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Andrés SARRAZOLA ALZATE LOCALISATION DE REPRÉSENTATIONS LOCALEMENT ANALYTIQUES ADMISSIBLES Résumé :

Soit un schéma en groupes réductif, connexe et déployé sur l'anneau d'entiers d'une extension finie du corps de nombres -adiques ℚ . Un théorème important dans la théorie des groupes c'est le théorème de localisation, ce qui a été démontré par A. Beilinson et J. Berstein, et par J.L. Brylinsky et M. Kashiwara. Il s'agit d'un résultat de D-affinité pour la variété de drapeaux du groupe algébrique (la fibre générique de ). En caractéristique mixte un progrès important se trouve dans les travaux de C. Huyghe et T. Schmidt. Ils donnent une réponse partielle en considérant des caractères algébriques. Les premières quatre chapitres de cette thèse sont consacrés à étendre cette correspondance (le théorème de localisation arithmétique) pour des caractères arbitraires. Dans les chapitres cinq et six, nous traiterons l'objectif principal de cette thèse qui concerne les représentations localement analytiques. Nous montrerons que si est un caractère algébrique, tel que + est de plus dominant et régulier ( en étant le caractère de Weyl), alors la catégorie des représentations admissibles localement analytiques du groupe -analytique ∶= ( ), à caractère central , c'est équivalente à la catégorie des D( )-modules arithmétiques coadmissibleséquivariants sur la famille des modèles formels de la variété de drapeaux rigide de .

Mots-clés : D-modules arithmétiques, localisation, représentations localement analytiques admissibles, variétés de drapeaux, modèles formels, D( )-modules arithmétiques coadmissibles -équivariants.

Summary:

Let be a split connected, reductive group scheme over the ring of integers of a finite extension of the field ofadic numbers ℚ . An important theorem in group theory is the localization theorem, demonstrated by A. Beilinson and J. Berstein, and by J.L. Brylinsky and M. Kashiwara. This is a result about the D-affinity of the flag variety of the algebraic group (the generic fiber of ). In mixed characteristic an important progress is found in the work of C. Huyghe and T. Schmidt. They give a partial answer by considering algebraic characters. The first four chapters of this thesis are dedicated to extending this correspondence (the arithmetic localization theorem) for arbitrary characters. In chapters five and six, we will treat the principal objective of this thesis, which concerns admissible locally analytic representations. We will show that if is an algebraic character, such that + is furthermore dominant and regular ( being the Weyl character), then the category of admissible locally analytic representations of the locally -analytic group ∶= ( ), with central character , it is equivalent to the category of coadmissible -equivariant arithmetic D( )-modules over the family of formal models of the rigid flag variety of .

Key words: Arithmetic D-modules, localization, admissible locally analytic representations, flag varieties, formal models, coadmissible -equivariant arithmetic D( )-modules.
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Introduction Version en Français

Un résultat important dans la théorie des représentations est le théorème de Beilinson-Bernstein [START_REF] Beilinson | Localisation de -modules[END_REF]. Rappelons brièvement son énoncé : Soit un groupe algébrique complexe semi-simple et ℂ ∶= Lie( ) son algèbre de Lie. Soit ℂ ⊆ ℂ une sous-algèbre de Cartan et ⊆ U ( ℂ ) le centre de l'algèbre enveloppante de ℂ . Pour chaque caractère ∈ * ℂ ∶= Hom ℂ ( , ℂ) on note ⊆ l'idéal maximal correspondant, qui est induit via l'homomorphisme d'Harish-Chandra [START_REF] Dixmier | Enveloping algebras[END_REF]Theorem 7.4.5]. On définit U ∶= U ( ℂ )∕ . Le théorème affirme que si est la variété de drapeaux de et D , le faisceau des opérateurs différentiels -tordus (cf. [START_REF] Beilinson | Localisation de -modules[END_REF]Théorème principal]), alors on a une équivalence de catégories Mod qc (D , ) ≃ Mod(U ) à condition que soit un caractère dominant et régulier (2.5.3). Ici Mod qc (D , ) est la catégorie des D , -modules qui sont O -quasi-cohérents. De plus, dans cette équivalence de catégories, les D , -modules qui sont cohérents correspondent aux U -modules qui sont de type fini.

Le théorème de Beilinson-Bernstein a été démontré indépendamment par A. Beilinson et J. Bernstein dans [START_REF] Beilinson | Localisation de -modules[END_REF], et par J-L. Brylinski et M. Kashiwara dans [START_REF] Brylinski | Démonstration de la conjecture de Kazhdan-Lusztig sur les modules de Verma[END_REF]. Il a été un outil important dans la preuve de la conjecture de la multiplicité de Kazhdan-Lusztig [START_REF] Kazhdan | Representations of Coxeter groups and Hecke algebras[END_REF]. En caractéristique mixte, un progrès important se trouve dans les travaux de C. Huyghe [START_REF] Huyghe | D † -affinité de l'espace projectif[END_REF][START_REF] Huyghe | Un théorème de Beilinson-Bernstein pour les D-modules arithmétiques[END_REF] et Huyghe-Schmidt [START_REF] Huyghe | D-modules arithmétiques sur la variété de drapeaux[END_REF]. Dans ce cas, si est l'anneau des entiers d'une extension finie du corps des nombres -adiques ℚ et est un groupe réductif, connexe et déployé sur , alors ils utilisent des opérateurs différentiels arithmétiques introduits par P. Berthelot dans [START_REF] Berthelot | D-modules arithmétiques I. Opérateurs différentiels de niveau fini[END_REF] pour montrer une version arithmétique du théorème de Beilinson-Bernstein pour la variété de drapeaux formelle sur . Dans ce contexte, les sections globales de ces opérateurs sont canoniquement isomorphes à une version cristalline de l'algèbre de distribution classique Dist( ) du schéma en groupes (cf. [START_REF] Huyghe | D-modules arithmétiques sur la variété de drapeaux[END_REF]Théorème 3.2.3 (i)] et [START_REF] Huyghe | D-modules arithmétiques, distributions et localisation[END_REF]Proposition 5.3.1]). Avant de présenter les objets construits et les résultats montrés dans ce travail, nous remarquons tout au long de ce travail, si est l'indice de ramification de , alors ≤ -1 (pour plus des détails sur cette condition technique le lecteur est invité à regarder l'exemple 1.1.1 et la proposition 5.3.1 de [START_REF] Huyghe | D-modules arithmétiques, distributions et localisation[END_REF]). Soit ⊆ un sous-groupe de Borel et ⊆ un tore maximal et déployé de . Nous noterons ∶= ∕ le schéma de drapeaux associé à . Notre but sera d'introduire des faisceaux des opérateurs différentielles tordus1 sur le -schéma de drapeaux formel et nous montrerons un équivalent arithmétique du théorème de Beilinson-Bernstein, introduit dans le premier paragraphe. Ici le «twist» est fait par rapport à un morphisme d'algèbres ∶ Dist( ) → , où Dist( ) est l'algèbre de distribution au sens de [START_REF] Demazure | Groupes algébriques[END_REF]. Ces faisceaux sont notés D † , . En particulier, il existe une base S de constituée d'ouverts affines, tels que pour chaque U ∈ S nous avons

D † , | U ≃ D † U .
En d'autres termes, localement nous retrouvons le faisceau des opérateurs différentiels introduits par P. Berthelot 2 . Pour calculer ses sections globales, nous utiliserons la description de Dist( ), donnée par Huyghe-Schmidt dans [START_REF] Huyghe | D-modules arithmétiques, distributions et localisation[END_REF], comme une limite inductive des -algèbres noethériennes Dist( ) = lim ← ← ← ← ← ← ← ← ← ← → ∈ℕ ( ) ( ), telle que pour tout ∈ ℕ nous avons 12 CONTENTS ( ) ( ) ⊗ = U (Lie( ) ⊗ ), l'algèbre enveloppante de ∶= Lie( ) ⊗ . En particulier, chaque caractère ∶ Dist( ) → induit, via produit tensoriel avec et l'homomorphisme d'Harish-Chandra, un caractère central ∶ → . Notons ̂ ( ) ( ) la complétion -adique de la réduction centrale ( ) ( )∕( ( ) ( ) ∩ Ker( + )) et † ( ) la limite inductive du système ̂ ( ) ( ) ⊗ → ̂ ( ′ ) ( ) ⊗ . Avant d'énoncer notre premier résultat, considérons le décalage suivant. Tout d'abord, la représentation adjointe [40, I, 7.18] induit une structure de -module sur ∶= Lie( ) telle que se décompose de la forme :

= Lie( ) ⊕ ⨁ ∈Λ .
Ici Λ ⊆ ( ) représente les racines de par rapport à . Nous choisissons un système positif des racines Λ + ⊆ Λ et nous considérons le caractère de Weyl ∶= 1 2 ∑ ∈Λ + . Dans le chapitre 4 nous montrerons le théorème suivant (théorème 4.2.1). Théorème 1. Soit ∶ Dist( ) → un caractère de l'algèbre de distribution Dist( ) tel que + ∈ * ∶= (Lie( ) ⊗ ) * 3 est un caractère dominant et régulier de ∶= Lie( ) ⊗ . Le foncteur sections globales induit une équivalence de catégories entre la catégorie des D † , -modules cohérents et la catégories des † ( ) -modules de présentation finie. Comme nous expliquerons dans la suite, le théorème est basé sur une version plus fine pour les faisceaux (des opérateurs différentiels tordus de niveau ) D( ) , ,ℚ . Comme dans le cas classique, le foncteur inverse est déterminé par le foncteur de localisation

L † , (•) ∶= D † , ⊗ † ( ) (•)
avec une définition complètement analogue pour chaque ∈ ℕ.

Le chapitre 1 à pour but de fixer quelques constructions arithmétiques (elles sont introduites dans [START_REF] Berthelot | D-modules arithmétiques I. Opérateurs différentiels de niveau fini[END_REF], [START_REF] Huyghe | D † -affinité de l'espace projectif[END_REF] et [START_REF] Huyghe | D-modules arithmétiques, distributions et localisation[END_REF]). Dans le chapitre 2 nous construisons notre faisceau des opérateurs différentiels tordus de niveau sur le schéma de drapeaux formel sur . Pour cela, nous notons ∶= Lie( ) l'algèbre de Lie du tore et ∶= ⊗ . Ce sont des sous-algèbres de Cartan respectives de et de . Soit N le radical unipotent du groupe de Borel et considérons les -schémas lisses et séparés ̃ ∶= ∕N et ∶= ∕ (l'espace affine basique et le schéma de drapeaux). La projection canonique ∶ ̃ → est un -torseur localement trivial pour la topologie de Zariski de et, comme dans [START_REF] Borho | Differential operators on homogeneous spaces. II: relative enveloping algebras[END_REF], nous considérons l'algèbre enveloppante de niveau du torseur comme le sous-faisceau des -invariants de * D ( ) ̃ :

D( ) ∶= * D ( ) ̃ .
Comme nous l'expliquerons, c'est un faisceau de ( ) ( )-modules qui localement, sur un ouvert affine ⊂ qui trivialise le torseur, peut être décrit comme le produit tensoriel D ( ) | ⊗ ( ) ( ). D'autre part, si ∶ Dist( ) → est un morphisme de -algèbres (qu'on appellera un caractère de Dist( )) alors, grâce aux propriétés juste annoncées, nous définirons un faisceau d'opérateurs différentiels arithmétiques tordus sur par D ( ) , ∶= D( ) ⊗ ( ) ( ) .

(1)

• Pour tout , ℎ ∈ 0 , nous avons ( ) * ℎ • = ℎ .

• Si U ⊆ est sous-ensemble ouvert, ∈ D † , ( )(U ) et ∈ M (U ) alors ( • ) = ( ) • ( ).

• 6 Pour tout ∈ +1 l'application ∶ M → ( ) * M est égale à la multiplication par ∈ D an ( ( )) .

Un morphisme entre deux D † , ( )-modules fortement 0 -équivariants (M , ( M ) ∈ 0 ) et (N , ( N ) ∈ 0 ) est un morphisme ∶ M → N qui est D † , ( )-linéaire et tel que, pour tout ∈ 0 , on a N • = ( ) * • M . Notons Coh(D † , ( ), 0 ) la catégorie des D † , ( )-modules cohérents qui sont fortement 0 -équivariants. Nous avons le résultat suivant 7 : Théorème 3. Soit ∈ Hom( , ) un caractère algébrique tel que + ∈ * est un caractère dominant et régulier de . Les foncteurs L † , ( ) et 0 ( , •) induisent des équivalences des catégories entre les catégories des ( ( ) . Nous dirons donc qu'une famille M ∶= (M , ) ( , )∈F des D † , ( )-modules cohérentes est un D( )-module coadmissible 0 -équivariant sur F si pour tout ∈ 0 , avec morphisme ∶ → . , il existe un isomorphisme ∶ M . , → ( ) * M , qui satisfait les conditions ( †) et tel que, si ( ′ , ′ ) ⪰ ( , ) avec ∶ ′ → , alors il existe un morphisme de transition * M ′ , ′ → M , , qui satisfait des conditions de transitivité évidentes. De plus, un morphisme M → N entre deux tels modules est un morphisme M , → N , de D † , ( )-modules qui est compatible avec les structures supplémentaires. Nous noterons cette catégorie C 0 , et pour chaque objet M ∈ C 0 , , nous considérerons la limite projective

Γ(M ) ∶= lim ← ← ← ← ← ← ← ← ← ← ← ( , )∈F 0 ( , M , )
au sens des groupes abéliens.

Or, soit un ( 0 , ) -module coadmissible et ∶= ′ sa représentation localement analytique associée. L'espace des vecteurs ( ) • -analytiques ( ) • -an ⊆ est stable sous l'action de 0 et son dual ∶= ( ( ) • -an ) ′ est un ( ( ) • , 0 )-module de présentation finie. Dans cette situation, le théorème 3 produit un D † , ( )-module cohérent Les foncteurs L 0 (•) et Γ(•) induisent des équivalences des catégories entre la catégorie C 0 , (des ( 0 , ) -modules coadmissibles) et la catégorie C 0 , .

L † , ( ) 
Finalement, la dernière partie de ce travail est consacrée à l'étude de la catégorie des ( , ) -modules coadmissibles, où ∶= ( ) 8 . Pour cela, nous considérerons l'immeuble de Bruhat-Tits B de ( [START_REF] Bruhat | Groupes réductifs sur un corps local I[END_REF] et [START_REF] Bruhat | Groupes réductifs sur un corps local II[END_REF]). Il s'agit d'un complexe simplicial équipé d'une action de . Pour tout sommet spécial ∈ B, la théorie de Un D( )-module arithmétique coadmissible -équivariant sur F , est une famille (M ( , , ) ) ( , , )∈F de D † , ( )-modules cohérents satisfaisant la condition ( †) plus certaines propriétés de compatibilité (définition 6.6.4) permettant de former la CONTENTS limite projective suivante :

Γ(M ) ∶= lim ← ← ← ← ← ← ← ← ← ← ← ( , , )∈F 0 ( , M ( , , ) ).
Cette dernière, comme nous le montrerons, porte une structure de ( , ) -module coadmissible. D'autre part, étant donné un ( , ) -module coadmissible , on considère V := ′ son dual continu, qui est une représentation localement analytique de . Soit ensuite , l'espace dual du sous-espace ( ) • -an ⊆ des vecteurs ( ) • -analytiques. Pour tout ( , , ) ∈ F , nous avons le D † , ( )-module cohérent

L † , ( )( , ) = D † , ( ) ⊗ D an ( ( ) • ) , .
On note cette famille L ( ). Nous montrerons le résultat suivant (théorème 6.6.6) :

Théorème 5. Soit ∈ Hom( , ) un caractère algébrique tel que + ∈ * est un caractère dominant et régulier de . Les foncteurs L (•) et Γ(•) donnent des équivalences quasi-inverses entre les catégories des ( , ) -modules coadmissibles et des D( )-modules arithmétiques coadmissibles -équivariants.

La dernière tâche a consisté à étudier la limite projective

∞ ∶= lim ← ← ← ← ← ← ← ← ← ← ← ( , , )
.

Introduction

English version

An important result in representation theory is the so-called Beilinson-Bernstein theorem [START_REF] Beilinson | Localisation de -modules[END_REF]. Let us briefly recall its statement. Let be a semi-simple complex algebraic group and ℂ ∶= Lie( ) its Lie algebra. Let ℂ ⊆ ℂ be a Cartan subalgebra and ⊆ U ( ℂ ) the center of the universal enveloping algebra of ℂ . For each character ∈ * ℂ ∶= Hom ℂ ( , ℂ) we denote by ⊆ the corresponding maximal ideal, which is induced via the homomorphism of Harish-Chandra [START_REF] Dixmier | Enveloping algebras[END_REF]Theorem 7.4.5]. We define U ∶= U ( ℂ )∕ . The theorem states that if is the flag variety of and D , is the sheaf of -twisted differential operators [3, 2. Main theorem], then we have an equivalence of categories Mod qc (D , ) ≃ Mod(U ), provided that is a dominant and regular character of ℂ (2.5.3). Here Mod qc (D , ) is the category of D , -modules that are O -quasi-coherent. In addition, in this equivalence of categories, coherent D , -modules correspond to the Umodules that are of the finite type.

The Beilinson-Bernstein theorem was independently demonstrated by A. Beilinson and J. Bernstein in [START_REF] Beilinson | Localisation de -modules[END_REF], and by J-L. Brylinski and M. Kashiwara in [START_REF] Brylinski | Démonstration de la conjecture de Kazhdan-Lusztig sur les modules de Verma[END_REF]. It has been an important tool in proving Kazhdan-Lusztig's multiplicity conjecture [START_REF] Kazhdan | Representations of Coxeter groups and Hecke algebras[END_REF]. In mixed characteristic, an important progress can be found in the work of C. Huyghe [START_REF] Huyghe | D † -affinité de l'espace projectif[END_REF][START_REF] Huyghe | Un théorème de Beilinson-Bernstein pour les D-modules arithmétiques[END_REF] and Huyghe-Schmidt [START_REF] Huyghe | D-modules arithmétiques sur la variété de drapeaux[END_REF]. In this situation, if is the ring of integers of a finite extension of the field of -adic numbers ℚ and is a split conneccted, redactive group scheme over , then they use the arithmetic differential operators introduced by P. Berthelot in [START_REF] Berthelot | D-modules arithmétiques I. Opérateurs différentiels de niveau fini[END_REF] to show an arithmetic version of the Beilinson-Bernstein theorem for the formal flag -scheme . In this context, the global sections of these operators are canonically isomorphic to a crystalline version of the classical distribution algebra Dist( ) of the group scheme (cf. [START_REF] Huyghe | D-modules arithmétiques sur la variété de drapeaux[END_REF]Theorem 3.2.3 (i)] and [START_REF] Huyghe | D-modules arithmétiques, distributions et localisation[END_REF]Proposal 5.3.1]).

Before presenting the objects built and the results shown in this work, we remark for the reader that troughout this work, if denotes the index of ramification of , then ≤ -1 (for more details about this technical condition the reader is invited to look at the example 1.1.1 and the proposition 5.3.1 of [START_REF] Huyghe | D-modules arithmétiques, distributions et localisation[END_REF]). Let us take ⊆ a Borel subgroup and ⊆ a split maximal torus of . We will denote by ∶= ∕ the flag scheme associated to . Our major goal will be to introduce sheaves of twisted differential operators on the formal flag -scheme and we will show an arithmetic equivalent of the Beilinson-Bernstein theorem, introduced in the first paragraph. Here the twist is made in relation to a morphism of -algebras ∶ Dist( ) → , where Dist( ) is the sense of [START_REF] Demazure | Groupes algébriques[END_REF]. These sheaves are denoted by D † , . In particular, there is a base S of made up of open affine subsets, such that for each U ∈ S we have

D † , | U ≃ D † U .
In other words, locally we find the sheaf of differential operators introduced by P. Berthelot9 . To calculate its global sections, we will use the description of Dist( ), given by Huyghe-Schmidt in [START_REF] Huyghe | D-modules arithmétiques, distributions et localisation[END_REF], as an inductive limit of noetherian -algebras Dist(

) = lim ← ← ← ← ← ← ← ← ← ← → ∈ℕ ( ) (
), such that for every ∈ ℕ we have ( ) ( ) ⊗ = U (Lie( ) ⊗ ), the universal enveloping algebra of ∶= Lie( ) ⊗ . In particular, each character ∶ Dist( ) → induces, via tensor product 18
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with and the Harish-Chandra homomorphism, a central character ∶ → . We denote by ̂ ( ) ( ) the -adic completion of the central reduction ( ) ( )∕( ( ) ( ) ∩ Ker( + )) and by † ( ) the inductive limit of the system ̂ ( ) ( ) ⊗ → ̂ ( ′ ) ( ) ⊗ . Before stating our first result, let us consider the following shift. First, the adjoint representation [40, I, 7.18] induces a -module structure on ∶= Lie( ) such that breaks down as follows

= Lie( ) ⊕ ⨁ ∈Λ .
Here Λ ⊆ ( ) represents the roots of respect to . We choose a positive root system Λ + ⊆ Λ and we consider the Weyl character ∶= 1 2 ∑ ∈Λ + . In chapter 4 we will show the following theorem (theorem 4.2.1).

Theorem 1. Let ∶ Dist( ) → be a character of the distribution algebra Dist( ), such that + ∈ * ∶= (Lie( ) ⊗ ) *10 is a dominant and regular character of ∶= Lie( ) ⊗ . The global sections functor induces an equivalence of categories between the category of coherent D † , modules and the category of finitely presented † ( ) -modules. As we will explain later, the theorem is based on a finer version for the sheaves ( of twisted differential operators of level ) D( ) , ,ℚ . As in the classic case, the inverse functor is determined by the localization functor

L † , (•) ∶= D † , ⊗ † ( ) (•)
with a completely similar definition for each ∈ ℕ.

Chapter 1 is dedicated to fixing some arithmetic constructions (they are introduced in [START_REF] Berthelot | D-modules arithmétiques I. Opérateurs différentiels de niveau fini[END_REF], [START_REF] Huyghe | D † -affinité de l'espace projectif[END_REF] and [START_REF] Huyghe | D-modules arithmétiques, distributions et localisation[END_REF]). In Chapter 2 we construct our sheaf of twisted differential operators of level on the formal flag -scheme . To do this, we will denote by ∶= Lie( ) the Lie algebra of the torus and by ∶= ⊗ . These are Cartan subalgebras of and , respectively. Let us consider N the unipotent radical of the Borel subgroup and consider the smooth and separated -schems ̃ ∶= ∕N and ∶= ∕ (the basic affine space and the flag scheme). The canonical projection ∶ ̃ → is a locally trivial -torsor for the Zariski topology of . As in [START_REF] Borho | Differential operators on homogeneous spaces. II: relative enveloping algebras[END_REF], we will consider the enveloping algebra of level of the torsor as the subsheaf of -invariants of * D ( ) ̃ :

D( ) ∶= * D ( ) ̃ .
As we will explain, it is a sheaf of ( ) ( )-modules which locally, over an open affine subset ⊂ that trivializes the torsor, can be described as the tensor product D ( ) | ⊗ ( ) ( ). On the other hand, if ∶ Dist( ) → is a morphism of -algebras (which we will call a character of Dist( )) then, thanks to the properties just announced, in section 2.5 we define a sheaf of twisted arithmetic differential operators on by

D ( ) , ∶= D( ) ⊗ ( ) ( ) . ( 4 
)
This defines an integer model of the sheaf of twisted differential operators D on the flag variety ∶= × Spec( ) Spec( ). The final part of chapter 2 is consecrated to exploring some finite properties of the cohomology of coherent D ( ) , -modules. An important case is the one where + ∈ * is a dominant and regular character of . Under this assumption, the cohomology groups of any coherent D ( ) , -module are of bounded -torsion, which is a central result in this work. In chapter 3 we will consider the -adic completion of (4) which we will denote by D( ) , , and we will study its cohomological properties when the character + ∈ * is dominant and regular. Finally, chapter 4 is dedicated to the study of the inductive limit

D † , ∶= lim ← ← ← ← ← ← ← ← ← ← → ∈ℕ D( ) , ,ℚ , D( ) , ,ℚ ∶= D( ) , ⊗ .
and to demonstrate a Beilinson-Berstein theorem for arithmetic D † , -modules (Theorem 4.2.1).

The work developed by C. Huyghe in [START_REF] Huyghe | Un théorème de Beilinson-Bernstein pour les D-modules arithmétiques[END_REF] and by D. Patel, T. Schmidt and M. Strauch in [START_REF] Patel | Locally analytic representations and sheaves on the Bruhat-Tits building[END_REF], [START_REF] Patel | Locally analytic representations of GL(2, ) via semistable models of ℙ 1[END_REF] and [START_REF] Huyghe | D † -affinity of formal models of flag varieties[END_REF] shows that the arithmetic Beilinson-Bernstein theorem is an important tool in the following location theorem [START_REF] Huyghe | D † -affinity of formal models of flag varieties[END_REF]Theorem 5.3.8]: if denotes the formal flag scheme of the group , then the theorem provides an equivalence of categories between the category of admissible locally analytic representations of ∶= ( ) (with trivial character!) and the category of admissible -equivariant arithmetic D-modules (on the family of formal models of the rigid flag variety). Our motivation was to study this localization theorem in the twisted case. To do this, in Chapter 5, we will introduce a set of differential operators D † , , with a congruence level ∈ ℕ (definition 5.20). Morally, we will follow the philosophy described in [START_REF] Huyghe | D † -affinity of formal models of flag varieties[END_REF] to introduce a sheaf of differential operators on each admissible blow-up of . More specifically, if pr ∶ → is an admissible blow-up of and >> 011 , then

D † , , ∶= pr * D † , , = O ⊗ pr -1 O pr -1 D † , , (5) 
is a sheaf of rings on . In this work we will consider the algebraic case, i.e., ∈ Hom( , ). In this situation, induces an invertible sheaf L ( ) on and D † , , becomes the sheaf of differential operators acting on L ( ). From now on, we will denote this sheaf by D † , ( ) to take into account the action on L ( ), and we will assume that + ∈ * is a dominant and regular character of . In chapter 6 we will demonstrate that the functor pr * induces an equivalence of categories between the category of coherent D † , ( )-modules and the category of coherent D † , ( )-modules. In addition, we have pr * D † , ( ) = D † , ( ), which implies that

0 ( , D † , ( )) = 0 ( , D † , ( )) = † ( ( )) .
Here, ( ) is the k-th congruence subgroup of . In particular 0 ( , •) = 0 ( , •) • pr * is an exact functor and we have the following theorem.

Theorem 2. Let pr ∶ → be an admissible blow-up. Suppose that ∈ Hom( , ) is an algebraic character such that + ∈ * is a dominant and regular character of . The 0 ( , •) induces an equivalence between the categories of coherent D † , ( )-modules and finitely presented † ( ( )) -modules.

As in the previous theorem, the inverse functor is determined by the localization functor

L † , ( )(•) ∶= D † , ( ) ⊗ † ( ( )) (•).
Let us now describe the most important tools in our localization theorem. On the algebraic side, we will first assume that 0 = ( ) and that ( 0 , ) is the distribution algebra of the compact analytic group 0 . The key point will be to build a structure of weak Fréchet-Stein algebra on ( 0 , ) (in the sense of [25, Definition 1.2.6]) that will allow us to localize the coadmissible ( 0 , )-modules (relative to this weak Fréchet-Stein structure). To do this, we start by remarking that according to the work developped by Huyghe-Schmidt in [START_REF] Huyghe | D-modules arithmétiques sur la variété de drapeaux[END_REF], we can identify the algebra † ( ( )) with the central reduction D an ( ( ) • ) of the algebra of analytic distributions D an ( ( ) • ) (in the sense of Emerton [START_REF] Emerton | Locally Analytic Vectors in Representations of Locally -adic Analytic Groups[END_REF]) of the rigid analytic group ( ) • (the wide open rigid-analytic -th congruence subgroup described in subsection 6.4.2). So we have an isomorphism † ( ( )

) ≃ ← ← ← ← ← ← ← → D an ( ( ) • ) .
Moreover, according to the work developped by Huyghe-Patel-Schmidt-Strauch in [START_REF] Huyghe | D † -affinity of formal models of flag varieties[END_REF], if C cts ( 0 , ) ( ) • -an is the vector space of locally analytic vectors of the space of continuous -valued functions, and ( ( )

• , 0 ) ∶= (C cts ( 0 , ) ( ) • -an ) ′
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is its strong dual, then we have an isomorphism

( 0 , ) ≃ ← ← ← ← ← ← ← → lim ← ← ← ← ← ← ← ← ← ← ← ∈ℕ ( ( ) • , 0 )
which defines a structure on ( 0 , ) of weak Fréchet-Stein algebra, such that

( ( ) • , 0 ) = ⨁ ∈ 0 ∕ D an ( ( ) • ) . ( 6 
)
Here ∶= ( )( ) is a normal subgroup of 0 , the direct sum runs through a set of representatives of the cosets of in 0 and is the Dirac distribution supported in . We will denote by C 0 , the category of coadmssible ( 0 , )-modules with central character (coadmissible ( 0 , ) -modules, where ( 0 , ) denotes the central reduction). Now, on the geometric side, we will consider pr ∶ → a 0 -equivariant admssible blow-up such that the invertible sheaf L ( ) is equipped with a 0 -action that allows us to define a left 0 -action 12 , in the sense that for every , ℎ ∈ 0 we have the cocycle condition ℎ = ( ) * ℎ • . So, we will say that a coherent D † , ( )-module M is strongly 0 -equivariant if there is a family ( ) ∈ 0 of isomorphisms ∶ M → ( ) * M of sheaves of -vector spaces, which satisfy the following properties (conditions ( †)) :

∶ D † , ( ) → ( ) * D † , ( ) on D † , ( )
• For every , ℎ ∈ 0 we have ( ) * ℎ • = ℎ . • If U ⊆ is an open subset, ∈ D † , ( )(U ) and ∈ M (U ) then ( • ) = ( ) • ( ).
• 13 For any ∈ +1 the application ∶ M → ( ) * M is equal to the multiplication by ∈ D an ( ( )) .

A morphism between two strongly 0 -equivariant D † , ( )-modules (M , ( M ) ∈ 0 ) and (N ,

( N ) ∈ 0 ) is a morphism ∶ M → N which is D †
, ( )-linear and such that, for every ∈ 0 , we have N • = ( ) * • M . We denote by Coh(D † , ( ), 0 ) the category of strongly 0 -equivariant D † , ( )-modules. We have the following result 14

Theorem 3. Let ∈ Hom( , ) be an algebraic character such that + ∈ * is a dominant and regular character of . The functors L † , ( ) and 0 ( , •) induce equivalences between the categories of finitely presented ( ( ) • , 0 )modules (with central character ) and Coh(D † , ( ), 0 ).

Still on the geometric side, let us consider the set F of couples ( , ) such that is an admissible blow-up of and ≥ , where

∶= min I min{ ∈ ℕ | ∈ I }
and I is an ideal subsheaf of O , such that ≃ (I ). This set is ordered by the relationship ( ′ , ′ ) ⪰ ( , ) if and only if ′ is an admissible blow-up of and ′ ≥ . As shown in [START_REF] Huyghe | D † -affinity of formal models of flag varieties[END_REF] the group 0 acts on F and this action respects the congruence level. This means that for every couple ( , ) ∈ F there is a couple ( . , . ) ∈ F with an isomorphism ∶ → . and such that = . . So we will say that a family M ∶= (M , ) ( , )∈F of coherent D † , ( )-modules is a coadmissible 0 -equivariant D( )-module on F if for any ∈ 0 , with morphism ∶ → . , there is an isomorphism ∶ M . , → ( ) * M 12 Here ∈ 0 and ∶ → is the morphism induced by 0 -equivariance. 13 We identify here 0 ( , D † , ( )) with D an ( ( ) • ) and we use lemma 6.3.3 to give sense to this condition. 14 We use the relationship [START_REF] Berthelot | D-modules arithmétiques I. Opérateurs différentiels de niveau fini[END_REF] to give a sense to the assertion of the theorem. that satisfies the conditions ( †) and such that, if ( ′ , ′ ) ⪰ ( , ) with ∶ ′ → , then there is a transition morphism * M ′ , ′ → M , which satisfies obvious transitivity conditions. Moreover, a morphism M → N between two such a modules is a morphism M , → N , of D † , ( )-modules which is compatible with the additional structures. We will note this category C 0 , and for every M ∈ C 0 , , we will consider the projective limit

Γ(M ) ∶= lim ← ← ← ← ← ← ← ← ← ← ← ( , )∈F 0 ( , M , )
in the sense of the Abelian groups Now, let be a coadmissible ( 0 , ) -module and ∶= ′ its associated locally analytic representation. The vector space of ( ) • -analytic vectors ( ) • -an ⊆ is stable under the action of 0 and its dual ∶= ( ( ) • -an ) ′ is a finitely presented ( ( ) • , 0 )-module. In this situation, theorem 3 produces a coherent D † , ( )-module

L † , ( )( ) ∶= D † , ( ) ⊗ D an ( ( ) • )
for each element ( , ) ∈ F . We will note this family

L 0 ( ) ∶= L † , ( )( ) ( , )∈F .
Theorem 4. Let ∈ Hom( , ) be an algebraic character such that + ∈ * is a dominant and regular character of . The functors L 0 (•) and Γ(•) induce equivalences of categories between the category C 0 , (of coadmissible ( 0 , ) -modules) and the category C 0 , .

Finally, the last part of this work is devoted to the study of coadmissible ( , ) -modules, where ∶= ( ) 15 . To do this, we will consider the Bruhat-Tits building B of ( [START_REF] Bruhat | Groupes réductifs sur un corps local I[END_REF] and [START_REF] Bruhat | Groupes réductifs sur un corps local II[END_REF]). It is a simplicial complex equipped with a -action. For any special vertex ∈ B, the theory of Bruhat and Tits associates a reductive group whose generic fiber is canonically isomorphic to × Spec( ) Spec( ). Let be the flag scheme of , and its formal completion along its special fiber. We consider the set F composed of triples ( , , ) such that is a special vertex, → is an admissible blow-up of and ≥ . According to (6.6.2) F is partially ordered. In addition, for each special vertex ∈ B, each element ∈ induces an isomorphism

∶ → , such that if ( ) ♮ ∶ O → ( ) * O is the comorphism map and ∶
→ is an admissible blow-up along (I ), then the (admissible) blow-up along (( ) -1 ( ) * I ) produces a scheme with an isomorphism ∶ → , such that = and for every , ℎ ∈ we have ℎ • = ℎ .

A coadmissible -equivariant arithmetic D( )-module on F , consists of a family (M ( , , ) ) ( , , )∈F of coherent D † , ( )modules satisfying the condition ( †) plus some compatibility properties (definition 6.6.4) that allow us to form the projective limit

Γ(M ) ∶= lim ← ← ← ← ← ← ← ← ← ← ← ( , , )∈F 0 ( , M ( , , ) ).
Which, as we will show, has a structure of coadmissible ( , ) -module. On the other hand, given a coadmissible ( , ) -module , we consider ∶= ′ its continuous dual, which is a locally analytic representation of . Then let , be the dual space of the subspace ( ) • -an ⊆ of ( ) • -analytic vectors. For every ( , , ) ∈ F , we have a coherent D † , ( )-module

L † , ( )( , ) = D † , ( ) ⊗ D an ( ( ) • ) , .
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We note this family L ( ). We will show the following result (theorem 6.6.6).

Theorem 5. Let ∈ Hom( , ) be an algebraic character such that + ∈ * is a dominant and regular character of . The functors L (•) and Γ(•) give an equivalence between the categories of coadmissible ( , ) -modules and coadmissible -equivariant arithmetic D( )-modules.

The last task was to study the projective limit

∞ ∶= lim ← ← ← ← ← ← ← ← ← ← ← ( , , )
. This is the Zariski-Riemann space associated to the rigid flag variety rig . We can also form the projective limit D( ) of the sheaves D † , ( ) which is a sheaf of -equivariant differential operators on ∞ . Similarly, if (M ( , , ) ) ( , , )∈F is a coadmissible -equivariant arithmetic D( )-module, then we can form the projection limit M ∞ . The data M ( , , )∈F ⇝ M ∞ induces a faithful functor from the category of coadmissible -equivariant arithmetic D( )-modules on F to the category of -equivariant D( )-modules on ∞ (theorem 6.6.8).

Chapter 1

Arithmetic definitions

In this chapter we will describe the arithmetic objects on which the definitions and constructions of our work are based. We will give their functorial constructions and we will enunciate their most remarkable properties. For a more detailed approach, the reader is invited to take a look to the references [START_REF] Ogus | Notes on crystalline cohomology[END_REF], [START_REF] Huyghe | D † -affinité de l'espace projectif[END_REF], [START_REF] Huyghe | D-modules arithmétiques, distributions et localisation[END_REF] and [START_REF] Berthelot | D-modules arithmétiques I. Opérateurs différentiels de niveau fini[END_REF].

Partial divided power structures of level m

Let ∈ ℤ be a prime number. In this subsection ℤ ( ) denotes the localization of ℤ with respect to the prime ideal ( ). We start recalling the following definition [START_REF] Berthelot | Notes on crystalline cohomology[END_REF]Definition 3.1]. Definition 1.1.1. Let be a commutative ring and ⊂ an ideal. By a structure of divided powers on I we mean a collection of maps ∶ → for all integers ≥ 0, such that (i) For all ∈ , 0 ( ) = 1, 1 ( ) = and ( ) ∈ if ≥ 2.

(ii) For , ∈ and ≥ 1 we have ( + ) = ∑ + = ( ) ( ).

(iii) For ∈ and ∈ we have ( ) = ( ).

(iv) For ∈ we have ( ) ( ) = (( , )) + ( ), where (( , )) ∶= ( + )!( !) -1 ( !) -1 .

(v) We have ( ( )) = , ( ), where , ∶= ( )!( !) -1 ( !) -.

Throughout this work we will use the terminology: "( , ) is a PD-ideal", "( , , ) is a PD-ring" and " is a PD-structure on ". Moreover, we say that ∶ ( , , , with a unit of and a positive integer (called the absolute ramification index of ). Then ( ) ∶= ∕ ! defines a PD-structure on ( ) if and only if ≤ -1. In particular, we dispose of PD-structure on ( ) ⊂ ℤ ( ) . We let [ ] ∶= ( ) and we denote by (( ), [ ]) this PD-ideal.

) → ( , , ) is a PD-homomorphism if ∶ →
Let us fix a positive integer ∈ ℤ. For the next terminology we will always suppose that ( , , ) is a ℤ ( ) -PD-algebra whose PD-structure is compatible (in the sense of [6, subsection 1.2]) with the PD-structure induced by (( ), [ ]) (we recall to the reader that the PD-structure (( ), [ ]) always extends to a PD-structure on any ℤ ( ) -algebra [8, proposition 3.15] ). Definition 1.1.2. Let be a positive integer. Let be a ℤ ( ) -algebra and ⊂ an ideal. We call a m-PD-structure on a PD-ideal ( , ) ⊂ such that ( ) + ⊂ , where ( ) is the ideal generated by the powers with ∈ .

We will say that ( , , ) is a m-PD-ideal of . Moreover, we say that ∶ ( , , , ) → ( ′ , ′ , ′ , ′ ) is a m-PDmorphism if ∶ → ′ is a ring morphism such that ( ) ⊂ ′ , and such that ∶ ( , , ) → ( ′ , ′ , ′ ) is a PD-morphism. For every ∈ ℕ we denote by = + the Euclidean division of by , and for every ∈ we define { } ( ) ∶= ( ( )). We remark for the reader that the relation ! ( ) = (which is an easy consequence of (i) and (iv) of definition 1.1.1) implies that ! { } ( ) = . On the other side, the m-PD-structure ( , , ) allows us to define an increasing filtration ( { } ) ∈ℕ on the ring called the m-PD-filtration. This is the finer filtration, which satisfies these following properties [7, 1.3]:

(i) {0} = , {1} = .
(ii) For every ≥ 1, ∈ { } and ≥ 0 we have { } ∈ { } .

(iii) For every ≥ 0, ( + ) ∩ { } is a PD-subideal of ( + ).

Proposition 1.1.3. [8, proposition 1.4.1] Let us suppose that is a ℤ ( ) -algebra endowed with a m-PD-structure ( , , ). Let be a -algebra and ⊂ an ideal. There exists an -algebra ( ) ( ), an ideal ⊂ ( ) ( ) endowed with a m-PD-structure ( ̃ , [ ]) compatible with ( , ), and a ring homomorphism ∶ → ( ) ( ) such that ( ) ⊂ . Moreover, ( ( ) ( ),,̃ ,[ ], ) satisfies the following universal property: for every -homomorphism ∶ → ′ sending to an ideal ′ which is endowed with a m-PD-structure ( ′ , ′ ) compatible with ( , ), there exists a unique m-PD-morphism

∶ ( ( ) ( ), , ̃ , [ ]) → ( ′ , ′ , ′ , ′ ) such that • = .
Definition 1.1.4. Under the hypothesis of the preceding proposition, we call the -algebra ( ) ( ), endowed with the m-PD-ideal ( ̄ , ̃ , [ ]), the m-PD-envelope of ( , ). = 0. Moreover, there exists anhomomorphism ∶ → ( ) ( ) such that ( ) ⊂ , and universal for the -homomorphisms → ( ′ , ′ , ′ , ′ ) sending into a m-PD-ideal ′ compatible with ( , ) and such that ′{ +1} = 0.

Arithmetic differential operators

Let us suppose that is endowed with the m-PD-structure ( , , [ ]) defined in example 1.1.1. Let be a smooth -scheme and I ⊂ O a quasi-coherent ideal. The presheaves (defined over a basis of affine open subsets of )

⊆  → ( ) (Γ( , I)) and ⊆  → ( ) (Γ( , I))
are sheaves of quasi-coherent O -modules which we denote by P ( ) (I) and P ( ) (I), respectively. In a completely analogous way, we can define a canonical ideal I of P ( ) (I), a sub-PD-ideal ( Ĩ, [ ]) ⊂ Ī, and the sequence of ideals ( Ī{ } ) ∈ℕ defining the m-PD-filtration. Those are also quasi-coherent sheaves on [6, 

D ( ) ∶= ⋃ ∈ℕ D ( ) , .
We remark for the reader that by definition D ( ) is endowed with a natural filtration called the order filtration, and like the sheaves P ,( ) , the sheaves D ( ) , are endowed with two natural structures of O -modules. Moreover, the sheaf D ( ) acts on O : if ∈ D ( ) , , then this action is given by the composition O 

1 ← ← ← ← ← ← ← ← ← ← → P ,( ) ← ← ← ← ← ← ← ← → O . Finally,
D ( ) , ( ) = ⎧ ⎪ ⎨ ⎪ ⎩ ∑ | |≤ < > | ∈ O ( ) and ∈ ℕ ⎫ ⎪ ⎬ ⎪ ⎭ . (1.1)

Symmetric algebra of finite level

In this subsection we will focus on introducing the constructions in [START_REF] Huyghe | D † -affinité de l'espace projectif[END_REF]. Let be an -scheme, L a locally free module of finite rank on , S (L) the symmetric algebra associated to L and I the ideal of homogeneous elements of degree 1.

Using the notation of the first section we define Γ ,( ) (L) ∶= P S (L),( ) (I) and Γ ,( O < > , where ! < > = .

) (L) ∶= Γ ,( ) (L)∕ Ī{ +1} . ( 1 
Remark 1.3.1. By [47, A.10] we have that Sym (0) (L) is the symmetric algebra of L, which justifies the terminology.

We end this subsection by remarking the following results from [START_REF] Huyghe | Un théorème de Beilinson-Bernstein pour les D-modules arithmétiques[END_REF]. Let I be the kernel of the comorphism Δ ♯ of the diagonal embedding Δ ∶ → × Spec( ) . In [START_REF] Huyghe | D † -affinité de l'espace projectif[END_REF]Proposition 1.3.7.3] Huyghe shows that the graded algebra associated to the m-PD-adic filtration of P ,( ) it is identified with the graded m-PD-algebra Γ ,( ) (I∕I 2 ) = Γ ,( ) (Ω 1 ). More exactly, we dispose of a canonical morphism of O -algebras

S (Ω ) → • P ,( )
which extends, via universal property of the divided power, to a morphism Γ ,(

) (Ω 1 ) ≃ ← ← ← ← ← ← ← → • (P ,( ) )
. By definition, it induces a graded morphism

Sym ( ) (T ) ≃ ← ← ← ← ← ← ← → • D ( ) (1.3)
which is in fact an isomorphism of O -algebras.

Arithmetic distribution algebra of finite level

As in the introduction, let us consider a split connected reductive group scheme over and ∈ ℕ fixed. We propose to give a description of the algebra of (arithmetic) distributions of level introduced in [START_REF] Huyghe | D-modules arithmétiques, distributions et localisation[END_REF]. Let denote the kernel of the surjective morphism of -algebras ∶ [ ] → , given by the identity element of . We know that ∕ 2 is a free = [ ]∕ -module of finite rank. Let 1 , . . . , ∈ such that modulo 2 , these elements form a basis of ∕ 2 . The -divided power enveloping of ( , [ ]) (proposition 1.1.3) denoted by ( ) ( ), is a free -module with basis the

elements { } = { 1 } 1 . . . { }
, where ! { } = , for every = + and 0 ≤ < [6, 1.3.5.2]. These algebras are endowed with a decreasing filtration by ideals { } (subsection 1.1), such that { } = ⊕ | |≥ { } . The quotients ( ) ( ) ∶= ( ) ( )∕ { +1} are therefore -modules generated by the elements { } with | | ≤ . Moreover, there exists an isomorphism of -modules

( ) ( ) ≃ ⨁ | |≤ { } .
Corollary 1.1.5 gives us for any two integers , ′ such that ≤ ′ a canonical surjection ′ , ∶ ′ ( ) ( ) → ( ) ( ). Moreover, for every ′ ≥ , the universal property of the divided powers gives us a unique morphism of filteredalgebras , ′ ∶ ( ′ ) ( ) → ( ) ( ) which induces a homomorphism of -algebras , ′ ∶ ( ′ ) ( ) → ( ) ( ). The module of distributions of level and order is ( ) ( ) ∶= Hom( ( ) ( ), ). The algebra of distributions of level m is

( ) ( ) ∶= lim ← ← ← ← ← ← ← ← ← ← → ( ) ( ),
where the limit is formed respect to the maps Hom ( ′ , , ). The multiplication is defined as follows. By universal property (Corollary 1.1.5) there exists a canonical application

, ′ ∶ + ′ ( ) ( ) → ( ) )⊗ ′ ( ) ( ). If ( , ) ∈ ( ) ( )× ( )
′ ( ), we define . as the composition

. ∶ + ′ ( ) ( ) , ′ ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← → ( ) ( ) ⊗ ′ ( ) ( ) ⊗ ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← → .
Let us denote by ∶= Hom ( ∕ 2 , ) the Lie algebra of . This is a free -module with basis 1 , . . . , defined as the dual basis of the elements 1 , . . . , . Moreover, if for every multi-index ∈ ℕ , | | ≤ , we denote by < > the dual of the element { } ∈ ( ) ( ), then ( ) ( ) is a free -module of finite rank with a basis given by the elements 

( ) ( ) ∶= ⋃ ∈ℕ Hom Γ ( ) ( ∨ ), .
This is a free -module with a base given by all the < > . Moreover, it also has a structure of algebra defined as follows.

By [START_REF] Huyghe | Un théorème de Beilinson-Bernstein pour les D-modules arithmétiques[END_REF]Proposition 1.3.1] there exists an application

Δ , ′ ∶ Γ + ′ ( ) ( ∨ ) → Γ ( ) ( ∨ ) ⊗ Γ ′ ( ) ( ∨ )
, which allows to define the product of ∈ (Γ ( ) ( ∨ ), ) and ∈ (Γ ′ ( ) ( ∨ ), ) by the composition

. ∶ Γ + ′ ( ) ( ∨ ) Δ , ′ ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← → Γ ( ) ( ∨ ) ⊗ Γ ′ ( ) ( ∨ ) ⊗ ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← → .
This maps endows ( ) ( ) of a structure of a graded noetherian -algebra [START_REF] Huyghe | Un théorème de Beilinson-Bernstein pour les D-modules arithmétiques[END_REF]Propositions 1.3.1,1.3.3 and 1.3.6].

We have the following important properties [START_REF] Huyghe | D-modules arithmétiques, distributions et localisation[END_REF]Proposition 4.1.15].

Proposition 1.4.2.

(i) There exists a canonical isomorphism of graded -algebras • ( ( ) ( )) ≃ ( ) ( ).

(ii) The -algebras • ( ( ) ( )) and ( ) ( ) are noetherian.

Integral models

In this section we will assume that is a smooth -scheme endowed with a right -action.

Definition 1.5.1. Let be an -algebra (resp. a sheaf of -algebras). We say that an -subalgebra 0 (resp. a subsheaf of -algebras) is an integral model of if 0 ⊗ = .

Remark 1.5.2. Let us recall that throughout this paper denotes the Lie algebra of a split connected reductive group -scheme and U ( ) its universal enveloping algebra. As we have remarked in the introduction, if denotes the -Lie algebra of the algebraic group = × Spec( ) Spec( ) and U ( ) its universal enveloping algebra, then U ( ) is an integral model of U ( ). Moreover, the algebra of distributions of level , introduced in the preceding subsection, is also an integral model of U ( ) [38, subsection 4.1]. This latest example will be specially important in this work.

Proposition 1.5.3. The right -action induces a canonical homomorphism of filtered -algebras

Φ ( ) ∶ ( ) ( ) → 0 ( , D ( ) ).
Proof. The reader can find the proof of this proposition in [START_REF] Huyghe | D-modules arithmétiques, distributions et localisation[END_REF]Proposition 4.4.1 (ii)], we will briefly discuss the construction of Φ ( ) . The central idea in the construction is that if ∶ × → denotes the action, then the comorphism ( ) for every ∈ ℕ. Those applications are compatible when varying . Let ∈ ( ) ( ) we define Φ ( ) ( ) by

♮ ∶ O → O ⊗ [ ] induces a morphism ( ) ∶ P ,( ) → O ⊗ ( )
Φ ( ) ( ) ∶ P ,( ) ( ) ← ← ← ← ← ← ← ← ← ← ← ← ← ← → O ⊗ ( ) ( ) ⊗ ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← → O .
Again, those applications are compatible when varying and we get the morphism of the proposition.

Remark 1.5.4.

(i) If is endowed with a left -action, then it turns out that Φ ( ) is an anti-homomorphism.

(ii) In [START_REF] Huyghe | D-modules arithmétiques, distributions et localisation[END_REF]Theorem 4.4.8.3] Huyghe and Schmidt have shown that if = and we consider the right (resp. left) regular action, then the morphism of the preceding proposition is in fact a canonical filtered isomorphism (resp. an anti-isomorphism) between ( ) ( ) and 0 ( , D ( ) ) , the -submodule of (left) -invariant global sections (cf. definition 2.2.7). This isomorphism induces a bijection between ( ) ( ) and 0 ( , D ( ) , ) , and it is compatible when varying .

We will denote by

Φ ( ) ∶ O ⊗ ( ) ( ) → D ( )
the morphism of sheaves (of -modules) defined by: if ⊂ is an open subset and ∈ O ( ), ∈ ( ) ( ), then Φ ( ) , ( ⊗ ) ∶= (Φ ( ) ( )| ).

Let us define A ( ) = O ⊗ ( ) ( ), and let us remark that we can endow this sheaf with the skew ring multiplication coming from the action of ( ) ( ) on O via the morphism Φ ( ) . This is

( ⊗ ) ⋅ ( ⊗ ) ∶= Φ ( ) ( ) ⊗ + ⊗ . (1.4)
This multiplication defines over A ( ) a structure of a sheaf of associative -algebras, such that it becomes an integral model of the sheaf of -algebras U 

Ψ ∶ O ⊗ U ( ) → D
of sheaves (of -algebras) by the rule

Ψ ( ⊗ ) ∶= ( ),
where ∈ O (is a local section) and ∈ . We get the following commutative diagram

( ) ( ) 0 ( , D ( ) ) U ( ) 0 ( , D ). Φ ( ) Ψ
Given that ( ) ( ) is an integral model of the universal enveloping algebra U ( ), then by (1.4) and (1.6) we can conclude that A ( ) is also a sheaf of associative -algebras being a subsheaf of U • .

Proposition 1.5.6. [START_REF] Huyghe | D-modules arithmétiques, distributions et localisation[END_REF]Corollary 4.4.6] (i) The sheaf A ( ) is a locally free O -module.

(ii) There exists a unique structure over A ( ) of filtered O -ring, compatible with the structure of algebra of ( ) ( ).

Moreover, there is a canonical isomorphism of graded O -algebras (A ( ) ) = O ⊗ Sym ( ) ( ). Chapter 2

Integral twisted arithmetic differential operators

In [START_REF] Huyghe | Un théorème de Beilinson-Bernstein pour les D-modules arithmétiques[END_REF] Huyghe introduced sheaves of twisted differential operators on the smooth formal flag -scheme , which depends of an algebraic character of . The objective of this chapter is to use the ideas of Borho-Brylinski in [START_REF] Borho | Differential operators on homogeneous spaces[END_REF] to introduce (integral) twisted differential operators associated to an arbitrary character of . In the next chapter we will discuss their properties when we pass to the formal completion.

Torsors

Let us suppose that is a smooth affine algebraic group over with Lie algebra denoted by , and that ̃ and are smooth separated schemes over , such that ̃ is endowed with a right -action ∶ ̃ × Spec( ) → ̃ . We will also assume that acts trivially on . 1We say that a morphism ∶ ̃ → is a -torsor for the Zariski topology, if is a faithfully flat morphism such that the diagram

̃ × Spec( ) ̃ ̃ 1
is commutative and the map (induced by the previous diagram)

̃ × Spec( ) → ̃ × ̃ ; ( , ℎ)  → ( , ℎ) (2.1)
is an isomorphism.

Let ⊂ be an affine open subset and pr 1 ∶ × Spec( ) → the first projection. We say that trivializes the torsor 

if there is a -equivariant isomorphism ∶ × Spec( ) ≃ ← ← ← ← ← ← ← → -1 ( ),
⊆  → 1 ( -1 ( ), M).
As is locally trivial, the set S of affine open subsets of that trivialises the torsor is a base for the Zariski topology of . Moreover, if ∈ S then by definition -1 ( ) is an affine open subset of ̃ and given that M is a quasi-coherent O ̃ -module, we can conclude that 1 ( -1 ( ), M) = 0.

-equivariant sheaves and sheaves of -invariant sections

Throughout this section, we will keep the notation of the preceding section and we will denote by ̃ a smooth and separated -scheme endowed with a right -action ∶ ̃ × Spec( ) → ̃ . Let us denote by ∶ × Spec( ) → the group law of and by

1 ∶ ̃ × Spec( ) → ̃ and 1,2 ∶ ̃ × Spec( ) × Spec( ) → ̃ × Spec( )
the respective projections. We will also denote by

1 , 2 , 3 ∶ ̃ × Spec( ) × Spec( ) → ̃ the morphisms defined by 1 ( , 1 , 2 ) = , 2 ( , 1 , 2 ) = 1 and 3 ( , 1 , 2 ) = 1 2 . Following [46, chapter 0, section 3], we say that a sheaf M of O ̃ -modules is -equivariant if there exists an isomorphism * 1 M Ψ ← ← ← ← ← ← ← ← → * M (2.3)
such that the following diagram is commutative (cocycle condition [32, (9.10.10)])

( ̃ × ) * * 1 M = * 1 M = * 1,2 * 1 M * 1,2 * M = * 2 M = ( × ) * * 1 M ( ̃ × ) * * M = * 3 M = ( × ) * * M. ( ̃ × ) * Ψ * 1,2 Ψ ( × ) * Ψ (2.4)
From now on, we will say that a couple

(M, Ψ) is a -equivariant quasi-coherent O ̃ -module, if M is a quasi-coherent O ̃ -module endowed with an isomorphism Ψ ∶ * 1 M → * M making commutative the diagram (2.4
). We will need the following lemmas. First of all, we recall for the reader that the category of -equivariant quasi-coherent O ̃ -modules is an abelian category [START_REF] Hashimoto | Equivariant sheaves and their applications to invariant theory[END_REF]Lemma 2.17]. In particular it is complete and cocomplete. Lemma 2.2.1. Let M be an O ̃ -module filtered by a family (M ) ∈ℕ of -equivariant O ̃ -modules such that the inclusions M → M +1 are -equivariant. Then M is also -equivariant.

Proof. The exactness of the functors * and * 1 allows us to conclude that * (M) and * 1 (M) are endowed with canonical filtrations ( * (M )) ∈ℕ and ( * 1 (M)) ∈ℕ , respectively. Since the components of this filtration have compatibleequivariant structures, we can conclude that M is also -equivariant via a filtered isomorphism.

On the other hand, since the category of -equivariant quasi-coherent O ̃ -modules is an abelian category, the cokernel of a -equivariant morphism M → N between two -equivariant quasi-coherent O ̃ -modules is again a -equivariant quasi-coherent O ̃ -module. As we will demonstrate below, we can give an independent proof of this result. We will use the following lemma in subsection 5.1.1.

Lemma 2.2.2. Let (M, Φ 1 ) and (N , Φ 2 ) be -equivariant quasi-coherent O ̃ -modules. Let L be a quasi-coherent O ̃ - module such that 0 → M ← ← ← ← ← ← ← → N ← ← ← ← ← ← ← ← → L → 0
is an exact sequence and is a -equivariant morphism. Then L is also -equivariant.

Proof. To define the right vertical morphism, we consider a basis A of ̃ consisting of affine open subsets, which can be assumed stable under intersections because ̃ is separated. We have the following commutative diagram

0 * 1 M * 1 N * 1 L 0 0 * M * N * L 0 * 1 Φ 1 * 1 Φ 2 * *
Let us fix ∈ A . To soft the notation we will assume that ( ) ∶= * (M)( × ) (resp. ( ) ∶= * (N )( × ) and

( ) ∶= * (L)( × )) and ( 1 ) ∶ * 1 (M)( × ) (resp. ( 1 ) ∶= * 1 (N )( × ) and ( 1 ) ∶= * 1 (L)( × )). Also, we will suppose that 1 ∶= * 1 ( )( × ) (resp. 1 ∶= * 1 ( )( × )), 2 ∶= * ( )( × ) (resp. 2 ∶= * ( )( × )), Φ 1, ∶= Φ 1 ( × ) and Φ 2, ∶= Φ 2 ( × ).
In such a way that we have the following commutative diagram

0 ( 1 ) ( 1 ) ( 1 ) 0 0 ( ) ( ) ( ) 0 1 Φ 1, 1 Φ 2, 2 2 
Let ∈ ( 1 ). By surjectivity of 1 we can find 1 ∈ ( 1 ) such that 1 ( 1 ) = . We define then Φ ( ) ∶= 2 (Φ 2, ( 1 )) ∈ ( ). Let us see that Φ is well-defined, this means that it does not depend of the choice of 1 ∈ ( 1 ).

Let 2 ∈ ( 1 ) such that 1 ( 2 ) = . We want to see Φ ( ) ∶= 2 (Φ 2, ( 1 )) = 2 (Φ 2, ( 2 )). Let ∶= 1 -2 ∈ ( 1 )
. By definition ∈ Ker( 1 ) = Im( 1 ) and we can find ∈ ( 1 ) such that 1 ( ) = . Let ′ = Φ 1, ( ) ∈ ( ). By commutative of the diagram we have

2 ( ′ ) = 2 (Φ 1, ( )) = Φ 2, ( 1 ( )) = Φ 2, ( ) = Φ 2, ( 1 ) -Φ 2, ( 2 )
and therefore

0 = 2 ( 2 ( ′ )) = 2 (Φ 2, ( 1 )) -2 (Φ 2, ( 2 )) = Φ ( ) -2 (Φ 2, ( 2 )).
Moreover it is straightforward to see that Φ is in fact a morphism of O ̃ × ( × )-modules, which by the well-known five lemma becomes an isomorphism. From the preceding reasoning, and the quasi-coherence of the sheaves involved we get an isomorphism Φ ∶ * 1 (N )| × → * (L)| × of sheaves of O × -modules, for every ∈ A . To complete the construction of the right vertical isomorphism we need to globalize the preceding reasoning. This means that if we chose , ∈ A then we have Φ

| ∩ = Φ | ∩ .
As A is stable under intersections we can construct, in the same way as before, an isomorphism Φ ∩ over ∩ . Let us see that Φ | ∩ = Φ ∩ (the reader can fallow the same reasoning to proof that Φ

| ∩ = Φ ∩ ). We consider the following cube * 1 (N )( × ) * 1 (L)( × ) * 1 (N )( ∩ × ) * 1 (L)( ∩ × )
Except for the right lateral face, all the other faces form, by construction or hypothesis, commutative diagrams which implies that also the right lateral face forms a commutative diagram. This shows that Φ

| ∩ = Φ ∩ . We have constructed an isomorphism Φ ∶ * 1 (L) → * (L) of quasi-coherent O ̃ × -modules.
Let us show that Φ defines a -equivariant structure. To do that we consider the following diagram

( ̃ × ) * * 1 N ( × ) * * 1 N ( ̃ × ) * * N = ( × ) * * N ( ̃ × ) * * 1 L ( × ) * * 1 L ( ̃ × ) * * L = ( × ) * * L ( ̃ × ) * * 1 * 1,2 Φ ( ̃ × ) * Φ ( × ) * Φ
The triangle on the top is commutative and by functoriality the lateral faces of the prism are also commutative. Its is straightforward to show from this that

( ̃ × ) * Φ • ( ̃ × ) * * 1 = ( × ) * Φ • * 1,2 Ψ • ( ̃ × ) * * 1 ,
and as ( ̃ × ) * * 1 is surjective we can conclude that the triangle on the bottom is also commutative. Therefore Φ defines a -equivariant structure for L.

Lemma 2.2.3. Let (L, Ψ) be a -equivariant locally free O ̃ -module of finite rank. Then its dual L ∨ is also -equivariant.

Proof. Given that L is a locally free sheaf of finite rank, we dispose of two canonical and functorial isomorphisms

* L ∨ ≃ ← ← ← ← ← ← ← → H O ̃ × ( * L, O ̃ × ) and * 1 L ∨ ≃ ← ← ← ← ← ← ← → H O ̃ × ( * 1 L, O ̃ × )
This implies that (Ψ -1 ) ∨ , the dual of Ψ -1 , defines the -equivariant structure on L ∨ . Lemma 2.2.4. Let (L, Φ) and

(L ′ , Φ ′ ) be two -invariant quasi-coherent O ̃ -modules, then L ⊗ O ̃ L ′ is a -equivariant quasi-coherent O ̃ -module. Proof. The functorial isomorphisms * 1 (L ⊗ O ̃ L ′ ) ≃ ← ← ← ← ← ← ← → * 1 (L) ⊗ O ̃ × * 1 (L ′ ) and * (L ⊗ O ̃ L ′ ) ≃ ← ← ← ← ← ← ← → * (L) ⊗ O ̃ × * (L ′ ) tell us that Φ ⊗ Φ ′ defines a -equivariant structure on L ⊗ O ̃ L ′ .

Equivariant sheaves of -adic complete O -modules.

We recall for the reader that we have denoted by ̃ = ̃ × Spec( ) Spec( ∕ +1 ) the reduction module +1 . Under the preceding hypothesis, the scheme ̃ is endowed with a right action of the ( ∕ +1 )-group scheme ∶= × Spec( ) Spec( ∕ +1 ). If ̃ denote the completion of ̃ along it special fiber, then we will denote by ∶ → and ∶ ̃ × Spec( ∕ +1 ) → ̃ +1 × Spec( ∕ +2 ) +1 the closed embeddings, and by ∶ ̃ × Spec( ∕ +1 ) → ̃ the induced action. Let denote the formal completion of along its special fiber. Definition 2.2.6. Let E be a sheaf of complete O ̃ -modules for the -adic topology. We will say that

E is -equivariant, if for every ∈ ℕ, the sheaf E ∶= * (E ) is a -equivariant O ̃ -module, and the following diagram is commutative * 1, (E ) * (E ) * 1, +1 (E +1 ) * * +1 (E +1 ). Φ ≃ ≃ * (Φ +1 )
Let (M, Ψ) be a -equivariant O ̃ -module. By the Künneth formula [START_REF] Grothendieck | Élements de géométrie algébrique: III. Étude cohomologique des faisceaux cohérents (seconde partie)[END_REF]Theorem 6.7.8] we have a canonical isomorphism

0 ( ̃ × , * 1 M) ≃ 0 ( ̃ , M) ⊗ [ ]
which composing with the application

0 ( ̃ , M) ←→ 0 ( ̃ × , * M) 0 (Ψ) ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← → 0 ( ̃ × , * 1 M) (the first application is induced via the canonical map M → * * M) gives us a morphism Δ ∶ 0 ( ̃ , M) → 0 ( ̃ , M) ⊗ [ ],
defining a structure of -comodule on 0 ( ̃ , M). The co-module relations are given by the cocycle condition [46, chapter 0, definition 1.6].

Definition 2.2.7. The -invariant elements of 0 ( ̃ , M) are the elements ∈ 0 ( ̃ , M) such that Δ( ) = ⊗ 1. This subspace will be denoted by 0 ( ̃ , M) . Now, let us suppose that ̃ can be covered by a family S of affine open subsets, which are stable under finite intersection and invariant under the right action of . This means that for every ̃ ∈ S the morphism , inducing the right -action on

̃ , induces a right -action ̃ ∶= | ̃ × ∶ ̃ × → ̃ on ̃ . By pulling back Ψ under the inclusion ̃ × → ̃ × we get an isomorphism Ψ| ̃ ∶ ̃ * M ̃ → *
1 M ̃ which satisfies the respective cocycle condition (2.4), and, as before, we obtain a comodule map

Δ ̃ ∶ Γ( ̃ , M) → Γ( ̃ , M) ⊗ [ ].
As in definition 2.2.7, we can define the -submodule of -invariant sections on ̃ by

Γ( ̃ , M) ∶= ∈ Γ( ̃ , M)| Δ ̃ ( ) = ⊗ 1 . (2.5)
Finally, let us suppose that M is also quasi-coherent. By [30, Chapter II, Corollary 5.5] on every affine open subset ̃ ∈ S we can define a subsheaf

M| ̃ ∶= Γ( ̃ , M) ⊂ Γ( ̃ , M) = M| ̃ .
By definition, and giving that S was supposed to be stable under finite intersections, the preceding sheaves glue together to a subsheaf (M) ⊂ M which does not depend of the covering S. We sum up the preceding construction in the next definition.

Definition 2.2.8. Let ̃ be a smooth separated -scheme endowed with a right -action, and covered by a family of affine open subsets S stable under finite intersections and the -action. For every -equivariant quasi-coherent O ̃ -module M, the subsheaf (M) is called the subsheaf of -invariant sections of M.

As in section 2.1, let us suppose that is another smooth and separated -scheme, such that ∶ ̃ → is a locally trivial -torsor. We recall for the reader that this means that is a faithfully flat morphism, such that the diagram As an an application of the preceding construction let us point out that if ∶ ̃ → is a locally trivial -torsor, then we actually dispose of a subsheaf of -invariant sections of the direct image sheaf * M, with M a -equivariant quasicoherent O ̃ -module. In fact, if S denotes the collection of all affine open subsets that trivialises the torsor , then for every ∈ S we know that -1 ( ) is stable under the right -action and, as in (2.5), we can define

̃ × Spec( ) ̃ ̃ 1 is cartesian (cf. ( 2 
( * M)( ) ∶= M( -1 ( )) ⊂ M( -1 ( )).
(2.6)

As ̃ is noetherian * M is quasi-coherent and therefore from (2.6) we have a subsheaf

( * M)| ∶= ̃ ( * M)( ) ⊂ ̃ * M ( ) = * M | .
Since S is stable under finite intersections, those sheaves glue together to define a subsheaf * M ⊂ * M.

(2.7)

For the rest of this subsection we will always suppose that ∶ ̃ → is a locally trivial -torsor.

Lemma 2.2.9. The morphism

∶ ̃ → induces an isomorphism ♮ ∶ O → * O ̃ .
Proof. As this is a local problem, we can take ∈ S and suppose that ∶ -1 ( ) = × Spec( ) → is the first projection. Since rational cohomology commutes with direct limits [40, Part I, Lemma 4.17] and O ( ) is a direct limit of free -modules, we can conclude that

* O ̃ ( ) = O ( ) ⊗ [ ] = O ( ).

Relative enveloping algebras of finite level

Let us fix a positive integer ∈ ℤ. As in the preceding subsections ̃ and will denote smooth separated -schemes, and a smooth affine commutative algebraic group over . We will also assume that ∶ ̃ → is a locally trivialtorsor. We start this subsection recalling the construction of the -equivariant structures of the sheaf of level differential operators D ( )

̃ (cf. [38, Proposition 3.4.1]).
Let 1 ∶ ̃ × Spec( ) → ̃ and 2 ∶ ̃ × Spec( ) → be the projections. For every ∈ ℕ the universal property of the m-PD-envelopes (proposition 1.1.5) gives us two canonical morphisms

1 ∶ * 1 P ̃ ,( ) → P ̃ × Spec( ) ,( ) and 2 ∶ * 2 P ,( ) → P ̃ × Spec( ) ,( ) .
Let J be the m-PD-ideal of the m-PD-algebra P ,( ) . We have a canonical m-PD-morphism are -equivariant morphisms. In particular, by lemma 2.2.1, the sheaf of level differential operators is -equivariant.

∶ P ̃ × Spec( ) ,( ) → P ̃ × Spec( ) ,( ) ∕ * 2 J and ∶= • 1 is a m-PD-isomorphism. Then we dispose of a canonical section of 1 , named 1 ∶= -1 • [38, ( 14 

Remark 2.3.1. (Notation as at the end of subsection 1.3) Following the preceding lines of reasoning we can also show that, for every ∈ ℕ, there exists a -PD-morphism

′ 1 ∶ Γ ̃ × ,( ) → * 1 Γ ̃ ,( ) .
which is a section of the canonical -PD-morphism

* 1 Γ ̃ ,( ) → Γ ̃ × ,( ) induced by 1 [38, Subsection 2.2.2]. Let Γ ( ) ∶ * Γ ̃ ,( ) → Γ ̃ × ,( ) be the canonical -PD-morphism induced by . Then Φ ′ ∶= ′ 1 •Γ ( ) is a -equivariant structure for Γ ̃ ,( )
. As before, this implies that

( ) (T ̃ ) is -equivariant. Remark 2.3.2.
Although it is well-known that the tangent sheaf T ̃ is a -equivariant quasi-coherent sheaf, we point out to the reader that this can be proven using the preceding discussion. In fact as P 0

̃ ,( ) = O ̃ and P 1 ̃ ,( ) = O ̃ ⊕ Ω 1 ̃ [38, Subsection 2.

(18)], we can apply the lemma 2.2.2 to the sequence

0 → O ̃ → O ̃ ⊕ Ω 1 ̃ → Ω 1 ̃ → 0
and lemma 2.2.3 gives us the -equivariance of T ̃ . In particular, we dispose of the sheaves (T ) and ( * T ̃ ) .

Let us recall the following discussion from [1, 4.4]. Let us suppose ∈ S and ∈ T ̃ ( -1 ( )) . This assumption in particular implies that is a -invariant vector field on -1 ( ) and therefore a -invariant endomorphism of O ̃ ( -1 ( )).

Hence it preserves O ( -1 ( )) and by lemma 2.2.9 it induces a vector field ( ) ∈ T ( ). We get then a map of O -modules

∶ * T ̃ → T .
On the other hand, differentiating the right -action on ̃ we obtain an -linear Lie homomorphism → T ̃ , which induces a map of O -modules

⊗ O → * T ̃ .
We get a complex of O -modules

⊗ O → * T ̃ ← ← ← ← ← ← → T which is functorial in ̃ [1, subsection 4.4].
Lemma 2.3.3. 2 If ∶ ̃ → is a locally trivial -torsor, then the preceding complex is in fact a short exact sequence

0 → ⊗ O → * T ̃ ← ← ← ← ← ← → T → 0.
Before starting the proof we recall for the reader the following relations, which come from the -equivariant structure of

T [12, Lemma 2 ] 0 ( , T ) = [ ] ⊗ and 0 ( , T ) = . (2.8)
Moreover, by [30, Section II, exercise 8.3] we also dispose of the local description

T × = T ⊗ O ⊕ O ⊗ T . (2.9)
Proof of lemma 2.3.3. As the sheaves in the sequence are quasi-coherent it is enough to check exactness over an affine open subset ∈ S. First of all, since T ( ) is a locally free O ( )-module and O ( ) is a flat -algebra, we can conclude that T ( ) is an inductive limit of free -modules. Therefore

(T ( ) ⊗ [ ]) = T ( ) ⊗ ( [ ]) = T ( ).
This relation, together with (2.8) and (2.9), allow us to conclude that

T ̃ ( -1 ( )) = T ( ) ⊕ O ( ) ⊗ . (2.10) Remark 2.3.4.
The preceding lemma shows that * T ̃ is a locally free O -modules of finite rank. In particular, ( ) (( * T ̃ ) ) is well-defined.

Definition 2.3.5. Let ∶ ̃ → be a locally trivial -torsor. Following [12, page 180] we define the level relative enveloping algebra of the torsor to be the sheaf of -invariants of * D ( ) ̃ :

D( ) ∶= * D ( ) ̃ .
The preceding sheaf is endowed with a canonical filtration

Fil D( ) = * D ( ) ̃ , , ( ∈ ℕ).
(2.11) Proposition 2.3.6. For any ∈ S there exists an isomorphism of sheaves of filtered -algebras

D( ) | ≃ ← ← ← ← ← ← ← → D ( ) | ⊗ ( ) ( ).
Before starting the proof of the proposition let us consider the following facts. Let ∈ ℕ fix and ≤ . For the next few lines we will suppose that and are smooth -schemes and that = × Spec( ) . Let 1 and 2 be the projections.

By following [START_REF] Huyghe | D-modules arithmétiques, distributions et localisation[END_REF] we have defined in page 37 two canonical applications

1 ∶ P ,( ) → * 1 P ,( ) and -1 2 ∶ P - ,( ) → * 2 P - ,( ) .
Locally, if ( 1 , ..., ) and ( ′ 1 , ..., ′ ′ ) are coordinated systems on and , respectively, then we obtain a coordinated system on by putting ( * 1 ( 1 ), ..., * 1 ( ), * 2 ( ′ 1 ), ..., * 2 ( ′ ′ ). We have

P ,( ) ≃ ⨁ | 1 |+| 2 |≤ O * 1 ( { 1 } ) * 2 ( ′ { 2 } ) ( ∶= 1 ⊗ -⊗ 1 and ′ ∶= 1 ⊗ ′ 1 -′ ⊗ 1).
In this case [38, subsection 2.2.2]

1 ⎛ ⎜ ⎜ ⎝ ∑ 1 , 2 1 , 2 * 1 ( { 1 } ) * 2 ( ′ { 2 } ) ⎞ ⎟ ⎟ ⎠ = ∑ 1 1 ,0 * 1 ( { 1 } )
(with a similar description for - 2 ) and we have an isomorphism

P ,( ) ≃ ← ← ← ← ← ← ← → ⨁ 0≤ ≤ * 1 P ,( ) ⊗ O * 2 P - ,( ) .
(2.12)

Moreover, since P ,( ) and P - ,( ) are locally free O-modules of finite rank, taking duals in (2.12) we get a canonical isomorphism

D ( ) , ≃ ← ← ← ← ← ← ← → ⨁ 0≤ ≤ * 1 D ( ) , ⊗ ∞ * 2 D ( ) , - (2.13) 
Proof of proposition 2.3.6. Let ∈ S and let -1 ( ) ≃ × Spec( ) be a trivialization of over . We have the following isomorphisms of filtered -algebras * D ( )

̃ ( ) = D ( ) ̃ ( -1 ( )) ≃ D ( ) × ( × ) ≃ D ( ) ( ) ⊗ 0 ( , D ( ) ) ≃ D ( ) ( ) ⊗ ( ) ( ),
where the first isomorphism follows from the fact that trivializes the -torsor , the second isomorphism becomes from (2.13) and the Kunneth formula [28, Theorem 6.7.8]), and the third isomorphism is given by ( ) in remark 1.5.4. Since the previous isomorphisms are compatible with restrictions to open affine subsets contained in , we obtain the desired isomorphism of sheaves of filtered -algebras.

The inclusions

( * D ( ) ̃ , ) ⊂ * D ( ) ̃ , induce a graded monomorphism • ( D( ) ) → • ( * D ( ) ̃ ).
Proposition 2.3.7. If ∶ ̃ → is a locally trivial -torsor, then there exists a canonical and graded isomorphism

( ) * T ̃ ≃ ← ← ← ← ← ← ← → • D( ) .
Proof. We will divide the proof into two cases. We will first consider the case = 0 and then we will generalize for all ∈ ℤ >0 .

Case 1. Let us suppose that = 0. By the remark given after the proposition 1.2.2 in [START_REF] Huyghe | D † -affinité de l'espace projectif[END_REF] we know that if L is a locally free O ̃ -module of finite rank then Sym (0) (L) = S(L) is the symmetric algebra of L. By (1.3), which is true for every ∈ ℕ (cf. [34, Proposition 1.3.7.3]), we have a canonical isomorphism of graded O ̃ -algebras

S(T ̃ ) ≃ ← ← ← ← ← ← ← → gr • D (0) ̃ .
Applying the direct image functor * to the preceding isomorphism and then taking -invariants sections (both functors being exact by lemma 2.1.3 and the fact that is diagonalisable [40, Part I, Lemma 4.3 (b)]) we get an isomorphism

* S T ̃ ≃ ← ← ← ← ← ← ← → gr • * D (0) ̃ .
We remark for the reader that the left-hand side of the previous isomorphism is well defined by remark 2.3.1. To complete the proof of the first case, we need to show that ( * S(T ̃ )) = S ( * T ̃ ) . To do that, we start by considering the canonical map of O -modules * T ̃ → * S T ̃ which induces, by universal property of S(•), a canonical morphism of graded O -algebras

S * T ̃ ← ← ← ← ← ← ← → * S T ̃ .
Let us see that is indeed an isomorphism. Let us take ∈ S. We have a commutative diagram

̃ ∶= -1 ( ) × ≃ p 1
which tells us that (cf. [30, Section II, exercise 8.3])

T ̃ = * T ⊕ p * 2 T = * T ⊕ O ̃ ⊗ . (2.14)
By (2.10), we have

S * T ̃ ( ) = S * T ̃ ( ) = S T ( ) ⊕ O ( ) ⊗ .
On the other hand, by (2.14) we have the following relation

S(T ̃ ) = S * T ⊗ O ̃ S O ̃ ⊗ = * S T ⊗ O ̃ S O ̃ ⊗ (2.15)
which implies, by the projection formula [30, Chapter II, section 5, exercise 5.1

(d)] that

Summing up, we have the following commutative diagram

S * T ̃ ( ) * S(T ̃ ) ( ) S T ( ) ⊕ O ( ) ⊗ S T ( ) ⊗ O ( ) S(O ( ) ⊗ ) ≃ ≃ ≃
which ends the proof of the first case because S is a base for the Zariski topology of .

Case 2. Let us suppose now that ∈ ℤ >0 . Exactly as we have done at the beginning of case 1, applying * to the isomorphism (1.3) and then taking -invariant sections, we get a canonical isomorphism of graded O -algebras * Sym ( ) 

T ̃ ≃ ← ← ← ← ← ← ← → gr • * D ( ) ̃ .
We want to see that the map , built in case 1, induces an isomorphism

Sym ( ) * T ̃ ≃ * Sym ( ) T ̃ .
To do that, we take ∈ S and we begin by noticing that analogously to case 1 the relation (2.10) gives us 

Sym ( ) * T ̃ ( ) = Sym ( ) T ( ) ⊕ O ( ) ⊗ . ( 2 
T ̃ = Sym ( ) * T ⊗ O ̃ Sym ( ) O ̃ ⊗
which, following the same arguments that in (2.15) and (2.16), implies that * Sym ( )

T ̃ ( ) = Sym ( ) T ( ) ⊗ O ( ) Sym ( ) O ( ) ⊗ . (2.18)
Again, by [34, Proposition 1.3.5], we have that (2.17) and (2.18) are canonically isomorphic, so in order to globalize this map, which we denote by ( ) , we need to check that the following diagram is commutative

Sym ( ) T ( ) ⊕ O ( ) ⊗ S T ( ) ⊕ O ( ) ⊗ ⊗ Sym ( ) T ( ) ⊗ O ( ) Sym ( ) O ( ) ⊗ S T ( ) ⊗ O ( ) S O ( ) ⊗ ⊗ . ( ) ⊗ 1
Shrinking if necessary, we can suppose that is endowed with a set of local coordinates 1 , ..., , in such a way that if T ( ) is generated as O ( )-module by the derivations 1 , ..., , and if 1 , ..., denotes an -basis of , then Sym ( ) T ( ) ⊕ O ( ) ⊗ is generated (as O ( )-module) by all the elements of the form < > ⋅ < >3 . In particular, ( )

< > ⋅ < > = ⊗ 1 < > ⋅ < > = ! ! ! ! ⊗ .
which shows that the preceding diagram is commutative. This ends the proof of the proposition.

Affine algebraic groups and homogeneous spaces

Let us suppose that is a split connected reductive group scheme over and is a split maximal torus in . As we know, the Lie algebra = Lie( ) is a -module via the adjoint representation [40, I, 7.18] and the decomposition into weight spaces has the form

Lie( ) = Lie( ) ⊕ ⨁ ∈Λ (Lie( )) .
Here Λ is the subset of ( ) = Hom( , ) of non-zero weights of Lie( ), this means the roots of with respect to .

For each ∈ Λ there exists a homomorphism ∶ → satisfying

( ) -1 = ( ( ) ), (2.19) 
for any -algebra and all ∈ ( ), and such that the tangent map

∶ Lie( ) → (Lie( )) is an isomorphism [40, II, 1.2]
. This homomorphism defines a functor  → ( ( )) ( being an -algebra) which is a closed subgroup of and it is denoted by . By definition we have Lie( ) = (Lie( )) and by (2.19) it is clear the normalises . Now, let us choose a positive system Λ + ⊂ Λ. It is known that Λ + and -Λ + are unipotent and closed subsets of 3) in this work we will suppose that the group , and the schemes ̃ and are endowed with the right regular -action. This means that for any -algebra and 0 , ∈ ( ) we have

0 • = -1 0 , 0 N( ) • = -1 0 N( ) and 0 ( ) • = -1 0 ( ).
Under this actions, the canonical projections → ̃ and → are clearly -equivariant. Now, as normalises N we have N = N and therefore

( N( )). ⊂ ( )N( ),
for any -algebra , ∈ ( ) and ∈ ( ). This defines a right -action on ̃ which clearly commutes with the right regular -action (cf. Remark 2.4.1). Moreover, this right -action makes the canonical projection ∶ ̃ → a -torsor for the Zariski topology of . 

→ ̃ such that • = . The map ( , N)  → ( ) N is the required -invariant isomorphism × ≃ ← ← ← ← ← ← ← → × H ≃ ← ← ← ← ← ← ← → -1 ( ).

Relative enveloping algebras of finite level on homogeneous spaces

In this section we adopt the notation of the preceding section. In particular, we recall for the reader that the set S, of all affine open subsets of that trivialise the torsor forms a base for the Zariski topology of . Let us recall that by proposition 1.5. 

0 ̃ , D ̃ = 0 ̃ , D ( ) ̃ ⊗ . (2.21)
Given that the right regular -action on ̃ commutes with the right action of the torus , the vector fields by which acts on ̃ must be invariant under the -action [START_REF] Borho | Differential operators on homogeneous spaces[END_REF]Lemma 4.5]. This means that the operator-representation ̃ satisfies

̃ ( ) ⊂ 0 ( ̃ , D ̃ ) .
The relation (2.21) tells us that for every ∈ ( ) ( ) there exists ( ) ∈ ℕ (a natural number that depends of ) such that

( ) Φ ( ) ( ) ⊂ 0 ( ̃ , D ( ) ̃ ) .
Since the -action on 0 ( ̃ , D ( ) ̃ ) is -linear, for every -algebra and every ∈ ( ) we have

( ) Φ ( ) ( ) = . ( ) Φ ( ) ( ) = ( ) .Φ ( ) ( ) . (2.22)
Since ̃ is a smooth -scheme, the local description (1.1) tells us that the sheaf D ( ) ̃ is -torsion free. In particular, 0 ( ̃ , D ( ) ̃ ) is also -torsion free and therefore, from (2.22), we have that Φ ( ) induces the filtered morphism

Φ ( ) ∶ ( ) ( ) → 0 ̃ , D ( ) ̃ = 0 , * D ( ) ̃ .
From the preceding reasoning we have an O -morphism of sheaves of filtered -algebras

Φ ( ) ∶ A ( ) → D( ) .
(2.23)

The sheaf A ( ) ∶= O ⊗ ( ) ( ) of associative -algebras has been introduced in the subsection 2.5. We recall for the reader that this is an integral model of the sheaf U • ∶= O ⊗ U ( ).

To twist the sheaves D( ) introduced in section 2.3 (definition 2.3.5), we consider the classical distribution algebra as in [21, Chapter II, 4.6.1]. To define it, we suppose that ∶ Spec( ) → is the identity of and we take

∶= { ∈ [ ]| ( ) = 0}. Then [ ] = ⊕ . We put Dist ( ) ∶= [ ]∕ +1 * = Hom ( [ ]∕ +1 , ) ⊂ [ ] *
the space of distributions of order , and then Dist(

) ∶= lim ← ← ← ← ← ← ← ← ← ← → ∈ℕ Dist ( ). Moreover, if Δ ∶ [ ] → [ ] ⊗ [ ] denotes the comorphism associated to the multiplication of ,
∶ [ ] → is the counit associated to the identity element and * ∶ [ ] → [ ] is the coinverse (these maps defining a structure of Hopf algebra on [ ]), then the product (i) The applications

∶ [ ] Δ ← ← ← ← ← ← ← ← ← ← ← ← → [ ] ⊗ [ ] ⊗ ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← → , ∈ [ ] *
( , ′ , ) ∶ ( ) ( ) → ( ′ ) ( ), with , ′ as in subsection 1.4, induce an isomorphism of filtered -algebras lim ← ← ← ← ← ← ← ← ← ← → ∈ℕ ( ) ( ) ≃ ← ← ← ← ← ← ← → ( ).
(ii) The distribution algebra Dist( ) is an integral model of U ( ), this means that Dist( ) ⊗ = U ( ).

Example 2.5.1. Let us suppose that = = Spec( [ , -1 ]). In this case is generated by -1 and the residue classes of 1, -1, ..., ( -1) form a basis of [ ]∕ +1 . Let ∈ Dist( ) such that (( -1) ) = , (the Kronecker delta). By [START_REF] Jantzen | Representation of algebraic groups[END_REF]Part I,7.8] all with ∈ ℕ form a basis of Dist( ) and they satisfy the relation

! = 1 ( 1 -1)...( 1 -+ 1).
(2.24)

Therefore Dist( ) ⊗ = [ 1 ]. Since = ( ∕ 2 ) * we can conclude that Dist( ) ⊗ = U ( ).
The preceding proposition in particular implies that every morphism of -algebras ∶ Dist( ) → induces for every ∈ ℕ a morphism of -algebras ( ) ∶ ( ) ( ) → .

2.5.2.

Let us clarify the mysterious characters ∶ Dist( ) → . Let us suppose first that = ℚ and that = = Spec(ℤ [ , -1 ]). By the preceding example we know that the set of distributions { } ∈ℕ , where (( -1) ) = 0 if < and (( -1) ) = 1, is a basis for Dist( ). Moreover, Dist( )

⊗ ℤ ℚ = ℚ [ 1 ]
. Now, let us take ∈ * , which induces a morphism of algebras ∶ U ( ) → ℤ . Taking the tensor product with ℚ and using the canonical isomorphism Dist( ) ℚ ≃ U ( ℚ ) we obtain a character ∶ Dist( ) → ℚ (of course, here we assume Dist( ) ⊂ Dist( ) ℚ ). To see that its image is contained in ℤ , we need to check that ( ) ∈ ℤ . By (2.24) we have

( ) = 1 = ( 1 ) ∈ ℤ .
Where we have used the fact that the binomial coefficients extend to functions from ℤ to ℤ and the fact that 1 ∈ . In the case of an arbitrary split maximal torus = × Spec(ℤ ) ... × Spec(ℤ ) (n-times), the reader can follow the same reasoning using the canonical isomorphism Dist( ) = Dist( ) ⊗ ℤ ... ⊗ ℤ Dist( ) (n-times) [START_REF] Jantzen | Representation of algebraic groups[END_REF]Part I,7.9 (3)]. We have therefore, in the case = ℚ , a correspondence between the characters of (the Lie algebra of a split maximal torus ⊂ ) and the characters of the distribution algebra studied in this text. Moreover, we have an isomorphism of ℤ -modules

Hom ℤ -mods , ℤ ≃ ← ← ← ← ← ← ← → Hom ℤ -alg Dist( ), ℤ .
(2.25)

Now, let us take a finite extension |ℚ and let us suppose that is a split maximal torus of (and therefore a group scheme over ). Let ′ be a split model of over ℤ . If ′ denotes the ℤ -Lie algebra of ′ , then the relation (2.25) gives us an isomorphism of -modules

Hom -mods ′ ⊗ ℤ , ≃ ← ← ← ← ← ← ← → Hom -alg Dist ′ × Spec(ℤ ) Spec( ) , = - ( ( ), ) , (2.26)
and we can conclude that we also have the stated correspondence for finite extensions of ℚ .

2.5.3.

Let us consider the positive system Λ + ⊂ Λ ⊂ ( ) ( ( ) the group of algebraic characters) associated to the Borel subgroup scheme ⊂ defined in the preceding subsection. The Weyl subgroup = ( )∕ acts naturally on the space * ∶= Hom ( , ), and via differentiation ∶ ( ) → * we may view ( ) as a subgroup of * in such a way that * ( ) ⊗ = * . Let = 1 2 ∑ ∈Λ + be the so-called Weyl vector. Let ̌ be a coroot of ∈ Λ viewed as an element of . An arbitrary weight ∈ * is called dominant if ( ̌ ) ≥ 0 for all ∈ Λ + . The weight is called regular if its stabilizer under the -action is trivial.

NOTATION: In the sequel we will refer to a character ∈ * as an -linear application induced, via base change, by a character ∶ Dist( ) → of the distribution algebra of the torus .

We recall for the reader that ( ) ( ) is also an integral model of the universal enveloping algebra U ( ). Definition 2.5.4. We say that a morphism of -algebras ∶ Dist( ) → is a character of the distribution algebra ( ). We say that a character ∶ Dist( ) → is a dominant and regular character if the -linear map induced by tensoring with is a dominant and regular character of .

Let ∶ Dist( ) → be a character of the distribution algebra of . For every ∈ ℕ we denote by ( ) the ring considered as a ( ) ( )-module via ( ) .

The reader can easily verify the following elementary lemma. Lemma 2.5.5. Let be an -algebra and 0 ⊂ an -subalgebra such that 0 ⊗ = . If ( ) denotes the center of (resp. ( 0 ) denotes the center of 0 ), then ( ) = ( 0 ) ⊗ .

Let us consider D ̃ the usual sheaf of differential operators [START_REF] Grothendieck | Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné): IV. Étude locale des schémas et des morphismes de schémas[END_REF][START_REF] Ogus | Notes on crystalline cohomology[END_REF] on ̃ ∶= ̃ × Spec( ) Spec( ) (resp. ∶= × Spec( ) Spec( ) and = × Spec( ) Spec( )). By [40, Part I, 2.10 (3)] we have

0 , ( × ) * D ̃ = 0 ( ̃ , D ̃ ) = 0 ( ̃ , D ( ) ̃ ) ⊗ . (2.27)
On the other hand, we know by 1.5.3 that the right -action on ̃ induces a canonical morphism of filtered -algebras

Φ ( ) ∶ ( ) ( ) → 0 ( ̃ , D ( ) ̃ )
and by [4, page 7] Φ ( ) ⊗ factors through the center of 0 ( , ( × ) * D ̃ ) . By (2.27) and the preceding lemma we have the following morphism

( ) ( ) → U ( ) Φ ( ) ⊗ ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← → 0 ( ̃ , D ( ) ̃ ) ⊗
(we recall for the reader that ∶= Lie( ) ⊗ and that ( ) ( ) ⊗ = U ( ), for every ∈ ℕ). Following the same lines of reasoning that in page 43 we can conclude that Φ ( ) induce a morphism of filtered -algebras

Φ ( ) ∶ ( ) ( ) → 0 ( , ( D( ) )).
(2.28)

Here ( D( ) ) is the center of D( ) and its filtration is the one induced by (2.11). We have the following definition.

Definition 2.5.6. Let ( ) ∶ ( ) ( ) → be an integral character. We define the sheaf of level integral twisted arithmetic differential operators D ( ) , on the flag scheme by

D ( ) , ∶= D( ) ⊗ ( ) ( ) ( ) .
Remark 2.5.7. For every ∈ ℕ, the sheaf D ( ) , has clearly a ring structure coming from the ring structure of D( ) . Moreover, by (2.28) we know that Ker( ( ) ) D( ) is a two-sided ideal of D( ) and we have a canonical isomorphism of sheaves of rings

D ( ) , = D( ) Ker( ( ) ) D( ) .
Tensor product filtration. Let A be a filtered sheaf of commutative rings on a topological space [ 

0 (M ⊗ A N ) ⊆ ... ⊆ (M ⊗ A N ) ⊆ ... ⊆ M ⊗ A N .
Moreover, for every open subset ⊂ we have a canonical map

• (M( )) ⊗ • (A( )) • (N ( )) → • (M( ) ⊗ A( ) N ( ))
by putting ( ) ⊗ ( ) → ( ⊗ ) + , where ∈ M( )--1 M( ), ∈ N ( )--1 N ( ) and ( ) ∶= + -1 M( ), ( ) ∶= + -1 N ( ). Furthermore, these morphisms are compatible under restrictions and therefore, by the universal property of the sheafification, we get a morphism of graded sheaves

• (M) ⊗ • (A) • (N ) → • M ⊗ A N .
Taking stalks, we finally see that the previous morphism is surjective by [START_REF] Hushi | Zariskian filtrations[END_REF]Section I,6.13].

If we endow ( ) with the trivial filtration as a ( ) ( )-module, this means 0 =∶ F -1 ( ) and F ( ) ∶= ( ) for all ( ≥ 0), then using (2.11) we can view D ( ) , as a sheaf of filtered -algebras, equipped with the tensor product filtration.

Proposition 2.5.8. Let ∈ S. Then D ( ) , | is isomorphic to D ( )
| as a sheaf of filtered -algebras. Proof. Let us recall that by proposition 2.3.6 for every ∈ S we have an isomorphism of filtered -algebras

D( ) | ≃ ← ← ← ← ← ← ← → D ( ) | ⊗ ( ) ( ) which induces an isomorphism D ( ) , | ≃ ← ← ← ← ← ← ← → D ( ) | of filtered -algebras.
Remark 2.5.9. This proposition justifies the name of "twisted arithmetic differential operators".

Let us recall that, as is a smooth -scheme, the sheaf of Berthelot's differential operators 

D = O ⊗ ,
and D is a flat -module. Moreover, the preceding proposition tells us that D ( ) is noetherian for each . Let ( ) be an increasing sequence of (left) ideals of , and let us consider

J = D ⊗ = O ⊗
which is an increasing sequence of sheaves of (left) ideals of D by flatness of D over . By noetherianess, the increasing sequence of ideals Γ( , J ) of Γ( , D ) is stationary. Furthermore, given that is an inductive limit of finite typemodules, J is an inductive limit of coherent O -modules, thus for every 1 ≤ ≤ we have

J | = O ⊗ Γ( ,O ) Γ( , J ),
which implies that for each 1 ≤ ≤ there exists ( ) ∈ ℕ such that J | = J ( ) | , for every ≥ ( ). Therefore, if ∶= max{ ( ) ∈ ℕ‖ 1 ≤ ≤ }, we have that J = J and = , for every ≥ , and thus both sequence are stationary. This ends the proof of the proposition.

Definition 2.5.11. We will denote by

D( ) , ∶= lim ← ← ← ← ← ← ← ← ← ← ← D ( ) , ∕ +1 D ( ) , ( 2.29) 
the -adic completion of D ( ) , and we consider it as a sheaf on . Following the notation given at the beginning of this work, the sheaf D( ) , ,ℚ will denote our sheaf of level m twisted arithmetic differential operators on the formal flag scheme .

Proposition 2.5.12.

(i) There exists a basis B of the topology of , consisting of open affine subsets, such that for every ∈ B the ring D( ) , ( ) is twosided noetherian.

(ii) The sheaf of rings D( ) , ,ℚ is coherent. Proof. To show (i) we can take an open affine subset ∈ S and to consider its formal completion along the special fiber. We have

0 ( , D( ) , ) = ̂ 0 ( , D ( ) , ) = ̂ 0 ( , D ( ) ) = 0 ( , D( ) )
The first and third isomorphisms are given by [26, (0 , 3.2.6)] and the second one arises from the preceding proposition. As we have have remarked the ring 0 ( , D( ) ) is twosided noetherian. Therefore, we can take B as the set of affine open subsets of contained in the -adic completion of an affine open subset ∈ S. This proves (i). By [6, proposition 3.3.4] we can conclude that (ii) is an immediately consequence of (i) because 0 ( , D( )

, ,ℚ ) = 0 ( , D , ) ⊗ [6, (3.4.0.1)].
Using the morphism Φ ( ) defined in (2.23) and the canonical projection from D( ) onto D ( ) , we can define a canonical map

Φ ( ) , ∶ A ( ) → D ( ) , .
(2.30)

We recall for the reader that if ∈ S then Sym ( ) * T ̃ ( ) = Sym ( ) T ( ) ⊗ Sym ( ) ( ).

(2.31) Proposition 2.5.13.

(i) There exists a canonical isomorphism ( ) (T ) ≃ • (D ( ) , ).

(ii) The canonical morphism Φ ( ) , is surjective.

(iii) The sheaf D ( ) , is a coherent A ( ) -module.

Proof. In the preceding section we have constructed a canonical morphism

• D( ) ⊗ • ( ( ) ( )) • ( ( ) ) → • D ( ) , .
By proposition 2.3.7 we know that • ( D( ) ) ≃ ( ) (( * T ̃ ) ). Moreover, by definition, we know that • ( ( ) ) = as a • ( ( ) ( )) (= ( ) ( ) proposition 1.4.2)-module. We obtain a morphism of sheaves of graded -algebras

( ) ( * T ̃ ) ⊗ ( ) ( ) → • D ( ) ,
(the structure of Sym ( ) ( )-module is guaranteed by (2.31)). Using the short exact sequence

0 → O ⊗ → * T ̃ ← ← ← ← ← ← → T → 0 of lemma 2.3.3 we see that ( ) (( * T ̃ ) ) ⊗ ( ) ( ) ( ) ( )⊗1 ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← → ( ) (T )
is an isomorphism and we get a canonical morphism of -algebras

∶ Sym ( ) (T ) → • D ( ) , .
By proposition 2.5.8, we have a commutative diagram for any ∈ S Sym ( ) T ( )

gr • D ( ) , ( ) 
gr • D ( ) ( ) ,
here the left diagonal arrow is given by (1.3). As S is a basis for the Zariski topology of we can conclude that is an isomorphism.

For the second claim we can calculate • (Φ ( ) , ). By the first part of the proof and proposition 1.5.6 this morphism is identified with

O ⊗ ( ) ( ) → ( ) (T )
which is surjective by [35, Proposition 1.6.1]. Finally, item ( ) follows from ( ) and proposition 1.5.6. The relation given in (2.26) tells us that, as in the classical case (see for example [START_REF] Beilinson | A proof of Jantzen conjectures. A proof of Jantzen conjectures[END_REF] or [START_REF] Borho | Differential operators on homogeneous spaces[END_REF]), the sheaf D( ) ∶= * D ( ) ̃ can be regarded as a family of twisted differential operators on parametrized by * ∶= Hom( , ).

Finiteness properties

Let ∶ Dist( ) → be a character. In this section we start the study of the cohomological properties of coherent D ( ) , -modules. We follow the arguments of [START_REF] Huyghe | Un théorème de Beilinson-Bernstein pour les D-modules arithmétiques[END_REF] to show a technical important finiteness property about the -torsion of the cohomology groups of coherent D ( ) , -modules, when the character + ∈ * is dominant and regular (proposition 2.6.4). To start with, let us recall the twist by the sheaf O(1). As is a projective -scheme, there exists a very ample invertible sheaf O(1) on [30, chapter II, remark 5.16.1]. Therefore, for any arbitrary O -module E we can consider the twist

E ( ) ∶= E ⊗ O O( ),
where ∈ ℤ and O( ) means the -th tensor product of O(1) with itself. We recall to the reader that there exists 0 ∈ ℤ, depending of O(1), such that for every ∈ ℤ >0 and for every ≥ 0 , ( , O( )) = 0 [30, chapter II, theorem 5.2 (b)].

We start the results of this section with the following proposition which states three important properties of coherent A ( ) -modules [38, proposition A.2.6.1]. This is a key result in this work. Let E be a coherent A ( ) -module.

Proposition 2.6.1.

(i) 0 ( , A ( ) ) = ( ) ( ) is a noetherian -algebra.

(ii) There exists a surjection of A ( ) -modules A ( ) (-)

⊕ → E → 0 for suitable ∈ ℤ and ∈ ℕ.

(iii) For any ≥ 0 the group ( , E ) is a finitely generated ( ) ( )-module.

Inspired in proposition 2.5.13, in a first time we will be concentrated on coherent A ( ) -modules. The next two results will play an important role when we consider formal completions.

Lemma 2.6.2. For every coherent A ( ) -module E , there exists = (E ) ∈ ℤ such that ( , E ( )) = 0 for every ≥ .

Proof. Let us fix 0 ∈ ℤ such that ( , O( )) = 0 for every > 0 and ≥ 0 . We have,

( , A ( ) ( )) = ( , O( )) ⊗ ( ) ( ) = 0.
Now, by the second part of proposition 2.6.1 there exist 0 ∈ ℕ and 0 ∈ ℤ together with an epimorphism of A ( ) -modules

E 0 ∶= A ( ) ( 0 ) ⊕ 0 → E → 0.
If ≥ 0 -0 we see that

( , E 0 ( )) = ( , O( + 0 )) ⊕ 0 ⊗ ( ) ( ) = 0.
We can now end the proof using a classical inductive argument as follows. Let E 1 be the kernel of the epimorphism E 0 → E → 0 and let us consider the statement ( ): for every coherent A ( ) -module F , there exists (F ) ∈ ℤ such that for all ≥ (F ) and all ≤ one has ( , F ) = 0. For ≥ dim( ) the statement follows from Grothendieck's vanishing theorem [30, chapter III, theorem 2.7]. Now, let us suppose that ( +1 ) holds. Taking ≥ max{ 0 -0 , +1 (E 1 )} and regarding the long exact sequence in cohomology we have

0 = ( , E 0 ( )) → ( , E ( )) → +1 ( , E 1 ( )) = 0.
So we can take as (E ) any of those which are larger than the max{ 0 -0 , +1 (E 1 )} to obtain the statement ( ). The statement ( 1 ) shows the proposition.

Lemma 2.6.3. For every coherent D ( ) , -module E , there exist = (E ) ∈ ℤ, a natural number ∈ ℕ and an epimorphism of D ( ) , -modules

D ( ) , (-) ⊕ → E → 0.
Proof. Using the epimorphism in proposition 2.5.13 we can suppose that E is also a coherent A ( ) -module. In this case, by the second part of proposition 2.6.1, there exist = (E ) ∈ ℤ, a natural number ∈ ℕ and an epimorphism of A ( ) -modules

A ( ) (-) ⊕ → E → 0.
Taking the tensor product with D ( ) , we get the desired epimorphism of D ( ) , -modules

D ( ) , (-) ⊕ ≃ D ( ) , ⊗ A ( ) A ( ) (-) ⊕ → D ( ) , ⊗ A ( ) E ≃ E → 0.
We recall for the reader that the distribution algebra of level , which has been denoted by ( ) ( ) in subsection 1.4, is a filtered noetherian -algebra. Moreover ∈ * is an -linear application induced, via base change, by a character ∶ Dist( ) → of the distribution algebra of the torus .

Proposition 2.6.4. Let us suppose that + ∈ * is a dominant and regular character (cf. 2.5.3).

(i) Let us fix ∈ ℤ. For every positive integer ∈ ℤ >0 , the cohomology group ( , D ( ) , ( )) has bounded -torsion.

(ii) For every coherent D ( ) , -module E , the cohomology group ( , E ) has bounded -torsion for all > 0.

Proof. To show ( ), we recall that D ( ) , ,ℚ = D is the usual sheaf of twisted differential operators on the flag variety (remark 2.5.14). As D ( ) , ,ℚ ( ) is a coherent D -module, the classical Beilinson-Bernstein theorem [START_REF] Beilinson | Localisation de -modules[END_REF] allows us to conclude that ( , D ( ) , ( )) ⊗ = 0 for every positive integer ∈ ℤ >0 . This in particular implies that the sheaf D ( ) , ( ) has -torsion cohomology groups ( , D ( ) , ( )), for every > 0 and ∈ ℤ. Now, by proposition 2.5.13, we know that D ( ) , ( ) is in particular a coherent A ( ) -module and hence, by the third part of proposition 2.6.1 we get that for every ≥ 0 the cohomology groups ( , D ( ) , ( )) are finitely generated ( ) ( )modules. Consequently, of finite -torsion for every integer 0 < ≤ dim( ) and ∈ ℤ.

To show ( ) we may use before lemma 2.6.3 to obtain a surjective morphism of D ( ) , -modules

C 0 ∶= D ( ) , (-) ⊕ ← ← ← ← ← ← → E → 0
for suitable ∈ ℤ and ∈ ℕ. As in lemma 2.6.2, we will follow an inductive argument to end the proof. For every > 0 we consider the statement ( ): if E is a coherent D ( ) , -module, there exists a positive integer = (E ) ∈ ℤ >0 such that for every ≤ the cohomology group ( , E ) is annihilated by . For ≥ dim( ) the statement follows from Grothendieck's vanishing theorem [30,chapter III theorem 2.7]. Now, let us suppose that ( +1 ) holds and let us denote by C 1 the kernel of the morphism . This is a coherent D ( ) , -module by [6, proposition 3.1.3 (i)]. The long exact sequence in cohomology gives us the short exact sequence

( , C 0 ) ← ← ← ← ← ← → ( , E ) ← ← ← ← ← ← → +1 ( , C 1 ). (2.32) 
Let ∈ ℕ such that annihilates the image of (of finite -torsion by (i)) and, according to ( +1 ), let us take +1 (C 1 ) ∈ ℤ such that +1 (C 1 ) annihilates the image of . So we may take (E ) ∶= max{ +1 (E ), + +1 (C 1 )} to obtain the statement ( ). In particular ( 1 ) proves the proposition.

Chapter 3

Passing to formal completions

We recall for the reader that ∶= ∕ denotes the flag -scheme of and its completion along its special fiber. From now on, we consider ∶ Dist( ) → a character of Dist( ) such that + ∈ *1 is a dominant and regular character of (we point out to the reader that induces via tensor product with a character of (2.5.3)). We have introduced the following sheaves of -adically complete -algebras on the formal -adic completion of

D( ) , ∶= lim ← ← ← ← ← ← ← ← ← ← ← D ( ) , ∕ +1 D ( ) , .
The sheaf D( ) , ,ℚ is our sheaf of level m twisted arithmetic differential operators on the smooth formal flag scheme .

Cohomological properties

Our objective in this subsection is to prove an analogue of proposition 2.6.4 for coherent D( ) , -modules and to conclude that 0 ( , •) is an exact functor over the category of coherent D( ) , ,ℚ -modules.

Proposition 3.1.1. Let E be a coherent D ( ) , -module and Ê ∶= lim

← ← ← ← ← ← ← ← ← ← ← E ∕ +1
E its -adic completion, which we consider as a sheaf on .

(i) For all ≥ 0 one has

( , Ê ) = lim ← ← ← ← ← ← ← ← ← ← ← ( , E ∕ +1 E ).
(ii) For all > 0 one has E ).

( , Ê ) = ( ,
(iii) The global section functor 0 ( ,

•) satisfies 0 ( , Ê ) = lim ← ← ← ← ← ← ← ← ← ← ← 0 ( , E )∕ +1 0 ( , E ).
Proof. The arguments exhibit in this proof follow word for word the arguments given in [34, Proposition 3.2] and we do not claim any originality here. Let E denote the torsion subpresheaf of E . This is, for any open subset ⊆ we have E ( ) ∶= E ( ) tor , where the right-hand side denotes the group of torsion elements of E ( ). As is a noetherian space, this is indeed a sheaf and furthermore a D ( ) , -submodule of E . Because the sheaf D ( ) , has noetherian rings of sections over open affine subsets of (proposition 2.5.10), the submodule E is a coherent D ( ) , -module. This submodule is thus generated by a coherent O -module which is annihilated by a power of , and so is E . The quotient G ∶= E ∕E is again a coherent D ( ) , -module and therefore we can assume, after possibly replacing by a larger number, that E = 0 and

( , E ) = ( , G) = 0 , for all > 0.

CHAPTER 3. PASSING TO FORMAL COMPLETIONS

Let , be integers which are great or equal to and let ∶ G → E be the map induced by multiplication by + . We have the following exact sequence

0 → G ← ← ← ← ← ← ← ← → E → E → 0
where E ∶= E ∕ +1 E . Now, let us consider the complex

0 G E E + 0 0 G E E 0 + (3.1)
which induces a morphism of long exact sequences

( , G) ( , E ) ( , E + ) +1 ( , G) ( , G) ( , E ) ( , E ) ( , G). ( + ) + + , ( ) (3.2) 
Given that ≥ the right-hand vertical map is zero, and hence • + , = 0, which implies, by exactness, that im( + , ) ⊆ im( ). Since + • + , = we find that im( + , ) = im( ) for all ≥ . In consequence, the projective system ( ( , E )) , with transition maps given by ′ , with ′ ≥ , satisfies the Mittag-Leffler conditions for any ≥ 0. Furthermore, the transition maps of the system (E ) are clearly surjective and if ⊂ is an affine open subset, then ( , E ) = 0 for > 0, because E is in particular a quasi-coherent O -module. Hence, the exact sequence

0 → E ← ← ← ← ← ← ← ← ← ← → E + → E → 0
stays exact after taking sections over , and therefore the projective system ( 0 ( , E )) satisfies the Mittag-Leffler conditions. The preceding lines imply that we are under the hypothesis of [28, Chapter 0, 13.3.1], which implies that for all ≥ 0

( , Ê ) = lim ← ← ← ← ← ← ← ← ← ← ← ( , E ∕ +1 E ).
We have proved the first assertion. For the second assertion we may consider the diagram (3.2) and the fact that ( ) = 0 for > 0 and ≥ 0. In consequence, is an isomorphism onto its image for these and . Therefore, the projective limit of the system ( ( , E )) is equal to ( , E ) when > 0. This property together with ( ) gives us ( ). Finally, to verify ( ) we take two integers , ≥ . We consider the short exact sequence

0 → E → E +1 ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← → E → 0
which splits into two exact sequences

0 → E → E ← ← ← ← ← ← → G → 0 and 0 → G ← ← ← ← ← ← ← ← → E → E → 0 inducing long exact sequences in cohomology 0 → ( , E ) → 0 ( , E ) ← ← ← ← ← ← → 0 ( , G) → 1 ( , E ) 0 → 0 ( , G) ← ← ← ← ← ← ← ← → 0 ( , E ) → 0 ( , E ) → 1 ( , G).
From the second exact sequence and the morphism of exact sequences (3.1) we obtain the following morphism of exact sequences

0 0 ( , E ) 0 ( , E ) 0 ( , E + ) 0 ( , G) 0 0 ( , E ) 0 ( , E ) 0 ( , E ) 0 ( , G). + + + , ( 3.3) 
Given that • = +1 , we get a canonical surjection

∶ 0 ( , E ) +1 0 ( , E ) → 0 ( , E ) 0 ( , G) .
These morphisms form a morphism of projective systems. Now, as is injective, we have a canonical isomorphism

ker( ) = 0 ( , G) +1 ( , E ) = 0 ( , G) 0 ( , E ) ≃ 0 ( , G) 0 ( , E ) = coker( 0 ( )),
and coker( 0 ( )) embeds into 1 ( , G) which is annihilated by . Moreover, the morphism of exact sequences

0 E E E E + 0 0 E E E E + 0 + +1 +1
induces a morphism of short exact sequences

0 coker( 0 ( )) 0 ( , E ) + +1 0 ( , E ) 0 ( , E ) + 0 ( , G) 0 0 coker( 0 ( )) 0 ( , E ) +1 0 ( , E ) 0 ( , E ) 0 ( , G) 0.
Thus, the projective limit lim ← ← ← ← ← ← ← ← ← ← ← ker( ) vanishes and the system ( ) induces an isomorphism

lim ← ← ← ← ← ← ← ← ← ← ← 0 ( , E ) +1 0 ( , E ) 0 ( , G) .
Looking at (3.3), we can conclude that right-hand side is canonically isomorphic to lim (i) There exists 2 = 2 (E ) ∈ ℤ such that, for all ≥ 2 there is ∈ ℤ and an epimorphism of D( ) , -modules

← ← ← ← ← ← ← ← ← ← ← 0 ( , E ) = 0 ( , Ê ),
D( ) , (-) ⊕ → E → 0.
(ii) There exists 3 = 3 (E ) ∈ ℤ such that, for all ≥ 3 we have ( , E ( )) = 0, for all > 0.

Proof. We start the proof of the part ( ) by remarking that the torsion subsheaf E of E is a coherent D( ) , -module. As is quasi-compact, there exists ∈ ℕ such that E = 0. Defining G ∶= E ∕E , G 0 ∶= G ∕G and E ∶= E ∕ +1 E , we have for every ≥ an exact sequence

0 → G 0 +1 ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← → E +1 → E → 0.
Viewing as a closed subset of and denoting by this topological embedding, we can suppose that * G 0 is a coherent D ( ) , -module via the canonical isomorphism of sheaves of rings D ( )

, ∕ D ( ) , ≃ * D( ) , ∕ D( ) ,
(similarly, we can consider E as a coherent D ( ) , -module). By using the fact G 0 is also a coherent A ( ) -module, lemma 2.6.2 gives us an integers ′ 2 (G 0 ) such that the canonical maps

0 ( , E +1 ( ′ )) → 0 ( , E ( ′ )) (3.4) 
are surjective for ′ ≥ ′ 2 (G 0 ) and ≥ . Moreover, lemma 2.6.3 gives another integer ′ 3 (E ) such that, for every ′′ ≥ ′ 3 (E ) there exists ∈ ℕ and a surjection

∶ D ( ) , ∕ D ( ) , ⊕ → E ( ′′ ) → 0.
Let us fix ≥ 2 ∶= max{ ′ 2 (E ), ′ 3 (G 0 )} and let 1 , ..., be the standard basis of the domain of . We use (3.4) to lift each ( ), 1 ≤ ≤ , to an element of

lim ← ← ← ← ← ← ← ← ← ← ← 0 ( , E ( )) ≃ 0 ( , Ê ( )),
by the first assertion of the preceding proposition. By [6, 3.2.3 (v)] we have Ê ( ) = ̂ ( ) and Ê = E , and therefore we have a morphism

D( ) , → E ( ) → 0,
which is surjective because, modulo , it is a surjective morphism of sheaves coming from coherent D ( ) , -modules by redaction modulo . To show the part ( ), we remark that if we fix 0 ∈ ℤ such that ( , O( )) = 0 for every > 0 and ≥ 0 , exactly as we have done in lemma 2.6.2, then via the second part of proposition 3.1.2 we also have that ( , D( ) , ( )) = 0 and the rest of the proof can be deduced exactly as in the proof of lemma 2.6.2. which is annihilated by a finite power of , by part ( ) of proposition 2.6.4. The proof now proceeds by descending induction exactly as we have done in the proof of part ( ) of proposition 2.6.4. Now, we want to extend the part (i) of the preceding proposition to the sheaves D( ) , ,ℚ . To do that, we need to show that the category of coherent D( ) , ,ℚ -modules admits integral models (definition 1.5.1). (i) There is (E ) ∈ ℤ such that, for every ≥ (E ) there exist ∈ ℕ and an epimorphism of D( ) , ,ℚ -modules

Let Coh( D(

D( ) , ,ℚ (-) ⊕ → E → 0.
(ii) For all > 0 one has ( , E ) = 0.

Proof. By the preceding proposition, there exists a coherent D( ) , -module F such that F ⊗ ≃ E . Using the first part of proposition 3.1.2 we can find (F ) ∈ ℤ, such that for all ≥ (F ) there exist ∈ ℕ and a surjection D( ) , (-)

⊕ → F → 0.
Tensoring with we get the desired surjection onto E . Furthermore, as is a noetherian space, the corollary 3.1.3 allows us to conclude that

( , E ) = ( , F ) ⊗ = 0
for every > 0 [6, (3.4.0.1)].

Calculation of global sections

We recall for the reader that throughout this chapter ∶ Dist( ) → denotes a character of the distribution algebra Dist( ) such that + ∈ * 2 is a dominant and regular character of (cf. (2.26)). In this subsection we propose to calculate the global sections of the sheaf D( ) , ,ℚ . Inspired in the arguments exhibited in [START_REF] Huyghe | D-modules arithmétiques sur la variété de drapeaux[END_REF], we will need the following lemma (cf. [39, lemma 3.3]) whose conclusion is an essential tool for our goal.

Lemma 3.2.1. Let be a noetherian -algebra, , two -modules of finite type, ∶

→ an -lineal application and ̂ ∶ ̂ → ̂ the morphism obtained after -adic completion.

If ⊗ 1 ∶ ⊗ → ⊗ is an isomorphism, then ̂ ⊗ 1 ∶ ̂ ⊗ → ̂ ⊗ is an isomorphism as well.
Proof. Let be the kernel (resp. the cokernel) of . Since the -adic completion is an exact functor over the finitely generated -modules [6, 3.2.3 (ii)], the -completion ̂ is the kernel (resp. the cokernel) of ̂ . But ̂ = because is of -torsion, and therefore ̂ ⊗ = ⊗ = 0. Let us identify the universal enveloping algebra U ( ) of the Cartan subalgebra with the symmetric algebra ( ), and let ( ) denote the center of the universal enveloping algebra U ( ) of . The classical Harish-Chandra isomorphism ( ) ≃ ( ) (the subalgebra of Weyl invariants) [22, theorem 7.4.5], allows us to define for every linear form ∈ * a central character [22, 7.4.6] ∶ ( ) → which induces the central reduction U ( ) ∶= U ( ) ⊗ ( ), + . If Ker( + ) ∶= ( ) ( ) ∩ Ker( + ), we can consider the central redaction

( ) ( ) ∶= ( ) ( )∕ ( ) ( )Ker( + )
and its -adic completion ̂ ( ) ( ) . It is clear that ( ) ( ) is an integral model of U ( ) . Theorem 3.2.2. The homomorphism of -algebras Φ ( ) ∶ ( ) ( ) → 0 ( , D ( ) , ), defined by taking global sections in (2.30), induces an isomorphism of -algebras

̂ ( ) ( ) ⊗ ≃ ← ← ← ← ← ← ← → 0 , D( ) , ,ℚ .
Proof. The key of the proof of the theorem is the following commutative diagram, which is an immediate consequence of remark 2.5.14 ∶ ( ) ( ) → 0 ( , D ( ) , ) which becomes an isomorphism after tensoring with . The preceding lemma implies therefore that Φ ( ) gives rise to an isomorphism

( ) ( ) 0 ( , D ( ) , ) ( ) ( ) ⊗ 0 ( , D ( ) , ) ⊗ U ( ) 0 ( , D ).
̂ ( ) ( ) ⊗ ≃ ← ← ← ← ← ← ← → ̂ 0 ( , D ( ) , ) ⊗ ,
and proposition 3.1.1 together with the fact that is in particular a noetherian topological space end the proof of the theorem.

The localization functor

In this section we will introduce the localization functor. For this, we will first fix the following notation which will make more pleasant the reading of the proof of our principal theorem. We will consider

D( ) , ,ℚ ∶= 0 , D( ) , ,ℚ .
From this resolution we derived the following diagram of short exact sequences

( D( ) , ,ℚ ) ⊕ ( D( ) , ,ℚ ) ⊕ 0 ( D( ) , ,ℚ ) ⊕ ( D( ) , ,ℚ ) ⊕ 0 ( , ℒ ( ) , ( )) 0.
By the preceding proposition, we know that the first two arrows are in fact isomorphisms thus, the canonical map → 0 ( , L ( ) , ( )) is an isomorphism as well. To see that the another canonical morphism is an isomorphism, the reader can follow a completely analogous reasoning (we recall for the reader that theorem 3.1.5 tells us that 0 ( , •) is an exact functor, over the category of coherent D( ) , ,ℚ -modules).

Finally, let us show that the functor L ( ) , is fully and faithful. It is enough to show that it is faithful. Let ∶ → be an injective morphism between two finitely generated D( ) , ,ℚ -modules and let K be the coherent D( ) , ,ℚ -module which is the kernel of the morphism L ( ) , ( ). By the preceding proposition, we know that 0 ( , K ) is the kernel of the application 0 ( , L ( ) , ( )) which is zero. But K is generated by global sections and therefore K = 0.

Given that any equivalence between abelian categories is exact, theorems 3. (i) The functors L ( ) , and 0 ( , •) are quasi-inverse equivalence of categories between the abelian categories of finitely generated (left) ̂ ( ) ( ) ⊗ -modules and coherent D( ) , ,ℚ -modules.

(ii) The functor L ( ) , is an exact functor.

Chapter 4

The sheaves D †

,

In this chapter we will study the problem of passing to the inductive limit when varies. Let us recall that ∶ ̃ ∶= ∕N → ∶= ∕ is a locally trivial -torsor (subsection 2.4). For every couple of positive integers ≤ ′ there exists a canonical homomorphism of sheaves of filtered rings [6, (2.2.1.5)] 

′ , ∶ D ( ) ̃ → D ( ′ ) ̃ . ( 4 
D † , ∶= lim ← ← ← ← ← ← ← ← ← ← → D( ) , ⊗ .

The localization functor L †

, As in the subsection 4.3 let us denote by D † , ∶= 0 ( , D † , ). In a completely analogous way as we have done in the subsection referred above, we define the localization functor L † , from the category of finitely presented D † , -modules to the category of coherent D † , -modules. This is, if denotes a finitely presented D † , -module, then L † , ( ) denotes the associated sheaf to the presheaf on defined by

⊆  → D † , ⊗ D † , .
It is clear that L † , is a functor from the category of finitely presented D † , -modules to the category of coherent D † ,modules.

The arithmetic Beilinson-Bernstein theorem for the sheaves D † ,

In this subsection we will concentrate our efforts to show the following Beilinson-Bernstein theorem for the sheaf of rings D † , . To do that, we will fix throughout this section a character ∶ Dist( ) → of the distribution algebra Dist( ) such that + ∈ * is a dominant and regular character of . We want to show (ii) The functor L † , is an exact functor.

To do this, we recall the following facts.

Remark 4.2.2.

(i) Let us recall that in remark 1.5.4 we have stated that ( ) ( ) is isomorphic to the subspace ofinvariants 0 ( , D ( ) ) . The isomorphism is in fact induced by the the action of on itself by right translations [38, theorem 4.4.8.3] and is compatible with variable. This means that if and ′ denotes those isomorphisms for ≤ ′ , then we have a commutative diagram

( ) ( ) 0 ( , D ( ) ) ( ′ ) ( ) 0 ( , D ( ′ ) ) ′ , ( ′ , ) ′
where the morphisms ′ , are obtained by dualizing the canonical morphisms ′ , in subsection 1.4 and the morphisms ′ , are defined in (4.1).

(ii) Again by remark 1.5.4 the isomorphism of proposition 2.5.8 are compatible for varying .

Let us recall the following proposition.

THE ARITHMETIC BEILINSON-BERNSTEIN THEOREM FOR THE SHEAVES D †

, 63 Proposition 4.2.3. [6, Proposition 3.6.1] Let be a topological space, and {D π } ∈ be a filtered inductive system of coherent sheaves of rings on , such that for any ≤ the morphisms D → D are flat. Then the sheaf D † ∶= lim

← ← ← ← ← ← ← ← ← ← → ∈ D is a coherent sheaf of rings.

Proposition 4.2.4. The sheaf of rings D †

, is coherent.

Proof. The previous proposition tells us that we only need to show that the morphisms ̂ * ( ′ , ) ℚ are flats. As this is a local property we can take ∈ S and to verify this property over the formal completion . In this case, remark 4.2.2 and the argument used in the proof of the first part of proposition 2.5.12 give us, by functoriality, the following commutative diagram

D( ) , ,ℚ ( ) D( ′ ) , ,ℚ ( ) D( ) ℚ ( ) D( ′ ) , ( ) ̂ * ( ′ , ) ℚ ( ) ≃ ≃ ̂ ′ , ,ℚ ( )
The flatness theorem [6, theorem 3.5.3] states that the lower morphism is flat and so is the morphism on the top.

Notation:

From now on we suppose that ∶ Dist( ) → induces a dominant and regular character of , under the correspondence (2.26).

Lemma 4.2.5. For every coherent D † , -module E there exist ≥ 0, a coherent D( ) , ,ℚ -module E and an isomorphism of D † , -modules

∶ D † , ⊗ D( ) , ,ℚ E ≃ ← ← ← ← ← ← ← → E . Moreover, if ( ′ , E ′ , ′
) is another such triple, then there exist ≥ max{ , ′ } and an isomorphism of D( ) , ,ℚ -modules

∶ D( ) , ,ℚ ⊗ D( ) , ,ℚ E ≃ ← ← ← ← ← ← ← → D( ) , ,ℚ ⊗ D( ′ ) , ,ℚ E ′ such that ′ • D † , ⊗ = .
Proof. This is [6, proposition 3.6.2 (ii)]. We remark that is quasi-compact and separated, and the sheaf D( ) , ,ℚ satisfies the conditions in [6, 3.4 (i) There exists an integer (E ) such that, for all ≥ (E ) there is ∈ ℕ and an epimorphism of D † , -modules

D † , (-) ⊕ → E → 0.
(ii) For all > 0 one has ( E ) = 0.

Proof. 1 Let E be a coherent D † , -module. The preceding proposition tells us that there exist ∈ ℕ, a coherent D( ) , ,ℚ -, module E and an isomorphism of D † , -modules

∶ D † , ⊗ D( ) , , E ≃ ← ← ← ← ← ← ← → E .
Now we use theorem 3.1.5 for E and we get the desired surjection in (i) after tensoring with D † , . To show (ii) we use the fact that, as is a noetherian topological space, cohomology commutes with direct limites and

E = D † , ⊗ D( ) , ,ℚ E = lim ← ← ← ← ← ← ← ← ← ← → ≥ D( ) , ,ℚ ⊗ D( ) , ,ℚ E . Being E a coherent D ( ) , ,ℚ -module we can conclude that D( ) , ,ℚ ⊗ D( ) , ,ℚ
E is a coherent D ( ) , ,ℚ -module for every ≥ . Then for every > 0 

( , E ) = lim ← ← ← ← ← ← ← ← ← ← → ≥ , D( ) , ,ℚ ⊗ D( ) , ,ℚ E = 0,
(D † , ) ⊕ (D † , ) ⊕ 0 (D † , ) ⊕ (D † , ) ⊕ 0 ( , ℒ † , ( )) 0.
which tells us that E ) → E is an isomorphism the reader can follow the same argument as before.

→ 0 ( , L † , ( )) is an isomorphism. To show that if E is coherent D † , -module then the canonical morphism D † , ⊗ D † , 0 ( ,
As we have remarked, the second assertion follows because any equivalence between abelian categories is exact.

Calculation of global sections

Let us recall that in the subsection 4.2 we have used the fact that associated to the linear form ∈ * there exists a central character ∶ ( ) → , where ( ) denotes the center of the universal enveloping algebra U ( ). In this case, if Ker( + ) ∶= ( ) ( ) ∩ Ker( ), we can consider the central redaction

( ) ( ) ∶= ( ) ( )∕ ( ) ( )Ker( + )
and its -adic completion ̂ ( ) ( ) . Following the notation introduced in subsection 3.1 we have ( ) ( ) ⊗ = U ( ) . We have shown that there exists a canonical isomorphism of -algebras

̂ ( ) ( ) ⊗ ≃ ← ← ← ← ← ← ← → 0 , D( ) , ,ℚ .
Taking inductive limits we can conclude that if † ( ) ∶= lim

← ← ← ← ← ← ← ← ← ← → ̂ ( ) ( ) ⊗ ,
then we also have a canonical isomorphism of -algebras † ( )

≃ ← ← ← ← ← ← ← → 0 ( , D † , ).
Theorem 4.2.1 and the preceding calculation complete the Beilinson-Bernstein correspondence. We end this chapter with the following remark.

In [START_REF] Huyghe | Un théorème de Beilinson-Bernstein pour les D-modules arithmétiques[END_REF] and [START_REF] Huyghe | D-modules arithmétiques sur la variété de drapeaux[END_REF] C. Huyghe and T. Schmidt studied the algebraic case. This means that is induced via derivation by a character ∈ Hom( , ). In this setting, the consider arithmetic differential operators acting on the line bundle L( ) induced by (cf. section 5.5). Let us denote those sheaves by D( ) ,ℚ ( ) and the inductive limit by D † ( ). They have showed analogous results to theorem 4.2.1, if + ∈ * is a dominant and regular character of ([39, Theorem 3.2.5] and [START_REF] Huyghe | Un théorème de Beilinson-Bernstein pour les D-modules arithmétiques[END_REF]Theorem 3.1]). This in particular implies that if ′ ∶ Dist( ) → is the character of the distribution algebra Dist( ) induced via the correspondence (2.26), then

0 , D † ( ) = † ( ) = 0 , D † , ′ .
For ′ + = + ∈ * dominant and regular. 3 Therefore, we have the following equivalence of categories

Coherent D † ( ) -modules 0 ( ,•) ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← → Finitely presented † ( ) -modules L † , ′ ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← → Coherent D † , ′ -modules .
Chapter 5

Arithmetic differential operators with congruence levels

In this chapter we will introduce congruence levels to the constructions given in the preceding chapters. This means, deformations of our (integral) twisted differential operators. This notion will be a fundamental tool to define differential operators on an admissible blow-up of the flag -scheme . We also point out to the reader that we could have started this work by considering differential operators with congruences levels because, as we will explain later, the case " = 0" naturally recovers all our preceding definitions. We have decided to treat this case apart because this is already a meaningful constructions which generalizes [START_REF] Huyghe | Un théorème de Beilinson-Bernstein pour les D-modules arithmétiques[END_REF] and [START_REF] Huyghe | D-modules arithmétiques sur la variété de drapeaux[END_REF]. Many of the results in this chapter are analogues to the results obtained in our previous work and their proofs follow the same lines of reasoning. In all these cases we will refer to the respective analogue.

Congruence levels

In this section we retake the notations of sections 2.1 and 2.4. This means that ̃ and will denote smooth separated schemes over , such that ̃ is endowed with a right -action ∶ ̃ × Spec( ) → ̃ . We will also denote by ∶ ̃ → a locally trivial -torsor for the Zariski topology and by S the set of open affine subschemes of that trivialises the torsor (Remark 2.1.1).

Finally, as usual, we will denote by D ( ) ̃ (resp. by D ( ) ) the usual sheaf of level differential operators on ̃ (resp. on ). As we have remarked in the first chapter, those sheaves come equipped with a filtration

O ̃ ⊆ D ( ) ̃ ,1 ⊆ ... ⊆ D ( ) ̃ , ⊆ ... ⊆ D ( ) ̃ , with D ( ) ̃ ,
the sheaf of level differential operators of order less or equal than .

Associated Rees rings

1 Let A be a sheaf of -algebras endowed with a positive filtration ( A) ∈ℕ and such that ⊂ 0 A. The sheaf A gives rise to a subsheaf of graded rings (A) of the polynomial algebra A[ ] over A. This is defined by

(A) ∶= ⨁ ∈ℕ A ⋅ ,
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its associated Rees ring. This subsheaf comes equipped with a filtration by the sheaves of subgroups

(A) ∶= ⨁ =0 A ⋅ ⊆ (A).
Specializing (A) in an element ∈ we get a sheaf of filtered subrings A of A. More exactly, A equals the image under the homomorphism of sheaves of rings ∶ (A) → A, sending  → , and it is equipped with the filtration induced by A. Moreover, if the sheaf of graded rings gr(A), associated to the filtration ( A) ∈ℕ , is flat over , then2 

A = ∑ =0 A. (5.1)
If ∶ A → B is a morphism of positive filtered -algebras (with ⊆ 0 A and ⊆ 0 B), then the commutative diagram

(A) (B) A B  → ( )
gives us a filtered morphism of rings ∶ A → B . This in particular implies that for ∈ fixed, the preceding process is functorial.

Remark 5.1.1. The previous digression is well-known for rings. In this setting we have results completely analogues to the ones presented so far ([43, Chapter 12, section 6]). We will use these results in the next sections.

Finally, under the hypothesis (5.1), if we endow ( ) with the filtration induced by (A), then for every ∈ ℤ >0 we have ( ) = ( -) -1 (A). To see this, we take a local section ( ) = ∑ =0 ∈ ( ) and a polynomial

( ) = ∑ -1 =0
such that ( ) = ( -) ( ) + , with ∈ A. As 0 = ( ) = , we conclude that

( ) = ( -) ( ) = -1 ∑ =0 +1 - -1 ∑ =0 .
The previous relation implies for example that 0 = -0 and therefore 0 ∈ 0 A. Furthermore, an inductive argument allows us to conclude that ∈ A for every 0 ≤ ≤ -1. In other words ( ) ∈ -1 (A).

The short exact sequence

0 → ( ) → (A) ← ← ← ← ← ← ← ← ← ← ← → A → 0 implies that (A ) = (A)∕( -) -1 (A) for every ∈ ℤ >0 .
Of course, by (5.1), we have 0 (A ) = 0 (A).

The following lemma is completely formal.

Lemma 5.1.2. Let ∶ → be a morphism of schemes and let A be a sheaf of algebras on . Then there exists a canonical isomorphism of sheaf of algebras on

* (A[ ]) ≃ ← ← ← ← ← ← ← → * (A)[ ], 1 ⊗ ∑  → ∑ (1 ⊗ ) .
Let 1 ∶ ̃ × Spec( ) → ̃ denote the first projection. Let us retake the notations in 5.1.1 and let us also assume that (A, Φ) is a -equivariant quasi-coherent O ̃ -module ((2.3) and (2.4)) via a filtered isomorphism Φ. By lemma 5.1.2 and the -equivariant structure of A we have a canonical isomorphism , respectively. Those filtrations make of Φ 0 a filtered isomorphism, and therefore it induces -quivariant structures over the Rees ring ( ), the ideal ( -) (A), and the subgroups (A) and ( -) -1 (A).

Φ 0 ∶ * 1 (A[ ]) ≃ ← ← ← ← ← ← ← → * (A[ ]) ; 1 ⊗ ∑  → 1 ⊗ ∑ Φ( ) , ( 5 

Congruence subgroups

Let us denote by ∶= ∕( ) the quotient field of . We start this subsection by recalling the following notion.

Dilatations

In the following digression we will suppose that = Spec( ) is an affine -scheme of finite type. Let us recall the following definition [START_REF] Yu | Smooth models associated to concave functions in Bruhat-Tits theory[END_REF]Definition 2.1].

Definition 5.1.4. Let

∶= × Spec( ) Spec( ) = Spec( ⊗ ) be the generic fiber. We say that an -scheme 0 = Spec( ), such that ⊆ ⊗ is an -subalgebra of finite type, is a model of if

[ -1 ] = ⊗ . A model 0 is smooth if 0 → Spec( ) is smooth.
Let us recall the construction of the dilatation of a closed subscheme 0 of the special fiber = × Spec( ) Spec( ) [15, Chapter 3, Section 3.2]. Let J ⊆ be the proper ideal of defining 0 . As is noetherian, we can suppose that J is generated by finitely many elements 0 = , 1 , ..., of . We define the dilation of 0 as the affine -scheme In particular, we see that ( ) is always flat over , it is a model of the generic fiber [59, Proposition 1.1] and we have a canonical morphism ( ) → .

(5.3)

As before, let be a split, connected and reductive group scheme over . We denote by ∶= × Spec( ) Spec( ) the generic fiber of and by ∶= × Spec( ) Spec( ) the special fiber of . For every ∈ ℕ, there exists a smooth model ( ) such that Lie( ( )) =

. In fact, we take (0) ∶= and we construct (1) as the dilatation of the trivial subgroup of on . By the preceding construction, this is a smooth model of . Moreover, if we write [ ] = [ 1 , ..., ] with ( ) = 0 for every 1 ≤ ≤ ( being the identity element), then ( mod ) 1≤ ≤ is the ideal of the trivial subgroup of . By construction

(1) = Spec 1 , ..., .
This in particular implies that Lie( (1)) = .

We can now construct ( ) inductively as follows. As before, we put (0) = , and ( + 1) equals the dilatation of the trivial subgroup of ( ) . For every ∈ ℕ the -group scheme ( ) is again smooth, its Lie algebra is and it is a smooth model of . We also point out to the reader that, by (5.3), we have for every ∈ ℕ a canonical morphism ( + 1) → ( ).

(5.4)

Arithmetic distribution algebras of finite level.

Let us start this digression by recalling the following two facts from [START_REF] Huyghe | D-modules arithmétiques, distributions et localisation[END_REF]. Let ∈ ℕ. Let = Spec( [ ]) be the additive group -scheme and let us consider the group endowed with coordinates 1 , ..., . If 1 , ..., denotes a base of Lie( ), then using the notations introduced in section 1.4 we have the following relation. For every multi-index ∈ ℕ we have [START_REF] Huyghe | D-modules arithmétiques, distributions et localisation[END_REF]Proposition 4.1.11] 

! !

< > = .

(5.5)

On the other side, let us consider the multiplicative group -scheme = Spec( [ , -1 ]) and let us take the group . If ℎ 1 , ..., ℎ denotes a base of Lie( ), then using the preceding notation, we have the following relation [38, (50)]

ℎ < > = ! ℎ . (5.6)
Now, let us recall that in this work ⊆ denotes a Borel subgroup of the split connected reductive group -scheme , that ⊆ denotes a split maximal torus of and N ⊆ the unipotent radical of (Section 2.4). Let N be the opposite unipotent radical. 3 By [START_REF] Huyghe | D-modules arithmétiques, distributions et localisation[END_REF]Proposition 4.1.11,(ii)] the open immersion N × Spec( ) × Spec( ) N → induces an isomorphism of filtered -modules

( ) ( ) ≃ ← ← ← ← ← ← ← → ( ) (N) ⊗ ( ) ( ) ⊗ ( ) (N).
By construction (section 2.4), there exist 1 , 2 ∈ ℕ such that N and N are isomorphic to 1 and by definition ≃ 2 .

Moreover, if we fix basis elements ( ) 1≤ ≤ 1 , (ℎ ) 1≤ ≤ 2 and ( ) 1≤ ≤ 1 of the -Lie algebras , and , respectively, then by (5.5) and (5.6) we can conclude that ( ) ( ) equals the -subalgebra of U ( ) generated as an -module by the elements

! ! ′ ! ℎ ′ ′′ ! ′′ ′′ ! . (5.7)
This relation implies that ( ) ( ( )) equals the -subalgebra of U ( ) generated as an -module by the elements

! | | ! ′ ! | ′ | ℎ ′ ′′ ! | ′′ | ′′ ′′ ! . (5.8)
An element of the preceding form has order

= | | + | | ′ + | | ′′ ,
and the -span of elements of order less or equal that forms an -submodule ( ) ( ( )) ⊆ ( ) ( ( )). In this way ( ) ( ( )) becomes a filtered -algebra. This construction also tells us that ( ) ( (0)) = ( ) ( ( )).

(5.9)

Level relative enveloping algebras of congruence level

Now, let be a non-negative integer called a congruence level [START_REF] Huyghe | Arithmetic structures for differential operators on formal schemes[END_REF]Subsection 2.1]. By using the order filtration (D ( ) ̃ ) ∈ℕ of the sheaf D ( ) ̃ , we can define the sheaf of arithmetic differential operators of congruence level k, D ( , ) ̃ , as the subsheaf of D ( ) ̃ given by the specialization of (D ( ) ̃ ) in ∈ . This means

D ( , ) ̃ ∶= ∑ ∈ℕ D ( ) ̃ ,
.

By (1.3) and [START_REF] Huyghe | D † -affinité de l'espace projectif[END_REF]Proposition 1.3.4.2] we can also conclude that, if (D ( , ) ̃ ,

) ∈ℕ denotes the order filtration induced by

D ( ) ̃ , then D ( , ) ̃ , = ∑ =0 D ( ) ̃ ,
.

In local coordinates we can describe the sheaf D ( , ) ̃ in the following way. Let ⊆ ̃ be an open affine subset endowed with coordinates 1 , ..., . Let 1 , ..., be a basis of Ω ̃ ( ) and 1 , ..., the dual basis of T ̃ ( ). By using the notation in section 1.2, one has the following description [37, Subsection 2.1]

D ( , ) ̃ ( ) = <∞ ∑ | | < > | ∈ O ̃ ( ) .
Of course, we have analogue definitions on .

On the other hand, using the short exact sequence

0 → ( - ) (D ( ) ̃ ) → (D ( ) ̃ ) → (D ( ) ̃ )∕( - ) (D ( ) ̃ ) = D ( , ) ̃ → 0, (5.10) 
and the fact that all the terms in the sequence are quasi-coherent O ̃ -modules, we can use proposition 2.2.2 and the final commentary of subsection 5.1.1 to get the following result. Furthermore, for every ∈ ℤ >0 the short exact sequence

0 → ( - ) -1 (D ( ) ̃ ) → (D ( ) ̃ ) → (D ( ) ̃ )∕( - ) -1 (D ( ) ̃ ) = D ( , ) ̃ , → 0 
and again the final commentary in subsection 5.1.1 Imply that every term in the filtration (D ( , ) ̃ ,

) ∈ℕ (being D ( , ) ̃ ,0 = O ̃ ) is a -equivariant coherent O ̃ -module.
Definition 5.1.8. Let ∶ ̃ → be a locally trivial -torsor. Following 2.3.5 we define the level relative enveloping algebra of congruence level of the torsor to be the sheaf of -invariants of * D ( , ) ̃ :

D( , ) ∶= * D ( , ) ̃ .
The preceding sheaf is endowed with a canonical filtration

D( , ) ∶= * D ( , )
̃ , , ( ∈ ℕ).

Proposition 5.1.9. For any ∈ S there exists an isomorphism of sheaves of filtered -algebras

D( , ) | ≃ ← ← ← ← ← ← ← → D ( , ) | ⊗ ( ) ( ( )).
Proof. Let ∈ S. We recall for the reader that this means that there is a -invariant isomorphism -1 ( )

← ← ← ← ← ← → × such that the diagram -1 ( ) × 1
is commutative. We apply the same reasoning that in proposition 2.1.2 to get

D( , ) ( ) = D ( , ) ̃ ( -1 ( )) ≃ D ( , ) ( ) ⊗ D ( , ) ( ) = D ( , ) ( ) ⊗ D ( ) ( ) ≃ D ( , ) ( ) ⊗ D ( ) ( ) ≃ D ( , ) ( ) ⊗ ( ) ( ) ≃ D ( , ) ( ) ⊗ ( ) ( ( )).
The first equality is by definition. By (2.13) the isomorphisms in proposition 2.1.2 preserves the subsheaves D ( , ) and D ( , ) which gives the first isomorphism. The second equality is again by definition. The second isomorphism is just the fact ∈ and the -action is -linear. The last two isomorphisms are given by the first assertion in remark 1.5.4 and (5.9), respectively.

Let us recall that the tangent sheaf T ̃ is a -equivariant coherent O ̃ -module (remark 2.3.2) and therefore we can consider the subsheaf * T ̃ of the sheaf of invariant sections * T ̃ . If ∈ S, then applying the same reasoning as in 2.

we have

* T ̃ ( ) = T ̃ -1 ( ) = T ( ) ⊕ O ( ) ⊗ .
Here = Lie( ). As is smooth, the preceding relation implies that * T ̃ is a locally free O -module of finite rank, and therefore we can consider the level symmetric algebra

( ) * T ̃
. Moreover, for ∈ S, we have

( ) * T ̃ ( ) = ( ) ( T ( )) ⊗ ( ) (
).

(5.11)

The proof of the following proposition follows word for word the arguments given in the proof of proposition 2.3.7.

Proposition 5.1.10. If ∶ ̃ → is a locally trivial -torsor, then there exists a canonical and graded isomorphism

( ) * T ̃ ≃ ← ← ← ← ← ← ← → • D( , ) .

Relative enveloping algebras with congruence level on homogeneous spaces

We recall for the reader that in this work denotes a split connected reductive group scheme over , ⊆ is a Borel subgroup, ⊆ is a split maximal Torus of and N ⊆ is the unipotent radical subgroup of . We have also denoted by ̃ = ∕N, the basic affine space, and by ∶= ∕ , the flag -scheme. Those are smooth and separated schemes over (section 2.4). As we have remarked ̃ is endowed with right commutating ( , )-actions (resp. is endowed with right commutating ( , )-actions, being trivial the right -action). We also recall that ∶ ̃ → denotes the canonical projection, which is a locally trivial -torsor (Subsection 2.4).

Let us consider the morphism given by proposition 1.5.3

Φ ( ) ∶ ( ) ( (0)) → 0 ( ̃ , D ( ) ̃ ).
We recall for the reader that this comes from functoriality from the right -action on ̃ . This map induces a morphism between the associated constant sheaves of filtered -algebras

( ) ( (0)) → 0 ( ̃ , D ( ) ̃ ).
By composing with the canonical map of sheaves 0 ( ̃ , D ( ) ̃ ) → D ( ) ̃ , we get a homomorphism of sheaves of filtered -algebras ( ) ( (0)) → D ( ) ̃ . Specialising in ∈ gives rise, by functoriality, to a filtered morphism of sheaves of filtered -algebras

( ) ( (0)) → D ( ) ̃ .
By (5.9) we have that ( ) ( (0)) = ( ) ( ( )) as filtered subrings of U ( ). We thus obtain a morphism

( ) ( ( )) → D ( , )
̃ , (5.12) which induces a homomorphism of filtered -algebras

Φ ( , ) ∶ ( ) ( ( )) → 0 ( ̃ , D ( , ) ̃ )
Now, if ̃ ∶= ̃ × Spec( ) Spec( ) , then given that D ( , ) ̃ | ̃ = D ̃ is the usual sheaf of differential operators on ̃ , we can apply the same reasoning that in section 2.5 to show that Φ ( , ) factors through the homomorphism of filtered -algebras

Φ ( , ) ∶ ( ) ( ( )) → 0 ̃ , D ( , ) ̃ = 0 , * D ( , ) . (5.13)
Let us put A ( , ) ∶= O ⊗ ( ) ( ( )), and we equip this sheaf with the skew ring multiplication coming from the action of ( ) ( ( )) on O via Φ ( , ) (we recall that, by lemma 2.2.9, we have an action of D( , ) on ( * O ̃ ) = O ). The map Φ ( , ) induces a unique O -linear map

Φ ( , ) ∶ A ( , ) → D( , )
which is also a morphism of sheaves of filtered -algebras (the filtration on A ( , ) is given by proposition 1.5.6).

Let ∶ Dist( ) → be a character of the distribution algebra (2.5.2) and for every level ∈ ℕ, let us also denote by ∶ ( ) ( ) → the induced character of ( ) ( ). As before, we endow with the trivial filtration (0 = F -1 and F ( ) = for all ≥ 0) and we consider it as a filtered ( ) ( )-module via . By remark 5.1.1 and the fact that ( ) ( ) = ( ) ( ( )), (5.9), we have a character ∶ ( ) ( ( )) → . 4As in [START_REF] Milne | Etale cohomology[END_REF] we have

0 , ( × ) * D ̃ = 0 ̃ , D ̃ = 0 ̃ , D ( , ) ̃ ⊗ .
By proposition 1.5.3 and the same reasoning that we have given at the beginning of this section, the right -action on ̃ induces a canonical morphism of filtered -algebras Φ ( , ) ∶ ( ) ( ( )) → 0 ( ̃ , D ( , ) ̃ ) and exactly as in page 45, we can show that Φ ( , ) factors through a morphism

Φ ( , ) ∶ ( ) ( ) → 0 , * D ( , ) ̃ = 0 , D( , ) .
Here ( D( , ) ) denotes the center of D( , ) . We have the following definition.

Definition 5.2.1. Let ∶ ( ) ( ( )) → be a character of the distribution algebra ( ) ( ( )). We define the sheaf of level integral twisted arithmetic differential operators with congruence level , D ( , ) , , on the flag scheme by

D ( , ) , ∶= D( , ) ⊗ ( ) ( ( )) .
By 5.1.9 we have the following result.

Proposition 5.2.2. Let ∈ S. Then D ( , ) , | is isomorphic to D ( , )
| as a sheaf of filtered -algebras.

By using the preceding result, we can conclude as in proposition 2.5.8. 

D( , ) , ∶= lim ← ← ← ← ← ← ← ← ← ← ← D ( , ) , ∕ +1 D ( , )
, the -adic completion of D ( , )

, and we consider it as a sheaf on . Following the notation given at the beginning of this work, the sheaf D( , ) , ,ℚ will denote our sheaf of level twisted differential operators with congruence level on the formal flag scheme .

Using proposition 5.2.2, we can conclude, as in proposition 2.5.12, that Proposition 5.

(i) There exists a basis B of the topology of , consisting of open affine subsets, such that for every ∈ B the ring D( , )

, ( ) is twosided notherian.

(ii) The sheaf of rings D( , ) , ,ℚ is coherent.

Using the morphism Φ ( , ) and the canonical projection from D( , ) onto D ( , )

, we can define a canonical map

Φ ( , ) , ∶ A ( , ) → D ( , )
, .

(5.14)

The same reasoning given in proposition 2.5.13 shows the following result.

. We will study the problem of passing to the inductive limit when varies. First of all, let us recall that the canonical morphism D ( ) ̃ → D ( +1) ̃ is -equivariant (5.36) and by construction, the induced map between the Rees rings (D ( ) ̃ ) → (D ( +1)

̃

) is -equivariant. We have the following diagram * 1 (

D ( ) ̃ * 1 D ( , ) ̃ * 1 D ( +1) ̃ * 1 D ( +1, ) ̃ * D ( ) ̃ * D ( , ) ̃ * ( D ( 
Definition 5.3.1. We will denote by D † , , the limit of the inductive system (5.19), tensored with

D † , , ∶= lim ← ← ← ← ← ← ← ← ← ← → D( , ) , ⊗ .
(5.20)

Let E be a coherent D † , -module. As in lemma 4.2.5 we can find ≥ 0, a coherent D( , ) , ,ℚ -module E and an isomor-

phism of D † , , -modules D † , , ⊗ D( , ) , ,ℚ E ≃ ← ← ← ← ← ← ← → E .
Using this isomorphism and (5.16) we can conclude that there exists (E ) ∈ ℤ, such that for all ≥ (E ) there is ∈ ℕ and an epimorphism of D † , , -modules

D † , , (-) ⊕ → E → 0.
Moreover, by (5.17) we have for every > 0 (i) The functors L † , , and 0 ( , •) are quasi-inverse equivalence of categories between the abelian categories of coherent (left) D † , , -modules and finitely presented † ( ( )) -modules.

( , E ) = lim ← ← ← ← ← ← ← ← ← ← → ≥ , D( , ) , ,ℚ ⊗ D( , ) , ,ℚ E = 0. Let † ( ( )) ∶= lim ← ← ← ← ← ← ← ← ← ← → ∈ℕ ̂ ( ) ( ( )) ⊗ .
(ii) The functor L † , , is an exact functor. (i) For any ∈ there exists an isomorphism ∶ -1 ( )

Linearization of group actions

≃ ← ← ← ← ← ← ← → 1 .
(ii) For any , ∈ and for any open affine subset

= Spec( [ ]) ⊆ ∩ the automorphism ∶ • -1 | ∶ 1 → 1 of 1 is given by a linear automorphism ♮ of [ ].
This means, ♮ ( ) = for any ∈ , and

♮ ( ) =
for a suitable ∈ .

In the preceding definition, the scheme L is obtained by glueing the trivial line bundles 1, ∶ × 1 → via the linear transition functions ( ). Thus, each fibre L is a line, in the sense that it has a canonical structure of a 1-dimensional affine space. Definition 5.4.2. Given a line bundle ∶ L → and a morphism ∶ ′ → , the pull-back * (L) is the fiber product L × ′ equipped with its projection to ′ . Now, let ∶ L → be a line bundle over , then a section of over an open subset ⊂ is a morphism ∶ → L such that • = . Moreover the presheaf L defined by

⊆  → { ∶ → L | is a section over }
is a sheaf called the sheaf of sections of the line bundle L. This is an invertible sheaf (i.e., a locally free sheaf of rank 1).

On the other hand, if E is a locally free sheaf of rank 1 on and we let

V(E ) ∶= Spec Sym O (E )
be the line bundle over associated to E [27, 1.7.8], then we have a one-to-one correspondence between isomorphism classes of locally free sheaves of rank 1 on and isomorphic classes of (geometric) line bundles over [30, Chapter II, Exercises 5.1 (a) and 5.18 (d)]

{Isomorphism classes of locally free sheaves of rank 1} ↔ {Isomorphic classes of line bundles}

E  → V(E ∨ ) L ↤ L (5.21) 
Let ∶ L → be a line bundle over , let L be its sheaf of sections and ∶ ′ → a morphism of schemes. Let us calculate the sheaf of sections of the pull-back line bundle * (L) ∶= L × ′ → ′ . First of all, under the previous correspondence we have L = V(L ∨ ). Therefore by [27, Proposition 1.7.11 (iv)] there exists canonical isomorphisms

* (L) = * (V(L ∨ )) = V( * (L ∨ )) = V(( * (L)) ∨ ),
where the third isomorphism is just the fact that L is free of finite rank. Again, by the preceding correspondence we can conclude that the sheaf of sections L * (L) equals (( * (L)) ∨ ) ∨ = * (L).

We end this digression about line bundles by pointing out to the reader that if ∶ L → is a line bundle over and

1 , 2 ∶ ′ → are two morphisms from a scheme ′ to such that * 1 (L) ≃ * 2 (L), then * 1 (L) ≃ * 2 (L).
Let us suppose now that is endowed with a right -action, this means that we have a morphism ∶ × Spec( ) → .

In particular, for every ∈ ( ) we dispose of a translation morphism

∶ = × Spec( ) Spec( ) × ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← → × Spec( ) ← ← ← ← ← ← →
In the next lines we will study (geometric) line bundles which are endowed with a right -action.

Definition 5.4.3. Let ∶ L → be a line bundle. A -Linearization of L is a right -action ∶ L × Spec( ) → L satisfying the following two conditions:

(i) The diagram L × Spec( ) L × Spec( ) × ( 
ii) The action on the fibers is linear. This means that for every ∈ and ∈ ( ), the morphism on the fibers

L → L ⋅ , induced by the commutative diagram L L , is -linear.
Let ∈ ( ) and let us suppose that Ψ ∶ * (L) → * 1 (L) is a morphism of line bundles over × Spec( ) . Let us consider the translation morphism

∶ = × Spec( ) Spec( ) × ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← → × Spec( ) ← ← ← ← ← ← → .
We 

Ψ ∶ * (L) → * 1 (L) of line bundles over L × Spec( ) , such that Ψ ℎ = Ψ • * (Ψ ℎ ) for all , ℎ ∈ ( ).
Proof. By definition of linearization we have the following commutative diagram

L × Spec( ) * (L) × Spec( ) L . × 2 1
By universal property there exists a unique morphism of line bundles ∶ * 1 (L) → * (L), which is linear on the fibers since so is . Let ∈ ( ). To see that is an isomorphism we can use the correspondence (5.21). In this case, if ∈ , ∈ and ( , ) ∶ L → L denotes the respective morphism between the stalks, then ( , ) is an isomorphism being ( , -1 ) the inverse.

Let , ℎ ∈ ( ). Applying ( × ) * to we get the morphism ∶ L → * (L) and given that is a right action ( ℎ • = ℎ ), it fits into the following commutative diagram

L * (L) * * ℎ (L) = * ℎ (L). ℎ * ( ℎ )
Moreover, since ∶ L → * (L) is an isomorphism for every ∈ ( ) (the fiber over ∈ coincides with ( , ) ) then we can consider the morphism Ψ ∶= -1 ∶ * (L) → L which coincides with the fibers of the morphism

Ψ ∶= -1 ∶ * (L) → * 1 (L).
By construction, these morphism satisfy the cocycle condition of the proposition. This means that for every , ℎ ∈ ( ), we have

Ψ ℎ = Ψ • * (Ψ ℎ ).
Remark 5.4.5. Let ∶ L → be a line bundle endowed with a -linearization. Let L be the sheaf of section of L.

The morphism of the preceding proposition induces in a canonical way an isomorphism

Φ ∶ * (L) ≃ ← ← ← ← ← ← ← → * 1 (L)
, and the cocycle condition for Ψ implies that Φ makes commutative the diagram (2.4) (to see the discussion at the beginning of [START_REF] Huyghe | D-modules arithmétiques, distributions et localisation[END_REF]Subsection 3.2]).

Let us suppose now that ∶= ∕ is again the smooth flag -scheme. Let us recall that by (2.19) we have a canonical isomorphism ≃ ∕N. This in particular implies that every algebraic character ∈ Hom( , ) induces a character of the Borel subgroup ∶ → . Let us consider the locally free action of on the trivial fiber bundle × over given by .( , ) ∶= ( -1 , ( ) ); ( ∈ , ∈ , ∈ ).

We denote by L( ) ∶= ⟍( × ) the quotient space obtained by this action. Let ∶ → be the canonical projection. Since the map × → , ( , )  → ( ) is constant on -orbits, it induces a morphism ∶ L( ) → . Moreover, given that is locally trivial [40, Part II, 1.10 (2)] ∶ L( ) → defines a line bundle over [START_REF] Jantzen | Representation of algebraic groups[END_REF]Part I,5.16]. Furthermore, the right -action on × given by

( 0 , ) •  → ( -1 0 , ) ( ∈ , ( 0 , ) ∈ × )
induces a right action on L( ) for which L( ) turns out to be a -linearized line bundle on . By the preceding remark, the sheaf of sections L( ) of the line bundle L( ) is a -equivariant invertible sheaf. In fact, we can give a local description of the sheaf L( ). If ⊆ is an affine open subset, then [

L(

)( ) = ⊗ [ -1 ( )] .
Here = is viewed as a -module and the -action is given by the action on via and the operation on [ -1 ] derived from the action on -1 ( ) ⊆ .

Arithmetic differential operators acting on a line bundle

We start this section by recalling to the reader that the sheaf D ( ) is endowed with a left and a right structure of Omodule. These structures come from the canonical morphisms of rings 1 , 2 ∶ O → P ,( ) , which are induced by universal property (proposition 1.1.3) and the projections 1 , 2 ∶ × Spec( ) → . We have the following definition. Definition 5.5.1. Let ∈ Hom( , ) be an algebraic character. For every congruence level ∈ ℕ, we define the sheaf of level arithmetic differential operators acting on the line bundle L( ), by

D ( , ) ( ) ∶= L( ) ⊗ O D ( , ) ⊗ O L( ) ∨ .
The multiplicative structure of the sheaf D ( , ) ( ) is defined as follows.

If ∨ , ∨ ∈ L( ) ∨ , , ∈ D ( , ) and , ∈ L( ) then ⊗ ⊗ ∨ • ⊗ ⊗ ∨ = ⊗ ⟨ ∨ , ⟩ ⊗ ∨ . (5.22)
Moreover, the action of D ( , ) ( ) on L( ) is given by

⊗ ⊗ ∨ • ∶= • < ∨ , > ( , ∈ L( ) and ∨ ∈ L( ) ∨ ).
Remark 5.5.2. Given that the locally free O -modules of rank one L( ) ∨ and L( ) are in particular flat, the sheaf D ( , ) ( ) is filtered by the order of twisted differential operators. This is, the subsheaf D ( , ) , of D ( , ) , of differential operators of order less that , induces a subsheaf of twisted differential operators of order less than defined by

D ( , ) , ( ) ∶= L( ) ⊗ O D ( , ) , ⊗ O L( ) ∨ ,
and given than the tensor product preserves inductive limits, we obtain

D ( , ) ( ) = lim ← ← ← ← ← ← ← ← ← ← → D ( , ) , ( ). 
Moreover, the exact sequence

0 → D ( , ) , -1 → D ( , ) , → D ( , ) , ∕D ( , ) , -1 → 0 induces the exact sequence 0 → D ( , ) , -1 ( ) → D ( , ) , ( ) → L( ) ⊗ O D ( , ) , ∕D ( , ) , -1 ⊗ O L( ) ∨ → 0 which tells us that D ( , ) ( ) ≃ L( ) ⊗ O D ( , ) ⊗ O L( ) ∨ ≃ D ( , ) .
The second isomorphism is defined by ⊗ ⊗ ∨  → ∨ ( ) . This is well defined because D ( , ) is in particular a commutative ring.

Proposition 5.5.3. There exists a canonical isomorphism of graded sheaves of algebras

• D ( , ) ( ) ≃ ← ← ← ← ← ← ← → Sym ( ) ( T ).
Proof. By (1.3), and the fact that D ( , ) and T are locally free sheaves (and therefore free -torsion) we have the following short exact sequence

0 → D ( , ) , -1 → D ( , ) , → Sym ( ) T → 0,
which gives us the isomorphisms

Sym ( ) T ≃ • D ( , ) ≃ • D ( , ) ( ) .
Proposition 5.5.4. Let ∈ Hom( , ) be an algebraic character. For every congruence level ∈ ℕ, the sheaf

D ( , ) ( ) is a -equivariant quasi-coherent O -module.
Proof. The proposition is an immediately consequence of remarks 5.1.7, 5.4.5 and proposition 2.2.4.

Sheaf of differential operators.

Let us briefly recall the construction of the sheaf of differential operators over the smooth -scheme [29, 16.8.4]. 5 If I is the ideal of the diagonal embedding → × , we denote by P ∶= O × ∕I +1 the sheaf of principal parts. We put

D ∶= ⋃ ∈ℕ H O P , O .
The reader can take a look to [29, 16.8.10] to check that D is in fact a sheaf of rings. What will be important for us is the following local description. As before, let us suppose that ⊂ is an affine open subset endowed with coordinates 1 , ..., . Let 1 , ..., be the dual base of the sheaf of derivations, and for every 1 ≤ ≤ and ∈ ℕ we denote by [ ] ∈ D ( ) the differential operator defined by ! [ ] = . Finally, using multi-index notation, for = ( 1 , ... ) ∈ ℕ , we put [ ] = ∏ 

D ( ) = ⎧ ⎪ ⎨ ⎪ ⎩ <∞ ∑ [ ] | ∈ O ( ) ⎫ ⎪ ⎬ ⎪ ⎭ .
Furthermore, if 2 ∶ × → denotes the second projection, then we have a canonical map 2 ∶ O → P which induces a structure of (left) D -module on O . This is given by

O 2 ← ← ← ← ← ← ← ← ← ← → P ← ← ← ← ← ← ← ← → O ( ∈ D ).
Finally, by [6, Proposition 1.4.5] we dispose of canonical morphisms P → P ,( ) , from the sheaf of principal parts to the sheaf of level divided powers. Taking duals we get O -linear homomorphisms D ( ) , → D and passing to the inductive limit we get a canonical morphism of filtered rings [6, (2.2.1.5)] D ( ) → D .

(

In particular, by construction, we have a canonical homomorphism of filtered rings

D ( , ) → D . ( 5.24) 
Let L ( ) be the formal -adic completion of the sheaf of section L( ) of the fiber bundle L( ). We regard this sheaf as an invertible sheaf on O . As before, we will consider the following sheaves of -complete algebras

D( , ) ∶= lim ← ← ← ← ← ← ← ← ← ← ← ∈ℕ D ( , ) ∕ +1 D ( , ) , D † , ∶= lim ← ← ← ← ← ← ← ← ← ← → ∈ℕ D ( , ) ⊗ and D ∶= lim ← ← ← ← ← ← ← ← ← ← ← ∈ℕ D ∕ +1 D , (5.25) 
Let ⊂ be an affine open subset of X endowed with local coordinates 1 , ..., and let U be the formal completion of along the special fiber . By using multi-index notation, every section ∈ D( , ) (U ) (resp. ∈ D (U )) can be written in a unique way [6, (2.4

.1.2)] = ∞ ∑ | | < > (resp. = ∞ ∑ [ ] ) (5.26) 
where the sequence ( ) ∈ Γ(U , O ) tends to 0 for the -topology. Furthermore, if | • | is a Banach norm on the affinoid algebra O ,ℚ [6, 2.4.2] then by [37, Subsection 2.1] we have

D † , (U ) = ∞ ∑ | | [ ] | ∈ O ,ℚ (U ), and ∃ > 0, < 1 | | | < | | .
The sheaves (5.25) define the twists

D( , ) ( ) ∶= L ( ) ⊗ O D( , ) ⊗ O L ( ) ∨ and D ∶= L ( ) ⊗ O D ⊗ O L ( ) ∨ ,
and we can define

D † , ( ) ∶= L ( ) ℚ ⊗ O ,ℚ D † , ⊗ O ,ℚ L ( ) ∨ ℚ .
Remark 5.5.6. The preceding sheaves can also be defined as the -completion of the sheaf of arithmetic differential operators acting on the line bundle L( ). This means that

D † , ( ) = lim ← ← ← ← ← ← ← ← ← ← → ∈ℕ lim ← ← ← ← ← ← ← ← ← ← ← ∈ℕ D ( , ) ( )∕ +1 D ( , ) ( ) ⊗ .
We will use this isomorphism in the next subsection. 

is isomorphic to Sym ( )
T ( ) which is known to be noetherian (subsection 1.3). Therefore, the sheaf D ( , ) ( ) has noetherian section over all open affine subset. By using the same reasoning that in lemma 2.5.12 we can conclude that the sheaf D( , )

,ℚ ( ) is coherent.

Local description

We have the following local description for the sheaves D ( , ) ( ). Proof. Let's first recall the following relations from [START_REF] Berthelot | D-modules arithmétiques I. Opérateurs différentiels de niveau fini[END_REF]. First of all, for = ′ + ′′ , with ′ , ′′ ∈ ℕ, let = + , ′ = ′ + ′ and ′′ = ′′ + ′′ be the euclidean division of , ′ and ′′ by . We define the modified binomial

coefficients [6, 1.1.2.1] ′ ∶= ! ′ ! ′′ ! . For multi-indexes , ′ , ′′ ∈ ℕ such that = ′ + ′′ we can define ! = ∏ =1 ! and ′ ∶= ! ′ ! ′′ ! .
Finally, if ⊂ is an affine open subset endowed with local coordinates 1 , ..., , for every ∈ ℕ and ∈ O ( ) we have the following relation [6, proposition 2.2.4, iv]

< > = ∑ ′ + ′′ = ′ < ′ > ( ) < ′′ > ∈ D ( ,0) = D ( ) .
Now, let's take an affine covering B of such that for every ∈ B, is endowed with local coordinates and there exists a local section ∈ L( )( ) such that L( )| = O and L ( ) ∨ | = ∨ O , where ∨ denotes the dual element associated to . Let's show that

D ( , ) ( ) = ⨁ | | O ⊗ < > ⊗ ∨ . (5.27)
It is enough to show that for every ∈ ℕ and , ∈ O the section ⊗ | | < > ⊗ ∨ belongs to the right side of (5.27). In fact, from the first part of the proof

⊗ | | < > ⊗ ∨ = ⊗ | | < > ⊗ ∨ = ⊗ | | ∑ ′ + ′′ = ′ < ′ > ( ) < ′′ > ⊗ ∨ = ∑ ′ + ′′ = | | ′ < ′ > ( ) ⊗ < ′′ > ⊗ ∨ . Let's define ∶ D ( , ) ( ) → D ( , ) by | | ⊗ < > ⊗ ∨ = | |
< > and let's see that is a homomorphism of rings (the multiplication on the left is given by (5.22)). By (5.27), the elements in D ( , ) ( ) are linear combinations of the terms

| | ⊗ < > ⊗ ∨
and therefore, it is enough to show that preserves the multiplicative structure over the elements of this form. So, let's take , ∈ ℕ and , ∈ O . On the one hand

( | | ⊗ < > ⊗ ∨ • | | ⊗ < > ⊗ ∨ ) = ( | | ⊗ < > | | < > ⊗ ∨ ) = ⎛ ⎜ ⎜ ⎝ ∑ ′ + ′′ = | | ′ < ′ > ( | | ) ⊗ < ′′ > < > ⊗ ∨ ⎞ ⎟ ⎟ ⎠ = ∑ ′ + ′′ = | | ′ < ′ > ( | | ) < ′′ > < > ,
and on the other hand

( | | ⊗ < > ⊗ ∨ ) • ( | | ⊗ < > ⊗ ∨ ) = | | < > • | | < > = ∑ ′ + ′′ = | | ′ < ′ > ( | | ) < ′′ > < > .
Both equations show that is a ring homomorphism. Finally, a reasoning completely analogous shows that the morphism -1 ∶ D ( , ) → D ( , ) ( ) defined by

-1 ( | | < > ) = | | ⊗ < > ⊗ ∨
is also a homomorphism of rings and • -1 = -1 • = . This ends the proof of the lemma.

By [37, Proposition 2.2.11] the morphisms of sheaves D( , ) ,ℚ are left and right flat. Using this fact and the same arguments given in proposition 4.2.4 we can conclude the following result. Proposition 5.5.9. The sheaf of rings D † , ( ) is coherent.

Remark 5.5.10. The cohomological properties of the sheaves D ( ,0) ,ℚ ( ) and D † ,0 ( ) have been studied in [START_REF] Huyghe | Un théorème de Beilinson-Bernstein pour les D-modules arithmétiques[END_REF] and [START_REF] Huyghe | D-modules arithmétiques sur la variété de drapeaux[END_REF].

By definition D ( , ) ( )| = L( ) ⊗ O D ⊗ O L( ) ∨
, where ∶= ⊗ 1 . Then in order to apply the arguments of Huyghe-Schmidt in [START_REF] Huyghe | Un théorème de Beilinson-Bernstein pour les D-modules arithmétiques[END_REF] and [START_REF] Huyghe | D-modules arithmétiques sur la variété de drapeaux[END_REF], as we have done in section 5.1.3, we need to find an explicitly description of • (D ( , ) ( )) and a canonical epimorphism of filtered algebras A ( , ) → D ( , ) ( ) as in (5.12). Proposition 5.5.11. There exists a canonical homomorphism of filtered -algebras

Φ ( , ) ∶ ( ) ( ( )) → 0 , D ( , ) ( ) .
Proof. By proposition 1.5.3, there exists a morphism of sheaves of filtered -algebras A ( ,0) → D ( ,0) ( ).

(5.28)

Let's first show that after specialising in the Rees ring associated to the twisted order filtration of D ( ,0) 0 , we get D ( , ) ( ). To do that, we consider D ( ,0) filtered by the order of differential operators and we define the following homomorphisms of O -modules

L( ) ⊗ O D ( ,0) ⊗ O L( ) ∨ D ( ,0) ( ) , - 1 
(5.29) by

⊗ ∑ ⊗ ∨ = ∑ ( ⊗ ⊗ ∨ )
with ord( ) = for every in the sum, and

-1 ∑ ( ⊗ ⊗ ∨ ) = ∑ ⊗ ⊗ ∨
with ord( ) = for every . It's clear that • -1 = -1 • = and therefore (5.29) is an isomorphism of O -modules. We remark that an easy calculation shows that (5.29) is in fact an isomorphism of rings. Let's denote by 1 ∶ D ( ,0) ( ) → D ( , ) ( );  → and by 2 ∶ D ( ,0) → D ( , ) ;  → , and let's consider the following diagrams

L( ) ⊗ O D ( ,0) ⊗ O L( ) ∨ D ( ,0) ( ) D ( , ) ( ) L( ) ⊗ 2 ⊗ L( ) ∨ -1 1
It is straightforward to check that both diagrams are commutative and given that and -1 are isomorphisms we can conclude that

D ( ,0) 0 ( ) = Im( 1 ) = Im( L( ) ⊗ 2 ⊗ L( ) ∨ ) = L( ) ⊗ O Im( 2 ) ⊗ O L( ) ∨ = L( ) ⊗ O D ( ,0) ⊗ O L( ) ∨ = D ( , ) ( ).

Group actions

We start this section with the following notation (cf. 2.2.5).

We recall that acts on the right on the flag -scheme = ∕ . Let us denote by ∶ × Spec( ) → this action. As in 2.2.5, let ∶= × Spec( ) Spec( ∕ +1 ). The scheme is endowed with a right -action ∶ × Spec( ∕ +1 ) → . Let us denote by ∶ → and ∶ × Spec( ∕ +1 ) → +1 × Spec( ∕ +2 ) +1 the closed embeddings. Let denote the formal completion of along its special fiber .

For every ∈ ℕ let L( ) ∶= * (L( )). By remark 5.4.5 the sheaf L( ) is endowed with a -equivariant structure

Φ ∶ * 1 (L( )) ≃ ← ← ← ← ← ← ← → * (L( )) such that * 1, (L( ) ) * (L( ) ) * 1, +1 (L( ) +1 ) * * +1 (L( ) +1 ). Φ ≃ ≃ * (Φ +1 ) is a commutative diagram. This implies that L ( ) = lim ← ← ← ← ← ← ← ← ← ← ← ∈ℕ * (L( )) is a -equivariant line bundle over .
As we have done in proposition 5.4.4 (cf. [38, 3.3.2]), for every ∈ ( ) = ( ) there exists an isomorphism , U ( )

∶ × ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← → × Spec( ) ← ← ← ← ← ← → .
Φ -1 , U Φ , U
The cocycle condition (5.32) tells that the diagram

L ( )(U .(ℎ ) -1 ) = L ( )(U . -1 ℎ -1 ) L ( )(U . -1 ℎ -1 ) L ( )(U . -1 ) L (U . -1 ) L ( )(U ) L ( )(U ) ℎ, (U ( ) Φ -1 ℎ, U . -1 = ( ) * Φ -1 ℎ, U Φ -1 , U Φ ℎ, U . -1 = ( ) * Φ ℎ, U Φ , U (5.36) 
is commutative and we get the relation

ℎ = * ℎ • ( , ℎ ∈ 0 ). (5.37) 
Explicitly, if 1 , 2 are both local sections of pr -1 D ( , ) , and if 1 , 2 are local sections of O , then

( 1 ⊗ 1 ) • ( 2 ⊗ 2 ) = 1 1 ( 2 ) ⊗ 2 + 1 2 ⊗ 1 2 .
We have all the ingredients that allow us to construct the desired sheaves over , this is, to extend the sheaves of rings defined in the preceding chapter to an admissible blow-up of . Let ≥ fix. Let us first recall that taking arbitrary sections , ∈ D ( , ) , , ∈ L( ) and ∨ , ∨ ∈ L( ) ∨ (the last two not necessarily the duals of and ) over an arbitrary open subset ⊂ , the multiplicative structure of the sheaf D ( , ) ( ) is defined by (cf. (5.22))

⊗ ⊗ ∨ • ⊗ ⊗ ∨ = ⊗ ⟨ ∨ , ⟩ ⊗ ∨ .
Now, if pr∶ → denotes the projection, we put

D ( , ) ( ) ∶= pr * D ( , ) ( ) .
By the adjointness property of pr * and pr * we have a canonical isomorphism of O -modules

pr * ℋ O (pr * E , F ) ≃ ℋ O (E , pr * F )
where E is an O -module and F is an O -module. In particular, we have the following isomorphism In consequence, the preceding isomorphism and proposition 6.1.2 allow us to endow the sheaf of O -modules D ( , ) ( ) with a multiplicative structure for every ≥ . On local sections we have

Hom pr * D ( , ) ⊗ O pr * L( ) ∨ , F = Hom pr * D ( , ) ⊗ O L( ) ∨ , F ,
⊗ ⊗ ∨ • ⊗ ⊗ ∨ = ⊗ ⟨ ∨ , ⟩ ⊗ ∨ ,
where , ∈ pr * L( ), ∨ , ∨ ∈ pr * L( ) ∨ and , ∈ D ( , ) .

Let be the completion of along its special fiber = × Spec( ) Spec( ∕ ).

6.1.3.

In this work we will only consider formal blow-ups arising from the formal completion along the special fiber of an admissible blow-up → (cf. proposition 6.3.1 below). Under this assumption we will identify = .

Definition 6.1.4. Let pr ∶ → be an admissible blow-up of the flag variety and let ≥ . The sheaves

D( , ) ,ℚ ( ) ∶= lim ← ← ← ← ← ← ← ← ← ← ← ∈ℕ D ( , ) ( )∕ +1 D ( , ) ( ) ⊗ and D † , ( ) ∶= lim ← ← ← ← ← ← ← ← ← ← → ∈ℕ D( , ) ,ℚ ( ).
are called sheaves of twisted arithmetic differential operators on . As we will explain later, there exists a canonical morphism of sheaves of filtered -algebras1 

A ( , ) ∶= O ⊗ ( ) ( ( )) → D ( , ) ( )
which allows to conclude the following proposition exactly as we have done in the proof of proposition 3. ,ℚ ( )-modules.

(ii) Let E be a coherent D † , ( )-module. Then E is generated by its global sections as D † , ( )-module. Furthermore, E has a resolution by finite free D † , ( )-modules.

An Invariance theorem for admissible blow-ups

Let ∶ → be an admissible blow-up along a closed subset V(I ) defined by an open ideal sheaf I ⊆ O . Using (6.1.3), we can suppose that is obtained as the formal completion of an admissible blow-up → (we will abuse of the notation and we will denote again by pr ∶ → the canonical morphism of this (algebraic) blow-up) along a closed subset V(I) defined by an open ideal sheaf I ⊆ O , such that I is the restriction of the formal -adic completion of I.

Let us denote by ∶= × Spec( ) Spec( ∕ +1 ) the redaction module +1 and by ∶ → the canonical closed embedding. In [START_REF] Huyghe | Arithmetic structures for differential operators on formal schemes[END_REF] the authors have studied the cohomological properties of the sheaves

D( , ) ,ℚ ∶= lim ← ← ← ← ← ← ← ← ← ← ← ∈ℕ * D ( , ) ⊗ and D † , ∶= lim ← ← ← ← ← ← ← ← ← ← → ∈ℕ D( , ) ,ℚ .
Let us consider the commutative diagram .

Here pr ∶ → denotes the redaction of the morphism module +1 . We put L ( ) ∨ ∶= lim

← ← ← ← ← ← ← ← ← ← ← * pr * L( ) ∨ and L ( ) ∶= lim ← ← ← ← ← ← ← ← ← ← ← * pr * L( ). By using the preceding commutative diagram we have * D ( , ) ( ) = * pr * L( ) ⊗ O D ( , ) ⊗ O pr * L( ) ∨ = * pr * L( ) ⊗ O * D ( , ) ⊗ O * pr * L( ) ∨ .
Taking the projective limit we get the following description of the sheaves D( , ) ,ℚ ( )

D( , ) ,ℚ ( ) = L ( ) ℚ ⊗ O ,ℚ D( , ) ,ℚ ⊗ O ,ℚ L ( ) ∨ ℚ ,
and by taking the inductive limit we get the characterization

D † , ( ) = L ( ) ℚ ⊗ O ,ℚ D † , ⊗ O ,ℚ L ( ) ∨ ℚ . (6.3)
As in the preceding chapter, the sheaf L ( )

ℚ
is endowed with the following (left) D † , ( )-action

⊗ ⊗ ∨ • ∶= • < ∨ , > ( , ∈ L ( ) and ∨ ∈ L ( ) ∨ ).
We end this first discussion by remarking that the relation pr * • * = * • pr * , which comes from the preceding commutative diagram, implies that

D † , ( ) = pr * D † , ( ). (6.4) 
Let us suppose that ∶ ′ → is a morphism of admissible blow-ups (abusing of the notation, we will also denote by ∶ ′ → the respective morphism of formal admissible blow-ups in the sense of [ , ( ) ∶= D ( , ) ( )∕ +1 D ( , ) ( ) (we will use the same notations over ′ and ) and by ∶ ′ → the redaction module +1 . The preceding commutative diagram implies that

D ( , ) ′ , ( ) = ( ′ ) * D ( , ) ( ) = * D ( , ) ( ). (6.5) 
In this way, she sheaf D ( , ) ′ , ( ) can be endowed with a structure of right -1 D ( , ) ( )-module. Passing to the projective limit, the sheaf D( , ) ′ ( ) is a sheaf of right -1 D( , ) ( )-modules. So, passing to the inductive limit over we can conclude that D † ′ , ( ) is a right -1 D † , ( )-module. For a D † , ( )-module E , we define

! E ∶= D † ′ , ( ) ⊗ -1 D † , ( ) -1 E ,
with analogous definitions for D( , ) ,ℚ ( ). We will need the following lemma whose proof can be found in [37, Lemma 2.3.5].

Lemma 6.2.1. There exists ∈ ℕ such that

Let us denote by L † , ( ) the exact functor defined by the composition Finitely presented † ( ( )) -modules

L † , ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← → Coherent D † , ( ) -modules ! ← ← ← ← ← ← ← ← ← → CoherentD † , ( ) -modules.
Let us compute this functor. To do that, we may fix a finitely presented † ( ( )) -module . Then

! L † , ( ) = D † , ( ) ⊗ -1 D † , ( ) -1 D † , ( ) ⊗ † ( ( )) = L † , ( ). Now, to show that 0 , ! L † , ( ) = 0 , D † , ( ) ⊗ † ( ( )) = ,
we can take a resolution † ( ( )

) ⊕ → † ( ( )) ⊕ → → 0,
to get the following diagram † ( ( ))

⊕ † ( ( )) ⊕ 0 † ( ( )) ⊕ † ( ( )) ⊕ 0 , D † , ( ) ⊗ † ( ( )) 0.
where the sequence on the top is clearly exact. By definition L † , ( )(•) is an exact functor and by ( ) the global section functor 0 ( , •) is also exact. This shows that the sequence at the bottom is also exact and we end the proof of the theorem.

In the sequel we will denote by 0 the compact locally -analytic group 0 ∶= ( ).

Group actions on Blow-ups

We start this section with the following proposition whose proof is given in [36, Proposition 2.2.9]. Let be the formal completion of the group -scheme , along its special fiber ∶= × Spec( ) Spec( ∕ ). Let us denote by ∶ × Spf( ) → the induced right -action on the formal flag -scheme (cf. section 5.6). For every ∈ ( ) = 0 we have an automorphism of given by

∶ = × Spf( ) Spf( ) × ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← → × Spf( ) ← ← ← ← ← ← → .
As acts on the right, we have the following relation We will need the following result in the next sections. The reader can find its proof in [START_REF] Huyghe | D † -affinity of formal models of flag varieties[END_REF]Lemma 5.2.3]. Lemma 6.3.3. Let ∶ → be an admissible blow-up, and let us assume that ≥ = (this notation is justified by proposition 6.3.1). Then is = ( )( )-equivariant and the induced action of every ∈ +1 on the special fiber of is the identity. Therefore, +1 acts trivially on the underlying topological space of .

* ♮ ℎ • ♮ = ♮ ℎ ( , ℎ ∈ 0 ). ( 6 
Let us recall that in the preceding chapter we have defined a 0 -action on L ( ). This means, for every ∈ 0 we have an isomorphism Φ ∶ L ( ) → ( ) * L ( ) satisfying the cocycle condition Φ ℎ = ( ) * Φ ℎ • Φ , for every , ℎ ∈ 0 . Let us consider the isomorphism ( ) * L ( ) → L ( ) given by adjonction on Φ . Let us suppose that ⊆ 0 is an open subgroup and that pr ∶ → is an -equivariant admissible blow-up. Pulling back the isomorphism ( ) * L ( ) → L ( ), via (pr) * , and using the preceding commutative diagram we get pr * ( ) * L ( ) = ( ) * pr * L ( ) = ( ) * L ( ) (notation given at the beginning of the preceding section). By adjontion we get the map

R ∶ L ( ) ≃ ← ← ← ← ← ← ← → * L ( )
which satisfies, by functoriality, the cocycle condition

ℎ = * ℎ • ( , ℎ ∈ ). (6.8) 
As in (5.35) we can define (from now on we will work on admissible blow-ups of so we will use the same notation)

∶ D † , ( ) → * D † , ( ) → • • -1 . (6.9)
Locally, if U ⊆ is an open subset and ∈ D † , ( )(U ) then U ( ) is given by the following diagram

L ( )(U . -1 ) L ( )(U . -1 ) L ( )(U ) L ( )(U ). U ( ) -1 U U
, and exactly as we have done in (5.36) we can conclude that ℎ = * ℎ • , for every , ℎ ∈ .

Complete distribution algebras and locally analytic representations

Locally analytic representations and locally analytic distributions

Let us recall that in this work denotes a finite extension of ℚ . In particular, is a nonarchimedian spherically complete field in the sense that for any decreasing sequence of closed balls 1 ⊇ 2 ⊇ ... in , the intersection ∩ ∈ℕ is nonempty.

We thus assume throughout this section that the so-called coefficient-field, over which the topological vector will be defined, is equal to our base field L.

Let be an -vector space. Let us start by recalling that a lattice in is an -submodule satisfying: for any vector ∈ there exists a nonzero scalar ∈ × such that ∈ . This means that the natural map ⊗ → sending ⊗  → , is a bijection.

In what follows, we will be always considering the category of Hausdorff locally convex topological -vector spaces. This means, the category of -vector spaces , endowed with a family of (nonempty) lattices ( ) ∈ , which satisfies ( 1 ) for any ∈ and any ∈ × there exists ∈ such that ⊂ .

( 2 ) If , ∈ , then there exists ∈ such that ⊆ ∩ .

These conditions imply that the sets + , with ∈ and ∈ , form a basis of a topology on V, which is called the locally convex topology on (defined by the family ( ) ∈ ). Definition 6.4.1. Let be a Hausdorff locally convex topological -vector space. We say that is a BH-space if it admits a complete metric defined by a norm, such that this induces a locally convex topology finer that its given topology.

In the preceding definition, if the metric topology equals the given locally convex topology, we say that is a Fréchet space. Furthermore, if is another locally convex -vector space, then a continuous linear map between two Hausdorff locally convex topological -vector spaces ∶ → is called a BH-map, if there exists an -Banach space such that admits a factorization of the form → → . On the other hand, the continuous map ∶ → is called compact if there is an open lattice ⊆ such that ( ) is compact. Definition 6.4.2. A locally convex vector space is called of compact type if it is the locally convex inductive limit of a sequence

1 → ... → ← ← ← ← ← ← ← ← ← → +1 → ...
of -Banach spaces with injective and compact transition maps (the topology on the inductive limit is the finest locally convex topology such that all the natural maps → are continuous [55, Chapter I, section 5 E.]).

We can define now an important class of topological -algebras ([24, Definition 1.6] or [52, Section 3]).

Definition 6.4.3. Let be a topological -algebra. We say that is a Fréchet-Stein algebra if there exists a sequence ( ) ∈ℕ of Notherian Banach -algebras satisfying the following conditions.

(i) We can find an isomorphism

≃ ← ← ← ← ← ← ← → lim ← ← ← ← ← ← ← ← ← ← ← ∈ℕ ,
with flat transition maps +1 → .

(ii) The maps → have dense image.

If is locally convex -vector space, then we say that is a nuclear Fréchet space over if there exists a sequence ( ) ∈ℕ of Banach spaces , such that We say that a locally convex -vector space is hereditarily complete if any quotient of is complete. In this work we will use the following weaker version of the preceding definition. Definition 6.4.5. Let be a locally convex topological -algebra. We say that is a weak Fréchet-Stein -algebra if there exists a sequence ( ) ∈ℕ of locally convex -algebras satisfying the following properties.

≃ ← ← ← ← ← ← ← → lim ← ← ← ← ← ← ← ← ← ← ←
(i) For every ∈ ℕ the -algebra is hereditarily complete.

(ii) For each ∈ ℕ there exists an -algebra homomorphism +1 → , which is a BH-map.

(iii) An isomorphism of locally convex topological -algebras

≃ ← ← ← ← ← ← ← → lim ← ← ← ← ← ← ← ← ← ← ← ∈ℕ .
It 

← ← ← ← ← ← ← → lim ← ← ← ← ← ← ← ← ← ← ← ∈ℕ
be a choice of a weak Fréchet-Stein structure on . If is a locally convex topological -module, we say that is coadmissible (with respect to the given weak Fréchet-Stein structure on ) if there exists a sequence ( ) ∈ℕ satisfying the following conditions.

(i) For every ∈ ℕ, is a finitely generated locally convex topological -module.

(ii) An isomorphism of topological -modules

⊗ +1 +1 ≃ ← ← ← ← ← ← ← → (the tensor product is understood in the sense of [25, Lemma 1.2.3]). (iii) An isomorphism of topological -modules ≃ ← ← ← ← ← ← ← → lim ← ← ← ← ← ← ← ← ← ← ← ∈ℕ . • If ≃ ← ← ← ← ← ← ← → lim ← ← ← ← ← ← ← ← ← ← ← ∈ℕ
is a coadmissible -module, we will say that ( ) ∈ℕ is an ( ) ∈ℕ -sequence.

Remark 6.4.7. Let be a locally convex topological -algebra.

(i) A Fréchet-Stein structure on is a weak Fréchet-Stein structure

≃ ← ← ← ← ← ← ← → lim ← ← ← ← ← ← ← ← ← ← ← ∈ℕ
on A, such that for each ≥ 1, the algebra is noetherian -Banach algebra, and the transition maps +1 → are flat.

( ) 2 Let us suppose that ≃ ← ← ← ← ← ← ← → lim ← ← ← ← ← ← ← ← ← ← ← ∈ℕ is a Fréchet-Stein structure on . If ≃ ← ← ← ← ← ← ← → lim ← ← ← ← ← ← ← ← ← ← ← ∈ℕ is a coadmissible
-module, where ( ) ∈ℕ is an ( ) ∈ℕ -sequence, then every is a Hausdorff quotient of , for some ≥ 0, and hence an -Banach module. By [START_REF] Bosch | Non-archimedean analysis[END_REF]Proposition 3.7.3 (6)] the natural map

⊗ +1 +1 → → ⊗ =1 +1 →
is an isomorphism (this notation is introduced before the definition 6.4.11). Thus the notion of coadmissiblity for topological -modules as defined before coincides with that defined in [52, Second definition of section 3].

Let be an affinoid rigid analytic space over . We will denote by C an ( , ) ∶= O( ) the Tate -algebra of -valued rigid analytic functions on . This is an Banach -algebra [13, Part I, chapter 3, section 3. 

( ) ∶= ∈ | | -| ≤ .
This can be identified as the set of -points of a rigid analytic ball , and therefore the algebra of all -valued rigid analytic functions on ( ) is the Tate algebra

O( ) ∶= ( ) = ∑ ( -) | ∈ and lim | |→∞ | | | | = 0 .
This is a Banach -algebra if we endow it with the norm

| | ∶= max | | | | .
Here ∈ ℕ is a multi-index and ( -) ∶= ( 1 -1 ) 1 ...( -) .

Let M be a Hausforff space

A chart for M is an open subset ⊆ M together with a homeomorphism

∶ → ⊂ (6.10)
where is a closed ball. We say that two charts ( , ) and ( , ) (with ∩ ≠ ∅) are compatible if both maps ( ∩ )

• -1 ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← → ( ∩ ) and ( ∩ ) • -1 ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← → ( ∩ )
are given by a collection of convergent power series (locally -analytic functions). We have:

(i) [56, II, section 7, lemma 7.1] Let ( , ) and ( , ) be two compatible charts, such that ∩ ≠ ∅. Then using the same notation given in (6.10), we have that = .

We will say that a collection of compatible charts A = ( , ) ∈ is an atlas for M if M ∶ ∪ ∈ . Two atlas A 1 and A 2 are called equivalent if A 1 ∪ A 2 is again an atlas of . The atlas A 1 will be called maximal if any equivalent atlas B satisfies B ⊂ A 1 .

(ii) [ • . We let C an ( , ) denote the space of locally analytic -valued functions on . We have therefore an isomorphism

C an ( , ) ≃ ← ← ← ← ← ← ← → lim ← ← ← ← ← ← ← ← ← ← → ( , , ) ∏ ∈ C an ( , ).
We have the following result [START_REF] Schneider | Continuous and locally analytic representation theory[END_REF]Proposition 10.3].

Proposition 6.4.12. if is compact and is of compact type, then C an ( , ) is again of compact type.

Let us suppose that is a compact type convex -vetor space and let 0 be a compact locally -analytic group (or any compact open subgroup of a locally -analytic group). By the preceding proposition the space C an ( 0 , ) of -valued locally -analytic functions on 0 is a compact type convex -vector space, and hence its strong dual is a nuclear Fréchet space by proposition 6.4.4. The space of V-valued locally analytic distributions is denoted by3 ( 0 , ) ∶= C an ( 0 , ) ′ .

In particular, if = then any element ∈ 0 gives rise to a Dirac delta function supported at . This is defined by ( ) ∶= ( ). In this way, if [ 0 ] denotes the group ring of 0 over , we obtain an embedding [ 0 ] → ( 0 , ) whose image is dense [START_REF] Schneider | Locally analytic distributions and -adic representation theory, with applications to GL 2[END_REF]Lemma 3.1]. This implies that the -algebra structure on [ 0 ] extends, in a unique way, to a topological -algebra structure on ( 0 , ).

Definition 6.4.13. A locally convex -vector space is called barrelled if every closed lattice in is open.

Examples of barrelled spaces are Fréchet spaces and vector spaces of compact type. We can finally give one of the central definitions in this work. Definition 6.4.14. Let be a locally convex barrelled -vector space, equipped with an action of 0 by continuous -linear automorphisms. We say that is a locally analytic representation of 0 if for any ∈ , the orbit map

∶ 0 →  → ⋅ ,
lies in C an ( 0 , ).

In order to relate locally analytic representation with modules over the ring of locally analytic distributions we need to introduce the exponential map. More exactly, the tangent space ∶= ( 0 ) to the identity of the locally analytic group 0 has a structure of Lie algebra [START_REF] Schneider | adic Lie groups[END_REF]Corollary 13.13]. The Campbell-Baker-Hausdorff formula converges -adically in a neighborhood of zero in , defining an analytic map [START_REF] Schneider | adic Lie groups[END_REF]Corollary 18.19] exp ∶ → 0 .

In particular, to each ∈ we can associate a linear continuous form

 →∶= (exp( ))| =0 ( ∈ ( 0 , )),
which induces a morphism of rings

U ( ) → ( 0 , ). (6.11) 
Now, if is a locally analytic representation of 0 , then has a structure of ( 0 , )-module [54, Section 3]. For example, if ∈ 0 and is the Dirac distribution supported at , we have • = . We have the following result [54, Proposition 3.2] Proposition 6.4.15. The map ( , )  → • is separately continuous. This structure extends the action of U ( ) on and any continuous linear 0 -map between locally analytic 0 -representations gives rise to a ( 0 , )-morphism.

Let us denote by Rep an ( 0 ) the category of locally analytic 0 -representations on -vector spaces of compact type with continuous linear 0 -maps and by M Fr ( 0 ) the category of continuous ( 0 , )-modules on nuclear Fréchet spaces with continuous ( 0 , )-module maps. Definition 6.4.16. An admissible 0 -representation over is a locally analytic 0 -representation on an -vector space of compact type such that the strong dual ′ is a coadmissible ( 0 , )-module (cf. (6.13)) equipped with its canonical topology. Rep an ( 0 ) M Fr ( 0 )

Let us denote by

Rep adm ( 0 ) C 0 .

≃ ≃ (6.12)

The horizontal maps are the anti-equivalences of categories defined by  → ′ and the structure of ( 0 , )-module on ′ is given by

( • )( ) ∶=  → ( -1 • ) ( ∈ ( 0 , ), ∈ ′ and ∈ ). (6.13) 
Finally, let us explain the concept of locally analytic vectors in an admissible representation. Let us suppose that is a locally -analytic group and ⊆ is a compact open subgroup which is a chart. As we have seen, this means that = ℍ( ) with ℍ a rigid analytic closed ball. Let us take now an -vector space endowed with a continuous -action. We put

ℍ-an ∶= ∈ | ∶ → ∈ C an (ℍ, ) .
Let us suppose for the moment that is a rigid analytic group defined over , which admits an admissible cover

= ⋃ ∈ℤ >0
where ( ) ∈ℤ >0 is a decreasing sequence of admissible affiinoid open subgroups of . We write ∶= ( ) and ∶= ( ) for every ∈ ℤ >0 . We also assume that is Zariski dense in for each ∈ ℤ >0 , and thus is Zariski dense in . In this case, we define4 -an ∶= ⋃ ∈ℤ >0 -an .

Complete arithmetic distribution algebras and distribution algebra of an analytic group

Let ∈ ℕ be a natural number. Through this section ( ) will denote the formal group -scheme defined by the formaladic completion of the congruence group ( ) along its special fiber ( ) = ( ) × Spec( ) Spec( ∕ ) (being (0) = ). As before, we will also denote by ( ) ∶= ( ) × Spec( ) Spec( ∕ +1 ) the redaction modulo +1 . The morphisms +1 ( ) → ( ) induce a morphism ( ) ( +1 ( )) → ( ) ( ( )) [START_REF] Huyghe | D-modules arithmétiques sur la variété de drapeaux[END_REF]Proposition 4.1.11]. By [START_REF] Huyghe | D-modules arithmétiques sur la variété de drapeaux[END_REF]Corollary 5.3.2] we have Lemma 6.4.17. Let be the index of ramification of over ℚ . If < -1, then the ring † ( ( )) is coherent.

By construction, the group -scheme ( ) is topological of finite type. Let ̂ • be the completion of ( ) along its unit section Spf( ) → ( ). This is a group scheme over , but not a formal -scheme because O ̂ ( ) • is not necessarily an ideal of definition. Let us denote by ( ) • its associated rigid-analytic space in the sense of [5, (0.2.6)]. This is an analytic group over with Lie( ( ) • ) = , which is not affinoid in general. This can be built as follows. Let be the closed point of and let 1 , ..., be a sequence of regular generators for the unit section of ( ) such that [ ( )] = [ 1 , . 

C an ( ( ) • , ) ∶= O( ( ) • ) = lim ← ← ← ← ← ← ← ← ← ← ← ∈ℤ >0
.

By 

⎛ ⎜ ⎜ ⎝ lim ← ← ← ← ← ← ← ← ← ← ← ∈ℤ >0 ⎞ ⎟ ⎟ ⎠ ′ ≃ ← ← ← ← ← ← ← → lim ← ← ← ← ← ← ← ← ← ← → ∈ℤ >0 ( ) ′ .
This means that D an ( ( ) • ) is a locally convex space which is in fact a topological -algebra of compact type (proposition 6.4.4). This reference also gives us a canonical ring morphism ∶ ( ) • → D an ( ( ) 

)) → D an ( ( ) • ) induces a topological isomorphism of rings † ( ( )) ≃ ← ← ← ← ← ← ← → D an ( ( ) • ).
Let ∈ Hom( , ) be an algebraic character and ∶ ( ) → the central character induced by via the Harish-Chandra isomorphism. We put

D an ( ( ) • ) ∶= D an ( ( ) • ) (Ker( ))D an ( ( ) • ).
So, if ∈ Hom( , ) denotes an algebraic character we have an isomorphism † ( ( ) 

) ≃ ← ← ← ← ← ← ← → D an ( ( ) • ) . ( 6 

Locally analytic representations and coadmissible modules

Let us recall that 0 denotes the compact locally -analytic group 0 = ( ). In subsection 6.4.1 we have introduced the following notations. Let C an ( 0 , ) be the space of -valued locally -analytic functions on 0 and ( 0 , ) the continuous strong dual of C an ( 0 , ). Given that 0 is compact, this space carries a structure of nuclear Fréchet-Stein algebra.

The following digression is an adapted version of the proof of [25, Proposition 5.3.1] to our work. First of all, let us recall that 0 acts on the space C cts ( 0 , ), of continuous -valued functions, by the formula

( • )( ) ∶= ( -1 ) ( , ∈ 0 , ∈ C cts ( 0 , )).
Let us consider the sequence ( ( ) 

C cts ( 0 , ) ( ) • -an → C cts ( 0 , ) ( +1) • -an (6.16) 
and

C cts ( 0 , ) ( ) • -an → C an ( 0 , ) (6.17) 
The latter being compatible with the former. Passing to the inductive limit we get an isomorphism

lim ← ← ← ← ← ← ← ← ← ← → ∈ℤ >0 C cts ( 0 , ) ( ) • -an ≃ ← ← ← ← ← ← ← → C an ( 0 , ). (6.18) 
As in [25, Proposition 5.3.1], for each ∈ ℤ >0 we put

( ( ) • , 0 ) ∶= C cts ( 0 , ) ( ) • -an ′ .
Given that is compact, we can use [START_REF] Emerton | Locally Analytic Vectors in Representations of Locally -adic Analytic Groups[END_REF]Proposition 3.4.11] to conclude that the restriction map induces

C cts ( 0 , ) ( ) • -an → C cts ( , ) ( ) • -an ≃ ← ← ← ← ← ← ← → C an ( ( ) • , ) = O( ( ) • ).
This yields a closed embedding D an ( ( ) • ) → ( ( ) • , 0 ). The ring structure on D an ( ( ) • ) extends naturally to a ring structure on ( ( ) • , 0 ), such that

( ( ) • , 0 ) = ⨁ ∈ 0 ∕ D an ( ( ) • ) . ( 6.19) 
(of course, here we have used theorem 6.2.2 to identify * D † ′ , ′ ( ) = D † , ′ ( )). This shows (6.24) and therefore the diagonal action

∶ D † , ( ) ⊗ * * D † ′ , ′ ( ) * M ′ → * D † , ( ) ⊗ * * D † ′ , ′ ( ) * M ′
defined on simple tensor products by

• ( ⊗ ) ∶= • ⊗ • , ( 6.25) 
for ∈ 0 , and and are local sections of D † , ( ) and * M ′ , respectively (in order to soft the notation we use the accord introduced in the commentary 1 after the definition 6.4.24). Now to see that (6.23) is a strongly 0 -equivariant D † , ( )-module, we only need to check that (K ) ⊂ K . This is, the diagonal actions fix the submodule K . We have

• ( ℎ ⊗ -⊗ ℎ • ) = • ( ℎ ) ⊗ • -• ⊗ • (ℎ • ) = ( • )( • ℎ ) ⊗ • -• ⊗ ( ℎ -1 ) • ( • ) = ( • ) ℎ -1 ⊗ • -• ⊗ ( ℎ -1 ) • ( • )
and +1 is a normal subgroup we can conclude that ℎ -1 ∈ +1 and 0 fix K . Moreover, since the target of the preceding morphism is strongly 0 -equivariant, this factors through the quotient and we thus obtain a morphism of D † , ( )-modules ∶ D † , ( ) ⊗ * D † ′ , ′ ( ), +1 * M ′ → M .

(6.26)

By construction ∈ Coh D † , ( ), 0 .

Admissible blow-ups and formal models

The following discussion is given in [36, 3.1.1 and 5.2.13]. Let us start by considering the generic fiber of the flag variety ∶= × Spec( ) Spec( ) (the flag variety). For the rest of this work rig will denote the rigid-analytic space associated via the GAGA functor to [13, Part I, chapter 5, section 5.4, Definition and proposition 3]. Any admissible formal -scheme (in the sense of [13, Part II, chapter 7, section 7.4, Definitions 1 and 4]) whose associated rigid-analytic space is isomorphic to rig will be called a formal model of rig . For any two formal models 1 and 2 there exists a third formal model ′ and admissible formal blow-up morphisms ′ → 1 and ′ → 2 [13, Part II, chapter 8, section 8.2, remark 10]. Now, let us denote by F the set of admissible formal blow-ups → . This set is ordered by ′ ⪰ if the blow-up morphism ′ → factors as the composition of a morphism ′ → and the blow-up morphism → . In this case, the morphism ′ → is unique [13, Part II, chapter 8, section 8.2, proposition 9], and it is itself a blow-up morphism [41, Chapter 8, section 8.1.3, proposition 1.12 (d) and theorem 1.24]. By [13, Part II, chapter 8, section 8.2, remark 10] the set F is directed and it is cofinal in the set of all formal models. Furthermore, any formal model of rig is dominated by one which is a 0 -equivariant admissible blow-up of [START_REF] Huyghe | D † -affinity of formal models of flag varieties[END_REF]Proposition 5.2.14]. In particular, if ∞ denotes the projective limit of all formal models of rig , then

∞ = lim ← ← ← ← ← ← ← ← ← ← ← F .
We will be interested in the following directed subset of F . Definition 6.5.1. We denote by F the set of pairs ( , ), where ∈ F and ∈ ℕ satisfies ≥ . This set is ordered by ( ′ , ′ ) ⪰ ( , ) if and only if ⪰ and ′ ≥ .

We will need the following auxiliary result. We will follow word for word the reasoning given in [36, Lemma 5.2.12] when ∈ Hom( , ) is equal to the trivial character. Our case is completely analogous. ⊕ ( ,ℎ) ,ℎ ,ℎ  → ( ,ℎ ℎ ) ⊗ -,ℎ ⊗ ( ℎ . ).

Here is considered as a D an ( ( ′ ) • ) -module via the canonical map (6.27). Let us note that, since is a ( ( ′ ) • , 0 )module, and because +1 is contained in ( ( ′ ) • , 0 ) , the expression ℎ . is defined for any ℎ ∈ +1 . If ∶ →

′ is a linear map of ( ( ′ ) • , 0 ) -modules, then we have a commutative diagram The final map being surjective by (6.27).

Claim 1. If is a finitely presented ( ( ′ ), 0 ) -module, then the above sequence is exact.

Proof. Let us start by remarking that if ,ℎ ,ℎ ∈ D an ( ( ) • ) ×Σ then can ( ( ,ℎ ,ℎ )) = can ( ,ℎ ℎ ⊗ -,ℎ ⊗ ℎ ) = ,ℎ ℎ ⊗ -,ℎ ⊗ ℎ = 0.

For the last equality we have used the fact that ℎ ∈ ( ( ′ ), 0 ) . Let us show now that ker(can ) ⊆ im( ). Let us take a finite presentation of the ( ( ′ ), 0 ) -module The 3 × 3-lemma reduces us to the case of a finitely presented module of the form ∶= ( ( ′ ) • , 0 ) ⊕ , and since we need to show that ker(can ) lies in the submodule generated by the images of the elements ,ℎ for generators 1 , ..., ∈ and ℎ ∈ Σ we can even suppose that = 1. In this case the claim follows from (6.19). is the morphism given by the previous lemma and . ∶ . → is the blow-up morphism, then we will denote L ( ) ∶= * L ( ).

The notation being fixed, we prevent the reader that in order to simplify the notation, in the rest of this work we will avoid to underline these sheaves if the context is clear and there is not risk to any confusion.

Let us recall that in section 5. By construction satisfies the cocycle condition (6.8). This means that for every , ℎ ∈ 0 we have

ℎ = L ℎ ( ) ← ← ← ← ← ← ← ← ← ← ← ← → ( ) * L ℎ ( ) ( ) * ℎ ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← → ( ℎ ) * L ( ). (6.28) 
In particular is an isomorphism for every ∈ 0 .

Exactly as we have done in (6.9), and given that by construction D † , ( ) acts on L ( ) (resp. D † . , ( ) acts on L ( )), we can build an isomorphism Which implies that the diagram is commutative, and therefore the condition ( ) is satisfied. Second condition follows from

( • ⊗ ) = , U ( ) ⊗ ̃ ( ) = , U ( ) , U ( ) ⊗ ̃ ( ) = , U ( ) , U ( ⊗ ).
Finally, condition ( ) follows from the fact that if ∈ +1 then ̃ ( ) = . Let us verify condition (b). We suppose that ′ , are 0 -equivariant and that ( ′ , ) ⪰ ( , ) with canonical morphism ∶ ′ → over . As * is exact we have an isomorphism * L † ′ , ′ ( )( ′ )

≃ ← ← ← ← ← ← ← → * D † ′ , ′ ( ) ⊗ D an ( ( ) • ) ′ .
(This is an argument already given in the text for the functor ( ) * ). On the other hand, we have remarked that ( ′ ) • ⊆ ( ) • and we have a map ̃ ′ , ∶ ′ → obtained as the dual map of the natural inclusion ( ) • -an → ( ′ ) • -an . Let U ⊆ be an open subset and ∈ * D † ′ , ′ ( )(U ), ∈ ′ . We define ′ , ( ⊗ ) ∶= Ψ ′ , ( ) ⊗ ̃ ′ , ( ),

where Ψ is the canonical injection * D † ′ , ′ ( ) → D † , ( ). By using the preceding isomorphism we can conclude that this morphisms extends naturally to a map Remark 6.5.8. As F is cofinal in the set of all formal models, the preceding proposition tells us that the set of all 0equivariant admissible blow-ups of is also cofinal in the set of all formal models of . From now on, we will assume that if ∈ F , then also 0 -equivariant, and we will denoted by ∶ → the morphism induced by every ∈ 0 .

For every ∈ F we denote by sp ∶ ∞ → the canonical projection map. Let ′ ⪰ with blow-up morphism 

Ψ ′′ , ′ ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← → D † ′ , ′ ( )(sp ′ ( ))
and we can form the projective limit as in [36, (5. and therefore, for ∈ 0 , the actions assemble to an action

∶ D( ) ≃ ← ← ← ← ← ← ← → ( ) * D( ).
This action is on the left, in the sense that if , ℎ ∈ 0 then

( ) * ℎ • = ℎ .
Let us suppose now that M = (M , ) ∈ C 0 , . We have the transition maps ′′ , ′ ∶ ′′ * M ′′ , ′′ → M ′ , ′ which are linear relative to the morphism (6.22). As before, we have the map sp sp ′ Definition 6.6.2. We will denote by F ∶= ⨆ F , where runs over all the special vertices of B. This set is partially ordered as follows. We say that ( ′ , ′ ) ⪰ ( , ) if ′ ⪰ and Lie( ′ ( ′ )) ⊂ Lie( ( )) (or equivalent ′ Lie( ′ ) ⊂ Lie( ), cf. subsection 5.1.2) as lattices in .

For any special vertex ∈ B, any element ∈ induces an isomorphism

∶ → . .
The isomorphism induced by on the generic fibers ( ) ≃ ≃ ( . ) coincides with right translation by on

∶ = × Spec( ) Spec( ) × ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← → × Spec( ) Spec( ) ← ← ← ← ← ← ← ← ← ← ← → .
where we have used ( ) = ( ). Moreover, induces a morphism → . , which we denote again by , and which coincides with the right translation on if ∈ ,0 (of course in this case = ). Let ( ) ♮ ∶ O → ( ) * O be the comorphism of . If ∶ → is an admissible blow-up of an ideal I ⊂ O , then blowing-up (( ) ♮ ) -1 (( ) * I) produced a formal scheme (cf. lemma 6.5.3), together with an isomorphism ∶ → . As in lemma 6. (6.37)

As usual, for every special vertex ∈ B, we will denote by L ( ) the -adic completion of the sheaf L ( ), which is considered as an invertible sheaf on . Let ( , ) ∈ F with blow-up morphism pr ∶ → . At the level of differential operators, we will denote by D † , ( ) the sheaf of arithmetic differential operators on acting on the line bundle L ( ) 10 we have the following important properties. Let ∈ . As in (6.9) the isomorphism (6.37) induces a left 10 Here we abuse of the notation and we denote again by L ( ) the invertible sheaf pr * L ( ) on .

On the other hand, and exactly as we have done in (6.33), the commutative diagram implies that if, by cofinality, we identify D( )( ) = lim ← ← ← ← ← ← ← ← ← ← ←( , )∈F D † , ( ) pr ( ) and we take projective limits in (6.44), then we get a ring homomorphism , ∶ D( )( ) → ( ) * D( )( ) which implies that the sheaf D( ) is -equivariant. Furthermore, from construction this -quivariant structure extends the 0 -structure defined in (6.35). 

Théorème 4 .

 4 ( ) ∶= D † , ( ) ⊗ D an ( ( ) • ) pour chaque élément ( , ) ∈ F . Nous noterons cette famille L 0 ( ) ∶= L † , ( )( ) ( , )∈F. Soit ∈ Hom( , ) un caractère algébrique tel que + ∈ * est un caractère dominant et régulier de .

Finally, if weCorollary 1 . 1 . 5 . [ 6 ,

 1156 endow ( ) ( ) ∶= ( ) ( )∕ { +1} with the quotient m-PD-structure [6, 1.3.4] we have Corollary 1.4.2] Under the hypothesis of the preceding proposition, there exists an -algebra ( ) ( ) endowed with a m-PD-structure ( , ̃ , [ ]) compatible with ( , ) and such that { +1}

(

  iii) The sheaf A ( ) (resp. (A ( ) )) is a coherent sheaf of O -rings (resp. a coherent sheaf of O -algebras), with noetherian sections over open affine subsets of .

  .1)), and there exists a covering S of , consisting of affine open subsets that trivializes (cf. (2.2)).

  )]. On the other hand, by functionality, we obtain a morphism ∶ * P ̃ ,( ) → P ̃ × ,( ) and the -equivariant structure for P ̃ is defined by Φ ∶= 1 • [38, Proposition 3.4.1]. Definition 1.2.1 and lemme 2.2.3 allow us to conclude that for every ∈ ℕ the sheaf D ( ) ̃ , is -equivariant and the inclusions D ( )

Remark 2 . 4 . 1 .

 241 Λ 4 [40, II, 1.7]. Let N be the closed subgroup of generated by all with ∈ Λ + . As we have remarked normalises N. We set = N ⋊ (2.20) a Borel subgroup of . With this terminology N is called the unipotent radical of . We put ̃ ∶= ∕N, ∶= ∕ for the corresponding quotients (the basic affine space and the flag scheme of [1, subsection 4.7]). As is a discret valuation ring these are smooth and separated schemes over [1, Lemma 4.7 (a)]. For technical reasons (cf. Proposition 1.5.

  3 and remark 2.4.1 the right regular -action on ̃ (introduced in remark 2.4.1) induces a homomorphism Φ ( ) ∶ ( ) ( ) → 0 ̃ , D ( ) ̃ which equals the operator-representation (notation in section 1.5 (remark 1.5.5)) ̃ ∶ U ( ) → 0 ̃ , D ̃ if we tensor with (D ̃ denotes the usual sheaf of differential operators on ̃ ). Let us consider the base change ∶= × Spec( ). We know by [40, Part I, 2.10 (3)] that

  defines a structure of algebra on [ ] * and Dist( ) is a subalgebra with Dist ( ).Dist ( ) ⊂ Dist + ( ) [40, Part I, 7.7]. Furthermore, Dist ( ) ≃ ⊕ ( ∕ +1 ) * . Proposition 2.5.1. [38, Subsection 4.1]

Remark 2 . 5 . 14 .

 2514 (a) By construction D ( ) , ,ℚ = D is the sheaf of usual twisted differential operators on the flag variety [12, page 170]. (b) Let us recall that the right regular action of on induces a natural map Φ ∶ U ( ) → 0 ( , D ). This implies that if Φ ( ) denotes the canonical map induced by Φ ( ) , by taking global sections, then Φ ( ) ⊗ = Φ [12, Page 170 and 186].

Corollary 3 . 1 . 3 .(

 313 Let E be a coherent D( ) , -module. There exists = (E ) ∈ ℕ such that for all > 0 the cohomology group ( , E ) is annihilated by .Proof. Let ∈ ℤ. By the first assertion of proposition 3.1.1 we have for > 0

Proposition 3 . 1 . 4 .Theorem 3 . 1 . 5 .

 314315 ) , ) be the category of coherent D( ) , -modules and let Coh( D( ) , ) ℚ be the category of coherent D( ) , -modules up to isogeny. This means that Coh( D( ) , ) ℚ has the same class of objects as Coh( D( ) , ) and, for any two objects M and N in Coh( D( ) , ) ℚ one has Hom Coh( D( ) , ) ℚ (M, N ) = Hom Coh( D( ) , ) (M, N ) ⊗ . The functor M  → M⊗ induces an equivalence of categories between Coh( D( ) , ) ℚ and Coh( D( ) , ,ℚ ). Proof. By definition, the sheaf D( ) , ,ℚ satisfies [6, conditions 3.4.1] and therefore [6, proposition 3.4.5] allows to conclude the proposition.The proof of the next theorem follows exactly the same lines than in[36, theorem 4.2.8]. We will reproduce the proof because it is a central result for our goal. Let E be a coherent D( ) , ,ℚ -module.

2 ∶= 1 2 ∑

 22 ∈Λ * , cf. (2.5.3).

Φ

  By the classical Beilinson-Bernsein theorem[START_REF] Beilinson | Localisation de -modules[END_REF] and the preceding commutative diagram, we have that Φ ( ) factors through the morphism Φ ( )

  2.2 and 3.4.2 clearly imply Theorem 3.4.3. (Principal theorem) Let us suppose that ∶ Dist( ) → is a character of Dist( ) such that + ∈ * is a dominant and regular character of .

Theorem 4 . 2 . 1 .

 421 Let us suppose that ∶ Dist( ) → is a character of Dist( ) such that + ∈ * is a dominant and regular character of . (i) The functors L † , and 0 ( , •) are quasi-inverse equivalence of categories between the abelian categories of finitely presented (left) D † , -modules and coherent D † , -modules.

. 2 )

 2 which defines a -equivariant structure on A[ ]. Moreover, the positive filtration A ∈ℕ of A induces two positive filtrations * 1 ( A[ ]) ∈ℕ and * ( A[ ]) ∈ℕ , over * 1 (A[ ]) and * (A[ ])

Proposition 5 . 1 . 6 .Remark 5 . 1 . 7 .

 516517 For every non-negative integer , the sheaf of arithmetic differential operators of congruence level , D( , ) ̃ , is a -equivariant quasi-coherent O ̃ -module. If ̃ is also equipped with a right -action, then we can use the preceding reasoning to show that the sheaf D ( , ) ̃ is a -equivariant quasi-coherent O ̃ -module.

Proposition 5 . 2 . 3 .Definition 5 . 2 . 4 .

 523524 The sheaf D( , ) , is a sheaf of O -rings with noetherian sections over all open affine subsets of . We will denote by

  +1) ̃ * D ( +1, ) ̃ Except for the right lateral face, the other faces of the cube form commutative diagrams either by -equivariance of the map (D ( ) ̃ ) → (D ( +1) ̃ ) or by functoriality on the commutative diagram (which comes from the exact sequence (5.10)) construction (cf. proposition 5.1.6), this forces the commutativity on right lateral face, which means that the canonical map D ( , ) ̃ → D ( , ) ̃ is also -equivariant. We dispose therefore of a morphism D( , ) → D( +1, ) . The commutativity of the diagram ( ) ( ( )) ( +1) ( ( ))implies that we also have maps D( , ) ,

Definition 5 . 4 . 1 .

 541 Let us start with the following definition from [30, Chapter II, exercise 5.18] (cf. [16, Definition 3.1.1]). Let be an -scheme. A (geometric) line bundle over is a scheme L together with a morphism∶ L → such that admits an open covering ( ) ∈ satisfying the following two conditions:

Proposition 5 . 4 . 4 .

 544 have the relations ( × ) * * (L) = * ( ) and ( × ) * * 1 (L) = L. So every morphism of line bundles Ψ ∶ * (L) → * 1 (L) induces morphisms Ψ ∶ * ( ) → for all ∈ ( ). The following reasoning can be found in [23, Page 104] or [16, Lemma 3.2.4]. Let ∶ L → be a line bundle over endowed with a -linearization ∶ L × Spec( ) → L. Then there exists an isomorphism

=1[]

  . One has the following description[29, 16.11.2.2] 

Remark 5 . 5 . 7 .

 557 If ⊆ is an open affine subset of , then proposition 5.5.3 tells us that the graded algebra • D ( , ) ( )( )

Lemma 5 . 5 . 8 .

 558 There exists a covering B of by affine open subsets such that, over every open subset ∈ B the rings D ( , ) ( ) and D ( , ) are isomorphic.

  This morphism and the -equivariant structure of L ( ) induces an O -linear isomorphism Φ ∶ L ( ) → ( ) * (L ( )) verifying the cocycle conditionΦ ℎ = ( ) * (Φ ℎ ) • Φ and ( , ℎ ∈ ( )).(5.32)Now, as is locally noetherian its ideal of -torsion is locally annihilated by a power of . By(5.26), for every ≤ ′ the morphisms D( , ) ,ℚ → D( ′ , ) ,ℚ , induced by functoriality on the canonical morphisms D ( ) → D ( ′ ) , are injective as well as the morphism D( , ),ℚ → D induced by (5.24) and we get the injections ([6, 2.4.1.5])D(0, ) ,ℚ → D(1, ) ,ℚ → ... → D( , ) ,ℚ → ... → D † , → D ,ℚ . (5.33)On the other hand by passing to the projective limit, the sheaf D acts on O ,ℚ (resp. O ⊆ O ,ℚ ) and thereforeD ,ℚ ( ) ∶= L ( ) ℚ ⊗ O ,ℚ D ,ℚ ⊗ O ,ℚ L ( ) ∨ ℚ acts on the line bundle L ( ) ℚ (resp. the line bundle L ( ) ⊂ L ( ) ℚ ) by ⊗ ⊗ ∨ • ∶= • ⟨ ∨ , ⟩ ( ∈ D ,ℚ , , ∈ L ( ) ℚ and ∨ ∈ L ( ) ∨ ℚ ).(5.34) By lemma 5.5.8 and (5.33) we can conclude that D † , ( ) ⊆ D ,ℚ ( ) and therefore the line bundle L ( ) ℚ is also a (left) D † , ( )-module (resp. L ( ) ⊆ L ( ) ℚ ). In particular, we have an induced ( )-action on the sheaf D † , ( )∶ D † , ( ) → ( ) * D † , ( ),  → Φ • • (Φ ) -1 . (5.35) Locally, if U ⊆ and ∈ D † , ( )(U ) then (U )( ) is given by the following commutative diagram L ( )(U . -1 ) L ( )(U . -1 ) L ( )(U ) L ( )(U ).

  which tells us that pr * D ( , ) ⊗ O pr * L( ) ∨ and pr * D ( , ) ⊗ O L( ) ∨ are canonically isomorphic. By applying once again the preceding reasoning we getD ( , ) ( ) = pr * L( ) ⊗ O pr * D ( , ) ⊗ O pr * L( ) ∨ .

Proposition 6 . 1 . 5 . 2 )Proposition 6 . 1 . 6 .

 6152616 (i) The sheaves D ( , ) ( ) are filtered by the order of twisted differential operators and there is a canonical isomorphism of graded sheaves of algebras gr D ( , ) ( ) ≃ Sym ( ) pr * T , along the special fiber we have the commutative diagram (cf. proposition 2.5.12) Given that the morphism of sheaves D( , ) ,ℚ → D( +1, ) ,ℚ is left and right flat [37, Proposition 2.2.11], the preceding diagram allows us to conclude that the morphism D( , ) ,ℚ ( ) → D( +1, ) ,ℚ ( ) is also left and right flat. By proposition 4.2.3 we have the following result. The sheaf of rings D † , ( ) is coherent.

′

  13, Part II, chapter 8, section 8.2, definition 3]). This means that we have a commutative diagram ′ . Let ≥ { ′ , }. Let us denote by D ( , )

Proposition 6 . 3 . 1 .

 631 Let → be an admissible blow-up, obtained by blowing up an open ideal sheaf I ⊆ O . Then there is an open ideal sheaf I ⊆ O such that I is the restriction to of the -adic completion of I, and is therefore the completion of the blow-up of I along its special fiber.

∈ℕ 3 ] 6 . 4 . 4 .

 3644 and the transition maps are compact (the right side is equipped with the projective limit topology [55, Chapter I, section 5 D]). We have [54, Theorem 1.Proposition Passing to strong duals yields an anti-equivalence of categories between the category of spaces of compact type and the category of nuclear Fréchet spaces.

  Rep adm ( 0 ) the category of all admissible 0 -representations with continuous linear 0 -maps and by C 0 the full subcategory of Mod( ( 0 , )) consisting of coadmissible modules. We have the following commutative diagram of functors ([54, Corollary 3.4] and [53, Theorem 20.1])

  • ∶= Spm( ) with the special domain of ( ) • ′ defined by the equations | ( )| ≤ | | 1∕ (this means a closed ball of radius = | | 1∕ ) [20, Lemma 7.1.2 (c)]. We define ( ) • as the rigide analytic space defined by glueing the affinoid spaces ( ( ) • ) ∈ℤ >0 . By construction, the space ( ) • is the unit open ball. Furthermore, given that ( ) • ′ is already a closed ball of radius | | 1∕ ′ we can conclude that the inclusion ( ) • → ( ) •+1 is relatively compact ([55, Final example of section 16]) and the algebra of analytic functions on ( ) • is given by[25, definition 2.1.18] 

. 15 ) 6 . 4 . 21 .

 156421 By proposition 5.5.12 we have Corollary Now, let ∈ Hom( , ) be an algebraic character such that + + * is a dominant and regular character of . Then 0 , D † , ( ) = D an ( ( ) • ) .

Lemma 6 . 5 . 2 .

 652 Let ′ , ∈ F be 0 -equivariant admissible blow-ups (definition6.3.2). Suppose ( ′ , ′ ) ⪰ ( , ) with canonical morphism ∶ ′ → over and let be a coherent( ( ′ ) • , 0 ) -module with localization M = L † ′ , ′ ( )( ) ∈ Coh D † ′ , ′ ( ), 0 .Then there exists a canonical isomorphism in Coh D † , ( ), 0 given byD † , ( ) ⊗ * D † ′ , ′ ( ), +1 * M • , 0 ) ⊗ ( ( ′ ) • , 0 ) .Proof. Let Σ be a system of representatives in +1 for the cosets in +1 ∕ ′ +1 . By (6.19) we have a canonical mapD an ( ( ) • ) → ( ( ) • , 0 ) (6.27)which is compatible with variation in . Now, let us take a ( ( ′ ) • , 0 ) -module and let us consider the free D an ( ( ) • ) -moduleD an ( ( ) • ) ×Σ ∶= ⨁ ( ,ℎ)∈ ×Σ D an ( ( ) • ) ,ℎ , whose formation is functorial in . In fact, if ′ is another ( ( ′ ) • , 0 ) and if ∶ → ′ is a ( ( ′ ) • , 0 ) -linear map, then D an ( ( ) • ) ×Σ → D an ( ( ) •) map between the corresponding free modules. Me make the convention D an ( ( ) • ) {0}×Σ = {0} is the trivial submodule of D an ( ( ) • ) ×Σ . Moreover, the free module D an ( ( ) • ) ×Σ comes with a linear map ∶ D an ( ( ) • ) ×Σ → D an ( ( ) • ) ⊗ D an ( ( ′ ) • )

D

  an ( ( ) • ) ×Σ D an ( ( ) • ) ⊗ D an ( ( ′ ) • ) D an ( ( ) • ) ′ ×Σ D an ( ( ) • ) ⊗ D an ( ( ′ ) • ) ′ ′and we have a sequence of linear mapsD an ( ( ) • ) ×Σ ← ← ← ← ← ← ← ← ← ← ← ← ← ← → D an ( ( ) • ) ⊗ D an ( ( ′ ) • ) can ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← → ( ( ) • , 0 ) ⊗ ( ( ′ ) • , 0 ) → 0.

D

  an ( ( ) • ) ×Σ D an ( ( ) • ) ⊗ D an ( ( ′ ) • ) ( ( ) • , 0 ) ⊗ ( ( ′ ) • , 0 ) 0 D an ( ( ) • ) ×Σ D an ( ( ) • ) ⊗ D an ( ( ′ ) • ) ( ( ) • , 0 ) ⊗ ( ( ′ ) • , 0 ) 0 D an ( ( ) • ) ×Σ D an ( ( ) • ) ⊗ D an ( ( ′ ) • ) ( ( ) • , 0 ) ⊗ ( ( ′ ) • , 0 ) 0

Claim 2 .

 2 If is a finitely presented ( ( ′ ) • , 0 ) -module and we let M ∶= L † ′ , ′ ( )( ), then the natural morphismL † , ( )( ( ( ) • , 0 ) ⊗ ( ( ′ ) • , 0 ) ) → D † , ( ) ⊗ * D ′ , ′ ( ) * Mis bijective.

  6 we have built for any ∈ 0 an O -linear isomorphism Φ ∶ L ( ) → ( ) * L ( ), being ∶= • ( × ) the translation morphism ( the right -action on ). By pulling back this morphism and using the commutative diagram in the previous lemma ( * • * = * • * ) we an O -linear isomorphism ( ) * * L ( ) → * L ( ). By adjointness and following the accord established in the previous paragraph, we get an O . -liner morphism ∶ L ( ) → ( ) * L ( ).

- 1 .Corollary 6 . 5 . 4 ..

 1654 Locally, if U ⊂ . is an open subset and ∈ D † . , ( )(U ) then U ( ) is defined by the following diagramL ( )(U . -1 ) L ( )(U . -1 )Exactly as we have done in(5.36) we get the following cocycle conditionℎ = ( ) * ℎ • ( , ℎ ∈ 0 ). (6.29)From the previous lemma we get[36, Corollary 5.2.18] Let us suppose that ( ′ , ′ ) ⪰ ( , ) for , ′ ∈ F and let ∶ ′ → be the unique morphism over . Let ∈ 0 . Then ( ′ . , ′ ) ⪰ ( . , ) and if we denote by . ∶ ′ . → . the unique morphism over , we have a commutative diagram Based on [36, Definition 5.2.19] we have the following definition. Let U ⊆ .(ℎ ) be an open subset, , ∈ D † .(ℎ ), ( )(U ) and ∈ . We have ℎ, U . -1 ( ,U ( ⊗ )) = ℎ, U . -1 ( , U ( ) ⊗ ̃ ( )) = ℎ, U . -1 ( , U ( )) ⊗ ̃ ℎ ( ̃ ( ))= ℎ , U ( ) ⊗ ̃ ℎ ( ) = ℎ , U ( ⊗ ).

′Proposition 6 . 5 . 7 .

 657 , ∶ * L † ′ , ′ ( )( ′ ) → L † , ( )( ).The cocycle condition translates into the diagram* * L † ′ , ′ ( )( ′ ) = ( . ) * * L † ′ , ′ ( )( ′ ) * L † , ( )( ) ( . ) * L † ′ ., ′ ( ( ′ ) therefore (6.31) is also a commutative diagram. The transitivity properties are clear. Let us see that the induced morphism ′ , is in fact an isomorphism. As in[START_REF] Huyghe | D † -affinity of formal models of flag varieties[END_REF] Page 42] the morphism ′ , corresponds under the sense that any two elements have a common upper bound, and it is cofinal in the set of all formal models. In particular,∞ = lim ← ← ← ← ← ← ← ← ← ← ←F .The space ∞ is also known as the Zariski-Riemann space [13, Part II, chapter 9, section 9.3] 8 . In this subsection we indicate how to realize coadmissible 0 -equivariant D( )-modules on F as sheaves on the Zariski-Riemann space ∞ . We start with the following proposition whose proof can be found in[START_REF] Huyghe | D † -affinity of formal models of flag varieties[END_REF] Proposition 5.2.14]. Any formal model of s dominated by one which is a 0 -equivariant admissible blow-up of .

′′- 1 (

 1 ′ ∶ ′ → and ∈ 0 . Let us consider the following commutative diagram coming from the 0 -equivariance of the family F 0 -action on the space ∞ . Let U ⊂ be an open subset and let us take ∶= sp -1 (U ) ⊂ ∞ . Using the commutative diagram which implies that sp ′ ( ) is an open subset of ′ . Now, let us suppose that ′′ ′′← ← ← ← ← ← ← ← ← ← ← ← → ′ ′ ← ← ← ← ← ← ← ← ← → are morphisms over . The commutative diagram ∞ ⊇ ∶= sp -1 sp ′ ( )) = ′′-1 ( ′′ (sp ( ))) = sp ′′ ( ).(6.34)In this situation, the morphism (6.22)Ψ ′′ , ′ ∶ ′′ * D † ′′ , ′′ ( ) → D † ′ , ′ ( )induces the ring homomorphism D † ′′ , ′′ ( )(sp ′′ ( )) = ′′ * D † ′′ , ′′ ( )(sp ′ ( ))

  , ′ ( )(sp ′ ( )).By definition, the open subsets of the form ∶= sp -1 (U ) form a basis for the topology of ∞ and D( ) is a presheaf on this basis. The associated sheaf on ∞ to this presheaf will also be denoted by D( ). Now, relation(6.34), and commutativity of the diagrams the first one in (6.32) tells us thatD † ′′ , ′′ ( ) sp ′′ ( ) = ′′ * D † ′′ , ′′ ( ) sp ′ ( ) D † ′ , ′ ( ) sp ′ ( ) , ′ ( ) sp ′ ( ) | Ψ ′′ , ′ ( ′′ , ′′ ) = ′ ,Using the commutativity of the preceding diagram we see thatΨ sp ′ ( -1 ( )) ′′ , ( ′′-1 )(sp ′ ( )) ( ′′ , ′′ ) = ′ , sp ′ ( ) Ψ sp ′ ( ) ( ′′ , ′′ ) = ′ , sp ′ ( ) ( ′ , ′ )

M′

  ′′ , ′′ sp ′′ ( ) = ′′ * M ′′ , ′′ sp ′ ( )sp ′ ( ) ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← → M ′ , ′ sp ′ ( )which allows us to define M ∞ as the sheaf on ∞ associated to the presheafM ∞ ( ) ∶= lim ← ← ← ← ← ← ← ← ← ← ← ′ → M ′ , ′ sp ′ ( ) .By definition, we have the following commutative diagramM ′′ , ′′ sp ′′ ( ) = ′′ * M ′′ , ′′ ( sp ′ ( ) M ′ , ′ sp ′ ( ) ′ , ′ ( ′ , ′ )∈F ∈ ∏ ( ′ , ′ )F M ′ , ′ sp ′ ( ) | ′′ , ′ ( ′′ , ′′ ) = ′ , factors through the projection sp ∶ ∞ → ∞ ′ .

  5.3 we have =. For any , ℎ ∈ and any admissible formal blow-up → , we haveℎ • = ℎ ∶ → ℎ .This gives a right -action on the family F and on the projective limit ∞ . Finally, if ′ ⪰ with morphism ∶ ′ → and ∈ , then ′ ⪰ , and we have the following commutative diagram (cf. corollary 6.5.4) every special vertex ∈ B the algebraic character induces an invertible sheaf L ( ) on , such that for every ∈ there exists an isomorphism∶ L ( ) → ( ) * L ( ),satisfying the cocycle condition ℎ ℎ = ℎ * ℎ • ℎ (ℎ, ∈ ).

′

  In particular, if ⊆ ∞ is an open subset of the ∶= pr -1 (U ) with U ⊆ an open subset. Then ′ -1 pr ′ ( ) = pr ′ -1 ( )and so the map ′ induces the morphismD † ′ , ′ ( ) pr ′ ( ) → D † ′ , ′ ( ) pr ′ -1 ( ) . (6.44) Moreover, if ( ′′ , ′′ ) ⪰ ( ′ , ′ ) ⪰ ( , ) in F , and as before ∶= pr -1 (U ) ⊆ ∞ with U ⊆ an open subset, then the commutative diagram D † ′′ , ′′ ( ) pr ′′ ( ) D † ′′ , ′′ ( ) pr ′′ -1 ( ) . D † ′ , ′ ( ) pr ′ ( ) D † ′ , ′ ( ) pr ′ -1 ( ) .

Finally, let us

  recall the faithful functor M ⇝ M ∞ from coadmissible 0 -equivariant arithmetic D( )-modules on F to 0 -equivariant D( )-modules on ∞ . If M comes

  • , 0 )modules de présentation finie (à caractère central ) et Coh(D † , ( ), 0 ). Toujours du côté géométrique, considérons l'ensemble F des couples ( , ) tels que est un éclatement admissible de et ≥ , où Cet ensemble est ordonné par la relation ( ′ , ′ ) ⪰ ( , ) si et seulement si ′ est un éclatement admissible de et ′ ≥ . Comme il est montré dans [36] le groupe 0 -agit sur F et cette action respecte le niveau de congruence. C'est-à-dire, pour tout couple ( , ) ∈ F il existe un couple ( . , . ) ∈ F muni d'un isomorphisme ∶ → . et tel que = .

	∶= min

I min{ ∈ ℕ | ∈ I } et I est un faisceau d'idéaux de O , tel que ≃ (I ).

  Bruhat et Tits associe un groupe réductif dont fibre générique est canoniquement isomorphe à × Spec( ) Spec( ). Soit le schéma de drapeaux de , et sa complétée formelle le long de sa fibre spéciale. Nous considérons l'ensemble F composé des triples ( , , ) tels que est un sommet spécial, → est un éclatement admissible de et ≥ . D'après (6.6.2) F est muni d'une relation d'ordre partiel. De plus, pour chaque sommet spécial ∈ B, chaque élément ∈ induit

	un isomorphisme	∶	→	, tel que si ( ) ♮ ∶ O	→ ( ) * O est le comorphisme et ∶	→	est un
	éclatement admissible le long de (I ), alors l'éclatement au long de (( ) -1 ( ) * I ) produit un schéma	muni d'un
	isomorphisme ∶	→		, tel que	=	et pour tout , ℎ ∈ nous avons ℎ •	= ℎ .

  is a homorphism of rings such that ( ) ⊂ and • | = • , for every ≥ 0.

	Example 1.1.1. [8, Section 3, Examples 3.2 (3)] Let be a discrete valuation ring of unequal characteristic (0, ) and
	uniformizing parameter . Let us write =

Definition 1.2.1. Let

  , 2 ∶ O → P ,( ) endowing P ,( ) of a left and a right structure of O -algebra, respectively. , be positive integers. The sheaf of differential operators of level and order less or equal to n on is defined by D ( ) , ∶= H O (P ,( ) , O ).

	subsection 1.4]. ⊂ × be an open subset such that is a closed subset defined by a quasi-coherent sheaf I ⊂ O . For every ∈ ℕ, the algebra P ,( ) ∶= P ( ) (I) is Now, let us consider the diagonal embedding Δ ∶ → × and let ⊂ quasi-coherent and its support is contained in . In particular, it is independent of the open subset [6, 2.1]. Moreover, by proposition 1.1.3 the projections 1 , 2 ∶ × ′ ,( ) → P ,( ) which induces the injection D ( ) , → D ( ) , ′ and → induce two morphisms 1 If ≤ ′ corollary 1.1.5 gives us a canonical surjection P the sheaf of differential operators of level is defined by

  let us give a local description of D ( ) , . Let be a smooth open affine subset of endowed with a family of local coordinates 1 , . . . , . Let 1 , . . . , be a basis of Ω ( ) and 1 , . . . , a basis of T ( ) (as usual, T and Ω denote the tangent and cotangent sheaf on , respectively). Let ∈ ℕ . Let us denote by | | = ∑

	[ ] = ∕ ! for every 1 ≤ ≤ . Then, using multi-index notation, we have [ ] =	∏	=1	and [ ] and < > = ! [ ] . In =1
	this case, the sheaf D ( ) , has the following description on			

  • ∶= O ⊗ U ( ). To see this, let us recall how the multiplicative structure of the sheaf U • is defined (cf. [49, subsection 5.1] or [44, section 2]).

	Remark 1.5.5. As in (1.4) we can define a morphism (called the operator-representation)
	Differentiating the right action of	on	we get a morphism of Lie algebras
				∶	→ 0 ( , T ).	(1.5)
	This implies that	acts on O by derivations and we can endow U • with the skew ring multiplication
			( ⊗ )( ⊗ ) = ( ) ⊗ +	⊗	(1.6)
	for ∈ , ∈ U ( ) and , ∈ O . With this product the sheaf U • becomes a sheaf of associative algebras [44,
	Section 2, page 11].		

  We say that is locally trivially for the Zariski topology if can be covered by opens in S. In what follows, we will always denote by S the basis for the Zariski topology on consisting of open affine subschemes that trivializes the torsor. Let ∶ ̃ → be a locally trivial -torsor and let M be a quasi-coherent O ̃ -module. Then R 1 * M = 0. Proof. We recall for the reader that R 1

	32	CHAPTER 2. INTEGRAL TWISTED ARITHMETIC DIFFERENTIAL OPERATORS
		× Spec( )	-1 ( )	
		pr 1	| -1 ( )	pr 1 = | -1 ( ) • .	(2.2)
	Remark 2.1.1. As is separated, the set S of open affine subschemes of that trivialises the torsor and such that
	O ( ) is a finitely generated -algebra, it is stable under intersections. Moreover, if ∈ S and	is an open affine
	subscheme of , then	∈ S.		
	Definition 2.1.2. Notation. Let ∶ ̃ → be a locally trivial -torsor. Lemma 2.1.3.	
				where acts on × Spec( ) by right translations
	on the second factor, and such that		

* M is the sheaf associated to the presheaf

[30, chapter III, prop. 8.1] 

  Now we can apply [45, Chaper III, Proposition 4.1 (b)]. As in definition 2.1.2 we denote by S the set of all affine open subsets of that trivialise the torsor . This forms a base for the Zariski topology of .

  10, A: III. 2]. Let M and N be filtered A-modules [10, A: III. 2.5]. The sheaf of A-modules M ⊗

A N carries a natural filtration called the tensor product filtration and it is defined as follows. Let ∈ ℕ fix. For every ⊂ we let (M( ) ⊗ A( ) N ( )) be the abelian subgroup of M( ) ⊗ A( ) N ( ) generated by elements of type ⊗ with ∈ M ( ), ∈ N ( ), and such that + ≤ . This process defines a presheaf on and we let (M ⊗ A N ) be its sheafification. The sheaf M ⊗ A N becomes therefore a filtered sheaf of A-modules

  The sheaf D ( ) , is a sheaf of O -rings with noetherian sections over all open affine subsets of . Proof. Let ⊆ be an affine open subset. Let us denote by D ∶= D ( ) , | , ∶= Γ( , D ) and ∶= Γ( , O ). Let = ∪ 1≤ ≤ be a finite cover of by open ∈ S. Since by propositions 2.3.6 and 2.5.8 the sheaf D is an inductive limit of coherent O -modules, we have

D ( ) is a sheaf of O -rings with noetherian sections over all open affine subsets of [6, corollary 2.2.5]. As is locally trivial, the family S forms a base for the Zariski topology of and therefore the preceding proposition implies the following meaningful result (cf. [37, Proposition 2.2.2 (iii)]).

Proposition 2.5.10.

  .1].

	Proposition 4.2.6. Let E be a coherent D †	, -module.

  Both results clearly imply the first and the second part of the lemma. The final part of the lemma is therefore a consequence of the first part and the acyclicity of the the functor

by part (i) and theorem 3.1.5. Proposition 4.2.7. Let E be a coherent D † , -module. Then E is generated by its global sections as D † , -module. Moreover, E has a resolution by finite free D † , -modules and 0 ( , E ) is a † , -module of finite presentation. Proof. 2 Theorem 3.1.5 gives us a coherent D( ) , ,ℚ -module E such that E ≃ D † , ⊗ D( ) , ,ℚ E . Moreover, E has a resolution by finite free D( ) , ,ℚ -modules ( proposition 3.4.1). 0 ( , •). Proof of theorem 4.2.1. All in all, we can follow the same arguments of [35, corollary 2.3.7]. We start by taking (D † , ) ⊕ → (D † , ) ⊕ → → 0 a finitely presented D † , -module. By localizing and applying the global sections functor, we obtain a commutative diagram

  .6) Here ♮ ∶ O → ( ) * O denotes the comorphism of . Let ⊆ 0 be an open subgroup. We say that an open ideal sheaf I ⊆ O is -stable if for all ∈ the comorphism ♮ maps I ⊆ O into ( ) * I ⊆ ( ) * O . In this case ♮ induces a morphism of sheaves of graded rings Let ⊆ 0 be an open subgroup and pr ∶ → and admissible blow-up defined by an open ideal subsheaf I ⊂ O . We say that is -equivariant if I is -stable.

		⨁	I →	*	⨁	I
		∈ℕ			∈ℕ
	on . This morphism of sheaves induces an automorphism of the blow-up = Proj ⊕ ∈ℕ I , let us say by abuse
	of notation, and the action of	on lifts to a right action of	on , in the sense that for every , ℎ ∈ 0 the relation
	(6.6) is verified and we have a commutative diagram		
			pr		pr	(6.7)
					.
	Definition 6.3.2.				

  1, proposition 5].

	Example 6.4.1. Let ∈ | ×	| and ∈	be a fixed point. Let us consider the closed ball of radius ,

  [START_REF] Schneider | adic Lie groups[END_REF], II, Section 7, remark7.2] The equivalence of atlases is an equivalence relation. Every equivalence class contains exactly one maximal atlas.We will say that an atlas A is of dimension d, if the charts of A have dimension . A locally -analytic manifold (M, A) (or simply ) is a Hausdorff topological space M equipped with a maximal atlas A. The manifold is called -dimensional if the atlasA is -dimensional. A function ∶ M → is called locally -analytic if • -1 ∈ O( ) for any chart ( , , ).If is an affinoid rigid analytic space over , and if is an -Banach space then we write C an ( , ) ∶= C an ( , ) ⊗, for the space of -valued rigid analytic functions on .In fact, if is a closed ball centered at zero and || • || denotes the norm of then

	Definition 6.4.9. Lemma 6.4.10. [57, 8.6] Any locally -analytic manifold is strictly paracompact.
	Let and	be Hausdorff locally convex topological -vector spaces. If	⊆ and ⊆	are lattices of and ,
	respectively, then ⊗	is a lattice of ⊗	. The family of all lattices ⊗	satisfies the conditions ( 1 ) and ( 2 )
	and defines a locally convex topology on the tensor project ⊗	, which is called the projective tensor topology. We
	will denote by ⊗	its Hausdorff completion [55, Chapter I, section 7, proposition 7.5].
	Definition 6.4.11. C an ( , ) =	∑	| ∈	and lim	|| || | | = 0. .
						| |→∞

Let

be a locally -analytic manifold and a locally convex -vector space. We say that a function ∶ → is locally analytic if for each point ∈ there is a chart ( , , ) containing , a Banach space equipped with a continuous -linear map ∶ → and a rigid analytic function ∈ C an ( , ) such that | = •

  [START_REF] Emerton | Locally Analytic Vectors in Representations of Locally -adic Analytic Groups[END_REF] Proposition 2.1.6] and[55, Page 107 and proposition 19.9] we have that O( ( ) • ) is a nuclear Fréchet algebra over (cf.[START_REF] Emerton | Locally analytic representation theory of -adic reductive groups: A summary of some recent developments[END_REF] Example 1.7]). By construction, ror any ′ ≥ the canonical map ( ′ ) → ( ) induces an open embedding of rigid analytic spaces ( ′ ) • → ( ) • . In particular, ( ) • is a rigid analytic subgroup of • for every ∈ ℤ >0 . The strong continuous dualD an ( ( ) • ) ∶= O( ( ) • ) ′is called the analytic distribution algebra of the rigid analytic group ( ) • . By [55, Proposition 16.5], if ( ) ′ (the strong dual of the Banach algebra ) is endowed with the Banach topology ([55, Remark 6.7]) we have a canonical topological isomorphism

	Remark 6.4.18. Definition 6.4.19.

  • ) ∈ℤ >0 of -affinoid rigid analytic open subgroups of •5 (remark 6.4.18). We recall for the reader that this notion was introduced in [25, Definition 2.1.17]. It states that if is a rigid analytic space over , then is a -affinoid if there exists an increasing sequence ( ) ∈ℤ >0 of affinoid open subsets of such that = ∪ ∈ℤ >0 is an admissible covering. By definition, for each ∈ ℤ >0 there are continuous injections

Parfois on utilisera son équivalent en anglais «twist».

Cette propriété clarifie pourquoi ils sont appelés «tordus».

Ici ∈ 0 et ∶ → est le morphisme induit par 0 -équivariance

Nous identifions ici 0 ( , D † , ( )) avec D an ( ( ) • ) et nous utilisons le lemme 6.3.3 pour donner un sens à cette condition.

Nous utilisons la relation (3) pour donner du sens à l'affirmation du théorème.

Ici 0 est un sous-goupe (maximal) compact de . Cette propriété de compacité permet de définir la structure d'algèbre de Fréchet-Stein faible remarquée avant.

This property clarifies why they are called "twisted".

We also denote by the character of the Lie algebra Lie( ) induced by(2.26) 

This technical condition is clarified in the proposition 6.1.2

Here 0 is a (maximal) compact subgroup of . This compactness property allows to define the structure of weak Fréchet-Stein algebra.

This remark exemplifies the local situation when = Spec( ) with a ℤ -algebra [35, Subsection 1.3.1].

For example if ⊂ and = ∕ is the flag variety.

The reasoning is as in[START_REF] Ardakov | Representations of compact -adic analytic groups[END_REF] Lemma 4.4].

Here we use the multi-index notation introduced in sections 1.2 and 1.4.

Λ + ∩ (-Λ + ) = ∅ and (ℕ + ℕ ) ∩ Λ ⊂ Λ + for any , ∈ Λ + .

We abuse of the notation and we denote again by the character of specified by(2.26).

This proof is exactly as in[36, proposition 

4.3.1].

This is exactly as in[36, theorem 4.2.8] 

This is exactly as in[34, theorem 5.1] 

By construction, if we tensor with the characters and ′ , then they induces the same character of , cf.(2.26).

This digression can be found before the proof of[START_REF] Huyghe | D † -affinity of formal models of flag varieties[END_REF] Proposition 3.3.7].

This is[START_REF] Huyghe | D † -affinity of formal models of flag varieties[END_REF] Claim 

3.3.10.].

In the notation of section 2.4 N is the closed subgroup of generated by all with ∈ -Λ + .

We have abused of the notation and we have called all this maps . The reasons is that by 2.5.2 all these maps induce the same character of .

This construction is in fact more general and is made for an arbitrary smooth -scheme.

We construct this morphism in(6.39). The arguments given there are independent and we won't introduce a circular argument.

This is as in[START_REF] Emerton | Locally Analytic Vectors in Representations of Locally -adic Analytic Groups[END_REF] Page 26].

As in[START_REF] Schneider | Continuous and locally analytic representation theory[END_REF] the subscript indicates the dual endowed with its strong topology.

This is a consequence of the remark preceding the definition 2.1.18 in[START_REF] Emerton | Locally Analytic Vectors in Representations of Locally -adic Analytic Groups[END_REF].

In fact, strictly -affinoid, meaning that the transition maps ( ) • → ( ) • +1 are relative compact in the sense of[START_REF] Bosch | Lectures on formal and rigid geometry[END_REF] Part I, chapter 

section 6.3, definition 6].

This conditions makes sense because the elements ∈ +1 acts trivially on the underlying topological space of , cf. Lemma 6.3.3.

In this reference this space is denoted by ⟨ ⟩ , cf. [37, subsection 3.2].

This is exactly as in[36, 5.3.1].

Here we use the fact the action of on B is on the right and therefore ( ℎ ) * • ( ℎ ) * = ( ℎ ) .

Here we use the fact that ( ) = .

Now, let be a finitely generated D( ) , ,ℚ -module. We define L ( ) , ( ) as the associated sheaf to the presheaf on defined by

It is clear that L ( ) , is a functor from the category of finitely generated D( ) , ,ℚ -modules to the category of coherent D( ) , ,ℚ -modules.

The arithmetic Beilinson-Bernstein theorem

We are finally ready to prove one of the main results of this work. To start with, we will enunciate the following proposition.

3 Proposition 3.4.1. Let E be a coherent D( ) , ,ℚ -module. Then E is generated by its global sections as D( ) , ,ℚ -module. Furthermore, every coherent D( ) , ,ℚ -module admits a resolution by finite free D( ) , ,ℚ -modules.

Proof. By theorem 3.1.5 we know that E is a quotient of a module D( ) , ,ℚ (-) for some ∈ ℤ and some ∈ ℕ. We can therefore assume that E = D( ) , ,ℚ (-) for some ∈ ℤ. Let ∶= 0 ( , D ( ) , (-)), a finitely generated ( ) ( )-module by proposition 2.6.1. Let us consider the linear map of D ( ) , -modules equal to the composite

where the first map is the surjection induced by the map Φ ( ) of theorem 3.2.2. Let F be the cokernel of the composite map. Since ( ) ( ) is noetherian, the source of this map is a coherent D ( ) , -module and so is F . Moreover, this module is oftorsion because D ( ) , (-) ⊗ is generated by its global sections [START_REF] Beilinson | Localisation de -modules[END_REF]. Now, let us take a linear surjection ( ) ( ) ⊕ →

. By tensoring with D ( ) , we obtain the exact sequence of coherent modules

Passing to -adic completions (which is exact in our situation [30, chapter II, proposition 9.1]) and inverting yields the linear surjection.

Theorem 3.4.2. Let us suppose that ∶ Dist( ) → is a character of Dist( ) such that + ∈ * is a dominant and regular character of . The functors L ( ) , and 0 ( , •) are quasi-inverse equivalence of categories between the abelian categories of finitely generated D( ) , ,ℚ -modules and coherent D( ) , ,ℚ -modules.

Proof. Let us take a finite generated D( ) , ,ℚ -module and E a coherent D( ) , ,ℚ -module. There exist canonical morphisms → 0 ( , L ( ) , ( )) and L ( ) , ( 0 ( , E )) → E . Moreover, given that is a finitely generated D( ) , ,ℚ -module, the third part of both propositions 2.6.1 and 3. 

6.

(i) There exists a canonical isomorphism ( ) ( T ) ≃ • (D ( , ) , ).

(ii) The canonical morphism Φ ( , ) , is surjective.

(iii) The sheaf D ( , ) , is a coherent A ( , ) -module.

Notation: From now on, we will fix again a character ∶ Dist( ) → of the distribution algebra Dist( ), such that + ∈ * is a dominant and regular character of the Lie algebra (cf. 2.5.3). By abuse of notation we will denote by ∶ ( ) ( ( )) → the character induced by specialising in the parameter = .

By construction, we know that D ( , ) , | = D is the usual sheaf of twisted differential operators on the flag variety . The preceding proposition and the same arguments given in proposition 2.6.4 give us the following result Proposition 5.2.7. Let us suppose that ∶ Dist( ) → is a character of the distribution algebra Dist( ), such that + ∈ * is a dominant and regular character of .

(i) Let us fix ∈ ℤ. For every positive integer ∈ ℤ >0 , the cohomology group ( , D ( , ) , ( )) has bounded -torsion.

(ii) For every coherent D ( , ) , -module E , the cohomology group ( , E ) has bounded -torsion for all > 0.

Passing to formal completions and cohomological properties

Let E be a coherent D( , ) , -module. By applying the same result as in proposition 3.1.2 we can find 1 (E ) ∈ ℤ such that, for all ≥ 1 (E ) there is ∈ ℤ and an epimorphism of D( , )

, -modules

Moreover, there exists 2 (E ) ∈ ℤ such that, for all ≥ 2 (E ) we have

( , E ( )) = 0 for all > 0.

The same inductive argument exhibited in the second part of proposition 2.6.4 and (5.15) give us (cf. corollary 3.1.3) Corollary 5.2.8. Let E be a coherent D( , ) , -module. There exists = (E ) ∈ ℕ such that for all > 0 the cohomology group ( , E ) is annihilated by .

Let us fix a coherent D( , ) , ,ℚ -module F . By definition, the sheaf D( , ) , ,ℚ satisfies [START_REF] Berthelot | D-modules arithmétiques I. Opérateurs différentiels de niveau fini[END_REF]Conditions 3.4.1] and therefore by [START_REF] Berthelot | D-modules arithmétiques I. Opérateurs différentiels de niveau fini[END_REF]Proposition 3.4.5] we can find a coherent D( , )

, -module E such that F = E ⊗ . This relation and (5.15) allow us to find (F ) ∈ ℤ such that, for every ≥ (F ) there exist ∈ ℕ and an epimorphism of D( , )

, ,ℚ -modules

Moreover, corollary 5.2.8 implies that

(5.17)

Calculation of global sections

Let ∶ ( ) → be the central character induced by ∈ * via base change and the classical Harish-Chandra isomorphism (section 3.2). As before, we denote by Ker( + ) ∶= ( ) ( ( )) ∩ Ker( + ), and we consider the central redaction ( ) ( ( )) ∶= ( ) ( ( ))∕ ( ) ( ( ))Ker( + ) , which is clearly an integral model of U ( ) ∶= U ( ) ⊗ ( ), + . Let ̂ ( ) ( ( )) be the -adic completion.

Let us consider Φ ( , ) ∶ ( ) ( ( )) → 0 ( , D ( , ) , ) defined by taking global sections in (5.14). This morphism induces, by construction, the following commutative diagram

As before, by the classical Beilinson-Bernstein theorem [START_REF] Beilinson | Localisation de -modules[END_REF] and the preceding commutative diagram, we have that Φ ( , ) factors through a morphism Φ ( , ) ∶ ( ) ( ( )) → 0 ( , D ( , ) , ) which becomes an isomorphism after tensoring with . Then lemma 3.2.1 implies that Φ ( , )

gives rise to an isomorphism

Proposition 3.1.1 together with the fact that is in particular a noetherian topological space gives us

, ,ℚ .

(5.18)

5.2.3

The arithmetic Beilinson-Bernstein theorem with congruence level 5.2.9. Let be a finitely generated ̂ ( ) ( ( )) ,ℚ ∶= ̂ ( ) ( ( )) ⊗ -module. As in section 4.1 we define L ( , ) , ( ) as the associated sheaf to the presheaf on defined by

, is a functor from the category of finitely generated ̂ ( ) ( ( )) ,ℚ -modules to the category of coherent D( , ) , ,ℚ -modules.

Following the same lines of reasoning in theorem 3. (ii) The functor L ( , )

, is an exact functor.

The sheaves D †

, Thorough this section we will suppose that ∶ Dist( ) → induces, under the correspondence (2.26), a dominant and regular character of . We recall for the reader that the induced character of ( ) ( ( )) will also be denoted by

On the other hand, taking the natural filtration of A ( ,0) we have

and therefore (A ( ,0) ) = A ( , ) . The above two calculations tell us that passing to the Rees rings and specialising in the map (5.28), we get a homomorphism of filtered sheaves of -algebras

(5.30)

Taking global sections we obtain the morphism Φ ( , ) ( ) of the proposition.

We recall that the right -action on (cf. remark 2.4.1) induces a canonical application

which is surjective by [START_REF] Huyghe | Un théorème de Beilinson-Bernstein pour les D-modules arithmétiques[END_REF]Subsection 1.6]. By using proposition 5.5.3 and the fact that ) is also a surjective morphism.

By using the preceding proposition we can apply the arguments in [39, Subsection 3.2.4] (exactly as we have done in sections 3.2 and 5.2.2) to obtain Proposition 5.5.12. Let ∈ Hom( , ) be an algebraic character such that + ∈ * is a dominant and regular character of . Then

Remark 5.5.13. The preceding proposition implies that the operators introduced in this section and the ones introduced in the preceding section have the same global sections if ∈ Hom( , ) is an algebraic character such that + ∈ * is a dominant and regular character of the Lie algebra * .

By replying the same lines of reasoning given in section 5.3 we can define the localization functors L † , ( ) and L ( , ) , ( ) in the setting of this section and we have the following central result. Theorem 5.5.14. Let ∈ Hom( , ) be an algebraic character which induces, via derivation, a dominant and regular character of the -Lie algebra .

(i) The functors L ( , ) ( ) and 0 ( , •) (res. L † , ( ) and 0 ( , •)) are quasi-inverse equivalence between the abelian categories of finitely generated ̂ ( ) ( ( )) ⊗ and coherent D( , ) ,ℚ ( )-modules (resp. finitely presented † ( ( )) -modules and coherent D † , ( )).

(ii) The functor L ( , ) ( ) (resp. L † , ( )) is an exact functor. Remark 5.5.15. Let ∈ Hom( , ) be an algebraic character and let ′ ∶ Dist( ) → be the character of the distribution algebra Dist( ), induced by under the correspondence (2.26). For every ∈ ℕ, we have built surjective canonical morphisms of filtered -algebras ((5.14) and (5.30))

As before, we can conclude that

Chapter 6

Twisted differential operators on formal model of flag varieties

Through out this chapter = ∕ will denote the smooth flag -scheme and ∈ Hom( , ) will always denote an algebraic character. As before, we will denote be L( ) the (algebraic) line bundle on induced by . In this chapter we will generalize the construction given in [START_REF] Huyghe | D † -affinity of formal models of flag varieties[END_REF] by introducing sheaves of twisted differential operators on an admissible blow-up of the smooth formal flag -scheme . The reader will figure out that some reasoning are inspired in the results of Huyghe-Patel-Strauch-Schmidt in [START_REF] Huyghe | D † -affinity of formal models of flag varieties[END_REF].

Differential operators on admissible blow-ups

We start with the following definition. Definition 6.1.1. Let I ⊆ O be a coherent ideal sheaf. We say that a blow-up pr ∶ → along the closed subset (I) is admissible if there is ∈ ℕ such that O ⊆ I.

Let us fix I ⊆ O an open ideal and pr ∶ → an admissible blow-up along (I). We point out to the reader that I is not uniquely determined by the space . In the sequel we will denote by |module. The idea is to find those congruence levels ∈ ℕ such that the preceding structure extends to a module structure on O over pr -1 D ( , ) . Let us denote by

The problem to find those congruence levels was studied in [START_REF] Huyghe | D † -affinity of formal models of flag varieties[END_REF] and [START_REF] Huyghe | Arithmetic structures for differential operators on formal schemes[END_REF]. In fact, we have the following condition [ Proof. We have an exact sequence of O -modules

Taking the tensor product with L( ) and L( ) ∨ on the left and on the right, respectively, and applying pr * we obtain the exact sequence (since Sym ( ) ( T ) is a locally free O -module of finite rank)

by commutativity of the symmetric algebra.

Let ⊆ be an affine open subset endowed with local coordinates 1 , ..., and such that L( )| = O for some ∈ L( )( ). Then, by lemma 5.5.8 we have the following local description for D ( , ) ( ) on = pr -1 ( )

By (i), the graded algebra • D ( , ) ( )( ) is isomorphic to Sym ( ) pr * T ( ) which is known to be noetherian [START_REF] Huyghe | D † -affinité de l'espace projectif[END_REF]Proposition 1.3.6]. Therefore, taking as a basis the set of affine open subsets of that are contained in some pr -1 ( ) we get (ii). We also remark that, as D Let us briefly study the problem of passing to the inductive limit when varies.

| and let us take ⊆ an affine open subset such that ⊆ pr -1 ( ). We have the commutative diagram

| , as sheaves of rings. In particular, if denotes the formal -adic completion (i) For all ≥ 0, the kernel and the cokernel of the canonical map O → * O ′ is killed by .

(ii) For all ≥ 0, for all ≥ 1, * O ′ = 0.

We have the following theorem whose proof follows word for word the reasoning given in [START_REF] Huyghe | Arithmetic structures for differential operators on formal schemes[END_REF]Theorem 2.3.4].

Theorem 6.2.2. Let ∶ ′ → be a morphism over of admissible blow-ups. Let ≥ max{ ′ , }.

), so * induces an exact functor between coherent modules over D † ′ , ( ) and D † , ( ), respectively.

(ii) The formation ! is an exact functor from the category of coherent D † , ( )-modules to the category of coherent D † ′ , ( )-modules.

(iii) The functors * and ! are quasi-inverse equivalences between the categories of coherent D † ′ , ( )-modules and coherent D † , ( )-modules.

We remark for the reader that this theorem has an equivalent version for the sheaves D( , ) ,ℚ ( ) and D( , ) ′ ,ℚ ( ).

Proof. The question being local on we can suppose that is affine. Let us first assume that E = D † ′ , ( ). Since * commutes with inductive limits, we can even restrain our attention on the sheaves D( , ) ,ℚ ( ). By [START_REF]Stacks Project[END_REF]Lemma 20.32.4]

the last isomorphism is [START_REF]Stacks Project[END_REF]Lemma 20.32.2]. By the projection formula, there is a canonical isomorphism * D ( ,

Moreover, for every ≥ 0 and for every ∈ ℕ, we have * D

which implies by the preceding lemma that the kernel and cokernel of ℎ are annihilated by , as well as the projective systems

Let C ∶= (C ) be the cone of ℎ, then we have the exact sequence of projective systems of sheaves

and for all ≥ 1

In particular the cohomology of C is annihilated by so by [START_REF] Huyghe | Arithmetic structures for differential operators on formal schemes[END_REF]Lemma 2.3.3] we obtain a quasi-isomorphism

By passing to the cohomology sheaves we get the second part of (i) for the sheaf D( , ) ′ ,ℚ ( ) and hence for the sheaf D † ′ , ( ). To handle with the second part let us consider the following assertion for every ≥ 1. Let : for any coherent D † ′ , ( )module E and for all ≥ , * E = 0. The assertion is true for = dim( ) + 1. Let us suppose that +1 is true and let us take a coherent D † ′ , ( )-module E . By proposition 6.1.7 there exists ∈ ℕ and a short exact sequence of coherent

which is 0 by induction hypothesis. This ends the proof of (i).

Let us show (ii) for the sheaves D † , ( ). The case for the sheaves D( , ) ,ℚ ( ) being equal. Given that ! D † , ( ) = D † ′ , ( ), and since the tensor product is right exact, we can conclude that ! preserves coherence. Now, we have a morphism

| (lemma 5.5.8), then by (6.2) and [37, Corollary 2.2.15] we can conclude that the previous map is in fact an isomorphism over . Finally, if F is a coherent D † ′ , ( )-module, then we have the map ! * F → F , sending ⊗  → . To see that this is an isomorphism we can use the preceding reasoning.

Let us recall that if ∈ Hom( , ) is an algebraic character such that + ∈ * is a dominant and regular character of , then by proposition 5.5.12 we have

The previous theorem implies Corollary 6.2.3. Let ∈ Hom( , ) be an algebraic character such that + ∈ * is a dominant and regular character of . In the situation of the preceding theorem we have

Theorem 6.2.4. Let pr∶ → be an admissible blow-up. Let us suppose that ∈ Hom( , ) is an algebraic character such that + ∈ * is a dominant and regular character of .

(i) For any coherent D † , ( )-module E and for all > 0 one has ( , E ) = 0.

(ii) The functor 0 ( , •) is an equivalence between the category of coherent D † , ( )-modules and the category of finitely presented † ( ( )) -modules.

The same statement holds for coherent modules over D( , )

,ℚ ( ). Proof. The first part of the theorem follows from the fact that 0 ( , •) = 0 ( , •) • * . Now we only have to apply the preceding theorem and theorem 5.5.14.

Dualizing the isomorphism (6.18) yields an isomorphism of topological -algebras

Let us show that this defines a weak Fréchet-Stein structure on ( 0 , ). Each of the algebras ( ( ) (ii) There are natural isomorphisms

(iii) The natural map ( ( -1)

Now, let ∈ Hom( , ) be an algebraic character such that + + * is a dominant and regular character of . Let us recall that we have an isomorphism

The preceding relation and the fact that the ring structure of D an ( ( ) • ) extends naturally to a ring structure on ( ( ) • , 0 ) allow us to consider the ring

From now on, we will denote C 0 the full subcategory of Mod( ( 0 , )) consisting of coadmissible modules, with respect to the preceding weak Fréchet-Stein structure on ( 0 , ). Definition 6.4.23. We define the category C 0 , of coadmissible ( 0 , )-modules with central character ∈ Hom( , ) by

We point out that the preceding definition is completely legal because the center ( ) of the universal enveloping algebra U ( ) lies in the center of ( 0 , ) [54, Proposition 3.7]. We also recall that the group ∶= ( )( ) is contained in D an ( ( ) • ) as a set of Dirac distributions. For each ∈ we will write for the image of the Dirac distribution supported at in 0 , D † , ( ) = D an ( ( ) (iii) 6 For all ∈ ∩ +1 the map

A morphism between two strongly -equivariant D † , ( )-modules (M , ( M ) ∈ ) and (N ,

In what follows we will use the notation ∶= , U ( ) ∈ M (U . -1 ), for U ⊆ an open subset, ∈ 0 and ∈ M (U ). This notation is inspired in property ( ) of the previous definition. In fact, if , ℎ ∈ 0 , then by ( ) we have ℎ( ) = (ℎ ) .

We denote the category of strongly -equivariant coherent D † , ( )-modules by Coh D † , ( ), 0 .

Theorem 6.4.25. Let ∈ Hom( , ) be an algebraic character such that + ∈ * is a dominant and regular character of . Let pr ∶ → be a 0 -equivariant admissible blow-up, and let ≥ . The functors L † , ( ) and 0 ( , •) induce quasi-inverse equivalences between the category of finitely presented ( ( ) • , 0 ) -modules and Coh D † , ( ), 0

Before starting the proof, we recall for the reader that the functor L † , ( ) has been defined in the proof of theorem 6.2.4. An explicitly expression is given in (6.21) below.

, ( ), 0 , then in particular M is a coherent D † , ( )-module. Since by theorem 6.2.4, corollary 6.2.3 and proposition 6.4.21 we have that 0 ( , M ) is a finitely presented D an ( ( ) • ) -module, then by (6.19) we can conclude that 0 ( , M ) is a finitely presented ( ( ) • , 0 ) -module.

On the other hand, let us suppose that is a finitely presented ( ( ) • , 0 ) -module. By (6.19) we can consider

For every ∈ 0 we want to define an isomorphism of sheaves of -vector spaces

satisfying the conditions ( ), ( ) and ( ) in the preceding definition. As we have remarked, the Dirac distributions induce an injective morphism from 0 to the group of units of ( 0 , ), since by (6.20) is in particular a 0 -module, we have an isomorphism

and is the isomorphism defined in (6.9).

One has an isomorphism * (M )

Indeed, ( ) * is exact and so choosing a finite presentation of as D an ( ( ) • ) -module reduces to the case = D an ( ( ) • ) which is trivially true. This implies that the preceding isomorphism extends to an isomorphism

which verifies the first condition. Now, by definition , U ( ) = , U ( ) , U ( ) and therefore , U ( ⊗ ) = , U ( ) , U ( ⊗ ), which gives (ii). Finally, given that the delta distributions for in the normal subgroup +1 of 0 are contained in D an ( ( ) • ) we have . ∶= ( ) = -1 , and therefore

and condition ( ) follows.

Remark 6.4.26. If ∈ Hom( , ) denotes the trivial character, then D † , ( ) = D † , is the sheaf of arithmetic differential operators introduced in [START_REF] Huyghe | D † -affinity of formal models of flag varieties[END_REF]. Moreover, by construction, if pr ∶ → denotes an -equivariant admissible blow-up, then D † , ( ) = D † , and for every ∈ the isomorphism equals the isomorphism ( ) defined in [36, (5.2.6)]. Now, let us take ∶ ′ → a morphism of 0 -equivariant admissible blow-ups of (whose lifted actions we denote by ′ and ), and let us suppose that ≥ and ′ ≥ max{ ′ , }. By (6.5) and theorem 6.2.2 we have an injective morphism of sheaves

Proof. By theorem 6.2.2 the functor * is an exact functor on coherent D † ′ , ′ -modules. Taking a finite presentation of reduces to the case = ( ( ′ ) • , 0 ) which is clear. Now, let be a finitely presented ( ( ′ ) • , 0 ) -module. Let 1 , ..., be generators for as a D an ( ( ′ ) • ) -module. We have a sequence of D an ( ( )

where denotes the restriction of the map to the free submodule of D an ( ( ) • ) ×Σ generated by the finitely many vectors ,ℎ , with 1 ≤ ≤ and ℎ ∈ Σ. Since im( ) = im( ) the sequence is exact by the first claim. Since it consists of finitely presented D an ( ( ) • ) -modules, we can apply the localisation functor L † , ( ) to it. As L † , ( )

the second claims gives us the exact sequence

where M ∶= L † ′ , ′ ( )( ). The cokernel of the first map in this sequence equals by definition (iii) 7 For all ∈ +1 the map ∶ M . , = M , → ( ) * M , = M , is equal to multiplication by ∈ 0 , D † , ( ) . (b) Suppose , ′ ∈ F are both 0 -equivariant, and assume further that ( ′ , ′ ) ⪰ ( , ), and that ∶ ′ → is the unique morphism over . We require the existence of a transition morphism ′ , ∶ * M ′ , ′ → M , , linear relative to the canonical morphism Ψ ∶ * D † ′ , ′ ( ) → D † , ( ). By using the commutative diagram in the preceding corollary, we required

Now

The morphism induced by ′ ,

is required to be an isomorphism of D † , ( )-modules. Additionally, the morphisms ′ , are required to satisfy the transitivity condition ′ , • * ( ′′ , ′ ) = ′′ , for ( ′′ , ′′ ) ⪰ ( ′ , ′ ) ⪰ ( , ) in F . Moreover, , = M , .

A morphism M → N between such modules consists of morphisms M , → N , of D † , ( )-modules, making commutative the following diagrams

We denote the resulting category by C 0 , . Let us build now the bridge to the category C 0 , of coadmissible ( 0 , ) -modules. Given such a module we have its associated admissible locally analytic 0 -representation ∶= ′ together with its subspace of ( ) • -analytic vectors ( ) • -an ⊆ . As we have remarked, this is stable under the 0 -action and its dual ∶= for any element ( , ) ∈ F . We will denote the resulting family by

.

On the other hand, let M be an arbitrary coadmissible 0 -equivariant arithmetic D( )-module on F . The restriction morphisms ′ , ∶ * M ′ , ′ → M , induce maps 0 ′ , M ′ , ′ → 0 , M , on global sections. We let

The projective limit is taken in the sense of abelian groups. We have the following theorem. Except for some technical details the proof follows word for word the reasoning given in [36, Theorem 5.2.23].

Theorem 6.5.6. Let us suppose that ∈ Hom( , ) is an algebraic character such that + ∈ * is a dominant and regular character of . The functors L 0 and Γ(•) induce quasi-inverse equivalences between the categories C 0 , (of coadmissible ( 0 , ) -modules) and C 0 , .

Proof. Let us take ∈ C 0 , and M ∈ C 0 , . As in [36, Proof of theorem 5.2.23] we will organise the proof in four steps.

Step 1. We have L 0 ( ) ∈ C 0 , and L 0 ( ) is functorial in .

Proof. Let us start by defining

satisfying ( ), ( ) and ( ) in the preceding definition. We recall for the reader that

Let ̃ ∶ → denote the map dual to the map ( ) • -an → ( ) • -an given by  → -1 . By definition ̃ ℎ • ̃ = ̃ ℎ . Let U ⊆ . be an open subset and ∈ D † . , ( )(U ), ∈ . We define

Given that ( ) * is exact we can choose a finite presentation of as a D an ( ( ) • ) -module to conclude that we have a canonical isomorphism * L † , ( )( )

This means that the above definition extends to a map

For the first condition we need to show that the following diagram is commutative

isomorphism of lemma 6.5.2 to the linear extension

. By lemma 6.4.22 this linear extension is an isomorphism and hence, so is ′ , . We conclude that L 0 ( ) ∈ C 0 , . Given a morphism → in C 0 , , we get, by definition, morphisms → for any ∈ ℤ >0 compatible with ̃ and ̃ ′ , . By functoriality of L † , ( ), they give rise to linear maps

which are compatible with the maps and ′ , .

Step 2. Γ(M ) is an object in C 0 , . Proof. For ∈ ℕ we choose ( , ) ∈ F and we put ∶= 0 ( , M ( , ) ). By (6.26), lemma 6.5.2 and the fact that M ∈ C 0 , we get linear isomorphisms

for ′ ≥ . This implies that the modules form a ( ( ) • , 0 ) ∈ℕ -sequence and the projective limit is a coadmissible module.

Step 3. Γ • L 0 ( ) ≃ .

Proof. If ∶= ′ , then we have by definition compatible isomorphisms

which imply that the coadmissible modules Γ • L 0 ( ) and have isomorphic ( ( ) • , 0 ) ∈ℕ -sequences.

Step 4. L 0 • Γ(M ) ≃ M .

Proof. Let ∶= Γ(M ) and ∶= ′ the corresponding admissible representation. Let N ∶= L 0 ( ). According to the lemma 6.4.22

produces a ( ( ) • , 0 ) ∈ℕ -sequence for the coadmissible module which is isomorphic to its constituting sequence 0 ( , M , ) ( , )∈F from step 2. Now let ( , ) ∈ F . We have the following isomorphisms

By -linearity the action maps M , and N , , constructed in step 1, are the same. Similarly if ( ′ , ′ ) ⪰ ( , ) are 0 -equivariant then the transition maps M ′ , and N ′ , coincide, by Ψ ′ , -linearity. Hence N ≃ M in C 0 , .

Coadmissible 0 -equivariant D( )-modules on the Zariski-Riemann space

Let us recall that ∞ denotes the projective limit of all formal models of (the rigid-analytic space associated by the GAGA functor to the flag variety 

and therefore we get a family ( ) ∈ 0 of isomorphisms

of sheaves of -vector spaces. By definition 6.5.5 we have that if , ℎ ∈ 0 then ℎ = ( ) * ℎ • . Furthermore, under the preceding identifications, if

In particular, M ∞ is an equivariant D( )-module on the topologial 0 -space ∞ . Let us see that the formation of M ∞ is functorial. Let ∶ M → N be a morphism in C 0 , . Then, in particular we have the following commutative diagram

Commutativity in the preceding diagram implies that

This shows that the preceding construction is functorial. The next proposition is the twisted analogue of [36, Proposition 5.2.29].

Proposition 6.5.9. Let ∈ Hom( , ) be an algebraic character which induces, via derivation, a dominant and regular character of * . The functor M ⇝ M ∞ from the category C 0 , to 0 -equivariant D( )-modules is a faithful functor.

Proof. We start the proof by remarking that sp ( ∞ ) = for every ∈ F . By remark 6.5.8, the global sections of

Now, let , ℎM → N be two morphisms in C 0 , such that ∞ = ℎ ∞ . By theorem 6.5.6, it suffices to verify Γ( ) = Γ(ℎ)

If (•) ∞ denotes the previous functor, the we will denote by L 0 ∞ ( ) the composition of the functor L 0 with (•) ∞ , i.e., {Coadmissible ( 0 , ) -modules}

Since L 0 is an equivalence of categories, the preceding proposition implies that L 0 ∞ ( ) is a faithful functor.

-equivariant modules

Thorough this section we will denote by = ( ) and by B the semi-simple Bruhat-Tits building of the -adic group ( [START_REF] Bruhat | Groupes réductifs sur un corps local I[END_REF] et [START_REF] Bruhat | Groupes réductifs sur un corps local II[END_REF]). This is a simplicial complex endowed with a natural right -action.

The purpose of this section is to extend the above results from 0 -equivariant objects to objects equivariants for the whole group .

We start by fixing some notation. 9 To each special vertex ∈ B the Bruhat-Tits theory associates a connected reductive group -scheme , whose generic fiber ( ) ∶= × Spec( ) Spec( ) is canonically isomorphic to . We denote by the smooth flag scheme of whose generic fiber ( ) is canonically isomorphic to the flag variety . We will distinguish the next constructions by adding the corresponding vertex to them. For instance, we will write for an (algebraic) admissible blow-up of the smooth model , ,0 for the group of points ( ) and , for the group of points ( )( ). We will use the same conventions if we deal with formal completions. This means that we will denote by the smooth formal flag -scheme obtained by formal completion of along its special fiber ( ) ∶= × Spec( ) Spec( ∕ ). Moreover, will always denote an admissible formal blow-up of . We point out to the reader that the blow-up morphism → will make part of the datum of , and that even if for another special vertex ′ ≠ the formal -scheme is also a blow-up of the smooth formal model ′ , we will only consider it as a blow-up of . We will denote by F ∶= F , the set of all admissible formal blow-ups → of and by F ∶ F the respective directed system of definition 6.5.1. By the preceding accord, the sets F and

where runs over all special vertices of B. We recall for the reader that ∞ is equal to the projective limit of all formal models of rig . Remark 6.6.1. The set F is partially ordered in the following way. We say that

Now, we identify the global sections Γ( , D † , ( )) with D an ( ( ) • ) and obtain the group homomorphism

Where , +1 = ( ) • ( ) denotes the group of -rational points (or -points of ( + 1)). We will follow the same lines of reasoning given in [START_REF] Huyghe | D † -affinity of formal models of flag varieties[END_REF]Proposition 5.3.2] to prove the following proposition. Proposition 6.6.3. Suppose ( ′ , ′ ) ⪰ ( , ) for pairs ( ′ , ′ ), ( , ) ∈ F with morphism ∶ ′ → . There exists a canonical morphism of sheaves of rings

which is -equivariant in the sense that for every ∈ the following diagram is commutative 

Here ′ , , ′ and denote the -scheme of finite type whose completions are ′ , , ′ and , respectively. The morphisms between these schemes will be denoted by the same letters, for instance pr ∶ → . We recall for the reader that the sheaf D ( , ′ ) ′ ( ) is filtered by locally free sheaves of finite rank 

because the direct image commutes with inductive limits on a noetherian space. By proposition 5.5.11 and the preceding relation we have a canonical map of filtered -algebras

in particular we get a morphism of sheaves of filtered -algebras (this is exactly as we have done in (2.23))

Applying Sym ( ) (•) • ′ pr ′ * (•) to the surjection (5.31) we obtain a surjection

which equals the associated graded morphism of (6.39) by proposition 6.1.5. Hence Φ ( , ′ ) ′ is surjective. On the other hand, if we apply pr * to the surjection

we obtain the surjection O ′ ⊗ ( ) ( ( )) → pr * D ( , ) ( ). Let us recall that ( ′ , ′ ) ⪰ ( , ) implies, in particular, that Lie( ′ ( ′ )) ⊆ Lie( ( )) and therefore ′ Lie( ′ ) ⊂ Lie( ). By (5.8), the preceding inclusion gives rise to an injective ring homomorphism ( ) ( ′ ( ′ )) → ( ) ( ( )). Let us see that the composition

Since by lemma 5.5.8 all those sheaves are -torsion free, this can be checked after tensoring with in which case we have that D ( , ′ ) ′ ⊗ ≃ pr * D ( , ) ⊗ is the (push-forward of the) sheaf of algebraic differential operators on the generic fiber of ′ (cf. discussion given at the beginning of section 6.1). We thus get the canonical morphism of sheaves (6.38). Passing to completions we get a canonical morphism D( , ′ ) ′ ( ) → pr * D( , ) ( ). Taking inductive limit over all and inverting gives a canonical morphism D † ′ , ′ ( ) → pr * D † , ( ). Now, let us consider the formal scheme ′ as a blow-up of via pr. Then becomes a morphism of formal schemes over and we consider pr * D † , ( ) as the sheaf of arithmetic differential operators with congruence level defined on ′ via pr * . Using the invariance theorem (theorem 6.2.2) we get * pr * D † , ( ) = D † , . Then applying * to the morphism D † ′ , ′ ( ) → pr * D † , ( ) gives the morphism

, of the statement. As in [START_REF] Huyghe | D † -affinity of formal models of flag varieties[END_REF]Proposition 5.3.8], making use of the maps Φ ( , ) , as above, the assertion about theequivariance is reduced to some obvious functorial properties of the rings ( ) ( ( )). (6.36)). If ′ = , and ( ′ , ′ ) ⪰ ( , ) in F , and if ′ , are ,0 -equivariant, then we require additionally that the morphism induced by ′ , (cf. (6.26))

is an isomorphism of D † , ( )-modules. As in theorem 6.5.6, the morphism

A morphism M → N between two coadmissible -equivariant arithmetic D( )-modules consists in a family of morphisms M , → N , of D † , ( )-modules, such that for any couple of special vertex , ′ ∈ B we have the following commutative diagrams

We denote the resulting category by C F , .

We recall for the reader that ( 0 , ) is a Fréchet-Stein algebra [52, Theorem 5.1]. Moreover, a ( , )-module is called coadmissible if it is coadmissible as a ( , )-module for every compact open subgroup ⊆ (cf. remark 6.4.7 ( )).

Given that for any two compact open subgroups

⊆ ′ ⊆ the algebra ( ′ , ) is finitely generated free and hence coadmissible as a ( , )-module, it follows from [52, Lemma 3.8] that the preceding condition needs to be tested only for a single compact open subgroup ⊆ . This motivates the following definition where we will consider the weak Freéchet-Stein structure of ( 0 , ) defined in (6.20). Definition 6.6.5. We say that is a coadmissble ( , )-module if is coadmissisble as a ( 0 , )-module.

Let us construct now the bridge to the category of coadmisible ( , ) -modules. Let be such a coadmissible ( , ) -module and let ∶= ′ . We fix ∈ B a special vertex. Let ( ) • -an 12 be the subspace of ( ) • -analytic vectors and let , be its continuous dual. For any ( , ) ∈ F we have a coherent D † , ( )-module

, and we can consider the family

.

On the other hand, given an object M ∈ C F , , we may consider the projective limit

with respect to the transition maps ′ , . Here the projective limit is taken in the sens of abelian groups and over the cofinal family of pairs ( , ) ∈ F with ,0 -equivariant , cf. remark 6.5.8. Theorem 6.6.6. Let us suppose that ∈ Hom( , ) is an algebraic character such that + ∈ * is a dominant and regular character of . (and therefore, a dominant and regular character on every special vertex of B). The functors L (•) and Γ(•) induce quasi-inverse equivalences between the category of coadmissible ( , ) -modules and C F , .

The proof follows the same lines of reasoning given in [START_REF] Huyghe | D † -affinity of formal models of flag varieties[END_REF]Theorem 5.3.12].

Proof. The proof is an extension of the the proof of theorem 6.5.6, taking into account the additional -action. Let be a coadmissible ( , ) -module and let M ∈ C F , . The proof of the theorem follows the following steps. Proof. Let ∈ , ∈ B a special vertex and ∶ → the respective isomorphism. For conditions ( ) for L ( ) we need the maps

satisfying the properties ( ), ( ) and ( ). Let ̃ ∶ , → , denote the dual map to 13

Exactly as we have done in theorem 6.5.6, the family ( ) satisfies the requirements ( ), ( ) and ( ). Let us verify now condition ( ). Given ( ′ , ′ ) ⪰ ( , ) in F , we have ′ ( ′ ) • ⊆ ( ) • in rig and we denote by ̃ ′ , ∶ ′ , ′ → , the map dual to the natural inclusion ( ) • -an ⊆ ′ ( ′ ) • -an . Let U ⊆ ′ be an open subset and ∈ * D † ′ , ′ ( )(U ), ∈ ′ , ′ . We then define 14

′ , ( ⊗ ) ∶= Ψ ′ , ( ) ⊗ ̃ ′ , ( )

) is the canonical morphism given by the preceding proposition. This definition extends to a map

which satisfies all the required conditions. The functoriality of L (•) can be verified exactly as we have done for the functor L 0 (•).

Proof. We already know that Γ(M ) is a coadmissible ( ,0 , ) -module for any (theorem 6.5.6). So it suffices to exhibit a compatible -action on Γ(M ). Let ∈ . The isomorphisms ∶ M , → ( ) * M , , which are compatibles with transitions maps, induce isomorphisms at the level of global sections (which we denote again by to soft the notation) ∶ 0 ( , , M , ) → 0 ( M , ). 13 Here we use ( ) • = -1 ( ) • in rig . 14 We avoid the subscript U in order to soft the notation. = .

, .

We obtain an isomorphism

According to ( ) in ( ) we have the sequence

which tells us that ℎ.( . ) = (ℎ ). , for ℎ, ∈ and ∈ Γ(M ). This gives a -action on Γ(M ) which, by construction, is compatible with its various ( ,0 , )-module structures.

Claim 3. Γ • L ( ) ≃ .

Proof. By theorem 6.5.6 we know that this holds as a coadmissible ( 0 , ) -module, so we need to identify the -action we obtain the identification

and therefore we get back the original action of on . Proof. We know that L (Γ(M )) , = M , as D † , ( )-modules for any ( , ) ∈ F , cf. theorem 6.5.6. It remains to verify that these isomorphisms are compatible with the maps and , M , ). The isomorphism L (Γ(M )) , ≃ M , are induced (locally) by ⊗  → .( | U ). Condition ( ) tells us that these morphisms interchange the maps , as desired. The compatibility with transitions maps ′ , for two models ( ′ , ′ ) ⪰ ( , ) in F is deduced in a entirely similar manner as we have done in theorem 6.5.6 and the fact that This ends the proof of the theorem.

As in the case of the group 0 , we now indicate how objects from C F , can be realized as honest -equivariant sheaves on the -space ∞ . The following discussion is an adaptation of the discussion given in [50, 5. from a coadmissible -equivariant D( )-module on F , then M ∞ is in fact -equivariant (as in (6.35), this can be proved by using the family of -linear isomorphisms ( ) ∈ . As in proposition 6.5.9, the preceding theorem gives us Theorem 6.6.8. Let us suppose that ∈ Hom( , ) is an algebraic character such that + ∈ * is a dominant and regular character of . The functor M ⇝ M ∞ from the category C F , to -equivariant D( )-modules on ∞ is a faithful functor.

We summarize the main results of this work with the following commutative diagrams of functors (cf. and the right-hand vertical arrow is the forgetful functor.