itself, it might be less flexible. This is due to the possibility of introducing challenges
regarding control and motion planning. This is not to mention the calibration-related issues.

Based on the above, we have been motivated to investigate PMs with five dofs (3T-2R) in a
first step. Knowing the inconveniences of similar PMs reported in literature (see Chapter 1), we
attempted to synthesize new ones that overcome the former limitations. The result has been
few novel architectures, among which we are going to present the most intriguing one, called
MachLin5. A simplified CAD of this PM and a close-up view of its articulated platform are given
in Fig. 3-1 and Fig. 3-2, respectively. The graph diagram is provided in Fig. 3-3.

3.2.1- Description

The PM consists of five linear actuators along the same direction ( X-axis). Thus, the motion
along X is independent of the other dofs and only restricted by the available stroke length for
the actuators. Regarding the platform, it is an articulated one and consists of two parts, which
are coupled by means of translation-to-rotation transformation system.
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Chain (I1I)

(M, ] —Moving frame connected to 1st part of the platform
(green colored) and has it origin at C

[Mf ) — Moving frame connected to 2nd part of the platform
(blue colored) and has it origin at P=TCP

Y-axis for (M,) and (M, ) is perpendicular to the plane of

the figure

Fig. 3-2: MachLinb5: the articulated platform.
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Fig. 3-3: MachLin5: graph diagram.
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The functioning of the mechanism is straightforward. Chains (lll) through (V) cooperate to
position the segment B,B;, which remains always vertical thanks to the constraining

parallelograms. Then, chains (1) and (ll), together, control the two rotational dofs: 8, about the
z-axis of the base frame, and &, about the y -axis of the tool frame (|\/| f ) . This is done thanks
to the rack-pinion mechanism shown in Fig. 3-2, which by fixing the distance from B, = B, to
B,B;and rotating it, controls the first rotation ,. As for g, , it is controlled by moving the rack,
which then turns the pinion an angle proportional to the latter’s displacement. Hence, the TCP

position and the tool orientation are controlled.

It is worth mentioning that we have used a rack-pinion assembly here to simplify the
analysis. In general, it can be replaced by any rigid linear-to-rotational motion transformation
system. In such a case, the transformation device should not admit any singularities within the
required range of rotation for g, which is +45°.

Thus, we have a PM characterized by a large workspace and a tilting capacity that can reach
+90° for 6,, and +45° for 6, . These rotational capacities are usually sufficient to perform five

face machining and similar tasks.

This has been a general description of the MachLin5 functioning. In what follows, we
emphasize the following essential technical remarks:

1. The S (spherical) joints can be achieved by using three concurrent revolute joints. This
helps in overcoming the limited rotational capacity in the case of commercial
counterparts.

2. The three S-joints at B, can be vertically spaced instead of having them coincident,

which is difficult to implement. Thus, we can consider a common S-joint for the lower
rods of the parallelograms, and another one for the fifth kinematic chain.

It then remains to give the general geometric designations used in the modeling process.
Some of these symbols, particularly a, b, c, Mo and t,, are depicted in Fig. 3-2. The rest are
defined hereafter:

* L :the length of the i-th chain for i =1...5, with L, =L, and L, =L,;

T T . .
 A=(x ¥ 7)=(a y 2 0OFLEwth -y=y,=L,, -y,=y,=L,,
y.=0,2z=2=1L,, 2z=2=0, z=-L,, and where A, and A, correspond to the
coordinates of points A, and A, situated on the imaginary mid-axes of the
parallelograms (l11) and (IV), respectively;
« B=(% W % )T ,0i=1...8and where B, and B, correspond to the coordinates of

the points B, and B, situated on the imaginary mid-axes of the parallelograms (1) and

(IV), respectively;
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P =(X y Z)T, 0 2(92 Hy)T, and X =(PT 0T)T: the TCP position, the orientation
vector, and the robot pose, respectively;

* g :(COS(HZ) sin4,) ()T:the unit vector along the X-axis of the frame (M, ) ;

e & = (—Sin(Hz) cogd,) ()T: the unit vector along the common Yy -axis of the frames
(Mi) and (Mf);

. le[ez 03x1] and Q:[eZ ef];

. RZ:ROQ(HZ) , R, =Rot, (Hy), and R=R R, , with R representing the rotation

matrix of the frame (|\/| ; ) with respect to the base;

m

« N=(x, Yy 2z)'and N" :(X,T v ZN)T: the coordinates of some point N in
the base frame, and in the frame m= M,, M,, respectively;

e v =P:thelinear velocity of P=TCP;
s =20 and ©=920: the angular velocities of the first and second parts of the

platform (i.e. frames (Mi ) and (M ; ) ) with respect to the base frame, respectively.

Finally, to simplify the analysis, we assume that the points B, = B, and B, are confounded
(i,e. B;=B, = B,). As for the real vertical offset ||B,B; |.,;, it can be accounted for by the

proper adjustment of the z-component of point A..

Having clarified the principle of functioning of the current PM and the different symbols that
will be used in modeling, the next sections are dedicated for the establishment of the diverse
geometric and kinematic models. These are then followed by singularity analysis, and
workspace and kinetostatic performance evaluations.

3.2.2- Inverse Geometric Model (IGM)

Obtaining the IGM is quite simple in the case of PMs, and this mechanism does not form an
exception. Knowing the end-effector pose, X, the coordinates of C and D, the contact point
between the rack and pinion, are obtained via:

C= F>+F\’CMf (3.1)
and
D=C+r, € (3.2),
where C"' and r, are given (refer to Fig. 3-2).
AsC, D, 6, and ¢, are all now available, then the coordinates B, (Dj :1...3 can be
easily derived as follows:
B,=B,=D+r, 6,6 +(c-1,) ¢ (3.3)
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and
B,=B,=B,=C+R B)" (3.4),
where B} =B}" =B" are all known.

Then, it remains to get the X-component of the points A (Di :1...3. This can be done

utilizing the following relation:
ABZ=1L% 0i=1..E (3.5),

which after development yields:

q=x=xtC~(y - y) ~(7-2°0F1.5 (3.6).

Only one solution of (3.6) is acceptable depending on the assembly mode. In our case, we
consider the assembly mode described by the following condition:

G =% <X, 0i=1..5 (3.7).

Consequently, the solution is:

Qi:X:)Si_\/ls_(ybi_Y)z_(é - iZ)Z’D F1.5 (3.8),

and hence, the IGM of the mechanism has been derived.

3.2.3- Direct Geometric Model (DGM)

While the IGM is always computable for PMs, DGM is most often difficult to establish.
Fortunately, here we can derive the DGM analytically with ease.

Knowing the joint positions, , the coordinates A, (Dj :1...5) are available. The first step is

then to compute B, (Dj :1...5) . For this purpose, we need to consider the following system of

equations:
ABI =L
A,BZ =12, with:B, =B, =B; (3.9).
ABg =Lg

The system (3.9) can be translated geometrically as the intersection of the three spheres
centered at A,, A,, and A, and with respective radii L, L,, and L. This is a classical

mathematical problem, which can be easily solved. Therefore, we omit the details. In general,

we get two possible solutions, say: BS' and BS”.

As B; is known, then the z-component of point B, = B, can be determined by:

Zn =4, = %3"'( c- l) (3.10).
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Hence, two solutions exist in correspondence to BS" and BS”. Let us denote them by: z and
z>. Then, obtaining the remaining components of B, = B,, namely X, = X, and Y,; = V,,, is
done by considering the following system of equations:
AB; =L
{AZBS =L

The solution of (3.11) is geometrically described as the intersection of two circles in the

whereB, =B, (3.11).

horizontal plane defined by z= Z,. For each solution of 7, we obtain two possible solutions
for the coordinates B, =B,. For z, = Z. , we get B and B**. Similarly for z, = 727, we
have B** and B*.

Hence, there are four possible solutions described by the set SZ{Sl, S, S, S} , with:
s =(B,BM), S,=(BB*), S,=(BZB), and S,=(B%,B%) . Among these
solutions, only one satisfies the assembly mode condition described by (3.7). Thus, we obtain
B, =B, and B, =B, = B.. It remains to compute P and 6.

Defining n = (/7X n, O)T = B3Bl—(B3BlT ez) e,, the value of g, is obtained by:

6, =atar2(17,.1,) O]-75;+7] (3.12).

Knowing R, =Rot,(8,), we get:

C=B,+R B,C" (3.13)
and
D=C+r, g (3.14).
Consequently, Gy and P are computed by means of the following relations:

(DBl—(c—rp)ez)T e,

'y

y

(3.15)

and
P:(X y Z)T:C—RCMf (3.16).

Hence, the pose x=(x y z & Hy)T is obtained, and the DGM is analytically

z

established.

3.2.4- Kinematic Model

This section is dedicated for the derivation of the kinematic model of the current robot, i.e.
the relation between ¢ and X. This can be easily done by following the classical approach.
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The first step is to obtain the velocities of all points B (Di :1...3 in terms of X. These are

given below as:

0i=1,2:
Vg =V, +@,x DB = v+wx PD+w,x DB (3.17)

=v-PD20-DB, 0,6 =1,, -(PD2+DB 2)|x
and

=3,4,5:

. (318).
Ve =\ +0,XCB = v+@x PCra,x CB=[1,, -( PCe+CB )|

Then, as AB is a rigid body, the projections of the velocities Va of point A and Vg of point B

along AB are equal, for all i =1...5. This can be written as:
AB' V, = AB' Vg, Li=1..5 (3.19),
with v, =¢ ¢ (0i=1...5.

The development of (3.19) after substituting (3.17) and (3.18) gives the following relation:

J,4=J, X (3.20),
with:
J, =diag(n/ e, .1 &)
an —an( DQ+DB, Q)
n; -n;(PD0+DB, )
J,=|n] -n}(PCo+CB, ) (3.22).
n —n}(ch+CB 9)
n5T (PCQ+CBSQ)
=AB, 0i=1..5

Based on the relation (3.20), we have the following inverse and direct kinematic models,
denoted by IKM and DKM respectively:
IKM: g=J,, % with J, =J."J (3.22)
and
DKM: x=J ¢, with: J=J"=J."J, (3.23).

The relations (3.22) and (3.23) are valid provided that J, and J, are non-singular matrices.
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Having established the kinematic models, we can proceed by investigating the singularity
status of MachLin5 machine.

3.2.5- Singularity Analysis

In the case of PMs, there are various singularities to investigate and usually it is not sufficient
to consider the input-output kinematic relation, as previously discussed in Chapter 1.
Fortunately, this mechanism and due to its particular features, it is possible to carry its
singularity study in two simple independent steps.

The first step is characterized by the study of constraint singularities, whereas the second is
concerned with the classical ones, i.e. those based on the kinematic relation expressed by
(3.20).

A- Constraint Singularities

In §3.2.1, we have discussed the principle of functioning of the mechanism. Particularly, we
have explained that its functionality is held on the premise that the pair of parallelograms
fulfills its intended role; i.e. as long as the chains (lll) and (IV) constrain the two undesired
rotations of the first part of the platform. Hence, a constraint singularity exists when this latter
condition is not satisfied.

Actually, this singularity occurs only in the case where the two parallelograms are collinear.
Due to the assembly mode condition (3.7), it dictates having A383//A484//ey. Consequently, we

should have:
2 Ly2 =L, +L, (3.24).

This singularity can then be coined as an architectural one, since it exists for a particular set
of geometric parameters (those satisfying (3.24)).

Nevertheless, this singularity is prevented by construction, as we have L;+L,>2L,. In
fact, having 2L, =L, +L, renders the robot useless, as the y and z components of B, =B,

remain fixed.

In brief, the PM does not admit any constraint singularity provided that L, +L, >2L ,,

which is satisfied by construction. Therefore, there is no possibility for an instantaneous
increase of mobility.
B- Series-Type Singularities

These occur in the case where J (in (3.20)) is rank deficient, i.e. det(Jq) =0 As J,is a

diagonal matrix, then this singularity occurs if:

det(J,)= 0~ 0,0{1,....§ ;n/ e, = 0= n, Og (3.25).

100



Chapter 3: The Novel Synthesized Architectures and ARROW PKM

Based on (3.25), series-type singularity occurs when one or more of the arms are completely
stretched in the yz plane. This occurs, therefore, on the boundary of the geometrically

accessible workspace and forms no problem.

C- Parallel-Type Singularities
These occur when J, (in (3.20)) is rank deficient, i.e. det(JX) = 0. To derive the singular

configurations, we proceed by performing some linear operations on J, .

Adding (an (PCX ez) ~oong ( PCx Q))T (linear combination of the first three columns of

J,)and (an (PCxeg) - ni(PCx e))T to the fourth and fifth columns of J respectively,

we obtain the matrix T, of same rankas J,. T, is given by:

n, -n/ (C/:\DQ+ DB, Ql)
~ - n r,éne r nel
n, -n, (CDQ+ DBzgl) an rp 9y an ef rp :# ®
o 2 p Yy "2 ~f p 2 ew
T,=|n] -n] (CB3 Ql) =|n; -an]e, 0 (3.26).
—~ n, -an,e 0
n, -n, (CB4 Ql) . M
- n;  -ang e 0 |
n -n; (CB5 Ql)
Again, adding (a n e - an g )T to the fourth column of T, simplifies the latter into
T, that admits the same rank as T, and J, . It is given by:
'n/ (a+r,8)nfe, 1, g]
n, (a+r,6,)nje, r, Mg
T,=|n] 0 0 (3.27).
n, 0 0
| ng 0 0 |

The study of rank deficiency of J, can then be partitioned into investigating the singularity

of two simpler matrices: TS, and TS, . These are defined hereafter:
TS, =[n, n, nJ', dim(TS,)=3x3 (3.28)

and

(a+ o gy) n e o n & dim(TS ): 2x 2 (3.29).
(a+r,8)n;e, r,m gl ?

J, is rank deficient when TS, or TS, is singular. Starting with TS, its singularity mandates

X

TS, =

having the three vectors n,, n,,and N, coplanar. Due to the assembly condition (3.7), this
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cannot happen unless the aforementioned vectors are in the yz plane and hence, being

confounded with series-type singularity as well. Therefore, it is only possible to occur on the
boundary of the geometrically accessible workspace and does not form a problem.

As for TS,, developing its determinant yields:

det(Ts,) =(a+r, 6,) (n, b, -1, n) (e, & -8 &)

(3.30),
=-(a+r,6,)(n,n,-n, 0,

where vect and vect designate the X and y components of vector vect, respectively. Since
a and r, can be chosen in such a way to have ‘a+l’p Hy‘>0 for 8, 0[~71/4;+m/4], then it
remains to investigate the expression expr= (n1X n,—n, an)- The term expr is null when the
projections of n, and n, in the Xy plane are collinear. But due to condition (3.7), this is not

possible unless N, and n, are in the yz plane, which implies coincidence with series-type

singularity. Therefore, such singularity is only possible on the boundary of the workspace and
consequently non-problematic.

In conclusion, we have seen that parallel singularities can exist, but confounded with series
type ones, which are restricted to the boundary of the geometrically accessible workspace.

D- Results’ Briefing

Based on the above analyses, MachLin5 is free of singularities of all types over the accessible
region excluding its boundary. This highly prominent feature makes the current mechanism
stand out, as compared with those available in literature.

3.2.6- Workspace and Kinetostatic Performance

As the essential steps of modeling and singularity investigation have been done, the current
section presents the workspace analysis for some values of the geometric parameters. These
values are provided in Table 3-1 and do not represent an optimal solution with respect to any
criterion.

Since the X-motion is independent of the remaining dofs, only the workspace region in

terms of yand z will be investigated, for §,=6, =0° on one hand, and for |6?Z|S90° and

‘Hy‘ < 45° on the other.

As for the performance indices, we consider the following measures:
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Table 3-1: Geometric parameters of MachLin5.*

Geometric Parameter Valuel® Geometric Parameter Valuel®
L,1=1.%t 1 Lyl:Ly2 05
L,, 0.3 L, 05

a 0.1 b 0.087¢

C 0.12¢ r 0.02t

t, 0.07¢ t. 0.017¢
t, 0.2 (WAl values are expressed in meters (m).

*The parameters t. and t, correspond to the minimum offsets from the sliders’ planes in

case of zero rotation (i.e. &,=6 =0°) and full range of rotations (i.e. |¢92|590° and

‘Hy‘ < 45°), respectively.

FVIh : YZ Accessible Region (eZ s ey : Full Range). Area = 0.5436 m.

FVIh : YZ Accessible Region (9z = ey =0°). Area = 0.78681 m?.
T
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Fig. 3-4: MachlLin5 - FVI, performance: case of zero rotation (left) and case of rotation (i.e.
|6,/ <90° and |6, | < 45°) (right).

* FVI,: We compute FVI, at each pose, after homogenizing J, and J using the matrix
W :diag(l,l,la tp). The aim is just to have some insight on singularity performance
only. We recall that no kinetostatic significance is being sought from this study. We have

= O

homogenized linear speed and static force.

h _
and freq =Ty s

set V"

h h . ..
feq where V., and f_ are the required minimal
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Fig. 3-5: MachLin5 - V2, performance: case of zero rotation (left) and full-range rotation

(right).
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Fig. 3-6: MachLin5 - f.” performance: case of zero rotation (left) and full-range rotation
(right).
* v and frl:Here, we are more interested in quantifying pure translational motion and

pure static force capacities, as we usually have the requirements regarding rotational
motion and static moment less demanding. That is why we limit the kinetostatic study to

Vb, and fo. For this study, we have set the following requirements: v, = ¢, and
p —
freq - Z.max'

vP and f.?, the results of their

iso iso’

The analysis based on FVI, is summarized in Fig. 3-4. As for

analyses are plotted in Fig. 3-5 and Fig. 3-6, respectively. In all these figures, we clarify the
following points:
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* The black-dotted box represents the yz projection of the robot’s physical limits (i.e.
vertical walls, floor, and ceiling).

* The vertical solid red lines represent the limits that should not be exceeded by the TCP
to avoid collision with the sliders’ planes.

* Finally, in the graphs with rotation, the plotted values are obtained as follows. For each
(Y. 2) position, several values of &, and &, are assumed and the value of the indices

FVI,, v5, and fl are calculated. Then, the worst value (minimal one) is associated

iso iso

with the corresponding (y, z) position. The angles  tested are:

g,=+(90°,60,45 ,30 ,9) and §, =+(45°,30,0).

Analyzing the results of Fig. 3-4, we can clearly notice the performance degradation (low
value of FVI,) near the boundary. We can also notice that while FVI, smoothly varies within

the geometrically accessible regions, it steeply goes down just in the very narrow vicinity of the
boundary. This is due to the presence of series or parallel-series type singularities, as discussed
in §3.2.5. On the other hand, we can notice, based on Fig. 3-5, an interesting isotropic linear
speed capacity that surpasses 50 % of ¢, over a large proportion of the workspace.

Regarding f° /7., though not as high as what we had in the case of V% /¢, still it is rather

1ISO
fairly well surpassing 18 % in vast proportion of the workspace. Here, the reader must keep in

mind that the geometrical parameters are not optimized and the values being discussed are of
isotropic nature.

3.2.7- Synopsis

In this part (§3.2), we have studied a novel five-dof (3T-2R) PM, in which we have derived all
of its geometric and kinematic models, investigated its singularities, and analyzed its
workspace. The results have revealed that this mechanism has the following interesting
features:

1. The design is quite simple and easy to model. In particular, it admits an analytical DGM,
which can be helpful regarding control. Also, several options are available that can
simplify it further, particularly in what concerns the spherical joints and their execution.

2. It admits vast workspace with interesting tilting capacity, and independent X-motion.
Also, the design is characterized by the absence of singularities of all types within the
geometrically accessible region excluding its boundary.

3. Its singularity and kinetostatic performances over the workspace are interesting. They
are subject for further improvement upon the optimization of its geometric parameters.

4. Having all the arms under tension/compression forces means reduced deformation and
consequently, better accuracy.

5. The design, being non-redundant, does not compel any special treatment on the control
level.
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6. The possibility of replacing the rack-pinion assembly by a more rigid linear-to-rotation
transformation mechanism helps improving the structural rigidity. This also benefits
precision.

Nonetheless, having five sliders with independent guides situated in two planes and along a
line is not favored. This is because it will necessitate more severe quality control, such as
assuring the surface parallelism and orthogonality on one hand, and the parallelism of the
linear guides on the other. Moreover, having an articulated platform is another weak point in
the current mechanism. In fact, it has been a discouraging factor, especially after our
observation regarding the precision of Veloce prototype and Quattro, with their articulated
platform versions.

Therefore, as it seemed rather difficult to have a five-dof architecture embedding all the
yearned for characteristics, among which is platform rigidity, we have diverted our attention
towards four-dof PMs. Among these PMs, we focus in what follows on two main designs, called
ARROW V1 and ARROW V2. In particular, ARROW V2 can be considered as an advancement of
ARROW V1. This will become clear as we go through.

3.3- ARROW V1: A Redundantly Actuated Four-DoF (3T-
1R) Parallel Manipulator

This section is devoted for discussing the four-dof (3T-1R) PKM, namely ARROW V1 (an
acronym for Accurate and Rapid Robot with large Operational Workspace Version 1), which has
been the subject of ((SHAYYA, et al.,, 2013a), (SHAYYA, et al., 2013b), (SHAYYA, et al., 2014b)
and (SHAYYA, et al., 2014c)). The CAD of the PKM and its graph diagram are provided in Fig. 3-7.
Also, the frontal and close-up side views of the PKM and its platform are depicted in Fig. 3-8.

In the upcoming subsection, a brief description of ARROW V1 and its principle of functioning
are provided.

3.3.1- Description

ARROW V1 is a redundantly actuated PKM consisting of six linear actuators for four dofs of
3T-1R type. The actuators are aligned along the same direction ( X-axis) and partitioned into
two sets. Each set consists of three actuators, equidistant one from another, and laying in the
same vertical plane. The PKM is structurally symmetric, which is highly favorable from industrial
and manufacturing perspectives. Besides, the parallelism of its actuators contributes to the
independent motion along the X-axis and therefore, having a vast workspace. Moreover, it is
capable of performing +90° about the z- axis, which constitutes one of the significant merits
of the design.
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Platform

Chain (IV)

B1,=Ba

Chain (V) Chain (V1)

As

Fig. 3-8: Frontal view of ARROW V1 PKM and close-up side view of its platform.

The principle of functioning of the mechanism is quite simple. The pair of parallelograms (i.e.
chains (lll) and (IV)) constrains all rotations except that about the z-axis of the base frame.
Then, all the chains cooperate to position the TCP and control the tool orientation. But for the
mechanism to function properly, it is mandatory to have L, # a (see Fig. 3-8). In practice, L, is

chosen to be larger than a. This condition and its importance will be clarified later.
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Finally and before presenting the modeling of ARROW V1, we mention that the symbols that
we are going to use are clarified in Fig. 3-8. Also, notice that L, designates the i-th arm length

foralli=1..6,suchthat L =L,=L,=L =L, and L,=L,=L,.
3.3.2- Inverse Geometric Model (IGM)
As the design is simple and its modeling is similar to that of MachLin5, we are going to omit

redundant details. Given the end-effector pose X:(x y z HZ)T, then the coordinates

P=(x y 2 of P (the TCP) and the rotation matrix R=Rot, (8,) of the platform are all

known. Thus, the coordinates B, of points B (Di = 16) are computable via:

B =(% W %) =P+RB™ Di=1.6 (331),

where B"™ corresponds to the known coordinates of B in the frame connected to the moving

platform. Then, substituting (3.31) in the following relation:
AB? =L? 0i=1...6, with:

T T i
A=(x y z)=(a v 2. y=(-D [\

L, ifi=12 (3.32)
z =10, ifi=3,4
-L,, ifi=5,6

and considering the assembly mode condition described by:

g=x%x<x%,di=1..6 (3.33),
we get the solution of the IGM as below:
a=x=%-yE-(y-y%)-(2- )" DFL.6
with: (3.34).
L ifi=12,5,6
~|L,, otherwise

3.3.3- Direct Geometric Model (DGM)

Unlike most PKMs, ARROW V1 admits an analytical DGM. In fact, due to actuation
redundancy there exists no unique way to establish it. In what follows, we describe one of the
possible methods.

Assuming that the joint positions vector ( is known, then the coordinates A are available as

well, for all i =1...6.

Let us consider the following system of equations:
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AB; =L
AB; =L, (3.35).
ABZ =L
Butas B, =B, and B,B. =-2ae,, the system (3.35) is transformable into the following form:
AB; =L
ABZ =13, with: Al =A +2ae, (3.36).
ABI=L

System (3.36) represents a classical mathematical problem, which corresponds geometrically
to the intersection of the three spheres of centers A, A,, and A' (of coordinates A ), and
with radii L, L,, and L;, respectively. Omitting details, we get in general two possible
solutions for B,. Let us denote them by B and B?. Then, we still need to get B, =B,. For
this purpose, we consider the following relations:

{AEB?Z’ - Lé, with: B, =B, (3.37).
AB:=L2
But we know that z,=7,= Z,— ¢ then (3.37) can be rewritten after incorporating the

aforementioned relation as:

AB; =L
A4B§ = Li (3.38).
4;=%,— 3@

The problem expressed by (3.38) is described geometrically as the intersection of two circles
in the horizontal plane of equation z= 7, = 7, — . It can be easily solved for each possible

solution of z,. For z, = Z: (corresponding to the z-component of B), we get generally two
possible solutions for B, denoted by B and B;™. Likewise, for z, = Z- (corresponding to

the z-component of B?), we get another two possible solutions, say: Bs?* and B3*.

In brief, we generally obtain a set of four possible solutions, denoted by S :{ S.,S, S, §} ,
with S =(B%,Bs™), S, =(B%,B5?), S,=(B2,B&") ,and S, =(B?,B?). Among these four
solutions, there is only one SIS that satisfies the assembly mode condition described by
(3.33). Hence, we have determined uniquely B, through By. It remains to calculate P and &,.

Defining n = (/7X n, O)T = BgBl—(B3BlT ez) e,, the rotation g, is calculated, thanks to the
equation below:
6, =atand1,.77,) (3.39).
As for P, itis given by:
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P=(x y 2 =B-RB"™, with R=Rot(6,) (3.40).

As a result, the end-effector pose Xx=(x y z QZ)T is computed and the DGM is
established.

3.3.4- Kinematic Model

Let us now derive the relation between ¢ and X. For this purpose, we proceed in the very
same manner as in 8§3.2.4. First, we get the velocities v; and A in terms of X and ¢,

respectively. This is described via the equations:

Vg =V+ox PR =v-6, (PBx ¢)=[L, -(PBxg)] ">

with:
_ _ (3.41)
v=Pandw=6, ¢
0i =1...6
and
Va =g e, Ui=1.6 (3.42).
As AB is arigid body for all i =1...6, then we have:
AB'v, =AB" vy, 0i=1..6 (3.43).

Based on (3.43), and substituting (3.41) and (3.42), we get the following kinematic relation:
J,4=J, X, with:
J,=diag(n] e,,....n{ &)

n, -n/ (PBxe)
Jo=|: : (3.44).

ng —ng (PBsxe)

n =5 hi=1.6
[AB]

Notice that J is a 66 square matrix as compared with J,, which is rectangular of 6x4

dimension. This is due to actuation redundancy. Thus, we can get naturally the inverse
kinematic model (IKM), based on the inverse Jacobian, J,, . This is given by:

IKM: g=J, % with J, =3 J, (3.45).

As for the direct kinematic model (DKM), it requires a pseudo-inversion procedure and it can
be expressed as follows:

DKM: x=J ¢=J;, ¢ provided thaty [ nuf3)]=0,, (3.46).
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The relations (3.45) and (3.46) are valid as long as J, and J, are non-singular.
3.3.5- Singularity Analysis

Similarly to MachLin5, the singularity analysis of ARROW V1 can be partitioned into separate
steps. The first step is concerned with the constraint singularities and mainly focuses on the
pair of parallelograms. As for the second step, it deals with the classical singularities based on
(3.44).

A- Constraint Singularities

Following the same reasoning as in §3.2.5.A, there is no constraint singularity since it is
avoided by construction. Actually, it would occur if and only if the parallelograms are collinear.
Due to the assembly condition (3.33), this cannot happen unless:

2L, =L, +L, (3.47)

is satisfied. As this singularity occurs for a specific set of geometric parameters, those satisfying
(3.47), then it is of architectural nature.

Nevertheless, (3.47) is avoided by having L, +L,>2 L,. In fact, having (3.47) fulfilled, the

PKM is rendered useless ( B, = B, maintains always fixed y and z components).

It remains then to consider (3.44) and its related singularities. These will be discussed in
what follows.
B- Series-Type Singularities

These occur when det(Jq) = 0, which can be mathematically described as:
det(J,)= 0= 0,0{1,....4 ;n e,= 0= n O, (3.48).

From (3.48), this occurs when one or more arms are completely stretched and laid in the yz

plane. This cannot happen except on the boundary of the geometric workspace, provided the
pose is accessible.

C- Parallel-Type Singularities

Such singularities occur when J, becomes rank deficient. To study these singularities, some
linear operations are performed on J, to arrive at a simpler matrix T, possessing the same
rank as J,. Adding (an (PB,xe) - n (PBx Q))T to the fourth column of J, vyields T,,
defined by:
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n, 0
1
n, 0
n; -nl(rx :
T,=| 3 i( :) , withr =B,B,=BB, (3.49).
n, -n; (rxe,)
ng
o |

Then, we can guarantee that T, (equivalently J,) is of full rank if the following two

submatrices:

TS, =[n, n, ny ng (3.50)
and
TS, = [_”i (r Xez)} (3.51)
-n, (rxe,)

are non-singular.

TS, becomes singular when the four vectors n;, n,, n;, and ng are coplanar. Due to (3.33)
and as we have chosen L, #a (particularly L, >a), the only possibility of coplanarity is having
all the concerned arms in the yz plane. Hence, the configuration is also confounded with

series-type singularity. Therefore, this situation if to occur, it will be on the boundary of the
geometric workspace and not inside it.

On the other hand, TS, becomes rank deficient in the case where:
n, (rxe,)=n; (rxe,)=0 (3.52).
The condition (3.52) implies that we should have n;, r, and €, coplanar on one side, and we

should have n,, r, and e, coplanar on the other. But r, e,, and r xXe, are always non-zero. So

based on this latter idea and the assembly condition (3.33), the aforementioned coplanarity is
possible if and only if n,, n,, and r reside in the yz plane. This means being confounded with

series-type singularity that cannot occur except on the boundary of the geometric workspace.

Therefore, we deduce that if parallel-type singularities are to exist, then they are restricted
to the boundary of the workspace and form no problem.

D- Results’ Briefing

Based on the above analyses, we brief the results as follows. ARROW V1 does not admit any
type of singularities within the geometrically accessible workspace excluding its boundary. This
is provided that L, #a and Ly +L,# 2L, . These latter two conditions are always satisfied by

construction since having them otherwise renders the PKM functionless in the first place.
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3.3.6- Simplified Dynamic Model (SDM)

In this section, we present the SDM of ARROW V1. The simplification done here is embodied
by the following hypotheses:

1. The frictional forces of all types, whether dry or viscous, are neglected.
The arms are considered massless and their influence is compensated by partitioning
their real masses into two halves. The first half-mass of each arm is added on the
corresponding linear actuator, whereas the second half is placed on the platform at the
articulation point. This is actually justifiable due to the small mass of the arms in
comparison with the other components.

Applying the law of motion on the actuators, we get:
M,G=z+J] (-f)

M, = diag(m.,, Mg M, m, m, m) (3.53)

with

* M, : the mass of the actuator, moving cart, and the half-mass of the simple arm (chain

(1), (), (V) or (VI));

* m,:the mass of the actuator, moving cart, and the half-mass of the parallelogram arm
(chain (II1) or (IV));

* 7, :the actuation force of the i-th actuator, for all i =1...6;

* and f,: the force due to the acceleration and the gravitational force acting on the

platform. The force f, is applied on the arm at point A, for all i =1...6.

On the other hand, applying Newton-Euler method on the platform, we get:

Mp)'('+AC)'(:JI f+mpg (3.54),
with:
m, 0 0 ~-bm sin(8,)
* M,= 0 i 0 bm codd) : the inertia matrix of the platform;
0 0 m, 0
-bm sin(g,) bmcodd,) O .
0 0 0 -bm, cogé,)
0 0 0 -b sin( @
e A= M r( Z) : the matrix of Coriolis and centrifugal effects;
0 0O 0
0 0O 0

* m, :the total mass of the platform including the half-masses from the different arms;
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e b:the X-component of the center of mass of the assembly formed by the platform, and

the point masses placed at B, for i =1...6 (the point mass at B being equal to the half-

mass of the corresponding arm);

* |, the total moment of inertia about the z-axis passing through the TCP of the

assembly formed by the platform and the point masses at B, for i =1...6;

. g=(0 0 -G O)T: the gravity wrench acting on the platform per kg mass, where

G =10 N/kg=10m/$.
Then, merging (3.53) and (3.54) after substituting?:
q=J, x+J_x
we get:

X=H z-Ax+a™

H=(M,+3IM,3,) 3;

C

A=HM, 3, +(M,+3TM_3.)" 4

a"ffse‘:(Mp+J:1 M, J m) lmp g,

]

dim(H)=4x6, dim(al™)= 4 1
dim(A)=4x 4

(3.55),

(3.56).

The relation (3.56) represents the direct dynamic model (DDM), which is unique. However,

the inverse dynamic model (IDM) is not unique and is generally given by:

r=C(%+Ax-a2")+[null(H)] 4, with:

C =H’" : pseudo-inverse dfl
A0R? (arbitrary)

(3.57).

Yet, in our case, we consider the particular solution of the IDM with zero components along

the null space of H (which corresponds also to the null space of J; )2, meaning 4 =0.This is

mathematically referred to as the minimum norm solution and can be achieved by control

means (see §4.2 in Chapter 4). Hence, the IDM is reduced to:

7=C(%+4x-aJ™)

(3.58).

! The matrix Jm can be easily derived from J, . Its expression is not given here being lengthy. Yet, it can be easily

obtained using the symbolic MATLAB toolbox.

2Since H =S™ J] where S= ( M, +J] M, Jm) is supposedly non-singular square matrix; if S is singular, S

does not exist in the first place.
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As a result, the simplified direct and inverse dynamic models have been easily derived. In the
upcoming section, we present the dimensional synthesis based on two primary criteria. One of
these criteria is related to the dynamic performance. The evaluation of this performance
requires only the knowledge of IDM, which is expressed by (3.58).

3.3.7- Dimensional Synthesis Based on Dual Criteria: Precision
and Dynamics

Dimensional synthesis is undeniably one of the most prominent steps in the design of any
PKM. Therefore, it is essential to choose properly the optimization criteria as to fit the intended
application, and its direct requirements. Moreover, we should be very careful about how we
perform this optimization, especially if it is of multi-objective nature. In §2.5, we have made
some suggestions in this matter, in which we recommended the use of Pareto-based methods.
Here, we abide by the aforementioned guidelines and exploit our knowledge of the mechanism
to the extreme to facilitate the optimization further.

In the case of ARROW V1, the targets have been clearly stated since the early beginning.
These are precision and rapidity. This is in addition to being capable of supporting large
external wrenches. Under these global goals, we can notice the involvement of several masked
sub-criteria, such as singularity-related performance, accuracy, repeatability, resolution,
rigidity, twist, wrench, and acceleration capacities. Nonetheless, as the rotational performances
are less interesting and expected to be well, we concentrate, therefore, on the translational
aspects of the above-mentioned requirements. Still, if we consider all these requirements as
they are, we would end up with an optimization based on a huge number of criteria. As a result,
it would become difficult not only to visualize the problem based on Pareto method?, but also
to properly make a decision. That is why, in what follows, we approach the problem by first
simplifying the targets.

In fact, the rigidity of the PKM can be worked on via the proper dimensioning of the
components (cross section of the arms, etc.), and its resulting errors can be even compensated
by means of elasto-geometric calibration*, if needed. Thus, rigidity can be omitted. Regarding
precision terms, having the actuators of same nature, then all translational precision
requirements can be considered simultaneously through TPAF (the translational precision
amplification factor defined in §2.2.2). Regarding singularity, we have studied it explicitly, and
verified that no singular poses within the geometric accessible workspace excluding the
boundary. Also, an investigation based on FVI, for some samples of geometric parameters,

has demonstrated that the quality of singularity performance is acceptable. Therefore,
singularity aspect can be omitted as well. As for the kinetostatic translational performance, we

3 |n general, when the number of criteria exceeds three, it becomes difficult to have a good visualization of the
problem, even with the use of the parallel coordinates’ concept.

4 |f elasto-geometric calibration is needed, it will not be more complex than the geometric one. This is since it will
be sufficient to consider the deformation due to pure tension/compression forces in the arms.
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have investigated it via FVI , defined in §2.2.3.B, for several different sets of geometric

parameters. We have found that it is most often satisfactory for the requirements being

Veoq =0.25¢,,,, and f, =0.257 .. Hence, we can omit FVI  as primary criterion, provided

we verify it later in a secondary step. In what concerns acceleration capabilities, we consider
the isotropic linear acceleration starting from rest in the absence of any external non-
gravitational wrench. This can give us a sufficient idea about the PKM acceleration capability. In
particular, considering acceleration capacity in the absence of an external non-gravitational
wrench is completely justifiable for contactless applications (e.g. laser cutting). This is since it
complies with reality. In what concerns other contact machining applications, external wrench
is important only in the machining phase. This latter phase is, however, characterized by being
rather quasi-static than dynamic. In fact, in a contact application, the interest in elevated
acceleration exists in the transient phase®, which is characterized by the absence of any
external non-gravitational wrench.

So in brief, the dimensional synthesis that we are going to present here is based on the dual
criteria of precision and dynamics. The precision criterion is the worst TPAF, denoted by
WTPAF, over the desired workspace, DWS. As for the dynamic criterion, it is the worst
isotropic linear acceleration, denoted by WILA, over DWS. Yet, a verification on the secondary
criterion FVI  will be done on the chosen set of geometric parameters.

The following subsection (§3.3.7.A) discusses the optimization process and its results.
Afterwards, §3.3.7.B presents the workspace analysis, and the detailed performance
evaluation.

A- Synthesis Procedure and Its Results

Based on the spindle to be assembled on the platform, the latter’s parameters (shown in Fig.
3-8) are set to the values given in Table 3-2. In this same table, the actuator characteristics are
given as well. Regarding the inertia parameters, they are provided in Table 3-3.

Concerning DWS, it is defined as follows:

-0.15m<y<+0.15m
DWS:1-0.15m< =< +0.15m (3.59).
-45°<0,<+45

Notice that the workspace requirement regarding X-motion is not specified in (3.59), as it can
be fulfilled by choosing the appropriate stroke length for the linear actuators.

Regarding the parameters to optimize, they are L,, L,, and L, = L, These parameters

must remain within the following ranges:

>t is the phase where no machining is done, but the TCP is moved rapidly from the current location to nearby the
working piece.
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Table 3-2: Platform and actuator characteristics.

Platform Parameters Actuator Maximal Capacities*
Symbol | Value | Symbol | Value Symbol Value Symbol Value
a 0.164m| b, | -0.16m T 2500 N Onax 5to 7n s
q 0.12m t, 0.18m All actuators are identical. Their type is
Ironless ETEL 1LM12-060.

Table 3-3: ARROW V1. inertia parameters.

Item Value Item Value
Individual Simple Slider Individual Parallelogram
Cart’s Mass = 8.513 kg Slider Cart’s Mass (chains = 8.939 kg
(chains L1, V and VI) lll, and 1V)
, _ Platform’s Inertia about
Platform’s Mass =10.542 kg . ) =0.357 kg i
its z-axis
Simple Arm Linear Mass Parallelogram Arm Linear
(after removing =0.645kg Mass (after removing =1.290kg
L, =0.155 m*) L, =0.155m)
*Note that L, =0.155 mis the length of joint interfaces. We emphasize here that the mass
of the joints on the side of the platform are added with their moment of inertia to the
platform. On the other hand, the mass of the joints on the side of the sliders are added to
their corresponding sliders directly.

0.35msL, < 05m
0.314m=<L,< 0.5m (3.60).
0.69msL =L, <1nm

The lower bounds in (3.60) are to assure accessibility to DWS, defined in (3.59). As for the
upper bounds in (3.60), they are based on the consideration of stiffness and compactness of
ARROW V1. We mention also that imposing L, =L is done for the benefit of manufacturing.

The Pareto distribution is constructed by taking five equally spaced values for each interval
of parameters, then evaluating the different compromises between the two major criteria:

WTPAF= max( TPAH x)) and WILA= min (ILA (x)), where:

xOODWS XODWS

. TPAF(X) is the value of TPAF for a pose X, defined as in §2.2.2;
e LA (X) is a special case of the specific isotropic linear acceleration, ¢ o, defined in

§2.2.4, in which we set: dVreq =0, dageq =0, dareq =0, ° fereq =0, and dn’greq =0.

Note that the expression of ILA (X) is reduced to what follows:
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Fig. 3-9: Pareto diagram of ARROW V1 and the chosen geometric parameters.

ILA (x) :rirglins(e‘i), with:

0, if (=7, +t°")>0 or (7, +t°") <O

in(|- off | off - t") <0, t°")>0
o s 5 (Tt <0, (1)
o and|c,, |# 0 (3.61).

o, otherwse
t" . i-th component of*" =C &
C,. : I-throw vector ofC, , the translational part©f
0i=1...6

The Pareto diagram is provided in Fig. 3-9. As it can be noticed from the figure, we did not
only plot the Pareto-Front (limiting curve), but all the compromises. This allows us to visualize
all possible options, in case we needed to reconsider our choice after verifying the secondary
criterion. Based on the shown dual performances, we have decided to set the limits of
acceptable solutions, or more precisely the trade-off in performances, to having WTPAF< 4.5,
and WILA=8g. This trade-off is satisfied by three candidates, all of which have almost the
same value of WTPAF=4.5. So, we choose the one with the higher WILA, being equal to
8.5 (it is encircled in red in Fig. 3-9). The investigation of the secondary criterion FVI , for

vh, =0.25¢,,, and f' =0.257

req ereq max /

shows that FVI,>1.5 over DWS. Hence, FVI, is

satisfied and therefore, the following geometric parameters are adopted (same as those shown
in Fig. 3-9, but after some numerical adjustment):
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L,=L,=0.93m
L,=05m (3.62).
L, =0.41m

Having synthesized the geometric parameters of ARROW V1 based on Pareto method, the
following subsection provides detailed performance evaluation and workspace analysis.

B- Workspace and Performance Evaluation of ARROW V1

We first proceed by presenting the evaluation relative to the dual criteria used in the
dimensional synthesis, namely TPAF and ILA. Also, we present the kinetostatic performance

relative to v? and f”

A oso» the pure isotropic linear speed and static force respectively. The plots

of v° and fP are more expressive than FVI, , which is defined as

1ISO elso

iso req ' els ere req ereq

FV —mln(vp g for vb =0.25¢,,, and f' =0.257__ . The presentation is
done as function of y and z, for 8, =0° on one hand, and for 6, D[—45°;+45’] on the other.
In the presentation with &, D[—45°;+45’], we highlight what follows. For each (y, Z) couple,
the performance index is calculated for several values of 8,, then the worst value of the index

is associated with the corresponding (y, z) . In all these figures, we consider the legend defined

below:

* Dotted black box represents the yz projection of the physical limits of the PKM, i.e. the
floor, walls, and ceiling.

e Solid red box represents the limits that the TCP should not exceed in order to avoid
collisions.

¢ Dotted magenta box represents DWS for which the PKM has been optimized.

TPAF and ILA are depicted in Fig. 3-10 and Fig. 3-11, respectively. We recall here that
TPAF holds not only a precision significance, but also an indication regarding peak linear

speed, V... As the actuators are identical, we have v, /., = TPAF. Based on this, we can

peak*

say that the theoretical v, of ARROW V1 is 22.5 to 31.5 1 . However, this speed occurs

only along a particular direction and therefore, it is of least interest from the perspective of
machine tools. Regarding ILA, we can notice that on the majority of DWS, the value of ILA is
greater than 9 g, and reaches 10 g for some region in the case of &, =0°. This is intriguing in

comparison with the reported acceleration capabilities for some already available PKMs (refer
to Chapter 1).

In Fig. 3-12 and Fig. 3-13, v> and f”_ of the optimized PKM are mapped into the

1ISO eIso

workspace. The results show that on the majority of DWS , we have
vl 20.5¢,,=251t03.5m and f) >0.84r,, = 2100 N\. These are quite remarkable, not

ISO elso
due to the values in particular but more |mportantly the associated isotropy significance with
them.

119



Chapter 3: The Novel Synthesized Architectures and ARROW PKM
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Fig. 3-11: ILA of ARROW V1: case of &, =0° (left) and case of |,/ < 45 (right).

We went further in performance evaluation, in which we have investigated the peak linear
acceleration, PLA, starting from rest and in the absence of an external non-gravitational
wrench. The mathematical formulation of PLA is given hereafter:

)

PLA(X)= max(

offset
‘Hpr+a

TDme\n gp
zr ={z0OR% z"[null(H)] =0, and|r|<7,,,, Oi =1..4 (.63).
H,: translational part dfi
T ,
agie = (™ g 3™ : the first three componesifag™™
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Fig. 3-14: PLA of ARROW V1: case of &, =0° (left) and case of |6,| < 45° (right).
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We emphasize that (3.63) can be computed analytically, in the very similar way as we have
done for the operational resolutions in §2.2.2. The atlases of PLA are represented in Fig. 3-14.
These show that PLA varies between 22.5gand 24.5 gover DWS, which is interesting. In
fact, we have ILA/PLA=9/22.5= 40%over the majority of DWS; this is noteworthy taking
into account the isotropic nature of ILA and the direction-dependency of PLA. It is important

to highlight here that the value of PLA associated with (y,2) in the case where

o, D[—45°;+45’] is the largest value of PLA attained for different orientations; i.e. the best

value unlike the remaining performance indices where we assumed their worst values.

In addition to what we have mentioned, it is worth highlighting the smooth variations of the
different performances over the global workspace. This rather homogenous aspect of
performances is attributable to actuation redundancy.

Finally and for the sake of completeness, we provide a sample of the spatial workspaces of
ARROW V1 in Fig. 3-15 and Fig. 3-16. These are obtained for the following strokes of linear
motors:

{-Actuators 1, 2, 5 and 6: Stroke Length49m (3.64)

 Actuators 3 and 4 : Stroke Length.53 m
These workspaces correspond for the case of having €, =0° and 6, D[—45°;+45’]. Their plots

demonstrate that the X-dimensions of the spatial workspaces are relatively acceptable in
comparison with the maximum actuator stroke.

Spatial Workspace of ARROW V1 (Case e = 0°):
Stroke Length SLs =1.49 m and SLp =1.53m
0.2
0.15
=0.1
I 0.05
E o
~N
--0.05
-0.1
0.15
-0.2
0.5

Fig. 3-15: Spatial workspace of ARROW VI in the case 8, =0° and for stroke lengths:
Sk, =1.49 m(actuators 1, 2, 5 and 6) and SL, =1.53 m (actuators 3 and 4).
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Spatial Workspace of ARROW V1 (Case 9, € [-45°; +45°] ):
Stroke Length SLs =1.49mand SLp =1.53m
0.2
0.15
-0.1
-0.05
E
~ -0
--0.05
-0.1
-0.15
-0.2

Fig. 3-16: Spatial workspace of ARROW VI in the case |6’Z| <45° and for stroke lengths:
Sk =1.49 m (actuators 1, 2, 5 and 6) and SL, =1.53 m (actuators 3 and 4)

3.3.8- Synopsis

In §3.3, we have introduced ARROW V1 PKM that is redundantly actuated and capable of
four-dof (3T-1R) motion. This PKM is intended to serve as a branch in a left-hand right-hand
based machine tool with five dofs (3T-2R). In this latter machine, the second rotational dof is
provided by means of a turntable. The detailed analysis of this PKM, starting from its modeling
and ending with its performance evaluation, has revealed undeniable characteristics, such as:

1. Large workspace and tilting capacity;

2. Design and modeling simplicities;

3. Absence of singularities within its workspace excluding its boundary;

4. Having arms under tension/compression and therefore, amelioration of precision thanks
to the reduced deformation;

5. Performance homogeneity over the workspace;

6. Elevated precision, kinetostaticc and dynamic performances ( WTPAF=45,

Vb >0.5¢,=25t035m , f2>084r  =2100N , WILA=85g , and
PLA=24.5gover DWS);
7. The relatively good ratio between the X-dimension of the spatial workspaces and the

maximum available stroke length for the actuators.

In comparison with MachLin5 presented in §3.2, ARROW V1 has the advantage of having
only two parallel walls on which the actuators are placed. This is not to mention the enhanced
structural symmetry of the architecture and its simplicity. In this scope, the design can be made
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even simpler for implementation by considering the suggestions given in §3.2.1 regarding the
execution of the spherical joints. Nevertheless, the main feature of having independent X-
motion is compromised when adding the turntable. In fact, there are two main options for
adding the turntable to have the eventual five-dof machine tool. These are described as
follows:

1. First option: It consists of adding the turntable with its axis of rotation along the Y -axis
of the base frame of ARROW V1. This obviously does not make use of the independent
X motion of the PKM. Therefore, it is not encouraged.

2. Second option: This consists of adding the turntable along the X-axis of the base frame
of ARROW V1. However, this results in inevitable collisions between the turntable and
the parallel module. Eventually, this not only reduces the exploitable workspace but also
complicates motion planning.

In conclusion, ARROW V1, despite of its features, it is still not adequate to use with a
turntable to achieve the five-dof (3T-2R) machine. Nonetheless, with a slight modification, we
can arrive at a more feasible architecture. This modification is simply placing all the actuators
on one wall and in pairs. The outcome is the ARROW V2 concept, the subject of upcoming part.

3.4- ARROW V2: From Theoretical Concept to Prototype
Execution

3.4.1- ARROW V2: An Enhanced Version of ARROW V1

ARROW V2 is an evolution of ARROW V1, aiming at overcoming the latter’s drawbacks. The
CAD views of the PKM and its platform are shown in Fig. 3-17 and Fig. 3-18, respectively.
Regarding the graph diagram, it is the same as that of ARROW V1 (see Fig. 3-7). Moreover,
regarding the execution of the spherical joints, the suggestions given in §3.2.1 are applicable
here as well.

In Fig. 3-19, the five-dof (3T-2R) machine tool based on ARROW V2 is shown. It obeys left-
hand right-hand paradigm, in which a turntable is added facing the parallel module. The
turntable has its axis aligned along the X-direction of the base frame. With this configuration,
several benefits are obtained in comparison with ARROW V1:

1. All the actuators lay in the same plane. Thus, we only need to perfect the planarity of
one surface instead of two.

2. Having each pair of actuators share a common track is profitable in three aspects. These
are enumerated below:
a) We only need to control the parallelism of three linear guides instead of six.
b) The number of geometric parameters is decreased, which facilitates geometric

calibration.

c) The overall costs are reduced.
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Fig. 3-17: ARROW V2: CAD views and notations.

3. Though there is still a possibility of collision between the turntable and the parallel
module, it is not that severe.

As the principle of functioning of ARROW V2 is the same as its precursor and as its models
are derivable in the very same manner, we are going to directly give these models in what
follows and just concentrate on the singularity analysis. However, it is worth emphasizing that
for ARROW V2 to function properly, still the condition of having L, # @ must be satisfied. In

fact, practicality necessitates having L, > a.

A- Inverse Geometric Model (IGM)

Knowing the pose X = (X y z HZ)T, the joint positions q = (q1 qﬁ)T are given by:
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Fig. 3-19: The five-dof (3T-2R) machine tool: ARROW V2 with turntable.

qi=x=>si+(—1)‘\/lﬁ—(xi—y)z—(é—i)z (3.65),

P=(x y 2, R=Rot(6,)
A=(x y z)'=(a ¥y 2. y=0

L,, ifi=12 {L ifi =1,2,5,6

(3.66)

2=10,fi=34  L=[AB|=1~ . .
-L,, otherwise 3

0i=1...6

and Bip""lt (Di =1...6) representing the coordinates of the points B in the platform frame of

reference.
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Note that (3.65) is based on the assembly mode condition described by:

X S X% = Ry S Xopo UI=13,8 (3.67).

B- Direct Geometric Model (DGM)

The DGM can be derived exactly as described in §3.3.3. However, we are going here to
benefit from the structural symmetry (L, =L,=L;=Ls=L and L,=L,=L,) of ARROW V2

and compute directly the X components of points B, through By as follows:

XX Xt X
2 2

(%1 = %52) = (%5 = %)

_XtX
2

, with:x =q, Ji=1...€ (3.68).
Xo3 = Xo4

As result, we can calculate the two possible solutions for 6, D]—]T, +IT] , denoted by 9251 and

6%, and the unique solution of X via:

g = asin(—xID3 _ xf’lj
’ d
or

’ ﬂ—asin(M) i (X = %) = O
632 = d
—7T- asin(%) , otherwise

(3.69)

and
X = )(l—(tp —%j sin(HZ): )&—(tp—%j (%) (3.70).

To get y and z, we only need to determine the intersection of the two circles (in the

vertical plane X = X, ) described by:

ABI=Li=L
ABI=1i=L

_X % _ G+q,
2 2

, With: A, = A +2ae, (3.71).

Xo1

From (3.71), two possible solutions exist, say: BfSl and stz. The acceptable solution is the

one with Y,; =0. Hence, we get a unique solution for B,. Based on B,, we get:

{Z:(Z"F %)= 4 (3.72).

(zs=26)=2-2a

127



Chapter 3: The Novel Synthesized Architectures and ARROW PKM

Knowing X;=X, and 7Z,=7%,, the term Yy,=}Y, can be computed by using
ABZ =L%=LZ, which yields:

2
Voo = Yoo = Yot B (e~ %) ~( 25— 2’ = Xi\/Li-(%j ~(z5-2)" (373)

But the condition Yy, ; = VY,, 2= ¥, = Y,=0 must be satisfied. Therefore, we only accept the

following solution for y,, = y,,:

Yo3 = You = y3+\/|-25_(uj _( 4~ %)2 :\/Lzs_(uj _(ZB_ZS)Z (3.74).

2 2

Based on the sign of (ybl—yb3), we can then identify the valid solution for 8, among

{H;‘l,ﬁzﬂ} , Which is:

6 :{‘92 i (Y~ ¥ia) 20 (3.75).

* 6%, otherwise
Hence, we easily derived the DGM of ARROW V2 in a slight different fashion, in which we

exploited the structural symmetry of the robot.

C- Kinematic Model

Similarly to what have been done in §3.3.3, we can effortlessly establish the relation
between ¢ and X . This kinematic relation is:

J,4=J, X with:
J, =diag(n1T €seens g), dir’r(Jq)= 6< 6
n -n] (PB xe,)

J=| i : , dim(J,)=6x4 (3.76).
ng g (PB;xe,)
n, - AB_ ,0i=1...6
|AB]

The inverse kinematic model (IKM) is given based on the inverse Jacobian, J,,, as below:

IKM: ¢=J, % with: 3, =J;*J (3.77).

X

On the other hand, the direct kinematic model (DKM) is established by performing a pseudo
inversion procedure as follows:

DKM: x=J ¢=J, ¢ provided thatyf [ nufJ})]=0,, (3.78).
As we have highlighted in §3.3.3, the relations (3.77) and (3.78) hold as long as J, and J,
are non-singular.
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D- Singularity Analysis
In analogy with ARROW V1, we proceed by analyzing constraint singularities, then the
classical ones.

Constraint Singularities

In ARROW V1, the only constraint singularity has been identified as an architectural one. This
is since it occurred for a particular set of geometric parameters. Nevertheless, in ARROW V2 it
is not any more the case.

The constraint singularity is still related to the capability of the pair of parallelograms to
restrict the undesired rotations (those about any axis laying in the Xy plane of the base frame).

Yet, it can occur for any general set of geometric parameters. In particular, it occurs when the

two parallelograms become collinear. This would happen only in two configurations of AB,

and A,B,. These are described below:

1. The first configuration is described by having A,B, and A,B,in the yz plane. This

cannot happen except on the boundary of the geometric workspace. Additionally, it
exists necessarily confounded with series-type singularity since it implies

nje=n =0« det(Jq)Z C (refer to following part). This would not practically

occur as inter-collisions between the third and fourth actuators will precede.
2. The second case is when A,B.//A,B,/le,; i.e.the two arms are aligned along the X axis.

This also cannot practically befall as collisions antecede that.

Consequently, constraint singularities not only exist on the limits of the geometric
workspace, but also cannot practically happen.

Series-Type Singularities

Such singularities exist when the Jq (in (3.76)) is rank deficient, which is equivalent to:
det(J,)= 0= 0,0{1,.....4 ;n e,= 0= n O (3.79).

Fortunately, this not only cannot happen except on the boundary of the geometrically
accessibly workspace, but is also preceded by inter-collisions between the actuators on the

same linear track. This is since if (2 | —1) -th arm (with j=1,2,3) is in the yz plane, the
corresponding (2 j)—th limb is necessarily laying in the aforementioned plane as well, and vice

versa.
Parallel-Type Singularities

As usual, these happen when J, becomes rank deficient. Simplifying J, by linearly

operating on it, we arrive at the following matrix T of same rank as J,:
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n, 0
n, 0
n. -nj(rxe :
T=3 2 (r>e.) , withr =B,B,=BB, (3.80).
n, -n;(rxe,)
n 0
N0

Based on (3.80), we can assure that T (equivalentlyJ,) is non-singular if the two

submatrices, TS, and TS,, defined by:

TS,=[n n, n, nd' (3.81)
and
TS, = {_ni (r xez)} (3.82),
-n, (r xez)

are of full rank.

TS is rank deficient when the four simple arms are coplanar. Since L, # a, this would

happen only in two configurations:

1. The simple arms are in the yz plane (i.e. arms completely stretched). This occurs

confoundedly with a series-type singularity, and only on the boundary of the
geometrically accessible workspace. In reality, it is not possible as collisions transpire
prior to that.

2. The simple arms are in the Xz plane, which is practically impossible being preceded by
collisions as well.

On the other hand, the rank deficiency of TS, necessitates having the parallelogram arms

and r in the same vertical plane, which corresponds to two theoretically possible situations.

The first case is having N, N,, and r in the Xz plane. Regarding the second situation, it
corresponds to having the aforementioned three vectors in the yz plane (confounded with
series-type singularities). In both cases, we have the same argument as discussed for TS,
summarized as being preceded by collisions.

Therefore, we can assure that ARROW V2 does not admit any parallel type singularity within
the feasible workspace.

Results’ Briefing

As a conclusion of the above analysis, we can assure that no singularities of any type exist
within the feasible workspace. In fact, series singularities not only occur on the boundary of the
geometric workspace, but also are practically infeasible due to prior arising of collisions. The
same applies for parallel-type singularities. These have the possibility to occur on the boundary
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of the geometric workspace, or in the situation where the arms and platform lay in the xz
plane. Moreover, we highlight that unlike ARROW V1, the constraint singularities here are not
of architectural nature. Nonetheless, their occurrence is limited to having the parallelograms in
the yz plane or aligned along the X-axis of the base frame. Both cases are not to be worried

about being practically infeasible.

3.4.2- Manufacturability Study of ARROW V2 and Its Mutated
Versions

The simplicity of ARROW V2 and its brought in benefits have made it surpass the theoretical
study into the implementation stage. In this phase, the manufacturability of each part, as well
as the plans of fabrication and assembly, has been deeply investigated. Within the scope of this
detailed examination, possible collisions between the arms have been put into attention.

In fact, based on the preliminary CAD presented in Fig. 3-17 and due to the possibility of
having inter-arm collisions for some poses within the workspace, a reconsideration of the
design has been made. This reconsideration is particularly at the level of the U-joints that
connect the arms to the spindle. To overcome the aforementioned conflict, several suggestions
have been made. Among these proposals, only two have been considered and we refer to them
by mutations, as they resulted in a topological change of the architecture, though the
performances have not been noticeably compromised.

These mutations are described by replacing each of the concerned U-joints by two
orthogonal but non-concurrent revolute ones (R-joints). The distance between these R-joints is
kept small enough in order not to dramatically alter the global performances of the initial
conceptual design. The new common graph diagram for the resulting mutated versions, called
ARROW V2 M1/M258, is given in Fig. 3-20.

In Fig. 3-21, we depict the R-joints at the level of the platform in the case of ARROW V2
M1/M2. In the first version, ARROW V2 M1, the R joints are offset one from another while
satisfying: r, =0 and r # O (see their interpretation in Fig. 3-21). On the other hand, in ARROW

V2 M2, both offset distances, r, and r, are non-zero. Though ARROW V2 M1 is a special case

of ARROW V2 M2, it has been distinguished since its models are simpler to obtain.
Nevertheless, the M2 version is better regarding collision avoidance. This can be clearly noticed
from Fig. 3-21. Therefore, the decision has been made on the implementation of ARROW V2
M2.

However, we should emphasize that this mutation has resulted in some adverse effects.
These are detailed as follows:

1. The establishment of the DGM is difficult, if not impossible.

6 M1 and M2 stand for mutation type 1 and type 2, respectively.
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;

o

Base Platform

i

Fig. 3-20: Graph diagram of ARROW V2 M1/M2, the mutated versions of ARROW V2.

Fig. 3-21: Visualization of the offsets between the revolute joints in ARROW V2 M1/M2
versions (top view): ARROW V2 M1 corresponds to having r, =0 and r # 0, whereas

ARROW V2 M2 corresponds to the situation where r, #0 and r # 0.

Fig. 3-22: ARROW V2 M2: 3D CAD view.

2. The other models, such as the inverse geometric and kinematic models, are not as
straightforward as before.
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Fig. 3-23: ARROW V2 M2: projective CAD views with notations.

Spatial View ' Top View

L=A4B.r=BC.r, =CD, (O,ex,e_)_,ez):Base Frame
m=AC =L +r, m=AD =L +r, 1 (P,ew,ew,ezp):PlatformFrame
. Xe e ——
 =PD, yu,=———, ¢=(BC,BA)=r,-L
P 'u Hr,xezH (0 ( i 1147) (ri i)
¥ =(ey’D1CI)=(EJ"_rP,)’ l//,[ =(eyp’D1C1)=(ew’_rpf)
i=1..6

Fig. 3-24: ARROW V2 M2: schematic of a kinematic chain and its different notations.
3. Singularity analysis is more complex to perform.

Thus, it is indispensable to discuss the geometric and kinematic models as well as the
singularity analysis of ARROW V2 M2. All these points, in addition to the dynamic model and
the dimensional synthesis, will be discussed in the upcoming section.

3.4.3- ARROW V2 M2: The Implemented PKM

The CAD drawings of ARROW V2 M2 with some notations are given in Fig. 3-22 and Fig. 3-23.
Fig. 3-24 presents a schematic of a kinematic chain of this PKM with additional symbols. These
will be used later in modeling. Note that in the case of complex chains (i.e. chains (lll) and (IV)
with P-(SRR); structure), the representation in Fig. 3-24 corresponds to the virtual equivalent
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PURR chain in the mediator plane of P-(SRR)2. The lengths L, (Di =1, 2,5,@ of the simple arms
are equal to L. Regarding those of the complex ones (i.e. L, with i =3,4), they are equal to
Lp. Having clarified the different symbols and their geometric interpretation, in what follows,
we present the models of ARROW V2 M2.

We emphasize that the modeling is based on the idea that the complex limbs maintain the

same constraints as a classical pair of parallelograms. The validity of this assumption is proved
later by investigating constraint singularities.

A- Inverse Geometric Model (IGM)

We denote the base-frame coordinates of the points A, B, G, and D by:

A=(x y 2)=(a v 2 ., B=0% W% %) , C=(x % z) ., and
= (Xdi Yo o Zi )T, respectively and for all i =1...6. To derive the IGM, we use the following
properties (i =1...6):

1. Points A, B, and C are in the same vertical plane. This means that their projections
on the Xy plane are collinear.
2. Points B, C, and D lay in the same horizontal plane. Thus, they all have the same z

component in the base frame.

Then, knowing the end-effector pose x=(Xx y z HZ)T and p”* =PD"™ (the

coordinates of D, in the platform frame of reference), we get D, as follows:

- (Xdi Yo 4 )T =P+R g™, with:
P=(x y 2', R=Rot(6,) andy™ = PO (3.83).
=1...6

Then, we proceed by getting the length L (Di :l...6) of the xy projection of L, =AB,,

Xyi

which is:
2 .
Ly. = L?—(; -z,), with:
o 1F1=3,4
L =
L otherwise
L, ifi=1,2 =1..6 (3.84).
0, ifi=3,4
-L,, otherwise
The length n, (Di:1...6) of the projection of n, =AC on the Xy plane is therefore

computable and given by:
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{nxyi = L, + 1, with:

, 0i=1...6 (3.85).
=lel=lB G =r

As the projections of A, C, and D, on xy plane form a right triangle at C (for all i =1...6),
we can then compute the Xy-projected length m of m, = AD, thanks to the relation

hereafter:

= = (L) e, with:
rnxyl yl R ( Y ) , DI :16 (3-86)-

o =[ral=cDf=r,

Based on (3.86), we can easily derive ¢ = % (0i=1...6) by solving the following equation:

m,, =\/(>§r x)+( - )’ :\/( ¥- 0 +(y- ) 0 EL.E (3.87),
which yields:

g =X=X i\/nfyi_( Yi Y)Z’ Oi=1..6 (3.88).
But the assembly mode condition, described clearly in Fig. 3-17, dictates having:
O =X<%= %) S Gu= X U I=1,3,¢ (3.89).

Hence, the IGM of ARROW V2 M2 is expressed by:

G =% =% +(0 i, ~(y - y), Di=1..6 (3.90).

B- Kinematic Model

Unlike the previously discussed architectures, the input-output kinematic relation is not as
easy to get here, at least not in the usual compact form. Of course, it is still simple to get the
inverse kinematic model (IKM) by differentiating the symbolic expression of the IGM. But this

does not result in a suitable form for the Jacobians, Jq and J,, as to facilitate their analyses.

So, to establish the kinematic model in a more compact form, we start by defining the
following quantities: v=P, w=6,¢e,, 9=(4, - @,), and y=(¢, - ¢,) . For the
definition of angles @ and ¢, refer to Fig. 3-24. The absolute angular velocities of parts
BC D and AB are respectively given by:

o, =y e, li=1.6 (3.91)

and
o, =9 K+ e, Li=1.6 (3.92).
Based on the aforementioned, we can then write the respective linear velocities of D, and

B as follows:
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Vo, =Vtex p=v-(pxe)b,=[1,, -(pxe)]x Oi=1.6 (3.93)

and

Vg =V, o, xDB :[13x3 —(pI xez) ((ri +rn)x e‘)}(l/)/(} 0i=1...6 (3.94).

As AB is supposedly a rigid body, we have:
L'v, =L Ve, Oi=1...€ (3.95),
with the velocity of A being:
Vo =G g, Li=1.6 (3.96).
Substituting (3.94) and (3.96) in (3.95) yields the following relation:
e q=Lv-L(nxe)g +L'(r,xe,)y, Oi=1..€ (3.97).
As it is obvious from (3.97), g and X are coupled with yr . Therefore, we need to find other
relations. The aim from getting new relations is not only isolating ¢ and X, but also

determining the angular velocities of the passive joints, in particular @ and ¢, for all i =1...6.

To do that, we first write Va in terms of Vg and w, as hereafter:

Vo =Vg to, X(-L)
=V_(p|xez)éz+((ri+rn)xez)‘//i+|‘ix(¢/i e+ l‘rl)
1, -(nxe) (mxe) (Lxu)] ¢ .
)

0i=1...6

Then, the projection of (3.98) along €, and | respectively leads to:

e v,=0=¢ wé(|Ix g, 0i=1.¢€ (3.99)

and

HTVA = HT eq= HT V— bf(plxez)@ + LI(ITIIX Q)g[{, Oi=1...€ (3.100).

From (3.99), we get the following relation:
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J¢¢:‘]X¢ X = (b:J(/)m X, with:
J, =diag(e] (Lyxp,), € (Lsx W)

_Aal
e L (3.101).
‘]X¢ - R J(/lm _J¢ ‘]X¢
-e 0

dim(J,)=6x6, dim(J,,)= din{J,,)= & 4
The system of equations of (3.97) and (3.100) can be written under the following matrix
form (for each i =1...6):

I
M, (wij_MXi X, with:

I‘-|r €, _L|T (rp xez) i
= ' , d M, |=2x2 . .
Mo Lf e W (mixez)} (M )= 22 =102
Mxi:|:Li _I—i (F).xez)}, dim(MXi):2x4

T

o -u (pxe)

Resolving (3.102) for ¢ and ¢, we get:

o 1 {—uﬁ(mixez) L (r, Xez)},Di=1...6 (3.103),
v det(My, )| -wTe, Ue,

det(My, )= (7 ) (¢ (1 1)

which is valid provided that det(Mq) (m e)( (L x H))

Based on (3.103) and some simplifications, we arrive at the uncoupled relations between (

and X on one hand, and between ¥ and X on the other. These are given below as:

J,G=J, X = q=J, X

3, =diag((m/ e ) (€] (Lxul)), (”i(;)(el(Lexue)))
3,9 =(el (Lxu)) (e m). 3, (.3 =(e (Lxu)) (e m)

313, (1.3)=(el (nx ) (e rn) 3,4 =-(& (Lxp))( (mx p) (3-104)
Ui =1...6

J,=323,

dim(J,)=6x6, dim(J,)= 6 4, din(J,,)=6x4

and
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J =3, % = y=J, X
3, =diag((m] e,) (e] (Lxw)) (] &) (el (Lox 1))
0 e (Lxw) (e u)(ef L) (¢ n)(e (Lxw)
J,, =| : : : (3.105),
0 el (Lxu) —(ef w)(el L) (& n)(el (Loxw))
J,m=313,,
dim(J,)=6x6, dimJ,,)= din{J,,)= 6 4

with J, (i, ] ) denoting the element of the i-th row and j-th column of J,.

Hence, we have established all the necessary kinematic relations, not only the input-output
one. The IKM is uniquely defined and given by =J_, X, with J_ being defined in (3.104). On

the other hand, the direct kinematic model (DKM) is obtainable by means of a pseudo-
inversion, as we are used to with redundantly actuated PKMs. We then get:

DKM: x =J §=J. ¢ provided thatd [ anJ;)] =0,, (3.106).

The upcoming step is to analyze the singularities of the PKM at hand. This is crucial as to
assure that the topological mutation has not adversely resulted in unanticipated singular
configurations.

C- Singularity Analysis
Constraint Singularities

The main target here is to investigate whether the pair of complex chains, namely (lll) and
(IV), fulfills its premise in prohibiting undesired rotations of the platform (i.e. imposing
W, =W, = 0:the X and y components of the angular velocity, @, of the platform).

.

. : . T
For this purpose, we consider the full twist, t = (vT wT) = (VX v, V, o, w, a))

Y of

the end-effector and ignore all components of the PKM except the two limbs: (lll) and (IV).
Besides, we modify the point P (the TCP) to be confounded with D, =D, for simplification

purposes. In addition to the notation presented in Fig. 3-24 that corresponds to the virtual
equivalent chains of limbs (lll) and (IV), we define similar vectorial and scalar quantities with
subscripts ij (with i =3,4 and j =1, 2) (refer to Fig. 3-25).
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95 4
—

D; =D, assumed

=1, to be the new P =TCP

L,=A4B, r,=B,C;.r, o, =C,D,

n—AC L+r m—AD L+r+r

ij >

PP,y = 0= (B BA) (5 L)

¥y (e DyCJ) ( ﬂfj)’ wfa—-_( m,DC) (JP’_FPE)

Fig. 3-25: The complex chains (lll) and (IV) with notations
In nominal conditions, we have:

L, =L, =L, r,=r, =T,

Mo, =Fp, =M Ny =N, =N,

, Ui =3,4 (3.107),
m;=mM,=m, {,= K= I

u=e,

with U representing the unit vector along the direction of the axes of the first revolute joints
placed at D, (0i=3,4 and]jj = 1,%.

Let us denote the absolute angular velocities of the rigid bodies

»BiGD and AR, by o,
and wa1_j , respectively. Their expressions are given as:

o, o+, u=w+y; e,0i=3,4;0 =12 (3.108)
and

w@j :wp] +¢ij Hj :w+(/llj ez+¢?j H'Di:3’4 and:]j - 1’:

(3.109).
Exploiting (3.108) and (3.109), we derive the respective velocities of D, , C;, B;, and A, as

demonstrated below:
Vo =V- g xo=[1,, -p |t Oi=34andj= (3.110),
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Ve, =V, +wa (_r” Ty )

=|:13x3 (—E);+r7+r/;) (ri+rﬂ)xez}[¢;jj (3.111)
Oi=3,4:0=1,2

ij

and

Vo TV, =G 8 =y to, X(-Ly)
t
:[| (_a+r/n\) m, xe, ka] 7/ (3.112).
¢ij

0i=3,4;0 =12
Note that in (3.110) through (3.112), we have p, =he, and p, =-heg,, where h is the semi-
height of the complex chain (refer to Fig. 3-25).

To inspect constraint singularities, we must analyze (3.112) after regrouping it in the form

below:
Cc 0=V, ; dim(C.)=1214, dinf@)= 14 1, and difWi,)= %2 (3.113)
with:
. T
@ = (tT [/ISl ¢3l 4[/32 ¢ 2 4[/ 41 ¢4l 4[/42 ¢42) (3'114)I
T
Va :(VAW Va,,  Va, Va,  Vag, VAM) (3.115)
and
—]'3x3 (_63\1+r/71\3) m;Xx € L3x“3 03<1 031 081 081 0>31 0>61_
C. = L (_63\2+r/n\3) 034 0, myxe Lixp, Oy, Og, 04, O0s, (3116)
- L, (‘64\1"'”/1\4) 03 051 05, 0, mgxe Lixy O0g1 04,
1 (‘64\2"'6'1\4) 054 04, 0, Og, Og, 0g, mMxe L4><p.f

Note that in (3.115), the terms, v, , V

iy » @nd vy, , correspond to the X, Yy, and z

ijx 7

components of V, , with i =3,4 and j =1,2. Also, recall that v, =V, =¢ g, Li=3,4.

In the absence of any constraint singularity, we should always have @, =, =0. Utilizing

MATLAB R2010a symbolic toolbox, we have determined the following general solution for @
(in the general case of V,, i.e. before substituting Vo, =V =G &, i =3,4):
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v, (or z) andw, : are arbitrary

fl (VA’Vz’a)z)

T on (M my -, M) B by W) ( b e b W)
Y = f,(Va,V,,@,)
To2n(m, my-m m) (b B by W) (oM bW (3.117),
o = fo(Var v, @,)
“2h(m,m,-m m)( L B by W) b By Ly W)
. fo(Va v, @,)
2h(m,mo-m m)( L W L W) b B by W)
0. = fo(Var Vs, @,)
oon(memy-m m)( b B by W) By by W)
= fs (Vo V,, @)
Fo2n(m, my-my m)( b Ky by W) b B by W)
b - fG(VA,vZ,a)Z) (3.118),
Yoon(mymy-m m) (b B by (b B bW
0= f, (Var Vs, @,)
“ o 2n(my, my = mym) (Le by Loy He)” (L My Ly )7
and
_ f,(VaVv,,@,) _ fo(Va,V,,@,)
Py = 5 P = 5
20 (Lo Moy — Ly 1) 2n( Ly, Moy~ Loy by)
(3.119),
B = fg(VA’Vz'wz) B = flO(VA’Vz'wZ) .
2h (L4>< Hay = Lay u4><) 2 h( Lox Moy~ Luy I'14X)

with vect, vect, and vect, designating respectively the X, y, and z components of vector
vect and with f, through f,, representing polynomial functions of V,, v,, and w, (these

expressions are not given explicitly here being quite lengthy and not necessarily for the study).

Substituting v, =V, =¢ €, Ui=3,4, we get f, (Va.V,,@,) =0. So, provided that none of
the denominators in (3.117) through (3.119) is null, the chains (Ill) and (IV) prohibit the
undesired rotations by imposing @, = w, =0. Moreover, substituting V, =0 (i.e. locking the

actuators in place) yields additionally f; (VA,VZ,a)Z) =0; meaning v, =0 and which is intuitively

expected.

Therefore, to assure the absence of constraint singularities, we must investigate whether the
following condition:

h(m, my=m, m)( b K=& W) b b by w)#z0

141

(3.120)



Chapter 3: The Novel Synthesized Architectures and ARROW PKM

is satisfied or not.
Then, three main cases lead to the degeneration of (3.117) through (3.119), which are:

1. h=0: This is avoided by construction since h# 0. Such constraint singularity can be
coined an architectural one since it occurs for a particular set of geometric parameters.

2. (msX m,—m, mx) =0: This means the Xy projections of m, and m, are collinear.

3. (Lgx My — Ly U3X) =0 or (L4x My — Ly U4x):01 This corresponds to having the xy
projections of L, (L,) and [, (correspondingly ) collinear. But due to the structural
symmetry of the mechanism, we always have both terms, (L3x ugy—L3y ngx) and

(L4>< My — Ly |J.4X) , simultaneously zero or non-zero.

The case of having (ngX m, — m, n}x) =0 implies that either m,, =m,, =0 (m,; and m, in
the Xz plane) or m;, =m,, =0 (m, and m, in the yz plane). Both not only occur on the

boundary of the geometric workspace, but also are practically preceded by collisions (collision
between platform and sliders’ wall in the first case, and between the actuators in the second).

Similarly, (L3X Ha, — Ly ugx) =( Loy Moy~ Ly, U4x) =0 cannot theoretically happen except in the
case where L,//L,/le,. In addition to being confounded with classical-type singularity (as we

are going to see later), this singularity is circumvented by prior collisions.

Based on the above, we deduce that within the geometric accessible region excluding its
boundary, we can guarantee the absence of constraint singularities. In what follows, we discuss
the remaining classical singularities.

Classical Singularities

For studying these singularities, we only need to consider (3.101), (3.104), and (3.105). We
recall that singularity occurs in two cases:

1. The first case is described as follows: knowing ¢, we cannot definitely determine X, ¢

or y . Mathematically, this occurs when J, J(p, or JW is singular.

2. The second case is described as follows: knowing X, we cannot definitely determine g,

¢, or yr . In terms of mathematics, this occurs when Jg» J(p , or JW is singular.

Let us then inspect the configurations for which one or more of the four matrices, Jq, NI

J(p, and JV,, become rank deficient.
i- Rank Deficiency of J = J,and J :
We have J, = J, singular if and only if:
det(J,) = de(J,) = 0= O, 0{1,....4 ;ef m = 0ol (L, xK, )= (3.121).

As for J, its singularity is equivalent to:
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Casem, Le, withm, inyz—plane Casem, =A D, /e,

b
\

Fig. 3-26: Singularity analysis: case e, m =0.

// L =A4B,
A 7 n =A4C
i , 0 0 b
( J m, =A.D,
P 7’ ro= BiJ C f
eZ / , rPQ = Cﬁa Diu
” r% Xe,
M=
N P |7, xe,|
y At this singular configuration:
by = (Biﬂ Cig ’BzﬂAfa ) =90°
(Note that B, C, not necessary in xz plane)

Fig. 3-27: Singularity analysis: case €] (Li0 X “io) =0
det(J,)= 0= Oy 0{1,....4 ;e (L, xm,)=C (3.122),
which is already embedded in (3.121).

The case eI m, = O (see Fig. 3-26) corresponds to having m, in the yz plane. Again, this not

only occurs on the boundary of the geometric workspace, but also provokes prior collisions.

The case where €] (Li0 XHiO) =0 is analogous to what have been discussed in the study of
constraint singularities. It dictates having L; /fe, and leads to prior collisions between the
platform and the sliders’ plane (refer to Fig. 3-27). Notice that in the case where i, # 3,4, the

complex chains, namely (Ill) and (IV), maintain the constraints on the platform. This means that

the revolutes at D, (Di =1...6) sustain their vertical axes and hence, ¢ =90° is imposed. This

latter idea is clarified in the same aforementioned figure.
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ii- Rank Deficiency of J :

To study the rank of J,, it is necessary to perform some linear operations to achieve a
simpler form. We start by changing the TCP to be confounded with D, (note that this

corresponds to a linear operation on J, ). As a result, we get the matrix T defined by:

(e (Lxm)) (el m) (& (Loxm)) () m) (€ (=) (el m) O]
(eZT(szuz))(eI mz) (ezT(sz“2))(e; mz) (é(nzxuz)) (e! mZ) 0

(e (L m)) (el m) (e (Lxw)(ef m) (& (rnxw)(el m) b
(eZT(L4xp4))(eI m4) (eZT(L4xp4))(e§ m4) (é(n4xu4)) (e! m4) L
(e (Lexwe)) (el m) (& (Lox i) (e) m) (& (nxw))(ef m) of G123
(e (Loxm)) (el m) (e (toxm))(e) m) (& (nxw))(el m) 0]

with:

te ==(e] (Lx ) (€ (mx 1)), tu=—(el (Lixp,)) (€ (mx p))

r,=D,D,=DD,

by:

(ef (Lox)) (e m) (€ (Loxw)) (&) m) (¢ (nxwy))(ef m)
|l m) (d(bxw)) (e m) (@ ) (em))
Sl (Lxw)) (e m) (e (Lxw)) (e m) (€ (nox w) (el m)
(e (Lox ) (el m) (& (Loxw))(ey m) (& (nxw))(el m),
and
_| (e (Lxw)) (el (mxr))
el (L) (e (mx)) .
are non-singular.
Starting with the simplest matrix T,, its singularity necessitates having:
(e (Lox ) (e (mx 1)) = (el (Loxma)) (€ (mx 1))=0 (3.126).

Due to the structural symmetry with respect to the mediator plane of segment [AgAA], the

relation (3.126) can be reduced to:
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(€] (L)) =(el (Lixp))=0
or (3.127).

(e (mxr)) = (el (m>x 1)) =

The first case of (3.127) has been discussed in the previous paragraphs (refer to Fig. 3-27).
We have proven that it is non-problematic. This is because it is prevented by prior collisions.

Regarding the second case (i.e. €, (n13>< rc) =€ ( m, X rc) =0), it is geometrically translated to
having the four vectors, €,, m,, m,, and r,, in the same plane, which is either the Xy or the

yz plane. Once more, both situations are practically inapplicable because of collisions between

the sliders’ plane and the platform, or between the third and fourth actuators. Thus, singularity
of T, is not to be concerned about.

It remains to discuss the singularity of T,. Doing some linear operations on T, and
considering the symmetry of each pair of chains, (I & Il) and (V & VI), relative to the mediator
planes of the segments [AL@] and [A;AG] respectively, we get matrix TS, of same rank as T,.
TS, is given by:

(& (L)) (m] &) 0 0 ]
0 (ezT (lepl))(mlT ey) (ezT (nlxul))(LI ez)
TS = (3.128).
e (Lem)me) o :
i 0 (e (Lexm))(ms ) (e (nxm))(Lle,)
TS, (equivalently T,) is of full rank provided that:
.((eI(le pl))(mlT e)#0 or(eI(Lsx us))(m;T g)# 0)
and

(3.129).

*D, =(e] (Lixu,)) (M &) (& (nxw))(Lle,)
~(e (Lx ) (md &) (€ (nxw))(Lie,) %0
(

Lxu)) (my &) =(e] (Lxw))(nd g)=0has

been demonstrated in the previous parts, proving that D, # 0 over the whole geometric

While the practical inapplicability of(

workspace is not an easy task. However, in order to avoid collisions between the platform and
the frame’s upper and lower limits, the feasible workspace is restricted to the region defined

by: |Z|S H=L,—a, where L, >a. Therefore, it is enough to prove that D, remains strictly

positive over this feasible workspace. For this purpose, we need first to emphasize that

mlTey=m§ € because of the structural symmetry. Furthermore, we always have

mlT e = msT € 7 0 except for the practically impossible situation described by having m, and
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M, in the Xz plane. This is physically prevented by prior collisions. This latter idea enables us

replacing the study of D, by another one on D, , where:

tr?

D, =(e] (Lxp)) (el (nxw))(Lle,)-(€ (> w)) (e (nxw))(Le,) (3.130).
In the feasible workspace (i.e. L, =m,<0 and L;, =m,, = 0), the performed sign analysis

on the composing terms of D, shows that D, not only is positive, but also equal to the sum of

two positive terms. This is clarified below:

D, = (ef (Lxw)) (e (nox ) (1 &)~ (& (x w) (el (nxm)) (L )

<0 <0 20 <0 <0 <0 (3131)
t,20 (-t,)<0
=D, =t +t,20
Thus, D, =t +t, 20 with:
t=(e] (Loxw)) (e (nxw))(Lie,)20 (3.132)
and
t,==(el (Lxw)) (€l (nxp))(Le,)=0 (3.133),

over the feasible workspace. Based on (3.132) and (3.133), we can assert that
D, =0 = t =t, =0 and hence, we only need to investigate the case where:

(o (L)) (6 (¢ ) (L) =(€ (x ) (€] (nxw)) (L e) =0 13a)

Relation (3.134) can be put in the following simplified form:

[(e (Lxw))=0or (€] (nxw))=00(Le,)= g

and (3.135).

(€] (toxw))=0or (€] (nxu))=0or(Lie,)=
The practical impossibility of €] (L, x ;) =0or €] ( Lsx i) =0 has been discussed earlier.
As for the condition €] (qx |~'1) =0or e (ns X ps) =0, it can be translated as having the three
concerned vectors in each case laying in the same vertical plane. But as p, Ln and W, =0, the
only possibility is having n,//e, or n;/le,, respectively. Nevertheless, this is practically
impossible as collisions befall prior to that. Regarding having L{ e, =0 or L; €, =0, it cannot
occur except on the boundary of the feasible workspace. Also, since we have H =L, -a#0, it

. . , T a = Ta =
is not possible to have simultaneously: L e, =0 and L, e, =0.

Therefore, on the feasible workspace, we can guarantee that TS, (equivalently T,) is of full

rank. Besides, as T, has been proven already to be of full rank over the broader geometrically

146



Chapter 3: The Novel Synthesized Architectures and ARROW PKM

accessible workspace, we can then assert that T (equivalently J,) is non-singular over the

feasible region.
Results’ Briefing

In §3.4.3.C, we have detailed the constraint and classical singularity analyses. The results are
that within the feasible workspace, we can assure the absence of all types of singularities.
Nevertheless, as it can be obviously noticed in comparison with all previous studies, this
investigation has not been straightforward but rather complex.

D- Simplified Dynamic Model (SDM)
In brief, to obtain the SDM, we follow the same maneuver and hypotheses described in
§3.3.6. We get the direct dynamic model (DDM) as below:

X=H r-Ax+al™
H=(M,+JIM,3,)737,

A=HM, 3, +(M,+ITM,3,)" 4,

. (3.136),
agffset:(l\/l s I M, J m) m, g,

dim(H)=4x6, dim(a)™)= 4 1
dim(A)=4x 4

with all symbols carrying the same significances and definitions as given in §3.3.6. Choosing the
inverse dynamic model (IDM) based on zero components along the null space of H, we get:

g

t=C (>'<'+A >'<—a°”se‘), with:
(3.137).

C =H’" : pseudo-inverse df

Hence, as the IDM has been obtained, we can proceed with the dimensional synthesis of
ARROW V2 M2, which will be covered in the upcoming section.

E- Dimensional Synthesis
The dimensional synthesis of ARROW V2 M2 follows the same reasoning and approach

described in §3.3.7. It is based on the two primary criteria of precision and dynamics, namely
WTPAF and WILA. Also, it is followed by a secondary verification based on FVI, with the

values of v? and f? being identical to those in §3.3.7 (ie. v, =0.25¢,,, and

req req req

fP =0.257,).

req
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Table 3-4: Inertia parameters of ARROW V2 M2 (with some safety margins).

L, =0.155m*)

removing L, =0.155m)

Item Value Item Value
Individual Simple Slider Individual Parallelogram
Cart’s Mass =11.100 ke Slider Cart’s Mass =11.340 k¢
(chains 11, V and VI) (chains Ill, and 1V)
Platform’s Mass =10.200 k¢ Platform’s Iner:tla about | _ 0.414 kg i
its z-axis
Simple Arm Linear Mass Parallelogram Arm
(after removing =1.744 kg Linear Mass (after =3.488kg

*Note that L, =0.155m is the length of joint interfaces. We emphasize here that the mass

of the joints on the side of the platform are added with their moment of inertia to the
platform. On the other hand, the mass of the joints on the side of the sliders are added to
their corresponding sliders directly.

Table 3-5: The fixed geometric parameters and limits of ARROW V2 M2.

Fixed geometric parameters and limits

Symbol Value Symbol Value Symbol Value
a 0.137m B -0.179r r 0.048 m
d 0.125m t, 0.1875mr r 0.025m
L, 0.480m O -1.500 1r Ol +1.500 r
d 0.600 m t, 0.320m

0., and g, represent the minimum and maximum allowable displacement of each

individual linear motor.

d, : represents the minimum allowed distance between two actuators on the same linear

track.

t,: represents the minimum allowable value of y component of the TCP to avoid collision

between the platform and the sliders’ wall.

For this synthesis procedure, the actuators’ characteristics are exactly those given in Table 3-
2. As for the inertia and fixed geometric parameters, they are respectively presented in Table 3-
4 and Table 3-5.
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The target parameters to optimize are the following: L, L , and y,, where y  is the y

pl
offset of the center of the desired workspace, DWS, defined by:
-0.15msy-y, <+0.15m
DWS:{-0.15m<z<+0.15m (3.138).

-45° < 6, < +45

As for the X length of DWS, it is desired to be surely the largest possible value obtainable
for:

Own =—15msq=<q,=+t1.5m0i= 1.. (3.139),

but after fulfilling the primary and secondary criteria. The chosen ranges for L, L, and vy, are

as follows:
0.84msL,<1m
0.47 m< L,<1m (3.140),
Yo S Yo S Yo

with y™ and yT™ representing the lower and upper bounds on Yy that should be respected

and yo™

to allow the accessibility to DWS. These latter terms, y™"

p , are dependent on L, and
L

p

The Pareto diagram is constructed by considering five equally spaced values for each

Pareto Diagram
5.5
5 » » - »
» » . »
- » » »
4.5
% - * ., .
<
& » » . » »
=
4 »
»
»
» »
-
» s #s 2 a* . % :.
LAY
3.5 - .@
» » \»
» - » » .
» v e b b *
» - » .
3 N . N N "_ r N ) -. »
5 5.5 6 6.5 7 7.5
. = 2
WILADWS(lnGs,G—wmls)

Fig. 3-28: Pareto diagram of ARROW V2 M2 with the two potential candidates encircled in
red.
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parameter in its valid range, then computing WTPAF and WILA characteristics. The results are
depicted in Fig. 3-28. Based on the available options, we decided to consider the trade-offs
described by having WTPAF< 3.5 and WILA> 7.4 g, meaning those two solutions encircled in
red in Fig. 3-28. Among these two sets of geometric parameters, we have selected the one with
the largest value of WILA. This solution is interesting because although it is has WTPAF= 3.4,
the majority of DWS is characterized by TPAF < 3. Besides, it admits both: a compact overall
structure and a large X-length of DWS, which is about 0.9 m.

The values of the geometric parameters corresponding to this optimal solution are as follows
(after slight numerical modifications):

L,=0.96m
L,=0.61m (3.141).
y,=0.55m

For this set of parameters, described in (3.141), we have performed an analysis of FVIp, the

result of which has been satisfactory. In fact, we went further than that and performed an
intensive study relative to other performance indices, as well.

In Fig. 3-29, Fig. 3-30, Fig. 3-31, Fig. 3-32, and Fig. 3-33, we represent the performance
atlases of the optimal ARROW V2 M2 PKM with respect to ILA, TPAF, v° , f°, and PLA,

iso’ ‘iso’
respectively. These performances are mapped into the yz workspace of the PKM, for &, =0°

on one side and &, D[—45°;+45’] on the other.

ILA=fct(y,z,az=ﬂ°)(inG's,G=1UmIsz) ILA=fct(y,z,eze[-45°;+45°])(inG's,G=1Umlsz)
9 0.6 T T T T T 8
0.5+
8.5 0.4+
L 7.5
175 | AR S
1 Eds 0.2k i
04+ T
£ {7.5/|E o-
N N L
017 6.5
Ed7 _0.2_....:
i 035 i
L : 6
6.5 -04r-
0.5+
0. i i i i i i i i 0.6 i 1 i i i i I i .
UBU 01 02 03 04 05 06 07 08 09 6 0 01 02 03 04 05 06 07 08 09 33
y (m) y(m)

Fig. 3-29: ARROW V2 M2 PKM - ILA capacity: case 6, =0° (left) and case 6, 0[-45°;+45)]
(right).
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TPAF=fct(y,z,0,=0°) TPAF =fct(y,z,0, c[-45°; +45°]1)
0.6 ‘ ————— 6 0.6 T 6
0.4f 1 0.4 :
56 : 5.6
0.3k i 035 i 4
s _ k5.4
0.2+ 4 OO 18 O 48 R PRI PRI WO Spsppmpo
0.4} 17 P32 0.1 132
E o} 1t ||E o 1Fs
N N
017 Thdeg || 01 Thdas
-0.2¢ . -0.2 8
L =4.6 : E4.6
0.3+ 4 LOLB bt ]
4.4 : 4.4
0.4+ 4 0L b L]
0.5+ 4 4.2 1 1 SO O S i 4.2
0.6 L PR ST ) A I M B | PR Y -0. I I I I I i I I
0 01 02 03 04 05 06 07 08 09 %% 01 0z 032 04 05 06 07 038 09
y (m) y (m)
Fig. 3-30: ARROW V2 M2 - TPAF performance: case &, =0° (left) and case
O . H
6, 0[-45°;+45)] (right).
b 10, =Tct(y,z,0,=0°) vPorg  =Tet(y,z,0, c[45°;+45°])
0.6 — ‘ ‘ 0.9 0.6 —— T 0.9
0.4 1 0.4 /
. 0.8 08
0.3 e T LT i 0.3 il
- 40.75
0.2 ] 0.2 ,
_ o7
0L ot 1 07 01 il
E o 4 -065(|E 0 1
N N
0.6
0.1 1 bl -0.1 8
-0.2 . 0.2 :
E0.55
0.3 , 03 | BHos
0.5
-0.4 B -0.4 -
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. i I i I i i I i N
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y (m)

Fig. 3-31: ARROW V2 M2 PKM - Vi capacity: case &, =0° (left) and case 6, D[—45°;+45’]

(right).
In all the aforementioned figures, the legend (i.e. the significance of the red line and the

magenta box) and the methodology of computation for the case of 8, 0[-45°;+45] are the

same as clarified in §3.3.7.
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Fig. 3-32: ARROW V2 M2 PKM - f.? capacity: case &, =0° (left) and case &, D[—45°;+45’]

IS0
(right).
PLA:fCt(V,Z,GZ=U°)(inG'5yG=10m’52) PLA=fct(y,z,0, e [45°;+45°] )(iNG's,G=10m/s?)
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Fig. 3-33: ARROW V2 M2 PKM - PLA capacity: case 8, =0° (left) and case
g,0[-45°;+45)] (right).
Among the interesting results in this analysis, we mention the v/ capacity that exceeds
0.554,,,,, and PLA that reaches 22 g, which is absolutely intriguing. This is not to mention the
fr capacity that exceeds 0.87,,,, over DWS.

I1SO
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Workspace : Case -1.5m < q < +1.5m, vi=1...6 and 0,= 0°
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Fig. 3-34: ARROW V2 M2: illustrations of the spatial workspaces in the case of &, =0°
(top) and 6, 0[-45°;+45)] (bottom).

Fig. 3-35: ARROW V2 M2 PKM with turntable (rendered CAD drawing).

Actually, this study reveals not only an outstanding performance, but also a rather
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homogeneous one.

To end this section, we provide in Fig. 3-34 illustrations of the spatial workspaces of ARROW
V2 M2 for the stroke lengths given in (3.139). Also, in Fig. 3-35, we show the total assembly of
ARROW V2 M2 PKM with the turntable. Notice that the turntable has its axis parallel to the X

direction and passing through the point P, of coordinates P, = (O Y, O)T.

3.5- Conclusion

In this chapter, we have discussed some novel architectures and detailed their modeling,
singularity analysis, and workspace evaluation. All this has been done while highlighting their
merits and drawbacks. Even for some, such as ARROW V1 and ARROW V2, an additional
thorough study has been carried out. In particular, ARROW V2 has eventually exceeded the
theoretical stage into the scope of practical implementation. Nevertheless, this implementation
has put into attention the possibility of inter-arm collisions and necessitated some
modifications. With the intention of sustaining the interesting manufacturability features of the
initial concept, a slight change in the topology of ARROW V2 has been proposed and validated.
The validation has been mainly concerned with assuring that the topological mutation does not
result in any type of unexpected singularities. Fortunately, the altered design, namely ARROW
V2 M2, has proved to preserve the main characteristics from singularity perspective. However,
the mutation has resulted in adverse influence regarding modeling simplicity. An analytical
form of the DGM is no more available, and neither the kinematic nor the singularity analysis is a
straightforward problem. Ultimately, the dimensional synthesis of ARROW V2 M2 has been
presented based on two primary criteria: precision (WTPAF) and dynamics (WILA). The
optimized PKM is characterized by isotropic and peak linear accelerations of about 7.5g and

22 g, respectively. As for precision, its translational amplification factor does not exceed
WTPAF=3.4 over the desired workspace. Moreover, its isotropic linear speed and static force
capacities are respectively more than 0.55¢,. = 2.75t0 3.85/h and 0.87,, = 2000 N.

Regarding peak linear speed, it can reach WTPAF ¢, =3.4 q,,, =17 t0 23.81h .

Based on the above, ARROW V2 M2 demonstrates to be worth holding its name. It is really
an accurate and rapid PKM with a large operational workspace.

It remains to discuss the preliminary performance analysis of the implemented prototype
and provide some insights on the possible future amelioration. These constitute the essence of
the last chapter of this dissertation.
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Chapter 4: ARROW PKM: Preliminary
Performances, Geometric Sensitivity, and Possible
Error Compensation

In this chapter:

This chapter is dedicated for discussing the preliminary precision evaluation of the ARROW
prototype and the possible future enhancements. It starts by giving a general overview on
the basic implemented control and the redundancy treatment. Then, the dynamic precision
evaluation of the prototype, based on proprioceptive sensors, is presented, and some
observations and remarks are accentuated. Afterwards, the general guidelines of geometric
calibration and error compensation are provided. In this scope, the main points to deal with
the absence of an explicit inverse geometric model, which embraces all the geometric
parameters, are detailed. Furthermore, some insights on possible compensation of elastic
deformations are discussed, in case a further improvement is needed to attain the
anticipated precision.
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4.1- Introduction

Within the time allocated for this doctoral thesis and due to the delay in the delivery of the
prototype, we could perform neither a detailed performance analysis by exterioceptive means
nor a geometric calibration. Nevertheless, we had the opportunity to assess the preliminary
performances on the level of precision and dynamics, the results of which are quite promising.

This chapter addresses the aforementioned results and provides an overview on the possible
future improvements. These refinements are related to the precision aspects of the PKM, as
rapidity and dynamical requirements have been almost fulfilled.

Finally, the current chapter is outlined as follows. First, few words on the current basic
control methodology and the treatment of redundancy are discussed. Afterwards, the dynamic
precision performance along a sample trajectory is provided. Also, some of the apparent
sources of the observed precision errors are accentuated. Based on the presented arguments, a
general overview on the geometric calibration and error compensation is presented. Moreover,
insights on the compensation of errors due to elastic deformations are exposed. The chapter
eventually ends with conclusions.

4.2- ARROW V2 M2 Prototype: The Basic Control
Strategy and Treatment of Redundancy

The currently implemented control is depicted in Fig. 4-1. Though it is generally based on the
classical PID law, perhaps, few points are worth emphasizing, particularly regarding the
treatment of redundancy. In fact, the control of RAMs is usually impeded by the possible
occurrence of antagonistic control forces that might lead to system deformation, or even
damage if not well treated.

This treatment is done by means of adding the regularization matrix, R, at the entry as

well as the output of the PID block (refer to Fig. 4-1). This method has been proposed in the
confidential Ph.D thesis of (YANG, 2012). A similar approach has been also suggested by
(HUFNAGEL & MULLER, 2012) and applied to PD control law. In this latter work, R is called

antagonism filter (AF). The matrix R is defined as follows:

R,=J. I, (4.1),

where J_ is the inverse Jacobian at the reference pose.
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1
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71 4 €, Rm | : E-reg Robot
ref IGM =
Y |  Basic PID Control Law
ref (With Anti-Windup) ]
L e
> |F2l erw-rer
IDM |

Force-To-Current Conversion

real

* SPG: Set-Point Generator: sends reference pose,
velocity and acceleration.

* IGM (Inverse Geometric Model): sends reference Q
(joint positions)

* IDM (Inverse Dynamic Model): sends feed-forward
forces.

* Kaw: is the anti-windup gain.

* Kp, Ki and Kd: are the proportional, integral and
derivative gains of the PID controller.

* Rm: is the regularization matrix.

PID-ref

Fig. 4-1: ARROW V2 M2 PKM prototype: basic control model.

In fact, multiplying the joint error vector, 6q, by R is to assure that only the consistent
part of 6q is considered by the PID. Then, one might ask: what are the sources of the

inconsistent part of 6q? The answer is quite simple. Generally speaking, there are two main
sources for having oq' [null(\];)] #Z0 (or in other words ((Sq— R, (Sq) #0). These are the

inaccuracy of the measurement device, and the geometric errors. In our case, as we have very
precise encoders with nanometric resolution, the incertitude in measurement has negligible
effect. Contrarily to that, geometric errors are most often the primary source of the

inconsistent portion of Q. Actually, as these errors increase, the value ||6q— R, 6q|| increases
as well. That is why the value 6q— R, dq| can be a good indicator on how well the geometric

calibration has been done.

On the other hand, the regularization at the output of the PID block assures that only the

actuation-force vector!, 7, with zero components along the null space of J; (i.e.
T’ [null(\];)] =0), is being considered and commanded for the actuators. This methodology

fulfills the assumption we have made in the establishment of the inverse static and dynamic

models for this redundantly actuated PKM. Nevertheless, we might have 7" [nuII(J;)] =0

violated in one case, which is when electric current saturation occurs.

! Note that electric current is directly proportional the force in an electric actuator.
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A final remark to make is regarding the anti-windup strategy. The main role of this part is to
maintain control stability and avoid oscillatory behavior of the PKM when saturation occurs. In
particular, its target is to overcome the problem of integral term accumulation in the
mentioned situation. Within the same scope, we highlight that a slighty modified approach to
manage integration has been adopted as well, as to avoid numerical overflow. This modified
management is that proposed by (YANG, 2012); it is not depicted in Fig. 4-1 for simplicity.

Having presented briefly the implemented control strategy and clarified the main points
concerning redundancy, the following section will present some of the acquired preliminary
performances of ARROW V2 M2 PKM.

4.3- Preliminary Precision Evaluation of ARROW V2 M2
PKM

In this section, we provide some dynamic precision analysis of the prototype for a
commanded sample trajectory. We highlight here that due to a noticed defect in some of the
joints in addition to power supply limitations, we did not exceed 10 g linear acceleration and
4 m/slinear speed. Several trajectories have been tested, but we are going to limit our
discussion to the most prominent one. This is given in Fig. 4-2. We clarify that in this figure, the
capitalized notations, X, Y, Z, and B, are the names of the axes of motion of the PKM
following the machine tool conventions; they correspond respectively to the notations: X, Z,

(—y) ,and &,, which are used in modeling and which we adopt throughout this report.

Both the non-regularized and regularized joint tracking errors, namely E =dq and
Eregj =R, 09 in Fig. 4-1, have been registered in realtime and are depicted in Fig. 4-3. In Fig. 4-

4, an estimation of the tracking errors in the operational space have been computed and
visualized. Their calculation has been based on the following relation:

ox=(dx dy oz 96, =7, 4q (4.2).

Several points can be made based on Fig. 4-3 and Fig. 4-4. These are summarized in the
enumerated list below:

1. All tracking errors peak at the same instant (about t =64 s) and this is due to the high
loading involved on the defected joints, particularly those of the third and fourth
complex limbs. Notice that at this instant, we have 10 g linear acceleration in the
vertical direction (refer to the green curve in Fig. 4-2). Currently, the design of these
joints is being reconsidered. This will probably help overcome the observed
phenomenon.
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Fig. 4-2: The tested trajectory profile.

The translational tracking errors, except for the aforementioned case, seem to be rather
interesting, in which they do not exceed 0.1 mm. Moreover, in statics, it has been

noticed that such tracking errors go below 20 pm, which is quite remarkable.
The controlled orientation error is interesting as well. Except for t =64 s, the estimated

error is less than 0.071°.
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Fig. 4-3: Actuated-joint tracking errors for the trajectory profile in Fig. 4-2.
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Fig. 4-4: Estimated tracking errors in the operational space.

4. Analyzing Fig. 4-3 shows that the regularized errors are much less than the non-
regularized ones. This indicates the presence of non-negligible geometric errors. This can
be supported by observing the non-regularized tracking errors after t =73 s (static

phase), in which they settle to about 1 mm. On the other hand, the small-regularized

tracking errors show that though the control is of basic nature, it is still rather effective
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Fig. 4-5: ARROW PKM geometric calibration: the main relations.

and well tuned. Thus, we can expect much better performance based on a more
advanced control strategy.

Finally, we highlight that in what concerns geometric errors, we have already some
knowledge of these discrepancies. In fact, some of them have been mentioned by the
manufacturing company in its quality control report. However, while compensating for some of
these errors is a straightforward process (e.g. the simple arm lengths), it is not the case for
others (e.g. lengths of the rods in the complex chains, the direction of the revolute joints, etc.).

Therefore, it is indispensable to explore the calibration of ARROW PKM and the possible
method of error compensation. These are the essence of the upcoming section.

4.4- Geometric Calibration and Methodology of Error
Compensation

While repeatability is attributable to non-deterministic sources, accuracy is of deterministic
nature and therefore subject for enhancement. Among the main sources of accuracy
degradation are geometric errors. These result at the time of manufacturing of the different
components (manufacturing tolerances) or at their assembly. Other causes of inaccuracy are
deformations; a machine tool though is usually very stiff, it remains non-infinitely rigid and
consequently elastic deformations are inevitable.

This section is dedicated to deal with geometric errors and their compensation, in which we
brief the main guidelines. The goal is to present the general approach, as slight modifications
exist in comparison to what we are classically used to.
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First, we mention that a proper calibration should consider simultaneously: the parallel
module, the turntable, the measurement frame on the end-effector, and the proper frame of
the measurement device. This is clarified in the schematic given in Fig. 4-5. In this figure, the
measurement frame corresponds to that of the measurement device, such as the Metris
camera, Laser Tracker, etc. Regarding the measurement probes, they correspond to the means
by which the end-effector pose is determined, for instance: LEDs, spherical mirrors, etc.
Therefore, in practice, we need to identify not only the parallel module and turntable
geometric parameters, namely &, and &, but also those that determine the transformation

matrices: TY?, T and TVFT.

However, our aim here is just to give an overview on the calibration approach to deal with
the parallel module only. Actually, one of the key issues in this scope is how to account for the
influence of the complex chain geometric errors. Obtaining an analytic inverse geometric model
(IGM) embracing all the possible geometric parameters, particularly the aforementioned ones,
is very difficult, if not impossible. So, how can we overcome this barrier?

Perhaps, the solution is to consider the strategy proposed by (SAVOURE, et al., 2006) for
parallelogram-based robots. In the following subsection (§4.4.1), we exploit this method to
perform a sensitivity analysis on the parallel module of the ARROW machine. Afterwards,
§4.4.2 presents the methodology of error compensation, and §4.4.3 provides some general
remarks.

4.4.1- Geometric Sensitivity of ARROW V2 M2

The geometric parameters that are considered for calibration are clarified in Fig. 4-6 and Fig.
4-7. In these figures, we highlight the following designations:

1. e, corresponds to the unit vector along the X-direction of the platform frame.

vect P signify the components of vector V&t in the platform frame.
proj, (---) and proj., (..-) denote the projection of a vector into the xy planes of the

base and platform frames, respectively.
4. ¢, and s, denote cos(d) and sin(6), respectively.

5. X, :(pT gT)T :(X y z 6 86, Hz)Tis the complete pose of the end-effector,

with P being the coordinates of P=TCP and € corresponding to the vector
composed of Euler angles.
6. € corresponds to the direction of the k-th linear track. We have k=1 for i =1,2, k=2

for i =3,4 and k=3 for i =5,6, where i is the number of the kinematic chain.
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Geometric Parameters — Simple P-S-R-R Chain
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pi=(ori (e | 0 )
ar ar'

x=(x vy z 0,9, QZ)T

a; =(ew,pr0jxyp(ul )
B S IR — 0., 0, 0,: XYZ Euler Angles
B =(proj, (#,).u,) 0. >0

0,—0

Fig. 4-6: Calibration parameters of the simple PSRR chain.

Geometric Parameters — Complex Chain P-(S-R-R),

q;, = AfOAJ'T € — X,
Y 1

Joint displacement Zero reference
for joint
displacement

By = HBfny'
Poy = HC,-jD,-,-”

T
plat _ (¢ ¢, s .,C. S| -directi i
u; —( wCp SaCp Sp ) :direction of revolute at D in platform frame

u __

a; (exzi’pmjmnlat (uij ))

By =(proiyy, (#;).u,)

Fig. 4-7: Calibration parameters of the complex P(SRR):z chain.

7. The points B, B

1j 2

D;, and D; have the following coordinates in their proper frames:

BCD, _ . . \T BCD; _ [ BCD; BCD; Bco; \T
B _( BiCD' VSCD' ?CD') ’ B, = (Xbij Yoij i ) ’
DP* =(xg® yP* z0®)", and DM =(x2* yB% z8¢)", with BCD, and BCD,

being the proper frames of B and B, of origins D, and D, , respectively. Note that

( 1j ij’

BCD, and BCD; are shorthands for BC D, and B,C;D;, respectively.
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Then, to establish the relation between the geometric errors of the parallel module, 6&,,, ,

and the complete end-effector pose error, X, :(5X oy 9z 096, 06, JHZ)T, a classical

approach would be to determine the IGM, then differentiate it with respect to q, X,, and &, .
But as mentioned earlier, such IGM is difficult to establish. Thus, the solution is to consider the
basic constraint equations, F(q, XerEpm ) =0, as suggested by (SAVOURE, et al., 2006).

Following the lead of (SAVOURE, et al., 2006), we start by considering the following
constraints:

AB?=L? 0i=1,2,5,¢ (4.3)

and
AB: =L, 0i=34and)j= 1, (4.4).

Differentiating (4.3) and (4.4), we get:

AB" dAB =AB (dB -dA)=L dL, 0i=125,¢ (4.5)

and
A,B] dA B, = A B/ (dB, —dA) =L, dL;, Di=3,4 andJj = 1, (4.6).
The idea now is to replace dA, dB,, dA;, and dB; in terms of dx_ (the differential of X),

dqg (the differential of q), and d&,,, (the differential of &,,, ). This is done by considering the

following expressions:

A =Ag+(a +% ) e = dA =dA,+(dg +dx ) g +(g +x, ) de, (4.7),
{Aij = AH'O +(qi +X"i ) & = dAH :dAijO -'-(dqi +dxfi ) & +(qi +Xfi ) dek’ with: (4 8)
Ao =Ag+ A"
B=P+RBP=P+R ( DM + R B ) which implies (4.5)
dB, =dP+dR Diplat + RdDipIat +dRED BiBCDi + RECD dBiBCDi B
and

Bij =P+R Bijplat =P+R ( Di]plat + R;;Dij BijBCDij ), which Implles (4 10)
dB, =dP+dR DP* +RdDP™ +dR™ B +R*™ dBF™ '

with:

* R:the rotation matrix of the platform with respect to the base frame in terms of Euler
angles (4,, 6?y, and 6,);
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s N™™: the coordinates of a point N (N = B,B;,D,,D;) expressed in the frame of

reference, frame ( frame= plat,BCD,,BCD, );

Rﬁ?‘ (R;ﬁ?” ): the rotation matrix of the part BCD, (correspondingly BCD; ) with
respect to the platform;
+ and R* =RR5 (R™ =RR}."): the rotation matrix of BCD, (correspondingly

BCD; ) with respect to the base frame.

Note that we have RS3* =Rot(u,,¢; ) and RIS = ROt(Uij W, ) ,where ¢, and ¢, are the

plat

rotation angles about u; and u;, respectively. For nominal conditions of assembly and

geometric parameters, we have U, =U; =€, and consequently, ¢/, and ¢, are the same as
i ij

those clarified in Fig. 3-24 and Fig. 3-25.

In brief, we proceed by developing (4.7) through (4.10) in terms of dq, dx_, d&,,, , dl,[/ri ,and
dg[/,”. Then, we substitute the latter results in (4.5) and (4.6) to get the following general

relation:
M,dg+M,  dx.+M, dy, +M_ dS,, =0 (4.11),
with:
s M, chand er : being 8x 6 matrices;
¢ M, :being 8x dim(&,,, ) matrix;

+ anddy, =(dy, dy, dy, dg. dg, dy, dy, dg, ).

32 Fa1 M2

Now, we should get rid of dy, from (4.11). This can be easily done by considering the
nominal conditions, in which we can write dy, in terms of dx_ by utilizing (3.105) and knowing

that:

dy, =¢, dt, 0i=12,5,6
dt,arij :wm dt, 0i=3,4 and]j = 1,

. (4.12).
(/Ifil :wriz :wri’ i = 3’4
W, =, -6, 0i=1.6
As a result, we get the following general form?:
JqF dq+JfC dXC+J§FPM dé., =0 (4.13),

2 Details are omitted and only general forms are given here. Yet, the explicit expressions can be established
symbolically by hand or by using the symbolic toolbox of MATLAB (following the described steps).
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Mean Absolute Sensitivity Analysis of TCP Position Components with Respect to Length Parameters
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Fig. 4-8: Mean absolute geometric sensitivity of ARROW V2 M2 prototype.

with JqF and JXFC being 8% 6 matrices and JéfPM being 8x dim(épM) matrix.
As we are only considering geometric errors, we set dq =0. This implies:

dx, =S, A&y = =I5 IL dé,, (4.14),
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Fig. 4-9: Estimated standard deviation of absolute geometric sensitivity of ARROW V2 M2

prototype.

where Sg is the geometric sensitivity matrix. Hence, for small geometric errors, &, , the

estimated pose error is:

0X. =S, 0&py
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As the procedure guidelines have been described, it is essential to discuss the geometric
parameters and their proper choice. In fact, we can consider some realistic and practical
assumptions to reduce the number of these parameters. These assumptions are: u, =u,,

Uy Sy, Uy SUgy, U =Ug, D =D,, D =Dy, Dy, =D,,, and D; = D
Based on the above, we have 84 geometric parameters (i.e. dim(é’,,,vI ) = 84), namely:

- L,L, Ly Ly, Ly Ly, L and ( (i.e. 8 parameters);

* & (Dk =1,2,3 (ie. a,, a,, a;, B, B, andB,: 6 parameters);

*  X,...X, (i.e. 6 parameters);

« A,=(0 vy, zajo)T , 0i =1,2,5,¢(i.e. 8 parameters);

A =(Xajj0 Yaio ZajjO)T, Oi =3,4 and]j = 1,:(i.e. 12 parameters)3;

« u (0i=125, and u; (Di=3,4andJj= LD (ie. oy =a;, B'=B, a5 =a,,,

Bi= Bl @ =y, By =By, al=ay ,and = fi: 8 parameters);
- Db=D,, D,=D,, D,,=D,,, and D, = D, (i.e. 12 parameters);

417

+ B (Di =1,2,5,Q and B; (Di =3,4 and]j = 1,)2(i.e. 24 parameters).

For these geometric parameters and for their nominal values given in §3.4.3.E, we have
investigated the mean and standard deviation of the absolute sensitivity over the desired
workspace, DWS, defined in (3.138). The results are depicted in Fig. 4-8 and Fig. 4-9 for a
representative subset of the aforementioned parameters (particularly the parameters of the
simple chain (I) and the complex chain (Il1)) *. As it can be clearly noticed from the figures, there
are several parameters of negligible influence as compared with the others,

particularly: ySCD‘ (Di =1,2,5,Q, be..CD” (Di =3,4 and]j = 1,)2, and the directions of the

ij
revolute joints, U, (Di =1,2,5,Q and u; (Di =3,4 and]j = 1,)2. These have not only low
mean absolute sensitivity, but also a small standard deviation. Hence, we can mainly consider

the remaining 68 parameters for the PKM calibration. This number might be even reduced
upon performing identifiability study, which is not our concern here.

As we have derived the geometric sensitivity matrix, the upcoming section focuses on the
latter’s implementation for the purpose of error compensation.

*Note that we have A, =(XajjO Yaijo Zajjo)T = Ao+ A”. We considered Ay, instead of (AiO +A1'j°a) to avoid
obvious redundancy in some geometric parameters.

4The results of sensitivity relative to the geometric parameters of the other chains are analogous to those
presented in the mentioned figures. This is due to the structural symmetry of the PKM on one hand, and the
symmetry of the desired workspace, DWS, with respect to the Xy and yz planes on the other hand.
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4.4.2- Compensation of Geometric Errors of ARROW PKM

In this part, we focus on the compensation of the geometric errors of the ARROW machine,
which is composed of the parallel module, ARROW V2 M2, and the turntable. In §4.4.1, we
have focused on the parallel module only, as the turntable modeling and calibration study are
trivial. Nevertheless, in the scope of precision performance improvement of the whole
machine, it is indispensable to put the turntable into the play, the importance of which will
become clear by the end of the current section.

In fact, if we consider ARROW V2 M2 separately, we cannot compensate except for four

components of 0X_, specifically those corresponding to the controllable dofs. Similarly, if we
consider the treatment of the turntable in isolation from the parallel module, we cannot
compensate except for one orientation error. Yet, considering both constituting modules at
once, allows for better error compensation where only the insignificant orientation error about
the spindle axis is not compensated. This latter technique is what we are going to discuss here.
Fig. 4-10 presents the turntable with its geometric parameters, X, Y,, Z,, a,, 5, 6,, and
6,,; these parameters are consolidated in the term 6, . In nominal conditions, € is parallel

to e, ; i.e. pararllel to the X-axis of the base frame.

Now, we suppose that for d&.;, we have estimated J6,, the orientation error of the

turntable corresponding to the desired orientation, 6. Also, we presume that starting from

s Origin of Turntable (P,): Actuator 7
T
Base Frame e \
Actuator 8 -7 A
|
(o] ‘
,’)"i |
e qs
et:(ca!cﬁr 5.,C5 Sp )T 4, =6,-0,
o _( ) gy =-6,-0,
¢ =\ € PT0)y (ef) ¢, origin offset of actuator 7
B = (prOij ("r ) ,et) ¢ , . origin offset of actuator 8
¢ ,=cos( ...)
s, =sin( ...)

Fig. 4-10: Schematic of the turntable of ARROW machine with notations.
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0&oy » We have computed 5XC:(5X oy 9z 06, 96, 592)T=Sg(xd)5§PM , Where
Xy = (Xd Yy Z, O )T is the corresponding desired controllable pose of the parallel module.

Based on the above, we have the infinitesimal rotational error vector of the spindle with

respect to the base frame given by:

1 0 sin(é,)
&% =0, + COS(@X) 96, + —sin(HX) Co%ﬁy) o0, = 2 66, with:
0 sin(6,) cos(8,) cog6,) @.16).
1 0 sin(6,) 0,
2=|0 cogd,) -sif6,) coff,)| ¢0=| 3,
0 sin(g,) cog8,) cok,) a0,

As 6, and @, are practically very small and tend to zero (nominally 6, =6, =0), we have

Q [11,,. Thus, relation (4.16) becomes:
el =00 (4.17).
Regarding the turntable, we have the infinitesimal rotational error vector given by:
e€?=090 ¢ (4.18).

Hence, we have the main ingredients that allow us to proceed with error compensation. But
before describing this procedure, the reader should keep in mind that our interest is to get rid
of the relative errors between the parallel module and the turntable, not the base frame. In
fact, to work with the ARROW machine, the trajectory generation should be done in the
turntable frame rather than the base one. That is why the relative position and orientation of

Fig. 4-11: lllustration of the impact of the rotation €' e, =&, of the turntable.
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the spindle with respect to the turntable are the ones to be compensated. This is crucial to
understand and make sense of what follows.
We start by considering the rotational errors about €, . The relative rotational error between

the spindle and the turntable, d9°" , is given by®:
d?ﬁr“" = qT e -6 = etT 00 -06, =6, - 6, (4.19).
Then, we compensate for d?ﬁr"" by commanding the following rotation of the turntable:

6

tcomp

=6+ =6 +96, -4, (4.20)
instead of 4.

On the other hand, the relative orientation error between the spindle and the turntable
about e,, denoted Jef , is given by:

en' =e] efny —€] e =, ~(e] §) 96, = 3, (4.21)

Therefore, to compensate for Jsf_’r'\" , we need to command the following corrected rotation

of the spindle about the z axis:

é.

zdcomp

=0,-0N =6, ,-00, (4.22).

It remains then to consider the compensated position of P=TCP, i.e. the tool center point
of the spindle. This compensation is divided into parts. The first part accounts for the positional
error of the parallel module, 6P =(5X oy 52)T , Whereas the second considers the
positional error, dP,, due to the rotation added to compensate € ek, =dd,. To clarify this
latter point, an illustration is provided in Fig. 4-11. In this figure, the point P, is the center of
the turntable, and B is the position of P in the case where no rotation is made to compensate
e el =d8 . When the turntable rotates an additional & e, =dd, angle, the spindle’s TCP
remains in its place at B. But as we said earlier, we are interested in maintaining the same
relative position between the TCP and P,. This implies the need to move the TCP from B to
P', where B'is obtained via rotating the segment PP an angle equal to €' €, =J0,. As

e el =d0, is sufficiently small, we have:

oP, =-96, e, xP.P,, with:
(4.23),

PP =(X% =% Ya-Y 2Z-2)

5 Note that we have €' 90 =cog(a,) co§3 ) g, + sifia,) cs(z) a0, + sif3 ) 96, = 36, , where a, and 3, are

supposedly very small (they are nominally equal to zero).
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where P, = (Xd Yy Zd)T represents the coordinates of the desired position of P=TCP, and

P = (x0 A zo)T corresponds to the coordinates of the turntable center.
As a result, the compensated desired position of the parallel module should be:

Picomp = (Xdcomp Yacomp  Zdcomp )T =P, -0P -0R, (4.24).

Eventually, the compensated poses of the parallel module and the turntable, which allow
maintaining their desired relative configuration, are given by:

_ Pacamp | _( Py =8P — P,
foom? szcomp sz - 502 (425)
Borp = 6, + 06, = 06,

As the compensation methodology of geometric errors has been clarified, it remains to
stress some essential remarks concerning classical calibration and its execution. This is the
subject of the following subsection.

4.4.3- General Remarks on Geometric Calibration

In general, the classical calibration can be carried out with the target of minimizing some
cost function related to the pose errors, such as: the root mean square of the different pose
errors, the maximal pose error, etc. However, it is important to know that with the current
PKM, there are some constraints to be respected due to actuation redundancy.

In particular, one should take into account the minimization of ||§q—Rm5q|| for all

configurations. In fact, having ||§q—Rrn §q|| large implies not only an inconsistency in the
geometric parameters, but also a possible increase in deformations. The inclusion of
||5q— R, §q|| can be done by means of adding the equality constraint ||6q— R, 5q|| =0 to the
classical optimization, or considering the minimization of max(||5q—Rm (Sq”) as one of the

objectives in the optimization problem. In this aspect, we would recommend the former option.

4.5- Compensation of Elastic Deformation

The ARROW machine being well manufactured and having its geometric parameters
precisely monitored, we think that geometric calibration will be sufficient to achieve the
anticipated precision performance. Nonetheless, if needed, a compensation of the elastic
deformations can be done as well. This section summarizes the main guidelines in this aspect.

As we have the joints very stiff, especially after the redesign of the defected ones, their
stiffness can be neglected. We can only consider the stiffness of the individual rods under

tension/compression forces. These are denoted by K, (Di =1,2,5,Q and

172



Chapter 4: ARROW PKM: Preliminary Performances, Geometric Sensitivity, and Possible Error
Compensation

Kj (Di =3,4 and]j = 1, )2; they correspond respectively to the rods of the simple chains (I, I,
V, VI), and the complex ones (lll, IV). Good estimates of K, and Kij can be obtained by applying
finite element method. It then remains to describe the compensation methodology.

For the compensation of deformation errors, we are going to follow the lead of (DEBLAISE,
2006), but in the general dynamic case instead of the static one. The essence of the
aforementioned procedure can be described as follows. First, the forces in the rods are

computed. Then, the deformations and the resulting pose error are determined and
compensated for in the very same manner as described in §4.4.2.

Regarding the determination of the forces, it is straightforward. For the simple arms, it is
done by considering the dynamic equations of the corresponding actuators, and knowing their
respective actuation forces, thanks to the simplified inverse dynamic model (§3.4.3.D). As for
the forces in the individual rods of the complex chains (lll) and (IV), they are computed by
considering the equations of motion of the corresponding actuators in addition to the
constraint relations on the platform (i.e. the relation between these forces and the torques
about the X and y axes of the base frame). Omitting the details and sticking to the key points,

we get the forces’ values in these rods, say: F (Di =1,2,5,Q for the simple limbs (I, II, V, and
Vi), and F; (Di =3,4 and]j = 1,)2for the complex ones (lll and 1V), with the convention that
positive values indicate tension.

The influence of these forces is then translated as variations of the lengths L and L;, which
are denoted by dL{* (0i =1,2,5,6 and JLi* (0i =3,4 andj = 1,, respectively. Their values

are simply given by:

oL =% 0i=1,2,5,6
LR | (4.26).
oL :K—', Oi=3,4andJj = 1,

ij

Knowing é_l_?ef and JL%, the compensation of their induced pose error can be achieved

ij 7
through applying the same strategy described in §4.4.2. More precisely, it is performed by
adding d'L?‘Ef and JLE}Ef to the corresponding geometric errors, L, and JL;.

Hence, we have went an additional step in the precision improvement of the ARROW
machine. Perhaps, it is worth mentioning here that although we have considered the rods’
deformations only, still we can follow the same technique and include the stiffness matrices of
the joints. Nevertheless, the gained accuracy not only might be unworthy compared to the
added complexity, but also its online implementation can be infeasible. This is due to the
computational time expense.
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4.6- Conclusion

In this chapter, several aspects have been discussed. Starting by the exposition of the basic
control strategy, some points have been emphasized, specifically concerning the treatment of
actuation redundancy. Following that, the preliminary dynamic precision analysis of ARROW V2
M2 prototype has been carried out, founded on the data provided by the proprioceptive
sensors. The results have been generally insightful and promising. Actually, they are expected
to be better upon the redesign of the defected joints, performing geometric calibration, and
applying a more advanced control strategy. In this scope, the geometric calibration and the
methodology of compensation have been discussed. Also, the pose sensitivity of the parallel
architecture with respect to the different geometric parameters has been presented. It has
demonstrated the possibility of considering a reduced list of 68 parameters for ARROW V2 M2
in a first step, which can then be ensued by a further reduction based on identifiability study.
Moreover, if geometric error compensation proved to be insufficient for accomplishing the
target precision, the possibility of compensating elastic deformation has been highlighted and
its main principles have been described.

This was in brief the core of the current chapter and the plan for the performance
enhancement of the ARROW machine. Yet, several interesting topics can be investigated in the
future. Among these, we mention the possibility of auto-calibration. Having ARROW V2 M2
possessing two extra sensors is a feature worth exploiting via auto-calibration. The purpose
behind that should not be bypassing the classical calibration procedure, but rather
compensating for very slight parameter modifications during the working phase. These slight
modifications could be due to temperature drift, replacement of a damaged component and
the alike. Another idea is to exploit auto-calibration as means of signaling when a classical
geometric identification is required.
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In this doctoral thesis, we have focused on parallel manipulators (PMs) and their
implementation as machine tools. In fact, PMs have been there for more than half a century
and attracted a lot of research. Yet, their real exploitation in industry has been shy and limited,
not exceeding the research stages at university laboratories and industrial enterprises. This is
mainly due to workspace limitations, design complexities, singularities, and lack of good
compromise between rapidity and precision. In the attempt to change this harsh reality, we
have addressed two main problematics in this field. The first is related to the design itself, in
which we have exposed some novel topologies that fulfill the yearned for manufacturability
features, while maintaining large workspace, rapidity, and precision. The second problematic
that we have focused on is performance assessment regarding precision, kinetostatics, and
dynamics. In particular, we have been interested in having the new suggested indices applicable
to general manipulators and free of the inherent limitations of the classical measures, regarding
redundancy and heterogeneity conflicts. We have considered all of this, while sustaining a
physical interpretation and having it directly linked to what the roboticist or end-user look for
in such machines. In the light of the above, a new rapid and precise prototype, namely ARROW
V2 M2, has been designed. It has been dimensionally synthesized based on the dual criteria of
precision and dynamics. The initial performances of this PKM have been quite intriguing,
though based on proprioceptive means and not exterioceptive ones.

Actually, we do not claim that the so-far presented work is the perfect approach to acquire
rapidity and precision, but perhaps, it is a solid one-step towards the aforementioned goals. In
addition, we stress that still the preliminary assessment is not sufficient to verify the
acquirement of the preset targets, as a more intensive exterioceptive precision investigation as
well as geometric calibration should follow.

In what follows, we emphasize some points that are interesting to research in the future.
These fall in the scope of complementary work regarding the suggested performance indices,
and the possible enhancements of the implemented PKM.

Possible Advancements Regarding the Suggested
Performance Measures
In the currently presented work, we did not deal with two types of manipulators, namely:

the task redundant ones, and those with mixed simultaneous kinematic and actuation
redundancies (AR and KR, respectively).

The treatment of task redundancy (TR) is rather simple, as long as no AR or KR is involved.
Otherwise, its intricacy is similar to the case of mixed-redundancy manipulators (MRMs). For
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MRMs, the treatment sophistication is that of obtaining the direct and inverse kinetostatic
models. As mentioned earlier, MRMs, especially of rigid type, are not being researched
according to our knowledge. Nevertheless, it seems it will not remain the same for cable-driven
parallel robots. More precisely, marine robotic designs, based on active cables and thrusters,
are currently subject of research at LIRMM. Such designs involve both AR and KR
simultaneously. Therefore, it is essential to inspect such situations; especially that one of our
targets has been the general applicability of the proposed indices. Assuring that the latter idea
holds is important. This is since it aids in evaluating and comparing designs of different types,
without invoking any disputes regarding the need for some common basis.

Eventually, as means of promoting the current evaluation methodology, the development of
a software package that includes the required functionalities is necessary. This step, in spite of
being of technical nature, it is undeniably influential for the sake of popularizing the approach
and advancing it, based on the feedback and inspirations supplied by the users.

Possible Improvements Regarding ARROW Machine

With respect to the currently executed ARROW prototype, several possible advancements
can be made. These are enumerated below:

1. Geometric or elasto-geometric calibration must be done, at least incorporating the
identified geometric errors given in the quality control report. This can be sufficient to
effortlessly promote the precision performance further, and reduce the disagreement
between the regularized and non-regularized joint errors. In this aspect, it would be also
worthy to investigate the possibility of perfoming calibration based on the quality of
machined parts, as suggested by (CHANAL, 2006). Such approach is interesting due to
having the cost function directly related to the target, which is the agreement between
the real machined piece and the desired one.

2. Auto-calibration would be interesting to investigate and exploit for improving the
precision performance, via the compensation of some marginal geometric errors (e.g.
those arising from temperature drift, component replacement, etc.).

3. In the current thesis, we have done the dimensional synthesis without including the
parallel module and turntable inter-collision checks. This has been based on the
assumption that it is possible to account for it at the design stage. Yet, it is preferable to
consider this point in future optimizations, especially that we have recently developed
an advanced collision detection module for this purpose. This module can be used in the
optimization procedure on one hand, and for offline collision pre-check in the industrial
controller on the other. Nonetheless, it is not recommendable for use in realtime, as it
might be time consuming.

These were the main points regarding the current ARROW machine, in its current right-hand
left-hand structure. Nevertheless, it is not completely disfavored to consider a hybrid version
consisting of ARROW V2 M2 in series with a one-dof (1R) wrist, especially if the application
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does not require a massive rotary actuator. At the end, this remains another compromise to
make between elevated dynamical capabilities and simple motion planning.
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Appendix A: Precision-Related Performances of Some
Rapid Industrial Robots and Prototypes at LIRMM

A.1- Generalities and Definitions

This appendix details the precision evaluation of several prototypes and industrial robots
that has been done at LIRMM. This assessment considered accuracy and repeatability not only
for static poses, but also in dynamics; i.e. as the robot follows a pre-specified trajectory.
Moreover, multi-directional variation of accuracy, in the case of statics, has been investigated
as well. The norm adopted for all the aforementioned tests is [ISO 9283; 1998 (F)].

The study considered the following robots: Quattro, Par2, DUAL V, and Veloce (the
prototype). However, regarding dynamic performance (path following), not all robots were
possible to evaluate due to technical issues and constraints.

In what follows, we clarify all the aforementioned terms, in which we limit ourselves to
generic definitions and clarifications. As for the formulae, they are easy to compute based on
the provided definitions. Yet, for more insights and details, the reader may refer to [ISO 9283;
1998 (F)].

Accuracy

Pose accuracy expresses the deviation between the commanded pose and the mean of the
attained ones when approaching the former (i.e. desired/commanded pose) from the same
direction. In other words, it is the distance between the mean of the attained poses and the

. g ™

Mean Pose

Fig. Ap-1: Static accuracy and repeatability illustration.
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desired one. The closer it is to zero the better, indicating an accurate robot. In general, we can
distinguish between positional and orientation accuracies.

Repeatability

It expresses the closeness of agreement between the attained poses after n repetitive visits
to the same commanded pose, and along the same direction. We speak generally of positional
and orientation repeatabilities. This repeatability is also referred to as uni-directional one, as it
considers single direction. Geometrically, it is the radius of the sphere centered at the mean
pose and embracing all the attained ones.

Assuming that the attained poses are normally distributed about the mean (i.e. Gaussian
distribution?!), the repeatability is 35, with & being the estimated standard deviation (this is

applied for positional and orientation repeatability). The closer the value is to zero the better,
indicating a very repeatable robot.

An illustration of the above two terms is depicted in Fig. Ap-1. Based on the
aforementioned, a robot can be accurate but not repeatable, or vice-versa. In fact, the
precision as referred to in several places is more related to repeatability than accuracy. Here,
we will use the words “precision” and “precise” to refer globally to all terms such as accuracy,
repeatability, and resolution (operational resolution?) that has been described in Chapter 2.
Therefore, when we say a “precise” robot, we mean a one that is both accurate and repeatable.

Multi-Directional Variation of Accuracy

Briefly, this expresses how the pose accuracy (in position and orientation) varies with the
change of direction of approach to the desired pose. Mathematically, it is the largest difference
between the means of the actual poses obtained for the same commanded pose, but along
different directions. An illustration of this term is shown in Fig. Ap-2.

Note that in all the aforementioned static precision evaluations, the attained pose is
measured after a sufficient settling time.

YIn Gaussian or normal distribution, the region containing the vast majority (99.99%) of the cases are those

within a distance of three standard deviations from the mean. Notice that we used the notation o to denote
estimated value of this deviation, g . For more on this matter, the reader may refer to [ISO 9283; 1998 (F)] and
any statistical article in this subject (estimators of standard deviations).

2 Operational resolution is the smallest detectable step the robot can do in the operational space. It is similar to
the measurement resolution of a scale (ruler). If the ruler is marked with 1 mm divisions, it means we cannot use it
to measure an object with a length smaller than 1 mm; in fact, any measurement is done with rough £1 mm
error.
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T Pose atteinte

1 Trajectoire 1

G ¥3.¥3. 23

Trajectaire 3

(G2 (G Pose atteinte

Fig. Ap-2: lllustration of multi-directional variation of accuracy (VAP in the figure) [ISO
9283; 1998 (F)].

Also, note that the most important of these measures are repeatability and multi-directional
variation of accuracy. This is due to the fact that the reasons behind these mentioned terms are
rather of non-deterministic random nature (due for example to backlashes, joint clearances,
stick-slip effects, control and sampling time, encoder resolution, disturbances, thermal
fluctuations, hysteresis, etc.). As for accuracy, it is due to deterministic sources (such as
geometric errors, assembly errors, elasticity, incompleteness of geometric model, etc.). Note
also that a part from the non-deterministic influences, specifically their mean, contributes in a
secondary part to the accuracy. Theoretically speaking, while accuracy related errors are
possible to compensate, repeatability errors are rather impossible to circumvent. That is why
having less accurate but repeatable robot is less problematic than the opposite case. Based on
Fig. Ap-1 and Fig. Ap-2, it is clear that when repeatability and multi-directional variation of
accuracy are both very close to zero, the attained poses for the same commanded destination
are tightly clustered, which implies improved multi-directional repeatability as well.

So far, we have defined static precision-related terms. It remains to define the dynamic
precision-related measures that quantify the robot performance in trajectory following.

Considering a trajectory that is described several times, then one can define the path
accuracy and path repeatability (in position and orientation).

Trajectory or Path Accuracy

Consider the robot moving along a prescribed path several times in the same direction.
Then, the trajectory positional accuracy is defined as the maximum distance between the
desired path and the barycenters of the different positions attained at different steps of the
controlled trajectory. Similar definition is considered regarding orientation accuracy along a
desired path. For better understanding, refer to Fig. Ap-3.
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I .. /— Barycentre G

j-&me trajectoire
atteinte

Trajectoire
commandée
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commandée en X, Yo, Ze

x

Fig. Ap-3: lllustration of trajectory positional accuracy ( AT, ) and trajectory positional
repeatability ( RTp) [1ISO 9283; 1998 (F)].

Trajectory or Path Repeatability

It expresses the closeness of agreement between the several trajectories traveled for the
same commanded path. It also utilizes the six-sigma rule, assuming a Gaussian distribution. For
clarification, see Fig. Ap-3.

A.2- Briefing on the Procedure and Main Results

Evaluation Procedure in Brief

Having defined the different terms, we can proceed to discuss the evaluation done. First, it is
worth mentioning here that the pose of the tested robot has been measured by the use of
Metris K600-CMM system (shown in Fig. Ap-4). According to its technical specifications, within
the first zone of measurement (1.5 to 3 )3, the uncertainty is 90 um+( 25 um rjldm, where

d

the temperature variations, especially that the calibration of the machine is not possible during

is the distance between the LEDs and the camera . Yet, it might be slightly different due to

m

experimentation. As for the measurement repeatability, we have estimated it by checking
several measurements of fixed LEDs (for one second duration), and it was in the vicinity of
10 pm.

3 We have done our measurements in this zone.
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) Robot frame

Metris

#0 y
Local frame
o s & P2
P2

-1

Fig. Ap-5: Experimental setup: an illustrative schematic (left) and a close-up view on the
LEDs assembly on the platform (right).

The complete pose of the end-effector is measured by means of fixing three LEDs on the
platform as close as possible to the TCP, and some techniques were used to account for the
impact of rotational errors on the estimation of the real TCP position —when possible. Also,
some estimation technique was used to determine the transformation matrix between the
measuring frame and the proper base frame of the tested robot. We will not get further in
details into these aspects as being rather technical, but we will highlight later the impact of
some of these issues. The reader should keep in mind that the intention behind this evaluation
is having insights on the order of magnitude of the precision measures, and not their exact
values.

The schematic illustrating the experimentation is depicted in Fig. Ap-5. Notice that in this
figure, three LEDs are fixed on the moving platform and are measured by the Metris device to
estimate the complete end-effector pose. Also, other three LEDs -when possible- are mounted
on the fixed base frame as to inspect the vibrational effects and any inconsistencies. When
using six LEDs, the measuring frequency is 500 Hz. In the case of using three LEDs, the

measuring frequency is 1000 Hz.
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Finally, for measurement acquiring, an automatic triggering signal was channeled from the
robot controller, allowing for automated procedure -except when it was impossible (due to

compatibility issue, as it was the case with DUAL V).

Static Precision Results

Base frame

4

Fig. Ap-6: The largest inscribed cube or rectangular parallelepiped within the accessible

workspace, the diagonal plane, and the test points (P...F;).
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Fig. Ap-7: lllustration of the possible cycle schemes.
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Base Frame
w
Fig. Ap-8: Multi-directional variation of accuracy: poses (P, P,, and P,) and the three

directions of approach for the pose P (AP, BP,and CP, with i =1,2,4).

According to [ISO 9283; 1998 (F)], the static tests may be carried by determining the largest
cube or rectangular parallelepiped inscribed within the accessible or most frequently utilized
workspace. Then, any of the four possible diagonal planes can be used (see Fig. Ap-6). Within
this plane, five points P (with i =1...5) are considered being the center, and the points along

the diagonals, with the latter ones offset from the vertices a pre-specified distance for safety.

Regarding the way each of the five points (or poses) is approached for static accuracy
evaluation, it can be done in one of the two manners depicted in Fig. Ap-7. We have chosen the
second scheme. As for multi-directional variation of accuracy, the test is only done at B, B,

and P,, in the way shown in Fig. Ap-8. For each of the three poses, B, P,, and B,, the

approach is done along three directions parallel to the axes of the base frame, and each is
repeated 30 times.

Having clarified the main points regarding the procedure, we proceed by presenting the
static precision results of Quattro (see Fig. 1-45), with the articulated platform (four dofs of 3T-
1R nature) and the rigid one (three dofs of 3T type) (see Fig. Ap-9). Note that in the case of
using rigid platform, the robot becomes redundantly actuated with one degree of redundancy.
The static accuracies and repeatabilities for position and orientation of Quattro, in its two
versions, are presented in Table Ap-1, Table Ap-2, Table Ap-3, Table Ap-4, Table Ap-5, and
Table Ap-6.
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Fig. Ap-9: Adept Quattro platforms: articulated (four dofs 3T-1R on the left) and rigid
(three dofs 3T on the right) (http://www.adept.com/products/robots/parallel/quattro-
s650h/downloads).

Table Ap-1: Static positional accuracy and repeatability of Adept Quattro (case of
articulated platform).

R P P P, P
Static Accuracy (mm) 0.0751 1.1729 1.1379 0.7336 0.3378
Static Repeatability (mm) 0.0429 0.0637 0.0724 0.0682 0.0464

Table Ap-2: Static positional accuracy and repeatability of Adept Quattro (case of rigid

platform).
R P P P, R
Static Accuracy (mm) 0.5281 1.1366 0.6326 0.1799 0.9651
Static Repeatability (mm) 1.0659 1.3096 0.2601 0.1961 0.2366

Table Ap-3: Static orientation accuracy of Adept Quattro (case of articulated platform).

Orientation Accuracy (°)
Angle\Pose R B R P R
0, -0.0026 -0.0624 -0.2138 -0.1468 0.0095
9y 0.0029 -0.2842 0.2440 0.3171 -0.0108
8, (controlled -0.1218 1.4040 | -0.6413 | -0.4654 | -0.0735
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Table Ap-4: Static orientation repeatability of Adept Quattro (case of articulated platform).

Orientation Repeatability (°)

Angle\Pose R P P P R
0, 0.0088 0.0134 0.0108 0.0147 0.0096
Hy 0.0029 0.0036 0.0027 0.0049 0.0027
o, (COI’]tI’O”EC) 0.0115 0.0221 0.0102 0.0176 0.0194

Table Ap-5: Static orientation accuracy of Adept Quattro (case of rigid platform).

Orientation Accuracy (°)
Angle\Pose P P, P, P, P,
o, -0.0014 0.0744 -0.2785 -0.1257 0.0499
9y -0.0053 -0.1882 -0.0469 0.1339 0.1723
6, -0.0352 -0.0341 -0.0826 -0.1585 -0.1067

Table Ap-6: Static orientation repeatability of Adept Quattro (case of rigid platform).

Orientation Repeatability (°)
Angle\Pose B R, (A P, P,
0, 0.0393 0.0413 0.0179 0.0127 0.0134
6, 0.0048 0.0064 0.0041 0.0032 0.0028
o, 0.0227 0.0333 0.0207 0.0102 0.0103

As for the multi-directional variation of accuracy in position, it is given in Table Ap-7. The
results show that while Quattro is undeniably rapid, yet its precision performances are still far
from the requirements for high-speed and high-precision applications. It is worth mentioning
here that the precision evaluation, based on the poses calculated via the feedback sensors,
showed a better accuracy (for both versions) and better repeatability (only for rigid platform).
In fact, we inferred the problem to be in addition to the use of articulated platforms, to some
issues at control level and the implemented direct geometric model (numerical model).
However, the control being closed, no further inspection was possible to make at this level.
Also, the way in which the parallelograms are executed, by means of ball-socket connections
and springs, is an additional contributor to this lack of precision. This is not to mention the
geometric errors and calibration related sources. In fact, in another project, called PRADA
(executed by Tecnalia France), noticeable improvements on accuracy have been made reaching
about 55% (thanks to reconsidering the geometric models and performing adequate
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Table Ap-7: Multi-directional variation of positional accuracy of Adept Quattro.

Multi-Directional Variation of Accuracy (mm)

Version\Pose B P, P,
Quattro (4 dofs, 3T-1R) 0.1007 0.0886 0.2292
Quattro (3 dofs, 3T) 0.0978 0.2253 0.1066

Table Ap-8: Static positional accuracy, repeatability, and multi-directional variation of
accuracy of Veloce prototype.

R PR P P R
Static Accuracy (mm) 0.1162 | 3.4294 1.8707 8.3440 5.0229
Static Repeatability (mm) 0.0963 | 0.0959 0.1053 0.0664 0.1370

Multi-Directional Variation of
0.1207 | 0.1175 | Not Done | 0.1772 | Not Done
Accuracy (mm)

calibration). Nonetheless, the details and precise accuracy values have not been made public so
far.

Another four-dof (3T-1R) robot whose static precision has been investigated is Veloce (the
prototype). Its static accuracy, repeatability, and multi-directional variation of accuracy are
given in Table Ap-8, Table Ap-9, and Table Ap-10. The poor performance regarding Veloce
prototype has been expected and it is due to two main reasons. The first is that the robot has
never been calibrated, whereas the second is that the rotational errors were large. In fact, the
high rotational errors affected the positional accuracy. This is due to the fact that the influence
of the offset between the real TCP and the estimated one has not been compensated because
of technical issues (note that the rotational errors are sufficiently high to have the influence
very noticeable; see the values in Table Ap-8 and Table Ap-9 for P, and F,). Regarding

repeatability, it is similar somehow to Quattro. Also, the orientation errors, especially for
constrained rotations, are rather small and repeatable. These are due to assembly and
geometry errors. As a matter of fact, controlled rotation always has more degraded accuracy
compared with constrained rotations, but still acceptably repeatable. In Veloce prototype, the
main contributor of its diminished accuracy (especially rotational one) is the uncompensated
geometrical errors as well as the presence of the screw-nut mechanism, which also has its
impact on repeatability.
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Table Ap-9: Static orientation accuracy of Veloce prototype.

Orientation Accuracy (°)
Angle\Pose R P, P, P, R,
o, -0.0496 -0.0505 -0.0819 -0.0985 -0.1793
6’y -0.0188 -0.0573 0.0090 -0.0044 0.1019
g, (controlled 0.1110 -2.2557 1.9811 9.6003 7.0918

Table Ap-10: Static orientation repeatability of Veloce prototype.

Orientation Repeatability (°)
Angle\Pose P P, P, P R
6, 0.0121 0.0070 0.0065 0.0062 0.0265
6, 0.0089 0.0029 0.0030 0.0024 0.0062
g, (controlled 0.0187 0.0131 0.0422 0.0096 0.0322

It is worth mentioning that the general observations regarding orientation errors are almost
the same in all the tested robots. In what follows, we just present the interesting positional
accuracy and repeatability of Par2 and DUAL V.

Par2 (see Fig. Ap-10) is a two-dof (2T) robot developed for pick-and-place applications. In
fact, the coupled two passive chains that characterize this robot help in increasing its
transversal stiffness, which constitutes an interesting feature as compared with other planar
robots. Moreover, its Delta-like structure allowed it to be the most rapid manipulator with two
dofs, having an acceleration capability up to 43gand up to 260 cyclg min capacity (Adept
cycle of 700 mmlength and 25 mmbheight) (COMPANY, et al., 2011). As for DUAL V (see Fig.
Ap-10), it is a rapid three-dof (2T-1R) planar motion manipulator characterized by actuation
redundancy that not only helps eliminating singularities, but also homogenizing performances.
An interesting feature of this robot is the possibility of having it dynamically balanced and thus,
reducing the influence of inertial forces and moments. The balanced case has therefore the
advantage regarding precision. For more information, refer to (WIJK, et al.,, 2013). In our
experimentation, we considered the unbalanced version and yet we had interesting results.
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Fig. Ap-10: Par2 (on the left) and DUAL V (on the right) (LIRMM).

Table Ap-11: Static positional accuracy and repeatability of Par2.

R | R | R | R | R
Static Accuracy (mm) 0.0330 | 2.0793 | 2.1001 1.1723 1.3427
Static Repeatability (mm) 0.0129 | 0.0128 | 0.0086 | 0.0253 | 0.0252

Table Ap-12: Static accuracy and repeatability of DUAL V.

R | R | R | R | R
Static Accuracy (mm) 0.0302 | 1.0369 | 0.7291 | 0.9414 | 0.3777
Static Repeatability (mm) 0.0244 | 0.0091 | 0.0098 | 0.0103 | 0.0154

The static accuracy and repeatability of Par2 and DUAL V are given in Table Ap-11 and Table
Ap-12, respectively. In fact, though the accuracies are not that better than the previous
discussed robots, their repeatabilities are quite interesting being between 10 pmand 25 um.
This is promising, especially that the repeatability of the measurement device is about 10 um.
Furthermore, we mention that regarding accuracy measurement, there have been several
problems that would have highly influenced the results, particularly for these two
aforementioned robots (compatibility between Metris K600 and the robots). The latter issue
was severely critical in the case of DUAL V and forced us to use manual control for
measurement triggering.

An important result concluded from DUAL V experimentation is that actuation redundancy is
not a problem, especially if well treated. In fact, based on the results of Quattro with rigid
platform, such a conclusion is not possible to make. Also, the use of revolute joints has been an
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essential factor in promoting DUAL V precision and particularly its repeatability -as compared
with the joint technology used for parallelogram spherical joints (e.g. in Quattro and Veloce).
We add to this, the use of direct drive that eliminates the backlash problems coming from the
use of gear trains.

So far, we have exposed some static precision results. In the upcoming part, we present
some dynamic precision measures concerning trajectory following.

Dynamic Precision Results

For assessing path accuracy and repeatability, [ISO 9283; 1998 (F)] suggests several types of
trajectories such as straight lines, rectangular paths, and circles. All these trajectories must be
inside the chosen diagonal plane. In our case, we have experimented with linear, triangular,
and circular paths. However, we only present the main results of two robots, namely Quattro
and Par2, for the linear trajectories along P,P, (refer to Fig. Ap-6), while focusing solely on

positional errors. We emphasize that according to the aforementioned norm, the trajectory is
repeated 10 times for 100 %, 50 %, and 10 % of robot’s maximal speed.

The positional path accuracy and repeatability of Quattro and Par2 are presented in Table

Table Ap-13: Positional path accuracies and repeatabilities of Quattro and Par 2 (case of
linear trajectory P2P4).

10% Maximum |50% Maximum [100% Maximum
Speed Speed Speed
Path Positional
A 0.2447 0.7820 1.2430
Quattro (4 DoFs, ccuracy (mm)
3T-1R Version) Path Positional
. 0.4740 0.7516 1.9674
Repeatability (mm)
Path Positional
A 0.8025 1.0941 1.6241
Quattro (4 DoFs, ccuracy (mm)
3T Version) Path Positional
. 1.4066 2.2855 4.1633
Repeatability (mm)
Path Positional
0.2396 0.3222 0.3905
Accuracy (mm)
Par2 (2 DoFs, 2T)
Path Positional
. 0.6354 0.6907 0.8588
Repeatability (mm)
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Ap-13. As it can be noticed and expected, both path accuracy and repeatability are degraded
with the increase of speed. This is due in one part to the decreased number of sampled points
and in another part to the increase of the other dynamic influences. The values clearly show
that rapidity is accompanied by rather poor dynamic precision.

In brief, this section has proven that we are still far from having parallel robots with at least
a good compromise between rapidity and precision.
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Appendix B: Derivation of Lower Bounds for the
Dynamic Specific Isotropic Values in the Case of Rigid
Manipulators

B.1- The Derivation Procedure

This appendix details the procedure of obtaining lower bounds for the specific isotropic

values in the case of dynamics. For this purpose, we assume the requirements to be: damq,

da % _‘w

weqr Veegr  Wegs d foeq, and d M, , With their significance being as defined in §2.3.4.

We start by considering the following relations:

K¢+h"+h”+h™ +7 =1 (Ap.1),
¢|<¢™, Oi=1..m (Ap.2)

and
Ir|<™, Oi=1.m (Ap.3).

In addition to the above relations, we recall the inverse kinematic equation that is also
necessary for the study. It is given by:

q=J,t (Ap.4).

The first step is replacing (Ap.2) and (Ap.4) by deriving their imposed upper bounds on dvg';
and dw;";. This is equivalent to getting the specific isotropic linear and angular speeds, kviss"; and
Ka®

as discussed in §2.2.3.C, in which we set @, = W, aNd Vg = v ., respectively. Thus,

fs0 7 req ?
(Ap.2) and (Ap.4) can be replaced by:

I < VE (Ap.5)
and

“WF <P (Ap.6),
with:
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“v® :_r:rllin(A), such that:
0,if a<0
= 3 it |i..[l#0anda =0
A Hjmpﬁ H o 3 (Ap.7),
o , othewise
8 :(':1imax_ujmori afeq
Oi=1..m
and
“w® =_r:qin(B,), suchthat:
0,ifh <0
b 1
B ={7—, If |[Jno|#0 andb = (
I H Jmori H I q (Ap8)
o , aherwise
quimax_ujmpﬁ Vrdeq
Oi=1..m

If v® < dVreq (or *a® < da),eq )%, the robot cannot initially fulfill velocity requirements and
consequently, all dynamic specific isotropic values, except those related to velocity, must be set
to zero by convention (i.e. “a® =%a® =*f2 =“m® =0). In such a case, one only needs to

investigate ‘v¥ and ‘. Aside from that, we can proceed by deriving the dynamic measures.

However, in what follows, we are going only to elaborate the derivation of two dynamic
specific isotropic terms, namely daf; and "vg;, being slightly different from each other and as
the remaining can be derived in a similar fashion.

For this purpose, we consider (Ap.1) and (Ap.3) that yield the following system of double
inequalities:

1™ < (kf)T a+(kf )T a+ (knfe )T f, +(krri“5)T m +V' H'v+o' H e

+ 2V H w+1, <+ (AP3),

Oi=1.m

4 Note that it is enough to do either test of the two, as we have a mutuality influence (meaning:
k d k d
Vo S Vg = W < Wy

208



Appendices

with kfi‘ standing for the part of i-th row vector of K corresponding to the acceleration a, and

similar meaning regarding the others. As for T, itis the i-th component of z. Then, isolating

(ka)T a, we get:

fi

Oi=1..m:
=) o (k) () v 10
~o'H 0~ VH"o-1, s(kfj)Ta
and
Ui=1.m
(k) s v =) =) (k) m,-v (o.11)

—0'H’0- ¥"H"w- I,

Then, let us consider (Ap.10) and the worst case, which can be described as maximizing the
left-hand side and minimizing the right-hand one. This worst case is expressed as having:

Oi =1..m: %g = =1+ |K7|| "0 K| @ fq H{ K[ ‘Mg
+an " H'v-0' H” 0-2V" H" 0)-T, s—‘kf a (Ap.12).
< v | | | 5 =%
lofls “ e
In general, obtaining max (—VT H'v-o' H’ @-2v" H" a)) can be done

M= “vieg. o< “areg
numerically by classical constrained optimization. However, in the case of homogeneous-dof

robot, we can always get the term max (—VT H, V) or max (—a)T H, w) analytically by the

IVl “Vreq lofls ®ateq
use of Lagrange multipliers (see Appendix B.2). In this case, we will have the maximum
expressed in terms of the eigenvalues of H, =H/; or H, =H”. Also, in the case of having

H'™ =0  (uncoupled influence of v and @ ), we can determine

(—vT H'v-o'H" w) analytically, as it reduces to:

M= Ve o] g

ax (—v' H'v-o' H® @)= max(-v" H'v)+ max(-o" H’ ®)  (Ap.13).
H:HHi (Y;:} HVHS Vreq HwHS Wy
- eq

Thus, each term of the right-hand side of (Ap.13) can be expressed in terms of the

eigenvalues of H' and H/”.

So, the only conflict is when H™ =0, 0i =1..m. In this case, we either do the optimization,
or we avoid its use and its possible time expense by means of utilizing a simple analytical upper

boundon ~ max  (-v" H'v-0' H” @-2v" H" w). This upper bound is calculated as

M= Vg o= “ ey

follows:
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H Pax (v H'v-0" H” -2V H " o)
V(< “Vieq
Jols et

Ap.14).

SH ﬂndax( vl HY v)+H Hmax( THY? a))+H 3 ax(-2v' H" o) Ap-14
V€ Wieq o||< V€ Wieq
ol “ateq

Here, we are going to give the approach for the most general case based on bounding the
velocity-dependent terms (the used bounds become exact values in the case of robots with

homogeneous dofs or when H =0,0i =1..m).

Thus, we can rewrite (Ap.12) in the general case as:

Oi=1..m:
aq— — max ka d fereq + drngeq (Ap15),
\" 2 w 2 \V7)
=~ i, (dvreQ) ~<min (dwreq) * dvreq dwreq_rgi <-lk:|a

with ¢, =min(eigH") .Q, ¢m, =min(eigfH?) .0, and 5%, —max(sing(HiV‘”)). Note

that value designates an upper bound for the term value. Also, notice that *e” =°e if

H =0 or H does not exist (meaning pure translational or rotational robot).

A final remark is that as — a<0, °g must be less than or equal to zero as well.

ks

Otherwise, we cannot assure® there exists “a® .

From (Ap.15), we can write:

a<?®E", with @i =1..m):
0, if >0
) - (Ap.16),
fE =- 9 kel
B kl? i
o, otherwise
where value indicates a lower bound for value.
Similar manner is adopted to deal with (Ap.11), in which we obtain:
Oi =1..m,
a T at max a
(k) as®e = K o =[] Mg (Ap.17),

\% d w 2 vow d d
_Zmax( V,eq) mef( req) T Qg Vg W T

® We cannot assure that “a® exists because we are using an upper bound on g  and not its exact value.
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with ¢y, =max( eig{H") .9 and ¢, =max(eig{H) .9.

As a result, we get:

a<®E’, with @i =1..m): as<®E’, with:
0, if *e" <0 0, if *e"'<0
N - ) R D )
B = ka,lf g 20 and|kr|l# (|_5 ~ ka,lf quand‘kri
o, otherwise o, otherwise

Appendices

(Ap.18).

Z 0 Oi=1..m

Merging (Ap.16) and (Ap.18) together with the condition “v¥® < dVreq (or “af® < da)req ), we

obtain:

da,-i ZE: min(Kc,E,a:E), with:

i=1..m
ek d k d
={0, if V2 < Vg (Or*afd < “e,)

oo, otherwise

\Y d 2 w d 2 vw d d
- ma>q( Vreq) - ma>g( a‘?’eq) _Zamax Vreq a)req_rgi

Oi=1..m

0, if e >0 0, if a=q+<0
B = —19;_  if “g" <0and|k|# 0 & = %, if “g’20and
0, oitherwise oo,iotherwise
it i 51 R L PR L R B
G (i) =it (* @)+ 2000 Vi T,
g = - kr’il dareq_ krife dfereq_ krrine dmereq

£ (

(Ap.19).

The result in (Ap.19) can be interpreted as follows: the manipulator can achieve an

acceleration at least up to daf; in all directions while allowing simultaneously angular

acceleration, linear and angular velocities, force, and moment to attain their demanded

requirements in all directions. Actually, in (Ap.19) we had established a lower bound for daf;,

which is sufficient as no harm in having “a® higher than “a® . Nonetheless, if one would like

to know an upper bound for ¢ ¥, a similar approach can be used, but this time considering

g , and ?
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Similarly, w

hereafter:
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e get regarding ‘a®, “f® , and ‘m® . The corresponding relations are given

“a® 2% :min(Kc,”Ei_,aEi+), with:

i=1..m

{0, if VD < Vg (O @ < ‘W)

oo, otherwise

0,if ‘e >0 0,if ‘g’ <0
ar-- — ﬁ - =+ — anr
E =1 k‘j-, it “e <0 andlk|= 0 ZE =(=x, if *¢ 20 and]k]# 0

o0, otherwise oo, otherwise
ﬁ max a m \% 2 w 2
& =71 + kfi dafeq+ kfife dfefeq-l-Hk’ieHdrne’eq_Zmi”i (dvfm) _Zmi”i (da)"SQ)

vw d d
+ 27ma>ﬁ Vig Weq ~ T
2 2

‘g =+ - kf dareq_ krife dfereq_ k::ine dmereq_zr\vlm (dvreq) _anﬂax (dwreq)

Oi=1.m (Ap.20),
dgsp degsp — H fep- fept H
fr=9f> = mln(Kc E.°E ) with
_ 0, i VE < NV (or' e <“wy)
¢ oo, otherwise
0,if “g >0 0,if ¢ <0
fopm— fe=q_ ra— fo &=+ feq+
‘B =y if *e <0and|k"|z 0 ‘& T\=, if “e =0and|k’|= (
kr.fe 1 kr.fe [— 1
o0, otherwise o0, otherwise
=— max a a m, \% 2 w 2
feq :_Ti + kri dareq + kri dareq + kri ‘ drnereq _Zmini (dvreq) _Zmini (da)req)
+ ﬁr\g;& dvreq dwreq 1
+ max a a m, \" 2 w 2
f=q=+r' - kri da‘req - kri dareq - kri ’ drna'eq _Zmax (dvreq) _Zmax (da)req)
_20:16;& dvreq dwreq 1
Oi=1..m (Ap.21),
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and
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ImP > mP =_rqin(Kc,“E’,“E+), with:
1I=1..m
=)0 “VE < (Or'a? <‘wy,)
¢ |w, otherwise
0, if ™e >0 0,if g <0
m - e — m e
E =1-_9 it ng <0and|k™|# 0 "E =\=, if ™" 20 and|k™|#
— k;“e\ | — k™ — |
o, otherwise o, otherwise
— ’ 2 ?
qu :_Timax+ k:‘ dareq+ kri da!req-i_ krife dfereq_ r\T/1ini (dvreq) - n‘::ni (da)req)
+ ﬁr\z& dvreq dwreq I
+ a e v 2 w 2
"t =+ lke "8 - K; Oy krif dfereq_Zma& (dvreq) = ey (dwreq)
=20y, dvreq dwreq I
Oi=1..m (Ap.22).
‘e® . We will consider “v® only, as ‘@ can be determined in

It remains to get ‘v® and
the same way. For this purpose, we re-examine (Ap.9) that can be rewritten as below, after

isolating the velocity terms, v and w:
Oi=1..m:
(k) a- (k) @ (k) 1. (Ap.23),

-

and
Oi=1..m:
VI H'V+o' H” 0+2vT H"™ ws+rimax—(k:‘)Ta—(k:)Ta (Ap.24).
(k) =) me,
Let us study (Ap.23) by considering the worst case to get an upper bound for v=|v|
attainable in all directions, while all other dynamic requirements are satisfied. This corresponds

to maximizing left-hand side of (Ap.23) and minimizing its right-hand one. Thus, we have:

Oi=1..m:
+ kf‘

df
(Ap.25).

fe
kri ereq
(VT H'v+e' H” wj

d
Oy *

max d a
7 Beg +K;

d
+ -7 < min
rnereq 9i HwHS&%eq + 2VT Hivw o

m
k.

213



Appendices

Replacing H ﬂngn (vT H'V+eo' H @+2Vv' H" w) by its lower bound,
|| " Wreq
2

win V2 (da),eq) -20u, "W, V, yields:
i =1..m:
_I.'max+ ka d +ka da _l_kfe df _l_kme d
T a'eq T req T ereq T rna'eq (Ap26)
w d 2 \Y vw d
- min; ( a)req) _Tgi = min; V2_20-ma>g Cl)rqu
Note that ¢, <0 and -20,;, afey < 0 due to having: $otin, = min(eigiHi") ,(), Omax 20,

and a)rdeq > 0. We can rewrite (Ap.26) as:

Oi=1..m:
o V#2000, "0 vS='e, with:
" " " e (Ap.27).
€ =7, + kri a'eq + kri areq + kri fefeq
w 2
+ krrine dfT'le,eq_Zmini (da)req) _Tgi

Thus Y& must be negative; otherwise, we cannot assure that 4v® exists and thus,
1O

_7Vv 2 vw d
min; A +20—ma>g

“v® =0by convention. Since f(v)=

W, V is increasing over [0,+00[, the

maximum of f(v) over [O,vo[ occurs at V,. Therefore, if we have '€ <0, we get an upper

bound, v, for ‘v® by solving:

~{oin V2200, ‘@ v+ =0,0i=1.m (Ap.28).
In ¢ =0, we have:
v
_ q vow d
,ifor “w, 20
v, ={20m ‘W, me e (Ap.29).
o, if Tpe, ‘@ =0
On the other hand, if {;, #0, then (Ap.28) yields:
2 v V A~
_O-ma>q a)rd _\/(0-:7/1&;& a)rdeq) +Zmini q <0
_Zr\vlﬂni
V, =q0r: (Ap.30).
O-r\;(;q a)rdeq \/(Jr\:g)q a)rdeq) -'-Zr\rllini VQ_
_Zr\r/ﬂni
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Yet, as the first solution in (Ap.30) is always negative, it should be rejected and only the
i positiveness.  If

be considered after checking its

solution  must
_j/(—imm )< 0, we cannot assure that there exists ‘v¥

second
0 of + (0™ f Y+ Ve
O-ma>q req (ama>q req) Zmini q
and we set “v¥ =0 by convention. Based on (Ap.29) and (Ap.30), we have
V., = V_qu; , If ?so, arff;’x «#0, anddy, =
Zamax W,
a“ of _\/(va deo ) +ZV' ? _
<VE~ = - = max ~req max; Teq min; Vo <
VSR =4V, v , if 'g <0, {fy, #0, andvy, 2 O(A 31)

Oi=1..m
We proceed in the same manner regarding (Ap.24) to get
+ E f V ot >O AY/7)) ¢ O (f
Vo, = = , >0, g, andd
oil 20."\:]6;)ﬂ dc()req i % )F
2
- 02, oty +[(00, Can) + 0y '€
VSYE =iy = a L= if '§ 20, {y %0, andy;,> 0
o, if ‘g 20, o, @, = O andf;,, = (Ap.32).
g <Oorv,,<0
with:
VAt — X 2
i_ Z—ima T 1:ereq ma)g (da)req) _TgI
Oi=1..m

Thus, we obtain based on (Ap.31), (Ap.32), and the kinematic condition (Ap.5)
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( Vior L7 E.) with:

v 2 Vg =min( Vg,
v, if ‘e <0, 0' «a? 0, and(mm
in_ — 0|2’ If q O me 7 0 a'nd‘/|22 0
o, if '§ <0, o, =Qand{y,, =
0, othewise
0|1' If q 0 Uma)g da)req 7 O’ andz\rlnax =
. Voo if '€ 20, {1, #0, andv;,> 0
00, fi>0 max a)eq =0, and(‘r’na)ﬁ =
0, otherwse
d vw d 2 —
_ —VQ_ _ Jr\:laa)x a)req_\/(a-ma& a)req) -*-Zr\rllini Vq
o1 — d » Voiz = "
zamax a)feq Zmini
VA~ — d d e d w d 2 —_
e =-1"™" ‘ Aeq fereq+Hkrrin _Zmini( a)req) 7,
vV o+ Vo d 2 v V At
+ q + _O-max da)req +\/(0-r\:;x, a)req) +Zma>ﬁ i
Voi1 = o d y Vgio = " — (Ap.33).
20—ma>g a')req Zma)ﬁ
VAt — d d d 2
8 _Z—imaX afeq_‘kfi fefeq nl.req Zma)q ( a)req) _rgi

|

i=1.m
Likewise, we get a lower bound “@® for ®w?®. The result is given hereafter
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N7 RN s =‘r_rl1|n(ka{2';,:,‘”_+), with
w,, if “e <0, T Vg 20, @Ay, = 0
og =] % if “ <0, ¢%, #0, andw,,> 0

o, if “e <0, O'I\T/f‘;)g dVIreq =0 and Zﬁ])ir] =0
0, otherwise

Wy, If °g° 20, oy W 20, and(,

ma)g

Wiy, If “g° 20, ¢, # 0, andw; ,> 0

wEi+ —
£ £ WAt V%) d —
oo, if “g" 20, g, =0, and{ ., =
0, otherwse
pr— 2 —
vow d vow d W WA
o = q W = O-max Vreq_\/(o-max Vreq) + min; €
il d v Yoi2 T w
Zamax Vigy Zmini
W — o max d m,|| d v [d 2
q fi fereq +kai _Zmini ( VTBQ) _Z-gi
WAt _0.va) dV + 0.vw dV 2+Zw WAt
S max req max req max S
= ;= — Ap.34
a)oil_sz’ Wy, = w (Ap.34).
ama)q Vreq Zma)ﬁ

d.I:er

mereq Zma>q (dvrw)z I

fi

Hence, we have established lower bounds for specific isotropic values in dynamics. These
bounds become the exact values for the corresponding specific isotropic values if we have
homogeneous-dof robots, h** =0, %v —O or ¢ —O

B.2- Optimization Using Lagrange Multipliers
Consider the following optimization problem:

ax(—xT A x) , with:

|x|sb

(Ap.35),
dim(A)=nxn, xOR", andb> (
where A is a real symmetric homogeneous® matrix.

Note that as A is a real symmetric matrix, all of its eigenvalues are real. The optimization in
(Ap.35) can be written as the following minimization problem:

6 The meant homogeneity is regarding physical units.
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min(xT A x) (Ap.36).

(=Y
Several cases exist:
«  A=0 (positive semi-definite); i.e. for every real x Z0, we have X' AXx=0;

e A<0 (negative semi-definite); i.e. for every real X 0, we have X' A X< 0;

e A (indefinite); i.e. neither of the above is true.
If we have A<0, then the function f(x) =x" A X is with upward concavity’. Hence, its

minimum is at X, =0 and max(—xT A X) =0

[x|<b

If we have A<O, then f (X) =x" A X is with downward concavity, and its minimum is at
the boundary of the allowable region of X. In our case, the X region is defined by ||X|| <b and
hence, its boundary is the surface of the n-dimensional sphere described by ||X|| =b.

Therefore, (Ap.36) becomes:

min(xT A x), withA< 0 (Ap.37).

IX|=b
The problem expressed by (Ap.37) can be solved by using Lagrange multipliers as follows:
min(xT AX+A (xT x—bz)) (Ap.38),
x,A
with A being an arbitrary real number.

The local minimum of g(x)=x" Ax+ (XT X—bz) is at (X,,4,), where:

dg
S Ke) | 2ax +24,1, X,

0g(%,,4,) = = =0 (Ap.39).
ag X' x —b?
_(Xo’Ao) 0 o
0A

Basedon 2A X, +2A,1,, X, =0, we get:
(A+A,1,,) %, =0 (Ap.40),

which is nothing other than the definition of eigenvalues. So, let & (with i =1..n) be the n
eigenvalues of A, which are necessarily negative (since A<0). Then, X, should be along the

direction of the unit eigenvector, e

'min 7

of the corresponding minimum eigenvalue,

Eoin = rplln(fl) < 0 and hence, we get:

X, = £[x,| e (Ap.41).

min

7 Since the Hessian of f is 2 A where A=0.
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But we have || X0|| =b, thus we obtain:

max(-x" A x)=ma{-x" Ax)=-&_  b? Ap.42).
qusb( ) e )=~ (Ap.42)

Finally, in the case of having A indefinite matrix, we consider its eigenvalues, & (with
i =1..n). These eigenvalues are not all positive. To prove that still (Ap.42) is valid, we consider

the optimization:

min(e" Ae Ap.43).
nin(e" Ae) (Ap.43)

The minimization in (Ap.43) can be solved using Lagrange multipliers and yields (similar to
(Ap.37)):

e=e,. (Ap.44),

where €, is the unit eigenvector corresponding to &, = rrPn(A) <0.
1=1..n

Thus, we have Or >0:

max(—xT A x) = max-x" A x) ==& . 1’ (Ap.45).

[x=r

Varying r between zero and b, we get:

T — _ 2\=_zr p2
HXHSE(( X Ax) ggg})( Ein T ) in D (Ap.46).

Thus, we can generalize, for any real symmetric homogeneous square matrix, A, the
following relations:

m‘gg(xT A x) =3 b

min(xT A x) =3 b

[X<b

(Ap.47),

with:

Jn =min(é,..,0)

F o = MaxX(&, 10

&min =MIN(&) (Ap.48).
G = MaX(&)

& ith (;genvalue oA i= 1n
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B.3-Case Study: DUALV
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Fig. Ap-11: DUAL V: schematic showing principal geometric parameters and center-of-
mass positions of the different parts.

This part presents the dynamic evaluation of DUAL V based on the notion of specific
isotropic values. The different required geometric parameters are depicted in Fig. 2-3 and Fig.
Ap-11. In the latter figure, the positions of the center of masses of all the parts are illustrated.
Additionally, the values of the inertia-related parameters are provided in Table Ap-142 and the

actuators’ capabilities, as well as the dynamic performance requirements, are given in Table

Ap-15.

The DM in the required form can be established as described by (WK, et al., 2013). In this
aspect, the only difference is that we have assumed the presence of an external force,

fo :(fa fey)T, and moment, m, =(ma), applied on the platform at the TCP. This can be

easily introduced into the formulation given in the aforementioned reference.

Based on all the above and applying the concepts of specific isotropic values in the case of

dynamics, lower bounds of these latter values have been established over the Xy workspace,

while fixing @ =0°. These results are graphed in Fig. Ap-12.

& The values of these parameters are exactly those given in (WIJK, et al., 2013) for the unbalanced situation.
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Table Ap-14: The inertia parameters of DUAL V

Appendices

Symbol Value Symbol Value
p. =|ACoM,j| 0.0737 1 P, =[|B,CoM,,| 0.1279 v
m, 1.169 ke m, 0.606 kg
. 0.012967 kg i l, 0.006417 kg
m, 0.899 kg | o 0.008168 kg rf
| 0.0041kg m

CoM,, is the center of mass of the arm AB,, with m, and |, being its corresponding mass
and moment of inertia relative to the axis passing through CoM , . Similar significances are
to be considered regarding the arm BC,, and its characteristics: CoM,,, m,, and |,,. The
terms m, and | , are the mass and moment of inertia of the platform, with its center of

mass being at P. Finally, | _ is the moment of inertia of the individual actuator with

respect to its axis of rotation.

Table Ap-15: Actuators’ capacities and required dynamic performances for DUAL V

Symbol Quantity Value

qm™ Maximum actuator’s speed 100 rpm= 10.47 rad
rm Maximum actuator’s torque 60 N m

¢ Aoy Required linear acceleration 30 m/ ¢

da,eq Required angular acceleration 50 rad’ $

dVreq Required linear speed 0.25m ¢

‘ W Required angular speed 3rpm= 0.31rad

‘ foe Required force capacity 200 N
‘ Mg Required moment capacity I5Nm
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Ficof treq = fet(z, 4,8 = 0) i ey = fob(z,5,8 =0) 8] fereq = Fet(z,,0 = 0)
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Fig. Ap-12: DUAL V dynamic analysis: ratios of specific isotropic values’ lower bounds
relative to their corresponding requirements in the case of zero rotation.

0.4 ; | T

0.3

045 -0.1 0 0.1 0.2

Fig. Ap-13: DUAL V: the regions with specific isotropic values’ lower bounds greater or
equal to their corresponding requirements in the case of zero rotation.
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Moreover, the regions of satisfactory dynamic performances based on the different dynamic
indices have been investigated (see Fig. Ap-13). These are confounded as it has been expected,
based on the property of equivalence in §2.2.4.B.
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Appendix C: The Establishment of the Operational
Wrench Zonotope of Cable-Driven Parallel Robots
(CDPRS) in Statics

Consider the following equation that relates the actuators’ torques, 7, to the operational
wrench, w, by:

w=Irt (Ap.49),
with I'==]J .
Also, assume that we have the following constraints on 7 :
O<sr™<r <™, 0i=1.m (Ap.50).

Then, to determine the operational wrench zonotope, we follow the methodology of
(BOUCHARD, et al., 2008) that is summarized in what follows.

First, we define the following terms:

Tmin — (Z.lmin Z.r;nin)T , max — (Z_lmax Z_mmax)T ,
AT:%(Tmax_Tmin), N :d|Q(AT), (Ap.51).
andz =(z" +7™)

Applying the following change of variables:

r=N7+7, with:
~1<ri<+1, Oi=1.m (Ap.52),
Ti . i-th componat of 7
we get:
w=T 7, with:
I'=rN,w=rrt (Ap.53).
andw =w-w
Following the lead of (BOUCHARD, et al., 2008), we get the zonotope boundaries of w by
taking all the possible combinations of d =n-1 linearly independent column vectors,

{7~’i1""’7~’id}' of I', with i, 0{1,...,m}, 0k =1..d . Then, the unit normal to the boundary is

calculated via the cross product defined in the n-dimensional space as follows:
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— yil ><'“xyid

n=- =
Fox,

In fact, there are two parallel boundaries of the same normal, n, but that differ in the points

(Ap.54).

they pass through. These points are determined by the complementary set of vectors defined
by:

{J’jl,...,yjt} :{yl,...,ym} @{yi1 oo ,yid} (Ap.55),
with © denoting set subtraction operation®. The two aforementioned points are given by:

F:z(‘”T’;ik)”

k=1...t

=Y H”T;ik‘)”

k=1..t

(Ap.56).

Thus, in the w space, the pair of parallel planes is defined using a point and unit outward
normal as follows:

( pl*) = plane( p* ,n)

( pl’) = plane( P ,—n) (Ap.57),
in which:
{rf :E iy (Ap.58).
p=p+w

Defining n, as the total number of combinations of d linearly independent d column

vectors of f, we obtain n, pairs of boundary planes defined as in(Ap.57). The intersection of

the latter half-spaces, positioned on the negative side compared to the corresponding outward

normal, form the sought zonotope. Note that the number n is upper-bounded by Cr‘i, which is

defined as:

cl = m!
" d!(m-d)

So, the operational-wrench zonotope and its boundary hyperplanes are now known. For the

(Ap.59).

sake of readability, let us say that these hyperplanes are defined each by a point, w,,, and

outward-unit normal, », , with k :1...2np. Thus, a given wrench, w, is feasible if and only if:

ne WS Wy, Ok=1...2n (Ap.60).

*C=AoB={x xOAandx(OB} with A and B being two sets.
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The system of inequalities (Ap.60) is all what we need to compute the specific isotropic force
and moment in statics.
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Appendix D: Dynamic Performance Evaluation of CDPRs

D.1-Formulation of the Dynamic Model for CDPRs

Neglecting friction, we can write the DM of a CDPR under the following generalized form:
M' (x) p+C'(X,t) t Wi (x) ~W=J | 7 (Ap.61),

with M', C', W, and W, corresponding to the generalized inertia matrix, the generalized

Coriolis and centrifugal effects matrix, the total gravitational wrench as seen from the platform,
and the external non-gravitational wrench acting on the platform, respectively. As for the other
symbols, they hold the same meanings as defined earlier'®.

In addition to (Ap.61), we need to consider the relation that allows the computation of cable
tensions, f.. This can be easily obtained via applying the law of motion on the individual

actuators to get:
l.g-w,=7-% f, (Ap.62),
with |, and w,, corresponding to the mxm diagonal inertia matrix of the actuators and the
gravitational wrenches acting on the actuators due to their proper weight, respectively. As for
¥, itisan mxm diagonal matrix. Note that: I, =1 ,(x ), W, =Wy(x),and ¥ = Y’(X).
In CDPRs with m=n, we always have the inverse kinematic relation, which is given by:
q=J,t (Ap.63).
Differentiating (Ap.63) with respect to time, we get:
G=J, p+J,t (Ap.64).
Substituting (Ap.64) in (Ap.62) yields:
L d,ptl d t-w =7-¥ f (Ap.65).

Merging (Ap.61) and (Ap.65) gives:

T T . . . T
10 Meaning: p=(aT aT) :(\'/T d)T) (linear and angular operational accelerations), and t:(vT wT)

(operational twist: linear and angular velocities).
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K&+h-w, =&y, with:

M- c
K:L J onxn}’éz(vcj’h{l J }: E Ap.66
a m mxn e a m tT Hn+m(x)t ( p' )I

where:

o =H ){ HY ( )T HiVW(x)], =1 {nem) (Ap.67).
(H (X)) HE(x)

Further reforming of (Ap.67) leads to the favorable form below:

K¢E+h"+h” +h™ -w =&y (Ap.68),
with:

h =hV(x,v):(vT H'v -~ VvV HY_ v)T

h* =h*(x,0)=(0" Hf @ - o HZ, o) (Ap.69).
he =h(x,t)=(2v  H @ - 2V' HY o)

D.2- Case Study: A Fully-Constrained CDPR

This study is carried out on the same CDPR depicted in Fig. 2-9. The characteristics of the
actuators, the inertia parameters, and the required dynamic performances are those given in
Table Ap-16. To simplify the dynamic modeling, we neglect the mass of the cables in addition to
friction.

The cable tensions are related to the actuators’ torques, 7, by:
l,=7-% f_, with:

|, =diag(lm, e
¥ =diag(r, I, I, I.)

f, 20, Ui =1...4 (cables should be under tenk

o 4 ma)

(Ap.70).

Regarding the matrices M' and C', they are given by:

228



Appendices

Table Ap-16: Actuators’ characteristics, inertia parameters, and required dynamic
performances for the CDPR in Fig. 2-9.*

Symbol Quantity Value
qm Maximum actuator’s speed 100 rpm =10.47 rgd
rm Maximum actuator’s torque 60 N m
fmn Minimum cable tension 10N
fe Maximum cable tension 500 N
¢ Aoy Required linear acceleration 30 m/ g
dﬂ,eq Required angular acceleration 50 rad/ g
dVreq Required linear speed 0.25 r’d <
dwreq Required angular speed 3rpm=0.31rad
‘ foe Required force capacity 200N
‘ M, Required moment capacity 15N m
| e Actuator’s Moment of Inertia 4.92x10° kg M
m, Platform’s mass 5kg
| oz Platform’s Moment of Inertia 4.3x10° kg mi

*All actuators are identical. The positive sense of the actuator torque is the same as the
positive sense of rotation (which tends to shorten or wind up the cable). The cables are

assumed massless.

C, =05,
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M =M 31 J
M, :diag(mp m, |l pzz)
C'=C,+Jn1.J,

(Ap.71),
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Fig. Ap-14: Ratios of specific isotropic values’ lower bounds relative to corresponding
requirements for the CDPR presented in Fig. 2-9.
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Fig. Ap-15: Satisfactory regions based on lower bounds of specific isotropic dynamic values

with Cp

external non-gravitational wrench,

for the CDPR presented in Fig. 2-9.

W, it is:

representing the Coriolis and centrifugal effects on the platform!!

Regarding the

1 Note that the point P (the TCP) is confounded with the center of mass of the platform.

230



Appendices

w,=(f7 ml) =(f, f, m) (Ap.72).

Utilizing all the aforementioned data, the dynamic evaluation, as described in §2.3.4, has

been done. The ratios of the dynamic specific isotropic values’ lower bounds to their

corresponding requirements are shown in Fig. Ap-14, for & =0°. Notice that the lower bounds

for the specific isotropic angular acceleration and speed are quite interesting. They are large in

comparison with their preset requirements. Finally, the regions of satisfactory dynamic
performance are depicted in Fig. Ap-15.
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Appendix E: Photos of ARROW Machine

In Fig. Ap-16 and Fig. Ap-17, two photos of the implemented ARROW V2 M2 prototype are
shown. In Fig. Ap-18, a close-up side view of the turntable is depicted. Notice the spring
assembly in this latter figure. This is used to counteract the gravitational effect. More precisely,
it allows maintaining the static turntable orientation without the need of any actuation torque.
This is beneficial regarding energy saving.

Fig. Ap-17: ARROW V2 M2 prototype: close-up image of the platform.
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Fig. Ap-18: ARROW machine CAD drawing: close view on the turntable showing the springs
used to counteract the gravity effect.
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