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Motivation and research question

The use of Knowledge Organization Systems (KOS) [Hodge, 2000], such as classification schemes, thesauri or ontologies in the medical field, has proven to be of great value in tackling semantic interoperability issues. In many cases, KOS elements are used to annotate objects such as electronic health records (EHR), case report forms (CRF), genes or publications in order to make their semantics explicit for software applications. This is the case in the biomedical domain, where the main interests in annotating documents are twofold for healthcare professionals: i) to transfer these documents to other institutions/people (e.g., to accelerate the reimbursement process, to request a second opinion, etc.), ii) to easily retrieve patient information. Secondary uses of these annotations are often seen in decisionsupport systems, public health analysis, patient recruitment for clinical trials, etc. For example, the well-known Gene Ontology (GO) is used to describe the molecular functions of genes and proteins, and scientific publications in MEDLINE are semantically annotated with concepts from the Medical Subject Headings (MeSH), facilitating the search for relevant medical information [START_REF] Lowe | Understanding and using the medical subject headings (mesh) vocabulary to perform literature searches[END_REF].

These diverse use cases for annotations show that they are widely utilized and can support various tasks in medical information systems, such as retrieving, sharing and exchanging information. However, the dynamic nature of medical KOS mean that annotations may be affected each time a new version of a KOS is released to include or review healthcare knowledge. New concepts can be added, obsolete ones removed and the definitions of existing concepts may be refined through the modification of their attribute values [Dos Reis et al., 2014]. The removal of a concept in a terminology engenders the removal of the semantics of the associated annotation, therefore making the annotated data incomprehensible for computers. More generally, changes in KOS may directly impact the annotations associated with changed concepts or changed data and new KOS versions can potentially invalidate previous annotations. As a result, many annotations can lose their relevance and value, thus hindering the intended use and exploitation of annotated data.

Consider, for instance the example in Figure 1.1. A subset of a document in PUBMED 1 is annotated with the term Menstrual migraine, an attribute from concept 625.4 of ICD-9-CM, version 2008AA. In version 2009AA, this attribute was removed and became a new concept with the ID 346.4. We consider this annotation as impacted, because the change in the KOS caused a mismatch between the annotation created with version 2008AA and the concept in the new KOS, version 2009AA. Furthermore, the excludes relationship in the ICD-9-CM guidelines states that: i) these concepts are considered mutually exclusive, and ii) the condition Menstrual migraine is not included in this particular code. In consequence of these changes, concepts 625.4 and 346.4 should not be assigned together and the terms from code 625.4 that were changed have to be encoded elsewhere. Thus, software applications like search engines and data portals will be affected when retrieving information from documents. For example, doctors accessing EHRs from a hospital through a search engine will not be able to retrieve precise and complete information if the query specifies Menstrual migraine and no document was annotated with the right concept code at the query evaluation time. It illustrates the direct impact of KOS changes on semantic annotations and underlines the real need for advanced methods and tools able to keep semantic annotations up-to-date, avoiding the need for human intervention to this manually. Annotations cannot always be changed directly because: i) the content of the document cannot be accessed, and ii) the documents are encrypted and the meta-data (i.e., the annotations) can only be accessed, not modified. This is usually the case in EHR where data managers are not able to modify medical content without the intervention of health professionals. Nonetheless, users should still be able to use the latest KOS versions to access documents via annotations. An example of such a case is depicted in Figure 1.2, where the query Tiotropium Bromide is searched into an indexed database, which does not contain this entry. Thus, the query will not yield any results, i.e. the query will not return any documents associated with this term to the user, even though data containing the above-mentioned terms is present in the database.

The European eStandards project2 is an example of where such cases could occur. In a scenario where multi-agent systems exchange health information from patient documents with national and cross-border institutions, it is important to consider the privacy of data while maintaining the high-level information that is exploitable by direct queries. Therefore, ad-hoc methods that adapt the annotations when they are accessed or queried by users are necessary.

In this global context, this thesis will design and implement methods and tools to support the semi-automatic maintenance of the semantic annotations affected by KOS evolution in order to keep annotations exploitable over time. We aim to answer the following research question: General Problem: How can we automatically maintain the validity of biomedical annotations in the presence of changes in the underlying KOS over time?

In particular, such a system has to be generic enough to deal with different terminologies having distinct structures. Furthermore, performance issues must be considered when trying to apply reasoning over thousands of concepts, e.g., Medical Subject Headings (MeSH) with 237,000 entries and Systematized Nomenclature of Medicine, Clinical Terms (SNOMED CT) with around 310,000 entries.

Thus, we formulated the following hypothesis to guide our investigation: Hypothesis: The information from KOS, as well as information about KOS evolution, can be used to define a robust maintenance mechanism.

This brings us to the following specific challenges:

• RQ1: What is the impact of KOS changes on semantic annotations?

• RQ2: What is the most suitable model for addressing the annotation evolution problem?

• RQ3: How can we automatically maintain the validity of semantic annotations without re-annotating the content of all documents when KOS are updated?

• RQ4: Which methods can be used to keep the annotations searchable when the document and annotations cannot be changed directly?

• RQ5: Can we predict which KOS concept will change in the near future and what kind of changes will impact that concept?

Finally, the research problem investigated in this thesis is summarized in Table 1.1.

Methodology

This thesis aims to address the requirements for annotation maintenance comprehensively and to correct the shortcomings of previous approaches. To do this, we have adopted a methodology based on an iterative process, as depicted in Figure 1.3. The methodology comprises three phases: i) Data-driven Analysis, ii) Design & Formalization, and iii) Implementation, which are performed in cycles in order to find answers for each of the research questions. Maintenance of semantic annotations after changes in the underlying KOS.

Hypothesis

Information from KOS, as well as information about KOS evolution, can be used to define a robust maintenance mechanism.

General Goal

Design and implementation of a semi-automatic method to maintain semantic annotations RQ1: What is the impact of KOS changes on semantic annotations? RQ2: What is a suitable model for addressing the annotation evolution problem? Specific Research Questions RQ.3: How can we automatically maintain the validity of semantic annotations without re-annotating the content of all documents when KOS are updated? RQ4: Which methods can be used to keep the annotations searchable when the document and annotations cannot be changed directly? RQ5: Can we predict which KOS concepts will change and impact the annotations in the near future?

• Data-driven Analysis: The main objective of this phase is to understand the typical annotation process and the evolution of annotations triggered by KOS changes. To do this, we used three major resources as primary data: i) automatic and manual annotations, ii) documents like EHRs and CRFs, iii) medical KOS. The outcomes provide insights and quantitative results, demonstrating the behaviour and correlation between the KOS changes and impacted annotations.

For the scope of this work, the four KOS selected (MeSH3 , ICD-9-CM4 , SNOMED CT5 and NCIt6 , described in OWL7 ) are used to evaluate our approach, which is in line with the Gruber definition [Gruber, 1993] of ontology. Thus, we will use the term ontology to refer to them. However, we highlight that the logical part of these models was not used for inferring new knowledge for reasoning issues [START_REF] Schulz | SNOMED CT's problem list: ontologists' and logicians' therapy suggestions[END_REF]. Furthermore, the models were used only to define concepts (and their attributes) and regions related to these concepts following the formality expressed in the UMLS metathesaurus8 ((Concept A rdfs:subClassOf Concept B) ; (Concept A skos:prefLabel 'term 1')), etc.

• Design & Formalization: The main objective of this phase is to develop a model that describes semantic annotations and their evolution, as well as formal methods to keep them up-to-date automatically over time. We used the outputs from the previous analyses and the related works to build models and workflows that allow us to maintain the impacted annotations.

Data-driven Analysis

RQ1, RQ5

RQ2, RQ3, RQ4, RQ5

Design & Formalization

RQ3, RQ4, RQ5

Experimental Evaluation

Implementation

Figure 1.3: Schema of the methodology

• Implementation: Using Semantic Web technologies, we implemented the formalized models and workflows. The outcome is a prototype capable of: i) computing the evolution of annotations and ii) evaluating the performance of our algorithms.

Contributions

Each of the specific research questions allowed us to make significant contributions to the stateof-the art in the evolution of annotations. These contributions are briefly outlined below and are described in detailed in the upcoming chapters.

• Chapter 2: Study of factors influencing the evolution of annotations and available models. We addressed research questions RQ1 and RQ2.

Contribution: Through quantitative results we highlighted the correlation between changes in the ontologies and changes in the annotations. Furthermore, we included features in the existing annotation formalism to support (semi-)automatic annotation maintenance mechanisms.

• Chapter 3: Adapting semantic annotations. Using the insights and results of our previous analysis on the evolution and adaptation of annotations over a period of time, we started to investigate RQ3.

Contribution: We defined a method to automatically keep semantic annotations upto-date. It is a four-level approach combining different methods to drive the annotation adaptation process.

• Chapter 4: Semantic similarity measures to adapt semantic annotations. It addresses a boundary question that emerged after several cycles in our methodology, and that is an important component in our architecture and in other methods that deal with semantic annotations.

Contribution:

We proposed an original approach combining lexical and ontology-based semantic similarity measures to improve the relatedness of clinical terms. We utilized this approach to improve our method for maintaining semantic annotations by the adding a new rule. Furthermore, we restructured our method to maintain the annotations through multiple versions of ontologies.

• Chapter 5: Keeping the annotations searchable when the document and annotations cannot be changed directly. This addresses RQ4, which focuses on the second variant case in the evolution of annotations, see Figure 1.2.

Contribution: We built a knowledge base capable of: i) keeping the impacted annotations searchable without changing them, ii) using this knowledge graph as an alternative for background knowledge when dealing with the modifiable impacted annotations from RQ3.

• Chapter 6: Predicting ontology changes. We approached RQ5, which aims to provide support for the annotation maintenance process.

Contribution: We built a machine learning model to predict i) whether a concept of an ontology will evolve in its next release, and ii) the type of change that affects it. For annotators, this work can support their decision concerning the term or the ontology that will be used to annotate specific types of documents (e.g., a more stable ontology would be preferable).

Chapter 2

Annotation Models and Factors Influencing the Evolution of Annotations In order to answer RQ1 (what is the impact of KOS changes on semantic annotations) and RQ2 (what is a suitable model to address the annotation evolution problem) introduced in chapter 1, we conducted a study to understand how annotations are represented and whether the current models were capable of supporting their evolution. We also investigate how KOS evolution impact existing semantic annotations in a quantitative and qualitative way. Thus, in this chapter, we describe the main concepts related to semantic annotation and its associated representation models in section 2.1.1. In Section 2.1.2 we investigate existing approaches surveying the impact of KOS changes on semantic annotations. In sections 2.2 and 2.3 we describe the various experiments and the results we obtained regarding the evolution of annotations due to KOS changes. Finally, in section 2.4 we propose new features that should be taken into account in current models to cope with the evolution of annotations.

Study of existing annotation models and factors influencing annotation evolution

Existing annotation models

Semantic annotations are defined in the literature in many ways. According to Oren et al. [START_REF] Oren | What are semantic annotations? Technical Report[END_REF], the term annotation can denote the process of annotating as well as the result of this process. Moreover, they distinguish three families of annotations. Informal annotations that are not machine-readable, (e.g. a handwritten margin annotation in a book). Formal annotations that are machine-understandable but are not defined using ontological terms, (e.g. highlights in an HTML document). Last, and the kind of annotation we are referring to in this thesis, ontological annotations are machine-understandable and are composed of elements from an ontology (see Figure 2.1).

[ To represent semantic annotations (SA) in the biomedical field, [START_REF] Luong | A rule-based approach for semantic annotation evolution in the coswem system[END_REF] defined the following annotation model: SA = (R a , C a , P a , L, T a )

(2.1)

Where: R a : set of resources, for instance, an RDF resource.

C a : set of concept names defined in ontology (C a ⊂ R a ) P a : set of properties, for instance, an rdf:type (P a ⊂ R a ) L: set of literal values, for example, "Fever", "Malaria Fever", etc. T a : set of triples (s,p,v) where s ∈ R a , p ∈ P a and v ∈ (R a ∪ L)

In [START_REF] Luong | A rule-based approach for semantic annotation evolution in the coswem system[END_REF], annotations are instances of an ontology represented in W3C Resource Description Framework (RDF) triples, s, p, o as following: <ev:Person rdf:about="http://persinfo.com/John.Beeman"> <ev:hasDisease rdf:resource='&ev;Malaria_Fever'> </ev:hasDisease> </ev:Person> [START_REF] Groß | Estimating the quality of ontology-based annotations by considering evolutionary changes[END_REF] and [START_REF] Hartung | Analyzing the evolution of life science ontologies and mappings[END_REF] defined an annotation mapping (AM), i.e. a set of annotations somehow related, considering versioning and quality information, aspects which were missing in [START_REF] Luong | A rule-based approach for semantic annotation evolution in the coswem system[END_REF]] model. In their work, an annotation mapping is defined as: AM = (I u , ON v , Q, A) (2.2)

Where: I u = (I, t): is an instance source. It consists of a set of instances I = {i j , ..., i n }, e.g., molecular biological objects, such as genes or proteins, at timestamp t. Instances are described by an accession ID. ON v : is an ontology in version v that contains (C, R, t), it means a set of concepts C = {c 1 , ..., c n } and relationships R = {r 1 , ..., r m } released at time t. Q: is a set of quality indicators (ratings) of annotations. The quality indicators may be numerical values or come from predefined quality taxonomies, e.g., the evidence codes for provenance information or stability indicators. A: is a set of annotations. A single annotation a ∈ A is denoted by a = (i, c, {q}), i.e. an instance item i ∈ I u is annotated with an ontology concept c ∈ ON v and a set of quality indicators (ratings) {q} ∈ Q Recently, the W3C9 has published a new candidate recommendation for expressing and sharing annotations between systems, see Figure 2.2. It expresses the relationship between two or more resources by means of an RDF graph, using three major entities: i) Annotation, ii) Body and iii) Target.

The Body and Target, may be of any media type, e.g. Text, Audio, Video. Both are connected to the annotation through the oa:hasBody and oa:hasTarget relationships, which can be duplicated to create multiple body and/or target resources at the same time for an annotation. Furthermore, the relationship between these two entities may vary according to the intention of the annotation. This model is the foundation of a more general framework for sharing and reusing annotated information across different hardware and software platforms, see Figure 2.3. Although, it specifies many features, we only describe those used to analyse the evolution of annotations in this thesis: concept, target, motivation and agents.

In Figure 2.3, the feature target allows the nature of the documents to be specified: text, video or image. In order to do this, it has to be associated with a source by using the relationship oa:hasSource, which informs where the desired media is located. In Figure 2.3, the resource used, PMC2630914, is a paper from PubMed. It is also necessary to define the corresponding part of media to be annotated. To do this, one uses selectors, whose main functionality is to describe the part of interest of a resource. In our example, the selector1 defines the range of the annotated text segment in the document. Further, this first selector is refined by the inclusion of a selector2, that has a prefix and a suffix, allowing it to describe the information that comes before and after the annotation.

The second feature, concept, is not directly defined in the W3C annotation data model. Therefore, we used the Body resource, since this allows the resources used for annotation to be indicated, as well as supporting any kind of media to represent it. In Figure 2.3, the descriptor D00558 from MeSH (mentioned in this thesis as concept), is attached to the annotation's body through the relationship skos:related. It creates an associative link between the body and the target indicating that the two are inherently "related", but that one is not in any way more general than the other. If the concept/ descriptor used is more general or specific than the target, we can use skos:broader or skos:narrower, respectively.

The motivation feature specifies the reasons for the annotation being created or for the inclusion of the body or target. In Figure 2.3, it is defined by the relationship oa:motivatedBy, where we used the motivation: identifying. This motivation assigns an identity to the target or identifies what is being depicted or described in the target. Our example depicts the PubMed document PMC2630914.

Finally, the agents are indicated by the relationships oa:annotatedBy and oa:serializedBy, respectively. Both allow to define who produced the annotation, e.g., "A. Person" and the software utilized to serialize it, e.g., BioPortal. These features are useful for tracing the provenance of the annotation, e.g., the parameters used during the creation of the annotation. These parameters play a key role, because according to [START_REF] Funk | Large-scale biomedical concept recognition: an evaluation of current automatic annotators and their parameters[END_REF], entity recognition systems may vary from ontology to ontology and do not perform equally on natural language texts. Furthermore, we can define the date it was serialized through the relationship oa:serializedAt and when it was verified by the domain specialist by using oa:annotatedAt. However, this model is still not sufficient to deal with evolution issues. The two main reasons are: i) the motivations available to describe annotations that have been changed. For example, editing, moderating and replying, are mostly related to manual editions and do not consider the impact of KOS changes; ii) there is no distinction between stable annotations and those that have evolved when we access as:items, i.e., a list of assorted annotations present in the target. Therefore, in section 2.3 we point out new features that must be considered when representing evolved annotations.

Related work in factors influencing the evolution of annotations

Recent analytical approaches to the evolution of the annotations focus on biological domain, in particular on GO-annotated documents. [START_REF] Traverso-Ribon | Annevol: An evolutionary framework to description ontology-based annotations[END_REF] developed the AnnEvol framework to compare two versions of a dataset (for instance, UnitProt-GOA and Swiss-Prot) and to verify those entities in the dataset (i) and dataset (i+1) (at two successive moments in time) that are similar and those that are different, using evolution criteria (e.g. obsolete, removed and added annotations).

[ [START_REF] Groß | Impact of ontology evolution on functional analyses[END_REF] provided a method to evaluate to what degree changes of Gene Ontology (GO) and GO annotations (GOAs) may affect functional enrichment analyses, analysing two real-world experimental datasets, as well as 50 generated datasets. They proposed two types of stability measures to assess the impact of ontology and annotation changes. In contrast to AnnEvol, [START_REF] Groß | Impact of ontology evolution on functional analyses[END_REF] deal with other types of change besides add and delete, such as, merge (merging of two or more categories into one category). They also verified strong structural changes, such as addR (insertion of a new relationship) and delR (deletion of an existing relationship). However, these changes do not significantly impact on GOAs, when compared to removal and merge changes that have a major affect in the annotations. [START_REF] Huntley | Understanding how and why the gene ontology and its annotations evolve: the go within uniprot[END_REF] reported that GO annotations change for many reasons: i) the removal of partOf relationships, which are used to create inferred annotations; ii) taxon restriction, i.e., the redefinition of concepts and terms in order to remove ambiguity, such as the class GO:0051297 being replaced by GO:0007098. Furthermore, their work focuses on revision changes that were not considered in previous works, e.g. the detection of inappropriate terms used for manual annotation in past versions. These changes generally improve the accuracy of annotations and the underlying ontology. Finally, for those who are generating annotations, they recommend ensuring that they are using the most up-to-date version of GO and appropriate terms.

In summary, we concluded that the existing approaches evaluating the factors that influence the evolution of annotations only work with simple ontology changes (like addition and removal), and only study the evolution of GO ontology. The referenced works do not propose any methods to maintain the annotations. Therefore, it is necessary to further analyse the stability of KOS annotations based on different KOS like MeSH and verify possible features to be taken into account to properly maintain semantic annotations in biomedical and clinical use cases.

Experimental assessment of the impact of KOS evolution on semantic annotation

To bridge the gaps underlined in the previous section, we decided to conduct an empirical analysis regarding the evolution of KOS and annotations10 . The lessons we learned through these experiments allowed us to come up with a new proposal to deal with semantic annotation evolution issues. The used material and the adopted assessment methodology are detailed in this section.

Material

As our objective is to analyse the evolution of semantic annotations, we worked on several versions of an annotated corpus of documents. Since there is no gold standard containing successive sets of annotated documents for multiple KOS, we had to build our own baseline (silver standard).

To this end, we used two annotation tools (based on distinct annotation methods), two different medical standard KOS and their associated successive versions, an ontology Diff tool to be able to identify the evolution of the concepts used to produce the annotations and a collection of documents representative of the medical domain. These documents were collected from the 2014 Clinical Decision Support Track (TREC 2014) campaign, which contains 733,138 biomedical articles about generic medical records. All documents from this database are open access documents from PubMed Central PMC. For our analyses we selected 5000 documents randomly.

The set of KOS is composed of several versions of medical KOS, represented in OWL format and used as a "reference ontology" for text annotation. In order to annotate the documents, we selected two KOS: International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM); and Medical Subject Headings (MeSH). We collected 13 official versions of each KOS released between 2004 and 2016 in UMLS (versions AA) and transformed them into OWL files11 .

Regarding the annotation tools, the selection criteria were that they were open source, allowed the reference ontology to be selected, proposed APIs, had good documentation, and were extensively used for research and/or commercial purposes. We first selected General Architecture for Text Engineering (GATE) [Cunningham, 2002]. It provides support for Ontology-Aware NLP, allowing any ontology to be loaded as an RDF file, before using a gazetteer to obtain lookup annotations that have the class URIs and the text offset (offset is a pair {start, end} that indicates the distance, in terms of characters, from the beginning of the document. {start} indicates the position of the first character of the text while {end} indicates the position of the last character). The second tool selected is the NCBO Annotator. It is part of the NCBO Annotator framework and uses a dictionary built by extracting all concept labels and/or other associated attributes (e.g., synonyms) that syntactically identify concepts from the KOS [START_REF] Whetzel | Bioportal: enhanced functionality via new web services from the national center for biomedical ontology to access and use ontologies in software applications[END_REF]. Both annotators utilize different algorithms to produce annotations. GATE uses ontology-aware NLP and NCBO Annotator uses MGrep. Moreover, NCBO Annotator also allows other KOS to be used to annotate the terms, if a mapping exists between the concepts of both KOS. For instance, melanoma could also be annotated using UMLS Concept Unique Identifiers (CUIs) C0025202 (from NCI Thesaurus), or C0025202 (from SNOMED CT).

We used COnto-Diff [START_REF] Hartung | Conto-diff: generation of complex evolution mappings for life science ontologies[END_REF] in collaboration with our partners from the University of Leipzig, to determine an expressive and invertible diff evolution mapping between two versions of an ontology, although any other software capable of computing the diff between two ontologies can be used. COnto-Diff calculates basic change operations (insert/update/delete) from two KOS versions expressed in either OWL or OBO based on a predefined set of rules defining basic and complex transformations (e.g., concept merging, concept splitting, move of concept, etc).

Method

To identify and quantify the impact of changes affecting KOS concepts involved in annotations (as illustrated in Figure 1.1), we proposed the methodology depicted in Figure 2 2. We used GATE and NCBO Annotator to annotate these documents. We configured GATE and NCBO Annotator to use one specific KOS version and repeated the annotation process for each version. We filtered the annotations produced by both annotators according to [START_REF] Dogan | NCBI disease corpus: a resource for disease name recognition and concept normalization[END_REF]] (e.g., keep the longest match concept for an annotation).

3. We regrouped all annotations in one database. We then computed the symmetric difference A m,n ∆A m,n+1 between the two annotation sets (A m,n and A m,n+1 ) generated from a document R m using two successive KOS versions (K n and K n+1 ) as the following:

A m,n ∆A m,n+1 = {a | a ∈ A m,n ∧ a / ∈ A m,n+1 } ∪ {a | a ∈ A m,n+1 ∧ a / ∈ A m,n } (2.3)
a is an annotation that can be described as {i, m, n, Offset, c} where i is an instance identifier, m is the document, n is the KOS used, Offset is the text position and c is the KOS concept. The symmetric difference allows annotations that have been removed, added and modified to be identified.

4. To identify KOS changes, each pair of two successive KOS versions was used as the input for COnto-Diff to compute the KOS difference. The difference was stored into another MySQL database and was reused to explain the changes.

5. We compared the 13 annotation sets of each document by pairs [2004-2005, 2005-2006, ...] to identify what had changed in the annotations and to find correlations with the KOS changes identified by COnto-Diff. An annotation a is considered as an evolution of a if the Offset or/and the underlined concept c used in the annotation a are different from those of a and there is an overlap of both Offset.

6. Finally, we analysed the generated subset of annotations/KOS changes in order to understand the impact of KOS changes on the annotations.

Results

The methodology described in the previous section has allowed us to produce more than 66 million annotations. The amount of annotations varies according to the annotation tools used (GATE or NCBO Annotator) as depicted in Figures 2.5 and 2.6. The difference between the two sets of annotations results from the method used to annotate the documents (they do not use only exact matches). A general observation can be made based on Figure 2.5 and 2.6. We observe a huge increase in the amount of annotations produced in the periods 2007/2008 and 2009/2010 using ICD-9-CM (Figure 2.5 ). This increase is accompanied by the changes that occurred in the KOS during these periods according to COnto-Diff output. On the other hand, the amount of annotations in the period 2012-2013 did not increase even though there were many KOS changes. In the UMLS database, we observed an average of 8,746 words/label during this period and thus the annotators are not able to produce annotations for these changed labels. Hence, we can conclude that the change in the number of annotations does not necessarily correspond to the amount of KOS changes. In the chapter 3, we analysed what kinds of KOS changes trigger what types of annotation changes since not all kinds of changes in the KOS have the same impact on the annotations (e.g., some KOS changes do not change the annotations).

In order to verify whether a change in the annotations is triggered by the evolution of the KOS concepts or a gap in the annotator, we followed step 3 in Section 2.2.2. The first (quite evident) observation is that 100% of the annotation changes are caused by a KOS change even when the annotation methods do not only produce exact matches. This simple hypothesis had not been demonstrated before in the literature. We continued our analyses regarding the evolution of annotations by refining the previous sets of symmetric difference (see step 5 in Section 2.2.2). If more than one concept candidate existed to annotate a text, we used the following selection criteria: (1) the most recent concept and the one with the largest offset, as proposed by [START_REF] Dogan | NCBI disease corpus: a resource for disease name recognition and concept normalization[END_REF]. For instance, a text with the words chronic kidney disease can be annotated as kidney disease or chronic kidney disease; we selected only the latter concept. This decision can generate changes in the annotation from one KOS version to another (change operations). One of these changes is a shift of the offsets before and after the evolution while part of these offsets overlaps. For instance, in 2007, we had the annotation "personality disorders". After a KOS change in 2008, the new annotation became "schizoid personality" (of which "personality" is overlapped with the previous offset). For such cases, we compute a (2) chgOffset operation. We formally define these conditions in Eq. (2.4):

Evolution(a i , a i+1 ) → recentCp(a i , a i+1 ) ∧ bigOffset(a i , a i+1 ), if 1 chgOffset(a i , a i+1 ) , if 2 (2.4)
As a result, we observed that the new KOS versions do not necessarily produce more annotations despite the increasing size of the KOS over time [Da Silveira et al., 2015] (cf. Figures 2.7 and 2.8). Analysing the amount of annotations and the types of changes occurring in the KOS, we observed that some minor changes which do not affect the semantics of the concepts, still might impact the annotations. For instance, the concept 780.39 in ICD-9-CM, version 2007AA (Seizures) evolves to (Seizure) in ICD-9-CM, version 2008AA. However, neither annotator recognized that the concepts had the same meaning and therefore the associated annotations are different from one version to the next.

We also observed that there are some periods in the KOS evolution history which are more stable and this stability is also reflected in the evolution of the annotations (e.g., the two periods 2010/2011 and 2013/2014 in ICD-9-CM Figures 2.5 and 2.7).

Changes in the KOS also have different impacts depending on the amount of annotations a concept is associated with. This is for instance the case for concept 084. We then analysed how these annotations evolve. In Table 2.1, we present five use cases showing how the annotations evolve over time and their relation with the evolution of KOS. The second column is related to the year in which each annotation was made, while the third column is associated with annotated text and the fourth column the KOS concept used. Finally, the fifth and sixth columns present the change behaviour of the annotation and the KOS concept, respectively. (571.42) was also used to annotate the term hepatitis. Our selection criteria define that we will select the concept with the longest title (autoimmune hepatitis). We also observed that this concept (571.42) changed in 2009 (a split was detected).

The second use case illustrates a situation where both concepts changed (i.e. 625.4 had an attribute deleted, and 346.4 is a new concept).

The third use case presents the inverse situation of use case 1, i.e., an annotation evolved from a change concept to a stable concept. In an in-depth analysis, this case was mainly observed when more general concepts were used to annotate the text. This behaviour occurs when the annotator is not able to determine whether a change in the concept has modified its meaning or not. The last two use cases describe the addition or removal of annotations. Regarding the removal of annotations, we also determined that there were some cases where the concept remained with the same meaning, but the annotator missed this knowledge and the annotation was removed from the document. .9: Distribution of changes of ICD-9-CM annotations. The y-axis represents the percentage of changes, the x-axis the KOS versions, and the amount of observed changes for each period is described below. The cases listed follow 2.1 Figures 2.9 and 2.10 show how often these use cases are observed in the corpus annotated with ICD-9-CM and MeSH using GATE and NCBO Annotator, respectively. In general, we observe that changes in ICD-9-CM have less impact on the annotations than those in MeSH. The low expressiveness of ICD-9-CM could be a reason for this as the annotators tend to apply exact match techniques for these kinds of KOS. Semantic-based techniques are used more for KOS with high expressiveness. These differences are better observed by comparing Figures 2.9 and 2.10 to see how the annotation technique influences the final annotation results regarding the expressiveness of the KOS. Use cases 2 and 5 (change to change and removal, respectively) are more frequent in the MeSH-based annotations. Thus, annotations based on ICD-9-CM evolve quite similarly for GATE and NCBO Annotator, while the annotations based on MeSH evolve differently, depending on the annotator used.

Use case KOS version

Taking into account the annotator techniques only, we observed that GATE also tended to preserve existing annotations while the rates of new annotations over deleted ones are quite similar for both annotators. More precisely, the rates of use cases 1 and 2 over the deleted ones (GATE has more than double that of NCBO) explain the results presented in Figure 2.5 (number of annotations increases faster for GATE).

A model supporting annotation evolution

The results presented in the previous section allow us to state that the evolution of the KOS has a direct impact on the definition of semantic annotations. However, we also showed that the modification of KOS concepts has different impacts depending on the technique that is implemented to generate the annotations. Furthermore, the evolution of KOS does not necessarily produce more information (see Figures 6 and7). Actually, we have observed that KOS are becoming more and more precise over time, which indicates the addition of new specific concepts whose labels are usually long (in terms of words) and therefore only very rarely appear in medical documents. Our study pointed out important features to take into account, at the semantic annotation model level, to facilitate the maintenance of annotation over time. These features can be used to extend the model proposed by [START_REF] Groß | Estimating the quality of ontology-based annotations by considering evolutionary changes[END_REF] (see Sect. 2.1). In consequence, we define our evolution model as:

SAM = (I u , ON v , R a , Offset, Q, H, A, SemRel, U f )
Where :

• Offset is an element to describe the location of the element to be annotated in a given resource. From an evolution perspective, this is important for linking annotations from different versions and also for distinguishing annotations related to the same element but annotated differently.

• H is an element to describe which attribute of the concept (e.g., title, synonym, preferred terms, etc.) was used to produce the annotation. This element is extremely important since the annotation is usually defined based on the value of one concept attribute. If one of the attributes is changed in corresponding concept, but not the one used to annotate it, the annotation may not need to be modified.

• SemRel is an element that describes the semantic relationship between the KOS concept and the annotated part of the resource. For instance, one sentence can be annotated as equivalent to a concept, more/less specific, partial match, etc. Thus, if a concept is removed, the annotated sentence can be linked to the super-class of the concept and the relation has to be changed to "less-specific".

• U f is an element that points to the previous version of the annotation. This element is used to keep an evolution chain of annotations.

Our proposal, allowing annotation versions to be linked, can also be used to improve the W3C model by creating an additional motivation, known as "evolving", and a property, "evolved" that link the "annotation" to its past version, allowing a chain of annotations versions to be created, see Figure 2 The improvements of our proposed model to the W3C model can be visualized in blue in Figure 2.11, when compared to Figure 2.3. The evolved annotation now contains the property "oa:evolved " in the Target that links it to the past version. Moreover, we modified the Body by adding the described feature H, represented by skos:altLabel indicating which concept attribute (e.g. title, synonym, preferred terms, etc.) was used to produce an annotation. This information can be used, for example, to determine whether the used attribute of the concept is impacted by the ontology evolution and whether this further triggers the corresponding annotation modification.

Finally, we included other semantic type relationships, partial match, and other ontology region, to indicate the relationship between a concept and a text segment. For instance, some changes in the above case change to change (see Figure 1.1), move a concept or its terms to another ontology region. Therefore, this relationship may help future evolution maintenance and curation by domain experts.

Conclusion

In this chapter, we approached RQ1 and RQ2 through an empirical analysis of the evolution of biomedical annotations and its relation to the KOS changes. For this, we used a set of documents annotated with GATE and NCBO Annotator using 13 different versions of two well-known biomedical KOS (ICD-9-CM and MeSH). We observed that there was a correlation between KOS and annotation changes. We then regrouped the annotation changes according to the type of information modified and the way it was modified. We obtained five different cases of changes (see Section 2.3) and verified how the annotations evolved during the KOS evolution. In a second step, we analysed different annotation models in order to verify whether they could represent (or whether we could infer from their elements) all the criteria required to classify the annotation changes. As a result of this step, we proposed an extended annotation model designed to support the evaluations and maintenance of annotations utilized in our maintenance method described in the next chapter. In order to answer RQ3 (How can we automatically maintain the validity of semantic annotations without re-annotating all document content when a KOS evolves? ) discussed in chapter 1, we designed an automatic approach for maintaining semantic annotations valid over time when the underlying KOS evolves. To do this, we designed a rule-based approach that considered the findings from chapter 2, which highlighted different aspects to take into account for the maintenance of semantic annotations.

Besides the set of rules, we used two other methods to improve the quality of our maintenance method, detailed in section 3.2. The first relies on the use of background knowledge (BK) [START_REF] Pruski | Capturing the relationship between evolving biomedical concepts via background knowledge[END_REF], while the second one exploits semantic change patterns (SCP) [Dos Reis et al., 2015a].

Thus, we divided this chapter up as follows. In section 3.1, we discuss the related work on semantic annotation maintenance processes and highlight possible improvements. Section 3.2 presents our method to overcome the limitations of existing approaches. In section 3.3 and 3.4, we describe the experiments and results, respectively. Finally, we discuss the results and highlight our contribution in section 3.5.

Existing approaches for maintaining semantic annotations valid over time

One possible solution to cope with the evolution of annotations is the re-annotation of documents [START_REF] Tissaoui | EVONTO -Joint evolution of ontologies and semantic annotations[END_REF]. However, Funk et al. [START_REF] Funk | Large-scale biomedical concept recognition: an evaluation of current automatic annotators and their parameters[END_REF] point out that concept recognition systems vary from ontology to ontology and do not perform equally on natural language texts. Furthermore, the necessity of validating automatic generated annotations is a laborious and time-consuming task for domain experts [START_REF] Dogan | NCBI disease corpus: a resource for disease name recognition and concept normalization[END_REF]. Therefore, it is vital to propose advanced methods and tools able to automatically maintain semantic annotations impacted by KOS evolution and/or changes in the annotated data or documents. In the literature, three families of approaches dealing with annotation maintenance can be found. The first addresses the problem of automatic detection of inconsistent annotations [START_REF] Eilbeck | Quantitative measures for the management and comparison of annotated genomes[END_REF], Qin and Atluri, 2009, Köpke and Eder, 2011, Zavalina et al., 2015]. This is mainly done by the combined identification of concepts that have changed from one KOS version to the next and the set of annotations associated with them. However, mechanisms to support the correction of impacted annotations are not proposed.

The second family of approaches focuses on the automatic detection and manual correction of invalid annotations by using standalone applications [START_REF] Maynard | Change management for metadata evolution[END_REF], Auer and Herre, 2007, Burger et al., 2010, Park et al., 2011]. These approaches only consider basic ontology changes, e.g., the deletion and addition of concepts in KOS. Nevertheless, more complex changes are also important and also need to be considered. Moreover, the requirement of human intervention to perform the maintenance is hardly applicable in the medical domain by virtue of the huge amount of annotations to be adapted.

Lastly, most advanced works implement an automatic detection and correction of the annotations [START_REF] Luong | A rule-based approach for semantic annotation evolution in the coswem system[END_REF], Abgaz, 2013, Frost and Moore, 2014]. These approaches are based on different techniques, each of which is briefly described in this chapter. [START_REF] Luong | A rule-based approach for semantic annotation evolution in the coswem system[END_REF]] developed the CoSWEM framework to investigate the evolution of annotations and to maintain them using a rule-based approach to detect and correct basic inconsistencies, such as deletion. This approach converts ontologies to RDF(S) files and detects annotations affected by the evolution of the ontologies, as well as potentially inconsistent annotations using CORESE. This work focuses on expressive and small-sized ontologies and can hardly be applied to large biomedical ones, because the implemented reasoning techniques require the power of description logics (not always used in biomedical controlled terminologies) to decide on the validity of the annotations. [Abgaz, 2013] developed methods to facilitate the evolution of ontology-driven content management systems (OCMS). The evolution is done by analysing the impacts of change operations and selecting an optimal evolution strategy before the changes are permanently implemented. The proposed strategies, i) no-action, ii) cascade, iii) attach-to-parent, and iv) N-level cascading, were based on reasoning techniques and mostly deal with removal of concepts/meta-data as described below:

1. No-action strategy: This states that a given change operation, e.g. adding a concept, is implemented without adding consequential or corrective changes. For instance, even after the addition of a new class in the ontology, e.g. avian influenza, the documents referring to it and annotated with the class influenza will not be adapted.

2.

Cascade strategy: This is the opposite of the no-action strategy. In this case, the changes will be propagated throughout the class and annotations. However, they only deal with cases of removal by propagating the deletion to all dependent entities.

3. Attach-to-parent strategy: This states that when a certain entity is deleted, its dependent entities are linked to the parent whenever it appears.

4. N-level cascading: This is a specific type of the cascade strategy. This strategy is applied to ontology classes that are found N distances from the target class. For example, if N is set to 2, the N-level cascading will apply the changes to up to two hierarchies. [START_REF] Frost | Optimization of gene set annotations via entropy minimization over variable clusters (emvc)[END_REF] propose a novel algorithm for optimizing gene set annotations to best match the structure of specific empirical data sources. The proposed method uses entropy minimization over variable clusters (EMVC). It filters the annotations for each gene set to remove inconsistent annotations. The results show that EMVC can filter between 92% and 67% of the inconsistent annotations from MSigDB C4 v4.0 cancer modules using leukemia data and MSigDB C2 v1.0 using p53 data, respectively. This method is able to improve the annotations but does not produce good results for improving incomplete gene sets or identifying new gene sets. It is very sensitive to several algorithm parameters, specifically, the cluster method and it can be computationally expensive. Furthermore, the authors point out that EMVC only works in the gene set domain, meaning other domains cannot take advantage of this approach.

The literature review highlights that there is no annotation maintenance/adaptation framework able to cope with the specificity of the medical domain e.g., size of the KOS, number of annotations. Therefore, in this chapter we present a method to automatically maintain semantic annotations when the used KOS evolves. The method discussed in the upcoming sections is related to the Direct maintenance of semantic annotations, i.e., the first use case discussed in chapter 1. For this purpose, we proposed a set of rules based on the rigorous analysis of the evolution and adaptation of a set of annotations over a ten-year period of time, described in Chapter 2 [Cardoso et al., 2016].

Proposed approach for adapting semantic annotations

The proposed method aims to comprehensively address the requirements for annotation maintenance and to correct the shortcomings of previous approaches highlighted in section 3.1.

Figure 3.1 illustrates the maintenance process we propose. It is a multi-layer approach that we split according to inputs, processes and outputs. It allows the annotation maintenance to be optimized throughout the processes by considering more information at each step to maintain annotations that remain invalid after the correction that occurs in a previous step.

The different processes we have identified consist of: i) Automatically detecting inconsistent annotations caused by the evolution of the underlying KOS; ii) Using only the information gained from the evolution of the KOS to adapt impacted annotations; iii) Using information from the external KOS to maintain annotations that could not be maintained using local resources; iv) Using change patterns to finalize the maintenance and optimize the quality of the set of adapted annotations.

• Identification of invalid annotations: This consists of identifying invalid annotations by analysing the evolution of the associated KOS. To this end, it takes a set of annotations and two successive versions of the KOS used, namely K n and K n+1 , as input. Concepts that have changed between K n and K n+1 can be identified using an ontology Diff tool [START_REF] Hartung | Conto-diff: generation of complex evolution mappings for life science ontologies[END_REF]. Such tools also provide additional information specifying the type of changes that have affected these concepts. As is the case for ontology mapping adaptation [START_REF] Groß | Semi-automatic adaptation of mappings between life science ontologies[END_REF], such information plays a key role in the maintenance task because it determines the type of correction to apply to the annotations at the next levels. For instance, the deletion of a concept attribute can lead to the deletion of annotations but the deletion of the same attribute value in the context of a concept split can lead to the migration of the annotation to the evolved version of the concept (i.e. the result of the split). The difficulty is therefore to consider not only basic ontological changes (i.e. addition/deletion of concepts) as is the case in existing approaches for annotation maintenance but complex changes (i.e. split/merge of concepts) to optimize both the maintenance process and the quality of the adapted annotations.

• Annotation correction using ontology change rules: This consists of using information derived from the set of annotations itself, as well as the data of the Diff between the two KOS versions K n and K n+1 , to adapt the invalid annotations identified. At this level, The framework for supporting annotation maintenance. Source: [START_REF] Cardoso | Towards a multi-level approach for the maintenance of semantic annotations[END_REF] the correction of annotations can be specified in rules that combine the evolution context of the KOS and the status of the annotations, e.g., impacted or stable annotations. Under these conditions, the rules must specify the maintenance action to be performed.

Our maintenance process relies on the combined use of eight rules derived from our analysis of the evolution of annotations in chapter 2. Furthermore, we based our approach on the guidelines associated with semantic annotation [START_REF] Dogan | NCBI disease corpus: a resource for disease name recognition and concept normalization[END_REF]. These guidelines aided us in defining the sequence and conditions for applying the rules.

The eight rules proposed are listed in Table 3.1. Each column represents one feature of the model described in chapter 2: the original concept code and the KOS version (CP v0 ), the annotated text (Annot v0 ), a prefix (P ref ix v0 ), and a suffix (Suf f ix v0 ). We also added one column to show the changes observed (Changed v1 ) and another to indicate the rule executed for the situation presented (one rule per line). The proposed rules are:

1. MergeAnnot: This rule will be applied when two parts of a document, annotated with different concepts, can be put together and annotated with only one (more specific) new concept. For instance, in 2004AA, the texts "pregnancy" and "hypertension" were annotated with the concept codes D011247 and D006973, respectively. In 2005AA, a new concept containing both terms was created and the annotation was evolved to concept D046110, see Table 3.1.

IncreaseAnnot:

This rule increases the amount of information that can be annotated after the evolution of the underlying KOS. To do this, we compare the new label or attribute values of the candidate concept with the information surrounding the initial annotation (i.e., we take into account the prefix and suffix of the annotated text). Concretely, this action modifies the offset value in the annotation model and (if needed) the concept ID, e.g., D002403, "cathepsin" ↔ D056668, "cathepsin l", see the second example in Table 3.1.

ResurrectAnnot:

In some cases, one concept can be temporarily deleted from a KOS, leading to the deletion of the associated annotation. For instance, the annotation chemiluminescence in Table 3.1 was removed by a change in MeSH 2005AA. This rule allows the annotation to be re-activated when the concept is re-integrated to the KOS, e.g., concept D017083 in MeSH 2006AA. This rule was inspired by the findings of [START_REF] Eilbeck | Quantitative measures for the management and comparison of annotated genomes[END_REF], where they investigated the addition and deletion of gene annotations from release to release.

4. PluralAnnot: This rule verifies whether the change in the underlying concept or attribute value is due to a plural or singular variation ("agglutination" ↔ "agglutinations"). In this case, the change in the terminology does not imply a change in the impacted annotations since the semantics of the concept is not altered. Note that plurals are language-dependent rules and our evaluation only considers English KOS.

5. ChangeConceptAnnot: This rule changes the concept ID of the annotation due to the evolution of the concept. This situation arises when the label or the attribute value of the concept, used to create the annotation, is moved to another concept or used to create a new concept. For instance, concept D003704 changed to D057174 (referring to "Semantic dementia") in MeSH 2009AA/2010AA.

6. SplitAnnot: This rule splits an existing annotation if the evolution of the underlying concept leads to the creation of two more precise annotations. For instance, the text "diabetic foot ulcers", annotated in 2005AA with the MeSH code D017719, was split into two new annotations in 2006AA: D017719 ("diabetic foot") and D016523 ("foot ulcers"), see Table 3.1.

7. PartialMatch: This rule applies lexical and semantic algorithms to change the concept ID of an annotation. We further discuss how to implement this rule in Chapter 4, since it needs a deep investigation on semantic and lexical measures. Therefore, the experiments demonstrated in this chapter do not include this rule and we only listed it to facilitate future references regarding our framework.

8. SuperClassAnnot: This rule changes the concept ID to the superClass ID since no concept can be found to precisely maintain the annotation. It will also change the relation (i.e., "Equivalent" → "Is A") between the concept and the annotation.

For instance, after checking whether any of the previous rules were executed with the annotation "infective agents", the last example in Table 3.1 shows that, instead of deleting the annotation, we propose using the superClass to annotate the text. Thus, "infective agents" is a kind of "other organism groupings". Note that this is only possible if the formalism used to annotate the text follows our proposed formalism in chapter 2.

The sequence in which the rules are executed is important to assure the quality of the annotations modified. Based on the propositions of the annotation guidelines [START_REF] Dogan | NCBI disease corpus: a resource for disease name recognition and concept normalization[END_REF], we established the following sequence (without PartialMatch): MergeAnnot, IncreaseAnnot, ResurrectAnnot, PluralAnnot, ChangeConceptAnnot, SplitAnnot, Super-ClassAnnot. First we ranked the rules that increase the information of an annotation (i.e., MergeAnnot and IncreaseAnnot), as suggested in the guideline "Annotate the most specific concept that correctly describes the disease mention". The next rules (ResurrectAnnot, PluralAnnot and ChangeConceptAnnot) are mainly related to the structure of the KOS and text. We started with ResurrectAnnot because changing the concept ID (ChangeCon-ceptAnnot) would increase the complexity in identifying the restoration of the concept. The PluralAnnot rule is an exception, because it does not affect the other rules and can be placed anywhere in the sequence. The SplitAnnot was placed close to the end of our process due to it only occurring in rare cases, as mentioned by [START_REF] Dogan | NCBI disease corpus: a resource for disease name recognition and concept normalization[END_REF]. It respects the following recommendation: "Annotate a disease mention using multiple concepts to logically describe the disease mention, using the "+" concatenator". Finally, the SuperClassAnnot was positioned at the end of our process as an alternative to the removal of the annotation.

The precision of the rules has some limitations. Thus, we decided to evaluate other potentially complementary methods in order to improve the quality of our outcomes. In this sense, we selected two other methods: background knowledge and semantic change patterns.

• Annotation correction using external resource knowledge: This consists of using information inferred from external knowledge sources to maintain the annotations that could not be corrected using local resources of the previous level. Actually, in many cases the drift of ontological concepts can be characterized only by considering the semantic relationships provided by other ontologies [START_REF] Pruski | Capturing the relationship between evolving biomedical concepts via background knowledge[END_REF]. Often, labels of concept are completely different from a syntactic point of view, before and after evolution. Therefore, considering local resources only does not allow their evolution to be characterized and, in turn, to be reused for annotation maintenance purposes. For example, the evolution of the label of concept D019684 in the MeSH from "Magnoliophyta" in 2009 to "Angiosperms" in 2010 requires an external knowledge source. Applying existing approaches to annotations associated with this concept would simply lead to the deletion of the annotations. But, the consideration of external resources (here mappings between SNOMED CT and MeSH, provided by Bioportal) show that these two terms are synonyms, therefore the annotation can be kept. Nevertheless, the nature of the external knowledge resources can vary. Depending on whether RDF datasets like BIO2RDF [START_REF] Belleau | Bio2rdf: towards a mashup to build bioinformatics knowledge systems[END_REF] or expressive OWL ontologies contained in Bioportal [START_REF] Noy | Bioportal: ontologies and integrated data resources at the click of a mouse[END_REF] are considered, the inferred information can be of a different quality and can affect the quality of the maintenance process.

The BK algorithm (see algorithm 1) presents an overview of the whole process. Figure 3.2 helps to illustrate how the algorithm works. The input of the algorithm is the concept ID (C s ), label (L s ), KOS target (KOS t ), and KOS source (KOS s ), e.g. (D019684, Magnoliophyta, MESH, {SNOMED CT, ICD-9-CM, NCIT}). After initializing the variables (lines 1 and 2), our method queries external sources using the impacted annotation label (line 3) and stores the resulting concepts (Request). For instance, concept 420928000, from SNOMED CT, is one candidate. Only concept candidates belonging to the source KOS KOS s are kept (lines 4-5). Then, for each concept from Request, the mappings are collected (line 6). Only mappings to the target KOS (KOS t ) are kept (lines 7-10); these are the grey boxes in Figure 3.2.

The next step of our algorithm (line 11) retrieves all stable ancestors of a source concept C s within a specified period, e.g. (2009/2010). From all candidates that satisfy the previous conditions, we compute the similarity between the ancestors and the source concept (lines 12 to 13) using Jiang-Conrath (JC) [START_REF] Jiang | Semantic similarity based on corpus statistics and lexical taxonomy[END_REF]. Then, we take the most similar ancestor M SA (line 14). Finally we select the best candidate to maintain our annotation (lines 15-17). This is the mapping showing the highest similarity to the M SA.

• Annotation correction using change patterns: Information provided by the Diff and the use of external resources may not be sufficient to deal with invalid annotations. In this Input: Concept source C s ; Label L s ; KOS source KOS s ; KOS Target KOS t ; KOS Changes chgs;

Output: Concept Target C t 1 M appingSet ← ∅ 2 V alidM appings ← ∅ 3 Request ← getConceptsF romBK(L s ) 4 forall cp ∈ Request do 5 if (cp ∈ KOS s ) == T RU E then 6 M appingSet ← getM appings(cp) 7 forall mapping ∈ M appingSet do 8 target ← getConceptT arget(mapping) 9 if (target ∈ KOS t ) == T RU E then V alidM appings ← target Set Sup Classes ← getAllStableAncestor(C s , KOS v0 , chgs) forall obj ∈ Set Sup Classes do calSemanticDistance(obj, C s , KOS v0 ) M SA ← getM ostSimilarAncestor(Set Sup Classes) forall obj ∈ V alidM apping do calSemanticDistance(M SA, obj, KOS v1 ) C t ← getHighestSimilarity(V alidM appings) return C t
case, the analysis of the morphosyntactic form of concept labels can reveal information to make decisions on annotation maintenance. This technique has already been explored in the context of ontology mapping adaptation [Dos Reis et al., 2015b, Dinh et al., 2014] but remains less relevant in terms of quality in the resulting maintenance decisions. Change Patterns are modifications observed in attribute values of a concept using linguistic-based features to identify the correlation between concepts over time. For instance, a Partial Copy between concepts is computed if and only if there is a partial overlap between words from an attribute present in the KOS version K n and an attribute in the new KOS version K n+1 (i.e., the attribute a 0 becomes a 1 ).

For instance, the annotation "Physiologic processes", shown in Figure 3.3 and produced using MeSH in the 2008/2009 period was removed. This is due to a change in the attribute value in the definition of concept D010829 leading to "Physiological Phenomena". Assuming the following conditions, i) we do not have information inside the ontology to deal with this change, ii) the super class from concept D010829 is Thing, iii) external resources do not provide the necessary information to make decisions, the application of four change patterns (total copy, total transfer, partial copy, partial transfer ) considering only the attributes in the same sub-ontology, e.g. the sub-classes from concept D010829, allows the concept associated with this annotation to be changed from D010829 to D055705.

• Output

Our approach was designed to process the annotations according to different levels of granularity, but the outputs contain only two kinds of data.

At the levels dealing with the correction of the annotations, the outputs are i) the corrected In Figure 3.4, the Body was enriched with an element highlighting the type of evolution that occurred, i.e., PluralAnnot. This heuristic allows us to verify whether the ontology becomes more precise due to a split of the concept or due to a small review in the labels of a concept, as indicated by the PluralAnnot rule.

If invalid annotations remain, the definition of other levels exploiting different kinds of information for maintenance purposes need to be implemented. Our proposed approach flagged these annotations as unsolved, allowing future extensions that have to take into account the following aspects: i) the complexity of the evolution affecting KOS, ii) the nature of the annotation, and iii) the specificity of the kind of object, e.g., images or videos.

The rules that are used at each level also need to be defined by considering the quality of the adapted annotations.

Experimental assessment

In this section, we introduce the method and material we used to evaluate our approach. The experiments we conducted consist of applying our approach to a set of annotated documents and comparing it to a corpus of reference representing an evolved version of the initial set of documents. 

Material

Our annotation maintenance process takes as its inputs:

• a set of outdated annotations,

• the old and new OWL versions of the KOS used to generate the annotations.

In our experiments, we used the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM), Medical Subject Headings (MeSH), National Cancer Institute Thesaurus (NCIt) and Systematized Nomenclature of Medicine -Clinical Terms (SNOMED CT). We used versions 2009AA and 2010AA downloaded from the UMLS and transformed into OWL files.

We used COnto-Diff [START_REF] Hartung | Conto-diff: generation of complex evolution mappings for life science ontologies[END_REF] to identify the changes in the new version of the KOS since these changes are strongly correlated with the validity of annotations [Cardoso et al., 2016].

Silver Standard

Since there is no annotation baseline generated with sequential ontology versions exists, we had to build our own corpus of reference using the annotations produced in chapter 2 as a base resource. To do this, we randomly selected 500 annotations generated with the 2009AA version of the four KOS (around 125 annotations from each KOS) and asked three experts to manually validate/correct the evolution of the 500 selected annotations, according to the 2010AA version of the corresponding KOS. Each expert validated one-third of the annotations without discussing them with the others. The consolidated outcomes make up the silver standard, which can be downloaded from https://git.list.lu/ELISA/AnnotationDataset. We adopted the term "silver" to indicate that our reference is based on one viewpoint only.

We represent annotations following the W3C Web Annotation Data Model12 , discussed in chapter 2. To illustrate how an annotation is represented in our system, Table 3 In our analysis, we used the following features: the name and version of the KOS, the reference of the resource document, the concept code, the annotated text followed by the start and end offset, i.e., the position in the document where this annotation is found, and the prefix and suffix, i.e., the information that comes before and after the annotation. The illustrative example in Table 3.2 shows one annotation produced with the MeSH 2009AA version using the PubMed document 23213 and the concept D019684. The annotated text is "Magnoliophyta", and this can be found in the position [4587,4600]. We set up the system with four words as the prefix "during the evolution of " and a suffix "(angiosperms) [5]. typical such". We can observe that the concept label used to annotate the text changed from 2009AA to 2010AA.

To measure the effectiveness of the proposed approach, we used classic well-known metrics from the literature, such as precision, accuracy, recall, F1-score, ROC curve to investigate/understand two characteristics of our method: i) the capacity of our framework to detect impacted annotations after changing a KOS concept; and ii) the ability to correctly adapt those impacted annotations into consistent ones. In this case, consistency means equivalency with the silver standard. We measured the efficiency of the Rules alone, the Background Knowledge (BK) alone, the Semantic Change Patterns (SCP), the Lexical Change Patterns (LCP) and the combinations of these techniques in order to determine whether they complement each other or not.

Results

When applying the four annotation maintenance techniques (Rules, BK, SCP, LCP) to our dataset, we can observe a significant difference in the results. For instance, as shown in Table 3.3, all four methods provide good precision, but there is a significant variation [0, 0.98] regarding the recall. In the first line of Table 3.3, we present the precision, recall and F1-Score resulting from applying the Rules method to four different subsets of our initial dataset (ICD-9-CM, MeSH, NCIt, and SNOMED CT). We also evaluate the consequence of combining the methods (2-by-2, and all together). For instance, the fifth line of the table presents the results of combining Rules and BK methods, while the tenth line shows the results of combining all four methods.

The goal of this first set of experiments was to evaluate whether the methods (or a combination of them) provide satisfactory quality (in terms of the F1-Score) to determine whether an impacted annotation will evolve or not. Note that we are not yet evaluating whether the annotation evolved correctly (this is part of the second evaluation step). A quick analysis shows that all methods can accurately identify some of the evolving annotations, but not all. From a practical point of view, if an error margin of 2% is acceptable for the domain, then KOS engineers can trust the method to identify the annotations that will change (i.e., the minimal observed precision was 98%). However, the recall can be significantly different according to the dataset and the method adopted. We detail the reasons for this in the next section. We would like to highlight that our rules have an excellent performance, obtaining in some cases an F1-Score of 99%.

The second evaluation process consists of applying methods to select which adaptation actions can make the annotation evolve correctly, and comparing the outcomes with the silver standard. The goal is to measure how precise our recommendations are. Table 3.4 describes the performance of each method regarding the four different datasets. Each experiment is represented by an Area Under the Curve (AUC) value, giving the probability that a randomly selected instance will correctly be adapted by our method [Hajian-Tilaki, 2013].

The AUC values of the analysed methods vary according to the dataset. A quick analysis of Table 3.4 shows that combining methods provides slightly better results than applying only one of them for MeSH and NCIt. The opposite is observed for ICD-9-CM and SNOMED CT where the Rules provide better results. Furthermore, SCP shows the lowest AUC values of all heuristics. We also verified that there are significant differences in the AUC between the KOS, like those between MeSH and NCIt. Detailed explanations on these observations are provided in the next section. 

Discussion

The analysis of annotation evolution in the healthcare domain is an understudied topic. As explained in section 3.1, several works propose the automatic detection of inconsistent annotations, but few of them address the automatic correction of inconsistent annotations. The work presented in this thesis shows that some annotations can be preserved/adapted after the evolution of the KOS used to generate the annotations. Four methods were proposed: Domain Specific Rules, Background Knowledge, Semantic and Lexical Change Patterns. The outcomes presented in the results section demonstrated that we can obtain high AUC by applying these methods together in the automatic maintenance of annotations or to support domain experts in this activity. When analysing each method, we observed that BK contributes to the precision of the annotation changes. The main characteristic of BK is that it depends on the richness of information in other sources (e.g., ontologies with overlapping concepts). Another aspect that can be deduced from the experiments is the dependency of the BK method on the expressivity and consistency of the KOS. For example, MESH D002544 has as synonym concepts that are siblings in other KOS (e.g. "Cerebral infarct left hemisphere" SNOMED CT 362323007 and "Cerebral infarct right hemisphere" SNOMED CT 362322002), leading to loose information when the system follows the KOS mappings that cross MeSH. Moreover, we observed that the BioPortal repository only contains the latest KOS version (i.e., from 2016), but our experiments use documents annotated with the 2009AA and 2010AA versions. Versioning is an aspect that has not yet been integrated into BioPortal, but it deserves to be considered in the future.

The analysis of SCP and LCP shows a good precision and low recall. The reason for this is that both methods consider only changes between concepts that are in the same neighbourhood (i.e., siblings, super-and sub-concepts). Thus, changes that move the concept to other branches of the KOS are not included, leading to an increased number of false negatives. For SNOMED CT, (see Table 3.3), we did not observe any cases with SCP and LCP in our dataset. Since, the used data was randomly selected, we consider that it was a coincidence. We did our analysis based on the results from the other KOS, see chapter 2. However, these heuristics are able to cover cases where the Rules or BK do not work. For instance, the annotation "ubiquitin carboxy-terminal hydrolase" NCIt C21490 correctly evolved to "ubiquitin carboxyl-terminal hydrolase BAP1 ". This correct adaptation increased the AUC value to NCIt using the configuration: Rules/LCP, see Table 3.4. Thus, we concluded that this method is better than BK and its combinations (lines 2 and 5) for NCIt .

Domain-specific rules are defined to describe frequent patterns of changes, and they are expected to generate outcomes from them with good precision and recall. This was the case for the rules proposed in our experiments. However, our rules do not cover all annotation evolution cases perfectly. For example, in SNOMED CT the annotation [PMC2633322; '31113003'; 'diverticulum'; 6412; 6424; 'association with the meckel'; ', the appendix,'] had to evolve to "Meckel diverticulum" ConceptID 37373007, in order to be similar to our silver standard. In spite of this, IncreaseAnnot provided a different result. Applying the rules to adapt this annotation, we sometimes selected the ConceptID 37373007 and sometimes the ConceptID 127962001. We identified two reasons for this behaviour:

1. In SNOMED CT the same label can be associated to two different ConceptIDs. For instance, the concept 37373007 (Meckel diverticulum) has two super-classes: "Congenital anomaly of small intestine" and "Diverticulosis of small intestine", while the concept 127962001 (Meckel diverticulum) has the following super-classes "Persistent embryonic structure", "Structure of yolk stalk", "Structure of distal portion of ileum" and "Diverticulum".

2. We used the Lucene search engine14 to get the ConceptID of a given label. For this specific case, Lucene returns two ConceptIDs. However, the order of the results is not always the same. In our algorithm, we use the first result given by Lucene to execute the IncreaseAnnot rule. This explains the random outcome of our approach that occurs for SNOMED CT and NCIt when computing "glycerol kinase gene" codes (C75498, C75499).

Regarding the low value for BK method in MeSH and ICD-9-CM, we observed that some annotations did not correctly matched our silver standard. The example related to the annotation "acute renal failure", concept 584.9 in ICD-9-CM version 2009 can illustrate the reason of the problem. In our silver standard the domain specialists indicated that the right adaptation is "acute kidney failure" 584.9, i.e., the same concept using the new term. Our method computed the right adaptation as the concept 584. After discussion with the domain specialists, we verified that our algorithm was correct. The problem comes from the mappings provided by BioPortal regarding MeSH↔ICD-9-CM, i.e., the MeSH concept "acute renal failure" has two mappings pointing to the concepts 584 and 584.9.

Another aspect to highlight is that depending on the context in which the maintenance methods were used (e.g., high expressive KOS), there are considerable differences in the sets of results. We also observed that a combination of methods can be used for a more complete set of evolution situations, as in the following:

• LCP, SCP and BK methods show low complementary results to identify whether the KOS evolution impacts the annotations, but an improvement was observed by combining the methods to identify the correct evolution of the annotation.

• On one hand, Rules increase the amount of corrected annotations of all SCP, LCP and BK analyzed cases.

Conclusion

In this chapter, we presented the possibility of using annotation maintenance tools that can keep track of KOS evolution. Moreover, it also demonstrates that the automatic correction/adaptation of annotations can reach a reasonable reliability rate. But, it is important to highlight that the role of human beings is still determinant in assuring the quality of the annotations in critical scenarios, as observed in the biomedical domain. Finally, our maintenance approach is done without a complete re-annotation of the document and ensures a high-quality annotation for the chosen concept. In next chapter, we discuss how to enhance the proposed method by including the PartialMatch rule that applies lexical and semantic algorithms to change the concept ID of an annotation.

Chapter 4

Semantic similarity measures to adapt semantic annotations Measuring the similarity between concepts is a cornerstone of our approach to maintain annotations valid over time. As described in chapter 3, our architecture is able to adapt only annotations that fully match the associated label of the concept independently of the used technique used, i.e. Rules or BK. However, in some cases, there is a clear syntactic divergence between the annotation and the concept label. To overcome this limitation and help answering RQ3 and RQ4, we raise the following question: How can we improve the existing similarity measures to enhance the relatedness between terms while taking the syntactic mismatch into account? In order to approach this question, we assume that the combination of semantic and lexical similarity measures (hybrid measures) can improve the relatedness between terms and be used to adapt the semantic annotations.

We start this chapter by analysing related work in the field of semantic similarity measures. We then introduce our hybrid similarity measure that combines Lexical Similarity Measures (LSM) and ontology-based Semantic Similarity Measures (SSM) to improve the relatedness between biomedical terms. Using this hybrid measure we enrich our set of rules with a new one capable of maintaining annotations when the concept label and the annotated text are not the same. We assess the validity of our hybrid measure by first showing the correlation between the values obtained and the scores given by domain experts on a reference corpus using the Spearman's rank correlation metric. We then use the Fisher's Z-Transformation to evaluate the stability of the utilized measures with respect to the evolution of KOS. Finally, we demonstrate that the new PartialMatch rule we derive from this metric is able to outperform other techniques and statistically improve the number of corrected annotations by using the Sign Test statistical method.

Existing Similarity Measures

The literature in this domain reveals several families of similarity measures. For instance, [START_REF] Gomaa | A survey of text similarity approaches[END_REF] described string-based, corpus-based and knowledge-based metrics. The former two groups are related to LSM and rely on syntactic or lexical aspects of the terms to compare strings, such as "Failure of the kidney" with "Kidney failure" [START_REF] Oliva | Symss: A syntax-based measure for short-text semantic similarity[END_REF]. The latter group is related to the semantic aspects of the terms (SSM) such as the equivalence between "Myocardium" and "Cardiac Muscle".

In the biomedical domain, various LSMs have been used and evaluated in order to improve the retrieval of biomedical documents [START_REF] Soualmia | Matching health information seekers' queries to medical terms[END_REF], support the mapping adaptation process [Dos Reis et al., 2015a], improve the semantic relatedness between terms in named entity recognition process, e.g., "ammonium" ↔ "ammonium ion" [START_REF] Rudniy | Mapping biological entities using the longest approximately common prefix method[END_REF], etc. The results show that the LSMs are capable of improving the relatedness between terms. However, different thresholds must be considered since the metrics perform differently according to the domain of application. Notice that this kind of similarity measure does not take semantic aspects of the terms into account. Consider for instance terms like "Cancer " and "Malignancy". While they are completely disjointed from a lexical point of view, they are semantically equivalent.

To overcome this barrier, SSM measures were introduced. They exploit the meaning of the terms in a corpus and evaluate their similarity according to, for instance, the distribution of the words or the co-occurrence of terms [START_REF] Mihalcea | Corpus-based and knowledge-based measures of text semantic similarity[END_REF]. Semantic similarity measures can also rely on knowledge representation models such as thesauri or ontologies where structural properties of the model (e.g. hierarchy of concepts in an ontology) are used to compute the similarity between concepts [START_REF] Lord | Investigating semantic similarity measures across the gene ontology: the relationship between sequence and annotation[END_REF]. It is used in a wide range of applications: automatic annotation validate in Gene Ontology [START_REF] Couto | Goannotator: linking protein go annotations to evidence text[END_REF], information retrieval algorithms [START_REF] Sy | User centered and ontology based information retrieval system for life sciences[END_REF], Linked Data paradigms [START_REF] Meymandpour | A semantic similarity measure for linked data: An information content-based approach[END_REF], etc.

Different categories of SSM exist [START_REF] Couto | Goannotator: linking protein go annotations to evidence text[END_REF], Harispe et al., 2014, Meymandpour and Davis, 2016, Resnik, 1995a] to evaluate similarity between concepts:

1. Edge-based measures estimate the similarity of two concepts as a function of the distance separating two concepts in the ontology.

2. Feature-based measures relies on the taxonomic interpretation of the feature model proposed in Tversky [Tversky, 1977]; generally, the representation of a concept corresponds to a set of neighbouring concepts or instances. Feature-based strategies root semantic similarity in the context of classical binary or distance measures (e.g. set-based measures, vector-based measures).

3. IC-based measures assess the similarity of concepts as a function of the Information Content (IC) from their Most Informative Common Ancestor (MICA), e.g. the deepest concept that subsumes two verified concepts. [Resnik, 1995a, Harispe et al., 2014].

4. Hybrid measures combine the approaches described above.

These measures have been extensively evaluated across multiple benchmarks [START_REF] Pesquita | Semantic similarity in biomedical ontologies[END_REF], Garla and Brandt, 2012, Harispe et al., 2014, Costa and Leal, 2016]. As a result, the IC-based measures generally outperform the edge-based ones. One of the main drawbacks of Feature-based measures is that they consider dimensions as mutually orthogonal and do not exploit relationships that link concepts. Finally, the hybrid-measures require specifics parameters, thus making a generalization of multiple KOS difficult.

Similarity measures have been used independently. Their combination, especially the couple LSM/ontology-based SSM, remains under-explored. [Pereira Nunes et al., 2013] proposed an approach combining co-occurrence-based and semantic-based measures for entity linking. It produces a semantic connectivity score capable of measuring the relatedness of web resources like Charlotte Bobcats and Carmelo Anthony on Dbpedia.

[ [START_REF] Sánchez | Enabling semantic similarity estimation across multiple ontologies: An evaluation in the biomedical domain[END_REF] rely on the combination of the WordNet and MeSH terminologies during the process to measure the relatedness of terms. This is done by: i) an assessment of the semantic overlapping between subsumer pairs and ii) an evaluation of their structural similarities analyzing the ontologies to which they belong, instead of relying solely on the terminological matching between subsumer labels. As a result, the accuracy obtained in the multi-ontology scenario almost reaches (but rarely surpasses) that obtained in an ideal mono-ontology setting.

[ [START_REF] Peng | Improving the measurement of semantic similarity by combining gene ontology and co-functional network: a random walk based approach[END_REF] proposed NETSIM2, a network-based method capable of calculating the similarity between two Gene Ontology terms by combining the information from co-function network and GO global structure through a random walk with restart-based method. The experimental results using Enzyme Commission and a biological process show that NETSIM2 performs best among all standard measures on Yeast15 and Arabidopsis16 datasets. Furthermore, NETSIM2 can significantly improve the performance of semantic similarity measurements, especially when dealing with incomplete species description.

The literature review highlights a lack of hybrid measures combining LSMs and ontology-based SSMs. Furthermore, none of the existing approaches confirms whether the SSMs are stable when applying them to dynamic KOS, i.e. whether the similarity values remain acceptable after changes in the KOS. In this chapter, we present our approach, which combines both methods in order to enhance the similarity between concepts, and an experiment to verify the stability of these measures while using consecutive KOS versions.

Background

In this section, we introduce the statistical methods used to evaluate the experiments we carried out in this chapter.

Spearman's Rank Correlation

Spearman's Rank Correlation (cf. equation 4.1) is a statistical method that measures the coefficient strength of a linear relationship between paired data [START_REF] Press | Numerical Recipes in C: The Art of Scientific Computing[END_REF]. In other words, it verifies whether the values produced by automatic similarity measures, e.g. values within the interval [0, 1], and scores given by domain specialists, e.g. values in intervals of [0, 1500], are correlated.

To compute the r s , i.e. the correlation value, we have to follow four steps:

1. Rank the automatic similarity value and the domain specialist judgment in columns three and four of Table 4.1. This process will create two ordered sets as detailed in columns five and six.

2. Using the previous rank (columns five and six), we subtract them to obtain the difference of rankings d i in column seven.

3. We compute the square of d i to obtain d 2 i in column seven.

4. We apply the equation 4.1 on d 2 i , to obtain the correlation value r s . The variable n in this equation is related to the number of cases observed in the dataset, such that n ≥ 10.

As result of this process, we will have a correlation value r s such that -1 ≤ r s ≤ 1, where -1 indicates total disconnection and 1, a strong relationship. In this example the computed r s is 0.393 which indicates that there is not a strong correlation between the automatic values and the domain specialist judgments. 

r s = 1 - 6 i d 2 i n (n 2 -1) (4.1)

Fisher's Z-Transformation

Fisher's Z-Transformation is a statistical method that allows the verification of whether two nonzero's r s , i.e. Spearman's Rank Correlation are statistically different [START_REF] Press | Numerical Recipes in C: The Art of Scientific Computing[END_REF]. Thus, we can verify whether the r s from an automatic similarity method is better than other r s obtained from another method. The comparison between the above correlations is done in three steps. First, the conversion of r s and r s into z 1 and z 2 by applying equation 4.2, i.e. converting two sampling distributions into normal distributions.

Second, we obtain the probability value p such that 0 ≤ p ≤ 1 through equation 4.3, where N 1 and N 2 are the number of data in the dataset.

z = 1 2 ln 1 + r 1 -r (4.2) p = erfc   |z 1 -z 2 | √ 2 1 N 1-3 + 1 N 2-3   (4.3)
Finally, to ensure differences, we test our null hypotheses H 0 : r s = r s case p > 0.05 and vice versa. Nevertheless, this can only be done if N 1 and N 2, are moderately large (N ≥ 10).

Sign Test

The Sign Test is a non-parametric test used to verify whether or not two groups are equally sized, i.e., the amount of success cases remains the same, before and after an applied procedure [START_REF] Dixon | The statistical sign test[END_REF]. This test ignores the actual values of data and uses + or -signs during the calculations, see Table 4.2.

In this example, in the first column we have the values of procedure X, followed by the values of procedure Y in column two. The difference of both methods X -Y is shown in column three. In the fourth column, the values were translated to signs: (+) indicating that procedure X provides better results, (-) indicating that procedure Y is better, and (NA) there is no difference between the values.

The null hypothesis of the Sign Test is: H 0 : Population median difference = 0, i.e., the amount of + sings (r + ) and -sings (r -) does not differ significantly from equality. To calculate this test we compute a binomial distribution 17 using as input: i) the amount of success cases given by max(r -, r + ) = 9, for the example of Table 4.2; ii) the number of trials n = 12, i.e., the sum of r -and r + excluding N A. In this example, we keep the null hypothesis because the result (p-value) is 0.146, indicating that there is no evidence for a difference between the two procedures when using α = 0.05, i.e., H 0 : P rocedure X = P rocedure Y case p > 0.05 and vice versa. 

Procedure X Procedure Y X-Y

A Hybrid LSM/Ontology-based SSM

In order to combine LSM and ontology-based SSM measures, we utilized a weighted arithmetic mean, see equation 4.4. It calculates the similarity between two concepts c i , c j by applying classic similarity measures over two respective concepts, e.g., C0035078:Renal failure ↔ C0035078:Kidney failure and assigning weights to each similarity. In summary, the values LSM score and SSM score represent the similarity scores given by metrics like Levenshtein and Resnik 1995 GraSM in the interval of [0,1]. The variables α and τ are the weights in the interval of [0, 1] increasing in 0.1, excluding both α and τ equal to zero. 17 https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.binom_test.html This allows us to change the contribution of each measure to calculate the final similarity, e.g., in α = 0.8 and τ = 0.3 the semantic measure has more importance in the final score, however it is smoothly adjusted by the lexical measure.

simi (c i ,c j ) = (SSM score * α) + (LSM score * τ ) α + τ (4.4)

Partial Match Rule to Adapt Annotations

The major limitation of our method to adapt semantic annotations demonstrated in Chapter 3, was related to the limited scope of the change patterns to correct the annotations that are still invalid after the application of the Rules and BK methods. As change patterns consider the local evolution of a concept, i.e., siblings, super-and sub-classes, we added a new rule, called PartialMatch, able to deal with the evolution of a concept outside the neighbourhood. This rule changes the term and/or the concept ID of an annotation considering lexical and semantic similarity measures, e.g. SNOMED CT 398624005:Ethanol → 420140004:Allergy to ethanol. The algorithm 2 gives an overview of the whole process. The input of the algorithm is the annotation before its evolution a 0 , the KOS before and after the evolution KOS v0 and KOS v1 ; the KOS changes chgs; and the weights τ and α for the hybrid measure.

Our method starts by gathering the information of the annotation in lines (1-2). We retrieve the used concept c 0 and the attribute att 0 following our model presented in Chapter 2. Then, our algorithm retrieves all stable ancestors Set Sup Classes of a source concept c 0 within a specified period, e.g., 2009/2010 (line 3). Using these ancestors, the most similar ancestor (M SA) is kept (line 4) according to its similarity with c 0 . This similarity respects the approach we proposed and utilizes the preferred label and concept ID to find the LSM score and SSM score , respectively.

At line 5, our algorithm computes a lexical view of attribute att 0 in KOS v1 . i.e., it retrieves all the related labels from stable and added concepts, which have the occurrence of at least, one common word, e.g., when querying 167696007:feces examination in SNOMED CT 2010 we have 779 concepts as lexical view: [162089003: Feces normal ; 167635008:Feces examination: growth; etc].

The next steps (lines 6-11) compute the similarity between the M SA and the concepts from the lexical view. Once this process is complete, the best concept is chosen to maintain the annotation (line 12). Finally, at line 13 we adapt the annotation by changing the concept ID and/or the attribute value (e.g., by including additional information about the occurred evolution) as illustrated in Figure 3.4.

Using this configuration, our new PartialMatch rule is capable of maintaining semantic annotations by changing the term/concept even if it is in a different ontology region. For example, 167696007:feces examination in SNOMED CT 2009 will evolve to 167592004:examination of feces in SNOMED CT 2010.

Experimental assessment

In this section, we introduce the material and measures we used to evaluate our approach. We start by describing the assessment for the hybrid measure in Section 4.5.1 and then, in Section 4.5.2, we assess the PartialMatch rule.

Assessment for the hybrid LSM/Ontology-based SSM

The experiments we have conducted consisted of instantiating our hybrid LSM/Ontology-based SSM with a set of measures listed in Table 4.3, and comparing the results to a corpus of reference 

Gold Standard

We used the three reference datasets suggested by [START_REF] Mcinnes | Evaluating measures of semantic similarity and relatedness to disambiguate terms in biomedical text[END_REF] to evaluate our approach. We first used MayoSRS [START_REF] Pakhomov | Towards a framework for developing semantic relatedness reference standards[END_REF]. It contains 101 pairs of concept labels together with a score assigned to each pair denoting their relatedness. The value of the score, ranging from 0 to 10, is determined by domain experts. 0 represents a low correlation while 10 denotes a strong one.

The second dataset we used is a subset of MayoSRS [START_REF] Pakhomov | Towards a framework for developing semantic relatedness reference standards[END_REF] made up of 30 pairs of concept labels. For this dataset, a distinction is made between the two categories of experts: coders and physicians and the values of the relatedness score is ranging from 1 (unrelated) to 4 (almost synonymous).

The third dataset is the UMNSRS described in [START_REF] Pakhomov | Semantic similarity and relatedness between clinical terms: An experimental study[END_REF]. Bigger than the two previous ones, it is composed of 725 concept label pairs whose similarity was evaluated by four medical experts. The similarity score of each pair was given based on a continuous scale ranging from 0 to 1500. These values were assigned experimentally by users.

Knowledge Organization Systems

In our experiments we used: Medical Subject Headings (MeSH) and Systematized Nomenclature of Medicine -Clinical Terms (SNOMED CT). We used the versions 2009AA to 2014AA (excluding the AB versions), downloaded from the UMLS and transformed into OWL files. Furthermore, we considered the evolution of concepts using the following configuration SU P RESS = Y in Table M RCON SO from the UMLS thesaurus. We chose these terminologies because the terms present in the gold standard, e.g. Lymphoid hyperplasia were not present in other KOS, e.g. NCIt.

Measures

We used a total of 12 Lexical measures, 11 Semantic measures and 9 Information Content techniques (Table 4.3), i.e., methods included in the SSMs to extract the features of concepts when calculating the similarity [START_REF] Resnik | Using information content to evaluate semantic similarity in a taxonomy[END_REF].

We reused/adapted the implementation of the Lexical measures that we collected from open-source projects, published in Github 18 , and related works from the biomedical domain [START_REF] Lin | Evaluating and improving annotation tools for medical forms[END_REF], Rudniy et al., 2014]. The semantic measures are those implemented in the framework proposed by [START_REF] Harispe | A framework for unifying ontology-based semantic similarity measures: A study in the biomedical domain[END_REF]. The Jiang Conrath (equation 4.8) is an example. It calculates the similarity between concepts c 1 , c 2 by computing the Most Informative Common Ancestor (MICA) and the Information Content (IC ) which avoids the dependency of a corpus, e.g. documents, to calculate the concept usage.

The IC can be calculated as in the example of equation 4.5. In this equation, [Seco et al., 2004] computes the IC according to the log of the number of descendants from a concept c including itself, divided by the log of the total number of concepts in the ontology. The MICA is calculated according to equation 4.7. In this equation, the biggest IC from a set of common ancestors from concepts c 1 , c 2 is selected according to the MICA score. To find the common ancestors we utilize the equation 4.6, which simply makes an intersection between all parents from c 1 and c 2 .

IC Seco (c) = 1 - log(numberInclusiveDescendants) log(numberConceptsOnto) (4.5) setAncestors = intersection(parents(c 1 ), parents(c 2 )) (4.6) MICA = max({IC(x) : setAncestors x }) (4.7) sim JC (c 1 , c 2 ) = 1 - IC(c 1 ) + IC(c 2 ) -2 • M ICA(c 1 , c 2 ) 2 (4.8)
In total, 1188 hybrid measures and 118800 combinations were evaluated considering the weights described in section 4.3. Therefore, and for better readability, we list only the top-10 measurements in our experiments. The experiments we conducted to assess the PartialMatch rule consisted of including it in the method discussed in Chapter 3 and verifying whether this rule improved the amount of adapted annotations.

Terminologies

As described in chapter 3, our maintenance method utilized four well-known KOS: ICD-9-CM, MeSH, NCIt and SNOMED CT. However, we worked with two versions to adapt the annotations in Chapter 3, i.e., from version 2009 to version 2010. In this chapter, we included multiple versions, e.g., 2009 to 2016, in the experiments to verify whether the PartialMatch rule also performed well over a longer time.

Silver Standard

For these experiments, we adapted the silver standard described in Chapter 3 by including the reference for the annotations in 2016. Table 4.4 shows an illustrative example related to our silver standard. It shows one annotation produced with MeSH:2009AA using the PubMed document 232 19 and the concept D009133. The annotated text is "muscular atrophy", and can be found at position [5561,5577] of the document. We customized our system to have a maximum of four words as prefix "(HD), spinal and bulbar" and as suffixes ", drpla and various". It can be observed that the concept label and ID used to annotate the text increased and changed, respectively, from 2009AA to 2010AA. Furthermore, in 2016AA the concept ID changed again, from D055534 to D020966. Therefore, we have an annotation impacted multiple times by the evolution of MeSH. 

KOS

Experimental Setup

This section describes the methods utilized to evaluate both approaches, i.e., the hybrid measure and the PartialMatch rule. We start by describing the set-ups for the hybrid LSM/SSM in Section 4.6.1 and then in Section 4.6.2 we detail the set-up for the PartialMatch rule.

4.6.1 Experimental set-up for the hybrid LSM/SSM

In order to evaluate the capacity of our proposed metric to improve the similarity between pairs of concepts, as well as the stability of SSMs over time, we defined the three following different configurations:

• Set-up 1 aims to verify the stability of semantic measures over time, i.e., whether the evolution of the KOS impacts the relatedness between automatic similarity values and domain specialist responses. To determine this, we followed three steps: i) we established the gold standard and semantic measure, e.g., dataset: MiniMayoSRS, SSM: Jiang Conrath 1997 Norm and IC: Sanchez 2011 ; ii) we computed the similarity results using consecutive versions of an ontology, e.g., MeSH 2009MeSH , 2010MeSH and 2011; and iii) we used Fisher's Z-Transformation to verify whether the results obtained were statistically different. If the p-value obtained from Fisher's Z-Transformation was under 0.05, we assumed that the KOS changes impacted on the similarity values and vice-versa.

• Set-up 2 verified the amount of hybrid measures (Lexical×Semantic) that outperformed the approaches that used one single method. In this configuration, we fixed the ontology, then grouped the results from all datasets to verify how many results from the combined methods outperformed the results from the single method. This setup (dataset×ontology version×measures) generates 25920 possibilities. We only present the overall results and the top 10 cases in the following sections.

• The objective of set-up 3 is to point out the best measure over all datasets. To do this, we tested two possibilities: i) ranking with respect to the ontology. We fixed the ontology and then analysed the performance from all combined measures across the datasets. This step computed the hybrid measures rank according to dense pandas.Series.rank20 ; ii) overall ranking regardless of the ontology and dataset. In this step, we created a new ranking according to the lowest standard deviation, summation and average of the previous ranks.

Experimental Setup for the Partial Match Rule

In order to evaluate the capacity of our method to adapt impacted annotations into consistent ones, we utilized the two different configurations described below:

• Set-up 4 utilized only single methods, i.e., Rules, PartialMatch, SCP and LCP without their combinations. However, we analyzed only the new PartialMatch approach proposed in Section 4.4. We intend to verify whether this new rule outperforms the other techniques, SCP and LCP, respectively.

• The Set-up 5 determined the position of the PartialMatch rule in our framework to adapt semantic annotations. We tested two possibilities: i) Before the SuperClassAnnot; ii) After the SuperClassAnnot. After the determination of the PartialMatch positioning, we evaluated the framework with all proposed extensions by comparing it to the configuration utilized in Chapter 3.

For both Setups, we tested the effectiveness of the methods as follows: i) the capacity of our framework to detect impacted annotations after changing a KOS concept; and ii) the ability to correctly evolve the impacted annotations into consistent ones. In this case, consistency means being consistent with the silver standard.

Metrics

To evaluate whether our predictions were similar to the silver standard, we used classic well-known metrics, such as, Precision, Recall, F1-score, Area Under the Curve (AUC) and Accuracy [Powers, 2011]. The comparison between the results from Chapter 3 and those obtained after the extension of our maintenance method is done by using the Sign Test method [START_REF] Dixon | The statistical sign test[END_REF]. Finally all percentages concerns to the use of Percentage Change, i.e., (V 2 -V 1 )

|V 1 | * 100

Results and Discussion

This section describes the results obtained when assessing the hybrid measure and the PartialMatch rule. We start by describing the results for the hybrid LSM/SSM in Section 4.7.1 and then, in Section 4.7.2, we detail the results for the PartialMatch rule.

Hybrid LSM/Ontology-based SSM

The results for setup 1, i.e., the stability of SSMs over time, can be observed in Table 4.5. In the first column we have the semantic measures described in Section 4.5.1, and in the second column the versions of the ontology used. The comparison between the versions, column three, was done through a Cartesian product between the versions 2009 to 2014, where we removed the redundant combination of years, i.e., we removed for instance 2014×2013 and be kept 2013×2014.

For readability reasons, we listed only a sub set of the results in Table 4.5, but all values can be found on https://git.list.lu/ELISA/SemanticSimi. This subset is related to the UMNSRS dataset which has the lower and higher Z-Fisher among all results.

The Z-Fisher in Table 4.5 shows that none of the SSMs had significant differences over time. For the purpose of considering statistical differences between the SSMs, the Z-Fisher must be lower than 0.05. As verified in our result, the lowest Z-Fisher value was 0.277, for the SSM configuration: Resnik Unpropagated 1995 using IC: Seco 2004 in the period 2010 & 2014, red colour in Table 4.5.

We thus verified that KOS changes do not impact the SSMs over the time. However, the balance of the dataset, i.e. the size and the amount of impacted concepts used to calculate the SSMs, may impact the final results. We observed that the percentage of impacted concepts in these datasets was 2.8%, while the percentage of impacted concepts used to calculate the SSMs in an ontology region, i.e., subClass, superClass and Siblings was 5.53%. Furthermore, the top-k hybrid measures in our overall rank of setup 3 (Table 4.7), utilized the measures with the lowest Z-Fisher in Table 4.5. This result highlights that the evolution of the ontologies played a key role during the process of calculating the SSMs similarity. Thus, future work on SSMs must include other pairs of impacted concepts to verify whether the stability of these measures and the obtained rank continue to be the same.

Regarding the set-up 2, i.e., the percentage of hybrid measures that outperformed the single SSMs, we observed that some hybrid measures, e.g. AnnoMap × Zhou 2008 × Resnik 1995 GraSM had a better Spearman's correlation score than the single SSMs in 91.6% of cases, see Table 4.6. In this Table, the first column is related to the LSM measures, and the second column to the Information Content (IC) and semantic measures. Finally, column three shows the percentage of hybrid measures that outperformed the single SSMs.

In Table 4.6, AnnoMap is present in 76% of the LSMs that contributed to increasing the Spearman's correlation of the hybrid measures and, in consequence, outperformed the single SSMs. The similarity computed by AnnoMap [START_REF] Lin | Evaluating and improving annotation tools for medical forms[END_REF], see equation 4.9, is also based on the combined similarity score from different string similarity functions, in particular TF/IDF, sim AnnoM ap (t 1 , t 2 ) = M AX(TfIdf, T riGram, LCS) (4.9)

IC & SSM Measure
When analysing the results of the best hybrid measures in set-up 2, we verified that the similarity score obtained with the hybrid measures was considerably improved. In practice, when calculated by single SSMs methods, Pain↔Morphine CUIs: C0030193 and C0026549, obtains a similarity score of 0.27. Using the hybrid measure (equation 4.3), the similarity score increased to 0.56 and better matched the score given by domain specialists in the UMNSRS dataset, i.e., 996.75 in a scale of [0,1500].

Nevertheless, we also verified that some hybrid measures never improved the single SSMs, e.g. LSM: Block distance, SSM Resnik Unpropagated 1995 with IC Sim IC 2010. This occurred mainly for LSMs as Block distance, Jaccard and TF/IDF, which considered strings as orthogonal spaces. In parallel, Information Content (IC) focused only on the positioning of concepts in an ontology without exploring additional resources like: Ancestors Norm and Max Linear, which also demonstrated no improvement.

Regarding the LSMs tf-idf, Jaccard, and Block distance, we verified that these methods lose the information contained in the prefix [Gusfield, 1997], e.g.,"Renal failure" ↔ "Kidney failure". When we verified the scores given by the domain specialists in MiniMayoSRS dataset (4.0), these terms were classified as strongly related. The similarity measures computed using Cosine or Jaccard were 0.5 and 0.33, respectively (medium to poorly related terms). On the other hand, methods like LACP provided a similarity of 0.77, which better matches the scores from the domain specialists, increasing the Spearman's correlation value.

The SSMs also reported a similar behaviour, e.g. Ancestors Norm, which computes the IC scores according to the number of ancestors from a concept divided by the total of number of concepts in an ontology, i.e., ic = nbAncestors (v) nbConceptInOnto . This IC failed to describe the region of a concept in the KOS, because concepts with the same number of ancestors, but in different ontology regions, will have the same IC. The main drawback of this approach is that is does not consider information such as siblings to calculate the IC. As discussed in [START_REF] Meng | A new model of information content based on concept's topology for measuring semantic similarity in wordnet 1[END_REF] and also verified during our experiments, the IC of a concept is dependent on its topology in the taxonomy. Thus, exploring information as siblings will enhance the representation of the concept topology, i.e. the spatial region it has in the ontology. It is widely utilized in other domains, e.g., Column four corresponds to the ontology used, followed by the ranks obtained with each dataset in columns five to eight. The final rank remained the same, when considering the minimum average, summation and standard deviation, presented in columns nine to eleven, as ranking criteria. In our results, we verified that the best performance corresponded to the hybrid measure: Lexical: AnnoMap, IC & SSM: Seco 2004 & Jiang Conrath 1997 Norm, α = 0.8 and τ = 0.5. It was ranked in the Top 8 in MeSH.

Figure 4.1 shows the behaviour of this hybrid measure using SNOMED CT as the reference ontology. In each sub-figure from Figure 4.1, we have one dataset using SNOMED CT version 2012 and the weights for the SSM and LSM represented in the x-axis and y-axis, respectively. The weights increase by a factor of 0.1 and demonstrate the importance for each measure, e.g., a x-axis equal to 0.0 and y-axis equal to 1.0 show that semantic measures have more importance, while the main diagonals of the tables show that the measures have the same importance. We decided to present the results of this hybrid measure for SNOMED CT, because even if its final rank is far from the top rank for SNOMED CT, it was ranked as the best hybrid measure in the overall rank.

As a primary observation, we verified that the best τ and α, indicated by the yellow colour in Figure 4.1, remained in the main diagonal for the MiniMayoSRS dataset (Coders). In this dataset, we can reduce the complexity to find an appropriate τ and α, because they have the same importance. In the MiniMayoSRS dataset (Physicians), the best values of τ and α remain in the upper triangular part.

The main difference we noticed for the best combination, AnnoMap, IC & SSM: Seco 2004 & Jiang Conrath 1997 Norm, α = 0.8 and τ = 0.5, was the similarity results in UMNSRS dataset. The obtained results were not better than the single SSMs. The reason for this, was that AnnoMap does not provide good similarity for the terms in the UMNSRS dataset. The Spearman's correlation value obtained from this lexical measure was -0.113. On the other hand, Lexical measures such as LACP have a better Spearman's correlation value, 0.113, and are a better choice to combine with the SSMs. For instance, using the configuration LSM: Lexical IC & SSM: Ancestors Norm & Lin 1998 GraSM, α = 0.8 and τ = 0.1, we have the best Spearman's correlation value for UMNSRS dataset 0.462, which outperforms the single SSMs 0.456.

Partial Match Rule

The results regarding the analyses of setup 4 are demonstrated in Figures 4.2 and 4.3. The results in Figure 4.2 concern to the ability of these methods to detect impacted annotations, while Figure 4.3 showed the ability to propose correct adaptations for the impacted annotations. We utilized the references (2009/2010) and (2009/2016) of our silver standard to evaluate PartialMatch.

As observed in Figure 4.2, the precision of all methods to detect impacted annotations is high for both periods (2009/2010) or (2009/2016). However, the recall varies according to the terminology used and the year. SNOMED CT and NCIt in (2009/2010) showed the highest recall for the PartialMatch, while SCP and LCP show null values or close to 0.

In the period (2009/2016), SNOMED CT showed an improvement of 18% (V 1 = 0.75, V 2 = 0.885) when compared to the years (2009/2010), while the other terminologies had a smooth variation. In short, the proposed rule outperformed the SCP and LCP in all KOS and in all years, to detect the impacted annotations. This result was very clear when we observed SNOMED CT in Figure 4.2.

The PartialMatch rule also demonstrated good results for adapting the annotations in all KOS versions (2009/2010) and (2009/2016), see Figure 4.3. The AUC value for NCIt in 2009/2010 was 13.9% higher than LCP and SCP (V 1 = 0.625, V 2 = 0.712), followed by an improvement of 14% in 2009/2016 (V 1 = 0.614, V 2 = 0.702). This difference increased when we observed the F1-Score, reaching 55% for LCP (V 1 = 0.371, V 2 = 0.575) and 65% for SCP in 2009/2016 (V 1 = 0.348, V 2 = 0.575).

The other terminologies, ICD-9-CM and MeSH, also showed better results for the PartialMatch rule in 2009/2010 and 2009/2016. The difference observed in ICD-9-CM was 20% for the F1-Score in PartialMatch (V 1 = 0.303; V 2 = 0.379) and 4.75% for AUC (V 1 = 0.589, V 2 = 0.617), while in MeSH this difference was less expressive, reaching 0.7% for AUC (V 1 = 0.57, V 2 = 0.574) and 5% for F1-Score (V 1 = 0.246, V 2 = 0.259).

When analysing the results provided by each method (PartialMatch, SCP and LCP), we verified that the inclusion of PartialMatch that uses SSMs to find candidate concepts in other ontology regions produced a better adaptation for the impacted annotations. The main reason was that PartialMatch covered more situations than only the neighbourhood utilized in Change Patterns. Therefore, it could also be extended to future LCP and SCP versions to increase the definition of the context of the concept. Regarding the position of PartialMatch in Setup 5, we verified that only ICD-9-CM 2009/2010 and SNOMED-CT 2010/2016 exhibited a better performance when the PartialMatch was placed after the SuperClassAnnot. However, this is a minor improvement. The huge impact is observed in NCIt when the PartialMatch rule is placed before the SuperClassAnnot. The F1-Score shows a positive difference of 8.5% in 2009/2010 (V 1 = 0.735, V 2 = 0.798) and 6.6% in 2009/2016 (V 1 = 0.750, V 2 = 0.800) (see Appendix 1 for more details). Therefore, our next results concerning the adaptation of semantic annotations, only used the PartialMatch before the SuperClassAnnot.

In Table 4.8, we presented the results obtained when adapting the annotation in the period 2009/2010. In the first column, we stated the KOS used, i.e., ICD, MeSH, NCIt and SNOMED CT. The configuration described in Chapters 3 and 4 is mentioned in the second column and the third column shows the methods followed by the metrics.

We observed that the eight rules used in our framework (Rules+), were capable of reaching the same results as the combination with the BK method. Furthermore, the use of BK for annotations generated with SNOMED CT leaded to a smooth decrease in the values. Rules+ was also capable of outperforming (or achieving the same results) the best methods of Chapter 3 (Rules) with a 7.8% of improvement in AUC for NCIt (V 1 = 0.74, V 2 = 0.798) and 15% for the F1-Score (V 1 = 0.649, V 2 = 0.747), see Table 4.8.

Analysing the previous results, we observed that no annotation was adapted by the BK method in ICD-9-CM, MeSH, NCIt and SNOMED CT. It occurred in both versions used, 2009/2010 and 2009/2016. The variation in the AUC refers only to the results of IncreaseAnnot rule discussed in Chapter 3, i.e., with a term that increases the information of the impacted annotation occurring in different concepts. In Fact, the BK technique did not compute any annotations because all of them were adapted at a previous layer (Rules+).

In general, the new PartialMatch rule is capable of providing adaptations that are not feasible with only BK. This is for instance the case of the annotation "postoperative myocardial infarction". In fact, no mappings contained in BioPortal exist with the terminologies used. Even if PartialMatch rule shows a good performance, some improvements are still possible. For instance, the adaptation of C11197:"folfox" to C11197:"folfox regimen", is not aligned to our silver standard. It should evolve to C63590:"FOLFOX-4 Regimen", which also considers the suffix of this annotation. We will need to verify whether the inclusion of thresholds in future versions of PartialMatch overcomes this limitation. The good performance of Rules+ is also confirmed in the period 2009/2016. The results in Table 4.9 show that, except for SNOMED CT, it is capable of outperforming all the other techniques. Furthermore, it shows significant differences when compared with the results from Chapter 3. In NCIt the F1-Score is 13.34% higher than Chapter 3 (V 1 = 0.667, V 2 = 0.756) and for ICD-9-CM Rules+ shows a positive difference of 17.26% (V 1 = 0.643, V 2 = 0.754).

KOS

The analyses of these adaptations demonstrated that the way these terminologies have been changed as well as their internal structure, have a remarkable influence on the adaptations. For example, in MeSH the reuse of CODEs and synonyms aids the adaptation method, mainly seen in the adaptations of ChangeConceptAnnot. In SNOMED CT the generation of new IDs which move the entire concept to another region or add new ones also have a positive impact. This was mainly verified for the adaptations using ChangeConceptAnnot and PartialMatch rule.

On the other hand, in ICD-9-CM which has a basic structure of a tree with a maximum depth of three without many synonyms, rules such as ChangeConceptAnnot or IncreaseAnnot did not have a good performance. The drawback is that the application of semantic techniques or string similarity methods do not aid in the maintenance task, as verified with other KOS. For example, the annotation brain injury:854.00 was extended in 2010 to traumatic brain injury:V80.01 which is located in a different region. Then, in 2011, it evolved again, because the concept V80.01, became more specific "screening for traumatic brain injury". In our silver standard, the domain specialists decided to reduce the expressivity of this annotation by returning to the first concept, V80.01, and reducing the annotated text.

We verified that when applying the current Rules of our framework, we were unable to provide a good adaptation for this annotation. PartialMatch was not able to find a reasonable result since it produced weak results for semantic similarity between concepts V80.01 and 854.00. Furthermore, the string similarity value of "screening for traumatic brain injury" is higher than "brain injury" when compared to "traumatic brain injury". Therefore, future versions also have to deal with the reduction of expressivity in annotations through multiple versions.

Finally, we compared our method Rules+ against the best method from Chapter 3, using the Sign Test [START_REF] Dixon | The statistical sign test[END_REF], see Table 4.10. In the first column of this table, we stated the KOS used, followed by the two compared methods in columns two and three. In columns four to six we have the signs obtained during the process of computing the Sign Test. Finally, in column seven we have the p-value which indicates whether one method differs from another. We are considering p < 0.05 as a significant difference.

The results of Table 4.10 show that NCIt had significant differences between the methods. Its p-value was lower than 0.05 leading us to refuse the null hypothesis (Population median difference = 0 ). It means that the Rules+ are able to maintain more annotations than LCP & Rules (method from Chapter 3).

We observed that few annotations remain invalid and marked as unsolved by our method. In such cases, the extension of the Rules+ to adapt these annotations is very complex. Basically, the concepts are in different ontology regions and use terms that are very different to those used in the annotations. More in-depth studies on string matching combined to semantic similarity measures are required to address the missing cases. 

KOS

Conclusion

In this chapter, we presented an approach that combined Lexical and Semantic measures to enhance the concept similarity. Our experimental analysis demonstrated that together they could outperform methods based on only one similarity measure (i.e., SSM or LSM). We observed that the use of lexical similarity approaches was important to improve the quality of the results provided by the SSMs and vice-versa.

KOS

Using an approach that combined LSM and SSM, we presented the PartialMatch rule for maintaining semantic annotations affected by the evolution of KOS. Our experimental analysis demonstrated that PartialMatch was capable of achieving good results to adapt annotations using one or multiple successive KOS versions. We observed that the use of semantic similarity approaches was important for determining the relatedness during the evolution process.

In the next chapter, we discuss how to keep annotations searchable without applying the direct maintenance approach and how to integrate this new method with the one described in Chapter 3 in a general architecture to maintain semantic annotations.
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Chapter 5

Ad-hoc maintenance of semantic annotations In this chapter we present the indirect maintenance approach, which addresses the problem of searching for annotations when the KOS used to annotate documents have changed, but the annotations cannot be updated. It answers RQ4 (Which methods can be used to keep the annotations searchable when the document and annotations cannot be changed directly? ) and differs from the direct maintenance approach discussed in Chapter 3 in the sense that the indirect maintenance does not change the annotation.

This method applies to cases where: i) the annotations cannot be modified, ii) The documents are confidential and cannot be accessed (only the metadata can be accessed), and iii) The metadata are read-only. However, annotations impacted by KOS evolution must not be lost, methods to search for annotated documents are needed to execute tasks in areas such as public health, research, patient history, etc.

To address this problem we proposed a searchable knowledge base (KB) containing the KOS evolution history. It allows us to navigate through complex relationships related to the KOS evolution, e.g., addConcepts, move, split, and then search for documents by matching the metadata with concepts from past and present KOS versions.

The originality of the proposed approach relies on the fact that we exploit the evolution and structure of the KOS to construct a knowledge graph that can be used to enrich queries when searching for medical documents. For instance, when querying biomedical data sources, the queries are extended with information from the knowledge graph that we created with information about the KOS evolution. Existing approaches [START_REF] Esch | Lailaps: The plant science search engine[END_REF], Butt et al., 2015, Rashid and Nisar, 2016, Lee et al., 2016, El-Dsouky et al., 2016, Roberts et al., 2016] only use the current version of the KOS to extract concepts and create queries. The evolution aspect is neglected and those dealing with historical data will probably get an incomplete set of results.

The chapter is structured in the following way: In Section 5.1, we introduce relevant notions to understand the problem of indirect annotation maintenance. In Section 5.2, we discuss the related work in the field of graph generator and information retrieval, highlighting the drawbacks and possible improvements. In Section 5.3, we detail our approach to managing the indirect maintenance of semantic annotations. In Section 5.5, we discuss the integration of both the direct and indirect maintenance methods. The Section 5.6 describes the methodology utilized to evaluate our approach, as well as the dataset utilized. Finally, in Section 5.6.1 and 5.6.2, we present the results and discuss them, respectively.

Problem Statement

In our work, we split the problem of keeping semantic annotations searchable through our indirect maintenance method into two sub-problems: i) how to organize and store the information related to the KOS evolution; ii) how to use the stored information about KOS evolution to improve the quality of results when searching for documents over a long period of time. Notice that both problems are related to information retrieval tasks.

For the specific context of our experiments, we consider that our source of information contains only Electronic Health Records (EHRs). Thus, for readability purposes, we use the acronym EHR in this chapter to make reference to our data source. However, an indirect maintenance method can be applied to any data source having the following properties:

1. Composed of documents with metadata that are annotations; 2. Annotations linking a document (or part of a document) with concepts from an ontology; 3. Ontology evolving over time, so that different documents can potentially be annotated with different versions of the ontology; 4. Annotations using only use the terminological part of the ontology (e.g., concept, labels and synonyms), as highlighted in Section 1.2 (Data-driven Analysis).

The structure of the data source was also simplified for readability purposes. We assume that the information available is similar to the use cases presented in Figure 5.1. In this example, our knowledge base (KB) contains two annotated EHRs. The first column contains the EHRs ID, i.e., the identification of the patient report, with Annotations, i.e., the concepts describing the patient report, in the second column. The content of the patient report is not available.

Figure 5.1 illustrates two use-cases where the evolution of the ontology (in this case, MeSH) can impact access to the information. On the left-hand side of the Figure 5.1, we have the version 2014 of MeSH and on the right-hand side, the version 2016 of MeSH. The upper part of the figure shows the consequence of including a new concept in MeSH. The concept D000069447:Tiotropium Bromide (green colour) was added. As a consequence, from 2016 onwards, all EHR somehow related to the description of the drug Tiotropium Bromide will have this new concept in the annotation set. However, the EHRs metadata created before 2016 will not have this concept. If a user queries the system using this new concept, no EHRs created before 2016 (e.g. EHR 631) will be retrieved. Using our approach, the system will be able to return EHR 631, as well as other EHRs containing this annotation. The procedure for that will be detailed later on in this chapter, but in short, we created a knowledge graph capable of creating a link between the concept Tiotropium Bromide and the concept Chronic Obstructive Pulmonary Disease (COPD). Thus, the query will be automatically enriched to include the latter concept for retrieving EHRs created before 2016 (this new query extension will not be applied to documents created after 2016), and EHR 631 will be part of the results of the search process. This procedure increases the recall of a search, but the precision can be penalized.

Use case 2, illustrated at bottom of Figure 5.1, is a more complex case. When a concept is deleted from the MeSH, the ontology-based search system can no longer create queries using this concept. Thus, in 2016, end-users will not be able to search for EHRs using the term Child Mental Disorder. To keep documents containing this term searchable and the previous version of concept D019952 reusable, we propose to use our knowledge graph to go back to the last version of MeSH where the concept D019952:Child Mental Disorder exists (i.e., 2014), select a set of related concepts that can replace D019952 in queries made in 2016, then use this set of concepts to enrich the query and retrieve recent EHRs related to EHR 551. Thus, when using outdated ontologies to query EHRs annotated with the last version of the ontology, part of the information become unsearchable, as illustrated in Figure 5.1. We need a system that can address this problem. For instance, an end-user that types a query with concepts from MeSH version 2014 should be able to find relevant documents annotated with MeSH 2016 and vice-versa.

The current approaches supporting the maintenance of semantic annotations only work with direct maintenance, as discussed in chapter 3. In this chapter, we propose a new Ad-hoc approach that combines methods from other domains (e.g., Evolving Graph Generator (EGG), and Information Retrieval (IR)) to tackle the problem of indirect maintenance.

Our approach deals with the refereed problem in a two-step process. First, we built a knowledge graph through EGG techniques that describe the KOS evolution and its complex/temporal relationships (detailed in Section 5.3). Then we develop a search algorithm, based on the stateof-the-art of IR domain, to exploit the knowledge graph and enrich queries in order to retrieve the documents over a long period of time. The major gap when using these approaches alone is the temporal/evolutionary aspect, further discussed in the related work section below.

Related Work

Several domains, such as medicine, social sciences, finance, etc. represent data represented as graphs. We can also consider the part of the KOS that we are using in this work as a graph (we refer to it as the KOS graph). Graphs provide flexibility to represent the domain knowledge with its complex relationships. In this work, we used graphs to represent the evolution of annotations. For instance, in the approach presented earlier to maintain annotations (chapter 3 and 4), we used the adapted W3C annotation model (see Figure 2.11) to represent the evolution of an annotation annot2 from its old version annot. The newly created relationship evolved was used as following: :annot2 oa:evolved :annot. This representation format allows us to process a wider range of queries to exploit the graph, for instance, to calculate the shortest path between two annotations that have evolved over a period of time (e.g. 2009 to 2014).

The work presented in this chapter was inspired by the Evolving Graph Sequence (EGS) domain. EGS utilizes and analyses many graph snapshots from various periods of time [START_REF] Kosmatopoulos | An overview of methods for handling evolving graph sequences[END_REF] and connects them to represent their evolution. Recent works in EGS mostly deal with i) the modelling of the graph in order to reduce the storage space of multiple snapshots [Caro et al., 2015, Moffitt andStoyanovich, 2017]; ii) historical reachability queries, which compare whether two nodes of a graph are connected over time [Akiba et al., 2014, Semertzidis and[START_REF] Semertzidis | [END_REF]; iii) efficient snapshot retrieval, i.e., index management of large historical evolving graphs, in order to speed up the retrieval process [START_REF] Kirsten | Efficient management of biomedical ontology versions[END_REF], Khurana and Deshpande, 2013, Labouseur et al., 2015].

A common aspect of EGS approaches is that the information from these graphs, e.g. nodes, relationships, validity periods are already defined and no further inferred data is needed. However, in some particular cases more information must be included, e.g. the complex relationships related to the KOS evolution (see Section 5.1) [START_REF] Alami | EGG: A framework for generating evolving RDF graphs[END_REF]. These evolution aspects lead to the development of more sophisticated techniques than those proposed in Evolving Graph Generator (EGG) domain.

In EGG, [START_REF] Bagan | gmark: Schema-driven generation of graphs and queries[END_REF] proposed gMark, a framework to generate synthetic graphs and query workloads. Using a graph configuration file, which contains i) the number of predicates and nodes, as well as their properties, gMark builds a synthetic graph for the informed configuration. This setup removes the technical constraints that are commonly hardcoded and makes the customization of such systems by domain specialists more difficult when applied in other domains. [START_REF] Alami | EGG: A framework for generating evolving RDF graphs[END_REF] proposed an extension of gMark that includes temporal constraints given by the user. For instance, when creating a named graph in TriG format21 :G1 { :hotel2 a ex:Building ; ex:availableRooms "12"^^<rdfs:double> .}. The number of available rooms computed for <hotel2>, can assume values in the interval of [1,100] from one snapshot to another.

The main drawback regarding these two approaches [START_REF] Bagan | gmark: Schema-driven generation of graphs and queries[END_REF], Alami et al., 2017] is the difficulty of generalizing them for the evolution of biomedical KOS graphs. Since the KOS graph is already there and we do not want to recreate the concepts or instances, we need to focus only on the information relating to its evolution to enrich the KG, e.g., :G1 { :D000069447 a ex:KOSConcept ; ex:ChangeType addConcept; ex:date "2003-10-02"^^xsd:date ; ex:knows _: D019952 . }. This example includes a new connection between the concept source D000069477 and the concept target D019952. K-NN graph-building techniques update existing graphs by attaching new nodes/relationships to their K nearest neighbours. The problem with these approaches is the lack of consideration of temporal aspects as well as their performance when processing multiple versions [START_REF] Debatty | Fast online k-nn graph building[END_REF]. Another aspect of K-NN that makes this technique hardly applicable to our indirect maintenance approach, (see Section 5.1) is the way information retrieval algorithms are currently implemented in existing approaches that do not deal with temporal aspects.

In EGS, existing approaches [START_REF] Akiba | Dynamic and historical shortest-path distance queries on large evolving networks by pruned landmark labeling[END_REF], Akiba et al., 2015, Semertzidis and Pitoura, 2016, Semertzidis and Pitoura, 2018] only work with historical reachability queries, i.e., given two concepts X and Y, they check whether both concepts are connected over a period of time. In our case, we need to deal with only one concept as input (we assume that end-users do not need to know the equivalent of concept X in previous KOS versions).

Most generic approaches in the biomedical field, which implements the exploratory search [START_REF] Esch | Lailaps: The plant science search engine[END_REF], Butt et al., 2015, Rashid and Nisar, 2016, Lee et al., 2016, El-Dsouky et al., 2016, Roberts et al., 2016] only work with the current KOS version, neglecting the historical/evolutionary aspect of the KOS.

In the literature review, we did not find works dealing with the indirect maintenance of semantic annotations. Furthermore, none of the related approaches, using graphs, are completely adequate for the aspects involved in the evolution of KOS and/or exploratory search problems (as explained before). In this chapter, we present our approach to overcoming these problems. We built an Ad-hoc searchable knowledge base considering the evolution of KOS to overcome the problem of indirect maintenance.This approach is based on K-NN graph building algorithms [START_REF] Dong | Efficient k-nearest neighbor graph construction for generic similarity measures[END_REF], Debatty et al., 2016] as shown in the next section. We propose a KG that deals with the multi-versioning and/or evolution of KOS. Figure 5.2 shows the evolution of concept D055534 to D020966 during the period 2010 to 2013 (this concept remains stable until 2012 and moved to another region of the KOS in 2013). To represent this evolution, we created a highLvlChg relationship between both concepts allowing us to navigate through past and current versions of concepts. Thus, even if the concept D055534 was moved to another region of the KOS, we are still able to use the KG to retrieve the previous versions of the concept (D055534 and D009133 ). To perform this navigation, we added the following features to the KG, where the features described in [START_REF] Debatty | Fast online k-nn graph building[END_REF] were extended by additional ones to cope with the evolutionary aspect of the KOS:

Knowledge graph to represent evolving ontology

• Edge directions: Considering concepts as vertices of a graph, Edges materialize the relationship between concepts. For example, in Figure 5.3, concept D009133:Muscular Atrophy and D001284:Atrophy are related in our graph. Since our KG is a digraph [START_REF] Debatty | Fast online k-nn graph building[END_REF], one can distinguish between the subject and the object of the relationship. In this work, we consider the structural relationships that are superClass, subClass, siblings and none as uniquely labelled edges, depicted as black arrows in Figure 5.3. Regarding the concepts that emerged from the evolution of the KOS and their connection within the KG, we utilized the same principle of digraphs, but the connections may not follow the ontology structure. For instance, concept D055534 in Figure 5.3 is connected to its superClass and shares some similarities with two other concepts D009136, D016518, from other regions of the ontology. These connections are illustrated in dashed grey arrows in Figure 5.3 but are associated with vertices in our KG.

• Similarity value: It indicates the degree of similarity between two concepts (or two versions of the same concept). We used the hybrid measure described in Chapter 4 to compute it. When a new KOS version is added to our KG, for each pair of connected vertices, the value of the similarity is either calculated or update as depicted in Figure 5.3.

• Validity periods: Versioning and storage capacity is an important feature present in our KG. To reduce the required storage capacity, we used methods like those described in [Caro et al., 2015, Moffitt andStoyanovich, 2017]. These methods labeled the validity period of concepts and their relationships on the graph nodes and edges, see Figure 5.3. Applying this method avoid duplicating the whole KOS into the KG for every new version.

• Relationships: In order to include more semantics in our KG, we created two types of semantic relationship: evolutionary relationship associated with vertices; and structural relationship associated with edges. Evolutionary relationships are highLvlChg, lowLvlChg and none. highLvlChg includes delC, addC, split, move and chgAttValue; lowLvlChg includes delA and addA; none means that the connected vertices had a KOS change at some point in its evolution. Structural relationship are superClass, subClass and siblings. Figure 5.2 shows only the evolutionary relationships while Figure 5.3 shows both. For instance, highLvlChg is an evolutionary relationship indicating that, from one version to another, a major change in the KOS was observed (in this case, a concept was added). Figure 5.3 uses Super to indicate that concept D001284 subsumes concept D009133. The importance of having these two types of relationships becomes evident when the system needs to define strategies to enrich queries. For instance, a query using the term Spinal and Bulbar Muscular Atrophy, from MeSH 2013, will not find documents before 2010. But, knowing the history of this concept, the query can be enriched to return all documents, created before 2010, that also contain the term Muscular Atrophy.

When the query contains outdated concepts, the KG can be used to include additional terms in the query. For instance, consider the situation where one system uses MeSH 2009 to request documents containing the concept D009133 to another system that uses MeSH 2013 to annotate its documents. Thus, using the KG, the query can be enriched with the concepts D055534, D009136 and D020966, connected through the path (D009133, D055534, D009136, D020966) in the period [2009,2013], to retrieve documents associated with Spinal and Bulbar Muscular Atrophy and Muscular Atrophy. In such cases, the relation and similarity values become very helpful for selecting additional terms (see Figure 5.3). For each triple (node, period, neighbour), one relation and similarity describe their link.

We formalize our KG as a direct graph G = (V, E), where V is the set of vertices and E the set of edges. The set of vertices is denoted by:

V = {(c, p, NL)|c ∈ O, p ∈ N, NL = {(c i , RE, simi V )|c i ∈ O, RE ∈ {highLvl, lowLvl, none}, simi V ∈ R}}
where, c is a concept from an ontology O in a period p, e.g. 2009, containing a neighbour list NL inferred by the KNN graph approach of Debatty. Each N L contains a concept target c i ; the relation emerged from the evolution RE, whose values highLvl and lowLvl denote some KOS change and none indicates that they are connected because they have a high similarity value simi V . The set of edges E is denoted by:

E = {(u, v, p, SR, simi E )|u, v ∈ V, p ∈ N, SR = {super, sub, sib} , simi E ∈ R}
Where, u and v are vertices belonging to V and are connected during a period p, e.g. 2009. Since edges respect the ontology structure, each connection has a semantic relationship SR, which is one of the values superClass, subClass and sibling. Finally, simi E represents the similarity between u and v.

Indirect maintenance of semantic annotations

This Section describes the method for the indirect maintenance of semantic annotations. We start describing the workflow of Figure 5.4 with the method to construct the KG, called Offline phase, then, we detail a use-case implementing this KG for the indirect maintenance of semantic annotations, called Online phase.

Offline phase

It starts by taking as its input the multiple KOS versions provided by the user in OWL. In the Build enhanced KOS process, we use the first KOS version as a bootstrap and enrich it with the features discussed in Section 5.3, i.e. edge directions, similarity values, valid periods and relationships. The resulting graph serves as an initial KG that will iteratively be enriched with information acquired from the next versions of the KOS considered. To update the validity periods and edges of each concept, we first compute the ontology changes using Conto-Diff [START_REF] Hartung | Conto-diff: generation of complex evolution mappings for life science ontologies[END_REF] in consecutive versions. Then, we update the concepts and relationships in two steps:

1. Update Concept Period: In this case, if a concept is not present in the KOS changes, we assume it belongs to both versions. Therefore, we update the validity period accordingly, e.g., D009133:Muscular atrophy is not present in the KOS changes of 2010 then its corresponding validity period is [2009,2010]. In contrast, the validity period of concept D016821:Phytomastigophorea, deleted in 2010, is [2009].

2. Update Period and Edges: After computing all the concepts' validity periods, we start to walk through the KG to update the similarity, relationship and period of edges, considering two cases.

(a) The source and target concepts belong to the same hierarchy and have the same validity period. We then update the structural relationship associated with the considered edge's information and similarity.

(b) The concept source has changed or all of its neighbours have changed. We then add it to a temporary list to be updated during the Fast Knn Graph process.

At that stage, we have the KG containing all up-to-date structural information and a list of concepts to be computed in the Fast Knn Graph process. In our example implementing MeSH 2009/2010, the Fast KNN Graph process will update the Neighbour List of all changed concepts containing one of the following KOS changes: split, move, addC, addA, addLeaf and addInner.

The Fast KNN Graph process follows Debatty's approach [START_REF] Debatty | Fast online k-nn graph building[END_REF] to update the NL list from a given impacted concept. This two-step process is as follows:

1. Search for the k-nearest neighbours of a given node in the graph. This is done using the improved Graph Nearest Neighbour Search (iGNNS) algorithm [START_REF] Debatty | Fast online k-nn graph building[END_REF], which iteratively explores the neighbours of neighbours down to a fixed depth.

2. Update the selected neighbours: This phase adjusts the Neighbour List of a given source and target concepts using the k-nearest neighbours found by the iGNNS.

The computational cost of updating a node in Debatty's approach is O n speedup + k DEP T H . In this equation n is the size of the graph and speedup is a parameter to tune the algorithm, in the sense that it reduces the number of elements to compare when finding the k-nearest neighbours. Finally, k DEP T H refers to the maximum depth that the algorithm will walk through to find the most similar vertices of the graph. Depending on the size of the graph and the speedup parameter, this approach can be time consuming. Therefore, we enhanced this approach by including the following modifications:

• Lexical View : We reduced the complexity of computing a new node of Debatty's algorithm by implementing the lexical view discussed in Section 4.4. In [START_REF] Debatty | Fast online k-nn graph building[END_REF], to find the k-nearest neighbours, n speedup comparisons are necessary. The inclusion of the lexical view will reduce the number of comparisons from n speedup to lexicalV iew(node i )

speedup

, where lexicalV iew(node i ) is the amount of concepts returned by the Lucene search engine22 . In the worst case scenario, i.e., the concepts do not have lexicalView, the number of comparisons remains n speedup .

• Temporal Aspects: [START_REF] Debatty | Fast online k-nn graph building[END_REF] utilizes a tuple {node, NeighborList} to access the graph. We included a third feature Period that indicates the validity of the edge and node, respectively. Thus, our KG represent the nodes and their connections via a triple {node, Period, NeighborList}. The nodes/connections that are not valid in a given period are excluded from the list of candidates.

The last process from the offline phase deals with the Management of Temporal RDF Graph. It stores and manages the generated KG. From a practical point of view, the KG is represented in a TriG format23 , which allows a RDF Dataset to be written in a compact textual format. Moreover, the number of nodes in this KG is calculated by the sum of the impacted concepts over time plus the number of nodes from the last KOS version: ( n i impactedConcepts i )+lastV ersion.

Online Phase

This consists of querying our KG using a set of terms from any KOS version as input to retrieve the history of those terms. To access the KG we utilized the iGNNS algorithm proposed by Debatty, however any search algorithm can be used to interact with the knowledge graph. To perform the search, we included the following modifications in Debatty's algorithm:

• Filters: When querying the KG, users can specify the type of relationship to be used.

• Periods: Our algorithm explores the evolution of the KOS in two ways:

1. We look for the related concepts in preceding versions, e.g. from 2009 until 2013. In this case the starting point of our KG is t and we incrementally search the neighbours of t + 1, t + 2 until the last version available in our KG.

2. The search is performed in anterior versions, e.g., 2012,2011,2010. Similarly, we define a starting point t to match the query with our KG and incrementally search the neighbours having t -1, t -2 until the first available version.

During this search, we consider only the top-k most similar neighbours to go deeper into the graph. For example, using a Neighbour List of 15 and the top-5 most similar neighbours, we consider only the subset of neighbours most similar to the triggered concept, i.e., the one used to reach these neighbours to go deeper into the graph.

• Top-k : Many concepts can be retrieved by the search. Therefore, we restricted the algorithm to return the top-k most similar concepts regarding the query (first matched concepts). This top-k configuration is informed by the user, but we also restricted the algorithm when a similarity equal to 1.0 is found in the results. In this case, we return the exact amount of concepts having similarity equal to 1.0 instead of the top-k.

After retrieving the most similar concepts given a query specified by the user, our workflow returns the possible concepts as output to enrich the query. These concepts will later be used to retrieve documents in health facilities. At this stage domain experts can access the EHRs stored in a database (see Figure 5.1) following their own implementation.

Maintenance of Semantic Annotations, the MAISA framework

In this Section, we describe MAISA, our final framework to maintain semantic annotations valid over time when the underlying KOS change. MAISA (Maintenance of Semantic annotations) encompasses the methods discussed in Chapter 3 as well as the indirect maintenance method described in Section 5.4. Figure 5.5 illustrates the architecture of the MAISA framework. In the upper left part, we have the indirect component discussed in this chapter. The grey and blue boxes refer respectively to the offline and online phase discussed in Section 5.4. The green box in the middle refers to our Ad-hoc knowledge graph that contains the KOS history.

As previously discussed, our indirect maintenance method takes as its input a term, representing user's queries, to enrich with information dealing with the history of the concepts associated with this term. We implemented a Restfull service to provide these concepts and leaft the implementation of accessing the EHRs to health facilities. These split processes provide more security when utilizing our method to query, because no patient data is needed and no access to sensitive database is required.

Regarding the direct component illustrated in the upper right part, the grey boxes refer to the maintenance methods from Chapter 3, while the blue box concerns the process that identifies the invalid annotations by analysing the evolution of the associated KOS (see Section 3.2).

The difference in this component regarding the workflow described in Chapter 3, is the inclusion of the Ad-hoc Maintenance method to adapt the annotations. This adaptation utilizes the result from Graph NN Search from the indirect component, but here we search for the most similar concept. This new method was adopted as a second option for the use of BK method due to the lack of available mappings between ontologies.

Finally, inputs and outputs illustrated at the bottom of Figure 5.5 remain the same from those discussed in Chapter 3 and Section 5.4, i.e., we continue using a Set of annotations; Set of KOS changes; Set of ontologies; Information about external resources for the direct maintenance, while in the indirect maintenance we utilize the Ontology Versions; KOS Changes and keyword query.

Material and Methods to evaluate the direct and indirect approaches

This section describes the resources and methods used to evaluate our direct and indirect approaches. The main resources are: i) the terminologies; ii) the data set utilized to evaluate our approach; iii) the method used in the indirect maintenance and iv) the metrics for evaluation.

Terminologies

As described in Section 5.3, our method implements consecutive KOS versions in order to build an Ad-hoc knowledge graph that is used in the indirect maintenance approach. In our experiments, we used: Medical Subject Headings (MeSH) versions 2014AA to 2016AA (excluding the AB versions), downloaded from UMLS and transformed by ourselves into OWL files. To compute the difference between the terminologies, we use COnto-Diff [START_REF] Hartung | Conto-diff: generation of complex evolution mappings for life science ontologies[END_REF].

Silver Standard

Since no annotation baseline representing annotated EHRs in different periods exists, we had to build our own corpus of reference. Figure 5.6 illustrates the following methodology:

1. We selected the EHRs from the TREC Clinical Decision Support Track version 201424 . In this corpus each row has one domain-specialist opinion indicating whether a document is related to an EHR. The value 0 indicates no relation, while 2 means strong relation. In our silver standard, we utilized all rows that have a value equal to two in order to avoid narrow or non-related documents. 2. The document identifier present in the TREC corpus is associated with the documents available on the PubMed Central (PMC) repository, i.e., using this identifier we can retrieve a document from the PMC website, e.g., the document 118083025 . These documents represent the subjects (drug descriptions, disease definitions, etc.) related to the EHR, but no metadata are associated with them. Thus, we had to use a converter26 which translates the PMC identifier to a PMID identifier. This PMID identifier allows us to retrieve the annotations from MEDLINE/PubMed Baseline.

3. The MEDLINE/PubMed Baseline27 is a dataset of annotations related to PubMed papers. These annotations are generated each year and represent a static view of the data each time a baseline is released. Thus, the MeSH vocabulary updates do not change annotations from previous versions. In our silver standard, we are using the annotations from versions 2014 and 2016, gathered by associating the PMID identifiers from previous phase with the MEDLINE baseline.

4. After gathering all annotations, we built a knowledge base (KB). Notice that this KB is different from our KG; the former contains the set of metadata that we are using to evaluate our approach while the latter contains a graph describing the evolution of an ontology. The KB is composed of the following data [Concept, EHRs, Years], which indicate which concept is related to which EHR in a specific year. We used it to simulate the environment described in Section 5.1 where the query is different from the annotated EHRs. Nevertheless, health facilities will have their own storage format for these associations and our format will be only used for evaluation purposes.

5. Using the annotations collected, we built a set of reference queries to evaluate our method. We first grouped a set of documents from MEDLINE annotations and performed a diff between their annotations. To illustrate what this diff looks like, in Figure 5.7 we included an extract of our dataset. It contains the annotation [Raloxifene:D020849] created in 2014 and referring to document 2544368 (EHR 29). The diff shows that in the second year (2016), there was a change in the attribute value and the annotation became [Raloxifene Hydrochloride:D020849]. The common annotations emerging from this diff corresponded to the data present in both years. Since we search for differences to be in line with the example of Section 5.1, the common annotations were discarded from our queries. To generate our queries, we used the term (from the annotation diff), the year to interact with in our KG, the year to retrieve the documents in the KB from the previous phase and the EHR ids. For instance, at bottom of Figure 5.6, we elaborated a query with the term Sleep Disorders, which will start interacting with the KG in version 2016 and retrieve the associated EHRs [5,17,23] from the simulated KB in version 2014.

The goal of our Ad-hoc method is to verify whether the concepts returned from the Fast search process, when interacting with the Ad-hoc KG described in Section 5.3, allow a complete and precise retrieval of documents. The dataset is available at https://git.list.lu/ELISA/ AnnotationDataset. It contains a total of 23 queries to evaluate the scenario, query 2014 and KB 2016, while for the opposite, query 2014 and KB 2016 have 27 queries. 

Experimental Setup

In order to evaluate the indirect maintenance, we implemented two different setup described below.

Set-up 1: We search for EHR documents. To do this, we used: i) the Ad-hoc knowledge graph described in Section 5.3; ii) the queries from our silver standard, and iii) the simulated KB that represents the database from health facilities.

We are running the queries from our silver standard considering two opposite cases: i) terms taken from KOS version 2014 verified on EHRs annotated in 2016 and ii) terms extracted from KOS version 2016 evaluated on EHRs annotated in 2014. Both cases implement the Fast Search process, which interacts with the Ad-hoc KG built with the following number of nearest neighbours in {2, 4, 6, 10}. We used two similarity measures: i) the best hybrid approach described in chapter 4 and ii) only a single semantic measure.

In order to increase the precision of the search, we applied the filters described in Section 5.4, by building the power set of the filters, i.e., the set of all subsets of a set. Moreover, we only selected the top-k most similar concepts considering k ∈ {5, 10, 15, 20}.

The experimental configuration Conf listed in the results (cf Section 5.6.1) can be expressed as:

Conf = (method K x d y f name top k})
where:

• method = {combined/semantic}: denotes the hybrid or single semantic measure used to build the Ad-hoc KG.

• K x: is the number of x nearest neighbours used to build the Ad-hoc KG.

• d y: is the y maximum depth specified for the search process.

• f name: is the name of the filter utilized when querying the Ad-hoc KG. In this field each filter is described by its three first letters, e.g., hig means we are considering only concepts that have highLvl relationship.

• top k: is the k most similar concepts returned.

Set-up 2: We applied the indirect maintenance process, over the silver standard described in Chapter 3 using version 2009/2010. To do this, we selected the best configuration obtained for set-up 1 and computed the evolution of the annotations. With this configuration we evaluate: i) the capacity of our framework to detect impacted annotations after a change in the KOS, and ii) the ability to correctly turn the impacted annotations into consistent ones. The results of the Ad-hoc method are compared to the BK method of the direct method, since we proposed it as a second option for KOS lacking available mappings on the web.

Metrics

To evaluate the effectiveness of our indirect maintenance method for retrieving EHRs, we used the average of Precision, Recall, F1-score and fall-out, i.e., the percentage of non-relevant documents retrieved in a query [Ishioka, 2003]. Regarding Setup 2, we used the classic Precision, Recall, F1-score and Area Under the Curve (AUC) [Powers, 2011].

Experimental results

The results regarding the analyses of setup 1 are depicted in Figures 5.8 and 5.10. In both figures, the y-axis represents the average of Recall from all queries and the x-axis the average Precision. The curves inside these plots refer to the different F1-scores values (f). The legend refers to the configurations described in Section 5.6, e.g., f hig means we use the filter highLvl during the query process.

In the first case, the initial query contains a term from 2014 and the EHRs documents were annotated in 2016 (Figure 5.8). The preliminary results demonstrate that our method had significant variation regarding the impact of the number of neighbours used to build the KG. The lowest F1-Score (0.40) is associated with the configuration (combined k 2 d 1 f hig non top 10), while the best score was obtained with the configuration (semantic k 10 d 1 f hig non top 5), reaching the F1-score of 0.82. The fall-out value for the best configuration shows good results, as illustrated in Figure 5.9. The average ratio of non-relevant documents returned in the queries was 1.51%.

In the second case, the query contains a concept existing in 2016 and the EHRs was annotated in 2014 (Figure 5.10). We observed that our method demonstrated an average performance. In this case, the maximum F1-score reached was 0.55 for the configuration (semantic k 6 d 1 f hig non top 5), and the minimum was 0.26 for the configuration (combined k 2 d 1 f hig non top 10). We observed a maximum fall-out in this scenario of 7.23% for the configuration (combined k 2 d 1 f hig non top 10), and a minimum of 1.41% for (semantic k 10 d 1 f hig non top 5), see Figure 5.11. Detailed explanations of these observations are provided in Section 5.6.2.

f = 0.1 f = 0.2 f = 0.3 f = 0.4 f = 0.5 f = 0.6 f = 0.7 f = 0.8 f = 0.
The results for set-up 2, i.e., the use of Ad-hoc method for the direct maintenance of semantic annotations, are shown in Tables 5.1 and 5.2. In Table 5.1, we demonstrate the capacity of our method to detect impacted annotations. We utilized the values of precision, recall, and F1-Score to compare Ad-hoc and BK methods when applying them to the silver standard of chapter 3.

As a primary result, we observed that our Ad-hoc method is able to detect more impacted annotations than BK for all KOS, i.e. ICD-9-CM, MeSH, NCIt and SNOMED CT. The Recall and F1-Score of Ad-hoc in Table 5.1 is higher than BK in all these KOS. Regarding the precision, Ad-hoc method shows a small variation in all the KOS used.

The use of Ad-hoc method for the direct maintenance, Table 5.2, achieved similar results as BK in all KOS used. The AUC in MeSH is the same for both methods, while in other KOS the observed AUC shows small variations. In the next Section we discuss these results in detail and explain why both methods have close AUC in Table 5.2 and a distinct F1-Score. 

Discussion

The outcomes presented in Section 5.6.1 demonstrated that we were able to obtain high F1-Score and AUC for both direct and indirect maintenance processes. When analysing the results obtained for Setup 1, we verified that the Ad-hoc method returns precise results for 2014 queries. For instance, when querying using Sulfamethoxazole-trimethoprim combination, concept D015662, was affected by a (chgAttValue) in 2015. Our algorithm was able to find concepts D013420:Sulfamethoxazole, D015662:Trimethoprim, Sulfamethoxazole Drug Combination and D014295:Trimethoprim. The returned terms were added to the initial query as a conjunction of terms and the system returned the right set of EHRs when evaluating the enriched query. When creating a KG, we need to consider the number of neighbours and the semantic similarity method. In our experiments with different KGs, we observed that increasing the number of neighbours improves the quality of the results (Figure 5.10). The semantic similarity measures also play a key role in this process. For instance, the best F1-Score in the second scenario (Figure 5.10) was obtained with the configuration that utilized the single semantic similarity with 6 neighbors.

The differences verified in the results between Figures 5.8 and 5.10, pointed out that after a concept becomes more specific, tracking back its previous version is a complex task. For instance, according to BioPortal28 , to retrieve documents associated with the term Serine-Arginine Splicing Factors:D000068103 added in 2016, we had to utilize the concept nuclear proteins:D009687 (2007)(2008)(2009)(2010)(2011)(2012)(2013)(2014)(2015). With our Ad-hoc KG, we were able to reach the concept D009687 starting from D000068103 in 2016. The shortest path calculated between D000068103 and D009687 using Dijkstra's algorithm is (D000068103, D001120, D005903, D000067816, D011506, D009687). However, the complexity involved to reach the final node D009687, resulted in our approach not retrieving the EHRs associated with Serine-Arginine Splicing Factors. In our algorithm, the path between both concepts had to pass through Neighbour Lists (NL) with low similarities, e.g. the NL between concepts D000068103 and D001120, has similarity equal to 0.354, difficultly encountered by our algorithm. Regarding the fall-out observed in both scenarios, we noticed that our method prioritized precision over recall when limiting the results by the top-k. It is also observed in Figures 5.8 and 5.10 that the F1-score is always under the main diagonal.
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Moreover, we verified that when using a lower value of k to build the KG, the search algorithm does not provided good results. It keeps the F1-score low as well as the fall-out. On the other hand, when k ≥ 6, almost all queries gave relevant results.

Finally, we verified that KOS changes and semantic similarity play a key role in building the Ad-hoc KG, resulting in a good quality of the enriched query. The best configurations in Figures 5.8 and 5.10 always utilized the filters highLvl and none. The first one is related to the evolution of the KOS, while the second informs that the concepts are somehow related by their similarity (i.e., no need to consider hierarchical relation between the concepts).

The analyses of Set-up 2, i.e. the use of Ad-hoc method to directly maintain the annotations, also demonstrated good results. We observed that the Ad-hoc method provided more adaptations than BK; this was mainly observed in the F1-Score of Table 5.1.

Analysing the results, we observed that BK flagged many annotations as Unsolved, i.e. no adaption was computed and we utilized the same concept after the evolution to evolve the annotation. This occasionally matched with the silver standard from chapter 3 and increased the AUC in Table 5.2.

Another aspect to highlight is that our Ad-hoc method provided adaptations that were not feasible with only BK in Set-up 2. As for chapter 4 with the PartialMatch rule, the annotation "postoperative myocardial infarction", was correctly adapted in SNOMED CT by the Ad-hoc method. Actually, BioPortal has no mappings for this term, leading to use of the previous term that does not match with the silver standard. We thus, recommend the use of Ad-hoc method as an alternative for the usage of BK when there are few or no mappings to external resources available.

Conclusion

In this chapter, we addressed question RQ4 through the development of a method able to keep impacted annotations searchable without direct changes. It is one of the aspects of MAISA, a framework to maintain semantic annotations either by direct or indirect maintenance approaches.

The experimental analyses demonstrated that this method is capable of achieving good results when querying for EHRs or directly adapting the annotations. We observed that using a temporal Ad-hoc KG provides good representation for multiple ontology versions and their evolution.

This approach contributes to the state of the art of annotation maintenance by including a new method to adapt them, and to the Evolving Graph Generator domain by improving existing techniques. We also build a new resource for the Semantic Web: a knowledge graph that contains ontologies and their history. In the next chapter we discuss how to anticipate the evolution of concepts associated with annotations. In previous chapters, we discussed how to keep the validity of the semantic annotations when the underline KOS evolves over time directly or in an Ad-hoc manner. Depending on the amount of annotations that are affected, domain experts are solicited for a laborious validation task. Tools that support them to identify the impact of KOS changes in the annotations or even to foresee potential KOS evolution and alert them will potentially facilitate their work and improve the quality of their work. The work presented in this chapter contributes to address this need. We propose a stochastic model, using machine learning (ML) techniques, for identifying whether a concept of an ontology will evolve or not in the next release of the ontology and specify the type of change. In our global approach, this work was developed to answer RQ5: Can we predict which KOS concept will change in the near future and the type of change that affect that concept?

The main objective of this analysis is to support domain experts during the annotation phase (or maintenance phase) by alerting them about risks of choosing concept and/or an ontology to annotate biomedical documents due to the high probability of evolution these concepts have.

First, we aim at identifying concepts whose definition requires to be revised, but to be consistent with our approach of maintenance of annotations, we went further in our analysis and we also develop a model to identify the type of non-logical changes that will affect each concept [START_REF] Klein | Ontology versioning and change detection on the web[END_REF]. We considered the following types of changes: i) the extension of the ontology i.e. the addition of new concepts; ii) the modification of the description of a concept e.g. modification of the label or attribute value; iii) the removal of a concept; and iv) whether a concept will move to another part of the ontology. We named these four types of changes as Extension, Change Description, Removal, and Move, respectively (see Section 6.1).

We base our proposal on state-of-the-art approaches of the field [START_REF] Chandrashekar | A survey on feature selection methods[END_REF], Pesquita and Couto, 2012, Tsatsaronis et al., 2013] and extend them in several ways by adding new features that were identified as playing a key role in the evolution, by evaluating different techniques to deal with unbalanced datasets, and by analysing the impact of different machine-learning methods on different types (in terms of expressivity, size and dynamics) of ontologies. In addition to classical features selection, mainly based on structural information (see Section 6.1) derived directly from the ontology, we used Web information obtained by querying relevant scientific publications in the domain, the subset of information accessible through UMLS (Unified Medical Language System29 ), and also temporal information like the past evolution of the considered concept, as well as ontology region stability. Moreover, unlike existing work that clearly focuses on one dedicated ontology i.e. Gene Ontology for Pesquita and Couto [START_REF] Pesquita | Predicting the extension of biomedical ontologies[END_REF] and MeSH for Tsatsaronis et al. [START_REF] Tsatsaronis | Temporal classifiers for predicting the expansion of medical subject headings[END_REF] and on the extension of the ontology, our method has been designed to cope with any existing ontology. We therefore propose an experimental validation of our model on four OWL versions of standard biomedical ontologies having different sizes, levels of expressivity and evolution frequencies: ICD-9-CM, MeSH, NCI thesaurus and SNOMED CT. Furthermore, we also compare our model to existing models when possible.

The remainder of the chapter is structured as follows: Section 6.1 introduces relevant notions and presents related work from the field "predicting ontology evolution". Section 6.2 presents the material and methods we used to design our approach. Section 6.3 shows the experimental results we obtained for the evolution of biomedical ontologies and Section 6.4 discusses them. Finally, Section 6.5 concludes the chapter.

Background

Problem statement

The main problem addressed in this chapter is the identification of needs for the evolution of the non-logical part of an ontology. We divided this problem into:

1. The identification of the set of concepts that need to be revised (associated with the function Evolv K , defined below), 2. The recommendation of the types of revision that need to be implemented to update the concept considered (associated with the function IdentTypeOfChange K , defined below).

In this chapter, O t = (C t , R t , A t ) represents version t of an ontology where C t denotes the set of concepts, R t the set of relationships between the concepts and A t the set of axioms. Following the definition provided by [START_REF] Wang | Concept drift and how to identify it[END_REF], we define the meaning M (c t ) of a concept c t ∈ C t as a triple

M (c t ) = (label(c t ), int(c t ), ext(c t ))
In this definition, label(c t ) represents the label of c t , int(c t ) is a set of properties e.g. object and datatype properties in OWL, or more generally speaking concept attributes, and ext(c t ) is the extension of c t (the set of individuals).

By

K = Struct(c t ) ∪ T emp(c t ) ∪ Rel(c t )
we denote the context for our work. Struct(c t ) represents the structural characteristics of c t . It includes the intrinsic characteristic of a concept e.g., the number of attributes defining a concept, or the number of siblings, superconcepts and subconcepts. T emp(c t ) denotes the temporal characteristics of c t , which includes aspects dealing with the history of a concept. In this work, we considered i) the stability of c t obtained by measuring the elapsed time between t and the version l, with 0 < l < t and M (c t ) = M (c l ) and ii) the stability of the neighbourhood of c t (see Table 6.2). Rel(c t ) considers the relational aspect of c t acquired from external sources of information from the Web (see Section 6.2.3). Given one concept c t ∈ C t , our goal was to identify whether the meaning of c t was still up-to-date at time t + 1 in a given context K. Therefore, regarding this problem, the function Evolv K is defined as follows:

Evolve K : C t -→ {0, 1} c t -→ 0 if M (c t ) = M (c t+1 ) 1 otherwise
The first challenge of this work was to find an alternative to correctly execute this function when M (c t+1 ) is unknown. In a detailed analysis on the evolution process, we observed that a concept could evolve in different ways. Complementary to the previous problem, knowing that a concept will evolve, we aimed to detect the type of revision required to update c t and obtain c t+1 . We assumed that four types of revisions were possible

RevT ype = {Extension, Removal, ChgDescription, M ove}

where Extension refers to new concepts to be added as subconcepts of c t at time t + 1. This type of revision was shown as relevant in [START_REF] Pesquita | Predicting the extension of biomedical ontologies[END_REF]. Removal refers to the complete removal of c t at time t + 1. ChgDescription denotes the modification in the label as well as in the attributes structure and attribute values of c t at time t + 1. M ove refers to changes in at least one superconcept of c t at time t + 1 (i.e. the set of superconcepts of c t is different from the set of superconcepts of c t+1 , implying a move of c t to another part of O t ). These revision categories regroup the ontological modifications identified by the literature from the field ontology evolution [START_REF] Malone | Measuring the level of activity in community built bio-ontologies[END_REF], Klein et al., 2002, Stojanovic et al., 2002, Hartung et al., 2013, Hartung et al., 2009]. We focused on the non-logical part of the ontologies. To cover the logical part, we invite you to read [START_REF] Gonçalves | Categorising logical differences between owl ontologies[END_REF], Konev et al., 2012]. To detect the revisions we were interested in, we used the COnto-Diff tool [START_REF] Hartung | Conto-diff: generation of complex evolution mappings for life science ontologies[END_REF], but other diff tools such as PROMPT-Diff [START_REF] Noy | Promptdiff: A fixed-point algorithm for comparing ontology versions[END_REF] may also be used. The inputs into the tool were the two versions of the ontology, and the output is the set of concepts and the revision actions associated with them.

Knowing that a concept had evolved, without having any other information about c t+1 , the second challenge of our work was to determine what type of revision was applied to the concept. In other words, in the perspective of the "identification of revision needs for a concept", we wanted to provide complementary information about what type of revision (from RevT ype) would be appropriated to keep the concept up-to-date. We associated this problem with the following function:

IdentTypeOfChange K : C t -→ RevT ype
This function takes the concept c t ∈ C t and its structural, temporal and relational characteristics (see the various features in Table 6.2) as the input and returns the type of revision recommended for c t . We will explain this function throughout the remainder of this chapter.

Related work

Identifying concepts that need revision can be seen, to a certain extent, as a concept-drift (or evolution) prediction problem [START_REF] Groß | Evolution of biomedical ontologies and mappings: Overview of recent approaches[END_REF]. In this context, works such as [Pesquita andCouto, 2012, Tsatsaronis et al., 2013] have proposed techniques to predict the modification of a concept, as well as the extension of biomedical ontologies using machine-learning techniques (ML). Using such approaches assumes that information encoded in the ontology or its resources, such as annotations, mappings and instances, govern its evolution and can be further exploited to predict how the ontology content will change in a future version [START_REF] Pesquita | Predicting the extension of biomedical ontologies[END_REF]. [START_REF] Pesquita | Predicting the extension of biomedical ontologies[END_REF] have proposed the use of supervised learning classifiers like SVM, Naive Bayes, Bayesian Networks, Multilayer Perceptron and Decision Table to predict the extension of Gene Ontology. They obtained encouraging results with an average F-measure of 0.79 using the Bayesian Network. The features used to achieve these results were based on previous handcrafted rules and a series of guidelines for capturing changes [Stojanovic, 2004] and dealt with temporal information derived from previous versions of the ontologies considered, as well as information obtained from the usage of the ontology, such as citations and annotations. A relevant pattern observed in their results was that the GO concepts that have many children or many annotations and/or citations tend to be extended in future versions.

In the same vein, Tsatsaronis et al. [START_REF] Tsatsaronis | Temporal classifiers for predicting the expansion of medical subject headings[END_REF] complemented the work of Pesquita & Couto [START_REF] Pesquita | Predicting the extension of biomedical ontologies[END_REF] and introduced temporal features in the learning classifiers. Their method takes one period of time as the parameter to train the classifier and another period of time representing the prediction time window, i.e. the period of time in which the change should take place. The temporal features and other features were used to predict the evolution of Medical Subject Headings (MeSH) over a period ranging from 1999 to 2012. As result, the authors showed that the Random Forest classifier can reach an F1-score of 66.4% to predict the extension of MeSH. Furthermore, they pointed that the use of temporal features as temporal all children, temporal direct children, aids significantly in the prediction. They based their approach on the following features:

1. Structural features: give information about the definition of a concept and the structure of its surrounding neighbourhood in the ontology.

2. Annotation features: based on the number of annotations corresponding to a concept label.

3. Citation features: based on the number of citations of a concept label in an external corpus of documents, e.g., number of scientific articles in PubMed mentioning a given concept label.

4. Hybrid features: combination of some of the previous features.

Another initiative to predict the extensional drift of concepts is the work of Meroño-Peñuela et al.

[ [START_REF] Meroño-Peñuela | Detecting and reporting extensional concept drift in statistical linked data[END_REF]. This work uses resources given by the Dutch historical censuses data set (CEDAR) [START_REF] Meroño-Peñuela | CEDAR: The dutch historical censuses as linked open data[END_REF] to estimate whether a concept will experience a change in its extensional definition using statistical Linked Data. In this work, the authors do not consider the intentional component of the meaning of a concept but only the extensional one (i.e. the individuals). Recently, Cano-Basave et al. [START_REF] Cano-Basave | Ontology forecasting in scientific literature: Semantic concepts prediction based on innovation-adoption priors[END_REF] addressed the problem of ontology forecasting in the scientific research domain. They introduced a novel framework to be added in the ontology for the identification of emerging semantic concepts in the research domain. This is based on the integration of lexical novelty and adoption priors acquired from historical data. However, this approach only considers information external to the ontology and not the ontology itself or temporal information.

Despite the recent advances in the prediction of concept-drift or ontology forecasting, we observed the following deficiencies. First, existing approaches do not consider the intrinsic structural features, e.g., the total number of distinct attribute values of a concept. Second, they are corpus-dependent and require a significant number of annotations to predict the evolution of a concept. Third, the concept drift detection does not exploit existing semantically rich information. To overcome these shortfalls, our approach promotes the use of background knowledge and includes new temporal and structural features such as region stability over time.

Material and Methods

The identification of concepts to be revised (Evolve K ) and the recommendation of types of revision (IdentTypeOfChange K ) need to take into account intrinsic characteristics of the ontologies, as well as knowledge from external sources (e.g. the web). In this work, we analysed several types of information, selecting the information that improved the quality of the identification and recommendation functions. These functions are based on machine learning (ML) techniques. We evaluated several ML techniques to select the most precise one, according to the features and data used. In this section, we describe the various datasets used in our study, as well as the methods used to achieve the results presented in Section 6.3.

Material

As a starting point, we used the following datasets30 :

• 10 successive versions of the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM), of the Medical Subject Headings (MeSH), of the NCI Thesaurus (NCIt) and of the Systematized Nomenclature of Medicine -Clinical Terms (SNOMED CT) covering the period ranging from 2004 to 2013. For each terminology, we used only the version published (or in-use) in the Unified Medical Language System (UMLS)31 at the end of January of each year.

• The Diff between the mentioned OWL ontology versions was obtained using COnto-Diff [START_REF] Hartung | Conto-diff: generation of complex evolution mappings for life science ontologies[END_REF]. The Diff consists of the identification of basic (insert/update/delete) and complex transformations e.g., concept merging, concept splitting, move of concept, etc. that lead one ontology version to its successor. The ontological changes that could be identified by COnto-Diff were then regrouped to form the RevT ype set (see Section 6.1).

• The content of PubMed (about 17 million scientific articles) as a source of external information to find relevant publications from the medical domain for the periods 2011 to 2012 and 2012 to 2013.

• External termino-ontological resources (denoted as background knowledge in the remainder of the chapter). In our experiments, these resources were provided by the UMLS [Bodenreider, 2004]. The UMLS contains 131 resources and their associated versions, which are important for identification purposes, in order to compare concepts from corresponding versions. Since we evaluated concept descriptions from 2004 to 2013, we needed to compare the version of the concept to the description of another concept in UMLS at the corresponding moment in time.

Methods

In this section, we present the methodology adopted to solve the two problems defined in the Evolve K and IdentTypeOfChange K functions. This methodology has three objectives:

1. Identify the best ML technique and the most relevant features that play a significant role in the identification problem, 2. Select the best ML technique for recommending the revision types for ontology concepts, as well as the relevant features, 3. Evaluate the quality of the selected techniques and features.

To achieve these objectives, we set up the following methodology. The first step consisted of the generation of a dataset from the material described in Section 6.2.1, characterized with a set of pre-selected features derived from state-of-the-art field approaches, as well as experiments detailed in [Cardoso et al., 2016] (see Table 6.2). This dataset was then used to evaluate the performance of five two-class classifier methods (Boosted Trees, Random Forest, Decision Tree, Logistic Regression and SVM). These were pre-selected according to the specificity of our problem, the characteristics of the dataset (fewer than 20 features and fewer than 1000 data points by class), the required capacity to provide explainable class boundaries, the fact that there were dependencies between features, and the literature review [START_REF] Hearst | Support vector machines[END_REF], which highlighted the good generalization performance of SVM. Neural Networks and Deep Learning were not included in our experiments because we were looking for comprehensive class boundaries and/or methods that perform well with a small quantity of training data. A summary of the decision criteria used in this work is presented in Table 6 Knowing that the ontologies considered had a ratio between changing and stable concepts of close to 10% (per evolution step) [Dos Reis et al., 2014], we decided to apply a balancing method. Two main methods are used in the literature [START_REF] Kotsiantis | Handling imbalanced datasets: A review[END_REF]: Undersampling and oversampling. The limitation of the former method is that relevant information can be lost when reducing the size of the bigger group, which could impact the accuracy of our prediction. The latter method can transform rare cases into frequent ones. This can also be an obstacle to improving the quality of the Evolve K and IdentTypeOfChange K functions.

Six variations of these two methods were evaluated in this work:

• Undersampling 100%, which consists of randomly selecting the same quantity of elements from the bigger group as from the smaller group;

• Oversampling 100%, which implies randomly duplicating elements from the smaller group until it reaches the size of the bigger group;

• Undersampling 50%, which applies the same technique of undersampling 100% while keeping the size of the bigger group 150% bigger than the smaller group;

• Oversampling 50%, which applies the same technique of oversampling 100% while keeping the size of the bigger group 150% bigger than the smaller group;

• Undersampling 75%, follows the same principle of undersampling 50%, while keeping the size of the bigger group 125% bigger than the smaller group;

• Oversampling 75%, follows the same principle of oversampling 50%, while keeping the size of the bigger group 125% bigger than the smaller group.

The second sub-objective of our experimental study consisted of evaluating and selecting features that significantly impact the quality of the identification/recommendation functions. We started this set of experiments by proposing 17 features categorized into five different aspects, indicated by the symbols I, S, T, SW, and E in Table 6.2:Intrinsic characteristics of a concept, indicated by the symbol (I); Structural characteristics of the concept in the ontology, indicated by the symbol (S); Temporal aspect, indicated by the symbol (T); Semantic aspect of the concept, indicated by the symbol (SW); External related information, indicated by the symbol (E).

We used the Boosted Tree classifier to establish a rank of features. As input, we provided the "classifier method", as well as the 17 features with data collected up to 2012 (this data was split into training and test data). We evaluated different configurations of the classification method to verify the impact of the configurations on the ranking process. To establish the rank, we used the importance measurement provided by the GraphLab library32 . The importance of feature X is determined by the sum of the occurrence of X as a branching node in all trees. We added the importance value calculated for each ontology and ranked the features based on this value. The rank was used for the selection of features; we added features one by one following the rank order and calculated the accuracy of the model. We repeated this operation 10 times and used the average and variance of the accuracy to select the best features.

We trained our model with the ontology versions from 2004 to 2012, i.e., classifiers and features were evaluated with data from this period, and only data from 2013 was used (our gold standard) to evaluate the quality (and generality) of our model. The experiments were implemented in a two-step process:

• We applied the trained models to 2000 concepts (1000 from each group), randomly extracted from the ontology version 2012, in order to identify the concepts that are candidates to be reviewed (outcome of Evolv K ). We compared these candidate concepts with those that evolved significantly in 2013 and calculated the accuracy and F1-score. For the sake of readability, we present some data with their accuracy values and other with their F1-score.

Regarding the number of cases in our approach, we referred to the work of [START_REF] Krejcie | Determining sample size for research activities[END_REF] in order to determine a significant number of cases to train and evaluate our classifier.

• We used only the cases that evolved (from 2004 to 2012) to train our model to recommend the type of revision needed (outcome of IdentTypeOfChange K ). Notice that we did not balance the number of cases for each revision type. We evaluated the quality of the model with data from 2013.

• We compared our approach with the state-of-the-art. In this, we used only part of the data (only for MeSH) to train the model and compared the results obtained with those presented in [START_REF] Tsatsaronis | Temporal classifiers for predicting the expansion of medical subject headings[END_REF].

Feature Engineering

Similar to the existing approaches for ontology evolution prediction (see Section 6.1), our model takes into account intrinsic and structural information extracted from the concept and its neighbourhood (indicated by "I" and "S" in Table 6.2 respectively) and Web information obtained after querying data portals such as PubMed ("E" in Table 6.2). However, our approach also deals with temporal information obtained by analysing the history of the considered ontology ("T" in Table 6.2), as well as semantic information obtained from the UMLS ("SW" in Table 6.2). There are 17 features defined in Table 6.2 that can be grouped as follows:

• Temporal features, included in the evaluation after observing their impact on semantic annotations [Cardoso et al., 2016]. We noticed that, if a concept is part of an unstable region, i.e. directly surrounded by concepts that change frequently over time, this concept is also more likely to change.We therefore want to verify whether this feature also plays a role in the identification of concepts requiring revision. According to our formalism, given a concept c t , the two features dealing with temporal aspects form the T emp(c t ) context.

• Background knowledge (BK), materialized by external ontologies. This information is potentially relevant for ontology maintenance tasks [START_REF] Sabou | Exploring the semantic web as background knowledge for ontology matching[END_REF]. In this sense, we used background knowledge to generate new features, evaluating their relevance for our identification model. For instance, we evaluated whether high similarity between the analysed concept and the siblings of matched concepts from other ontologies would indicate a trend for evolution. In this work, similarity was obtained by measuring the cosine similarity between the attribute values of c t and those of the corresponding concepts in the background knowledge. The set of nine features dealing with background knowledge ("E" and "SW" in Table 6.2) made up the Rel(c t ) context.

• Structural information, represented by the Struct(c t ) context, denoted characteristics linked to the description of c t , like the number of attributes of c t , as well as semantic information about the super, subconcepts and siblings of c t . These features are labelled with "S" and "I" in Table 6 The difference in the ratio of the number of PubMed articles. The dataset mentioned in Section 6.2.2 was generated according to these features. It means that for each concept c t considered, we computed the value of the corresponding features (see Table 6.2). An illustrative example of how the value of each feature was assigned is shown with the concept number 171.0 (Malignant neoplasm of connective and other soft tissue of head, face, and neck ), from the ICD-9-CM version 2012. This concept has five attributes, including one "Abbreviation in any source vocabulary" (Mal neo soft tissue head), one "Metathesaurus preferred term" (Malignant neoplasm of connective and other soft tissue of the head, face, and neck), and three "Metathesaurus entry terms" (Malignant neoplasm of cartilage of the ear; Malignant neoplasm of cartilage of the eyelid; and Malignant neoplasm of connective and other soft tissue of the head, face and neck). The total length of these five attributes is equal to 258 characters (Att length=258). The last time that this concept evolved was in 2008, i.e. four years earlier (Last evolution=4). We also observed that none of the neighbours (siblings, super, subconcepts) evolved in 2012 (Region stability=0). When we compared the concept label with that of the neighbourhood (for instance, with the superconcept "Malignant neoplasm of connective and other soft tissue"), using the cosine similarity measure, we obtained a value close to 0 (Similarity max=0). Another observation is that this term did not appear in any publications between 2011 and 2012 (PubArtT=0).

Results

In this section, we present the experimental results that we obtained for the selection of the classifier as well as for the relevance of the features in the identification of concepts that need revision. We further discuss our results with respect to the recommendation of the type of the revision and compare our work with [START_REF] Tsatsaronis | Temporal classifiers for predicting the expansion of medical subject headings[END_REF].

Classifier selection

Our problem, identifying the concepts needing revision, can be seen as a classification problem, where we have two classes (i.e., those needing revision and those not needing revision) that we aim to populate with the concepts from our dataset. Several classification methods could have potentially been applied to our problem (Boosted Trees, Random Forest, Decision Tree, Logistic Regression and SVM), but we needed to narrow it down to one. The first set of experiments intended to support the classifier selection decision. First, we calculated the accuracy of each method (with different configurations, i.e., a combination of ML techniques and balance sampling methods) using the dataset made up of concepts belonging to ontologies released in 2012 and before. We randomly selected 2000 concepts (1000 from each class) and used 80% for training and 20% for validation (the selection of concepts was repeated for each experiment in order to assure the generality of the approach). We repeated the experiment 10 times to determine the average accuracy and the variance of the prediction. We also tested repeating the experiment 5, 15 and 20 times, but observed that over 10 times, the average accuracy does not change significantly. The decision criterion is based on the best average accuracy with the minimum variance. As we considered two distinct problems, i.e. the identification of concepts needing revision and recommendation of the type of revision, we evaluated the classification methods according to these two problems.

Figure 6.1 illustrates the outcomes of this set of experiments using the dataset containing MeSH concepts for Evolv K . We used the GraphLab33 libraries with the standard configuration and analysed their performance based on accuracy and F1-measures as follows: The best accuracies were selected and ranked; where two or more methods had the same (or very close) accuracy, we used the variance to improve the rank. Where the variance was not sufficient, we also used the F1-measure to support the decision. The outcome of this analysis was the selection of the Boosted Trees Classifier using the Oversampling 100% method. Table 6.3 shows that this classifier demonstrated the best performance for the four ontologies (on average this classifier had an F1-measure of 86%, while Random Forest had an F1-measure of 83%). The depth of the trees in the Boosted Trees Classifier is also a parameter that can interfere with the quality of the prediction. We evaluated seven different configurations (depth = 2, 5, 10, 50, 100, 200, 500) and measured the classification error 30 times. We used the average of these 30 experiments and the outcomes of these experiments can be seen in Figure 6.2. We observed that the training error falls to zero when the depth is higher than 50, thus we used this configuration to evaluate the relevance of the features.

Our problem for recommending the type of revision can be seen as a classification problem where we have multiple classes (i.e., Move, Extension, Removal, ChgDescription) and look to populate these classes with the concepts from our dataset. We evaluated the same classification methods as for Evolv K and chose one.

For this, we followed the same methodology as for Evolv K to select the best classification method, but used only the set of modified concepts as our input. The results are shown in that Random Forest and Boosted Trees have the same accuracy average, when we consider the variance and the F1-measure, Boosted Trees prove to be less precise than Random Forest. We excluded the SVM method from the evaluation because for this problem, the dataset is highly unbalanced (which contributed to reducing the accuracy of SVM). Furthermore, SVM showed the lowest performance among the classifiers for the Evolv K . Table 6.5 shows the average accuracy for the recommendation of the type of revision, applying the Random Forest model to each ontology. 

Feature selection

Once one classifier had been selected for each problem, the next phase consisted of ranking the features described in Section 6.2.3 with respect to their relevance for both problems.

Features for the identification of concepts needing revision

In our experimental study, we used tree-based estimators (based on the Boosted Tree classifier) to determine the importance of each feature for problems 1 and 2. The idea was to select features that could perform well for the identification and recommendation problems independently of the ontology structure. Our assumption was based on the fact that the use of these four ontologies could potentially increase the generality of our model, since these ontologies have different structures and expressivity levels. Figure 6.3 shows the sum of the importance weights computed by the tree-based estimator for each ontology and for each feature. The outcome of this experiment allowed us to produce the following ranking (in order of importance): PubArtT, dir children, Num att, Similarity max, PubArtT1, Max simSib, Region stability, Att length, Last evolution, Max simSup, DiffArt, all children, siblings, Max simSub, DiffArtRatio, Similarity average, isLeaf. Then, we measured the accuracy of the model with different subsets of features. To do this, we used the test set. We generated a model with only one feature (always selected in the same order as in the ranking), trained it with the training set from 2004 to 2012, and evaluated it with the test set. We repeated the process, adding one new feature with each new iteration. We repeated the whole feature selection process 10 times in order to obtain the average value, as well as the standard deviation of the identification problem. In Figure 6.4 , we observe the average accuracy when accumulating the features. For instance, the third value of the MeSH dataset underlines the accuracy of the model when using the three features PubArtT, dir children, and Another important aspect extracted from the experiments was that the accuracy increases until (+/-) the addition of the 11 th feature. After that, it remains quite stable. This is true for almost all datasets. For example, ICD-9-CM and NCIt reach the upper value with 9 features, MeSH with 11 features, and SNOMED CT with 13 features. However, after adding the 12 th feature, the accuracy of the model decreased for MeSH and NCIt, indicating that these features add substantial noise to the system. Features for recommending the type of revision for a concept

Regarding IdentTypeOfChange K , we followed the same feature engineering process to identify the most relevant features for recommending the type of revision. However, for this problem, the selected classifier was Random Forest and the number of cases for training and evaluating listed in Table 6.6.

The results, depicted in Figure 6.5, show that the same set of features is relevant for indicating the way the concept will evolve. However, unlike for Evolv K , the importance of each feature is different. There are some minor permutations, for instance, dir children is the most relevant feature for IdentTypeOfChange K while it is PubArtT for Evolv K . In general, the results show that the consideration of external sources of information for the prediction is extremely relevant since features related to PubMed and to the UMLS are among the most relevant. Moreover, Figure 6.6 illustrates the added value of temporal features since the region of stability drastically increases the precision, especially for IdentTypeOfChange K . 

Comparison with related work

The experiments we conducted allowed us to draw a comparison with the approach described in [START_REF] Tsatsaronis | Temporal classifiers for predicting the expansion of medical subject headings[END_REF]. The two approaches could not use exactly the same set of data since the data used in [START_REF] Tsatsaronis | Temporal classifiers for predicting the expansion of medical subject headings[END_REF] was not made available. Thus, this comparison considered (our hypothesis) that the selected data used in our experiments were quite similar to those used by Tsatsaronis et al. In their work, Tsatsaronis et al. measured the ability of their model to predict the extension of MeSH. However, they considered several sub-parts of MeSH independently (i.e. Organisms, Diseases, Chemicals and Drugs). In order to compare the approaches, we carried out our experiments using only data from MeSH, without making distinctions between the sub-parts (we have a more general approach). Table 6.7 shows the results of Precision, Recall and the F1-score we obtained compared to those of [START_REF] Tsatsaronis | Temporal classifiers for predicting the expansion of medical subject headings[END_REF]. Another modification we made in our approach to make the results more comparable was the selection of the Random Forest classifier and we used the same number of MeSH versions, i.e., 10. Moreover, as their method considers a modular time frame for the prediction i.e., the considered concept would evolve over the next y years, we reduced this period to one year to be comparable. We noticed that the structure of MeSH did not change significantly over these 10 years [Dos Reis et al., 2014].

Our approach The results in Table 6.7 reveal that even with a more general approach, our method performed better in terms of precision, recall and F1-score than the one described in [START_REF] Tsatsaronis | Temporal classifiers for predicting the expansion of medical subject headings[END_REF]. The selected set of features, in particular the consideration of background knowledge, significantly improved the precision and recall of the identification of concepts that need revision (in the MeSH). However, this comparison had some limitations that can partially justify the differences showed in Table 6.7:

• The data used to train and evaluate the classifier. We randomly selected a balanced set of elements of MeSH between those that evolve and those that remain stable while Tsatsaronis et al. [START_REF] Tsatsaronis | Temporal classifiers for predicting the expansion of medical subject headings[END_REF] used the MetaCost method [Domingos, 1999] to balance their data. In order to be comparable, we assumed two hypotheses: (1) that the data sources are quite similar (MeSH, same period, balanced data), (2) that the classifiers use the same parameters. If these two hypotheses are correct, than we can imagine that the main difference in the results came from the features that we selected. Thus, our features were more relevant for solving the first problem. However, any information about classifier parameters was found in their publication [START_REF] Tsatsaronis | Temporal classifiers for predicting the expansion of medical subject headings[END_REF].

• Some differences in the definition of comparable features, especially temporal ones. In our work, we distinguish between the evolution of a concept and the evolution of its neighbourhood while the distinction made by Tsatsaronis et al. concerns all features, e.g. evolution of siblings, and of superconcepts or subconcepts.

Discussion

When analysing each feature and its impact on the identification/recommendation model, we formulated the hypothesis below, which can potentially explain the model behaviour.

Features dealing with background knowledge are the most important for the two functions that we developed (Evolv K and dentT ypeOf Change K ). This can be justified by the fact that ontologies aim to reflect the real world, with the web containing relevant information from the real world that can be taken into account. Therefore, if specific knowledge within this domain evolves, then the part of the ontology related to this evolving knowledge must also evolve. P ubArtT (c t ) extracts the number of articles citing label(c t ) from scientific publications (published in the year preceding the prediction period, i.e., in 2012). High values indicate that this knowledge is of utmost importance for the domain. We highlighted that PubMed uses MeSH to index documents. Thus, this feature has a higher impact on the quality of the identification of MeSH concepts than on the other ontologies. On the other hand, we observed that P ubArtT 1(c t ) has a negative impact on Evolv k and a positive impact on IdentTypeOfChange K . We are convinced that the date of publication of the ontologies considered plays a key role in this behaviour. For instance, MeSH concept D009369 was changed in January 2013, and with all papers published from January onwards using the new/changed concept (the impact of P ubArtT 1(c t ) will probably be positive in this case). However, the date of new releases of ontologies are different (some are in October or even monthly). Our approach used the 31 January version, which probably created a bias for P ubArtT 1(c t ) for some ontologies. This can potentially explain the negative impact of this feature in some ontologies. Additional experiments are needed to identify the impact of PubMed citations over a longer period of time. Moreover, background knowledge gives a helpful support to improve the quality of our method. When the maximum similarity with mapped concepts (from other ontologies) is low, it can potentially indicate that the current definition of the concept needs to be reviewed. This is why Similarity max(c t ) is important for the prediction (for both problems). However, the similarity with existing superconcepts (Max simSup(c t )) in the BK is less important than the similarity with subconcepts (M ax simSub(c t )) and siblings (M ax simSib(c t )). It shows that ontologies evolve in order to become more precise rather than more abstract. These features have limited impact on flat ontologies like ICD-9-CM where subconcepts can not easily be added.

Our experiments have shown that features derived from the structural characteristics of the ontologies are also important for the prediction. The relevance of the feature dir children(c t ) has been observed in several works on ontology evolution prediction, according to the papers we have analysed (see Section 6.1). In combination with P ubArtT (c t ), this feature improves knowledge on the necessity of creating a more specialized (or not) concept. Few direct subconcepts and many citations constitute a good situation for concept evolution. Another good situation for concept evolution can be observed when we take into account the number of attributes (N um att(c t )). A high number of attributes can be a good indicator that the definition of the concept is unclear or ambiguous. Thus, the probability that these attributes are partially transferred to another (new/modified) concept is higher. Another explanation could be that in our work, the change in a concept includes a change in any of its attributes, therefore it is more probable that concepts with many attributes evolve. Additional experiments are needed to verify which explanation occurs most frequently. There is an obvious correlation between Att length(c t ) and N um att(c t ), however, Att length(c t ) also includes cases where a concept has few properties but is described with long strings. These cases are rarer than those with a high number of properties (which explains the lower importance weight). Nevertheless, this distinction allows the context of the concept to be refined and the quality of our predictions to be improved. It should be mentioned that the impact of this feature is more important for ICD-9-CM because of the existing limitation on the depth of the hierarchy. This limitation requires more precise properties (implying long value strings) to describe the concepts. We highlight that two features all children(c t ) and siblings(c t ) were pointed out by other authors as important for identifying concepts that need revision. In our experiments, we observed that their importance is low or even negative for Evolv k . However, these structural properties may have (depending on the ontology) a positive impact, especially when predicting the extension.

Lastly, features dealing with temporal aspects have a strong positive impact on the two problems (identification and recommendation). When a concept belongs to a part of the ontology that evolves frequently, then the probability that this concept will evolve is high. This is what highlights the behaviour of the Region stability(c t ) feature. Furthermore, Last evolution(c t ) shows that stable concepts, i.e. concepts that have not changed over the past 10 years, have a lower chance of evolving in the future. This feature adds this notion to the model, which improves the quality of the prediction for all datasets.

During the implementation of this work, we held discussions with some potential end-users working in biomedical terminology management organizations in order to understand how the ontology maintenance tasks are planned and executed. Our understanding indicates that candidate concepts are selected based on ontology users' reports/requests and on the outcomes of specialized workgroups/task forces (we call this group of candidates manually generated candidates). Our approach can be integrated into this maintenance task to promote proactive maintenance action. We believe that the contributions of our approach are twofold: (1) It provides an extra source of information (that can potentially complement the manually generated one) with candidates and with suggestions of the type of revision that each concept needs; (2) It supports the creation of ranks (indicating priorities to execute changes in the ontologies) of concepts to be changed based on the combination of manually and automatically generated sets of candidate concepts. Our idea of selecting classifiers that have explainable models fits into this ambition of integrating manual and automatic candidate generation. Instead of trusting black boxes, the user can, for instance, extract the boosted tree decision rule and use it to create a "ranking rule".

A good integration of our approach in the ontology maintenance tasks can help improve the prediction model. The feedback of the users can be used to train the model in order to customize it (e.g., trained to apply to one specific ontology) and/or improve its precision.

Finally, we would like to reiterate that although our approach was developed to help reviewers in their daily tasks, our goal is not to substitute them. However, if the biomedical terminology management organizations decide that the prediction accuracy obtained with our approach is acceptable for some of their objectives, the role of our approach can change. For instance, if an organization decides that having a daily updated version of the ontology with some errors (e.g., beta version) is more relevant than keeping the same version of the ontology for a long period (e.g., one year), then little work would be required to implement an automatic ontology updates tool.

Conclusion

In this chapter, we analysed methods empirically to i) identify the concepts needing revision and ii) recommending the type of revision necessary answering RQ5 of this thesis. We selected the biomedical domain for our case study since it is highly dynamic and covered by more than 500 ontologies with distinct levels of expressivity. Thus, we collected information on 4 standard ontologies from this domain over a period of 10 years (a total of 40 ontologies were analysed). We also analysed extra information collected from publicly available sources like PubMed and UMLS. We grouped this information into temporal, structural and relational categories. Compared with the state-of-the-art, we proposed several new sub-groups for each category (features of our analysis process) and we evaluated their impact on the quality of our analysis. Finally, our analysis allows the most efficient supervised learning classifier technique and the most important set of features to be selected. We observed that the Boosted Trees Classifier is the best one for identifying concepts that need revision while Random Forest is more efficient for recommending the type of revision. In this work, we have observed that the consideration of background knowledge plays a key role in the identification of and recommendations for problems when sources like UMLS and BioPortal are available. We obtained good accuracy that fluctuates between 68% and 91% according to the dataset analysed; in an overall analysis (all datasets together), we achieved more than 71% accuracy. Next chapter will focus on the conclusion of our work, highlighting the main annotation changes. As a result, we proposed extensions for the W3C Open Annotation Data Model, e.g., the inclusion of an evolved relationship, which links an evolved annotation to its past version. These new features allow a better covering of evolutionary aspects, e.g. tracing back all the possible evolutions of an annotation, in order to maintain future versions through rules as ResurrectAnnot (see Chapter 3).

RQ.3: How can we automatically maintain the validity of semantic annotations without re-annotating the content of all documents when KOS are updated?

The novel MAISA framework presented the possibility of using methods such as Domain Specif Rules, Background Knowledge and Change Patterns to automatically keep semantic annotations up-to-date. Through empirical experiments, we demonstrated that the correction/adaptation of annotations can reach a reasonable reliability rate. However, it is important to highlight that the role of domain experts is still determinant in assuring the quality of the annotations in critical scenarios, as observed in the biomedical domain. Finally, our maintenance approach is done without a complete re-annotation of the document, since we reutilize the information present in the annotations to evolve the impacted ones.

RQ4: Which methods can be used to keep the annotations searchable when the document and annotations cannot be changed directly?

In chapter 5, we proposed a method able to keep impacted annotations searchable without directly changing them. The experimental analyses demonstrated that our proposed method was capable of achieving good results when querying EHRs and could be used as an alternative method to BK, utilized in chapter 3 to direct adapt the semantic annotations. We observed that using a dynamic Knowledge Graph, as we proposed, provides a good representation for multiple ontology versions and the evolutionary link between them. This approach contributes to the state-of-art of annotation maintenance by including a new method to cope with the evolution of annotations, based on techniques from the Evolving Graph Generator domain.

RQ5: Can we predict which KOS concepts will change and impact the annotations in the near future?

In chapter 6, we discussed how to enhance the MAISA framework by including a new method able to anticipate the evolution of concepts associated with annotations. This method supports domain experts during the annotation/maintenance phase by alerting them to the risks of choosing a concept and/or an ontology to annotate biomedical documents. Our approach showed more than 71% of accuracy when identifying concepts that needed revision. Furthermore, we contributed to the state-of-the-art by including temporal features, e.g. information about the last evolution date, which helped to increase the accuracy of the utilized methods (see Chapter 6).

In summary, all the main research questions investigated in this thesis were answered satisfactorily, allowing us to keep our hypothesis: The use of information from KOS, as well as information about KOS evolution, can be used to define a robust maintenance mechanism. We also approached more challenges that had emerged from our methodology in Section 5.6, which leaded to a complementary question.

Complementary Question: How can we improve the existing similarity measures to enhance the relatedness between terms while taking the syntactic mismatch into account?

In chapter 4, we presented an approach that combined Lexical and Semantic measures to enhance the concept similarity. Our experimental analysis demonstrated that together, they can outperform methods based on only one similarity measure (i.e., semantic or lexical). Using this hybrid measure, we introduced the PartialMatch rule for maintaining semantic annotations affected by the evolution of KOS. Our experimental analysis demonstrated that PartialMatch was capable of achieving good results to adapt annotations using one or multiple successive KOS versions. We observed that the use of semantic similarity approaches was important to determine the relatedness during the evolution process.

Directions for future work

Even though MAISA showed good results for keeping semantic annotations up-to-date when the utilized KOS had evolved, we identified some limitations offering relevant perspectives for further improvements and an extension of this work. The improvements listed in this section are related to the research field of semantic annotations and Semantic Web. They were not implemented due to the limited time to develop the work and the enlargement of scope.

We recommend the following enhancements to better evaluate our approach:

1. Conduct additional experiments using annotations and KOS from other domains outside of the biomedical domain. For instance, we can utilize the Eurovoc thesaurus34 , which was released after 2014, to verify whether the changes that emerged after a new version impacted annotations from LinkedEP dataset35 , i.e., the plenary debates of the European Parliament [Van Aggelen et al., 2014].

2. Qualitative evaluation involving domain experts. As highlighted during this thesis, domain experts play an important role in the final process. Therefore, we suggest to evaluating MAISA in a real environment, e.g. a hospital, to verify the user opinions.

3. The silver standard used to evaluate our experiments contains around 125 annotations per KOS. Therefore, we advise to enhancing the silver standard by including new cases of annotation maintenance. These new annotations can, for example, be evaluated using the Inter-annotator Agreement, i.e., a metric to quantify the agreement between the domain experts regarding the evolution of the annotations.

Regarding the maintenance process, we suggest the following topics to enhance the upcoming approaches.

1. Implement new Rules. As discussed in Chapter 4, domain specialists sometimes opted to reduce the expressiveness of the annotations. In further versions of MAISA or in approaches dealing with the evolution of annotations, rules describing how to cover such cases must be implemented. Moreover, undiscovered cases in this thesis can be explored through the utilization of techniques as Association Rule Mining [START_REF] Hipp | Algorithms for association rule mining &mdash; a general survey and comparison[END_REF]. These techniques allow the discovering of new patterns from to be discovered in a large amount of data.

2. Improve the search algorithm utilized in the Ad-hoc phase by using more sophisticated techniques, such as [START_REF] Marie | Discovery Hub: on-the-fly linked data exploratory search[END_REF]. Nevertheless, the temporal aspect also must be considered, since it is not present in the approaches from the state-of-the-art.

3. Improve the method to enrich queries, paying particular attention to the query language [START_REF] Pruski | Adaptive ontology-based web information retrieval: The target framework[END_REF]. In this work, we simply construct queries as a conjunction of terms favouring recall on precision. Additional work can propose a query language that offers other operators leading to complex queries giving better precision and recall when searching for documents.

4. [START_REF] Pakhomov | Semantic similarity and relatedness between clinical terms: An experimental study[END_REF] utilized a touch screen to verify the relatedness of UMLS concepts and domain expert judgments. Inspired in the approach, advanced Human Interface techniques can also be used to understand how domain experts evolve their annotations and create new rules.

Finally, we can explore several research topics representing the extension of this thesis:

1. In chapter 5, we presented an Ad-hoc method to enhance the ontology information with its evolution. Our results demonstrated that the ontology history contains meaningful information to describe the concepts and their relatedness over time. The utilization of ontology changes and the Ad-hoc method which verifies the relatedness of concepts can also be explored in the context of Concept Learning/ Ontology Learning techniques, more specifically in those focusing on the T-box part of the ontology, i.e. the concepts [START_REF] Zhang | Ontology extension based on axiomatic cognitive model for ontology learning[END_REF]. The current approaches are applied in general on small ontologies due the use of reasoning techniques during the learning phase. Different approaches in the same domain, e.g., [START_REF] Bamunusinghe | Concept learning from visual experiences using unsupervised neural networks[END_REF] implementing neural networks, do not cover temporal aspects relying on a single ontology version and working as a black box, because the adjustments made by the neural network techniques are complex to explain.

2. The evolution of ontologies plays a key role when adapting semantic annotations. Therefore, models and/or languages that better describe how the concepts must evolve in new ontology versions can be an asset to mechanisms that adapt semantic annotations.

3. Extend the maintenance of semantic annotations to the Linked Open Data (LOD). In this scenario, methods that automatically adapt the existing links and annotations on the LOD by creating new ones and linking them to past versions could be explored.

4. Implement a measure that combines LSM and SSMs and also considers the KOS evolution.

As observed in chapter 4, the use of lexical similarity approaches is important to improve the quality of the results provided by the SSMs and vice-versa. Nonetheless, these measures do not contains evolutionary aspects, therefore we propose the investigation of similarity measures that also consider the KOS changes.

In summary, this thesis contributed with new approaches to direct or indirect maintain the semantic annotations impacted by the evolution of KOS. The shortcomings observed in the state-of-the-art were considered and utilized to build the MAISA architecture. This architecture contains an original method to maintain the annotations indirectly that can reach reasonable results. Overall, the results obtained during the thesis were encouraging and allowed new improvements in the domain. All work described in this thesis has been the subject of several papers published at international conferences and in international journals. A list of these publications is given on the next page. 
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 52 Figure 5.2: The proposed Ad-hoc history of concepts. The turquoise and dark blue boxes indicate the changed and stable concepts, respectively.
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  Figure 5.4: Workflow to compute the indirect maintenance of annotations.
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 5 Figure 5.5: The MAISA Framework.
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 5 Figure 5.10: Maximum average Precision, Recall and F1-score regarding the best configuration for each KG. The query used is a term that existed in 2016 only and the EHRs were annotated in 2014.

  Figure 5.11: Fall-out for best configurations observed in setup 1, when the query is a term that exists only in 2016 and the EHRs were annotated in 2014.
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		.1: Research Summary
	Area	Knowledge Representation
	Subject	Maintenance of Semantic Annotations
	General Problem	

  4 of ICD-9-CM period 2007/2008 which is associated with 3143 annotations distributed in 162 documents in our corpus

						Annotations produced with MeSH		NCBO	GATE	
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		of												
		Amount	2136802 2286802											
			year	2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016	
		Diff	15000				COntoDiff output to MeSH					
		of KOS Amount	0 10000 5000 period	04 05 05 06 06 07 07 08 08 09 09 10 10 11 11 12 12 13 13 14 14 15 15 16	
			Diffs 5465 8072 2707 4321 3103 9786 3098 3042 3139 3488 3067 3513	
	Figure 2.6: Amount of annotations and KOS changes (green) produced with 13 versions of MeSH.
	80,00% 100,00% 150,00% 50,00% 100,00% Diff v1-v0			BioP_v0	GATE_v0		BioP_v1	GATE_v1			
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	Figure 2.7: Differences in two successive annotation sets produced with ICD-9-CM. The blue
	(solid) colour represents the annotations that belong to NCBO Annotator, and the orange
	(hashed) colour to GATE.										

The annotations from NCBO Annotator are represented by blue circles and those from GATE by orange diamonds. The y-axis represents the amount of annotations/changes and the x-axis the KOS versions over time. while concept V15.03 of ICD-9-CM period 2012/2013 is associated with only one annotation. If a single KOS change affects many annotations, the maintenance of the annotation may require a huge amount of time if carried out manually by domain experts. It will therefore be interesting, from an annotation perspective, to be able to identify concepts that will remain stable for annotation purposes in the next release since these annotations will not have to be maintained.
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.1: Examples of annotations computed by our rules. (CP v0 ) concept code in specific year, (Annot v0 ) annotated text, (P ref ix v 0) prefix, (Suf f ix v 0) suffix, Changed v1 result of applied rule.
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 3 .2 contains the original annotation (from 2009) in the first line and the evolved annotation (from 2010) in the second line. 2: Example of an evolving annotation, extracted from our silver standard.

	KOS	Doc. Concept Annotated	Start End Prefix	Suffix	KOS la-
		text			bel
	MeSH	232 D019684 Magnolio	4587 4600 during	(angiosper	Magnolio
	2009AA	phyta	the evo-	ms) [5].	phyta
			lution	typical	
			of	such	
	MeSH	232 D019684 Magnolio	4587 4600 during	(angiosper	Angios
	2010AA	phyta	the evo-	ms) [5].	perm
			lution	typical	
			of	such	
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		ICD-9-CM		MeSH		
	Method	P	R	F1	P	R	F1
	Rules	1	0.982 0.991	0.991 0.941 0.966
	BK	1	0.129 0.229	1	0.050 0.094
	SCP	1	0.041 0.078	1	0.091 0.167
	LCP	1	0.048 0.092	1	0.099 0.180
	Rules/BK	1	0.982 0.991	0.991 0.941 0.966
	Rules/SCP	1	0.982 0.991	0.991 0.941 0.966
	Rules/LCP	1	0.982 0.991	0.991 0.941 0.966
	BK/SCP	1	0.161 0.278	1	0.140 0.246
	BK/LCP	1	0.161 0.278	1	0.149 0.259
	CombineAll	1	0.982 0.991	0.991 0.941 0.966
		NCIT			SNOMED CT	
	Method	P	R	F1	P	R	F1
	Rules	0.980 0.942 0.961	0.929 0.812 0.867
	BK	1	0.115 0.207	1	0.625 0.769
	SCP	0	0	0	0	0	0
	LCP	1	0.019 0.038	0	0	0
	Rules/BK	0.980 0.942 0.961	0.929 0.812 0.867
	Rules/SCP 0.980 0.942 0.961	0.929 0.812 0.867
	Rules/LCP 0.980 0.942 0.961	0.929 0.812 0.867
	BK/SCP	0.857 0.115 0.203	1	0.625 0.769
	BK/LCP	1	0.135 0.237	1	0.625 0.769
	CombineAll 0.979 0.940 0.959	0.929 0.812 0.867

.3: Precision (P), Recall (R) and F1-Score (F1) of impacted annotations computed using four different methods (Rules, BK, SCP, LCP) and the combination of them. The red and orange colours indicate low and medium recall, respectively.

Table 3 .

 3 4: AUC values of developed heuristics used to maintain annotations. The red and blue colour highlight the lower and higher values for each dataset, respectively.

		ICD9CM	MeSH	NCIt	SNOMED CT
	Method	AUC	AUC	AUC	AUC
	Rules	0.862	0.882	0.731	0.844
	BK	0.597	0.545	0.663	0.75
	SCP	0.589	0.57	0.615	0.500
	LCP	0.589	0.57	0.625	0.500
	Rules/BK	0.83	0.87	0.731	0.844
	Rules/SCP	0.821	0.878	0.731	0.833
	Rules/LCP	0.839	0.878	0.74	0.844
	BK/SCP	0.589	0.579	0.663	0.75
	BK/LCP	0.589	0.579	0.673	0.75
	CombineAll	0.821	0.887	0.73	0.815
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	Sign of x-y

.2: Example using Sign Test statistical method.

Table 4 .

 4 3: Lexical and Semantic Measures utilized.18 https://github.com/tdebatty/java-string-similarity 4.5.2 Assessment for the Partial Match Rule

	Lexical Measure (LSM) Semantic Measure (SSM) Information Content (IC)
	Levenshtein	Jiang Conrath 1997 Norm	Resnik Unpropagated 1995
	Smith Waterman	Feature Tversky Ratio Model	Sanchez 2011
	Jaccard	Tversky IC Ratio Model	Sanchez 2011 b adapted
	Cosine	Lin 1998	Seco 2004
	Block Distance	Lin 1998 GraSM	Zhou 2008
	Euclidean Distance	Mazandy 2012	Harispe 2012
	Longest Common Substring	Jaccard IC	Depth Max Non linear
	Jaro Winkler	Resnik 1995 GraSM	Depth Max Linear
	LACP	Resnik 1995	Ancestors Norm
	Tf-idf	Jaccard 3W IC	
	AnnoMap	Sim IC 2010	
	Bigram		

Table 4 .

 4 4: Example of an evolving annotation from our silver standard. The red color indicates the changes that occurred in the annotation at KOS evolution time. Source:[Cardoso et al., 2017a] 

	Doc. Concept Annotation Start End Prefix	Suffix
	2009AA 232 D009133 muscular at-	5561 5577 (HD),	, drpla
	rophy	spinal	and
		and	various
		bulbar	forms
	2010AA 232 D055534 spinal and	5543 5577 (HD),	, drpla
	bulbar mus-		and
	cular atro-		various
	phy		forms
	2016AA 232 D020966 spinal and	5543 5577 (HD),	, drpla
	bulbar mus-		and
	cular atro-		various
	phy		forms

Table 4 .

 4 8: Results regarding the adaptation of annotations of Setup 5 during the period 2009/2010. The blue values indicate the best pipelines and Rules+ indicates the eight used rules in our framework, while Rules refers to methods applied in chapter 3.

		Setup	Method	ACC AUC	F1
	ICD9CM	Chapter 4	BK & Rules+ 0.856 0.879 0.863 Rules+ 0.834 0.862 0.839
		Chapter 3	Rules	0.834 0.862 0.839
	MeSH	Chapter 4	BK & Rules+ 0.867 0.891 0.877 Rules+ 0.867 0.891 0.877
		Chapter 3 CombineAll 0.862 0.887 0.872
	NCIT	Chapter 4	BK & Rules+ 0.767 0.798 0.747 Rules+ 0.767 0.798 0.747
		Chapter 3 LCP & Rules	0.7	0.74	0.649
	SNOMED CT	Chapter 4	BK & Rules+ 0.828 0.833 Rules+ 0.849 0.854 0.829 0.8
		Chapter 3 BK & Rules	0.839 0.844 0.815

Table 4 .

 4 9: Results regarding the adaptation of annotations for Setup 3 during the period 2009/2016. The blue values indicate the best cases and Rules+ indicates the eight used rules in our framework, while Rules refers to methods applied in chapter 3..

		Setup	Method	ACC AUC	F1
	ICD9CM	Chapter 4	BK & Rules+ 0.73 Rules+ 0.757 0.803 0.754 0.781 0.719
		Chapter 3 SCP & Rules 0.676 0.737 0.643
	MeSH	BK & Rules+ 0.875 0.901 Rules+ 0.88 0.905 0.895 0.89 SCP & Rules 0.859 0.888 0.874 Chapter 3 CombineAll 0.859 0.888 0.874 Chapter 4
		Chapter 4	BK & Rules+ 0.75 Rules+ 0.753 0.804 0.756 0.8 0.75
	NCIT	Chapter 3	BK & Rules SCP & Rules 0.685 0.685 LCP & Rules 0.685	0.75 0.75 0.75	0.667 0.667 0.667
			CombineAll 0.685	0.75	0.667
	SNOMED CT	Chapter 4	BK & Rules+ 0.901 0.913 0.905 Rules+ 0.912 0.923 0.917
		Chapter 3	Rules	0.923 0.933 0.928

Table 4 .

 4 10: Results regarding the Sign Test. The values in blue refers to p-value (probability) p < 0.05 which indicates we rejected the null hypothesis (H 0 : Population median difference = 0 ) and red values p ≥ 0.05, indicates we supported the null hypothesis.

		Method 1	Method 2	Signs + NA -	p-value
	ICD-9-CM	Rules Chapter 3	BK & Rules+ Chapter 4	17 149 21	0.6271
	MeSH	CombineAll Chapter 3	Rules+ Chapter 4	2	190	3	1.0
	NCIt	LCP/Rules Chapter 3	Rules+ Chapter 4	0	84	6	0.03125
	SNOMED CT Rules Chapter 3	Rules+ Chapter 4	0	92	1	1.0

Table 5

 5 Figure 5.8: Maximum average Precision, Recall and F1-score regarding the best configuration for each KG. The query used is a term that exists only in 2014; the EHRs were annotated in 2016.

	9

.1: Precision (P), Recall (R) and F1-Score (F1) of impacted annotations computed using BK and Ad-hoc method. The red and orange colours indicate low and medium recall, respectively.
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	Fallout Query 2014 Metadata 2016	
	1.67%	fallout
	8.32%	
	8.41%	
	1.51%	
	3.81%	
	6.72%	
	8.35%	
	28%	

.2: AUC values of BK and Ad-hoc method when used to maintain annotations.

  .1, where crosses indicate under-performance with the associated criteria.

	small	#raw data	feature	explainable unbalanced
	#Features Network Deep √	×	√	×	√
	Learn				
	Table 6.1: Criteria used to select the classification methods used in this work

  .2.

	Table 6.2 -continued from previous page
	Feature	Description
		in the last version by the total number of concepts of
		the neighborhood.
	(T ) Last evolution(c t )	Indicates how many releases have been published since
		the last evolution of c t .
	(SW ) Similarity max(c t )	Max cosine similarity between attribute values with
		its equivalents in BK. It is obtained by computing the
		Cartesian product between the set of attribute values
		of c t and the set of attribute values of equivalent concepts
		of c t defined in the UMLS.
	(SW ) Similarity average(c t ) Average of cosine similarity between attribute values
		of equivalent concepts of c t in BK.
	(SW ) Max simSup(c t )	Max cosine similarity between attribute values with
		the superconcept of c t in BK.
	(SW ) Max simSib(c t )	Max cosine similarity between attribute values with
		the sibling concepts of c t in BK.
	(SW ) Max simSub(c t )	Max cosine similarity between attribute values with
		the subconcepts of c t in BK.
	(E) PubArtT(c t )	Number of PubMed articles citing label(c t )
		in the previous release.
	(E) PubArtT1(c t )	Number of PubMed articles citing label(c t )
		in the current release.
	(E) DiffArt(c t )	The absolute difference in number of PubMed
		articles citing label(c t ) between both release.
	(E) DiffArtRatio(c t )	
	Feature	Description
	(I) Num att(c t )	The total number of distinct attributes of c t .
	(I) Att length(c t )	Sum of the length of each attribute value of c t .
	(S) dir children(c t )	Number of direct sub-concepts of c t .
	(S) all children(c t )	Number of all subsumed concepts (direct and
		inferred) of c t .
	(S) siblings(c t )	Number of concepts that share at least one
		super concept with c t .
	(S) isLeaf(c t )	Gives an indication if c t has no subconcept.
	(T ) Region stability(c t )	Coefficient measuring the stability of the
		neighbourhood of c t . The neighbourhood includes
		the superconcepts, subconcepts, and siblings of c t .
		The coefficient is obtained by dividing the number of
		concepts in the neighbourhood of c t that have evolved
		Continued on next page
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2: List of pre-selected features
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 6 4. They show the number of cases we used to train and evaluate the classifiers. For this problem, the best classifier is Random Forest with Oversampling 100%. Even if we observed

		ICD-9-CM	NCIt	MeSH	SNOMED CT
		acu	var	acu var acu var acu	var
	BoostedTrees 0.83 0.003 0.77 0.01 0.77 0.02 0.69	0.01
	RandomForest 0.82 0.004 0.76 0.02 0.75 0.02 0.68	0.01
	DecisionTree	0.81 0.004 0.75 0.02 0.72 0.03 0.66	0.02
	SVM	0.68 0.005 0.61 0.01 0.71 0.01 0.65	0.01
	Logistic	0.78 0.003 0.64 0.04 0.73 0.02 0.65	0.01
	Table 6.3: Average accuracy and variance of the prediction for Evolv K calculated for all configu-
	rations with four different datasets: ICD-9-CM, NCIt, MeSH, SNOMED CT
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		ICD-9-CM NCIt MeSH SNOMED CT Total
	BoostedTrees	0.87	0.76	0.51	0.71	0.71
	RandomForest	0.84	0.77	0.54	0.70	0.71
	DecisionTree	0.83	0.75	0.53	0.67	0.69
	Logistic		0.82	0.76	0.5	0.52	0.65
	Table 6.4: Average accuracy of the prediction for IdentTypeOfChange K calculated for all config-
	urations with the four different datasets			
		ICD-9-CM NCIt MeSH SNOMED CT Total
		P 0		0.5	0.33	0.91	0.435
	Move	R 0		0.11	0.09	0.62	0.205
		F 0		0.31	0.21	0.76	0.32
		P 0.837	0	0.58	0	0.354
	Extension	R 0.99	0	0.71	0	0.425
		F 0.91	0	0.65	0	0.39
		P 0		0.64	0.65	0.72	0.502
	Removal	R 0		0.32	0.44	0.91	0.417
		F 0		0.48	0.55	0.81	0.46
		P 0.826	0.81	0.63	0.65	0.73
	ChgDesc.	R 0.13	0.98	0.63	0.51	0.562
		F 0.48	0.9	0.63	0.58	0.647

.5: Precision (P), Recall (R) and F-score (F) for the prediction of IdentTypeOfChange K using the Random Forest classifier

Table 6 .

 6 Tsatsaronis et al. Orga. Tree Dis. Tree Chem. and drugs Tree 7: Comparison for the prediction of the extension of MeSH

	Precision	0.58	0.43	0.47	0.35
	Recall	0.71	0.14	0.09	0.11
	F1-score	0.65	0.21	0.1	0.16
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vii viii ontology prediction, mapping alignment [Pesquita andCouto, 2012, Da Silveira et al., 2015]. Regarding the first result of set-up 3, i.e., the overall rank of the measures for each ontology, we verified that hybrid measures performed better than the single SSMs for both KOS, MeSH and SNOMED CT. We are considering top measures to be those that have the minimum average rank, summation and standard deviation.

In our experiments, we verified that the most highly performing hybrid measure for MeSH was: Lexical: AnnoMap, IC & SSM : Seco 2004[START_REF] Jiang | [END_REF] Norm, (weights: α = 0.8 and τ = 0.4 or α = 1.0 and τ = 0.5). We also observed that this hybrid measure was ranked in the top 3 for MeSH, but with different weights, see Appendix 2 for more details.

In SNOMED CT, another hybrid measure was ranked as the most highly performing. The combination: Lexical: AnnoMap, IC & SSM: Sanchez 2011b adapted & Jiang Conrath 1997 Norm, α = 1 and τ = 0.9 was first in the rank. Moreover, MeSH and SNOMED CT had different measures in their top rank, (see Appendix 3 for more details).

Regarding this change in the ranks of both ontologies, we verified that the dataset utilized (MayoSRS, Coders/Physicians, UMNSRS) did not contain many repeated concepts, and the measures that had less performance in the UMNSRS dataset were those with higher Spearman's score in Coders/Physicians and MayoSRS. The complexity associated with UMNSRS can be partially be justified by: i) the amount of cases to match with the domain specialists scores, around 175 in UMNSRS and 30 in the others datasets; ii) as discussed in [START_REF] Pakhomov | Semantic similarity and relatedness between clinical terms: An experimental study[END_REF] and also verified in our experiments, the relation similarity ↔ relatedness is unidirectional, i.e., the terms that have high similarity are often related but the opposite is not true. For instance,the semantic similarity of Sinemet↔Sinemet CUIs: C0023570 and C0006982 is 0.93, while Pain↔Morphine CUIs: C0030193 and C0026549 is 0.27. In UMNSRS dataset, the case Pain↔Morphine is more frequent and in consequence reduces the quantity of appropriated matches between domain specialists and automatic semantic measures.

When we recalculated the ranks to produce the overall rank, the second experiment from Set-up 3, we can better observe the good performance of our approach, see In this work, we have addressed the problem of the adaptation of semantic annotations impacted by the evolution of KOS. To tackle this main problem, two scenarios were identified based on real cases. In the first, annotations as well as the associated documents were available and modifiable while in the second, annotations were only accessible but not modifiable and no access to the associated documents was provided, for instance, for patient data inside Hospital Information Systems. We approached the problem with an empirical analysis of the evolution of the KOS and its impact on a set of millions of annotations. The result of this analysis showed a strong correlation between these two phenomena and has served as the basis of our solution. This has lead us to, on one hand, to the definition of a rule-based system to modify the annotations and, on the other hand, to the design of a knowledge graph for representing the evolution of concepts contained in KOS allowing us to retrieve the evolution of a concept and, consequently, the evolution of associated annotations.

Summary of the contributions

This PhD thesis has made contributions in the fields of Annotation Maintenance, KOS evolution, Semantic Similarity measures and dynamic Knowledge Graphs. We also believe that the research carried out in this thesis contributes to the development of the Semantic Web and its correlated fields, e.g. information retrieval and semantic interoperability. We summarize the main scientific contributions reflecting the research questions below: RQ1: What is the impact of KOS changes on semantic annotations? Through empirical analysis on factors influencing the evolution of annotations in chapter 2, we observed that the changes on annotations are strongly correlated to changes in the KOS. For this, we used a set of documents annotated with GATE and NCBO Annotator using 13 different versions of two well-known biomedical KOS (ICD-9-CM and MeSH). We also verified that the same behaviour occurred in the MEDLINE annotations utilized in Chapter 6. In this chapter, we utilized the impacted annotations as queries for our experiments.

RQ2:

What is a suitable model for addressing the annotation evolution problem? In chapter 2, we analysed different annotation models in order to verify whether they could represent (or whether we could infer from their elements) all the criteria required to classify the Publications International Journal Comment maintenir automatiquement la validité des annotations biomédicales en présence de modifications dans le KOS utilisé pour annoter ?

Le système proposé est suffisamment générique pour traiter des terminologies ayant des structures distinctes. Les problèmes de performance sont pris en compte lors de l'application de notre méthode sur des milliers de concepts, par exemple en provenance du MeSH (237000 concepts) ou SNOMED CT (310000 concepts).

Nous avons formulé l'hypothèse suivante pour guider nos études : Les informations du KOS, ainsi que des informations sur l'évolution du KOS, peuvent être utilisées pour définir un mécanisme robuste de maintenance.

Cela nous a amenés à traiter plusieurs sous-problèmes :

• RQ1: Quel est l'impact des changements du KOS sur les annotations sémantiques ?

• RQ2: Quel est le modèle le plus approprié pour résoudre le problème d'évolution des annotations ?

• RQ3: Suite à la publication d'une nouvelle version du KOS, comment maintenir automatiquement la validité des annotations sémantiques sans annoter à nouveau le contenu de tous les documents ?

• RQ4: Quelles méthodes peuvent être utilisées pour permettre la recherche des annotations lorsque le document et les annotations ne peuvent pas être modifiés ?

• RQ5: Pouvons-nous prédire quel concept du KOS changera dans un futur proche et quel type de changement aura un impact sur ce concept ?

Pour chaque sous-problème, rédigé sous forme de question de recherche (RQ), nous avons apporté des contributions significatives à l'état de l'art. Ces contributions sont brièvement décrites ci-dessous.

Les travaux effectués pour répondre la RQ1(Quel est l'impact des modifications de KOS sur les annotations sémantiques ?) ont montré, par une analyse empirique des facteurs influençant l'évolution des annotations (décrite dans le chapitre 1), que les modifications apportées aux annotations sont fortement corrélées aux modifications du KOS. Afin de répondre à la question RQ4 (Quelles méthodes peuvent être utilisées pour permettre la recherche des annotations lorsque le document et les annotations ne peuvent pas être modifiés ?), nous avons proposé, dans le chapitre 5, une méthode permettant de rechercher les annotations impactées sans les modifier. Les analyses expérimentales ont démontré que notre méthode est capable d'atteindre de bons résultats lorsqu'on interroge les GC et qu'elle peut être utilisée comme une méthode alternative à la méthode présentée dans le chapitre 3, pour adapter/modifier les annotations sémantiques. Nous avons observé que l'utilisation d'un graphe de connaissances permet d'avoir une bonne représentation des différentes versions de l'ontologie et du lien évolutif entre elles. Cette approche contribue à l'état actuel de la maintenance des annotations en intégrant une nouvelle méthode pour les maintenir.

Le problème de l'anticipation pointé par la question RQ5 (Pouvons-nous prédire quel concept du KOS changera dans un futur proche et quel type de changement aura un impact sur ce concept ?) a été traité dans le chapitre 6. Nous avons analysé comment améliorer notre approche en incluant une nouvelle méthode capable d'anticiper l'évolution des concepts associés aux annotations. Cette méthode peut être utile aux experts du domaine pendant les phases d'annotation et de maintenance. Elle peut, par exemple, alerter sur les risques liés au choix du concept et / ou d'une ontologie pour annoter les documents biomédicaux. Notre approche a montré plus de 71% de précision lors de l'identification des concepts nécessitant une révision. En plus, nous avons contribué à l'état de la technique en incluant des fonctionnalités temporelles, par exemple, des informations sur la dernière date d'évolution d'une annotation, ce qui contribue à l'amélioration de la précision des méthodes utilisées.

En résumé, toutes les questions de recherche identifiées dans cette thèse (RQ1-5) ont reçu une réponse satisfaisante, ce qui permet de valider notre hypothèse : Les informations du KOS, ainsi que des informations sur l'évolution de KOS, peuvent être utilisées pour définir un mécanisme robuste de maintenance. Nous avons également dû traiter un problème secondaire, mais tout à fait intéressant, lié aux choix de la mesure de similarité la plus appropriée dans MAISA. Ce problème a été présenté dans le chapitre 4 et montre qu'une approche combinant des mesures lexicales et sémantiques peut améliorer la mesure de similarité entre les concepts. Nos analyses expérimentales ont démontré qu'une méthode exploitant ces mesures peut surpasser les méthodes basées sur une seule mesure de similarité (sémantique ou lexicale). En utilisant cette mesure hybride, nous avons introduit la règle Correspondance_Partielle pour maintenir les annotations sémantiques affectées par l'évolution du KOS. Nos analyses expérimentales ont démontré que la règle Correspondance_Partielle permet d'obtenir de bons résultats pour adapter les annotations en utilisant une ou plusieurs versions successives des KOSs.

En résumé, cette thèse a contribué à la maintenance des annotations sémantiques affectées par l'évolution de KOS. Nous nous sommes basés sur l'état de l'art dans le domaine pour construire l'architecture MAISA. Cette architecture contient une méthode originale pour gérer les annotations. Les résultats obtenus au cours de la thèse sont encourageants et ont permis d'apporter des améliorations pour le domaine. Tous les travaux décrits dans cette thèse ont fait l'objet de plusieurs articles publiés dans des conférences et des revues internationales. 
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