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Trente-cinq traits ont été rassemblés et regroupés en quatre classes (traits de cinétique de fermentation, traits d'histoire de vie, paramètres oenologiques de base et traits aromatiques). Les abondances de protéines ont été quantifiées pour chaque combinaison de souche × température (da Silva et al., 2015) 

Preface

Mathematics has long played a dominant role in our understanding of physics, chemistry and other physical sciences. In biology it has first been confined to some particular disciplines such as population genetics, but for some decades, this situation is changing at a fast pace. Mathematical methods are increasingly used for model construction and to deepen our knowledge of living systems.

The growing interest for mathematical biology may be partly explained by the advent of innovative profiling technologies that have led to high-throughput production of different types of biological data at different spatial and temporal scales. In this context, conceptual developments are essential to organize data and extract relevant information to analyze the interactions between the components of the systems and understand their behavior.

The novel technological tools for quantitative biology ranges from DNA sequencing for genomics to high-throughput phenotyping for ecology. Since the first genomic sequencing of the bacteria Haemophilus influenzae [START_REF] Fleischmann | Whole-genome random sequencing and assembly of Haemophilus influenzae Rd[END_REF] and that of the human genome [START_REF] Lander | Initial sequencing and analysis of the human genome[END_REF][START_REF] Venter | The sequence of the human genome[END_REF], whole genome sequencing is now commonplace. This constitutes a major milestone for understanding organism biology, as whole genome provides a catalogue of all genes and associated molecules that are required for creating a living being, and carries information on the functioning of the organism under different developmental stages and conditions.

Other techniques such as spectroscopy, electro-chemistry and crystallography have enabled researchers to monitor complex cellular processes by using absorption and emission spectral methods, flow cytometric analysis, etc. The data generated by the so-called -omics technologies, such as transcriptomics, proteomics and metabolomics, shift cell analysis toward its interpretation. Indeed, transcriptomics sheds light on which genes are active in a given cell at a given time, proteomics reveals which proteins are present in a cell and in what amount, and metabolomics gives access to the metabolic processes at work in a cell under different conditions. All these components do not work in isolation but are connected at various levels in networks of varying complexity [START_REF] Fischer | Mathematical Modeling of Complex Biological Systems[END_REF].

Accurate high-throughput phenotyping strategies have been developed to highlight the quantitative phenotypic variation across cells, organs and tissues, developmental stages, years, environments and species. This wealth of data challenges systems biologists, quantitative geneticists, medical researchers and breeders not only to understand the genetic bases of complex trait variation, but also to use that knowledge to efficiently prevent diseases or derive crop varieties.

In this context, there is a crucial need for model construction to analyze and interpret the biological systems under investigation. Mathematics, hand-in-hand with the development of new statistical and computational tools, plays a key role in unifying concepts that allow researchers to get new insights about the biology of living systems and the regulation of their underlying complex mechanisms. The models can also help researchers to design further experiments for addressing new biological questions.

Due to experimental constraints, structures and parameters of biological systems can often not be assessed directly. Instead, they have to be inferred from limited, noise-corrupted data. Chance Preface plays a role in the variability of the biological phenomena, through experimental noise, chance during the reproduction process, stochasticity in the sub-cellular reactions, etc. These sources of stochasticity are not independent from each other, structuring the datasets and leading to similarities. The genotypes are linked by common evolutionary history, the genes are not independent within the genome, the traits are, in a large extent, pleiotropically connected, etc. The integration of dependence structures in models has both methodological and algorithmic costs (obtaining estimators in a realistic computation time is challenging).

In addition, multi-scale approaches are necessary for modeling the biological systems, which intrinsically and irreducibly integrate processes of various natures at various levels, and can be described within various frameworks [START_REF] Lesne | Multiscale Analysis of Biological Systems[END_REF]. Biological scales include atomic, molecular, molecular complexes, sub-cellular, cellular, multi-cellular systems, tissue, organ, multi-organ systems, organism, population [START_REF] Prokop | Systems Biology in Biotech & Pharma: A Changing Paradigm[END_REF]. To achieve a holistic understanding of biological systems a wide range of models have been proposed [START_REF] Hasenauer | Data-driven modelling of biological multi-scale processes[END_REF]. They are obtained by coupling models at different scales, and accordingly, the most naive approach is to perform parameter estimation and model selection at each scale. Within a single quantity, the relevant parameters can encapsulate the net result of various processes, such as a structural feature, an interaction or the effect of an evolutionary pressure at a higher level.

Such data-driven models can be enriched with available knowledge about the biological processes, by integrating both experimental data from other scales and biological knowledge from the literature. Consider for example the work of [START_REF] Renaud | Conversed phenotypic variation patterns, evolution along lines of least resistance, and departure due to selection in fossil rodents[END_REF] in which they coupled knowledge about teeth morphology of fossil rodents with the well-known model of response to selection (Lande, 1979), in order to study the evolutionary pressures constraining their development. They showed that the patterns of intra-specific phenotypic variation were conserved over long evolutionary time-scales and that departures were caused by climate-related selective pressure.

Finally, biological systems are essentially characterized by an entanglement of bottom-up and top-down influences following from their evolutionary history. The overall behavior of a system cannot be intuitively understood in terms of the individual components or interactions, and the qualitative nature of their behavior can depend on quantitative differences in their structure. Moreover, models must be specific to the investigated issue. They are designed to focus on certain aspects of the object of study, the other aspects being not considered. For instance, the familiar ball-and-stick model of chemical structure focuses on a molecule's chemical bonds. So it does not capture the resulting polarity in the molecule's atoms. Thus the models should ignore degrees of freedom irrelevant to the issue under study and should focus on the characteristic scales. Similarly, a multi-scale model should not intend to keep track of all details at all scales but only of the relevant features, whatever their scales, essential to address a particular biological question.

In this context, the focus of my Ph. D. work is to address the general question of the genotypephenotype relationship, with particular attention to the study of hybrid vigor (or heterosis), relying on a big dataset obtained during a previous ANR project HeterosYeast: exploitation of the heterosis phenomenon for wine yeast improvement. In this project, a set of heterogeneous data, corresponding to different levels of cellular organization (quantitative proteomics, fermentation and life-history traits), was collected on a diallel-cross design constructed by pairwise crossing a series of strains belonging to two yeast species, Saccharomyces cerevisiae and S. uvarum, under two different growing conditions.

The approach involved a combination of mathematical, statistical and computational methods merged with biological knowledge of the system under study. Multi-scale and model testing approaches have been employed for the prediction and understanding of the variation of the integrated phenotypes from protein abundance data and metabolic (flux) traits.

This work is organized as follows:

Chapter 1 provides an overview of the genetic bases of phenotypic variation from a quantitative and a population genetics perspective. The chapter is build gradually, from the concept of phenotypic variation to its driving evolutionary forces. I finish with the description of particular experimental designs and of statistical methods for the inference of genetic components.

Chapter 2 covers the experimental material and the analyses already performed on the Het-erosYeast dataset. For the sake of completeness, a brief overview of the phylogeny and domestication of S. cerevisiae and S. uvarum is first presented. Secondly, the chapter provides an overview of the diversity in life-history traits and fermentation in yeast, highlighting the well studied trade-off between life-history traits. Finally it presents the HeterosYeast dataset, the previously achieved results and the aims of my Ph. D. work.

Chapter 3 presents the first part of my thesis work consisting in the identification of the genetic and molecular bases of phenotypic variation through the analysis of the diallel data. Among others the most striking finding has been the decoupling of the variances of heterosis and inbreeding effects (published in Genetics, Petrizzelli et al. (2019)).

Chapter 4 provides an introduction to constraint-based modeling (CBM) and to the methods I have used to investigate the molecular bases of phenotypic variation in the HeterosYeast dataset. The chapter is organized as follows: first I present the formulation of CBM modeling in a mathematical framework, secondly I review methods for integration of proteomic data into CBM models, then I compare classical methods used to infer metabolic models with the one I use in chapter 5.

Chapter 5 presents the second part of my thesis work consisting in finding predictors of fermentation and life-history traits through the inference of metabolic fluxes. Statistical approaches have allowed to integrate the three different levels of cellular organization to gain information on the metabolic and molecular predictors of the integrated traits. This work, Data integration uncovers the metabolic bases of phenotypic variation in yeast, will soon be submitted to Molecular Systems Biology.

I conclude with Chapter 6 were I draw my final conclusions and propose some future prospects.

Chapter 1

The genetic bases of phenotypic variation

Phenotypic diversity

Phenotypic diversity, i.e. the fact that different individuals of a given species exhibit distinct phenotypes, is very common in natural populations. Understanding how phenotypic variation emerges and how it is maintained is of fundamental significance in the study of evolution and in its implications in plant/animal breeding and conservational biology [START_REF] Bibliography Andersson | Genetic dissection of phenotypic diversity in farm animals[END_REF][START_REF] Forsman | Effects of genotypic and phenotypic variation on establishment are important for conservation, invasion, and infection biology[END_REF]. In this context quantitative genetics plays a key role for understanding the main factors affecting quantitative traits. [START_REF] Fisher | Xv.-the correlation between relatives on the supposition of mendelian inheritance[END_REF] was the first to propose a mathematical formalism to tackle this question. Uniting Mendelian and quantitative genetics, he assumed that trait value is influenced by a large number of Mendelian genes and by a random environmental variation [START_REF] Fisher | Xv.-the correlation between relatives on the supposition of mendelian inheritance[END_REF]. In particular, assuming that the overall population was panmictic, he proposed a probabilistic model for the decomposition of trait value taking into account the transmission mode of genetic information from one generation to another. At a reference generation g = 0, he parametrized the phenotypic value, P i , of a trait observed for an individual, i, with the additive (A i ) contribution of a large number of genetic loci, allowing for dominance (D i ) within each locus and epistasis (I i ) between the loci. He further considered Mendelian segregation, i.e. the meiotic effect (W i ) resulting from the random choice of a gene in a locus out of two during meiosis, and an environmental ( i ) effect:

g = 0, P i = A i + D i + I i + W i + i (1.1)
The genetic and non-genetic effects were modeled as continuous random variables. Therefore, he could express offspring phenotypic value, between two randomly chosen individuals, i and j, from the reference generation as

g = 1, P o = 1 2 A i + 1 2 A j + D o + I o + W o + o (1.2)
Indeed, each offspring inherits one gamete (half of the genetic information) from its parents ( 1 2 A i + 1 2 A j ). Dominance effects are not predictable, in a panmictic population, since it is not possible to infer the allele received from one parent knowing the one inherited from the other. Similarly, epistatic and meiotic effects are specific to each individual, and in absence of environmental correlations, the offspring-parent environmental effects are independent.

Quantitative traits, also known as complex or polygenic traits, usually show a continuous range of variation as they are influenced by both environmental and genetic factors. Quantitative genetics is the study of the inheritance of quantitative traits, such as height or biomass, as opposed to discretely identifiable phenotypes, such as eye-color.

Quantitative traits and Quantitative genetics

This simple model allows explaining the phenotypic resemblance between relatives, since they share common genes inherited from their kin, and the diversity observed on the whole population as a direct consequence of the genetic variation and of environmental factors, which provides the basis for evolution. [START_REF] Fisher | Xv.-the correlation between relatives on the supposition of mendelian inheritance[END_REF] proposed to characterize quantitative traits by their frequency distribution in a population. His model decomposed the mean phenotypic value of a trait in a population into a sum of random variables. The relative importance of the genetic and non-genetic effects can therefore be accessed by the relative ratio of the variances associated to each component and the phenotypic variance observed in the population. The model can be rearranged by grouping the additive and non-additive genetic effects, and the genetic and non-genetic effects. In a given environnement, we have:

Components of phenotypic variation

P = A + NA + = G + (1.3)
where NA = D + I + W is the mean value of non-additive genetic effects, G = A + NA is the the mean value of genetic effects and is the micro-environmental effect experienced by each individual, due to measurement errors, local effects and/or epigenetic factors. Therefore, the phenotypic variance can be expressed as

Var(P ) = Var(G) + Var( ) + 2Cov(G, ) (1.4)
It is immediate to remark that in a population composed only of individuals with the same genotype (e.g. clones, F 1 offspring between two pure lines) phenotypic variation is still possible. Without loss of generality, we can assume that the expected value of is zero for all genotypes, thus eq. 1.4 reads

Var(P ) = Var(G) + Var( ) (1.5)
The component of phenotypic variation explained by genetic effects is the only component carrying the genetic information inherited from one generation to the other. The relative ratio between the genetic and phenotypic variance is called broad-sense heritability:

H 2 = Var(G) Var(P ) (1.6)
Since genetic effects are independent by definition, Var(G) = Var(A) + Var(NA). Additive genetic effects are the only effects carrying transmissible information on a phenotypic trait. Therefore, the portion of the total phenotypic variance of a quantitative trait that is transmissible from generation to generation is

h 2 = Var(A) Var(P ) (1.7)
generally referred to as narrow sense heritability.

Genotype by environment interactions

The ability of one genotype to express multiple phenotypes as a response to different environments is defined as phenotypic plasticity (fig. 1.1). In the general case, where the population is composed of genetically different individuals, genotypes may be more or less sensitive to the so-called macroenvironmental effects, noted E. Macro-environmental effects are those that are common to a given location at a given time to all genotypes. The variance of E may vary with the genotype [START_REF] Lerner | Genetic homeostasis[END_REF][START_REF] Crow | The Genetic Basis of Selection[END_REF], so the model becomes:

P = G + E + G × E + (1.8)
where G × E is the genotype × environment interaction effect. Phenotypic plasticity can therefore increase phenotypic variation in populations under divergent selection or create convergence of phenotypes within genetically diverse populations exposed to the same selective pressure. In this context, the extent to which phenotypic plasticity is a heritable character and acts upon adaptive evolution is an open issue [START_REF] Chevin | Evolution of environmental cues for phenotypic plasticity[END_REF]. influenced by environmental changes (E is null). B, the lines are slanted and parallel: environmental variation produces the same phenotypic variation on the two genotypes (G × E is null, but not E). C, the lines intersect: the environment influences phenotypic variation in a genotype-dependent manner (E and G × E are not null).

Environment

Parent-offspring regression and the breeder's equation

Narrow sense heritability, h 2 , is of particular interest mostly because it represents a quantitative measure of the quality of prediction of offspring's phenotypes from parental phenotypes, of resemblance between relatives and of the rate of short-term response to natural or artificial selection from standing variation, without knowing the details of the underlying genes.

Consider for instance the parent-offspring regression: P o = µ + βP p , where µ is the mean phenotypic value of the offspring and β the regression slope:

β = Cov(P p , P o ) Var(P p ) (1.9)
It is possible to obtain an estimate of the covariance between the parental and offspring phenotypic value using Fisher's model. Assuming a panmictic population of large effective size, with no selection, no genotype-environment interaction and independent environmental effects, and keeping in mind that genetic effects are independent by definition, the covariance between parents and offspring is:

Cov(P p , P o ) = Cov(A p + D p + I p + W p + E p , 1 2 A p + 1 2 A m + D o + I o + W o + E o ) = 1 2 Var(A)
(1.10) where A m is the additive effect of the second parent. Therefore

β = Var(A) 2Var(P ) = 1 2 h 2 (1.11)
Parent-offspring regression can be used to describe the phenotypic value of offspring from one generation to the other. Let X t denote the phenotypic value of an individual at generation t. In a panmictic population with no overlapping generations, the phenotypic value of an offspring at Chapter 1. The genetic bases of phenotypic variation generation t + 1, X t+1 , can be expressed as:

X t+1 = µ t + h 2 ( X m t + X p t 2 -µ t ) + (1.12)
The mean phenotypic value of offspring, conditionally to the value of its parents, is therefore

E(X t+1 |X m t , X p t ) = µ t + h 2 ( X m t + X p t 2 -µ t ) (1.13)
Integrating over the phenotypic values of parents contributing to the next generation allows to estimate the mean phenotypic value at the next generation. When all parents do not contribute to the next generation, e.g. due to selection, we obtain:

µ t+1 = µ t + h 2 (µ s,t -µ t ) ⇔ µ t+1 -µ t = h 2 (µ s,t -µ t ) (1.14)
where µ s,t is the mean phenotypic value of parents contributing to the next generation (fig. 1.2). Eq. 1.14 is generally referred to as Breeder's equation. In its most common formulation, eq. 1.14 writes

R = h 2 S (1.15)
where S is the selection differential, the average phenotypic value of selected parents expressed as a deviation from the mean phenotypic value in the population, and R the response to selection, the average expected phenotypic value of offspring at the next generation expressed as a deviation from the previous generation, fig. 1.2.

Figure 1.2:

Response to truncation selection [START_REF] Gillespie | Population Genetics: A Concise Guide[END_REF]. Above: Phenotypic distribution of the selected trait in the parent population; α is the selection threshold and S the selection differential. Below: Phenotypic distribution of offspring. R is the difference of mean phenotype from one generation to the other.

Breeder's equation is an accurate description of the response to selection in a single generation. It is widely used in evolutionary biology to study the adaptation of natural populations. Its elegance resides in the fact that the complexity of multi-locus inheritance are aggregated into h 2 . However, it is not necessarily an accurate predictor of the progress of selection over several successive generations because each generation of selection changes h 2 in ways that are impossible to predict [START_REF] Gillespie | Population Genetics: A Concise Guide[END_REF]. Indeed, heritability changes with any modification in either additive, non-additive and/or environmental variances. When there is very little variation of additive effects with respect to the total phenotypic variance, h 2 ∼ 0, and all phenotypic variation is attributed to chance. There can be extensive selection and yet no evolution.

Selection gradients

It is the amount of additive variance that determines the rate of evolutionary change. Directly comparing variances on multiple traits is difficult because they are not dimensionless and therefore vary with the scale of the trait or organism being measured. Yet, a different formulation of equation 1.15, and its multivariate version, have been proposed by R. Lande [START_REF] Lande | Natural selection and random genetic drift in phenotypic evolution[END_REF](Lande, , 1979)), coupling mean fitness value in a population to the mean phenotypic value of a trait. Let w t (x) and f t (x) be the fitness and the probability density function, respectively, associated to phenotype x at generation t. We can assume that w t (x) is a continuous function, integrable on the domain of variation of x, D x . In particular, the population mean fitness is:

wt (x) = Dx w t (x)f t (x)dx (1.16)
Changes in mean fitness due to selection can be related to changes in the mean value of fitness related traits. Assume a normal distribution for individual phenotypes

X t ∼ N (µ t , Var t (P )) (1.17)
Therefore, since w t (x) does not depends on the mean phenotypic value µ t ,

d wt dµ t = w t (x) df t (x) dµ t dx (1.18) Given that df t (x t ) dµ t = f t (x t ) x t -µ t Var t (P ) (1.19)
and

µ s,t = x t w(x)f t (x)dx w(x)f t (x)dx (1.20)
in a panmictic population for which there are not effects of sex on x, equation 1.18, after arrangements, can be written as

µ s,t -µ t = Var t (P ) dln( wt ) dµ t (1.21)
Substituting, eq. 1.21 in eq. 1.14, a novel formulation of the response to selection is obtained:

µ t+1 -µ t = Var(A) dln( wt ) dµ t (1.22)
This equation shows that the response to selection depends on the additive genetic variance of the trait of interest and on the selection gradient dln( wt) dµt . Changes of fitness-related mean trait value at each generation are a result of selection driving fitness value towards a local maximum.

Extension to the multivariate case in which multiple are the traits correlated to fitness is straight-forward, just by assuming normality for these traits. Letting

∆ - → µ =      µ 1 t+1 -µ 1 t µ 2 t+1 -µ 2 t . . . µ n t+1 -µ n t      G =      Var(A 1 ) Cov(A 1 , A 2 ) . . . Cov(A 1 , A n ) Cov(A 1 , A 2 ) Var(A 2 ) . . . Cov(A 2 , A n ) . . . . . . . . . . . . Cov(A 1 , A n ) . . . . . . Var(A n )      - → β =        dln( wt) dµ 1 t dln( wt) dµ 2 t . . . dln( wt) dµ n t       
(1.23) The equation can be written as

∆ - → µ = G - → β (1.24)
where ∆ -→ µ is the vector of responses of multiple traits, G the variance-covariance matrix of additive genetic effects and -→ β the vector of selection gradients. Thus, selection on one trait can result in selection on another trait due to correlations between them. Similarly, if there is a correlation between additive genetic effects associated to different traits, a correlation between selection responses can be observed. The β coefficients determine the adaptive landscape, while the G matrix determines the direction of the phenotypic evolution following the axes of greater genetic variation.

The response to selection, R, depends on the additive genetic variance, Var(A). But how do we understand Var(A) in terms of allele frequencies and their additive effects on the phenotype?

Question

One locus case

The relative portion of genetic variation explained by additive effects depend on the amount of genetic interactions, on population mating system and on alleles frequencies in the population. To show this last point, consider a panmictic population (in Hardy-Weinberg equilibrium) of genotypes with a single biallelic diploid locus. Alleles A 1 and A 2 are assumed to have frequency p and q, respectively, and genotypes A 1 A 1 , A 1 A 2 and A 2 A 2 to take the genotypic values a, d, -a, i.e. d = a corresponds to complete dominance of allele A 1 over allele A 2 , and d = 0 to additivity (tab. 1.1).

Genotype

A 1 A 1 A 1 A 2 A 2 A 2 Value G A 1 A 1 = a G A 1 A 2 = d G A 2 A 2 = -a Frequency p 2 2pq q 2 Table 1.1:
Example. Genotypic values and genotypic frequencies for a single biallelic diploid locus.

The mean genotypic value of the population is thus

µ = a(p 2 -q 2 ) + 2pqd = (p -q)a + 2pqd (1.25)
The allele substitution effect, i.e. the change in mean genotype value when an allele A 2 is substituted by allele

A 1 , is α = a + d(q -p) (1.26)
The additive effects for allele A 1 and A 2 are

α A 1 = q (a + (q -p)d) (1.27) 1.1. Phenotypic diversity 13 α A 2 = -p (a + (q -p)d) (1.28)
and the dominance effects

δ A 1 A 1 = -2q 2 d (1.29) δ A 1 A 2 = 2pqd (1.30) δ A 2 A 2 = -2p 2 d (1.31)
The calculation of the additive and dominance components of genetic variance are straightforward: It is important to realize that the dominance effect contributes to the additive genetic variance. Suppose for instance that a = -a = 0, then Var(A) = 2pqd 2 (q -p) 2 . Furthermore, when there is complete dominance (d = a or d = -a), the ratio between the additive and dominance variances depends only on allele frequencies: Var(A)/Var(D) = 2q/p.

Var(A) = 2pq (a + (q -p)d) 2 (1.32) Var(D) = 4p 2 q 2 d 2 (1.
In addition, additive genetic variance is higher for low frequencies of the dominant allele (fig. 1.3). When the frequency of the dominant allele goes to zero, the genetic variance vanishes, dropping faster than when it goes to 1. The additive variance is always the major component of the total genetic variation, and when no dominance effect is present it is maximum for intermediate frequencies (p = q = 1/2).

In this simple example, the dominance effect contributes to the additive genetic variance. Introducing additional genetic interaction effects will contribute similarly to the additive variance component. Therefore, additive effects must be thought as the average genetic effect transmitted from generation to generation, rather than the mean additive value of alleles participating to the considered trait value.

Finally, we have seen that the genetic variance depends both on allele frequencies and genotypic values. If allele frequencies and genotypic values are constant across generations, there will be no phenotypic evolution of the population. If there is no genetic variation, the phenotypic variation of the population can only be due to environmental and/or epigenetic factors. As long as these factors do not vary, phenotypic evolution is not possible, even under selection.

How phenotypic diversity evolves and is maintained depends on the underlying mechanism responsible for changes in allele frequencies while preserving genetic diversity. As pointed out above, for a species to evolve there must be heritable phenotypic variation on which selection can act.

How does selection act on a fraction of segregating alleles within a population? How does this not lead to an extremely high variance and an intolerably large number of genetic deaths?

Question

Genetic Polymorphism

Genetic variation is the result of processes generating variability (mutation, migration, segregation) and of demographic processes (selection and genetic drift). Mutations are changes in allele sequences through deletion, insertion, or, more commonly, substitutions of single DNA base pairs. They furnish an almost infinite field of possible gene variations. Migration (or gene flow) is the movement of genes into or out of a population. The allele frequencies of both the population they leave and the population they enter will change in relation to the rate of migration. Genetic drift is a random change in allele frequencies that is specially noticeable in small populations, in populations experiencing a bottleneck (the population suddenly gets much smaller), or in case of founder effect (a few individuals leave their population and found a new population). Segregation is the apportionment of alleles among the genotypes of the progeny resulting from the meiosis-fertilization process.

Natural and artificial selection act on genotypes by changing their probability to participate to the next generation. Artificial selection is due to the action of plant/animal breeders in choosing the parents of the next generation. Natural selection is due to differential mortality or fertility in the population, i.e. to selection of individuals showing higher fitness. Their common feature is that the parents of the next generation are a selected subgroup of the whole population.

More specifically, fitness is defined as the average contribution to the gene pool of the next generation that is made by an average individual of specified genotype. Given that the fitness of a given genotype is manifested through its phenotype, which is affected by the environment it experiences during its development, its fitness can be different in different selective environments.

Natural selection acts on a population as long as genetic variation exists and this standing variation is associated with fitness-related traits [START_REF] Darwin | On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life[END_REF]. The problem amounts to understanding relationship between genetic variation and fitness. For the sake of simplicity, assume a diploid population whose fitness depends on one biallelic locus (tab. 1.2).

Genotype

A 1 A 1 A 1 A 2 A 2 A 2 Fitness w A 1 A 1 w A 1 A 2 w A 2 A 2 Frequency p 2 2pq q 2
Table 1.2: Fitness and frequencies of genotypes in a mono-locus biallelic model.

At each generation, if selection acts, allele frequencies will change as [START_REF] Hartl | Principles of Population Genetics, Third Edition[END_REF])

∆p = pq w [p(w A 1 A 1 -w A 1 A 2 ) + q(w A 1 A 2 -w A 2 A 2 )] = pq 2 w d w dp = pq 2 dln( w) dp (1.34)
where dln( w)/dp is the selection gradient, pq/2 reflects the additive genetic variation of the allele frequency p in the population and w denotes the average fitness

w = w A 1 A 1 p 2 + 2w A 1 A 2 pq + w A 2 A 2 q 2 (1.35)
It is easy to see that natural selection will increase the frequency of allele A 1 as long as

p > w A 2 A 2 -w A 1 A 2 w A 1 A 1 -2w A 1 A 2 + w A 2 A 2 if w A 1 A 1 -2w A 1 A 2 + w A 2 A 2 > 0 (1.36) p < w A 2 A 2 -w A 1 A 2 w A 1 A 1 -2w A 1 A 2 + w A 2 A 2 if w A 1 A 1 -2w A 1 A 2 + w A 2 A 2 < 0 (1.37)
Assuming heterozygote inferiority, ineq. 1.36 applies and natural selection will drive allele frequencies towards an extreme value (0 or 1), depending on the initial allele frequencies in the population, thus eliminating genetic variation (fig. (Fiévet et al., 2018). In the dominance case, selection leads to the fixation of the advantageous alleles (fig. 1.4-C).

In general, it is assumed that, in a stable environment, the additive genetic variance of a panmictic population of finite size will decline over time, due to genetic drift. Under directional selection, additive genetic variance is assumed to decline due to both drift and fixation of favorables alleles, while the speed of fixation is modulated by generation of gametic disequilibrium [START_REF] Bulmer | The Effect of Selection on Genetic Variability[END_REF].

How genetic variation is maintained depends on the interplay between these different mechanisms. [START_REF] Haldane | Polymorphism due to selection of varying direction[END_REF] have argued that, in natural populations, genetic polymorphism is the result of conflicting evolutionary pressures, identifying five main conflicts:

The conflict between selection and mutation, or mutation-selection balance. Since most mutations that affect fitness are deleterious, selection will balance the effects of mutations, and genetic polymorphisms may be maintained in the population. For instance, consider the mono-locus biallelic model in tab. 1.2, where the A 2 allele is produced by mutation of the A 1 allele, at a rate µ, with relative fitnesses w A 1 A 1 = 1, w A 1 A 2 = 1 -hs and w A 2 A 2 = 1 -s, s being the selection coefficient against the A 2 A 2 genotype and h the degree of dominance of allele A 1 . An equilibrium can be attained and allele frequencies will be p = 1 -µ s under complete dominance, and p = under partial dominance assuming hs µ. Similarly, if we consider haploid organisms, a genetic polymorphism can be maintained in the population if µ < s [START_REF] Haldane | The Effect of Variation on Fitness[END_REF].

The conflict between selection and segregation. The most common example is when the heterozygote has a higher fitness than either of the two homozygotes (fig. 1

.4-B). For instance, if w

A 1 A 1 = 1 -k, w A 1 A 2 = 1 and w A 2 A 2 = 1 -s,
k and s being the selection coefficients against A 1 A 1 and A 2 A 2 , respectively, an equilibrium can be reached when p = 0 or p = 1 or p = s s+k . The first two equilibria are unstable, while the latter is stable and corresponds to the case in which the average fitness is maximized in the population.

The conflict between fitness and frequency. Selected polymorphisms can be maintained through negative frequency-dependent selection, i.e. the fitness of a genotype decreases as it becomes more frequent. As an example, we can consider that the fitness of a genotype decreases proportionally to its frequency at a constant c, thus, w

A 1 A 1 = 1 -cp 2 , w A 1 A 2 = 1 -2cpq and w A 2 A 2 = 1 -cq 2 .
An equilibrium can be reached when p = 0, p = 1 or p = 1/2. As before, the first two equilibria are unstable, while the latter is stable and corresponds to the case in which both alleles are present in equal proportion. As an example, consider the conflict between sexes under optimal mating rate with costly male sexual harassment. In this case, polymorphism can emerge through negative frequency-dependent selection on fecundity [START_REF] Iserbyt | Negative frequency-dependent selection or alternative reproductive tactics: maintenance of female polymorphism in natural populations[END_REF].

The conflict between selection and migration. The relative fitness of genotypes may vary according to different environments. If each genotype is favored in a different subset of environments, within subdivided populations, local adaptation would have tendency to fix different alleles in different geographic location, thus allowing the maintenance of genetic diversity between demes at the level of the whole population. Inter-deme migration or colonization is therefore the main mechanism to maintain genetic variation, importing new genetic material within a deme.

The conflict between selection in the diploid and the haploid phases or between the two sexes. When the fitness associated with the diploid and the haploid phases differs (or similarly, the fitness between genotypes differs between sexes), the relative magnitude of the fitness of the two states can attain an equilibrium. Interestingly, with an appropriate choice of fitnesses, it is possible to have more than one stable polymorphism [START_REF] Otto | Evolution of haploid selection in predominantly diploid organisms[END_REF].

From a practical point of view, genetic polymorphism is the occurrence of different alleles at a locus within a population at a rate of at least 1%.

Genetic polymorphism

Genetic load

All mechanisms that generate selected polymorphism are necessarily accompanied by the apparition of genetic load, defined as the proportion by which the average fitness in the population is decreased in comparison with what it would be if the factor under consideration were absent [START_REF] Crow | Genetic Load[END_REF]

, i.e. L (f ) = 1 - w w max (1.38)
where f denotes the factor of interest and w max the maximum fitness.

The reduction in mean fitness of a population that is caused by deleterious mutations is called mutation load; by the recreation of Hardy-Weinberg genotype frequencies in sexual organisms, segregation load (for instance, in random mating populations the homozygous state will be regenerated by segregation); by unfavorable alleles increasing in frequency due to drift in small populations, drift load; and by immigrants adapted to a different environment, migration load.

The apparition of genetic load is naturally associated to heterosis (or hybrid vigor). At a population level, heterosis is defined as the increase in mean fitness of offspring with respect to the parental population. Indeed, as long as genetic load exists, the population has not reached its maximum fitness and there is place for heterosis. [START_REF] Haldane | The Effect of Variation on Fitness[END_REF] suggested that this loss of fitness is the price paid by a population for its capacity for further evolution. Indeed, the apparition of genetic load has important evolutionary consequences for instance on the fate of small populations, in the evolution of sex and in the evolution of mating systems. All mechanisms able to reduce the genetic load will be favored by natural selection.

Segregation load

Segregation load is the reduction on mean fitness of a population that is caused by the recreation of Hardy-Weinberg genotype frequencies in sexual organisms. Reconsidering the mono-locus biallelic case presented above (tab.1.2) with w

A 1 A 1 = 1, w A 1 A 2 = 1 -hs and w A 2 A 2 = 1 -s.
For h < 0, the common example of heterozygote superiority applies for any value of s, and at the selectionsegregation equilibrium the genetic load would be null (fig. 1.5, blue dotted line). However, for h > 0 heterozygosity inferiority applies, and genetic load at equilibrium can reach high values. In general, genetic load is minimum at the selection-segregation equilibrium. A 2 is let to vary: h = 0.5 no dominance (black), h = 1 dominance of the recessive allele (red), h = -1 heterozygote superiority (blue), h = 1.5 heterozygote inferiority (green). The figure shows that genetic load is minimum when allele frequencies reach their equilibrium value in the population.

Mutational load and drift

Mutational load is the reduction in mean fitness of a population that is caused by deleterious mutations. In the simple mono-locus biallelic case presented above, assuming that the maximum relative fitness of a genotype without mutations is equal to 1 ( wno mut = 1), the average fitness of the population will be wmut = 1 -2pqsh -q 2 s under mutation-selection balance. Thus, the mutational load is

L (m) = 2pqsh + q 2 s (1.39)
Under partial dominance, assuming that selection is stronger than the mutation rate (hs µ), p ∼ 1, q 2 ∼ 0 and L (m) 2µ; under complete dominance, L (m) µ, i.e. selection removes two copies of mutation at once. Therefore, at a first-order approximation, the mutational load depends only on the mutation rate at the locus. This implicates that the harmful effect of an increase in the mutation rate is the same with respect to the case in which the produced mutations are mildly or severely deleterious. Their effect indeed counterbalance because a more detrimental mutation comes at lower rate equilibrium frequency.

A generalization to the multi-locus case can be made assuming no epistatic interaction for fitness between deleterious mutations (no genetic interaction between loci carrying mutations affecting fitness). The mean fitness in the population can be expressed through a multiplicative fitness function as the product of the mean fitness effects at each locus: 1.40) where the product runs over the L 0 loci, and U = L l=1 2µ denotes the genome wide mutation rate of alleles affecting fitness. Note that assuming mutations follow a Poisson distribution of parameter U , this term correspond to the probability of no mutation. Therefore, the mutational load is

w = L l=1 (1 -2µ) e -L l=1 2µ = e -U ( 
L (m) = 1 -e -U (1.41)
When the equilibrium between selection and mutation is reached, even in an excess of mutation over selection, a population will not degenerate. If however the population is subject to drift and reproduce asexually, selection, even strong, will not be able to keep the population at equilibrium [START_REF] Muller | The relation of recombination to mutational advance[END_REF].

To show this point, consider an initial finite haploid (or diploid without dominance) population reproducing asexually and released at the peak of the multiplicative fitness landscape, i.e. individuals do not carry any mutation and thus have maximum fitness, w = 1 and w max = 1. The population reproduces randomly, and at each generation it undergoes selection, mutation and drift. Under the action of mutation some individuals will soon acquire deleterious mutant alleles. Let's consider classes of individuals having the same number of mutations (under a multiplicative fitness landscape it does not matter the position of the mutant allele in the genome, but only its number). The fittest class, holding zero mutation, will participate to the next generation only if at least one individual (i) does not experience mutation and (ii) it is sampled by random drift. If it is not sampled, the zero mutation class disappears, and the fittest class becomes the class holding one mutation. Indeed, due to the unidirectional nature of mutations, fittest genotypes can never be restored, inducing a decline of the mean fitness in the population, and therefor an increase of the mutational load, in a ratchet-like manner (fig. 1.6). A fundamental difference could be obtained with a sexual reproductive regime. [START_REF] Haag | Genetic Load in Sexual and Asexual Diploids: Segregation, Dominance and Genetic Drift[END_REF], using single-locus models, have explored the combined effects of segregation, selection, and drift in finite populations of sexual and asexual individuals. For partly recessive deleterious alleles, they found that segregation affected changes in allele frequencies resulting in a greater mutation load in asexuals than in sexuals. This arises primarily because, in the absence of segregation, heterozygotes may reach high frequencies due to drift, which is not possible with segregation, as mating between heterozygotes constantly produces new homozygotes which are efficiently selected against. Further, they proposed an extension of their model to the multi-locus case under a multiplicative fitness landscape, that could substantially reduce genetic load for sexuals. Indeed, genetic drift is accompanied by the apparition of random associations between loci (positive and negative). Positive associations are rapidly fixed by selection while negative are broken by recombination [START_REF] Hill | The effect of linkage on limits to artificial selection[END_REF], therefore generating a selective advantage for sexual reproduction.

The ratchet-like phenomenon is therefore more pronounced with asexual than sexual reproduction, as pointed out by [START_REF] Muller | The relation of recombination to mutational advance[END_REF]. A process termed Muller's Ratchet describes the phenomenon of almost irreversible (other than exact reverse mutations) accumulation of deleterious mutations in asexual populations.

The evolution of sex

Stochastic effects occurring in any finite population tend to generate negative associations between loci [START_REF] Hill | The effect of linkage on limits to artificial selection[END_REF]. Breaking these negative associations increases the variance in fitness among offspring and the efficiency of natural selection, that is the role of recombination which therefore increases the rate of adaptation, as is the case in Muller's Ratchet.

On the other hand, sexual reproduction costs in terms of energy required to find a mate, increased risk of predation and disease transmission, investment into males (the two-fold cost of sex) or time (sexually reproducing organisms tends to have fewer offspring and takes much longer to grow).

A first concern is about the modification of a reproductive system. In nature obligate sexuals persist, yet organisms able to alternate between reproductive modes exist, e.g. yeasts, lettuceleaf aphids or rotifers. To investigate selection for sex in finite populations, numerous theoretical models have been proposed. [START_REF] Roze | Selection for sex in finite populations[END_REF] addressed this question by modeling sex rate as a quantitative trait on a finite population consisting of haploid individuals. The relative investment into sexual and asexual reproduction was assumed to depend on one locus and, at each generation, the probability of an individual to participate to the next generation depended on its fitness and on its role in the production of offspring (i.e. reproducing asexually or on being the female or male for sexual reproduction). Individual fitness was assumed to be multiplicative and depended on the number of accumulated mutations and on the selection coefficient against the deleterious mutations. This study showed that alleles increasing sex rate escape more easily from low-fitness genetic backgrounds than alleles coding for lower rates of sex. Furthermore, at mutation-selection balance, where selection is strong enough to outweigh a substantial cost of sex, interactions between selected loci had a stronger effect that the sum of individual effects of each locus. This means that selection on a sex-related allele resulted from its effect in pairwise associations with other loci. Overall deleterious mutations tend to favor small rates of sex in the presence of strong direct costs. However, population structure should enhance indirect selection due to stochastic effects and allow higher rates of sex to be maintained. [START_REF] Vanhoenacker | Stabilizing selection, mutational bias, and the evolution of sex*[END_REF] proposed a model to account for epistatic interactions for the study of sex evolution of a haploid population under an isotropic model for stabilizing selection. The fitness of an individual depended on a variable number of phenotypic traits. Sex was modeled as a phenotypic trait, and trait values depended on the additive contribution of a large number of loci, and of a random environmental effect. No covariance between traits was assumed and epistasis was defined as a deviation from additivity of mutational effects on the (log) fitness genotype. They showed that positive rates of sex are maintained in the population at equilibrium. Selection of sex depended on the dimensionality of the pleiotropic fitness landscape and, for weak selection and not too low rates of sex, on negative linkage disequilibrium caused by epistasis. They further highlighted that selection gradients exist for sex, since sex breaks the associations between alleles at different loci generated by selection, increasing the genetic variance among offspring, and allowed for a better response to directional selection.

The evolution of mating systems

Another major point to account for is, in sexually reproducing populations, the appearance of inbreeding depression and the reduction in fitness due to inbreeding. Yet among sexual species, many reproduce with both selfing and out-crossing and others have developed mechanisms to avoid selfing, such as self-incompatibility, dioecy, heterostyly or dichogamy.

To investigate this issue, Lande and Schemske (1985) have proposed a multi-locus model for the study of the evolution of selfing rate. Inbreeding depression was allowed to change with the mean of selfing rate in a population incorporating recessive mutations and partially dominant lethal and sub-lethal alleles at many loci. Selfing rate was supposed to depend on one locus, while fitness depended on an infinite number of loci, with small effect. Letting w0 and w1 denote the mean fitnesses of out-crossed and selfed progeny in the population. Inbreeding depression, the reduction in mean fitness in the population caused by inbreeding, can be expressed as:

δ = 1 - w1 w0 (1.42)
Assuming that all genotypes produce the same amount of pollen, and that any seeds which are not derived from out-crossing are self-fertilized, the expected fitness of genotypes with selfing rate r is 1.43) where the first two terms are components of fitness from selfed and out-crossed seeds, and the last term is that from pollen fertilizing ovules of other plants ( r denoting the mean rate of selfing in the population).

w = r w1 + 1 2 (1 -r) w0 + 1 2 (1 -r) w0 ( 
The condition for the evolution of the selfing rate, r, is therefore

dw dr > 0 ⇔ δ < 1 2 (1.44)
i.e. there is selection for increased selfing if the inbreeding depression is less than 50%, i.e. the two-fold cost of sex. Under different hypotheses on the causality between mating systems different threshold values for inbreeding depression are found.

In addition, Lande and Schemske (1985) showed that at the selection-mutation balance, under complete dominance, the mean fitness value of progeny was equal to the mean mutational fitness for any value of the selfing rate. Under random mating, selfing rate is assumed to be small (r ∼ 0) and the mean fitness of the out-crossed and of the selfed progeny is

w0 = i w0 (i) = i (1 -µ),
(1.45)

w1 = i w1 (i) = i (1 - √ µs 2 ) (1.46)
where i is the locus index, µ and s are the mutation rate and the selection coefficient at a locus, respectively, and where it is assumed that selection acts independently on each locus and so fitness effects are multiplicative across loci. Therefore, inbreeding depression is

δ 0 = 1 -i (1 - √ µs 2 ) i (1 -µ) 1 -e -i (1-e -( √ µs 2 -µ) ) (1.47)
On the other hand, when the rate of selfing is appreciably high, r 4 µ s ,

w0 = 1 (1.48)
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w1 = i (1 - µ r ) (1.49) δ r = 1 - i (1 - µ r ) 1 -e -i µ r
(1.50)

These formulas confirm that a small amount of selfing greatly reduces the equilibrium frequency of recessive lethals through purging of recessive lethals ( δ r < δ 0 already for r = 1%) (fig. 1.7). Qualitatively, a similar result is obtained for partially dominant lethal mutations, where the inbreeding depression rapidly decreases as selfing rate increases. In comparison the equilibrium inbreeding depression in a random mating population greatly decreases, allowing for selection of selfing. In addition, when there is variation in the degree of dominance of the deleterious mutants, an excess of inbreeding depression can be produced. Lande and Schemske (1985), the mutation rate is set at µ = 2 • 10 -6 , the number of loci at n = 5000 and mutations are assumed to be lethal (s = 1) and fully recessive. In populations allowed to self reproduce, inbreeding depression is a decreasing function of the selfing rate (blue dotted line, δ r ) and rapidly falls to zero (for r = 10%, δ r = 0.095). Under random mating, inbreeding depression does not depend on the selfing rate (red line, δ 0 ). Out-crossing is selected for δ r > 0.5, while selfing for δ r < 0.5 (horizontal dotted line). Grey rectangles feature parameters values that cannot be encountered.

Overall, if the selfing rate is under polygenic control and its evolution proceeds by small steps, there is a bimodal distribution of the selfing rates towards their extreme values: either close to 0 for outcrossing or close to 1 for highly selfed populations. Nevertheless, under random mating, sporadic events are likely to drive out-crossing species to self-fertilization, rather than vice-versa. selfing rate (in abscissa) in equilibrium populations with synergistic epistasis. For low selfing rates, mean fitness increases and inbreeding depression decreases with the selfing rate. For high selfing rates, mean fitness may decrease. U = 1, h = 0.2, α = 0.01, β = 0.02 (Charlesworth et al., 1991).

On the other hand, this model assumes a high mutation rate (instead of ∼ 10 -8 ) and a multiplicative landscape for non interacting multi-locus effects. Interactions between loci may lead to higher order of inbreeding depression with comparable mean fitness levels. Charlesworth et al. (1991) proposed a model of synergistic fitness interactions to explain the maintenance of high inbreeding depression and out-crossing under the mutational load model. The proposed model allowed for homozygote and heterozygote mutants, and mutations at multiple loci were supposed to lower the fitness value relative to the case of independence between loci. The fitness value of an individual was therefore modeled as: .51) where n = hz + y is the effective number of mutations, expressed as the sum of the number of mutations in the heterozygous state, z, weighted by the dominance effect of heterozygous loci, h, and the number of mutations in the homozygous state, y; α is a measure of the strength of selection and β is a measure of the interaction between loci. They showed that the mean number of mutations per individual at equilibrium decreased with increased selfing, as for the multiplicative model, and with increased synergism. This induces a higher mean fitness under the synergistic model than under the multiplicative model. Synergism reduced the fall-off of inbreeding depression and increased genetic load with increased selfing. In addition, there can be evolutionarily stable states at values of selfing rate slightly below complete selfing (fig. 1.8). Interestingly, figure 1.8 shows that with epistasis, the equilibrium inbreeding depression can be significant even in predominantly selfing populations. Recall that δ > 0 means that the average fitness of outcross progenies is higher than the average fitness of selfed progenies. Because the level of heterozygosity of outcross progenies is expected to be higher than the one of selfed progenies, this corresponds to heterosis at the population level.

w n = exp[-(αn + βn 2 2 )] (1 
As stated by Charlesworth et al. (1991), all this together helps to explain the persistence of high heterosis in predominantly self-fertilizing populations, without the need for invoking a general heterozygote advantage, for which there is little evidence.

Population structure, inbreeding depression and heterosis

Both the spatial distribution of organisms and their mode of reproduction have important effects on the change in allele frequencies within populations. In the previous section, we have discussed on the direct advantages associated to selfing, and the evolution of the mating systems in terms of the cost of out-crossing and inbreeding-depression. Here, we discuss the effects of population structure under mutation-selection balance on inbreeding depression and heterosis.

Individuals from the same species are generally found in different geographical areas, forming subgroups from the same population. The spatial distribution of these subgroups and the way they interact define a metapopulation. Metapopulations are described by their patch size and by the degree of isolation between its subunits, i.e. they may or may not interact as individual members move from one population to another (fig. 1.9).

Real metapopulations belong to the entire set of possible metapopulations whose extremes can be described as Patchy, Classical, Mainland-island or non-equilibrium metapopulations [START_REF] Harrison | Empirical evidence for metapopulation dynamics[END_REF]. Patchy populations are featured by high dispersal between habitat patches so much that individuals from different patches mix freely, forming effectively a single population. Classical metapopulations have habitat patches with similar probabilities of extinction and the persistence of these metapopulations is dependent on the recolonization of locally extinct patches. Mainland-island metapopulations have a local population that is extinction resistant (i.e. mainland) and other local populations that have much higher extinction probabilities (i.e. island), but are maintained by dispersal from Mainlands.

Population subdivision naturally gives the opportunity to define different forms of inbreeding depression and heterosis. Roze and Rousset (2004) investigated the combined effect of population structure and rate of selfing on the efficiency of selection against recurrent deleterious mutations, assuming an island model of population structure. They defined within-deme inbreeding depression as the fitness reduction of selfed progeny relative to out-crossed progeny from the same deme, between-deme inbreeding depression as the reduction in fitness of selfed progeny relative to progeny obtained by out-crossing randomly over the whole meta-population and heterosis as the difference between the fitness of the out-crossed progeny within deme and the out-crossed progeny over the whole meta-population.

They showed that selfing reduced within-deme inbreeding depression, between-deme inbreeding depression and heterosis. Between-deme inbreeding depression decreased with the degree of subdivision of the meta-population while within-deme inbreeding depression and heterosis increased. Hence, from a population genetics point of view, heterosis is expected even in predominantly selfing species in subdivided population. Thus it is important to note that heterosis and inbreeding depression are not mirror images of each other. Heterosis arises when deleterious, recessive mutations fixed within parental populations are in the heterozygous state by out-crossing, while inbreeding depression is usually attributed to the expression of recessive deleterious mutations when they become homozygous in inbred individuals.

• Sex and mating systems can be viewed as quantitative traits that evolve to minimize the genetic load. • Epistasis and recombination may explain the persistence of inbreeding depression at equilibrium for intermediate levels of sex/out-crossing rates.

• At a metapopulation level, inbreeding depression and heterosis do not evolve in the same manner.

Remarks

Figure 1.9: Metapopulation structure based on [START_REF] Stith | Classification and conservation of metapopulations: a case study of the Florida scrub jay, Metapopulations and wildlife conservation[END_REF] and [START_REF] Harrison | Empirical evidence for metapopulation dynamics[END_REF].

Circles in light blue represent occupied habitat patches, white circles represent vacant (unoccupied) habitat patches. Green (black) closed lines represent the boundaries of local metapopulations (populations, respectively) and arrows represent dispersal. Metapopulation structure is defined by means of patch size and patch isolation. Patch size and degree of isolation of the metapopulation are a measure of its probability of extintion.

Inbreeding depression and heterosis, the breeder's perspective

The relative parts of additive, inbreeding and heterosis effects on phenotypic variation are crucial for understanding the evolutionary potential of a population. Numerous have been the experimental designs and the statistical methods proposed to address this question [START_REF] Cochran | Experimental designs, 2nd ed, Experimental designs[END_REF] In a breeding perspective, Shull (1908) was the first to record experiments on heterosis and inbreeding depression, observing that when plants were self-pollinated, offspring performance declines in terms of growth and grain yield. However, when unrelated inbred lines were crossed the growth and yield performances of the hybrid progeny usually exceeded that of the best parent. His pioneer work in maize predicted that given the large amounts of heterosis within this species, the best way to maximize yield was to create inbreds from existing population varieties in order to seek for the best hybrid combinations. To this end, Sprague and Tatum (1942) developed quantitative genetic techniques to assess the relative importance of additive and non additive effects in trials of single-cross hybrids. In particular, they proposed to move from the analysis of population varieties to hybrid varieties, by estimating parameters on single lines that could be used for the selection of parents and the development of new lines.

They designated General Combining Ability (GCA) the average performance of a line in hybrid combinations, and Specific Combining Ability (SCA) the difference between the mean phenotypic value of the progeny and the average performance of the parental lines.

Subsequently, diallel designs were popularized as the most comprehensive designs for estimating genetic effects, predicting hybrid values and generating breeding populations to be used as basis for selection and development of elite varieties (e.g. Hallauer and Filho (1988)).

The simplest and most popular decomposition of genetic effects in diallel designs is that of Griffing (1956), in which the mean phenotypic value of a cross between lines i and j is modeled as:

y ij = µ + GCA i + GCA j + SCA ij (1.52)
where µ is the mean phenotypic value of the population.

Diallel designs are mating schemes used by plant/animal breeders and geneticists to investigate the genetic underpinnings of quantitative traits. They are constructed by pairwise crossing a set of inbred lines to obtain F1 hybrids. In a full diallel, all parents are crossed to make hybrids in all possible combinations. Variations include half-diallels with or without parents, omitting reciprocal crosses.

Diallel designs

A few years later, Eberhart and Gardner (1966) stated that when are included in the diallel both "crossed varieties" and "selfed varieties", combining abilities can be separated to include heterosis and inbreeding effects. The model writes:

y ij = µ + 1 2 (a i + d i ) + 1 2 (a j + d j ) + γ(h ij + h + h i + h j ) (1.53)
where a i (a j , respectively) is the average performance of line i (j) in hybrid combinations, d i (d j , respectively) is the variety inbreeding; h ij is the specific heterosis (difference between the hybrid and all hybrids sharing at least one parent); h is the average heterosis (average difference between inbreds and outbreds) and h i (h j ) is the variety heterosis (average difference between the inbred parent i (j) and all crosses sharing the same parents); γ is an indicator variable that takes value 1 if i = j and 0 otherwise. Numerous other extensions have been proposed to extract other effects, such as maternal and paternal effects or sex-linked variations (Cockerham and Weir, 1977;Bulmer, 1980;Zhu and Weir, 1996;Greenberg et al., 2010). Recently, Lenarcic et al. (2012) have proposed a comprehensive model able to decompose the diallel into multiple genetic effects: additive, inbreeding and dominance, parent of origin (mitochondrial), symmetric and asymmetric interactions and sex specific effects. The full model of the phenotypic value of a cross between parents i and j, in replica k, reads:

y ijk = µ + x k β user fixed + R r=1 u (r) k user random + a i[k] + a j[k] additive + I i[k]=j[k] (β inbred + b i[k] ) inbred penalty + m i[k] -m j[k] maternal + I i[k] =j[k] v (ij[k]) symmetric + I i[k] =j[k] w (ij[k]) asymmetric + ψ(sex k )(φ a i[k] + φ a j[k] ) sex-specific additive + ψ(sex k )I i[k]=j[k] (β female inbred + φ b i[k] ) sex-specific inbred penalty + ψ(sex k )(φ m i[k] + φ m j[k] ) sex-specific maternal + ψ(sex k )I i[k] =j[k] φ v ij[k] sex-specific symmetric + ψ(sex k )I i[k] =j[k] φ w ij[k] sex-specific asymmetric + i (1.54)
The model allows for inclusion of fixed covariates x k and R random-effect components

u (r) k ∼ N (0, τ 2 r ), ∀r ∈ 1, . . . , R (1.55)
other than genetic effects. Along with the model, Lenarcic et al. (2012) proposed a hierarchical and Bayesian approach for the estimation of the parameters of interest. In particular, genetic effects are modeled hierarchically and as drawn from a common normal distribution, i.e. additive genetic effects are assumed a i ∼ N (0, σ 2 a ), ∀i. In this context, we adapted the model described above to our particular half-diallel design (presented in Chapter 2) that includes the diagonal with parental inbred strains from two species. Thus we included in our model intra-and inter-specific additive effects, inbreeding effects and intraand inter-specific heterosis effects.

Formally, let y ijk be the observed phenotype for the cross between parents i and j in replica k. Our model reads:

y ijk = µ + I s(i)=s(j) (A w i + A w j ) + I s(i) =s(j) (A b i + A b j )+ +I i =j (I s(i)=s(j) H w ij + I s(i) =s(j) H b ij )+ +I i=j (β s(i) + B i ) + ijk , (1.56) 
where:

• µ is the overall mean;

• s(i) associates to each parental strain i the specie it belongs to:

s(i) ∈ {S. cerevisiae, S. uvarum}
• A w i and A b i denote, respectively, the additive contributions of strain i in intra-specific (within species, i.e. s(i) = s(j)), and inter-specific (between species, i.e. s(i) = s(j)) crosses;

• H w ij and H b ij denote the interaction effect between parents (i, j) in intra-specific (within species) and inter-specific (between species) crosses, respectively. In our half-diallel design with no reciprocal crosses, they are assumed to be symmetric, i.e. H w ij = H w ji and H b ij = H b ji . Hereafter we will refer to these effects as intra-and inter-specific heterosis effects, respectively;

• β s(i) and B i are, respectively, the deviation from the fixed overall effect for the species s(i) and the associated strain-specific contribution of strain i in the case of inbred lines. Hereafter we will refer to B i as inbreeding effect;

• ijk is the residual, the specific deviation of individual ijk;

• I condition is an indicator variable. Its value is equal to 1 if the condition is satisfied and 0 otherwise.

Therefore, for the parental lines we have:

y p iik = µ + 2A w i + β s(i) + B i + iik , (1.57)
for the intra-specific hybrids:

y intra ijk = µ + A w i + A w j + H w ij + ijk , (1.58)
and for the inter-specific hybrids:

y inter ijk = µ + A b i + A b j + H b ij + ijk . (1.59)
All genetic effects were considered as random variables drawn from a normal distribution. Formally, letting q q q ∈ {A w

A w A w , A b A b A b , B B B, H w H w H w , H b H b H b } denote the genetic effect under consideration:
∀i q i ∼ N (0, σ 2 q q q ).

(1.60)

Chapter 1. The genetic bases of phenotypic variation

The full mixed-effect genetic model is thus defined by three fixed effects (the intercept µ and the inbreeding effects β Su and β Sc ) and five genetic random effect variances (σ 2 Aw Aw Aw , σ 2

A b A b A b , σ 2 B B B , σ 2 Hw Hw Hw , σ 2 H b H b H b ).
In Chapter 3, I present the detailed description of our findings.

• Quantitative traits are described in populations by variance components.

• Genetic variance components reflect both allele frequency and genetic effects at the underlying loci. • All genetic variance components are important in determining the population response to evolutionary pressures. • They can be estimated using dedicated cross designs.

Remarks

Chapter 2

The yeast model and the HeterosYeast Project

Yeast is part of a large group of unicellular fungi widespread in nature. It is a powerful model system to address core issues in evolutionary biology such us the architecture of the genome and its evolution, the ecological and genetic structure of natural populations, the mechanisms of selection that lead to adaptation and the evolution of sex and mating systems [START_REF] Gu | Yeasts as models in evolutionary biology[END_REF].

There are many advantages working with yeast, in particular with Saccharomyces cerevisiae. It is easy to grow in the laboratory, genetically tractable, and has been used as a model system for studying eukaryotic cellular processes for over 50 years. These studies have provided insights into fundamental eukaryotic processes, including transcription, translation, RNA processing, cell signaling, cytoskeletal dynamics and vesicle trafficking. Presently, over 75% of yeast ORFs have known or predicted functions, and much of this information is easily accessible in a variety of databases on the world wide web [START_REF] Chervitz | Using the Saccharomyces Genome Database (SGD) for analysis of protein similarities and structure[END_REF][START_REF] Payne | Yeast Protein Database (YPD): a database for the complete proteome of Saccharomyces cerevisiae[END_REF][START_REF] Güldener | CYGD: the Comprehensive Yeast Genome Database[END_REF][START_REF] Bader | BIND: the Biomolecular Interaction Network Database[END_REF][START_REF] Habeler | YPL.db: the Yeast Protein Localization database[END_REF].

Beside, yeast is important in many areas, including agriculture, medicine, biotechnology and food industry. Specially, S. cerevisiae has been widely used for the production of wine, beer and bread, but also as cell factory for the production of recombinant proteins for use as pharmaceuticals [START_REF] Nielsen | Production of biopharmaceutical proteins by yeast[END_REF], of bulk and fine chemicals [START_REF] Kavšček | Yeast as a cell factory: current state and perspectives[END_REF] and more recently for the production of bio-ethanol [START_REF] Mohd Azhar | Yeasts in sustainable bioethanol production: A review[END_REF]. Some processes, such as biofuel production or wine/beer making, require new yeasts to solve specific challenges, especially those associated with sustainability, novel flavors and altered alcohol contents. For instance the development of inter-specific strains, such as S. cerevisiae × S. uvarum, could be considered for the beer market.

Evolutionary history and domestication of Saccharomyces cerevisiae and S. uvarum

Evolutionary history

The first eukaryotic genome fully sequenced was the genome of S. cerevisiae (Goffeau et al., 1996). Subsequently, the genomes of about 40 yeast species have been sequenced, which has led to notable advances in our understanding of evolutionary mechanisms and to the construction of robust yeast phylogenies (fig.

2.1 to 2.4). Unexpectedly, extensive sequence divergence have been observed between lineages, reflecting major genomic changes that contrast with the conservation of biological properties of yeast for very long evolutionary times. Bottleneck events of clonal populations may explain this observations. Indeed, under favorable conditions the majority of yeast species can propagate indefinitely by mitotic divisions, i.e. without genetic exchange, forming large haploid or diploid clonal populations. For example, S. cerevisiae predominantly reproduces asexually, with a rate of sexual to asexual reproduction around 10 -5 under optimal conditions. Accordingly, analysis of polymorphism at selected loci suggests that in nature genetic exchanges and recombination are limited in this species. Therefore sub-populations tend to form with independent accumulation of sequence variations. The genetic drift resulting from such a mode of propagation is high as it offers the possibility for non-optimized variants to survive and colonize novel niches [START_REF] Dujon | Yeast evolutionary genomics[END_REF]. [START_REF] Dujon | Yeast evolutionary genomics[END_REF]. Colored triangles represent clades or genera with their most recent designation (on the left). The dotted lines illustrate uncertainty and/or incongruence between different published phylogenies. Genomic architectures identify three major groups in Saccharomycotina: Saccharomycetacea (blue); CTG (or Candida) clade (orange); Dipodacaceae (purple). The arrows point to major evolutionary events. "*" Species for which several strains have been sequenced.
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Nevertheless, inter-specific hybridization is not rare in yeast, and is accelerated by stressful conditions. Recent genomic studies have identified S. pastorianus as a hybrid between S. cerevisiae and S. uvarum [START_REF] Libkind | Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast[END_REF]. However hybridization in Saccharomyces sensu stricto is generally accompanied by loss of genes, of chromosomal segments or of complete chromosomes, from which novel lineages could emerge. Those specific gene losses are expected to severely reduce the meiotic fertility of hybrids.

Species that belong to the same genus and share highly conserved gene synteny can exhibit large sequence divergence, as is the case for S. cerevisiae and species from the S. bayanus group (that includes S. uvarum). Experiments to investigate sequence divergence between yeast species from the same clade suggest that, assuming mutations to be neutral, independent and occurring at a rate of about 10 -10 , yeast species derive from very recent clonal expansion from samples of large populations that had undergone similar successive bottlenecks. This would explain why Saccharomyces sensu stricto clade have nearly identical chromosomal maps interrupted by only a few chromosomal translocations.

Finally, the genome of S. cerevisiae contain DNA fragments from S. paradoxus, S. kudriavzevii, S. uvarum and Zygosaccharomyces bailii, suggesting that recent introgressions have occured. This process can be caused by the final step in nucleus fusing in inter-specific hybrids that allows for transfers of chromosomal fragments from one nucleus to another. The ecological proximity and selective pressures to adapt to high sugar, low-nitrogen and high-ethanol conditions during fermentation may facilitate this phenomenon, explaining the frequent introgressions observed in industrial S. cerevisiae strains. Domestication of S. uvarum is similarly supported by introgressions of genes from S. eubayanus, leading to over-representation of several gene categories involved in wine fermentation.

Domestication of S. cerevisiae and S. uvarum

Yeast species involved in alcoholic fermentation commonly belong to the clade of Saccharomyces sensu stricto, to which S. cerevisiae and S. uvarum are part. S. cerevisiae is extensively used in the food industry, for wine, beer, bread, etc., while S. uvarum has a more restricted use, for white wine fermentation, e.g. in the northern regions of France, and/or for red wine fermentation in Hungary, Italy and Spain. It is also the major yeast involved in cider making [START_REF] Naumov | Association of Saccharomyces bayanus var. uvarum with some French wines: genetic analysis of yeast populations[END_REF].

S. cerevisiae is well known for its capacity of being highly fermentative, osmotolerant, heat resistant and to be able to survive in low pH environments. S. uvarum produces less acetic acid and ethanol, more glycerol and succinic acid, and synthesizes malic acid without posterior degradation. Furthermore, S. uvarum is well recognized for its ability in producing volatile compounds such as phenyl-ethanol, acetate and thiols, and for being cryotolerant.

In Saccharomyces, several cases of genome modifications through hybridization, introgressions and genome rearrangements have been documented. In particular, S. cerevisiae lineages used in the food industry have become genetically distinct from their wild relatives [START_REF] Sicard | Bread, beer and wine: yeast domestication in the Saccharomyces sensu stricto complex[END_REF], highlighting the human influence on their evolution (fig. 2.2). Oenological strains show a higher degree of heterozygosity as compared to strains in natural environments, reflecting a higher rate of sexual reproduction and/or an advantage of heterozygotes under oenological conditions [START_REF] Hittinger | Saccharomyces diversity and evolution: a budding model genus[END_REF]. Moreover, the vast majority of oenological S. cerevisiae strains belong to the same genetic group, probably derived from a major domestication event of Mesopotamian origin, where most wine strains "migrated" through two major routes, the Danube valley and the Mediterranean Sea [START_REF] Legras | Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history[END_REF].

S. uvarum domestication has only recently been investigated [START_REF] Almeida | A Gondwanan Imprint on Global Diversity and Domestication of Wine and Cider Yeast Saccharomyces uvarum[END_REF]. S. uvarum would come from the super-continent Gondwana in the southern hemisphere. This was suggested by the fact that (i) its main host, Nothofagus tree, only lives in the southern hemisphere, and (ii) it displays in the southern hemisphere high genetic diversity and high frequency of isolation. In the northern hemisphere S. uvarum is the host of Quercus (oaks), which belongs to the same order Figure 2.2: Neighbor-joining trees based on SNP differences of S. cerevisiae strains: A, branch lengths are proportional to the number of segregating sites that differentiate each pair of strains. Font color of strain name denotes geographic origin and circle color denotes ecological niche as specified in the key. [START_REF] Schacherer | Comprehensive polymorphism survey elucidates population structure of S. cerevisiae[END_REF]. B, clean lineages highlighted in grey, with color indicating source (name) and geographic origin (dots) [START_REF] Liti | Population genomics of domestic and wild yeasts[END_REF].

as Nothofagus (Fagales), and is also associated with anthropogenic environments such as winemaking and cider-making environments. Phylogenetic analysis resolved the various representatives of S. uvarum into three main clades showing high genetic differences (fig. 2.3): a first group composed of Holarctic strains (found in the northern hemisphere), a second group of South American strains and the third of Australasian strains. In the northern group genetic differences between strains are weak, with traces of recent hybridization with Saccharomyces strains from industrial environments.

In the clade Saccharomyces sensu stricto, inter-specific hybridizations between domesticated strains are common, as attested by the chromosomal introgressions [START_REF] Sicard | Bread, beer and wine: yeast domestication in the Saccharomyces sensu stricto complex[END_REF][START_REF] Libkind | Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast[END_REF][START_REF] Giudici | Karyotyping of Saccharomyces strains with different temperature profiles[END_REF]. For instance, S. pastorianus domesticated species is now known to come from the fusion of a S. cerevisiae ale-strain and S. eubayanus, a species recently isolated in Patagonia [START_REF] Libkind | Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast[END_REF], which is itself a hybrid between S. cerevisiae and a species related to the genetically complex S. bayanus group. The hybridization between S. cerevisiae and S. eubayanus has resulted in the creation of a hybrid with the strong fermentative ability of S. cerevisiae and the cold tolerance of S. eubayanus [START_REF] Gibson | Saccharomyces pastorianus: genomic insights inspiring innovation for industry[END_REF].

More recently, the "Muri" strain, a unique hybrid between S. cerevisiae and S. uvarum, has been isolated from Norwegian farmhouse beer (fig. 2.4). The strain possesses a range of industrially desirable phenotypic properties such as broad temperature tolerance, ethanol resistance, efficient carbohydrate use and formation of desirable aroma-active esters [START_REF] Krogerus | A Unique Saccharomyces cerevisiae × Saccharomyces uvarum Hybrid Isolated From Norwegian Farmhouse Beer: Characterization and Reconstruction[END_REF]. Identifying the mechanisms under selection during domestication process may clarify the emergence of new traits.

How does human selection targeted the ability to complete fermentation in yeast? 

Question

Variability of life-history and fermentation traits in yeast 39

Variability of life-history and fermentation traits in yeast 2.2.1 Relationships between life-history traits and resource availability

The traits associated to the life-cycle, such as reproduction rate (r), carrying capacity (or maximum population size K) and cell size (S) are generally referred to as life-history traits. These traits are tightly linked to the fitness of the organism [START_REF] Stearns | Evolution[END_REF].

As stated above, yeasts have a complex life-cycle, largely studied in S. cerevisiae, that responds directly to environmental conditions and includes reproduction in both the haploid and diploid states via budding. Under non limiting conditions, diploid cells reproduce asexually. When nutrients are depleted, the mechanism of mating switches, cells enter in meiosis and sporulate. Spores divide equally into Mata and Matα mating-types. Haploid cells can then reproduce vegetatively through budding, or can mate with the opposite mating-type [START_REF] Bardwell | A walk-through of the yeast mating pheromone response pathway[END_REF][START_REF] Greig | Natural history of budding yeast[END_REF]. Therefore there are tight interrelations between life-history traits, which can be the result of both evolutionary processes and physico-chemical cellular constraints. The balance of energy allocation to reproduction, growth or survival represents a life-history strategy [START_REF] Schluter Dolph | Conflicting selection pressures and life history trade-offs[END_REF]. Spor et al. (2008) have shown in S. cerevisiae that there is a continuum of strategies distributed between two extremes: the "ant" and the "grasshopper" strategies. In batch cultures, yeasts first consume glucose through fermentation. When glucose is exhausted, metabolism switches to respiration. The "ant" strategy consists of quick reproduction (high r f ), high carrying capacity (high K), and small cell size (small S) in fermentation, but low reproduction rate r r in respiration. The "grasshopper" strategy consists of slow reproduction (low r f ), low carrying capacity (low K), large cell size (large S) in fermentation and high reproduction rate in respiration (high r r ). The strategy chosen by S. cerevisiae strains depends on the ecological niche. In particular, forest and laboratory strains generally adopt the "ant" strategy, while industrial strains opt for the "grasshopper" strategy (Spor et al., 2008).

The differences in life-history traits reflect differences in habitats of origin: strains from similar habitats (even geographically isolated) have similar life-history strategies, i.e. niche-driven evolution had probably led to phenotypic convergence. To investigate this point, [START_REF] Spor | Phenotypic and Genotypic Convergences Are Influenced by Historical Contingency and Environment in Yeast[END_REF] performed an evolutionary experiment with six yeast strains, chosen along the K-cell size gradient, in environments differing for the amount of resources (1% and 15% of glucose) and the time spent in the media (48h and 96h). Experiments were performed independently in batch cultures for the four environments. The authors showed that each ancestral strain evolved different combinations of life-history traits under the different selection regimes, adapting to the local conditions. The strains evolved under the same selection regime developed similar life-history traits. Strains adopted the "ant" strategy in poor media, with low glucose consumption, whereas strains in rich media selected the "grasshopper" strategy with high glucose consumption rate. Therefore, the K-cell size trade-off seems to be explained by resource availability. Phenotypic convergence could be partly accounted for by selection of mutations in genes involved in the same pathways. In particular, [START_REF] Spor | Phenotypic and Genotypic Convergences Are Influenced by Historical Contingency and Environment in Yeast[END_REF] identified mutations at the BMH1 locus with antagonistic phenotypic effects depending on the selection regime.

Fermentation trait variation is linked to life-history traits

Similarly, environment is the main factor shaping alcoholic fermentation. Albertin et al. (2011), studying the ability of nine different strains of S. cerevisiae from winery, brewing and distillery origins, have shown that glucose uptake displays plastic and genetic variability. Oenological strains consume all sugar and produced more CO 2 in less time in oenology medium than beer and distillery strains, which displayed slow or incomplete fermentation. In the brewer and bakery mediums the maximum CO 2 release rate (V max ) was higher and was reached faster, and fermentation ended faster, than in the oenology medium. Furthermore, Albertin et al. (2011) have shown that V max is highly correlated with K and not with J max , the maximum CO 2 release rate per cell, suggesting that human selection targeted the ability to complete fermentation by influencing the ability to reproduce rather than the metabolic efficiency. Similarly, K was significantly correlated to nitrogen consumption and biomass, but negatively correlated to the amount of acetic acid and trehalose measured at the end of fermentation. again, K was found to be negatively correlated with cell size, while cell size was positively correlated with trehalose and the reproduction rate in respiration (r r ), and with J max .

Relation K -cell size and protein abundance variation

The trade-off between K and cell size is robust: it has been found in yeast isolated in natural populations (Spor et al., 2009), in industrial strains associated to different food processes (Spor et al., 2008;Albertin et al., 2011) and in strains derived from experimental evolution [START_REF] Spor | Phenotypic and Genotypic Convergences Are Influenced by Historical Contingency and Environment in Yeast[END_REF]. Albertin et al. (2013A) analyzed this evolutionary constraint with quantitative proteomics, focusing on the abundances of the enzymes and isoforms of alcoholic fermentation, using the same nine food-processing strains as those of Albertin et al. (2011). They showed that the enzymatic pool allocated to the fermentation proteome was constant over the culture media and the strains, but there was variability in abundance of individual enzymes and sometimes much more of their post-translationally modified isoforms. This suggests the existence of selective constraints on total protein abundance and trade-offs between isoforms. Interestingly, abundance variation of some isoforms was significantly associated to metabolic traits and growth-related traits. In particular, cell size and K were highly correlated with the degree of N-terminal acetylation of the alcohol dehydrogenase. Thus the fermentation proteome was found to be shaped by human selection, through the differential targeting of a few isoforms for each food-processing origin of strains. These results highlighted the importance of post-translational modifications in the diversity of metabolic and life-history traits.

Understanding the mechanisms shaping yeast biodiversity needs a comprehensive study of the different levels of cellular organization and analysis of their relationships, from the molecular and genetic point of view.

Remarks

HeterosYeast: Exploitation of the heterosis phenomenon for wine yeast improvement

In the continuity of the previous studies, the ANR interdisciplinary project "HeterosYeast: Exploitation of the heterosis phenomenon for wine yeast improvement", 2009-2013, coordinated by Dominique de Vienne and Philippe Marullo, provided a large set of heterogeneous data to investigate heterosis for fermentation and life-history trait variation. The HeterosYeast project focused on three tightly related goals: better understanding of the genetic and molecular bases of heterosis, developing predictors of heterosis and, in the long run, derive yeast hybrid strains with high oenological performance. HeterosYeast relied on a diallel design, which is the most comprehensive design to decompose the genetic effect and their variance for quantitative traits, as stated in section 1.3.

Construction of the diallel design

Parental strains

Among the myriad of yeast species, S. cerevisiae and S. uvarum have been chosen since they are characterized by the ability to achieve grape must fermentation. They differ in their habitat and in a number of phenotypic traits, but natural hybrids between the two species exists. The original strains of the experimental design were seven S. cerevisiae and four S. uvarum strains associated to various food processes (oenology, brewery, cider fermentation and distillery) or isolated from natural environments (oak exudates) (tab. 2.1). Nine out eleven strains were analyzed previous to the construction of the diallel (Blein-Nicolas et al., 2013;[START_REF] Marullo | Genetic improvement of thermo-tolerance in wine Saccharomyces cerevisiae strains by a backcross approach[END_REF]. The clustering of the lines depended on the type of trait considered (fig. 2.5). The strains of S. uvarum and a group of S. cerevisiae displayed similar fermentative performances despite strong proteomic and genomic differences. Indeed, the proteomes of the two species were contrasted, which could be related to a differential recruitment of proteins of the glucose pathway encoded by duplicated genes. Altogether, these results indicate that the ability of S. cerevisae and S. uvarum to complete grape fermentation must arise through different evolutionary roads, involving different metabolic pathways and sets of proteins (Blein-Nicolas et al., 2013).

This set of strains showing a high variability at every level of cellular organization seemed appropriate for the construction of the diallel cross. Nevertheless, they could not be used as such as parents of a diallel design because they were suspected to be heterozygous at many loci. The way the strains were made homozygous is described in details in (da Silva et al., 2015). Briefly, monosporic clones were isolated by tetrad dissection using a micromanipulator. All original strains but D2 were homothallic (HO/HO), therefore fully homozygous diploid strains were spontaneously obtained by fusion of opposite mating type cells. For D2 that was ho/ho, one isolated haploid meiospore was diploidized via transient expression of the HO endonuclease. These strains, called W1, D1, D2, E2, E3, E4 and E5 for S. cerevisiae and U1, U2, U3 and U4 for S. uvarum, were used as the parental strains for the construction of a half diallel design with diagonal. All strains were grown at 24°C in YPD medium (da Silva et al., 2015).

Genetics (SNPs and SAPs)

Proteomics (abundancies) Phenotypes (Life-history+fermentation) 

Hybrid construction

In order to produce intra-and interspecific hybrids, the eleven diploid parental strains were transformed with a cassette containing the HO allele disrupted by a gene of resistance, as previously described in Albertin et al. (2013B). After transformation, monosporic clones were isolated, and the mating-type (Mata or Matα) of antibiotic-resistant clones was determined using testers of known mating-type. Strain transformation allowed conversion to heterothallism for the homothallic strains (all but D2) and antibiotic resistance allowed easy hybrid selection. For each hybrid construction, parental strains of opposite mating-types were put in contact for 2 to 6 hours in YPD medium at room temperature, and then plated on YPD-agar containing the appropriate antibiotics. The 55 possible hybrids from the 11 parental strains, namely 21 S. cerevisiae intraspecific hybrids, 6 S. uvarum intraspecific hybrids and 28 interspecific hybrids, were obtained. For each cross, a few independent colonies were collected. After recurrent cultures on YPD-agar corresponding to ∼80 generations, the nuclear chromosomal stability of the hybrids was controlled by pulsed field electrophoresis, as well as homoplasmy (only one parental mitochondrial genome) as detailed in Albertin et al. (2013B).

Phenotypic characterization

This unique biological material was grown in triplicate in fermentors with a medium close to oenological conditions at two temperatures (18°C and 26°C, optimum for S.u. and S.c., respectively). Thus a total of 396 alcoholic fermentations were performed. In order to access a multi-level description of the heterosis phenomenon, two types of phenotypic traits were measured or estimated from sophisticated data adjustment models (da Silva et al., 2015;Blein-Nicolas et al., 2015):

• Protein abundances. Using high-throughput shotgun LC-MS/MS technique, the intensities of more than 10 000 peptides allowed estimating the abundances of ∼ 1400 proteins, and as many as 97 360 protein-per-hybrid-per-temperature combinations were analyzed in the Pappso facility (http://pappso.inra.fr). The abundances of 615 proteins present in all strains were measured from both shared and proteotypic peptides relying on original Bayesian developments (Blein-Nicolas et al., 2012). Massive variations were found, that clearly differentiated the two species (see above). Heterosis was found for numerous proteins in variable proportions depending on the parental strain and on the temperature considered (from 8.4 % to 61.2 %). In the intra-specific hybrids, this proportion was higher at non-optimal temperature. Unexpectedly, heterosis for protein abundance was strongly biased toward positive values in inter-specific hybrids but not in intra-specific hybrids, and the proportion of hybrids in which a protein was heterotic was positively correlated to the number of putative transcription factors of the encoding gene. Computer simulations assuming concave relationships between protein abundances and their controlling factors accounted quite well for these observations (Blein-Nicolas et al., 2015), which is consistent with the role of non-linear processes in the emergence of heterosis (Fiévet et al., 2018).

• Fermentative traits. A total of 35 fermentative traits (~13 000 data points) were obtained, which were classified into: kinetics traits (estimated from the CO 2 release curve), population dynamics traits (estimated from cell concentrations over time), basic oenological products (ethanol, residual sugar, acetic acid, etc.), and aromatic traits. Mixed anova models and multivariate analyses showed that, depending on the types of trait, the sources of variation (strain, temperature and strain × temperature effects) differed in a large extent. For instance the kinetics traits and some population traits (temporal variables, growth traits, CO 2 flux) were very sensitive to temperature, unlike key metabolites for oenology. However some of the latter and various population traits (maximum CO 2 , carrying capacity, viability, cell size) exhibited large strain per temperature interactions. The global comparison of the three types of hybrids (S.c.×S.c., S.u.×S.u. and S.c.×S.c.) revealed that hybridization could generate multi-trait phenotypes with improved oenological performances. In addition the inter-specific hybrids displayed better homeostasis with respect to temperature, which could explain why interspecific hybridization is so common in natural and domesticated yeasts, and open the way to applications for wine-making (da Silva et al., 2015). 

Aim of the thesis

The exceptional dataset produced in the HeterosYeast project was far from being fully exploited.

In particular such a set of heterogeneous data, which corresponds to different levels of cellular organization, was ideally convenient for multi-scale modelling and testing models for predicting the variation of integrated phenotypes from protein and metabolic traits, taking into account the dependence structures between variables, but also between observations. The aim of my thesis was to develop original mathematical and statistical models in systems biology to investigate the molecular and genetic bases of phenotypic variation in yeast and to integrate different types of data measured at different scales.

I have adopted two main approaches to address these issues.

Analysis of the diallel design.

A first goal was to characterize phenotypic variation at each level of cellular organization by means of genetic variance components. To this end, I exploited the particular half-diallel cross design to infer the parts of variance attributed to additive, inbreeding and heterosis effects for each trait, distinguishing intra and interspecific additive and heterosis effects. Then the integration of the different levels of cellular organization has been performed by clustering traits displaying similar partition of variance components, to search for parallel behaviour between proteins and life history/fermentation traits that could suggest functional links. Search for predictors of fermentation and life-history traits. The second part of the thesis work consisted in finding predictors of fermentation and life-history traits. To this end, I predicted an additional phenotypic level, the metabolic fluxes, which result from the metabolic network functioning and integrate the activities of possibly many proteins. I proposed a novel method to introduce protein abundance data into constraint-based models and predicted steady-state fluxes for each strain separately. Finally, I used statistical approaches to integrate the three different levels of cellular organization to gain information on the metabolic and molecular predictors of the integrated traits. This constitutes the Chapter 5, Data integration uncovers the metabolic bases of phenotypic variation in yeast, which will be submitted soon to Molecular Systems Biology. ABSTRACT Heterosis (hybrid vigor) and inbreeding depression, commonly considered as corollary phenomena, could nevertheless be decoupled under certain assumptions according to theoretical population genetics works. In order to explore this issue on real data, we analyzed the components of genetic variation in a population derived from a half-diallel cross between strains from Saccharomyces cerevisiae and S. uvarum, two related yeast species involved in alcoholic fermentation. A large number of phenotypic traits, either molecular (coming from quantitative proteomics) or related to fermentation and life-history, were measured during alcoholic fermentation. Because the parental strains were included in the design, we were able to distinguish between inbreeding effects, which measures phenotypic differences between inbred and hybrids, and heterosis, which measures phenotypic differences between a specific hybrid and the other hybrids sharing a common parent. The sources of phenotypic variation differed depending on the temperature, indicating the predominance of genotype by environment interactions. Decomposing the total genetic variance into variances of additive (intra-and inter-specific) effects, of inbreeding effects and of heterosis (intra-and inter-specific) effects, we showed that the distribution of variance components defined clear-cut groups of proteins and traits. Moreover, it was possible to cluster fermentation and life-history traits into most proteomic groups. Within groups, we observed positive, negative or null correlations between the variances of heterosis and inbreeding effects. To our knowledge, such a decoupling had never been experimentally demonstrated. This result suggests that, despite a common evolutionary history of individuals within a species, the different types of traits have been subject to different selective pressures.
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Heterosis, or hybrid vigor, refers to the common superiority of hybrids over their parents for quantitative traits. This phenomenon has been observed for virtually any quantitative trait, from mRNA abundances to fitness, and in a large diversity of species, including microorganisms. For decades it has been extensively studied and exploited for plant and animal breeding, since it affects traits of high economical interest such as biomass, fertility, growth rate, disease resistance etc. [START_REF] Gowen | Heterosis[END_REF][START_REF] Schnable | Progress toward understanding heterosis in crop plants[END_REF]. doi: 10.1534/genetics.XXX.XXXXXX Manuscript compiled: 1st February 2019 1 To whom correspondence should be addressed: UMR Génétique Quantitative et Évolution -Le Moulon, Ferme du Moulon, 91190 Gif-sur-Yvette, France. E-mail: christine.dillmann@inra.fr There are three classical, non exclusive genetic models to account for hybrid vigor: dominance, overdominance and epistasis. In the dominance model, the hybrid superiority results from the masking of the deleterious alleles of one parent by the non deleterious ones of the other parent [START_REF] Davenport | Degeneration, albinism and inbreeding[END_REF]. In the overdominance model, the hybrid superiority is due to the advantage per se of the heterozygous state at a given locus [START_REF] Hull | Overdominance and Corn Breeding Where Hybrid Seed Is Not Feasible[END_REF]. Actually, more common is pseudo-overdominance, which is due to dominance at two loci linked in repulsion, e.g. in maize [START_REF] Graham | Characterization of a yield quantitative trait locus on chromosome five of maize by fine mapping[END_REF][START_REF] Lariepe | The Genetic Basis of Heterosis: Multiparental Quantitative Trait Loci Mapping Reveals Contrasted Levels of Apparent Overdominance Among Traits of Agronomical Interest in Maize (Zea mays L.)[END_REF] or yeast [START_REF] Martì-Raga | Genetic Causes of Phenotypic Adaptation to the Second Fermentation of Sparkling Wines in Saccharomyces cerevisiae[END_REF]. Lastly, the epistasis model postulates favorable intergenic interactions created in the hybrids [START_REF] Powers | An expansion of Jones's theory for the explanation of heterosis[END_REF]. In particular, "less-than-additive" (antagonistic) epistasis, which is quite common in plant and animal species [START_REF] Redden | The effect of epistasis on chromosome mapping of quantitative characters in wheat. I. Time to spike emergence[END_REF][START_REF] Shao | Genetic architecture of complex traits: Large phenotypic effects and pervasive epistasis[END_REF] can account for best-parent heterosis [START_REF] Fievet | Systemic properties of metabolic networks lead to an epistasis-based model for heterosis[END_REF] The respective parts of the various genetics effects in heterosis depends on the trait, the species and the genetic material [START_REF] Xiao | Dominance Is the Major Genetic-Basis of Heterosis in Rice as Revealed by Qtl Analysis Using Molecular Markers[END_REF][START_REF] Huang | Genomic architecture of heterosis for yield traits in rice[END_REF][START_REF] Seymour | Genetic architecture of nonadditive inheritance in Arabidopsis thaliana hybrids[END_REF]. Altogether, heterosis appears to be a pervasive phenomenon, accounted for by the common non-linearity of the genotype-phenotype map [START_REF] Wright | Physiological and evolutionary theories of dominance[END_REF][START_REF] Omholt | Gene Regulatory Networks Generating the Phenomena of Additivity, Dominance and Epistasis[END_REF]Fiévet et al. 2018).

Because heterosis is associated with heterozygosity, heterosis for life-history traits is associated with genetic load: the average population fitness can never exceed the maximum fitness. Genetic load drives the evolution of sexual reproduction, of mating systems as well as the fate of small populations. Indeed, high levels of homozygosity in outcrossing species is generally associated with decreased growth rate, survival or fertility (discussed in [START_REF] Charlesworth | The genetics of inbreeding depression[END_REF]). In population genetics, inbreeding depression is defined as the fitness of self-fertilized progenies as compared with fitness of outcrossing progenies. In sexual species, the balance between selfing and outcrossing is driven by the genetic load due to inbreeding depression relative to the cost of sexual reproduction (twice as expensive as clonal reproduction): selfing can evolve whenever inbreeding depression is less costly than the sexual reproduction, or after purging deleterious mutations as can arise in small populations (Lande and Schemske 1985). However, heterosis due to less-than-additive epistasis could explain the large number of predominantly (but not fully) selfing species exhibiting a persistent amount of inbreeding depression and heterosis (Charlesworth et al. 1991). Considering a metapopulation, Roze and Rousset (2004) defined inbreeding depression as the fitness reduction of selfed progeny relative to outcrossed progeny within populations, and heterosis as the difference between the fitness of the outcrossed progeny within population and the outcrossed progeny over the whole metapopulation. They showed that while selfing reduced both inbreeding depression and heterosis, inbreeding depression decreased and heterosis increased with the degree of subdivision of the metapopulation. Hence, from a population genetics point of view, heterosis is expected even in predominantly selfing species.

In a breeding perspective, the pioneer work of Shull (1908) in maize predicted that given the large amounts of heterosis within the species, the best way to maximize yield was to create inbreds from existing population varieties in order to seek for the best hybrid combinations. Diallel designs were popularized as the most comprehensive designs for estimating genetic effects, predicting hybrid values and generating breeding populations to be used as basis for selection and development of elite varieties (i.e. Hallauer and Filho (1988)). The simplest and most popular analytic decomposition of genetic effects in diallel designs is that of Griffing (1956), in which the mean phenotypic value, y ij , of the cross between lines i and j is modeled as:

y ij = µ + GCA i + GCA j + SCA ij , ( 1 
)
where µ is the mean phenotypic value of the population, GCA i (resp. GCA j ) is the General Combining Ability of line i (resp. j), i.e. the average performance of line i (resp. j) in hybrid combinations expressed as a deviation from the mean value of all crosses, and SCA ij is the Specific Combining Ability of hybrid i × j. It is defined as the difference between the mean phenotypic value of the progeny and the sum of the combining abilities of the parental lines (Sprague and Tatum 1942). Therefore, superior individuals can be selected from their GCA and/or SCA. Numerous extensions of the Griffing's model have been proposed

to extract other effects, such as maternal and paternal effects or sex-linked variations (Cockerham and Weir 1977;Bulmer 1980;Zhu and Weir 1996;Greenberg et al. 2010). In many crop species, combining ability groups have been identified, with lines from the same group characterized by high specific combining ability with other groups (Hallauer et al. 1988). Generally, combining ability groups are redundant with population structure within a species [START_REF] Melchinger | Overview of Heterosis and Heterotic Groups in Agronomic Crops[END_REF][START_REF] Ramya | Towards Defining Heterotic Gene Pools in Pearl Millet [Pennisetum glaucum (L.) R. Br[END_REF], which is consistent with the population genetics predictions of Roze and Rousset (2004).

When parental lines are included in the analysis, GCA and SCA effects can be decomposed in more suitable genetic effects. Indeed, the value of a particular hybrid can be compared either to the average value of its inbred parents, or to the average value of the other hybrids sharing either parent. Heterosis can be split into average heterosis (average difference between inbreds and outbreds), variety heterosis (average difference between one inbred parent and all crosses sharing the same parents), and specific heterosis (difference between the hybrid and all hybrids sharing at least one parent) (Eberhart and Gardner 1966). A modern version of this model have been proposed by Lenarcic et al. (2012) along with a Bayesian framework to estimate the genetic effects.

In this work, we study a half-diallel design with diagonal constructed from the crosses between 11 yeast strains belonging to two close species, Saccharomyces cerevisiae and S. uvarum. The design included both intra-and inter-specific crosses. Two categories of phenotypic traits were considered: (i) protein abundances measured at one time point of alcoholic fermentation (Blein-Nicolas et al. 2013, 2015); (ii) a set of fermentation traits measured during and/or at the end of fermentation, which were divided into kinetic parameters, basic enological parameters, aromas and life-history traits (da Silva et al. 2015). All traits were independently measured at two temperatures.

We propose a decomposition of the genetic effects based on Lenarcic et al. (2012) that takes into account the presence of two species in the diallel design and that distinguishes heterosis and inbreeding effects. We could characterize every trait by the set of its variance components and we could clearly cluster the traits from this criterion, which suggests that traits sharing a similar pattern of variance components could share common life-history. We were able to assign each fermentation trait to one group of protein traits, which shows that integrated phenotypes and proteins can share similar life-history. Finally, our results show a poor correlation between the variances of heterosis and inbreeding effects within groups. This confirms the importance of epistatic interactions in determining the components of phenotypic variation both within and between close species. Altogether, our results suggest that despite a common demographic history of individuals within a species, the genetic variance components of the traits can be used to trace back other trait-specific evolutionary pressures, like selection.

Materials and Methods

Materials

The genetic material of the experimental design consisted in 7 strains of S. cerevisiae and 4 strains of S. uvarum associated to various food-processes (enology, brewery, cider fermentation and distillery) or isolated from natural environment (oak exudates). These strains, called W1, D1, D2, E2, E3, E4, E5 for S. cerevisiae and U1, U2, U3, U4 for S. uvarum could not be used as such as parents of a diallel design because they were suspected to be heterozygous at many loci. Monosporic clones were isolated from each of these strains using a micromanipulator (Singer MSM Manual; Singer Instrument, Somerset, United Kingdom), as indicated in da Silva et al. (2015). All strains but D2 were homothallic (HO/HO), therefore fully homozygous diploid strains were spontaneously obtained by fusion of opposite mating type cells. For D2 (ho/ho), the isolated haploid meiospore were diploidized via transient expression of the HO endonuclease [START_REF] Albertin | Evidence for autotetraploidy associated with reproductive isolation in saccharomyces cerevisiae: towards a new domesticated species[END_REF]. The derived fully homozygous and diploid strains were used as the parental strains of a half-diallel design with diagonal, i.e. including the inbred lines. The parental lines were selfed and pairwise crossed, which resulted in a total of 66 strains: 11 inbred lines, 27 intra-specific hybrids (21 for S. cerevisiae, noted S. c., and 6 for S. uvarum, noted S. u.) and 28 inter-specific (noted S. u. × S. c). For each hybrid construction, parental strains of opposite mating type were put in contact for 2 to 6 hours in YPD medium at room temperature, and then plated on YPD-agar containing the appropriate antibiotics. The nuclear and mitochondrial stability of the hybrids was checked after recurrent cultures on YPD-agar corresponding to ≈ 80 generations (see details in Albertin et al. (2013a)). In addition, for each of the 28 interspecific hybrids, both parental sets of more than 600 proteins were detected in a proteomic approach Blein-Nicolas et al. (2015), with no evidence of hybrid instability. The 66 strains were grown in triplicate in fermentors at two temperatures, 26°and 18°, in a medium close to enological conditions (Sauvignon blanc grape juice) (da Silva et al. 2015). From a total of 396 alcoholic fermentations (66 strains × 2 temperatures × 3 replicas), 31 failed due to poor fermenting abilities of some strains. The design was implemented considering a block as two sets of 27 fermentations (26 plus a control without yeast to check for contamination), one carried out at 26°and the other at 18°. The distribution of the strains in the block design was randomized to minimize the residual variance of the estimators of the strain and temperature effects, as described in Albertin et al. (2013b).

For each alcoholic fermentation, two types of phenotypic traits were measured or estimated from sophisticated data adjustment models: 35 fermentation traits and 615 protein abundances.

The fermentation traits were classified into four categories (da Silva et al. 2015):

• Kinetics parameters, computed from the CO 2 release curve modeled as a Weibull function fitted on CO 2 release quantification monitored by weight loss of bioreactors: the fermentation lag-phase, t-lag (h); the time to reach the inflection point out of the fermentation lag-phase, t-V max (h); the fermentation time at which 45 gL -1 and 75 gL -1 of CO 2 was released, out of the fermentation lag-phase, t-45 (h) and t-75 (h) respectively; the time between t-lag and the time at which the CO 2 emission rate became less than, or equal to, 0.05gL -1 h -1 , AFtime (h); the maximum CO 2 release rate, V max (gL -1 h -1 ); and the total amount of CO 2 released at the end of the fermentation, CO 2max (gL -1 ). • Life history traits, estimated and computed from the cell concentration curves over time, modeled from population growth, cell size and viability quantified by flow cytometry analysis: the growth lag-phase, t-N 0 (h); the carrying capacity, K (log[cells/mL]); the time at which the carrying capacity was reached, t-N max (h); the intrinsic growth rate, r (log[cell division/mL/h]); the maximum value of the esti-mated CO 2 production rate divided by the estimated cell concentration, J max (gh -1 10 -8 cell -1 ); the average cell size at t-N max , Size-t-N max (µm); the percentage of living cells at t-N max , Viability-t-N max (%); and the percentage of living cells at t-75, Viability-t-75 (%). • Basic enological parameters, quantified at the end of fermentation: Residual Sugar (gL -1 ); Ethanol (%vol); the ratio between the amount of metabolized sugar and the amount of released ethanol, Sugar.Ethanol.Yield (gL -1 %vol -1 ); Acetic acid (gL -1 of H 2 SO 4 ); Total SO 2 (mgL -1 ) and Free SO 2 (mgL -1 ). • Aromatic traits, mainly volatile compounds measured at the end of alcoholic fermentation by GC-MS: two higher alcohols (Phenyl-2-ethanol and Hexanol, mgL -1 ); seven esters (Phenyl-2-ethanol acetate, Isoamyl acetate, Ethyl-propanoate, Ethyl-butanoate, Ethyl-hexanoate, Ethyl-octanoate and Ethyldecanoate, mgL -1 ); three medium chain fatty acids (Hexanoic acid, Octanoic acid and Decanoic acid, mgL -1 ); one thiol 4-methyl-4-mercaptopentan-2-one, X4MMP(mgL -1 ) and the acetylation rate of higher alcohols, Acetate ratio.

For proteomic analyses the samples were harvested at 40 % of CO 2 release, corresponding to the maximum rate of CO 2 release. Protein abundances were measured by LC-MS/MS techniques from both shared and proteotypic peptides relying on original Bayesian developments (Blein-Nicolas et al. 2012). A total of 615 proteins were quantified in more than 122 strains × temperature combinations as explained in details in Blein-Nicolas et al. (2015).

Cross-referencing MIPS micro-organism protein classification (Ruepp et al. 2004), KEGG pathway classification (Kanehisa and Goto 2000;Kanehisa et al. 2016Kanehisa et al. , 2017) ) and Saccharomyces Genome database (Cherry et al. 2012), we attributed each protein to a single functional category based on our expert knowledge (Table ST1). Considering the genes encoding the proteins, we also assigned to each protein a number of putative transcription factors (TFs). A total of 313 TFs with a consensus DNA-binding sequence were retrieved from the Yeastrack database [START_REF] Teixeira | The yeastract database: an upgraded information system for the analysis of gene and genomic transcription regulation in saccharomyces cerevisiae[END_REF][START_REF] Abdulrehman | Yeastract: providing a programmatic access to curated transcriptional regulatory associations in saccharomyces cerevisiae through a web services interface[END_REF][START_REF] Monteiro | Yeastract-discoverer: new tools to improve the analysis of transcriptional regulatory associations in saccharomyces cerevisiae[END_REF][START_REF] Teixeira | The yeastract database: a tool for the analysis of transcription regulatory associations in saccharomyces cerevisiae[END_REF].

Statistical Methods

In order to estimate the genetic variance components for the different phenotypic traits, we adapted the model described in Lenarcic et al. (2012) to our particular half-diallel design that includes the diagonal with parental inbred strains from two species. Thus we included in our model intra-and inter-specific additive effects, inbreeding effects and intra-and inter-specific heterosis effects.

Formally, let y ijk be the observed phenotype for the cross between parents i and j in replica k. Our model reads:

y ijk = µ + I s(i)=s(j) (A w i + A w j ) + I s(i) =s(j) (A b i + A b j )+ +I i =j (I s(i)=s(j) H w ij + I s(i) =s(j) H b ij )+ +I i=j (β s(i) + B i ) + ijk , (2) 
where:

• µ is the overall mean; • s(i) associates to each parental strain i the specie it belongs to: s(i) ∈ {S. cerevisiae, S. uvarum} • A w i and A b i denote, respectively, the additive contributions of strain i in intra-specific (within species, i.e. s(i) = s(j)), and inter-specific (between species, i.e. s(i) = s(j)) crosses;
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• H w ij and H b ij denote the interaction effect between parents (i, j) in intra-specific (within species) and inter-specific (between species) crosses, respectively. Due to our half-diallel design (no reciprocal crosses), they are assumed to be symmetric, i.e. H w ij = H w ji and H b ij = H b ji . Hereafter we will refer to these effects as intra-and inter-specific heterosis effects, respectively; • β s(i) and B i are, respectively, the deviation from the fixed overall effect for the species s(i) and the associated strainspecific contribution of strain i in the case of inbred lines. Hereafter we will refer to B i as inbreeding effect; • ijk is the residual, the specific deviation of individual ijk;

• I condition is an indicator variable. Its value is equal to 1 if the condition is satisfied and 0 otherwise.

Therefore, for the parental lines we have:

y p iik = µ + 2A w i + β s(i) + B i + iik , (3) 
for the intra-specific hybrids:

y intra ijk = µ + A w i + A w j + H w ij + ijk , (4) 
and for the inter-specific hybrids:

y inter ijk = µ + A b i + A b j + H b ij + ijk . ( 5 
)
All genetic effects were considered as random variables drawn from a normal distribution. Formally, letting q q q ∈ {A w

A w A w , A b A b A b , B B B, H w H w H w , H b H b H b } denote the genetic effect under consider- ation: ∀i q i ∼ N (0, σ 2 q q q ). (6) 
The full mixed-effect genetic model is thus defined by three fixed effects (the intercept µ and the inbreeding effects β Su and β Sc ) and five genetic random effect variances (σ 2

A w A w A w , σ 2 A b A b A b , σ 2 B B B , σ 2 H w H w H w , σ 2 H b H b H b ).
We did not declare mitochondrial effects because many genes encoding mitochondrial proteins are repressed under fermentation conditions, and because inter-specific hybrids harbor similar fermentation features for most fermentation kinetics and enological parameters whatever their mitochondrial genotype (Albertin et al. 2013a). In addition, we did not know the mitochondrial inheritance for most of the intra-specific crosses (table ST3).

The fitting algorithm

Fixed effects, variance components of the genetic effects as well as their Best Linear Unbiased Predictors (BLUPs) were estimated using the hglm package in R [START_REF] Ronnegard | hglm: A package for fitting hierarchical generalized linear models[END_REF]) that implements the estimation algorithm for hierarchical generalized linear models and allows fitting correlated random effects as well as random regression models by explicitly specifying the design matrices both for the fixed and random effects. The model, based on a maximum likelihood estimation, is deemed to produce unbiased statistics [START_REF] Gumedze | Parameter estimation and inference in the linear mixed model[END_REF].

A separate analysis was conducted for each trait at each temperature, considering the vector of observations for the trait/temperature combination of interest, y, and re-writing model (eq. ( 2)) in matrix form:

y y y = Xβ β β + Zu u u + , ( 7 
)
where X is the design matrix for the fixed effects, Z the design matrix for the random effects, β β β = (µ, β S.u. , β S.c. ) and

u u u = (A w A w A w , A b A b A b , B B B, H w H w H w , H b H b H b )
are respectively the vectors of fixed effect parameters and random effect parameters, and is the vector of residual errors. With this notation, the construction of the model is straightforward from the data (for details see The fitting algorithm in Supplementary Materials).

Whenever the full model (eq. 2) failed to converge, we considered the subsequent model obtained by removing one effect at a time following the hierarchy imposed by the order of the fitting algorithm, i.e. first heterosis, second inbreeding effects and finally additive effects. The full model converged for all proteomic data. For the fermentation traits, the model did not converge for most of the Ethyl esters (Ethyl-propanoate, Ethylbutanoate, Ethyl-hexanoate, Ethyl-octanoate and Ethyl-decanoate), as well as for Acetate Ratio and for Acetic acid that were removed from the analysis. For all other fermentation traits, the full model converged, except for t.lag at 18°, for which the additive model applied. For this trait, other genetic variance components were set to zero. In order to test the robustness of the results, a bootstrap analysis was performed by sampling the 55 hybrids with replacement, conditionally to the 11 parental strains. Each bootstrap sample was submitted to the same analysis as described above. For each variance component, we checked that the estimations in the experimental sample were close to the median of the estimations in the bootstrap samples.

Testing for the reliability of the model

Computer simulations were performed to test the statistical power of the hglm algorithm in predicting the values of the observables while producing unbiased estimations of the model parameters. We simulated a half-diallel between 11 strains, seven belonging to a species, four to the other. We computed the phenotypic values of each simulated cross by first drawing µ, β specie1 , β specie2 , σ 2 SF1). Second, for each random effect q q q ∈ {A w

A w A w A w , σ 2 A b A b A b , σ 2 B B B , σ 2 H w H w H w , σ 2
A w A w , A b A b A b , B B B, H w H w H w , H b H b H b , } we drew ∀i q i ∼ N (0, σ 2 q q q ) (8)
and computed the phenotypic values as in eq. 2, generating three replicas per cross.

We repeated the simulation 1000 times. We fitted the model and checked that the estimation of the random effects, the predicted phenotypic values as well as their variance components were close enough to the true values (fig. 1) and we noticed that inbreeding parameters were the most variable (fig. SF2 in Supplementary figures).

In addition, since we were interested in the correlation structure between the variance components of the genetic effects, we checked that possible correlations between random effects were not a statistical artifact of the model. Therefore, we simulated uncorrelated variances of random effects and we checked that no correlation structure was found between the estimated variance components, as can be seen in fig. 1. Simulations performed with different numbers of parental lines led to similar results (not shown).

Fermentation traits

Before fitting our model, we updated eq. 2 in order to account for a block effect:

y ijkl = y ijk + block l + ijkl , (9) 
assuming that

∀l block l ∼ N (0, σ 2 block block block ). (10) 
Many fermentation traits, mostly aromatic, were logtransformed in order to deal with the variable mean of the residuals. So as to handle the null values in the observations, we chose to consider the following transformation:

y ijk = log(max(y ijk , δ)) ( 11 
)
where δ ∼ U (0, min(y y y)). In this situation, as we introduced a random term in our analysis, which may skew parameter estimation, we decided to: (i) perform the log-transformation, (ii) compute the fitting algorithm, (iii) record the parameter's estimation, then after having computed it a hundred times, (iv) consider the median of the estimators in order to achieve a more robust statistics.

Protein abundances

For each cross, protein abundances have been quantified on average. Yet, to perform a diallel analysis at the proteomic level, replicas are critical for quantifying genetic variation. Therefore, we generated pseudo replicas using the residual variance estimated when quantifying protein abundances (Blein-Nicolas et al.

2013)

. Formally, let y ij be the average protein abundance of the cross between parents i and j. We generated three replicas as follows:

y ijk = y ij + k (12) k ∼ N (0, σ2 ) for k = 1, 2, 3 (13) 
where σ2 is the residual variance. Simulations of pseudo replicas and parameter estimations were performed 100 times. The final value of the parameters was the median of its estimation.

Variance component analysis

For each trait, our mixed model generates a vector of variance components

v v v = ( σ2 A w A w A w , σ2 A b A b A b , σ2 B B B , σ2 H w H w H w , σ2 H b H b H b ) (14) 
and the results were summarized in a matrix with rows being the different trait by temperature combinations, and columns the relative contribution of each component to the total genetic variance of the trait. We chose to perform unsupervised classification to compare the distributions of variance components between traits. Following the recommendations of [START_REF] Kurtz | Sparse and Compositionally Robust Inference of Microbial Ecological Networks[END_REF], percentages of variance components were transformed into real numbers using the following clr-transformation: clr( σ2 q q q ) = log(

σ2 q q q (∏ k∈Q Q Q σ2 k k k ) 1/N q ) ( 15 
)
where N q is the total number of random effects and Q Q Q is the set of random variables fitted by the model. For fermentation traits, N q = 7 (accounting for block and residual variances, eq. 9), while N q = 6 for proteomic traits (eq. 2). We chose the clr-transformation because it satisfies scale invariance, subcompositional dominance and perturbation invariance properties [START_REF] Tsagris | A data-based power transformation for compositional data[END_REF]. Therefore the distance relationship between the original profiles is preserved by the selected sub-vectors thanks to the sub-compositional dominance property of the clrtransformation (see section Subcompositional dominance and distances in Supplementary Materials). The clr-transformation allowed us to test finite Gaussian mixture models using modelbased clustering proposed in the Mclust package in R [START_REF] Scrucca | mclust 5: clustering, classification and density estimation using Gaussian finite mixture models[END_REF]. Percentage of good assignments were computed by separating the data into training and validation sets. This procedure was first applied separately for proteomic and fermentation traits (see Structuration of genetic variability at the fermentation trait level in Supplementary Materials). Protein groups were tested for enrichment in either Kegg pathways, transcription factors and heterotic proteins. Fermentation traits were tested for enrichment in the different trait categories (kinetic parameters, life-history, basic enological parameters, aromatic traits). For each cluster, Pearson's chi-square test of enrichment was computed on protein functional category frequencies taking as prior probability the expected categorical frequency found in the MIPS database.

Further, fermentation traits were assigned to clusters identified on protein abundances profiles based on their membership probability computed through Gaussian finite mixture models.

Data Availability

The data that support the findings of the current study are available at figshare DOI:10.6084/m9.figshare.7378412. Supplementary materials contain:

• Demonstration of the relationship between the subcompositional dominance property and distances in the Euclidean space; • Detailed description of the fitting algorithm; • Description of the construction of the simulated values on a half-diallel design based on the genetic models supposed to explain heterosis and inbreeding; • Demonstration of the equality between the variances of heterosis and inbreeding effects in three parents half-diallel designs with no maternal effects; • Clustering analysis for the fermentation and life-history traits;
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In order to estimate genetic variance components from a diallel cross involving two yeast species, we proposed a decomposition of genetic effects based on the model of Lenarcic et al. (2012) that allowed to split the classical General (GCA) and Specific (SCA) Combining Abilities into intra-and inter-specific additive and heterosis effects, and to take into account inbreeding effects, defined as the difference between the inbred line value and the average value of all the crosses that have this inbred as parent.

Simulations showed that despite the small number of parents in the diallel, our model led to unbiased estimations of variance components, and that correlations between variance components did not arise from unidentifiability of some model's parameter (fig. 1). Significance of variance components was assessed by bootstrap sampling. We found that whenever the fitting algorithm converged, variance component estimations were significant. For some traits and some variance components, the bootstrap distributions of the estimated variances were bimodal, suggesting a strong influence of a particular hybrid combination. However, the estimates were globally closed to the median of the bootstrap distribution (see example fig. SF9). Therefore, we are confident with our estimations, conditionally to the parents of the diallel. 2015), the model was applied to each trait separately at the two temperatures. We obtained estimations of fixed and random effect parameters, their corresponding variances, residuals and residual variances. For each trait, normality of residuals and homogeneity of variances was checked. Broad sense heritability was measured as the ratio of the sum of genetic variance components to the total phenotypic variance. It varied between 0.05 to 0.98 for protein abundances and between 0.04 to 0.95 for fermentation traits. Altogether, protein abundance measurements were highly repeatable (median heritability of 0.53), while fermentation traits were more variable. Median broad sense heritability was 0.77 for fermentation kinetic trait, 0.49 for life-history traits, 0.36 for basic enological products and 0.32 for aromatic traits. Whatever the amount of residual variance, all genetic variance components were significant for all traits, except for t.lag at 18°, for which only the variances of additive effects were significant. We found that variances associated to each genetic effect differ in a large extent between the two temperatures (shown for fermentation traits in fig. SF12).

Because of their potential interest for wine-making, BLUPs of fermentation traits are presented in section Strain characterization of Supplementary Materials. In the following, we focus on genetic variance components.

Structuration of genetic variance components at the proteomic level

A Gaussian mixture model was used to classify the proteins according to their genetic variance components. The best model clearly identified nine clusters, each characterized by a particular profile of genetic variance components (fig. 2). Cluster 1 (88.4% of good assignments) consists of 11 proteins that have high variance of intra-specific heterosis effects and the smallest variance of inter-specific heterosis effects. Clusters 2, 4 and 9 have a very small variance of inbreeding effects. Clusters 2 and 4 differ from cluster 9 by their significant variance of inter-specific additive effects. 6.4% of proteins from cluster 2 (composed of 168 proteins with 93.2% of good assignments) can be attributed to cluster 4 and 10.4% of proteins from cluster 4 (65 proteins, 80.5% good assignments) to cluster 2. Proteins from clusters 3 (80.5% of good assignments) and 7 (93.3% of good assignments) have similar profiles. Indeed, 19.5% of the proteins from cluster 3 can be attributed to cluster 7 and 4% of the proteins from cluster 7 can be attributed to cluster 3. Cluster 3 consists in 39 proteins with relatively higher variance of additive and inbreeding effects. Cluster 7 has 627 proteins with higher variance of heterosis effects. Proteins from cluster 5 (144 proteins, 96% of good assignments) have significant variance of intra-specific additive effects but null variance of inter-specific additive effects and high heterosis and inbreeding effects variances. On the contrary, cluster 6 (102 proteins, 96.2% of good assignments) has null variance of intraspecific additive effects, small variance of additive inter-specific effects, and high variance of heterosis and inbreeding effects. Cluster 8 (96.9% of good assignments) consists of 24 proteins that have null variances of additive effects and high variances of heterosis and inbreeding effects. Finally, the 50 proteins in cluster 9 (95.4% of good assignments) are characterized by a null variance of additive inter-specific and inbreeding effects and high variance of intra-specific and inter-specific heterosis effects. Overall the same protein is generally found in two different clusters at the two temperatures (only 37% of proteins belong to the same cluster at the two temperatures).

The nine clusters were also clearly distinguishable from each other from their pattern of correlation between variance components (fig. 3). Globally, all variance components are negatively correlated, except for the variances of heterosis effects, σ 2

H w H w H w and σ 2 H b H b
H b , that are positively correlated (r = 0.47, fig. SF4).

Therefore, we can state that the 615 proteins at 18°and 26°f orm highly structured and well defined clusters according to their genetic variance component profiles.

Proteins sharing a similar variance component structure share functional properties

In each protein cluster we tested for enrichment in functional categories at the two temperatures separately. Clusters were split into two groups of proteins, those measured at 18°and those measured at 26°, and the enrichment analysis was performed for each group. The statistical tests were significant for each cluster, except for cluster 1 at 18°and cluster 6 at 26°(tab. ST4). Even though one protein generally falls into two different clusters at two different temperatures, functional enrichments were globally the same at the two temperatures. Indeed, we found a high correlation between Pearson's chi-squared residuals at both temperatures, except for clusters 3 and 9 (fig. SF5). Whenever a functional category was enriched/depleted at one temperature, it also tended to be enriched/depleted at the other temperature.

Cluster 1 is enriched with proteins quantified at 26°linked to response to stress, mating and transcription, and depleted with proteins related to cell fate and protein synthesis. Cluster 3 is enriched with proteins measured at 18°linked to amino-acid and nucleotide metabolism, and at 26°to cell fate and response to stress. Cluster 6 is enriched with proteins quantified at 18°l inked to protein synthesis and nucleotide metabolism, and depleted in proteins linked to metabolism, other than amino acid, nucleotide and carbon metabolism. Cluster 9 is enriched in proteins linked to transcription at both temperatures, it is enriched in proteins measured at 18°linked to response to stress and Heterosis vs Inbreeding 7
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Concerning the number of transcription factors, we found no correlation between the number of transcription factors and the components of genetic variation of protein abundances.

Finally, Pearson's chi-square test have been performed in order to investigate if there were differences between clusters regarding the proportion of heterotic proteins quantified in Blein-Nicolas et al. (2015). Results are shown in tab. 1: cluster 1, 2, 4 are enriched with heterotic proteins while in clusters 5, 7, 9 heterotic proteins are scarce (χ 2 = 54.29, p-value<0.05). Hence, heterotic proteins are preferably found in clusters characterized by low variance of inbreeding effects and high variances of intra-specific and inter-specific heterosis effects.

Briefly, despite poor correlations between variance components measured for the same protein at two temperatures, the nine clusters of proteins identified from the distribution of variance components group together proteins of similar function, based on their functional annotation. Heterotic proteins that show non-additive inheritance between parents and hybrids are mostly found in protein clusters with high variances of intraspecific and inter-specific heterosis effects and low variance of inbreeding effects.

Variance components of fermentation traits fall into the proteomic landscape

Using for the fermentation/life history traits the same clustering approach as for the proteins, we clearly identified three profiles of genetic variance components (fig. SF3 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 Variance components of fermentation traits. Fermentation traits are assigned to clusters identified at the proteomic level based on their membership probability computed through Gaussian finite mixture models. They are identified by the type and color combination of the cluster to which they are assigned. Numbers 1 to 9 identify class centers for each protein cluster. Labels are only given for outlier traits, i.e. those that do not belong to the 95% confidence interval of the genetic variance estimates of protein abundances on the plotted direction. trait level of Supplementary Materials).

In order to compare the patterns of genetic variation of protein abundances and fermentation traits, we tried to assign fermentation traits to proteomic clusters based on the Gaussian Mixture model fitted on protein abundances profiles, as explained in section Variance component analysis of Materials and Methods. We chose for each fermentation trait the cluster of maximal membership probability. Most traits were assigned to a single protein cluster with a probability higher than 80%. The exceptions were Sugar/EthanolYield (26°), X4MPP (26°), t.75 (26°), t.lag (26°) and t.lag at both temperatures. Average variance components for each cluster are represented in fig. 2. Altogether, the 56 fermentation traits fall into eight proteomic clusters, most of them being assigned to clusters 1 (16 traits), 2 (12 traits), 7 (12 traits), 3 (6 traits), 5 (5 traits). Note that no trait was assigned to cluster 8, which corresponds to the cluster with the lowest variances of additive effects. Despite similarities with protein abundance traits, fermentation traits are characterized by higher variance of additive and inbreeding effects and globally higher contrasts in genetic variance components (fig. 4). Overall, 8 traits were attributed to the same cluster at the two temperatures: J max , r, t-N max , Viability-t-75, X4MMP, Hexanoic acid, Hexanol, Ethanol.

In addition, we investigated, for each temperature, the link between protein category in each cluster and type of fermentation trait. We see that at 18°, most Basic Enological Parameters (BEP) fall in cluster 2 where we found proteins involved in metabolism and stress response. Life History Traits fall in cluster 7 (amino-acid and carbon metabolism) and carrying capacity K falls in cluster 9 (cell growth) while t-N max is found in cluster 6 (nucleotide metabolism and protein synthesis). At 26°, most Aromatic Traits fall in cluster 1 (cell fate, stress response), most Fermentation Kinetics traits are found in cluster 7 (aminoacid and carbon metabolism), and BEP are in cluster 4 (stress response).

In conclusion, traits are generally attributed to different clusters at the two temperatures, based on the underlying components of genetic variation. Those clusters are characterized by the enrichment in proteins with a certain functional category, that may vary between temperatures. Interestingly, we found an association between traits linked to different metabolic processes and proteins involved in such processes just by taking into account their genetic variance decomposition.
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Figure 5 Pearson's correlation test performed to investigate the intra-cluster correlations on proteomic data. For each cluster, correlation between variances of the genetic effects are indicated by a color-code. Warm colors stand for negative correlations and cold colors for positive correlations. * significant at p < 0.05; ** significant at p < 5 • 10 -3 ; *** significant at p < 5 • 10 -4 ; **** significant at p < 5 • 10 -5 . No symbol: not significant.

Intra-cluster correlations between variance components

Pearson's correlation coefficients were computed for each pair of variance components within each cluster of proteins. Results clearly show different correlation structures between groups, particularly concerning correlation between the variances of heterosis and inbreeding effects (fig. 5). In cluster 1, variances of additive effects strongly and negatively correlate with each other. In cluster 3, there is a slightly negative correlation between σ 2

A w A w A w
and the variances of heterosis effects, and there is a strong correlation between σ 2

A b A b A b
and variance of inbreeding effects. Cluster 4 is characterized by a weak negative correlation between σ 2

A w A w A w , σ 2 A b A b A b , σ 2 H w H w
H w variances, and between σ 2

A b A b A b
, and the variances of heterosis and inbreeding effects. Clusters 5 and 7 preserve the global correlation structure. In cluster 2, the variances of intra-specific heterosis and inbreeding effects are negatively correlated, in cluster 6 the variances of heterosis and inbreeding effects are positively correlated, in cluster 8 the variances of inter-specific heterosis and inbreeding effects are positively correlated, and in cluster 9 the variances of heterosis and inbreeding effects are negatively correlated. Altogether, when a statistical significant correlation between the variances of additive, heterosis and inbreeding effects is found, it is negative.

Variances of additive effects tend to be negatively correlated to variances of heterosis and inbreeding effects, and there is no straightforward relationship between the variances of heterosis and inbreeding effects: σ 2 B B B can be either negatively (cluster 9) or positively (cluster 6) correlated to both σ 2

H b H b H b and σ 2 H w H w H w , negatively correlated to σ 2 H w H w H w (cluster 2), positively correlated to σ 2 H b H b
H b (cluster 8). However, σ 2 B B B can also be independent from either σ 2 [START_REF] Bibliography Andersson | Genetic dissection of phenotypic diversity in farm animals[END_REF]2,[START_REF] Simons | réalisable réduit par les observations expérimentales, j'ai montré que l'utilisation de la voie du pentose-phosphate était un moyen d'économiser des ressources, en produisant de l'énergie à un prix inférieur, en termes de consommation de glucose. Il serait intéressant de faire d'autres comparaisons avec d'autres fonctions objectives pour mieux comprendre les bases métaboliques sous-jacentes de la variation des traits phénotypiques. Les perspectives futures seraient d'appliquer la méthode à un modèle à l'échelle du génome de levure[END_REF]4,5,7,8).

H w H w H w or σ 2 H b H b H b (clusters

Discussion

In this paper, we focused on the comparative analysis of genetic variance components estimated through the decomposition of traits value quantified in a half-diallel cross during or at the end of alcoholic fermentation. The cross design involved 11 yeast strains from two related species naturally associated with wine fermentations, S. cerevisiae and S. uvarum, and the set of traits quantified spanned from protein abundances to fermentation and life-history. Genetic variances have been estimated through a comprehensive genetic model that allowed us to decompose the phenotypic value of a cross, including the parental inbred strains, in terms of additive and interaction effects. This decomposition can be described in the following way. The parental inbred lines have two identical haploid genomes, while the hybrids have two different haploid genomes, each inherited by one parent. Additive effects refer to the average value conferred by a single haploid genome with respect to any other haploid genome, and interaction effects refer to the non-additive effect of a particular genotype computed as the difference between the particular diploid value and the average additive effect of its haploid genomes. The presence of the parental inbreds in the experimental design permits a decomposition of those effects into heterosis and inbreeding effects. Inbreeding effect is defined as the difference between the value of the inbred strain (with the same haploid genome twice) and the average of all the crosses having at least one copy of the haploid parental genome. Heterosis effect is defined as the difference between a single pairwise genome combination and the average value of hybrids having one or the other haploid genome. Thanks to the presence of two different yeast species in our experimental design, we could distinguish intraspecific and inter-specific genetic effects. Indeed, the additive effect of a strain and the heterosis effect of a hybrid between two strains may differ depending on whether the strains belong to the same species or not. Therefore, intra-specific (respectively inter-specific) additive effect refers to the average value conferred by a single haploid genome with respect to any other haploid genome from the same specie (respectively from another species), and intra-specific (respectively inter-specific) heterosis effect refers to the difference between a single pairwise genome combination from the same specie (respectively from the two species) and the average value of the intra-specific (respectively inter-specific) hybrids having one or the other haploid genome.

This general model could be adapted to consider mitochondrial effects, which we did not declare for biological and technical reasons given in Materials and Methods. If such effects do exist in our genetic material they are expected to be weak and confounded with other effects.

The variance components of the genetic effects defined above have been estimated using the linear mixed model (LMM) described in eq. 2. Whenever a variance component was significant, it meant that genetic differences were found between strains. We checked the ability of the LMM to estimate genetic parameters by means of computer simulations and the robustness of the estimations through bootstrap analysis. In the simulations, despite residual variances that were not well correlated to their true value, estimated genetic variances were found to highly correlate with their true value (fig. 1). However, residuals quantified on the proteomic data highly correlate with their true value (see section Protein abundances). Bootstrap analysis, performed by sampling the 55 hybrids with replacement, conditionally to the 11 parental strains, revealed that for each variance component the estimations in the experimental sample were close to the median of the estimations in the bootstrap samples. For some traits and some variance components, the distribution of the bootstrap estimated variances were bimodal, suggesting a strong influence from a particular hybrid combination. However, it was never flat or smooth, in agreement with the non arbitrary choice of the parameters. Therefore, we are confident about the estimations of the genetic variances, conditionally to the parents of the diallel.

We were able to characterize the 615 proteins and the 28 fermentation and life-history traits quantified at 18°and 26°by a particular profile of genetic variance components despite the small number of parental inbred strains from which the halfdiallel was built. We found that variances of intra-and interspecific effects differed in a large extent, pointing out that the genetic effects are highly influenced by crossing strains from the same species or not. The degree of intra-and inter-specific genetic variation captures the evolutionary history the two species have undergone for the different traits. For instance, traits with a low variance of intra-specific additive effects but high variance of inter-specific additive effects have a high potential to evolve in inter-but not intra-specific crosses.

Each trait has been treated at each temperature separately, considering trait × temperature as independent characters. Indeed, genotype-by-environment interactions affect very commonly phenotypic variation. In particular, it is well documented that the genetic architecture of a trait is not stable under varying environments, highlighting the fact that evolutionary processes may depend largely upon ecological conditions [START_REF] Falconer | Introduction to quantitative genetics[END_REF][START_REF] Lynch | Genetics and Analysis of Quantitative Traits[END_REF][START_REF] Hermisson | The Population Genetic Theory of Hidden Variation and Genetic Robustness[END_REF][START_REF] Robinson | The Impact of Environmental Heterogeneity on Genetic Architecture in a Wild Population of Soay Sheep[END_REF][START_REF] Malosetti | The statistical analysis of multi-environment data: modeling genotype-by-environment interaction and its genetic basis[END_REF]). Accordingly we found a weak correlation between genetic variances at the two temperatures.

The molecular phenotypes (protein abundances) reflect the underlying genetic factors involved in the cellular processes regulating the most integrated traits. So we investigated the distribution of the components of genetic variation of protein abundances in relation to fermentation and life-history trait variance components. We found nine clear-cut clusters of protein variance components, and we were able to assign traits to these clusters based on their genetic variance components. Overall, the profiles of the fermentation and life-history traits associated to each cluster were close to that of the proteomic level, but they were characterized by higher variance of additive effects; further, we could not assign any trait to cluster 8, which has null Heterosis vs Inbreeding 11
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variance of additive effects, i.e. which is the group with the less heritable proteins. Altogether these results reveal that the most integrated traits have a higher evolutionary potential compared to protein abundances. We tested for cluster enrichment in protein functions, based on the functional annotation of the proteins. Clusters were found to group together proteins of similar functions. Despite the fact that 63% of the proteins were found in different clusters at the two temperatures, the metabolic functions were preserved. This suggests temperature-specific regulatory changes that achieve the maintenance of cell functions. At the trait level, 16 over 28 fermentation/life-history traits (57%) fell into the same cluster at the two temperatures (fig. SF8). For the 12 remaining traits, changes in the distribution of variance components between the two temperatures can be explained by G × E interactions.

Beside, we have shown that the clusters were characterized by a particular profile of genetic variance components, which suggests that traits that group together share a similar evolutionary history. If all traits were neutral, they would have shown the same equilibrium level of total genetic variance of approximately 2NV m (N the effective population size and V m the mutational variance [START_REF] Lynch | PHENOTYPIC EVOLUTION BY NEUTRAL MUTATION[END_REF])) with a similar partition of genetic variance components. The existence of different profiles of variance components probably reflects that the different types of traits have been subject to particular selective pressures.

Beyond, the nine clusters were clearly distinguishable from each other from their pattern of correlation between variance components. Overall, the variances of intra-and inter-specific additive effects were negatively correlated to the variances of heterosis and inbreeding effects. This may reveal differences in the patterns of allele frequencies at the underlying loci. In a biallelic case, additive genetic variance is always maximum for intermediate allele frequencies, while dominance and epistatic variances (which are components of the variances of heterosis and inbreeding effects) are maximum for more extreme allele frequencies [START_REF] Hill | Data and theory point to mainly additive genetic variance for complex traits[END_REF]). A trait with a high variance of additive effects is therefore expected to have lower dominance or epistatic variances. Conversely, a trait with low variance of additive effects may exhibit high dominance and epistatic variances.

In the common view, heterosis and inbreeding are corollary effects. However, we have shown that the variances of heterosis and inbreeding effects could be negatively, positively or not correlated to each other. For a better understanding of such a decoupling, we simulated a half-diallel design between N parental strains (for details see section Half-diallel simulation construction in Supplementary Materials). We computed the phenotypic values of the parental lines and hybrids starting with a simple additive model (neither dominance at any locus nor epistasis), then we added dominance and/or epistasis effects. We considered different degrees of dominance for each couple of alleles (including dominance of the strongest allele, h=0) and additive × additive and dominance × dominance epistasis, and we let the number of alleles per locus to vary. We considered all possible combinations of these effects. Finally we decomposed the values of the simulated traits into additive, heterosis and inbreeding effects.

Not surprisingly, the variances of heterosis and inbreeding effects are both null when there is neither dominance nor epistasis. If there is additive × additive epistasis with no dominance, the variances of heterosis and inbreeding effects are strictly correlated, with very low variance of heterosis effects. In the other conditions, the results depend on the number of parental lines. With three parents, the variance of heterosis and inbreeding effects are strictly equal, as it can be shown analytically (see section Inbreeding depression and heterosis variances are equal in three-parent diallel in Supplementary Materials). Otherwise the correlation between the variances of heterosis and inbreeding effects varies in function of the number of loci affecting the trait of interest, on the frequency of alleles in the population and on the presence of dominance and epistatic effects. In general, the correlation between the variances of heterosis and inbreeding effects tends to become null when the number of parental lines, the number of alleles per locus and the number of loci increase. Given these parameters, whether there is dominance or not, and whatever the type of dominance, the lowest correlations between the variances of heterosis and inbreeding effects are observed when there are both types of epistasis together (fig. 6 and fig. SF10). However in no case we get negative correlations between the two variances. Further, we decided to consider the data obtained on all the different cases together and we run as previously a Gaussian Mixture Model to cluster genetic variances components. We computed intra-cluster correlations varying the number of alleles per locus, the number of loci and the distribution in which we drew allele values. Those correlations did not show profiles similar to those obtained with real data (correlations between genetic effects are commonly positive or null).

Classical genetic studies and modern molecular evolutionary approaches now suggest that inbreeding effects and heterosis are predominantly caused by the presence of recessive deleterious mutations in the population [START_REF] Charlesworth | The genetic basis of inbreeding depression[END_REF][START_REF] Charlesworth | The genetics of inbreeding depression[END_REF]. Therefore understanding the effects of selection against deleterious alleles is crucial. Population structure also plays a key role in this framework. Indeed, population subdivision increases homozygosity through inbreeding, an effective process for purging deleterious alleles, but it also decreases selection efficiency by decreasing the genetic diversity. Allele frequency changes also modify the genetic variance components [START_REF] Hill | Data and theory point to mainly additive genetic variance for complex traits[END_REF][START_REF] Barton | How does epistasis influence the response to selection?[END_REF]. A more complex model, which takes into account selection, allele frequency, population structure and the presence of deleterious mutations is thus needed to explain our observations. [START_REF] Glémin | Patterns of inbreeding depression and architecture of the load in subdivided populations[END_REF] have discussed about the patterns of correlation between inbreeding effects and heterosis in a structured population assuming low frequencies of deleterious mutations, only present in the heterozygous state. They defined within-and between-demes inbreeding depression as the decline in mean fitness of selfed individuals relative to out-crossed individuals within the demes and as the decline in mean fitness of selfed individuals relative to out-crossed individuals between demes, respectively; and heterosis as the excess in mean fitness of individuals produced by out-crosses between demes relative to mean fitness of individuals produced by out-crosses within the demes. They stated that population structure decreases withindemes inbreeding depression while it increases between-deme inbreeding depression, and that increasing the inbreeding coefficient reduces within-and between-deme inbreeding depression and heterosis. A similar result was obtained by Roze and Rousset (2004) who considered a diffusion model in a population of partially selfing individuals subdivided according to an island model, with a large but finite number of demes. They found that generally within-deme inbreeding depression and heterosis are positively correlated upon selfing and, when the degree of pop- In conclusion, our findings have special relevance in three main directions: (i) Detection of Quantitative Trait Loci (QTL). Variances of additive effects are crucial for the detection of genes with significant quantitative effect, and variances of heterosis/inbreeding effects for the detection of gene-gene interactions when the part of genetic variance they explain is large; (ii) Integration of proteomic data into Genome Scale Metabolic (GSM) model: we assigned fermentation traits to clusters obtained on the components of genetic variation of protein abundances. Traits associated to a metabolic process were linked to proteins involved to such process, therefore we are confident that integrating proteins related to the most integrated traits into a GSM could improve their prediction, with particular attention to the prediction of heterosis; (iii) Model heterosis and inbreeding variation: we have highlighted various patterns of variation between the variances of heterosis and inbreeding effects that cannot be explained with simple quantitative genetics models. It would be interesting to construct in silico experiments to search for the key parameters that drive these patterns.

Conclusions

In this analysis, I have characterize phenotypic variation at each level of cellular organization by means of genetic and residual variance components contributing to each trait through the decomposition of the particular diallel-cross design.

Traits have been treated at each temperature as independent characters and the portion of variance attributed to genetic effects was further decomposed into additive, inbreeding and heterosis effects, distinguishing intra-and inter-specific additive and heterosis effects.

The analysis of variance components in the population have allowed to identify:

• the presence of genotype-by-environment interaction at every level of cellular organization;

• the independence of heterosis variances on the type of cross at the proteomic level;

• a buffering mechanism towards genetic interaction for life-history and fermentation traits;

• groups of protein abundances and fermentation and life-history traits that have possibly been submitted to the same selective pressures;

Along, the most striking result was the possible decoupling between heterosis and inbreeding depression that can be explained by simple genetic models with epistatic interactions.

Beside, integration of the two different levels of cellular organization have been performed through association of proteins and fermentation/life-history traits sharing a similar partition of genetic variance components: groups identified at the proteomic level shared functional properties, and it was possible to associate fermentation and life-history traits to proteomic groups.

In the following, I focus in the characterization of the more integrated traits (life-history and fermentation) by means of the underlying metabolic fluxes in order to investigate the main mechanisms underlying multi-trait variation. Indeed, metabolic fluxes result from network functioning and integrate the activities of possibly many proteins. To this end, I have introduced protein abundance data into constraint-based models and predicted steady-state fluxes for each strain per temperature separately.

Chapter 4

M 1 M 3 M 2 v 0 v 1 v 2 v 3 v 4
The dynamics of the process results in temporal changes of metabolite concentrations m i of M i . Here, m 1 changes following:

ṁ1 = v 0 -v 1 -v 2

Mathematical formalism

In a mathematically consistent framework, it is possible to define an M × N stoichiometric matrix S in which rows correspond to the stoichiometric coefficients of the corresponding metabolites of all the reactions. In the toy model above, the stoichiometric coefficients are 1, -1 or 0. Assuming mass-balance and limited interval of variation for the different reactions, the problem consists in finding the set of fluxes v ∈ R N such that Sv = ṁ (4.1)

v inf ≤ v ≤ v sup (4.2)
where ṁ ∈ R M is the set of metabolite input/output rates, and the vectors v inf , v sup are the extremes of variability of the fluxes. In general, M ≤ N and the system of stoichiometric equations is typically under-determined. Rather than deriving a single solution, constraint-based models have an associated solution space:

L = {v|Sv = ṁ, v inf ≤ v ≤ v sup }
in which all feasible v exist given the imposed constraints that account for the different processes acting on and in cells. Eq. 4.1 describes metabolic fluxes that are constrained by network topology. In general, it is assumed that cells consume and produce metabolites at a constant rate in a mass-balance manner, that is cells are under steady-state and ṁ = 0 represents a further constraint. Fluxes are also constrained by upper and lower bounds, generally known from the literature and used to model a specific cellular process (ineq. 4.2). Further constraints such as physiologically relevant fluxes can be introduced to reduce L. Different techniques have been proposed to deduce network behavior by dimensional reduction of L, most of them based on two key components: the method of analysis to predict fluxes and observed/known constraints on the biological system.

Flux Balance Analysis (FBA).

The first constraint-based method for biological predictions was Flux Balance Analysis (Fell and Small, 1986;[START_REF] Varma | Metabolic flux balancing: basic concepts, scientific and practical use[END_REF]. In FBA, an objective function is introduced and is assumed to be maximized/minimized by the cell, such as the consumption/production of metabolites or of biomass. It requires experimental inputs to establish the metabolite composition of cell biomass. Notice that the optimal solution to the flux-balance problem is rarely unique with many possible, and equally optimal, solutions.

Flux Variability Analysis (FVA).

The method consists in the identification of lower and upper values of fluxes through each reaction iteratively when the flux of the objective is typically constrained to its maximum/minimum value [START_REF] Gudmundsson | Computationally efficient flux variability analysis[END_REF]. Reactions that support a low variability of fluxes are likely to be of a higher importance to an organism.

Both methods, FBA and FVA, require identification of objective functions given the experimental data. However, objective functions may change under changing environments and under different conditions.

Markov Chain Monte Carlo techniques (MCMC)

. This approach does not require to assume any objective. It consists in sampling in L to provide a probability distribution for the feasible fluxes. The imposition of constraints in the model defines the associated solution space of the CBM, i.e.

L ≡ L( ṁ;

v inf ; v sup ) (4.3)
Simple constraints include input and output ranges on the basis of uptake/secretion of metabolites and genetic knockouts by setting reactions to zero. More advanced techniques include setting metabolite rates or flux bounds to experimentally measured values (reviewed in section 4.2).

Exploring the space of possible solutions

MCMC techniques have been proposed to approximately compute the posterior distribution of fluxes in L, such as the Hit and Run (HR) algorithm (Bélisle et al., 1993). Recently, a novel method, which combines statistical physics and Bayesian approaches, and which does not require sampling in L, has been proposed by Braunstein et al. (2017), the Expectation Propagation algorithm (EP algorithm).

Hit and Run algorithm

The problem consists in efficiently generate samples in L ⊂ R N with polygonal constraints imposed by the lower and upper bounds of fluxes. The algorithm proposed by Bélisle et al. (1993) consists in iteratively exploring the solution space by increasing the dimensionality (k):

• Step 0. Choose a starting point v 0 ∈ L, with k = 0;

• Step 1. Generate a random direction e k ∈ R N , with e k = 1;

• Step 2. Choose λ k ∈ Λ k , where Λ k = {λ ∈ R : v k + λe k ∈ L} from the density distribution f k (λ) = f (v k + λe k ) f (v k + re k )dr (4.4)
and where f (v) is the prior density distribution of v ∈ L, assuming a multinomial distribution.

• Step 3. Set v k+1 = v k + λ k e k and k = k + 1; • Step 4. Return to Step 1.
The accuracy obtained with HR depends of course on the number of samples, and sampling accurately can be very time consuming. Braunstein et al. (2017) formulated the problem as follows: consider the set of fluxes v compatible with eq. 4.1 and ineq. 4.2. It is possible to define a quadratic energy function E (v) whose minimum(s) lies on the assignment of variables v satisfying the stoichiometric constraints in equation 4.1:

Expectation propagation algorithm

E (v) = 1 2 (Sv -ṁ) (Sv -ṁ) (4.5)
It is easy to see that if v satisfies eq. 4.1, E (v) will be at a/the minimum. Therefore, the likelihood of observing ṁ given a set of fluxes v can be expressed as a Boltzmann distribution:

P ( ṁ|v) = β 2π M 2 e -β 2 (Sv-ṁ) T (Sv-ṁ) (4.6)
where β is a positive parameter, the inverse of temperature in statistical physics jargon, that governs the penalty of whose configurations of fluxes that are far from the minimum of the energy. Using Bayes formula, the posterior probability of observing the set of fluxes v given ṁ is:

P (v| ṁ) = P ( ṁ|v)P (v) P ( ṁ) (4.7)
where the prior

P (v) = N n=1 ψ n (v n ) = N n=1 1(v n ∈ [v inf n , v sup n ]) v sup n -v inf n (4.8)
The function

1(v n ∈ [v inf n , v sup n ]) is an indicator function that takes values 1 if v n ∈ [v inf n , v sup n
] and 0 otherwise. It constraints flux values to verify the inequality imposed in eq. 4.2. An expression for the posterior distribution is:

P (v| ṁ) = 1 P ( ṁ) β 2π M 2 e -β 2 (Sv-ṁ) T (Sv-ṁ) N n=1 ψ n (v n ) (4.9)
Computation of the marginal distribution P (v n | ṁ) for each n ∈ {1, 2, . . . , N } requires calculation of multiple integrals, which is computationally very expensive and cannot be performed analytically in a efficient way. Therefore, the EP technique suggests to replace the prior distribution of fluxes, but not the n-th flux, by a Gaussian distribution

φ m (v m ; a m , d m ) = e -(vm-am) 2 2dm √ 2πd m (4.10)
whose mean and variance are constrained to be equal to the one of ψ m (v m ). To this end, consider the n-th flux, its corresponding approximate prior φ n (v n ; a n , d n ) and define a tilted distribution Q (n) as

Q (n) (v| ṁ) ≡ 1 Z Q (n) e -β 2 (Sv-ṁ) T (Sv-ṁ) ψ n (v n ) m =n φ m (v m ) (4.11)
where Z Q (n) is the normalization constant:

Z Q (n) = d n ve -β 2 (Sv-ṁ) T (Sv-ṁ) ψ n (v n ) m =n φ m (v m ) (4.12)
The problem consists in finding the unknown parameters a n and d n of φ n (v n ; a n , d n ) such that the multivariate-truncated Gaussian distribution

Q(v| ṁ) ≡ 1 Z Q e -β 2 (Sv-ṁ) T (Sv-ṁ) N n=1 φ n (v n ) (4.13)
is as close as possible to Q (n) . This process can be performed by matching the first two moments of the distribution

v n Q (n) = v n Q v 2 n Q (n) = v 2 n Q

Integration of experimental data

73 from which a relation for the parameters a n and d n can be found through sequentially repeating the update step for all fluxes and iterate until a numerical convergence is reached.

Integration of experimental data

The advent of high-throughput techniques have allowed quantification of omic data that have encouraged scientists to propose novel methods for the integration into CBM. They can be used to add an additional layer of constraints for reaction fluxes [START_REF] Patil | Uncovering transcriptional regulation of metabolism by using metabolic network topology[END_REF], to determine context specific flux distributions [START_REF] Lobel | Integrative Genomic Analysis Identifies Isoleucine and CodY as Regulators of Listeria monocytogenes Virulence[END_REF] or to compare and validate FBA predictions [START_REF] Schuetz | Multidimensional Optimality of Microbial Metabolism[END_REF]. Indeed, experimental data, even incomplete, provides information about the intra-cellular processes in the organisms. Different approaches have been proposed, with different rationales and advantages:

GIMME (Gene Inactivity Moderated by Metabolism and Expression) uses quantitative gene expression data and one or more presupposed metabolic objectives to produce the context-specific reconstruction that is most consistent with the available data [START_REF] Becker | Context-specific metabolic networks are consistent with experiments[END_REF]. Under the assumption that environmental changes determine metabolic pathway usage, enzymes associated to metabolic pathways that are not used are assumed to be not synthesized. Therefore, the method searches for sub-models by constraining to zero the fluxes to which no associated gene expression data is observed. In this way, each condition may be characterized by a different combination of fluxes.

Eflux. A variation of GIMME was proposed [START_REF] Colijn | Interpreting expression data with metabolic flux models: predicting mycobacterium tuberculosis mycolic acid production[END_REF] that used transcriptomic expression data to model the maximum possible flux through metabolic reactions. When the expression for a particular enzyme-coding gene is low (relative to some reference), a tight constraint is posed. When expression is high the constraint is looser. Then FBA is performed with the applied constraints and an appropriate objective function. The method was successfully applied to study light and temperature acclimation in Arabidopsis thaliana [START_REF] Töpfer | Integration of genome-scale modeling and transcript profiling reveals metabolic pathways underlying light and temperature acclimation in arabidopsis[END_REF]. Instead of a single objective function, the authors considered the maximization of a collection of metabolic functions that were characterized under different environmental conditions. The method allowed to determine which metabolic pathways, from both primary and secondary metabolism, were significantly affected in the experiments.

IOMA or Integrative Omics-Metabolic Analysis method is formulated as a quadratic programming problem that seeks a steady-state flux distribution, in which flux through reactions with measured proteomic and metabolomic data are as consistent as possible with kinetically derived flux estimations [START_REF] Yizhak | Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model[END_REF]. It assumes that protein abundances are proportional to kinetic fluxes:

v kin i = E i (k E i + i ) (4.14)
where v kin i denotes the flux of the i-th kinetic reaction, E i the abundance of the enzyme associated to the i-th reaction, k E i the kinetic constant associated to reaction i and i is a residual. The problem turns in finding the set of fluxes and of kinetic constants that satisfy the stoichiometric and constrains on fluxes while minimizing the variance of the residuals. In addition, metabolomic data can be exploited to estimate kinetic constants. Lee et al. (2012) is based on maximization of the correlation between experimentally measured absolute gene expression data or protein abundances and predicted internal reaction fluxes. It assumes that the likely solution in L minimizes the distance between absolute gene expression profile and that of fluxes. The problem is formulated as a linear programming problem, and turns in finding the set of fluxes for which:

Profile comparison. The method proposed by

Z = k j=1 1 σ i |v i -E i | (4.15)
is minimum.

In their work, Lee et al. (2012) have shown that the method proposed outperformed with respect to traditional methods in predicting exchange fluxes (Table 4.1), using quantitative transcriptomic data acquired from S. cerevisiae cultures under two growth conditions. This approach improved prediction and did not require knowledge of the biomass composition of the organism under the conditions of interest. For these reasons, I have chosen to adopt a similar approach for predicting metabolic fluxes in the HeterosYeast dataset. (Lee et al., 2012). The profile comparison method results in a better prediction of fluxes.

Flux

The DynamoYeast model

The DynamoYeast is a previously developed constraint-based model of central carbon metabolism of S. cerevisiae (Celton et al., 2012). This model comprises the cytosol, mitochondria and extracellular medium and includes upper and lower glycolysis, the PPP (Pentose Phosphate Pathway), the synthesis of glycerol, the synthesis of ethanol, and the reductive and oxidative branches of the TCA as the main metabolic pathways. It consisted of 70 reactions and 60 metabolites. 

Sampling the solution space

The feasible space of solution L of fluxes from the DynamosYeast model was first characterized by the posterior distribution of fluxes obtained through the HR sampling method (implemented in R by Meersche et al. (2009)). We compared the efficiency of the HR algorithm to the predictions obtained through the EP algorithm (Braunstein et al., 2017).

The posterior density distribution obtained by HR and EP algorithms were compared after running the HR with a burning length equal to 10 6 and a jump of 0.5, for a number of iteration from 10 6 to 10 7 , and the EP algorithm with a high β parameter (Boltzmann inverse temperature parameter). Figure 4.2 shows the sampled space of solution through the HR (histograms) and the EP estimate (red curve). Even though the results were not exactly the same, the two distributions were similar. q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q -500 0 500
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-500 0 500 HR EP Corr= 1 p-value= 0 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0 20000 50000 Figure 4.4 shows the relation between means and variances estimated through EP and HR for different number of iterations sampled points in L. It shows that the correlation between means and variances estimated through the two methods increase as the number of the HR samples increases. Assuming that the HR algorithm returns the true distribution of fluxes, it is easy to see that means are well predicted by the EP algorithm, although variances are underestimated.

We further investigated if the EP algorithm well predicted the variance-covariance matrix between the DynamoYeast fluxes. Figure 4.3 shows the relation between eight pairwise fluxes randomly chosen. Correlation ellipses (red curve) have been obtained through the EP algorithm. As can be seen, the EP algorithm well predicts the variance-covariance matrix between fluxes satisfying eq. 4.1 and 4.2, on the basis of the HR predictions. Nidelet et al. (2016) have analyzed the diversity of metabolic fluxes of 43 yeast strains from S. cerevisiae from six different ecological origins, grown in wine fermentation conditions. Typical wine fermentation comprises a lag phase, a growth phase of approximately 24-36 h followed by a stationary phase, during which most of the sugar is fermented. In the study, production of biomass and metabolites, including ethanol, glycerol, acetate, succinate, pyruvate and alpha-ketoglutarate were measured during the growth phase (at 11 g/L CO 2 released), which can be considered as steady state (Table 4.2). In order to check the DynamosYeast model, we reproduced the data from Nidelet et al. ( 2016) and predicted internal fluxes for each of the 43 yeast strains, using as additional constraints the observations. Figure 4.5 shows a schematic representation of the variability of predicted fluxes between the 43 strains. Most fluxes, including the biomass pseudo-flux, show a wide range of variation among strains, except for the glycolysis and ethanol synthesis pathways (Nidelet et al., 2016).

Constraining the solution space with experimental data

We also reproduced two figures from Nidelet et al. (2016). Figure 4.6 shows the between-strains coefficient of variation, that confirm that all strains seem to be optimized for glycolysis and ethanol production, while the most variable pathway was the pentose-phosphate.

Moreover, the analysis of pairwise correlations between fluxes revealed two antagonistic ways of functioning of central carbon metabolism (figure 4.7). Mitochondrial fluxes are positively correlated to each other, and positively correlated with pentose phosphate pathway, while glycolysis fluxes are positively correlated, and negatively correlated to mitochondrial fluxes. High glycolysis is associated with high biomass production. HR and EP algorithms can be used to explore the probability distribution of the feasible solution space, with or without experimental observations, instead of minimizing an objective function. We used the DynamoYeast model to compute four probability distributions of fluxes (figure 4.8):
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1. The feasible solution space computed with the HR algorithm, hereafter called "null distribution" (in orange in the figure).

2. Null posterior distribution obtained with the EP algorithm (red).

3. Posterior distribution obtained with the HR algorithm after constraining the range of variation of observed exchange fluxes (dark green).

4. Posterior distribution obtained with the EP algorithm after constraining the range of variation of observed exchange fluxes (light green).

All four distributions were compared to the FBA solution found in Nidelet et al. (2016) by minimizing glucose uptake and constraining the range of variation of exchange fluxes by the observations (black dotted line).

Figure 4.8 shows typical results obtained after a simulation run for one of the 43 yeast strains. Again, we show that the null distributions found by the EP algorithm are consistent with the ones proposed by the HR algorithm. When constraining with the observed exchange fluxes, a much smaller range of the null feasible space is explored (compare the green distributions to the red ones). This tells us that the observation of exchange fluxes fully constrain the functioning of central carbon metabolism. Unsurprisingly, the CO 2 flux, which is directly observed, is correctly predicted.

The distributions of the HR solutions constrained by the observations appear as rectangles in figure 4.8. In order to better discriminate between the probabilities within the constrained range of variation, we would need to increase the total number of iterations. On the contrary, the EP algorithm provides a full probabilistic distribution of the constrained feasible space at a low computational cost. Amazingly, the observed CO 2 flux is close to the a posteriori mode of the null EP distribution of the feasible space. In more than 50% of cases, the CO 2 flux can be higher than the observed fluxes. This shows that there could be other modes of cell functioning that would lead to higher rates of transformation of glucose into CO 2 and energy.

In all constrained cases, one can compare the mode of the a posteriori distribution (in green) to the FBA solution (dark dashed lines) (Figure 4.8). For most fluxes, the FBA solution does not correspond to the a posteriori mode of the constrained EP distribution. Remember that the constrained a posteriori distribution reflects all possible fluxes leading to exchange fluxes comparable to the observations. Among them, the FBA solution is the one corresponding to the lower consumption rate. Hence, all other solutions correspond to higher glucose consumption rate. The position of the FBA solutions within the posterior distribution is interesting. For the Ru5p_R5p reaction (pentose-phosphate), the FBA solution is at the right of the constrained distribution. Hence, lower fluxes in the pentose-phosphate pathways could lead to the same observations at the price of a higher glucose consumption rate. This suggests that pentose-phosphate pathway helps producing energy while saving resources. On the contrary, mitochondrial transport of succinate (Succ_tm) and acetate (Ac_tm) shows a FBA solution at leftmost of the constrained solution space. Further comparisons, with alternative objective functions would be interesting in the future to better understand metabolic choices of living species.

Altogether, this study confirmed that it is possible to use the EP algorithm to find feasible ranges of non observed fluxes, once constraining the CBM with observations.

Conclusion

The EP algorithm is likely to give a good approximation for the posterior joint distribution of fluxes of the DynamosYeast model. In the following, we used this algorithm to predict unobserved metabolic fluxes for each strain per temperature combination from the HeterosYeast dataset through integration of proteomic data. In the HeterosYeast data set, we could not propose an objective function to minimize. Furthermore, the only observed exchange flux was the CO 2 flux. In Chapter 5, we propose a new method based on profile comparison (Lee et al., 2012) to integrate proteomic data information into the CBM.

Introduction

Phenotypic diversity within the living world results from millions of years of evolution. Most evolutionary pressures like mutation, random genetic drift, migration or recombination shape phenotypic diversity by directly changing the genetic composition of populations. The effects of selection are more difficult to predict because the fittest individuals are picked out from their phenotype, which results from a complex interaction between genotype and environment [START_REF] Fisher | The Genetical Theory of Natural Selection[END_REF]). An additional layer of complexity results from the fact that life-history traits [START_REF] Stearns | The evolution of life histories[END_REF]) are the observable results of unobservable processes that occur at the cellular scale. During the last decades, there has been a growing interest for a better understanding of the so-called genotype-phenotype map in evolutionary biology (see e.g. [START_REF] Wagner | The pleiotropic structure of the genotype-phenotype map: the evolvability of complex organisms[END_REF]). In parallel, novel profiling technologies and accurate high throughput phenotyping strategies have led to the genome-scale characterization of genomic sequences as well as to the quantification of transcriptomic, proteomic and metabolomic data at the individual level. Linking cellular processes to observable phenotypic traits is becoming a new discipline in Biology, known as integrative biology.

Unicellular organisms are choice model species for integrative biology because most observable traits are direct products from cell metabolism, without the complications of the tissue and organ levels that need to be taken into account in multicellular species. Schematically, cells sense the environment and transfer the information via signal transduction chains that interact Chapter 5. Data integration uncovers the metabolic bases of phenotypic variation in yeast with the gene regulation network. The gene regulatory network modulates transcription, translation and post-translational modifications according to environmental signals, which results in variations of protein abundances. Differential abundances of enzymatic proteins affect the fluxes of matter and energy that are related to phenotypic traits, including life-history traits and fitness. Thus, in unicellulars, five integration levels are usually considered: genomic, transcriptomic, proteomic (including post-translational modifications), metabolic and cellular or observable trait level. The last level is the most integrated, and it encompasses a variety of traits more or less related to fitness.

While genomic, transcriptomic, proteomic and trait levels are now readily measurable on numbers of individuals thanks to technical progresses, metabolic fluxes are still difficult to measure. Metabolic Flux Analysis is powerful (Antoniewicz 2015). However, it is based on RMN and differential usage of radioactive isotopes. It remains low-throughput and cannot be applied on numerous individuals. Technical developments in mass spectrometry popularized metabolomics (Nicholson and Lindon 2008), which allowed to characterize the metabolome, that represents the complete set of metabolites in a cell, tissue, organ or organism. However, the technique still suffers from standardization procedures and does not allow for high-throughput quantitative comparisons (Riekeberg and Powers 2017).

Taking advantage from the recent progresses in genome-scale functional annotation, constraint-based metabolic models provide a mathematical framework that allows predicting internal cellular fluxes from a priori knowledge on thermodynamic constraints on individual enzymatic reactions, steady state hypotheses and the genome-scale stoichiometry matrix of all metabolic reactions. The idea is that a given set of environmental conditions will drive a cell to a steady state during which internal metabolites stay at a constant concentration while exchange fluxes are constant and correspond to a constant import/export rate. However, because the number of metabolites is much higher than the number of reactions, the system has an infinite number of solutions. Flux Balance Analysis (Fell and Small 1986;[START_REF] Watson | Metabolic maps for the apple ii[END_REF]) consists in choosing, among all possible solutions, the one that maximizes the biomass pseudo-flux. From a population geneticist point of view, this method is questionable because evolution is not always based on optimization principles [START_REF] Gould | The spandrels of san marco and the panglossian paradigm: a critique of the adaptationist programme[END_REF]. However, it was shown to be relevant in some cases, like chemostat culture of Escherichia coli [START_REF] Edwards | In silico predictions of escherichia coli metabolic capabilities are consistent with experimental data[END_REF]. Data-driven methods have also been proposed, that consist in choosing the most likely solution given observed transcriptomic, proteomic or metabolomic data (see the review by [START_REF] Töpfer | Integration of metabolomics data into metabolic networks[END_REF]). Among all these methods, the one from Lee et al. (2012) sounds promising for studies at the population/species level. It is based on the realistic assumption that, at the genome scale, fluxes should covary with enzymatic protein abundances. Whatever the method, comparisons rely on the probability distribution of the solution space, which is analytically untractable because of the soichiometry constraints. Recently, Braunstein et al. (2017) proposed a bayesian probabilistic method to characterize the solution space, that proved to be much faster than the classical hit-and-run algorithm (Bélisle et al. 1993) and allow for analyses at both genome-and populationscales.

The so-called HeterosYeast project consisted in studying the molecular bases of heterosis in yeast species at two different levels of integration, the proteomic level and the observable trait level (Blein-Nicolas et al. 2013, 2015;da Silva et al. 2015).

A diallel design including two yeast species involved in wine fermentation was realized and the hybrid and parental strains were monitored during fermentation on grape juice at two temperatures. Observable and proteomic traits were analyzed separately. Briefly, the most important findings were homeostasis of the interspecific hybrids observed at the trait level da Silva et al. (2015) and the predominance of inter-specific heterosis at the proteomic level Blein-Nicolas et al. (2015). A more careful analysis of genetic variance components confirmed that observable phenotypic traits tend to exhibit higher additive genetic variances and lower interaction variances than proteomic traits (Petrizzelli et al. 2019). Yet, the link between variation at the trait level and variation at the proteomic level is still missing.

Given the important yeast genomic ressources (Cherry et al. 2012a), a number of curated genome-scale metabolic models are now available [START_REF] Caspi | The metacyc database of metabolic pathways and enzymes and the biocyc collection of pathway/genome databases[END_REF]). Among those, the Dy-namoYeast model (Celton et al. 2012) describes yeast central carbon metabolism. It is small enough (70 reactions) to remain tractable, and has been tested against experimental data (Nidelet et al. 2016).

The availability of the HeterosYeast dataset, of a curated metabolic model of yeast central carbon metabolism and of a probabilistic approach to explore the solution space, encouraged us to integrate the experimental proteomic data in the metabolic model in order to predict unobserved metabolic fluxes. We used predicted fluxes to bridge the gap between proteomic data and observable traits, and better understand the metabolic bases of life-history traits variation.

Material and Methods

Materials

The HeterosYeast dataset. The genetic material of the experimental design consisted in 7 strains of S. cerevisiae and 4 strains of S. uvarum associated to various food-processes (enology, brewery, cider fermentation and distillery) or isolated from natural environment (oak exudates). The 11 parental lines were selfed and pairwise crossed, which resulted in a half-diallel design with a total of 66 strains: 11 inbred lines, 27 intra-specific hybrids (21 for S. cerevisiae, noted S. c., and 6 for S. uvarum, noted S. u.) and 28 inter-specific (noted S. u. × S. c). The 66 strains were grown in triplicate in fermentors at two temperatures, 26°C and 18°, in a medium close to enological conditions (Sauvignon blanc grape juice, da Silva et al. (2015)). From a total of 396 alcoholic fermentations (66 strains × 2 temperatures × 3 replicas), 31 failed due to poor fermenting abilities of some strains. The design was implemented considering a block as two sets of 27 fermentations (26 plus a control without yeast to check for contamination), one carried out at 26°C and the other at 18°. The distribution of the strains in the block design was randomized to minimize the residual variance of the estimators of the strain and temperature effects, as described in Albertin et al. (2013b).

For each alcoholic fermentation, two types of phenotypic traits were measured or estimated from sophisticated data adjustment models: 35 fermentation traits and 615 protein abundances.

The fermentation traits were classified into four categories (da Silva et al. 2015):

• Kinetics parameters, computed from the CO 2 release curve modeled as a Weibull function fitted on CO 2 release quantification monitored by weight loss of bioreactors: the fermentation lag-phase, t-lag (h); the time to reach the inflec-M. Petrizzelli et al.
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Chapter 5. Data integration uncovers the metabolic bases of phenotypic variation in yeast tion point out of the fermentation lag-phase, t-V max (h); the fermentation time at which 45 gL -1 and 75 gL -1 of CO 2 was released, out of the fermentation lag-phase, t-45 (h) and t-75 (h) respectively; the time between t-lag and the time at which the CO 2 emission rate became less than, or equal to, 0.05gL -1 h -1 , AFtime (h); the maximum CO 2 release rate, V max (gL -1 h -1 ); and the total amount of CO 2 released at the end of the fermentation, CO 2max (gL -1 ). • Life history traits, estimated and computed from the cell concentration curves over time, modeled from population growth, cell size and viability quantified by flow cytometry analysis: the growth lag-phase, t-N 0 (h); the carrying capacity, K (log[cells/mL]); the time at which the carrying capacity was reached, t-N max (h); the intrinsic growth rate, r (log[cell division/mL/h]); the maximum value of the estimated CO 2 production rate divided by the estimated cell concentration, J max (gh -1 10 -8 cell -1 ); the average cell size at t-N max , Size-t-N max (µm); the percentage of living cells at t-N max , Viability-t-N max (%); and the percentage of living cells at t-75, Viability-t-75 (%). • Basic enological parameters, quantified at the end of fermentation: Residual Sugar (gL -1 ); Ethanol (%vol); the ratio between the amount of metabolized sugar and the amount of released ethanol, Sugar.Ethanol.Yield (gL -1 %vol -1 ); Acetic acid (gL -1 of H 2 SO 4 ); Total SO 2 (mgL -1 ) and Free SO 2 (mgL -1 ). • Aromatic traits, mainly volatile compounds measured at the end of alcoholic fermentation by GC-MS: two higher alcohols (Phenyl-2-ethanol and Hexanol, mgL -1 ); seven esters (Phenyl-2-ethanol acetate, Isoamyl acetate, Ethyl-propanoate, Ethyl-butanoate, Ethyl-hexanoate, Ethyl-octanoate and Ethyldecanoate, mgL -1 ); three medium chain fatty acids (Hexanoic acid, Octanoic acid and Decanoic acid, mgL -1 ); one thiol 4-methyl-4-mercaptopentan-2-one, X4MMP(mgL -1 ) and the acetylation rate of higher alcohols, Acetate ratio.

For proteomic analyses the samples were harvested at 40 % of CO 2 release, corresponding to the maximum rate of CO 2 release. Protein abundances were measured by LC-MS/MS techniques from both shared and proteotypic peptides relying on original Bayesian developments (Blein-Nicolas et al. 2012). A total of 615 proteins were quantified in more than 122 strains × temperature combinations as explained in details in Blein-Nicolas et al. (2015).

Genetic value of protein abundances and fermenta-

tion/life-history traits. In this analysis we considered the genetic values of protein abundances and fermentation/lifehistory traits, rather than their measured/computed value. In a previous study, Petrizzelli et al. (2019) have decomposed the phenotypic values of a trait at a given temperature, P T , into its genetic, G T , and residual, , contributions:

P T = G T + (1) 
The genetic value, G T , has been decomposed in terms of additive and interaction effects, taking into account the structure of the half-diallel design. The presence of two different species and of the parental inbreds in the experimental design let them to further distinguish between intra-and inter-specific additive genetic effects (A w and A b , respectively) and to decompose the interaction effects into inbreeding (B) and intra-and interspecific heterosis effects (H w , H b ). Therefore, the genetic value of a trait at a given temperature T has been modeled by:

G p i T = µ T + 2A w i , T + β s(i), T + B i, T (2) 
G H w ij T = µ T + A w i , T + A w j , T + H w ij , T , (3) 
G H b ik T = µ T + A b i , T + A b k , T + H b ik , T . (4) 
for a parental strain p i (eq. 2), for a intra-specific hybrid H w ij between parents p i and p j (eq. 3), and for the inter-specific hybrid H b ik between parents p i and p k (eq. 4). µ is the overall mean and β s(i) is the deviation from the fixed overall effect for the species:

s(i) ∈ {S. cerevisiae, S. uvarum}
We retrieved the genetic values for all proteomic data. For the fermentation traits, the model did not converge for most of the ethyl esters (Ethyl-propanoate, Ethylbutanoate, Ethyl-hexanoate, Ethyl-octanoate and Ethyl-decanoate), as well as for Acetate Ratio and for Acetic acid. These traits were removed from the analysis.

Protein functional annotation

Cross-referencing MIPS micro-organism protein classification (Ruepp et al. 2004), KEGG pathway classification (Kanehisa and Goto 2000;Kanehisa et al. 2016Kanehisa et al. , 2017) ) and Saccharomyces Genome database (Cherry et al. 2012b), we attributed each protein to a single functional category based on our expert knowledge.

The first two hierarchical levels of MIPS functional annotation have been taken into account to assign proteins into 34 different categories. For 01.metabolism, 02.energy and 10.cell cycle and DNA processing categories all secondary levels were used, resulting in 20 different functional categories. The 11.transcription category was subdivided in into the transcription sub-group (11.06 and 11.02) and into the RNA processing sub-group (11.04). Similarly, 12.protein synthesis category was split into ribosomal proteins (12.01) and translation (12.04, 12.07, 12.10) sub-groups; 20.transport category into vacuolar transport (20.09) and transport (20.01, 20.03) sub-groups.

Instead the first hierarchical category was used for 14.protein fate, 30.signal transduction, 32.detoxification, 34.homeostasis, 40.cell growth and death, 42.cytoskeleton Further, we fused the 16.binding function and 18.02.regulation category into 16.binding, and 32.transposon movement with 10.01.DNA processing. Finally, 41.mating and 43.budding categories were included in 10.03.cell cycle category.

DynamosYeast model

We exploited the DynamoYeast model, a previously developed constraint-based model of central carbon metabolism of S. cerevisiae (Celton et al. 2012). This model includes upper and lower glycolysis, the pentose phosphate pathway (PPP), the synthesis of glycerol, the synthesis of ethanol and the reductive and oxidative branches of the tricarboxylic acid (TCA) cycle as the main metabolic pathways. It consists of 60 metabolites and 70 reactions, including one input flux, the glucose uptake, and 10 output fluxes (Figure 1), taking place in the cytosol, in the mitochondria or in the extracellular medium.

The range of variation of the fluxes was fixed to allow alcoholic fermentation. Therefore, malate dehydrogenase, Oaa_Mal, fumarase, Mal_Fum, fumarate reductase, Fum_Succ, and mitochondrial malate dehydrogenase, Oaa_Mal_m, fumarase, Mal_Fum_m, fumarate reductase, Fum_Succ_m and citrate synthase, Oaa_Cit_m, reactions were imposed to be irreversible with v in f = 0. Furthermore, fructose flux was not included in the model, and mitochondrial glutamate dehydrogenase, Glu_Akg_m as well as butanediol formation, Aceto_But Following the conventions implemented by many genomescale-metabolic models, many reactions of the DynamoYeast model for central carbon metabolism of S. cerevisiae are associated with genes and proteins via gene-protein-reaction (GPR) associations [START_REF] Thiele | A protocol for generating a high-quality genome-scale metabolic reconstruction[END_REF].

In general, there can be a many-to-many mapping from genes to reactions, for example one reaction can be linked to protein (P1 and P2) or P3. The first Boolean AND relationship means that the reaction is catalyzed by a complex between two gene products. Since the maximum of the complex is given by the minimum of its components, the weighting of the complex is defined as: P1 AND P2 = min(P1, P2). The OR relationship allows for alternative catalysts to the reactions. As such total capacity is given by the sum of its components: (P1 AND P2) OR P3 = min(P1, P2) + P3 (Lee et al. 2012). Fol-lowing these rules, for each of the 11 yeast strains and the 55 hybrids at both temperatures, we estimated the protein abundances associated to the reactions in the DynamosYeast model, leading to a total of 33 reactions weightings out of 70.

Methods

Constraint-based modeling of metabolic networks

Metabolic networks can be described in terms of the relations between M metabolites, m, and N reactions, v, at a given time t:

(v, m) t Their topology can be expressed through the M × N stoichiometric matrix S, in which rows correspond to the stoichiometric coefficients of the corresponding metabolites in all reactions.

Under mass-balance assumption and thermodynamic bounds of reaction rates, the dynamics of the network is governed by M. Petrizzelli et al.
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Sv = ṁ (5) v in f ≤ v ≤ v sup (6) 
where ṁ ∈ R M is the vector of the M input/output rates of metabolites, v ∈ R N is the set of N reactions, and v in f , v sup are the extremes of variation of the set of fluxes. Under steady state assumption, ṁ = 0 and the feasible space of solutions is expressed as:

L ≡ {v ∈ R N |Sv = 0, v in f ≤ v ≤ v sup } (7)
In general, N is larger than M and the solution space L has infinite cardinality.

Prediction of the feasible space of solutions

We propose to characterize the feasible space of solutions L through the posterior probability of flux values obtained by the Expectation Propagation (EP) model described in Braunstein et al. (2017). Instead of exploring L through sampling, as classical methods do, Braunstein et al. (2017) have proposed to combine statistical physics and Bayesian approaches to infer the joint distribution of metabolic fluxes. To do so, given the set of metabolite input/output rates, ṁ, they encoded the stoichiometric constrains, within the likelihood posterior probability, defining a Boltzmannlike distribution with energetic quadratic function

E (v) = 1 2 (Sv -ṁ) (Sv -ṁ) (8) 
while the inequality constrains were encoded in the prior probability of fluxes. Via the Bayes theorem, this method provided a model for posterior density of flux distribution. Therefore, each point v in L follows the truncated multivariate normal distribution

∀v ∈ L; v ∼ N T (µ, Σ|v in f , v sup , ṁ) (9) 
where µ is the vector of the mean posterior values of fluxes and Σ the posterior variance-covariance matrix of fluxes estimated through the EP algorithm. This formalism allows associating to each set of metabolic fluxes v its posterior probability of being observed

p v = P(v|µ, Σ, v in f , v sup , ṁ) (10) 
Different values for the extremes of variation can be supplied to model a particular process, for example for modeling reactions known to be irreversible in a specific context, i. e.

v in f i = 0 or v sup i = 0
or for introducing experimental data constrains, i. e. v i = v obs i ± for the i-th reaction.

Given that µ and Σ depend on the imposed range of internal and exchange fluxes, v in f , v sup , metabolic fluxes will take particular values with probabilities that depend on a priori knowledge and on the chosen metabolic processes.

The algorithm implemented in Braunstein et al. (2017) was translated into R code. Extraction of the stoichiometric matrix from the DynamosYeast model have been performed with the sybil package in R [START_REF] Gelius-Dietrich | sybil -efficient constraint-based modelling in r[END_REF].

Prediction of metabolic fluxes from proteomic data

In living systems, most metabolic reactions are catalyzed by enzymes, and quantitative proteomic data retain information about enzyme abundancies. Therefore, the metabolism of a cell, at a given time, is characterized by the set of fluxes, of metabolites and of protein abundances (v, m, E) t where E = (E 1 , E 2 , . . . , E N ), and E i is the abundance of enzyme i associated with the reaction flux v i . Indeed, even though reaction rates are not directly proportional to enzyme abundancies, a certain covariation between protein abundances and flux reaction rates is expected at the metabolic network scale. It can be used to infer intracellular metabolic fluxes with reasonable accuracy (Lee et al. 2012).

Among all possible solutions from the feasible space L, we proposed to choose the one that minimizes the objective function:

Z = 1 p v N ∑ i=1 (E i -|v i |) 2 (11) 
i.e. the Euclidean distance between the quantified abundance of proteins E obs and the associated fluxes, weighted by p v , the posterior probability of observing the set of metabolic fluxes v.

The properties of the truncated multivariate normal distribution ensure that the solution of the objective function is unique and no sophisticated algorithm is needed to find this solution. For each set of observation E obs , we proposed to sample N s points of the feasible space of solutions. Therefore, ∀k ∈ {1, 2, 3 . . . N s }, we got v k ∈ L and p v k . We calculated Z (k) and selected the set of flux values, v predicted , for which Z (k) was the minimum.

In practice, it is never possible to associate each reaction of the metabolic network with a protein abundance. First, quantitative proteomics is not exhaustive. Second, reactions of a metabolic model are not always associated with an enzyme. Assuming steady state condition and introducing information about protein abundances and measured external metabolic fluxes allows to describe the system as:

(1 obs v + 1 obs v, m const , 1 obs E + 1 obs E) t where 1 obs (1 obs ) is an indicator vector: its component-wise value would be equal to 1 if the associated flux/protein component have been observed (unobserved), 0 otherwise. Taking this into account, we reformulated the problem as following:

• Observed fluxes were introduced as additional constraints with v i ∼ N (v obs i , σ 2 v i ) where σ v i was set to a small value. • The objective function was calculated only on the subset of observed enzyme abundances:

Z = 1 p v N obs ∑ i=1 (E i -|v i |) 2
Prediction of metabolic fluxes have been performed by coupling the DynamosYeast model to our experimental data (protein abundances and the CO 2 reaction rate, the only measured flux in our study). We constrained the solution space L through the use of the maximum CO 2 release rate, measured at the same time point as the one used for proteomics analyses (Blein-Nicolas et al. 2015). For each strain observed at each temperature, selection of a particular solution have been made through minimization of the objective function defined in eq. 11, given the observations.

Testing the prediction algorithm

The prediction algorithm is based on the assumption that fluxes and enzyme abundances covary. Indeed, any reaction rate can be expressed as a more or less complex function of enzyme abundances, kinetic constants and metabolite concentrations [START_REF] Fell | Understanding the control of metabolism[END_REF]:

v i = k cat i E i f (κ, m, E)
where k cat is the catalytic constant, κ is a set of other kinetic constants, E is the set of abundances of enzymes other than enzyme i. The f function can be more or less complex depending on the mode of regulation.

To test the accuracy of the prediction of metabolic fluxes from protein abundance data, we used the feasible solution space of the Dynamoyeast model and different kinds of functions that relate reaction rates to enzyme abundances. Specifically, we inverted the relationship, expressing protein abundance as a function of the reaction rate from a simplified formalism derived from the Metabolic Control Theory [START_REF] Kacser | The Molecular Basis of Dominance[END_REF]:

v initial = 1 1 A i E i + ∑ j =i 1 A J E j
where the A j s are positive or negative constant terms. Given that enzyme concentrations cannot be negative, and taking ∀j, A j = ±1, we get the hyperbolic relation:

E i = v initial 1 -v initial (12) 
We also tested the case where protein abundances and flux reaction rates were linearly related:

E i = k |v initial | (13) 
k being an uniform random number k ∼ U (0.1, 3) Finally, we considered the case where protein abundances and flux reaction rates are linked by a sigmoidal function [START_REF] Nijhout | A mechanistic study of evolvability using the mitogen-activated protein kinase cascade[END_REF], which we approximated with a Hill function:

E i = v n initial 1 -v n initial ( 14 
)
where n is the Hill coefficient, sampled in the set Ω = {2, 3, 4, 5}.

Formally, for each simulation, we sampled an initial set of fluxes v initial ∈ L. We estimated the complete set of enzymatic protein abundances, E initial using (12, 13 or 14). Then, we minimized the Z objective function to predict the set of fluxes v predicted that best fit enzyme abundances. Accuracy of the predictions was measured by the correlation coefficient between v predicted and v initial . Computer simulations were performed to test the influence of two main parameters: (i) the number of sampled points N s ; (ii) the number of quantified proteins, N obs , included in the minimization process.

Practically, we assumed to be under steady state condition ( ṁ = 0) and we sampled N s points of the solution space from the multivariate posterior joint distribution of fluxes through the EP algorithm Braunstein et al. (2017). We drew an additional point in the solution space of L, v initial , and we calculated protein concentrations from the inverse problem. We retained the set of fluxes, v predicted for which Z was minimum. The numbers N obs and N s were let to vary (N s ∈ {10 2 , 10 3 , 10 4 , 10 5 , 10 6 } and N obs ∈ {1, 2, 3 . . . }).

In terms of computational time, it would be expensive to consider all different combinations of observed enzymatic proteins associated to the metabolic model that can be included in eq. 11 (there are N obs (1 + (N obs -1) + (N obs -1)(N obs -2) + • • • + (N obs -1)!) combinations). Therefore, for a given N s , our strategy was to randomly choose one-by-one a protein to include in the computation of the Z function and therefore for the prediction of metabolic fluxes, v predicted .

We randomly choose one reaction, v 1 , over the complete set of reactions in the model, and we minimized

Z 1 = 1 p v (E 1 -|v 1 |) 2 (15)
to select one over the N s possible solutions of L, v predicted 1

. At the next iteration, we randomly chose an additional flux v 2 and its associated protein abundance E 2 , and we minimized

Z 2 = 1 p v 2 ∑ i=1 (E i -|v i |) 2 (16) to predict v predicted 2
. This procedure is performed until the complete set of reactions is selected. Overall, simulations have been run a thousand of times for different values of N s and N obs .

Statistical Analysis

In order to study the main features characterizing fermentation and life-history traits in the HeterosYeast dataset, we analyzed the components of variation of a dataset consisting of three different levels of cellular organization: protein abundances E, metabolic fluxes V and fermentation/life-history traits T:

D = (E, V, T)
The total number of observations was 127 strain × temperature combinations (66 strains × 2 temperatures -5 missing data due to the poor fermenting abilities of some strains). The whole dataset consisted of 615 protein abundances, 70 metabolic fluxes and 28 fermentation and life-history traits.

Two types of analysis using several multivariate approaches were performed: an analysis at a single phenotypic level and an analysis integrating the different levels.

We run Principal Component Analyses (PCA) to identify the largest sources of variation in the datasets and the similarities/differences observed between the different phenotypic levels. We included prior knowledge regarding the yeast species in the analysis to perform a supervised analysis with sparse Partial Least Squares Discriminant Analysis (sPLS-DA) in order to extract and combine discriminating features that best separate the different groups. The number of selected features have been tuned using 3-fold cross-validation repeated 1000 times.

Furthermore, integration of the different levels of cellular organization have been performed in a unsupervised framework through a regularized Canonical Correlation Analysis (rCCA), using the mixomics package in R [START_REF] Lê Cao | integrOmics: an R package to unravel relationships between two omics datasets[END_REF][START_REF] Rohart | mixOmics: An R package for 'omics feature selection and multiple data integration[END_REF]. We first searched for the key features that maximize the correlation between metabolic fluxes and fermentation traits. Second, we looked for groups of proteins that maximized the correlation with the most integrated traits (tuning of the regularization parameters have been performed through leave-one-out cross-validation procedure on a 1000 × 1000 grid between 0.0001 to 1). Finally, Pearson's chi-square of enrichment was computed on protein functional category frequencies taking as prior probability the expected categorical frequency found in the MIPS database.

Since the correlation matrix between traits and fluxes was clearly structured, we computed the matrix of Euclidean distance between traits, based on the correlations with metabolic fluxes, and clustered traits using the hclust package in R. This procedure allowed us to define five trait groups that showed similar correlation patterns with fluxes of the central carbon metabolism. Finally, we stored the linear correlation coefficients between proteins (P = 615 proteins) and traits (T = 28) in a (T × P) matrix and ran a Linear Discriminant Analysis to seek for proteins that best discriminate between trait groups, considering traits as individuals. Functional analysis of proteins that best correlate with LDA axes was performed using the 34 protein functional categories defined above.

Results

The HeterosYeast dataset provided priceless observations on the genetic diversity of yeast strains involved in the winemaking process at different levels of cellular organization: phenotypic traits either related to life-history or fermentation (da Silva et al. 2015), and quantitative proteomic data (Blein-Nicolas et al. 2015). All traits were estimated or measured at 18°C and 26°C on a halfdiallel design between 7 strains of S. cerevisiae and 4 strains of S. uvarum, with a total of 127 strain × temperature combinations. In order to access an intermediate level of integration between protein abundances and traits, we used a curated Constraint-Based Model (CBM) of yeast central carbon metabolism (Celton et al. (2012); Figure 1) to predict unobserved fluxes at the CBM scale that best match the observed patterns of variations of protein abundances.

To this end, the strategy we proposed was to: (i) characterize the feasible space of solution L through the posterior density distribution of fluxes, given by the EP algorithm (Braunstein et al. (2017)); (ii) select a unique solution through minimization of the objective function Z (eq. 11) that measures the Euclidean Protein abundances PC1 : 20% PC2 : 14% q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q -10 -5 0 5
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distance between observed enzyme abundances and reaction rates.

Below, we first describe the method and its validation using simulated datasets. Then, we analyze the relationships between the different integration levels, using predicted fluxes from central carbon metabolism and the HeterosYeast dataset.

Sampling the feasible solution space with the Expectation Propagation algorithm

Sampling points of the feasible space of solution L can be performed directly from the posterior truncated multivariate normal distribution of fluxes defined in eq. 9. We compared the Hit and Run (HR) algorithm (Meersche et al. 2009) to the EP posterior distribution of fluxes to test the goodness in prediction of the EP on the DynamosYeast posterior. The EP methodology gave a good approximation for the mean and variances of the posterior marginal distribution of fluxes (Supplementary method Sam-pling the solution space and Figure SF1-SF2), as well as for the variance-covariance matrix between fluxes (Figure SF3). These results are similar to the ones obtained in Braunstein et al. (2017). Therefore, we decided to rely on the EP algorithm to sample the feasible solution space of the CBM.

Protein abundances are good predictors of the initial set of metabolic fluxes

Computer simulations have been performed to access the goodness in prediction of the proposed method, as detailed in section Testing the prediction algorithm. The two main parameters to test were: (i) the number of sampled points N s of L; (ii) the number N obs of observed proteins to be included in Z (eq. 11). Simulations showed that minimization of eq. 11 leads to a high correlation between v initial and v predicted (Figure 2-A). Correlations ranged from 0.65 to 0.99 (p-value < 0.05). By increasing the number of sampled points in L, N s , the mean correlation slightly M. Petrizzelli et al.
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Chapter 5. Data integration uncovers the metabolic bases of phenotypic variation in yeast increased and its variance decreased. The number of observed protein abundances, N obs had a more complex influence on the prediction accuracy. When increasing N obs , the correlation between v initial and v predicted either increases, decreases or stays constant, as illustrated in Figure 2-B. However, the order of magnitude of the variations were small, and the correlation tends to be more stable for a high N s value (Figure 2-B). When considering the actual number of enzyme abundances (N obs = 33) that matched between the HeterosYeast proteomic data and the DynamoYeast CBM, we observed a high correlation between v initial and v predicted after setting N s = 10 6 (Figure 2-C). Altogether, we considered that our algorithm was efficient to predict unobserved fluxes from enzyme abundances, given the structure of the metabolic network.

Predicting unobserved fluxes from the observed variation of protein abundances

The HeterosYeast proteomic data were used in the context of the DynamoYeast model of yeast central carbon metabolism. From the 615 protein abundances, we were able to quantify the proteins (or protein complexes) associated to 33 of the 70 reactions in the metabolic model. For each strain × temperature combination, observed CO 2 release rates were used as additional constraints in the form of a priori knowledge to get the feasible solution space L. We sampled N s = 10 6 points in the space of solutions to select a unique solution of L that minimizes the Euclidean distance between fluxes and enzymes abundances. We therefore predicted the 69 unobserved fluxes in the CBM for each of the 127 strain × temperature combinations. Then statistical approaches have been used to investigate the components of variation and the structure of the new dataset consisting of 615 protein abundances (E), 70 metabolic fluxes (V ) and 28 fermentation and life-history traits (T):

D = (E, V, T)

Patterns of variation depend on the integration levels

The 127 observations of the new dataset D had a specific structure. There was 7 parental strains (S.c.) and 21 intraspecific hybrids (S.c.×S.c.) from S. cerevisiae, 4 parental strains (S.u.) and 6 intraspecific hybrids (S.u.×S.u.) from S. uvarum, and 28 interspecific hybrids (S.c.×S.u.). All strains were observed during alcoholic fermentation on wine grape juice at two temperatures, 18°C and 26°C (da Silva et al. 2015).

To better understand the patterns of variation at each integration level, Principal Component Analysis (PCA) have been computed on each type of trait separately. Results are presented in Figure 3, where strains are identified by species, type of cross (intra-specific hybrid, inter-specific hybrid or parental strain) and temperature. The first PCA component accounted for 20%, 23% and 27% of the total variation, the second for 14%, 18% and 19% for protein abundances, metabolic fluxes and fermentation/life-history traits, respectively. Depending on the integration level, we observed different patterns of phenotypic diversity.

At the proteomic level (E), the first two PCA axes contributed to both differences between temperatures and between species and type of cross. Heterosis is observed for all types of hybrids at both temperatures. First, S.u.×S.u. hybrids are clearly differentiated from their S.u. parents. Second, S.c.×S.u. interspecific hybrids are closer to their S.c. parents than to their S.u. parents. Finally, S.c.×S.c. hybrids are close to their S.c. parents, but the range of variation between S.c.×S.c. hybrids is larger than the one between parental strains. Altogether, the protein abundance of an hybrid strain cannot be predicted by the mean of its parental values.

At the trait level (T), we observed a high temperature effect, with axis 1 (27% of the variation) separating clearly strains that grew at 26°C from those that grew at 18°C. At 26°C, strains were characterized by high growth rate (r), high CO 2 fluxes (J max and V max ), high Hexanol and Decanoic acid and low carrying capacity (K) and low fermentation times (AFtime, t-lag, t-75, t-45) (Figure SF4). At 18°C, strains were characterized by low growth rates and CO 2 fluxes and high K and fermentation times (Figure SF4). Those two groups of traits mostly vary with the temperature, although some differences between strains are observed within rather than between types of cross, especially at 18°C. At 26°C, S.u. strains perform slightly better than S.c. strains (higher growth rates, faster fermentation times). The types of cross are clearly separated along PCA axis 2. Again, heterosis is observed for intraspecific hybrids. However, interspecific hybrids seem to be in-between the two parental strains. Traits that explain the differences between observations along axis 2 were cell-size (Size-t-N max ) and Ethanol at the end of fermentation (positively correlated to axis 2), aroma production at the end of fermentation, as well as Sugar.Ethanol.Yield (negatively correlated) (Figure SF4). Note that those traits are not influenced by the temperature. Hence, at the trait level, we observed differences between yeast species for traits related to aroma production that were not influenced by the temperature. Most fermentation and life-history traits showed a strong temperature effect and high differences between strains within type of cross, and a weak heterosis.

At the flux level (V ), temperature separated the observations on axis 1, but both axis 1 and axis 2 differentiated strains independently of their origin. Notice however that the range of variation of the hybrids is larger than the one of the parental strains, that indicates differences between inbred and hybrid strains. Altogether, central carbon metabolic fluxes were influenced by the temperature and showed strong differences between strains that were not related to the type of cross and the parental species. Sparse Partial Least Squares Discriminant Analysis (sPLS-DA) have been computed on metabolic fluxes in order to select the main features characterizing species × temperature combinations (Figure 3). As previously, the first axis differentiated strains observed at different temperatures. Six fluxes contributed to the first axis of the sPLS-DA: CO 2 , ethanol, pyruvate decarboxylase, alcohol dehydrogenase, 6-phosphogluconolactonase and phosphogluconate dehydrogenase fluxes (Figure SF5). All were negatively correlated with axis 1 and were involved in fermentation. This shows that fermentation was more efficient at 26°C. The second axis differentiated inbred strains from intraspecific hybrids with genotype × temperature interaction: both S.u.×S.u. and S.c.×S.c. hybrids have higher coordinates than their parents at 26°C, while S.u.× S.u. have lower coordinates than their parents at 18°C, and S.c.×S.c. hybrids are confounded with their parental strains. Inter-specific hybrids are characterized by a wide range of variation at both temperatures. Fluxes that contributed to axis 2 were in majority mitochondrial fluxes. Mitochondrial acetyl-CoA formation, mitochondrial citrate synthase, mitochondrial aconitate hydratase, mitochondrial isocitrate dehydrogenase (NAD+) and mitocondrial transport fluxes of pyruvate, oxaloacetate and acetaldehyde were negatively correlated with the second axis, while mitochondrial transport of 2-oxodicarboylate, ethanol and CO 2 fluxes were positively correlated (Figure SF5).

In short, we found at each integration level a strong effect of the temperature, large differences between strains, and evidence for heterosis, i.e. differences between hybrids and mid-parent values. However, the patterns differed between the proteomic and the most integrated level. At the proteomic level, proteins involved in differences between strains were the same as the ones involved in differences between species and between temperature. At the flux level, there were few differences between species. Differences between temperatures were associated to enzymatic reactions related to fermentation, while differences between strains were associated to enzymatic reactions either involved in fermentation, or in the part of the TCA that occurs in the mitochondria. At the trait level, differences between temperatures were associated to differences in growth and fermentation traits, that were relatively conserved within species but showed between-strain variations. Differences between species mostly concerned volatile compounds at the end of fermentation, that are produced by the secondary metabolism.

Fermentation and life-history traits are associated with different metabolic pathways of the yeast carbon metabolism

Regularized Canonical Correlation Analysis (rCCA) have been performed to investigate correlations between metabolic fluxes and fermentation/life-history traits (Figure 4). Fermentation and life-history traits were divided mainly in two groups showing contrasting profiles. The first group consisted of traits that clustered with the carrying capacity, K. They were characterized by a negative correlation with fluxes involved in the glycolysis, ethanol synthesis and pentose phosphate pathway, and by a positive correlation with fluxes in the TCA reductive branch. In contrast, the second group consisted of traits that clustered with the intrinsic growth rate, r, and were characterized by a positive correlation with fluxes involved in the glycolysis, ethanol synthesis and pentose phosphate pathway and by a negative correlation with fluxes in the TCA reductive branch. Consistently, the biomass pseudo-flux was positively correlated with r and negatively with K.

When looking at the flux correlation structure revealed by Figure 4, we can see the opposition between the two well-known ways of producing energy in yeast. Fermentation is associated to an extensive usage of glycolysis and pentose-phosphate metabolic pathways, while respiration is associated to high TCA fluxes. Hence, high growth rate and CO 2 fluxes (J max , V max ) and correspondingly fast fermentation (low fermentation times) seem to be associated to central carbon metabolism oriented towards fermentation, while high carrying capacity, low growth rate and slow fermentation seem to be associated to central carbon metabolism oriented towards respiration.

The K group could be divided into three subgroups, depending mainly on the correlations between the traits and the fluxes of glycerol synthesis and of acetaldehyde: AFtime, K and CO2max (subgroups designated by the name of the main trait in boldface). The AFtime subgroup showed a slightly negative correlation, the K subgroup a slightly positive correlation and the CO2max subgroup a positive correlation. AFtime grouped most traits correlated with the duration of fermentation, AFTime, t-45, t-75, t-N max ; K grouped traits measuring the lag time and beginning of fermentation (t-lag, t-V max ), the carrying capacity (K) and the level of Octanoic acid (fatty acid) at the end of fermentation, while the CO2max grouped traits correlated with fermentation products (total CO 2 , Ethanol and sugar-ethanol yield), two volatile esters, Isoamyl acetate and Phenyl-2-ethanol acetate, as well as cell size and cell viability measured close to the end of fermentation, and t-N 0 .

Similarly, within the r group we distinguished two clusters of traits: Vmax and SO2. Vmax grouped traits that correlated with V max and r, as well as the amount of hexanol (alcohol) and hexanoic and decanoic acids (fatty-acid) that were quantified at the end of fermentation. SO2 grouped basic oenological parameters measured at the end of fermentation (total and free SO 2 , residual sugar), cell viability measured once carrying capacity is reached (Viability-t-N max ), and two volatile compounds Phenyl-2-ethanol (alcohol) 4-methyl-4-mercaptopentan-2-one (thiol).

Briefly, we were able to associate fermentation and lifehistory traits to metabolic fluxes based on their correlation patterns. In particular, we found that the negative correlation between r and K is explained by a different pathway usage of the central carbon metabolism. High r and low K are associated with glycolysis and fermentation, while low r and high K are associated with TCA cycle and respiration.

Metabolic bases of yeast phenotypic trait variation

In order to confirm the association between integrated traits variation and differential usage of central carbon metabolism, we tried to identify the proteins outside the DynamoYeat model that were involved in the trait patterning, as observed from the correlation between traits and fluxes. We performed a Linear Discriminant Analysis on the correlation matrix between the T traits and the E proteins using as discriminant features the five groups of fermentation and life-history traits showing a similar correlation structure with metabolic fluxes, obtained in the previous analysis (see section Statistical Analysis).

Linear Discriminant Analysis clearly separated the five trait categories on the first axis, that explains 99% of the total variation (Figure 5). AFtime and K traits were close, and had positive coordinates on LDA1; Vmax had high negative coordinates, SO 2 had a slightly negative mean and CO2max had a slightly positive mean on LDA1. Given the high discriminative power of LDA1, it is clear that proteins positively or negatively correlated to LDA1 participate to the differentiation between AFtime and Vmax trait groups.

Functional analysis of proteins that best correlate with the first axis of the LDA was performed on the group of proteins showing a correlation of 0.85 in the positive and in the negative direction. Pearson's chi square test of enrichment showed that the group of proteins negatively correlated to the first axis was enriched in proteins linked to protein fate, cytoskeleton, detoxification, growth and death but also to the fermentation, glycolysis and phosphate pathway. The group of proteins that positively correlated with LDA1 was enriched in proteins linked to energy conversion, nitrogen and sulfur pathway, metabolism, energy reserves, electron and respiration. This result was represented as a cloud of words on Figure 5.

In conclusion, the association between trait variation and central carbon metabolism observed at the flux level is confirmed by the proteomic analysis. Proteins that covary with traits of the Vmax group and with glycolytic and fermentation fluxes are enriched in proteins involved in glycolysis and fermentation, but also in protein synthesis and degradation (protein fate), and cytoskeleton, that can be associated to cell division. Proteins that covary with traits of the AFtime group and with TCA and respiration fluxes are enriched in proteins involved in TCA and respiration, but also in electron transport, energy conversion M. Petrizzelli et al.
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Chapter 5. Data integration uncovers the metabolic bases of phenotypic variation in yeast 

Discussion

In this work, we applied cutting-edge methods for data integration to an original yeast dataset. The HeterosYeast dataset comprised quantitative proteomics, fermentation traits and lifehistory traits measured during wine fermentation on a wide range of strains from two yeast species. The objective was to integrate information at different levels of cellular organization (proteomic and metabolic fluxes) to better understand the metabolic bases of yeast phenotypic variation, in particular for life-history traits related to fitness. The key point of this study was to incorporate proteomic data in a constraint-based metabolic model to estimate unobserved metabolic flux values. Then, using a combination of multivariate analyses dedicated to a heterogeneous datasets of high dimension, we were able to show that the metabolic flux level retains information that was not directly interpretable at the proteomic or at the trait level.

In particular, we showed that the negative correlation between traits associated with population growth rate and traits associated to maximal population size (carrying capacity) could be explained by a differential usage of central carbon metabolism: fermentation versus respiration.

Constraint-based modeling can predict unobserved fluxes from observations at the cellular level

Functional genome annotations, allied with current knowledge in biochemistry, now allows describing cell metabolism at genome-scale, using constraint-based metabolic models that take into account the stoichiometry of each reaction and incorporate thermodynamic constraints [START_REF] Palsson | Systems Biology, Constraint-based Reconstruction and Analysis[END_REF]. Without any a priori knowledge, the number of steady-state solutions for reaction rates are infinite, but can be reduced by observations. Three types of experimental data can be used in this process: (i) exchange metabolic fluxes; (ii) metabolite input/output rates and (iii) protein abundances. External metabolic fluxes and metabolite input/output rates can be used directly in constraint-based models to reduce the feasible space of solutions, L (eq. 5 and ineq. 6) under the steady state assumption. Protein abundances, linked to the metabolic fluxes in the model through GPR (gene-protein-reaction) association, carry information on the network functioning and on the state of the metabolic network at a given time and under a specific condition. Following Lee et al. (2012), we used protein abundance profiles to find the set of metabolic fluxes that minimized the Euclidean distance between metabolic fluxes and enzyme abundances. Indeed, even though the relationship between flux and enzyme abundances is commonly non-linear, the level of use of a given pathway is more or less associated with the abundance of its enzymes [START_REF] Sabarly | Interactions between genotype and environment drive the metabolic phenotype within Escherichia coli isolates[END_REF]. The method that we propose relies on a probabilistic approach. Following Braunstein et al. (2017), we chose to characterize the feasible space of solutions L by means of its posterior density distribution through the Expectation Propagation (EP) algorithm. The computation time of EP algorithm is much shorter than the well known Hit and Run (Bélisle et al. 1993), and it provides both samples of metabolic fluxes in L and their associated posterior probability. In the selection process of a unique solution of L, we minimized Z, the Euclidean distance between the observed abundances of proteins and the associated metabolic fluxes weighted by the inverse of the probability of observing such set of fluxes, p v (eq.11). This minimization process involved sampling in L, and selection was made after computation of the Z value over a high number of sampled points.
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Computer simulations confirmed the good prediction efficiency of our method. In particular, we showed that the prediction efficiency was not affected by non linearities of the fluxenzyme relationship. The most important parameter was the number of reactions N obs for which proteomic observations were available, as compared to the CBM size n. When N obs was too low, adding a new information could lead to a decrease of the prediction efficiency. A decrease in the correlation between initial and predicted fluxes means that, once a new enzyme is added, the solution that minimizes the total Euclidean distance leads to flux predictions farther from their true value. This can occur whenever there is a weak correlation between the first n -1 fluxes, and the additional flux v n . Therefore, it is important that observations on protein abundances do cover the main features in the architecture of the metabolic network. In our case, 33 reactions with observed protein abundances out of the 70 reactions of de DynamoYeast model were sufficient to reach a high prediction accuracy. Recent progresses in gel-free/label-free quantitative proteomics now allow to quantify thousands of proteins and should ensure a good coverage even for genome-scale metabolic models [START_REF] Belouah | Modeling protein destiny in developing fruit[END_REF].

Even though our flux predictions are not expected to be exact, we are confident that our method reveals the main orientations of cell metabolism. It takes advantage of additional information about the known architecture of the metabolic network to predict unobserved fluxes from observed protein abundances and globally add information on the system.

Unraveling the metabolic bases of life-history trait variation

The proposed approach has been used to predict metabolic fluxes from central carbon metabolism in a population obtained from a half-diallel cross between two yeast species, S. cerevisiae and S. uvarum, for which the genetic values of 615 protein abundances and 28 fermentation/life-history traits have been estimated under fermentation conditions at two different temperatures, 18°C and 26°C, leading to a total of 127 observations on 66 different yeast strains (Albertin et al. 2013a). As described above, we predicted metabolic fluxes for each strain × temperature combination by coupling the DynamosYeast model, a highly curated constrained based model of the central carbon metabolism (Celton et al. 2012), using the observed CO 2 release rate as a priori knowledge, and measurements of protein abundances associated to 33 out of the 70 reactions in the model.

The final dataset consisted in three matrices of 127 × 615 protein abundances, 127 × 70 central carbon fluxes, and 127 × 28 fermentation/life-history traits. The total number of phenotypes ( 713) greatly exceeded the number of observations and we used regularization techniques for the multivariate analyses [START_REF] Rohart | mixOmics: An R package for 'omics feature selection and multiple data integration[END_REF]. In order to connect patterns of variation observed at different levels, we used a top-down strategy, from the most integrated to the less integrated level. First, we explored the correlations between traits and metabolic fluxes. Second, we tracked the proteins outside the metabolic model that best explained the correlation structure between traits and fluxes.

In our dataset, we observed a negative correlation between M. Petrizzelli et al.
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Chapter 5. Data integration uncovers the metabolic bases of phenotypic variation in yeast traits associated to growth and CO 2 fluxes, and traits associated to population size and duration of the fermentation process. Those negative correlations resulted in different life-history strategies that have been observed elsewhere, on different yeast collections either from industrial (Albertin et al. 2013b) or natural origin (Spor et al. 2008(Spor et al. , 2009)). It roughly corresponds to the wellknown r-K trade-off in ecology [START_REF] Pianka | On r-and K-Selection[END_REF]. More recently [START_REF] Collot | Feedback between environment and traits under selection in a seasonal environment: consequences for experimental evolution[END_REF] suggested that such trade-off could emerge from eco-evolutionary feedback loops because competing strains also modify their environment through the production of different sets of metabolites. The HeterosYeast dataset shows that the choice of a strategy is plastic (da Silva et al. 2015) and can be modified by the environment (here the fermentation temperature).

Adding information about central carbon metabolic fluxes, we showed that such trade-off can be explained by metabolic switches between fermentation associated to glycolysis, and respiration, associated to TCA cycle. Such duality in the functioning of yeast central carbon metabolism has already been observed when matching the DynamoYeast model to experimentally measured exchange fluxes (Nidelet et al. 2016) in a collection of S. cerevisiae strains. The switch between the two modes of functioning (Figure 4) depends partly on the isoforms of the alcohol dehydrogenase (ADH). Interestingly, Albertin et al. (2013b) already found that the trade-off between cell-size and K was related to changes in the percentage of acetylation of the ADH 1p, with high levels being associated to large cells and low K.

Because this paper was devoted to a proof of concept, we deliberately chose to focus on central carbon metabolism and we used the DynamoYeast model because it describes a small number of reactions, as compared to available genome-scale models [START_REF] Caspi | The metacyc database of metabolic pathways and enzymes and the biocyc collection of pathway/genome databases[END_REF]). Therefore, we were not able to explain between-strains variations for traits related to secondary metabolism like aroma production, that merely discriminated between the two yeast species of the HeterosYeast dataset. Moreover, only a small subset of the proteomic data were coupled to the metabolic model. Seeking the proteins that most explain trait patterns that was revealed at the flux level, we were able to find proteins that were associated to the r-K trade-off at the trait level. The analysis of protein's functional annotations confirmed the already known link between glycolysis and pentose-phosphate pathways and fermentation, and the link between extensive usage of TCA and respiration.

Altogether, by coupling phenomic data with mathematical modeling of metabolism and cutting-edge statistical analyses taking into account high-dimensionality and heterogeneity of the measures, we were able to explain the commonly observed trade-off between two set of yeasts life-history traits by a differential pathway usage of energy production. Glycolysis and fermentation lead to fast growth and resource consumption. TCA and respiration lead to slow growth and high population sizes. The duality between the two alternative usages of central carbon metabolism is encoded into the architecture of the metabolic network.
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Chapter 6

Conclusions and perspectives

Yeast species from the Saccharomyces sensu stricto phylogenetic group, including S. cerevisiae and S. uvarum studied here, are important in many areas such as agriculture, biotechnology and medicine. Beside its utility to meet human needs and customs, yeast represents a powerful model system to address core issues in biology. Its short generation time, and the fact that it is easy to grow and manipulate in the laboratory, have allowed to achieve major breakthroughs. In particular, the whole genome sequencing of S. cerevisiae (Goffeau et al., 1996) switched the focus from individual genes and functions to a global view of how the cellular networks interact, which has renewed interest on metabolism and its regulation (introduced in Chapter 4). A striking feature of metabolism is the similarity of the basic pathways, even between distant species such as yeast and human, which allows for instance the study in yeast of pathways involved in human diseases. However, pathway usage and regulation can drive huge phenotyic differences between close species, which raises the question of the genotype-phenotype map.

The main results of the thesis were obtained with two complementary modelling approaches applied to the same biological material, in order to: (i) analyze the phenotypic variation from a quantitative and population genetics perspective; (ii) investigate the genotype-phenotype map from an evolutionary systems biology point of view. These approaches were developed on a large yeast dataset collected on a diallel design (HeterosYeast project, chapter 2), where observations were organized in types of crosses (intra-and inter-specific hybrids or parental strains from two yeast species). Measurements were collected at different levels of phenotypic integration, from proteomic to life-history traits, during the wine fermentation process. This dataset allowed to question the complex relationship between genotypes, phenotypes and fitness in populations. Beside, developments related to a better-understanding of the structure of yeast phenotypic diversity and of the wine fermentation process, along with methodological developments, are proposed in my thesis. These methods have actually a broad applicability domain.

The evolution of life-history traits

The first modelling approach was introduced in Chapter 1, in which phenotypic variation is presented as the result of processes of evolution and adaptation. A key component of adaptation and evolvability is the partition of the phenotypic variance into additive and non-additive genetic components, and environmental components (G×E and residual). In this context, the diallel design of the HeterosYeast project was of particular interest. Among all statistical approaches proposed in the literature to analyze genetic and non genetic variance components from such designs, I decided to shape the model proposed by Lenarcic et al. (2012).

The results are reported in Chapter 3. Each measured trait was characterized by its variance components, and comparisons were performed among traits. This work revealed genotype × environment interactions at every level of cellular organization (variance components differed between the two temperatures). It allowed the classification of traits × temperatures combinations into a few number of clearly distinct groups of traits, that excluded the hypothesis that all traits have neutrally evolved under the same process. A possible interpretation is that traits sharing a similar variance component profile have a common evolutionary history. Moreover, within some groups of traits we have shown that inbreeding and heterosis variance components were decoupled. This original result highlights that inbreeding and heterosis evolved independently. We also showed that epistasis is necessarily involved in this decoupling. These results call for theoretical developments in evolutionary genetics to identify the mechanisms and the driving forces at stake, and for experiments on others species to evaluate whether such findings are common in biological systems.

From a breeder's perspective, the above-mentioned analysis has allowed to infer the variancecovariance matrix between additive genetic effects for traits analyzed in the HeterosYeast population. By using the well-known equation of response to selection (Chapter 1, section 1.1.4), it is possible to predict the results of one generation of selection. Consider for example table 6.1 in which are listed desirable fermentation traits for white wine production (Philippe Marullo, pers. comm.). It is possible to construct a selection index that considers the observed value for the selected traits and the associated weighting coefficient. The naive approach is to consider the weighted sum between these two quantities. Thus, selection can be performed on crosses showing an index value above a certain threshold and the calculation of the selection gradient is straightforward. The response to selection equation would return the average expected phenotypic value of offspring's at the next generation. It would also return the expected response to selection for traits that are not selected directly. Hence, using the method I proposed for the estimation of variance components, we could predict the evolution of non selected traits, including protein abundances, after one generation of selection. Also, the additive components of the variance covariance matrix associated to the HeterosYeast population correspond to the famous G matrix of the adaptive fitness landscapes. Eigenvectors associated to the G matrix would reveal the possible directions for evolution and could help understanding the geometry of yeast multitrait fitness landscape.

In general, the statistical model proposed in this first modelling approach can be employed in any problem concerning pairwise interactions between physical or biological entities. In ecology, the same model could be used to investigate competition between individuals for resources in a given environment, to access the performances in mixtures and to quantify the mixing ability for panels of genotypes, populations or species.

Integrative biology

In the second modelling approach the high-level phenotypes are understood as resulting of the integration processes of multiple cellular scales. In this context, I predicted an intermediary level of cellular organization: the metabolic fluxes. The general mathematical framework for metabolism modelling (through constraint-based models) and the methods classically used in the inference of metabolic fluxes are presented in Chapter 4. The proposed modelling approach is illustrated throughout Chapters 4 and 5 and consisted in interfacing quantitative proteomic data with constraint-based metabolic models relying on • Genome annotations that allow genome-wide association of enzymatic reactions to gene expression/protein abundances.

• The hypothesis that protein abundance drives pathway usage and that, at the genome-scale, there should be a correlation between protein abundances and fluxes.

Contrary to the existing approach based on the same principles (Lee et al., 2012), my approach is fully data-driven and does not rely on any hypothesis about optimization principles of cell metabolism, that are questionable from an evolutionary point of view. It relies on a probabilistic description of the feasible space for fluxes, given stoichiometric and thermodynamic constraints (Braunstein et al., 2017), and further reduction by observations of cellular fluxes introduced as additional constraints. Then, amongst all possible solutions, we chose the one that best matches the observed distribution of protein abundances.

Future prospects would be to apply the method to a yeast genome-scale model [START_REF] Heavner | Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance, Database: The Journal of Biological Databases and Curation[END_REF], but also to other biological systems. For instance, there is in our laboratory a huge collection of proteomic and phenotypic data collected on maize leaf at different developmental stages, and there exists a genome-scale metabolic model for the maize leaf (Simons et al., 2014A,B). Combining the data, the genome-scale model and the proposed method, I am confident that it would help in underpinning the molecular bases of leaf development variation.

Using as a toy model a reduction of yeast central carbon metabolism through the proofed DynamoYeast model (Chapter 4, section 4.3), I was able to show that introducing an additional layer of phenotypic integration, namely metabolic fluxes, between proteomic and observable traits, allowed me to better-understand the well-known ecological r -K trade-off as a trade-off between metabolic pathway usages. To do this, I used cutting-edge statistical methods designated for heterogeneous datasets of high dimensionality, that proved to be efficient. The r -K trade-off could thus be associated with different modes of glucose consumption rates (high or low). The "ant" strategy recalled in chapter 2 was associated to quick reproduction, high carrying capacity and small cell size in fermentation and low reproduction rate in respiration (chapter 2 section 2.2.1), but also to a low glucose consumption rate, possibly associated to higher fluxes in the pentosephosphate pathways.

Metabolic choices of living species are a kind of puzzle far from being fully understood. The preliminary analysis performed to investigate the FBA strategy of a lower consumption rate of glucose have been revisited in this work in Chapter 2 section 4.3.3. By comparing the FBA solution to the feasible space reduced by experimental observations, I showed that the usage of pentosephosphate pathway is a way of economizing resources, i.e. producing energy at lower price, in terms of glucose consumption. Further comparisons with alternative objective functions would be interesting to better understand of the underlying metabolic bases of the variation of phenotypic traits.

parameters. X is a n × 3 matrix, with, by construction, the first column equal to (1, 1, ..., 1), while the elements of the second and third columns (for respectively S. uvarum and S. cerevisiae) are 1 or 0 depending on whether the strain is inbred and or not. Z will be a n × K matrix and, more precisely, it can be thought as the following block matrix:

Z =      Z Aw Aw Aw Z A b A b A b Z B B B Z Hw Hw Hw Z Hw Hw Hw      (S5) where Z Aw Aw Aw , Z A b A b A b , Z B B B , Z Hw Hw Hw , Z H b H b H b denote the design matrices, respectively, of the random effect parameters A w A w A w , A b A b A b , B B B, H w H w H w and H b H b H b . In particular, Z Aw Aw Aw , Z A b A b A b , Z B B B are n × J matrices, Z Hw Hw Hw is a n × N intra matrix and Z H b H b H b is a n × N inter matrix with entries: z Aw ij Aw ij Aw ij =               
2 If the i-observation belongs to a parental strain, the j-th; 1 If the i-observation belongs to an hybrid achieved through an intra-specific cross in which the parental strain j is involved; 0 otherwise;

(S6) z A b ij A b ij A b ij =         
1 If the i-observation belongs to an hybrid achieved through an inter-specific cross in which the parental strain j is involved; 0 otherwise; 

(S7) z B ij B ij B ij =

A.3 Half-diallel simulation construction

In order to elucidate our findings about the decoupling of inbreeding and heterotic variances, we simulated a half-diallel between N parental strains. We supposed the phenotypic values of each trait to depend on a fixed number of loci, L, and we considered all the possible combinations of genetic effects, namely presence/absence of dominance, of additive × additive epistasis and of additive × additive epistasis.

We let the number of alleles at each locus to vary between 1 and N and we drew values for allele a at locus i (a i ) from a Gamma distribution (Γ(k, θ)), for additive × additive epistatic effect between a i and a j (aa ij ) and for dominance × dominance epistatic effect (dd ij ) from a Gaussian distribution (N (0, σ 2 )). The dominance effect between alleles a and b at locus i (d i ab ) are drawn from an uniform distribution U (0, m) with m = 0.5 for dominance of the strongest allele, and m = 1 for symmetrical dominance. Therefore, the phenotypic value of the parental lines P k and A.4. Inbreeding depression and heterosis variances are equal in three-parent diallel 111 of the hybrid, H lk , between parents P k and P l are given by: 1) Additive model 1) Additive model 1) Additive model

y P k = 2 i k i , y H lk = i k i + i l i (S11)
2) Additive model plus dominance 2) Additive model plus dominance 2) Additive model plus dominance

y P k = 2 i k i , y H lk = i k i + i l i + i d i kl (S12)
3) Additive model plus additive × additive effect 3) Additive model plus additive × additive effect 3) Additive model plus additive × additive effect 

y P k = 2 i k i + ij aa ij , y H lk = i k i + i l i (S13) 4 

A.4 Inbreeding depression and heterosis variances are equal in threeparent diallel

Inbreeding and heterosis variances are equal in the particular case of a three-parent diallel when no maternal effect is present. It can be easily seen by the direct computation of their value.

In order to do that we decompose the phenotypic values of the i-parent, P i , as

P d i = µ + 2A i (S19)
and of the i × j hybrid, H ij , as

H d ij = µ + A i + A j (S20)
where µ = 1 6 (P 1 + P 2 + P 3 + H 12 + H 13 + H 23 ) is the mean phenotypic value of the population and mostly aromatic traits; in cluster 2 kinetics parameters and life-history traits and in cluster 3 most enological parameters. Further, closely related phenotypes show similar profiles in terms of variance components, such as CO 2max , Ethanol and Residual Sugar that clusters together at 18°C; Total SO 2 and Free SO 2 are found in cluster 2 at 18°C and in cluster 3 at 26°C; t-N 0 and t-lag in cluster 2 at 18°C. We finally see that inbreeding variance can be either negatively, or not correlated to heterotic effects.

A.6 Strain characterization

We characterized the strains based on their genetic contribution to the total phenotypic value of a trait at a certain temperature (fig. S11). Strain D1 is found to be the strain with the lowest additive contribution for Phenyl-2-ethanol at both temperatures and for Sugar.Ethanol.Yield (except in inter-specific crosses at 18°C), with the highest additive intra-specific contribution for Decanoic and Octanoic acid, while displaying the highest heterosis contribution for Octanoic acid when crossed with E2 at 18°C, with E5 and U1 at 26°C, and for Decanoic acid when crossed with E4 at 26°C and U2 at 18°C. D2 and E2 strains have the highest or lowest additive contributions across almost all traits, mostly fermentation kinetics parameters and life history traits. In particular, D2 strain shows the highest intra-and inter-specific additive effects, and inbreeding values for t.45, t.75 and AFtime at both temperatures, where the highest heterosis effect is achieved when crossed with E2, U1 for t.45 at 18°C, with E5 and U1 for t.75 with the first at both temperatures and the latter at 18°C. Similarly, the additive intra-specific effect of U4 is the highest or the lowest for almost all aromatic traits at 18°C (higher for Phenyl-2-ethanol, Hexanol and Hexanoic acid; lowest for Decanoic acid and Octanoic acid). Strain U1 shows the highest additive inter-specific effect in aromatic traits at 26°C (Phenyl-2-ethanol, Phenyl-2-ethanol acetate, Hexanol, Hexanoic acid and Octanoic acid). In particular, the heterosis effect in the inter-specific cross with strain D2 is the highest for Hexanol and with strain E2 for Phenyl-2-ethanol. For all traits, E5 produces intermediate heterosis values when crossed with E2, E3, E4, W1, U1 and U4 at 18°C, but its cross with E4 results in the highest heterosis value for t.N max , and the lowest for Decanoic acid with E3 and for Total SO 2 with W1 at 26°C. In the same way, crosses between E3 and U1, U2 or U3, between E4 and U1 or W1 never show extreme heterosis values for any trait. 

A.7 Supplementary tables

\ U2 U3 U4 D2 \ D2 E2 \ E4 \ W1 \ \ \ \ E2 \ \ E2 unknown unknown E5 unknown \ U2 U3 U4 E3 D1 D2 \ E3 unknown \ W1 \ U2 U3 \ E4 \ \ \ \ E4 E5 W1 U1 U2 U3 U4 E5 D1 unknown \ unknown \ E5 unknown U1 U2 U3 \ W1 \ \ \ \ \ \ W1 \ U2 U3 \ U1 D1 D2 E2 E3 \ \ CW1 U1 \ \ \ U2 \ D2 \ \ \ \ \ unknown U2 \ \ U3 \ D2 \ \ \ \ \ unknown unknown U3 \ U4 \ unknown \ E3 \ E5 W1
unknown unknown unknown U4

Table S2:

Pearson's chi-square. For each cluster and at each temperature (18°and 26°) we tested for enrichment in proteins belonging to a certain functional category using as prior probability the frequency of proteins functional category based on MIPS database. In yellow (resp. pink) are highlighted the functional category enhanced (resp. depleted) for each cluster and at each temperature when the statistical test was significant. 

IMPUTING USING THE EXACT RIL PROBABILITIES

We compared the performance of the missForest R package to our new approach that exploits the exact multilocus genotype probabilities. As mentioned in the Main, our method is based on focusing on missing data forming blocks of consecutive markers. When the block is large (this happens stochastically), it may be impossible in practice (for time and memory) to compute the needed multilocus genotype probabilities.

To overcome this difficulty, we have implemented a "divide and conquer" method whereby inside the block we first focus on a subset of just 3 of those markers. After imputation is done on these 3, imputation requiring calculating multilocus probabilities involving 5 loci because of the flanking markers, we proceed to consider the remaining markers with missing data; these are now organized into one or more blocks of smaller size. The divide and conquer process can thus be repeated iteratively until there are no more markers to impute. A choice has to be made in the "divide" step for selecting the 3 most relevant markers.

We do that by a bottom-up greedy approach where markers are successively removed, one step at a time.

At each step, we first find the 2 markers that are closest (in this test we include the flanking markers and distances are in cM); if only one marker has missing data, we remove it; if both have missing data, we remove the one which is closest to its other adjacent marker.

For each value of the fraction of missing data (0.1, 0.2, 0.3, 0.4, 0.5 and 0.7), and for each replicate of a SIB RIL population (cf. the scatter plot of the Main), we determined the fraction of missing data that were incorrectly imputed in each method. Based on these replicates, Fig. S1 provides the box plots for each level of missing data studied. Clearly, the distributions of values hardly overlap, allowing us to conclude that using the exact multilocus RIL probabilities leads to a big improvement. q q q q q q q q q q q 0.4 0.5 0.7 Figure S1: Box plots to compare imputation error rates between the missForest machine learning algorithm and our approach using the exact values of the multilocus genotype probabilities. The fraction of missing data applied to the datasets are given at the top of each plot. For almost all cases, there is hardly any overlap between the distributions of the two algorithms, the exact approach is systematically better. 

Biologie intégrative

Dans la seconde approche de modélisation, les phénotypes au niveau plus intégré sont considérés comme résultant des processus d'intégration de multiples échelles cellulaires. Dans ce contexte, j'ai proposé de prédire un niveau intermédiaire d'organisation cellulaire : les flux métaboliques.

Le cadre mathématique général de la modélisation du métabolisme (au moyen de modèles basés sur des contraintes) et les méthodes classiquement utilisées pour l'inférence des flux métaboliques sont présentés au chapitre 4. L'approche de modélisation proposée est illustrée dans les chapitres 4 et 5, et a consisté à interfacer des données protéomiques avec un modèle métabolique à base de contraintes reposant sur :

• l'annotations du génome permettant l'association de réactions enzymatiques à l'expression génique/abondance de protéines à l'échelle du génome ;

• l'hypothèse selon laquelle l'abondance des protéines conditionne l'utilisation des voies et qu'il devrait exister, à l'échelle du génome, une corrélation entre les abondances et les flux de protéines. Le compromis r -K pourrait ainsi être associé à différents modes de taux de consommation de glucose (élevé ou faible). La stratégie "ant" rappelée au chapitre 2 était associée à une reproduction rapide, à une capacité de charge élevée et à une petite cellule lors de la fermentation et à un faible taux de reproduction lors de la respiration (chapitre 2 section 2.2.1), mais aussi à un faible taux de consommation de glucose, éventuellement associé à des flux plus importants , avait ét é recueilli sur un dispositif demi-diall èle entre 11 souches appartenant à deux esp èces. Ce type de donn ées est id éalement adapt é pour la mod élisation multi-échelle et pour tester des mod èles de pr édiction de la variation de ph énotypes int égr és à partir de caract ères prot éiques et m étaboliques (flux), tout en tenant compte des structures de d épendance entre variables et entre observations. J'ai d'abord d écompos é, pour chaque caract ère, la variance g én étique totale en variances des effets additifs, de consanguinit é et d'h ét érosis, et j'ai montr é que la distribution de ces composantes permettait de d éfinir des groupes bien tranch és de prot éines dans lesquels se plac ¸aient la plupart des caract ères de fermentation et de traits d'histoire de vie. Au sein de ces groupes, les corr élations entre les variances des effets d'h ét érosis et de consanguinit é pouvaient être positives, n égatives ou nulles, ce qui a constitu é la premi ère mise en évidence exp érimentale d'un d écouplage possible entre les deux ph énom ènes. Le second volet de la th èse a consist é à interfacer les donn ées de prot éomique quantitative avec un mod èle stoichiom étrique du m étabolisme carbon é central de la levure, en utilisant une approche de mod élisation à base de contraintes. M'appuyant sur un algorithme r écent, j'ai cherch é, dans l'espace des solutions possibles, celle qui minimisait la distance entre le vecteur de flux et le vecteur des abondances observ ées des prot éines. J'ai ainsi pu pr édire un ensemble de flux et comparer les patrons de corr élations entre caract ères à plusieurs niveaux d'int égration. Les donn ées r év èlent deux grandes familles de caract ères de fermentation ou de traits d'histoire de vie dont l'interpr étation biochimique est coh érente en termes de trade-off, et qui n'avaient pas ét é mises en évidence à partir des seules donn ées de prot éomique quantitative. L'ensemble de mes travaux permettent de mieux comprendre l' évolution de la relation entre g énotype et ph énotype Title : Mathematical modelling and integration of complex biological data: analysis of the heterosis phenomenon in yeast Keywords : Hybrid vigor, inbreeding, diallel design, constraint-based model, metabolism, yeast Abstract : The general framework of this thesis is the issue of the genotype-phenotype relationship, through the analysis of the heterosis phenomenon in yeast, in an approach combining biology, mathematics and statistics. Prior to this work, a very large set of heterogeneous data, corresponding to different levels of organization (proteomics, fermentation and life history traits), had been collected on a semi-diallel design involving 11 strains belonging to two species. This type of data is ideally suited for multi-scale modelling and for testing models for predicting the variation of integrated phenotypes from protein and metabolic (flux) traits, taking into account dependence patterns between variables and between observations. I first decomposed, for each trait, the total genetic variance into variances of additive, inbreeding and heterosis effects, and showed that the distribution of these components made it possible to define well-defined groups of proteins in which most of the characters of fermentation and life history traits took place. Wi-thin these groups, the correlations between the variances of heterosis and inbreeding effects could be positive, negative or null, which was the first experimental demonstration of a possible decoupling between the two phenomena. The second part of the thesis consisted of interfacing quantitative proteomic data with the yeast genome-scale metabolic model using a constraint-based modelling approach. Using a recent algorithm, I looked, in the space of possible solutions, for the one that minimized the distance between the flux vector and the vector of the observed abundances of proteins. I was able to predict unobserved fluxes, and to compare correlation patterns at different integration levels. Data allowed to distinguish between two major types of fermentation or life history traits whose biochemical interpretation is consistent in terms of trade-off, and which had not been highlighted from quantitative proteomic data alone. Altogether, my thesis work allow for a better understanding of the evolution of the genotype-phenotype map.
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  Top: Complete dominance of A 1 (d = a). Center: No dominance (d = 0). Bottom: Complete dominance of A 2 (d = -a). . . . . . . . . . . . . . . . . . . . . . . . . . 1.4 Examples of adaptive landscape in the one locus case. Frequencies of allele A 1 against mean fitness in the population. Arrows indicate the direction of selection, i.e. changes in allele A 1 frequency due to selection. Natural selection will drive allele frequencies towards: A, an extreme value, in case of heterozygote inferiority, depending on the initial allele frequencies in the population; B, an intermediate value, in case of heterozygote superiority; C, 1 for the strongest allele and 0 for the lowest, in case of dominance. Overall, natural selection drives allele frequencies towards the closest fitness local optimum. . . . . . . . . . . . . . . . . . . . . . . .

3. 1

 1 Correlation between estimated variance components and their true value. Variances have been estimated on a simulated half diallel between 11 parental strains (7 belonging to one species, 4 to the other). Phenotypic values have been computed as detailed in the section Testing for the reliability of the model. . . . . . . . . . . . . 3.2 Clustering profiles of genetic variance components for (A) protein abundances against (B) profiles of fermentation traits predicted in each cluster. Cluster numbers are reported on the left, on the right is the number of proteins or traits found in each cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Patterns of correlations between genetic variance components of protein abundances. Points correspond to proteins, type and color combinations identify the clusters obtained by their classification based on a Gaussian mixture model. Numbers from 1 to 9 identify class centers for each cluster. . . . . . . . . . . . . . . . . . . . . . . 4.1 Representation of the DynamosYeast model of central carbon metabolism of S. cerevisiae. In red are indicated flux constraints for the exchange fluxes. Proteins associated to the reactions are in red capital letters . . . . . . . . . . . . . . . . . . . . 4.2 Marginal probability densities of sixteen fluxes of the yeast carbon metabolism, randomly chosen. The histograms represent the result of the HR for T ∼ 10 7 sampling points. The red line is the result of the EP estimate. . . . . . . . . . . . 4.3 Comparison of the results of HR versus EP. The plot shows the relation between eight pairwise fluxes. Correlation ellipses, computed by the EP algorithm, are drawn in red. Dot points represent the mean value of fluxes computed through EP. HR sampling points: T ∼ 5 • 10 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4 Comparison of the results of HR versus EP. The plots on the right are scatter plots of the means and on the left variances of the approximated marginals computed via EP against the ones estimated via HR for an increasing number of explored configurations T , top T ∼ 10 6 , bottom T ∼ 10 7 . . . . . . . . . . . . . . . . . . . . . 4.5 Between-strain variations for 14 fluxes from central carbon metabolism in yeast. For each of 47 strains, the fluxes were predicted by minimizing glucose uptake rate and constraining the observed exchange fluxes around their experimental observation. Fluxes are normalized by the average flux of each reaction, and represented by a value between 0 and 3, where 1 is the average flux. Reactions with the subscript "_t" correspond to transport reactions. . . . . . . . . . . . . . . . . . . . . . . . . . xii 4.6 Barplot of between-strain coefficients of variation. The coefficient of variation (ratio of the standard deviation to the mean) of each flux is represented as a vertical bar. The vertical bars are ordered by metabolic pathways: glycolysis and ethanol synthesis (blue), PPP (green), glycerol synthesis (orange), acetaldehyde node (blue marine), reductive branch of the TCA (brown), oxidative branch of the TCA (yellow) and output fluxes (violet). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7 Correlation Matrix between internal metabolic fluxes. Pearson correlation values between each pair of fluxes are represented as gradient of colors from red, -1, to blue, +1. Fluxes belonging to the same pathway generally group together. . . . . . 4.8 Probability distributions of the feasible solution space. In red (resp. orange) is indicated the null posterior distribution of fluxes through the EP algorithm (resp. HR sampling) when no experimental data is introduced; in light green (resp. dark green) the posterior distribution of fluxes through the EP algorithm (resp. HR sampling) when exchange fluxes are constrained by experimental observations. Dashed black line indicates the FBA solution obtained through minimization of glucose uptake, given the experimental observations. . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1 Representation of the DynamosYeast model of central carbon metabolism of S. cerevisiae. Metabolites are in black. Names of enzymatic proteins that catalyse the reactions are in red. Constraints on exchange fluxes are in red between square brackets and correspond to fermentation, with glucose as unique input flux. . . . . . . . . . 5.2 Correlations between initial and predicted fluxes in simulated datasets using the DynamoYeast model. Enzymatic protein abundances were expressed in terms of a hyperbolic function of the initial fluxes using eq. 12. Colors indicate the number of points N s that were sampled in the solution space L. A. Boxplot representation as a function of the number N obs of observed proteins. Each box represents thousand simulations. B. Changes observed for the correlation during a single simulation run when increasing one by one the number of observed proteins from 1 to 70. C. Relation between the initial and the predicted fluxes shown for one simulation with N obs = 33 and N s = 10 4 . D. Relation between the initial and the predicted fluxes shown for one simulation with N obs = 33 and N s = 10 6 . . . . . . . . . . . . . . . . 5.3 Principal Component Analysis and sparce Partial Least Square-Discriminant Analysis. PCA for protein abundances (top-left), metabolic fluxes (top-right) and fermentation/ life-history traits (bottom-left). sPLS-DA for metabolic fluxes (bottomright). Observations are represented on the first two PCA axes (sPLS-DA, respectively). Each dot correspond to a strain by temperature combination. Temperatures are differenciated by the type of dot, while type of crosses are identified by colours. 5.4 Regularized Canonical Correlation Analysis on metabolic fluxes and fermentation/ life-history traits. Penalization parameters have been tuned through leave-oneout cross-validation method on a 1000 × 1000 grid between 0.0001 and 1 (λ 1 = 0.8, λ 2 = 0.0001). Canonical correlation values between metabolic fluxes and fermentation/life-history traits are represented as a gradient of colors from blue (-1) to red (+1). Metabolic fluxes and fermentation/life-history traits have been clustered using the hclust method. Colored row side bars indicate the five groups obtained on fermentation and life-history traits. . . . . . . . . . . . . . . . . . . . . xiii 5.5 Projection of the 28 traits in the first two axes of a Linear Discriminant Analysis on protein abundances. Trait groups were constituted from their correlation with fluxes of central-carbon metabolism. Each dot is one fermentation or life-history trait. Colors correspond to trait groups, identified by one representative trait. The results confirm the structure of fermentation and life-history traits and reveal two trait groups with antagonistic proteomic pattern: the AFtime group and the Vmax group. Functional enrichment of proteins positively or negatively correlated to the first axis were represented by a cloud of words . . . . . . . . . . . . . . . . . . . . . 98 S1 Density of the variance components estimated by the hglm algorithm for the 1230 proteins. Red dashed lines represent the fitted distributions used to simulate and test parameter inference of the proposed model. . . . . . . . . . . . . . . . . . . . . S2 Fitted Best Linear Unbiased Predictors of the random effects parameters and pre-
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  Marginal probability densities of sixteen fluxes of the yeast carbon metabolism, randomly chosen. The histograms represent the result of the HR for T ∼ 10 7 sampling points. The red line is the result of the EP estimate. . . . . . . . . . . . SF2 Comparison of the results of HR versus EP. The plots on the left are scatter plots of the means and on the right variances of the approximated marginals computed via EP against the ones estimated via HR for an increasing number of explored configurations T, top T ∼ 10 6 , bottom T ∼ 10 7 . . . . . . . . . . . . . . . . . . . . . SF3 Comparison of the results of HR versus EP. The plot shows the relation between 8 pairwise fluxes. Correlation ellipses, computed by the EP algorithm are drawn in red. Dot points represent the mean value of fluxes computed through EP. For HR samples, T ∼ 5 • 10 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SF4 Correlation between fermentation and life-history traits and the first two axis of the Principal Component Analysis. The figure shows traits for which the correlation was more more that 0.5 or less to -0.5 (p-value<0.05

Figure 1 . 1 :

 11 Figure 1.1: Phenotypic plasticity and genotype × environment interactions. Each dashed line represents a different genotype, G and G .A, the lines are horizontal: the phenotypic values are not influenced by environmental changes (E is null). B, the lines are slanted and parallel: environmental variation produces the same phenotypic variation on the two genotypes (G × E is null, but not E). C, the lines intersect: the environment influences phenotypic variation in a genotype-dependent manner (E and G × E are not null).

Figure 1 . 3 :

 13 Figure 1.3: Genetic variance components in the biallelic case. Additive and dominance variances are calculated as a function of the frequency of allele A 1 through eq. 1.32-1.33 (black dotted and solid lines, respectively). Red line represent the total genetic variance. Top: Complete dominance of A 1 (d = a). Center: No dominance (d = 0). Bottom: Complete dominance of A 2 (d = -a).
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 16 Figure 1.6: Muller's ratchet. k is the number of mutations and n k the number of individuals with k mutations. The red arrows indicate positive (upwards) or negative (downwards) selection. Initially, accumulation of deleterious mutations will be accompanied by selection of the fittest class of individuals. Drift continuously removes individuals, and in the long term, the class with less mutations disappears (due to both drift and mutations). As deleterious mutations accumulates, selection will act on the opposite direction, until extinction.

Figure 1 . 8 :

 18 Figure 1.8: Relation between inbreeding depression (filled circles), mean fitness (open circles) andselfing rate (in abscissa) in equilibrium populations with synergistic epistasis. For low selfing rates, mean fitness increases and inbreeding depression decreases with the selfing rate. For high selfing rates, mean fitness may decrease. U = 1, h = 0.2, α = 0.01, β = 0.02(Charlesworth et al., 1991).
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 23 Figure 2.3: Geographic distribution, phylogeny and population structure of S. uvarum. a, maximum likelihood phylogeny of the genus Saccharomyces based on a concatenated alignment of 14 gene sequences; b-c, geographic origin of the different strains of S. uvarum; d, whole genome Neighbor-Joining phylogeny of 54 strains based on 129096 SNPs[START_REF] Almeida | A Gondwanan Imprint on Global Diversity and Domestication of Wine and Cider Yeast Saccharomyces uvarum[END_REF] 
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 25 Figure 2.5: Clustering of S. cerevisiae and S. uvarum (Blein-Nicolas et al., 2013). Among the 15 strains analyzed in this study, nine have been employed as the parental strains in the diallel design of the HeterosYeast Project. Clustering of six strains of S. uvarum (orange) and nine strains of S. cerevisiae (blue) based on: (i) sequence variability inferred from 498 SNPs and 2681 SAPs (left); (ii) proteome variability assessed from abundances of 401 proteins (center); (iii) lag-phase time, times to complete 30%, 50% and 100% of fermentation, cell size, and population size at 30% of CO 2 release (right).

Figure 2 .

 2 Figure 2.6 summarizes the experimental protocol of the HeterosYeast project.

Figure 2 . 6 :

 26 Figure 2.6: Experimental protocol. Fully homozygous diploid strains were used as parental strains in a half-diallel design. W1, D1, D2, E2, E3, E4 and E5 are S. cerevisiae strains, U1, U2, U3 and U4 S. uvarum strains. Fermentations were carried out in Sauvignon blanc grape juice and run at 18°C and 26°C in triplicate in fermentors for a total of 396 experiments. Thirty-five traits were collected and grouped into four classes (Fermentation Kinetics Traits, Life-history traits, Basic Oenological Parameters and Aromatic Traits). Protein abundances have been quantified for each strain × temperature combination (da Silva et al., 2015).

  A major finding of this first part of my thesis work is the possible decoupling between the heterosis and inbreeding variances (Chapter 3, article: Decoupling the Variances of Heterosis and Inbreeding Effects Is Evidenced in Yeast's Life-History and Proteomic Traits published in Genetics; Petrizzelli et al. (2019)).
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  Petrizzelli et al. 52 Chapter 3. Decoupling the Variances of Heterosis and Inbreeding Effects Is Evidenced in Yeast's Life-History and Proteomic Traits

Figure 1

 1 Figure 1Correlation between estimated variance components and their true value. Variances have been estimated on a simulated half-diallel between 11 parental strain (seven belonging to a specie, four to the other). Phenotypic values have been computed as detailed in section Testing for the reliability of the model.

  and σ 2 from a Gamma distribution fitted from the values estimated by the 4 Petrizzelli et al. 54 Chapter 3. Decoupling the Variances of Heterosis and Inbreeding Effects Is Evidenced in Yeast's Life-History and Proteomic Traits model on our dataset (see fig.

Figure 2

 2 Figure2Clustering profiles of genetic variance components for protein abundances (A) against profiles of fermentation traits (B) predicted in each cluster. Cluster numbers are reported on the left, on the right the number of proteins or traits found in each cluster.
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  Petrizzelli et al. 56 Chapter 3. Decoupling the Variances of Heterosis and Inbreeding Effects Is Evidenced in Yeast's Life-History and Proteomic Traits

Figure 3

 3 Figure 3 Patterns of correlations between genetic variance components of protein abundances. Points correspond to proteins, type and color combinations identify the clusters obtained by their classification based on a Gaussian Mixture model. Numbers from 1 to 9 identify class centers for each cluster.

10Figure 6

 6 Figure 6 Correlation between the variances of heterosis and inbreeding effects for: A) Additive model with symmetrical dominance (no epistasis), B) Additive model with dominance of the strongest allele, additive × additive and dominance × dominance epistasis. The simulated half-diallel consisted of 11 parental lines. Phenotypic values were supposed to depend on 10 loci, and the number of alleles per loci was imposed to 11. Allele values were drawn from a gamma distribution (k=10, θ=20) and epistatic effects from a normal distribution (N (0, 3)).

  Figure 4.1 shows a representation of this model. In red are indicated flux constraints for exchange metabolic fluxes.

Figure 4 . 1 :

 41 Figure 4.1: Representation of the DynamosYeast model of central carbon metabolism of S. cerevisiae. In red are indicated flux constraints for the exchange fluxes. Proteins associated to the reactions are in red capital letters

Figure 4 . 2 :

 42 Figure 4.2: Marginal probability densities of sixteen fluxes of the yeast carbon metabolism, randomly chosen. The histograms represent the result of the HR for T ∼ 10 7 sampling points. The red line is the result of the EP estimate.

Figure 4 . 3 :

 43 Figure 4.3: Comparison of the results of HR versus EP. The plot shows the relation between eight pairwise fluxes. Correlation ellipses, computed by the EP algorithm, are drawn in red. Dot points represent the mean value of fluxes computed through EP. HR sampling points: T ∼ 5 • 10 6 .
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 44 Figure 4.4: Comparison of the results of HR versus EP. The plots on the right are scatter plots of the means and on the left variances of the approximated marginals computed via EP against the ones estimated via HR for an increasing number of explored configurations T , top T ∼ 10 6 , bottom T ∼ 10 7 .
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 45 Figure 4.5: Between-strain variations for 14 fluxes from central carbon metabolism in yeast. For each of 47 strains, the fluxes were predicted by minimizing glucose uptake rate and constraining the observed exchange fluxes around their experimental observation. Fluxes are normalized by the average flux of each reaction, and represented by a value between 0 and 3, where 1 is the average flux. Reactions with the subscript "_t" correspond to transport reactions.
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 46 Figure 4.6: Barplot of between-strain coefficients of variation. The coefficient of variation (ratio of the standard deviation to the mean) of each flux is represented as a vertical bar. The vertical bars are ordered by metabolic pathways: glycolysis and ethanol synthesis (blue), PPP (green), glycerol synthesis (orange), acetaldehyde node (blue marine), reductive branch of the TCA (brown), oxidative branch of the TCA (yellow) and output fluxes (violet).

Figure 4 . 7 :

 47 Figure 4.7: Correlation Matrix between internal metabolic fluxes. Pearson correlation values between each pair of fluxes are represented as gradient of colors from red, -1, to blue, +1. Fluxes belonging to the same pathway generally group together.

Figure 1

 1 Figure 1 Representation of the DynamosYeast model of central carbon metabolism of S. cerevisiae. Metabolites are in black. Names of enzymatic proteins that catalyse the reactions are in red. Constraints on exchange fluxes are in red between square brackets and correspond to fermentation, with glucose as unique input flux.

Figure 2

 2 Figure 2 Correlations between initial and predicted fluxes in simulated datasets using the DynamoYeast model. Enzymatic protein abundances were expressed in terms of a hyperbolic function of the initial fluxes using eq. 12. Colors indicate the number of points N s that were sampled in the solution space L. A. Boxplot representation as a function of the number N obs of observed proteins. Each box represents thousand simulations. B. Changes observed for the correlation during a single simulation run when increasing one by one the number of observed proteins from 1 to 70. C. Relation between the initial and the predicted fluxes shown for one simulation with N obs = 33 and N s = 10 4 . D. Relation between the initial and the predicted fluxes shown for one simulation with N obs = 33 and N s = 10 6 .

Figure 3

 3 Figure 3 Principal Component Analysis and sparce Partial Least Square-Discriminant Analysis. PCA for protein abundances (top-left), metabolic fluxes (top-right) and fermentation/life-history traits (bottom-left). sPLS-DA for metabolic fluxes (bottom-right).Observations are represented on the first two PCA axes (sPLS-DA, respectively). Each dot correspond to a strain by temperature combination. Temperatures are differenciated by the type of dot, while type of crosses are identified by colours.

Figure 4

 4 Figure 4Regularized Canonical Correlation Analysis on metabolic fluxes and fermentation/life-history traits. Penalization parameters have been tuned through leave-one-out cross-validation method on a 1000 × 1000 grid between 0.0001 and 1 ( λ 1 = 0.8, λ 2 = 0.0001). Canonical correlation values between metabolic fluxes and fermentation/life-history traits are represented as a gradient of colors from blue (-1) to red (+1). Metabolic fluxes and fermentation/life-history traits have been clustered using the hclust method. Colored row side bars indicate the five groups obtained on fermentation and life-history traits.

Figure 5

 5 Figure 5Projection of the 28 traits in the first two axes of a Linear Discriminant Analysis on protein abundances. Trait groups were constituted from their correlation with fluxes of central-carbon metabolism. Each dot is one fermentation or life-history trait. Colors correspond to trait groups, identified by one representative trait. The results confirm the structure of fermentation and life-history traits and reveal two trait groups with antagonistic proteomic pattern: the AFtime group and the Vmax group. Functional enrichment of proteins positively or negatively correlated to the first axis were represented by a cloud of words

Figure S2 :

 S2 Figure S2: Fitted Best Linear Unbiased Predictors of the random effects parameters and predicted phenotypic value plotted against the simulated genetic parameters and the simulated phenotypic value. Fixed the number of parental strains and the number of individuals of each species, we performed the simulation 1000 times. Here, we show the case of eleven parents, with 7 belonging to one specie and 4 to the other.

Figure S3 :

 S3 Figure S3: Clustering profiles of fermentation and life-history traits. Clusters number are reported on the left, on the right the number of traits found in each cluster.

Figure S5 :

 S5 Figure S5: Pearson's chi-square test of enrichment: For each cluster are represented the chi-square standardized residuals at 18°(abscissa) and at 26°(ordinate).

Figure S8 :

 S8 Figure S8: Variance components of fermentation traits. Left: Traits measured at 18°C. Right: Traits measured at 26°C. Each variance component is attributed a different color. Traits are ranked according to their cluster number at 18°C. Trait category and cluster number is indicated on the right-hand-side of the plot.

Figure S9 :

 S9 Figure S9: Bootstrap summary example: Distribution of intra-specific variance estimates for the growth lag-phase, t.N0, at A) 18°and B) 26°C.

  Le modèle génétique complet à effets mixtes est donc défini par trois effets fixes (l'interception µ et les effets de depression de consanguinité β Su et β Sc ) et cinq variances des effets génétiques aléatoires (σ 2 Aw Aw Aw , σ 2 été réalisées aux deux températures indépendamment et pour chaque trait séparément (35 phénotypes et 615 protéines). Chaque combinaison trait × température a été caractérisé par ses composantes de variance et des comparaisons ont été effectuées entre eux. Avant l'interprétation des résultats, une étude de simulation a été réalisée pour s'assurer que le faible nombre de parents présents dans le plan d'expérience n'induisaient pas de biais d'estimation des paramètres. La sortie de cette analyse est un ensemble de vecteurs de 5 coordonnées décrivant les composantes de la variance, ce qui a nécessité une nouvelle modélisation pour interpréter ces résultats. La stratégie adoptée a été d'utiliser un modèle de mélange gaussien diagonal sur les 615 vecteurs de variance estimés sur les protéines pour obtenir une classification en 9 groupes (figure D2) puis de classer les autres traits phénotypiques dans ces 9 classes en utilisant le modèle de mélange comme un modèle d'apprentissage. Les résultats sont rapportés au chapitre 3. En bref, ce travail a révélé des interactions génotype × environnement à tous les niveaux d'organisation cellulaire (les composantes de la variance différaient entre les deux températures) et a permis de classer les combinaisons traits × température en groupes clairement distincts, ce qui excluait l'hypothèse que tous les traits ont évolué de manière neutre au cours du même processus évolutif. Une interprétation possible est que les traits partageant un profil de composant de variance similaire ont une histoire évolutive commune. De plus, au sein de certains groupes de caractères, j'ai montré que les composantes de variance de la dépression de consanguinité et de l'hétérosis étaient découplées. Ce résultat original met en évidence que dépression de consanguinité et hétérosis ont évolué indépendamment. J'ai également montré que l'épistasie est nécessairement impliquée dans ce découplage. Ces résultats (publiés en Genetics, Petrizzelli et al. (2019)) appellent des développements théoriques en génétique évolutive pour identifier les mécanismes et les forces motrices en jeu, et des expériences sur d'autres espèces pour évaluer si tels résultats sont communs dans les systèmes biologiques. Du point de vue des sélectionneurs, l'analyse susmentionnée a permis d'inférer la matrice de variance-covariance entre les effets génétiques additifs pour les caractères analysés dans la population de levure du projet HeterosYeast. En utilisant l'équation bien connue de la réponse à la sélection (Chapitre 1, section 1.1.4), il est possible de prédire les résultats d'une génération de sélection. Considérons par exemple le tableau D1 dans lequel sont énumérés les caractéristiques de fermentation souhaitables pour la production de vin blanc (Philippe Marullo, communication personnelle). Il est possible de construire un indice de sélection prenant en

  stoechiométriques et thermodynamiques(Braunstein et al., 2017), ainsi que sur une réduction additionnelle de l'espace faisable des flux par la valeur des flux cellulaires observés. Ensuite, parmi toutes les solutions possibles, j'ai choisi celle qui correspond le mieux à la distribution observée de l'abondance des protéines.En utilisant un modèle stoechiométrique réduit du métabolisme central carboné de la levure, le modèle DynamoYeast, et les données HeterosYeast (figureD3), j'ai ainsi pu prédire un ensemble de flux pour chaque combinaison souche × température. Puis, j'ai comparé les patrons de corrélations entre les caractères à plusieurs niveaux d'intégration. Pour ce faire, j'ai utilisé des méthodes statistiques de pointe conçues pour des jeux de données hétérogènes de grande dimensionnalité, qui se sont révélés efficaces. Les résultats sont rapportés au chapitre 5. En bref, une analyse canonique régularisée des corrélations a été utilisés pour identifier des liens entre les flux et les phénotypes. Les données révèlent deux grandes familles de caractères de fermentation ou de traits d'histoire de vie dont l'interprétation biochimique est cohérente en termes de trade-off, et qui n'avaient pas été mises en évidence à partir des seules données de protéomique quantitative. En particulier, la corrélation négative entre r et K s'explique par une utilisation différente du métabolisme carboné central. Un r élevé et un K faible sont associés à la glycolyse et à la fermentation, tandis que les r bas et les K élevés sont associés au cycle de Krebs et à la respiration. Une analyse discriminante linéaire sur la matrice de correlation entre proteines (variables) et flux metaboliques (individues) a confirmé ce le lien entre la variation des traits et le flux du métabolisme carboné central. En fait, les protéines qui coïncident avec les groupes de traits associés à r et avec les flux glycolytiques et de fermentation sont enrichies en protéines impliquées dans la glycolyse et la fermentation, mais également dans la synthèse et la dégradation des protéines et le cytosquelette, qui peuvent être associés aux division cellulaire. Les protéines qui coïncident avec le groupe de traits associées à K et avec les flux de TCA et de respiration sont enrichies en protéines impliquées dans le TCA et la respiration, mais également dans le transport d'électrons, la conversion d'énergie et le métabolisme de l'azote et du soufre. En fin, j'ai pu montrer que l'introduction d'un niveau d'intégration phénotypique supplémentaire et intermédiaire, les flux métaboliques, entre les traits protéomiques et les traits observables, permet de mieux comprendre le bien connu compromis écologique r -K en tant que compromis entre les utilisations de la voie métabolique.
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16.1 Objectives in white grape must fermentation. Objectives for traits of enological interest for grape must fermentation at 18 degrees for garde and primeur wines. To each objective is given a weighting coefficient based on enological interests. Objectives may change with the desired type of wine. . . . . . . . . . . . . . . . . . . . . S1 Diallel table representing the mitochondrial inheritance for each phenotyped cross: the data clearly shows too many unknowns to enter a mitochondrial effect in the model. Backslashes indicate the not phenotyped reciprocals. . . . . . . . . . . . . S2 Pearson's chi-square. For each cluster and at each temperature (18°and 26°) we tested for enrichment in proteins belonging to a certain functional category using as prior probability the frequency of proteins functional category based on MIPS database. In yellow (resp. pink) are highlighted the functional category enhanced (resp. depleted) for each cluster and at each temperature when the statistical test was significant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D1 xix This work is dedicated to my family. Their support, encouragement, and constant love have sustained me throughout my life

  Examples of adaptive landscape in the one locus case. Frequencies of allele A 1 against mean fitness in the population. Arrows indicate the direction of selection, i.e. changes in allele A 1 frequency due to selection. Natural selection will drive allele frequencies towards: A, an extreme value, in case of heterozygote inferiority, depending on the initial allele frequencies in the population; B, an intermediate value, in case of heterozygote superiority; C, 1 for the strongest allele and 0 for the lowest, in case of dominance. Overall, natural selection drives allele frequencies towards the closest fitness local optimum.
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  Mean fitness and genetic load. Frequencies of allele A 1 against: A, mean fitness in the population; B, genetic load. The selection coefficient s is set to 0.1, the degree of dominance of allele
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  Overview of the sequenced yeast genomes

			Saccharomyces cerevisiae*	S288c	C	n	12. 1
			Saccharomyces paradoxus*	CBS432 T	S	2n	12.2
			Saccharomyces mikatae			2n	12 .6
			Saccharomyces kudriavzevii				11. 4
			Saccharomyces bayanus*			2n	10.2
	No complex I in duplication Whole-genome	Zygosaccharomyces Vanderwaltozyma Nakaseomyces Naumovozyma Kazachstania	Zygosaccharomyces rouxii Saccharomyces exiguus (K. exigua) Saccharomyces servazzii Kluyveromyces polysporus (V. polyspora) Candida glabrata Saccharomyces castellii			2n 2n n n n	11. 4 12 .3 14. 7 9.8
	mitochondrial DN A, point centromeres, three mating cassettes	Lachancea Kluyveromyces	Kluyveromyces thermotolerans (L. thermot.) Kluyveromyces waltii (L. waltii) Saccharomyces kluyveri (L. kluyveri ) Kluyveromyces lactis			2n 2n n	10.4 10.7 11. 3 10.7
			Kluyveromyces marxianus var. marxianus			
			Ashbya gossypii (E. gossypii )	ATCC1089 5	C	n	8.7
			Dekkera bruxellensis			n?	4-9
	5S RNA		Hansenula polymorpha (O. polymorpha)	CBS4732 T	D	2n	9.5
			Debaryomyces hansenii			n	12 .2
	CUG Ser	Pichia stipitis*			n	15 .4
			Pichia sorbitophil a			2n
			Pichia guilliermondii			n	10.6
			Clavispora lusitaniae			n	12 .1
			Candida parapsilosis			2n	13 .1
			Lodderomyces elongisporus			2n	15.5
			Candida tropicalis*			2n	14.6
	Loss of		Candida albicans*			2n	14. 3
	introns,		Candida dubliniensis			2n	14.6
	budding					
			Arxula adeninivorans		P	
			Pichia pastoris* (K. pastoris)			n?	9.4
			Yarrowia lipolytica			n	20.5
	Ascomycota	Pezizomycotina	Fungi with fruiting bodies			
		Taphrinomycotina	Schizosaccharomyces pombe Schizosaccharomyces octosporus			n	12 .5 11.2
			Schizosaccharomyces japonicus				11. 3
			Schizosaccharomyces jsp.	OY26			11.5
		Pucciniomycotina	Fungi with fruiting bodies plus yeasts			
	Basidiomycota					
		Agaricomycotina	Cryptococcus neoformans var. grubii	H99	D	
			Cryptococcus neoformans var. neoformans*			n	19 .0
		Ustilagomycotina	Malassezia globosa	CBS7966	S	n	8.9
			Malassezia restricta			
	Figure 2.1:					

Table 2 . 1 :

 21 Parental yeast strains used for the construction of the diallel design. All strains are diploid. They come from various origins and are associated to different food processes. Homozygous diploid strains are named "W", "D", "E" and "U", for forest, distillery, oenology and uvarum strains, respectively.

	Original strains						
	Strains	Genotype	Species	Ploidy	Collection/Supplier	Origin		Reference
	YSP128	HO/HO	S. cerevisiae	diploid	SGRP	Forest Oak exudate, Pennsyl-	Liti et al. (2009)
						vania, USA		
	Alcotec 24	ho/ho	S. cerevisiae	diploid	Hambleton Bard	Distillery, UK		Albertin et al. (2011)
	CLIB-294	HO/HO	S. cerevisiae	diploid	CIRM-Levures	Distillery, Cognac, France	Albertin et al. (2011)
	VL1	HO/HO	S. cerevisiae	diploid	Laffort Oenologie	Enology, Bordeaux, France	Marullo et al. (2006)
	F10	HO/HO	S. cerevisiae	diploid	Laffort Oenologie	Enology, Bordeaux, France	Marullo et al. (2009)
	VL3c	HO/HO	S. cerevisiae	diploid	Laffort Oenologie	Enology, Bordeaux, France	Marullo et al. (2004)
	BO213	HO/HO	S. cerevisiae	diploid	Laffort Oenologie	Enology, Bordeaux, France	Marullo et al. (2006)
	PM12	HO/HO	S. uvarum	diploid	ISVV	Grape must fermentation, Ju-	Masneuf-Pomarède et al.
						rançon, France		(2007)
	PJP3	HO/HO	S. uvarum	diploid	ISVV	Grape must fermentation,	Masneuf-Pomarède et al.
						Sancerre, France		(2007)
	Br6.2	HO/HO	S. uvarum	diploid	ADRIA Normandie	Cider fermentation,	Nor-	Albertin et al. (2013A)
						mandie, France		
	RC4-15	HO/HO	S. uvarum	diploid	ISVV	Grape must fermentation, Al-	Masneuf-Pomarède et al.
						sace, France		(2007)
	Homozygous diploid parental strains					
	Strains	Genotype	Derivation	Ploidy	Collection/Supplier	Reference		
	W1	HO/HO	YSP128	diploid	ISVV	Blein-Nicolas et al. (2013)	
	D2	ho/ho	Alcotec24	diploid	ISVV	Albertin et al. (2011)		
	D1	HO/HO	CLIB-294	diploid	ISVV	Albertin et al. (2011)		
	E3	HO/HO	VL1	diploid	ISVV	Albertin et al. (2011)		
	E4	HO/HO	F10	diploid	ISVV	Albertin et al. (2011)		
	E5	HO/HO	VL3c	diploid	ISVV	Blein-Nicolas et al. (2013)	
	E2	HO/HO	BO213	diploid	ISVV	Marullo et al. (2009)		
	U1	HO/HO	PM12	diploid	ISVV	Blein-Nicolas et al. (2013)	
	U2	HO/HO	PJP3	diploid	ISVV	Blein-Nicolas et al. (2013)	
	U3	HO/HO	Br6.2	diploid	ISVV	Blein-Nicolas et al. (2013)	
	U4	HO/HO	RC4-15	diploid	ISVV	da Silva et al. (2015)		
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  Chapter 3. Decoupling the Variances of Heterosis and Inbreeding Effects Is Evidenced in Yeast's Life-History and Proteomic Traits 51 last paper, it is theoretically shown that epistasis can result in best-parent heterosis even if there is no dominance at any locus.

. In this 1

Table 1

 1 Pearson's chi-square test for count data: comparison between the number of heterotic proteins in each cluster and group membership probability. The statistics clearly highlight clusters enriched of heterotic proteins (p-value<0.05).Because temperature has a major effect on many traits and because, in previous work, numerous strain × temperature effects have been detected(da Silva et al. 2015; Blein-Nicolas et al. 

	Cluster	1	2	3	4	5	6	7	8	9
	Number of proteins	11	168	39	65	144	102	627	24	50
	Number of heterotic proteins	7	35	3	22	13	13	72	5	2
	Proportion of heterotic proteins 0.64 0.21	0.08 0.34	0.09	0.13	0.11 0.21 0.04
	Chi-square standardized residuals 4.42 2.56 -1.07 4.40 -1.69 -0.35 -2.39 0.91 1.93

  Decoupling the Variances of Heterosis and Inbreeding Effects Is Evidenced in Yeast's Life-History and Proteomic Traits ulation subdivision is high, inbreeding depression and heterosis are negatively correlated. To our knowledge, the present study reports the first experimental example of such a decoupling.
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Table 4 .

 4 

		Observed		Predicted	
			Profile comparison FBA GIMME
	Ethanol	23.8	25.7	0	0
	CO 2	22.7	31.5	37.6	31.5
	Glycerol	3.54	0	0	0
	Acetate	0.311	0.016	0	0
	Trehalose	0.0356	0.0301	0	0
	Lactate	0.00873	0.0301	0	0

1: Observed and predicted exchange fluxes from different data-integration methods

Table 4 . 2 :

 42 External metabolite and biomass fluxes measured for 43 yeast strains from different origins(Nidelet et al., 2016).

		Glycolysis																																										
	0.5	PPP Glycerol synthesis																																								
		Acetaldehyde node																																								
		TCA reduced branch																																							
	0.4	TCA oxydative branch Metabolite export																																							
	0.3																																														
	0.2																																														
	0.1																																														
	0.0	G6p_F6p	F6p_Fdp	Fdp_Dhap	Dhap_G3p	G3p_13dpg	13dpg_3pg	3pg_2pg	2pg_Pep	Pep_Pyr	Pyr_Acald	Acald_Eth	CO2_t	Eth_t	G6p_6pgl	6pgl_6pgc	6pgc_Ru5p	Ru5p_Xu5p	Ru5p_R5p	R5p_S7p	E4p_F6p	S7p_E4p	Dhap_Glyc3p	Glyc3p_Glyc	Glyc_t	Acald_Eth_m	Acald_Ac	Acald_Ac_m	Ac_Accoa	Pyr_Accoa_m	Pyr_Oaa	Oaa_Mal	Mal_Fum	Fum_Succ	Oaa_Cit_m	Cit_Icit_m	Icit_Akg_m_nad	Akg_Succoa_m	Succoa_Succ_m	Mal_Pyr_m	Akg_Glu	Pyr_t	Biomass	Succ_t	Akg_t	Ac_t	Acald_t

garde Blanc 18 primeur Blanc 18 garde Blanc 18 primeur

  

			Objectives	Weighting	
	Trait Blanc 18 AFtime min	min	1	1
	t.lag	min	min	1	1
	Hexanol	low	low	0,25	0,25
	Octanoic acid	low		0,1	
	Phenylethanol-acetate	low	high	0,5	0,5
	Isoamyl-acetate	low	high	0,5	0,5
	Residual sugar	<2	<2		
	Phenylethanol	low	high<400	0,5	0,5
	4MMP	high	high	1	1
	Decanoic acid	low		0,1	
	SO 2 L/SO 2 T	high	high	0,5	0,5

Table 6 . 1 :

 61 Objectives in white grape must fermentation. Objectives for traits of enological interest for grape must fermentation at 18 degrees for garde and primeur wines. To each objective is given a weighting coefficient based on enological interests. Objectives may change with the desired type of wine.

  Hw ik intra

		1 If the i-observation belongs to a parental strain, the j-th; 0 otherwise;	(S8)
	Hw ik intra Hw ik intra	=	1 If the i-observation belongs to the k intra -hybrid strain; 0 otherwise;	(S9)
	z H b ik inter H b ik inter H b ik inter	=	1 If the i-observation belongs to the k inter -hybrid strain; 0 otherwise;	(S10)

and, enumerating the intra-specific/inter-specific hybrid strains with k intra /k inter from 1 to N intra /N inter , respectively, z

  ) Additive model plus dominance × dominance effect 4) Additive model plus dominance × dominance effect 4) Additive model plus dominance × dominance effect y P k = 2 Additive model plus additive × additive and dominance × dominance effect 5) Additive model plus additive × additive and dominance × dominance effect 5) Additive model plus additive × additive and dominance × dominance effect y P k = 2

		dd ij			(S14)
	ij				
	5) i	d i kl +	ij	dd ij	(S18)

i k i , y H lk = i k i + i l i + i k i + ij aa ij , y H lk = i k i + i l i + ij dd ij (S15)

6) Additive model plus dominance and additive × additive effect 6) Additive model plus dominance and additive × additive effect 6) Additive model plus dominance and additive × additive effect

y P k = 2 i k i + ij aa ij , y H lk = i k i + i l i + i d i kl (S16)

7) Additive model plus dominance and dominance × dominance effect 7) Additive model plus dominance and dominance × dominance effect 7) Additive model plus dominance and dominance × dominance effect

y P k = 2 i k i , y H lk = i k i + i l i + i d i kl + ij dd ij (S17)

8) Additive model plus dominance, additive × additive and dominance × dominance effect 8) Additive model plus dominance, additive × additive and dominance × dominance effect 8) Additive model plus dominance, additive × additive and dominance × dominance effect

y P k = 2 i k i + ij aa ij , y H lk = i k i + i l i +

Table S1 :

 S1 Diallel table representing the mitochondrial inheritance for each phenotyped cross: the data clearly shows too many unknowns to enter a mitochondrial effect in the model. Backslashes indicate the not phenotyped reciprocals.

	P1\ P2	D1	D2	E2	E3	E4	E5	W1	U1	U2	U3	U4
	D1	D1	D2	unknown	\	unknown	\	unknown				

garde Blanc 18 primeur Blanc 18 garde Blanc 18 primeur

  

			Objectifs	Coefficient	
	Trait Blanc 18 AFtime min	min	1	1
	t.lag	min	min	1	1
	Hexanol	low	low	0,25	0,25
	Octanoic acid	low		0,1	
	Phenylethanol-acetate	low	high	0,5	0,5
	Isoamyl-acetate	low	high	0,5	0,5
	Residual sugar	<2	<2		
	Phenylethanol	low	high<400	0,5	0,5
	4MMP	high	high	1	1
	Decanoic acid	low		0,1	
	SO 2 L/SO 2 T	high	high	0,5	0,5

Table D1 :

 D1 Objectifs de la fermentation des moûts de raisins blancs. Objectifs pour les caractères présentant un intérêt oenologique pour la fermentation des moûts de raisins à 18 degrés pour les vins garde et primeur. Un coefficient de pondération basé sur les intérêts oenologiques est attribué à chaque objectif. Les objectifs peuvent changer avec le type de vin souhaité.En général, le modèle statistique proposé dans cette première approche de modélisation peut être utilisé pour tout problème concernant les interactions par paires entre entités physiques ou biologiques. En écologie, le même modèle pourrait être utilisé pour étudier la compétition entre individus pour des ressources dans un environnement donné, pour accéder aux performances en mélanges et pour quantifier la capacité de mélange de groupes de génotypes, de populations ou d'espèces.

  Titre :Mod élisation math ématique et int égration de donn ées biologiques complexes : analyse du ph énom ène d'h ét érosis chez la levure Mots cl és : Vigueur hybride, consanguinit é, dispositif diall èle, int égration de donn ées, m étabolisme, levure R ésum é : Le cadre g én éral de cette th èse est la question de la relation g énotype-ph énotype, abord ée à travers l'analyse du ph énom ène d'h ét érosis chez la levure, dans une approche associant biologie, math ématiques et statistiques. Ant érieurement à ce travail, un tr ès gros jeu de donn ées h ét érog ènes, correspondant à diff érents niveaux d'organisation (prot éomique, caract ères de fermentation et traits d'histoire de vie)
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Chapter 3

Chapter 4

Metabolism modeling

Life-history traits are the observable results of unobservable processes that occur at a cellular scale. During the last decades, novel profiling technologies and high-throughput techniques have made possible the inventory of a majority of biological components underlying phenotypic variation along with genome-scale characterization of genomic sequences. This included transcriptomic, metabolomic and proteomic data at individual level. Quantification of omic data have enabled biologists to view and study cell as a system of interacting components. The metabolism of a cell can be seen as a network in which compounds are transformed through a series of steps into other compounds. This process is governed by enzymes, which are catalysts allowing reactions to proceed more rapidly and which tune the rate of the metabolic reactions, for example in response to changes in the cell's environment or to signals from other cells.

Based on genome annotation and biochemical knowledge, genome-scale metabolic models have been proposed for the description of cell metabolism. They can be used to study genotypephenotype relationships, and their application to microbial strain engineering is increasing in popularity. To this end, the determination of flux distributions is essential, for a better understanding of the interplay between different metabolic pathways, for investigating the genetic and molecular bases of the multi-trait variation and, lastly, for the prediction of the integrated phenotypes. Nevertheless, metabolic fluxes are difficult to measure. Metabolic Flux Analysis is powerful (Antoniewicz, 2015), but it is based on RMN and differential usage of radioactive isotopes. It remains low-throughput and cannot be applied on numerous individuals. Technical developments in mass spectrometry popularized metabolomics (Nicholson and Lindon, 2008), which allows to characterize in some extent the metabolome, i.e. the set of metabolites in a cell, tissue, organ or organism. However, the technique still suffers from standardization procedures and does not allow for high-throughput quantitative comparisons (Riekeberg and Powers, 2017).

Sophisticated methods for the analysis of the global organization of cellular behavior have been proposed, one of them being constraint-based reconstruction and analysis applied to genome-scale metabolic networks [START_REF] Bordbar | Constraint-based models predict metabolic and associated cellular functions[END_REF]. In this chapter, I briefly review the main approaches developed for constraint-based modeling of cellular metabolism, and I present the main properties of the yeast central carbon metabolism model that I use in the Chapter 5.

Metabolism is the set of chemical reactions that take place within each cell of a living organism and that provides energy for vital processes and for synthesizing new organic material.

Metabolism

Constraint-Based Modeling (CBM)

The metabolism of a cell can be described by the complex network of chemical reactions between M metabolites and N reactions. In the toy model below, metabolite M 1 enters the cell and is transformed into M 2 and M 3, while M 2 can also be produced by an isomerization of M 3. M 2 is exported outside the cell at a rate v 4 . Fluxes are reaction rates v i that depend on enzyme activities.

Chapter 6

Appendix A

Supplementary materials for Petrizzelli et al. 2019 A.1 Subcompositional dominance and distances

We consider the central log-ratio transformation in order to pursue our analysis without considering both the block effect and residuals for the more integrated traits and residuals for protein abundances. We are aloud to do so since the clr-transformation satisfies the subcompositional dominance property, i.e., for each couple of vectors, x x x and y y y, and for each pair of subvectors x

x x and ŷ y y of x x x and y y y, respectively, obtained by selecting the same set of components, the distance between the subvectors is always less than or equal to the distance between the original vectors, i.e.

d(x x x, y y y)

Therefore, for each z z z such that d(x x x, y y y) ≥ d(x x x, z z z), we have that, dividing eq.(S1) by d(x x x,z z z)

As a consequence, distance relationship between the original vectors is preserved by selected subvectors.

A.2 The fitting algorithm

The hglm package implements the estimation algorithm for hierarchical generalized linear models. It fits generalized linear models with random effects, where the random effect may come from a conjugate exponential-family distribution (Gaussian, Gamma, Beta or inverse-Gamma) and it is possible to explicitly specify the design matrices both for the fixed and random effects, which allows fitting correlated random effects as well as random regression models.

In order to perform the diallel analysis, we considered y, the vector of observations for the trait of interest, and we re-wrote the model (eq.( 1.56)) in matrix a form:

where X is the design matrix for the fixed effects, Z the design matrix for the random effects,

are respectively the vectors of fixed effects parameters and random effects parameters, and is the vector of random errors. With this notation, the construction of the model is straight forward since we just have to construct the design matrices for both fixed and random effects.

Let n be the number of observations, J the total number of parental strains, N intra (resp. N inter ) the number of intra-specific (resp. inter-specific) crosses, and K the total number of random effects

the GCA of strain i. Therefore, we can express the inbreeding depression variance as the deviation of the decomposed phenotypic value of the parents, P d , and their true value

and the heterosis variance analogously

In which we have used the fact that H ij = H ji , since no maternal effects are present. Substituting S19 and S21 in S22, we get

where i = j = k. In the same way, substituting S20 and S21 in S23, we get

A.5. Structuration of genetic variability at the fermentation trait level

where again i = k = j. Therefore,

A.5 Structuration of genetic variability at the fermentation trait level

A Gaussian mixture model is run to classify life-history and fermentation traits according to their genetic variance components.

The best model clearly identify three clusters (fig. S3 and fig. S6). Cluster 1 (99.9% of good assignments) is composed by 9 traits, characterized by having null inter-specific additive variance component, relatively low inter-specific heterosis variance and high intra-specific additive and inbreeding components. In this cluster we can find most volatile compounds such as Octanoic acid and Hexanol at both temperatures, Phenyl-2-ethanol, Phenyl-2-ethanol acetate and Decanoic acid at 18°C, the kinetic parameter CO 2max and the life-history trait Size-t-N max at 26°C. Cluster 2 (98.9% of good assignments) consists of 28 traits that are characterized by high inter-specific additive and inbreeding components (σ 2 Aw Aw Aw ). Most kinetic parameters and life-history traits belongs to this cluster: t-lag, V max , t-45, r, t-N max , J max and Viability-t-N max at both temperatures; t-V max and t-75 at 26°C; AFtime, t-N 0 , Size-t-N max at 18°C. We can also find some basic enological parameters and aromatic traits -Isoamyl acetate and Hexanoic acid at both temperatures; Phenyl-2-ethanol and Phenyl-2-ethanol acetate at 26°C; X4MMP, Free SO 2 and Total SO 2 at 18°C. Traits attributed to cluster 3 (19 traits, 97.3% of good assignments) have high additive and heterotic variances and null inbreeding variance. The rest of the basic enological parameters and aromatic traits along with some kinetics parameters and life-history traits belongs to it.

As for protein abundances, we choose to consider life-history and fermentation traits at two temperatures (18°C and 26°C) as different traits. Indeed, after computation of genetic variance components for each trait, correlations between temperatures are not found to be significant except for 6 traits (t-V max , t-45, r, t-N max , Viability-t-N max and Hexanol) that are highly and positively correlated. All of them fall in the same cluster at the two temperatures, except t-V max . Overall, we find that 79% of traits do not belong to the same cluster at the two temperatures. Further, Pearson's correlation tests are performed to investigate the correlation between genetic effects at the two temperatures. They were not significant except for the additive inter-specific component (cor = 0.74, p-value<0.05). Therefore, at the fermentation trait level, genotype by environment interactions predominate.

Globally, correlations between variance components, when present, are found to be negative (fig. S4). However, the pattern changes when considering intra-group correlations. Indeed, in cluster 2, even if inbreeding is negatively correlated to the heterotic variances, it is positively correlated to the additive inter-specific variance, and in cluster 3, additive genetic variances are positively correlated to each other. In cluster 1, there is no statistical significant correlation between genetic effects (fig. S7).

Therefore, we can state that three well defined groups of traits can be differentiated according to their genetic variance profiles and we show that the part of phenotypic variation explained by the model's parameters depends on trait's category and temperature: in cluster 1, we can find Horizontal bars are added to show, for each parameter, the region of highest density that covers nearly 95% (∼ ±2 σq q q ) of the parameter density. On the left hand-side of each plot we list, for each genetic effect, the strains which have the lowest and the greatest value of the respective genetic effect. The plot shows that: (i) genetic effects differ in a large extent between the two temperatures;

A.8 Supplementary figures

(ii) additive and heterosis effects depend on the type of cross in which a line is involved (intra-or inter-specific); (iii) for some traits, genetic variances are strongly influenced by a particular hybrid combination.

Supplementary materials for "Data integration uncovers the metabolic bases of phenotypic variation in yeast"

B.1 Sampling the solution space

Let L denote the solution space of eq. 5 with constraints (eq. 6). Our aim is to sample random elements in the convex set L in order to characterize it by means of posterior joint distribution between fluxes. In order to do so, classical methods, like the well-known Hit and Run algorithm are available (Meersche et al. 2009). Braunstein et al. 2017 turn to map the original problem of sampling the feasible space of solutions L into the inference problem of the joint distribution of metabolic fluxes, letting the linear and inequality constrains to be encoded within the likelihood and the prior probabilities, which via the Bayes theorem provides a model for the flux posterior distribution density. We compared the posterior density distribution obtained by the Hit and Run (HR) sampling to the Expectation Propagation algorithm (EP). We run the HR with a burning length equal to 10 6 and with a jump of 0.5, for a number of iteration from 10 6 to 10 7 , and the EP algorithm with a high β parameter (Boltzmann inverse temperature parameter). Fig. SF1 shows the sampled space of solutions through the HR (histograms) and the EP estimate (red curve). Fig. SF2 shows the Pearson correlation coefficients between variances and means estimated through EP and HR for different number of iterations. As can be seen, the Pearson correlation increases as the number of the HR samples increases. Assuming that HR samples the true distribution of fluxes, means are well predicted by the EP algorithm, although variances are underestimated.

We further investigated if the EP algorithm well predicted the variance-covariance matrix of the DynamoYeast fluxes. In fig. SF3 are shown the relation between 8 pairwise fluxes chosen at random, and the correlation ellipses (red curve) computed by the EP algorithm. As can be seen, the EP algorithm well predicts the variance-covariance matrix between fluxes satisfying eq. 5, on the basis of the HR predictions. phenotypic variation in yeast" B.2. Supplementary figures 131 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q -500 0 500
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Here we prove the equation

Proof: If L is the number of loci, there are 4 L IBD (identical by descent) probabilities

where i l = 0, 1, 2 or 3 and furthermore these probabilities add up to 1. A number of these probabilities are equal because of two symmetries: (1) the two homologous chromosomes in each individual play identical roles, and (2) the siblings play identical roles (assuming no sex-dependence of meiosis, so that the recombination rates r l,l are sex-independent). It is thus appropriate to use only one representative of each equivalence class generated by these symmetries. A way to do this is to first impose that this representative have its first index, i 1 , equal to zero. Second, we can then specify exactly one element in each class by imposing that the indices of the representative Q's have either

The number of equivalence classes and thus of Q's to consider is then

Given that L l=2 2 -l is a geometric progression of common ratio 2 -1 from 2 to L, the sum of its terms can be expressed as:

Substituting S3 in S2, we get

Factorizing with respect to 2 L-2 and after simplification, this gives

THE SELF-CONSISTENT EQUATIONS FOR THREE LOCI

Here we provide the coefficients entering each of the N Q (L) = 10 self-consistent equations for L = 3.

3.1

The self consistent equation for Q(0, 0, 0)

Figure S2 displays the 8 factors in the self-consistent equation for Q(0, 0, 0):

After use of symmetry to keep only non-equivalent Qs, this leads to 

C.6. Supplementary Material

3.2

The self consistent equation for Q(0, 0, 1) Figure S3 displays the 8 factors in the self-consistent equation for Q(0, 0, 1):

After use of symmetry to keep only non-equivalent Qs, this leads to

Figure S3: The graphical representation of the factors multiplying each Q on the right-hand side of Eq. S7 for Q(0, 0, 1).

3.3

The self consistent equation for Q(0, 0, 2) Figure S4 displays the 8 factors in the self-consistent equation for Q(0, 0, 2):

After use of symmetry to keep only non-equivalent Qs, this leads to C.6. Supplementary Material

3.4

The self consistent equation for Q(0, 1, 0)

Figure S5 displays the 8 factors in the self-consistent equation for Q(0, 1, 0):

After use of symmetry to keep only non-equivalent Qs, this leads to

Figure S5: The graphical representation of the factors multiplying each Q on the right-hand side of Eq. S9 for Q(0, 1, 0).

3.5

The self consistent equation for Q(0, 1, 1)

Figure S6 displays the 8 factors in the self-consistent equation for Q(0, 1, 1):

After use of symmetry to keep only non-equivalent Qs, this leads to C.6. Supplementary Material

The self consistent equation for

Figure S7 displays the 8 factors in the self-consistent equation for Q(0, 1, 2):

After use of symmetry to keep only non-equivalent Qs, this leads to

Figure S7: The graphical representation of the factors multiplying each Q on the right-hand side of Eq. S11 for Q(0, 1, 2).

3.7

The self consistent equation for Q(0, 2, 0)

Figure S8 displays the 8 factors in the self-consistent equation for Q(0, 2, 0):

After use of symmetry to keep only non-equivalent Qs, this leads to C.6. Supplementary Material

3.8

The self consistent equation for Q(0, 2, 1)

Figure S9 displays the 8 factors in the self-consistent equation for Q(0, 2, 1):

After use of symmetry to keep only non-equivalent Qs, this leads to

Figure S9: The graphical representation of the factors multiplying each Q on the right-hand side of Eq. S13 for Q(0, 2, 1).

3.9

The self consistent equation for Q(0, 2, 2)

Figure S10 displays the 8 factors in the self-consistent equation for Q(0, 2, 2):

After use of symmetry to keep only non-equivalent Qs, this leads to

Figure S10: The graphical representation of the factors multiplying each Q on the right-hand side of Eq. S14 for Q(0, 2, 2).
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3.10

The self consistent equation for Q(0, 2, 3)

Figure S11 displays the 8 factors in the self-consistent equation for Q(0, 2, 3):

After use of symmetry to keep only non-equivalent Qs, this leads to

Figure S11: The graphical representation of the factors multiplying each Q on the right-hand side of Eq. S15 for Q [START_REF] Simons | Nitrogen-use efficiency in maize (Zea mays L.): from 'omics' studies to metabolic modelling[END_REF]2,[START_REF] Simons | réalisable réduit par les observations expérimentales, j'ai montré que l'utilisation de la voie du pentose-phosphate était un moyen d'économiser des ressources, en produisant de l'énergie à un prix inférieur, en termes de consommation de glucose. Il serait intéressant de faire d'autres comparaisons avec d'autres fonctions objectives pour mieux comprendre les bases métaboliques sous-jacentes de la variation des traits phénotypiques. Les perspectives futures seraient d'appliquer la méthode à un modèle à l'échelle du génome de levure[END_REF].
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Résumé en Français

Où :

• µ est la moyenne globale ;

• s(i) associe à chaque souche parentale i l'espèce à laquelle il appartient : 

effet génétique sous considération: ∀i q i ∼ N (0, σ 2 q q q ). (D2) 167 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q -8 -6 -4 -2 0 2 4 -8 -4 0 2 4

Additive intra-specific Additive inter-specific 1 2 3 4 5 6 7 8 9 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q -8 -6 -4 -2 0 2 4 -8 -4 0 2 4

Additive intra-specific Inbreeding 1 2 3 4 5 6 7 8 9 q q q q q q q q q q q q q qq q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q -8 -6 -4 -2 0 2 4 -8 -4 0 2 4

Intra-specific heterosis Inbreeding 1 2 3 4 5 6 7 8 9 q q q q qq q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q qq q q q q q q q q q q q q q -8 -6 -4 -2 0 2 4 -8 -4 0 2 4

Intra-specific heterosis Inter-specific heterosis compte la valeur observée pour les caractères sélectionnés et le coefficient de pondération associé. L'approche naïve consiste à considérer la somme pondérée entre ces deux quantités. Ainsi, la sélection peut être effectuée sur des croisements présentant une valeur d'indice supérieure à un certain seuil et le calcul du gradient de sélection est simple. La réponse à l'équation de sélection renverrait la valeur phénotypique moyenne attendue de la progéniture à la génération suivante. Cela renverrait également la réponse attendue à la sélection pour les traits qui ne sont pas sélectionnés directement. Par conséquent, en utilisant la méthode que j'ai proposée pour l'estimation des composantes de la variance, c'est possible de prédire l'évolution de caractères non sélectionnés, y compris l'abondance de protéines, après une génération de sélection.

De plus, les composants additifs de la matrice de covariance de variance associée à la population HeterosYeast correspondent à la fameuse matrice G des paysages de fitness. Les vecteurs propres associés à la matrice G révéleraient les directions possibles de l'évolution et pourraient aider à comprendre la géométrie du paysage de remise en forme multi-trait chez la levure. [START_REF] Heavner | Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance, Database: The Journal of Biological Databases and Curation[END_REF]. Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance, Database: The Journal of Biological Databases and Curation 2013. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3739857/