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Summary

Collective motion is ubiquitous in fish. Large groups may comprise thousands to millions of indi-
viduals. However, it is not yet understood what are the local interaction rules that underlie these
collective patterns.

In this thesis, we investigate in a small gregarious fish, the rummy-nose tetra (Hemigrammus
rhodostomus), the mechanisms underlying both the coordination of motion and the propagation of
information in their schools. To discover the connection between individual behaviour and patterns
at the collective level, we follow an approach that tightly combines experiments and modelling.

The first part of the thesis is dedicated to the behavioural mechanisms underlying the coor-
dinated swimming in these schools. For this, we analysed the motion of a single individual and
pairs of individuals swimming freely in a circular arena. H. rhodostomus has a burst-and-coast
swimming style. This consists of sudden changes of heading combined with brief accelerations fol-
lowed by quasi-passive, straight decelerations. We segmented their trajectories on the basis of this
intermittent swimming mode. This segmentation determined the analysis of experimental data and
the design of the model. We developed a new method to measure and disentangle the interactions
between a fish and the wall and between pairs of fish. We tested these findings with a model
derived from physical analogies and symmetry considerations. Our results support the presence of
interactions among fish based on the coexistence of attraction and alignment.

We also investigated for fish swimming in a ring-shaped tank how an individual integrates the
information coming from several other fish and from obstacles in its neighbourhood. For this, we
develop a computational model based on maps of behavioural actions that were extracted from
empirical data. We tested in this model whether the properties of schools at the global-level were
reproduced when fish reacted only to the strongest stimulus they perceived. We rejected this for
observations in groups of 5 fish.

The second part of the thesis is dedicated to the analysis of the propagation of information
in reaction to internal and external perturbations, in schools of H. rhodostomus. The internal
perturbations concern spontaneous collective U-turns occurring in a ring-shaped tank. The global
properties of the propagation came from empirical data of group sizes with 1 to 20 fish. We
formulate an Ising-spin model that integrates both asymmetrical interactions among fish and the
tendency of individuals to follow the majority of their neighbours. The model shows that local
social conformity may be underlying both the dynamics observed during the collective U-turns and
the sharp decrease of the frequency of collective U-turns as the size of the group increases.

Finally, we develop a preliminary experimental method to induce controlled external pertur-
bations with the objective to investigate the propagation of information during disturbances. We
show that aversive conditioning (i) can be performed in this species, (ii) triggers collective escape
reactions and (iii) transfers from the training condition to a new experimental set-up. These re-
sults come from a training in which a green light elicits an escape reaction in conditioned fish. Our
findings suggest that the proportion of conditioned individuals in a group is critical in triggering
collective escape reactions.
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Résumé

Les déplacements collectifs sont omniprésents chez les poissons et peuvent comprendre des groupes
de plusieurs milliers ou millions d’individus. Cependant, les interactions locales et les règles com-
portementales individuelles à l’origine de ces comportements collectifs posent encore question.

Dans cette thèse, nous étudions les mécanismes sous-jacents à la coordination du déplacement
et à la propagation de l’information dans les bancs d’un petit poisson grégaire, le nez rouge (Hem-
igrammus rhodostomus). L’approche de cette thèse repose sur une étroite combinaison entre les
méthodes expérimentales et de modélisation dans l’objectif de découvrir les liens entre les com-
portements individuels et les motifs observés à l’échelle collective.

La première partie du manuscrit est dédiée aux mécanismes comportementaux qui sous-tendent
la coordination de la nage en banc chez H. rhodostomus. Nous y analysons le déplacement d’un
individu solitaire ou d’une paire de poissons nageant librement dans une arène circulaire. H. rhodos-
tomus a un comportement de nage intermittente. Ce mode de nage est constitué de changements de
direction soudains combinés à de brèves saccades natatoires suivies d’une phase d’accostage durant
laquelle le corps du poisson reste rigide. L’analyse des données expérimentales ainsi que le travail
de modélisation reposent sur la segmentation des trajectoires des poissons sur la base du comporte-
ment de nage intermittente. Nous avons développé une nouvelle méthode pour mesurer et isoler
les interactions d’un poisson avec un mur ou entre deux poissons. Ces mesures sont testées à l’aide
d’un modèle inspiré par des considérations de physique et de symétrie. Nos résultats soutiennent
la présence d’interactions reposant sur la coexistence d’attraction et d’alignement.

Nous étudions aussi comment les individus intègrent l’information issue de plusieurs congénères
et d’obstacles dans leur voisinage. Nous formulons un modèle computationnel qui repose sur des
cartes d’actions comportementales extraites des données expérimentales. Nous testons l’hypothèse
selon laquelle les poissons réagissent uniquement au stimulus le plus important qu’ils perçoivent,
en vérifiant que l’hypothèse permet de reproduire les propriétés du banc à l’échelle collective.
Nous concluons que cette hypothèse n’est pas suffisante pour reproduire les caractéristiques de
bancs formés dans des expériences réunissant 5 poissons dans un dispositif annulaire. La seconde
partie du manuscrit est dédiée à l’analyse de la propagation d’information dans les bancs de H.
rhodostomus, en réaction à des perturbations internes ou externes.

Nous analysons la propagation de l’information en réponse à des perturbations internes se
produisant lors de demi-tours collectifs spontanés observés dans un dispositif annulaire, avec des
groupes allant de 1 à 20 poissons. Les propriétés à l’échelle globale de la propagation sont déduites
depuis des données expérimentales pour des tailles de groupes de 1 à 20 poissons. Nous formulons
un modèle d’Ising qui intègre les interactions asymétriques entre les poissons ainsi que leur ten-
dance à suivre la majorité de leurs voisins. Le modèle montre que la conformité sociale, appliquée
localement, est un mécanisme possible pour expliquer à la fois les dynamiques observées durant les
demi-tours collectifs ainsi que la diminution de la fréquence des ces événements quand la taille de
groupe augmente.

Enfin, nous proposons une méthode expérimentale pour induire des perturbations externes
contrôlées dans le but d’étudier la propagation de l’information au sein du banc dans ce contexte.
Nous réalisons une étude préliminaire montrant que le conditionnement aversif peut être (i) réalisé
avec cette espèce, (ii) qu’il peut déclencher des réactions de fuite collective et (iii) que l’apprentissage
peut être transféré dans un autre dispositif. Ces résultats sont discutés dans le contexte de la
propagation de l’information en réaction à un stimulus externe (ici, une lumière verte impliquant
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une réaction de fuite chez les individus conditionnés). Nos travaux suggèrent que la proportion
d’individus conditionnés est un paramètre critique au sein du banc pour qu’une fuite collective se
produise en réponse à des stimuli externes.
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Samenvatting

Gezamenlijke coördinatie van bewegingen is alomtegenwoordig in vissen. Grote visscholen kunnen
duizenden tot miljoenen dieren bevatten. Het is echter onbekend welke locale gedragsregels deze
collective gedragspatronen aansturen.

In dit proefschrift onderzoeken we in de roodneuszalm (Hemigrammus rhodostomus), welke
mechanismen bijdragen aan de coördinatie van hun school en de transmissie van informatie. Om
de samenhang tussen individueel gedrag en collectieve patronen te achterhalen, combineren we em-
pirisch onderzoek en computermodellen in onze benadering. Het eerste deel van het proefschrift
onderzoekt de gedragsmechanismen die ten grondslag liggen aan de coördinatie van een school in
deze soort. Hiertoe analyseren we de voortbeweging van een of twee vissen als ze rondbewegen in
een cylindervormige aquarium. Deze vissoort vertoont een “burst-en-coast” zwemstijl. Dit bestaat
uit korte acceleraties met een verandering van richting gevolgd door een glijbeweging waarin de
snelheid afneemt. We segmenteerden de trajectoriën overeenkomstig en baseerden ook het comput-
ermodel op deze zwemstijl. We ontwikkelden een nieuwe methode om de interacties tussen vissen
en tussen een vis en de wand te meten en te ontrafelen. We baseerden ons model op natuurkundige
analogieën en overwegingen van symmetrie. Resultaten laten zien dat de interacties in de school
zowel aantrekking tussen vissen als het gelijkrichten van hun oriëntatie behelzen. We onderzochten
voor vissen die zwemmen in een ringvormig aquarium ook hoe een individu verschillende typen
informatie integreert, namelijk die van andere vissen en van nabije obstakels. Hiertoe ontwikkelden
we een computermodel gebaseerd op kaarten van gedragsreacties die we extraheerden uit empirische
data. We onderzochten in dit model of de globale eigenschappen van de school ontstonden als de
individuen alleen maar reageerden op de sterkste stimulus die ze waarnamen. Deze hypothese
moesten we verwerpen voor scholen van vijf vissen. Het tweede deel van mijn proefschrift wijd ik
aan het onderzoek naar het doorgeven van informatie in scholen als reactie op interne en externe
verstoringen. De transmissie in reactie op interne verstoringen betrof het voorkomen van spontane
gemeenschappelijke omkeringen van de school (U-turns) in een ringvormig aquarium. Empirische
data over de globale eigenschappen van de zwerm kwamen van scholen van 1 tot 20 indiviuen. We
formuleren een Ising-spin model. Het integreert zowel asymetrische interacties tussen individuen
onderling als de neidg van individual om de meerderheid van hun nabije buren te volgen. Het
model toont dat locale sociale overeenstemming ten grondslag kan liggen aan zowel de dynamiek
van de gezamenlijke omkeringen (U-turns) als hun sterke afname in frequentie bij toenemende
groepsgrootte. Tenslotte, ontwikkelden we een voorlopige experimentele methode waarmee we
gecontroleerd scholen verstoren met het doel om de doorgave van informatie tijdens deze verstor-
ing te onderzoeken. We laten zien dat aversief conditioneren (1) succesvol is in deze soort, (2)
collective ontsnappingsreacties opwekt, (3) overdraagbaar is van de training-sessie naar een nieuwe
experimentele set-up. Deze resultaten zijn gebaseerd op een training waarin een groen licht een
vluchtreactie opwekt. Onze resultaten tonen aan dat de proportie van gecondioneerde vissen in een
groep doorslaggevend is voor het al of niet ontstaan van een gezamenlijke ontsnappingsreactie.
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Chapter 1

General introduction

1.1 Collective motion in fish

Collective motion is ubiquitous in fish: it is assumed that 50% (i.e. approximately one fourth of all
vertebrates species (IUCN, 2017)) of the 34,515 species of fish known nowadays (Eschmeyer et al.,
2017) swim in groups at some point of their life (Shaw, 1978). Gregariousness in fish has even
led to very large groups of thousands to millions of individuals (e.g. in herrings) yielding striking
examples of collective motion such as bait balls (Figure 1.1).

The organisation of groups of fish is very diverse across species – and varies in time for some
species (Tunstrøm et al., 2013). Groups are usually referred to as shoals, swarms or schools. All
groups of fish that have aggregative tendencies can be termed as shoals. When the group members
adopt the same orientation (i.e. they have a tendency to polarise) the group is called a school. In
contrast to schools, groups that are loosely structured and whose members have random orientations
although maintaining a significant degree of cohesion, are labelled swarms (Delcourt and Poncin,
2012, for a review).

In fish, it is commonly assumed that living in groups may improve the efficiency of individual
motion (Hemelrijk et al., 2014), foraging (Pitcher et al., 1982) and, most of all, protection against
predator threat (Krause and Ruxton, 2002). The latter is achieved thanks to several mechanisms,
commonly termed as, among others, dilution of risk (Foster and Treherne, 1981), confusion effect
(Ioannou et al., 2007), predator detection (Elgar, 1989) or attack-abatement effect (Turner and
Pitcher, 1986). It has been found that predation threat increases the cohesion of fish shoals (Seghers,
1974; Herbert-Read et al., 2017). Still, it is unclear whether collective patterns reported in fish are
adaptive or not – that is if they actually increase survival of individuals when a group is attacked
for instance (Parrish and Edelstein-Keshet, 1999). In particular, since there is a great diversity of
collective patterns, it is possible that some of them are evolutionarily neutral, or even pathological,
as the rotational formation (so called milling) of army ants (Delsuc, 2003) that is also found in fish
(Tunstrøm et al., 2013). Therefore, it seems essential to distinguish biologically relevant features
from non-adaptive epiphenomena as well as to describe the causal links between mechanisms at
the individual-level and group patterns to improve the understanding of fish aggregations in nature
(Parrish et al., 2002).

The multiplicity of the levels at which groups of fish (and of animals in general) can be described
makes them complex systems. The relations and feedback loops of the genes, the brain, and
the social behaviour are entangled across several scales in time, from organismal development to
evolutionary time, and space, from DNA molecules to groups of millions of individuals (Robinson
et al., 2008). The study of these challenging systems thus requires to carefully define the extent of
the time and spatial scales examined.

It seems necessary to characterise and quantify the interactions between individuals underlying
the collective behaviours to make causal links from the neural and cognitive basis of individual
behaviours to the collective behaviours in which these neuronal and cognitive processes are involved
(Weitz et al., 2012). This thesis aims to investigate the behavioural mechanisms that are involved
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Figure 1.1: Edge of a Caranx latus bait ball. Work by Steve Dunleavy published on Flickr (under
licence CC BY 2.0).

in the control of the coordination of motion and in the propagation of information within groups
of fish.

This thesis consists of two main parts. The first part investigates how schooling behaviour
emerges from the interactions between individuals. The second part examines how information
propagates in groups of fish in response to internal and external perturbations. In what follows I
present the framework of my thesis and a short review of the propagation of information among
animals.

1.2 Analysing collective motion in fish

There have been recent developments in experimental and modelling methods in the field of collec-
tive behaviour in fish. They are shortly reviewed below.

1.2.1 Modelling methods

It is not necessary, and it is even impossible in large groups, for each fish swimming in shoals to
have a complete knowledge of the group properties (such as the average orientation of the group
members). It is commonly assumed that collective behaviour in fish is not choreographed by leaders
but results from self-organization processes. In these systems, the collective patterns emerge from
the local interactions among individuals that only have access to partial information (Bonabeau
et al., 1997; Camazine et al., 2001). Models of collective motion in fish therefore investigate how
the collective behaviour in a school emerges from assumed local interactions.

Seminal work of the late twentieth century has emphasized theoretical and general (i.e. not
restricted to a taxon) mechanisms (see Lopez et al., 2012, for a review). Studies have mainly
suggested theoretical rules of interactions between individuals, involving attraction, alignment and
repulsion for most of them, and shown that group properties emerged from these rules. As pointed
out by several authors, different quantitative combinations of these three basic rules can lead to the
same properties observed at the collective scale (Weitz et al., 2012; Lopez et al., 2012). If several
initial hypotheses can be compatible with the same properties at the group level, it is thus difficult
to shed light on the actual individual mechanisms involved in the coordination of groups for a given

2
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species by looking at the collective behaviour.

As claimed by Weitz et al. (2012) and Lopez et al. (2012), the methodological framework
introduced by Gautrais et al. (2009, 2012) is relevant to overcome the difficulty mentioned above.
In these two studies, a bottom-up data-driven method of modelling has been introduced. Data-
driven modelling implies that every step of the modelling process, i.e. all hypotheses required in
the formulation of the model, are validated against data. Bottom-up stands for starting first with
a model of motion of a single fish swimming spontaneously, which is validated against experimental
data (Gautrais et al., 2009). Then, they used this model and added terms of interaction with a
second fish and more (Gautrais et al., 2012). These two studies, by closely combining experimental
data and modelling approaches at each step, found mathematical formulations for the stimulus-
response functions governing decisions of fish in response to the position and orientation of its
neighbours. The authors have found that a gradual weighting between alignment (dominant at
short distances) and attraction (dominant at large distances) best accounted for their experimental
data. They also reported that the parameters governing these two types of interactions depend
on the average speed of fish, leading to an increase in group polarization with swimming speed, a
direct consequence of the predominance of alignment at high speed. However, here, the interactions
of a fish with the walls of the tank or with other fish were only assumed to take phenomenological
functional forms fitting well the experimental data. In other words, the mathematical equations of
the interactions were not truly extracted from the experimental data nor derived from a theoretical
framework. Thus, a natural question which arises is whether the fair quantitative agreement of
the model with experiments actually constitutes an implicit validation of the assumed forms of the
interactions. This question is addressed in the first chapter of this manuscript.

Other authors have also tried to measure the interactions in groups of fish from their experi-
mental trajectories but without testing whether their findings could be used in a model to predict
group properties (Katz et al., 2011; Herbert-Read et al., 2011).

Recently, other models have included a reconstruction of the visual fields of fish (Strandburg-
Peshkin et al., 2013; Rosenthal et al., 2015; Collignon et al., 2016). Although these approaches
are promising, they may suffer from a lack of specific experimental validation of the model of the
sensory networks.

1.2.2 Data Collection

For a long time, studies of collective motion in fish have suffered from a lack of experimental data.
These last decades have seen important improvements in computing efficiency as well as in data
storage and quality of video recording. It is thus easier than before to obtain data of collective
motion in animal groups and to run computer-intensive simulations of computational models. For
instance, the reconstruction of the 3D positions of thousands (up to 2,600) of starlings (Sturnus
vulgaris) has been done with a stereo-photography method (Ballerini et al., 2008), leading to
trajectory reconstruction (Attanasi, Cavagna, Del Castello, Giardina, Grigera, Jelic, Melillo, Parisi,
Pohl, Shen and Viale, 2014; Evangelista et al., 2017). This method has also been used with swarms
of wild midges ranging in size between 100 and 600 individuals (Attanasi, Cavagna, Del Castello,
Giardina, Melillo, Parisi, Pohl, Rossaro, Shen, Silvestri and Viale, 2014).

An important improvement in tracking has recently been achieved (Pérez-Escudero et al., 2014).
Common multitracking systems calculate the most likely assignment of identities of individuals by
taking into account the previous movements of the animals. These systems generally have problems
when two or more individuals cross or touch because it can be difficult to find the correct identities
after the point of overlap. The new algorithm suggested by Pérez-Escudero et al. (2014) works
by extracting from the video a signature or fingerprint for each individual. These fingerprints are
used to identify individuals in each frame, keeping the correct identities even after crossings or
occlusions. In contrast to previous methods, this new feature makes the tracking of long videos
(e.g. several hours) more efficient with respect to identity matching than before – even if issues
of computational time still have to be addressed for large groups (when group size exceeds 20
individuals).
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Figure 1.2: Collective responses of fish schools under predator threat (Pitcher and Parrish, 1993).
Reproduced from Dugatkin (2013).

1.3 Propagation of information in animal groups

Several patterns of escape have been proposed as survival strategies when groups of fish are attacked
by a predator (Pitcher and Wyche, 1983). Pitcher and Wyche (1983) report manoeuvres observed
in schools of sand-eels (Amodytes sp.) in response to approaches of mackerel (Scomber scombrus).
These patterns were called avoid, herd, vacuole, hourglass, split - join and flash expansion (see
Figure 1.2). They have also been observed in other species such as herrings (Clupea harengus)
(Pitcher et al., 1996; Nøttestad and Axelsen, 1999; Axelsen et al., 2001). All these patterns were
reproduced by computer-simulations (Inada and Kawachi, 2002; Zheng et al., 2005; Lett et al.,
2014). The difficulty in studying collective behaviour under predator threat is not only to explain
which collective patterns minimize risks of individuals (assuming that the patterns are not all
different outcomes of the same behaviour, as suggested by Axelsen et al. (2001) and Inada and
Kawachi (2002)) but also to understand how individuals make their choices according to the local
information. This requires to investigate how information is propagated, i.e. which cues are shared,
which are the individuals sharing information in a school and to describe how fish react to this
information.

Results from laboratory experiments showed that, when a perturbation external to the group
is applied (an artificial sound stimulus), schools of herring escape by being aligned with their
neighbours and going away from the perturbation (Domenici and Batty, 1994). Two modes occur
in the distribution of lags between the emission of the stimulus and the reaction of fish: a short
lag for fish close to the stimulus and a long lag for fish distant from it. It was also found that
the responses with a long latency were more accurate in responding away from the stimulus. The
hypothesis of Domenici and Batty (1994) is that the short latency escapes are responses to the sound
stimulus and that the long latency escapes are responses to startled neighbours. As for the latter,
individuals can integrate the information from both the sound stimulus and startled neighbours
and therefore increase the accuracy of their response by adding to the sensory information received
by the sound stimulus the swimming direction of startled neighbours. It seems that, in this case,
besides the direct emission of the stimulus, social information is also very important for individuals
to make accurate decisions and react collectively. Several authors have investigated the individual-
level mechanisms that underlie information transfer. Besides differences in their results considering
the relative importances of alignment, repulsion and attraction forces (which could be dependent
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on the species, the experimental set-ups or the methods of analysis used), all recent studies agree
that the speed of individuals is a key element in the information flow of the undisturbed groups
(Katz et al., 2011; Herbert-Read et al., 2011; Gautrais et al., 2012) as well as disturbed ones
(Herbert-Read et al., 2015). The interactions between fish and thus the properties of the group
change with the ecological context (e.g. feeding vs predator threat) (Schaerf et al., 2017). The
information flow in a shoal can also be altered by the composition of the group which depends on
parameters such as the age, the sex or the numbers of congeners (Hoare and Krause, 2003; Ward
et al., 2017). For instance, in adult guppies, it has been found that novel foraging information
spreads at a significantly faster rate through subgroups of females than subgroups of males (Reader
and Laland, 2000).

When a flotilla of ocean skaters (Halobates robustus) is attacked, individuals increase velocities
and rate of turning (Treherne and Foster, 1981). This results in a transition from a state where
individuals are aligned and moving slowly to a state where individuals are moving rapidly and
randomly. This transition of collective behaviour in reaction to predator threat is thought to have
two consequences: confusion of the predator because of unpredictable (protean) behaviour and fast
and synchronised dispersal of the flotilla. This transmission of predator avoidance within the group
was faster than the speed of the approach of the predator. Treherne and Foster (1981) called this
fast transfer of information the Trafalgar effect.

Social waves called shimmering waves also occur in other groups of animals such as the giant
honeybees Apis cerana, Apis florea and Apis dorsata. Hundreds of giant honeybees at the surface
of their nest (the bee curtain) flip their abdomens upward resulting in impressive waves. This
behaviour has been linked to a behaviour of defence against attacks by wasps in the species Apis
dorsata (Kastberger et al., 2008). Two different effects have been shown by Kastberger et al. (2008):
repellence of wasps at a distance of at most 50 cm from the nest and confusion of wasps very close
to the nest. The fast propagation of the wave within all layers of the bee curtain is achieved
thanks to several mechanisms (Kastberger et al., 2014). Most of the shimmering-active bees were
acting in a bucket bridging-like manner that is receiving information from a close neighbour at one
side and transferring it to a close by neighbour at the other side. A small part (about 15%) of
the shimmering-active bees elicits abdominal flipping before any bucket-bridging activity can be
detected in their neighbourhood, contributing to a saltatoric propagation of the wave by creating
a daughter wave. The result of the saltatoric process is to speed up the propagation as well as to
facilitate changes of direction. Waves can also occur without predator attack but this results in
short waves only (Kastberger et al., 2008).

Waves in presence of predators can also be termed agitation waves when they involve a sud-
den change of direction from the group motion. Such waves have for instance been described in
birds (Procaccini et al., 2011). As for fish, it has been investigated by monitoring anchovy school
(Engraulis ringens) movements and their reactions to sea-lion (Arctocephalus australis and Otaria
byronia) attacks in Peruvian waters (Gerlotto et al., 2006). The attacks of sea-lions result in waves
of agitation expanding in concentric circles around the sea-lions. Gerlotto et al. (2006) show that
the signal of these waves is not damped so that the same information (i.e. the direction of the
predator) is transmitted through the entire school, resulting in a reorganized collective structure.
Although these collective patterns have been reported independently in the field for several species
(see for instance Radakov (1973) and Axelsen et al. (2001) who described a pattern called density
propagation in herrings (Clupea harengus)), the behavioural mechanisms used by individuals in
fish schools to propagate these signals are poorly understood. Velocity changes of individuals in
response to stimuli (i.e. their speed and their direction) without centralised control are assumed
to be essential to propagate escape waves (Herbert-Read et al., 2015).

The principles of the social waves described for flotilla of ocean skaters and giant honeybees
as a collective pattern emerging from the local interactions between the agents of a system (that
is as a self-organizing pattern) have been modelled in many different situations involving a wide
range of living systems. In starling flocks, a model suggests that the agitation waves result from
the successive changes of orientation of birds performing escape manoeuvres and not from density
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waves (Hemelrijk et al., 2015). In emperor penguin, a model has been used to describe the waves
observed in penguins huddles occurring when penguins form dense clusters of thousands of individ-
uals to protect themselves against cold temperatures and wind (Gerum et al., 2013). In this work,
the model assumes very simple interactions between individuals: each individual has a preferred
distance from its close neighbours that they are trying to maintain. When a perturbation occurs
(e.g. a bird moving forward), it triggers a disordering of the group, each individual moving to
recover its preferred distance from neighbours, in the same way drivers behave in traffic jams. This
model was able to reproduce the collective properties of the waves observed in the field, namely
the propagation in all directions, suggesting a mechanism that could make huddles merging.

In many cases, a social wave occurs in a group when individuals exhibit a transition from a
state A to a state B (e.g. the direction of motion of the group that changes during a collective
U-turn). A simple and common example of such propagation of information is the Mexican wave,
“La Ola”, that can be seen, for instance, in many stadiums during sport events (Farkas et al., 2002,
2003). These two papers respectively address the propagation and the initiation of these waves
by presenting a model combining local and global interactions unfortunately not derived from a
fine-grained analysis of empirical data, i.e. not validating the model at each scale of description. In
this example, individuals are modelled as transiting from an inactive state (e.g. people watching
the game) to an active state (people standing up being involved in the wave). The model shows
that triggering a Mexican wave requires a critical mass of initiators. Other biological examples of
state transition leading to a social wave are the landing process in birds (Bhattacharya and Vicsek,
2010), the stop-and-go behaviour of sheep (Pillot et al., 2011; Toulet et al., 2015) or the striking
synchronized flashing among fireflies such as Pteroptyx cribellata (Camazine et al., 2001, chap. 10,
for a review).

1.4 Communication in fish schools

When communication and information transfer in fish groups are investigated, it is important to
have some idea about what kind of information a fish perceives, for instance, information about the
number and identity of the neighbouring fish that can actually interact with a focal fish. The use
of social information enables individuals to coordinate their motion as well as to respond to threats
without having to verify the presence of danger independently. What follows is a general picture
of how environmental cues may be used by fish when they share information. It is likely to vary
from one species to another and to depend on the ecological conditions (light exposure, turbidity,
presence of obstacles, etcetera) (Hartman and Abrahams, 2000). The internal mechanisms in the
fish brains involved in the interactions with congeners (namely the neuronal scale) are beyond the
scope of this thesis.

Fish communicate through various signals related to different sensory systems which can be
classified as follows, according to Helfman et al. (2009, chap. 6):

1. Mechanoreception

2. Chemoreception

3. Vision

4. Electroreception

5. Magnetic reception

Mechanoreception involves the lateral line and the inner ear. The lateral line permits the fish
to detect disturbances in the water such as currents, prey, predators, congeners and obstacles. It is
of main importance when considering predator–prey interactions and fish coordinating in a shoal
(Partridge and Pitcher, 1980; Faucher et al., 2010; Polverino et al., 2013). The inner ear detects
sound in water.
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Figure 1.3: A). Photograph of a rummy-nose tetra (Hemigrammus rhodostomus) kept in our lab-
oratory. Credits to David Villa ScienceImage/CBI/CNRS, Toulouse. B). Map of the distribution
of the rummy-nose tetra (highlighted regions, that correspond to the Orinoco river basin and to
the lower Amazon river basin). Adapted from a map made by the user Kmusser on Wikipedia and
shared with a CC BY-SA 3.0 licence.

Fish, when inspecting for predators, also rely on chemical substances and visual cues either
emitted by the environment (e.g. odour of the predator or visual detection of the predator), or
shared (intentionally or not) by congeners (e.g. the chemical alarm substance diffusing from an
injured fish or a fish escaping some undetected stimuli with a strong flight behaviour). For instance,
although the three-spined stickleback has been classified as a microsmatic species that is as a species
relying more on vision than on olfaction (Teichmann, 1954; Honkanen and Ekström, 1992), it seems
that chemical cues are involved in several processes such as recognition of congeners and foraging
(Ward, 2004; Webster et al., 2007). Unlike visual cues, chemical substances might be hard to
manipulate for a predator and therefore may be more reliable information for prey (Brown, 2003).
However, visual cues, as well as hydrodynamical signals perceived by the lateral line system, are
likely to propagate much faster than chemical cues through a shoal (Hunter, 1969; Brown and
Laland, 2003). Therefore, it is commonly suggested that the key systems actually used by fish to
coordinate their motion are Mechanoreception and Vision.

1.5 Thesis overview

In this thesis, I have investigated the behavioural mechanisms underlying the coordination of motion
and the propagation of information in schools of a gregarious fish, the rummy-nose tetra (Hemi-
grammus rhodostomus). This small freshwater fish (mean body-length of ∼ 3 cm) lives in the Lower
Amazon River basin in Pará State (in Brazil) and Orinoco River basin in Venezuela (Reis et al.,
2003) (Figure 1.3). The Hemigrammus taxon is assumed to be non-monophyletic (Marcos Mirande,
2009) and includes 51 species throughout South America (Carvalho et al., 2010). Little has became
known about this species since its discovery in 1924 (Ahl, 1924), especially regarding its ecology,
despite its success for aquarists. This success in fishkeeping is likely to be the result of the coor-
dination seen in the schools of H. rhodostomus (Figure 1.4). Only a few papers have studied the
Hemigrammus taxon beyond taxonomy and phylogeny. It has been shown in Hemigrammus bleheri
that the lateral line was essential to the shoaling behaviour (Faucher et al., 2010). How H. bleheri
swims in pairs or in trios when facing a water flow has also been investigated (Ashraf et al., 2016).
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Figure 1.4: A polarised school of swimming rummy-nose tetras. Credits to David Villa ScienceIm-
age/CBI/CNRS, Toulouse.

The choice of H. rhodostomus as a model species in our research is supported by (i) their schooling
behaviour being obligate, (ii) the ease of buying them (from standard pet shops) and (iii) the ease
of keeping them in our facilities.

This thesis will follow an approach based on a tight combination between experiments and mod-
elling to connect individual and collective levels (Camazine et al., 2001; Sumpter et al., 2012; Weitz
et al., 2012) that was already initiated by the team in Toulouse (Gautrais et al., 2012; Lopez, 2015).
This methodology consists in, given a global pattern, to first focus on experimental observations
at the individual level. The findings that, for instance, concern the interactions between animals,
are incorporated into data-driven models whose predictions are tested against experimental data
at the collective level.

1.5.1 Part I: What are the individual-level interactions and behavioural rules
that give rise to coordinated swimming

Part I (Chapters 2 and 3) is dedicated to the behavioural mechanisms that underlie the coordinated
swimming in schools of H. rhodostomus.

In Chapter 2, we focus on the motion of a single individual and pairs of individuals swimming
freely in a circular arena. Fish have been monitored while swimming in circular arenas of different
radii. Hemigrammus rhodostomus has a burst-and-coast swimming behaviour. This swimming
behaviour consists of cyclic bursts of swimming followed by a coast phase in which the body is kept
motionless and straight. It is thought to provide hydrodynamic efficiency (Weihs, 1974; Videler
and Weihs, 1982). The discretisation of the trajectories on the basis of this intermittent swimming
mode drove the analysis of experimental data and the modelling. We developed a new method to
measure and disentangle the interactions between a fish and the wall and between pairs of fish and
tested these findings in a model. In particular, our findings strongly support the presence of an
explicit alignment interaction.

Chapter 3 addresses specifically the question of the integration of information from multiple
sources. This issue has rarely been explored in previous studies and current models usually assume
reactions averaged over pairwise reactions computed with respect to each separate stimulus, possibly
weighted, e.g., by the distance to the stimulus – at the notable exception of (Collignon et al., 2016).
As for the latter, the authors develop an interesting hypothesis where fish react by sampling one
turning angle from the sum of the probability density functions of turning angles measured in
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reaction to each stimulus. Unfortunately, their model does not test the hypothesis specifically and
many assumptions (with possible confounding effects) are tested at the same time. We develop a
method based on experimental data to test hypotheses regarding the integration of stimuli from
multiple sources and we investigate a simple hypothesis in which fish react only to the strongest
stimulus we assume they perceive. The method is tested with experimental data in a ring-shaped
tank with non-social stimuli (the walls of the corridor) and social stimuli (in groups of 2 and 5 fish).
We find that the hypothesis that fish would react only to the strongest stimulus is not sufficient
to reproduce the global properties found in experiments with 5 fish, suggesting that fish integrate
more information.

1.5.2 Part II: How does information propagate in groups of fish in response to
perturbations?

Part II (Chapters 4 and 5) aims to analyse and characterise the propagation of information in
schools of Hemigrammus rhodostomus, in reaction to internal and external perturbations. Internal
and external perturbations here refer to whether the stimuli are respectively elicited by a group
member or not (e.g. a green light).

In Chapter 4, we analyse and model the propagation of information in response to internal
perturbations, i.e. spontaneous collective U-turns occurring in a ring-shaped tank. The global
properties of the propagation are characterised from experimental data in group sizes ranging from
1 to 20 fish. We formulate a theory-driven local to global model to explain the main properties
of the collective patterns observed. Our model is inspired by the Ising model first suggested in
statistical physics to describe ferromagnetism – and one of the simplest statistical models to show
a phase transition in 2D (Brush, 1967). The main interest of the model is to show that social
conformity is a possible mechanism to explain both the dynamics observed during the collective
U-turns and the effect of the group size on the frequency of the collective U-turns.

Chapter 4 is thus a benchmark of the spatio-temporal dynamics of the propagation of infor-
mation in response to internal and spontaneous perturbations in Hemigrammus rhodostomus. In
Chapter 5, we develop an experimental method to induce controlled external perturbations in or-
der to investigate the propagation of information in this context. In particular, we conduct a
preliminary study showing that aversive conditioning can (i) be used in this species, (ii) trigger
collective escape reactions and (iii) be transferred from the conditioning set-up to another exper-
imental set-up. We characterise the aversive conditioning and discuss long-term habituation and
forgetting. We discuss these preliminary results in the context of propagation of information in
reaction to external stimuli (here, a green light that elicits an escape reaction in conditioned fish).
Our findings suggest that the proportion of conditioned individuals in a group is critical to trigger
collective escape reactions in response to external stimuli. Our experimental results open promis-
ing possibilities regarding the use of conditioning experiments to investigate collective behaviour
in fish and the propagation of information within groups in response to perturbations mimicking
predatory perturbations in particular.

1.5.3 Appendices

The experimental work conducted in this thesis has been used in two other collaborations sum-
marised in the appendices of the manuscript. In Appendix A, a framework based on Information
Theory is used to quantify the dynamics of information transfer in school of fish. This method
measures informative and misinformative flows and their spatio-temporal properties during the
collective U-turns that occur in the ring-shaped tank. In Appendix B, the identity and respective
influences of the neighbours of a focal fish are analysed by studying the short-term directional
correlations between their trajectories.
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Chapter 2

Disentangling and modelling
interactions in fish with
burst-and-coast swimming
Daniel S. Calovi, Alexandra Litchinko, Valentin Lecheval, Ugo Lopez, Al-

fonso Pérez Escudero, Hugues Chaté, Clément Sire, Guy Theraulaz

Article published in Calovi, DS et al. 2018. “Disentangling and Modeling Interactions in Fish with Burst-
and-Coast Swimming Reveal Distinct Alignment and Attraction Behaviors.” PLOS Computational Biology
14 (1): 1–28. https://doi.org/10.1371/journal.pcbi.1005933.

Abstract

We combine extensive data analyses with a modelling approach to measure, disentangle, and reconstruct the
actual functional form of interactions involved in the coordination of swimming in Rummy-nose tetra (Hem-
igrammus rhodostomus). This species of fish performs burst-and-coast swimming behaviour that consists of
sudden heading changes combined with brief accelerations followed by quasi-passive, straight decelerations.
We quantify the spontaneous stochastic behaviour of a fish and the interactions that govern wall avoidance
and the attraction and alignment to a neighbouring fish, the latter by exploiting general symmetry con-
straints for the interactions. In contrast with previous experimental works, we find that both attraction and
alignment behaviours control the reaction of fish to a neighbour. We then exploit these results to build a
model of spontaneous burst-and-coast swimming and interactions of fish, with all parameters being estimated
or directly measured from experiments. This model quantitatively reproduces the key features of the motion
and spatial distributions observed in experiments with a single fish and with two fish. This demonstrates
the power of our method that exploits large amounts of data for disentangling and fully characterizing the
interactions that govern collective behaviours in animals groups. Moreover, we introduce the notions of
“dumb” and “intelligent” active matter and emphasize and clarify the strong differences between them.

Contribution of authors

C.S. and G.T. designed research; D.S.C., V.L., U.L., and G.T. performed research; D.S.C., A.L., and C.S.
developed the model; D.S.C., A.L., V.L., U.L., H.C., C.S., and G.T. analysed data; A.P.E. contributed new
reagents/analytic tools; V.L., C.S., and G.T. wrote the paper.

2.1 Introduction

The study of physical or living self-propelled particles – active matter – has certainly become a booming
field, notably involving biologists and physicists, often working together. Physical examples of active matter
include self-propelled Janus colloids (Brown and Poon, 2014; Walther and Muller, 2008; Howse et al., 2007;
Theurkauff et al., 2012; Palacci et al., 2010, 2013; Buttinoni et al., 2012; Ginot et al., 2015), vibrated
granular matter (Narayan et al., 2007; Kudrolli et al., 2008; Deseigne et al., 2010), or self-propulsion mediated
by hydrodynamical effects (Thutupalli et al., 2011; Bricard et al., 2013), whereas biological examples are
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obviously ubiquitous: bacteria, cells, and simply speaking, most animals. In both physical and biological
contexts, active matter can organize into rich collective phases. For instance, fish schools can be observed in
a disordered swarming phase, or ordered schooling and vortex/milling phases (Tunstrøm et al., 2013; Calovi
et al., 2014).

Yet, there are important differences between “dumb” and “intelligent” active matter (see the Appendix
2.A for a more formal definition and discussion). For the former class, which concerns most physical self-
propelled particles, but also, in some context, living active matter, interactions with other particles or
obstacles do not modify the intrinsic or “desired” velocity of the particles but exert forces whose effect adds
up to its intrinsic velocity. Intelligent active matter, like fish, birds, or humans, can also interact through
physical forces (a human physically pushing another one or bumping into a wall) but mostly interact through
“social forces”. For instance, a fish or a human wishing to avoid a physical obstacle or another animal will
modify its intrinsic velocity in order to never actually touch it. Moreover, a physical force applied to an
intelligent active particle, in addition to its direct impact, can elicit a response in the form of a change in
its intrinsic velocity (for instance, a human deciding to escape or resist another human physically pushing
her/him). Social forces strongly break the Newtonian law of action and reaction: a fish or a human avoiding
a physical obstacle obviously does not exert a contrary force on the obstacle. In addition, even between two
animals 1 and 2, the force exerted by 1 on 2 is most often not the opposite of the force exerted by 2 on 1,
since social forces commonly depend on stimuli (vision, hearing...) associated to an anisotropic perception:
a human will most often react more to another human ahead than behind her/him. Similarly, social forces
between two fish or two humans will also depend on their relative velocities or orientations: the need to
avoid another animal will be in general greater when a collision is imminent than if it is unlikely, due to the
velocity directions.

Hence, if the understanding of the social interactions that underlie the collective behaviour of animal
groups is a central question in ethology and behavioural ecology (Camazine et al., 2001; Giardina, 2008), it
has also a clear conceptual interest for physicists, since social and physical forces play very different roles in
the dynamics of an active matter particle (see Appendix for details).

These social interactions play a key role in the ability of group members to coordinate their actions and
collectively solve a wide range of problems, thus increasing their fitness (Sumpter, 2010; Krause and Ruxton,
2002). In the past few years, the development of new methods based on machine learning algorithms for
automating tracking and behaviour analyses of animals in groups has improved to unprecedented levels the
precision of available data on social interactions (Branson et al., 2009; Pérez-Escudero et al., 2014; Dell
et al., 2014). A wide variety of biological systems have been investigated using such methods, from swarms
of insects (Buhl et al., 2006; Attanasi, Cavagna, Del Castello, Giardina, Melillo, Parisi, Pohl, Rossaro, Shen,
Silvestri and Viale, 2014; Schneider and Levine, 2014) to schools of fish (Katz et al., 2011; Herbert-Read
et al., 2011; Gautrais et al., 2012; Mwaffo et al., 2015), flocks of birds (Ballerini et al., 2008; Nagy et al.,
2010; Bialek et al., 2014), groups of mice (de Chaumont et al., 2012; Shemesh et al., 2013), herds of ungulates
(Ginelli et al., 2015; King et al., 2012), groups of primates (Strandburg-Peshkin et al., 2015; Ballesta et al.,
2014), and human crowds (Moussäıd et al., 2011; Gallup et al., 2012), bringing new insights on behavioural
interactions and their consequences on collective behaviour.

The fine-scale analysis of individual-level interactions opens up new perspectives to develop quantitative
and predictive models of collective behaviour. One major challenge is to accurately identify the contributions
and combination of each interaction involved at individual-level and then to validate with a model their role
in the emergent properties at the collective level (Lopez et al., 2012; Herbert-Read, 2016). Several studies on
fish schools have explored ways to infer individual-level interactions directly from experimental data. The
force-map technique (Katz et al., 2011) and the non-parametric inference technique (Herbert-Read et al.,
2011) have been used to estimate from experiments involving groups of two fish the effective turning and
speeding forces experienced by an individual. In the force-map approach, the implicit assumption considers
that fish are particles on which the presence of neighbouring fish and physical obstacles exert “forces”.
Visualizing these effective forces that capture the coarse-grained regularities of actual interactions has been
a first step to characterize the local individual-level interactions (Katz et al., 2011; Herbert-Read et al.,
2011). However, none of these works incorporate or characterize the intrinsic stochasticity of individual
behaviour and nor do they attempt to validate their findings by building trajectories from a model.

On the other hand, only a few models have been developed to connect a detailed quantitative description
of individual-level interactions with the emergent dynamics observed at a group level (Herbert-Read et al.,
2011; Gautrais et al., 2012; Mwaffo et al., 2015). The main difficulty to build such models comes from the
entanglement of interactions between an individual and its physical and social environment. To overcome this
problem, Gautrais et al. (2012) have introduced an incremental approach that consists in first building from
the experiments a model for the spontaneous motion of an isolated fish (Gautrais et al., 2009). This model
is then used as a dynamical framework to include the effects of interactions of that fish with the physical
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Figure 2.1: Trajectories along with the bursts (circles) of a fish swimming alone (A) and a group
of 2 fish (B). The colour of trajectories indicates instantaneous speed. The corresponding speed
time series are shown in C and D, along with the acceleration/burst phase delimited by red and
blue vertical lines. E defines the variables rw and θw (distance and relative orientation to the wall)
in order to describe the fish interaction with the wall. F defines the relevant variables d, ψ, and
∆φ (distance, viewing angle, relative orientation of the focal fish with respect to the other fish)
in order to describe the influence of the blue fish on the red one. G and H show respectively the
probability distribution function (PDF) of the duration and distance travelled between two kicks
as measured in the one (black) and two (red) fish experiments (tank of radius R = 250 mm). Insets
show the corresponding graphs in semi-log scale.

environment and with a neighbouring fish. The validation of the model is then based on the agreement of
its predictions with experiments on several observables in different conditions and group sizes.

In the present work, we use but improve and extend this approach to investigate the swimming behaviour
and interactions in the red nose fish Hemigrammus rhodostomus. This species performs a burst-and-coast
type of swimming that makes it possible to analyse a trajectory as a series of discrete behavioural decisions
in time and space. This discreteness of trajectories is exploited to characterize the spontaneous motion of
a fish, to identify the candidate stimuli (e.g. the distance, the orientation and velocity of a neighbouring
fish, or the distance and orientation of the tank wall), and to measure their effects on the behavioural
response of a fish. We assume rather general forms for the expected repulsive effect of the tank wall and
for the repulsive/attractive and alignment interactions between two fish. These forms take into account the
fish anisotropic perception of its physical and social environment and must satisfy some specific symmetry
constraints which help us to differentiate these interactions and disentangle their relative contributions. The
amount and precision of data accumulated in this work and this modelling approach allow us to reconstruct
the actual functional form of the response functions of fish governing their heading changes as a function
of the distance, orientation, and angular position relative to an obstacle or a neighbour. We show that
the implementation of these interactions in a stochastic model of spontaneous burst-and-coast swimming
quantitatively reproduces the motion and spatial distributions observed in experiments with a single fish
and with two fish.

2.2 Results

2.2.1 Characterization of individual swimming behaviour

Hemigrammus rhodostomus fish have been monitored swimming alone and freely in shallow water in three
different circular tanks of radius R = 176, 250, 353 mm (see Supplementary Information (SI) for details).
This species performs a burst-and-coast type of swimming characterized by sequences of sudden increase
in speed followed by a mostly passive gliding period. This allows the analysis of a trajectory as a series of
discrete decisions in time. One can then identify the candidate stimuli (e.g. the distance, the orientation
and velocity of a neighbouring fish, or the distance and orientation of an obstacle) that have elicited a fish
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response and reconstruct the associated stimulus-response function. Most changes in fish heading occur
exactly at the onset of the acceleration phase. We label each of these increases as a “kick”.

Figures 2.1A and 2.1B show typical trajectories of H. rhodostomus swimming alone or in groups of two
fish. After the data treatment (see SI and Figure S1 and S2 there), it is possible to identify each kick
(delimited by vertical lines in Figures 2.1C and 2.1D), which we use to describe fish trajectories as a group
of straight lines between each of these events. While the average duration between kicks is close to 0.5 s for
experiments with one or two fish (Figure 2.1G), the mean length covered between two successive kicks is
slightly lower for two fish (Figure 2.1H). The typical velocity of the fish in their active periods (see SI) is of
order 140 mm/s.

2.2.2 Quantifying the effect of the interaction of a single fish with the wall

Figure 2.2A shows the experimental probability density function (PDF) of the distance to the wall rw after
each kick, illustrating that the fish spends most of the time very close to the wall. We will see that the
combination of the burst-and-coast nature of the trajectories (segments of average length ∼ 70 mm, but
smaller when the fish is very close to the wall) and of the narrow distribution of angle changes between kicks
(see Figure 2.2D) prevent a fish from efficiently escaping the curved wall of the tank. Figure 2.2C shows the
PDF of the relative angle of the fish to the wall θw, centred near, but clearly below 90◦, as the fish remains
almost parallel to the wall and most often goes toward it.

In order to characterize the behaviour with respect to the walls, we define the signed angle variation
δφ+ = δφ×Sign(θw) after each kick, where δφ is the measured angle variation. Therefore, δφ+ is positive
when the fish goes away from the wall and negative when the fish is heading towards it. The PDF of δφ+

is wider than a Gaussian and is clearly centred at a positive δφ+ ≈ 15◦ (tank of radius R = 353 mm),
illustrating that the fish works at avoiding the wall (Figure 2.2D). When one restricts the data to instances
where the fish is at a distance rw > 60 mm from the wall, for which its influence becomes negligible (see
Figure 2.4A and the discussion hereafter), the PDF of δφ+ indeed becomes symmetric, independent of the
tank in which the fish swims, and takes a quasi Gaussian form of width of order 20◦ (inset of Figure 2.2D).
The various quantities displayed in Figure 2.2 will ultimately be used to calibrate and test the predictions
of our model.

2.2.3 Modelling and direct measurement of fish interaction with the wall

We first define a simple model for the spontaneous burst-and-coast motion of a single fish without any wall
boundaries, and then introduce the fish-wall interaction, before considering the interaction between two fish
in the next subsection. The large amount of data accumulated (more than 300000 recorded kicks for 1 fish,
and 200000 for 2 fish; see SI) permits us to not only precisely characterize the interactions, but also to test
the model by comparing its results to various experimental quantities which would be very sensitive to a
change in model and/or parameters (e.g. the full fish-wall and fish-fish distance and angle distributions
instead of simply their mean).

Swimming dynamics without any interaction

We model the burst-and-coast motion by a series of instantaneous kicks each followed by a gliding period
where fish travel in straight lines with a decaying velocity. At the n-th kick, the fish located at ~xn at time
tn with angular direction φn randomly selects a new heading angle φn+1, a start or peak speed vn, a kick
duration τn, and a kick length ln. During the gliding phase, the speed is empirically found to decrease quasi
exponentially to a good approximation, as shown in Figure 2.3, with a decay or dissipation time τ0 ≈ 0.80 s,
so that knowing vn and τn or vn and ln, the third quantity is given by ln = vnτ0(1 − exp[− τn

τ0

]). At the end
of the kick, the position and time are updated to

~xn+1 = ~xn + ln~e(φn+1), tn+1 = tn + τn, (2.1)

where ~e(φn+1) is the unit vector along the new angular direction φn+1 of the fish. In practice, we generate
vn and ln, and hence τn from simple model bell-shaped probability density functions (PDF) consistent with
the experimental ones shown in Figures 2.1G and 2.1H. In addition, the distribution of δφR = φn+1 − φn

(the R subscript stands for “random”) is experimentally found to be very close to a Gaussian distribution
when the fish is located close to the centre of the tank, i.e. when the interaction with the wall is negligible
(see the inset of Figure 2.2D). The random variable δφR describes the spontaneous decisions of the fish to
change its heading:

φn+1 = φn + δφR = φn + γR g, (2.2)
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Figure 2.2: Quantification of the spatial distribution and motion of a fish swimming alone. Exper-
imental (A; full lines) and theoretical (B; dashed lines) PDF of the distance to the wall rw after a
kick in the three arenas of radius R = 176, 250, 353 mm. C: experimental (full line) and theoretical
(dashed line) PDF of the relative angle of the fish with the wall θw (R = 353 mm). D: PDF of
the signed angle variation δφ+ = δφ×Sign(θw) after each kick (R = 353 mm). The inset shows the
distribution of δφ+ when the fish is near the centre of the tank (rw > 60 mm), for R = 176, 250,
353 mm (coloured dots), which becomes centred at δφ+ = 0◦ and Gaussian of width ≈ 20◦ (full
line).

17



0 0.5 1 1.5 2
t (s)

0.0

0.5

1.0

v
(t

)/
v
(0

)

Figure 2.3: Average decay of the fish speed right after a kick (black line), which can be reasonably
described by an exponential decay with a relaxation time τ0 ≈ 0.80 s (violet dashed line)

where g is a Gaussian random variable with zero average and unit variance, and γR is the intensity of the
heading direction fluctuation, which is found to be of order 0.35 radian (≈ 20◦) in the three tanks.

By exploiting the burst-and-coast dynamics of H. rhodostomus, we have defined an effective kick dynam-
ics, of length and duration ln and τn. However, it can be useful to generate the full continuous time dynamics
from this discrete dynamics. For instance, such a procedure is necessary to produce “real-time” movies of
fish trajectories obtained from the model. As already mentioned, during a kick, the speed is empirically
found to decrease exponentially to a good approximation (see Figure 2.3), with a decay or dissipation time
τ0 ≈ 0.80 s. Between the time tn and tn+1 = tn + τn, the viscous dynamics due to the water drag for
0 ≤ t ≤ τn leads to

~x(tn + t) = ~xn + ln
1 − exp[− t

τ0

]

1 − exp[− τn

τ0

]
~e(φn+1), (2.3)

so that one recovers ~x(tn + τn) = ~x(tn+1) = ~xn + ln~e(φn+1) = ~xn+1.

Fish interaction with the wall

In order to include the interaction of the fish with the wall, we introduce an extra contribution δφW

δφ = δφR(rw) + δφW(rw, θw), (2.4)

where, due to symmetry constraints in a circular tank, δφW can only depend on the distance to the wall
rw, and on the angle θw between the fish angular direction φ and the normal to the wall (pointing from the
tank centre to the wall; see Figure 2.1E). We did not observe any statistically relevant left/right asymmetry,
which imposes the symmetry condition

δφW(rw,−θw) = −δφW(rw, θw). (2.5)

The random fluctuations of the fish direction are expected to be reduced when it stands near the wall, as
the fish has less room for large angles variations (compare the main plot and the inset of Figure 2.2D), and
we now define

δφR(rw) = γR[1 − αfw(rw)]g. (2.6)

fw(rw) → 0, when rw ≫ lw (where lw sets the range of the wall interaction), recovering the free spontaneous
motion in this limit. In addition, we define fw(0) = 1 so that the fluctuations near the wall are reduced by
a factor 1 − α, which is found experimentally to be close to 1/3, so that α ≈ 2/3.

If the effective “repulsive force” exerted by the wall on the fish (first considered as a physical particle)
tends to make it go toward the centre of the tank, it must take the form δφW(rw, θw) = γW sin(θw)fw(rw),
where the term sin(θw) is simply the projection of the normal to the wall (i.e. the direction of the repulsion
“force” due to the wall) on the angular acceleration of the fish (of direction φ + 90◦). For the sake of
simplicity, fw(rw) is taken as the same function as the one introduced in Equation (2.6), as it satisfies the
same limit behaviours. In fact, a fish does not have an isotropic perception of its environment. In order
to take into account this important effect in a phenomenological way, we introduce ǫw(θw) = ǫw,1 cos(θw) +
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Figure 2.4: Interaction of a fish with the tank wall as a function of its distance rw (A) and its
relative orientation to the wall θw(B) as measured experimentally in the three tanks of radius
R = 176 mm (black), R = 250 mm (blue), R = 353 mm (red). The full lines correspond to the
analytic forms of fw(rw) and Ow(θw) given in the text. In particular, fw(rw) is well approximated
by a Gaussian of width lw ≈ 2 BL∼ 60 mm.

ǫw,2 cos(2θw) + ..., an even function (by symmetry) of θw, which, we assume, does not depend on rw, and
finally we define

δφW(rw, θw) = γW sin(θw)[1 + ǫw(θw)]fw(rw), (2.7)

where γW is the intensity of the wall repulsion.

Once the displacement l and the total angle change δφ have been generated as explained above, we have
to eliminate the instances where the new position of the fish would be outside the tank. More precisely,
and since ~x refers to the position of the centre of mass of the fish (and not of its head) before the kick, we
introduce a “comfort length” lc, which must be of the order of one body length (BL; 1 BL ∼ 30 mm; see SI),
and we reject the move if the point ~x+(l+lc)~e(φ+δφ) is outside the tank. When this happens, we regenerate
l and δφ (and in particular, its random contribution δφR), until the new fish position is inside the tank.
Note that in the rare cases where such a valid couple is not found after a large number of iterations (say,
1000), we generate a new value of δφR uniformly drawn in [−π, π] until a valid solution is obtained. Such a
large angle is for instance necessary (and observed experimentally), when the fish happens to approach the
wall almost perpendicularly to it (δφ ∼ 90◦ or more).

In order to measure experimentally ǫw(θw) and fw(rw), and confirm the functional form of Equation (2.7),
we define a fitting procedure which is explicitly described in SI, by minimizing the error between the exper-
imental δφ and a general product functional form δφW(rw, θw) = fw(rw)Ow(θw), where the only constraint
is that Ow(θw) is an odd function of θw (hence the name O), in order to satisfy the symmetry condition of
Equation (2.5). Since multiplying Ow by an arbitrary constant and dividing fw by the same constant leaves
the product unchanged, we normalize Ow (and all angular functions appearing below) such that its average

square is unity: 1
2π

∫ +π

−π
O2

w(θw) dθw = 1.

For each of the three tanks, the result of this procedure is presented as a scatter plot in Figures 2.4A
and 2.4B respectively, along with the simple following functional forms (solid lines)

Ow(θw) ∝ sin(θw)[1 + 0.7 cos(2θw)], (2.8)

fw(rw) = exp
[

− (rw/lw)
2
]

, with lw ≈ 2 BL. (2.9)

Hence, we find that the range of the wall interaction is of order lw ≈ 2 BL ∼ 60 mm, and is strongly
reduced when the fish is parallel to the wall (corresponding to a “comfort” situation), illustrated by the
deep (i.e. lower response) observed for θw ≈ 90◦ in Figure 2.4B (cos(2θw) ≈ −1). Moreover, we do not find
any significant dependence of these functional forms with the radius of the tank, although the interaction
strength γW is found to decrease as the radius of the wall increases (see Table S3). The smaller the tank
radius (of curvature), the more effort is needed by the fish to avoid the wall.

Note that the fitting procedure used to produce the results of Figure 2.4 (described in detail in the SI)
does not involve any regularization scheme imposing the scatter plots to fall on actual continuous curves.
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The fact that they actually do describe such fairly smooth curves (as we will also find for the interaction
functions between two fish; see Figure 2.6) is an implicit validation of our procedure.

In Figure 2.2, and for the three tank radii considered, we compare the distribution of distance to the
wall rw, relative angle to the wall θw, and angle change δφ after each kick, as obtained experimentally
and in extensive numerical simulations of the model, finding an overall satisfactory agreement. On a more
qualitative note, the model fish dynamics mimics fairly well the behaviour and motion of a real fish.

2.2.4 Quantifying the effect of interactions between two fish

Experiments with two fish were performed using the tank of radius R = 250 mm; and a total of around
200000 kicks were recorded (see SI for details).

In Figure 2.5, we present various experimental PDF which characterize the swimming behaviour of two
fish resulting from their interaction, and which will permit to calibrate and test our model. Figure 2.5A
shows the PDF of the distance to the wall, for the geometrical “leader” and “follower” fish. The geometrical
leader is defined as the fish with the largest viewing angle |ψ| ∈ [0, 180◦] (see Figure 2.1F where the leader
is the red fish), that is, the fish which needs to turn the most to directly face the other fish. Note that
the geometrical leader is not always the same fish, as they can exchange role. We find that the geometrical
leader is much closer to the wall than the follower, as the follower tries to catch up and hence hugs the bend.
Still, both fish are farther from the wall than an isolated fish is (see Figure 2.2A). The inset of Figure 2.5A
shows the PDF of the distance d between the two fish, illustrating the strong attractive interaction between
them.

Figure 2.5C shows the PDF of θw for the leader and follower fish, which are again much wider than for
an isolated fish (see Figure 2.2C). The leader, being closer and hence more parallel to the wall, displays a
sharper distribution than the follower. Figure 2.5B shows the PDF of the relative orientation ∆φ = φ2 − φ1

between the two fish, illustrating their tendency to align, along with the PDF of the viewing angle ψ of the
follower. Both PDF are found to be very similar and peaked at 0◦. Finally, Figure 2.5D shows the PDF
(averaged over both fish) of the signed angle variation δφ+ = δφ×Sign(θw) after each kick, which is again
much wider than for an isolated fish (Figure 2.2D). Due to their mutual influence, the fish swim farther from
the wall than an isolated fish, and the wall constrains less their angular fluctuations.

2.2.5 Modelling and direct measurement of interactions between two fish

In the presence of another fish, the total heading angle change now reads

δφ = δφR(rw) + δφW(rw, θw) + (2.10)

δφAtt(d, ψ,∆φ) + δφAli(d, ψ,∆φ),

where the random and wall contributions are given by Eqs. (2.6,2.7,2.8,2.9), and the two new contributions
result from the expected attraction (Att) and alignment (Ali) interactions between fish. The distance
between fish d, the relative position or viewing angle ψ, and the relative orientation angle ∆φ are all defined
in Figure 2.1F. By mirror symmetry already discussed in the context of the interaction with the wall, one
has the exact constraint

δφAtt, Ali(d,−ψ,−∆φ) = −δφAtt, Ali(d, ψ,∆φ), (2.11)

meaning that a trajectory of the two fish observed from above the tank has the same probability of occurrence
as the same trajectory as it appears when viewing it from the bottom of the tank. We hence propose the
following product expressions

δφAtt(d, ψ,∆φ) = FAtt(d)OAtt(ψ)EAtt(∆φ), (2.12)

δφAli(d, ψ,∆φ) = FAli(d)OAli(∆φ)EAli(ψ), (2.13)

where the functions O are odd, and the functions E are even. For instance, OAtt must be odd as the focal
fish should turn by the same angle (but of opposite sign) whether the other fish is at the same angle |ψ| to
its left or right. Like in the case of the wall interaction, we normalize the four angular functions appearing in
Eqs. (2.12,2.13) such that their average square is unity. Both attraction and alignment interactions clearly
break the law of action and reaction, as briefly mentioned in the Introduction and discussed in the Appendix.
Although the heading angle difference perceived by the other fish is simply ∆φ′ = −∆φ, its viewing angle
ψ′ is in general not equal to −ψ (see Figure 2.1F).

As already discussed in the context of the wall interaction, an isotropic radial attraction force between the
two fish independent of the relative orientation, would lead exactly to Equation (2.12), with OAtt(ψ) ∼ sin(ψ)
and EAtt(∆φ) = 1. Moreover, an alignment force tending to maximize the scalar product, i.e. the alignment,
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Figure 2.5: Quantification of the spatial distribution and motion in groups of two fish. In all
graphs, full lines correspond to experimental results and dashed lines to numerical simulations of
the model. A: PDF of the distance to the wall, for the geometrical leader (red) and follower (blue)
fish; the inset displays the PDF of the distance d between the two fish. B: PDF of the relative
orientation ∆φ = φ2 − φ1 between the two fish (black) and PDF of the viewing angle ψ of the
follower (blue). C: PDF of the relative angle to the wall θw for the leader (red) and follower fish
(blue). D: PDF (averaged over both fish) of the signed angle variation δφ+ = δφ×Sign(θw) after
each kick.

21



between the two fish headings takes the natural form OAli(∆φ) ∼ sin(∆φ), similar to the one between two
magnetic spins, for which one has EAli(ψ) = 1. However, we allow here for more general forms satisfying
the required parity properties, due to the fish anisotropic perception of its environment, and to the fact that
its behaviour may also be affected by its relative orientation with the other fish. For instance, we anticipate
that EAli(ψ) should be smaller when the other fish is behind the focal fish (ψ = 180◦; bad perception of the
other fish direction) than when it is ahead (ψ = 0◦).

As for the dependence of FAtt with the distance between fish d, we expect FAtt to be negative (repulsive
interaction) at short distance d ≤ d0 ∼ 1 BL, and then to grow up to a typical distance lAtt, before ultimately
decaying above lAtt. Note that if the attraction force is mostly mediated by vision at large distance, it should
be proportional to the 2D solid angle produced by the other fish, which decays like 1/d, for large d. These
considerations motivate us to introduce an explicit functional form satisfying all these requirements:

FAtt(d) ∝ d− d0

1 + (d/lAtt)2
. (2.14)

FAli should be dominant at short distance, before decaying for d greater than some lAli defining the
range of the alignment interaction. For large distance d, the alignment interaction should be smaller than
the attraction force, as it becomes more difficult for the focal fish to estimate the precise relative orientation
of the other fish than to simply identify its presence.

Figure 2.6A shows strong evidence for the existence of an alignment interaction. Indeed, we plot the
average signed angle change after a kick δφ+ = δφ×Sign(ψ) vs ∆φ×Sign(ψ) and δφ+ = δφ×Sign(∆φ) vs
ψ×Sign(∆φ). In accordance with Eqs. (2.12,2.13), a strong positive δφ+ when the corresponding variable is
positive indicates that the fish changes more its heading if it favours mutual alignment (reducing ∆φ), for
the same viewing angle ψ.

As precisely explained in SI (section 2.D), we have determined the six functions appearing in Eqs. (2.12,2.13)
by minimizing the error with the measured δφ, only considering kicks for which the focal fish was at a distance
rw > 2 BL from the wall, in order to eliminate its effect (see Figure 2.4A). This procedure leads to smooth
and well behaved measured functions displayed in Figure 2.6. As shown in Figure 2.6B, the functional form
of Equation (2.14) adequately describes FAtt(d), with lAtt ≈ 200 mm, and with an apparent repulsive regime
at very short range, with d0 ≈ 30 mm ∼ 1 BL. The crossover between a dominant alignment interaction to a
dominant attraction interaction is also clear. The blue full line in Figure 2.6B, a guide to the eye reproducing
appropriately FAli(d), corresponds to the phenomenological functional form

FAli(d) ∝ (d+ d′
0) exp[−(d/lAli)

2], (2.15)

with lAli ≈ 200 mm. Note that FAtt(d) and FAli(d) cannot be properly measured for d > 280 mm due to the
lack of statistics, the two fish remaining most of the time close to each other (see the inset of Figure 2.6A;
the typical distance between fish is d ∼ 75 mm).

Figure 2.6C showsOAtt(ψ) ∝ sin(ψ)[1+ǫAtt,1 cos(ψ)+...] (odd function) andEAtt(∆φ) ∝ 1+ηAtt,1 cos(∆φ)+
... (even function) along with fits involving no more than 2 non zero Fourier coefficients (and often only one;
see SI (section 2.D.2) for their actual values). EAtt(∆φ) has a minimum for ∆φ = 0 indicating that the
attraction interaction is reduced when both fish are aligned. Similarly, Figure 2.6D shows OAli(∆φ) and
EAli(ψ) and the corresponding fits. As anticipated, the alignment interaction is stronger when the influencing
fish is ahead of the focal fish (|ψ| < 90◦), and almost vanishes when it is behind (ψ = ±180◦).

In Figure 2.5, we compare the results of extensive numerical simulations of the model including the
interactions between fish to experimental data, finding an overall qualitative and quantitative agreement.

As a conclusion of this section, we would like to discuss the generality of the product functional forms
of Eqs. (2.12,2.13) for the interaction between fish, or of Equation (2.7) in the context of the wall interac-
tion. As already briefly mentioned, for a physical point particle interacting through a physical force like
gravity, the angle change δφAtt(d, ψ) would be the projection of the radial force onto the angular acceler-
ation (normal to the velocity of angular direction ψ relative to the vector between the two particles) and
would then exactly take the form FAtt(d)× sin(ψ). Hence, Equation (2.12) (resp. Equation (2.7), for the
wall interaction) is the simplest generalization accounting for the fish anisotropic perception of its environ-
ment, while keeping a product form and still obeying the left/right symmetry condition of Equation (2.11)
(resp. of Equation (2.5)). In principle, δφAtt(d, ψ,∆φ) should be written most generally as an expansion
∑

i FAtt,i(d)OAtt,i(ψ)EAtt,i(∆φ). However, as the number of terms of this expansion increases, we run the
risk of overfitting the experimental data by the procedure detailed in the SI, section 2.D. In addition, the
leading term of this expansion would still capture the main behavioural effects of the interaction and should
be very similar to the results of Figure 2.6, while the weaker remaining terms would anyway be difficult to
interpret. Note that the same argument applies to the alignment interaction, when exploiting the analogy
with the magnetic alignment force between two spins. Equation (2.13) is the simplest generalization of the
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Figure 2.6: Quantification and modelling of interactions between pairs of fish. A: we plot the average
signed angle change after a kick δφ+ = δφ×Sign(ψ) vs ∆φ×Sign(ψ) (red) and δφ+ = δφ×Sign(∆φ)
vs ψ×Sign(∆φ) (blue) (see text). B: dependence of the attraction (FAtt(d) in red) and alignment
(FAli(d) in blue) interactions with the distance d between fish. The full lines correspond to the
physically motivated form of Equation (2.14) (red), and the fit proposed in the text for FAli(d)
(blue). C: OAtt(ψ) (odd function in red) and EAtt(∆φ) (even function in orange) characterize the
angular dependence of the attraction interaction, and are defined in Equation (2.12). D: OAli(∆φ)
(odd function in blue) and EAli(ψ) (even function in violet), defined in Equation (2.13), characterize
the angular dependence of the alignment interaction. Dots in B, C, and D correspond to the results
of applying the procedure explained in SI to extract the interaction functions from experimental
data.
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interaction δφAli(d,∆φ) = FAli(d) sin(∆φ) obtained in this case, while preserving the left/right symmetry
and product form. Considering the fact that no regularization or smoothing procedure was used in our data
analysis (see SI), the quality (low noise, especially for angular functions) of the results presented in Fig-
ures 2.4 and 2.6 strongly suggests that the generalized product forms used here capture most of the features
of the actual experimental angle change.

2.3 Discussion and conclusion

Characterizing the social interactions between individuals as well as their behavioural reactions to the phys-
ical environment is a crucial step in our understanding of complex collective dynamics observed in many
group-living species and their impact on individual fitness (Camazine et al., 2001; Krause and Ruxton,
2002). In the present work, we have analysed the behavioural responses of a fish to the presence in its
neighbourhood of an obstacle and to a conspecific fish. In particular, we used the discrete decisions (kicks)
of H. rhodostomus to control its heading during burst-and-coast swimming as a proxy to measure and model
individual-level interactions. The large amount of data accumulated allowed us to disentangle and quantify
the effects of these interactions on fish behaviour with a high level of accuracy.

We have quantified the spontaneous swimming behaviour of a fish and modelled it by a kick dynamics
with Gaussian distributed angle changes. We found that the interactions of fish with an obstacle and a
neighbouring fish result from the combination of four behavioural modes:

1. wall avoidance, whose effect starts to be effective when the fish is less than 2 BL from a wall;

2. short-range repulsion between fish, when inter-individual distance is less than 30 mm (∼ 1 BL);

3. attraction to the neighbouring fish, which reaches a maximum value around 200 mm (∼ 6 to 7 BL) in
our experimental conditions;

4. alignment to the neighbour, which saturates around 100 mm (∼ 3 BL).

In contrast to previous phenomenological models, these behavioural modes are not fixed to discrete
and somewhat arbitrary zones of distances in which the neighbouring fish are found (Aoki, 1982; Huth and
Wissel, 1992; Couzin et al., 2002). Instead, there is a continuous combination of attraction and alignment
as a function of the distance between fish. Alignment dominates attraction up to ∼ 75 mm (∼ 2.5 BL)
while attraction becomes dominant for larger distances. As distance increases even more, attraction must
decrease as well. However, the limited size of the experimental tanks and the lack of sufficient data for large
d prevented us from measuring this effect, suggesting the long-range nature of the attraction interaction
mediated by vision. Note that a cluster of fish can elicit a higher level of attraction, proportional to the 3D
solid angle of the fish group as seen by the focal fish, as suggested by models based on visual perception (Pita
et al., 2015; Collignon et al., 2016), and as captured by the power-law decay proposed in Equation (2.14).
Designing experiments to test and quantify the long-range nature of the attraction interaction between fish
would be of clear interest.

Moreover, the behavioural responses are strongly modulated by the anisotropic perception of fish. The
wall repulsion effect is maximum when the orientation of the fish with regards to the wall is close to 45◦ and
minimum when the fish is parallel to the wall. Likewise, the maximum amplitude alignment occurs when a
neighbouring fish is located on the front left or right and vanishes as its position around the focal fish moves
towards the back.

To quantify separately the effects of attraction and alignment, we exploited physical analogies and
symmetry considerations to extract the interactions between a focal fish and the wall and with another
fish. Previous studies have shown that in the Golden shiners (Katz et al., 2011) and the Mosquito fish
(Herbert-Read et al., 2011), there was no clear evidence for an explicit matching of body orientation. In
these species, the alignment between fish was supposed to results from a combination of attraction and
repulsion. However, at least in the Mosquito fish, it is likely that the strength of alignment could have
been underestimated because the symmetry constraints on alignment and attraction were not taken into
consideration. In the Rummy-nose tetra, we find strong evidence for the existence of an explicit alignment.

The characterization and the measurement of burst-and-coast swimming and individual interactions were
then used to build and calibrate a model that quantitatively reproduces the dynamics of swimming of fish
alone and in groups of two and the consequences of interactions on their spatial and angular distributions.
The model shows that the wall avoidance behaviour coupled with the burst-and-coast motion results in an
unexpected concentration of fish trajectories close to the wall, as observed in our experiments. In fact, this
phenomenon is well referenced experimentally for run-and-tumble swimming (for instance, in sperm cells
(Elgeti et al., 2010) or bacteria (Vladescu et al., 2014)). It can be explained theoretically and reproduced
in simple models (Tailleur and Cates, 2009; Elgeti and Gompper, 2015), as the effective discreteness of the
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trajectories separated in bursts or tumbles prevents the individuals from escaping the wall. Our model also
reproduces the alternation of temporary leaders and followers in groups of two fish, the behaviour of the
temporary leader being mostly governed by its interactions with the wall, while the temporary follower is
mostly influenced by the behaviour of the temporary leader.

This validated model can serve as a basis for testing hypotheses on the combination of influence exerted
by multiples neighbours on a focal fish in tanks of arbitrary shape. Moreover, it would certainly be interesting
to study theoretically the dynamics of many fish swimming without any boundary and according to the found
interactions. The study of the phase diagram as a function of the strength of the attraction and alignment
interactions (and possibly their range) should show the emergence of various collective phases (schooling
phase, vortex phase...) (Tunstrøm et al., 2013; Calovi et al., 2014).

Finally, our method has proved successful in disentangling and fully characterizing the interactions
that govern the behaviour of pairs of animals when large amounts of data are available. Hence, it could
be successfully applied to collective motion phenomena occurring in various biological systems at different
scales of organization.
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Supplementary Information

2.A Intelligent and dumb active matter

A rather general equation describing the dynamics of a standard physical particle moving in a thermal bath
(or a medium inducing a friction and a random stochastic force, like a gas) and submitted to physical external

forces ~FPhys(~x) (due to other particles and/or external fields) reads

d~v

dt
= −~v

τ
+ ~FPhys +

√

2T

τ
~η, (2.16)

where ~v = d~x
dt

is the particle velocity, T is the temperature, and ~η(t) is a stochastic Gaussian noise, delta-
correlated in time, 〈~η(t)~η(t′)〉 = δ(t− t′). In particular, if the physical force is conservative and hence is the
gradient of a potential VPhys(~x), the stationary velocity and position probability distribution of the particle
produced by this equation is well known to be the Boltzmann distribution,

P (~x,~v) =
1

Z
exp

(

−E

T

)

, (2.17)

where E = v2

2
+ VPhys is the energy, and Z is a normalization constant.

2.A.1 Dumb active matter

An active particle is characterized by its intrinsic or desired velocity ~u. Its actual velocity ~v = d~x
dt

rather
generally obeys an equation similar to Equation (2.16):

d~v

dt
= −~v − ~u

τ
+ ~FPhys +

√

2T

τ
~η, (2.18)

where the first term on the right-hand side tends to make the actual velocity go to the intrinsic velocity.
Equation (2.18) has to be supplemented with a specific equation for the intrinsic velocity. Here, for the sake
of simplicity, we assume that ~u is a simple Ornstein-Uhlenbeck stochastic process,

d~u

dt
= − ~u

τ ′
+

√

2T ′

τ
~η′, (2.19)

where ~η′ is an other stochastic Gaussian noise, uncorrelated with ~η, and τ ′ is some correlation time, a priori
unrelated to τ . In general, the stationary distribution P (~x,~v, ~u) is not known, although some analytical
results can be obtained in some limits (for instance, large friction, and separation of the time scales τ and
τ ′) (Jung and Hänggi, 1987; Fox and Roy, 1987).

A first limiting case of this equation is the strong friction limit (small τ), where the inertial term in
Equation (2.18) becomes negligible, leading to

d~x

dt
= ~v = ~u+ τ ~FPhys +

√
2Tτ~η. (2.20)

In the limit of a “cold” medium, where the stochastic force is absent or negligible, we obtain

~v = ~u+ τ ~FPhys. (2.21)

Note that in Eqs. (2.18,2.19,2.20,2.21), the physical force directly impacts the final velocity ~v, but not the
intrinsic velocity ~u of the active particle. This very property constitutes our definition of a “dumb” active
particle.

2.A.2 Intelligent active matter

As explained in the Introduction, animals can not only be submitted to physical forces ~FPhys (e.g. a human

physically pushing another one), but mostly react to “social forces” ~FSoc. These social interactions directly
affect the intrinsic velocity of the active particle, which constitutes our definition of an “intelligent” active
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particle. In the “cold” limit relevant for fish or humans (the substrate in which they move does not exert
any noticeable random force), the system of equations Eqs. (2.18,2.19) becomes

d~v

dt
= −~v − ~u

τ
+ ~FPhys, (2.22)

d~u

dt
= − ~u

τ ′
+ ~FSoc +

√

2T ′

τ
~η′, (2.23)

In the context of animal and intelligent active matter, the stochastic noise ~η′ models the spontaneous motion
– the “free will” – of the animal (see Equation (2.2), for Hemigrammus rhodostomus).

Moreover, we also already mentioned that these social forces are in general non conservative and hence
strongly break the action-reaction law, as they generally depend not only on the positions of the particles,
but also on their velocities (their relative direction ∆φ and the viewing angle ψ and θw defined in Figure 2.1).
In the present work, we have for instance shown how the interaction of Hemigrammus rhodostomus with a
circular wall depends not only on the distance to the wall, but also on the viewing angle θw between the fish
heading and the normal to the wall (see Figure 2.4). We also determined the dependence of the attraction
and alignment interactions on the focal fish viewing angle ψ and the two fish relative heading angle ∆φ (see
Figure 2.6). Note that physical forces can induce a cognitive reaction and hence a change in the intrinsic

velocity, so that ~FSoc may also contain reaction term to the presence of physical forces ~FPhys (this was not
the case in our experiments, except maybe, when the fish would actually touch the wall). Conversely, social
interaction may lead to a particle willingly applying a physical force (a human moving toward another one
and then pushing her/him). As a consequence, the notion of a conserved energy and many other properties
resulting from the conservative nature of standard physical forces are lost, leading to a much more difficult
analytical analysis of the Fokker-Planck equation which can be derived from Eqs. (2.22,2.23).

It is obviously a huge challenge to characterize these social interactions in animal groups, in particular to
better understand the collective phenomena emerging in various contexts (Camazine et al., 2001; Giardina,
2008; Sumpter, 2010). The system of equations Eqs. (2.22,2.23), for specific social interactions, also presents
a formidable challenge, for instance to determine the stationary distribution P (~x,~v, ~u). In the absence of
physical forces, and in the limit of fast reaction (small τ), leading to a perfect matching between the velocity
and the intrinsic velocity, we obtain

~v =
d~x

dt
= ~u, (2.24)

d~u

dt
= − ~u

τ ′
+ ~FSoc +

√

2T ′

τ
~η′. (2.25)

Interestingly, this system is formally equivalent to Equation (2.16) for a standard physical particle, although
Equation (2.25) is formally an equation for the intrinsic velocity, equal to the actual velocity in the considered
limit. Yet, the resulting stationary state P (~x,~v = ~u) is in general not known, because of the non-conservative
nature of the social interactions discussed above and in the Introduction.

2.B Experimental procedures and data collection

Ethics statement Our experiments have been approved by the Ethics Committee for Animal Experi-
mentation of the Toulouse Research Federation in Biology N◦1 and comply with the European legislation
for animal welfare. During the experiments, no mortality occurred.

Study species Hemigrammus rhodostomus (rummy-nose tetras, Figure 2.7) were purchased from Ama-
zonie Labège (http://www.amazonie.com) in Toulouse, France. This species was chosen because it exhibits
a strong schooling behaviour and it is very easy to handle in controlled conditions. Fish were kept in 150 L
aquariums on a 12:12 hour, dark:light photoperiod, at 26.8◦C (±1.6◦C) and were fed ad libitum with fish
flakes. Body lengths (BL) of the fish used in these experiments were on average 31mm (Table 2.1).

The experimental tank (120×120 cm) was made of glass and was set on top of a box to isolate fish from
vibrations. The set-up, placed in a chamber made by four opaque white curtains, was surrounded by four
LED light panels giving an isotropic lighting. Circular tanks (of radius R = 176, 250, and 353 mm) were set
inside the experimental tank filled with 7 cm of water of controlled quality (50% of water purified by reverse
osmosis and 50% of water treated by activated carbon) heated at 26.69◦C (±1.19◦C) (details in Table 2.1).
Reflections of light due to the bottom of the experimental tank are avoided thanks to a white PVC layer.
Each trial started by setting one or two fish randomly sampled from their breeding tank into a circular tank.
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Fish were let for 10 minutes to habituate before the start of the trial. A trial consisted in one or three hours
of fish freely swimming (i.e. without any external perturbation) in a circular tank (Tables 2.1 and 2.2).
Fish trajectories were recorded by a Sony HandyCam HD camera filming from above the set-up at 50 Hz (50
frames per second) in HDTV resolution (1920×1080p).

Two main sources of uncertainty in the measures from video recorded from above with only one camera
occur:

1. by not knowing the water depth at which a fish swims, between 0 to 7 cm from the bottom of the
tank;

2. because of parallax issues (the bigger the angle between a swimming fish and the camera axis, the
bigger the error made estimating the position of the fish).

The contribution of each source in the uncertainty of our measures has been estimated by computing the
lengths of the cells of a chessboard set at the bottom of the tank (Z = 0 cm) and at the top of the water level
(here Z = 6 cm), coming from photographs shot at two zoom levels, the one used to record experiments in
the tank of radius R = 250 mm and the one used to record experiments in the tank of radius R = 353 mm.
As a result, the uncertainty due to the unknown position of the fish in the water column is higher than the
uncertainty due to parallax (3.5% vs 0.5%).

2.C Data extraction and pre-processing

Positions of fish on each frame have been tracked with the tracking software idTracker 2.1 [5]. The idTracker
output format gives fish identity and barycentre positions of individuals in the image (in pixels), where
the latter needs to be converted into position in the experimental frame of reference (in millimetres). The
intermediary Matlab files issued by the tracker store the background image, which is the information used to
calculate wall positions and thus colliding distances more accurately). Also, the intermediary files give the
area of the detected fish, which can be used to determine fish heading from shape detection, independently
of the trajectories. The processing of the output and intermediary files is processed with a custom-built
Matlab script, which is structured into several procedures:

1. Detection of tank walls;

2. Conversion to metric frame of reference;

3. Fish shape detection and body length/width measurements;

4. Fish activity selection and sampling;

5. Segmentation;

6. Segmented variables estimation.

This section aims to document each of these procedures.

2.C.1 Detection of tank walls

From the tracking software idTracker, several files associated with one video are produced. In particular,
there is a matrix with as many elements as resolution of videos in pixels (1920×1080 pixels in our case)
containing light intensity of each pixel, that is coded in a greyscale image of the video (Figure 2.8 A).
The intersection of the bottom of the tank with the tank floor is shadowed (Figure 2.8 A). This shadow is
manually enhanced to improve the detection of the tank walls.

Before running the tracking on idTracker, the user has to define a mask in order to exclude areas where
individuals (here fish) cannot be tracked (e.g. outside the tank) (Figure 2.8 B). This mask gives a raw circular
estimation of the contour of the tank with radius R (outer circle) and a second raw circular estimation with
arbitrary radius 0.85×R (inner circle) is derived. For Nθ radii with angle θi ∈ [0, 2π), i ∈ [1, 2, ..., Nθ], light
intensity is measured from greyscale image every pixel from inner circle to outer circle. To measure the
light intensity of a pixel, the average over the focal pixel and its 8 nearest neighbours in the image matrix
is considered. We take Nθ = 5×360 = 1800 to oversample these measures. Mean position (xi, yi) of the
three smallest values of light intensity (i.e. darker values) associated with each θi is computed, yielding a
noisy and discrete estimate of lower image positions of the tank walls. A first smoothing procedure is run
on the positions (xi, yi) to exclude bad walls estimates (e.g. detection of rust in the upper edge of the wall).
A raw centre (x0, y0) is defined as the mean position of all the (xi, yi) and estimate Nθ radii ri (in pixels)
for each θi. The following criterion is used: two consecutive radii cannot differ by more than 5 pixels. If it
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is the case for the ith radius, it is replaced by the previous one and associated (xi−1, yi−1) are recomputed
given θi and the new radius ri (in pixels). This procedure gives a new series of radii ri where the previous
procedure excludes outliers (Figure2.8 D). Assuming that fish swim at constant height h from the bottom,
we analytically calculate from the detected positions of tank walls at the bottom the positions of the tank
walls at height h using the formula

~rh =

(

1 +
h

h+D

)

(~r − ~rCCD) + ~rCCD, (2.26)

with D the metric distance between the optical centre of the camera and the bottom of the tank alongside
the optical axis, and rCCD the position of the centre of the image.

2.C.2 Conversion to metric frame of reference

A cubic spline estimation is computed to smooth the noisy signal of the radius of the detected tank (red line on
Figure 2.8 D). The radius signal is repeated over 3 periods to avoid border effects, that is to make estimations
at 0 and 2π connected. The Matlab package immoptibox (http://www.imm.dtu.dk/˜hbni/immoptibox/)
is used to estimate the cubic splines with function splinefit. Splines are piecewise-defined polynomial
functions. Knots of the spline are chosen equally spaced. We take 30 knots on each period: the splinefit

function estimates a local polynomial on each interval defined by two knots. The spline estimated over the
second period (2π to 4π) is used for any subsequent calculations to ensure border continuity. The splineval

function is used to find the radius of the tank wall corresponding to any angular position. Figure 2.8 C shows
positions of estimated walls for 2000 θ (i.e. of the same magnitude as the number of pixels describing the
tank contours) which allow to compute the centre of the tank (x0, y0) which will be used as the centre
of the coordinate system of fish positions. Given the mean radius derived from these estimates and the a
priori known radius in millimetres, the number of pixels per millimetres is computed (PixelsToMm ratio)
(Figure 2.8 E). This value is the conversion ratio to translate image coordinates into the experimental metric
frame of reference, which origin is taken to be the centroid of the estimated tank positions. Figure 2.8
F exemplifies the metric fish positions and velocities. The tank coordinates are also converted to metric
coordinates through the same translation and a new metric spline is evaluated to obtain the tank metric
coordinates for any angular position.

2.C.3 Fish shape detection and body length/width measurement

By removing the image background information from every frame, idTracker is able to detect an approximate
fish shape, i.e. a set of pixels’ coordinates with their corresponding light intensity, which is stored as
intermediary files. These files are read to find the main axis of the fish through a principal component
analysis, to estimate the typical body length (BL) and body width (BW) for every fish in all frames. BL
and BW are calculated as the difference of the maximum and minimum value constituted by the projection
of fish points along respectively main axis and secondary axis, then converted to metric values through
the above-mentioned conversion ratio. From the main axis, a heading can be derived using the lower light
intensity of fish image due to the black eye of the fish. Detection of the head direction along the main axis
is done by evaluating the position relative to the barycentre of the blackest five percent of fish image points.
To avoid inaccurate shape detection due to the identification of fish shade as fish shape when the fish is
stopped against the wall, we approximate BL and BW as their mean value when the fish is moving faster
than 15 mm.s−1.

2.C.4 Fish activity selection and sampling

Inter-fish variability in terms of activity is reduced by selecting the phase where a sustained swimming
is observed. Considering that the observation period is much longer than the typical activity phase, these
detected activity phases are sampled into sections of two minutes, allowing us to grasp the intra-fish variability
occurring along an activity section.This procedure is based on the evaluation of fish speed relative to its

mean body-length u =
v

BL
, evaluated through a centred difference scheme with 0.16 s amplitude. First,

the program detects whether the fish are swimming, pausing or stopping. Swimming is defined as
swimming at a speed greater than a threshold velocity umin. Pausing is defined as the fastest fish of the
group swimming at a speed smaller than umin for a period of time smaller or equal to τs = 4 s. Stopping is
defined as the fastest fish of the group swimming at a speed smaller than umin during more than τs = 4 s. The
program extracts sequences of frames where the fish is either swimming or pausing, removing stopping
behaviour. From these sequences where the fish are active, i.e. not stopping, the program cuts series of the
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same length τl. For each experiment, the program will give discontinued series where the fish are swimming.
The number of series for each experiment can be used to estimate how much an experiment will participate
in the statistics. The values τl = 120 s and τs = 4 s are chosen as a compromise between the amount of
data available and the insensitivity of the results of activity selection to the mere parameters.The value of
umin = 0.5 BL.s−1 is a reasonably low threshold that allows to exclude the low activity phases where the fish
uses pectoral fin swimming, of no interest for our study describing regular fish motion using body and caudal
fin swimming. The proportion of time where individuals are detected active over the whole experiment is
listed in Table 2.2 (column Proportion of active swimming).

2.C.5 Segmentation

H. rhodostomus swims in a burst-and-coast (or burst-and-glide) style. There is a succession of short
acceleration phases during which the fish may also change its heading and each acceleration phase is followed
by a gliding phase during which the velocity decreases and then the cycle starts again (Figure 1C, main text).
The points of acceleration exhibited by fish when “bursting” is used to detect these decisions. Most heading
changes occur at these decision points also called “kicks”. Our assumption is that these kicks are sufficient
to describe fish swimming behaviour, the passive phases containing only a consequence of the previous
action, being entirely determined by physical forces. Thus we can minimize the amount of noise given by
barycentre estimation and minor trajectory deviations by describing the trajectory as segments between
kicks. In order to properly identify the acceleration events, we have to smooth the raw speed time series
obtained by taking the modulus of the velocity vector through a centred difference scheme over a moving
time window of bandwidth 0.08 s (4 frames). We use a Savitsky-Golay1 filter of degree three over a 0.36 s time
window (18 frames) to smooth the raw time series, allowing us to classify the time series into accelerating
and decelerating state [38]. To limit remaining noise, we fuse any consecutive pair of accelerations separated
by a deceleration lasting less than 0.08 s. We then discard any acceleration lasting less than 0.08 s as it is a
too short period of time regarding the typical duration of a body motion. We assume that the times of the
kicks coincide with the starting of the acceleration periods.

2.C.6 Segmented variable estimation

Assuming a fish instantaneously takes a new direction and velocity every time its body motion produces an
acceleration, we reduce the full time-sampled trajectories of every two minutes activity sample b of a fish
Id to a set of positions and times of interest {~xi, ti}Id

b corresponding to a set of decision events. From this
point of view, the statistics of interest used in both data and simulation, and discussed below, are:

• The length and time intervals between two decision events;

• The absolute and relative to rotation direction change in orientation due to a decision event;

• The distance between the fish centroid and the closest point on the wall (wall distance);

• The top speed between decision events.

Length and time intervals

Length between two decision events is defined as the Euclidean distance between both decision points li =
‖~xi+1 − ~xi‖. The duration τi = ti+1 − ti of the kick initiated at ti is calculated from decision times.

Heading

Heading of the fish φi during the kick initiated at ti is identified to the direction of the vector between two
decision points.

Computation of wall distances

θi, the angle in radians between the positive x-axis of the frame and (xi, yi) is computed from the current
position of the fish (xi, yi). The radius rθi

for θi is computed based on the spline estimation described in
the previous section. The wall distance is the Euclidean distance between fish position and estimated wall
position as in rw,i = ‖rθi

~eθi
− ~xi‖.

1A. Savitzky, M. J. E. Golay (1964) Smoothing and Differentiation of Data by Simplified Least Squares Procedures.
Anal. Chem. 36(8):1627–39.
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Top speed between kicks

The top speed vi between kicks is determined from the smoothed speed time series used by the segmentation
procedure, taking the maximum value reached between kicks at time ti and ti+1.

2.C.7 Symmetrisation of the data

We did not observe any statistically relevant left/right asymmetry in the distribution of angles θw (1 and 2
fish; see Figure 1E), or ψ and ∆φ (2 fish; see Figure 1F). Assuming perfect left/right symmetry amounts to
saying that a trajectory as observed from the top of the tank (as we did) has exactly the same probability
to occur as the very same trajectory but as seen from under the tank (“mirror trajectory”). For the mirror
trajectory, all angles θw, ψ, and ∆φ have the opposite sign compared to the original trajectory. Hence, the
systematic angle change δφ of a fish due to the interaction with the wall (1 or 2 fish experiments) and with
an other fish (2 fish experiments) must exactly satisfy the symmetry condition

δφ(rw,−θw) = −δφ(rw, θw), (2.27)

for 1 fish experiments, and

δφ(rw,−θw, d,−ψ,−∆φ) = −δφ(rw, θw, d, ψ,∆φ), (2.28)

for 2 fish experiments. In order to analyse and disentangle the interactions, notably the attraction and
alignment interactions between fish, we have imposed general functional forms (see Eqs. (7,12,13) in the main
text) obeying these conditions. Accordingly, exploiting this assumed but reasonable left/right symmetry, we
have effectively doubled our data set by adding the mirror trajectory associated to each observed trajectory.
This procedure not only reduces the statistical uncertainty on quantities depending on angles (by a factor√

2, by the law of large numbers), but it also helps stabilizing the optimization procedure used to extract
the various components of the interactions from δφ, which is detailed in the next section.

2.D Analysis of the interactions

2.D.1 Interaction with the wall of a single fish

The position and orientation of a fish relative to the wall is fully determined by rw and θw (see the main
Figure 1E). As explained in the article (section 2.2.3), in addition to the random component of the angle
change δφ between kicks, which accounts for the fish spontaneous motion, we look for a systematic angle
change due to the presence of the wall of the form δφW(rw, θw) = fw(rw)Ow(θw), where Ow(θw) is an
odd function of θw. If the wall interaction tends to push back the fish toward the center of the tank
and is isotropic, one has exactly that Ow(θw) ∝ sin(θw) (the projection of a radial force on the angular
acceleration, which is perpendicular to the velocity). Hence, the ansatz δφW(rw, θw) = fw(rw)Ow(θw) is
the simplest generalization accounting for the fish anisotropic perception of its environment, while keeping
a product form and still obeying left/right symmetry. Note that in the Gautrais et al. model (Gautrais
et al., 2012), the sign function was phenomenologically used instead of the sin function. Despite having a
qualitatively similar shape, and being both odd functions of θw as requested by symmetry (see above), the
sign function has the unphysical/unbiological drawback of attributing a sharp discontinuous response to a
fish when it approaches the wall from an arbitrary small angle from the left or the right (an angle sign that
the fish could not measure with such a perfect precision).

In order to measure the actual fw(rw) and Ow(θw), we first define a discrete mesh of the two-dimensional
space (rw, θw), with each direction rw ∈ [0, R] and θw ∈ [−π, π] partitioned respectively in I and J boxes
(typical values are I = 40 and J = 30). We tabulate the unknown functions fw(rw) and Ow(θw) by defining
fi as the (mean) value of fw(rw) when rw falls in box i, and Oj as the (mean) value of Ow(θw) when θw falls
in box j. We finally define ǫij as the number of data points falling in the squared box of index i and j, and
δφij as the averaged experimental angle change for data points in this box.

fi and Oj are then determined by minimizing the error

∆ =

I
∑

i=1

J
∑

j=1

ǫij(δφij − fiOj)2. (2.29)
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This minimization is achieved by writing the equation ∂∆/∂fi = 0 and ∂∆/∂Oj = 0 under the form

fi =

∑J
j=1 ǫijδφijOj
∑J

j=1 ǫijO
2
j

, (2.30)

Oj =

∑I
i=1 ǫijδφijfi
∑I

i=1 ǫijf
2
i

. (2.31)

It is straightforward to realize that if the experimental δφij were exactly of the form fi×Oj , the right-hand
side of Eqs. (2.30,2.31) would indeed exactly recover fi and Oj .

This system is solved iteratively starting from reasonable initial conditions, but most importantly with
Oj being an odd function of θw. We checked that this procedure leading to the results of Figure 4 does not
depend on the initial conditions.

In practice, knowing the fi’s and Oj ’s at a given iteration, we generate their values at the next iteration
by computing

f ′
i = (1 − p)fi + pf̂i, (2.32)

O′
j = (1 − p)Oj + pÔj , (2.33)

where f̂i and Ôj are given by the right-hand side of Eqs. (2.30,2.31), and p is a damping parameter that
we took equal to 0.25. Obviously, the fixed point solution of Eqs. (2.32,2.33) ultimately coincides with the
wanted solution of Eqs. (2.30,2.31).

Since multiplying Oj by an arbitrary constant and dividing fi by the same constant leaves the product
fiOj unchanged, we choose to normalize Oj (and all angular functions appearing in Figure 4 and 6) after
each iteration such that its average square is unity:

1

J

J
∑

j=1

O2
j =

1

2π

∫ +π

−π

O2
w(θw) dθw = 1 (2.34)

The procedure described here converges to a relative accuracy of 10−6 in typically 100 iterations, leading
to the result of Figure 4.

2.D.2 Attraction and alignment interaction between two fish

We define a procedure identical in spirit as above, but involving more unknown interaction functions now
depending on the 3 parameters d, ψ, and ∆φ defined in Figure 1F. We choose to restrict our analysis to data
points for which the focal fish was at a distance greater than 2 BL∼ 60 mm, for which the wall interaction is
found to be negligible by the previous analysis.

Again, we partition the three-dimensional space (d, ψ,∆φ) in a mesh of K×L×M boxes (with typically
K = 40, L = M = 30). As previously, we define ǫklm as the number of data points falling in the cubic box
of index k, l and m, and δφklm as the averaged experimental angle change of the focal fish for data points
in this box.

As explained in the main text (section 2.2.5), the systematic angle change δφ = δφAtt(d, ψ,∆φ) +
δφAli(d, ψ,∆φ) due to the attraction and alignment forces is parameterized by 6 unknown functions

δφAtt(d, ψ,∆φ) = FAtt(d)OAtt(ψ)EAtt(∆φ), (2.35)

δφAli(d, ψ,∆φ) = FAli(d)OAli(∆φ)EAli(ψ), (2.36)

with parity constraints (O functions are odd, E functions are even). These rather general functional forms
translate into mathematical forms the notion of attraction and alignment which can in fact have cumulative
or contrary effects depending on the relative position or orientation of the two fish (see Figure 6A). Intuitively,
attraction means that if the other fish is on the right, the focal fish should turn to the right, and should turn
by the same amount to the left in the “mirror situation” (see section 2.C.7).

Again we tabulate these 6 functions, each depending on only one variable, as FAtt,k, OAtt,l, EAtt,m,
FAli,k, OAli,m, EAli,l. These functions are determined by minimizing the error

∆ =
K

∑

k=1

L
∑

l=1

M
∑

m=1

ǫklm×(δφklm − FAtt,kOAtt,lEAtt,m

−FAli,kOAli,mEAli,l)
2. (2.37)
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Expressing that the derivative of ∆ with respect to the 6 tabulated function is zero at the minimum, we
obtain 6 equations similar to Eqs. (2.30,2.31), although a bit more complicated. For instance, FAtt,k satisfies
the fixed point equation

FAtt,k =

∑

l,m ǫklmOAtt,lEAtt,m(δφklm − FAli,kOAli,mEAli,l)
∑

l,m ǫklmO2
Att,lE

2
Att,m

. (2.38)

Note the presence of the counter term FAli,kOAli,mEAli,l between the parentheses of Equation (2.38), meaning
that the attraction force is evaluated by subtracting the estimated alignment interaction to the actual
experimental angle change. Again, it is straightforward to check that if the experimental δφklm takes exactly
the form FAtt,kOAtt,lEAtt,m + FAli,kOAli,mEAli,l, Equation (2.38) exactly recovers the correct d dependence
of the attractive force FAtt,k.

Finally, the resulting system of 6 equations is solved by the same iterative procedure as for the wall
interaction (including the normalization of the average square of angular functions), leading to the results of
Figure 6B, C, and D. In particular, the angular functions obtained are plotted with simple analytical forms
given by

OAtt(ψ) ∝ sin(ψ)[1 − 0.33 cos(ψ)], (2.39)

EAtt(∆φ) ∝ 1 + 0.48 cos(∆φ) − 0.31 cos(2∆φ), (2.40)

OAli(∆φ) ∝ sin(∆φ)[1 + 0.30 cos(2∆φ)], (2.41)

EAli(ψ) ∝ 1 + 0.60 cos(ψ) − 0.32 cos(2ψ), (2.42)

the overall multiplicative constant being fixed by the normalization of the average square of these functions
to unity. The analytical forms for FAtt(d) and FAli(d) are discussed in the main text, section 2.2.5.

One of the main interests of assuming these reasonable (see the discussion above and at the end of section
2.2.5 of the main text) product forms is to drastically limit the number of fitting parameters, but also to
derive from these forms an explicit model. Indeed, if we were to produce a three-dimensional map of δφ on
the K×L×M mesh made of 36000 boxes (K = 40, L = M = 30), we would need 36000 fitting parameters
at this resolution, barely smaller than the number of kicks available from experiment ( ∼ 200000 for 2 fish).
The present procedure only requires 2×(K + L + M) = 200 fitting parameters, which allows us to extract
the main feature of the interactions with a high resolution and yet a rather small noise (see Figure 4 and 6,
and in particular, the various angular functions).

2.E Parameter estimation and simulations

As explained in the main text (section 2.2.3) and illustrated in the insert of Figure 2D, the spontaneous angle
change has a nearly Gaussian distribution of zero mean (left/righ symmetry) and variance γR ≈ 0.35 rad, as
measured when the fish is far from the wall (rw > 2 BL). This value of γR was used in all simulations of the
one fish dynamics, in the three circular tanks of radius R = 176, 250, 353 mm. For two fish, γR is found
experimentally to be slightly larger, probably because each fish activity is stimulated by the presence of the
other fish.

The total angle change PDF shown in the main graph of Figure 2D (one fish) and in Figure 5D (two
fish) is dominated by the majority of kicks where the fish are very close to the wall, and has a width reduced
by a factor nearly 3, so that a fair estimate of the spontaneous angle change intensity near the wall is (see
Equation (6))

γ0
R = (1 − α)γR ∼ γR/3. (2.43)

The exact value of γ0
R (or α), of the comfort distance to the wall lc introduced below Equation (7), which

should naturally be of order of 1 BL ∼ 30 mm, and of the intensity of the interaction with the wall γW are
tuned near their experimental expected value, resulting in the very satisfactory agreement with experiments
obtained in Figure 2 and Figure 5. The parameter used in our simulations are summarized in Table 2.3.

For each of the 4 conditions (the three tank sizes for one fish and one tank size with two fish; see Table
2.2), the graphs of Figure 2 (one fish) and in Figure 5 (two fish) are obtained by typically simulating 100 runs
with 106 kicks each, compared to the 100000-200000 kicks recorded experimentally for each condition/tank.
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Table 2.1: Experimental conditions

1 Fish 2 Fish
Arena radius (mm) 176 250 353 250
Number of experiments 11 12 8 16
Temperature (◦C, mean ±
se)

27.7 ± 0.2 26.8 ± 0.3 27.4 ± 0.3 26.1 ± 0.3

Body length (mm, mean
± se)

35.0 ± 1.1 28.3 ± 1.3 30.9 ± 1.5 30.3 ± 1.0

Table 2.2: List of experiments

Group
size
(Num-
ber of
fish)

Tank
Size
(mm)

Date Proportion of
active swim-
ming

Duration (min) Number of
kicks

1

176

2014-08-20 0.8 191 21012
2014-08-20 0.1 193 2572
2014-08-21 0.4 187 10122
2014-08-21 0.7 197 19849
2014-08-22 0.7 204 15691
2014-08-22 0.1 202 2401
2014-08-26 0.9 230 31603
2014-08-26 0.1 208 1550
2015-07-18 0.0 188 631
2015-07-21 0.2 178 4459
2015-07-25 0.5 185 11772

250

2014-04-25 0.1 186 3199
2014-04-25 0.3 191 6112
2014-04-29 0.3 195 6363
2014-04-29 0.2 222 5955
2014-04-30 0.5 187 13632
2014-05-06 0.3 181 6760
2014-05-06 0.1 191 2206
2014-05-07 0.5 187 12127
2015-06-10 0.6 190 10584
2015-07-19 0.5 185 11531
2015-07-28 0.2 204 3833
2015-07-31 0.3 198 7179

353

2014-05-12 0.5 205 13180
2014-05-13 0.7 207 16325
2014-05-13 0.4 192 11362
2014-05-28 0.2 197 4468
2015-07-23 0.2 187 6501
2015-07-26 0.3 189 6357
2015-07-29 0.8 202 21944
2015-07-30 0.9 209 23604

2 250

2013-01-31 0.9 65 13605
2013-02-04 0.9 65 14473
2013-02-13 1.0 41 9037
2013-03-04 0.9 68 13663
2013-03-14 0.0 86 1151
2013-03-18 0.9 61 12401
2013-03-27 0.9 63 14331
2014-02-14 1.0 62 13365
2014-03-11 1.0 61 15012
2014-11-04 0.9 80 15287
2014-11-05 0.3 77 6136
2014-11-05 0.7 79 11910
2014-11-05 0.5 75 8458
2014-11-06 0.5 75 9262
2014-11-06 0.8 78 14732
2014-11-07 0.7 81 12904
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Table 2.3: Parameters used in the simulations

# fish; R (mm) lc (mm) γR (rad) γ0
R (rad) γW (rad)

1; 176 21 0.35 0.12 0.40
1; 250 30 0.35 0.14 0.12
1; 353 45 0.35 0.11 0.10
2; 250 30 0.45 0.15 0.15

Figure 2.7: A group of two fish from the study species Hemigrammus rhodostomus. Credits to
David Villa ScienceImage/CBI/CNRS, Toulouse, 2015.
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Figure 2.8: A Background image in greyscale extracted from a video file of an experiment with the
biggest tank (radius R = 353 mm). B Arena estimated from user-defined mask. The outer bold
circle of radius R is derived from the mask drawn by the user of the tracking software and defining
the area where tracking occurs. Inner dashed circle has arbitrary radius 0.85×R. C Estimated walls
of the tank. D Estimation of the radius along the circle. Red line stands for cubic spline smoothing
and extrapolation over 2000 angular points. The signal is repeated 3 times to improve estimation
on limits (at 0 and 2π). The second period is kept to compute wall distances. Estimation of local
polynomials is done on 30 equally spaced ranges over one period. Dashed line shows the average
radius. E Distribution of estimated radius in pixels. Red line stands for estimation of the average,
used as radius approximation to compute the ratio of pixel to millimetres (PixelsToMm ratio is
equal to 0.71 for this video). F Trajectory of a fish during 40 seconds (2000 points) reported inside
the estimated walls. Filled and empty circle respectively stand for start and end points.
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Chapter 3

A data-driven method to investigate
the integration of information in fish
schools
Valentin Lecheval, Hanno Hildenbrandt, Clément Sire, Guy Theraulaz and

Charlotte K. Hemelrijk

Abstract

Collective motion of animals in groups results from interactions among group-members and interactions of
group-members with their physical environment (e.g. obstacles, temperature and light gradients). Studying
these systems is challenging, in particular because of the difficulty to access how an individual perceives its
environment and how it combines and reacts to multiple sources of information in its reaction. Integration of
information has rarely been explored in previous studies. Current models of fish schools usually assume that
fish average their reactions with respect to each separate stimulus. We develop a data-driven method based on
the reconstruction of behavioural action maps derived from empirical data. These maps describe the reaction
of fish for each social or non-social stimulus. The rationale of this method is to test hypotheses regarding
the integration of stimuli from multiple sources without making assumptions regarding the interactions of
fish. We investigate a simple hypothesis in which fish react only to the strongest stimulus. We assume that
the strength of a stimulus is proportional to the angle a fish turns in reaction to it. Namely, the stronger a
stimulus, the more a fish would turn. We use this in our simulations to compute the assumed strength of
each possible stimulus on the basis of the turns performed by fish experiencing similar stimulus in empirical
data. We tested this method with empirical data in a ring-shaped tank with non-social (the walls of the
corridor) and social (in groups of 2 and 5 fish) stimuli. We find that the hypothesis that fish react only to
the strongest stimulus is not sufficient to reproduce the collective-level properties observed in experiments.
This suggests that fish react to more than one information source at each moment of decision. We discuss
further improvements of our method.

Contribution of authors

V.L., C.S., G.T., H.H., and C.K.H. designed research; V.L., H.H. and C.K.H. performed research and
developed the model; H.H. implemented model; V.L. analysed data; V.L., G.T. and C.K.H. wrote the paper.

3.1 Introduction

The study of complex phenomena such as collective motion in animal societies is a challenging field of
research. Recently, the combination of experimental and theoretical work has contributed to identify the
main questions that have to be tackled when investigating such a system. Modelling what individuals in a
moving group perceive (Lemasson et al., 2009, 2013; Rosenthal et al., 2015; Collignon et al., 2016), defining
a neighbourhood (Ballerini et al., 2008) and measuring the interactions between individuals (Katz et al.,
2011; Herbert-Read et al., 2011; Gautrais et al., 2012; Calovi et al., 2017) are crucial steps to fully connect
the individual behaviour to the collective patterns that emerge at a group-level. However, only a few studies
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Figure 3.1: Experimental set-up. The ring-shaped tank is built from two walls, an outer wall of
radius 35 cm and a conic inner wall with an average radius of 21 cm at the water level creating
a corridor of 14 cm width. Photograph shot by David Villa, ScienceImage CBI CNRS, Toulouse,
France.

explicitly address the question of the individual-level integration of information from multiple sources by
individuals in the context of collective motion. In most models of collective motion, it is commonly assumed
that, given the reactions to all the perceived information (usually pair-wise interactions with the neighbours
and the physical environment), an individual will react by taking the average of the reactions, possibly
weighted (e.g. by the distance to each neighbour) (Vicsek et al., 1995; Lopez et al., 2012). The validity
of this assumption is in general untested although it can be questioned. Averaging leads to the damping
of behaviours that might have been elicited by external perturbations (such as the attack of a predator)
and results in simulated groups being less reactive to perturbations than groups of real fish (Katz et al.,
2011). It has been suggested that fish would react considering the sum of the probability density functions
associated with each perceived stimulus weighted by their visual importance (Collignon et al., 2016). Despite
the novelty and elegance of this approach, this assumption regarding the integration of information has been
tested in combination with many other assumptions (a model of visual perception, the reaction to the wall,
...) and has thus not been properly tested in itself.

In this chapter, we aim to develop a method to test hypotheses about the integration of information by
fish in schools. We use experiments of schools of rummy-nose tetras (Hemigrammus rhodostomus) of several
sizes (1, 2 and 5) in a ring-shaped tank. We investigate first the burst-and-coast behaviour analysed in
the previous chapter and show that the interactions between individuals also depend on the control of their
speed, in agreement with previous studies (Katz et al., 2011). The empirical data are used to simulate new
trajectories of fish without assuming a mathematical equation for the interactions. First, from empirical data
we map the sensory inputs of fish to their motor actions (i.e. turning and speeding behaviours). Second,
we make hypotheses about the way the sensory inputs are considered and combined by the individuals and
we simulate trajectories accordingly by using the mapped motor actions. Thus, the model concerns only
the perceived information, an asynchronous, discrete decision-making process (validated in the previous
chapter for 1 and 2 fish) and the integration of information from multiple sources, i.e. social (from several
neighbours) and non-social (from the walls of the tank). In particular, we investigate what are the collective
patterns of schooling that emerge if, at each time of decision, fish only react to the strongest stimulus they
perceive. There are many examples in nature of animals choosing without compromise when facing opposite
information (Burgess et al., 2010), that contradicts the assumption of information integration being only
about averaging over all possible reactions. We investigate whether such a simple rule of selective attention
to information suffices to lead to a schooling state, where individuals remain close to each other and highly
aligned and react strongly to internal and external perturbations (see Part II of this manuscript).

3.2 Material and methods

3.2.1 Experimental procedures and data collection

70 rummy-nose tetras (Hemigrammus rhodostomus) were used in our experiments. Fish were purchased from
Amazonie Labège (http://www.amazonie.com) in Toulouse, France. They were kept in 150 L aquariums on
a 12:12 hour, dark:light photoperiod, at 27.5◦ C (±0.8◦ C) and were fed ad libitum with fish flakes. These
tropical freshwater fish swim in a highly synchronised and polarised manner. Inside an experimental tank,
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Table 3.1: Group size, number of trials, their total duration and average body length of individuals.

Group Size Number of trials Total duration Body length
(mm, mean ± se)

1 4 260 min 33.1 ± 1.8
2 10 652 min 33.3 ± 0.8
5 10 543 min 31.5 ± 0.3

a ring-shaped corridor 10 cm wide with a circular outer wall of radius 35 cm was filled with 7 cm of water of
controlled quality (50% of water purified by reverse osmosis and 50% of water treated by activated carbon)
heated at 27.6◦ C (±0.9◦ C) (Figure 3.1). The shape of the circular inner wall was conic and its radius at
the bottom was 25 cm. The conic shape was chosen to avoid the occlusion on videos of fish swimming too
close to the inner wall.

For each trial, n fish (n ∈ {1, 2, 5}) were randomly sampled from their breeding tank. Each fish only
participated per day in a single experiment. Fish were introduced in and acclimatised to the experimental
tank during a period of 10 minutes before the trial started. During each trial of one hour, individuals were
swimming freely without external perturbation. For each group size, we performed 10 replications (Table
3.1). Note that six experiments with a single fish have been discarded because of the inactivity of the
individuals. Trajectories of the fish were recorded by a Sony HandyCam HD camera filming from above the
set-up at 50Hz in HDTV resolution (1920×1080p).

3.2.2 Data extraction and pre-processing

We tracked the positions of each individual using idTracker 2.1 (Pérez-Escudero et al., 2014). Sometimes,
the tracking software lost certain individuals, for instance when two fish were swimming too close to each
other. All sequences that were missing a maximum of 50 consecutive positions were interpolated.

Time series of positions were converted from pixels to meters with the origin of the coordinate system
set to the centre of the ring-shaped tank. Body lengths and headings of fish were measured on each frame
using the first axis of a principal component analysis of the fish shape issued by idTracker. Details regarding
the detection of the walls, of the fish shape and the conversion to metric frame of reference are presented in
the first chapter. Table 3.1 summarises the data collected in our study.

3.2.3 Segmentation

Following our findings of Chapter 1, we assume that fish take decisions at the onset of the burst phase of
their burst-and-coast cycle. Thus trajectories are segmented with respect to the swimming speed of the
individuals with the same method as presented in the first chapter. In short, the segmentation detects
whether the fish is in its burst phase or not.

Our measures are thus taken at the onset of the burst. For instance, the distance between two neighbours
d is considered as the distance between the two neighbours when the focal fish starts its burst. For a fish
i, at position (xi, yi) at the onset of the burst, swimming in a tank of outer radius R with a neighbour j,
we measure its current heading ϕi, the angle turned δφ, its angle to the outer wall θw, its distance to the
outer wall rw, its distance to the neighbour d, the angular position of the neighbour ψ and the difference of
heading between the two fish ∆φ (Figure 3.2). As for the speed parameters, durations of the burst and coast
periods (respectively b and c), the acceleration during the burst a and the top speed reached at burst vmax

are measured. All these quantities constitute one data point for each burst-and-coast segment measured on
both experimental and simulated trajectories. Experimental data will be analysed to investigate further the
burst-and-coast behaviour of the rummy-nose tetra and to study the influence of social information on the
control of speed by the fish. They will also be used the check the consistency of the hypotheses about the
way information is integrated by fish

3.2.4 Computational model based on behavioural action maps

We develop a computational model that samples experimental data to model fish motion. We investigate the
role of integration of information from multiple sources, which may be social (the neighbours) or non-social
(the wall). The model is based on behavioural action maps that connect each sensory input (e.g. distance
and relative orientation to obstacles and neighbours) to a pattern of actions (angular and velocity change).
These behavioural action maps are based on experimental data. The rationale of this data-driven approach
of sampling experimental data is to avoid making any assumptions regarding fish interactions.
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Figure 3.2: Symbols for analysis of fish motion in experiments with 1 fish (A) and 2 fish (B). Fish i
has a position (xi, yi) at the onset of the burst. We measure its current heading ϕi, its angle to the
outer wall θw, its distance to the outer wall rw, its distance to neighbour d, the angular position of
the neighbour ψ and the difference of heading between the two fish ∆φ.

Algorithms and assumptions

Agents react only at the onset of each burst, meaning that they only use information available at this point of
time. We assume that all social information perceived can be decomposed into a sum of pair-wise interactions
with each neighbour (Katz et al., 2011; Gautrais et al., 2012; Lopez et al., 2012). We also assume that if a
larger angle δφ is turned in experimental data, the stimulus that elicited the reaction is greater and thus the
priority of this stimulus is higher.

When a focal agent enters the burst phase:

1. Its local environment is given by the number and location of its influential neighbours and by the
nearest point of all walls (in agreement with findings of Chapter 1);

2. It evaluates the priority of each stimulus (social and non-social);

3. It integrates the information according to the priority of each stimulus;

4. It reacts by controlling its actual velocity and orientation.

The following paragraphs describe each component of this algorithm.

1 – Local environment of a focal agent Regarding the wall, as the previous chapter showed, taking
only the closest point of the wall of a circular arena into account suffices to reproduce with simulations the
empirical effect of the wall. Thus, in the model we can treat the point of the walls that is the closest to the
focal fish as a potential stimulus. As for social interactions, the environment of the focal agent is discretised
into s = 8 sectors (Figure 3.3). In each sector, the nearest individual to the focal agent is considered to be
possibly influential.

2 – Evaluation of the priority of each stimulus For each potential stimulus, its priority is given
by assuming that it is positively correlated with the turning angle induced in a fish subject to a similar
environmental configuration in empirical data. Thus, we need a way to measure situations that are similar
in experiments. First, we doubled the size of the data by adding the symmetric data, as the trajectories had
also been recorded from the underside. Namely, we satisfy the symmetry condition

δφ(rw,−θw) = −δφ(rw, θw), (3.1)

for experiments with 1 fish and

δφ(rw,−θw, d,−ψ,−∆φ) = −δφ(rw, θw, d, ψ,∆φ), (3.2)
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Figure 3.3: Discretisation of the local environment of a focal fish into 8 sectors. The individuals in
the squares are labelled as influential because they are the nearest neighbours of the focal fish in
each sector.

Figure 3.4: Discretisation of the space Sw(|θw|, rw) used to sample reactions of a single fish in
response to the influence of the wall. Blue lines stand for the bin boundaries. Data points are grey
and transparent – the darker a bin, the more points it contains.
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Figure 3.5: Discretisation of the space Sn(d, ψ,∆φ) used to sample reactions of several fish in
response to the neighbours, from experiments with 2 fish in the circular tank and away from the
walls. Blue lines stand for the bin boundaries. A). Discretisation regarding distance to the closest
neighbour. B-D). Discretisation of (ψ,∆φ) for three different bins regarding distance to the closest
neighbour, as shown by the letters on (A). Data points are grey and transparent – the darker a
bin, the more points it contains.
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Figure 3.6: Decay of speed during coasting phases relative to top speed in experimental data (red
curve) and as modelled by a drag due to water frictions with exponential decay of parameter
D ≈ 0.71 (blue). The grey shade shows the bootstrapped 95% confidence interval.

for experiments with 2 fish. When the potential stimulus is a point of the walls, we use the data from
experiments with 1 fish and discretise the space Sw(θw, rw) in 12 × 6 = 72 bins (Figure 3.4). When the
potential stimulus is a neighbour, we use the data from experiments presented in the previous chapter with 2
fish swimming in the circular tank and away from the wall (65,156 data points before applying the symmetry
condition with rw > 2.5 BL). This is done to remove the influence of the wall from the social interactions.
We discretise the space Sn(d, ψ,∆φ) in 10 × 20 × 20 = 4000 bins (Figure 3.5).

The number and the size of the bins are set manually to obtain a good resolution (so that the simulation
can sample many different behaviours) while minimising the number of empty bins. Thus, binning is different
for each condition of distance between neighbours (see Figures 3.5B, C and D).

Given the potential stimuli, p turning angles are sampled from the experimental turning angles δφ found
in the bin that corresponds to each stimulus. The average of the p turning angles is the estimation of the
priority of each stimulus. This average can be weighted by the arbitrary parameters “Weight for turning
angle in response to the wall” and “Weight for turning angle in response to neighbours” to change the relative
influence of either the wall or neighbours (both are set to the same value by default).

3 – Integration of information Given the measured priority of each potential stimulus, the highest
one only is selected as the source that elicits a behavioural reaction in the focal agent.

4 – Behavioural reaction of the agent A behavioural reaction is a set of a turning angle δφ (rad),
an acceleration a (BL/s2), a duration of burst b (s) and a duration of coast c (s), randomly sampled from the
bin that corresponds to the selected stimulus. A parameter controls whether these 4 parameters of swimming
are correlated (i.e. taken from the same data point) or not (i.e. a different data point is sampled from the
same bin for each parameter). The position at the onset of the burst k (xk, yk) is updated as follows:

{

xk+1 = xk + lk cos(φk)

yk+1 = yk + lk sin(φk),
(3.3)

with φk = φk−1 +δφ, and lk = lb + lc. lb stands for the distance travelled during burst where acceleration
is assumed constant. Thus lb = 1

2
ab2 + vkb, where vk is the speed of the agent at the onset of the burst. lc

stands for the distance travelled during coast where only drag due to water frictions is applied (see Chapter 1
and Figure 3.6). Thus lc = vm(exp(−Dc)−1)/D, with vm the top speed of the burst phase vm = vk +ab and
D the drag coefficient. If there are no experimental data in the bin that corresponds to the configuration
of the focal agent and its selected stimulus, default values are chosen (i.e. default value for acceleration
strength, burst duration and coast duration and a null angle turned – see parameter values in Table 3.2).
The binning of Sw(θw, rw) and Sn(d, ψ,∆φ) is set to avoid empty bins.
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Figure 3.7: Parameters of the rejection algorithm (see section 3.2.4). The real radii of the outer
wall (Ro) and of the inner wall (Ri) are not used to delimit the walls. Because of the length L of
the front end of the fish to its barycentre used in simulations and of the conic shape of the inner
wall that interplays with the water level, an effective outer radius Roeff and inner radius Rieff are
fitted to define the tank boundaries used by the rejection algorithm.

Implementation

The computational model has been implemented in C++ by Hanno Hildenbrandt. All parameters used in
simulations are shown in Table 3.2. The geometry of the tank in simulations has been measured from the
experiments of a single fish (radius of the inner ring: Ri = 6.27 BL and outer ring: Ro = 10.40 BL).

To avoid collisions with the wall, we use the same rejection algorithm as discussed in the first chapter.
Namely, a set (xk+1, yk+1) will be resampled a certain number of times (see Table 3.2) as long as they fall
outside the corridor defined by two parameters Roeff and Rieff, respectively standing for “outer effective” and
“inner effective” (Figure 3.7).

By default, agents cannot see through the inner wall. Agents can perceive all around themselves, i.e.
they have no blind angle.

Parameters Rieff and Roeff are fitted by comparing the simulated distribution of the distance to the wall
to the experimental one (see Figure 3.13A).

Output of simulations

The output of simulations are the position and velocity of agents at the same frequency as the one in the
movies of experiments (50 Hz) so that it can be analysed with the same code as used for experimental data.
For each position, we save whether the agent was bursting or coasting at this time step. There is also a
second data set with the different quantities associated with each burst-and-coast period (namely with the
index of the focal burst-and-coast period, the distance of the agent to the wall, its angle to the wall, the
distance, angular position and difference of headings between neighbours as well as the chosen parameters
of swimming – turning angle, acceleration strength, burst duration and coast duration). Simulations are
visualised in real-time as a method to assess their quality (Figure 3.8).

Conditions tested in simulations

All simulations with 1 fish are run with the default parameters shown in Table 3.2. For simulations with 2
and 5 fish, we test the influence of the following parameters (values of parameters in italics):

• Correlated data points: this controls whether the sampled swimming parameters come from the same
data point (yes, default) or not (no).

• Weighted wall interaction: by default, the comparison of the priority of a stimulus from a neighbour
and the stimulus from the wall are equally weighted (parameters Weight for angular turn in response
to the wall and Weight for angular turn in response to neighbours are both set to 1) (value set to no).
Otherwise (yes), the parameter Weight for angular turn in response to the wall is set to 0.5 and in
response to neighbours is set to 1 (social stimuli are thus favoured).
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Table 3.2: Default parameters used in simulations.

Parameter Value Unit
Body length of individual 33.08 mm
Body width 6.02 mm
Radius inner wall Ri 6.44 BL
Radius outer wall Ro 10.69 BL
Effective inner radius Rieff 0.7 BL
Effective outer radius Roeff -0.15 BL
Drag coefficient D 0.71
Default coasting duration 0.50 s
Default acceleration at burst 4.00 BL / s2

Default burst duration 0.20 s
Default turning angle 0 rad
Number of sectors s 8
Correlated data points yes
Weight for turning angle in response to the wall 1
Weight for turning angle in response to neighbours 1
Simulation length 5.105 s
Frame rate 50 Hz
Number of samples for the rejection algorithm 10000
Number of samples p 100

Figure 3.8: Frame of the real-time visualisation of a simulation with two fish. For parameters, see
Table 3.2.
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Table 3.3: Combination of parameters for the five conditions tested for the simulations with 2 fish.
nocor (no correlation), reg (regular), wei (weighted wall interaction), inv (invisible

walls) and wei-inv (weighted wall interaction and invisible walls) are the labels of each
condition used in the text and the figures.

nocor reg wei inv wei-inv

Correlated data points no yes yes yes yes
Weighted wall interaction no no yes no yes
Invisible walls no no no yes yes

• Invisible walls: by default, the walls are opaque and fish cannot see through them (value set to no),
so they are not influenced by an agent at the opposite side of the tank. Otherwise (yes) the radius of
the inner wall Ri was set to 0 and Rieff = 7.14 (fish cannot go through the invisible wall).

Five different combinations with different values of these three parameters have been studied (Table
3.3) and labelled as nocor (no correlation), reg (regular), wei (weighted wall interaction), inv

(invisible walls) and wei-inv (weighted wall interaction and invisible walls). The regular

(reg) condition corresponds to all parameters set to their default values (Table 3.2): swimming parameters
are correlated, the respective weights for social and non-social stimuli are identical and agents cannot react
to stimuli occluded by walls. The no correlation (nocor) condition tests the effect of the correlation
between the sampled swimming parameters (Parameter Correlated data points set to no)). The weighted

wall interaction (wei) condition aims to decrease the influence of the wall (with respect to social stimuli)
by dividing the strength of wall stimuli by 2. In the invisible walls (inv) condition, the agents are
not occluded by the inner wall to their neighbours anymore. The condition aims to test whether real
fish remember the presence of occluded fish or not. The last condition, weighted wall interaction and

invisible walls (wei-inv), is with diminished influence of the wall and invisible walls.

3.3 Results

3.3.1 Experimental results

The distributions of the duration of the bursting and coasting periods have the same mode (≈ 0.2 s) and
both are positively skewed yet the tail of the distribution of coast durations is longer and heavier, meaning
that the durations of the coasting are on average longer than of the bursting (Figures 3.9A and B). The
acceleration of fish during the bursting period has a large variance: all accelerations between 0.5 BL/s2 and
12 BL/s2 are common (Figures 3.9C). As found in the previous chapter, fish tend to turn away from the
outer wall (Figures 3.9D).

As to the results regarding control of the speed by fish depending on their location to the wall, for fish
swimming alone, we find no effect of the distance to the wall on the average duration of bursts (Figure
3.10A) while it seems that fish tend to burst for a longer time when facing the walls (Figure 3.10B). On
average, the coast duration is longer when the fish are away by approx. more than 1 BL from the walls and
swimming aligned with the walls (Figures 3.10C and D). Acceleration seems weaker when fish are close to
the walls and facing them (Figures 3.10E and F).

As for the effect of the neighbour, fish adjust the duration of the coast depending on the angle and
distance to their neighbour, with a relatively complex interaction between these two variables (Figures
3.11A-B and 3.12A). Fish coast for a longer period of time when their neighbour is at their side, at distances
between 1 and 2 BL, than any other distance. Regarding acceleration, fish accelerate stronger when the
neighbour is in front of them, at large distances (greater than 2 BL) (Figures 3.11C-D and 3.12B). The
combination of these bursting and coasting behaviours result in a clear pattern of top speed where bursting
fish are faster when their neighbour is in front or behind them (Figures 3.11E-F and 3.12C).

In the previous chapter, speed was not a behavioural component of the interactions between individuals
– only an effect on turning angle has been modelled and the speed parameters were sampled randomly
from the experimental distributions. The results we show in the current section suggest that fish may also
control their speed in reaction to the spatial location of their neighbour. This supports our choice to develop
the computational model presented in the previous section, where the assumptions regarding interactions
between individuals are minimal: the model shown in the previous chapter might suffer from the absence
of key elements in the interactions between individuals (especially regarding control of speed) that would
prevent an accurate investigation of the integration of various stimuli in groups of more than 2 fish.
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Figure 3.9: Distributions of the burst duration (A), coast duration (B), acceleration at burst (C)
and absolute value of the turning angles (D) of 1 fish/agent in empirical data (bars) and simulations
(red curve).
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Figure 3.10: Effect of the individual’s position to the outer wall on the average bursting duration
(A and B), on the average coasting duration (C and D) and on the average acceleration of fish (E
and F) in experiments with 1 fish (page 48). Left figures show effect of the distance to the outer
wall, right figures the effect of the absolute value of the angle to the outer wall θw (0: facing the
outer wall, π: facing the inner wall). Red vertical lines stand for ± standard error.

A

0 1 2 3 4

0
.3

0
0
.3

2
0
.3

4
0
.3

6

Nearest neighbour distance (BL)

C
o
a
s
t 
d
u
ra

ti
o
n
 (

s
)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

B

−3 −2 −1 0 1 2 3

0
.3

3
0
.3

4
0
.3

5
0
.3

6
0
.3

7

Angular position of the neighbour (rad)

C
o
a
s
t 
d
u
ra

ti
o
n
 (

s
)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

C

0 1 2 3 4

5
6

7
8

9
1
0

1
1

Nearest neighbour distance (BL)

A
c
c
e
le

ra
ti
o
n
 a

t 
b
u
rs

t 
(B

L
 /
 s

2
)

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

● ●

●
●

D

−3 −2 −1 0 1 2 3

6
7

8
9

1
0

Angular position of the neighbour (rad)

A
c
c
e
le

ra
ti
o
n
 a

t 
b
u
rs

t 
(B

L
 /
 s

2
)

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

E

0 1 2 3 4

4
5

6
7

8

Nearest neighbour distance (BL)

T
o
p
 s

p
e
e
d
 a

t 
b
u
rs

t 
(B

L
 /
 s

)

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

F

−3 −2 −1 0 1 2 3

3
.5

4
.0

4
.5

5
.0

5
.5

6
.0

Angular position of the neighbour (rad)

T
o
p
 s

p
e
e
d
 a

t 
b
u
rs

t 
(B

L
 /
 s

)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

49



Figure 3.11: Effect of the angular position of the neighbour on the average coasting duration (A
and B), the average acceleration of fish (C and D) and the average top speed at burst (E and F) in
groups of 2 fish (page 49). Left figures show effect of the distance from the neighbour, right figures
the effect of the angular position of the neighbour ψ (0: in front of the focal fish, {−π;π}: behind
the focal fish). Red segments stand for ± standard error.
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Figure 3.12: Effect of the relative position of the neighbour on the coasting duration (A), the
acceleration of fish (B) and top speed at burst (C) in groups of 2 fish. White areas stand for
absence of data or cells with less than 25 data points.
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Figure 3.13: Distributions of the (A) distance to the outer wall, (B) absolute value of the angle to
the outer wall and (C) speed of 1 fish/agent in experiments (bars) and simulations (red curve).

3.3.2 Simulation results vs experimental data

The distributions of the quantities used as input for the model are reproduced by the simulations with 1
fish (Figures 3.9A-D). Thus the model samples the behaviours that are of importance, which would not be
the case if it was sampling a small number of different bins of the input maps during simulations. As for
the emergent quantities, the model fairly reproduces the main features of the experimental data (Figures
3.13A-C). Namely, agents are closer to the outer wall than to the inner one, aligned with the walls, and
they swim at an average speed of approximately 5 BL. Nevertheless, we note a significant deviation from the
experimental distributions, in particular for the distance and angle to the outer wall. Agents in simulations
are rarely very slow (speed less than 1 BL) because data points of fish that were not moving have been
removed during the segmentation procedure used for the input of the model. We note an important effect
of the binning used for the data input of the model on the quantitative adjustment to experimental data.
In particular, when there are too many bins, many of them are empty and the default behaviour (see Table
3.2) is over-represented.

For simulations with at least 2 fish, we measure, at each new burst, whether the selected stimulus was
social (a neighbour) or not (the wall). The results for the five conditions of simulations detailed in Table 3.3
are shown in Figure 3.14A. The no correlation (wei) and regular (reg) conditions give similar results,
with the wall being selected in 20% of all decisions and the neighbour in 80% of all decisions. The other
conditions decrease the frequency of the wall being the selected stimulus, with a minimum reached for the
condition weighted wall interaction and invisible walls (wei-inv) (4.2%). These results are not
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simulations with 2 fish in the weighted wall interaction (wei) condition.
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Figure 3.16: Distributions of the (A) distance to the outer wall, (B) absolute value of the angle to
the outer wall, (C) speed of the group and (D) polarisation of the group measured on all frames in
experiments (bars) and simulations (curves) with 2 fish.
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surprising since the weighted wall interaction (wei) condition disadvantages the selection of the wall as
a stimulus while the invisible walls (inv) condition favours social interactions since the neighbour of the
focal agent is never occluded by the inner ring. We find that the non-social stimuli are mostly chosen when
the agent is at very short distances (less than 0.33 BL) from the outer wall (Figure 3.15).

The quantitative adjustment between simulation results and experimental data are shown in Figures
3.14B, C and D for the quantities measured at the onset of the burst and in Figures 3.16A-D for the
quantities measured on all frames. Overall, the model fits fairly well the monotonicity and the modes of
all distributions but with quantitative differences. Agents in simulations stay at short distances from each
other, although there are cases where the group splits (for distances to neighbour greater than 6 BL) that do
not occur in experimental results (Figure 3.14B). In experiments, the neighbour of the focal fish is mainly
found in front or behind it and not at its side (Figure 3.14C). In simulations, agents are too often found
at the side of the focal agent (|ψ| ≈ π/2) and not enough in front (|ψ| ≈ 0). In experiments, fish are
mainly found swimming in the same direction, with ∆φ ≈ 0 (Figure 3.14D), leading to a highly polarised
group (Figure 3.16D). Strong polarisation is absent in simulations (Figure 3.16D) although there is a slight
tendency of agents to swim in the same direction as their neighbour (Figure 3.14D). This leads to two modes
for the distribution of the polarisation (either well polarised when agents swim in the same direction or not
polarised when they swim in opposite directions) (Figure 3.16D).

As for the location of fish or agents in the ring-shaped tank, both swim closer to the outer wall than
to the inner one (Figure 3.16A) and parallel to the walls (Figure 3.16B). Agents are slower than real fish
(Figure 3.16C).

The resemblance to empirical data is worse for groups of five fish or agents compared to previous group
sizes (Figures 3.17 and 3.19). Namely, in simulations, the nearest neighbour is too often far away from the
focal agent, when very close in experiments (Figure 3.17B), and there is not preference for frontal neighbours,
in contrast to experiments (Figure 3.17C). There is no preference to be aligned with the nearest neighbour
in simulations, in contrast to experiments (Figure 3.17D), resulting in a poor agreement of the distribution
of the group polarisation – simulated groups are not as well polarised as the groups in experiments (Figure
3.19D). We find that the distribution of the turning angles by the agents does not fit the experimental
distribution, especially for groups of 5 (Figure 3.18). Namely, with our assumption that fish would only
react to the strongest stimulus, we find that agents make larger turns than fish in experiments, with a mode
for values close to π (i.e. U-turns).

As for the location to the wall, agents are too close to the outer wall (Figure 3.19A) and not aligned
enough with the walls (Figure 3.19B). They are slower than empirical groups (Figure 3.19C), with a dis-
tribution that is very close to the distributions with 2 agents or fish (Figure 3.17C) when groups of 5 fish
in experiments are faster than groups of 2 fish. In short, the model fails to reproduce the features for real
groups of 5 fish.

3.4 Discussion

Understanding what individuals perceive and how they combine this information to react are crucial questions
to connect the individual behaviour to the collective behaviour in moving groups of animals. In this paper,
we present a new method to investigate the integration of stimuli in fish from experimental trajectories
and stochastic simulations. This method samples experimental data points after segmenting the trajectories
in burst-and-coast. The quantitative reactions of agents to stimuli are thus not assumed (i.e. we did not
measure interaction functions as we did in the previous chapter). However, we assumed that fish choose
their orientation at the onset of the burst period and that only water frictions affect fish velocity during
the coast periods, in agreement with the previous chapter. In addition to these assumptions, we show from
experiments that individuals control their speed in response to social and non-social information by adjusting
3 parameters: the duration of the burst and coast periods and the strength of the acceleration during the
bursts. We use these findings in our simulations, where agents control their orientation as well as their speed.

We find that our method, with these new assumptions regarding the burst-and-coast behaviour of fish,
succeeds to reproduce emergent quantities in experiments with 1 and 2 fish. The mechanisms assumed
(namely that fish control the duration of the burst and coast phases and the strength of their acceleration)
are thus compatible with empirical data, which helps to understand how fish control their speed in response to
a changing environment, completing the findings of the previous chapter. We predict that these mechanisms
should, at least to some extent, be similar among species with a burst-and-coast swimming behaviour, such
as the zebrafish (Danio rerio) (Harpaz et al., 2017).

Although the trajectories simulated with our method are in a fairly good agreement with empirical data
for 1 and 2 fish, we note that there is still some deviation with the experimental results (i.e. the fit could be
better, even for simulations with 1 fish). Improving the binning of the sampled spaces might help to improve
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Figure 3.17: A). Relative frequency of the selected stimulus for each condition of simulation (see
Table 3.3). Distributions of the (B) distance to the nearest neighbour, (C) angular position of the
nearest neighbour ψ and (D) difference in heading between focal fish and nearest neighbour ∆φ
measured at the onset of bursts in experiments (bars) and simulations (curves) with 5 fish.
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simulations (curves) for groups of 2 (A) and 5 fish (B).

our results. Future research is required to find an efficient algorithm to make bins in 2 and 3-dimensional
spaces with respect to the density of experimental points – as we tried here by using quantiles.

In this paper, we test the hypothesis that fish only react to the strongest stimulus among all the possible
stimuli in their environment. Stimuli can be non-social (the walls of the ring-shaped tank) or social (the
neighbours of the focal fish). Our method simulates trajectories that qualitatively resemble empirical data
for individual fish and groups of 2, it suggests that all the key features of a swimming fish are covered.
However, we note that in groups of 2 agents, the neighbour of the focal agent was much less often in front of
it than in empirical data. In other words, the focal agent often selected social stimuli when their neighbour
was behind them. This is even worse in groups of 5 agents. This questions our procedure of selection of
the strongest stimulus. In future work we will try to adjust the weight of the potential stimuli by their
relative position to the focal agent, in order to favour frontal stimuli, especially when they are social. In our
simulations, agents perform more large turns than real fish. These U-turns might be performed in empirical
data in response to a fish located behind. Thus, in addition to select more often a frontal neighbour (in
agreement with empirical data), weighting the stimuli by their relative position to the focal agent may also
help to decrease the too high number of large turning angles seen in simulations.

We note that groups of 2 and 5 agents are slower than real fish. This is explained by two distinct points.
Firstly, we have used empirical data from experiments conducted in a circular tank and, in this tank, fish
were slower than in the ring-shaped tank. This issue also concerns the turning angle, whose distribution
may differ from empirical data in the ring-shaped tank. Secondly, in empirical data, we observe a greater
swimming speed in groups of 5 fish than in pairs of fish, which is not reproduced by our simulations. Thus,
our results suggest that both the ring-shaped tank and the number of individuals in the group affect the
swimming speed in a way that is not grasped by our model. In other words, the shape of the tank and the
number of group-members may change the stimulation level of fish. Thus, using data from experiments with
2 fish to simulate trajectories with 5 might not be possible using this method.

All the sets of parameters tested gave similar results. This suggests that our results are not sensitive to
parameters. In particular, it is worth to note that the “inv” condition, where the inner wall is invisible, does
not improve the results. It implies that the occlusion of the neighbour by the inner wall does not decrease
the quality of the simulated trajectories. It suggests that fish do not need to remember that they are not
alone in the tank when their neighbour is occluded. Namely, we do not find evidence for a memory effect
regarding the presence of a neighbour in the experiment.

Our simulations with 5 agents do not resemble empirical trajectories. Several explanations that are non-
exclusive are possible. The assumption that fish would react only to the strongest stimulus does not seem
satisfactory for groups larger than two fish, that is when fish need to react to more than one neighbour. We
stress that Hemigrammus rhodostomus is a fish that makes very polarised groups, with all fish swimming in
the same direction. Reacting only to one neighbour at each burst is not sufficient to make a cohesive group
that swims in one direction because (i) agents react to only one neighbour at a time and (ii) they always
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pick the strongest stimulus and this seems to bias the turns sampled, that are on average larger than the
experimental ones. Other hypotheses regarding the integration of stimuli may perform better, in particular
if taking into account more than 1 fish at a time, such as a reaction averaged over the perceived neighbours.
Nevertheless, our hypothesis might be relevant for other gregarious species that do not school, such as the
zebrafish. In our simulations, we find that agents are in a shoaling state, that is reacting to their neighbour,
mainly swimming at short distances from neighbours but not aligned in their heading to neighbours. These
results shed light on the importance of the assumptions chosen to model how fish integrate stimuli: given
the same interaction functions, different assumptions regarding the integration of stimuli lead to different
collective states (shoaling or schooling).
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Part II

How does information propagate in
groups of fish in response to

perturbations?
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Chapter 4

Domino-like propagation of collective
U-turns in fish schools
Valentin Lecheval, Li Jiang, Pierre Tichit, Clément Sire, Charlotte K.

Hemelrijk and Guy Theraulaz

Article published in Lecheval, V et al. 2018. “Social Conformity and Propagation of Information in Collective
U-Turns of Fish Schools” Proceedings of the Royal Society of London B: Biological Sciences 285 (1877).
https://doi.org/10.1098/rspb.2018.0251.

Abstract

Moving animal groups such as schools of fish or flocks of birds often undergo sudden collective changes of their
travelling direction as a consequence of stochastic fluctuations in heading of the individuals. However, the
mechanisms by which these behavioural fluctuations arise at the individual level and propagate within a group
are still unclear. In the present study, we combine an experimental and theoretical approach to investigate
spontaneous collective U-turns in groups of rummy-nose tetra (Hemigrammus rhodostomus) swimming in
a ring-shaped tank. U-turns imply that fish switch their heading between the clockwise and anticlockwise
direction. We reconstruct trajectories of individuals moving alone and in groups of different sizes. We show
that the group decreases its swimming speed before a collective U-turn. This is in agreement with previous
theoretical predictions showing that speed decrease facilitates an amplification of fluctuations in heading in
the group, which can trigger U-turns. These collective U-turns are mostly initiated by individuals at the
front of the group. Once an individual has initiated a U-turn, the new direction propagates through the
group from front to back without amplification or dampening, resembling the dynamics of falling dominoes.
The mean time between collective U-turns sharply increases as the size of the group increases. We develop
an Ising spin model integrating anisotropic and asymmetrical interactions between fish and their tendency to
follow the majority of their neighbours nonlinearly (social conformity). The model quantitatively reproduces
key features of the dynamics and the frequency of collective U-turns observed in experiments.

Contribution of authors

C.K.H. and G.T. conceived and designed the study; V.L. and P.T. performed experiments; V.L. and C.S.
developed the model; V.L., L.J., C.S. and P.T. analysed data; V.L., C.K.H., C.S. and G.T. wrote the paper.

4.1 Introduction

The flexible coordination of fish in schools brings important benefits (Radakov, 1973; Pitcher and Magurran,
1983; Krause and Ruxton, 2002). A striking consequence of this flexibility is the performance of rapid and
coherent changes in direction of travel of schools, for instance as a reaction to a predator in the neighbour-
hood (Pitcher and Wyche, 1983; Pitcher and Parrish, 1993). In many species, it is only a small number of
individuals that detects the danger and changes direction and speed, initiating an escape wave that propa-
gates across the entire school (Gerlotto et al., 2006; Herbert-Read et al., 2015). Besides, sudden collective
changes of the state of a school may also happen without external cause as a consequence of stochastic
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effects (Tunstrøm et al., 2013). In these cases, local behavioural changes of a single individual can lead to
large transitions between collective states of the school, such as between the schooling and milling states.
Determining under what conditions fluctuations in individual behaviour, for instance in heading direction,
emerge and propagate within a group is a key to understanding transitions between collective states in fish
schools and in animal groups in general.

Only few theoretical and experimental studies have addressed these questions (Kolpas et al., 2007;
Calovi et al., 2015). Calovi et al. (Calovi et al., 2015) used a data-driven model incorporating fluctuations
of individual behaviour and attraction and alignment interactions among fish to investigate the response of
a school to local perturbations (i.e. by an individual whose attraction and alignment behaviour differs from
that of the rest of the group). They found that the responsiveness of a school is maximum near the transition
region between the milling and schooling states, where the fluctuations of the polarisation are also maximal.
This is entirely consistent with what happens in inert physical systems near a continuous phase transition.
For instance, in magnetic systems, the polarisation of the atomic spins of a magnet near the transition point
has diverging fluctuations and response to a perturbation by a magnetic field. The fluctuations of school
polarisation are also expected to be strongly amplified at the transition from schooling to swarming observed
when the swimming speed of individuals decreases (Gautrais et al., 2012; Calovi et al., 2014). During such
a transition, the behavioural changes of a single individual are more likely to affect the collective dynamics
of the school. However, the tendency of fish to conform to the speed and direction of motion of the group
can also decrease the fluctuations at the level of the group with increasing group size (Herbert-Read et al.,
2012). Social conformity refers to the nonlinear response of individuals to adjust their behaviour to that of
the majority (Latane, 1981; Efferson et al., 2008; Morgan and Laland, 2012).

In the present work, we analyse in groups of different size under which conditions individual U-turns
occur, propagate through the group, and lead to collective U-turns. We let groups of rummy-nose tetra
(Hemigrammus rhodostomus) swim freely in a ring-shaped tank. In this set-up, fish schools can only head
in two directions, clockwise or anticlockwise, and they regularly switch from one to the other. In a detailed
analysis of empirical data, we reconstruct individual trajectories of fish and investigate the effect of group
size on both the tendency of individuals to initiate U-turns and the collective dynamics of the U-turns. We
develop an Ising-type spin model, a simple model for magnets in the physical context, to investigate the
consequences on the dynamics and the propagation of information during U-turns, of the local conformity in
heading, of the fish anisotropic perception of their environment, and of the asymmetric interactions between
fish. We use tools and quantitative indicators from statistical physics to analyse the model. In particular,
we introduce the notion of local (respectively, global/total) pseudo-energy which, in the context of a fish
school, becomes a quantitative measure of the “discomfort” of an individual (respectively, of the group) with
respect to the swimming direction of the other fish.

4.2 Material and Methods

4.2.1 Experimental procedures and data collection

70 rummy-nose tetras (Hemigrammus rhodostomus) were used in our experiments. This tropical freshwater
species swims in a highly synchronised and polarised manner. Inside an experimental tank, a ring-shaped
corridor 10 cm wide with a circular outer wall of radius 35 cm was filled with 7 cm of water of controlled
quality (Supplementary Information (SI), Figure 4.5A). For each trial, n fish were randomly sampled from
their breeding tank (n ∈ {1, 2, 4, 5, 8, 10, 20}). Each fish only participated in a single experiment per day.
For each group size, we performed between 9 and 14 replications (see SI, Table 4.1). Trajectories of the fish
were recorded by a Sony HandyCam HD camera filming from above the set-up at 50Hz in HDTV resolution
(1920×1080p). Finally, we tracked the positions of each individual using idTracker 2.1 (Pérez-Escudero et al.,
2014), except for groups of 20 fish. Details about experimental set-up, data extraction, and pre-processing
are given in SI.

4.2.2 Detection and quantification of individual and collective U-turns

Since fish swim in a horizontal ring-shaped tank, their heading can be converted into a binary value: clockwise
or anticlockwise. Before a collective U-turn, the fish are all moving in the same direction, clockwise or
anticlockwise. When one fish changes its heading to the opposite direction, it can trigger a collective U-turn.

From the heading angle ϕi(t) and angular position θi(t) of an individual i at time t (SI, Figure 4.6), the
angle of the fish relative to the wall is computed as

θwi(t) = ϕi(t) − θi(t), (4.1)
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Figure 4.1: Individual trajectories (A) and degree of alignment ai(t) of fish with the wall (B) during
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Figure 4.2: Average time between two consecutive collective U-turns as a function of group size.
Average time between collective U-turns ρl

n in each experiment l with n fish defined as the duration
of an experiment T l

n divided by the number of collective U-turns performed during this experiment
(grey dots). Experiments without any collective U-turn are indicated by grey triangles, with
ρl

n = T l
n/1. Average of the log of the time between collective U-turns over all experiments (λn =

exp(〈log ρl
n〉); black dots) and over 1000 simulations (λ′

n; J = 1.23 and ǫ = 0.31; red dots).
Prediction of the Arrhenius law (open blue circles). Inset: results of the model without asymmetric
influence (J = 1.23 and ǫ = 0).

and thus the degree of alignment to the circular wall can be defined as

ai(t) = sin(θwi(t)). (4.2)

The degree of alignment ai(t) between a fish i and the outer wall is 1 when it is moving anticlockwise, −1
when moving clockwise and 0 when it is perpendicular to the wall. When a group of fish makes a collective
U-turn, the degree of alignment to the wall averaged over all individuals of the group ā(t) changes sign. We
used this as the criterion for detecting collective U-turns automatically from the smoothed time-series of ā(t)
using a centred moving average over 9 consecutive frames. Figure 4.1A shows individual trajectories during
a typical collective U-turn in a group of 4 fish and Figure 4.1B reports the corresponding evolution of the
degrees of alignment ai(t). Further details about U-turns detection and the calculation of the quantities of
interest are detailed in SI, Methods.
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Figure 4.3: Spatiotemporal propagation of collective U-turns. A) Spatial position distribution of
the initiator in groups of 5 fish in experiments (black) and in simulations with asymmetric influence
(J = 1.23 and ǫ = 0.31; red) and without asymmetric influence (J = 1.23 and ǫ = 0; grey). Spatial
positions go from 1 (position at the front) to 5 (position at rear). The dashed line shows the
uniform distribution 1/5 = 0.2, when spatial position has no effect on the initiation of collective
U-turns. B) Average relative positions (± sd) of all individuals at initiation of collective U-turns,
ranked by order of turning (i.e. rank 1 is initiator) in groups of 5. Positions have been corrected so
that all groups move in the same direction, with the outer wall at their right hand-side. The origin
of the coordinate system is set to the centroid of the average positions of individuals. Average time
interval since the beginning of a collective U-turn as a function of turning rank and group size in
experiments (C and D) and in simulations (E). In D, the time is scaled by the factor rn = sn/s2,
where sn is the average speed of groups of size n, revealing a behaviour almost independent of n.
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4.3 Results

4.3.1 Spatiotemporal dynamics of collective U-turn

Hemigrammus rhodostomus fish form highly cohesive schools during our experiments (SI, Figure 4.7A) and
adjust their speed and heading to that of their group members. In a former study (Calovi et al., 2017),
we have shown that this is achieved through attraction and alignment interactions that have been precisely
measured. Figure 4.2 indicates that the average time interval between two U-turns in groups of 10 fish (one
U-turn every 20 min) is two orders of magnitude larger than in groups of 2 fish (one U-turn every 0.2 min).
In experiments in which no collective U-turn was observed (grey triangles on Figure 4.2), we took the total
period of observation as the interval until the next U-turn. Therefore, the average time λn between U-turns
measured in groups of 4, 8, 10, and 20 fish are slightly underestimated. Thus, as group size increases, the
number of collective U-turns decreases, because the propensities of a fish to initiate and propagate a U-turn
decrease (SI, Figure 4.8). Like in many other species, individual fish tend to adopt the behaviour of the
majority of the group members and thus inhibit the initiation of U-turns (Herbert-Read et al., 2012).

As shown in Figure 4.1C, the dynamics of collective U-turns, and in particular the evolution of the mean
alignment ā(t), is similar for all group sizes, once time is rescaled by the mean U-turn duration (see SI for
the method used to compute the scaling parameter tn, which is an effective measure of the U-turn duration).
In SI, Figure 4.9 shows that tn increases approximately linearly with group size n. In groups of all sizes, fish
progressively decrease their speed before turning collectively and accelerating sharply (Figure 4.1D). The
duration of this deceleration (and then acceleration) phase is much longer than the time for the group to
complete a U-turn (compare Figure 4.1C and Figure 4.1D). Moreover, the speed minimum of the group in
Figure 4.1D is reached near the midpoint of the U-turn, when t = 0 and the mean alignment is ā = 0 in
Figure 4.1C.

Our results show that the propagation of information is on average sequential, both in space and time.
This resembles a chain of falling dominoes, for which the time interval between successive falls is constant,
without any positive feedback.

Collective U-turns are usually initiated at the front of the school and the change of swimming direction
propagates towards the rear (Figures 4.3A and B and SI, Figures 4.10 and 4.11) and Table 4.2 for statistical
tests). Note that Figure 4.3B does not show the actual shape of groups but only the average and relative
positions of fish. In particular, the x-coordinates are not perfectly centred on 0 (the centroid of the average
positions) for all turning ranks because the foremost fish tends to swim significantly closer to the outer wall
than the fish swimming at the rear, in line with previous results in groups of two fish in the same species
(Calovi et al., 2017) (SI, Table 4.3 for statistical tests). At the time of the turn of each individual, fish
almost turn at the same location as the previous ranks, respectively to the y-coordinates (SI, Figure 4.12
and Tables 4.4 and 4.5).

Although the time interval between the turning of the first and the second fish is longer than it is for
others, the time interval between the successive turns of individuals is almost constant in a given group
size (Figure 4.3C). This can be derived from the fact that the time since the initiation of the collective
U-turn increases linearly with the turning rank. The linear propagation of information in all group sizes
suggests that there is no amplification of the individual tendency to perform a U-turn: the time between two
successive individuals performing U-turns does not decrease with the number of fish that already performed
a U-turn. This suggests that individuals only pay attention to a small number of neighbours at a given time
as was shown in (Jiang et al., 2017, see Appendix B).

The mean time interval between two successive individual U-turns decreases with group size (see Figure
4.3C where the slopes decrease with n, or SI, Figure 4.13). However, when these time intervals are multiplied
by a factor rn proportional to the average speed sn of groups of size n (rn = sn/s2), they collapse on the
same curve (Figure 4.3D). This suggests that the shorter reaction time of fish in larger groups is mostly due
to their faster swimming speed. Larger groups swim faster (SI, Figure 4.7B), presumably because fish are
interacting with a greater number of neighbours and are closer to each other (SI, Figure 4.7C). Indeed, fish
have to avoid collisions with obstacles and other fish and the faster they swim, the shorter their reaction
time, a well-known psycho-physiological principle (Smeets and Brenner, 1994).

In summary, our results show that U-turns are mostly initiated by fish located at the front of the school.
U-turns are preceded by a decrease in the speed of the group. Once the U-turn has been initiated, the wave
of turning propagates in a sequential way, suggesting that fish mainly copy the behaviour of a small number
of individuals.
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4.4 Modelling collective U-turns

4.4.1 Model description

We now introduce an Ising-type spin model (Castellano et al., 2009; Brendel et al., 2003) to better understand
the impact of social conformity, anisotropy and asymmetry of interactions, and group size on the propagation
of information during U-turns. Each agent i has a direction of motion di ∈ {−1, 1} with di = −1 representing
swimming clockwise and di = 1 swimming anticlockwise. A U-turn performed by an agent i corresponds to a
transition from di to −di. In the model, the relative positions of individuals and the interaction network (i.e.
the influential neighbours ηi of an agent i) are kept fixed in time (SI, Figure 4.14). Agents are positioned
in staggered rows (SI, Figure 4.7D for experimental data supporting an oblong shape that becomes longer
when the group size increases, as previously found by others, e.g. (Hemelrijk et al., 2010)) and only interact
with their direct neighbours. The strength of interactions between an agent i and its neighbour j is weighted
by a parameter αij that depends on the spatial position of j relatively to i. αij controls the anisotropy and
asymmetry of the interactions between individuals, assuming that fish react stronger to frontal stimuli, in
agreement with previous experimental results on H. rhodostomus (Calovi et al., 2017). We define αij = 1+ ǫ
when agent j is in front of agent i, αij = 1 if j is at the side of i, and αij = 1 − ǫ if j is behind i, where the
asymmetry coefficient ǫ ∈ [0, 1] is kept constant for all group sizes.

The propensity of an individual i to make a U-turn depends on the state of its neighbours ηi and on the
interaction matrix αij . The “discomfort” Ei of an agent i in a state di is given by

Ei = −di

∑

j∈ηi

Jijdj , Jij = αijJ, (4.3)

with Jij the coupling constant between two neighbours i and j, set by the two positive parameters of the
model, ǫ and J > 0. When the anisotropy of perception and asymmetry of interactions are ignored (ǫ = 0),
αij = 1 for all neighbouring pairs (i, j). Ei is minimal (and negative) when the focal fish i and its neighbours
point in the same direction, and maximal (and positive) if the focal fish i points in the opposite direction
of its aligned neighbours. A small value of |Ei| corresponds to its neighbours pointing in directions nearly
averaging to zero.

If an individual flips (d′
i = −di), the new discomfort is E′

i = di

∑

j={ηi}

Jijdj , and we have

∆Ei = E′
i − Ei,= 2Jdi

∑

j∈ηi

αijdj . (4.4)

∆Ei < 0 when an agent flips to the most common state of its neighbours, whereas ∆Ei > 0 when it flips to
the state opposite to this most common state. In this ǫ = 0 case,

E =
1

2

n
∑

i=1

Ei (4.5)

corresponds to the total actual energy of the magnetic system. In this context, the fully polarised state where
all fish are aligned corresponds to the so-called ground-state energy, the lowest possible energy of the system.
For ǫ 6= 0, the asymmetry between the perception of i by j and that of j by i breaks this interpretation in
terms of energy (Calovi et al., 2017). Yet, for ǫ > 0, it is still useful to define E as a pseudo-energy, as will
be discussed later, since it remains a good indicator of the collective discomfort of the group, i.e. the lack of
heading alignment within the group.

The dynamics of the model is investigated using Monte Carlo numerical simulations inspired from the
Glauber dynamics (Glauber, 1963). Within this algorithm, at each time step tk+1 = tk + 1/n (n is the
number of agents), an agent is drawn randomly and turns (update di to d′

i = −di) with the acceptance
probability

P =
1

2
− 1

2
tanh

(

∆Ei

2T

)

, (4.6)

which is a sigmoid, going from P → 1 for ∆Ei → −∞ (maximal acceptance if the discomfort decreases
sharply), to P → 0 for ∆Ei → +∞ (no direction switch if the discomfort would increase dramatically). In
equation 4.6, T plays the role of the temperature and we chose T = 1. Indeed, since ∆Ei is proportional to
J , the probability P only depends on the parameter J ′ = J/T , and T can then be absorbed in the constant
J .

The acceptance probability P represents the social conformity in our model and its strength (i.e. the
nonlinearity of P ) is mainly controlled by the parameter J (SI, Figure 4.15B). For large J > 0, this dynamics
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Figure 4.4: Mean swimming direction d̄ averaged over all collective U-turns as a function of scaled
time t/t̄n and t/t̄′n for all group sizes in (A) experiments and (B) model. tn and t̄′n are obtained by
data scaling (see SI, Methods). The shadows stand for the standard error. In contrast to Figure
4.1, t = 0 is set to the time (tE − tS)/2 (experiments) or (t′E − t′S)/2 (model), where tS stands for
the start of the collective U-turn (first frame where at least one direction −di×d0 is positive) and
tE for the end of the collective U-turn (first frame where all directions −di×d0 are positive). In A,
time has also been shifted so that d̄(t = 0) = 0.

will favour the emergence of strongly polarised states, while for J = 0, all fish directions will appear with
the same probability during the dynamics. In physics, such a model favouring alignment between close spins
is known as the Ising model, which crudely describes ferromagnetic materials, i.e. magnets.

In summary, J controls the directional stiffness of the fish group, while ǫ describes the fish anisotropic
perception of their environment and the asymmetric interactions between fish. After inspecting the (J, ǫ)
parameter space (see SI, section 4.A.5), we find that the parameter values J = 1.23 and ǫ = 0.31 lead to a
fair agreement between the model and experimental data, as will be shown in the next section.

4.4.2 Simulation results versus experimental data

Our model quantitatively reproduces the effect of group size on the dynamics of collective U-turns (Figures
4.2 and SI, 4.8). This suggests that the tendency of individuals to initiate U-turns and move in the opposite
direction of the whole decreases with group size. However, note the poor agreement between simulations
and experimental data in groups of 4. One explanation for this may be the age and body size of the fish,
since body size influences the strength of interactions between fish (Romenskyy et al., 2017) (SI, Table 4.1).
It is possible to set a different coupling constant J for each group size to account for this effect, with the
risk of overfitting (SI, Figures 4.16A and B).

Even though there is no strict notion of energy in our model when ǫ > 0, we can still compute the mean
pseudo-energy barrier ∆En as a function of group size n. It is defined as the mean difference between the
maximum value of the pseudo-energy E during the U-turn and the reference energy computed when all the
agents have the same direction (i.e. before and after a U-turn). With the interpretation of E (respectively,
Ei) as a quantitative indicator of the discomfort of the group (respectively, of the fish i), the (pseudo)
energy barrier ∆En is hence a measure of the collective effort of the group to switch direction. We find
that the energy barrier ∆En increases sublinearly with group size n (SI, Figure 4.17). We then expect
that the higher/larger is the (pseudo) energy barrier ∆En, the more difficult it will be for the group to
perform a U-turn, as it must necessarily pass through an intermediate state of greater discomfort as the
group size n increases. As a consequence, the average time between U-turns is also expected to increase
as n and the (pseudo) energy barrier ∆En both increase. In fact, for ǫ = 0, for which E represents a true
energy, this mean time interval between direction changes is exactly given by the Arrhenius law, which
can be analytically proven for our spin model evolving according to the Glauber Monte Carlo dynamics.
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In physical chemistry, the Arrhenius law describes for instance the switching time between two states A
and B of a molecule, separated by an energy barrier associated to an intermediate state through which the
molecules must necessarily pass to go from state A to state B. The Arrhenius law (Atkins and De Paula,
2011) stipulates that the mean transition time τ between two states separated by an energy barrier ∆En

grows like

τ = τ0 exp

(

∆En

T

)

, (4.7)

where τ0 is a time scale independent of n, and T is the same temperature as the one appearing in equation 4.6
(here, T = 1). Despite the fact that ǫ > 0, for which E is not anymore a true energy, we still find in Figure 4.2
that the (pseudo) Arrhenius law reproduces fairly well the experimental mean interval between U-turns as a
function of group size n, explaining the wide range of observed time intervals, but with a modified constant
effective temperature T ≈ 1.9 (and τ0 ≈ 0.09 min). It is remarkable that the mean time between U-turns (a
purely dynamical quantity) grows exponentially fast with ∆En (the pseudo-energy difference between two
static configurations), considering that both quantities are measured in two completely independent ways.

The sequential propagation of information is also reproduced well by the simulations of the model, both
in space (Figure 4.3A and SI, Figures 4.10 and time (Figure 4.3C and SI, Figure 4.18). When the perception
of agents is isotropic (i.e. ǫ = 0), the location of the U-turn initiation is no longer mainly at the front of the
group but depends on the number of influencing neighbours (Figure 4.3A and SI, Figure 4.14). The lower
the number of influential neighbours, the higher the number of collective U-turns. For groups of 5 and ǫ = 0,
the agents triggering most of the U-turns are the first and last agents because they only have two influencing
neighbours.

Regarding the propagation in time, simulations reproduce the linear propagation of information at the
individual scale, except for the largest group sizes. This can be improved by changing the topology of the
interaction network of these group sizes (SI, Figures 4.16C and D). Figure 4.4A and B show that once
rescaled by the U-turn duration, the average direction profile is nearly independent of the group size, and
that the model prediction is in good agreement with experimental data. It takes about the same amount of
time to turn the first and second half of the fish, both in experiments and in the model, although the first
half of the fish is slightly slower to turn than the second half in experiments. This is consistent with the
results reported on Figure 4.3C, where the interval between the turning of the first and the second fish was
longer than between the turns of the following fish. The durations of collective U-turns are Log-normally
distributed, both in experiments and in the model (SI, Figure 4.19).

Despite its simplicity and having only two free parameters (J and ǫ), our model reproduces quantitatively
the experimental findings, both at the collective scale (the frequency of collective U-turns, average direction
profile, duration of U-turns...) and at the individual scale (the spatiotemporal features of the propagation
of information). Note that a linear response of the agents to their neighbours cannot reproduce the order of
magnitude of the U-turn durations measured in the experiments (SI, Figure 4.15). Social conformity is thus
a good candidate as an individual mechanism underlying the observed patterns including the time intervals
between successive collective U-turns for different group sizes, the distribution of the U-turn duration, and
the spatial propagation of information.

4.5 Discussion

How information propagates among individuals and determines behavioural cascades is crucial to understand
the emergence of collective decisions and transitions between collective states in animal groups (Giardina,
2008; Sumpter et al., 2008; Wang et al., 2012; Attanasi, Cavagna, Del Castello, Giardina, Grigera, Jelic,
Melillo, Parisi, Pohl, Shen and Viale, 2014). Here, we addressed these questions by analysing the spontaneous
collective U-turns in fish schools.

We find that collective U-turns are preceded by a slowing down period. It has been shown in other fish
species that speed controls alignment between individuals (Gautrais et al., 2012), leading slow groups to be
less polarised than fast groups (Steven V. Viscido et al., 2004; Hemelrijk and Hildenbrandt, 2008; Tunstrøm
et al., 2013; Calovi et al., 2014). In general, at slower speed, there is less inertia to turn, resulting in weaker
polarisation (Kunz and Hemelrijk, 2003; Hemelrijk et al., 2010) and thus an increase of the fluctuations in
the swimming direction of the fish (Marconi et al., 2008). Moreover, as the fish speed decreases, the fish
school is in a state closer to the transition between the schooling (strong alignment) and swarming (weak
alignment) states, where (Calovi et al., 2015) have shown that both fluctuations in fish orientation and the
sensitivity of the school to a perturbation increase. It is therefore not surprising that U-turns occur after
the group has slowed down.

U-turns are mostly initiated by the fish located at the front of the group. At the front, individuals
experience a lesser influence from the other fish. This is due to the perception anisotropy which results in
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individuals interacting more strongly with a neighbour ahead than behind. Therefore, frontal individuals
are more subject to heading fluctuations and less inhibited to initiate U-turns. Similarly, in starling flocks,
the birds that initiate changes in collective travelling direction are found at the edges of the flock (Attanasi
et al., 2015).

We found no evidence for dampening or amplification of information as fish adopt a new direction of
motion. Moreover, on average, turning information propagates faster in larger groups: 0.19 s per individual
in groups of 10 fish, and 0.26 s per individual in groups of 5 fish (SI, Figure 4.13). This appears to be the
consequence of the increase of the swimming speed with group size, which requires that individuals react
faster. Indeed, our results show that the interval between successive turns of individuals during a collective
U-turn decreases with swimming speed, although distance between individuals may also play a role (Jiang
et al., 2017). However, the mean time interval between successive individual U-turns is almost constant
and independent of the group size, once time has been rescaled by the group velocity. This points to a
domino-like propagation of the new direction of motion across the group. This sequential spatiotemporal
propagation of information also suggests that each fish interacts with a small number of neighbours.

We found that the level of homogeneity in the direction of motion of the schools increases with group
size resulting in a lower number of collective U-turns. This phenomenon has been previously described in
other fish species (Day et al., 2001; Herbert-Read et al., 2012) as well as in locusts in a similar set-up (Buhl
et al., 2006).

We developed an Ising-type spin model in which fish adopt probabilistically the direction of the majority
of their neighbours, in a nonlinear way (social conformity) influenced by the anisotropic and asymmetrical
interactions between fish. Since the probability that a fish chooses a direction is a nonlinear function of the
number of other fish having already chosen this direction, as previously shown (Sumpter and Pratt, 2009;
Ward et al., 2008), it is thus more difficult for a fish to initiate or propagate a U-turn the larger the number
of fish swimming in the opposite direction (Efferson et al., 2008). The model also introduces quantitative
indicators of the individual and collective discomfort (lack of alignment of heading among group members),
the latter being represented by a measure of global pseudo-energy of the group. Larger groups have to
overcome a larger pseudo-energy barrier to switch between the clockwise and anticlockwise fully polarised
states. In physics and chemistry, the fast exponential increase of the switching time between two states as
a function of this energy barrier is described by the Arrhenius law, which can be proven using the tools
of statistical physics. We find that direct numerical simulations of the model and an effective Arrhenius
law both quantitatively reproduce the sharp increase of the mean time between U-turns as the group size
increases. The model also shows that asymmetric interactions and the anisotropic perception of fish are
not essential to explain the decrease of collective fluctuations and hence the U-turns frequency as the group
size increases. Social conformity (Latane, 1981; Morgan and Laland, 2012) (controlled by the magnitude
of our parameter J) suffices to cause fewer fluctuations with increasing group size, leading to an increased
robustness of the polarised state (“protected” by increasing pseudo-energy barriers).

Moreover, our model reveals that the front to back propagation of information results from the perception
anisotropy and asymmetry of the fish (the ǫ parameter). Without perception anisotropy and asymmetry,
U-turns are initiated by the fish that have fewer influential neighbours (in our simulations, those are the
fish at the boundary of the group – all individuals would have the same probability to initiate a U-turn
with periodic boundary conditions) and propagated to their neighbours without favouring any direction.
Finally, the duration of a U-turn as a function of group size is quantitatively reproduced by the model, while
the simulated mean direction temporal profiles during U-turns are very similar to the experimental ones,
and are independent of the group size, once time is properly rescaled by the mean U-turn duration for the
corresponding group size.

In summary, our work supports that social conformity, asymmetric interactions, and the anisotropic
perception of fish are key to the sequential propagation of information without dampening in fish schools, at
least in the small group sizes considered. Future work will be needed to disentangle the respective roles of
the network topology and the actual functional forms of social interactions between fish on the propagation
of information.
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Supplementary Information

4.A Experimental procedures and data collection

Fish were purchased from Amazonie Labège (http://www.amazonie.com) in Toulouse, France. They were
kept in 150 L aquariums on a 12:12 hour, dark:light photoperiod, at 27.5◦ C (±0.8◦ C) and were fed ad libitum
with fish flakes. The body length of the fish in the experiments was on average 3.4 cm (± 0.44 cm).

The experimental tank (120×120 cm) was made of glass and was set on top of a box to reduce vibrations.
It was surrounded by four opaque white curtains and illuminated homogeneously by four LED light panels.
Inside an experimental tank, a ring-shaped corridor was filled with 7 cm of water of controlled quality (50% of
water purified by reverse osmosis and 50% of water treated by activated carbon) heated at 27.6◦ C (±0.9◦ C)
(Figure 4.5A). The corridor was 10 cm wide with a circular outer wall of radius 35 cm. The shape of the
circular inner wall was conic and its radius at the bottom was 25 cm. The conic shape was chosen to avoid
the occlusion on videos of fish swimming too close to the inner wall. Fish were introduced in and acclimatised
to the experimental tank during a period of 10 minutes before the trial starts. During each trial of one hour,
individuals were swimming freely without external perturbation. Note that six experiments with a single
fish have been discarded because of the inactivity of the individuals.

Table 4.1: Number of trials, total duration of trials, number of collective U-turns and
average body length of individuals for each group size.

Group
Size

Number
of trials

Total
duration

Total number of
collective U-turns

Body length
(mm, mean ± se)

1 4 260 min 1058 33.1 ± 1.8
2 10 652 min 1135 33.3 ± 0.8
4 10 684 min 1868 36.1 ± 0.6
5 10 543 min 500 31.5 ± 0.3
8 9 602 min 459 35.9 ± 0.6
10 14 832 min 49 33.4 ± 0.4
20 11 703 min 30 Not available

4.A.1 Data extraction and pre-processing

Sometimes, fish were misidentified by the tracking software, for instance when two fish were swimming too
close to each other. All sequences that were missing a maximum of 50 consecutive positions were interpolated.
For groups of 20 fish, only the number of collective U-turns and the time interval between two consecutive
U-turns have been recorded.

Time series of positions were converted from pixels to meters and the origin of the coordinate system
was set to the centre of the ring-shaped tank. Body lengths and headings of fish were measured on each
frame using the first axis of a principal component analysis of the fish shape issued by idTracker. Table 4.1
summarises the data collected in our study.

4.A.2 Detection and quantification of individual and collective U-turns

A collective U-turn in a group of n fish starts when the degree of alignment to the wall ai(t) of the fish i
that initiates the U-turn is 0 and it ends when the degree of alignment to the wall aj(t) of the last fish j
that turns is 0. For each collective U-turn, we ranked the order with which each individual turned ri (where
ri = 1 refers to the individual i initiating it) and the spatial positions of each individual at the initiation of
the U-turn. In order to compare the spatial positions of individuals swimming in groups of various shapes,
we compute at the beginning of the U-turns Φi = −(θi − θf )/(θf − θl), where the angle θi − θf between each
individual and the fish in front of the group, normalised by the angle θf − θl between the first and last fish.
We discretised Φ ∈ [0, 1] in n cells with increasing indices and the spatial position πi is given by the index
of the cell that contains Φi. πi is 1 if an individual is very close to the front of the group when the first
individual turns and n if it is close to the back of the group at this time.

To compute the ranks of turning and the spatial positions of individuals at the initiation of the U-turns,
we needed to make sure that fish were responding to the initiation of a specific U-turn (and not to a previous
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Table 4.2: Results of the linear mixed effects models fitted on each group size to test the effect of
the rank of turning on the position regarding the y-coordinates at initiation of collective U-turns
(see Figure 4.11). Collective U-turns with missing positions at initiation have been discarded.

Group
size

Number of collective
U-turns considered

Estimated slope
(±se)

χ2 p-value

2 1114 -34.83 ±4.89 18.72 < 0.001
4 1655 -25.09 ±1.78 29.19 < 0.001
5 472 -17.42 ±2.59 18.03 < 0.001
8 272 -11.34 ±0.76 45.25 < 0.001
10 33 -11.52 ±2.25 11.85 < 0.001

U-turn very close in time). Therefore, we only considered situations where fish were swimming for at least
2 seconds in the same direction before and after the U-turns.

Failed collective U-turns (i.e. U-turns initiated by one or more individuals that are not fully propagated)
are also detected. A failed U-turn is detected when the average of the sign of the degree of alignment is
not |1| and when the sign of the average degree of alignment does not switch. To address possible noise in
experimental data, the average of the sign of the degree of alignment has to be different from |1| during at
least 25 frames (half a second).

For a given group size, we compute the average rate of U-turns (failed or not) initiated per individual as

un + fn

nTn

, (4.8)

with n the group size, un the number of collective U-turns (fully propagated), fn the number of failed
collective U-turns and Tn the duration of the experiments. The probability that a collective U-turn is fully
propagated is computed by

un

un + fn

. (4.9)

4.A.3 Data scaling

Data scaling shown in Figure 1 is obtained by finding the value of the time parameter tn that minimises the
least-square error between the normalised degree of alignment with the wall averaged over the U-turns at
a given group size n and that averaged over the U-turns of a group size of reference (namely, groups of 5
fish). To compute error bars, tn has been bootstrapped by applying the least square method randomising
the collective U-turns considered in the averaged normalised degree of alignment for each group size. For
each group size, N = 1000 bootstrapped samples have been obtained. The same method has been used in
Figure 4.

4.A.4 Statistical tests

We used R (R Core Team, 2016) and the package lme4 (Bates et al., 2015) to perform a linear mixed effects
analysis (with restricted maximum likelihood) of the relationship between x and y-coordinates (respectively)
and ranks of turning (fixed effect). As random effect, we have intercept for the experiment as well as by-
experiment random slopes to account for the non-independence of the U-turns within a group size. The
examinations of residuals did not reveal any obvious deviations from homoscedasticity or normality. P -
values were obtained by likelihood ratio tests of the full model with the fixed effect against the null model
with intercept and random effect only. The slope estimated with restricted maximum likelihood and the
result of the likelihood ratio tests are reported in Tables 4.3 and 4.2.

4.A.5 Model implementation

For given J and ǫ, we compute numerically the prediction for the number of collective U-turns u′
n for a group

of size n made during T ′ Monte-Carlo time steps. We define the error function

∆ =
∑

n

(
τ ′

n

τn

− 1)2 (4.10)
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Table 4.3: Results of the linear mixed effects models fitted on each group size to test the effect of
the rank of turning on the position regarding the x-coordinates at initiation of collective U-turns
(see Figure 4.11). Collective U-turns with missing positions at initiation have been discarded.

Group
size

Number of collective
U-turns considered

Estimated slope
(±se)

χ2 p-value

2 1114 -12.04 ±4.89 5.13 0.02
4 1655 -4.04 ±0.41 56.97 < 0.001
5 472 -2.04 ±1.28 2.27 0.13
8 272 -0.95 ±0.42 19.44 < 0.001
10 33 -0.19 ±0.50 0.14 0.71

Table 4.4: Results of the linear mixed models fitted on each group size to test the effect of the rank
of turning on the position regarding the y-coordinates when the individual turns (see Figure 4.12).
Collective U-turns with missing positions at fish turns have been discarded.

Group
size

Number of collective
U-turns considered

Estimated slope
(±se)

χ2 p-value

2 1114 -5.86 ± 2.43 4.87 0.03
4 1655 -5.54 ± 1.51 8.85 < 0.001
5 472 -2.13 ± 1.71 1.29 0.26
8 272 1.40 ± 2.47 0.27 0.60
10 33 1.32 ± 1.59 0.54 0.463

Table 4.5: Results of the linear mixed models fitted on each group size to test the effect of the rank
of turning on the position regarding the x-coordinates when the individual turns (see Figure 4.12).
Collective U-turns with missing positions at fish turns have been discarded.

Group
size

Number of collective
U-turns considered

Estimated slope
(±se)

χ2 p-value

2 1114 -9.68 ± 4.00 5.00 0.03
4 1655 -3.91 ± 0.28 36.24 < 0.001
5 472 -3.51 ± 2.19 2.42 0.12
8 272 -2.98 ± 0.75 9.22 < 0.001
10 33 -5.36 ± 1.26 16.78 < 0.001
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Figure 4.5: Experimental set-up. (A) A photo of a spontaneous U-turn initiated by a single fish
in a group of eight Hemigrammus rhodostomus fish, (B) Experimental ring-shaped tank, credits to
David Villa ScienceImage/CBI/CNRS, Toulouse.

with τn = un

Tn

the experimental rate of collective U-turns (with Tn the total duration of all the experiments of

the group size n, in minutes), τ ′
n =

u′

n

T ′t0

the rate of collective U-turns in simulations. t0 has the dimension of
a time and translates Monte-Carlo time into actual experimental minutes, and is determined by minimising
the error ∆, i.e. by solving the equation ∂∆

∂t0

= 0.
The model has been implemented in R (and run with R 3.3.1) with a C++ subroutine using the package

Rcpp (Eddelbuettel and Francois, 2011; Eddelbuettel, 2013). The sensitivity analysis has been conducted
with parallel computing using the R package parallel (R Core Team, 2016).

4.B Supplemental figures
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θi ϕ
i

θ
wi

Fish i

Figure 4.6: Variables used to describe the position, heading and relative orientation of fish relative
to the wall in the experimental set-up: θi is the angle formed by the position vector of fish i and
the horizontal line, ϕi is the heading of fish i, and θwi is the angle of incidence of fish i relative to
the wall w.
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each time, as a function of group size. D) Distribution of the oblongness of the group, measured
on each frame as the maximum distance between positions of fish projected on the axis tangent to
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stands for fitted linear model, R2 = 0.98. B, C and D are violin plots, showing the rotated and
mirrored histograms of the respective random variable. White belts stand for the mean.
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Figure 4.8: A). Time between U-turn initiation (failed or fully propagated) per fish as a function
of group size. B). Probability that an initiated U-turn is fully propagated as a function of group
size (see equations 4.8 and 4.9).
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Figure 4.10: Spatial position of the U-turn initiator in groups of 2, 4, 5, 8 and 10 fish, in data of
experiments and simulations.
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Figure 4.11: Average positions at U-turn initiation of individuals that turn subsequently, indicated
by their ranks of turning (where rank 1 is the initiator of the U-turns) in experiments for groups of
2, 4, 5, 8 and 10 fish. Positions have been corrected so that all groups move in the same direction,
with the outer wall at their right-hand side. Error bars indicate the standard error of the x and
y-coordinates (smaller than the circles if not visible). The origin of the coordinate system is set
to the centroid of the average positions of individuals. Statistical tests regarding the effect of the
ranks of turning on the x and y-positions are reported in Tables 4.3 and 4.2.
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Figure 4.12: Average positions of individuals that turn subsequently, indicated by their ranks of
turning (where rank 1 is the initiator of the U-turns) in experiments for groups of 2, 4, 5, 8 and 10
fish. Positions have been corrected so that all groups move in the same direction, with the outer
wall at their right hand-side. Error bars indicate the standard error of the x and y-coordinates
(smaller than the circles if not visible). The origin of the coordinate system (black dot) is set to the
centroid of the average positions of individuals at the initiation of the collective U-turns. Statistical
tests regarding the effect of the ranks of turning on the x and y-positions are reported in Tables
4.5 and 4.4.
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Figure 4.13: Reaction time measured as the average time interval between subsequent individuals
making a U-turn (±s.e.) as a function of group size.
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Figure 4.14: Topology of the interaction network in the simulations for different group sizes. Arrows
indicate interactions going from the influencing agent to the influenced one. The colour of the arrow
refers to the weight of the interaction, namely αij = 1 + ǫ (red arrow), αij = 1 (green arrow) and
αij = 1 − ǫ (blue arrow). The number of influencing neighbours of a focal agent can be derived
from the number of pairs of arrows connected to the agent. For instance, in groups of 5 agents,
each agent has, respectively (from front to back), 2, 3, 4, 3 and 2 influencing neighbours.
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Figure 4.15: Influence of nonlinearity in the model, with the anisotropy parameter α = 0.31.
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individual U-turn (see main text, equation 3.5) for different values of J (including J = 1.23, used
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( τ ′
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− 1)2. D) Error between simulations and experimental

data regarding the U-turn durations, defined as ∆′ =
∑

n
(

t′

e,n

te,n

− 1)2. In B, C and D, colours depend

on the nonlinearity of the acceptance probability function (the darker, the more the response is
nonlinear). Errors in C and D are computed from simulations with T ′ = 106 Monte-Carlo time
steps. In C and D, filled dots stand for the values of J considered in B.
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Chapter 5

Conditioning an avoidance response
in groups of rummy-nose tetra
(Hemigrammus rhodostomus)

Valentin Lecheval, Patrick Arrufat, Stéphane Ferrere, Charlotte K. Hemel-

rijk and Guy Theraulaz

Abstract

We develop an experimental method to induce controlled perturbations in a group of fish and investigate the
propagation of information. We use the paradigm of the shuttle box to condition aversive escape reactions
in groups of rummy-nose tetra (Hemigrammus rhodostomus) in response to a green light. We show that
aversive conditioning can (i) be used in this species, (ii) trigger collective escape reactions and (iii) be
transferred from the training set-up to a new setting. We characterise and quantify the aversive conditioning
and discuss long-term habituation and forgetting. We discuss these preliminary results in the context of
propagation of information in reaction to external stimuli. Our findings suggest that the proportion of
conditioned individuals in a group is critical to trigger collective escape reactions in response to external
stimuli. Our conditioning experiments open promising possibilities for investigating the collective responses
and propagation of information within groups of fish in response to perturbations mimicking sudden changes
in the environment, such as predator attack.

Contribution of authors

V.L., C.K.H. and G.T. conceived and designed the study; P.A. and S.F. developed the set-ups. V.L. per-
formed experiments; V.L. analysed data; V.L., C.K.H. and G.T. wrote the paper.

5.1 Introduction

Rummy-nose tetra (Hemigrammus rhodostomus) is a species of fish that swims in schools (i.e. the collective
motion is highly coordinated) with high levels of polarisation (see previous chapter). Fish schools are of
particular interest to investigate collective behaviour of animal societies in various ecological contexts, such
as, for instance, under predator threat. When a school reacts collectively to an external perturbation,
individuals react either directly to the perturbation itself or to startle response of its neighbours (Domenici
and Batty, 1994). Therefore, the information responded to differs among group members. Conditioning
experiments are of interest in the field of collective behaviour to investigate such phenomena experimentally.
This can be done by manipulating the behaviour of a few individuals only by conditioning them to startle in
reaction to a stimulus (Pillot et al., 2010, 2011; Miller et al., 2013; Toulet et al., 2015). Here, we use aversive
conditioning. This implies that an initially neutral stimulus becomes aversive after repeated pairing with an
unconditioned aversive stimulus. For animals in motion, the elicited (trained) escape response is of interest
to discover how information propagates in fish schools when a single or a few individuals spot a predator in
their neighbourhood. Unfortunately, all previous experiments of aversive conditioning conducted in fish were
done with species that do not form fish schools (i.e. groups where individuals are highly coordinated and
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A B C

Figure 5.1: Pictures of the shuttle box (46 × 23 × 21 cm) used for the aversive conditioning. In (C),
the conditioned stimulus is turned on in one of the two compartments.

aligned) (e.g. in zebrafish (Danio rerio) (Agetsuma et al., 2012) or goldfish (Carassius auratus) (Portavella
et al., 2004)). In this paper, we developed experiments with H. rhodostomus to condition its escape response
in order to investigate the propagation of information within a group of fish in a controlled way. We use
aversive conditioning (electric shocks associated with changes in lighting) similar to the classical behavioural
paradigm of the shuttle box, already tested in other fish species (Horner et al., 1961; Woodard and Bitterman,
1973; Piront and Schmidt, 1988; Portavella et al., 2004; Pradel et al., 1999; Xu et al., 2007; Agetsuma et al.,
2012). The aversive conditioning involves training fish to escape when a green light is turned on. We
subsequently investigate how the proportion of conditioned fish in a group affects its propensity to perform
a collective escape. We show in H. rhodostomus (i) that individuals learn to escape in response to a green
light after aversive conditioning, (ii) that the conditioned escape can be transferred to a new experimental
setting and (iii) that a minimum proportion of conditioned individuals in the group is needed to propagate
the learnt behaviour.

5.2 Material and methods

5.2.1 Animals

A group of 70 rummy-nose tetras (Hemigrammus rhodostomus) were purchased from Amazonie Labège
(http://www.amazonie.com) in Toulouse, France. The rummy-nose tetra is a tropical freshwater species.
Fish were kept in 150 L aquariums on a 12:12 hour, dark:light photoperiod, at 27.5◦ C (±0.8◦ C) and were
fed ad libitum with fish flakes.

5.2.2 Experiment 1: avoidance conditioning in a shuttle box

Subjects

Similar experiments (see following sections) with zebrafish have shown that groups of 5 fish learn faster than
single individuals or groups of two (Gleason et al., 1977). For this reason and to avoid inactivity of solitary
fish, we conducted the conditioning of 6 fish at the same time. 6 fish – thereafter conditioned fish – were
randomly sampled from the breeding tank in July 2016 and kept in a different breeding tank, under the
same conditions as the other fish. All other individuals are labelled as näıve fish.

Conditioning apparatus

Fish were trained using a shuttle box modified from Horner et al. (1961). The shuttle box (46×23×21 cm) is
made of white plastic (polyvinyl chloride, PVC) (Figure 5.1A). The two compartments (20×15×20 cm) have
84 green light-emitting diodes (LEDs) set on 4 rows of 7 LEDs for each panel (Figures 5.1B-C). The LEDs of
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each compartment can be turned on independently from those of the other compartment. Compartments are
separated by a trapezoidal hurdle 7.5 cm high. Two metallic plates conduct electricity in each compartment.
Compartments are filled with 4.5 cm of white gravels and white ceramic balls to enrich the environment of
fish, in line with policies for animal welfare. The water comprised 50% of water purified by reverse osmosis
and 50% of water treated by activated carbon, heated at 27◦ C. Its level is set at 3 cm above the hurdle (i.e.
10.5 cm in each compartment). Training is monitored by a webcam (Logitech QuickCam Pro 9000). Light
and electric stimuli are both delivered manually.

Conditioning procedure

Before and after the training session, the group of 6 conditioned fish is let in the set-up without any stimulus
for respectively 15 min (habituation) and 5 min. Water is changed after each experiment.

Acquisition

Training sessions were performed on a regular basis (77 sessions in total) from July 2016 to July 2017 with
the same 6 fish 1. Each training session consisted of 20 trials (intertrial time of 2 min). In each trial, at
least one of the 6 fish had to cross the hurdle to avoid mild electric shocks (7 V, 2.7 mA, measured on the
electrodes) (unconditioned stimulus, US) administered via electrodes 3 s2 after onset of a light signal (green
light, conditioned stimulus, CS). The light signal was always turned on in that compartment where the
majority of the individuals were located. A trial is labelled as a Success if at least one fish crossed the hurdle
before the onset of electric shocks (i.e. within 3 s after onset of the CS) and Failed in all other cases. If there
is no fish crossing the hurdle within 15 s after the onset of electric shocks, all stimuli (CS + US) are turned
off and the trial is labelled as Failed. The proportion of trials labelled as Success over the 20 trials will be
referred to as the proportion of escapes.

10 training sessions without US have been conducted on groups of 6 näıve fish randomly sampled from
the breeding tank to measure the proportion of escapes due to the spontaneous exploration of the apparatus
(Control).

Our dataset consists in the output (Failed or Success) of 200 trials for näıve fish and 1540 trials for
conditioned fish.

Ethical use of animals

To minimise the stress induced by the experiments with aversive conditioning, we carefully followed the
Three Rs principle (Replacement, Reduction and Refinement) (Russel and Burch, 1959). The Three Rs
are a guiding principle for ethical use of animal in testing, that recommends to Replace experiments that
kill or harm animals with alternative techniques, to Reduce the number of animals used, and to Refine
experiments to reduce suffering. We use aversive conditioning to Replace empirical experiments that would
involve predators hunting their preys. Regarding Reduction, only 6 individuals have been used during the
whole conditioning, conducted over almost a year. As for Refinement, the power of the electric shocks has
been set to the minimum power (7 V, 2.7 mA, measured on the electrodes) triggering a reaction in fish visible
by eye. Individuals were carefully observed every day for wounds or abnormal behaviour. Visible injuries
are endpoints, i.e. an animal with wounds would be removed from the experiment. Experiments have been
conducted in a different room than that of the breeding tanks. Thus, experiments were not visible by fish
in the breeding tank, in agreement with policies for animal welfare.

All experiments comply with the European legislation for animal welfare. Our experiments have been
approved by the Ethics Committee for Animal Experimentation of the Toulouse Research Federation in
Biology (CEEA N◦1).

5.2.3 Experiment 2: test in a new environment

Experimental set-up

The square experimental tank (120×120 cm) was made of glass and was set on top of a box to reduce
vibrations. The room was heated at the same temperature as the water in the tank to avoid gradients of
temperature. The tank was surrounded by four opaque white curtains and illuminated homogeneously by

1One of the 6 fish died, 10 months after the beginning of the experiment. The death did not occur during an
experiment and no wounds were noticed. Experiments were thus performed with the other 5 fish thereafter.

2The CS-US interval had first been set to 5 s and then to 3 s after the 7 first experiments, to elicit faster and
stronger avoidance reactions.
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Table 5.1: Experimental conditions tested in Experiment 2 with the new environment. 1vs4 and
5vs0 refer to the number of conditioned vs näıve fish.

Condition Replicates Trials per replicate

Control 11 5
1vs4 9 5
5vs0 2 10

Onset of the CS End of the CS

45 fps 180 fps (30 sec)

Measurements

3 sec 3 sec

Figure 5.2: Schematic view of the trials of Experiment 2. Measurements are detailed in the text.

four LED light panels. Inside the experimental tank, a ring-shaped corridor was filled with 7 cm of water of
controlled quality (50% of water purified by reverse osmosis and 50% of water treated by activated carbon)
heated at 28.8◦ C (±0.7◦ C) . The corridor was 10 cm wide with a circular outer wall of radius 35 cm. The
shape of the circular inner wall was conic and its radius at the bottom was 25 cm. The conic shape was
chosen to avoid the occlusion on videos of fish swimming too close to the inner wall. The outer wall has 2
rows of the same LEDs as used in the shuttle box, equally spaced by 1 cm. Only 35 cm of the entire diameter
(thus 70 LEDs) can be turned on (CS).

Experimental procedure for testing

These experimental tests were conducted after the conditioning experiments presented in the previous section.
Conditioned fish were trained for 10 trials of the conditioning experiment a few hours before an experiment
was done in the new set-up. Per day, fish participated only in a single experiment. Experiments concerned
groups of 5 fish and were done in the ring-shaped tank. Trajectories were recorded by a high-speed camera
(R&D Vision) recording from above the set-up at 45 Hz or 180 Hz, both in high resolution (2000×2048 pixels).
Groups swim spontaneously for 20 min, with trajectories recorded at 45 Hz, until the CS is turned on for
the first time. At the onset of the CS, the camera automatically switches to record fish positions at 180 Hz.
The CS is turned on for 3 s and trajectories are recorded subsequently for 30 s, still at 180 Hz. Several
trials are performed on each group of fish, with an intertrial duration of 1 min. After the first trial, fish
swim spontaneously for 1 min, recorded at 45 Hz before the CS. Three conditions are tested, the Control
condition, with 5 näıve fish, a condition with 4 näıve fish and 1 conditioned (1vs4 ) and a condition with 5
conditioned fish (0vs5 ). Number of replicates and trials are reported in Table 5.1.

For each trial, we measure the number of fish that turn at least once in the direction opposite to the
CS in the first 3 s following the onset of the CS (i.e while the light is on) and during the 3 s seconds after
(i.e. when the light turns off). These two quantities estimate the strength of the collective reaction: if all
individuals react fast and strongly to the CS, we expect them to turn while the light is on. We also measure
whether all individuals are swimming in the direction opposite to the CS 6 s after its onset or not. If yes,
we count one collective escape for the respective trial. This quantity is used to disentangle non-coordinated
behaviours (e.g. where all individuals make U-turns several times and eventually the group does not swim
away from the CS) to collective escape behaviours (i.e all group members make one clear U-turn and the
group swims away from the CS). In the condition with one conditioned fish and 4 näıve ones (1vs4 ), we
monitor if the conditioned fish turned first. The conditioned fish was recognised by eye by the operator. No
tagging was used, because of the difficulty to tag small fish without altering their swimming behaviour.
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We removed trials where not all fish were aligned in the same direction just before the CS is turned on
(4 trials out of 55 in the condition Control, 8 trials out of 45 in the condition 1vs4 and 0 out of 20 in the
condition 5vs0 ).

5.3 Results

5.3.1 Experiment 1

We use logistic regressions (with R (R Core Team, 2016)) to investigate the effect of the conditioning
experiments on the escape response of fish. We model the probability p that the binary result r of each trial
(Failed (r = 0) or Success (r = 1)) is 1 as a function of the index of the trial i, the number of days d since
the beginning of the conditioning for the considered group and of c that indicates whether the group is a
control (c = 0) or a conditioned one (c = 1). We start by evaluating the full model:

logit(p) = β0 + β1i+ β2d+ β3c+ β4id+ β5ic+ β6cd, (5.1)

where βj , j ∈ [0, 6] are the regression coefficients. We search the model that minimises the Akaike
information criterion (AIC) from the full model (AICfull = 2231). The AIC addressed the trade-off between
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Figure 5.3: Results of the conditioning experiments (page 93). A). Proportion of escapes in control
and conditioned conditions. Open circles and dots show the proportion of escapes of each experi-
ment. The colour of the dots stand for the time since the beginning of the experiments. B). Time
series of the proportion of escapes in 20 trials. An empty diamond stands for a change of protocol,
from a duration of 5 s of CS to 3 s of CS before onset of electric shocks (to trigger stronger aversive
responses). The cross indicates the death of one of the 6 individuals. Subsequent training sessions
were conducted with the remaining 5 individuals. Colour of the dots are the same as in (A). The
first point of the time series is averaged over the first conditioning replicate and all control repli-
cates. Red line and grey shade represent the model (Eq. 5.2) predictions and its 95% confidence
interval. C). Performance of the group averaged over all training sessions as a function of the trial.
Red line and grey shade represent the model (Eq. 5.2) predictions and its 95% confidence interval.
D). Proportion of escapes against time since last training session, with exponential fit. Points stand
for the proportion of escapes averaged over all experiments with the same amount of days since the
previous conditioning experiments and vertical bars stand for the standard error. There is no bar
when there is only one data point.

Table 5.2: Exponential of the estimated logistic regression coefficients (odd ratios and confidence
intervals) of the model shown in Equation 5.2. We also report the p-values of the Wald statistic that
tests for each βj the null hypothesis βj = 0 (no significant effect of the jth variable). Hierarchical
stepwise likelihood ratio tests give the same significances. For β1 to β3, values greater than 1
indicate positive correlation while values less than 1 indicate negative correlation between p and
the respective explanatory variable.

Estimate 2.5% 97.5% p-value

exp(β̂0) 0.073 0.044 0.116 < 0.001

exp(β̂1) 1.062 1.040 1.084 < 0.001

exp(β̂2) 12.281 7.918 19.802 < 0.001

exp(β̂3) 0.999 0.9998 0.9999 < 0.001

94



Table 5.3: P -values of the likelihood ratio tests performed to assess the significance of the effects
of the condition and of the trial to predict the occurrence of collective escapes from binomial
generalised linear mixed effect models.

Only Condition Only Trial Null Model

Full Model 0.4 0.03∗ 0.03∗

Only Condition 0.02∗

Only Trial 0.2

the goodness of fit of the model and the number j − 1 of explanatory variables. We find that

logit(p) = β0 + β1i+ β2c+ β3id, (5.2)

(hereafter called the model) minimises the AIC (AICmod = 2228). We report the exponential of the
estimated regression coefficients (odd ratios) in Table 5.2. This model predicts correctly the output of 63%
of all trials and all coefficients βj , j ∈ [0, 3] are significantly different from 0 (Table 5.2).

Our results show that H. rhodostomus can learn the task of the shuttle box, in a social context. The
proportion of escape responses (avoidance of the CS) is statistically larger in the conditioned group (0.57 ±
0.02, mean±standard error) than in the control groups (0.125 ± 0.03) (Figure 5.3A and exp(β̂3) = 12.281,
Table 5.2). Control groups reach a non-null proportion of escapes because they randomly swim in the shuttle
box and may cross the barrier during the CS, either by accident or because fish are afraid of the CS. We
qualitatively assess an effect of the CS on the behaviour of the näıve fish which is different from the behaviour
of conditioned fish. In general, groups of näıve fish become excited during CS but without any avoidance
behaviour – they are even sometimes attracted towards the LEDs that emit the light. The time series of
the proportion of successful responses of the conditioned group shows that there is a decrease in reaction
to the stimulus (Figure 5.3B with the model fit and exp(β̂3) = 0.999). The learning of the conditioning
occurs within a month (purple dots) and the best performances are achieved until November (blue dots).
From January to July (green and yellow dots), despite 27 conditioning experiments, it was not possible to
reach the performances obtained in the other months. It seems that fish experience long-term habituation,
even though our protocol cannot properly test it (i.e. we should test the specificity of habituation to the
stimulus to exclude a fatigue effect). Although fish react less to the CS in the last sections of the time
series, the achieved performance is, on average, still higher than the controls. Within a training session, fish
perform significantly better after several trials, typically 3 (Figure 5.3C and exp(β̂1) = 1.062). This effect
decreases with the number of days since the beginning of the experiments, possibly because of the long-term
habituation previously discussed (interaction term β3id of the model, exp(β̂3) = 0.999).

In the models presented in Equations 5.1 and 5.2, we did not use the number of days since the previous
experiment as an explanatory variable, because the value for the control experiments and the first experiment
of the conditioning experiments would be arbitrary (i.e. infinity, encoded for instance as 1000 days). Such an
arbitrary value would have influenced the significance of the statistical tests performed. We find that there
is an effect of the number of days since the previous experiment on the performance over the 20 trials of a
focal experiment (Figure 5.3D). Namely, we find a decay of the proportion of escapes that can be modelled
as

p = a exp(bt), (5.3)

where a is the degree of learning, −b is the inverse of the rate of forgetting (in days) and t the time
since the previous conditioning experiments (in days). We find a = 0.64 and b = −0.009. The value for a
corresponds to the performance of the group at the beginning of our protocol (blue dots in Figure 5.3B).
It is worth to note that we do not find any significant correlation between the number of days since the
beginning of the conditioning d and the number of days since the previous conditioning t (p-value = 0.25),
excluding a confounding effect of d and t on the proportion of escapes p. In other words, it seems that our
results indicate both habituation and forgetting.

5.3.2 Experiment 2

Figure 5.4 shows a collective escape away from the CS performed by the group of conditioned fish: before
the onset of the CS, the group is polarised (Figure 5.4A); at the onset of the CS, one individual reacts
instantaneously, performing a U-turn (Figure 5.4B) which propagates to the other group members (Figure
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A t = −1 s B t = 0 s

C t = 1 s D t = 2 s

E t = 3 s F t = 4 s
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Figure 5.4: Snapshots from the escape behaviour of a group with 5 conditioned fish (page 96).
Snapshots are taken every second from 1 second before the onset of the CS to 4 seconds after. The
white arrow on (B) shows the fish that responds first to the CS.
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Figure 5.5: The conditioning in the new set-up. A). The average proportion of collective escapes
as a function of the number of conditioned fish in the group. We report results averaged over
replicates (dots) and conditions (empty circles) as well as the model predictions. The model used
for reference is the binomial generalised linear mixed model with only the condition as fixed effect.
Noise is added to the x-coordinates of the points, to improve visualisation. B). Bar chart of the
number of individual escapes per trial for each condition. C). Bar chart of the number of individual
escapes per trial that occur during the CS.
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5.4C) and the group swims in the opposite direction in less than 2 s after the light is turned on (Figure
5.4D-F).

We used R (R Core Team, 2016) and the packages lme4 (Bates et al., 2015) and lsmeans (Lenth, 2016)
to perform a binomial generalised linear mixed effects analysis of the occurrence of collective escapes in
trials as a function of the condition of the replicate (control, 1 conditioned versus 4 näıve (1vs4 ) or 0vs5 )
and the index of the trial (1 to 10). Namely, we test (i) an effect of the condition, to investigate whether
the proportion of conditioned individuals in the group may change the propensity to initiate a collective
escape and (ii) an effect of habituation or fatigue to the CS. As random effect, we use intercept for the
experiment as well as by-experiment random slopes to account for the non-independence of the responses
within a condition, since there are several trials per tested group of fish. P -values were obtained by likelihood
ratio tests of the full model with the fixed effects against models with only one of each of the fixed effect.
We also perform the likelihood ratio tests of the models with only one of each of the fixed effects against the
null model with intercept and random effect only.

Both tests show a significant effect of the condition (control, 1vs4 or 0vs5 ) on the occurrence of collective
escapes and no significant effect of the trial (Table 5.3). We find that the CS is not neutral on the behaviour
of the näıve groups. näıve fish perform collective escapes in 16% of all trials (Figure 5.5A). In 71% of all
trials there are at least 3 fish that make individual U-turns (Figure 5.5B). However, when all group members
are conditioned, groups perform collective escapes in 75% of all trials (Figure 5.5A). Here, the response is in
general collective and fast: in 80% of all trials all group members have turned within the three seconds after
the CS is turned on (Figure 5.5C). In short, although groups of näıve fish react to the CS, with fluctuations
in the heading of individuals they react more slowly and not collectively, in contrast to the groups composed
only of conditioned fish.

The occurrence of collective escapes when only one fish is conditioned (condition 1vs4 ) does not signifi-
cantly differ from the occurrence of collective escapes in pure groups of näıve fish (pairwise Tukey method,
p-value = 0.3). However, fish in this condition tend to react more and faster than näıve fish (Figures 5.5B
and C). We find that the conditioned fish turns in 78% of all trials, turns first in 43% of all trials (always
during the CS) and initiates 54% of the collective escapes performed in the 1vs4 condition.

5.4 Discussion

Our experiments are, to our knowledge, the first conditioning experiments ever tried with H. rhodostomus.
We show that it is possible to train H. rhodostomus to escape using an active aversive paradigm. We find
that this conditioned behaviour can be successively used in a new environment. The possibility to condition
H. rhodostomus opens opportunities to investigate collective behaviour with obligate schoolers (in contrast
to experiments with zebrafish or goldfish).

The duration of the CS before the onset of electric shocks (3 s) is very short compared to previous studies
(7.5 s (Agetsuma et al., 2012), 10 s (Horner et al., 1961; Woodard and Bitterman, 1973; Portavella et al.,
2004), 12 s (Pradel et al., 1999; Xu et al., 2007), or 20 s (Piront and Schmidt, 1988, although with a different
protocol)). This has to be taken into account to assess the conditioning success of H. rhodostomus (which
was on average close to 63% during the first half of the year) compared to the other studies, achieving
learning criterion of 70% (Portavella et al., 2004) or 80% (Pradel et al., 1999; Piront and Schmidt, 1988).
This choice was made to elicit stronger (i.e. fast) aversive reactions in response to the CS.

It seems that our training leads to habituation because the performance of the conditioned group de-
creased after the first 48 experiments conducted over a period of 4 months. Even if our protocol was not
designed to test habituation, our results suggest that this decrease in the performances of the conditioned
groups was not the consequence of a lapse in fish memory: fish kept on performing fast aversive responses,
although less often during the later conditioning experiments.

To explain the decay of the conditioned escapes as a function of the time since the previous training
session, we make the assumption that the proportion of escapes during a replicate p can be modelled as
p = a exp(bt), with a the degree of learning, −b the inverse of the rate of forgetting (in days) and t the time
since the previous conditioning experiments. Such a curve is similar to curves referred to as forgetting curves,
after the seminal work of Herman Ebbinghaus in experimental psychology (Ebbinghaus, 1913, Chapter VII).
Interestingly, we find that the exponential fit in our experiments is close to the fits proposed for forgetting
curves in humans, modelled as combinations of exponential functions or power laws (Wickelgren, 1974; Rubin
et al., 1999; Murre and Dros, 2015). Although our results concern a group of fish in contrast to an individual,
it is likely that the collective performance is correlated with the level of learning of individuals. Future
research with an experimental protocol dedicated to investigate the forgetting of conditioned behaviour
could focus on the dependence of b to the number of times the group has experienced the conditioning m, in
order to account for an overlearning effect (we predict that b decreases with m) as well as the dependence
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of a to m, to account for long-term habituation (we also predict that a decreases with m, in agreement with
the present findings). Such research may be of interest to understand the macroscopic scale of memory in
H. rhodostomus and its underlying mechanisms.

As for the set of experiments that concerns the new environment, a ring-shaped tank and the propagation
of the induced perturbation, we found that the occurrence of fast, collective escape behaviours increases when
the proportion of conditioned fish in the group increases. Our results might suggest that there is a critical
proportion of trained fish required to elicit a collective escape but this has to be confirmed. Future work will
concern the development of a tracking software that would take the change of luminosity into account to keep
track of fish positions during the emission of the light, which is badly done by current tools. Given the time
resolution of our videos (180 fps after the onset of the CS), data with the positions of fish will help to compare
qualitatively and quantitatively the collective behaviours and the propagation of information between the
different conditions tested in our experiments. The spatio-temporal propagation of information after the CS
will be analysed, using the domino-like propagation of information that occurs during spontaneous collective
U-turns as benchmark (see previous chapter). Further experiments with more conditions (i.e. with all
possible ratios of conditioned versus näıve fish in a given group size) will help to elucidate the question of
the critical proportion.

Our conclusions remain uncertain because of the small number of conditioned fish in our experiments.
We made the choice to train only a few fish for ethical reasons, given that it was the first time conditioning
experiments were tried with this species. The results of our experiments being promising, we emphasise
that our results need to be reproduced experimentally with a greater number of conditioned groups (e.g. 10
groups of 5 conditioned fish).
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Chapter 6

General discussion

In this thesis, I have investigated the individual-level interactions and behaviours that underlie the coor-
dination of collective motion and the propagation of information in groups of tropical fish Hemigrammus
rhodostomus. Here, I summarise and discuss the main results and give an outlook regarding future work.

6.1 Overview of the main results

I discuss the results of this thesis in the light of four topics: 1) the burst-and-coast swimming style, 2) the
individual-level interactions and the behavioural rules involved in the coordination of collective swimming, 3)
the decision-making processes and the propagation of information within groups and 4) the methodological
contributions.

6.1.1 The burst-and-coast swimming behaviour

Burst-and-coast swimming is an intermittent swimming style, adopted by the rummy-nose tetra, Hemigram-
mus rhodostomus (Lopez, 2015). It consists of cyclic bursts of swimming movements followed by a coast
phase in which the body of the fish does not move. The quality of the recordings of our experiments (HDTV
resolution, 50 Hz) as well as the duration (one to three hours) and the two shapes of our tanks (circular or
ring-shaped) have favoured a detailed analysis of this swimming style. Swimming speed of fish in groups of
10 in a ring-shaped tank was on average 7 BL/s, and bursts of speed up to 10 BL/s could be reached in all
group sizes. These traits may underlie the efficiency of the burst-and-coast style, as found previously (Weihs,
1974; Videler and Weihs, 1982): fast speeds of 10 BL/s can be reached and fish can sustain such speeds for
more than an hour. We have shown that the control of the speed resulted from a subtle interplay between
the respective duration of the burst and coast phase and the adjustment of the acceleration, in response
to non-social (i.e. the wall) and social information. We developed a model in which fish make decisions
(about their direction, speed and duration of the burst-and-coast cycle) only at the onset of the burst phases
and in which the speed of fish during coast phases is a viscous drag accounting for water frictions. The
model reproduced qualitatively and quantitatively the empirical spatial distribution of a single fish observed
in a circular arena (see Appendix B for a discussion on the asynchronous integration of information by H.
rhodostomus).

This discrete integration of information has also been suggested in a model for another species that has
a burst-and-coast behaviour, the zebrafish (Danio rerio, Harpaz et al., 2017). Harpaz et al. have found that
the burst phases are best predicted by fish that react to social information and that coast phases are best
predicted by a passive mode where only drag forces are applied to fish velocity. These results are similar
to ours, although obtained with a different method. These findings suggest a close connection between the
swimming style of fish and the mechanisms (e.g. the integration of information) that control the coordination
of schools.

6.1.2 Individual-level interactions and behavioural rules involved in the coor-
dination of collective swimming

Following the methodological framework described by Gautrais et al. (2012), we used a bottom-up approach
to disentangle and measure the non-social (walls of the experimental tank) and social interactions involved
in the behaviour of H. rhodostomus. A data-driven model has been developed to assess quantitatively the
relevance of the measured interactions.
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The interaction of fish with the wall consists of avoidance behaviour, of which the intensity is modulated
by the perception of fish. We showed that at each decision of the fish regarding its motion, all non-social
information available in a circular tank could be summed up by only one point of the wall. In other words,
by making decisions only based on the location of the wall closest to the fish (with respect to the radial
distance) suffices to reproduce trajectories of one fish swimming spontaneously in circular tanks of three
different radii. Although trajectories of fish are concentrated along the walls, interactions with the wall are
repulsive: fish turn away from the wall when they are at less than 2 BL from it. The avoidance effect is
also weaker when fish are parallel to the wall or when the wall is behind them. Thus, the perception of
the wall by a fish depends on (i) its distance to the wall and (ii) its angle to the wall. In particular, how
the interaction of avoidance of the wall depends on the angle of the fish to the wall reveals the anisotropic
perception of fish, responsible for asymmetric interactions, also found for social stimuli.

We have shown that schools of H. rhodostomus were highly cohesive and polarised. We developed a
theoretical model to account for the fact that the occurrence of collective U-turns in a ring-shaped tank
decreases with increasing group size. The model shows that local social conformity (i.e. the tendency of fish
to copy the behaviour of the majority of the neighbours) coupled with anisotropic perception of fish may
explain the global properties of the collective U-turns. The social interactions that we measured underlie (at
least to some extant) the social conformity implemented in this theoretical model. In particular, we found
evidence of repulsion between fish, alignment and attraction. In contrast to previous phenomenological
models, these behavioural modes are not set to discrete and arbitrary zones of distances to the neighbouring
fish (Aoki, 1982; Huth and Wissel, 1992; Couzin et al., 2002). Instead, there is a continuous combination of
attraction and alignment as a function of the distance between fish, as former theoretical studies assumed
(Reuter and Breckling, 1994; Kunz and Hemelrijk, 2003). Alignment dominates attraction up to ∼ 2.5 BL
while attraction dominates for larger distances. At very large distances, in the limit of the field of perception,
attraction is obviously expected to decrease as well, although we could not measure it in our experimental
tanks that were, at most, of a maximum radius of 35 cm. Experimental evidence for alignment interactions
is interesting since (i) no alignment is required to produce most of the collective patterns reported in other
models of schools (Strömbom, 2011; Strömbom et al., 2015; Huepe et al., 2015) and (ii) alignment was not
found in experiments with other species (Katz et al., 2011; Herbert-Read et al., 2011). Whether this is due
to differences related to the species or to the methods is still unclear.

We have also investigated how information from multiple sources may be integrated. In our bottom-up
approach, this step is crucial to model larger groups from the social and non-social interactions inferred
from experiments with 1 or 2 fish. Our hypothesis that a fish only reacts to the strongest stimulus (either
social or non-social) is not confirmed by the model, in that it does not reproduce the empirical properties of
the polarised schools of H. rhodostomus. However, our simulations suggest that such a mechanism may be
responsible for swarming species in which individuals are aggregated and loosely polarised.

6.1.3 Propagation of information and decision-making

In Part II (Chapters 4 and 5), we investigated how information propagates in schools of H. rhodostomus and
leads to collective decisions.

We showed that spontaneous collective U-turns were initiated by individuals that turned around at the
front of the school and that this turning was propagated to the back of the school. This is in agreement
with the perception anisotropy detected in Part I. The directionality of the propagation of information in
the schools during the collective U-turns is confirmed by two independent methods (Appendices A and B).

We find that collective U-turns are preceded by a period during which fish are slowing down. It has been
shown in other fish species that speed affects alignment among individuals (Gautrais et al., 2012), leading
slow groups to be less polarised than fast groups (Steven V. Viscido et al., 2004; Hemelrijk and Hildenbrandt,
2008; Tunstrøm et al., 2013; Calovi et al., 2014). In general, at slower speed, there is less inertia to turn,
resulting in weaker polarisation (Kunz and Hemelrijk, 2003; Hemelrijk et al., 2010) and more fluctuations
in the swimming direction of the fish (Marconi et al., 2008; Calovi et al., 2015). As its speed decreases, the
fish school is in a state closer to the transition between schooling (strong alignment) and swarming (weak
alignment), i.e. where Calovi et al. (2015) have shown that both fluctuations in fish orientation and the
sensitivity of the school to a perturbation increase. It is therefore not surprising that U-turns occur after
the group has slowed down.

Within the ranges of group sizes we tested (1 to 10 fish), there was no damping nor positive feedback
in the temporal propagation of information. Although it could be argued that this result may be different
for larger groups, in sheep (Ovis aries), an amplification (i.e. the rate of following behaviours increases as
the number of individuals committed in the following behaviour increases) has been reported in groups of
at least 6 individuals (Pillot et al., 2011). We showed that for the largest group sizes, a heading opposite to
that of the majority is hardly propagated, resulting in a strong decrease in the frequency of the collective
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U-turns with increasing group size. Schools of fish are thus less sensitive to internal local perturbations when
the number of individuals increases, thus similar to empirical findings in sheep (Toulet et al., 2015).

Our model shows that consensus about the direction chosen at the group-level is achieved by choosing the
direction of the local majority. Assuming that fish interact locally and not with all the group-members, even
in the small group sizes we consider, is supported by the work presented in Appendix B that suggests that
fish mainly interact with a small number of influential neighbours (typically 1 or 2). Temporary leadership
is explained by the anisotropy in the perception of fish, that favours aligning with frontal individuals.
Preliminary results of our conditioning experiments (Chapter 5) show that the composition of the group
(i.e. the ratio between informed and non-informed fish) also affects how the group responds to external and
aversive perturbations (here, a conditioned stimulus (green light) triggering an escape behaviour). Namely,
our results suggest that a critical proportion of conditioned individuals was necessary to reach a consensus
and trigger a collective escape. Although it needs to be confirmed by additional replicates, this finding
confirm previous results in appetitive conditioning (Miller et al., 2013). We also expect that this critical
proportion depends on group size but it is unknown so far how it exactly does so. This would test previous
theoretical predictions (Couzin et al., 2005).

6.1.4 Methodological contributions

In the introduction of this thesis, I have discussed the challenges of the study of complex biological phenomena
like collective motion in fish schools. To cope with the complexity, we used a diversity of methods tightly
combining experiments, data analyses and computational modelling. These methods may be of interest to
others in the field of Collective Behaviour and in related fields such as, for instance, Ecotoxicology, where
accurate quantification of the (collective) behaviour of fish is critical to state the effects of toxic chemicals.

In Chapter 2, we used a bottom-up experimental approach to measure the interactions involved in the
coordination of schools, as was previously done with another species (Gautrais et al., 2009, 2012). The large
amount of experimental data that we have collected has motivated the use of a new method to measure
social and non-social interactions. This method limits the number of parameters that we need to fit and
provides an explicit model, in contrast to the force-map method used by others (Katz et al., 2011). In our
case, to disentangle the social interactions and given the aimed resolution, a three-dimensional map of the
angle turned as a function of the distance to the neighbour, the angular position of the neighbour and the
relative orientation between the focal fish and its neighbour would have required fitting 36,000 parameters
(and thus more empirical data points than the 173,817 burst-and-coast cycles we obtained from 1117 min of
videos at 50 Hz), while our method required only fitting of 200 parameters and provided an explicit model.

In the former work with the bottom-up approach (Gautrais et al., 2009, 2012), the interactions of a fish
with the walls of the tank and with other fish were phenomenological – the mathematical functions in the
model were motivated by the fit to data. Here, we favoured a normative model (Laan et al., 2017), in which
the equations in our model are derived from a logical framework based on physical analogies and symmetry
considerations. Thus, the equations used in our model to depict non-social and social interactions may have
greater generality when applied to new species.

In Chapter 3, we specifically address how fish integrate information from multiple (social and non-social)
sources. We developed a new method based on behavioural action maps derived from experimental data.
We tested hypotheses regarding the integration of information. Despite the negative outcome regarding the
hypothesis tested (namely, that fish would only react to the strongest stimulus when making a decision), the
method will still be used to test alternative hypotheses. Because the method does not require any assumption
regarding the interaction mechanisms, it is likely that it can be applied to a variety of fish species, even
if their swimming behaviour strongly differs from H. rhodostomus. However, the method has drawbacks:
it assumes that the individual interactions found in groups of 1 and 2 fish are identical to those in larger
groups and that the turning angle is a proxy of the importance of a stimulus. Moreover, hypotheses different
from ours and involving averaging over several stimuli may sum the error in the measurements (tracking and
data treatment) over all stimuli. We emphasise that our results suggest the importance of investigating the
mechanism of integration of information, which is rarely studied in the context of collective motion.

In Chapter 4, we used the formalism of the Ising model, developed in Statistical Physics, to investigate
the propagation of collective U-turns. We derive a formal definition of local social conformity from the
framework of Ising models. This definition is combined with anisotropic perception. Ising models have
been widely used to account for collective decisions in humans (Castellano et al., 2009). We think that this
formalism, coupled with the interaction mechanisms, may be of interest in animal collective behaviour, to
explain patterns where there is consensus at the global level (Ward et al., 2008; Sumpter and Pratt, 2009;
Ward et al., 2012).

In Chapter 5, we investigate the relevance of conditioning experiments in studies of collective behaviour
of fish. Conditioning experiments may be interesting in the field for the manipulation of behaviour in a
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Figure 6.1: Average angle turned versus the maximum body angle of the fish during burst phases.
Vertical lines stand for the standard error.

controlled way (Pillot et al., 2010, 2011; Miller et al., 2013; Toulet et al., 2015). In the experiment, we
aimed to control (i) which individual would react to a green light (i.e. the conditioned individuals), and (ii)
how they would react to it (by escaping away from it). In the present case, we did not entirely succeed to
control the identity of the first responder because green light also has an effect on näıve fish. This needs be
improved in future experiments, by either changing the conditioning stimulus (or by reducing its intensity)
or by familiarising the naive fish to the green light. We did, however, manage to train fish to escape a green
light, thus controlling (to some extent) that the green light is perceived as a threat. These results motivate
future use of this method to investigate how the proportion of informed individuals among group members
affects the propagation of information in the whole group, in particular in the context of escapes.

6.2 Outlook and future work

By focusing on a single species of fish and combining various methods, we have improved our understanding
of the behavioural and cognitive mechanisms that govern the schooling behaviour in H. rhodostomus. Still,
for establishing causal links from the neural scale to the collective scale and providing arguments regarding
the fitness of the collective patterns, future work is required. This will be briefly looked at below.

6.2.1 Neural and cognitive scales

We described the burst-and-coast style of fish swimming spontaneously. Future research regarding the
motor actions involved in the reactions of fish is required for deriving causal links from the neural scale to
the behavioural scale. An interesting method using a virtual reality system has recently been suggested with
larvae of zebrafish (Jouary et al., 2016). The authors have made a classification of the possible movements
of the tail of the larvae and then monitored the reactions of the larvae in a controlled virtual environment.
The changes in the visually induced environment are made thanks to the connection between the motor
reaction and the behavioural action. The aim is, eventually, to link the neural activity to the motor reaction
inducing a behavioural action, in response to a specific set of stimuli.
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In H. rhodostomus, we monitored the angle made by the body of the fish and its tail, in particular during
the burst phases. We find, for instance, that there is a clear positive correlation between the maximum angle
made by the fish during the burst phase and the magnitude of the angle turned (i.e. the stronger the fish
bends, the more it turns) (Figure 6.1). Classifying the motor repertoire of the fish (especially regarding the
body angle) and mapping it to the behavioural reactions inferred in Chapters 2 and 3 (regarding control of
speed and direction) may be a first step to connect the motor reactions of fish to their behavioural responses
and thus derive the causal link between the neural activity and the behaviour of the individuals.

6.2.2 Evolutionary perspective

Unfortunately, the animals used in this thesis have all been bred in captivity and were not captured in
nature. The ecology of H. rhodostomus is not known and we also do not know how our captive animals
differ from wild individuals. This prevents any inference about the functions of the schooling behaviour
detailed in this manuscript. The general relevance of this study is thus still to be addressed. It is likely
that the swimming style of a species constrains the (collective) behavioural repertoire. Characterising in
detail the burst-and-coast behaviour of other species (such as the zebrafish, as recently has been done) may
provide relevant benchmarks to compare the species and their collective behaviour (Harpaz et al., 2017;
Laan et al., 2017). We note that the methods developed in these experimental studies have already been
used to examine the impact of predation on schooling behaviour, thanks to measurements based on the
burst-and-coast behaviour (Herbert-Read et al., 2017). Such studies, conducted with wild animals and using
the quantitative methods developed with controlled experiments to investigate behaviours in detail, are of
great interest to learn about the ecological functions of schooling.

105



106



Bibliography

Agetsuma, M., Aoki, T., Aoki, R. and Okamoto, H. (2012), Cued fear conditioning in zebrafish (Danio rerio),
in A. V. Kalueff and A. M. Stewart, eds, ‘Zebrafish Protocols for Neurobehavioral Research’, Humana
Press, Totowa, NJ, pp. 257–264.
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Abstract

It is generally accepted that, when moving in groups, animals process information to coordi-
nate their motion. Recent studies have begun to apply rigorous methods based on Information
Theory to quantify such distributed computation. Following this perspective, we use transfer
entropy to quantify dynamic information flows locally in space and time across a school of fish
during directional changes around a circular tank, i.e. U-turns. This analysis reveals peaks
in information flows during collective U-turns and identifies two different flows: an informa-
tive flow (positive transfer entropy) based on fish that have already turned about fish that
are turning, and a misinformative flow (negative transfer entropy) based on fish that have not
turned yet about fish that are turning. We also reveal that the information flows are related
to relative position and alignment between fish, and identify spatial patterns of information
and misinformation cascades. This study offers several methodological contributions and we
expect further application of these methodologies to reveal intricacies of self-organisation in
other animal groups and active matter in general.

Introduction

Collective motion is one of the most striking examples of aggregated coherent behaviour in animal
groups, dynamically self-organising out of local interactions between individuals. It is observed in
different animal species, such as schools of fish [59, 73], flocks of birds [58, 54, 6, 11], colonies of
insects [14, 29, 16, 4, 15] and herds of ungulates [32]. There is an emerging understanding that infor-
mation plays a dynamic role in such a coordination [73], and that distributed information processing
is a specific mechanism that endows the group with collective computational capabilities [13, 23, 1].

Information transfer is of particular relevance for collective behaviour, where it has been observed
that small perturbations cascade through an entire group in a wave-like manner [62, 63, 34, 3], with
these cascades conjectured to embody information transfer [73]. This phenomenon is related to
underlying causal interactions, and a common goal is to infer physical interaction rules directly
from experimental data [36, 30, 35] and measure correlations within a collective.

∗emanuele.crosato@sydney.edu.au

ar
X

iv
:1

70
5.

01
21

3v
1 

 [
q-

bi
o.

Q
M

] 
 3

 M
ay

 2
01

7

118



Nagy et al. [55] used a variety of correlation functions to measure directional dependencies
between the velocities of pairs of pigeons flying in flocks of up to ten individuals, reconstructing
the leadership network of the flock. As has been shown later, this network does not correspond
to the hierarchy between birds [56]. Information transfer has been extensively studied in flocks
of starlings, by observing the propagation of direction changes across the flocks [20, 19, 2]. More
recently, Rosenthal et al. [69] attempted to determine a communication structure of a school of
fish during its collective evasion manoeuvres manifested through cascades of behavioural change.
A functional mapping between sensory inputs and motor responses was inferred by tracking fish
position and body posture, and calculating visual fields.

Rather than consider semantic or pragmatic information, many contemporary studies employ
rigorous information theoretic measures that quantify information as uncertainty reduction, fol-
lowing Shannon [24], in order to deal with the stochastic, continuous and noisy nature of intrinsic
information processing in natural systems [28]. Distributed information processing is typically dis-
sected into three primitive functions: the transmission, storage andmodification of information [38].
Information dynamics is a recent framework characterising and measuring each of the primitives
information-theoretically [49, 41]. In viewing the state update dynamics of a random process as an
information processing event, this framework performs an information regression in accounting for
where the information to predict that state update can be found by an observer, first identifying
predictive information from the past of the process as information storage, then predictive infor-
mation from other sources as information transfer (including both pairwise transfer from single
sources, and higher-order transfers due to multivariate effects). The framework has been applied to
modelling collective behaviour in several complex systems, such as Cellular Automata [46, 47, 48],
Ising spin models [9], Genetic Regulatory Networks and other biological networks [45, 64, 26], and
neural information processing [33, 78].

This study proposes a domain-independent, information-theoretic approach to detecting and
quantifying individual-level dynamics of information transfer in animal groups using this framework.
This approach is based on transfer entropy [70], an information-theoretic measure that quantifies
the directed and time-asymmetric predictive effect of one random process on another. We aim to
characterize the dynamics of how information transfer is conducted in space and time within a
biological school of fish (Hemigrammus rhodostomus or rummy-nose tetras, Figure 1a).

We stress that the predictive information transfer should be considered from the observer per-
spective, that is, it is the observer that gains (or loses) predictability about a fish motion, having
observed another fish. In other words, notwithstanding possible influences among the fish that
could potentially be reflected in their information dynamics, our quantitative analysis focuses on
the information flow within the school which is detectable by an external observer, captured by the
transfer entropy. This means that, whenever we quantify a predictive information flow from a source
fish to a destination fish, we attribute the change of predictability (uncertainty) to a third party, be
it another fish in the school, a predator approaching the school or an independent experimentalist.
Accordingly, this predictive information flow may or may not account for the causal information
flow affecting the source and the destination [5, 40] — however it does typically indicate presence
of causality, either within the considered pair or from some common cause.

We focus on collective direction changes, i.e. collective U-turns, during which the directional
changes of individuals progress in a rapid cascade, at the end of which a coherent motion is re-
established within the school. Sets of different U-turns are comparable across experiments under
the same conditions, permitting a statistically significant analysis involving an entire set of U-turns.

By looking at the pointwise or local values of transfer entropy over time, rather than at its
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average values, we are not only able to detect information transfer, but also to observe its dynamics
over time and across the school. We demonstrate that information is indeed constantly flowing
within the school, and identify the source-destination lag where predictive information flow is max-
imised (which has an interpretation as an observer-detectable reaction time to other fish). The
information flow is observed to peak during collective directional changes, where there is a typical
“cascade” of predictive gains and losses to be made by observers of these pairwise information inter-
actions. Specifically, we identify two distinct predictive information flows: (i) an “informative” flow,
characterised by positive local values of transfer entropy, based on fish that have already changed
direction about fish that are turning, and (ii) a “misinformative” flow, characterised by negative
local values of transfer entropy, based on fish that have not changed direction yet about the fish
that are turning. Finally, we identify spatial patterns coupled with the temporal transfer entropy,
which we call spatio-informational motifs. These motifs reveal spatial dependencies between the
source of information and its destination, which shape the directed pairwise interactions underly-
ing the informative and misinformative flows. The strong distinction revealed by our quantitative
analysis between informative and misinformative flows is expected to have an impact on modelling
and understanding the dynamics of collective animal motion.

Information-theoretic measures for collective motion

The study of Wang et al. [77] introduced the use of transfer entropy to investigations of collective
motion. This work quantitatively verified the hypothesis that information cascades within an
(artificial) swarm can be spatiotemporally revealed by conditional transfer entropy [46, 47] and thus
correspond to communications, while the collective memory can be captured by active information
storage [48].

Richardson et al. [67] applied related variants of conditional mutual information, a measure
of non-linear dependence between two random variables, to identify dynamical coupling between
the trajectories of foraging meerkats. Transfer entropy has also been used to study the response
of schools of zebrafish to a robotic replica of the animal [17, 37], and to infer leadership in pairs
of bats [57] and simulated zebrafish [18]. Lord et al. [51] also posed the question of identifying
individual animals which are directly interacting with other individuals, in a swarm of insects
(Chironomus riparius). Their approach used conditional mutual information (called “causation
entropy” although it does not directly measure causality [40]), inferring “information flows” within
the swarm over moving windows of time.

Unlike the study of Wang et al. [77], the above studies quantified average dependencies over
time rather than local dependencies at specific time points; for example, leadership relationships
in general rather than their (local) dynamics over time. Local versions of transfer entropy and
active information storage have been used to measure pairwise correlations in a “swarm” of soldier
crabs, finding that decision-making is affected by the group size [74]. Statistical significance was
not reported, presumably due to a small sample size. Similar techniques were used to construct
interaction networks within teams of simulated RoboCup agents [22].

In this study we focus on local (or pointwise) transfer entropy [70, 46, 43] for specific samples
of time-series processes of fish motion, which allows us to reconstruct the dynamics of information
flows over time. Local transfer entropy [46], captures information flow from the realisation of a
source variable Y to a destination variable X at time n. As described in Methods, local transfer
entropy is defined as the information provided by the source yn−v = {yn−v, yn−v−1, . . . , yn−v−l+1},
where v is a time delay and l is the history length, about the destination xn in the context of the
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past of the destination xn−1 = {xn−1, xn−2, . . . , xn−k}, with a history length k:

ty→x(n, v) = log2
p(xn|xn−1,yn−v)

p(xn|xn−1)
. (1)

Importantly, local values of transfer entropy can be negative, while the average transfer entropy is
non-negative. Negative values of the local transfer entropies indicate that the source is misinfor-
mative about the next state of the destination (i.e. it increases uncertainty). Previous studies that
used average measures over sliding time windows in order to investigate how information transfer
varies over time [67, 51] cannot detect misinformation because they measure average but not local
values.

As an observational measure, transfer entropy does not measure causal effect of the source on the
target; this can only be established using interventional measures [5, 40, 21, 71]. Rather, transfer
entropy measures the predictive information gained from a source variable about the state transition
in a target, which may be viewed as information transfer when measured on an underlying causal
interaction [40]. It should be noted that while some researchers may be initially more interested
in causality, the concept of information transfer reveals much about the dynamics that causal
effect does not [40], in particular being associated with emergent local structure in dynamics in
complex systems [46, 77] and with changes in behaviour, state or regime [12, 9], as well as revealing
the misinformative interactions described above. As a particular example, local transfer entropy
spatiotemporally highlights emergent glider entities in cellular automata [46], which are analogues of
cascading turning waves in swarms (also highlighted by transfer entropy [77]), while local measures
of causality do not differentiate these from the background dynamics [40].

It is well known that the internal dynamics within a school of fish depends on the number of
fish. For example, for schools of minnows (Phoxinus phoxinus), two fish schools are qualitatively
different from schools containing three or more — however, the effects seem to level off by the time
the school reaches a size of six individuals [60]. Collective behaviour, as well as a stereotypical “phase
transition”, when an increase in density leads to the onset of directional collective motion, have
also been detected in small groups of six glass prawns (Paratya australiensis) [52]. Furthermore, at
such intermediate group sizes, it has been observed that multiple fish interactions could often be
faithfully factorised into pair interactions in one particular species of fish [30].

In our study we investigated information transfer within a school of fish during specific collective
direction changes, i.e., U-turns, in which the school collectively reverses its direction. Groups of five
fish were placed in a ring-shaped tank (Figure 1b), a design conceived to constrain fish swimming
circularly, with the possibility of undergoing U-turns spontaneously, without any obstacles or exter-
nal factors. A total of 455 U-turns have been observed during 10 trials of one hour duration each.
We computed local transfer entropy between each (directed) pair of fish from time series obtained
from fish heading. Specifically, the destination process X was defined as the directional change of
the destination fish, while the source process Y was defined as the relative heading of the destina-
tion fish with respect to the source fish (see Methods). This allowed us to capture the influence of
the source-destination fish alignment on the directional changes of the destination. Such influence
is usually delayed in time and we estimated the optimal delay (maximizing 〈ty→x(n, v)〉n [79], see
Methods) at v = 6, corresponding to 0.12 seconds.
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Figure 1: Transfer entropy within the school during a U-turn. Figure 1a is a photo of a spontaneous U-turn
initiated by a single fish in a group of five Hemigrammus rhodostomus fish. Figure 1b shows the experimental
ring-shaped tank. Figure 1c plots the school’s polarisation during a U-turn and the detected transfer entropy
over a time interval of approximately 6 seconds. The purple line represents the school’s polarisation, while
dots represent local values of transfer entropy between all directed pairs of fish: red dots represent positive
transfer entropy and blue dots represent negative transfer entropy. Time is discretised in steps of length
0.02 seconds and for each time step 20 points of these local measures are plotted, for the 20 directed pairs
formed out of 5 fish. The yellow lines in the inset are the thresholds for considering a value of transfer
entropy statistically different from zero (p < 0.05 before false discovery rate correction, see Methods). Grey
dots between these lines represent values that are not statistically different from zero.

Results

Information flows during U-turns

In order to represent the school’s orientation around the tank, we define its polarisation so that it
is positive when the school is swimming clockwise and negative when it is swimming anti-clockwise
(see Methods). The better the school’s average heading is aligned with an ideal circular trajectory
around the tank, the higher is the intensity of the polarisation. When the school is facing one of the
tank’s walls, for example in the middle of a U-turn, the polarisation is zero, and the polarisation
flips sign during U-turns. Polarisation allows us to map local values of transfer entropy onto the
progression of the collective U-turns.

The analyses of transfer entropy over time reveal that the measure clearly diverges from its base-
line in the vicinity of U-turns, as shown in the representative U-turn in Figure 1c (Supplementary
Figure S1 shows a longer time interval during which several U-turns can be observed). The figure
shows that during regular circular motion, when the school’s polarisation is highly pronounced,
transfer entropy is low. As the polarisation approaches zero the intensity of transfer entropy grows,
peaking near the middle of a U-turn, when polarisation switches its sign.

We clarify that the aim here is not to establish transfer entropy as an alternative to polarisation
for detecting turn; rather, our aim is to use polarisation to describe the overall progression of
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the collective U-turns and then to use transfer entropy to investigate the underlying information
flows in the dynamics of such turns. Indeed, transfer entropy is found to be statistically different
from zero at many points outside of the U-turns (see Supplementary Figure S1), although the
largest values and most concentrated regions of these are during the U-turns. This indicates that
information transfer occurs even when fish school together without changing direction; we know
that the fish are not executing precisely uniform motion during these in-between periods, and so
interpret these small amounts of information transfer as sufficiently underpinning the dynamics of
the group maintaining its collective heading.

We also see in Figure 1c that both positive and negative values of transfer entropy are detected.
In order to understand the role of the positive and negative information flows during collective
motion, in the next section we show the dynamics of transfer entropy for individual pairwise inter-
actions.

Informative and misinformative flows

Our analysis revealed a clear relationship between positive and negative values of transfer entropy
and the sequence of individual fish turning, which is illustrated in Figure 2. Figure 2a shows the
trajectories of individual fish during the same U-turn depicted in Figure 1. These trajectories are
retraced in Figure 2d in terms of polarisation of each fish. It is quite clear that there is a well-
defined sequence of individual U-turns during the collective U-turn. Moreover, Figure 2 shows how
the transfer entropy maps onto the fish trajectories, both from the fish whose trajectory is traced
as a source to the other four fish — i.e. outgoing transfer entropy — and, vice versa, from the other
four fish to the traced one as a destination — i.e. incoming transfer entropy.

The incoming transfer entropy clearly peaks during the destination fish’s individual turns and
its local values averaged over all sources go from negative, for the first (destination) fish that turns,
to positive for the last fish turning (Figures 2b and 2e). In the opposite direction, the outgoing
transfer entropy (averaged over all destinations) displays negative peaks only before the source
fish has turned, and positive peaks only afterwards (Figures 2c and 2f). Figure 2 suggests that
predictive information transfer intensifies only when a destination fish is turning, with this transfer
being informative based on source fish that have already turned and misinformative based on source
fish that have not turned yet.

This phenomenon can be observed very clearly in Figures 3a and 3b, which show the transfer
entropy in both directions for a single fish (the second fish turning in Figures 1 and 2). One
positive peak of incoming transfer entropy (indicating informative flow) and three negative ones
(misinformative flows) are detected when this fish, as a destination, is undergoing the U-turn (Figure
3a). No other peaks are detected for this fish as a destination. On the other hand, one negative
peak of outgoing transfer entropy is detected before the fish, this time as a source, has turned, and
three positive peaks are detected after the fish has turned (Figure 3b). These four peaks occur
respectively when the first, the third, the fourth and the fifth fish undergo the U-turn, as is evident
by comparing Figures 3b and 2d. A movie of the fish undergoing this specific U-turn is provided
in Supplementary Video S1, while a detailed reconstruction of the U-turn, showing the dynamics
of transfer entropy over time for each directed pair of fish, is provided in Supplementary Video S2.

In order to demonstrate that the phenomenon described here holds for U-turns in general, and
not only for the representative one shown in Figure 2, we performed an aggregated analysis of all
455 U-turns observed during the experiment. Since the order in which fish turn is not the same in
every U-turn, in this analysis, we refer not to single fish as individuals, but rather to fish in the
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Figure 2: Positive and negative information flows during a U-turn. Figure 2a shows the trajectories of the
five fish during the U-turn shown in Figure 1. The two black lines are the inner and the outer walls of
the tank, and each of the five trajectories coloured in different shades of purple correspond to a different
fish: from darkest purple for the first fish turning (Fish 1), to the lightest purple for the last (Fish 5).
The total time interval is approximately 2 seconds, during which all fish turn from swimming anti-clockwise
to clockwise. Figure 2d depicts the polarisations of the five fish, showing the temporal sequence of fish
turns. Figure 2b shows the fish trajectories again, but this time indicates the value of the incoming local
transfer entropy to each fish as a destination, averaged over the other four fish as sources. The colour
of each trajectory changes as the fish turn: strong red indicates intense positive transfer entropy; strong
blue indicates intense negative transfer entropy; intermediate grey indicates that transfer entropy is close
to zero. Figure 2e is obtained analogously to Figure 2b, but the polarisations of the individual fish are
shown rather than their trajectories. Figures 2c and 2f mirror Figures 2b and 2e, but where the direction
of the transfer entropy has been inverted: the colour of each trajectory or polarisation now indicates the
value of the outgoing local transfer entropy from each fish as a source, averaged over the other four fish as
destinations.

order in which they turn. Thus, when we refer, for instance, to “the first fish that turns”, we may
be pointing to a different fish at each U-turn.

The aggregated results are presented in Figures 3c and 3d. Figure 3c shows that incoming
transfer entropy peaks for each fish in turning order and gradually grows, from a minimum negative
peak corresponding to the first fish turning, to a maximum positive peak corresponding to the last
fish turning. Vice versa, Figure 3d shows that outgoing transfer entropy peaks only positively for
the first fish turning, which is an informative source about all other fish turning afterwards. For
the last fish that turns the peak is negative, since this fish is misinformative about all other fish
that have already turned. The second, third and fourth fish present both a negative and a positive
peak. The intensity of the negative peaks increases from the second fish to the fourth, while the
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Figure 3: Figure 3a shows the polarisation of the second fish turning, together with the incoming transfer
entropy to that fish as the destination, with the other four fish as the sources: red dots represent positive
values and blue dots represent negative values. Figure 3b mirrors Figure 3a, but with the outgoing transfer
entropy from that fish as the source, and the other four fish as destinations. In Figure 3c, each purple line
corresponds to a fish, with the shade again reflecting the order in which the fish turn (darkest for first fish to
turn, and lightest for the last). Now however (in Figure 3c), rather than corresponding to a single U-turn
event, the incoming local transfer entropy (to each fish as a destination, averaged over the other four fish
as sources) is averaged over all 455 observed U-turns and is shown as a function of time. The horizontal
axis is the relative time of the U-turns, with zero being the time when the average polarisation of the school
changes sign. Figure 3d mirrors Figure 3c, but where the direction of the transfer entropy has been inverted
(showing outgoing transfer from each fish in turning order).

intensity of the positive peak decreases.

In general, the source fish is informative about all destination fish turning after it and misin-
formative about any destination fish turning before it. This is because the prior turn of a source
helps the observer to predict the later turn of the destination, whereas examining a source which
has not turned yet itself is actively unhelpful (misinformative) in predicting the occurrence of such
a turn. This also explains why, for a source, the negative peaks come before positives.

The sequential cascade-like dynamics of information flow suggests that the strongest sources
of predictive information transfer are fish that have already turned. Moreover our analyses reveal
that once a fish has performed a U-turn, its behaviour in general ceases to be predictable based
on the behaviour of other fish that swim in opposite direction (in fact such fish would provide
misinformative predictions). This suggests an asymmetry of predictive information flows based on
and about an individual fish during U-turns.
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(a) (b)

Figure 4: Spatio-informational motifs. Each diagram is a circle centred on a source fish with zero heading,
providing a reference. In each diagram space is divided into 60 angular sectors measuring 6◦. Within each
circle we group all pairwise samples from all 455 U-turns such that the source fish is placed in the centre
and the destination fish is placed within the circle in one of the sectors. The left circles in Figures 4a and
4b aggregate the relative positions of destination fish, while the right circles aggregate the relative headings
of destination fish. The value of each radial sector (for both position and heading) represents the average
of the corresponding values of either positive (Figure 4a) of negative (Figure 4b) transfer entropy. For
example, the value in each sector of the left diagram of 4a represents the average positive transfer entropy
for a destination fish, given it has relative position in that sector with respect to the source fish: all positive
values of transfer entropy corresponding to each sector are summed and divided by the total number of values
corresponding to that sector. The value in each sector of the right diagram of 4a represents the average
positive transfer entropy for a destination fish, given that its heading diverges from the one of the source by
an angle in that sector. Figure 4b mirrors Figure 4a this negative transfer entropy. The source fish data
are taken from the time points corresponding to the time delay v with respect to the source.

Spatial motifs of information transfer

It is reasonable to assume that predictive information transfer in a school of fish results from spatial
interactions among individuals. We investigated the role of pairwise spatial interactions in carrying
the positive and negative information flows that we detected in the previous section, looking for
spatial patterns of information and misinformation transfer.

In particular we established the statistics of the relative position and heading of the destination
fish relative to the source fish, at times when the transfer entropy from the source to the destination
is more intense. For this purpose we used radial diagrams (see Figure 4) representing the relative
data in terms transfer entropy, focusing separately on their positive (informative) and negative
(misinformative) values. In each diagram we aggregate data from all 455 U-turns and all pairs.
The diagrams show clear spatial patterns coupled with the transfer entropy, which we call spatio-
informational motifs.

We see that positive information transfer is on average more intense from source fish to: a. other
fish positioned behind them (Figure 4a, left), and b. to fish with headings closer to perpendicular
rather than parallel to them (Figure 4a, right). We know from Figures 2 and 3 that positive transfer
entropy is detected from source fish that have already turned to destination fish that are turning.
Thus, Figure 4a suggests that a source is more informative about destination fish that are left
behind it after a turn, most intensely when the destination fish are executing their own turning
manoeuvre to follow the source. Directional relationships from individuals in front towards others
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that follow were observed in previous works on birds [55], bats [57] and fish [36, 35, 69].

For negative information transfer (Figure 4b) we see a different spatio-informational motif.
Negative information transfer is on average more intense to fish generally positioned at the side and
with opposite heading. This aligns with Figures 2 and 3 in that negative transfer entropy typically
flows from fish that have not turned yet to those which are turning.

In summary, transfer entropy has a clear spatial signature, showing that the spatiotemporal
dependencies in the studied school of fish are not random but reflect specific interactions.

Discussion

Information transfer within animal groups during collective motion is hard to quantify because
of implicit and distributed communication channels with delayed and long-ranged effects, selective
attention [68] and other species-specific cognitive processes. Here we presented a rigorous framework
for detecting and measuring predictive information flows during collective motion, by attending to
the dynamic statistical dependence of directional changes in destination fish on relative heading
of sources. This predictive information flow should be interpreted as a change (gain or loss) in
predictability obtained by an observer.

We studied Hemigrammus rhodostomus fish placed in a ring-shaped tank which effectively only
allowed the fish to move straight ahead or turn back to perform a U-turn. The individual trajectories
of the fish were recorded for hundreds of collective U-turns, enabling us to perform a statistically
significant information-theoretical analysis for multiple pairs of source and destination fish.

Transfer entropy was used in detecting pairwise time delayed dependencies within the school.
By observing the local dynamics of this measure, we demonstrated that predictive information
flows intensify during collective direction changes — i.e. the U-turns — a hypothesis that until
now was not verified in a real biological system. Furthermore, we identified two distinct predictive
information flows within the school: an informative flow based on fish that have already preformed
the U-turn about fish that are turning, and a misinformative flow based on fish that have not
preformed the U-turn yet about the fish that are turning.

We also explored the role of spatial dynamics in generating the influential interactions that carry
the information flows, another well-known problem. In doing so, we mapped the detected values
of transfer entropy against fish relative position and heading, identifying clear spatio-informational
motifs. Importantly, the positive and negative predictive information flows were shown to be
associated with specific spatial signatures of source and destination fish. For example, positive
information flow is detected when the source fish is in front of the destination, similarly to what
was already observed in previous works on animals [55, 36, 35, 69, 57].

Local transfer entropy as it was applied in this study reveals the dynamics of pairwise informa-
tion transfer. It is well-known that multivariate extensions to the transfer entropy, e.g. conditioning
on other information sources, can be useful in terms of eliminating redundant pairwise relationships
whilst also capturing higher-order relationships beyond pairwise (i.e. synergies) [46, 47, 40, 75, 81],
and as such the identification of effective neighbourhoods cannot be accurately inferred using pair-
wise relationships alone. Improvements are possible by adapting algorithms for deciding when to
include higher-order multivariate transfer entropies (and which variables to condition on), devel-
oped to study effective networks in brain imaging data sets [50, 25, 53, 72], to collective animal
behaviour, as such methods can eliminate redundant connections and detect synergistic effects.
Whether or not such algorithms will prove useful for swarm dynamics is an open research question,
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with conflicting findings that first suggest that multiple fish interactions could be faithfully fac-
torised into simply pair interactions in one species [30] but conversely that this may not necessarily
generalise [36].

In any case, such adaptations to capture multivariate effects will be non-trivial, as it must
handle the short-term and dynamic structure of interactions across the collective. Early attempts
have been made using (a similar measure to) conditional TE – on average over time windows – in
collectives under such algorithms [51], however it remains to be seen what such measures reveal
about the collective dynamics on a local scale.

In summary, we have proposed a novel information-theoretic framework for studying the dy-
namics of information transfer in collective motion and applied it to a school of fish, without making
any specific assumptions on fish behavioural traits and/or rules of interaction. This framework can
be easily applied to studies of other biological collective phenomena, such as swarming and flocking,
artificial multi-agent systems and active matter in general.

Methods

Ethics statement

All experiments have been approved by the Ethics Committee for Animal Experimentation of the
Toulouse Research Federation in Biology N1 and comply with the European legislation for animal
welfare.

Experimental procedures

70 Hemigrammus rhodostomus (rummy-nose tetras) were purchased from Amazonie Labège (http:
//www.amazonie.com) in Toulouse, France. Fish were kept in 150 L aquariums on a 12:12 hour,
dark:light photoperiod, at 27.7◦C (±0.5◦C) and were fed ad libitum with fish flakes. Body lengths
of the fish used in these experiments were on average 31 mm (± 2.5 mm).

The experimental tank measured 120 × 120 cm, was made of glass and set on top of a box to
isolate fish from vibrations. The setup, placed in a chamber made by four opaque white curtains,
was surrounded by four LED light panels giving an isotropic lighting. A ring-shaped tank made
from two tanks (an outer wall of radius 35 cm and an inner wall, a cone of radius 25 cm at the
bottom, both shaping a corridor of 10 cm) was set inside the experimental tank filled with 7 cm of
water of controlled quality (50% of water purified by reverse osmosis and 50% of water treated by
activated carbon) heated at 28.1◦C (±0.7◦C). The conic shape of the inner wall has been chosen
to avoid the occlusion on videos of fish swimming too close to the inner wall that would occur with
straight walls.

Five fish were randomly sampled from their breeding tank for a trial. Fish were ensured to be
used only in one experiment per day at most. Fish were let for 10 minutes to habituate before the
start of the trial. A trial consisted in one hour of fish swimming freely (i.e. without any external
perturbation).

Data extraction and pre-processing

Fish trajectories were recorded by a Sony HandyCam HD camera filming from above the setup at
50Hz (50 frames per second) in HDTV resolution (1920×1080p). Videos were converted from MTS
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to AVI files with the command-line tool FFmpeg 2.4.3. Positions of fish on each frame were tracked
with the tracking software idTracker 2.1 [61].

When possible, missing positions of fish have been manually corrected, only during the collective
U-turn events detected by the sign changes of polarisation of the fish groups. The corrections have
involved manual tracking of fish misidentified by idTracker as well as interpolation or merging
of positions in the cases where only one fish was detected instead of several because they were
swimming too close from each others for a long time. All sequences less or equal than 50 consecutive
missing positions were interpolated. Larger sequence of missing values have been checked by eye to
check whether interpolating was reasonable or not — if not, merging positions with closest neighbors
was considered.

Time series of positions have been converted from pixels to meters and the origin of the coor-
dinate system O(0, 0) has been set to the centre of the ring-shaped tank. The resulting data set
contains 9,273,720 data points (1,854,744 for each fish) including all the ten trials. Velocity was nu-
merically derived from position using the symmetric difference quotient two-point estimation [39].
Heading was then computed as the four-quadrant inverse tangent of velocity and used to compute
transfer entropy.

Polarisation

The polarisation is used to represent the orientation of a fish or of the whole school around the
tank, which can be clockwise or anti-clockwise. Let Z and Ż be the two-dimensional position and
normalised velocity of a fish, defined as Cartesian vectors with the centre of the tank being the
origin — in case of the whole school, Z and Ż are averaged over all fish. The fish direction along
an ideal circular clockwise rotation is described by a unit vector z = ω×Z

|ω×Z| , where ω is a vector

orthogonal to plane of the rotation, chosen using the left-hand rule.
The polarisation is defined as Ż ·z, so that it is positive when the fish is swimming clockwise and

negative when it is swimming anti-clockwise. Also, the better Ż is aligned with z or −z, the higher
is the intensity of the polarisation. On the contrary, as Ż deviates from z or −z, the polarisation
decreases and eventually reaches zero when Ż and z are orthogonal. As a consequence, during a
U-turn the intensity of the polarisation decreases and becomes zero at least once, before it increases
again with the opposite sign.

Local transfer entropy

Transfer entropy [70] is defined in terms of Shannon entropy, a fundamental measure in Information
Theory [24] that quantifies the uncertainty of random variables. Shannon entropy of a random
variable X is H(X) = −

∑
x∈X p(x) log2 p(x), where p(x) is the probability of a specific instance

x of X. H(X) can be interpreted as the minimal expected number of bits required to encode a
value of X without losing information. The joint Shannon entropy between two random variables
X and Y is H(X,Y ) = −

∑
x∈X

∑
y∈Y p(x, y) log2 p(x, y), where p(x, y) is the joint probability of

instances x of X and y of Y . This quantity allows the definition of conditional Shannon entropy as
H(X|Y ) = H(X,Y )−H(X), which represents the uncertainty of X knowing Y .

In this study we are interested in local (or pointwise) transfer entropy [27, 43] for specific
instances of time-series processes of fish motion, which allows us to reconstruct the dynamics of
information flows over time. Shannon information content of an instance xn of process X at time
n is defined as h(xn) = − log2 p(xn). The quantity h(xn) is the information content attributed
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to the specific instance xn, or the information required to encode or predict that specific value.
Conditional Shannon information content of an instance xn of process X given an instance yn of
process Y is defined as h(xn|yn) = h(xn, yn)− h(xn).

Local transfer entropy is defined as the information provided by the source yn−v = {yn−v, yn−v−1,

. . . , yn−v−l+1}, where v is a time delay and l is the history length, about the destination xn in the
context of the past of the destination xn−1 = {xn−1, xn−2, . . . , xn−k}, with a history length k:

ty→x(n, v) = h(xn|xn−1)− h(xn|xn−1,yn−v)

= log2
p(xn|xn−1,yn−v)

p(xn|xn−1)
.

(2)

Transfer entropy TY→X(v) is the average of the local transfer entropies ty→x(n, v) over samples (or
over n under a stationary assumption). The transfer entropy is asymmetric in Y and X and is also
a dynamic measure (rather than a static measure of correlations) since it measures information in
state transitions of the destination.

In order to compute transfer entropy here, the source variable Y and destination variable X are
defined in terms of the fish heading. Specifically, X is the first-order divided difference (Newton’s
difference quotient) of the destination fish heading, while Y is the difference between the two fish
headings at the same time. Let ΘS and ΘD be respectively the heading time series of the source
and the destination fish. We then construct variables X and Y as follows, for all time points n:

xn = ΘD
n −ΘD

n−1 (3)

yn = ΘD
n −ΘS

n . (4)

Thus, yn represents the relative heading of the destination fish with respect to the source fish, while
xn represents the directional change of the destination fish. The variables were so defined in order
to capture directional changes of the destination fish in relation to its alignment with the source
fish, which is considered an important component of movement updates in swarm models [66].

Given the definition of the variables (3) and (4), we computed local transfer entropy ty→x(n, v)
using Equation (2), where v was determined as described in section “Parameters optimisation” that
follows. The past state xn−1 of the destination in transfer entropy was defined as a vector of an
embedding space of dimensionality k and delay τ , with xn−1 = {xn−1−jτ}, for j = {0, 1, . . . , k −
1}. Finding optimal values for k and τ is also described in section “Parameters optimisation”.
The state of the source process yn−v was also defined as a vector of an embedding space whose
the dimensionality l and delay τ ′ were similarly optimised. The local transfer entropy ty→x(n, v)
computed on these variables therefore tells us how much information (l time steps of) the heading
of the destination relative to the source adds to our knowledge of the directional change in the
destination (some v time steps later), in the context of k past directional changes of the destination.
We note that while turning dynamics of the destination may contain more entropy (as rare events),
there will only be higher transfer entropy at these events if the source fish is able to add to the
prediction of such dynamics.
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Computing transfer entropy requires knowledge of the probabilities of xn and yn defined in (3)
and (4). These are not known a priori, but the measures can be estimated from the data samples
using existing techniques. In this study, this was accomplished assuming that the probability dis-
tribution function for the observations is a multivariate Gaussian distribution (making the transfer
entropy proportional to the Granger causality [7]), using the JIDT software implementation [42].

Also, we assume stationarity of behaviour and homogeneity across the fish, such that we can pool
together all pairwise samples from all time steps, for all trials, maximising the number of samples
available for the calculation of each measure. For performance efficiency, we make calculations of
the local measures using 10 separate sub-sampled sets (sub-sampled evenly across the trials), then
recombine into a single resultant information-theoretic data set.

Parameter optimisation

The embedding dimensionality and delay for the source and the past state of the destination need
to be appropriately chosen in order to optimise the quality of transfer entropy. The combination
(k, τ) for the past state of the destination, as well as the combination (l, τ ′) for the source, have
been optimised separately by minimising the global self-prediction error, as described in [65, 80].
In the case of Markov processes, the optimal dimensionality of the embedding is the order of the
process. Lower dimensions do not provide the same amount of predictive information, while higher
dimensions add redundancy that weaken the prediction. For non-Markov processes, the algorithm
selects the highest dimensionality found to contribute to self-prediction of the destination whilst
still being supported by the finite amount of data that we have. Values of the dimensionality
between 1 and 10 have been explored in combination with values of the delay between 1 and 5. The
optimal combinations were found to be the same for both the source and the past of the destination:
k = l = 3, τ = τ ′ = 1.

The lag v was also optimised. This was done by maximising the average transfer entropy (after
the optimisation of k, τ , l and τ ′) as per [79], over lags between 0.02 and 1 second, at time steps
of 0.02 seconds. The average transfer entropy was observed to grow and reach a local maximum at
v = 6 (0.12 seconds), and then decrease for higher values (see Figure 5). This result might have a
biological interpretation: it is plausible for a fish to have a minimum reaction time, which delays
the response to behaviour of other fish.

Statistical significance of estimates of local transfer entropy

Theoretically, transfer entropy between two independent variables is zero. However, a non-zero bias
(and a variance of estimates around that bias) is likely to be observed when, as in this study, transfer
entropy is numerically estimated from a finite number of samples. This leads to the problem of
determining whether a non-zero estimated value represents a real relationship between two variables,
or is otherwise not statistically significant [80].

There are known statistical significance tests for the average transfer entropy [76, 44, 42], in-
volving comparing the measured value to a null hypothesis that there was no (directed) relationship
between the variables. For an average transfer entropy estimated from N samples, one surrogate
measurement is constructed by resampling the corresponding yn−v for each of the N samples of
{xn,xn−1} and then computing the average transfer entropy over these new surrogate samples. This
process retains p(xn|xn−1) and p(yn−v), but not p(xn|yn−v,xn−1). Many surrogate measurements
are repeated so as to construct a surrogate distribution under this null hypothesis of no directed
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Figure 5: Time lag optimisation. The red line represents the average transfer entropy (with k = l = 3,
τ = τ ′ = 1) over all samples, as a function of the time delay between the source variable and the destination
variable, for time delays between 0.02 to 1 seconds (1 to 50 time cycles).

relationship, and the transfer entropy estimate can then be compared in a statistical test against
this distribution. For the average transfer entropy measured via the linear-Gaussian estimator, it
is known that analytically the surrogates (in nats, and multiplied by 2×N) asymptotically follow
a χ2 distribution with l degrees of freedom [31, 8]. We use this distribution to confirm that the
transfer entropy at the selected lag of 0.12 seconds (and indeed all lags tested) is statistically sig-
nificant compared to the null distribution (at p < 0.05 plus a Bonferroni correction for the multiple
comparisons across the 50 candidate lags).

Next, we introduce an extension of these methods in order to assess the statistical significance
of the local values. This simply involves constructing surrogate transfer entropy measurements
as before, however this time retaining the local values within those surrogate measurements and
building a distribution of those surrogates. Measured local values are then statistically tested
against this null distribution of local surrogates to assess their statistical significance.

We generated ten times as many surrogate local values as the number of actual local estimates,
with a total of approximately 371 million local surrogates. This large set of surrogate local values
was used to estimate p-values of actual local values of the transfer entropy. If p-value is sufficiently
small, then the test fails and the value of the transfer entropy is considered significant (the value
represents an actual relationship). The Benjamini-Hochberg [10] procedure was used to select the
p-value cutoff whilst controlling for the false discovery rate under (N) multiple comparisons.
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mation flow in a kinetic ising model peaks in the disordered phase. Physical Review Letters,
111(17):177203, October 2013.

[10] Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: A practical and pow-
erful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Method-
ological), 57(1):289–300, 1995.

[11] William Bialek, Andrea Cavagna, Irene Giardina, Thierry Mora, Edmondo Silvestri, Massi-
miliano Viale, and Aleksandra M. Walczak. Statistical mechanics for natural flocks of birds.
Proceedings of the National Academy of Sciences, 109(13):4786–4791, 2012.

[12] Joschka Boedecker, Oliver Obst, Joseph T Lizier, N Michael Mayer, and Minoru Asada. In-
formation processing in echo state networks at the edge of chaos. Theory in Biosciences,
131(3):205–213, 2012.

[13] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm intelligence: from natural to
artificial systems. Oxford university press, 1999.

[14] J. Buhl, D. J. T. Sumpter, I. D. Couzin, J. J. Hale, E. Despland, E. R. Miller, and S. J.
Simpson. From disorder to order in marching locusts. Science, 312(5778):1402–1406, 2006.

[15] Jerome Buhl and Stephen Rogers. Mechanisms underpinning aggregation and collective move-
ment by insect groups. Current Opinion in Insect Science, 15:125 – 130, 2016. Pests and
resistance * Behavioural ecology.

[16] Jerome Buhl, Gregory A. Sword, Fiona J. Clissold, and Stephen J. Simpson. Group structure
in locust migratory bands. Behavioral Ecology and Sociobiology, 65(2):265–273, 2010.

[17] Sachit Butail, Fabrizio Ladu, Davide Spinello, and Maurizio Porfiri. Information flow in animal-
robot interactions. Entropy, 16(3):1315–1330, 2014.

[18] Sachit Butail, Violet Mwaffo, and Maurizio Porfiri. Model-free information-theoretic approach
to infer leadership in pairs of zebrafish. Physical Review E, 93(4):042411, 2016.

[19] Andrea Cavagna, Irene Giardina, and Francesco Ginelli. Boundary information inflow enhances
correlation in flocking. Physical review letters, 110(16):168107, 2013.

[20] Andrea Cavagna, SM Duarte Queirós, Irene Giardina, Fabio Stefanini, and Massimiliano Viale.
Diffusion of individual birds in starling flocks. In Proc. R. Soc. B, volume 280, page 20122484.
The Royal Society, 2013.

[21] Daniel Chicharro and Anders Ledberg. When two become one: The limits of causality analysis
of brain dynamics. PLoS ONE, 7(3):e32466+, 2012.

[22] Oliver M. Cliff, Joseph T. Lizier, X. Rosalind Wang, Peter Wang, Oliver Obst, and Mikhail
Prokopenko. Quantifying long-range interactions and coherent structure in multi-agent dy-
namics. Artificial Life, 23(1):34–57, 2017.

[23] Iain D. Couzin. Collective cognition in animal groups. Trends in Cognitive Sciences, 13(1):36
– 43, 2009.

17

134



[24] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley-Interscience,
July 2006.

[25] Luca Faes, Giandomenico Nollo, and Alberto Porta. Information-based detection of nonlinear
Granger causality in multivariate processes via a nonuniform embedding technique. Physical
Review E, 83:051112+, 2011.

[26] Luca Faes and Alberto Porta. Conditional Entropy-Based evaluation of information dynamics
in physiological systems. In Michael Wibral, Raul Vicente, and Joseph T. Lizier, editors,
Directed Information Measures in Neuroscience, Understanding Complex Systems, pages 61–
86. Springer Berlin Heidelberg, 2014.

[27] Robert M. Fano. Transmission of information: A statistical theory of communications. M.I.T.
Press, Cambridge, MA, USA, 1961.

[28] David P Feldman, Carl S McTague, and James P Crutchfield. The organization of intrinsic
computation: Complexity-entropy diagrams and the diversity of natural information process-
ing. Chaos: An Interdisciplinary Journal of Nonlinear Science, 18(4):043106, 2008.
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Supplementary Figure S1. Transfer entropy within the school during several U-turns. The figure plots the
school’s polarisation during a U-turn and the detected transfer entropy over a time interval of approximately
35 seconds. The purple line represents the school’s polarisation, while dots represent local values of transfer
entropy between all directed pairs of fish: red dots represent positive transfer entropy and blue dots represent
negative transfer entropy. Time is discretised in steps of length 0.02 seconds and for each time step 20
points of these local measures are plotted, for the 20 directed pairs formed out of 5 fish.
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Supplementary Video S1. Fish undergoing the representative U-turn (click on the image to open the video).
The movie shows five Hemigrammus rhodostomus swimming in the ring-shaped tank for approximately 6
seconds, during which they undergo the U-turn presented in the main article.
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Supplementary Video S2 (click on the image to open the video). Animation of the representative U-turn
showing transfer entropy dynamics. The movie shows an animation of the representative U-turn over a time
interval of approximately 2 seconds. On the top-left is the ring-shaped tank with the five fish, represented by
arrows of different shades of purple. On the bottom is the transfer entropy between any directed pair of fish
over the time interval: red dots represent positive transfer entropy and blued dots represent negative transfer
entropy. Time is discretised in steps of length 0.02 seconds and for each time step 20 points of transfer
entropy are plotted, for the 20 directed pairs that can be formed out of 5 fish. On the top-right is the network
of transient neighbours changing over time. Each node represents a fish and each directed edge entering a
node indicates the transfer entropy to that fish from the other four (the source fish is easily identifiable from
the angle of the edges). The colour of the edges changes during the U-turn: strong red indicates intense
positive transfer entropy; strong blue indicates intense negative transfer entropy; intermediate grey indicates
that transfer entropy is close to zero.
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Abstract

Schools of fish and flocks of birds can move together in synchrony and decide on new direc-

tions of movement in a seamless way. This is possible because group members constantly

share directional information with their neighbors. Although detecting the directionality of

other group members is known to be important to maintain cohesion, it is not clear how

many neighbors each individual can simultaneously track and pay attention to, and what the

spatial distribution of these influential neighbors is. Here, we address these questions on

shoals of Hemigrammus rhodostomus, a species of fish exhibiting strong schooling behav-

ior. We adopt a data-driven analysis technique based on the study of short-term directional

correlations to identify which neighbors have the strongest influence over the participation of

an individual in a collective U-turn event. We find that fish mainly react to one or two neigh-

bors at a time. Moreover, we find no correlation between the distance rank of a neighbor and

its likelihood to be influential. We interpret our results in terms of fish allocating sequential

and selective attention to their neighbors.

Author summary

Schooling fish exhibit impressive group-level coordination in which multiple individuals

move together in a seamless way. This is possible because each individual in the group

responds to the movement of other group members. But how many individuals does each

fish pay attention to? Which are the influential neighbors? It is necessary to answer these

questions in order to understand how directional information propagates across a group.

Our research shows that in the rummy-nose tetra species there is a limited number of

influential neighbors which are not necessarily the closest ones.
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Introduction

Collective motion phenomena such as swarming, flocking and schooling behavior have been

observed in a large variety of animal species ranging from bacteria to humans [1]. Several theo-

retical models have been proposed to explain how such large scale coordination patterns

emerge from “microscopic level” interaction rules among individual animals [2–7]. These

models have been instrumental in improving our understanding of collective motion in real

animal groups by providing an indication of which interaction mechanisms are sufficient to

reproduce realistic patterns of collective behavior. In particular, most models agree on the fact

that two types of interaction are responsible for maintaining group cohesion to achieve coher-

ent collective motion: attraction and alignment.

More recent improvements in remote sensing and video-tracking technologies [8–10] have

made possible to automate data collection and test directly theoretical models against highly

resolved empirical movement data in various species. Generally, these studies have confirmed

the importance that attraction and alignment behavior play in the formation and maintenance

of collective movement patterns [11–15]. However, there is a less clear scientific consensus

about how these interaction rules are implemented in the sensory-motor responses of individ-

uals. This lack of agreement underscores the importance of answering the following question:

how do individuals mediate interactions with multiple neighbors? [16].

Specifically, theoretical studies have postulated a number of factors that are likely to affect

the probability and intensity of interactions: distance (metric neighborhood) [2–7], position

rank (topological neighborhood) [17], projected size (visual neighborhood) [18–20], and spa-

tial arrangement around a focal individual (Voronoi neighborhood) [13]. Each of these differ-

ent definitions of influential neighborhood is supported to some extent by computational

models and empirical observations.

Rather than siding with one or more of the proposed neighborhood definitions, we adopt a

fully data-driven approach with minimalist modeling assumptions. The simplest hypothesis

consists of assuming that fish copy the actions of their neighbors, but not instantaneously: the

fish reaction takes time to process sensory information and to trigger the appropriate behav-

ioral response. Those assumptions impose a temporal constraint given by the sequential occur-

rence of the perception of the neighbors’ actions, and the movement response [21, 22]. We

thus assume that animals following a particular neighbor in a new direction are subject to a

time-delay when copying the heading of influential neighbors.

Considerable work has already appeared on the identification of these time-delays. The

delays with which individuals align with each other have in fact been exploited to determine

social hierarchies in animal groups, as shown, e.g., for pigeon flocks [23], where the leadership

network is constructed with link weights given by the delay for which pairwise angle correla-

tion is maximal. Improvements on how to identify such delays from movement data have pro-

posed the use of time-dependence in pairwise angle correlation [24]. A computational

analysis, based on similarities between trajectories (Fréchet distance), has also been proposed

and implemented in a visual analytic tool [25]. A different approach has made use of a time-

ordering procedure on the pairwise angle correlation to determine temporary leader/follower

relations in foraging pairs of echolocating bats [26]. The analysis of the bat trajectories was

instrumental in identifying transient leadership and coupling it to sensory biases of the species.

However, only pairs of individuals were considered and group influence on individual behav-

ior was not investigated.

Since identifying influential neighbors is key to unravel the mechanisms of interaction,

there is a need in collective behavior studies to establish transient leadership from the dynam-

ics of the individual trajectories. One way to bridge this gap consists of determining who are

Identifying influential neighbors in animal flocking
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those influential individuals whose heading is being copied more closely by others, how many

of such influential neighbors exist, and where are located in the group.

Fish have the ability to choose not only when to copy the heading of another individual, but

also the extent to which this heading is copied, that is the similarity and the pace at which fish

match the trajectory’s curvature of another individual [11, 27]. The closer two (or more) fish

are to this matching, the more aligned they are (even if with some delay), and the more faith-

fully they are following the movement path of the transient leader.

Here, we introduce a procedure that allows us to identify the influential neighbors of fish

moving in a group, and we test it along a series of experiments in groups of two and five indi-

viduals of the freshwater tropical fishHemigrammus rhodostomus swimming in a ring-shaped

tank (see details in Materials and methods). In this set-up, fish swim in a highly synchronized

and polarized manner, and can only head in two directions, clockwise or anticlockwise, regu-

larly switching from one to the other. We base our procedure for identifying influential neigh-

bors on time-dependent directional correlations between fish, focussing our analysis on the

interactions that occur during these collective U-turns. Indeed, during U-turns, fish have to

make a substantial change of direction to reverse their heading, making easier the extraction of

the correlation resulting from the direct interactions between individuals rather than other

incidental correlations, e.g., their channeled motion in the ring-shaped tank. Moreover, as cor-

relation does not imply causal influence, we need to control for potential spurious correlations.

We do so by constructing a null model of collective U-turns to show that the patterns of inter-

action observed in the experiments are not due to random processes.

Results

Dynamics of collective U-turns

Hemigrammus rhodostomus performs burst-and-coast swimming behavior that consists of

sudden heading changes combined with brief accelerations followed by quasi-passive, straight

decelerations [15]. Moreover, fish spend most of their time swimming in a single group along

the wall of the tank. Fish regularly change their position within the group [28], so that every

individual fish can be found at the front of the group.

A typical collective U-turn event starts with the spontaneous turnaround of a single fish

(hereafter called the initiator), mostly located at the front of the group [28]. This sudden

change of behavior triggers a collective reaction in which all the other individuals in the group

make a U-turn themselves, so that, after a short transient, all individuals adopt the same final

direction of motion as the initiator. Overall, we analyzed 1586 U-turns of which 1111 were

observed in groups of 2 fish and 475 in groups of 5 fish. Fig 1 shows two examples of collective

U-turns in groups of N = 2 (left column, panels ABC) and N = 5 fish (right column, panels

DEF; see also supplementary S8 Fig and supplementary S1 and S2 Videos in the Supplemen-

tary Information).

Fig 1A shows a first fish F1 (red color) swimming close to the upper-left region of the tank,

followed by a second fish F2 (purple color) at a distance d12! 8.5 cm, swimming in the same

direction. Right before the U-turn starts (Fig 1A), fish F1 reduces its speed (circles become

closer to each other), the distance d12 decreases (to! 5.1 cm), and F2 also reduces its speed.

Then, both fish perform a change of direction which lasts about 1 second and during which

fish F2 clearly follows fish F1 (see the corresponding circles at each instant of time in Fig 1B).

Once the U-turn is completed (Fig 1C), F1 accelerates again, and so does F2, which also adopts

the direction of motion of F1. The distance d12 increases again (! 9.5 cm), due to the larger

velocities, and remains of the same order along the depicted trajectory.
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The situation is less clear when we try to describe collective U-turns in larger groups.

Fig 1D, 1E and 1F show a collective U-turn for the case where N = 5. Before the U-turn, fish

F2 (orange) seems to be the fish that the rest of the group follows, the first circle of its trajectory

being the most advanced one in the direction of motion. In fact, a position order can be

inferred from Fig 1D: F2, F3, F5, F1 and F4. However, it is rather complicated to extract from

Panel E a precise information about which fish is the initiator of the U-turn, in which order

the other fish follow, and therefore, who is influencing whom, especially if time-delays and

reaction times are taken into account. The same happens with the information about fish’s

positions after the U-turn, provided by Panel F.

In order to describe rigorously the individual behavior of the N fish during a U-turn, we

introduce the angle ϕi(t) as an instantaneous measure of the direction of motion of a fish Fi;

see Fig 2. We assume that the instantaneous heading of a fish Fi can be defined in terms of the

velocity vector~v iðtÞ, so that~v i ¼ ð cos!i; sin!iÞ k~v i k. The heading of a fish ϕi allows us to

characterize the angle of incidence of the fish relative to the wall, θwi = ϕi − ψi, where ψi is the

angle formed by the position vector of the fish with the horizontal line (see Fig 2). The angle of

incidence θwi is an individual measure that doesn’t depend on the heading of another fish.

When a fish Fi is swimming along the wall, the value of θwi is around ±90˚ (we choose, by con-

vention, the positive sign for the anticlockwise angle). In our experiments, most of the time the

absolute value of the angle of incidence is close to 90˚; equivalently, |sin(θwi(t))|! 1. When the

Fig 1. Collective U-turns in groups of two and five fish. Fish trajectories (solid lines) with successive
positions (circles) equispaced in time every 0.04s. (ABC):N = 2, (DEF):N = 5. The top row (AD) displays the
collective U-turn one second before it starts, t 2 [ts − 1 s, ts], where ts denotes the time at which the collective
U-turn starts. The middle row (BE) displays the collective U-turn, t 2 [ts, te], where te denotes the end time of
the collective U-turn. The bottom row (CF) displays the movement data 0.5 s after collective U-turn’s end, t 2
[te, te + 0.5 s]. For visual convenience solid lines indicate the actual fish trajectories before ts − 1 s and after te
+ 0.5 s. Arrows indicate the direction of motion. The grey thick line represents the tank border of radius 35 cm.

https://doi.org/10.1371/journal.pcbi.1005822.g001
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motion is perpendicular to the wall, the incidence is zero if the fish points towards the wall

(θwi = 0˚), and maximal if the fish points towards the center of the tank (θwi = 180˚); in both

cases, sin(θwi(t)) = 0.

The change of sign of angle θwi can serve as an indicator that a U-turn has taken place. In

fact, this allows us to delimit the individual U-turns with precision and, consequently, to deter-

mine the start and the end of a collective U-turn.

We define the start and end times ts,i and te,i of the individual U-turn of fish Fi in terms of

the absolute value of the angle of incidence, |θwi(t)|. Once a U-turn has been detected, we

obtain the time ts,i at which |θwi(t)| has decreased (from approximately 90˚) below a given

Fig 2. Angles and lengths characterizing the relative position of two fish. Angleψj denotes the angular position of fish
Fjwith respect to the horizontal (positive values fixed in the anticlockwise direction); angle ϕi is the heading of fish Fi; șwi is
the angle of incidence of fish Fiwith respect to the outer wall; dij is the distance between Fi and Fj; șij is the viewing angle of Fi

with respect to Fj (not necessarily equal to șji), and ϕij = ϕj − ϕi is the heading difference of Fi with respect to Fj.

https://doi.org/10.1371/journal.pcbi.1005822.g002
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threshold !ys, and the time te,i at which |θwi(t)| has increased again and is above another given

threshold !ye (see Materials and methods for more details).

Thus, the start of a collective U-turn is determined by the time ts at which the first individ-

ual U-turn starts, while the end of a collective U-turn is given by the time te at which the last

individual U-turn finishes. That is:

ts ¼ min
i¼1;...;N

fts;ig; te ¼ max
i¼1;...;N

fte;ig: ð1Þ

For each collective U-turn, we have made a convenient time shift so that ts = 0. Then, te
denotes not only the end time but also the duration of the collective U-turn.

We also introduce an instantaneous measure of how similar the direction of motion of indi-

vidual fish are across the group. We define the instantaneous group polarization P(t) as the fol-

lowing function of normalized fish velocity vectors:

PðtÞ ¼
1

N

!

!

!

!

!

!

!

!

!

!

XN

i¼1

~eiðtÞ

!

!

!

!

!

!

!

!

!

!

; ð2Þ

where~ei ¼~v i= k~v i k. When all the fish have the same direction then the polarization is maxi-

mal and P(t) = 1. The minimum value P(t) = 0 is reached instead when the velocity vectors

cancel.

Figs 3 and 4 depict the two U-turns introduced in Fig 1, in terms of the polarization P(t)

and the sine of the angle of incidence of each fish with respect to the outer wall θwi(t). The

duration of the two illustrated collective U-turns is te = 0.94 s for N = 2 and te = 1.5 s for N = 5.

For both group sizes, the group polarization (Figs 3B and 4B) before and after the U-turn is

quite close to 1, showing that before and after the collective U-turn, all individual fish maintain

essentially the same common direction. During the U-turn, the polarization decreases,

describing a sharp V-form with a minimum at P(t)! 0.27 for N = 2 and P(t)! 0.60 for N = 5.

The minimum is reached at approximately half the duration of the collective U-turn,

tm = (ts + te)/2: tm = 0.47 s for N = 2 and tm = 0.75 s for N = 5.

Figs 3C and 4C show the change of direction individually for each fish in both U-turns:

from anticlockwise to clockwise direction for N = 2, and vice versa for N = 5. Fig 3C clearly

indicates that at t! 0.3 s, the fish F1 has almost completed its individual U-turn, while F2 has

just started to change direction: sin(θw2(0.3))! 0.98, while sin(θw1(0.3))! −0.5.

In Fig 4C, a similar ordering can be inferred from the times of departure from the bottom

line at ordinate sin(θwi) = −1 + Ď, where Ď > 0 is a small parameter with respect to the range of

ordinate values; we used Ď = 0.1. Thus, the order is 2-3-1-5-4. However, the order in which

individual fish change the sign of their angle of incidence θwi is different, 2-1-3-5-4, and also

different is the arrival order to the top line at ordinate sin(θwi) = 1 − Ď: 2-5-1-4-3. Moreover,

some of these departure and arrival times are almost identical (see, e.g., F1 and F4), and the

behavior of the fish during the U-turn is completely different. These difficulties in establishing

a consistent order show that another criterion is necessary to identify the relation of influence

between fish.

We have based our criterion to decide if a fish is an influential neighbor of another fish on

the average value of the time-dependent directional correlation between the two fish along a

time window.

For each pair of fish Fi and Fj, we define the directional correlationHij as a function of the

heading of Fi evaluated at time t and the heading of Fj evaluated at a delayed time t − τ, where τ
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Fig 3. Spatial and temporal dynamics of a collective U-turn for N = 2. (A) Individual fish trajectories in the tank during the U-turn. Each
individual is represented by a unique color. The temporal sequence is indicated by circles equally spaced over time with a time-step of 0.04 s
(empty circles) and 0.1 s (filled circles). Arrows denote direction of motion. Grey wide line is the tank’s border. (B) Group polarization P(t), with
a minimum value Pmin! 0.27 reached at t! 0.46 s. (C) Sine of the angle of incidence of fish to the wall: when parallel to the wall, sin(șw) = 1
(anti-clockwise direction) or sin(șw) = −1 (clockwise). The three vertical lines of each color indicate for each fish the beginning, the middle and
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is the time-delay [26]:

Hijðt; tÞ ¼~eiðtÞ %~ejðt & tÞ: ð3Þ

The functionHij(t, τ) is in fact the cosine of the angle formed by the headings~eiðtÞ and

~ejðt & tÞ, and is a measure of how aligned is fish Fi at time twith fish Fj at time t − τ. The values

ofHij(t, τ) are between −1 (when fish swim in opposite directions) and 1 (when fish have the

same direction), and equals zero when fish have perpendicular directions.

By averagingHij(t, τ) along a time-window of length (2w + 1)Δt, we are able to quantify
how much the focal fish Fi is copying the moving direction of its neighbor with a time-delay τ

by means of the following function [26]

Cijðt; t;wÞ ¼
1

2wþ 1

Xw

k¼&w

Hijðt þ tk; tÞ; ð4Þ

where tk = kΔt (the time-step in our experiments is Δt = 0.02s). The time-window parameter

length w has been determined by means of a sensitivity analysis (pairwise similarity matrix),

finding that w = 2 yields the more satisfactory results; see Section “Parameter selection” in

Materials and methods and S5 Fig.

The average directional correlation Cij(t, τ, w) allows us to characterize a fish Fj as an influ-

ential neighbor of a focal fish Fi at time t with time-delay τ, if the value of Cij(t, τ, w) is larger

than a given threshold Cmin. Details on how w and Cmin are obtained are given in Sections

“Optimal setting parameters for influential neighbors identification” and “Parameter selec-

tion” in Material and Methods.

Fig 5 shows the directional correlationH12 and its time-average C12 between fish F1 and F2
along the collective U-turn depicted in Fig 3. Left (resp. right) panels aim to indicate the align-

ment of fish F1 (resp. F2) at each time t with respect to the alignment of fish F2 (resp. F1) at an

earlier time t − τ. Panels A and C show respectively that for all τ, there is always an interval of

time during which H12(t, τ)! −1 and C12(t, τ)! −1 (dark region), meaning that for all time-

delays there is always an interval of time in which fish have opposite directions. Moreover, the

larger the time-delay, the wider the black region where the direction of F1 is opposite to the

direction of F2 at the previous time.

On the other hand, the figures of the directional correlation of F2 with F1, especially Panel

D, show a connected region in which the correlation C21(t, τ) remains positive and above the

threshold (yellow in the figure) around τ! 0.42 s whereH21 ! 1 during all the time interval

[−0.5, 2 s]. This strongly suggests that, during this time interval, F2 is copying the behavior of

F1 with a 0.42 s time-delay, denoted τ2,1 for this specific U-turn. Thus, one can consider that F1
is influencing F2 with time-delay τ2,1, while F2 is not influencing F1 in this specific case. This

influence dynamics is illustrated in Fig 3D by drawing an arrow at time t from Fj to Fi when Fj
satisfies the condition Cij(t, τ, w)> Cmin for being an influential neighbor of Fi at time t, which

in turn receives this influence and responds by copying the exhibited heading with a time-

delay τ.

Using the same procedure for the N = 5 case depicted in Fig 4, we draw Fig 6 that shows F1
copying F2 with a time-delay τ1,2! 0.5 s (Panels A and E). F1 also copies F3 and F5 with,

respectively, τ1,3! 0.2 s (Panels B and F) and τ1,5! 0.1 s (Panels D and H), but it doesn’t copy

the end of its U-turn, with the middle representing the time when a fish has finally reversed its original direction. (D) Interaction with influential
neighbors: arrows point from influential neighbors to the focal fish and with the same color as the focal fish. (E) Fish bursting activity and their
influential neighbors. Dots at i = 1, 2 correspond to bursting activity, blank corresponds to coasting. Dots at i − 0.5 represent bursting activity of
the neighbor influencing fish i.

https://doi.org/10.1371/journal.pcbi.1005822.g003
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Fig 4. Spatial and temporal dynamics of a collective U-turn for N = 5. The displayed temporal sequence is drawn from the fish trajectories
one second before the U-turn begins till one second after its end. Symbols in all panels are the same as in Fig 3. (A) Individuals trajectories in
the tank during the U-turn. (B) Group polarization with a minimum value Pmin! 0.59 reached at t! 0.66 s. (C) Sine of the angle of incidence of
fish to the wall șw. The three vertical lines of each color indicate for each fish the beginning, the middle and the end of its U-turn. Here the
middle timemeans the instant where sin(șw) = 0. (D) Interactions with influential neighbors: arrows point from influential neighbors to the focal
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F4 (Panels C and G). The influential neighbors of F1 are thus F2, F3 and F5, at different times

and with different time-delays. We have calculated the rest of the correlations for all pairs of

fish (see S1 Fig for an overview of all the heading correlations). As for theN = 2 case, these rela-

tions are illustrated by arrows going from the influential neighbors to the reacting fish in

Fig 4D.

Effect of bursting on the transmission of information

The specific behavior ofH. rhodostomus, namely, the successive alternation of bursts and

coasts [15], leads us to ask whether these abrupt changes of acceleration and speed can provide

information that other fish could use to adjust their own movement. To address this aspect we

study whether there is any correlation between the bursting activity of one fish at time t and

the fact that this fish is an influential neighbor of another fish shortly after time t.

A burst corresponds to a brief phase of acceleration during which most changes in fish

heading occur [15]. Panels E in Figs 3 and 4 show the bursting activity of each fish Fi, i = 1, . . .,

N, and that of its influential neighbors. For each fish Fi, we draw a dot at time t and ordinate i

if fish Fi is displaying a burst precisely at time t. Dot color at ordinate i corresponds to fish Fi’s

color. The absence of a dot at a given time denotes that the fish is in a coasting phase at that

time.

fish and with the same color as the focal fish. (E) Fish bursting activity and their influential neighbors. If there is more than one influential
neighbor, Fjwith largest index value j is shown. Grey lines in Panels BCDE denote the start and end of the collective U-turn.

https://doi.org/10.1371/journal.pcbi.1005822.g004

Fig 5. Directional correlations between fish F1 and F2. (A) Directional correlationsH12(t, τ) and (B)H21(t, τ)
for t 2 [−0.5, 2] and τ 2 [0, 2] and their corresponding average over a time-window of width 2w = 0.4 s: (C)
C12(t, τ,w), (D)C21(t, τ,w). Yellow regions:Hij! 1 andCij! 1, i.e., fish have the same direction with a time-
delay τ. Dark regions:Hij! −1 andCij! −1, i.e., fish have opposite directions. The white upper-left corners
indicate the τ is larger than the minimal time considered in this data set.

https://doi.org/10.1371/journal.pcbi.1005822.g005
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A second row of colored dots is drawn at ordinate i − 0.5 for some values of t when two

conditions are met: (1) Fish Fi is being influenced at those times by one or more fish

Fj, j 2 {1, . . ., N}, j 6¼ i, whose identity is given by the color of the dots, and (2) the influential

fish Fj was bursting when it was influencing Fi at time t − τ earlier. If Fi has more than one

influential neighbor at time t, the dot drawn at time t in row i − 0.5 has the color of the Fj fish

with the highest index j.

In Fig 3E, red dots at i = 1 mean that fish F1 is bursting at those time-steps and coasting at

the other time-steps, and red dots at i − 0.5 = 1.5 indicate that, first, F1 is the influential fish of

F2 at those time-steps, and second, F1 was bursting when it was earlier influencing F2. In turn,

there are two possible reasons to explain the absence of red dots at i − 0.5 = 1.5 for certain time

values: either F2 has no influential neighbor, or F1 was coasting. To assess which of the two

explanations is valid, one needs to look at Fig 3D. For example, the absence of dots at

i − 0.5 = 1.5 during 0.57 s and 0.62 s is due to F2 having no influential neighbors, while the

absence of dots in the same row between 0.75 s and 0.81 s results from the fact that F1, which is

the influential neighbor of F2, is in a coasting phase at time t − τ (in this example the delay was

found to be τ = 0.42 s).

Fig 3E shows that the bursting activities of both the focal fish and its influential neighbor

are not directly correlated, suggesting that the primary source of information for fish to adjust

their movements is the distance, orientation and angular position of their neighbors [15]. The

same conclusion is obtained for N = 5. By focusing on fish F2 for example, Fig 4E shows that

there is no systematic overlap between the yellow dots at i = 2 and those at i − 0.5 for i 6¼ 2, sug-

gesting that the correlation between the bursting activity of a fish and that of their influential

neighbors is marginal.

Number of influential neighbors

For all U-turns, we have counted the number of frames in which a fish is an influential neighbor,

that is, the number of frames where the above described condition for identifying influential

Fig 6. Directional correlation of fish F1with the other fish Fj, j = 2, . . ., 5.Directional correlationsH1j(t, τ) (panels ABCD) for t 2 [−0.5, 2] and τ 2 [0, 2],
and their corresponding averageC1j(t, τ) (panels EFGH) over a time-window of width 2w = 0.4 s. Yellow regions:Hij! 1 andCij! 1 (fish have the same
direction with a time-delay τ). Dark regions:Hij! −1 andCij! −1 (fish have opposite directions). In the upper-left corners the white color indicates that τ is
larger than the minimal time considered in this data set.

https://doi.org/10.1371/journal.pcbi.1005822.g006
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neighbors is met. When there are only two fish, a fish is found to be the influential neighbor

30% of the time spent in a U-turn. In groups of five fish, this proportion grows up to 62%.

We have counted the number of influential neighbors Nif a fish Fi has during a U-turn in

groups of five fish, finding that in most cases, a fish has only one or two influential neighbors

(for 58% of the time spent in a U-turn Nif = 1 or 2); see Fig 7A. The most frequent case is

Nif = 1 (43%). Having more than one influential neighbor is frequent (19%), but less than

Fig 7. Number, location and temporal occurrence of influential neighbors.Cumulative analysis of collective U-turns of over 475
experimental (blue) and 1000 artificial (red) observations in groups ofN = 5 fish. (A) Number of influential neighbors.(B) Distance rank of
influential neighbors with respect to the focal fish. (C) Position rank of influential neighbors in the group. (D) Turning rank of influential
neighbors. Histograms represent the proportion of time during which influential neighbors have been observed in a given class. The
procedure to construct the artificial observations is presented later and in the section “Null model” in Materials and Methods.

https://doi.org/10.1371/journal.pcbi.1005822.g007
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having no influential neighbors (38%). The cases where there are more than two influential

neighbors are negligible (less than 4% of the total time spent in U-turns).

For each fish Fi, we have calculated the respective distance dij(t) at which the other N − 1

fish Fj are from Fi during the U-turns, thus establishing a rank order among the neighbors

influenced by Fi. We have then compared the influence of close neighbors with those of distant

neighbors, finding no correlation between the distance rank of a neighbor and the influence it

exerts on the focal fish. This is shown in Fig 7B, where we have depicted the distribution of the

distance rank of influential neighbors with respect to a focal fish. The figure shows that fish

spent the same proportion of time (! 25%) being an influential neighbor of a focal fish inde-

pendently of their distance rank. In other words, influential neighbors are not necessarily the

closest ones.

When trying to identify events of causal influence by means of correlations, it is crucial to

keep in mind that correlation does not imply causation. We thus have controlled the effects of

potential chains of influence, where e.g. fish F1 is highly correlated with F3 not because F1 is

directly influencing F3, but because F1 is influencing fish F2, which in turn is influencing F3.

To check the impact of these chains of influence on our results, we have removed from our

data all the pairwise influence data that correspond to the following situation: if F1 is influ-

enced by both F2 and F3 and F2 is simultaneously influenced by F3 (or F3 is influenced by F2),

then we removed the pairwise correlation (focal fish, influential neighbor) corresponding to

(F1, F2) (or (F1, F3)). After removing 7172 out of 69703 data points and recomputing the results

with the remaining data, we found that our results remain practically unchanged.

We have also calculated the position rank that each fish occupies in the group during a col-

lective U-turn, finding that influential neighbors are mostly located in the front region of the

group: 32% in the leading most advanced position, and 20% in the second place; see Fig 7C.

Noticeably, influential neighbors can be found in the back of the group (in 29% of the cases in

the fourth or fifth position), and even in the last position (a non-negligible 13% of cases).

We also paid attention to the order in which each fish starts its individual U-turn during a

collective U-turn, finding that influential neighbors are those that most frequently turn earlier

(32% of the cases), and that this relation decreases linearly; see Fig 7D. It is again noticeable

that influential fish can be found to be the last turning fish (in 8% of the cases).

The apparently surprising fact that influential fish can be found in the back of the group

and that the last fish turning can be an influential fish is due to the anisotropic perception of

fish and their relative orientations during U-turns. But these findings have to be understood in

the light of our specific time-dependent characterization of influential neighbor. If, for

instance, F1 turns first and influences F2, F2 will turn with some time-delay after F1. Then,

when F2 is at half of its individual turning process, F2 can be rotating in the same direction as

F1 in such a way that F1, influenced by F2, slightly adjusts its direction. We would then say that

F2, which is the last turning fish, has influenced F1, the first turning fish.

In order to compare different collective U-turns, we define a normalized time
!t ¼ ðt & tsÞ=ðte & tsÞ in terms of the actual time t and the starting and ending time of each

U-turn, so that the duration of a U-turn is now !t ¼ 1. Thus, !t ¼ &1 corresponds to a time as

long as the U-turn duration previous to the start of the U-turn, and !t ¼ 2 corresponds to a

time as long as the U-turn duration after the end of the U-turn. We have calculated the

instantaneous value of the average speed VðtÞ ¼ hk~vðtÞki, the average group polarization

PðtÞ ¼ hPðtÞi and the average number of influential neighborsN ðtÞ ¼ hN
if
ðtÞi. Here, angle

brackets refer to the average across all fish in the U-turn along a time-window containing the

collective U-turn.

Fig 8A and 8B show respectively the time evolution of VðtÞ and PðtÞ during the collective

U-turns in groups of 5 fish. The description of the specific U-turn presented in Fig 4 is also
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Fig 8. U-turn dynamics in groups ofN = 5 fish.We depict here the temporal dynamics for the average velocity, average polarization, number of
influential neighbors and its variation in over 475 experimental (blue) and 1000 artificial (red) recordings of collective U-turns. (A) Average speed VðtÞ. (B)
Average group polarizationPðtÞ. (C) Average number of influential neighborN ðtÞ per focal fish. (D) Average of the absolute variation in the number of

influential neighbors |ΔNif| divided by the number of influential neighborsNif, defined in Eq (5): hȘ(t)i. Horizontal axis denotes normalized time !t, where ts
and te denote the start and end of the collective U-turn respectively. The procedure to construct the artificial observations is presented later and in the
section “Null model” in Materials and Methods.

https://doi.org/10.1371/journal.pcbi.1005822.g008
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valid for the general case: the speed decreases before the U-turn (from Vð&1Þ ! 150mm/s to

Vð0Þ ! 115mm/s), it reaches a minimum at half the U-turn duration !t ¼ 0:5 (Vð0:5Þ ! 70

mm/s), and it then grows to a higher value after the U-turn (Vð1:5Þ ! 165mm/s). A very simi-

lar behavior was found in groups of 2, 4, 8 and 10 fish of the same species in [28]. At the same

time, the polarization is very high and almost constant outside the U-turn (Pð!tÞ ! 0:95), and

exhibits a perfect V-shape during the U-turn, with the high values (Pð!t ¼ f0; 1gÞ ! 0:93)

reached at exactly the instants where the start and end of the U-turn takes place !t ¼ 0 and
!t ¼ 1, and the minimum value (Pð0:5Þ ! 0:48) at the middle of the U-turn. As expected, the

average group polarization Pð!tÞ significantly decreases during the U-turn to almost half the

value it has outside the U-turn. Right after reaching this minimum, there is a sharp increase of

speed and polarization as more fish adopt the new direction of motion.

Fig 8C shows that before the U-turn the average number of influential neighborsN ðtÞ

increases until a maximum value is reached right before the start of the U-turn

(N ð&0:1Þ ! 1:45). During more than one half of the U-turn,N ðtÞ decreases until a mini-

mum (N ð0:6Þ ! 0:8), and grows again beyond the end of the U-turn until a second maximum

(N ð1:2Þ ! 1:6, twice the height of the minimum). After that, all fish have completed their

U-turns andN ðtÞ decreases again.

When the polarization is very high, the time-delay with which influential neighbors are

detected is often too small in comparison with biologically realistic reaction times τR, so that

these influential neighbors are not taken into account (we used τR = 0.04 s; see Section “Opti-

mal setting parameters for influential neighbors identification” in Materials and methods).

This is the reason why the average number of influential neighborsN ðtÞ appears to be smaller

in regions outside the U-turn, than when the U-turn is just about to start (!t ! &0:1Þ or slightly

after its end (!t ! 1:2). Meanwhile, the decrease ofN ðtÞ in the middle of the U-turn has a dif-

ferent origin: once a fish has started to turn around, there is no real need of updating its align-

ment according to all its neighbors. That fish can safely reverse its motion by keeping the

alignment with only one of those neighbors and even not paying attention to them for some

period of time.

Another indicator of how fish make decisions while turning is how frequently a focal fish

pays attention to other individuals. We define the relative variation of the number of influen-

tial neighbor per fish Nif(t) between two successive time-steps as follows:

ZðtÞ ¼
jN

if
ðt þ DtÞ & N

if
ðtÞj

N
if
ðtÞ

; ð5Þ

denoting by Δt the time-step between frames (Δt = 0.02 s).

We have depicted the time-evolution of the average hη(t)i in Fig 8D, finding that hη(t)i
remains essentially constant before, during and after the U-turn event, the amplitude of its var-

iation being smaller than 10% of the signal (0.007 and 0.08, respectively).

Since the average number of influential neighborsN ðtÞ is smaller when fish are engaged in

the U-turn than right before or right after the U-turn, a constant average hη(t)i suggests that
fish adjust their heading more frequently during the U-turn than outside the U-turn. Indeed,

in the middle of a U-turn, no real common direction of motion exists (PðtÞ ! 0:5), that is,

there is a high diversity of headings, so that fish have to frequently update their direction by

paying attention to different neighbors.

Spatial organization of influential neighbors

We are now interested in determining the dynamical spatial organization of the influential

neighbors of a focal fish. The relative state of a fish Fj with respect to a focal fish Fi is
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characterized by several parameters: the relative position of the neighbor~uij ¼ ~uj &~u i, where

~ui is the vector position of Fi in cartesian coordinates, the distance between them dij ¼k~uij k,

the viewing angle of Fj relative to the direction of Fi [26], which is the angle θij with which Fi
perceives Fj (note that θij is not necessarily equal to θji), the relative velocity~v ij ¼~v j &~v i, and

the relative heading ϕij = ϕj − ϕi. All these quantities are time-dependent. We have calculated

their average value for all the U-turns in a uniform spatial grid of square cells to facilitate the

interpretation of the vector field of these continuous variables. Each square cell, of side 20 mm,

shows the average of the arbitrarily different number of values contained in the cell.

Fig 9A shows the density map of the relative position of the influential neighbor with

respect to the focal fish when N = 2. The intensity of color is proportional to the frequency of

occupation of the grid cell, showing that the influential neighbor is mostly located in front of

the focal fish and at a distance of one to three body lengths from the focal fish. The same infor-

mation is quantified in Panel B with a heat map in polar coordinates, highlighting the most fre-

quent location of the influential neighbor.

The average relative velocity h~v iji is shown in Fig 9A (arrows), superimposed to the density

map. The vector field shows that when the influential neighbor is in front of or behind the

focal fish (sinhθiji! 0), both fish move at similar speed although the focal fish is a little bit

faster (the small black arrows are pointing in the opposite direction to the red one) and the dif-

ference in heading is also small. However, when the influential neighbor is on the sides of the

focal fish, relative speed and heading difference tend to vary more as the distance between

them increases.

The distributions of distances dij and exposure angles θij between a focal fish and its neigh-

bors are depicted in Panels C and D of Fig 9 respectively. We find, on the one hand, that their

most frequent separation is 62.6 mm ± 29.7 mm (mean and standard deviation of histogram in

Fig 9C), a value that is consistent with previous results where it was shown that the behavioral

reactions of a fish depend on the angular position of its neighbors, as a consequence of the

anisotropic perception of the environment [15].

On the other hand, the distribution of the exposure angle of fish Fj to the focal fish Fi is nar-

rower when Fj is influencing Fi than when Fj is a neighbor of Fi, not necessarily influencing Fi.

As both distributions are centered on θij = 0, this shows that Fj is more frequently located in

front of Fi when Fj is an influential neighbor of Fi than in the case when Fj is just a neighbor

of Fi.

Fig 10 shows similar results for groups of N = 5 fish. Influential neighbors are more fre-

quently located in front of the focal fish (although with a slight shift to the right; see Panels A

and B) and at a mean distance of 67.5 mm ± 40.6 mm (Panel C).

In turn, the velocity field has a smaller intensity and is much more homogeneous than in

the case where N = 2. A slight asymmetry can also be observed (not noticed when N = 2) with

fish located in front and slightly to the right of the focal fish having a higher velocity than those

located elsewhere. Moreover, the distribution of exposure angles is more dispersed than in the

case of two fish, meaning that influential neighbors are exposed to the focal fish with a larger

diversity of angles, something that is simply due to the higher number of fish.

The difference in the homogeneity of the velocity field between groups of 5 and 2 individu-

als is not necessarily the result of averaging over a larger number of individuals. Although aver-

aging over fish data pairs may reduce the uncertainty in the extracted parameter values, it is

well-known that the level of homogeneity in the direction of motion of the school increases

with group size [29]. But one also ought to consider that specific values of delay and curvature

the individuals adopt during the U-turns could help to limit variability in coordinating the

group. Some theoretical studies support this idea: simplified models of velocity alignment with
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additive noise have shown semi-analytically the existence of delay and rate of turn values that

minimise the fluctuations in the variance of the individual speed [30], and flocking models of

self-propelled particles have also shown that delay can be tuned to increase stability and align-

ment of the group [31].

Finally, we have analyzed the variation of the time-delay τ as a function of both the distance

between the focal fish and its influential neighbors dij and the difference of heading ϕij, finding

Fig 9. Spatial and velocity distributions of influential neighbors around a focal fish in groups of 2 individuals. (A) Density map of
influential neighbors’ location (blue) and their average relative velocity field (arrows) with respect to the focal fish (red arrow). (B) Average
spatial distribution of influential neighbors in polar coordinates (red: highest frequency; dark blue: low frequency; white: frequency equals
zero). (C) and (D): Distributions of the distance dij and the angle of exposure șij respectively. Blue histograms: Fj is an influential neighbor of
Fi; orange: Fj is a neighbor of Fi, not necessarily influencing Fi; dark pink: overlap between the two.

https://doi.org/10.1371/journal.pcbi.1005822.g009
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that in both cases N = 2 and N = 5, the time-delay increases with respect to both the distance

dij and the heading difference ϕij (see Fig 11). This result can be understood because during a

U-turn the fish speed is decreasing and two fish can display larger reaction times the more sep-

arated they are and the less aligned they are.

Fig 10. Spatial and velocity distribution of influential neighbors around a focal fish in groups of 5 individuals. (A) Density map of
influential neighbors’ location (blue) and their average relative velocity field (arrows) with respect to the focal fish (red arrow). (B) Average
spatial distribution of influential neighbors in polar coordinates (red: highest frequency; dark blue: low frequency; white: frequency equals
zero). (C) and (D): Distributions of the distance dij and the angle of exposure șij respectively. Blue histograms: Fj is an influential neighbor of
Fi; orange: Fj is a neighbor of Fi, not necessarily influencing Fi; dark pink: overlap between the two.

https://doi.org/10.1371/journal.pcbi.1005822.g010
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A null model to detect spurious correlations

As already mentioned in the introduction, establishing causal influence on the basis of correla-

tion measures requires controlling for spurious effects. Although our experimental data corre-

spond to a specific collective behavior in which individuals influence each other, the relatively

short time-windows over which cross-correlation are averaged and the use of several parame-

ters through sensitivity analysis can weaken the accuracy of our results. To demonstrate that

the particular detections of influential neighbors are not purely due to chance, we generated

random artificial U-turns events by bootstrapping the data and applying the same procedure

used to analyze collective U-turns in our experiments.

The null model is built for groups of 5 fish, for which our experimental data provide

M = 2375 individual trajectories (5 × 475 collective U-turns). For every fish Fi, i = 1, . . .,M, the

trajectory is rotated so that the individual turning point of the fish (where sin(θwi) = 0) is

located in the upper part of the tank, by randomly sampling the new angular position ψi in the

interval [π/2 − ξ, π/2 + ξ], where ξ is a small angle (we used ξ = π/12). Similarly, the time scale

of each fish is shifted by sampling the instant of turning in the time interval [−z, z], where z is

a short time (we have used z = 1 s). Then, five trajectories are randomly sampled, each one

from a different randomly sampled collective U-turn, and mirrored if necessary so that the five

individual U-turns are done in the same direction, clockwise or anti-clockwise. This way, the

five fish of the artificial U-turn make their individual U-turn approximately at the same place

and approximately the same time. For more details, see the section “Null model” in Materials

and methods.

We have produced 1000 artificial collective U-turns; S9 Fig shows a collection of 10 of

them. The results of our analysis are shown in red in Figs 7 and 8. As expected, they reveal

clear differences between artificial and experimental U-turns.

Fig 11. Time-delay dependence on heading difference and separation distance. Time delay τ extracted from the empirical observations as a
function of heading difference ϕij and separation distance dij. (A)N = 2, (B) N = 5. In both cases, the larger the heading difference and the distance, the
longer the time-delay.

https://doi.org/10.1371/journal.pcbi.1005822.g011
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Fig 7A shows that in artificial U-turns the proportion of time during which a focal fish has

no influential neighbor is more than 63% of the time, while in the experiments it was less than

39%. The analysis also reveals that in artificial U-turns a focal fish has one influential neighbor

for less than 28% of the time, while in the experiments, the proportion raises to 43%. Similarly,

Fig 8C shows that the average number of influential neighborsN ðtÞ ¼ hN
if
ðtÞi is much

smaller in artificial U-turns (! 0.4) than in real U-turns, whereN ðtÞ is almost always greater

than 1. Note that the increase ofN ðtÞ during U-turns in artificial data is the consequence of

the channeled motion of fish by the corridor. Moreover, the variation ofN ðtÞ along time,

including the transients preceding and following the U-turn, decreases in artificial U-turns

while it remains constant and with a higher value in experiments.

Fig 7B shows that distance rank has no significant effect on which fish is the influential one,

both in experiments and in artificial U-turns. The decreasing number of influential neighbors

comes from the fact that the tank is circular and the method we use. If the tunnel had been a

straight corridor, we should have detected no decrease in our null model. However, in a circu-

lar tank, because of the geometrical constraints imposed by the curvature, even when two fish

are both swimming in the same direction (i.e., clockwise or anti-clockwise), as the distance

between fish increases, our method will detect a decrease of correlation. While Fig 7C confirms

that influential neighbors are slightly more often ranked in the first position of the group, this

effect is much more pronounced in the experiments. In fact, Figs 7B, 7C and 7D and 8A and

8B show that the selected null model satisfactorily reproduces the typical spatiotemporal

behavioral patterns of real U-turns: the position and turning ranks are almost identical, as well

as the variation of the average speed and the average group polarization, although the V-shape

of the average polarization in real U-turns is significantly sharper than in artificial U-turns.

An additional, albeit expected, result of our null model is the homogeneous (isotropic) spa-

tial distribution of “influential neighbors”, while in real collective U-turns influential neigh-

bors are mostly located in front of the focal fish; see S10A and S10B Fig, compared with

Fig 10A and 10B.

Discussion

By sharing information with other group members, schooling fish and other collectively mov-

ing animals can potentially improve their navigational accuracy (e.g. the many wrongs princi-

ple [32]), take better decisions (e.g. to avoid a predator [33]), or improve their abilities to sense

the environment [34]. However, there are both physical and practical reasons why information

is expected to be shared with only a few neighbors. Physical reasons involve material limita-

tions, such as visual occlusions. Practical reasons often refer to trade-offs between sharing

information, so that the group collectively selects a direction of motion, and deciding indepen-

dently [35, 36].

Assuming that correlations between fish behavior rely to some extent on a causal influence,

our analysis reveal that in groups ofH. rhodostomus, during a collective U-turn, at any

moment in time each fish only pays attention to a small number of neighbors whose identity

regularly changes. We also find that the phases during which a focal fish is affected by one or

two influential neighbors are interspersed with other phases during which its movement

appears uninfluenced by the movement of neighbors. Moreover, influential fish are mostly

located in front of the focal fish. The distance between a focal fish and its influential neighbors

is about two body-lengths and the relative exposure angle is smaller than 60 degrees.

Our results bring insights on the way information on the neighborhood is processed by

fish. Instead of having a synchronous update based on a fixed number of neighbors (topologi-

cal neighborhood) or on all neighbors located within a fixed distance (metric neighborhood),
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our results suggest an asynchronous updating that does not depend on the distance between a

focal fish and its influential neighbors. A similar asynchronous updating scheme has been pre-

viously introduced by Bode et al. [37] in a flocking model showing that it can give rise to emer-

gent topological interactions consistent with the measures done on starling flocks [38].

It is however worth noting that our experiments, performed on small group sizes, may have

prevented us from detecting any influence of the distance, since each of the four neighbors are

located between one and three body lengths. In larger groups of fish moving in an uncon-

strained space, we expect the effective neighborhood of fish to result from the interplay

between an asynchronous updating on a small number of neighbors and a modulation of the

strength of interactions with the distance between fish [15].

Previous studies on the number and the spatial arrangement of influential neighbors led to

different results depending on the species and on the procedure used to analyse the data. The

work by Ballerini et al. [39] provides evidence that each bird within a starling flock (Sturnus

vulgaris) coordinates its motion with a fixed number of closest neighbors, irrespective of their

distance, while in mosquitofish (Gambusia holbrooki), one single nearest neighbor was suffi-

cient to account for the large majority of the observed interaction responses [12]. In barred

flagtails (Kuhlia mugil), it has been shown that different kinds of neighborhoods (Voronoi

neighborhood and the k nearest neighbors (k! 6* 8) were compatible with experimental

data in a tank [13]. Our study points to a low number of influential neighbors. There are multi-

ple possible explanations for the differences in the number of interacting neighbors found

across the scientific literature. (i) It is possible that different animal groups interact with differ-

ent numbers of neighbors. (ii) Temporal factors are also important [37], as interactions can be

integrated in time to produce effectively larger neighborhoods. Here, we propose a third expla-

nation (iii) based on the consideration that interaction responses such as attraction, alignment

and avoidance are qualitatively different mechanisms that rely on different sensory-motor

responses and, consequently, on different interacting neighborhoods. In particular, attraction

and repulsion require to process information about the position of neighbors, while alignment

is intrinsically a response dependent on orientation and velocity. These different interactions

are likely to rely on different neural circuits (motion and form are typically processed by differ-

ent brain areas in many animal groups [40, 41]) and hence might depend on different sets of

influential neighbors: for instance, a focal individual could avoid collisions with its Voronoi

neighbors, be attracted towards a different neighborhood of visually salient individuals and

only process alignment information for one or two selected neighbors. It might also depend

on different sets of influential neighbors: for instance a focal individual could avoid collisions

with its Voronoi neighbors, be attracted towards a different neighborhood of visually salient

individuals and only process alignment information for one or two selected neighbors.

It is thus natural to suggest that influential neighbors are intrinsically associated with

different interaction mechanisms, which might also explain why fish point to different

neighborhoods.

Our method for identifying influential neighbors is based on the computation of the time-

dependent directional correlation between a focal fish and its neighbors. Of course, correlation

does not imply causation, so that inferring causal influence between fish from directional cor-

relation requires an extremely cautious methodology.

The methodology we proposed here is based on two solid procedural cornerstones. First,

the data used in our study were carefully selected from a clearly recognizable behavior, the col-

lective U-turns, where influence from neighbors undoubtedly exists, and thus should be, to

some extent, responsible for a fundamental part of the correlations detected by our method.

Time-delay between individuals’ direction choices has already been used to measure the inter-

actions between group members in animal flocking. Specifically, Nagy et al. [23] used
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correlation delay times to reconstruct flight hierarchies in flocks of pigeons. Their approach

consisted in integrating delay times over the entire trajectory to obtain a “leadership mark” for

each individual. Our assumption is instead that the time-delay results from the individuals’

behavior and their environment, which varies in time depending on the information being

gathered. To detect the response delay of each individual, we have instead followed the

approach employed in [26] that allows for a change of delay over time. In fact, it is easy to

show that the time delay between the same pair of fish is not constant, as revealed by our analy-

sis of pair of fish (see Material and methods). Applying Nagy et al.’ method to different subsets

of data in the same experiment, we found that the time delays between the same pair of fish

vary substantially (see S2 Fig). The second methodological cornerstone is provided by the

results of the null model that clearly show that the correlations we detected come from causal

influence between neighbors and not from spurious random coincidences. The results of the

null model also confirm that distance rank has no effect.

Identifying the number and position of influential neighbors is an essential step towards

reconstructing behavioral cascades of information propagation across a group. Our method

provides an accurate basis for mapping interaction network that does not rely on any assump-

tion about the channel (e.g., vision, sound or hydrodynamic interactions) mediating informa-

tion transfer. We are confident that by adopting our technique to map interactions in different

species and different experimental contexts we will gain a much more detailed understanding

of the distributed information processing taking place in fish schools.

Materials andmethods

Ethics statement

Our experiments have been approved by the Ethics Committee for Animal Experimentation

of the Toulouse Research Federation in Biology N˚1 and comply with the European legislation

for animal welfare.

Experimental procedures and data collection

Hemigrammus rhodostomus (rummy-nose tetras, Fig 12A) were purchased from Amazonie

Labège (http://www.amazonie.com) in Toulouse, France. Fish were kept in 150 L aquariums

on a 12:12 hour, dark:light photoperiod, at 27.7˚C (±0.5˚C) and were fed ad libitum with fish

flakes. The average body length of the fish used in these experiments was 31 mm (± 2.5 mm).

The experimental tank (120 × 120 cm) was made of glass and was set on top of a box to isolate

fish from vibrations. The setup was placed in a chamber made by four opaque white curtains

surrounded by four LED light panels to provide an isotropic lighting. A ring-shaped corridor

was set inside the experimental tank filled with 7 cm of water of controlled quality (50% of

water purified by reverse osmosis and 50% of water treated by activated carbon) heated at

28.1˚C (±0.7˚C) (Fig 12B). The corridor was made of a vertical circular outer wall of radius 35

cm and a circular inner wall with a conic shape of radius 25 cm at the bottom, so that the effec-

tive width of the corridor available to fish for swimming ranges from 10 cm at the bottom to

12 cm at the surface. The conic shape was chosen to avoid the occlusion on videos of fish

swimming too close to the inner wall. Fish were randomly sampled from their breeding tank

for a trial and were used at most in only one experiment per day. Groups of 2 or 5 fish were

introduced in the experimental tank and acclimatized to their new environment for a period

of 10 minutes. Their behavior was then recorded for one hour by a Sony HandyCam HD cam-

era filming from above the setup at 50 images per second in HDTV resolution (1920x1080p).

We performed 10 trials for each group size of 2 and 5 fish.

Identifying influential neighbors in animal flocking

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1005822 November 21, 2017 22 / 32

165



Data extraction and pre-processing

The positions of each fish on each frame were tracked with idTracker 2.1 [10]. Fish were some-

times misidentified by the tracking software, for instance when two fish were swimming too

close to each other for a long period of time. In those cases, the missing positions were cor-

rected manually. All sequences with 50 consecutive missing positions or less were interpolated.

Larger sequences of missing values were checked by eye to determine whether interpolating

was reasonable or not; if not, namely the trajectory doesn’t look like a straight line, then merg-

ing positions with closest neighbors were considered. Time series of positions were converted

from pixels into meters. The origin of the coordinate system was set to the center of the ring-

shaped tank. Body orientation of fish were measured using the first axis of a principal compo-

nent analysis of the fish shapes detected by idTracker 2.1.

Fig 12. Fish and experimental setup. (A) A spontaneous U-turn initiated by a single fish in a group of five
Hemigrammus rhodostomus fish. (B) Experimental ring-shaped tank,©David Villa ScienceImage/CBI/CNRS,
Toulouse.

https://doi.org/10.1371/journal.pcbi.1005822.g012
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Detection and quantification of collective U-turns

Since the experiments were performed in an annular setup, the direction of rotation can be

converted into a binary value: clockwise or anti-clockwise. We choose the anti-clockwise direc-

tion as the positive values for angular position. Before a U-turn event, all fish move in the same

direction, say clockwise. Then, one fish, not necessarily the one located at the front of the

group, changes its direction of motion to anti-clockwise direction. After a short transient, the

other fish of the group display the same direction change, from clockwise to anti-clockwise.

We defined the whole process of changing direction as a collective U-turn (see examples in

Fig 1 and in S8 Fig). After data extraction and pre-processing, we found 1111 and 475 collec-

tive U-turns in groups of 2 and 5 fish, respectively. The duration distribution of collective

U-turns in groups of 2 fish is shown in S3 Fig while the results for groups of 5 fish are shown

in S4 Fig. Most of the collective U-turns last between 1 and 3 seconds, while the individual

turning time usually lasts between 0.4 and 1 second.

The procedure used to define an individual U-turn for a fish Fi is as follows: we first deter-

mine the time tm,i at which the sign of the angle of incidence of fish Fi changes sign (from nega-

tive to positive or vice versa). Then, starting from tm,i, we reverse time step by step until the

first time at which the absolute value of the angle of incidence is higher than a threshold !ys;i is

reached. We denote this time by ts,i. Similarly, we start again from tm,i and go forward step by

step until the first time at which the absolute value of the angle of incidence is higher than a

second threshold !ye;i is reached. We denote this time by te,i. To determine the values of the

thresholds !ys;i and
!ye;i, we first compute the moving average of the angle of incidence over a

period of 50 time steps (1s in real time), before and after the middle point tm,i, with a window

of 5 time steps (0.1s in real time), respectively. Then we set the threshold values as the maxi-

mum values of the absolute moving average. Doubling the length of the period of time over

which the average is computed, or doubling the width of the window, do not affect the results.

Finally, the time at which the collective U-turn starts (resp. ends) is defined by minfts;ig
N

i¼1

(resp. maxfte;ig
N

i¼1
).

Position rank in a group

The relative position of a fish Fi in a group of N fish is calculated by projecting the vector posi-

tion of the fish~u i on the average group velocity vector~z ¼ ð1=NÞ
PN

i¼1
~v i. This allows us to

define a group centroid in the direction of~z , with respect to which the fish are ranked: the first

fish in the group is the fish whose projection on~z is the most advanced one in the direction of

motion of the group (given by~z), the second fish in the group is the second most advanced,

and so on. Relative distance between fish are not taken into account when establishing the

rank.

Optimal setting parameters for influential neighbors identification

Four parameters are used to identify influential neighbors: the time-delay τ, the window size

w, the correlation threshold Cmin above which individuals are supposed to be interacting, and

the threshold ď for selecting more than one influential fish.

The time delay must be specified along the whole trajectory of the focal fish: it is thus a

series of values ft(kg
M

k¼0
, whereM is the number of time-steps or frames in the individual U-

turn. The parameters Cmin, ď and w are in turn given for all time and for all fish by means of a

sensitivity analysis described in the next section.
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Assume by now that the three values Cmin, ď and w are known, and denote by Fi the focal

fish and by Fj one of its neighbors. Then, the series of time-delays ft(kg
Mi

k¼0
is built recursively as

follows (actually only w is required to extract the time delays).

Denote by Γi(tk) the highest value of the pairwise directional correlation Cij of the velocity of

fish Fi at time tk with the velocity of Fj at each time-step in the range of the previous ðt(k&1
þ 1Þ

time-steps Rk ¼ ½0; t(k&1
þ 1*:

Γ iðtk;wÞ ¼ max
tr2Rk

fCijðtk; tr;wÞg: ð6Þ

Then, the time-delays t(k, k = 1, . . .,Mi, are determined by the smallest value of the time-delay

τr 2 Rk where Γi(tk, w) reaches its maximum. For t1, the maximum correlation is reached at

Cijðt1; t
(
1
;wÞ, for some time-delay t(

1
2 R

1
¼ ½0; t(

0
þ 1*. We set t(

0
¼ 50 for the initial value of

the recurrence. For the rest of time-delays t(k , k = 2, . . .,Mi, the size of Rk is based on the

assumption that if, at some time t, Fi copies the behavior that Fj displayed at a previous time

t − τ, then, after time t, Fi will not copy the behavior that Fj displayed at any time earlier than

t − τ.

Time-delays obtained with more complicated and time consuming procedures such as the

time-ordered technique developed in [26] or through the similarity analysis based on Fréchet

distances [25] would in principle produce similar values.

Fig 13B shows the distribution of time-delays obtained with this procedure in groups of

two fish. The distribution is clearly bimodal with a first peak when τ = 0 and a second one

around τ = 0.4 s. Considering a reaction time threshold of 50-100 ms for a fish to integrate

information and reach a decision [42], we cannot attribute small values of time-delays to situa-

tions where the behavioral decision of the focal fish has been influenced by its neighbors. This

is confirmed by the analysis of the spatial distribution of the extracted time-delays (Fig 13A),

where we show that the lowest average values of τ are found mostly when the neighbor was

behind the focal fish, in a zone with the lowest perception [15], while the highest values of τ>

0.4 s are found when the neighbor is located in front of the focal fish. This has lead us to con-

sider in our analyzes only situations where τ> τR = 0.04 s.

Parameter selection

Although the time-delays ft(kg
M

k¼0
are determined once w is known, they also strongly depend

on Cmin and ď, as the value of these three parameters must be fixed at the same time. This is

done by means of a sensitivity analysis in which we have tested the following 40 combinations

of parameter values: w 2 {0, 1, 2, 3, 4}, ď = {3, 5}, and Cmin 2 {0.995, 0.99, 0.95, 0.5}.

Each combination (Cmin, ď, w) gives rise to four histograms like those depicted in Fig 7.

These histograms constitute the solution of our method of analysis, and can be characterized

by a vector~SðC
min

; ď;wÞ in 19 dimensions: (i) the 5 proportions of the number of influential

neighbors in groups of 5 fish, (ii) the 4 proportions of their distance rank, (iii) the 5 propor-

tions of their position rank, and (iv) the 5 proportions of their turning rank. This allows us to

determine how similar are the results arising from two combinations (Cmin, ď, w) and
ðC0

min
; ď0;w0Þ, by computing the cosine similarity of the two vectors~SðC

min
; ď;wÞ and

~S0ðC0
min

; ď0;w0Þ.

The cosine similarity of two vectors~a and~b, denoted cos
sim
ð~a;~bÞ, is the cosine of the angle

between these two vectors. Thus, two colinear vectors are such that cos
sim
ð~a;~bÞ ¼ +1 inde-

pendently of their magnitude, while two perpendicular vectors are such that cos
sim
ð~a;~bÞ ¼ 0.

In our case, the components of the vectors are positive, so cos
sim
ð~S; ~S0Þ , 0 for all (Cmin, ď, w)
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and ðC0
min

; ď0;w0Þ. Moreover, as the components are proportions, colinearity implies identity,

both in direction and magnitude. Thus, cos
sim
ð~S; ~S0Þ ¼ 1means that both results are identical,

while cos
sim
ð~S; ~S0Þ ¼ 0means that they differ as much as possible.

S5 Fig shows the cosine similarity matrix for the 40 combinations we have tested. Note

that the matrix is symmetric with respect to the diagonal, where cos
sim
ð~S;~SÞ ¼ 1. Except for

Cmin = 0.5, all similarity values are in the thin range [0.96, 1], showing that all combinations

yield practically the same results. The higher dissimilarity is found in the white-yellow lines,

where one of the combinations is (Cmin, ď, w) = (0.5, 3, 2).

The selection of parameter values is thus done as follows.

We choose w = 2, which corresponds to the higher dissimilarity regions. The selected time

window size is sufficiently large so that the jagged nature of the movement data is smoothed

out but not too large so that the actual turns gets washed out from the data.

Using ď = 3 or ď = 5 yields very similar results and we have arbitrarily chosen ď = 3.

The selection of Cmin is done by a specific procedure, which consists in calculating the num-

ber of data points that remain available for our analysis for each value of Cmin. S6 and S7 Figs

exhaustively demonstrate that the larger Cmin is, the less data points remain available, and vice

versa. We might be prone to choose a sufficiently small Cmin in order to get the maximum

number of data points. However, according to our definition of influential neighbor, Cmin

should be sufficiently large to select only the real influential neighbors. We have thus chosen

the highest value which provides a sufficiently large number of data points, that is, the largest

value before the fall of the number of data points in S11 Fig, Cmin = 0.95. This value preserves

61% (23830) and 76% (69703) of data points for N = 2 and N = 5 respectively.

Fig 13. Distribution of time-delay τ. (A) Spatial distribution of time-delays obtained by selecting the maximum of the pairwise correlation
between the focal fish and its neighbor. The color of each bin represent the mean value of all the cases in that bin. An angle of 0˚ degree
corresponds to when the influential neighbor is in front of the focal individual. (B) Spatially integrated distribution of time-delays. The data
here are the same as those used in panel A. The dotted line corresponds to the reaction time threshold τR = 0.04s.

https://doi.org/10.1371/journal.pcbi.1005822.g013
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Null model of collective U-turns

We want to design artificial collective U-turns in groups of 5 fish where all fish perform an

individual U-turn at more or less the same place and more or less the same time, and in the

same direction (clockwise or anti-clockwise). Fish must coincide in time and space to consti-

tute a “group”, but individual U-turns must happen in an absolutely independent way. Corre-

lations at hand in this paper are thus reduced to a minimum, while preserving the general

aspect of a group of fish changing direction.

Our experimental data provide us with 5 × 475 = 2375 trajectories of individual fish, which

we have conveniently normalized and combined to build 1000 groups of 5 fish changing direc-

tion in the same spatiotemporal interval. This is done as follows.

The whole trajectory of a fish Fi during a U-turn takes place in an interval of time [ts,i, te,i],

where ts,i is the instant at which the individual U-turn of fish Fi starts, and te,i is the time at

which the individual U-turn ends. See the paragraph above Eq (1). The trajectory of fish Fi in

radial coordinates is given by

fðriðtkÞ;ciðtkÞÞg
Ni

k¼1
; ð7Þ

where ρi(tk) is the radius (distance of the fish from the center of the tank), ψi(tk) the already

defined angle position (computed anticlockwise as positive), and Ni is the number of time-

steps tk in the trajectory.

Denote by Ti the instant at which fish Fi effectively turns, i.e., Fi is perpendicular to the wall:

sin(θwi(Ti)) = 0. In well defined individual U-turns as the ones we are using in our data, this

happens only once per U-turn. Accordingly, (ρi(Ti), ψi(Ti)) denotes the fish position at time Ti.

Although we would like to have absolutely uncorrelated fish, it would not make sense to use

groups of trajectories that do not reproduce a consistent U-turn, e.g., if one fish makes its U-

turn much later than another, or on the other side of the tank. We thus try to decorrelate fish

trajectories as much as possible, while preserving at the same time the typical spatiotemporal

shape of real collective U-turns.

The decorrelation of all individual U-turns is done with the following two steps:

• Spatial rotation: For all individual fish Fi in all U-turns, we rotate its trajectory an angle

−ψi(Ti) + π/2 + ξi, where ξi is a random number in [−π/12, π/12] sampled uniformly, so that

the new location of fish Fi at the time Ti when it performs its individual U-turn is in the

upper part of the tank around π/2, in [5π/12, 7π/12].

• Time shift: For all individual fish Fi in all U-turns, we shift the time scale a value −Ti + zi,

where zi is a random number sampled uniformly in [−1, 1] s, so that Fimakes its individual

U-turn at around time 0, in [−1, 1] seconds.

The artificial collective U-turn is thus built as follows:

1. Select randomly 5 real collective U-turns, and, from each collective U-turn, select randomly

one trajectory. Rotate and time-shift trajectories according to the process described above.

2. Select randomly one of the 5 fish as the fish of reference Fref for building the artificial U-

turn. If necessary, mirror the trajectories of other fish so that all fish move in the same

direction as Fref with respect to the center of the tank, i.e., clockwise or anti-clockwise.

Then, the fish of reference of the artificial U-turn will make its individual U-turn at time

zref 2 [−1, 1] s and position (ρref(Tref), π/2 + ξref). The other four fish Fj will make their individ-

ual U-turn at time zj 2 [−1, 1] s and position (ρj(Tj), π/2 + ξj) respectively, for j = 1, . . ., 5, j 6¼

ref.
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We have depicted in S9 Fig a set of artificial U-turns for comparison with the real U-turns

shown in S8 Fig. Note that in these figures the time-scale has been shifted again so that collec-

tive U-turns start at t = 0 s.

Supporting information

S1 Video. Sample video of an U-turn event in a group of 5 fish.Original video of an U-turn

event, corresponding to Fig 4 and S2 Video.

(AVI)

S2 Video. Sample video of an U-turn dynamic in a group of 5 fish. Video showing the veloc-

ities of fish and interaction dynamics in the group, corresponding to Fig 4 and S1 Video.

(AVI)

S1 Fig. Directional correlationHij(t, τ) between fish Fi and Fj. For i = 2, . . ., 5 (rows) and

j = 1, . . ., 5, j 6¼ i (columns), e.g., first row is for fish F2: (A)H21(t, τ), (B)H23(t, τ), (C)H24(t, τ)

and (D)H25(t, τ).

(TIF)

S2 Fig. Different values of τ( for different subsets of the same data set computed with the

method of Nagy et al. [23]. Consider the dataset of U-turns of 2 fish composed by U-turn

number 1 to U-turn number 36, coming from the same experiment, and divide it in two sub-

sets SA and SB containing respectively the U-turns [1,. . .,18] and the U-turns [19,. . .,36]. (A)

Average directional correlation Cij with respect to time-delay τ for the U-turns from dataset

SA. Red star and dashed blue vertical line denotes τ( = 0.96. (B) Cij for the U-turns from dataset

SB. Red star: τ
( = 0.32. (C) Cij for all the U-turn in data set SA [ SB. Red star: τ

( = 0.80. The

method of Nagy et al. is based on the assumption that the pairwise interaction between two

individuals in a group has a constant time-delay τ(. However, Panels A and B provide different

values of τ( for different data sets, showing that the method of Nagy et al. is not suitable for

studing our data, and that the method we introduce here, which is based on the detection of

dynamic time-delays, has potential for a broader range of applications.

(TIF)

S3 Fig. Distribution of the average duration (in seconds) of (A) individual and (B) collec-

tive U-turns in groups of 2 fish. Collective U-turns last around twice the duration of individ-

ual U-turns.

(TIF)

S4 Fig. Distribution of the average duration (in seconds) of (A) individual and (B) collec-

tive U-turns in groups of 5 fish. Collective U-turns last almost four times the duration of indi-

vidual U-turns.

(TIF)

S5 Fig. Parameter comparison matrix.Matrix of 40 × 40 square cells, where each cell corre-

sponds to the similarity value SV arising from the comparison of the two parameter combina-

tions shown in the corresponding horizontal and vertical axes. We considered 40 parameter

combinations, thus the size of the matrix. The similarity value SV is represented by the color of

the cell, where the brightest red color corresponds to SV = 1 and the white color to SV = 0.92.

For instance, the top-left cell displays a similarity value of SV = 0.95, showing how similar the

results are when comparing the two combinations {ď = 5, Cmin = 0.995, w = 0} (horizontal axis)

and {ď = 3, Cmin = 0.5, w = 4} (vertical axis). Cells along the diagonal correspond to the com-

parison of two identical parameter combinations and therefore SV = 1 there.

(TIF)
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S6 Fig. Available data for different values of the average directional correlation threshold

Cmin in the case of N = 2 fish. Small panels: (there are 10, one per experiment) Number of

data points available from the respective experiment for each value of Cmin in [0.5, 1]. The val-

ues of Cmin are denoted by small circles. Three specific values are shown by arrows: 0.6, 0.95

and 0.995. The value highlighted in red corresponds to the value we chose and is denoted by a

star instead of a circle. Each vertical line corresponds to the fish that is taken as being the focal

fish: F1 (red) and F2 (cyan). For instance, selecting Cmin = 0.6 in the upper-left small panel, 700

data points will be available for both fish. For Cmin = 0.95, around 450 points will be available

for both fish.

Leftmost higher panel: Total number of data points available from all fish from all the experi-

ments (summary of the 10 small panels, i.e., there is only one –pink– line). Vertical axis: ratio

between the available number of data points for Cmin and the number of data points available

for Cmin = 0.5. Total data points available from all the experiments (for Cmin = 0.5): 39381; data

points available for Cmin = 0.95: 23830.

(TIF)

S7 Fig. Available data for different values of the average directional correlation threshold

Cmin, in the case of N = 5 fish. Small panels: (there are 10, one per experiment) Number of

data points available from the respective experiment for each value of Cmin in [0.5, 1]. The val-

ues of Cmin are denoted by small circles. Three specific values are shown by arrows: 0.6, 0.95

and 0.995. The value highlighted in red corresponds to the value we chose and is denoted by

a star instead of a circle. Each vertical line corresponds to the fish that is taken as being the

focal fish: F1 (red), F2 (yellow), F3 (green), F4 (blue) and F5 (magenta). For instance, selecting

Cmin = 0.6 in the third small panel of the upper row, 55 data points will be available for each

one of the 5 fish. For Cmin = 0.95, around 75 points will be available for each fish.

Leftmost higher panel: Total number of data points available from all fish from all the experi-

ments (summary of the 10 small panels, i.e., there is only one –pink– line). Vertical axis: ratio

between the available number of data points for Cmin and the number of data points available

for Cmin = 0.5. Total data points available from all the experiments (for Cmin = 0.5): 91827; data

points available for Cmin = 0.95: 69703.

(TIF)

S8 Fig. Collective U-turns observed in experiments with N = 5 fish.

(TIF)

S9 Fig. Artificial collective U-turns obtained with the null model.

(TIF)

S10 Fig. Homogeneous (isotropic) spatial distribution of “influential neighbors” in collec-

tive artificial U-turns. (A) Density map of “influential neighbors” location (blue) and their

average relative velocity field (arrows) with respect to the focal fish (red arrow). (B) Average

spatial distribution.

(TIF)

S11 Fig. Number of available data points for different values of Cmin. Solid black line:

Remaining data points for each value of Cmin for N = 2 according to the leftmost panel in

S6 Fig. Red line: same thing, for N = 5, according to S7 Fig. Dashed line: highest number of

available data points before the sharp fall of the black curve at Cmin = 0.95.

(TIF)
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ing and modeling interactions in fish with burst-and-coast swimming. https://arxiv.org/abs/1703.03801

16. Lopez U, Gautrais J, Couzin ID, Theraulaz G. From behavioural analyses to models of collective motion
in fish schools. Interface focus. 2012; p. rsfs20120033. https://doi.org/10.1098/rsfs.2012.0033 PMID:
24312723
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RÉSUMÉ 

Les bancs de poissons sont des entités pouvant regrouper plusieurs milliers d’individus 
qui se déplacent de façon synchronisée, dans un environnement sujet à de multiples 
perturbations, qu’elles soient endogènes (e.g. le départ soudain d’un congénère) ou 
exogènes (e.g. l’attaque d’un prédateur). La coordination de ces bancs de poissons, 
décentralisée, n’est pas encore totalement comprise. Si les mécanismes sous-jacents 
aux interactions sociales proposés dans des travaux précédents reproduisent 
qualitativement les structures collectives observées dans la nature, la quantification de 
ces interactions et l’accord quantitatif entre ces mesures individuelles et les motifs 
collectifs sont encore rares dans les recherches récentes et forment l’objet principal de 
cette thèse. 


L’approche de ce travail repose sur une étroite combinaison entre les méthodes 
expérimentales et de modélisation dans l’objectif de découvrir les liens entre les 
comportements individuels et les structures observées à l’échelle collective.  Nous avons 
caractérisé et quantifié les interactions et mécanismes à l’origine, d’abord, de la 
coordination des individus dans les bancs de poissons et, ensuite, de la propagation 
d’information, quand le groupe subit une perturbation endogène ou exogène. Ces 
travaux, tous réalisés en étudiant la même espèce de poisson d’eau douce, le nez-rouge 
(Hemigrammus rhodostomus), ont mobilisé une diversité de méthodes expérimentales, 
d’analyses statistique et de modélisation, à l’interface de l’éthologie, de la physique 
statistique et des sciences computationelles.
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