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Chapter 1

Introduction

Contents

1.1 Motivation and research question . . . . . . . . . . . . . . . . . . . . . 1

1.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Motivation and research question

The use of Knowledge Organization Systems (KOS) [Hodge, 2000], such as classification schemes,
thesauri or ontologies in the medical field, has proven to be of great value in tackling semantic
interoperability issues. In many cases, KOS elements are used to annotate objects such as
electronic health records (EHR), case report forms (CRF), genes or publications in order to make
their semantics explicit for software applications.

This is the case in the biomedical domain, where the main interests in annotating documents
are twofold for healthcare professionals: i) to transfer these documents to other institutions/people
(e.g., to accelerate the reimbursement process, to request a second opinion, etc.), ii) to easily
retrieve patient information. Secondary uses of these annotations are often seen in decision-
support systems, public health analysis, patient recruitment for clinical trials, etc. For example,
the well-known Gene Ontology (GO) is used to describe the molecular functions of genes and
proteins, and scientific publications in MEDLINE are semantically annotated with concepts from
the Medical Subject Headings (MeSH), facilitating the search for relevant medical information
[Lowe and Barnett, 1994].

These diverse use cases for annotations show that they are widely utilized and can support
various tasks in medical information systems, such as retrieving, sharing and exchanging infor-
mation. However, the dynamic nature of medical KOS mean that annotations may be affected
each time a new version of a KOS is released to include or review healthcare knowledge. New
concepts can be added, obsolete ones removed and the definitions of existing concepts may be
refined through the modification of their attribute values [Dos Reis et al., 2014]. The removal of
a concept in a terminology engenders the removal of the semantics of the associated annotation,
therefore making the annotated data incomprehensible for computers. More generally, changes in
KOS may directly impact the annotations associated with changed concepts or changed data and
new KOS versions can potentially invalidate previous annotations. As a result, many annotations
can lose their relevance and value, thus hindering the intended use and exploitation of annotated
data.

Consider, for instance the example in Figure 1.1. A subset of a document in PUBMED1 is

1https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1342315/

1



annotated with the term Menstrual migraine, an attribute from concept 625.4 of ICD-9-CM,
version 2008AA. In version 2009AA, this attribute was removed and became a new concept with
the ID 346.4. We consider this annotation as impacted, because the change in the KOS caused a
mismatch between the annotation created with version 2008AA and the concept in the new KOS,
version 2009AA. Furthermore, the excludes relationship in the ICD-9-CM guidelines states that:
i) these concepts are considered mutually exclusive, and ii) the condition Menstrual migraine is
not included in this particular code. In consequence of these changes, concepts 625.4 and 346.4
should not be assigned together and the terms from code 625.4 that were changed have to be
encoded elsewhere.

Thus, software applications like search engines and data portals will be affected when retrieving
information from documents. For example, doctors accessing EHRs from a hospital through a
search engine will not be able to retrieve precise and complete information if the query specifies
Menstrual migraine and no document was annotated with the right concept code at the query
evaluation time. It illustrates the direct impact of KOS changes on semantic annotations and
underlines the real need for advanced methods and tools able to keep semantic annotations
up-to-date, avoiding the need for human intervention to this manually.

OWL:Thing

625

625.4
Title: Premenstrual
tension syndromes
Note: Menstrual migraine

ICD9CM_2008AA

OWL:Thing

625

625.4

346

346.4

Title: Premenstrual
tension syndromes Title: Menstrual migraine

Notes: Menstrual headache…

ICD9CM_2009AA

…

menstrual	migraine

evolves to

Stable Concept
Changed Concept

OWL Thing
Legend

Added concept
SubClassOf

usedToAnnotate

Title: Migraine

Annotated in 2008AA

PubMed Document:

excludes

17.	De	Lignieres B,	Mauvais-Javis P,	Mas	JML,	et	al.	Prevention	of by	
percutaneous	oestradiol.	BMJ.	1986;293:1540.	[PMC	free	article][PubMed]

Figure 1.1: Annotation evolution case study.

Annotations cannot always be changed directly because: i) the content of the document
cannot be accessed, and ii) the documents are encrypted and the meta-data (i.e., the annotations)
can only be accessed, not modified. This is usually the case in EHR where data managers are
not able to modify medical content without the intervention of health professionals. Nonetheless,
users should still be able to use the latest KOS versions to access documents via annotations.
An example of such a case is depicted in Figure 1.2, where the query Tiotropium Bromide is
searched into an indexed database, which does not contain this entry. Thus, the query will not
yield any results, i.e. the query will not return any documents associated with this term to the
user, even though data containing the above-mentioned terms is present in the database.

The European eStandards project2 is an example of where such cases could occur. In a
scenario where multi-agent systems exchange health information from patient documents with
national and cross-border institutions, it is important to consider the privacy of data while
maintaining the high-level information that is exploitable by direct queries. Therefore, ad-hoc
methods that adapt the annotations when they are accessed or queried by users are necessary.

In this global context, this thesis will design and implement methods and tools to support

2http://www.estandards-project.eu/
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Figure 1.2: Annotations not modifiable leading to a query without results (problem 2)

the semi-automatic maintenance of the semantic annotations affected by KOS evolution in order
to keep annotations exploitable over time. We aim to answer the following research question:

General Problem: How can we automatically maintain the validity of biomedical
annotations in the presence of changes in the underlying KOS over time?

In particular, such a system has to be generic enough to deal with different terminologies
having distinct structures. Furthermore, performance issues must be considered when trying to
apply reasoning over thousands of concepts, e.g., Medical Subject Headings (MeSH) with 237,000
entries and Systematized Nomenclature of Medicine, Clinical Terms (SNOMED CT) with around
310,000 entries.

Thus, we formulated the following hypothesis to guide our investigation:
Hypothesis: The information from KOS, as well as information about KOS evolution, can be

used to define a robust maintenance mechanism.
This brings us to the following specific challenges:

• RQ1: What is the impact of KOS changes on semantic annotations?

• RQ2: What is the most suitable model for addressing the annotation evolution problem?

• RQ3: How can we automatically maintain the validity of semantic annotations without
re-annotating the content of all documents when KOS are updated?

• RQ4: Which methods can be used to keep the annotations searchable when the document
and annotations cannot be changed directly?

• RQ5: Can we predict which KOS concept will change in the near future and what kind of
changes will impact that concept?

Finally, the research problem investigated in this thesis is summarized in Table 1.1.

1.2 Methodology

This thesis aims to address the requirements for annotation maintenance comprehensively and to
correct the shortcomings of previous approaches. To do this, we have adopted a methodology
based on an iterative process, as depicted in Figure 1.3.

The methodology comprises three phases: i) Data-driven Analysis, ii) Design & Formalization,
and iii) Implementation, which are performed in cycles in order to find answers for each of the
research questions.
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Table 1.1: Research Summary

Area Knowledge Representation

Subject Maintenance of Semantic Annotations

General Problem Maintenance of semantic annotations after changes in the
underlying KOS.

Hypothesis Information from KOS, as well as information about KOS
evolution, can be used to define a robust maintenance mech-
anism.

General Goal Design and implementation of a semi-automatic method to
maintain semantic annotations

RQ1: What is the impact of KOS changes on semantic
annotations?
RQ2: What is a suitable model for addressing the annotation
evolution problem?

Specific Research Questions RQ.3: How can we automatically maintain the validity of
semantic annotations without re-annotating the content of
all documents when KOS are updated?
RQ4: Which methods can be used to keep the annotations
searchable when the document and annotations cannot be
changed directly?
RQ5: Can we predict which KOS concepts will change and
impact the annotations in the near future?

• Data-driven Analysis: The main objective of this phase is to understand the typical
annotation process and the evolution of annotations triggered by KOS changes. To do this,
we used three major resources as primary data: i) automatic and manual annotations, ii)
documents like EHRs and CRFs, iii) medical KOS. The outcomes provide insights and
quantitative results, demonstrating the behaviour and correlation between the KOS changes
and impacted annotations.

For the scope of this work, the four KOS selected (MeSH3, ICD-9-CM4, SNOMED CT5

and NCIt6, described in OWL7) are used to evaluate our approach, which is in line with
the Gruber definition [Gruber, 1993] of ontology. Thus, we will use the term ontology to
refer to them. However, we highlight that the logical part of these models was not used
for inferring new knowledge for reasoning issues [Schulz et al., 2007]. Furthermore, the
models were used only to define concepts (and their attributes) and regions related to
these concepts following the formality expressed in the UMLS metathesaurus8 ((Concept A
rdfs:subClassOf Concept B) ; (Concept A skos:prefLabel ’term 1’)), etc.

• Design & Formalization: The main objective of this phase is to develop a model that
describes semantic annotations and their evolution, as well as formal methods to keep them
up-to-date automatically over time. We used the outputs from the previous analyses and
the related works to build models and workflows that allow us to maintain the impacted
annotations.

3https://meshb.nlm.nih.gov/search
4https://www.cdc.gov/nchs/icd/icd9cm.htm
5https://www.snomed.org/snomed-ct/
6https://ncit.nci.nih.gov/ncitbrowser/
7https://www.w3.org/TR/owl-ref/
8https://www.ncbi.nlm.nih.gov/books/NBK9685/
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Figure 1.3: Schema of the methodology

• Implementation: Using Semantic Web technologies, we implemented the formalized
models and workflows. The outcome is a prototype capable of: i) computing the evolution
of annotations and ii) evaluating the performance of our algorithms.

1.3 Contributions

Each of the specific research questions allowed us to make significant contributions to the state-
of-the art in the evolution of annotations. These contributions are briefly outlined below and are
described in detailed in the upcoming chapters.

• Chapter 2: Study of factors influencing the evolution of annotations and available
models. We addressed research questions RQ1 and RQ2.

Contribution: Through quantitative results we highlighted the correlation between
changes in the ontologies and changes in the annotations. Furthermore, we included
features in the existing annotation formalism to support (semi-)automatic annotation
maintenance mechanisms.

• Chapter 3: Adapting semantic annotations. Using the insights and results of our
previous analysis on the evolution and adaptation of annotations over a period of time, we
started to investigate RQ3.

Contribution: We defined a method to automatically keep semantic annotations up-
to-date. It is a four-level approach combining different methods to drive the annotation
adaptation process.

• Chapter 4: Semantic similarity measures to adapt semantic annotations. It
addresses a boundary question that emerged after several cycles in our methodology, and
that is an important component in our architecture and in other methods that deal with
semantic annotations.

Contribution: We proposed an original approach combining lexical and ontology-based
semantic similarity measures to improve the relatedness of clinical terms. We utilized this
approach to improve our method for maintaining semantic annotations by the adding a
new rule. Furthermore, we restructured our method to maintain the annotations through
multiple versions of ontologies.
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• Chapter 5: Keeping the annotations searchable when the document and anno-
tations cannot be changed directly. This addresses RQ4, which focuses on the second
variant case in the evolution of annotations, see Figure 1.2.

Contribution: We built a knowledge base capable of: i) keeping the impacted annotations
searchable without changing them, ii) using this knowledge graph as an alternative for
background knowledge when dealing with the modifiable impacted annotations from RQ3.

• Chapter 6: Predicting ontology changes. We approached RQ5, which aims to provide
support for the annotation maintenance process.

Contribution: We built a machine learning model to predict i) whether a concept of
an ontology will evolve in its next release, and ii) the type of change that affects it. For
annotators, this work can support their decision concerning the term or the ontology that
will be used to annotate specific types of documents (e.g., a more stable ontology would be
preferable).
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Chapter 2

Annotation Models and Factors
Influencing the Evolution of
Annotations

Contents
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2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

In order to answer RQ1 (what is the impact of KOS changes on semantic annotations) and
RQ2 (what is a suitable model to address the annotation evolution problem) introduced in chapter
1, we conducted a study to understand how annotations are represented and whether the current
models were capable of supporting their evolution. We also investigate how KOS evolution
impact existing semantic annotations in a quantitative and qualitative way. Thus, in this chapter,
we describe the main concepts related to semantic annotation and its associated representation
models in section 2.1.1. In Section 2.1.2 we investigate existing approaches surveying the impact
of KOS changes on semantic annotations. In sections 2.2 and 2.3 we describe the various
experiments and the results we obtained regarding the evolution of annotations due to KOS
changes. Finally, in section 2.4 we propose new features that should be taken into account in
current models to cope with the evolution of annotations.

2.1 Study of existing annotation models and factors influencing
annotation evolution

2.1.1 Existing annotation models

Semantic annotations are defined in the literature in many ways. According to Oren et al. [Oren
et al., 2006], the term annotation can denote the process of annotating as well as the result of
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this process. Moreover, they distinguish three families of annotations. Informal annotations
that are not machine-readable, (e.g. a handwritten margin annotation in a book). Formal
annotations that are machine-understandable but are not defined using ontological terms, (e.g.
highlights in an HTML document). Last, and the kind of annotation we are referring to in this
thesis, ontological annotations are machine-understandable and are composed of elements from
an ontology (see Figure 2.1).

[…] Prevention of        menstrual migraine by percutaneous oestradiol […]menstrual migraine

Resource: PMC2646639
Concept code: 346.4
Ontology version: ICD9CM 2009AA
Start: 33678
End: 33696

Figure 2.1: Example of annotation using the concept recognition process for a PubMed document.
The term menstrual migraine is annotated with KOS concept 346.4, which belongs to ICD-9-CM,
version 2009AA (UMLS)

To represent semantic annotations (SA) in the biomedical field, [Luong and Dieng-Kuntz,
2006] defined the following annotation model:

SA = (Ra, Ca, Pa, L, Ta) (2.1)

Where:
Ra: set of resources, for instance, an RDF resource.
Ca: set of concept names defined in ontology (Ca ⊂ Ra)
Pa: set of properties, for instance, an rdf:type (Pa ⊂ Ra)
L: set of literal values, for example, “Fever”, “Malaria Fever”, etc.
Ta: set of triples (s,p,v) where s ∈ Ra, p ∈ Pa and v ∈ (Ra ∪ L)

In [Luong and Dieng-Kuntz, 2006], annotations are instances of an ontology represented in
W3C Resource Description Framework (RDF) triples, s, p, o as following:

<ev:Person rdf:about="http://persinfo.com/John.Beeman">

<ev:hasDisease rdf:resource=’&ev;Malaria_Fever’>

</ev:hasDisease>

</ev:Person>

[Groß et al., 2009] and [Hartung et al., 2008] defined an annotation mapping (AM), i.e. a set
of annotations somehow related, considering versioning and quality information, aspects which
were missing in [Luong and Dieng-Kuntz, 2006] model. In their work, an annotation mapping is
defined as:

AM = (Iu, ONv, Q,A) (2.2)

Where:
Iu = (I, t): is an instance source. It consists of a set of instances I = {ij , ..., in}, e.g., molecular
biological objects, such as genes or proteins, at timestamp t. Instances are described by an
accession ID.
ONv: is an ontology in version v that contains (C,R, t), it means a set of concepts C = {c1, ..., cn}
and relationships R = {r1, ..., rm} released at time t.
Q: is a set of quality indicators (ratings) of annotations. The quality indicators may be numerical
values or come from predefined quality taxonomies, e.g., the evidence codes for provenance
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information or stability indicators.
A: is a set of annotations. A single annotation a ∈ A is denoted by a = (i, c, {q}), i.e. an instance
item i ∈ Iu is annotated with an ontology concept c ∈ ONv and a set of quality indicators
(ratings) {q} ∈ Q

Recently, the W3C9 has published a new candidate recommendation for expressing and
sharing annotations between systems, see Figure 2.2. It expresses the relationship between two
or more resources by means of an RDF graph, using three major entities: i) Annotation, ii) Body
and iii) Target.

The Body and Target, may be of any media type, e.g. Text, Audio, Video. Both are
connected to the annotation through the oa:hasBody and oa:hasTarget relationships, which can
be duplicated to create multiple body and/or target resources at the same time for an annotation.
Furthermore, the relationship between these two entities may vary according to the intention of
the annotation.

annotation

body target
related	to	

oa:hasBody oa:hasTarget

Figure 2.2: W3C web annotation data model

This model is the foundation of a more general framework for sharing and reusing annotated
information across different hardware and software platforms, see Figure 2.3. Although, it
specifies many features, we only describe those used to analyse the evolution of annotations in
this thesis: concept, target, motivation and agents.

In Figure 2.3, the feature target allows the nature of the documents to be specified: text,
video or image. In order to do this, it has to be associated with a source by using the relationship
oa:hasSource, which informs where the desired media is located. In Figure 2.3, the resource used,
PMC2630914, is a paper from PubMed. It is also necessary to define the corresponding part of
media to be annotated. To do this, one uses selectors, whose main functionality is to describe the
part of interest of a resource. In our example, the selector1 defines the range of the annotated
text segment in the document. Further, this first selector is refined by the inclusion of a selector2,
that has a prefix and a suffix, allowing it to describe the information that comes before and after
the annotation.

The second feature, concept, is not directly defined in the W3C annotation data model.
Therefore, we used the Body resource, since this allows the resources used for annotation to be
indicated, as well as supporting any kind of media to represent it. In Figure 2.3, the descriptor
D00558 from MeSH (mentioned in this thesis as concept), is attached to the annotation’s body
through the relationship skos:related. It creates an associative link between the body and the
target indicating that the two are inherently “related”, but that one is not in any way more
general than the other. If the concept/ descriptor used is more general or specific than the target,
we can use skos:broader or skos:narrower, respectively.

The motivation feature specifies the reasons for the annotation being created or for the
inclusion of the body or target. In Figure 2.3, it is defined by the relationship oa:motivatedBy,
where we used the motivation: identifying. This motivation assigns an identity to the target or

9http://www.w3.org/TR/annotation-model/
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identifies what is being depicted or described in the target. Our example depicts the PubMed
document PMC2630914.

Finally, the agents are indicated by the relationships oa:annotatedBy and oa:serializedBy,
respectively. Both allow to define who produced the annotation, e.g., ”A. Person” and the software
utilized to serialize it, e.g., BioPortal. These features are useful for tracing the provenance of the
annotation, e.g., the parameters used during the creation of the annotation. These parameters
play a key role, because according to Funk et al. [Funk et al., 2014], entity recognition systems
may vary from ontology to ontology and do not perform equally on natural language texts.
Furthermore, we can define the date it was serialized through the relationship oa:serializedAt
and when it was verified by the domain specialist by using oa:annotatedAt.

annotagent1 agent2

oa:identifying

http://mesh_2009.org
/ontology/D000558

oa:SemanticTag

skos:related

Mexican	
axolotls

rdf:value

PMC2630914

selector1
oa:Text
Position 
Selector

selector2

oa:refinedBy

oa:hasSelector

oa:exact

oa:prefix transcriptional	response	of

Mexican	axolotls

to	ambystoma tigrinum virusoa:suffix

73778
73794

oa:motivatedBy

oa:annotatedBy oa:serialized
By

rdf:type

prov:	
Software	
Agent

Foaf:	
Person

rdf:type rdf:type

oa:start
oa:end

rdf:type

A.	Person

foaf:name

BioPortal

foaf:name

2009-09-28

oa:annotatedAt

2009-09-20

oa:serializedAt

oa:hasSource

oa:hasTarget

oa:hasBody

oa:Text
Quote 

Selector
rdf:type

Figure 2.3: Instantiation of a W3C web annotation data model.

However, this model is still not sufficient to deal with evolution issues. The two main reasons
are: i) the motivations available to describe annotations that have been changed. For example,
editing, moderating and replying, are mostly related to manual editions and do not consider the
impact of KOS changes; ii) there is no distinction between stable annotations and those that
have evolved when we access as:items, i.e., a list of assorted annotations present in the target.
Therefore, in section 2.3 we point out new features that must be considered when representing
evolved annotations.

2.1.2 Related work in factors influencing the evolution of annotations

Recent analytical approaches to the evolution of the annotations focus on biological domain, in
particular on GO-annotated documents. [Traverso-Ribon et al., 2015] developed the AnnEvol
framework to compare two versions of a dataset (for instance, UnitProt-GOA and Swiss-Prot)
and to verify those entities in the dataset(i) and dataset(i+1) (at two successive moments in time)
that are similar and those that are different, using evolution criteria (e.g. obsolete, removed and
added annotations).

[Groß et al., 2012] provided a method to evaluate to what degree changes of Gene Ontology
(GO) and GO annotations (GOAs) may affect functional enrichment analyses, analysing two
real-world experimental datasets, as well as 50 generated datasets. They proposed two types
of stability measures to assess the impact of ontology and annotation changes. In contrast
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to AnnEvol, [Groß et al., 2012] deal with other types of change besides add and delete, such
as, merge (merging of two or more categories into one category). They also verified strong
structural changes, such as addR (insertion of a new relationship) and delR (deletion of an
existing relationship). However, these changes do not significantly impact on GOAs, when
compared to removal and merge changes that have a major affect in the annotations.

[Huntley et al., 2014] reported that GO annotations change for many reasons: i) the removal
of partOf relationships, which are used to create inferred annotations; ii) taxon restriction, i.e.,
the redefinition of concepts and terms in order to remove ambiguity, such as the class GO:0051297
being replaced by GO:0007098. Furthermore, their work focuses on revision changes that were
not considered in previous works, e.g. the detection of inappropriate terms used for manual
annotation in past versions. These changes generally improve the accuracy of annotations and
the underlying ontology. Finally, for those who are generating annotations, they recommend
ensuring that they are using the most up-to-date version of GO and appropriate terms.

In summary, we concluded that the existing approaches evaluating the factors that influence
the evolution of annotations only work with simple ontology changes (like addition and removal),
and only study the evolution of GO ontology. The referenced works do not propose any methods
to maintain the annotations. Therefore, it is necessary to further analyse the stability of KOS
annotations based on different KOS like MeSH and verify possible features to be taken into
account to properly maintain semantic annotations in biomedical and clinical use cases.

2.2 Experimental assessment of the impact of KOS evolution on
semantic annotation

To bridge the gaps underlined in the previous section, we decided to conduct an empirical
analysis regarding the evolution of KOS and annotations10. The lessons we learned through
these experiments allowed us to come up with a new proposal to deal with semantic annotation
evolution issues. The used material and the adopted assessment methodology are detailed in this
section.

2.2.1 Material

As our objective is to analyse the evolution of semantic annotations, we worked on several versions
of an annotated corpus of documents. Since there is no gold standard containing successive sets
of annotated documents for multiple KOS, we had to build our own baseline (silver standard).
To this end, we used two annotation tools (based on distinct annotation methods), two different
medical standard KOS and their associated successive versions, an ontology Diff tool to be able
to identify the evolution of the concepts used to produce the annotations and a collection of
documents representative of the medical domain.

These documents were collected from the 2014 Clinical Decision Support Track (TREC
2014) campaign, which contains 733,138 biomedical articles about generic medical records. All
documents from this database are open access documents from PubMed Central PMC. For our
analyses we selected 5000 documents randomly.

The set of KOS is composed of several versions of medical KOS, represented in OWL format
and used as a “reference ontology” for text annotation. In order to annotate the documents, we
selected two KOS: International Classification of Diseases, Ninth Revision, Clinical Modification
(ICD-9-CM); and Medical Subject Headings (MeSH). We collected 13 official versions of each
KOS released between 2004 and 2016 in UMLS (versions AA) and transformed them into OWL
files11.

10In this experiment annotations are similar to the lookups mentioned in [Lin et al., 2017]
11https://github.com/ncbo/umls2rdf
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Regarding the annotation tools, the selection criteria were that they were open source,
allowed the reference ontology to be selected, proposed APIs, had good documentation, and were
extensively used for research and/or commercial purposes. We first selected General Architecture
for Text Engineering (GATE) [Cunningham, 2002]. It provides support for Ontology-Aware
NLP, allowing any ontology to be loaded as an RDF file, before using a gazetteer to obtain
lookup annotations that have the class URIs and the text offset (offset is a pair {start, end}
that indicates the distance, in terms of characters, from the beginning of the document. {start}
indicates the position of the first character of the text while {end} indicates the position of
the last character). The second tool selected is the NCBO Annotator. It is part of the NCBO
Annotator framework and uses a dictionary built by extracting all concept labels and/or other
associated attributes (e.g., synonyms) that syntactically identify concepts from the KOS [Whetzel
et al., 2011]. Both annotators utilize different algorithms to produce annotations. GATE uses
ontology-aware NLP and NCBO Annotator uses MGrep. Moreover, NCBO Annotator also allows
other KOS to be used to annotate the terms, if a mapping exists between the concepts of both
KOS. For instance, melanoma could also be annotated using UMLS Concept Unique Identifiers
(CUIs) C0025202 (from NCI Thesaurus), or C0025202 (from SNOMED CT).

We used COnto-Diff [Hartung et al., 2013] in collaboration with our partners from the
University of Leipzig, to determine an expressive and invertible diff evolution mapping between
two versions of an ontology, although any other software capable of computing the diff between
two ontologies can be used. COnto-Diff calculates basic change operations (insert/update/delete)
from two KOS versions expressed in either OWL or OBO based on a predefined set of rules
defining basic and complex transformations (e.g., concept merging, concept splitting, move of
concept, etc).

2.2.2 Method

To identify and quantify the impact of changes affecting KOS concepts involved in annotations
(as illustrated in Figure 1.1), we proposed the methodology depicted in Figure 2.4. The six steps
of the methodology are the following:

TREC: 5000 articles

1
Input documents

2 Annotation tools
3

Stored annotations
MySQL Database

Set of annotations
	

R ) + ( 	

Symmetric difference

COntoDiff/CODEX

Results

Verify the 
annotations 
in R and the 
KOS changes

Methodology

1. Select articles randomly and the KOS

2. Annotate the articles with the 
annotator tools using several KOS

3. Store the annotations and compute 
the symmetric difference

4. Compute the KOS changes

5 & 6. Verify the causal relation with the 
KOS changes

NCBO Annotator

ICD‐9‐CM and MeSH
2004 to 2016

Compute KOS Changes
Input KOS

Output: 
: 308.1
split

1

4

5

6

Figure 2.4: The experimental protocol. The numbers in red correspond to the six steps explained
in the text

1. We randomly selected 5000 documents from the TREC corpus and collected the 13 successive
KOS versions of ICD-9-CM and MeSH (from 2004 to 2016).
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2. We used GATE and NCBO Annotator to annotate these documents. We configured GATE
and NCBO Annotator to use one specific KOS version and repeated the annotation process
for each version. We filtered the annotations produced by both annotators according to
[Doğan et al., 2014] (e.g., keep the longest match concept for an annotation).

3. We regrouped all annotations in one database. We then computed the symmetric difference
Am,n∆Am,n+1 between the two annotation sets (Am,n and Am,n+1) generated from a
document Rm using two successive KOS versions (Kn and Kn+1) as the following:

Am,n∆Am,n+1 =

{a | a ∈ Am,n ∧ a /∈ Am,n+1} ∪ {a | a ∈ Am,n+1 ∧ a /∈ Am,n}
(2.3)

a is an annotation that can be described as {i,m, n,Offset , c} where i is an instance
identifier, m is the document, n is the KOS used, Offset is the text position and c is the
KOS concept. The symmetric difference allows annotations that have been removed, added
and modified to be identified.

4. To identify KOS changes, each pair of two successive KOS versions was used as the input
for COnto-Diff to compute the KOS difference. The difference was stored into another
MySQL database and was reused to explain the changes.

5. We compared the 13 annotation sets of each document by pairs [2004-2005, 2005-2006, ...]
to identify what had changed in the annotations and to find correlations with the KOS
changes identified by COnto-Diff. An annotation a′ is considered as an evolution of a if the
Offset or/and the underlined concept c used in the annotation a are different from those of
a′ and there is an overlap of both Offset .

6. Finally, we analysed the generated subset of annotations/KOS changes in order to under-
stand the impact of KOS changes on the annotations.

2.3 Results

The methodology described in the previous section has allowed us to produce more than 66
million annotations. The amount of annotations varies according to the annotation tools used
(GATE or NCBO Annotator) as depicted in Figures 2.5 and 2.6. The difference between the two
sets of annotations results from the method used to annotate the documents (they do not use
only exact matches). A general observation can be made based on Figure 2.5 and 2.6.

We observe a huge increase in the amount of annotations produced in the periods 2007/2008
and 2009/2010 using ICD-9-CM (Figure 2.5 ). This increase is accompanied by the changes
that occurred in the KOS during these periods according to COnto-Diff output. On the other
hand, the amount of annotations in the period 2012-2013 did not increase even though there
were many KOS changes. In the UMLS database, we observed an average of 8,746 words/label
during this period and thus the annotators are not able to produce annotations for these changed
labels. Hence, we can conclude that the change in the number of annotations does not necessarily
correspond to the amount of KOS changes. In the chapter 3, we analysed what kinds of KOS
changes trigger what types of annotation changes since not all kinds of changes in the KOS have
the same impact on the annotations (e.g., some KOS changes do not change the annotations).

In order to verify whether a change in the annotations is triggered by the evolution of the
KOS concepts or a gap in the annotator, we followed step 3 in Section 2.2.2. The first (quite
evident) observation is that 100% of the annotation changes are caused by a KOS change even
when the annotation methods do not only produce exact matches. This simple hypothesis had not
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Figure 2.5: Amount of annotations and KOS changes (green) produced with 13 versions of
ICD-9-CM. The annotations from NCBO Annotator are represented by blue circles and those
from GATE by orange diamonds. The y-axis represents the amount of annotations/changes and
the x-axis the KOS versions over time.

been demonstrated before in the literature. We continued our analyses regarding the evolution
of annotations by refining the previous sets of symmetric difference (see step 5 in Section 2.2.2).
If more than one concept candidate existed to annotate a text, we used the following selection
criteria: (1) the most recent concept and the one with the largest offset, as proposed by [Doğan
et al., 2014]. For instance, a text with the words chronic kidney disease can be annotated as
kidney disease or chronic kidney disease; we selected only the latter concept. This decision can
generate changes in the annotation from one KOS version to another (change operations). One
of these changes is a shift of the offsets before and after the evolution while part of these offsets
overlaps. For instance, in 2007, we had the annotation “personality disorders”. After a KOS
change in 2008, the new annotation became “schizoid personality” (of which “personality” is
overlapped with the previous offset). For such cases, we compute a (2) chgOffset operation. We
formally define these conditions in Eq. (2.4):

Evolution(ai, ai+1)→
{
recentCp(ai, ai+1) ∧ bigOffset(ai, ai+1), if 1
chgOffset(ai, ai+1) , if 2

(2.4)

As a result, we observed that the new KOS versions do not necessarily produce more
annotations despite the increasing size of the KOS over time [Da Silveira et al., 2015] (cf. Figures
2.7 and 2.8). Analysing the amount of annotations and the types of changes occurring in the KOS,
we observed that some minor changes which do not affect the semantics of the concepts, still might
impact the annotations. For instance, the concept 780.39 in ICD-9-CM, version 2007AA (Seizures)
evolves to (Seizure) in ICD-9-CM, version 2008AA. However, neither annotator recognized that
the concepts had the same meaning and therefore the associated annotations are different from
one version to the next.

We also observed that there are some periods in the KOS evolution history which are more
stable and this stability is also reflected in the evolution of the annotations (e.g., the two periods
2010/2011 and 2013/2014 in ICD-9-CM Figures 2.5 and 2.7).

Changes in the KOS also have different impacts depending on the amount of annotations a
concept is associated with. This is for instance the case for concept 084.4 of ICD-9-CM period
2007/2008 which is associated with 3143 annotations distributed in 162 documents in our corpus
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Figure 2.6: Amount of annotations and KOS changes (green) produced with 13 versions of MeSH.
The annotations from NCBO Annotator are represented by blue circles and those from GATE
by orange diamonds. The y-axis represents the amount of annotations/changes and the x-axis
the KOS versions over time.

while concept V15.03 of ICD-9-CM period 2012/2013 is associated with only one annotation. If
a single KOS change affects many annotations, the maintenance of the annotation may require a
huge amount of time if carried out manually by domain experts. It will therefore be interesting,
from an annotation perspective, to be able to identify concepts that will remain stable for
annotation purposes in the next release since these annotations will not have to be maintained.

04 05 05 06 06 07 07 08 08 09 09 10 10 11 11 12 12 13 13 14 14 15 15 16

NCBO_v0 1147 1650 1466 812 1382 615 842 14738 2 0 0 0

GATE_v0 2597 3538 2271 1708 1498 1190 987 6609 10 0 0 0

NCBO_v1 1481 2262 7982 55789 1568 55615 371 2966 98 0 0 0

GATE_v1 2537 3630 14843 61739 2288 88656 545 5938 118 0 0 0
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Figure 2.7: Differences in two successive annotation sets produced with ICD-9-CM. The blue
(solid) colour represents the annotations that belong to NCBO Annotator, and the orange
(hashed) colour to GATE.

We then analysed how these annotations evolve. In Table 2.1, we present five use cases
showing how the annotations evolve over time and their relation with the evolution of KOS. The
second column is related to the year in which each annotation was made, while the third column
is associated with annotated text and the fourth column the KOS concept used. Finally, the
fifth and sixth columns present the change behaviour of the annotation and the KOS concept,
respectively.
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04 05 05 06 06 07 07 08 08 09 09 10 10 11 11 12 12 13 13 14 14 15 15 16

NCBO_v0 15213 28464 5028 63378 48553 3566 20502 4671 7221 3519 11900 24290

GATE_v0 19831 49743 9780 66547 34012 9087 20957 14706 12927 7040 10198 18538

NCBO_v1 51350 75356 13014 60737 12026 46969 35341 21511 7631 11830 21580 32574

GATE_v1 20321 47872 16806 29348 12625 31461 31346 17350 9849 15065 23900 38864

04|05 05|06 06|07 07|08 08|09 09|10 10|11 11|12 12|13 13|14 14|15 15|16

NCBO 54,29% 45,17% 44,26% -2,13% -60,30% 85,89% 26,57% 64,32% 2,76% 54,15% 28,91% 14,57%

GATE 1,22% -1,92% 26,43% -38,79% -45,86% 55,18% 19,86% 8,25% -13,51% 36,30% 40,18% 35,41%
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Figure 2.8: Differences in two successive annotation sets produced with MeSH. The blue (solid)
colour represents the annotations that belong to NCBO Annotator, and the orange (hashed)
colour to GATE.

In the first use case (in 2008), the annotated text hepatitis is associated with concept 573.3,
which did not change between 2008 and 2009 (i.e. a stable concept). In 2009, another concept
(571.42) was also used to annotate the term hepatitis. Our selection criteria define that we will
select the concept with the longest title (autoimmune hepatitis). We also observed that this
concept (571.42) changed in 2009 (a split was detected).

The second use case illustrates a situation where both concepts changed (i.e. 625.4 had an
attribute deleted, and 346.4 is a new concept).

The third use case presents the inverse situation of use case 1, i.e., an annotation evolved
from a change concept to a stable concept. In an in-depth analysis, this case was mainly observed
when more general concepts were used to annotate the text. This behaviour occurs when the
annotator is not able to determine whether a change in the concept has modified its meaning or
not.

Use case KOS version
Annotation Annotation

Behavior
KOS

BehaviorAnnotated text Concept

1 2008 hepatitis 573.3
change

stable concept
2009 autoimmune hepatitis 571.42 split

2 2008 menstrual migraine 625.4
change

delAtt
2009 menstrual migraine 346.4 addC

3 2009 acute renal failure 584.9
change

ChgAttValue
2010 renal failure 586 stable concept

4 2008 abdominal tomography 88.02 addition AddA

5 2004 bulimia 307.51 removal ChgAttValue

Table 2.1: Use cases for annotation evolution. These different cases are referred in this section
as: case 1: stable to change; case 2: change to change; case 3: change to stable; case 4: addition;
case 5: removal.

The last two use cases describe the addition or removal of annotations. Regarding the removal
of annotations, we also determined that there were some cases where the concept remained with
the same meaning, but the annotator missed this knowledge and the annotation was removed
from the document.
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04 05 05 06 06 07 07 08 08 09 09 10 10 11 11 12 12 13 13 14 14 15 15 16

addition 2181 2700 13709 36829 751 87740 24 166 109 0 0 0

removal 2286 236 1149 1115 38 13 29 446 5 0 0 0

change_to_stable 12 8 45 10 1 138 154 0 6 0 0 0

change_to_change 509 3814 2197 9462 2900 1759 1150 10645 3 0 0 0

stable_to_change 146 410 14 16031 96 196 175 1290 5 0 0 0
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Figure 2.9: Distribution of changes of ICD-9-CM annotations. The y-axis represents the
percentage of changes, the x-axis the KOS versions, and the amount of observed changes for each
period is described below. The cases listed follow 2.1

Figures 2.9 and 2.10 show how often these use cases are observed in the corpus annotated
with ICD-9-CM and MeSH using GATE and NCBO Annotator, respectively. In general, we
observe that changes in ICD-9-CM have less impact on the annotations than those in MeSH. The
low expressiveness of ICD-9-CM could be a reason for this as the annotators tend to apply exact
match techniques for these kinds of KOS. Semantic-based techniques are used more for KOS
with high expressiveness. These differences are better observed by comparing Figures 2.9 and
2.10 to see how the annotation technique influences the final annotation results regarding the
expressiveness of the KOS. Use cases 2 and 5 (change to change and removal, respectively) are
more frequent in the MeSH-based annotations. Thus, annotations based on ICD-9-CM evolve
quite similarly for GATE and NCBO Annotator, while the annotations based on MeSH evolve
differently, depending on the annotator used.

Taking into account the annotator techniques only, we observed that GATE also tended to
preserve existing annotations while the rates of new annotations over deleted ones are quite
similar for both annotators. More precisely, the rates of use cases 1 and 2 over the deleted ones
(GATE has more than double that of NCBO) explain the results presented in Figure 2.5 (number
of annotations increases faster for GATE).

2.4 A model supporting annotation evolution

The results presented in the previous section allow us to state that the evolution of the KOS
has a direct impact on the definition of semantic annotations. However, we also showed that
the modification of KOS concepts has different impacts depending on the technique that is
implemented to generate the annotations. Furthermore, the evolution of KOS does not necessarily
produce more information (see Figures 6 and 7). Actually, we have observed that KOS are
becoming more and more precise over time, which indicates the addition of new specific concepts

17



04 05 05 06 06 07 07 08 08 09 09 10 10 11 11 12 12 13 13 14 14 15 15 16

addition 39024 54284 10298 45830 7118 32468 26132 18638 5787 8816 15810 25164

removal 8715 12482 2613 48273 43169 1294 11499 2005 5345 759 6503 17389

change_to_stable 6911 5703 590 2937 2263 1995 1632 525 392 445 594 1420

change_to_change 10394 30256 3721 25479 6682 12772 14874 2196 2233 4389 9797 11161

stable_to_change 1519 1095 820 1596 1347 2006 1706 2818 1095 940 776 1730

0%
20%
40%
60%
80%

100%

NCBO

04 05 05 06 06 07 07 08 08 09 09 10 10 11 11 12 12 13 13 14 14 15 15 16

addition 8887 8809 10052 8665 5570 24769 17651 7920 4898 8619 14027 25373

removal 8755 10396 2842 45148 25914 1598 6805 3258 7985 494 334 4724

change_to_stable 1170 1985 2092 1734 921 306 254 430 1162 297 183 1198

change_to_change 14775 70808 8645 32849 9188 5257 20653 5444 3492 7728 15932 19808

stable_to_change 6565 5617 2955 7499 5044 8618 6940 15004 5239 4967 3622 6299

0%
20%
40%
60%
80%

100%

GATE

%
 o

f 
ch

an
ge

s

A
m

o
u

n
t 

o
f 

ch
an

ge
s

%
 o

f 
ch

an
ge

s

A
m

o
u

n
t 

o
f 

ch
an

ge
s

Figure 2.10: istribution of changes of MeSH annotations. The y-axis represents the percentage of
changes, the x-axis the KOS versions, and the amount of observed changes for each period is
described below. The cases listed follow Table 2.1

whose labels are usually long (in terms of words) and therefore only very rarely appear in medical
documents. Our study pointed out important features to take into account, at the semantic
annotation model level, to facilitate the maintenance of annotation over time. These features
can be used to extend the model proposed by [Groß et al., 2009] (see Sect. 2.1). In consequence,
we define our evolution model as:

SAM = (Iu, ONv, Ra,Offset , Q,H,A, SemRel, Uf )

Where :

• Offset is an element to describe the location of the element to be annotated in a given
resource. From an evolution perspective, this is important for linking annotations from
different versions and also for distinguishing annotations related to the same element but
annotated differently.

• H is an element to describe which attribute of the concept (e.g., title, synonym, preferred
terms, etc.) was used to produce the annotation. This element is extremely important
since the annotation is usually defined based on the value of one concept attribute. If one
of the attributes is changed in corresponding concept, but not the one used to annotate it,
the annotation may not need to be modified.

• SemRel is an element that describes the semantic relationship between the KOS concept
and the annotated part of the resource. For instance, one sentence can be annotated as
equivalent to a concept, more/less specific, partial match, etc. Thus, if a concept is removed,
the annotated sentence can be linked to the super-class of the concept and the relation has
to be changed to “less-specific”.

• Uf is an element that points to the previous version of the annotation. This element is
used to keep an evolution chain of annotations.
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Our proposal, allowing annotation versions to be linked, can also be used to improve the
W3C model by creating an additional motivation, known as “evolving”, and a property, “evolved”
that link the “annotation” to its past version, allowing a chain of annotations versions to be
created, see Figure 2.11.

annot2
agent2
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http://mesh_2010.org
/ontology/D000558
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Figure 2.11: Proposed Evolution Model. The blue colours represent the modifications regarding
the first model in Figure 2.3.

The improvements of our proposed model to the W3C model can be visualized in blue in Figure
2.11, when compared to Figure 2.3. The evolved annotation now contains the property“oa:evolved”
in the Target that links it to the past version. Moreover, we modified the Body by adding the
described feature H, represented by skos:altLabel indicating which concept attribute (e.g. title,
synonym, preferred terms, etc.) was used to produce an annotation. This information can be
used, for example, to determine whether the used attribute of the concept is impacted by the
ontology evolution and whether this further triggers the corresponding annotation modification.

Finally, we included other semantic type relationships, partial match, and other ontology
region, to indicate the relationship between a concept and a text segment. For instance, some
changes in the above case change to change (see Figure 1.1), move a concept or its terms to
another ontology region. Therefore, this relationship may help future evolution maintenance and
curation by domain experts.

2.5 Conclusion

In this chapter, we approached RQ1 and RQ2 through an empirical analysis of the evolution of
biomedical annotations and its relation to the KOS changes. For this, we used a set of documents
annotated with GATE and NCBO Annotator using 13 different versions of two well-known
biomedical KOS (ICD-9-CM and MeSH). We observed that there was a correlation between KOS
and annotation changes. We then regrouped the annotation changes according to the type of
information modified and the way it was modified. We obtained five different cases of changes
(see Section 2.3) and verified how the annotations evolved during the KOS evolution. In a second
step, we analysed different annotation models in order to verify whether they could represent (or
whether we could infer from their elements) all the criteria required to classify the annotation
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changes. As a result of this step, we proposed an extended annotation model designed to support
the evaluations and maintenance of annotations utilized in our maintenance method described in
the next chapter.
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Direct maintenance of semantic
annotations
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In order to answer RQ3 (How can we automatically maintain the validity of semantic
annotations without re-annotating all document content when a KOS evolves? ) discussed in
chapter 1, we designed an automatic approach for maintaining semantic annotations valid over
time when the underlying KOS evolves. To do this, we designed a rule-based approach that
considered the findings from chapter 2, which highlighted different aspects to take into account
for the maintenance of semantic annotations.

Besides the set of rules, we used two other methods to improve the quality of our maintenance
method, detailed in section 3.2. The first relies on the use of background knowledge (BK) [Pruski
et al., 2016], while the second one exploits semantic change patterns (SCP) [Dos Reis et al.,
2015a].

Thus, we divided this chapter up as follows. In section 3.1, we discuss the related work on
semantic annotation maintenance processes and highlight possible improvements. Section 3.2
presents our method to overcome the limitations of existing approaches. In section 3.3 and 3.4,
we describe the experiments and results, respectively. Finally, we discuss the results and highlight
our contribution in section 3.5.

3.1 Existing approaches for maintaining semantic annotations
valid over time

One possible solution to cope with the evolution of annotations is the re-annotation of documents
[Tissaoui et al., 2011]. However, Funk et al. [Funk et al., 2014] point out that concept recognition
systems vary from ontology to ontology and do not perform equally on natural language texts.
Furthermore, the necessity of validating automatic generated annotations is a laborious and
time-consuming task for domain experts [Doğan et al., 2014]. Therefore, it is vital to propose
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advanced methods and tools able to automatically maintain semantic annotations impacted by
KOS evolution and/or changes in the annotated data or documents.

In the literature, three families of approaches dealing with annotation maintenance can be
found. The first addresses the problem of automatic detection of inconsistent annotations [Eilbeck
et al., 2009, Qin and Atluri, 2009, Köpke and Eder, 2011, Zavalina et al., 2015]. This is mainly
done by the combined identification of concepts that have changed from one KOS version to
the next and the set of annotations associated with them. However, mechanisms to support the
correction of impacted annotations are not proposed.

The second family of approaches focuses on the automatic detection and manual correction
of invalid annotations by using standalone applications [Maynard et al., 2007, Auer and Herre,
2007, Burger et al., 2010, Park et al., 2011]. These approaches only consider basic ontology changes,
e.g., the deletion and addition of concepts in KOS. Nevertheless, more complex changes are also
important and also need to be considered. Moreover, the requirement of human intervention
to perform the maintenance is hardly applicable in the medical domain by virtue of the huge
amount of annotations to be adapted.

Lastly, most advanced works implement an automatic detection and correction of the annota-
tions [Luong and Dieng-Kuntz, 2006, Abgaz, 2013, Frost and Moore, 2014]. These approaches
are based on different techniques, each of which is briefly described in this chapter.

[Luong and Dieng-Kuntz, 2006] developed the CoSWEM framework to investigate the
evolution of annotations and to maintain them using a rule-based approach to detect and correct
basic inconsistencies, such as deletion. This approach converts ontologies to RDF(S) files and
detects annotations affected by the evolution of the ontologies, as well as potentially inconsistent
annotations using CORESE. This work focuses on expressive and small-sized ontologies and
can hardly be applied to large biomedical ones, because the implemented reasoning techniques
require the power of description logics (not always used in biomedical controlled terminologies)
to decide on the validity of the annotations.

[Abgaz, 2013] developed methods to facilitate the evolution of ontology-driven content
management systems (OCMS). The evolution is done by analysing the impacts of change
operations and selecting an optimal evolution strategy before the changes are permanently
implemented. The proposed strategies, i) no-action, ii) cascade, iii) attach-to-parent, and
iv) N-level cascading, were based on reasoning techniques and mostly deal with removal of
concepts/meta-data as described below:

1. No-action strategy: This states that a given change operation, e.g. adding a concept, is
implemented without adding consequential or corrective changes. For instance, even after
the addition of a new class in the ontology, e.g. avian influenza, the documents referring to
it and annotated with the class influenza will not be adapted.

2. Cascade strategy: This is the opposite of the no-action strategy. In this case, the changes
will be propagated throughout the class and annotations. However, they only deal with
cases of removal by propagating the deletion to all dependent entities.

3. Attach-to-parent strategy: This states that when a certain entity is deleted, its depen-
dent entities are linked to the parent whenever it appears.

4. N-level cascading: This is a specific type of the cascade strategy. This strategy is applied
to ontology classes that are found N distances from the target class. For example, if N is
set to 2, the N-level cascading will apply the changes to up to two hierarchies.

[Frost and Moore, 2014] propose a novel algorithm for optimizing gene set annotations to
best match the structure of specific empirical data sources. The proposed method uses entropy
minimization over variable clusters (EMVC). It filters the annotations for each gene set to remove
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inconsistent annotations. The results show that EMVC can filter between 92% and 67% of the
inconsistent annotations from MSigDB C4 v4.0 cancer modules using leukemia data and MSigDB
C2 v1.0 using p53 data, respectively. This method is able to improve the annotations but does
not produce good results for improving incomplete gene sets or identifying new gene sets. It is
very sensitive to several algorithm parameters, specifically, the cluster method and it can be
computationally expensive. Furthermore, the authors point out that EMVC only works in the
gene set domain, meaning other domains cannot take advantage of this approach.

The literature review highlights that there is no annotation maintenance/adaptation frame-
work able to cope with the specificity of the medical domain e.g., size of the KOS, number of
annotations. Therefore, in this chapter we present a method to automatically maintain semantic
annotations when the used KOS evolves. The method discussed in the upcoming sections is
related to the Direct maintenance of semantic annotations, i.e., the first use case discussed in
chapter 1. For this purpose, we proposed a set of rules based on the rigorous analysis of the
evolution and adaptation of a set of annotations over a ten-year period of time, described in
Chapter 2 [Cardoso et al., 2016].

3.2 Proposed approach for adapting semantic annotations

The proposed method aims to comprehensively address the requirements for annotation mainte-
nance and to correct the shortcomings of previous approaches highlighted in section 3.1.

Figure 3.1 illustrates the maintenance process we propose. It is a multi-layer approach that
we split according to inputs, processes and outputs. It allows the annotation maintenance to be
optimized throughout the processes by considering more information at each step to maintain
annotations that remain invalid after the correction that occurs in a previous step.

The different processes we have identified consist of: i) Automatically detecting inconsistent
annotations caused by the evolution of the underlying KOS; ii) Using only the information gained
from the evolution of the KOS to adapt impacted annotations; iii) Using information from the
external KOS to maintain annotations that could not be maintained using local resources; iv)
Using change patterns to finalize the maintenance and optimize the quality of the set of adapted
annotations.

• Identification of invalid annotations: This consists of identifying invalid annotations
by analysing the evolution of the associated KOS. To this end, it takes a set of annotations
and two successive versions of the KOS used, namely Kn and Kn+1, as input. Concepts that
have changed between Kn and Kn+1 can be identified using an ontology Diff tool [Hartung
et al., 2013]. Such tools also provide additional information specifying the type of changes
that have affected these concepts. As is the case for ontology mapping adaptation [Groß
et al., 2013], such information plays a key role in the maintenance task because it determines
the type of correction to apply to the annotations at the next levels. For instance, the
deletion of a concept attribute can lead to the deletion of annotations but the deletion
of the same attribute value in the context of a concept split can lead to the migration
of the annotation to the evolved version of the concept (i.e. the result of the split). The
difficulty is therefore to consider not only basic ontological changes (i.e. addition/deletion
of concepts) as is the case in existing approaches for annotation maintenance but complex
changes (i.e. split/merge of concepts) to optimize both the maintenance process and the
quality of the adapted annotations.

• Annotation correction using ontology change rules: This consists of using informa-
tion derived from the set of annotations itself, as well as the data of the Diff between the
two KOS versions Kn and Kn+1, to adapt the invalid annotations identified. At this level,
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Figure 3.1: The framework for supporting annotation maintenance. Source:[Cardoso et al., 2017b]

the correction of annotations can be specified in rules that combine the evolution context
of the KOS and the status of the annotations, e.g., impacted or stable annotations. Under
these conditions, the rules must specify the maintenance action to be performed.

Our maintenance process relies on the combined use of eight rules derived from our analysis
of the evolution of annotations in chapter 2. Furthermore, we based our approach on the
guidelines associated with semantic annotation [Doğan et al., 2014]. These guidelines aided
us in defining the sequence and conditions for applying the rules.

The eight rules proposed are listed in Table 3.1. Each column represents one feature of
the model described in chapter 2: the original concept code and the KOS version (CPv0),
the annotated text (Annotv0), a prefix (Prefixv0), and a suffix (Suffixv0). We also added
one column to show the changes observed (Changedv1) and another to indicate the rule
executed for the situation presented (one rule per line). The proposed rules are:

1. MergeAnnot: This rule will be applied when two parts of a document, annotated
with different concepts, can be put together and annotated with only one (more specific)
new concept. For instance, in 2004AA, the texts “pregnancy” and “hypertension” were
annotated with the concept codes D011247 and D006973, respectively. In 2005AA, a
new concept containing both terms was created and the annotation was evolved to
concept D046110, see Table 3.1.

2. IncreaseAnnot: This rule increases the amount of information that can be annotated
after the evolution of the underlying KOS. To do this, we compare the new label
or attribute values of the candidate concept with the information surrounding the
initial annotation (i.e., we take into account the prefix and suffix of the annotated
text). Concretely, this action modifies the offset value in the annotation model and (if
needed) the concept ID, e.g., D002403, “cathepsin”↔ D056668, “cathepsin l”, see the
second example in Table 3.1.
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3. ResurrectAnnot: In some cases, one concept can be temporarily deleted from a
KOS, leading to the deletion of the associated annotation. For instance, the annotation
chemiluminescence in Table 3.1 was removed by a change in MeSH 2005AA. This
rule allows the annotation to be re-activated when the concept is re-integrated to the
KOS, e.g., concept D017083 in MeSH 2006AA. This rule was inspired by the findings
of [Eilbeck et al., 2009], where they investigated the addition and deletion of gene
annotations from release to release.

4. PluralAnnot: This rule verifies whether the change in the underlying concept or
attribute value is due to a plural or singular variation (“agglutination”↔ “agglutina-
tions”). In this case, the change in the terminology does not imply a change in the
impacted annotations since the semantics of the concept is not altered. Note that
plurals are language-dependent rules and our evaluation only considers English KOS.

5. ChangeConceptAnnot: This rule changes the concept ID of the annotation due to
the evolution of the concept. This situation arises when the label or the attribute
value of the concept, used to create the annotation, is moved to another concept or
used to create a new concept. For instance, concept D003704 changed to D057174
(referring to “Semantic dementia”) in MeSH 2009AA/2010AA.

6. SplitAnnot: This rule splits an existing annotation if the evolution of the underlying
concept leads to the creation of two more precise annotations. For instance, the text

“diabetic foot ulcers”, annotated in 2005AA with the MeSH code D017719, was split
into two new annotations in 2006AA: D017719 (“diabetic foot”) and D016523 (“foot
ulcers”), see Table 3.1.

7. PartialMatch: This rule applies lexical and semantic algorithms to change the
concept ID of an annotation. We further discuss how to implement this rule in
Chapter 4, since it needs a deep investigation on semantic and lexical measures.
Therefore, the experiments demonstrated in this chapter do not include this rule and
we only listed it to facilitate future references regarding our framework.

8. SuperClassAnnot: This rule changes the concept ID to the superClass ID since
no concept can be found to precisely maintain the annotation. It will also change
the relation (i.e., “Equivalent”→ “Is A”) between the concept and the annotation.
For instance, after checking whether any of the previous rules were executed with
the annotation “infective agents”, the last example in Table 3.1 shows that, instead
of deleting the annotation, we propose using the superClass to annotate the text.
Thus, “infective agents” is a kind of “other organism groupings”. Note that this is only
possible if the formalism used to annotate the text follows our proposed formalism in
chapter 2.

The sequence in which the rules are executed is important to assure the quality of the
annotations modified. Based on the propositions of the annotation guidelines [Doğan
et al., 2014], we established the following sequence (without PartialMatch): MergeAnnot,
IncreaseAnnot, ResurrectAnnot, PluralAnnot, ChangeConceptAnnot, SplitAnnot, Super-
ClassAnnot. First we ranked the rules that increase the information of an annotation (i.e.,
MergeAnnot and IncreaseAnnot), as suggested in the guideline “Annotate the most specific
concept that correctly describes the disease mention”. The next rules (ResurrectAnnot,
PluralAnnot and ChangeConceptAnnot) are mainly related to the structure of the KOS
and text. We started with ResurrectAnnot because changing the concept ID (ChangeCon-
ceptAnnot) would increase the complexity in identifying the restoration of the concept.
The PluralAnnot rule is an exception, because it does not affect the other rules and can be
placed anywhere in the sequence. The SplitAnnot was placed close to the end of our process
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due to it only occurring in rare cases, as mentioned by [Doğan et al., 2014]. It respects the
following recommendation: “Annotate a disease mention using multiple concepts to logically
describe the disease mention, using the “+” concatenator”. Finally, the SuperClassAnnot
was positioned at the end of our process as an alternative to the removal of the annotation.

The precision of the rules has some limitations. Thus, we decided to evaluate other
potentially complementary methods in order to improve the quality of our outcomes. In
this sense, we selected two other methods: background knowledge and semantic change
patterns.

• Annotation correction using external resource knowledge: This consists of using
information inferred from external knowledge sources to maintain the annotations that
could not be corrected using local resources of the previous level. Actually, in many cases
the drift of ontological concepts can be characterized only by considering the semantic
relationships provided by other ontologies [Pruski et al., 2016]. Often, labels of concept are
completely different from a syntactic point of view, before and after evolution. Therefore,
considering local resources only does not allow their evolution to be characterized and, in
turn, to be reused for annotation maintenance purposes. For example, the evolution of the
label of concept D019684 in the MeSH from “Magnoliophyta” in 2009 to “Angiosperms” in
2010 requires an external knowledge source. Applying existing approaches to annotations
associated with this concept would simply lead to the deletion of the annotations. But,
the consideration of external resources (here mappings between SNOMED CT and MeSH,
provided by Bioportal) show that these two terms are synonyms, therefore the annotation
can be kept. Nevertheless, the nature of the external knowledge resources can vary.
Depending on whether RDF datasets like BIO2RDF [Belleau et al., 2008] or expressive
OWL ontologies contained in Bioportal [Noy et al., 2009] are considered, the inferred
information can be of a different quality and can affect the quality of the maintenance
process.

The BK algorithm (see algorithm 1) presents an overview of the whole process. Figure
3.2 helps to illustrate how the algorithm works. The input of the algorithm is the concept
ID (Cs), label (Ls), KOS target (KOSt), and KOS source (KOSs), e.g. (D019684, Mag-
noliophyta, MESH, {SNOMED CT, ICD-9-CM, NCIT}). After initializing the variables
(lines 1 and 2), our method queries external sources using the impacted annotation label
(line 3) and stores the resulting concepts (Request). For instance, concept 420928000, from
SNOMED CT, is one candidate. Only concept candidates belonging to the source KOS
KOSs are kept (lines 4-5). Then, for each concept from Request, the mappings are collected
(line 6). Only mappings to the target KOS (KOSt) are kept (lines 7-10); these are the grey
boxes in Figure 3.2.

The next step of our algorithm (line 11) retrieves all stable ancestors of a source concept Cs

within a specified period, e.g. (2009/2010). From all candidates that satisfy the previous
conditions, we compute the similarity between the ancestors and the source concept (lines
12 to 13) using Jiang-Conrath (JC) [Jiang and Conrath, 1997]. Then, we take the most
similar ancestor MSA (line 14). Finally we select the best candidate to maintain our
annotation (lines 15-17). This is the mapping showing the highest similarity to the MSA.

• Annotation correction using change patterns: Information provided by the Diff and
the use of external resources may not be sufficient to deal with invalid annotations. In this
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Algorithm 1: Similarity between mappings and ontology source in the Background Knowl-
edge. MSA: the most similar ancestor.

Input: Concept source Cs; Label Ls ; KOS source KOSs; KOS Target KOSt; KOS
Changes chgs;

Output: Concept Target Ct

1 MappingSet← ∅
2 V alidMappings← ∅
3 Request← getConceptsFromBK(Ls)
4 forall cp ∈ Request do
5 if (cp ∈ KOSs) == TRUE then
6 MappingSet← getMappings(cp)

7 forall mapping ∈MappingSet do
8 target← getConceptTarget(mapping)
9 if (target ∈ KOSt) == TRUE then

10 V alidMappings← target

11 Set Sup Classes← getAllStableAncestor(Cs,KOSv0, chgs)
12 forall obj ∈ Set Sup Classes do
13 calSemanticDistance(obj, Cs,KOSv0)

14 MSA← getMostSimilarAncestor(Set Sup Classes)
15 forall obj ∈ V alidMapping do
16 calSemanticDistance(MSA, obj,KOSv1)

17 Ct ← getHighestSimilarity(V alidMappings)
18 return Ct

case, the analysis of the morphosyntactic form of concept labels can reveal information to
make decisions on annotation maintenance. This technique has already been explored in
the context of ontology mapping adaptation [Dos Reis et al., 2015b, Dinh et al., 2014] but
remains less relevant in terms of quality in the resulting maintenance decisions. Change
Patterns are modifications observed in attribute values of a concept using linguistic-based
features to identify the correlation between concepts over time. For instance, a Partial
Copy between concepts is computed if and only if there is a partial overlap between words
from an attribute present in the KOS version Kn and an attribute in the new KOS version
Kn+1 (i.e., the attribute a0 becomes a1).

For instance, the annotation “Physiologic processes”, shown in Figure 3.3 and produced
using MeSH in the 2008/2009 period was removed. This is due to a change in the attribute
value in the definition of concept D010829 leading to “Physiological Phenomena”. Assuming
the following conditions, i) we do not have information inside the ontology to deal with this
change, ii) the super class from concept D010829 is Thing, iii) external resources do not
provide the necessary information to make decisions, the application of four change patterns
(total copy, total transfer, partial copy, partial transfer) considering only the attributes
in the same sub-ontology, e.g. the sub-classes from concept D010829, allows the concept
associated with this annotation to be changed from D010829 to D055705.

• Output

Our approach was designed to process the annotations according to different levels of
granularity, but the outputs contain only two kinds of data.

At the levels dealing with the correction of the annotations, the outputs are i) the corrected
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Figure 3.2: Use of BioPortal as Background Knowledge
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𝐶𝑜𝑛𝑐𝑒𝑝𝑡:𝑫𝟎𝟏𝟎𝟖𝟐𝟗 𝑀𝐸𝑆𝐻 →
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superClass (𝑎%) 	→ 𝑂𝑊𝐿𝑇ℎ𝑖𝑛𝑔
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D055705 SubClassOf 𝑫𝟎𝟏𝟎𝟖𝟐𝟗	
Action:
𝑪𝒉𝒂𝒏𝒈𝒆↓↓𝑪𝒐𝒏𝒄𝒆𝒑𝒕(𝒂𝒊, 𝒂𝒊/𝟏)

D010829 D055705

Figure 3.3: Use of Change Pattern to maintain annotations

annotations, and ii) the set of annotations that need further investigation. Once corrected,
the annotations are also enriched with evolution information making future modifications
easier and enhancing their quality, see Figure 3.4.

In Figure 3.4, the Body was enriched with an element highlighting the type of evolution
that occurred, i.e., PluralAnnot. This heuristic allows us to verify whether the ontology
becomes more precise due to a split of the concept or due to a small review in the labels of
a concept, as indicated by the PluralAnnot rule.

If invalid annotations remain, the definition of other levels exploiting different kinds of
information for maintenance purposes need to be implemented. Our proposed approach
flagged these annotations as unsolved, allowing future extensions that have to take into
account the following aspects: i) the complexity of the evolution affecting KOS, ii) the
nature of the annotation, and iii) the specificity of the kind of object, e.g., images or videos.
The rules that are used at each level also need to be defined by considering the quality of
the adapted annotations.

3.3 Experimental assessment

In this section, we introduce the method and material we used to evaluate our approach. The
experiments we conducted consist of applying our approach to a set of annotated documents
and comparing it to a corpus of reference representing an evolved version of the initial set of
documents.
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Figure 3.4: Extra information included in the body

Material

Our annotation maintenance process takes as its inputs:

• a set of outdated annotations,

• the old and new OWL versions of the KOS used to generate the annotations.

In our experiments, we used the International Classification of Diseases, Ninth Revision, Clinical
Modification (ICD-9-CM), Medical Subject Headings (MeSH), National Cancer Institute The-
saurus (NCIt) and Systematized Nomenclature of Medicine - Clinical Terms (SNOMED CT). We
used versions 2009AA and 2010AA downloaded from the UMLS and transformed into OWL files.
We used COnto-Diff [Hartung et al., 2013] to identify the changes in the new version of the KOS
since these changes are strongly correlated with the validity of annotations [Cardoso et al., 2016].

Silver Standard

Since there is no annotation baseline generated with sequential ontology versions exists, we
had to build our own corpus of reference using the annotations produced in chapter 2 as a
base resource. To do this, we randomly selected 500 annotations generated with the 2009AA
version of the four KOS (around 125 annotations from each KOS) and asked three experts to
manually validate/correct the evolution of the 500 selected annotations, according to the 2010AA
version of the corresponding KOS. Each expert validated one-third of the annotations without
discussing them with the others. The consolidated outcomes make up the silver standard, which
can be downloaded from https://git.list.lu/ELISA/AnnotationDataset. We adopted the
term “silver” to indicate that our reference is based on one viewpoint only.

We represent annotations following the W3C Web Annotation Data Model12, discussed in
chapter 2. To illustrate how an annotation is represented in our system, Table 3.2 contains the
original annotation (from 2009) in the first line and the evolved annotation (from 2010) in the
second line.

12https://github.com/anno4j/anno4j
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KOS Doc. Concept Annotated
text

Start End Prefix Suffix KOS la-
bel

MeSH
2009AA

232 D019684 Magnolio
phyta

4587 4600 during
the evo-
lution
of

(angiosper
ms) [5].
typical
such

Magnolio
phyta

MeSH
2010AA

232 D019684 Magnolio
phyta

4587 4600 during
the evo-
lution
of

(angiosper
ms) [5].
typical
such

Angios
perm

Table 3.2: Example of an evolving annotation, extracted from our silver standard.

In our analysis, we used the following features: the name and version of the KOS, the reference
of the resource document, the concept code, the annotated text followed by the start and end
offset, i.e., the position in the document where this annotation is found, and the prefix and suffix,
i.e., the information that comes before and after the annotation. The illustrative example in
Table 3.2 shows one annotation produced with the MeSH 2009AA version using the PubMed
document 23213 and the concept D019684. The annotated text is “Magnoliophyta”, and this can
be found in the position [4587,4600]. We set up the system with four words as the prefix “during
the evolution of” and a suffix “(angiosperms) [5]. typical such”. We can observe that the concept
label used to annotate the text changed from 2009AA to 2010AA.

To measure the effectiveness of the proposed approach, we used classic well-known metrics from
the literature, such as precision, accuracy, recall, F1-score, ROC curve to investigate/understand
two characteristics of our method: i) the capacity of our framework to detect impacted annotations
after changing a KOS concept; and ii) the ability to correctly adapt those impacted annotations
into consistent ones. In this case, consistency means equivalency with the silver standard.
We measured the efficiency of the Rules alone, the Background Knowledge (BK) alone, the
Semantic Change Patterns (SCP), the Lexical Change Patterns (LCP) and the combinations of
these techniques in order to determine whether they complement each other or not.

3.4 Results

When applying the four annotation maintenance techniques (Rules, BK, SCP, LCP) to our dataset,
we can observe a significant difference in the results. For instance, as shown in Table 3.3, all
four methods provide good precision, but there is a significant variation [0, 0.98] regarding the
recall. In the first line of Table 3.3, we present the precision, recall and F1-Score resulting from
applying the Rules method to four different subsets of our initial dataset (ICD-9-CM, MeSH,
NCIt, and SNOMED CT). We also evaluate the consequence of combining the methods (2-by-2,
and all together). For instance, the fifth line of the table presents the results of combining Rules

and BK methods, while the tenth line shows the results of combining all four methods.

The goal of this first set of experiments was to evaluate whether the methods (or a combination
of them) provide satisfactory quality (in terms of the F1-Score) to determine whether an impacted
annotation will evolve or not. Note that we are not yet evaluating whether the annotation evolved
correctly (this is part of the second evaluation step). A quick analysis shows that all methods
can accurately identify some of the evolving annotations, but not all. From a practical point of
view, if an error margin of 2% is acceptable for the domain, then KOS engineers can trust the
method to identify the annotations that will change (i.e., the minimal observed precision was

13https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2631504/
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ICD-9-CM MeSH
Method P R F1 P R F1
Rules 1 0.982 0.991 0.991 0.941 0.966
BK 1 0.129 0.229 1 0.050 0.094
SCP 1 0.041 0.078 1 0.091 0.167
LCP 1 0.048 0.092 1 0.099 0.180

Rules/BK 1 0.982 0.991 0.991 0.941 0.966
Rules/SCP 1 0.982 0.991 0.991 0.941 0.966
Rules/LCP 1 0.982 0.991 0.991 0.941 0.966
BK/SCP 1 0.161 0.278 1 0.140 0.246
BK/LCP 1 0.161 0.278 1 0.149 0.259

CombineAll 1 0.982 0.991 0.991 0.941 0.966

NCIT SNOMED CT
Method P R F1 P R F1
Rules 0.980 0.942 0.961 0.929 0.812 0.867
BK 1 0.115 0.207 1 0.625 0.769
SCP 0 0 0 0 0 0
LCP 1 0.019 0.038 0 0 0

Rules/BK 0.980 0.942 0.961 0.929 0.812 0.867
Rules/SCP 0.980 0.942 0.961 0.929 0.812 0.867
Rules/LCP 0.980 0.942 0.961 0.929 0.812 0.867
BK/SCP 0.857 0.115 0.203 1 0.625 0.769
BK/LCP 1 0.135 0.237 1 0.625 0.769

CombineAll 0.979 0.940 0.959 0.929 0.812 0.867

Table 3.3: Precision (P), Recall (R) and F1-Score (F1) of impacted annotations computed using
four different methods (Rules, BK, SCP, LCP) and the combination of them. The red and orange
colours indicate low and medium recall, respectively.

98%). However, the recall can be significantly different according to the dataset and the method
adopted. We detail the reasons for this in the next section. We would like to highlight that our
rules have an excellent performance, obtaining in some cases an F1-Score of 99%.

The second evaluation process consists of applying methods to select which adaptation actions
can make the annotation evolve correctly, and comparing the outcomes with the silver standard.
The goal is to measure how precise our recommendations are. Table 3.4 describes the performance
of each method regarding the four different datasets. Each experiment is represented by an Area
Under the Curve (AUC) value, giving the probability that a randomly selected instance will
correctly be adapted by our method [Hajian-Tilaki, 2013].

The AUC values of the analysed methods vary according to the dataset. A quick analysis
of Table 3.4 shows that combining methods provides slightly better results than applying only
one of them for MeSH and NCIt. The opposite is observed for ICD-9-CM and SNOMED CT
where the Rules provide better results. Furthermore, SCP shows the lowest AUC values of all
heuristics. We also verified that there are significant differences in the AUC between the KOS,
like those between MeSH and NCIt. Detailed explanations on these observations are provided in
the next section.
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ICD9CM MeSH NCIt SNOMED CT
Method AUC AUC AUC AUC
Rules 0.862 0.882 0.731 0.844
BK 0.597 0.545 0.663 0.75
SCP 0.589 0.57 0.615 0.500
LCP 0.589 0.57 0.625 0.500

Rules/BK 0.83 0.87 0.731 0.844
Rules/SCP 0.821 0.878 0.731 0.833
Rules/LCP 0.839 0.878 0.74 0.844
BK/SCP 0.589 0.579 0.663 0.75
BK/LCP 0.589 0.579 0.673 0.75

CombineAll 0.821 0.887 0.73 0.815

Table 3.4: AUC values of developed heuristics used to maintain annotations. The red and blue
colour highlight the lower and higher values for each dataset, respectively.

3.5 Discussion

The analysis of annotation evolution in the healthcare domain is an understudied topic. As
explained in section 3.1, several works propose the automatic detection of inconsistent annotations,
but few of them address the automatic correction of inconsistent annotations. The work presented
in this thesis shows that some annotations can be preserved/adapted after the evolution of the
KOS used to generate the annotations. Four methods were proposed: Domain Specific Rules,
Background Knowledge, Semantic and Lexical Change Patterns. The outcomes presented in the
results section demonstrated that we can obtain high AUC by applying these methods together
in the automatic maintenance of annotations or to support domain experts in this activity.

When analysing each method, we observed that BK contributes to the precision of the
annotation changes. The main characteristic of BK is that it depends on the richness of information
in other sources (e.g., ontologies with overlapping concepts). Another aspect that can be deduced
from the experiments is the dependency of the BK method on the expressivity and consistency of
the KOS. For example, MESH D002544 has as synonym concepts that are siblings in other KOS
(e.g. “Cerebral infarct left hemisphere” SNOMED CT 362323007 and “Cerebral infarct right
hemisphere” SNOMED CT 362322002), leading to loose information when the system follows
the KOS mappings that cross MeSH. Moreover, we observed that the BioPortal repository only
contains the latest KOS version (i.e., from 2016), but our experiments use documents annotated
with the 2009AA and 2010AA versions. Versioning is an aspect that has not yet been integrated
into BioPortal, but it deserves to be considered in the future.

The analysis of SCP and LCP shows a good precision and low recall. The reason for this is that
both methods consider only changes between concepts that are in the same neighbourhood (i.e.,
siblings, super- and sub-concepts). Thus, changes that move the concept to other branches of
the KOS are not included, leading to an increased number of false negatives. For SNOMED CT,
(see Table 3.3), we did not observe any cases with SCP and LCP in our dataset. Since, the used
data was randomly selected, we consider that it was a coincidence. We did our analysis based on
the results from the other KOS, see chapter 2. However, these heuristics are able to cover cases
where the Rules or BK do not work. For instance, the annotation “ubiquitin carboxy-terminal
hydrolase” NCIt C21490 correctly evolved to “ubiquitin carboxyl-terminal hydrolase BAP1 ”. This
correct adaptation increased the AUC value to NCIt using the configuration: Rules/LCP, see
Table 3.4. Thus, we concluded that this method is better than BK and its combinations (lines 2
and 5) for NCIt .

Domain-specific rules are defined to describe frequent patterns of changes, and they are
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expected to generate outcomes from them with good precision and recall. This was the case for
the rules proposed in our experiments. However, our rules do not cover all annotation evolution
cases perfectly. For example, in SNOMED CT the annotation [PMC2633322; ’31113003’;
’diverticulum’; 6412; 6424; ’association with the meckel’; ’, the appendix,’] had to evolve to
“Meckel diverticulum” ConceptID 37373007, in order to be similar to our silver standard. In spite
of this, IncreaseAnnot provided a different result. Applying the rules to adapt this annotation,
we sometimes selected the ConceptID 37373007 and sometimes the ConceptID 127962001. We
identified two reasons for this behaviour:

1. In SNOMED CT the same label can be associated to two different ConceptIDs. For instance,
the concept 37373007 (Meckel diverticulum) has two super-classes: “Congenital anomaly
of small intestine” and “Diverticulosis of small intestine”, while the concept 127962001
(Meckel diverticulum) has the following super-classes “Persistent embryonic structure”,
“Structure of yolk stalk”, “Structure of distal portion of ileum” and “Diverticulum”.

2. We used the Lucene search engine14 to get the ConceptID of a given label. For this specific
case, Lucene returns two ConceptIDs. However, the order of the results is not always the
same. In our algorithm, we use the first result given by Lucene to execute the IncreaseAnnot
rule. This explains the random outcome of our approach that occurs for SNOMED CT
and NCIt when computing “glycerol kinase gene” codes (C75498, C75499).

Regarding the low value for BK method in MeSH and ICD-9-CM, we observed that some
annotations did not correctly matched our silver standard. The example related to the annotation

“acute renal failure”, concept 584.9 in ICD-9-CM version 2009 can illustrate the reason of the
problem. In our silver standard the domain specialists indicated that the right adaptation is

“acute kidney failure” 584.9, i.e., the same concept using the new term. Our method computed
the right adaptation as the concept 584. After discussion with the domain specialists, we verified
that our algorithm was correct. The problem comes from the mappings provided by BioPortal
regarding MeSH↔ICD-9-CM, i.e., the MeSH concept “acute renal failure” has two mappings
pointing to the concepts 584 and 584.9.

Another aspect to highlight is that depending on the context in which the maintenance
methods were used (e.g., high expressive KOS), there are considerable differences in the sets of
results. We also observed that a combination of methods can be used for a more complete set of
evolution situations, as in the following:

• LCP, SCP and BK methods show low complementary results to identify whether the KOS
evolution impacts the annotations, but an improvement was observed by combining the
methods to identify the correct evolution of the annotation.

• On one hand, Rules increase the amount of corrected annotations of all SCP, LCP and BK

analyzed cases.

3.6 Conclusion

In this chapter, we presented the possibility of using annotation maintenance tools that can keep
track of KOS evolution. Moreover, it also demonstrates that the automatic correction/adaptation
of annotations can reach a reasonable reliability rate. But, it is important to highlight that the
role of human beings is still determinant in assuring the quality of the annotations in critical
scenarios, as observed in the biomedical domain. Finally, our maintenance approach is done
without a complete re-annotation of the document and ensures a high-quality annotation for the

14https://lucene.apache.org/core/
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chosen concept. In next chapter, we discuss how to enhance the proposed method by including
the PartialMatch rule that applies lexical and semantic algorithms to change the concept ID of
an annotation.
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Chapter 4

Semantic similarity measures to
adapt semantic annotations
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Measuring the similarity between concepts is a cornerstone of our approach to maintain
annotations valid over time. As described in chapter 3, our architecture is able to adapt
only annotations that fully match the associated label of the concept independently of the
used technique used, i.e. Rules or BK. However, in some cases, there is a clear syntactic
divergence between the annotation and the concept label. To overcome this limitation and
help answering RQ3 and RQ4, we raise the following question: How can we improve the
existing similarity measures to enhance the relatedness between terms while taking
the syntactic mismatch into account? In order to approach this question, we assume that
the combination of semantic and lexical similarity measures (hybrid measures) can improve the
relatedness between terms and be used to adapt the semantic annotations.

We start this chapter by analysing related work in the field of semantic similarity measures.
We then introduce our hybrid similarity measure that combines Lexical Similarity Measures
(LSM) and ontology-based Semantic Similarity Measures (SSM) to improve the relatedness
between biomedical terms. Using this hybrid measure we enrich our set of rules with a new one
capable of maintaining annotations when the concept label and the annotated text are not the
same. We assess the validity of our hybrid measure by first showing the correlation between
the values obtained and the scores given by domain experts on a reference corpus using the
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Spearman’s rank correlation metric. We then use the Fisher’s Z-Transformation to evaluate the
stability of the utilized measures with respect to the evolution of KOS. Finally, we demonstrate
that the new PartialMatch rule we derive from this metric is able to outperform other techniques
and statistically improve the number of corrected annotations by using the Sign Test statistical
method.

4.1 Existing Similarity Measures

The literature in this domain reveals several families of similarity measures. For instance, [Gomaa
and Fahmy, 2013] described string-based, corpus-based and knowledge-based metrics. The former
two groups are related to LSM and rely on syntactic or lexical aspects of the terms to compare
strings, such as “Failure of the kidney” with “Kidney failure” [Oliva et al., 2011]. The latter
group is related to the semantic aspects of the terms (SSM) such as the equivalence between
“Myocardium” and “Cardiac Muscle”.

In the biomedical domain, various LSMs have been used and evaluated in order to improve
the retrieval of biomedical documents [Soualmia et al., 2012], support the mapping adaptation
process [Dos Reis et al., 2015a], improve the semantic relatedness between terms in named entity
recognition process, e.g., “ammonium”↔ “ammonium ion” [Rudniy et al., 2014], etc. The results
show that the LSMs are capable of improving the relatedness between terms. However, different
thresholds must be considered since the metrics perform differently according to the domain of
application. Notice that this kind of similarity measure does not take semantic aspects of the
terms into account. Consider for instance terms like “Cancer” and “Malignancy”. While they are
completely disjointed from a lexical point of view, they are semantically equivalent.

To overcome this barrier, SSM measures were introduced. They exploit the meaning of the
terms in a corpus and evaluate their similarity according to, for instance, the distribution of the
words or the co-occurrence of terms [Mihalcea et al., 2006]. Semantic similarity measures can also
rely on knowledge representation models such as thesauri or ontologies where structural properties
of the model (e.g. hierarchy of concepts in an ontology) are used to compute the similarity
between concepts [Lord et al., 2003]. It is used in a wide range of applications: automatic
annotation validate in Gene Ontology [Couto et al., 2006], information retrieval algorithms [Sy
et al., 2012], Linked Data paradigms [Meymandpour and Davis, 2016], etc.

Different categories of SSM exist [Couto et al., 2006, Harispe et al., 2014, Meymandpour and
Davis, 2016, Resnik, 1995a] to evaluate similarity between concepts:

1. Edge-based measures estimate the similarity of two concepts as a function of the distance
separating two concepts in the ontology.

2. Feature-based measures relies on the taxonomic interpretation of the feature model proposed
in Tversky [Tversky, 1977]; generally, the representation of a concept corresponds to a set
of neighbouring concepts or instances. Feature-based strategies root semantic similarity in
the context of classical binary or distance measures (e.g. set-based measures, vector-based
measures).

3. IC-based measures assess the similarity of concepts as a function of the Information Content
(IC) from their Most Informative Common Ancestor (MICA), e.g. the deepest concept that
subsumes two verified concepts. [Resnik, 1995a, Harispe et al., 2014].

4. Hybrid measures combine the approaches described above.

These measures have been extensively evaluated across multiple benchmarks [Pesquita et al.,
2009, Garla and Brandt, 2012, Harispe et al., 2014, Costa and Leal, 2016]. As a result, the
IC-based measures generally outperform the edge-based ones. One of the main drawbacks of
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Feature-based measures is that they consider dimensions as mutually orthogonal and do not
exploit relationships that link concepts. Finally, the hybrid-measures require specifics parameters,
thus making a generalization of multiple KOS difficult.

Similarity measures have been used independently. Their combination, especially the couple
LSM/ontology-based SSM, remains under-explored. [Pereira Nunes et al., 2013] proposed an
approach combining co-occurrence-based and semantic-based measures for entity linking. It
produces a semantic connectivity score capable of measuring the relatedness of web resources
like Charlotte Bobcats and Carmelo Anthony on Dbpedia.

[Sánchez et al., 2012] rely on the combination of the WordNet and MeSH terminologies
during the process to measure the relatedness of terms. This is done by: i) an assessment of the
semantic overlapping between subsumer pairs and ii) an evaluation of their structural similarities
analyzing the ontologies to which they belong, instead of relying solely on the terminological
matching between subsumer labels. As a result, the accuracy obtained in the multi-ontology
scenario almost reaches (but rarely surpasses) that obtained in an ideal mono-ontology setting.

[Peng et al., 2018] proposed NETSIM2, a network-based method capable of calculating the
similarity between two Gene Ontology terms by combining the information from co-function
network and GO global structure through a random walk with restart-based method. The
experimental results using Enzyme Commission and a biological process show that NETSIM2
performs best among all standard measures on Yeast15 and Arabidopsis16 datasets. Furthermore,
NETSIM2 can significantly improve the performance of semantic similarity measurements,
especially when dealing with incomplete species description.

The literature review highlights a lack of hybrid measures combining LSMs and ontology-based
SSMs. Furthermore, none of the existing approaches confirms whether the SSMs are stable
when applying them to dynamic KOS, i.e. whether the similarity values remain acceptable after
changes in the KOS. In this chapter, we present our approach, which combines both methods in
order to enhance the similarity between concepts, and an experiment to verify the stability of
these measures while using consecutive KOS versions.

4.2 Background

In this section, we introduce the statistical methods used to evaluate the experiments we carried
out in this chapter.

Spearman’s Rank Correlation

Spearman’s Rank Correlation (cf. equation 4.1) is a statistical method that measures the
coefficient strength of a linear relationship between paired data [Press et al., 1988]. In other
words, it verifies whether the values produced by automatic similarity measures, e.g. values
within the interval [0, 1], and scores given by domain specialists, e.g. values in intervals of [0,
1500], are correlated.

To compute the rs, i.e. the correlation value, we have to follow four steps:

1. Rank the automatic similarity value and the domain specialist judgment in columns three
and four of Table 4.1. This process will create two ordered sets as detailed in columns five
and six.

2. Using the previous rank (columns five and six), we subtract them to obtain the difference
of rankings di in column seven.

15http://www.yeastgenome.org/
16http://ftp.plantcyc.org/Pathways
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3. We compute the square of di to obtain d2i in column seven.

4. We apply the equation 4.1 on d2i , to obtain the correlation value rs. The variable n in this
equation is related to the number of cases observed in the dataset, such that n ≥ 10.

As result of this process, we will have a correlation value rs such that −1 ≤ rs ≤ 1, where -1
indicates total disconnection and 1, a strong relationship. In this example the computed rs is
0.393 which indicates that there is not a strong correlation between the automatic values and
the domain specialist judgments.

rs = 1−
6
∑

i d
2
i

n (n2 − 1)
(4.1)

Concept 1 Concept 2 Automatic
similarity
value

Specialist
judg-
ment

rank
Auto-
matic

rank spe-
cialist

di d2i

Enalapril Lisinopril 0.54 1280.0 1.0 8.0 -7.0 49.0

Mycosis Histoplasmosis 0.4 1282.5 2.0 4.0 -2.0 4.0

Dizziness Vertigo 0.25 1287.0 3.0 1.0 2.0 4.0

Emaciation Cachexia 0.44 1290.25 4.0 6.0 -2.0 4.0

Convulsion Epilepsy 0.32 1302.75 5.0 2.0 3.0 9.0

Thalassemia Hemoglobinopathy 0.46 1307.0 6.0 7.0 -1.0 1.0

Cefazolin Keflex 0.43 1323.0 7.0 5.0 2.0 4.0

Lipitor Zocor 0.33 1330.75 8.0 3.0 5.0 25.0

Medrol Prednisolone 0.55 1387.5 9.0 9.0 0.0 0.0

Sinemet Sinemet 1.0 1533.5 10.0 10.0 0.0 0.0

Table 4.1: Example using Spearman’s Rank Correlation

Fisher’s Z-Transformation

Fisher’s Z-Transformation is a statistical method that allows the verification of whether two
nonzero’s rs, i.e. Spearman’s Rank Correlation are statistically different [Press et al., 1988].
Thus, we can verify whether the rs from an automatic similarity method is better than other r′s
obtained from another method.

The comparison between the above correlations is done in three steps. First, the conversion
of rs and r′s into z1 and z2 by applying equation 4.2, i.e. converting two sampling distributions
into normal distributions.

Second, we obtain the probability value p such that 0 ≤ p ≤ 1 through equation 4.3, where
N1 and N2 are the number of data in the dataset.

z =
1

2
ln

(
1 + r

1− r

)
(4.2)

p = erfc

 |z1 − z2|
√

2
√

1
N1−3 + 1

N2−3

 (4.3)

Finally, to ensure differences, we test our null hypotheses H0 : rs = r′s case p > 0.05 and vice
versa. Nevertheless, this can only be done if N1 and N2, are moderately large (N ≥ 10).
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Sign Test

The Sign Test is a non-parametric test used to verify whether or not two groups are equally sized,
i.e., the amount of success cases remains the same, before and after an applied procedure [Dixon
and Mood, 1946]. This test ignores the actual values of data and uses + or − signs during the
calculations, see Table 4.2.

In this example, in the first column we have the values of procedure X, followed by the values
of procedure Y in column two. The difference of both methods X − Y is shown in column
three. In the fourth column, the values were translated to signs: (+) indicating that procedure X
provides better results, (−) indicating that procedure Y is better, and (NA) there is no difference
between the values.

The null hypothesis of the Sign Test is: H0 : Population median difference = 0, i.e., the
amount of + sings (r+) and − sings (r−) does not differ significantly from equality. To calculate
this test we compute a binomial distribution17 using as input: i) the amount of success cases
given by max(r−, r+) = 9, for the example of Table 4.2; ii) the number of trials n = 12, i.e., the
sum of r− and r+ excluding NA. In this example, we keep the null hypothesis because the result
(p-value) is 0.146, indicating that there is no evidence for a difference between the two procedures
when using α = 0.05, i.e., H0 : Procedure X = Procedure Y case p > 0.05 and vice versa.

Procedure X Procedure Y X-Y Sign of x-y

443 57 386 +

443 88 355 +

370 370 0 NA

436 587 -151 -

422 463 -41 -

423 463 -40 -

424 463 -39 -

243 88 155 +

1000 1000 0 NA

236 310 -74 -

222 321 -99 -

223 333 -110 -

224 587 -363 -

224 632 -408 -

Table 4.2: Example using Sign Test statistical method.

4.3 A Hybrid LSM/Ontology-based SSM

In order to combine LSM and ontology-based SSM measures, we utilized a weighted arithmetic
mean, see equation 4.4. It calculates the similarity between two concepts ci, cj by apply-
ing classic similarity measures over two respective concepts, e.g., C0035078:Renal failure ↔
C0035078:Kidney failure and assigning weights to each similarity.

In summary, the values LSMscore and SSMscore represent the similarity scores given by
metrics like Levenshtein and Resnik 1995 GraSM in the interval of [0,1]. The variables α and τ
are the weights in the interval of [0, 1] increasing in 0.1, excluding both α and τ equal to zero.

17https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.binom_test.html
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This allows us to change the contribution of each measure to calculate the final similarity, e.g.,
in α = 0.8 and τ = 0.3 the semantic measure has more importance in the final score, however it
is smoothly adjusted by the lexical measure.

simi(ci,cj) =
(SSMscore ∗ α) + (LSMscore ∗ τ)

α+ τ
(4.4)

4.4 Partial Match Rule to Adapt Annotations

The major limitation of our method to adapt semantic annotations demonstrated in Chapter
3, was related to the limited scope of the change patterns to correct the annotations that are
still invalid after the application of the Rules and BK methods. As change patterns consider the
local evolution of a concept, i.e., siblings, super- and sub-classes, we added a new rule, called
PartialMatch, able to deal with the evolution of a concept outside the neighbourhood.

This rule changes the term and/or the concept ID of an annotation considering lexical and
semantic similarity measures, e.g. SNOMED CT 398624005:Ethanol → 420140004:Allergy to
ethanol. The algorithm 2 gives an overview of the whole process. The input of the algorithm
is the annotation before its evolution a0, the KOS before and after the evolution KOSv0 and
KOSv1; the KOS changes chgs; and the weights τ and α for the hybrid measure.

Our method starts by gathering the information of the annotation in lines (1-2). We retrieve
the used concept c0 and the attribute att0 following our model presented in Chapter 2. Then, our
algorithm retrieves all stable ancestors Set Sup Classes of a source concept c0 within a specified
period, e.g., 2009/2010 (line 3). Using these ancestors, the most similar ancestor (MSA) is kept
(line 4) according to its similarity with c0. This similarity respects the approach we proposed
and utilizes the preferred label and concept ID to find the LSMscore and SSMscore, respectively.

At line 5, our algorithm computes a lexical view of attribute att0 in KOSv1. i.e., it retrieves
all the related labels from stable and added concepts, which have the occurrence of at least, one
common word, e.g., when querying 167696007:feces examination in SNOMED CT 2010 we have
779 concepts as lexical view: [162089003: Feces normal ; 167635008:Feces examination: growth;
etc].

The next steps (lines 6-11) compute the similarity between the MSA and the concepts from
the lexical view. Once this process is complete, the best concept is chosen to maintain the
annotation (line 12). Finally, at line 13 we adapt the annotation by changing the concept ID
and/or the attribute value (e.g., by including additional information about the occurred evolution)
as illustrated in Figure 3.4.

Using this configuration, our new PartialMatch rule is capable of maintaining semantic
annotations by changing the term/concept even if it is in a different ontology region. For example,
167696007:feces examination in SNOMED CT 2009 will evolve to 167592004:examination of
feces in SNOMED CT 2010.

4.5 Experimental assessment

In this section, we introduce the material and measures we used to evaluate our approach. We
start by describing the assessment for the hybrid measure in Section 4.5.1 and then, in Section
4.5.2, we assess the PartialMatch rule.

4.5.1 Assessment for the hybrid LSM/Ontology-based SSM

The experiments we have conducted consisted of instantiating our hybrid LSM/Ontology-based
SSM with a set of measures listed in Table 4.3, and comparing the results to a corpus of reference
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Algorithm 2: PartialMatchAnnot: Partial matches between an attribute value and an
annotation

Input: An impacted annotation at version 0 a0 ; KOSv0; KOSv1; KOS Changes chgs; τ
and α values in the range of [0.1, 1]

Output: An evolved annotation a1
1 c0 ← getConceptFromAnnot(a0)
2 att0 ← getAttributeFromAnnot(a0)
3 Set Sup Classes← getAllStableAncestor(c0,KOSv0, chgs)
4 MSA← getMostSimilarAncestor(Set Sup Classes, c0,KOSv0)
5 actions← lexicalV iew(att0, chgs,KOSv1)
6 if (MSA 6= ∅ ∧ actions 6= ∅) == TRUE then
7 forall actions do
8 SSMscore ← SemanticSimi(MSA, actionsi, Ontv1)
9 LSMscore ← LexicalSimi(att0, actionsi)

10 simi← hybridMeasure(SSMscore, LSMscore, τ, α)
11 actionsi ← updateSimilarity(actionsi, simi)

12 bestCp← getHighestSimilarity(actions)
13 a1 ← buildEvolvedAnnot(bestCp, a0)
14 return a1

15 return a0

built by domain specialists that contain several pairs of concepts and their similarities.

Gold Standard

We used the three reference datasets suggested by [McInnes and Pedersen, 2013] to evaluate our
approach. We first used MayoSRS [Pakhomov et al., 2011]. It contains 101 pairs of concept
labels together with a score assigned to each pair denoting their relatedness. The value of the
score, ranging from 0 to 10, is determined by domain experts. 0 represents a low correlation
while 10 denotes a strong one.

The second dataset we used is a subset of MayoSRS [Pakhomov et al., 2011] made up of
30 pairs of concept labels. For this dataset, a distinction is made between the two categories
of experts: coders and physicians and the values of the relatedness score is ranging from 1
(unrelated) to 4 (almost synonymous).

The third dataset is the UMNSRS described in [Pakhomov et al., 2010]. Bigger than the two
previous ones, it is composed of 725 concept label pairs whose similarity was evaluated by four
medical experts. The similarity score of each pair was given based on a continuous scale ranging
from 0 to 1500. These values were assigned experimentally by users.

Knowledge Organization Systems

In our experiments we used: Medical Subject Headings (MeSH) and Systematized Nomenclature
of Medicine - Clinical Terms (SNOMED CT). We used the versions 2009AA to 2014AA (excluding
the AB versions), downloaded from the UMLS and transformed into OWL files. Furthermore, we
considered the evolution of concepts using the following configuration SUPRESS =′ Y ′ in Table
MRCONSO from the UMLS thesaurus. We chose these terminologies because the terms present
in the gold standard, e.g. Lymphoid hyperplasia were not present in other KOS, e.g. NCIt.
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Measures

We used a total of 12 Lexical measures, 11 Semantic measures and 9 Information Content
techniques (Table 4.3), i.e., methods included in the SSMs to extract the features of concepts
when calculating the similarity [Resnik, 1995b].

We reused/adapted the implementation of the Lexical measures that we collected from
open-source projects, published in Github 18, and related works from the biomedical domain
[Lin et al., 2017, Rudniy et al., 2014]. The semantic measures are those implemented in the
framework proposed by [Harispe et al., 2014]. The Jiang Conrath (equation 4.8) is an example.
It calculates the similarity between concepts c1, c2 by computing the Most Informative Common
Ancestor (MICA) and the Information Content (IC ) which avoids the dependency of a corpus,
e.g. documents, to calculate the concept usage.

The IC can be calculated as in the example of equation 4.5. In this equation, [Seco et al.,
2004] computes the IC according to the log of the number of descendants from a concept c
including itself, divided by the log of the total number of concepts in the ontology. The MICA
is calculated according to equation 4.7. In this equation, the biggest IC from a set of common
ancestors from concepts c1, c2 is selected according to the MICA score. To find the common
ancestors we utilize the equation 4.6, which simply makes an intersection between all parents
from c1 and c2.

ICSeco(c) = 1−
(
log(numberInclusiveDescendants)

log(numberConceptsOnto)

)
(4.5)

setAncestors = intersection(parents(c1), parents(c2)) (4.6)

MICA = max({IC(x) : setAncestorsx}) (4.7)

simJC(c1, c2) = 1− IC(c1) + IC(c2)− 2 ·MICA(c1, c2)

2
(4.8)

In total, 1188 hybrid measures and 118800 combinations were evaluated considering the
weights described in section 4.3. Therefore, and for better readability, we list only the top-10
measurements in our experiments.

Lexical Measure (LSM) Semantic Measure (SSM) Information Content (IC)

Levenshtein Jiang Conrath 1997 Norm Resnik Unpropagated 1995
Smith Waterman Feature Tversky Ratio Model Sanchez 2011

Jaccard Tversky IC Ratio Model Sanchez 2011 b adapted
Cosine Lin 1998 Seco 2004

Block Distance Lin 1998 GraSM Zhou 2008
Euclidean Distance Mazandy 2012 Harispe 2012

Longest Common Substring Jaccard IC Depth Max Non linear
Jaro Winkler Resnik 1995 GraSM Depth Max Linear

LACP Resnik 1995 Ancestors Norm
Tf-idf Jaccard 3W IC

AnnoMap Sim IC 2010
Bigram

Table 4.3: Lexical and Semantic Measures utilized.

18https://github.com/tdebatty/java-string-similarity
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4.5.2 Assessment for the Partial Match Rule

The experiments we conducted to assess the PartialMatch rule consisted of including it in the
method discussed in Chapter 3 and verifying whether this rule improved the amount of adapted
annotations.

Terminologies

As described in chapter 3, our maintenance method utilized four well-known KOS: ICD-9-CM,
MeSH, NCIt and SNOMED CT. However, we worked with two versions to adapt the annotations
in Chapter 3, i.e., from version 2009 to version 2010. In this chapter, we included multiple
versions, e.g., 2009 to 2016, in the experiments to verify whether the PartialMatch rule also
performed well over a longer time.

Silver Standard

For these experiments, we adapted the silver standard described in Chapter 3 by including the
reference for the annotations in 2016. Table 4.4 shows an illustrative example related to our silver
standard. It shows one annotation produced with MeSH:2009AA using the PubMed document
23219 and the concept D009133. The annotated text is “muscular atrophy”, and can be found at
position [5561,5577] of the document. We customized our system to have a maximum of four
words as prefix “(HD), spinal and bulbar” and as suffixes “, drpla and various”. It can be observed
that the concept label and ID used to annotate the text increased and changed, respectively, from
2009AA to 2010AA. Furthermore, in 2016AA the concept ID changed again, from D055534 to
D020966. Therefore, we have an annotation impacted multiple times by the evolution of MeSH.

KOS Doc. Concept Annotation Start End Prefix Suffix

2009AA 232 D009133 muscular at-
rophy

5561 5577 (HD),
spinal
and
bulbar

, drpla
and
various
forms

2010AA 232 D055534 spinal and
bulbar mus-
cular atro-
phy

5543 5577 (HD), , drpla
and
various
forms

2016AA 232 D020966 spinal and
bulbar mus-
cular atro-
phy

5543 5577 (HD), , drpla
and
various
forms

Table 4.4: Example of an evolving annotation from our silver standard. The red color indicates
the changes that occurred in the annotation at KOS evolution time. Source: [Cardoso et al.,
2017a]

4.6 Experimental Setup

This section describes the methods utilized to evaluate both approaches, i.e., the hybrid measure
and the PartialMatch rule. We start by describing the set-ups for the hybrid LSM/SSM in
Section 4.6.1 and then in Section 4.6.2 we detail the set-up for the PartialMatch rule.

19https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2638829/
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4.6.1 Experimental set-up for the hybrid LSM/SSM

In order to evaluate the capacity of our proposed metric to improve the similarity between pairs
of concepts, as well as the stability of SSMs over time, we defined the three following different
configurations:

• Set-up 1 aims to verify the stability of semantic measures over time, i.e., whether the
evolution of the KOS impacts the relatedness between automatic similarity values and
domain specialist responses. To determine this, we followed three steps: i) we established
the gold standard and semantic measure, e.g., dataset: MiniMayoSRS, SSM: Jiang Conrath
1997 Norm and IC: Sanchez 2011 ; ii) we computed the similarity results using consecutive
versions of an ontology, e.g., MeSH 2009, 2010 and 2011; and iii) we used Fisher’s Z-
Transformation to verify whether the results obtained were statistically different. If the
p-value obtained from Fisher’s Z-Transformation was under 0.05, we assumed that the
KOS changes impacted on the similarity values and vice-versa.

• Set-up 2 verified the amount of hybrid measures (Lexical×Semantic) that outperformed
the approaches that used one single method. In this configuration, we fixed the on-
tology, then grouped the results from all datasets to verify how many results from
the combined methods outperformed the results from the single method. This setup
(dataset×ontology version×measures) generates 25920 possibilities. We only present the
overall results and the top 10 cases in the following sections.

• The objective of set-up 3 is to point out the best measure over all datasets. To do this, we
tested two possibilities: i) ranking with respect to the ontology. We fixed the ontology and
then analysed the performance from all combined measures across the datasets. This step
computed the hybrid measures rank according to dense pandas.Series.rank 20; ii) overall
ranking regardless of the ontology and dataset. In this step, we created a new ranking
according to the lowest standard deviation, summation and average of the previous ranks.

4.6.2 Experimental Setup for the Partial Match Rule

In order to evaluate the capacity of our method to adapt impacted annotations into consistent
ones, we utilized the two different configurations described below:

• Set-up 4 utilized only single methods, i.e., Rules, PartialMatch, SCP and LCP without
their combinations. However, we analyzed only the new PartialMatch approach proposed
in Section 4.4. We intend to verify whether this new rule outperforms the other techniques,
SCP and LCP, respectively.

• The Set-up 5 determined the position of the PartialMatch rule in our framework to
adapt semantic annotations. We tested two possibilities: i) Before the SuperClassAnnot ; ii)
After the SuperClassAnnot. After the determination of the PartialMatch positioning, we
evaluated the framework with all proposed extensions by comparing it to the configuration
utilized in Chapter 3.

For both Setups, we tested the effectiveness of the methods as follows: i) the capacity of our
framework to detect impacted annotations after changing a KOS concept; and ii) the ability to
correctly evolve the impacted annotations into consistent ones. In this case, consistency means
being consistent with the silver standard.

20https://pandas.pydata.org/pandas-docs/version/0.21/generated/pandas.Series.rank.html
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Metrics

To evaluate whether our predictions were similar to the silver standard, we used classic well-known
metrics, such as, Precision, Recall, F1-score, Area Under the Curve (AUC) and Accuracy [Powers,
2011]. The comparison between the results from Chapter 3 and those obtained after the extension
of our maintenance method is done by using the Sign Test method [Dixon and Mood, 1946].

Finally all percentages concerns to the use of Percentage Change, i.e., (V2−V1)
|V1| ∗ 100

4.7 Results and Discussion

This section describes the results obtained when assessing the hybrid measure and the
PartialMatch rule. We start by describing the results for the hybrid LSM/SSM in Section 4.7.1
and then, in Section 4.7.2, we detail the results for the PartialMatch rule.

4.7.1 Hybrid LSM/Ontology-based SSM

The results for setup 1, i.e., the stability of SSMs over time, can be observed in Table 4.5. In
the first column we have the semantic measures described in Section 4.5.1, and in the second
column the versions of the ontology used. The comparison between the versions, column three,
was done through a Cartesian product between the versions 2009 to 2014, where we removed the
redundant combination of years, i.e., we removed for instance 2014×2013 and be kept 2013×2014.

For readability reasons, we listed only a sub set of the results in Table 4.5, but all values
can be found on https://git.list.lu/ELISA/SemanticSimi. This subset is related to the
UMNSRS dataset which has the lower and higher Z-Fisher among all results.

The Z-Fisher in Table 4.5 shows that none of the SSMs had significant differences over time.
For the purpose of considering statistical differences between the SSMs, the Z-Fisher must be
lower than 0.05. As verified in our result, the lowest Z-Fisher value was 0.277, for the SSM
configuration: Resnik Unpropagated 1995 using IC: Seco 2004 in the period 2010 & 2014, red
colour in Table 4.5.

We thus verified that KOS changes do not impact the SSMs over the time. However, the
balance of the dataset, i.e. the size and the amount of impacted concepts used to calculate the
SSMs, may impact the final results. We observed that the percentage of impacted concepts in
these datasets was 2.8%, while the percentage of impacted concepts used to calculate the SSMs
in an ontology region, i.e., subClass, superClass and Siblings was 5.53%. Furthermore, the
top-k hybrid measures in our overall rank of setup 3 (Table 4.7), utilized the measures with the
lowest Z-Fisher in Table 4.5. This result highlights that the evolution of the ontologies played a
key role during the process of calculating the SSMs similarity. Thus, future work on SSMs must
include other pairs of impacted concepts to verify whether the stability of these measures and
the obtained rank continue to be the same.

Regarding the set-up 2, i.e., the percentage of hybrid measures that outperformed the single
SSMs, we observed that some hybrid measures, e.g. AnnoMap × Zhou 2008 × Resnik 1995
GraSM had a better Spearman’s correlation score than the single SSMs in 91.6% of cases, see
Table 4.6. In this Table, the first column is related to the LSM measures, and the second
column to the Information Content (IC) and semantic measures. Finally, column three shows
the percentage of hybrid measures that outperformed the single SSMs.

In Table 4.6, AnnoMap is present in 76% of the LSMs that contributed to increasing the
Spearman’s correlation of the hybrid measures and, in consequence, outperformed the single
SSMs. The similarity computed by AnnoMap [Lin et al., 2017], see equation 4.9, is also based on
the combined similarity score from different string similarity functions, in particular TF/IDF,
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IC & SSM Measure Year Z-Fisher

Seco 2004 & Jiang Conrath 1997 Norm 2009 & 2010 0.519871

Seco 2004 & Jiang Conrath 1997 Norm 2010 & 2011 0.880821

Seco 2004 & Jiang Conrath 1997 Norm 2010 & 2014 0.277042

Seco 2004 & Jiang Conrath 1997 Norm 2011 & 2012 0.991348

Seco 2004 & Jiang Conrath 1997 Norm 2012 & 2013 0.991341

Seco 2004 & Jiang Conrath 1997 Norm 2013 & 2014 0.356598

Ancestors Norm & Resnik 1995 GraSM 2009 & 2010 0.69417

Ancestors Norm & Resnik 1995 GraSM 2010 & 2011 0.832429

Ancestors Norm & Resnik 1995 GraSM 2011 & 2012 1.0

Ancestors Norm & Resnik 1995 GraSM 2012 & 2013 1.0

Ancestors Norm & Resnik 1995 GraSM 2013 & 2014 0.793019

Table 4.5: Stability of SSMs over time using UMNSRS dataset. We are considering the p-value of
0.05 as threshold of statistical significance. The red color indicates the lowest Z-Fisher obtained
in our experiments and the orange indicates the higher

Trigram and LCS (longest common substring).

simAnnoMap(t1, t2) = MAX(TfIdf, T riGram,LCS) (4.9)

When analysing the results of the best hybrid measures in set-up 2, we verified that the
similarity score obtained with the hybrid measures was considerably improved. In practice, when
calculated by single SSMs methods, Pain↔Morphine CUIs: C0030193 and C0026549, obtains a
similarity score of 0.27. Using the hybrid measure (equation 4.3), the similarity score increased
to 0.56 and better matched the score given by domain specialists in the UMNSRS dataset, i.e.,
996.75 in a scale of [0, 1500].

Nevertheless, we also verified that some hybrid measures never improved the single SSMs,
e.g. LSM: Block distance, SSM Resnik Unpropagated 1995 with IC Sim IC 2010. This occurred
mainly for LSMs as Block distance, Jaccard and TF/IDF, which considered strings as orthogonal
spaces. In parallel, Information Content (IC) focused only on the positioning of concepts in an
ontology without exploring additional resources like: Ancestors Norm and Max Linear, which
also demonstrated no improvement.

Regarding the LSMs tf-idf, Jaccard, and Block distance, we verified that these methods lose
the information contained in the prefix [Gusfield, 1997], e.g.,“Renal failure”↔ “Kidney failure”.
When we verified the scores given by the domain specialists in MiniMayoSRS dataset (4.0), these
terms were classified as strongly related. The similarity measures computed using Cosine or
Jaccard were 0.5 and 0.33, respectively (medium to poorly related terms). On the other hand,
methods like LACP provided a similarity of 0.77, which better matches the scores from the
domain specialists, increasing the Spearman’s correlation value.

The SSMs also reported a similar behaviour, e.g. Ancestors Norm, which computes the IC
scores according to the number of ancestors from a concept divided by the total of number
of concepts in an ontology, i.e., ic = nbAncestors(v)

nbConceptInOnto . This IC failed to describe the region of
a concept in the KOS, because concepts with the same number of ancestors, but in different
ontology regions, will have the same IC. The main drawback of this approach is that is does not
consider information such as siblings to calculate the IC. As discussed in [Meng et al., 2012] and
also verified during our experiments, the IC of a concept is dependent on its topology in the
taxonomy. Thus, exploring information as siblings will enhance the representation of the concept
topology, i.e. the spatial region it has in the ontology. It is widely utilized in other domains, e.g.,
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ontology prediction, mapping alignment [Pesquita and Couto, 2012, Da Silveira et al., 2015].

Table 4.6: Percentage of hybrid measures that outperforms the single SSMs

Lexical IC & Semantic %

AnnoMap

Zhou 2008 & Resnik 1995 GraSM 91.67
Resnik Unpropagated 1995 & Tversky IC Contrast Model 91.67

Seco 2004 & Tversky IC Contrast Model 91.67
Resnik Unpropagated 1995 & Resnik 1995 GraSM 87.5

Sanchez 2011 b adapted & Resnik 1995 87.5
Seco 2004 & Resnik 1995 87.5

Harispe 2012 & Jiang Conrath 1997 Norm 87.5
Zhou 2008 & Resnik 1995 87.5

Seco 2004 & Resnik 1995 GraSM 87.5
Sanchez 2011 b adapted & Resnik 1995 GraSM 87.5

Longest Common
Substring

Sanchez 2011 b adapted & Tversky IC Contrast Model 87.5

AnnoMap Resnik Unpropagated 1995 & Resnik 1995 87.5

Longest Common
Substring

Harispe 2012 & Jiang Conrath 1997 Norm 83.33

LACP Sanchez 2011 & Jian Conrath 1997 Norm 83.33

Regarding the first result of set-up 3, i.e., the overall rank of the measures for each ontology,
we verified that hybrid measures performed better than the single SSMs for both KOS, MeSH
and SNOMED CT. We are considering top measures to be those that have the minimum average
rank, summation and standard deviation.

In our experiments, we verified that the most highly performing hybrid measure for MeSH
was: Lexical: AnnoMap, IC & SSM: Seco 2004 & Jiang Conrath 1997 Norm, (weights: α = 0.8
and τ = 0.4 or α = 1.0 and τ = 0.5). We also observed that this hybrid measure was ranked in
the top 3 for MeSH, but with different weights, see Appendix 2 for more details.

In SNOMED CT, another hybrid measure was ranked as the most highly performing. The
combination: Lexical: AnnoMap, IC & SSM: Sanchez 2011b adapted & Jiang Conrath 1997
Norm, α = 1 and τ = 0.9 was first in the rank. Moreover, MeSH and SNOMED CT had different
measures in their top rank, (see Appendix 3 for more details).

Regarding this change in the ranks of both ontologies, we verified that the dataset utilized
(MayoSRS, Coders/Physicians, UMNSRS) did not contain many repeated concepts, and the
measures that had less performance in the UMNSRS dataset were those with higher Spearman’s
score in Coders/Physicians and MayoSRS. The complexity associated with UMNSRS can be
partially be justified by: i) the amount of cases to match with the domain specialists scores,
around 175 in UMNSRS and 30 in the others datasets; ii) as discussed in [Pakhomov et al.,
2010] and also verified in our experiments, the relation similarity ↔ relatedness is unidirectional,
i.e., the terms that have high similarity are often related but the opposite is not true. For
instance,the semantic similarity of Sinemet↔Sinemet CUIs: C0023570 and C0006982 is 0.93,
while Pain↔Morphine CUIs: C0030193 and C0026549 is 0.27. In UMNSRS dataset, the case
Pain↔Morphine is more frequent and in consequence reduces the quantity of appropriated
matches between domain specialists and automatic semantic measures.

When we recalculated the ranks to produce the overall rank, the second experiment from
Set-up 3, we can better observe the good performance of our approach, see Table 4.7. The
two first columns of Table 4.7 indicate the configuration for lexical and semantic measures. The
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weights α and τ used to tune the contribution of each measure, are listed in the third column.
Column four corresponds to the ontology used, followed by the ranks obtained with each dataset
in columns five to eight. The final rank remained the same, when considering the minimum
average, summation and standard deviation, presented in columns nine to eleven, as ranking
criteria. In our results, we verified that the best performance corresponded to the hybrid measure:
Lexical: AnnoMap, IC & SSM: Seco 2004 & Jiang Conrath 1997 Norm, α = 0.8 and τ = 0.5. It
was ranked in the Top 8 in MeSH.

Figure 4.1 shows the behaviour of this hybrid measure using SNOMED CT as the reference
ontology. In each sub-figure from Figure 4.1, we have one dataset using SNOMED CT version
2012 and the weights for the SSM and LSM represented in the x-axis and y-axis, respectively.
The weights increase by a factor of 0.1 and demonstrate the importance for each measure, e.g., a
x-axis equal to 0.0 and y-axis equal to 1.0 show that semantic measures have more importance,
while the main diagonals of the tables show that the measures have the same importance. We
decided to present the results of this hybrid measure for SNOMED CT, because even if its final
rank is far from the top rank for SNOMED CT, it was ranked as the best hybrid measure in the
overall rank.

As a primary observation, we verified that the best τ and α, indicated by the yellow colour
in Figure 4.1, remained in the main diagonal for the MiniMayoSRS dataset (Coders). In this
dataset, we can reduce the complexity to find an appropriate τ and α, because they have the
same importance. In the MiniMayoSRS dataset (Physicians), the best values of τ and α remain
in the upper triangular part.

The main difference we noticed for the best combination, AnnoMap, IC & SSM: Seco 2004
& Jiang Conrath 1997 Norm, α = 0.8 and τ = 0.5, was the similarity results in UMNSRS
dataset. The obtained results were not better than the single SSMs. The reason for this, was
that AnnoMap does not provide good similarity for the terms in the UMNSRS dataset. The
Spearman’s correlation value obtained from this lexical measure was -0.113. On the other hand,
Lexical measures such as LACP have a better Spearman’s correlation value, 0.113, and are a
better choice to combine with the SSMs. For instance, using the configuration LSM: Lexical IC
& SSM: Ancestors Norm & Lin 1998 GraSM, α = 0.8 and τ = 0.1, we have the best Spearman’s
correlation value for UMNSRS dataset 0.462, which outperforms the single SSMs 0.456.

4.7.2 Partial Match Rule

The results regarding the analyses of setup 4 are demonstrated in Figures 4.2 and 4.3. The results
in Figure 4.2 concern to the ability of these methods to detect impacted annotations, while Figure
4.3 showed the ability to propose correct adaptations for the impacted annotations. We utilized
the references (2009/2010) and (2009/2016) of our silver standard to evaluate PartialMatch.

As observed in Figure 4.2, the precision of all methods to detect impacted annotations is
high for both periods (2009/2010) or (2009/2016). However, the recall varies according to the
terminology used and the year. SNOMED CT and NCIt in (2009/2010) showed the highest recall
for the PartialMatch, while SCP and LCP show null values or close to 0.

In the period (2009/2016), SNOMED CT showed an improvement of 18% (V1 = 0.75, V2 =
0.885) when compared to the years (2009/2010), while the other terminologies had a smooth
variation. In short, the proposed rule outperformed the SCP and LCP in all KOS and in all years,
to detect the impacted annotations. This result was very clear when we observed SNOMED CT
in Figure 4.2.

The PartialMatch rule also demonstrated good results for adapting the annotations in
all KOS versions (2009/2010) and (2009/2016), see Figure 4.3. The AUC value for NCIt
in 2009/2010 was 13.9% higher than LCP and SCP (V1 = 0.625, V2 = 0.712), followed by an
improvement of 14% in 2009/2016 (V1 = 0.614, V2 = 0.702). This difference increased when
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we observed the F1-Score, reaching 55% for LCP (V1 = 0.371, V2 = 0.575) and 65% for SCP in
2009/2016 (V1 = 0.348, V2 = 0.575).

The other terminologies, ICD-9-CM and MeSH, also showed better results for the
PartialMatch rule in 2009/2010 and 2009/2016. The difference observed in ICD-9-CM
was 20% for the F1-Score in PartialMatch (V1 = 0.303;V2 = 0.379) and 4.75% for AUC
(V1 = 0.589, V2 = 0.617), while in MeSH this difference was less expressive, reaching 0.7% for
AUC (V1 = 0.57, V2 = 0.574) and 5% for F1-Score (V1 = 0.246, V2 = 0.259).

When analysing the results provided by each method (PartialMatch, SCP and LCP), we
verified that the inclusion of PartialMatch that uses SSMs to find candidate concepts in other
ontology regions produced a better adaptation for the impacted annotations. The main reason
was that PartialMatch covered more situations than only the neighbourhood utilized in Change
Patterns. Therefore, it could also be extended to future LCP and SCP versions to increase the
definition of the context of the concept.

SCP LCP Partial	
Match SCP LCP Partial	

Match SCP LCP Partial	
Match SCP LCP Partial	
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ICD-9-CM MeSH NCIt SNOMED	CT
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Figure 4.2: Performance of methods in Setup 4 to detect impacted annotations.

Regarding the position of PartialMatch in Setup 5, we verified that only ICD-9-CM
2009/2010 and SNOMED-CT 2010/2016 exhibited a better performance when the PartialMatch

was placed after the SuperClassAnnot. However, this is a minor improvement. The huge impact
is observed in NCIt when the PartialMatch rule is placed before the SuperClassAnnot. The
F1-Score shows a positive difference of 8.5% in 2009/2010 (V1 = 0.735, V2 = 0.798) and 6.6%
in 2009/2016 (V1 = 0.750, V2 = 0.800) (see Appendix 1 for more details). Therefore, our next
results concerning the adaptation of semantic annotations, only used the PartialMatch before
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Figure 4.3: Performance of methods in Setup 4 to adapt impacted annotations.

the SuperClassAnnot.

In Table 4.8, we presented the results obtained when adapting the annotation in the period
2009/2010. In the first column, we stated the KOS used, i.e., ICD, MeSH, NCIt and SNOMED
CT. The configuration described in Chapters 3 and 4 is mentioned in the second column and the
third column shows the methods followed by the metrics.

We observed that the eight rules used in our framework (Rules+), were capable of reaching the
same results as the combination with the BK method. Furthermore, the use of BK for annotations
generated with SNOMED CT leaded to a smooth decrease in the values. Rules+ was also capable
of outperforming (or achieving the same results) the best methods of Chapter 3 (Rules) with
a 7.8% of improvement in AUC for NCIt (V1 = 0.74, V2 = 0.798) and 15% for the F1-Score
(V1 = 0.649, V2 = 0.747), see Table 4.8.

Analysing the previous results, we observed that no annotation was adapted by the BK method
in ICD-9-CM, MeSH, NCIt and SNOMED CT. It occurred in both versions used, 2009/2010 and
2009/2016. The variation in the AUC refers only to the results of IncreaseAnnot rule discussed in
Chapter 3, i.e., with a term that increases the information of the impacted annotation occurring
in different concepts. In Fact, the BK technique did not compute any annotations because all of
them were adapted at a previous layer (Rules+).

In general, the new PartialMatch rule is capable of providing adaptations that are not
feasible with only BK. This is for instance the case of the annotation “postoperative myocardial
infarction”. In fact, no mappings contained in BioPortal exist with the terminologies used. Even
if PartialMatch rule shows a good performance, some improvements are still possible. For
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KOS Setup Method ACC AUC F1

BK & Rules+ 0.856 0.879 0.863
Chapter 4

Rules+ 0.834 0.862 0.839ICD9CM
Chapter 3 Rules 0.834 0.862 0.839

BK & Rules+ 0.867 0.891 0.877
Chapter 4

Rules+ 0.867 0.891 0.877MeSH
Chapter 3 CombineAll 0.862 0.887 0.872

BK & Rules+ 0.767 0.798 0.747
Chapter 4

Rules+ 0.767 0.798 0.747NCIT
Chapter 3 LCP & Rules 0.7 0.74 0.649

BK & Rules+ 0.828 0.833 0.8
Chapter 4

Rules+ 0.849 0.854 0.829SNOMED CT
Chapter 3 BK & Rules 0.839 0.844 0.815

Table 4.8: Results regarding the adaptation of annotations of Setup 5 during the period 2009/2010.
The blue values indicate the best pipelines and Rules+ indicates the eight used rules in our
framework, while Rules refers to methods applied in chapter 3.

instance, the adaptation of C11197:“folfox” to C11197:“folfox regimen”, is not aligned to our
silver standard. It should evolve to C63590:“FOLFOX-4 Regimen”, which also considers the
suffix of this annotation. We will need to verify whether the inclusion of thresholds in future
versions of PartialMatch overcomes this limitation.

The good performance of Rules+ is also confirmed in the period 2009/2016. The results
in Table 4.9 show that, except for SNOMED CT, it is capable of outperforming all the other
techniques. Furthermore, it shows significant differences when compared with the results from
Chapter 3. In NCIt the F1-Score is 13.34% higher than Chapter 3 (V1 = 0.667, V2 = 0.756) and
for ICD-9-CM Rules+ shows a positive difference of 17.26% (V1 = 0.643, V2 = 0.754).

The analyses of these adaptations demonstrated that the way these terminologies have been
changed as well as their internal structure, have a remarkable influence on the adaptations. For
example, in MeSH the reuse of CODEs and synonyms aids the adaptation method, mainly seen
in the adaptations of ChangeConceptAnnot. In SNOMED CT the generation of new IDs which
move the entire concept to another region or add new ones also have a positive impact. This was
mainly verified for the adaptations using ChangeConceptAnnot and PartialMatch rule.

On the other hand, in ICD-9-CM which has a basic structure of a tree with a maximum depth
of three without many synonyms, rules such as ChangeConceptAnnot or IncreaseAnnot did not
have a good performance. The drawback is that the application of semantic techniques or string
similarity methods do not aid in the maintenance task, as verified with other KOS. For example,
the annotation brain injury :854.00 was extended in 2010 to traumatic brain injury :V80.01 which
is located in a different region. Then, in 2011, it evolved again, because the concept V80.01,
became more specific “screening for traumatic brain injury”. In our silver standard, the domain
specialists decided to reduce the expressivity of this annotation by returning to the first concept,
V80.01, and reducing the annotated text.

We verified that when applying the current Rules of our framework, we were unable to
provide a good adaptation for this annotation. PartialMatch was not able to find a reasonable
result since it produced weak results for semantic similarity between concepts V80.01 and 854.00.
Furthermore, the string similarity value of “screening for traumatic brain injury” is higher than
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“brain injury” when compared to “traumatic brain injury”. Therefore, future versions also have to
deal with the reduction of expressivity in annotations through multiple versions.

Finally, we compared our method Rules+ against the best method from Chapter 3, using the
Sign Test [Dixon and Mood, 1946], see Table 4.10. In the first column of this table, we stated
the KOS used, followed by the two compared methods in columns two and three. In columns
four to six we have the signs obtained during the process of computing the Sign Test. Finally, in
column seven we have the p-value which indicates whether one method differs from another. We
are considering p < 0.05 as a significant difference.

The results of Table 4.10 show that NCIt had significant differences between the methods.
Its p-value was lower than 0.05 leading us to refuse the null hypothesis (Population median
difference = 0 ). It means that the Rules+ are able to maintain more annotations than LCP &
Rules (method from Chapter 3).

We observed that few annotations remain invalid and marked as unsolved by our method. In
such cases, the extension of the Rules+ to adapt these annotations is very complex. Basically,
the concepts are in different ontology regions and use terms that are very different to those used
in the annotations. More in-depth studies on string matching combined to semantic similarity
measures are required to address the missing cases.

KOS Setup Method ACC AUC F1

BK & Rules+ 0.73 0.781 0.719
Chapter 4

Rules+ 0.757 0.803 0.754ICD9CM
Chapter 3 SCP & Rules 0.676 0.737 0.643

BK & Rules+ 0.875 0.901 0.89
Chapter 4

Rules+ 0.88 0.905 0.895
SCP & Rules 0.859 0.888 0.874

MeSH
Chapter 3

CombineAll 0.859 0.888 0.874

BK & Rules+ 0.75 0.8 0.75
Chapter 4

Rules+ 0.753 0.804 0.756
BK & Rules 0.685 0.75 0.667
SCP & Rules 0.685 0.75 0.667
LCP & Rules 0.685 0.75 0.667

NCIT
Chapter 3

CombineAll 0.685 0.75 0.667

BK & Rules+ 0.901 0.913 0.905
Chapter 4

Rules+ 0.912 0.923 0.917SNOMED CT
Chapter 3 Rules 0.923 0.933 0.928

Table 4.9: Results regarding the adaptation of annotations for Setup 3 during the period
2009/2016. The blue values indicate the best cases and Rules+ indicates the eight used rules in
our framework, while Rules refers to methods applied in chapter 3..

4.8 Conclusion

In this chapter, we presented an approach that combined Lexical and Semantic measures to
enhance the concept similarity. Our experimental analysis demonstrated that together they could
outperform methods based on only one similarity measure (i.e., SSM or LSM). We observed
that the use of lexical similarity approaches was important to improve the quality of the results
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KOS Method 1 Method 2
Signs

p-value
+ NA -

ICD-9-CM Rules Chapter 3
BK & Rules+

Chapter 4
17 149 21 0.6271

MeSH
CombineAll
Chapter 3

Rules+

Chapter 4
2 190 3 1.0

NCIt
LCP/Rules
Chapter 3

Rules+

Chapter 4
0 84 6 0.03125

SNOMED CT Rules Chapter 3
Rules+

Chapter 4
0 92 1 1.0

Table 4.10: Results regarding the Sign Test. The values in blue refers to p-value (probability)
p < 0.05 which indicates we rejected the null hypothesis (H0 : Population median difference = 0 )
and red values p ≥ 0.05, indicates we supported the null hypothesis.

provided by the SSMs and vice-versa.
Using an approach that combined LSM and SSM, we presented the PartialMatch rule for

maintaining semantic annotations affected by the evolution of KOS. Our experimental analysis
demonstrated that PartialMatch was capable of achieving good results to adapt annotations
using one or multiple successive KOS versions. We observed that the use of semantic similarity
approaches was important for determining the relatedness during the evolution process.

In the next chapter, we discuss how to keep annotations searchable without applying the
direct maintenance approach and how to integrate this new method with the one described in
Chapter 3 in a general architecture to maintain semantic annotations.
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Chapter 5

Ad-hoc maintenance of semantic
annotations
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In this chapter we present the indirect maintenance approach, which addresses the problem
of searching for annotations when the KOS used to annotate documents have changed, but
the annotations cannot be updated. It answers RQ4 (Which methods can be used to keep the
annotations searchable when the document and annotations cannot be changed directly? ) and
differs from the direct maintenance approach discussed in Chapter 3 in the sense that the indirect
maintenance does not change the annotation.

This method applies to cases where: i) the annotations cannot be modified, ii) The documents
are confidential and cannot be accessed (only the metadata can be accessed), and iii) The
metadata are read-only. However, annotations impacted by KOS evolution must not be lost,
methods to search for annotated documents are needed to execute tasks in areas such as public
health, research, patient history, etc.

To address this problem we proposed a searchable knowledge base (KB) containing the
KOS evolution history. It allows us to navigate through complex relationships related to the
KOS evolution, e.g., addConcepts, move, split, and then search for documents by matching the
metadata with concepts from past and present KOS versions.

The originality of the proposed approach relies on the fact that we exploit the evolution
and structure of the KOS to construct a knowledge graph that can be used to enrich queries
when searching for medical documents. For instance, when querying biomedical data sources, the
queries are extended with information from the knowledge graph that we created with information
about the KOS evolution. Existing approaches [Esch et al., 2015, Butt et al., 2015, Rashid and

59



Nisar, 2016, Lee et al., 2016, El-Dsouky et al., 2016, Roberts et al., 2016] only use the current
version of the KOS to extract concepts and create queries. The evolution aspect is neglected and
those dealing with historical data will probably get an incomplete set of results.

The chapter is structured in the following way: In Section 5.1, we introduce relevant notions
to understand the problem of indirect annotation maintenance. In Section 5.2, we discuss the
related work in the field of graph generator and information retrieval, highlighting the drawbacks
and possible improvements. In Section 5.3, we detail our approach to managing the indirect
maintenance of semantic annotations. In Section 5.5, we discuss the integration of both the
direct and indirect maintenance methods. The Section 5.6 describes the methodology utilized
to evaluate our approach, as well as the dataset utilized. Finally, in Section 5.6.1 and 5.6.2, we
present the results and discuss them, respectively.

5.1 Problem Statement

In our work, we split the problem of keeping semantic annotations searchable through our indirect
maintenance method into two sub-problems: i) how to organize and store the information related
to the KOS evolution; ii) how to use the stored information about KOS evolution to improve the
quality of results when searching for documents over a long period of time. Notice that both
problems are related to information retrieval tasks.

For the specific context of our experiments, we consider that our source of information contains
only Electronic Health Records (EHRs). Thus, for readability purposes, we use the acronym
EHR in this chapter to make reference to our data source. However, an indirect maintenance
method can be applied to any data source having the following properties:

1. Composed of documents with metadata that are annotations;

2. Annotations linking a document (or part of a document) with concepts from an ontology;

3. Ontology evolving over time, so that different documents can potentially be annotated with
different versions of the ontology;

4. Annotations using only use the terminological part of the ontology (e.g., concept, labels
and synonyms), as highlighted in Section 1.2 (Data-driven Analysis).

The structure of the data source was also simplified for readability purposes. We assume that
the information available is similar to the use cases presented in Figure 5.1. In this example, our
knowledge base (KB) contains two annotated EHRs. The first column contains the EHRs ID,
i.e., the identification of the patient report, with Annotations, i.e., the concepts describing the
patient report, in the second column. The content of the patient report is not available.

Figure 5.1 illustrates two use-cases where the evolution of the ontology (in this case, MeSH)
can impact access to the information. On the left-hand side of the Figure 5.1, we have the version
2014 of MeSH and on the right-hand side, the version 2016 of MeSH. The upper part of the figure
shows the consequence of including a new concept in MeSH. The concept D000069447:Tiotropium
Bromide (green colour) was added. As a consequence, from 2016 onwards, all EHR somehow
related to the description of the drug Tiotropium Bromide will have this new concept in the
annotation set. However, the EHRs metadata created before 2016 will not have this concept.
If a user queries the system using this new concept, no EHRs created before 2016 (e.g. EHR
631) will be retrieved. Using our approach, the system will be able to return EHR 631, as well
as other EHRs containing this annotation. The procedure for that will be detailed later on in
this chapter, but in short, we created a knowledge graph capable of creating a link between the
concept Tiotropium Bromide and the concept Chronic Obstructive Pulmonary Disease (COPD).
Thus, the query will be automatically enriched to include the latter concept for retrieving EHRs
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EHRs	ID Annotations

631 Bronchodilator	Agents	|	D001993,
Scopolamine	Derivatives	|	D012602,
Comorbidity	 |	D015897,
Pulmonary	Disease,	Chronic	Obstructive	|	D029424,
Humans	|	D006801,
Hospitalization	|	D006760

EHRs	ID Annotations

551 Adolescent	 |	D000293
Child	 |	D002648
Child	 |	Psychiatry	D002665
Child,	 Preschool	 |	D002675
Child	Mental	Disorder	|	D019952
Mental	Disorders	|	D001523
Mental	Health	|	D008603
Predictive	Value	of	Tests	|	D011237
Psychiatric	Status	Rating	Scales	|	D011569
Surveys	 and	Questionnaires	 |	D011795

D000069447
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[…]
Other concepts

Other concepts
[…]
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[…]
Other concepts

Other concepts
[…]

D019952

D001010, 
D002653, 

D007859 […]

D019952

Child Mental Disorder

D001523

D001010, 
D002653, 

D007859 […]

Other concepts
[…]

Child Mental Disorder

D001523

Other concepts
[…]

delC

MESH 2016MESH 2014

addC

Use case 1

Use case 2

Figure 5.1: Knowledge base containing the immutable documents/annotations.

created before 2016 (this new query extension will not be applied to documents created after
2016), and EHR 631 will be part of the results of the search process. This procedure increases
the recall of a search, but the precision can be penalized.

Use case 2, illustrated at bottom of Figure 5.1, is a more complex case. When a concept is
deleted from the MeSH, the ontology-based search system can no longer create queries using
this concept. Thus, in 2016, end-users will not be able to search for EHRs using the term Child
Mental Disorder. To keep documents containing this term searchable and the previous version of
concept D019952 reusable, we propose to use our knowledge graph to go back to the last version
of MeSH where the concept D019952:Child Mental Disorder exists (i.e., 2014), select a set of
related concepts that can replace D019952 in queries made in 2016, then use this set of concepts
to enrich the query and retrieve recent EHRs related to EHR 551.

Thus, when using outdated ontologies to query EHRs annotated with the last version of the
ontology, part of the information become unsearchable, as illustrated in Figure 5.1. We need a
system that can address this problem. For instance, an end-user that types a query with concepts
from MeSH version 2014 should be able to find relevant documents annotated with MeSH 2016
and vice-versa.

The current approaches supporting the maintenance of semantic annotations only work
with direct maintenance, as discussed in chapter 3. In this chapter, we propose a new Ad-hoc

approach that combines methods from other domains (e.g., Evolving Graph Generator (EGG),
and Information Retrieval (IR)) to tackle the problem of indirect maintenance.

Our approach deals with the refereed problem in a two-step process. First, we built a knowledge
graph through EGG techniques that describe the KOS evolution and its complex/temporal
relationships (detailed in Section 5.3). Then we develop a search algorithm, based on the state-
of-the-art of IR domain, to exploit the knowledge graph and enrich queries in order to retrieve
the documents over a long period of time. The major gap when using these approaches alone is
the temporal/evolutionary aspect, further discussed in the related work section below.
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5.2 Related Work

Several domains, such as medicine, social sciences, finance, etc. represent data represented as
graphs. We can also consider the part of the KOS that we are using in this work as a graph (we
refer to it as the KOS graph). Graphs provide flexibility to represent the domain knowledge with
its complex relationships. In this work, we used graphs to represent the evolution of annotations.
For instance, in the approach presented earlier to maintain annotations (chapter 3 and 4), we
used the adapted W3C annotation model (see Figure 2.11) to represent the evolution of an
annotation annot2 from its old version annot. The newly created relationship evolved was used
as following: :annot2 oa:evolved :annot. This representation format allows us to process a
wider range of queries to exploit the graph, for instance, to calculate the shortest path between
two annotations that have evolved over a period of time (e.g. 2009 to 2014).

The work presented in this chapter was inspired by the Evolving Graph Sequence (EGS)
domain. EGS utilizes and analyses many graph snapshots from various periods of time [Kos-
matopoulos et al., 2016] and connects them to represent their evolution. Recent works in EGS
mostly deal with i) the modelling of the graph in order to reduce the storage space of multiple
snapshots [Caro et al., 2015, Moffitt and Stoyanovich, 2017]; ii) historical reachability queries,
which compare whether two nodes of a graph are connected over time [Akiba et al., 2014, Se-
mertzidis and Pitoura, 2016]; iii) efficient snapshot retrieval, i.e., index management of large
historical evolving graphs, in order to speed up the retrieval process [Kirsten et al., 2009, Khurana
and Deshpande, 2013, Labouseur et al., 2015].

A common aspect of EGS approaches is that the information from these graphs, e.g. nodes,
relationships, validity periods are already defined and no further inferred data is needed. However,
in some particular cases more information must be included, e.g. the complex relationships
related to the KOS evolution (see Section 5.1) [Alami et al., 2017]. These evolution aspects lead
to the development of more sophisticated techniques than those proposed in Evolving Graph
Generator (EGG) domain.

In EGG, [Bagan et al., 2017] proposed gMark, a framework to generate synthetic graphs and
query workloads. Using a graph configuration file, which contains i) the number of predicates and
nodes, as well as their properties, gMark builds a synthetic graph for the informed configuration.
This setup removes the technical constraints that are commonly hardcoded and makes the
customization of such systems by domain specialists more difficult when applied in other domains.

[Alami et al., 2017] proposed an extension of gMark that includes temporal constraints
given by the user. For instance, when creating a named graph in TriG format21 :G1 { :hotel2

a ex:Building ; ex:availableRooms "12"^^<rdfs:double> .}. The number of available
rooms computed for <hotel2>, can assume values in the interval of [1,100] from one snapshot to
another.

The main drawback regarding these two approaches [Bagan et al., 2017, Alami et al.,
2017] is the difficulty of generalizing them for the evolution of biomedical KOS graphs.
Since the KOS graph is already there and we do not want to recreate the concepts or in-
stances, we need to focus only on the information relating to its evolution to enrich the
KG, e.g., :G1 { :D000069447 a ex:KOSConcept ; ex:ChangeType addConcept; ex:date

"2003-10-02"^^xsd:date ; ex:knows _: D019952 . }. This example includes a new con-
nection between the concept source D000069477 and the concept target D019952.

K-NN graph-building techniques update existing graphs by attaching new nodes/relationships
to their K nearest neighbours. The problem with these approaches is the lack of consideration
of temporal aspects as well as their performance when processing multiple versions [Debatty
et al., 2016]. Another aspect of K-NN that makes this technique hardly applicable to our indirect

21https://www.w3.org/TR/trig/
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maintenance approach, (see Section 5.1) is the way information retrieval algorithms are currently
implemented in existing approaches that do not deal with temporal aspects.

In EGS, existing approaches [Akiba et al., 2014, Akiba et al., 2015, Semertzidis and Pitoura,
2016, Semertzidis and Pitoura, 2018] only work with historical reachability queries, i.e., given
two concepts X and Y, they check whether both concepts are connected over a period of time.
In our case, we need to deal with only one concept as input (we assume that end-users do not
need to know the equivalent of concept X in previous KOS versions).

Most generic approaches in the biomedical field, which implements the exploratory search
[Esch et al., 2015, Butt et al., 2015, Rashid and Nisar, 2016, Lee et al., 2016, El-Dsouky
et al., 2016, Roberts et al., 2016] only work with the current KOS version, neglecting the
historical/evolutionary aspect of the KOS.

In the literature review, we did not find works dealing with the indirect maintenance of
semantic annotations. Furthermore, none of the related approaches, using graphs, are completely
adequate for the aspects involved in the evolution of KOS and/or exploratory search problems
(as explained before). In this chapter, we present our approach to overcoming these problems.
We built an Ad-hoc searchable knowledge base considering the evolution of KOS to overcome
the problem of indirect maintenance.This approach is based on K-NN graph building algorithms
[Dong et al., 2011, Debatty et al., 2016] as shown in the next section.

5.3 Knowledge graph to represent evolving ontology

Figure 5.2 gives a simplified overview of our knowledge graph (KG) representing evolving
ontology. The turquoise and dark blue boxes represent stable and changed concepts, respectively.
As illustrated in Figure 5.2, the initial version of our KG, i.e., MeSH 2009, contains concept
D009133:Muscular Atrophy. In 2010, a new related concept was added to specialize the existing
one (D055534:Spinal and Bulbar Muscular Atrophy). To represent this evolution, we created
a highLvlChg relationship between both concepts. Thus, documents associated with D009133
and/or D055534 can be retrieved if we find one of these two concepts in the query (e.g., Muscular
Atrophy).

D009133 Muscular Atrophy D009133 Muscular Atrophy D009133 Muscular Atrophy

D055534 Spinal and Bulbar
Muscular Atrophy

D020966 Spinal and Bulbar
Muscular Atrophy

[…]
versions later

highLvlChg

[…]
Other possibilities

version: 2013

version: 2010

version: 2010version: 2009

[…]
versions later

version: 2013

Figure 5.2: The proposed Ad-hoc history of concepts. The turquoise and dark blue boxes indicate
the changed and stable concepts, respectively.

We propose a KG that deals with the multi-versioning and/or evolution of KOS. Figure 5.2
shows the evolution of concept D055534 to D020966 during the period 2010 to 2013 (this concept
remains stable until 2012 and moved to another region of the KOS in 2013). To represent this
evolution, we created a highLvlChg relationship between both concepts allowing us to navigate
through past and current versions of concepts. Thus, even if the concept D055534 was moved to
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another region of the KOS, we are still able to use the KG to retrieve the previous versions of the
concept (D055534 and D009133 ). To perform this navigation, we added the following features
to the KG, where the features described in [Debatty et al., 2016] were extended by additional
ones to cope with the evolutionary aspect of the KOS:

• Edge directions: Considering concepts as vertices of a graph, Edges materialize the
relationship between concepts. For example, in Figure 5.3, concept D009133:Muscular
Atrophy and D001284:Atrophy are related in our graph. Since our KG is a digraph [Debatty
et al., 2016], one can distinguish between the subject and the object of the relationship. In
this work, we consider the structural relationships that are superClass, subClass, siblings
and none as uniquely labelled edges, depicted as black arrows in Figure 5.3. Regarding the
concepts that emerged from the evolution of the KOS and their connection within the KG,
we utilized the same principle of digraphs, but the connections may not follow the ontology
structure. For instance, concept D055534 in Figure 5.3 is connected to its superClass and
shares some similarities with two other concepts D009136, D016518, from other regions of
the ontology. These connections are illustrated in dashed grey arrows in Figure 5.3 but are
associated with vertices in our KG.

• Similarity value: It indicates the degree of similarity between two concepts (or two
versions of the same concept). We used the hybrid measure described in Chapter 4 to
compute it. When a new KOS version is added to our KG, for each pair of connected
vertices, the value of the similarity is either calculated or update as depicted in Figure 5.3.

• Validity periods: Versioning and storage capacity is an important feature present in our
KG. To reduce the required storage capacity, we used methods like those described in [Caro
et al., 2015, Moffitt and Stoyanovich, 2017]. These methods labeled the validity period of
concepts and their relationships on the graph nodes and edges, see Figure 5.3. Applying
this method avoid duplicating the whole KOS into the KG for every new version.

• Relationships: In order to include more semantics in our KG, we created two types of se-
mantic relationship: evolutionary relationship associated with vertices; and structural
relationship associated with edges. Evolutionary relationships are highLvlChg, lowLvlChg
and none. highLvlChg includes delC, addC, split, move and chgAttValue; lowLvlChg includes
delA and addA; none means that the connected vertices had a KOS change at some point in
its evolution. Structural relationship are superClass, subClass and siblings. Figure 5.2 shows
only the evolutionary relationships while Figure 5.3 shows both. For instance, highLvlChg
is an evolutionary relationship indicating that, from one version to another, a major change
in the KOS was observed (in this case, a concept was added). Figure 5.3 uses Super to
indicate that concept D001284 subsumes concept D009133. The importance of having these
two types of relationships becomes evident when the system needs to define strategies to
enrich queries. For instance, a query using the term Spinal and Bulbar Muscular Atrophy,
from MeSH 2013, will not find documents before 2010. But, knowing the history of this
concept, the query can be enriched to return all documents, created before 2010, that also
contain the term Muscular Atrophy.

When the query contains outdated concepts, the KG can be used to include additional
terms in the query. For instance, consider the situation where one system uses MeSH
2009 to request documents containing the concept D009133 to another system that uses
MeSH 2013 to annotate its documents. Thus, using the KG, the query can be enriched
with the concepts D055534, D009136 and D020966, connected through the path (D009133,
D055534, D009136, D020966) in the period [2009, 2013], to retrieve documents associated
with Spinal and Bulbar Muscular Atrophy and Muscular Atrophy. In such cases, the relation
and similarity values become very helpful for selecting additional terms (see Figure 5.3).
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D009133

Period Neighbor 
List

Relation Simi

2010 D001286
D055534

none
highLvlChg

0.95
0.76

2012 D001286
D055534

none
none

0.91
0.74

2013 D001286 none 0.91

D001284
D040181

D020271

D030342

D009358

D020763

D013568

D019636

D009422

D009136

D009223

Valid: [2010, 2012] Valid: [2013, 2016]
Period Neighbor 

List
Relation Simi

2010 D009136
D020271
D040181
D016518

highLvlChg
highLvlChg
highLvlChg
highLvlChg

0.75
0.96
0.94
0.66

Period Neighbor 
List

Relation Simi

2013 D009133
D009134
D009138
D062187

highLvlChg
highLvlChg
highLvlChg
highLvlChg

0.75
0.96
0.74
0.66

2014 D009133
D009139
D009131

none
highLvlChg
highLvlChg

0.75
0.86
0.74

Valid: [2009, 2016] D055534 D020966

Figure 5.3: KG proposed for the indirect maintenance of semantic annotations. The black arrows
indicate the connection following the ontology structure, while the dashed grey lines indicate the
connections created by our approach. Each node contains the validity period and its neighbours.
For each triple (node, period, neighbour), one relation and similarity describe their link.

We formalize our KG as a direct graph G = (V,E), where V is the set of vertices and E the
set of edges. The set of vertices is denoted by:

V = {(c, p,NL)|c ∈ O, p ∈ N,
NL = {(ci, RE, simiV )|ci ∈ O,RE ∈ {highLvl, lowLvl, none}, simiV ∈ R}}

where, c is a concept from an ontology O in a period p, e.g. 2009, containing a neighbour list
NL inferred by the KNN graph approach of Debatty. Each NL contains a concept target ci; the
relation emerged from the evolution RE, whose values highLvl and lowLvl denote some KOS
change and none indicates that they are connected because they have a high similarity value
simiV . The set of edges E is denoted by:

E = {(u, v, p, SR, simiE)|u, v ∈ V, p ∈ N, SR = {super, sub, sib} , simiE ∈ R}

Where, u and v are vertices belonging to V and are connected during a period p, e.g. 2009.
Since edges respect the ontology structure, each connection has a semantic relationship SR, which
is one of the values superClass, subClass and sibling. Finally, simiE represents the similarity
between u and v.

5.4 Indirect maintenance of semantic annotations

This Section describes the method for the indirect maintenance of semantic annotations. We
start describing the workflow of Figure 5.4 with the method to construct the KG, called Offline
phase, then, we detail a use-case implementing this KG for the indirect maintenance of semantic
annotations, called Online phase.

5.4.1 Offline phase

It starts by taking as its input the multiple KOS versions provided by the user in OWL. In the
Build enhanced KOS process, we use the first KOS version as a bootstrap and enrich it with
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Input

Ontology Versions;
KOS Changes

Offline Process

Query: Tiotropium 
Bromide
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Manage 
Temporal 
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KB
Online process

Graph Search Enriched 
Query

Associated 
Documents

Figure 5.4: Workflow to compute the indirect maintenance of annotations.

the features discussed in Section 5.3, i.e. edge directions, similarity values, valid periods and
relationships. The resulting graph serves as an initial KG that will iteratively be enriched with
information acquired from the next versions of the KOS considered. To update the validity
periods and edges of each concept, we first compute the ontology changes using Conto-Diff
[Hartung et al., 2013] in consecutive versions. Then, we update the concepts and relationships in
two steps:

1. Update Concept Period: In this case, if a concept is not present in the KOS changes,
we assume it belongs to both versions. Therefore, we update the validity period accord-
ingly, e.g., D009133:Muscular atrophy is not present in the KOS changes of 2010 then its
corresponding validity period is [2009, 2010]. In contrast, the validity period of concept
D016821:Phytomastigophorea, deleted in 2010, is [2009].

2. Update Period and Edges: After computing all the concepts’ validity periods, we start to
walk through the KG to update the similarity, relationship and period of edges, considering
two cases.

(a) The source and target concepts belong to the same hierarchy and have the same validity
period. We then update the structural relationship associated with the considered
edge’s information and similarity.

(b) The concept source has changed or all of its neighbours have changed. We then add it
to a temporary list to be updated during the Fast Knn Graph process.

At that stage, we have the KG containing all up-to-date structural information and a list of
concepts to be computed in the Fast Knn Graph process. In our example implementing MeSH
2009/2010, the Fast KNN Graph process will update the Neighbour List of all changed concepts
containing one of the following KOS changes: split, move, addC, addA, addLeaf and addInner.

The Fast KNN Graph process follows Debatty’s approach [Debatty et al., 2016] to update
the NL list from a given impacted concept. This two-step process is as follows:
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1. Search for the k-nearest neighbours of a given node in the graph. This is done using the
improved Graph Nearest Neighbour Search (iGNNS) algorithm [Debatty et al., 2016], which
iteratively explores the neighbours of neighbours down to a fixed depth.

2. Update the selected neighbours: This phase adjusts the Neighbour List of a given source
and target concepts using the k-nearest neighbours found by the iGNNS.

The computational cost of updating a node in Debatty’s approach is O
(

n
speedup + kDEPTH

)
.

In this equation n is the size of the graph and speedup is a parameter to tune the algorithm,
in the sense that it reduces the number of elements to compare when finding the k-nearest
neighbours. Finally, kDEPTH refers to the maximum depth that the algorithm will walk through
to find the most similar vertices of the graph. Depending on the size of the graph and the
speedup parameter, this approach can be time consuming. Therefore, we enhanced this approach
by including the following modifications:

• Lexical View : We reduced the complexity of computing a new node of Debatty’s algorithm
by implementing the lexical view discussed in Section 4.4. In [Debatty et al., 2016], to
find the k-nearest neighbours, n

speedup comparisons are necessary. The inclusion of the

lexical view will reduce the number of comparisons from n
speedup to lexicalV iew(nodei)

speedup , where

lexicalV iew(nodei) is the amount of concepts returned by the Lucene search engine22. In the
worst case scenario, i.e., the concepts do not have lexicalView, the number of comparisons
remains n

speedup .

• Temporal Aspects: [Debatty et al., 2016] utilizes a tuple {node, NeighborList} to access
the graph. We included a third feature Period that indicates the validity of the edge and
node, respectively. Thus, our KG represent the nodes and their connections via a triple
{node, Period, NeighborList}. The nodes/connections that are not valid in a given period
are excluded from the list of candidates.

The last process from the offline phase deals with the Management of Temporal RDF Graph.
It stores and manages the generated KG. From a practical point of view, the KG is represented
in a TriG format 23, which allows a RDF Dataset to be written in a compact textual format.
Moreover, the number of nodes in this KG is calculated by the sum of the impacted concepts over
time plus the number of nodes from the last KOS version: (

∑n
i impactedConceptsi)+lastV ersion.

5.4.2 Online Phase

This consists of querying our KG using a set of terms from any KOS version as input to retrieve
the history of those terms. To access the KG we utilized the iGNNS algorithm proposed by
Debatty, however any search algorithm can be used to interact with the knowledge graph. To
perform the search, we included the following modifications in Debatty’s algorithm:

• Filters: When querying the KG, users can specify the type of relationship to be used.

• Periods: Our algorithm explores the evolution of the KOS in two ways:

1. We look for the related concepts in preceding versions, e.g. from 2009 until 2013. In
this case the starting point of our KG is t and we incrementally search the neighbours
of t+ 1, t+ 2 until the last version available in our KG.

22https://lucene.apache.org/core/
23https://www.w3.org/TR/trig/
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2. The search is performed in anterior versions, e.g., 2012, 2011, 2010. Similarly, we
define a starting point t to match the query with our KG and incrementally search
the neighbours having t− 1, t− 2 until the first available version.

During this search, we consider only the top-k most similar neighbours to go deeper into the
graph. For example, using a Neighbour List of 15 and the top-5 most similar neighbours,
we consider only the subset of neighbours most similar to the triggered concept, i.e., the
one used to reach these neighbours to go deeper into the graph.

• Top-k : Many concepts can be retrieved by the search. Therefore, we restricted the algorithm
to return the top-k most similar concepts regarding the query (first matched concepts).
This top-k configuration is informed by the user, but we also restricted the algorithm when
a similarity equal to 1.0 is found in the results. In this case, we return the exact amount of
concepts having similarity equal to 1.0 instead of the top-k.

After retrieving the most similar concepts given a query specified by the user, our workflow
returns the possible concepts as output to enrich the query. These concepts will later be used to
retrieve documents in health facilities. At this stage domain experts can access the EHRs stored
in a database (see Figure 5.1) following their own implementation.

5.5 Maintenance of Semantic Annotations, the MAISA frame-
work

In this Section, we describe MAISA, our final framework to maintain semantic annotations valid
over time when the underlying KOS change. MAISA (Maintenance of Semantic annotations)
encompasses the methods discussed in Chapter 3 as well as the indirect maintenance method
described in Section 5.4.

1

Input
Set of annotations; 
Information about 
external resource;

KOS Changes;
Ontology Versions

OutputOutput

KG
Graph NN 

Search

Ad-hoc 
Maintenance

Load and process  
external resource

Apply Rules in 
local resource

Apply Change 
Patterns

Compute 
Impacted 

Annotations

Build AD-HOC 
KB

Indirect Component Direct Component

anno1

anno11

evolvedTo
Query: Tiotropium 
Bromide

MAISA Architecture

Figure 5.5: The MAISA Framework.

68



Figure 5.5 illustrates the architecture of the MAISA framework. In the upper left part, we
have the indirect component discussed in this chapter. The grey and blue boxes refer respectively
to the offline and online phase discussed in Section 5.4. The green box in the middle refers to
our Ad-hoc knowledge graph that contains the KOS history.

As previously discussed, our indirect maintenance method takes as its input a term, rep-
resenting user’s queries, to enrich with information dealing with the history of the concepts
associated with this term. We implemented a Restfull service to provide these concepts and leaft
the implementation of accessing the EHRs to health facilities. These split processes provide more
security when utilizing our method to query, because no patient data is needed and no access to
sensitive database is required.

Regarding the direct component illustrated in the upper right part, the grey boxes refer to
the maintenance methods from Chapter 3, while the blue box concerns the process that identifies
the invalid annotations by analysing the evolution of the associated KOS (see Section 3.2).

The difference in this component regarding the workflow described in Chapter 3, is the
inclusion of the Ad-hoc Maintenance method to adapt the annotations. This adaptation utilizes
the result from Graph NN Search from the indirect component, but here we search for the most
similar concept. This new method was adopted as a second option for the use of BK method due
to the lack of available mappings between ontologies.

Finally, inputs and outputs illustrated at the bottom of Figure 5.5 remain the same from
those discussed in Chapter 3 and Section 5.4, i.e., we continue using a Set of annotations; Set of
KOS changes; Set of ontologies; Information about external resources for the direct maintenance,
while in the indirect maintenance we utilize the Ontology Versions; KOS Changes and keyword
query.

5.6 Material and Methods to evaluate the direct and indirect
approaches

This section describes the resources and methods used to evaluate our direct and indirect
approaches. The main resources are: i) the terminologies; ii) the data set utilized to evaluate our
approach; iii) the method used in the indirect maintenance and iv) the metrics for evaluation.

Terminologies

As described in Section 5.3, our method implements consecutive KOS versions in order to build an
Ad-hoc knowledge graph that is used in the indirect maintenance approach. In our experiments,
we used: Medical Subject Headings (MeSH) versions 2014AA to 2016AA (excluding the AB
versions), downloaded from UMLS and transformed by ourselves into OWL files. To compute
the difference between the terminologies, we use COnto-Diff [Hartung et al., 2013].

Silver Standard

Since no annotation baseline representing annotated EHRs in different periods exists, we had to
build our own corpus of reference. Figure 5.6 illustrates the following methodology:

1. We selected the EHRs from the TREC Clinical Decision Support Track version 201424. In
this corpus each row has one domain-specialist opinion indicating whether a document is
related to an EHR. The value 0 indicates no relation, while 2 means strong relation. In our
silver standard, we utilized all rows that have a value equal to two in order to avoid narrow
or non-related documents.

24http://www.trec-cds.org/2014.html
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TREC 2014

EHR PMC	DOC Relevance

1 1180830 0
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1 1180830 0
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TREC	2014
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1 1201136
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EHR PMID	DOC

1 16122380
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EHR PMID	DOC
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MEDLINE	Annotations
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1 16122380 Middle	Aged|D008875 2014
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Figure 5.6: Methodology to build the silver standard of annotated EHRs.

2. The document identifier present in the TREC corpus is associated with the documents
available on the PubMed Central (PMC) repository, i.e., using this identifier we can retrieve
a document from the PMC website, e.g., the document 118083025. These documents
represent the subjects (drug descriptions, disease definitions, etc.) related to the EHR, but
no metadata are associated with them. Thus, we had to use a converter26 which translates
the PMC identifier to a PMID identifier. This PMID identifier allows us to retrieve the
annotations from MEDLINE/PubMed Baseline.

3. The MEDLINE/PubMed Baseline27 is a dataset of annotations related to PubMed papers.
These annotations are generated each year and represent a static view of the data each
time a baseline is released. Thus, the MeSH vocabulary updates do not change annotations
from previous versions. In our silver standard, we are using the annotations from versions
2014 and 2016, gathered by associating the PMID identifiers from previous phase with the
MEDLINE baseline.

4. After gathering all annotations, we built a knowledge base (KB). Notice that this KB
is different from our KG; the former contains the set of metadata that we are using to
evaluate our approach while the latter contains a graph describing the evolution of an
ontology. The KB is composed of the following data [Concept, EHRs, Years], which indicate

25https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1180830/
26https://www.ncbi.nlm.nih.gov/pmc/pmctopmid/
27https://mbr.nlm.nih.gov/
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which concept is related to which EHR in a specific year. We used it to simulate the
environment described in Section 5.1 where the query is different from the annotated EHRs.
Nevertheless, health facilities will have their own storage format for these associations and
our format will be only used for evaluation purposes.

5. Using the annotations collected, we built a set of reference queries to evaluate our method.
We first grouped a set of documents from MEDLINE annotations and performed a diff
between their annotations. To illustrate what this diff looks like, in Figure 5.7 we included
an extract of our dataset. It contains the annotation [Raloxifene:D020849] created in 2014
and referring to document 2544368 (EHR 29). The diff shows that in the second year
(2016), there was a change in the attribute value and the annotation became [Raloxifene
Hydrochloride:D020849]. The common annotations emerging from this diff corresponded
to the data present in both years. Since we search for differences to be in line with the
example of Section 5.1, the common annotations were discarded from our queries. To
generate our queries, we used the term (from the annotation diff), the year to interact with
in our KG, the year to retrieve the documents in the KB from the previous phase and
the EHR ids. For instance, at bottom of Figure 5.6, we elaborated a query with the term
Sleep Disorders, which will start interacting with the KG in version 2016 and retrieve the
associated EHRs [5, 17, 23] from the simulated KB in version 2014.

The goal of our Ad-hoc method is to verify whether the concepts returned from the Fast
search process, when interacting with the Ad-hoc KG described in Section 5.3, allow a complete
and precise retrieval of documents. The dataset is available at https://git.list.lu/ELISA/

AnnotationDataset. It contains a total of 23 queries to evaluate the scenario, query 2014 and
KB 2016, while for the opposite, query 2014 and KB 2016 have 27 queries.

Figure 5.7: Example of the diff between the terms from MEDLINE annotations; the first year
refers to 2014 and the second year to 2016.

Experimental Setup

In order to evaluate the indirect maintenance, we implemented two different setup described below.

Set-up 1: We search for EHR documents. To do this, we used: i) the Ad-hoc knowledge
graph described in Section 5.3; ii) the queries from our silver standard, and iii) the simulated KB
that represents the database from health facilities.

We are running the queries from our silver standard considering two opposite cases: i) terms
taken from KOS version 2014 verified on EHRs annotated in 2016 and ii) terms extracted
from KOS version 2016 evaluated on EHRs annotated in 2014. Both cases implement the Fast
Search process, which interacts with the Ad-hoc KG built with the following number of nearest
neighbours in {2, 4, 6, 10}. We used two similarity measures: i) the best hybrid approach
described in chapter 4 and ii) only a single semantic measure.

In order to increase the precision of the search, we applied the filters described in Section 5.4,
by building the power set of the filters, i.e., the set of all subsets of a set. Moreover, we only
selected the top-k most similar concepts considering k ∈ {5, 10, 15, 20}.
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The experimental configuration Conf listed in the results (cf Section 5.6.1) can be expressed as:

Conf = (method K x d y f name top k})

where:

• method = {combined/semantic}: denotes the hybrid or single semantic measure used to
build the Ad-hoc KG.

• K x: is the number of x nearest neighbours used to build the Ad-hoc KG.

• d y: is the y maximum depth specified for the search process.

• f name: is the name of the filter utilized when querying the Ad-hoc KG. In this field each
filter is described by its three first letters, e.g., hig means we are considering only concepts
that have highLvl relationship.

• top k: is the k most similar concepts returned.

Set-up 2: We applied the indirect maintenance process, over the silver standard described
in Chapter 3 using version 2009/2010. To do this, we selected the best configuration obtained for
set-up 1 and computed the evolution of the annotations. With this configuration we evaluate:
i) the capacity of our framework to detect impacted annotations after a change in the KOS, and
ii) the ability to correctly turn the impacted annotations into consistent ones. The results of the
Ad-hoc method are compared to the BK method of the direct method, since we proposed it as a
second option for KOS lacking available mappings on the web.

Metrics

To evaluate the effectiveness of our indirect maintenance method for retrieving EHRs, we used the
average of Precision, Recall, F1-score and fall-out, i.e., the percentage of non-relevant documents
retrieved in a query [Ishioka, 2003]. Regarding Setup 2, we used the classic Precision, Recall,
F1-score and Area Under the Curve (AUC)[Powers, 2011].

5.6.1 Experimental results

The results regarding the analyses of setup 1 are depicted in Figures 5.8 and 5.10. In both
figures, the y-axis represents the average of Recall from all queries and the x-axis the average
Precision. The curves inside these plots refer to the different F1-scores values (f). The legend
refers to the configurations described in Section 5.6, e.g., f hig means we use the filter highLvl
during the query process.

In the first case, the initial query contains a term from 2014 and the EHRs documents were
annotated in 2016 (Figure 5.8). The preliminary results demonstrate that our method had
significant variation regarding the impact of the number of neighbours used to build the KG. The
lowest F1-Score (0.40) is associated with the configuration (combined k 2 d 1 f hig non top 10),
while the best score was obtained with the configuration (semantic k 10 d 1 f hig non top 5),
reaching the F1-score of 0.82. The fall-out value for the best configuration shows good results, as
illustrated in Figure 5.9. The average ratio of non-relevant documents returned in the queries
was 1.51%.

In the second case, the query contains a concept existing in 2016 and the EHRs was
annotated in 2014 (Figure 5.10). We observed that our method demonstrated an average
performance. In this case, the maximum F1-score reached was 0.55 for the configuration
(semantic k 6 d 1 f hig non top 5), and the minimum was 0.26 for the configuration (com-
bined k 2 d 1 f hig non top 10). We observed a maximum fall-out in this scenario of 7.23% for
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Figure 5.8: Maximum average Precision, Recall and F1-score regarding the best configuration for
each KG. The query used is a term that exists only in 2014; the EHRs were annotated in 2016.

ICD-9-CM MeSH
Method P R F1 P R F1

BK 1 0.129 0.229 1 0.050 0.094
KG 1 0.500 0.667 0.974 0.306 0.465

NCIt SNOMED CT
Method P R F1 P R F1

BK 1 0.115 0.207 1 0.625 0.769
KG 0.975 0.750 0.848 0.917 0.668 0.786

Table 5.1: Precision (P), Recall (R) and F1-Score (F1) of impacted annotations computed using
BK and Ad-hoc method. The red and orange colours indicate low and medium recall, respectively.

the configuration (combined k 2 d 1 f hig non top 10), and a minimum of 1.41% for (seman-
tic k 10 d 1 f hig non top 5), see Figure 5.11. Detailed explanations of these observations are
provided in Section 5.6.2.

The results for set-up 2, i.e., the use of Ad-hoc method for the direct maintenance of semantic
annotations, are shown in Tables 5.1 and 5.2. In Table 5.1, we demonstrate the capacity of our
method to detect impacted annotations. We utilized the values of precision, recall, and F1-Score
to compare Ad-hoc and BK methods when applying them to the silver standard of chapter 3.

As a primary result, we observed that our Ad-hoc method is able to detect more impacted
annotations than BK for all KOS, i.e. ICD-9-CM, MeSH, NCIt and SNOMED CT. The Recall
and F1-Score of Ad-hoc in Table 5.1 is higher than BK in all these KOS. Regarding the precision,
Ad-hoc method shows a small variation in all the KOS used.

The use of Ad-hoc method for the direct maintenance, Table 5.2, achieved similar results as
BK in all KOS used. The AUC in MeSH is the same for both methods, while in other KOS the
observed AUC shows small variations. In the next Section we discuss these results in detail and
explain why both methods have close AUC in Table 5.2 and a distinct F1-Score.
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Figure 5.9: Fall-out for best configurations observed in setup 1, when the query was a term from
2014 and the EHRs were annotated in 2016.

ICD9CM MeSH NCIt SNOMED CT
Method AUC AUC AUC AUC

BK 0.597 0.545 0.663 0.75
KG 0.593 0.545 0.615 0.74

Table 5.2: AUC values of BK and Ad-hoc method when used to maintain annotations.

5.6.2 Discussion

The outcomes presented in Section 5.6.1 demonstrated that we were able to obtain high F1-Score
and AUC for both direct and indirect maintenance processes.

When analysing the results obtained for Setup 1, we verified that the Ad-hoc method returns
precise results for 2014 queries. For instance, when querying using Sulfamethoxazole-trimethoprim
combination, concept D015662, was affected by a (chgAttValue) in 2015. Our algorithm was
able to find concepts D013420:Sulfamethoxazole, D015662:Trimethoprim, Sulfamethoxazole Drug
Combination and D014295:Trimethoprim. The returned terms were added to the initial query as a
conjunction of terms and the system returned the right set of EHRs when evaluating the enriched
query. When creating a KG, we need to consider the number of neighbours and the semantic
similarity method. In our experiments with different KGs, we observed that increasing the
number of neighbours improves the quality of the results (Figure 5.10). The semantic similarity
measures also play a key role in this process. For instance, the best F1-Score in the second
scenario (Figure 5.10) was obtained with the configuration that utilized the single semantic
similarity with 6 neighbors.

The differences verified in the results between Figures 5.8 and 5.10, pointed out that after
a concept becomes more specific, tracking back its previous version is a complex task. For
instance, according to BioPortal28, to retrieve documents associated with the term Serine-
Arginine Splicing Factors:D000068103 added in 2016, we had to utilize the concept nuclear
proteins:D009687 (2007-2015). With our Ad-hoc KG, we were able to reach the concept D009687
starting from D000068103 in 2016. The shortest path calculated between D000068103 and
D009687 using Dijkstra’s algorithm is (D000068103, D001120, D005903, D000067816, D011506,
D009687). However, the complexity involved to reach the final node D009687, resulted in our
approach not retrieving the EHRs associated with Serine-Arginine Splicing Factors. In our

28https://bioportal.bioontology.org/
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Figure 5.10: Maximum average Precision, Recall and F1-score regarding the best configuration
for each KG. The query used is a term that existed in 2016 only and the EHRs were annotated
in 2014.
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Figure 5.11: Fall-out for best configurations observed in setup 1, when the query is a term that
exists only in 2016 and the EHRs were annotated in 2014.
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algorithm, the path between both concepts had to pass through Neighbour Lists (NL) with low
similarities, e.g. the NL between concepts D000068103 and D001120, has similarity equal to
0.354, difficultly encountered by our algorithm. Regarding the fall-out observed in both scenarios,
we noticed that our method prioritized precision over recall when limiting the results by the
top-k. It is also observed in Figures 5.8 and 5.10 that the F1-score is always under the main
diagonal.

Moreover, we verified that when using a lower value of k to build the KG, the search algorithm
does not provided good results. It keeps the F1-score low as well as the fall-out. On the other
hand, when k ≥ 6, almost all queries gave relevant results.

Finally, we verified that KOS changes and semantic similarity play a key role in building the
Ad-hoc KG, resulting in a good quality of the enriched query. The best configurations in Figures
5.8 and 5.10 always utilized the filters highLvl and none. The first one is related to the evolution
of the KOS, while the second informs that the concepts are somehow related by their similarity
(i.e., no need to consider hierarchical relation between the concepts).

The analyses of Set-up 2, i.e. the use of Ad-hoc method to directly maintain the annotations,
also demonstrated good results. We observed that the Ad-hoc method provided more adaptations
than BK; this was mainly observed in the F1-Score of Table 5.1.

Analysing the results, we observed that BK flagged many annotations as Unsolved, i.e. no
adaption was computed and we utilized the same concept after the evolution to evolve the
annotation. This occasionally matched with the silver standard from chapter 3 and increased the
AUC in Table 5.2.

Another aspect to highlight is that our Ad-hoc method provided adaptations that were not
feasible with only BK in Set-up 2. As for chapter 4 with the PartialMatch rule, the annotation

“postoperative myocardial infarction”, was correctly adapted in SNOMED CT by the Ad-hoc

method. Actually, BioPortal has no mappings for this term, leading to use of the previous term
that does not match with the silver standard. We thus, recommend the use of Ad-hoc method
as an alternative for the usage of BK when there are few or no mappings to external resources
available.

5.7 Conclusion

In this chapter, we addressed question RQ4 through the development of a method able to keep
impacted annotations searchable without direct changes. It is one of the aspects of MAISA, a
framework to maintain semantic annotations either by direct or indirect maintenance approaches.

The experimental analyses demonstrated that this method is capable of achieving good results
when querying for EHRs or directly adapting the annotations. We observed that using a temporal
Ad-hoc KG provides good representation for multiple ontology versions and their evolution.

This approach contributes to the state of the art of annotation maintenance by including a
new method to adapt them, and to the Evolving Graph Generator domain by improving existing
techniques. We also build a new resource for the Semantic Web: a knowledge graph that contains
ontologies and their history. In the next chapter we discuss how to anticipate the evolution of
concepts associated with annotations.
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Predicting ontology changes
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In previous chapters, we discussed how to keep the validity of the semantic annotations when
the underline KOS evolves over time directly or in an Ad-hoc manner. Depending on the amount
of annotations that are affected, domain experts are solicited for a laborious validation task.
Tools that support them to identify the impact of KOS changes in the annotations or even to
foresee potential KOS evolution and alert them will potentially facilitate their work and improve
the quality of their work. The work presented in this chapter contributes to address this need.
We propose a stochastic model, using machine learning (ML) techniques, for identifying whether
a concept of an ontology will evolve or not in the next release of the ontology and specify the
type of change. In our global approach, this work was developed to answer RQ5: Can we predict
which KOS concept will change in the near future and the type of change that affect that concept?
The main objective of this analysis is to support domain experts during the annotation phase
(or maintenance phase) by alerting them about risks of choosing concept and/or an ontology to
annotate biomedical documents due to the high probability of evolution these concepts have.

First, we aim at identifying concepts whose definition requires to be revised, but to be
consistent with our approach of maintenance of annotations, we went further in our analysis
and we also develop a model to identify the type of non-logical changes that will affect each
concept [Klein et al., 2002]. We considered the following types of changes: i) the extension
of the ontology i.e. the addition of new concepts; ii) the modification of the description of a
concept e.g. modification of the label or attribute value; iii) the removal of a concept; and iv)
whether a concept will move to another part of the ontology. We named these four types of
changes as Extension, Change Description, Removal, and Move, respectively (see Section 6.1).
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We base our proposal on state-of-the-art approaches of the field [Chandrashekar and Sahin,
2014, Pesquita and Couto, 2012, Tsatsaronis et al., 2013] and extend them in several ways by
adding new features that were identified as playing a key role in the evolution, by evaluating
different techniques to deal with unbalanced datasets, and by analysing the impact of different
machine-learning methods on different types (in terms of expressivity, size and dynamics) of
ontologies. In addition to classical features selection, mainly based on structural information (see
Section 6.1) derived directly from the ontology, we used Web information obtained by querying
relevant scientific publications in the domain, the subset of information accessible through UMLS
(Unified Medical Language System 29), and also temporal information like the past evolution of
the considered concept, as well as ontology region stability. Moreover, unlike existing work that
clearly focuses on one dedicated ontology i.e. Gene Ontology for Pesquita and Couto [Pesquita
and Couto, 2012] and MeSH for Tsatsaronis et al. [Tsatsaronis et al., 2013] and on the extension
of the ontology, our method has been designed to cope with any existing ontology. We therefore
propose an experimental validation of our model on four OWL versions of standard biomedical
ontologies having different sizes, levels of expressivity and evolution frequencies: ICD-9-CM,
MeSH, NCI thesaurus and SNOMED CT. Furthermore, we also compare our model to existing
models when possible.

The remainder of the chapter is structured as follows: Section 6.1 introduces relevant notions
and presents related work from the field “predicting ontology evolution”. Section 6.2 presents
the material and methods we used to design our approach. Section 6.3 shows the experimental
results we obtained for the evolution of biomedical ontologies and Section 6.4 discusses them.
Finally, Section 6.5 concludes the chapter.

6.1 Background

6.1.1 Problem statement

The main problem addressed in this chapter is the identification of needs for the evolution of the
non-logical part of an ontology. We divided this problem into:

1. The identification of the set of concepts that need to be revised (associated with the function
EvolvK , defined below),

2. The recommendation of the types of revision that need to be implemented to update the
concept considered (associated with the function IdentTypeOfChangeK , defined below).

In this chapter, Ot = (Ct, Rt, At) represents version t of an ontology where Ct denotes the set
of concepts, Rt the set of relationships between the concepts and At the set of axioms. Following
the definition provided by Wang et al. [Wang et al., 2011], we define the meaning M(ct) of a
concept ct ∈ Ct as a triple

M(ct) = (label(ct), int(ct), ext(ct))

In this definition, label(ct) represents the label of ct, int(ct) is a set of properties e.g. object
and datatype properties in OWL, or more generally speaking concept attributes, and ext(ct) is
the extension of ct (the set of individuals).

By
K = Struct(ct) ∪ Temp(ct) ∪Rel(ct)

we denote the context for our work. Struct(ct) represents the structural characteristics of ct. It
includes the intrinsic characteristic of a concept e.g., the number of attributes defining a concept,

29https://www.nlm.nih.gov/research/umls/
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or the number of siblings, superconcepts and subconcepts. Temp(ct) denotes the temporal
characteristics of ct, which includes aspects dealing with the history of a concept. In this work,
we considered i) the stability of ct obtained by measuring the elapsed time between t and the
version l, with 0 < l < t and M(ct) 6= M(cl) and ii) the stability of the neighbourhood of ct

(see Table 6.2). Rel(ct) considers the relational aspect of ct acquired from external sources of
information from the Web (see Section 6.2.3). Given one concept ct ∈ Ct, our goal was to identify
whether the meaning of ct was still up-to-date at time t+ 1 in a given context K. Therefore,
regarding this problem, the function EvolvK is defined as follows:

EvolveK : Ct −→ {0, 1}

ct −→
{

0 if M(ct) = M(ct+1)
1 otherwise

The first challenge of this work was to find an alternative to correctly execute this function when
M(ct+1) is unknown. In a detailed analysis on the evolution process, we observed that a concept
could evolve in different ways. Complementary to the previous problem, knowing that a concept
will evolve, we aimed to detect the type of revision required to update ct and obtain ct+1. We
assumed that four types of revisions were possible

RevType = {Extension,Removal, ChgDescription,Move}

where Extension refers to new concepts to be added as subconcepts of ct at time t+ 1. This type
of revision was shown as relevant in [Pesquita and Couto, 2012]. Removal refers to the complete
removal of ct at time t+1. ChgDescription denotes the modification in the label as well as in the
attributes structure and attribute values of ct at time t+ 1. Move refers to changes in at least
one superconcept of ct at time t+ 1 (i.e. the set of superconcepts of ct is different from the set of
superconcepts of ct+1, implying a move of ct to another part of Ot). These revision categories
regroup the ontological modifications identified by the literature from the field ontology evolution
[Malone and Stevens, 2013, Klein et al., 2002, Stojanovic et al., 2002, Hartung et al., 2013, Har-
tung et al., 2009]. We focused on the non-logical part of the ontologies. To cover the logical part,
we invite you to read [Gonçalves et al., 2011, Konev et al., 2012]. To detect the revisions we were
interested in, we used the COnto-Diff tool [Hartung et al., 2013], but other diff tools such as
PROMPT-Diff [Noy et al., 2002] may also be used. The inputs into the tool were the two versions
of the ontology, and the output is the set of concepts and the revision actions associated with them.

Knowing that a concept had evolved, without having any other information about ct+1, the
second challenge of our work was to determine what type of revision was applied to the concept.
In other words, in the perspective of the “identification of revision needs for a concept”, we
wanted to provide complementary information about what type of revision (from RevType) would
be appropriated to keep the concept up-to-date. We associated this problem with the following
function:

IdentTypeOfChangeK : Ct −→ RevType

This function takes the concept ct ∈ Ct and its structural, temporal and relational characteristics
(see the various features in Table 6.2) as the input and returns the type of revision recommended
for ct. We will explain this function throughout the remainder of this chapter.

6.1.2 Related work

Identifying concepts that need revision can be seen, to a certain extent, as a concept-drift (or
evolution) prediction problem [Groß et al., 2016]. In this context, works such as [Pesquita and
Couto, 2012, Tsatsaronis et al., 2013] have proposed techniques to predict the modification of
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a concept, as well as the extension of biomedical ontologies using machine-learning techniques
(ML). Using such approaches assumes that information encoded in the ontology or its resources,
such as annotations, mappings and instances, govern its evolution and can be further exploited
to predict how the ontology content will change in a future version [Pesquita and Couto, 2012].

Pesquita & Couto [Pesquita and Couto, 2012] have proposed the use of supervised learning
classifiers like SVM, Naive Bayes, Bayesian Networks, Multilayer Perceptron and Decision Table
to predict the extension of Gene Ontology. They obtained encouraging results with an average
F-measure of 0.79 using the Bayesian Network. The features used to achieve these results were
based on previous handcrafted rules and a series of guidelines for capturing changes [Stojanovic,
2004] and dealt with temporal information derived from previous versions of the ontologies
considered, as well as information obtained from the usage of the ontology, such as citations and
annotations. A relevant pattern observed in their results was that the GO concepts that have
many children or many annotations and/or citations tend to be extended in future versions.

In the same vein, Tsatsaronis et al. [Tsatsaronis et al., 2013] complemented the work of
Pesquita & Couto [Pesquita and Couto, 2012] and introduced temporal features in the learning
classifiers. Their method takes one period of time as the parameter to train the classifier and
another period of time representing the prediction time window, i.e. the period of time in which
the change should take place. The temporal features and other features were used to predict
the evolution of Medical Subject Headings (MeSH) over a period ranging from 1999 to 2012. As
result, the authors showed that the Random Forest classifier can reach an F1-score of 66.4% to
predict the extension of MeSH. Furthermore, they pointed that the use of temporal features as
temporal all children, temporal direct children, aids significantly in the prediction. They based
their approach on the following features:

1. Structural features: give information about the definition of a concept and the structure
of its surrounding neighbourhood in the ontology.

2. Annotation features: based on the number of annotations corresponding to a concept
label.

3. Citation features: based on the number of citations of a concept label in an external
corpus of documents, e.g., number of scientific articles in PubMed mentioning a given
concept label.

4. Hybrid features: combination of some of the previous features.

Another initiative to predict the extensional drift of concepts is the work of Meroño-Peñuela et al.
[Meroño-Peñuela et al., 2013]. This work uses resources given by the Dutch historical censuses
data set (CEDAR) [Meroño-Peñuela et al., 2017] to estimate whether a concept will experience a
change in its extensional definition using statistical Linked Data. In this work, the authors do
not consider the intentional component of the meaning of a concept but only the extensional one
(i.e. the individuals).

Recently, Cano-Basave et al. [Cano-Basave et al., 2016] addressed the problem of ontology
forecasting in the scientific research domain. They introduced a novel framework to be added in
the ontology for the identification of emerging semantic concepts in the research domain. This
is based on the integration of lexical novelty and adoption priors acquired from historical data.
However, this approach only considers information external to the ontology and not the ontology
itself or temporal information.

Despite the recent advances in the prediction of concept-drift or ontology forecasting, we
observed the following deficiencies. First, existing approaches do not consider the intrinsic
structural features, e.g., the total number of distinct attribute values of a concept. Second, they
are corpus-dependent and require a significant number of annotations to predict the evolution of a
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concept. Third, the concept drift detection does not exploit existing semantically rich information.
To overcome these shortfalls, our approach promotes the use of background knowledge and includes
new temporal and structural features such as region stability over time.

6.2 Material and Methods

The identification of concepts to be revised (EvolveK) and the recommendation of types of revision
(IdentTypeOfChangeK) need to take into account intrinsic characteristics of the ontologies, as
well as knowledge from external sources (e.g. the web). In this work, we analysed several types
of information, selecting the information that improved the quality of the identification and
recommendation functions. These functions are based on machine learning (ML) techniques. We
evaluated several ML techniques to select the most precise one, according to the features and
data used. In this section, we describe the various datasets used in our study, as well as the
methods used to achieve the results presented in Section 6.3.

6.2.1 Material

As a starting point, we used the following datasets30:

• 10 successive versions of the International Classification of Diseases, Ninth Revision, Clinical
Modification (ICD-9-CM), of the Medical Subject Headings (MeSH), of the NCI Thesaurus
(NCIt) and of the Systematized Nomenclature of Medicine - Clinical Terms (SNOMED
CT) covering the period ranging from 2004 to 2013. For each terminology, we used only
the version published (or in-use) in the Unified Medical Language System (UMLS)31 at the
end of January of each year.

• The Diff between the mentioned OWL ontology versions was obtained using COnto-Diff
[Hartung et al., 2013]. The Diff consists of the identification of basic (insert/update/delete)
and complex transformations e.g., concept merging, concept splitting, move of concept,
etc. that lead one ontology version to its successor. The ontological changes that could be
identified by COnto-Diff were then regrouped to form the RevType set (see Section 6.1).

• The content of PubMed (about 17 million scientific articles) as a source of external
information to find relevant publications from the medical domain for the periods 2011 to
2012 and 2012 to 2013.

• External termino-ontological resources (denoted as background knowledge in the remainder
of the chapter). In our experiments, these resources were provided by the UMLS [Boden-
reider, 2004]. The UMLS contains 131 resources and their associated versions, which are
important for identification purposes, in order to compare concepts from corresponding
versions. Since we evaluated concept descriptions from 2004 to 2013, we needed to com-
pare the version of the concept to the description of another concept in UMLS at the
corresponding moment in time.

6.2.2 Methods

In this section, we present the methodology adopted to solve the two problems defined in the
EvolveK and IdentTypeOfChangeK functions. This methodology has three objectives:

30https://git.list.lu/ELISA/predictingOntologyChange.git
31https://www.nlm.nih.gov/research/umls/licensedcontent/umlsarchives04.html
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1. Identify the best ML technique and the most relevant features that play a significant role
in the identification problem,

2. Select the best ML technique for recommending the revision types for ontology concepts,
as well as the relevant features,

3. Evaluate the quality of the selected techniques and features.

To achieve these objectives, we set up the following methodology. The first step consisted of
the generation of a dataset from the material described in Section 6.2.1, characterized with a
set of pre-selected features derived from state-of-the-art field approaches, as well as experiments
detailed in [Cardoso et al., 2016] (see Table 6.2). This dataset was then used to evaluate the
performance of five two-class classifier methods (Boosted Trees, Random Forest, Decision Tree,
Logistic Regression and SVM). These were pre-selected according to the specificity of our problem,
the characteristics of the dataset (fewer than 20 features and fewer than 1000 data points by
class), the required capacity to provide explainable class boundaries, the fact that there were
dependencies between features, and the literature review [Hearst et al., 1998], which highlighted
the good generalization performance of SVM. Neural Networks and Deep Learning were not
included in our experiments because we were looking for comprehensive class boundaries and/or
methods that perform well with a small quantity of training data. A summary of the decision
criteria used in this work is presented in Table 6.1, where crosses indicate under-performance
with the associated criteria.

small #raw data feature explainable unbalanced
#Features < 1000 dependency model dataset

Boosted
√ √ √ √ √

Trees

Random
√ √ √ √ √

Forest

Decision
√ √ √ √ √

Tree

Logistic
√ √

×
√

×
SVM

√ √
× × ×

Neural
√

×
√

×
√

Network

Deep
√

×
√

×
√

Learn

Table 6.1: Criteria used to select the classification methods used in this work

Knowing that the ontologies considered had a ratio between changing and stable concepts
of close to 10% (per evolution step) [Dos Reis et al., 2014], we decided to apply a balancing
method. Two main methods are used in the literature [Kotsiantis et al., 2006]: Undersampling
and oversampling. The limitation of the former method is that relevant information can be lost
when reducing the size of the bigger group, which could impact the accuracy of our prediction.
The latter method can transform rare cases into frequent ones. This can also be an obstacle to
improving the quality of the EvolveK and IdentTypeOfChangeK functions.

Six variations of these two methods were evaluated in this work:

• Undersampling 100%, which consists of randomly selecting the same quantity of elements
from the bigger group as from the smaller group;
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• Oversampling 100%, which implies randomly duplicating elements from the smaller group
until it reaches the size of the bigger group;

• Undersampling 50%, which applies the same technique of undersampling 100% while keeping
the size of the bigger group 150% bigger than the smaller group;

• Oversampling 50%, which applies the same technique of oversampling 100% while keeping
the size of the bigger group 150% bigger than the smaller group;

• Undersampling 75%, follows the same principle of undersampling 50%, while keeping the
size of the bigger group 125% bigger than the smaller group;

• Oversampling 75%, follows the same principle of oversampling 50%, while keeping the size
of the bigger group 125% bigger than the smaller group.

The second sub-objective of our experimental study consisted of evaluating and selecting
features that significantly impact the quality of the identification/recommendation functions. We
started this set of experiments by proposing 17 features categorized into five different aspects,
indicated by the symbols I, S, T, SW, and E in Table 6.2:Intrinsic characteristics of a concept,
indicated by the symbol (I); Structural characteristics of the concept in the ontology, indicated by
the symbol (S); Temporal aspect, indicated by the symbol (T); Semantic aspect of the concept,
indicated by the symbol (SW); External related information, indicated by the symbol (E).

We used the Boosted Tree classifier to establish a rank of features. As input, we provided the
“classifier method”, as well as the 17 features with data collected up to 2012 (this data was split
into training and test data). We evaluated different configurations of the classification method to
verify the impact of the configurations on the ranking process. To establish the rank, we used
the importance measurement provided by the GraphLab library32. The importance of feature
X is determined by the sum of the occurrence of X as a branching node in all trees. We added
the importance value calculated for each ontology and ranked the features based on this value.
The rank was used for the selection of features; we added features one by one following the rank
order and calculated the accuracy of the model. We repeated this operation 10 times and used
the average and variance of the accuracy to select the best features.

We trained our model with the ontology versions from 2004 to 2012, i.e., classifiers and
features were evaluated with data from this period, and only data from 2013 was used (our
gold standard) to evaluate the quality (and generality) of our model. The experiments were
implemented in a two-step process:

• We applied the trained models to 2000 concepts (1000 from each group), randomly extracted
from the ontology version 2012, in order to identify the concepts that are candidates to be
reviewed (outcome of EvolvK). We compared these candidate concepts with those that
evolved significantly in 2013 and calculated the accuracy and F1-score. For the sake of
readability, we present some data with their accuracy values and other with their F1-score.
Regarding the number of cases in our approach, we referred to the work of Krejcie &
Morgan [Krejcie and Morgan, 1970] in order to determine a significant number of cases to
train and evaluate our classifier.

• We used only the cases that evolved (from 2004 to 2012) to train our model to recommend
the type of revision needed (outcome of IdentTypeOfChangeK). Notice that we did not
balance the number of cases for each revision type. We evaluated the quality of the model
with data from 2013.

32https://turi.com/products/create/docs/index.html
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• We compared our approach with the state-of-the-art. In this, we used only part of the
data (only for MeSH) to train the model and compared the results obtained with those
presented in [Tsatsaronis et al., 2013].

6.2.3 Feature Engineering

Similar to the existing approaches for ontology evolution prediction (see Section 6.1), our model
takes into account intrinsic and structural information extracted from the concept and its
neighbourhood (indicated by “I” and “S” in Table 6.2 respectively) and Web information obtained
after querying data portals such as PubMed (“E” in Table 6.2). However, our approach also deals
with temporal information obtained by analysing the history of the considered ontology (“T” in
Table 6.2), as well as semantic information obtained from the UMLS (“SW” in Table 6.2). There
are 17 features defined in Table 6.2 that can be grouped as follows:

• Temporal features, included in the evaluation after observing their impact on semantic
annotations [Cardoso et al., 2016]. We noticed that, if a concept is part of an unstable
region, i.e. directly surrounded by concepts that change frequently over time, this concept
is also more likely to change.We therefore want to verify whether this feature also plays a
role in the identification of concepts requiring revision. According to our formalism, given
a concept ct, the two features dealing with temporal aspects form the Temp(ct) context.

• Background knowledge (BK), materialized by external ontologies. This information is
potentially relevant for ontology maintenance tasks [Sabou et al., 2008]. In this sense,
we used background knowledge to generate new features, evaluating their relevance for
our identification model. For instance, we evaluated whether high similarity between
the analysed concept and the siblings of matched concepts from other ontologies would
indicate a trend for evolution. In this work, similarity was obtained by measuring the
cosine similarity between the attribute values of ct and those of the corresponding concepts
in the background knowledge. The set of nine features dealing with background knowledge
(“E” and “SW” in Table 6.2) made up the Rel(ct) context.

• Structural information, represented by the Struct(ct) context, denoted characteristics linked
to the description of ct, like the number of attributes of ct, as well as semantic information
about the super, subconcepts and siblings of ct. These features are labelled with “S” and “I”
in Table 6.2.

Feature Description

(I) Num att(ct) The total number of distinct attributes of ct.

(I) Att length(ct) Sum of the length of each attribute value of ct.

(S) dir children(ct) Number of direct sub-concepts of ct.

(S) all children(ct) Number of all subsumed concepts (direct and
inferred) of ct.

(S) siblings(ct) Number of concepts that share at least one
super concept with ct.

(S) isLeaf(ct) Gives an indication if ct has no subconcept.

(T ) Region stability(ct) Coefficient measuring the stability of the
neighbourhood of ct. The neighbourhood includes
the superconcepts, subconcepts, and siblings of ct.
The coefficient is obtained by dividing the number of
concepts in the neighbourhood of ct that have evolved

Continued on next page
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Table 6.2 – continued from previous page

Feature Description

in the last version by the total number of concepts of
the neighborhood.

(T ) Last evolution(ct) Indicates how many releases have been published since
the last evolution of ct.

(SW ) Similarity max(ct) Max cosine similarity between attribute values with
its equivalents in BK. It is obtained by computing the
Cartesian product between the set of attribute values
of ct and the set of attribute values of equivalent concepts
of ct defined in the UMLS.

(SW ) Similarity average(ct) Average of cosine similarity between attribute values
of equivalent concepts of ct in BK.

(SW ) Max simSup(ct) Max cosine similarity between attribute values with
the superconcept of ct in BK.

(SW ) Max simSib(ct) Max cosine similarity between attribute values with
the sibling concepts of ct in BK.

(SW ) Max simSub(ct) Max cosine similarity between attribute values with
the subconcepts of ct in BK.

(E) PubArtT(ct) Number of PubMed articles citing label(ct)
in the previous release.

(E) PubArtT1(ct) Number of PubMed articles citing label(ct)
in the current release.

(E) DiffArt(ct) The absolute difference in number of PubMed
articles citing label(ct) between both release.

(E) DiffArtRatio(ct) The difference in the ratio of the number of
PubMed articles.

Table 6.2: List of pre-selected features

The dataset mentioned in Section 6.2.2 was generated according to these features. It means
that for each concept ct considered, we computed the value of the corresponding features (see
Table 6.2). An illustrative example of how the value of each feature was assigned is shown
with the concept number 171.0 (Malignant neoplasm of connective and other soft tissue of head,
face, and neck), from the ICD-9-CM version 2012. This concept has five attributes, including
one “Abbreviation in any source vocabulary” (Mal neo soft tissue head), one “Metathesaurus
preferred term” (Malignant neoplasm of connective and other soft tissue of the head, face, and
neck), and three “Metathesaurus entry terms” (Malignant neoplasm of cartilage of the ear;
Malignant neoplasm of cartilage of the eyelid; and Malignant neoplasm of connective and other
soft tissue of the head, face and neck). The total length of these five attributes is equal to
258 characters (Att length=258). The last time that this concept evolved was in 2008, i.e.
four years earlier (Last evolution=4). We also observed that none of the neighbours (siblings,
super, subconcepts) evolved in 2012 (Region stability=0). When we compared the concept label
with that of the neighbourhood (for instance, with the superconcept “Malignant neoplasm of
connective and other soft tissue”), using the cosine similarity measure, we obtained a value
close to 0 (Similarity max=0). Another observation is that this term did not appear in any
publications between 2011 and 2012 (PubArtT=0).
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6.3 Results

In this section, we present the experimental results that we obtained for the selection of the
classifier as well as for the relevance of the features in the identification of concepts that need
revision. We further discuss our results with respect to the recommendation of the type of the
revision and compare our work with [Tsatsaronis et al., 2013].

6.3.1 Classifier selection

Our problem, identifying the concepts needing revision, can be seen as a classification problem,
where we have two classes (i.e., those needing revision and those not needing revision) that we
aim to populate with the concepts from our dataset. Several classification methods could have
potentially been applied to our problem (Boosted Trees, Random Forest, Decision Tree, Logistic
Regression and SVM), but we needed to narrow it down to one. The first set of experiments
intended to support the classifier selection decision. First, we calculated the accuracy of each
method (with different configurations, i.e., a combination of ML techniques and balance sampling
methods) using the dataset made up of concepts belonging to ontologies released in 2012 and
before. We randomly selected 2000 concepts (1000 from each class) and used 80% for training
and 20% for validation (the selection of concepts was repeated for each experiment in order to
assure the generality of the approach). We repeated the experiment 10 times to determine the
average accuracy and the variance of the prediction. We also tested repeating the experiment
5, 15 and 20 times, but observed that over 10 times, the average accuracy does not change
significantly. The decision criterion is based on the best average accuracy with the minimum
variance. As we considered two distinct problems, i.e. the identification of concepts needing
revision and recommendation of the type of revision, we evaluated the classification methods
according to these two problems.

Figure 6.1 illustrates the outcomes of this set of experiments using the dataset containing
MeSH concepts for EvolvK . We used the GraphLab 33 libraries with the standard configuration
and analysed their performance based on accuracy and F1-measures as follows: The best
accuracies were selected and ranked; where two or more methods had the same (or very close)
accuracy, we used the variance to improve the rank. Where the variance was not sufficient, we
also used the F1-measure to support the decision. The outcome of this analysis was the selection
of the Boosted Trees Classifier using the Oversampling 100% method. Table 6.3 shows that this
classifier demonstrated the best performance for the four ontologies (on average this classifier
had an F1-measure of 86%, while Random Forest had an F1-measure of 83%). The depth of the
trees in the Boosted Trees Classifier is also a parameter that can interfere with the quality of the
prediction. We evaluated seven different configurations (depth = 2, 5, 10, 50, 100, 200, 500) and
measured the classification error 30 times. We used the average of these 30 experiments and the
outcomes of these experiments can be seen in Figure 6.2. We observed that the training error
falls to zero when the depth is higher than 50, thus we used this configuration to evaluate the
relevance of the features.

Our problem for recommending the type of revision can be seen as a classification problem
where we have multiple classes (i.e., Move, Extension, Removal, ChgDescription) and look to
populate these classes with the concepts from our dataset. We evaluated the same classification
methods as for EvolvK and chose one.

For this, we followed the same methodology as for EvolvK to select the best classification
method, but used only the set of modified concepts as our input. The results are shown in
Table 6.4. They show the number of cases we used to train and evaluate the classifiers. For this
problem, the best classifier is Random Forest with Oversampling 100%. Even if we observed

33https://turi.com/products/create/docs/graphlab.toolkits.classifier.html
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ICD-9-CM NCIt MeSH SNOMED CT

acu var acu var acu var acu var

BoostedTrees 0.83 0.003 0.77 0.01 0.77 0.02 0.69 0.01

RandomForest 0.82 0.004 0.76 0.02 0.75 0.02 0.68 0.01

DecisionTree 0.81 0.004 0.75 0.02 0.72 0.03 0.66 0.02

SVM 0.68 0.005 0.61 0.01 0.71 0.01 0.65 0.01

Logistic 0.78 0.003 0.64 0.04 0.73 0.02 0.65 0.01

Table 6.3: Average accuracy and variance of the prediction for EvolvK calculated for all configu-
rations with four different datasets: ICD-9-CM, NCIt, MeSH, SNOMED CT

that Random Forest and Boosted Trees have the same accuracy average, when we consider the
variance and the F1-measure, Boosted Trees prove to be less precise than Random Forest. We
excluded the SVM method from the evaluation because for this problem, the dataset is highly
unbalanced (which contributed to reducing the accuracy of SVM). Furthermore, SVM showed the
lowest performance among the classifiers for the EvolvK . Table 6.5 shows the average accuracy
for the recommendation of the type of revision, applying the Random Forest model to each
ontology.
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Figure 6.1: Accuracy and variance of five two-class classifiers according to four different balancing
methods, using the MeSH dataset

Figure 6.2: Classification Error according to the number of trees for the Boosted Trees Classifier
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ICD-9-CM NCIt MeSH SNOMED CT Total

BoostedTrees 0.87 0.76 0.51 0.71 0.71

RandomForest 0.84 0.77 0.54 0.70 0.71

DecisionTree 0.83 0.75 0.53 0.67 0.69

Logistic 0.82 0.76 0.5 0.52 0.65

Table 6.4: Average accuracy of the prediction for IdentTypeOfChangeK calculated for all config-
urations with the four different datasets

ICD-9-CM NCIt MeSH SNOMED CT Total

Move
P 0 0.5 0.33 0.91 0.435
R 0 0.11 0.09 0.62 0.205
F 0 0.31 0.21 0.76 0.32

Extension
P 0.837 0 0.58 0 0.354
R 0.99 0 0.71 0 0.425
F 0.91 0 0.65 0 0.39

Removal
P 0 0.64 0.65 0.72 0.502
R 0 0.32 0.44 0.91 0.417
F 0 0.48 0.55 0.81 0.46

ChgDesc.
P 0.826 0.81 0.63 0.65 0.73
R 0.13 0.98 0.63 0.51 0.562
F 0.48 0.9 0.63 0.58 0.647

Table 6.5: Precision (P), Recall (R) and F-score (F) for the prediction of IdentTypeOfChangeK

using the Random Forest classifier

6.3.2 Feature selection

Once one classifier had been selected for each problem, the next phase consisted of ranking the
features described in Section 6.2.3 with respect to their relevance for both problems.

Features for the identification of concepts needing revision

In our experimental study, we used tree-based estimators (based on the Boosted Tree classifier)
to determine the importance of each feature for problems 1 and 2. The idea was to select features
that could perform well for the identification and recommendation problems independently of the
ontology structure. Our assumption was based on the fact that the use of these four ontologies
could potentially increase the generality of our model, since these ontologies have different
structures and expressivity levels. Figure 6.3 shows the sum of the importance weights computed
by the tree-based estimator for each ontology and for each feature. The outcome of this experiment
allowed us to produce the following ranking (in order of importance): PubArtT, dir children,
Num att, Similarity max, PubArtT1, Max simSib, Region stability, Att length, Last evolution,
Max simSup, DiffArt, all children, siblings, Max simSub, DiffArtRatio, Similarity average, isLeaf.

Then, we measured the accuracy of the model with different subsets of features. To do this,
we used the test set. We generated a model with only one feature (always selected in the same
order as in the ranking), trained it with the training set from 2004 to 2012, and evaluated it
with the test set. We repeated the process, adding one new feature with each new iteration. We
repeated the whole feature selection process 10 times in order to obtain the average value, as well
as the standard deviation of the identification problem. In Figure 6.4 , we observe the average
accuracy when accumulating the features. For instance, the third value of the MeSH dataset
underlines the accuracy of the model when using the three features PubArtT, dir children, and
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ICD-9-CM NCIt MeSH SCT
Train. Eval. Train. Eval. Train. Eval. Train. Eval.

Move 0 0 91 24 21 5 110 25

Extension 916 227 47 10 113 28 21 3

Removal 0 0 53 14 24 6 311 76

ChgDesc. 186 50 621 163 108 27 168 45

Table 6.6: Number of cases for training and evaluating the classifiers
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ICD NCIt MESH SCT

Figure 6.3: Feature relevance for the four ontologies, according to the tree-based estimator for
EvolvK

Num att. The vertical line over each point indicates the standard deviation calculated based on
the outcomes after a series of 10 experiments. Notice that, when considered alone, a feature can
have a negative impact on the prediction of one dataset, but a positive impact on the others.
Another important aspect extracted from the experiments was that the accuracy increases until
(+/-) the addition of the 11th feature. After that, it remains quite stable. This is true for almost
all datasets. For example, ICD-9-CM and NCIt reach the upper value with 9 features, MeSH
with 11 features, and SNOMED CT with 13 features. However, after adding the 12th feature,
the accuracy of the model decreased for MeSH and NCIt, indicating that these features add
substantial noise to the system.
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Figure 6.4: Accuracy when increasing the number of features for EvolvK
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Features for recommending the type of revision for a concept

Regarding IdentTypeOfChangeK , we followed the same feature engineering process to identify
the most relevant features for recommending the type of revision. However, for this problem, the
selected classifier was Random Forest and the number of cases for training and evaluating listed
in Table 6.6.

The results, depicted in Figure 6.5, show that the same set of features is relevant for indicating
the way the concept will evolve. However, unlike for EvolvK , the importance of each feature
is different. There are some minor permutations, for instance, dir children is the most relevant
feature for IdentTypeOfChangeK while it is PubArtT for EvolvK . In general, the results show
that the consideration of external sources of information for the prediction is extremely relevant
since features related to PubMed and to the UMLS are among the most relevant. Moreover,
Figure 6.6 illustrates the added value of temporal features since the region of stability drastically
increases the precision, especially for IdentTypeOfChangeK .
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Figure 6.5: Feature relevance for recommending the type of revision
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Figure 6.6: Accuracy when increasing the number of features for IdentTypeOfChangeK

Comparison with related work

The experiments we conducted allowed us to draw a comparison with the approach described
in [Tsatsaronis et al., 2013]. The two approaches could not use exactly the same set of data
since the data used in [Tsatsaronis et al., 2013] was not made available. Thus, this comparison
considered (our hypothesis) that the selected data used in our experiments were quite similar
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to those used by Tsatsaronis et al. In their work, Tsatsaronis et al. measured the ability of
their model to predict the extension of MeSH. However, they considered several sub-parts of
MeSH independently (i.e. Organisms, Diseases, Chemicals and Drugs). In order to compare
the approaches, we carried out our experiments using only data from MeSH, without making
distinctions between the sub-parts (we have a more general approach). Table 6.7 shows the
results of Precision, Recall and the F1-score we obtained compared to those of [Tsatsaronis et al.,
2013]. Another modification we made in our approach to make the results more comparable was
the selection of the Random Forest classifier and we used the same number of MeSH versions,
i.e., 10. Moreover, as their method considers a modular time frame for the prediction i.e., the
considered concept would evolve over the next y years, we reduced this period to one year to be
comparable. We noticed that the structure of MeSH did not change significantly over these 10
years [Dos Reis et al., 2014].

Our approach
Tsatsaronis et al.

Orga. Tree Dis. Tree Chem. and drugs Tree

Precision 0.58 0.43 0.47 0.35

Recall 0.71 0.14 0.09 0.11

F1-score 0.65 0.21 0.1 0.16

Table 6.7: Comparison for the prediction of the extension of MeSH

The results in Table 6.7 reveal that even with a more general approach, our method performed
better in terms of precision, recall and F1-score than the one described in [Tsatsaronis et al.,
2013]. The selected set of features, in particular the consideration of background knowledge,
significantly improved the precision and recall of the identification of concepts that need revision
(in the MeSH). However, this comparison had some limitations that can partially justify the
differences showed in Table 6.7:

• The data used to train and evaluate the classifier. We randomly selected a balanced set of
elements of MeSH between those that evolve and those that remain stable while Tsatsaronis
et al. [Tsatsaronis et al., 2013] used the MetaCost method [Domingos, 1999] to balance
their data. In order to be comparable, we assumed two hypotheses: (1) that the data
sources are quite similar (MeSH, same period, balanced data), (2) that the classifiers use
the same parameters. If these two hypotheses are correct, than we can imagine that the
main difference in the results came from the features that we selected. Thus, our features
were more relevant for solving the first problem. However, any information about classifier
parameters was found in their publication [Tsatsaronis et al., 2013].

• Some differences in the definition of comparable features, especially temporal ones. In
our work, we distinguish between the evolution of a concept and the evolution of its
neighbourhood while the distinction made by Tsatsaronis et al. concerns all features, e.g.
evolution of siblings, and of superconcepts or subconcepts.

6.4 Discussion

When analysing each feature and its impact on the identification/recommendation model, we
formulated the hypothesis below, which can potentially explain the model behaviour.

Features dealing with background knowledge are the most important for the two functions
that we developed (EvolvK and dentTypeOfChangeK). This can be justified by the fact that
ontologies aim to reflect the real world, with the web containing relevant information from the real
world that can be taken into account. Therefore, if specific knowledge within this domain evolves,
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then the part of the ontology related to this evolving knowledge must also evolve. PubArtT (ct)
extracts the number of articles citing label(ct) from scientific publications (published in the
year preceding the prediction period, i.e., in 2012). High values indicate that this knowledge
is of utmost importance for the domain. We highlighted that PubMed uses MeSH to index
documents. Thus, this feature has a higher impact on the quality of the identification of MeSH
concepts than on the other ontologies. On the other hand, we observed that PubArtT1(ct) has a
negative impact on Evolvk and a positive impact on IdentTypeOfChangeK . We are convinced
that the date of publication of the ontologies considered plays a key role in this behaviour. For
instance, MeSH concept D009369 was changed in January 2013, and with all papers published
from January onwards using the new/changed concept (the impact of PubArtT1(ct) will probably
be positive in this case). However, the date of new releases of ontologies are different (some are
in October or even monthly). Our approach used the 31 January version, which probably created
a bias for PubArtT1(ct) for some ontologies. This can potentially explain the negative impact
of this feature in some ontologies. Additional experiments are needed to identify the impact of
PubMed citations over a longer period of time. Moreover, background knowledge gives a helpful
support to improve the quality of our method. When the maximum similarity with mapped
concepts (from other ontologies) is low, it can potentially indicate that the current definition of
the concept needs to be reviewed. This is why Similarity max(ct) is important for the prediction
(for both problems). However, the similarity with existing superconcepts (Max simSup(ct)) in
the BK is less important than the similarity with subconcepts (Max simSub(ct)) and siblings
(Max simSib(ct)). It shows that ontologies evolve in order to become more precise rather than
more abstract. These features have limited impact on flat ontologies like ICD-9-CM where
subconcepts can not easily be added.

Our experiments have shown that features derived from the structural characteristics of
the ontologies are also important for the prediction. The relevance of the feature dir children(ct)
has been observed in several works on ontology evolution prediction, according to the papers
we have analysed (see Section 6.1). In combination with PubArtT (ct), this feature improves
knowledge on the necessity of creating a more specialized (or not) concept. Few direct subconcepts
and many citations constitute a good situation for concept evolution. Another good situation
for concept evolution can be observed when we take into account the number of attributes
(Num att(ct)). A high number of attributes can be a good indicator that the definition of
the concept is unclear or ambiguous. Thus, the probability that these attributes are partially
transferred to another (new/modified) concept is higher. Another explanation could be that
in our work, the change in a concept includes a change in any of its attributes, therefore it is
more probable that concepts with many attributes evolve. Additional experiments are needed
to verify which explanation occurs most frequently. There is an obvious correlation between
Att length(ct) and Num att(ct), however, Att length(ct) also includes cases where a concept has
few properties but is described with long strings. These cases are rarer than those with a high
number of properties (which explains the lower importance weight). Nevertheless, this distinction
allows the context of the concept to be refined and the quality of our predictions to be improved.
It should be mentioned that the impact of this feature is more important for ICD-9-CM because
of the existing limitation on the depth of the hierarchy. This limitation requires more precise
properties (implying long value strings) to describe the concepts. We highlight that two features
all children(ct) and siblings(ct) were pointed out by other authors as important for identifying
concepts that need revision. In our experiments, we observed that their importance is low or even
negative for Evolvk. However, these structural properties may have (depending on the ontology)
a positive impact, especially when predicting the extension.

Lastly, features dealing with temporal aspects have a strong positive impact on the two
problems (identification and recommendation). When a concept belongs to a part of the ontology
that evolves frequently, then the probability that this concept will evolve is high. This is what

92



highlights the behaviour of the Region stability(ct) feature. Furthermore, Last evolution(ct)
shows that stable concepts, i.e. concepts that have not changed over the past 10 years, have
a lower chance of evolving in the future. This feature adds this notion to the model, which
improves the quality of the prediction for all datasets.

During the implementation of this work, we held discussions with some potential end-users
working in biomedical terminology management organizations in order to understand how
the ontology maintenance tasks are planned and executed. Our understanding indicates that
candidate concepts are selected based on ontology users’ reports/requests and on the outcomes
of specialized workgroups/task forces (we call this group of candidates manually generated
candidates). Our approach can be integrated into this maintenance task to promote proactive
maintenance action. We believe that the contributions of our approach are twofold: (1) It
provides an extra source of information (that can potentially complement the manually generated
one) with candidates and with suggestions of the type of revision that each concept needs; (2)
It supports the creation of ranks (indicating priorities to execute changes in the ontologies) of
concepts to be changed based on the combination of manually and automatically generated sets
of candidate concepts. Our idea of selecting classifiers that have explainable models fits into this
ambition of integrating manual and automatic candidate generation. Instead of trusting black
boxes, the user can, for instance, extract the boosted tree decision rule and use it to create a
“ranking rule”.

A good integration of our approach in the ontology maintenance tasks can help improve the
prediction model. The feedback of the users can be used to train the model in order to customize
it (e.g., trained to apply to one specific ontology) and/or improve its precision.

Finally, we would like to reiterate that although our approach was developed to help reviewers
in their daily tasks, our goal is not to substitute them. However, if the biomedical terminology
management organizations decide that the prediction accuracy obtained with our approach is
acceptable for some of their objectives, the role of our approach can change. For instance, if an
organization decides that having a daily updated version of the ontology with some errors (e.g.,
beta version) is more relevant than keeping the same version of the ontology for a long period
(e.g., one year), then little work would be required to implement an automatic ontology updates
tool.

6.5 Conclusion

In this chapter, we analysed methods empirically to i) identify the concepts needing revision
and ii) recommending the type of revision necessary answering RQ5 of this thesis. We selected
the biomedical domain for our case study since it is highly dynamic and covered by more than
500 ontologies with distinct levels of expressivity. Thus, we collected information on 4 standard
ontologies from this domain over a period of 10 years (a total of 40 ontologies were analysed). We
also analysed extra information collected from publicly available sources like PubMed and UMLS.
We grouped this information into temporal, structural and relational categories. Compared with
the state-of-the-art, we proposed several new sub-groups for each category (features of our analysis
process) and we evaluated their impact on the quality of our analysis. Finally, our analysis allows
the most efficient supervised learning classifier technique and the most important set of features
to be selected. We observed that the Boosted Trees Classifier is the best one for identifying
concepts that need revision while Random Forest is more efficient for recommending the type of
revision. In this work, we have observed that the consideration of background knowledge plays
a key role in the identification of and recommendations for problems when sources like UMLS
and BioPortal are available. We obtained good accuracy that fluctuates between 68% and 91%
according to the dataset analysed; in an overall analysis (all datasets together), we achieved more
than 71% accuracy. Next chapter will focus on the conclusion of our work, highlighting the main

93



contributions of this thesis.
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Chapter 7

Conclusions and perspectives

Contents

7.1 Summary of the contributions . . . . . . . . . . . . . . . . . . . . . . . 95

7.2 Directions for future work . . . . . . . . . . . . . . . . . . . . . . . . . 97

In this work, we have addressed the problem of the adaptation of semantic annotations
impacted by the evolution of KOS. To tackle this main problem, two scenarios were identified
based on real cases. In the first, annotations as well as the associated documents were available
and modifiable while in the second, annotations were only accessible but not modifiable and no
access to the associated documents was provided, for instance, for patient data inside Hospital
Information Systems. We approached the problem with an empirical analysis of the evolution of
the KOS and its impact on a set of millions of annotations. The result of this analysis showed a
strong correlation between these two phenomena and has served as the basis of our solution. This
has lead us to, on one hand, to the definition of a rule-based system to modify the annotations
and, on the other hand, to the design of a knowledge graph for representing the evolution of
concepts contained in KOS allowing us to retrieve the evolution of a concept and, consequently,
the evolution of associated annotations.

7.1 Summary of the contributions

This PhD thesis has made contributions in the fields of Annotation Maintenance, KOS evolution,
Semantic Similarity measures and dynamic Knowledge Graphs. We also believe that the research
carried out in this thesis contributes to the development of the Semantic Web and its correlated
fields, e.g. information retrieval and semantic interoperability. We summarize the main scientific
contributions reflecting the research questions below:

RQ1: What is the impact of KOS changes on semantic annotations?

Through empirical analysis on factors influencing the evolution of annotations in chapter 2,
we observed that the changes on annotations are strongly correlated to changes in the KOS. For
this, we used a set of documents annotated with GATE and NCBO Annotator using 13 different
versions of two well-known biomedical KOS (ICD-9-CM and MeSH). We also verified that the
same behaviour occurred in the MEDLINE annotations utilized in Chapter 6. In this chapter,
we utilized the impacted annotations as queries for our experiments.

RQ2: What is a suitable model for addressing the annotation evolution problem?

In chapter 2, we analysed different annotation models in order to verify whether they could
represent (or whether we could infer from their elements) all the criteria required to classify the
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annotation changes. As a result, we proposed extensions for the W3C Open Annotation Data
Model, e.g., the inclusion of an evolved relationship, which links an evolved annotation to its
past version. These new features allow a better covering of evolutionary aspects, e.g. tracing
back all the possible evolutions of an annotation, in order to maintain future versions through
rules as ResurrectAnnot (see Chapter 3).

RQ.3: How can we automatically maintain the validity of semantic annotations without
re-annotating the content of all documents when KOS are updated?

The novel MAISA framework presented the possibility of using methods such as Domain Specif
Rules, Background Knowledge and Change Patterns to automatically keep semantic annotations
up-to-date. Through empirical experiments, we demonstrated that the correction/adaptation of
annotations can reach a reasonable reliability rate. However, it is important to highlight that the
role of domain experts is still determinant in assuring the quality of the annotations in critical
scenarios, as observed in the biomedical domain. Finally, our maintenance approach is done
without a complete re-annotation of the document, since we reutilize the information present in
the annotations to evolve the impacted ones.

RQ4: Which methods can be used to keep the annotations searchable when the document
and annotations cannot be changed directly?

In chapter 5, we proposed a method able to keep impacted annotations searchable without
directly changing them. The experimental analyses demonstrated that our proposed method
was capable of achieving good results when querying EHRs and could be used as an alternative
method to BK, utilized in chapter 3 to direct adapt the semantic annotations. We observed that
using a dynamic Knowledge Graph, as we proposed, provides a good representation for multiple
ontology versions and the evolutionary link between them. This approach contributes to the
state-of-art of annotation maintenance by including a new method to cope with the evolution of
annotations, based on techniques from the Evolving Graph Generator domain.

RQ5: Can we predict which KOS concepts will change and impact the annotations in the
near future?

In chapter 6, we discussed how to enhance the MAISA framework by including a new method
able to anticipate the evolution of concepts associated with annotations. This method supports
domain experts during the annotation/maintenance phase by alerting them to the risks of
choosing a concept and/or an ontology to annotate biomedical documents. Our approach showed
more than 71% of accuracy when identifying concepts that needed revision. Furthermore, we
contributed to the state-of-the-art by including temporal features, e.g. information about the last
evolution date, which helped to increase the accuracy of the utilized methods (see Chapter 6).

In summary, all the main research questions investigated in this thesis were answered
satisfactorily, allowing us to keep our hypothesis: The use of information from KOS, as well as
information about KOS evolution, can be used to define a robust maintenance mechanism. We
also approached more challenges that had emerged from our methodology in Section 5.6, which
leaded to a complementary question.

Complementary Question: How can we improve the existing similarity measures to
enhance the relatedness between terms while taking the syntactic mismatch into account?

In chapter 4, we presented an approach that combined Lexical and Semantic measures to
enhance the concept similarity. Our experimental analysis demonstrated that together, they
can outperform methods based on only one similarity measure (i.e., semantic or lexical). Using
this hybrid measure, we introduced the PartialMatch rule for maintaining semantic annotations
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affected by the evolution of KOS. Our experimental analysis demonstrated that PartialMatch
was capable of achieving good results to adapt annotations using one or multiple successive KOS
versions. We observed that the use of semantic similarity approaches was important to determine
the relatedness during the evolution process.

7.2 Directions for future work

Even though MAISA showed good results for keeping semantic annotations up-to-date when the
utilized KOS had evolved, we identified some limitations offering relevant perspectives for further
improvements and an extension of this work. The improvements listed in this section are related
to the research field of semantic annotations and Semantic Web. They were not implemented
due to the limited time to develop the work and the enlargement of scope.

We recommend the following enhancements to better evaluate our approach:

1. Conduct additional experiments using annotations and KOS from other domains outside
of the biomedical domain. For instance, we can utilize the Eurovoc thesaurus34, which
was released after 2014, to verify whether the changes that emerged after a new version
impacted annotations from LinkedEP dataset35, i.e., the plenary debates of the European
Parliament [Van Aggelen et al., 2014].

2. Qualitative evaluation involving domain experts. As highlighted during this thesis, domain
experts play an important role in the final process. Therefore, we suggest to evaluating
MAISA in a real environment, e.g. a hospital, to verify the user opinions.

3. The silver standard used to evaluate our experiments contains around 125 annotations
per KOS. Therefore, we advise to enhancing the silver standard by including new cases of
annotation maintenance. These new annotations can, for example, be evaluated using the
Inter-annotator Agreement, i.e., a metric to quantify the agreement between the domain
experts regarding the evolution of the annotations.

Regarding the maintenance process, we suggest the following topics to enhance the upcoming
approaches.

1. Implement new Rules. As discussed in Chapter 4, domain specialists sometimes opted to
reduce the expressiveness of the annotations. In further versions of MAISA or in approaches
dealing with the evolution of annotations, rules describing how to cover such cases must
be implemented. Moreover, undiscovered cases in this thesis can be explored through the
utilization of techniques as Association Rule Mining [Hipp et al., 2000]. These techniques
allow the discovering of new patterns from to be discovered in a large amount of data.

2. Improve the search algorithm utilized in the Ad-hoc phase by using more sophisticated
techniques, such as [Marie et al., 2013]. Nevertheless, the temporal aspect also must be
considered, since it is not present in the approaches from the state-of-the-art.

3. Improve the method to enrich queries, paying particular attention to the query language
[Pruski et al., 2011]. In this work, we simply construct queries as a conjunction of terms
favouring recall on precision. Additional work can propose a query language that offers
other operators leading to complex queries giving better precision and recall when searching
for documents.

34https://publications.europa.eu/en/web/eu-vocabularies/
35http://linkedpolitics.ops.few.vu.nl/web/html/home.html
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4. [Pakhomov et al., 2010] utilized a touch screen to verify the relatedness of UMLS concepts
and domain expert judgments. Inspired in the approach, advanced Human Interface
techniques can also be used to understand how domain experts evolve their annotations
and create new rules.

Finally, we can explore several research topics representing the extension of this thesis:

1. In chapter 5, we presented an Ad-hoc method to enhance the ontology information with
its evolution. Our results demonstrated that the ontology history contains meaningful
information to describe the concepts and their relatedness over time. The utilization of
ontology changes and the Ad-hoc method which verifies the relatedness of concepts can
also be explored in the context of Concept Learning/ Ontology Learning techniques, more
specifically in those focusing on the T-box part of the ontology, i.e. the concepts [Zhang
et al., 2016]. The current approaches are applied in general on small ontologies due the
use of reasoning techniques during the learning phase. Different approaches in the same
domain, e.g., [Bamunusinghe and Alahakoon, 2007] implementing neural networks, do not
cover temporal aspects relying on a single ontology version and working as a black box,
because the adjustments made by the neural network techniques are complex to explain.

2. The evolution of ontologies plays a key role when adapting semantic annotations. Therefore,
models and/or languages that better describe how the concepts must evolve in new ontology
versions can be an asset to mechanisms that adapt semantic annotations.

3. Extend the maintenance of semantic annotations to the Linked Open Data (LOD). In this
scenario, methods that automatically adapt the existing links and annotations on the LOD
by creating new ones and linking them to past versions could be explored.

4. Implement a measure that combines LSM and SSMs and also considers the KOS evolution.
As observed in chapter 4, the use of lexical similarity approaches is important to improve
the quality of the results provided by the SSMs and vice-versa. Nonetheless, these measures
do not contains evolutionary aspects, therefore we propose the investigation of similarity
measures that also consider the KOS changes.

In summary, this thesis contributed with new approaches to direct or indirect maintain the
semantic annotations impacted by the evolution of KOS. The shortcomings observed in the
state-of-the-art were considered and utilized to build the MAISA architecture. This architecture
contains an original method to maintain the annotations indirectly that can reach reasonable
results. Overall, the results obtained during the thesis were encouraging and allowed new
improvements in the domain. All work described in this thesis has been the subject of several
papers published at international conferences and in international journals. A list of these
publications is given on the next page.
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Appendix

Table 1: Experiments to determine the place of PartialMatch. The blue values are related to
the best performance.

KOS Year Rule positioning Accuracy AUC F1-Score

Before 0.834 0.862 0.839
2009/2010

After 0.845 0.871 0.851

Before 0.757 0.803 0.754
ICD-9-CM

2009/2016
After 0.741 0.789 0.733

2009/2010
Before 0.867 0.891 0.877
After 0.851 0.878 0.861

2009/2016
Before 0.88 0.905 0.895

Mesh

After 0.859 0.888 0.874

Before 0.767 0.798 0.747
2009/2010

After 0.697 0.735 0.64

Before 0.753 0.804 0.756
NCIt

2009/2016
After 0.685 0.75 0.667

2009/2010
Before 0.849 0.854 0.829
After 0.839 0.844 0.815

2009/2016
Before 0.912 0.923 0.917

SNOMED-CT

After 0.923 0.933 0.928
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(2017a). Combining rules, background knowledge and change patterns to maintain semantic
annotations. AMIA Annu Symp Proc, 2017:505–514. Citations on pages xi and 45.

[Cardoso et al., 2017b] Cardoso, S. D., Reynaud-Delâıtre, C., Silveira, M. D., Lin, Y.-C., Groß,
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A syntax-based measure for short-text semantic similarity. Data & Knowledge Engineering,
70(4):390–405. Citation on page 38.
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Synthèse : Les annotations sémantiques sont utilisées dans de nombreux domaines comme celui 

de la santé et servent à différentes tâches, notamment la recherche et le partage d’information, 

ou encore l’aide à la décision. Les annotations sont produites en associant à des documents 

digitaux des labels de concepts provenant des systèmes d’organisation de la connaissance 

(Knowledge Organization Systems, ou KOS, en anglais) comme les ontologies. Elles permettent 

alors aux ordinateurs d’interpréter, connecter et utiliser de manière automatique de grandes 

quantités de données. Cependant, la nature dynamique de la connaissance engendre 

régulièrement de profondes modifications au niveau du contenu des KOS provoquant ainsi un 

décalage entre la définition des concepts et les annotations.  

Considérez l’exemple de Figure 1. Une partie d’un document de PUBMED1 est annoté avec le 

terme Migraine menstruelle, un attribut du concept 625.4 du CIM-9 (ICD-9-CM en anglais), 
version 2008AA2. Dans la version 2009AA, cet attribut a été supprimé et est devenu le titre d’un 

nouveau concept, avec l’ID 346.4. Nous considérons donc que cette annotation a été impactée, 

car la modification du KOS a provoqué une non-concordance entre l’annotation créée avec la 

version 2008AA et le concept modifié du KOS dans sa version 2009AA. De plus, la relation 

exclusion dans les directives de l’ICD-9-CM indique que ces attributs n’appartiennent plus au 

même concept. La conséquence de ces modifications est que l’annotation a perdu sa 

signification et nécessite une correction. 

 

 

Figure - Cas d'étude d'annotation 

L’impact du changement de KOS se propage aussi à d’autres systèmes tels que les moteurs de 

recherche et les portails de données qui perdent en précision lors de la récupération 

d’informations à partir de documents annotés. Un médecin qui souhaite, par exemple, accéder 

au dossier d’un patient par mots clés, via un moteur de recherche, ne pourra pas récupérer des 

informations précises et complètes si la requête contient migraine menstruelle. Ce cas illustre 

                                                           
1 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1342315/ 
2 https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/notes.html 



 
 

 

l’impact direct des changements de KOS sur les annotations sémantiques et souligne le besoin 

réel de méthodes et d’outils avancés capables de mettre à jour les annotations sémantiques tout 

en évitant une intervention humaine laborieuse et coûteuse. 

Nous nous intéressons aussi au cas où les annotations ne peuvent pas être modifiées car, pour 

des raisons légales ou de confidentialité, seules les métadonnées peuvent être lues. Nous 

proposons une méthode alternative permettant l’accessibilité aux données sans les modifier. 

Nous avons créé un graphe de connaissances (GC) qui garde l’historique des évolutions de KOS. 

Ce graphe permet de naviguer dans des relations complexes liées aux aspects structurels et 

évolutifs de KOS. Par exemple, il permet de décrire qu’un concept a été ajouté, déplacé, divisé, 

… Ces informations supplémentaires constituent la base de notre méthode alternative de 

recherche d’information, permettant la recherche des documents correspondant aux 

métadonnées des concepts du KOS de différentes versions. 

Dans ce contexte incluant ces deux types de scénarios, cette thèse propose et implémente des 

méthodes et outils pour promouvoir la maintenance semi-automatique des annotations 

sémantiques affectées par l’évolution de KOS, afin de garder ces annotations exploitables dans 

le temps. Nous visons à répondre à la question de recherche  suivante : 

 

Comment maintenir automatiquement la validité des annotations biomédicales en 

présence de modifications dans le KOS utilisé pour annoter ? 

 

Le système proposé est suffisamment générique pour traiter des terminologies ayant des 

structures distinctes. Les problèmes de performance sont pris en compte lors de l’application de 

notre méthode sur des milliers de concepts, par exemple en provenance du MeSH (237000 

concepts) ou SNOMED CT (310000 concepts). 

 

Nous avons formulé l’hypothèse suivante pour guider nos études : Les informations du KOS, 

ainsi que des informations sur l’évolution du KOS, peuvent être utilisées pour définir un 

mécanisme robuste de maintenance. 

 

Cela nous a amenés à traiter plusieurs sous-problèmes : 

• RQ1: Quel est l’impact des changements du KOS sur les annotations sémantiques ?  

• RQ2: Quel est le modèle le plus approprié pour résoudre le problème d’évolution des 

annotations ?  

• RQ3: Suite à la publication d’une nouvelle version du KOS, comment maintenir 

automatiquement la validité des annotations sémantiques sans annoter à nouveau le 

contenu de tous les documents ?  

• RQ4: Quelles méthodes peuvent être utilisées pour permettre la recherche des 

annotations lorsque le document et les annotations ne peuvent pas être modifiés ?  

• RQ5: Pouvons-nous prédire quel concept du KOS changera dans un futur proche et 

quel type de changement aura un impact sur ce concept ?  



 
 

 

Pour chaque sous-problème, rédigé sous forme de question de recherche (RQ), nous  avons 

apporté des contributions significatives à l’état de l’art. Ces contributions sont brièvement 

décrites ci-dessous. 

 

Les travaux effectués pour répondre la RQ1(Quel est l’impact des modifications de KOS sur les 

annotations sémantiques ?) ont montré, par une analyse empirique des facteurs influençant 

l’évolution des annotations (décrite dans le chapitre 1), que les modifications apportées aux 

annotations sont fortement corrélées aux modifications du KOS. Pour réaliser cette analyse, 

nous avons utilisé un ensemble de documents annotés avec GATE et NCBO Annotator et 13 

versions différentes de deux KOS biomédicaux bien connu, ICD-9-CM et MeSH.  

 

La question RQ2 (Quel est le modèle le plus approprié pour résoudre le problème d’évolution 

des annotations ?) a été traitée dans le chapitre 2. Nous avons analysé différents modèles 

d’annotation afin de vérifier s’ils étaient appropriés pour représenter (ou si nous pouvions 

déduire de leurs éléments) tous les critères requis pour identifier les changements apportés aux 

annotations. Nos études ont permis de proposer des extensions au modèle de données W3C Open 

Annotation afin de résoudre ce problème, par exemple l’inclusion de la relation evolved, qui lie 

une annotation évoluée à sa version antérieure. Ces nouvelles fonctionnalités permettent une 

meilleure couverture des aspects liés à l’évolution. Par exemple, il est maintenant possible de 

retracer toutes les évolutions d’une annotation et de les réutiliser pour la  recherche 

d’information (voir le chapitre 3).  

 

Les travaux nécessaires pour répondre à la question RQ3 (Suite à la publication d’une nouvelle 

version du KOS, comment maintenir automatiquement la validité des annotations sémantiques 

sans annoter à nouveau le contenu de tous les documents ?) nous a amenés à proposer une 

nouvelle architecture, appelée MAISA, à base de règles, qui combine des informations 

provenant de l’évolution des KOS et des connaissances extraites du Web, pour tenir à jour 

automatiquement les annotations sémantiques. Nous avons démontré par des expériences 

empiriques que la correction / adaptation des annotations peut atteindre un taux de fiabilité 

satisfaisant. Cependant, il est important de souligner que le rôle des experts du domaine est 

toujours déterminant pour garantir la qualité des annotations dans des scénarios critiques, 

comme cela a été observé dans le domaine biomédical. Notre approche de maintenance se fait 

sans ré-annotation complète du document, puisque nous réutilisons les informations présentes 

dans les annotations pour faire évoluer celles qui ont été impactées. 

 

Afin de répondre à la question RQ4 (Quelles méthodes peuvent être utilisées pour permettre la 

recherche des annotations lorsque le document et les annotations ne peuvent pas être modifiés 

?), nous avons proposé, dans le chapitre 5, une méthode permettant de rechercher les annotations 

impactées sans les modifier. Les analyses expérimentales ont démontré que notre méthode est 

capable d’atteindre de bons résultats lorsqu’on interroge les GC et qu’elle peut être utilisée 

comme une méthode alternative à la méthode présentée dans le chapitre 3, pour adapter/modifier 

les annotations sémantiques. Nous avons observé que l’utilisation d’un graphe de connaissances 

permet d’avoir une bonne représentation des différentes versions de l’ontologie et du lien 



 
 

 

évolutif entre elles. Cette approche contribue à l’état actuel de la maintenance des annotations 

en intégrant une nouvelle méthode pour les maintenir.  

 

Le problème de l’anticipation pointé par la question RQ5 (Pouvons-nous prédire quel concept 

du KOS changera dans un futur proche et quel type de changement aura un impact sur ce concept 

?) a été traité dans le chapitre 6. Nous avons analysé comment améliorer notre approche en 

incluant une nouvelle méthode capable d’anticiper l’évolution des concepts associés aux 

annotations. Cette méthode peut être utile aux experts du domaine pendant les phases 

d’annotation et de maintenance. Elle peut, par exemple, alerter sur les risques liés au choix du 

concept et / ou d’une ontologie pour annoter les documents biomédicaux. Notre approche a 

montré plus de 71% de précision lors de l’identification des concepts nécessitant une révision. 

En plus, nous avons contribué à l’état de la technique en incluant des fonctionnalités 

temporelles, par exemple, des informations sur la dernière date d’évolution d’une annotation, ce 

qui contribue à l’amélioration de la précision des méthodes utilisées.  

 

En résumé, toutes les questions de recherche identifiées dans cette thèse (RQ1-5) ont reçu une 

réponse satisfaisante, ce qui permet de valider notre hypothèse : Les informations du KOS, ainsi 

que des informations sur l’évolution de KOS, peuvent être utilisées pour définir un mécanisme 
robuste de maintenance. Nous avons également dû traiter un problème secondaire, mais tout à 

fait intéressant, lié aux choix de la mesure de similarité la plus appropriée dans MAISA. Ce 

problème a été présenté dans le chapitre 4 et montre qu’une approche combinant des mesures 

lexicales et sémantiques peut améliorer la mesure de similarité entre les concepts. Nos analyses 

expérimentales ont démontré qu’une méthode exploitant ces mesures peut surpasser les 

méthodes basées sur une seule mesure de similarité (sémantique ou lexicale). En utilisant cette 

mesure hybride, nous avons introduit la règle Correspondance_Partielle pour maintenir les 

annotations sémantiques affectées par l’évolution du KOS. Nos analyses expérimentales ont 

démontré que la règle Correspondance_Partielle permet d’obtenir de bons résultats pour 

adapter les annotations en utilisant une ou plusieurs versions successives des KOSs. 

 

En résumé, cette thèse a contribué à la maintenance des annotations sémantiques affectées 

par l’évolution de KOS. Nous nous sommes basés sur l’état de l’art dans le domaine pour 

construire l’architecture MAISA. Cette architecture contient une méthode originale pour gérer 

les annotations. Les résultats obtenus au cours de la thèse sont encourageants et ont permis 

d’apporter des améliorations pour le domaine. Tous les travaux décrits dans cette thèse ont fait 

l’objet de plusieurs articles publiés dans des conférences et des revues internationales. 
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avec le vocabulaire du même KOS mais d’une version différente. Pour gérer ce décalage de versions, nous avons 
proposé un graphe de connaissance représentant un KOS et son historique et un mécanisme d’enrichissement de 
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