J. Henry, T. A. Lowe, P. M. Ferris, S. C. Hernandez, and . Weber, Stride-an integrated standards-based translational research informatics platform, AMIA Annual Symposium Proceedings, p.391, 2009.

J. Rowley, The wisdom hierarchy : representations of the DIKW hierarchy, Journal of Information Science, vol.33, issue.2, pp.163-180, 2007.

, Chapter three -rdf and the semantic web stack, RDF Database Systems, pp.41-80, 2015.

M. Cuggia, Exploitation des données massives en santé pour la recherche médicale : méthodes, outils et cas d'utilisation. Lausanne, Suisse, 04 2016. Colloque de l'Institut universitaire de médecine sociale et préventive

R. S. Ledley and L. B. Lusted, Reasoning foundations of medical diagnosis : Symbolic logic, probability, and value theory aid our understanding of how physicians reason, Science, vol.130, issue.3366, pp.9-21, 1959.

T. Hebda, P. Czar, and C. Mascara, Handbook of informatics for nurses and health care professionals, 2012.

J. P. Sewell and L. Q. Thede, Informatics and Nursing

L. Q. Thede, Informatics and Nursing, vol.12, 2018.

P. J. Connor, J. M. Sperl-hillen, W. A. Rush, P. E. Johnson, G. H. Amundson et al., Impact of electronic health record clinical decision support on diabetes care : A randomized trial, The Annals of Family Medicine, vol.9, issue.1, pp.12-21, 2011.

C. Shivade, P. Raghavan, E. Fosler-lussier, J. Peter, N. Embi et al., A review of approaches to identifying patient phenotype cohorts using electronic health records, Journal of the American Medical Informatics Association, vol.21, issue.2, pp.221-230, 2013.

M. D. Krasowski, A. Schriever, G. Mathur, J. L. Blau, S. L. Stauffer et al., Use of a data warehouse at an academic medical center for clinical pathology quality improvement, education, and research, Journal of Pathology Informatics, vol.6, issue.1, p.45, 2015.

. Bibliographie,

K. Vanlangen and G. Wellman, Trends in electronic health record usage among US colleges of pharmacy, Currents in Pharmacy Teaching and Learning, vol.10, pp.566-570, 2018.

. Da-lindberg, Internet access to the national library of medicine, Effective clinical practice : ECP, vol.3, issue.5, p.256, 2000.

W. Hersh, Information retrieval : a health and biomedical perspective, 2008.

R. William and . Hersh, Information retrieval for healthcare, 2015.

M. Armen-yuri-gasparyan, A. A. Yessirkepov, V. I. Voronov, E. I. Trukhachev, A. N. Kostyukova et al., Specialist bibliographic databases, Journal of Korean Medical Science, vol.31, issue.5, p.660, 2016.

S. Kugley, A. Wade, J. Thomas, Q. Mahood, A. Jør-gensen et al., Searching for studies : A guide to information retrieval for campbell, Campbell Systematic Reviews, 2016.

G. M. Hodge, Systems of Knowledge Organization for Digital Libr-Aries : Beyond Traditional Authority Files. Commission on Preservation, 2000.

C. Binding and D. Tudhope, Kos at your service : programmatic access to knowledge organisation systems, Journal of Digital Information, vol.4, issue.4, 2004.

K. Vanopstal, R. Vander-stichele, G. Laureys, and J. Buysschaert, Vocabularies and retrieval tools in biomedicine : Disentangling the terminological knot, Journal of Medical Systems, vol.35, issue.4, pp.527-543, 2009.

S. J. Darmoni, B. Thirion, J. P. Leroy, M. Douyère, B. Lacoste et al., Doc'cismef : a search tool based on "encapsulated" mesh thesaurus, Medinfo, issue.10, pp.314-318, 2001.

N. Griffon, M. Schuers, and S. J. Darmoni, Littérature scientifique en santé (LiSSa) : une alternative à l'anglais ? La Presse Médicale, vol.45, pp.955-956, 2016.

P. Raghavan, J. L. Chen, E. Fosler-lussier, and A. M. Lai, How essential are unstructured clinical narratives and information fusion to clinical trial recruitment ?, AMIA Summits on Translational Science Proceedings, p.218, 2014.

S. Liu, Y. Wang, A. Wen, L. Wang, N. Hong et al., Create : Cohort retrieval enhanced by analysis of text from electronic health records using omop common data model, 2019.

T. Huang, L. Lan, X. Fang, J. Peng-an, F. Min et al., Promises and challenges of big data computing in health sciences, Big Data Research, vol.2, issue.1, pp.2-11, 2015.

C. Liu, F. Wang, J. Hu, and H. Xiong, Temporal phenotyping from longitudinal electronic health records, Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining -KDD 15, 2015.

X. Wang, R. Gorlitsky, and J. S. Almeida, From XML to RDF : how semantic web technologies will change the design of omic standards, Nature Biotechnology, vol.23, issue.9, pp.1099-1103, 2005.

A. Dibad, Recherche d'information multi-terminologique -Application au Dossier patient Informatisé, 2012.

C. Cabot, Recherche d'information clinomique au sein du Dossier Patient Informatisé : modélisation, implantation et évaluation, 2017.

J. Grosjean, Modélisation, réalisation et évaluation d'un portail multiterminologique multi-discipline, multi-lingue (3M) dans le cadre de la Plateforme d'Indexation Régionale (PlaIR), 2014.

B. L. Humphreys, A. T. Mccray, and D. A. Lindberg, The unified medical language system, Yearbook of Medical Informatics, vol.02, issue.01, pp.41-51, 1993.

, Organisation Internationale de Normalisation. ISO 25964-1 Information and documentation -Thesauri and interoperability with other vocabularies -Part 1 : Thesauri for information retrieval. Technical reports, International Organization for Standardization, Comité Technique 46 Sous-Comité 9, vol.46, 2011.

C. Tao, J. Pathak, H. R. Solbrig, W. Wei, and C. G. Chute, Terminology representation guidelines for biomedical ontologies in the semantic web notations, Journal of Biomedical Informatics, vol.46, issue.1, pp.128-138, 2013.

F. Thiessard, F. Mougin, G. Diallo, V. Jouhet, S. Cossin et al., Ravel : Retrieval and visualization in electronic health records, Medical Informatics Europe (MIE) 2012, pp.194-198, 2012.

M. Dupuch, F. Segond, A. Bittar, L. Dini, L. F. Soualmia et al., Separate the grain from the chaff : make the best use of language and knowledge technologies to model textual medical data extracted from electronic health records, proceedings of the 6th Language & Technology Conference, 2013.

C. Cabot, L. F. Soualmia, B. Dahamna, and S. J. Darmoni, Sibm at clef ehealth evaluation lab 2016 : Extracting concepts in french medical texts with ecmt and cimind, 2016 Conference and Labs of the Evaluation Forum, CLEF, pp.47-60, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02102950

P. Massari, I. Smuraga, L. Froment, S. Boudehent, P. Czernichow et al., Application de gestion des dossiers patients du c.h.u. de rouen (diamant). mise en place et évaluation de l'utilisation, Cinquièmes Journées Francophones d'Informatique Médicale, 1994.

K. Häyrinen, K. Saranto, and P. Nykänen, Definition, structure, content, use and impacts of electronic health records : A review of the research literature, International Journal of Medical Informatics, vol.77, issue.5, pp.291-304, 2008.

, /TC 215) Organisation Internationale de Normalisation. ISO/TR 20514 Health Informatics -Electronic Health Record -Definition, Scope, and Context. Technical reports, International Organization for Standardization, Comité Technique, vol.251, 2005.

A. Hoerbst and . Ammenwerth, Electronic health records : A systematic review on quality requirements, Methods of Information in Medicine, vol.49, issue.4, pp.320-336, 2010.

J. Marion, C. Ball, R. S. Smith, and . Bakalar, Personal health records : empowering consumers, J Healthc Inf Manag, vol.21, issue.1, p.77, 2007.

D. Pon and A. Coury, Stratégie de transformation du système de santé, rapport final, accélérer le virage numérique, 2018.

N. Menachemi, H. Taleah, and . Collum, Benefits and drawbacks of electronic health record systems, Risk management and healthcare policy, vol.4, p.47, 2011.

N. Griffon, M. Schuers, M. Joulakian, M. Bubenheim, J. Leroy et al., Physician satisfaction with transition from CPOE to paper-based prescription, International Journal of Medical Informatics, vol.103, pp.42-48, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02109410

R. Hillestad, J. Bigelow, A. Bower, F. Girosi, R. Meili et al., Can electronic medical record systems transform health care ? potential health benefits, savings, and costs, vol.24, pp.1103-1117, 2005.

D. Kalra, IMIA Yearbook 2006 : Assessing Information -Technologies for Health, 2006.

. Peter-waegemann, Ehr vs. cpr vs. emr, Healthcare Informatics Online, vol.1, pp.1-4, 2003.

R. Smith, What clinical information do doctors need ?, BMJ, vol.313, issue.7064, pp.1062-1068, 1996.

. Cp-waegemann, Medical record institute's survey of electronic health record trends and usage, Toward an Electronic Health Record Europe, vol.99, pp.147-158, 1999.

A. Maladie, Classification commune des actes médicaux, 2015.

, International Statistical Classification of Diseases and Related Health Problems : 10th Revision (ICD-10). World Health Organization, 2015.

K. Donnelly, Snomed-ct : The advanced terminology and coding system for ehealth, Studies in health technology and informatics, vol.121, pp.279-90, 2006.

. Bibliographie,

, Comité Technique 251 (ISO/TC 215) Organisation Internationale de Normalisation and Comité Technique 251 (CEN/TC 251) Comité Européen de Normalisation. ISO 13606-5 : Health Informatics -Electronic Record Communication. International standard, International Organization for Standardization, 2010.

M. Ivanovi? and Z. Budimac, An overview of ontologies and data resources in medical domains, Expert Systems with Applications, vol.41, issue.11, pp.5158-5166, 2014.

, /TC 215) Organisation Internationale de Normalisation. ISO/TS 29585 Health informatics -Deployment of a clinical data warehouse. Technical specifications, International Organization for Standardization, Comité Technique, vol.251, 2010.

M. Cottle, W. Hoover, S. Kanwal, M. Kohn, T. Strome et al., Transforming health care through big data strategies for leveraging big data in the health care industry. Institute for Health Technology Transformation, 2013.

W. Raghupathi and V. Raghupathi, Big data analytics in healthcare : promise and potential. Health information science and systems, vol.2, p.3, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01663474

J. Gantz and D. Reinsel, The digital universe in 2020 : Big data, bigger digital shadows, and biggest growth in the far east. IDC iView : IDC Analyze the future, pp.1-16, 2007.

M. Ndangang, J. Grosjean, R. Lelong, B. Dahamna, I. Kergourlay et al., Terminology coverage from semantic annotated health documents, Studies in Health Technology and Informatics, vol.255, pp.20-24, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02109406

S. Frost, Drowning in big data ? reducing information technology complexities and costs for healthcare organizations, 2015.

L. E. Sarraj, S. Rodier, and B. Espinasse, Entrepôt de données autour du pmsi pour le pilotage d'établissements hospitaliers. Techniques Hospitalières : la revue des techniciens de la santé, pp.49-52, 2011.

N. Malafaye, D. Demoulin, P. Mailhe, M. Morell, D. Pellecuer et al., Mise en place et exploitation d'un entrepôt de données au département d'information mé-dicale du {CHU} de montpellier, france. Revue d'Épidémiologie et de Santé Publique, vol.66, 2018.

R. Miotto, L. Li, A. Brian, J. T. Kidd, and . Dudley, Deep patient : an unsupervised representation to predict the future of patients from the electronic health records, Scientific reports, vol.6, p.26094, 2016.

G. Hripcsak, J. D. Duke, N. Shah, G. Christian, V. Reich et al., Observational health data sciences and informatics (ohdsi) : Opportunities for observational researchers, Studies in health technology and informatics, vol.216, pp.574-582, 2015.

P. Heudel, A. Livartowski, P. Arveux, E. Willm, and C. Jamain, ConSoRe : un outil permettant de rentrer dans le monde du big data en santé, Bulletin du Cancer, vol.103, issue.11, pp.949-950, 2016.

D. Delamarre, G. Bouzille, K. Dalleau, D. Courtel, and M. Cuggia, Semantic integration of medication data into the ehop clinical data warehouse, Studies in health technology and informatics, vol.210, pp.702-706, 2015.

N. Garcelon, A. Neuraz, R. Salomon, H. Faour, V. Benoit et al., A clinician friendly data warehouse oriented toward narrative reports : Dr. warehouse, Journal of Biomedical Informatics, vol.80, pp.52-63, 2018.

N. Shawn, M. E. Murphy, . Mendis, A. David, I. Berkowitz et al., Integration of clinical and genetic data in the i2b2 architecture, AMIA Annual Symposium Proceedings, p.1040, 2006.

N. Shawn, G. Murphy, M. Weber, V. Mendis, . Gainer et al., Serving the enterprise and beyond with informatics for integrating biology and the bedside (i2b2), Journal of the American Medical Informatics Association, vol.17, issue.2, pp.124-130, 2010.

G. Vikrant, . Deshmukh, M. Stéphane, J. Meystre, and . Mitchell, Evaluating the informatics for integrating biology and the bedside system for clinical research, BMC medical research methodology, vol.9, issue.1, p.70, 2009.

Z. Eric, R. Nicolas, G. Natalia, and D. Patrice, Methodology of integration of a clinical data warehouse with a clinical information system : the hegp case, Studies in Health Technology and Informatics, vol.160, pp.193-197, 2010.

, Installation d'un entrepôt De données Cliniques Pour La Recherche Au CHRU De Nancy : déploiement Technique, intégration Et Gouvernance Des données, Maxime, 2017.

, Informatics for Integrating Biology and the Bedside. i2b2 Cell Messaging Data Repository (CRC) Cell. Partners HealthCare, 1.7.08-004 edition

R. Kimball, The data warehouse toolkit : practical techniques for building dimensional data warehouse, vol.248, 1996.

M. Prakash and . Nadkarni, Qav : querying entity-attribute-value metadata in a biomedical database, vol.53, pp.93-103, 1997.

R. Bellazzi, M. Masseroli, S. Murphy, A. Shabo, and P. Romano, Clinical bioinformatics : challenges and opportunities, 2012.

S. Liu, W. Ma, R. Moore, V. Ganesan, and S. Nelson, RxNorm : prescription for electronic drug information exchange, IT Professional, vol.7, issue.5, pp.17-23, 2005.

C. G. Chute, S. A. Beck, T. B. Fisk, and D. N. Mohr, The enterprise data trust at mayo clinic : a semantically integrated warehouse of biomedical data, Journal of the American Medical Informatics Association, vol.17, issue.2, pp.131-135, 2010.

H. Hu, M. Correll, L. Kvecher, M. Osmond, J. Clark et al., DW4TR : A data warehouse for translational research, Journal of Biomedical Informatics, vol.44, issue.6, pp.1004-1019, 2011.

U. Karsten, M. Kortüm, C. Müller, A. Kern, W. J. Babenko et al., Using electronic health records to build an ophthalmologic data warehouse and visualize patients' data, American journal of ophthalmology, vol.178, pp.84-93, 2017.

M. Cuggia, N. Garcelon, B. Campillo-gimenez, T. Bernicot, J. Laurent et al., Roogle : an information retrieval engine for clinical data warehouse, MIE, pp.584-588, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00748801

C. Percy, A. Fritz, S. Jack, L. Shanmugarathan, D. M. Sobin et al., Classification internationale des maladies pour l'oncologie (CIM-O-3) (French Edition). World Health Organization, 2009.

N. Garcelon, A. Neuraz, V. Benoit, R. Salomon, and A. Burgun, Improving a full-text search engine : the importance of negation detection and family history context to identify cases in a biomedical data warehouse, Journal of the American Medical Informatics Association, p.144, 2016.

M. Mazurek, Applying NoSQL databases for operationalizing clinical data mining models, Communications in Computer and Information Science, p.527

, , 2014.

K. Lee, W. Tang, and K. Choi, Alternatives to relational database : Comparison of NoSQL and XML approaches for clinical data storage, Computer Methods and Programs in Biomedicine, vol.110, issue.1, pp.99-109, 2013.

V. Siri-krishan-wasan, H. Bhatnagar, and . Kaur, The impact of data mining techniques on medical diagnostics, Data Science Journal, vol.5, pp.119-126, 2006.

K. Allen, M. M. Berry, F. U. Luehrs, and J. Perry, Machine literature searching viii. operational criteria for designing information retrieval systems, vol.6, p.93, 1955.

R. Mayo and H. , Information Storage and Retrieval : Tools, Elements, Theories, 1963.

C. Zins, Conceptual approaches for defining data, information, and knowledge. Journal of the American Society for Information Science and Technology, vol.58, pp.479-493, 2007.

R. Baeza, -. Yates, and B. Ribeiro-neto, Modern Information Retrieval : The Concepts and Technology behind Search

A. Professional, 0321416910?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20& linkCode=xm2&camp=2025&creative=165953&creativeASIN=0321416910, 2011.

W. Bruce-frakes and R. Baeza-yates, Information retrieval : Data structures & algorithms, vol.331, 1992.

K. Sparck, J. A. Statistical, . Of, . Speci-ficity, . Its et al., Journal of Documentation, vol.28, issue.1, pp.11-21, 1972.

G. Salton and C. S. Yang, ON THE SPECIFICATION OF TERM VALUES IN AUTOMATIC INDEXING, Journal of Documentation, vol.29, issue.4, pp.351-372, 1973.

G. Salton, A. Wong, and C. S. Yang, A vector space model for automatic indexing, Communications of the ACM, vol.18, issue.11, pp.613-620, 1975.

G. Salton, The SMART Retrieval System-Experiments in Automatic Document Processing, 1971.

H. P. Luhn, A statistical approach to mechanized encoding and searching of literary information, IBM Journal of Research and Development, vol.1, issue.4, pp.309-317, 1957.

G. Salton and C. Buckley, Term-weighting approaches in automatic text retrieval, Information Processing & Management, vol.24, issue.5, pp.513-523, 1988.

. Ian-h-witten, H. Ian, A. Witten, . Moffat, C. Timothy et al., Managing gigabytes : compressing and indexing documents and images, 1999.

S. E. Robertson, K. , and S. Jones, Relevance weighting of search terms, Journal of the American Society for Information Science, vol.27, issue.3, pp.129-146, 1976.

W. B. Croft and D. J. Harper, USING PROBABILISTIC MODELS OF DOCU-MENT RETRIEVAL WITHOUT RELEVANCE INFORMATION, Journal of Documentation, vol.35, issue.4, pp.285-295, 1979.

A. Ronald, . Jydstrup, J. Malvern, and . Gross, Cost of information handling in hospitals, Health services research, vol.1, issue.3, p.235, 1966.

J. Joseph, . Mamlin, H. Duke, and . Baker, Combined time-motion and work sampling study in a general medicine clinic, Medical care, pp.449-456, 1973.

D. Sackett, W. Rosenberg, J. Gray, R. B. Haynes, and W. S. Richardson, Evidence based medicine : what it is and what it isn t, BMJ, issue.7023, pp.71-72, 1996.

S. E. Straus, M. Paul, W. Fracgp-phd-glasziou, R. Scott-md-richardson, . Brian et al., Evidence-Based Medicine : How to Practice and Teach EBM, 2018.

J. Frankovich, A. Christopher, S. Longhurst, and . Sutherland, Evidence-based medicine in the emr era, N Engl J Med, vol.365, issue.19, pp.1758-1759, 2011.

M. H. Coletti and H. L. Bleich, Medical subject headings used to search the biomedical literature, Journal of the American Medical Informatics Association, vol.8, issue.4, pp.317-323, 2001.

J. J. Manríquez, A highly sensitive search strategy for clinical trials in literatura latino americana e do caribe em ciências da saúde (LILACS) was developed, Journal of Clinical Epidemiology, vol.61, issue.4, pp.407-411, 2008.

J. Wyatt, Medical informatics, artefacts or science ? Methods of information in medicine, vol.35, pp.197-200, 1996.

J. Wyatt, Basic concepts in medical informatics, Journal of Epidemiology & Community Health, vol.56, issue.11, pp.808-812, 2002.

H. Edward, J. J. Shortliffe, and . Cimino, Biomedical Informatics. Springer London, 2014.

J. Ely, A taxonomy of generic clinical questions : classification study, BMJ, vol.321, issue.7258, pp.429-432, 2000.

W. R. Hersh, Factors associated with success in searching MEDLINE and applying evidence to answer clinical questions, Journal of the American Medical Informatics Association, vol.9, issue.3, pp.283-293, 2002.

M. Lee, J. Cimino, H. R. Zhu, C. Sable, V. Shanker et al., Beyond information retrieval-medical question answering, AMIA Annu Symp Proc, vol.02, pp.469-473, 2006.

S. Aslam and P. Emmanuel, Formulating a researchable question : A critical step for facilitating good clinical research. Indian journal of sexually transmitted diseases, vol.31, p.47, 2010.

S. T. Rosenbloom, J. C. Denny, H. Xu, N. Lorenzi, W. W. Stead et al., Data from clinical notes : a perspective on the tension between structure and flexible documentation, Journal of the American Medical Informatics Association, vol.18, issue.2, pp.181-186, 2011.

D. Ivo and . Dinov, Methodological challenges and analytic opportunities for modeling and interpreting big healthcare data, GigaScience, vol.5, issue.1, 2016.

M. Rotmensch, Y. Halpern, A. Tlimat, S. Horng, and D. Sontag, Learning a health knowledge graph from electronic medical records, Scientific Reports, vol.7, issue.1, 2017.

K. Tsuyuzaki and I. Nikaido, Biological systems as heterogeneous information networks : a mini-review and perspectives, 2017.

J. F. Sowa, Conceptual Structures : Information Processing in Mind and Machine

. Addison-wesley, BIBLIOGRAPHIE Conceptual-Structures-Information-Processing-PROGRAMMING/dp/0201144727? SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp= 2025&creative=165953&creativeASIN=0201144727, 1983.

M. Chein and M. Mugnier, Graph-based Knowledge Representation : Computational Foundations of Conceptual Graphs (Advanced Information and Knowledge Processing), 2008.

I. Bannour, H. Zargayouna, and A. Nazarenko, Modèle unifié pour la recherche d'information sémantique, IC2016 : Ingénierie des Connaissances, 2016.

T. Berners-lee, J. Hendler, and O. Lassila, The semantic web. Scientific american, vol.284, pp.28-37, 2001.

T. R. Gruber, Toward principles for the design of ontologies used for knowledge sharing ?, International Journal of Human-Computer Studies, vol.43, issue.5-6, pp.907-928, 1995.

Y. Guo, Z. Pan, and J. Heflin, LUBM : A benchmark for OWL knowledge base systems, Journal of Web Semantics, vol.3, issue.2-3, pp.158-182, 2005.

C. Bizer and A. Schultz, The berlin SPARQL benchmark, International Journal on Semantic Web and Information Systems, vol.5, issue.2, pp.1-24, 2009.

M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel, SP?2bench : A SPARQL performance benchmark, IEEE 25th International Conference on Data Engineering, 2009.

M. Morsey, J. Lehmann, S. Auer, and A. Ngomo, DBpedia SPARQL benchmark -performance assessment with real queries on real data, The Semantic Web -ISWC 2011, pp.454-469, 2011.

M. Morsey, J. Lehmann, S. Auer, and A. Ngomo, Usagecentric benchmarking of rdf triple stores, Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012.

C. Gueret, S. Kotoulas, and P. Groth, TripleCloud : An infrastructure for exploratory querying over web-scale RDF data, 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology

, IEEE, 2011.

J. Urbani, F. Van-harmelen, S. Schlobach, and H. Bal, Querypie : Backward reasoning for owl horst over very large knowledge bases, International Semantic Web Conference, pp.730-745, 2011.

G. Ladwig and A. Harth, Cumulusrdf : linked data management on nested key-value stores, The 7th International Workshop on Scalable Semantic Web Knowledge Base Systems, vol.30, 2011.

J. Sun and Q. Jin, Scalable RDF store based on HBase and MapReduce, 2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE). IEEE, 2010.

N. Papailiou, I. Konstantinou, D. Tsoumakos, and N. Koziris, H2rdf : adaptive query processing on rdf data in the cloud, Proceedings of the 21st international conference companion on World Wide Web

, Companion, 2012.

P. Cudré-mauroux, I. Enchev, S. Fundatureanu, P. Groth, A. Haque et al., NoSQL databases for RDF : An empirical evaluation, Advanced Information Systems Engineering, pp.310-325, 2013.

S. Harris, N. Lamb, and N. Shadbolt, The design and implementation of a clustered rdf store, 5th International Workshop on Scalable Semantic Web Knowledge Base Systems (SSWS2009), pp.94-109, 2009.

R. Cattell, Scalable SQL and NoSQL data stores, ACM SIGMOD Record, vol.39, issue.4, p.12, 2011.

J. Pramod, M. Sadalage, and . Fowler, NoSQL distilled : a brief guide to the emerging world of polyglot persistence, 2012.

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach et al., Bigtable : A distributed storage system for structured data, ACM Transactions on Computer Systems, vol.26, issue.2, pp.1-26, 2008.

G. Decandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman et al., Dynamo : amazon's highly available key-value store, Proceedings of twentyfirst ACM SIGOPS symposium on Operating systems principles -SOSP 07, 2007.

C. Strozzi, Nosql-a relational database management system, Lainattu, vol.5, 1998.

, M Aslett. Nosql, newsql and beyond, 2011.

N. Francis, A. Taylor, A. Green, P. Guagliardo, L. Libkin et al., Proceedings of the 2018 International Conference on Management of Data -SIGMOD 18, 2018.

M. A. Rodriguez, The gremlin graph traversal machine and language (invited talk), Proceedings of the 15th Symposium on Database Programming Languages -DBPL 2015, 2015.

S. Gilbert and N. Lynch, Brewer's conjecture and the feasibility of consistent, available, partition-tolerant web services, Acm Sigact News, vol.33, issue.2, pp.51-59, 2002.

A. Dibad, L. F. Soualmia, T. Merabti, J. Grosjean, S. Sakji et al., Un modèle de données adapté à la recherche d'information dans le dossier patient informatisé : étude, conception et évaluation. In Systèmes d'information pour l'amélioration de la qualité en santé, Comptes rendus des quatorzièmes Journées francophones d'informatique médicale (JFIM)., Informatique et Santé, pp.251-262, 2012.

L. F. Soualmia, Gestion des Connaissances pour l'Accès aux Informations en Santé. Habilitation à Diriger des Recherches, 2015.

S. Rudolph, Foundations of description logics, Reasoning Web International Summer School, pp.76-136, 2011.

F. Baader, I. Horrocks, C. Lutz, and U. Sattler, An Introduction to Description Logic, 2017.

, Jboss. jboss infinispan, 2011.

F. Marchioni and M. Surtani, Infinispan data grid platform, 2012.

S. K-manoj-kumar, S. Tejasree, and . Swarnalatha, Effective implementation of data segregation & extraction using big data in e-health insurance as a service, Advanced Computing and Communication Systems (ICACCS), 2016 3rd International Conference on, vol.1, pp.1-5, 2016.

P. Kathiravelu and A. Sharma, Mediator : A data sharing synchronization platform for heterogeneous medical image archives, Workshop on Connected Health at Big Data Era (BigCHat'15), co-located with 21 st ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2015.

H. Salhi, F. Odeh, R. Nasser, and A. Taweel, Open source in-memory data grid systems : Benchmarking hazelcast and infinispan, Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering, pp.163-164, 2017.

M. Mccandless, E. Hatcher, and O. Gospodnetic, Lucene in Action. Manning Publications, 2010.

V. Kodaganallur, Incorporating language processing into java applications : a JavaCC tutorial, IEEE Software, vol.21, issue.4, pp.70-77, 2004.

T. Copeland, Generating parsers with JavaCC. Centennial Books, 2007.

L. F. Soualmia, R. Lelong, B. Dahamna, and S. J. Darmoni, Rewriting natural language queries using patterns, Lecture Notes in Computer Science, vol.9059, pp.40-53, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02100418

Y. Wang, L. Wang, M. Rastegar-mojarad, S. Moon, F. Shen et al., Clinical information extraction applications : A literature review, Journal of Biomedical Informatics, vol.77, pp.34-49, 2018.

K. Kreimeyer, M. Foster, A. Pandey, N. Arya, G. Halford et al., Natural language processing systems for capturing and standardizing unstructured clinical information : A systematic review, Journal of Biomedical Informatics, vol.73, pp.14-29, 2017.

S. Doan, M. Conway, T. M. Phuong, and L. Ohno-machado, Natural language processing in biomedicine : A unified system architecture overview, Methods in Molecular Biology, pp.275-294, 2014.

A. Névéol, H. Dalianis, S. Velupillai, G. Savova, and P. Zweigenbaum, Clinical natural language processing in languages other than english : opportunities and challenges, Journal of Biomedical Semantics, vol.9, issue.1, 2018.

K. Guergana, J. J. Savova, P. V. Masanz, J. Ogren, S. Zheng et al., Mayo clinical text analysis and knowledge extraction system (cTAKES) : architecture, component evaluation and applications, Journal of the American Medical Informatics Association, vol.17, issue.5, pp.507-513, 2010.

N. F. Noy, N. H. Shah, P. L. Whetzel, B. Dai, M. Dorf et al., BioPortal : ontologies and integrated data resources at the click of a mouse, Nucleic Acids Research, vol.37, pp.170-173, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00492020

A. R. Aronson and F. Lang, An overview of MetaMap : historical perspective and recent advances, Journal of the American Medical Informatics Association, vol.17, issue.3, pp.229-236, 2010.

Z. Wu and M. Palmer, Verbs semantics and lexical selection, Proceedings of the 32nd annual meeting on Association for Computational Linguistics, pp.133-138, 1994.

H. Zargayouna, Indexation sémantique de documents XML, vol.11, 2005.

A. Budanitsky and G. Hirst, Semantic distance in wordnet : An experimental, application-oriented evaluation of five measures, Workshop on WordNet and other lexical resources, vol.2, pp.2-2, 2001.

I. Traverso, M. Vidal, B. Kämpgen, Y. Sure, and -. Vetter, Gades : a graph-based semantic similarity measure, Proceedings of the 12th International Conference on Semantic Systems, pp.101-104, 2016.

G. Zhu and C. A. Iglesias, Computing semantic similarity of concepts in knowledge graphs, IEEE Transactions on Knowledge and Data Engineering, vol.29, issue.1, pp.72-85, 2017.

F. Ensan and W. Du, Ad hoc retrieval via entity linking and semantic similarity, Knowledge and Information Systems, vol.58, issue.3, pp.551-583, 2018.

R. Lelong, L. F. Soualmia, B. Dahamna, N. Griffon, and S. J. Darmoni, Informatics for Health : Connected CitizenLed Wellness and Population Health, Studies in Health Technology and Informatics, vol.235, pp.121-125, 2017.

R. Lelong, C. Cabot, L. F. Soualmia, and S. J. Darmoni, Semantic search engine to query into electronic health records with a multiple-layer query language, Proceedings of the 2 nd Special Interest Group on Information Retrieval (SI-GIR) workshop on Medical Information Retrieval (MedIR), 2016.

C. Cabot, R. Lelong, J. Grosjean, L. F. Soualmia, and S. J. Darmoni, Retrieving clinical and omic data from electronic health records, Studies in Health Technology and Informatics, vol.221, pp.115-115, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01848622

R. Lelong, L. F. Soualmia, B. Dahamna, J. Grosjean, and S. J. Darmoni, Rewriting natural language queries using patterns in an electronic health records system, European Conference on Information Retrieval ; Workshop on Multimodal Retrieval in the Medical Domain, 2015.

T. Merabti, R. Lelong, and S. J. Darmoni, Inforoute : the cismef contextspecific search algorithm, MEDical INFOrmatics conference (MedInfo) 2015 : eHealth-enabled Health, vol.216, pp.544-548, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02103611

C. Cabot, L. F. Soualmia, J. Grosjean, R. Lelong, and S. J. Darmoni, Integrating and retrieving clinical and omic data in electronic health records, th International Workshop on Knowledge Representation for Health Care (KRH4C) and 8th International Workshop on Process-oriented Information Systems in Healthcare (ProHealth), pp.154-159, 2015.

C. Cabot, J. Grosjean, R. Lelong, A. Lefebvre, T. Lecroq et al., Omic data modelling for information retrieval, Proceedings of the 2 nd International Work-Conference on Bioinformatics and Biomedical Engineering, 2014.

E. Dynomant, R. Lelong, B. Dahamna, C. Massonnaud, G. Kerdelhué et al., Word embedding for french natural language in healthcare : a comparison study, MEDical INFOrmatics conference (MedInfo) 2019), 2019.

R. Lelong, L. Soualmia, S. Sakji, B. Dahamna, and S. J. Darmoni, Une technologie nosql au service de moteur de recherche en santé, 4 ème édition du Symposium sur l'Ingénierie de l'Information Médicale, 2017.

R. Lelong, C. Cabot, T. Merabti, J. Grosjean, N. Griffon et al., Information retrieval in electronic health records using a multiple layer query language, Journées Recherche en Imagerie et Technologies pour la Santé (RITS) 2015, pp.128-129, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01154970

. Bibliographie,

R. Lelong, T. Merabti, J. Grosjean, M. Joulakian, N. Griffon et al., Moteur de recherche sémantique au sein du dossier du patient informatisé : langage de requêtes spécifique, Journées Francophones d'Informatique Médicale (JFIM), pp.139-151, 2014.

R. Lelong, L. F. Soualmia, S. Sakji, B. Dahamna, and S. J. Darmoni, Nosql technology in order to support semantic health search engine, Medical Informatics Europe (MIE), 2018.
URL : https://hal.archives-ouvertes.fr/hal-02103574

C. Cabot, J. Grosjean, R. Lelong, A. Lefebvre, T. Lecroq et al., Integrating omic and clinical data in electronic health records for visualisation and retrieval, 3 ème Journée Scientifique de l'Institute for Research and Innovation in Biomedicine (IRIB), p.64, 2014.

A. Lefebvre, A. Martins, K. Labrèche, V. Deshaies, A. Lahure et al., Hexosplice : a bioinformatics software based on overlapping hexamer scores for prediction and stratification of exonic variants altering splicing regulation of human genes, 3 ème Journée Scientifique de l'Institute for Research and Innovation in Biomedicine (IRIB), 2014.

M. Ndangang, J. Grosjean, R. Lelong, B. Dahamna, I. Kergourlay et al., Terminology coverage from semantic annotated health documents, Studies in Health Technology and Informatics, vol.255, pp.20-24, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02109406

L. F. -romain-lelong, B. Soualmia, N. Dahamna, S. J. Griffon, and . Darmoni, Informatics for Health: Connected CitizenLed Wellness and Population Health, Studies in Health Technology and Informatics, vol.235, pp.121-125, 2017.

C. -romain-lelong, L. F. Cabot, S. J. Soualmia, J. Darmoni-;-romain-lelong, L. F. Grosjean et al., Semantic search engine to query into electronic health records with a multiple-layer query language, Proceedings of the 2 nd Special Interest Group on Information Retrieval (SI-GIR) workshop on Medical Information Retrieval (MedIR), vol.221, pp.115-115, 2016.

F. -lina, R. Soualmia, B. Lelong, S. J. Dahamna, and . Darmoni, Rewriting natural language queries using patterns, Lecture Notes in Computer Science, pp.40-53, 2015.

L. F. -romain-lelong, B. Soualmia, J. Dahamna, S. J. Grosjean, and . Darmoni, Rewriting natural language queries using patterns in an electronic health records system, European Conference on Information Retrieval; Workshop on Multimodal Retrieval in the Medical Domain, pp.3-2015

R. -tayeb-merabti, S. J. Lelong, and . Darmoni, Inforoute: the cismef contextspecific search algorithm, MEDical INFOrmatics conference (MedInfo) 2015: eHealth-enabled Health, vol.216, pp.544-548, 2015.

-. Cabot, L. F. Soualmia, J. Grosjean, R. Lelong, and S. J. Darmoni, Integrating and retrieving clinical and omic data in electronic health records, th International Workshop on Knowledge Representation for Health Care (KRH4C) and 8th International Workshop on Process-oriented Information Systems in Healthcare (ProHealth), vol.7, pp.154-159, 2014.

B. Dahamna, C. Massonnaud, G. Kerdelhué, J. Grosjean, S. Canuc et al., Word embedding for french natural language in healthcare: a comparison study, p.2019

L. -romain-lelong, S. Soualmia, B. Sakji, S. J. Dahamna, C. Darmoni-;--romain-lelong et al., Moteur de recherche sémantique au sein du dossier du patient informatisé : langage de requêtes spécifique, Journées Recherche en Imagerie et Technologies pour la Santé (RITS) 2015, p.6, 2014.

L. F. Posters--romain-lelong, S. Soualmia, B. Sakji, S. J. Dahamna, and . Darmoni, Nosql technology in order to support semantic health search engine, Medical Informatics Europe (MIE), p.4, 2018.

J. -chloé-cabot, R. Grosjean, A. Lelong, T. Lefebvre, L. F. Lecroq et al., Integrating omic and clinical data in electronic health records for visualisation and retrieval, 3 ème Journée Scientifique de l'Institute for Research and Innovation in Biomedicine (IRIB), p.64, 2014.

A. -arnaud-lefebvre, K. Martins, V. Labrèche, A. Deshaies, P. Lahure et al., Hexosplice: a bioinformatics software based on overlapping hexamer scores for prediction and stratification of exonic variants altering splicing regulation of human genes, 3 ème Journée Scientifique de l'Institute for Research and Innovation in Biomedicine (IRIB), 2014.

L. Annexe-a-le-thésaurus and . Thésaurus, Medical Subject Headings (MeSH) Les

«. Les and . Descriptors, Ils peuvent néanmoins également correspondre à des type de publication (e.g. « article historique, Ces derniers constituent l'unité d'indexation de base du thésaurus MeSH. Ils permettent généralement d'indiquer le sujet des article scientifique qu'ils indexent

«. Les and . Qualifiers, Ils sont utilisé en conjonction avec un descripteur afin de préciser un aspect particulier du sujet spécifié par ce dernier. Par exemple, une indexation du type « insuffisance hépatique, Ils sont au nombre de 81

«. Les and . Supplementary, « syndrome d'hyperlaxité articulaire marfanoïde, Chemical Concept » (Concepts Chimiques supplémentaires) : Il permettent de représenter des produits chimiques

, Le MeSH organise sémantiquement ces types de concepts terminologique par l'intermédiaire, d'une part, d'une hiérarchie de descripteur et, d'autre part, d'une hiérarchie de qualificatifs. Les concepts chimiques supplémentaires ne sont, eux, pas hiérarchisés mais simplement rattachés

, Critères d'inclusion : 1. âge 18 ans, < 70 ans 2. patient ayant été informé et ayant donné son consentement 3. SUB pelade décalvante "totale, universelle touchant la totalité ou la quasi totalité de la surface du cuir chevelu

, PUVA ou UVB), applications d'un dermocorticoïde puissant (type propionate de clobetasol : crème ou gel dermoval), applications de minoxidil 5%, ou bolus de corticoïde IV, à l'exclusion du méthotrexate (médicament testé dans l'essai). NB : les repousses minimes, SUB pelade d'évolution chronique définie comme étant au stade de pelade décal-vante évoluant sans repousse depuis au moins 6 mois et moins de 5 ans, malgré un ou plusieurs traitements préalables habituels

, SUB altération importante de la qualité de vie, définie par un score 10 au questionnaire DLQI

, pour les femmes en âge de procréer, une contraception efficace (stérilet, contraception oestroprogestative. . . .) sera exigée pendant le traitement et pendant l'année suivant l

, pour les hommes participant à l'étude, une contraception est nécessaire pendant la durée de l'essai et pendant 5 mois apres l

, période de wash out de 2 mois entre la fin du dernier traitement systémique essayé et l'

, statut vaccinal à jour

, Critères d'exclusion : 1. femme enceinte ou allaitante 2. hypersensibilité connue à l'un des produits (méthotrexate, corticoïdes) 3. patient séropositif pour le VIH 4

, patient ayant reçu un traitement immunosuppresseur (type ciclosporine, mycophéno-late mofetil, cyclophosphamide, azathioprine, méthotrexate) ou tout autre traitement systémique pouvant potentiellement être actif sur la pelade pendant les 2 mois pré-cédant l

, cardiaque sévère (classe III ou IV, NYHA) voir annexe n°05

, Les hémorragies non contrôlées définies par toute nouvelle extériorisation et/ou une diminution des valeurs biologiques d'hémoglobine et d'hématocrite

, Patient sous tutelle, curatelle ou hors d'état d'exprimer son consentement

, Signe de surcharge martiale ou troubles de l'utilisation du fer

, Antécédents d'asthme, d'eczéma ou d'allergies atopiques

, Hypersensibilité à la substance active (Ferinject®) ou à l'un des excipients (hydroxyde de Sodium

, homme ou femme ménopausée 2. sujet diabétique de type 2, 3. sujet ayant un index pondéral (poids/taille2) supérieur à 27, 4. ayant une hypertension artérielle, dont le contrôle par inhibiteur de l'enzyme de conversion ou antagoniste des récepteurs de l'angiotensine 2, éventuellement associé à un inhibiteur calcique, un a-bloquant ou un anti-hypertenseur central, Critères d'inclusion : 1. sujet âgé de 18 à 70 ans

, ayant pas participé à un essai thérapeutique au cours des trois mois précédent l'étude et ne participant pas à un autre essai pendant toute la durée de l'étude

, inscrit ou ayant droit au régime général de la Sécurité Sociale, 9. ayant signé un consentement éclairé

, Critères d'exclusion : 1. sujets de sexe féminin, en âge de procréer, 2. sujet mineur et âgé de plus de 70 ans, 3. sujet diabétique de type 1, 4. sujet non diabétique et sujet diabétique de type 2 normo tendu (pression artérielle < 140/85 mm Hg)

A. B. Étude-cliniques, ayant des antécédents médicaux ou chirurgicaux sévères en particulier endocriniens, 8. patients traités par des médicaments métabolisés par les cytochromes CYP3A4 et CYP2C9 : corticoïdes, anti vitamine K, contraceptifs hormonaux, tolbutamide, benzodiazépines, dérivés de l'ergot de seigle, antiépileptiques, millepertuis, macrolides, antifongiques azolés, pimozide, terfénadine, astémizole, cisapride, rifampicine, inhibiteurs de protéase, ciclosporine, tacrolimus, sirolimus, évérolimus, alfentanil, fentanyl, quinidine, irinotécan

, médicaments anti-aldostérone, inhibiteurs directs de la rénine, modamide, insuline, 10. patients diabétiques de type 2 avec une neuropathie végétative autonome, 11. patients consommant régulièrement de la réglisse ou ses dérivés 12. patients chez qui une masse surrénalienne a été diagnostiquée à l'imagerie, 13. insuffisance hépatique ou rénale (définie respectivement par des manifestations cliniques et biologiques secondaires à l'altération des fonctions hépatocytaires, patients traités par des médicaments interférant avec le système rénine-angiotensinealdostérone : bêta-bloquants, diurétiques

, Critères d'inclusion : 1. Patient = 18 ans et <75 ans 2. des douleurs abdominales survenant au moins 1 jour par semaine durant les 3 derniers mois associé à au moins 2 des critères suivants : en relation avec la défécation, survenue associée à une modification de la fréquence ou de la consistance des selles

, Patient ayant lu et compris la lettre d'information et signé le formulaire de consentement

, Pour les femmes en âge de procréer prise d'une contraception efficace (oestro-progestatifs ou dispositif intra-utérin ou ligature de trompes) depuis 1 mois

, Pour les femmes ménopausées, un diagnostic de confirmation devra être obtenu Critères d'exclusion : 1. Patient présentant une pathologie organique digestive et/ou inflammatoire évolutive 2. Patient présentant un syndrome de l'intestin irritable à forme constipée ou alternant diarrhée/constipation selon les critères de RomeIV

, Patient ayant pour traitement un anti-inflammatoire (type 5-ASA, budésonide) ou un probiotique

, Patient présentant des troubles de la crase sanguine connus ou décelés par un interrogatoire ciblé, sous anticoagulant ou sous anti-agrégant plaquettaire

, Patient présentant une pullulation microbienne

, Patient ayant une pathologie anale de type fissure anale ou thrombose hémorroïdaire 9

, Personne privée de liberté par une décision administrative ou judiciaire ou personne faisant l'objet d'une mesure juridique de protection des majeurs

, Patient participant à un autre essai / ayant participé à un autre essai dans un délai de 2 semaines