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“In the physical sciences, mathematical theory and experimental investigation have always marched
together. Mathematics has been less intrusive in the life science because they have been largely
descriptive, lacking the invariance principles and fundamental constants of physics.
Increasingly, in recent decades, however, mathematics has become pervasive in biology, taking many
different forms: statistics in experimental design; pattern seeking in bio-informatics; models in
evolution, ecology and epidemiology; and much else... ”

R. M. May
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Preface

Mathematics has long played a dominant role in our understanding of physics, chemistry and other
physical sciences. In biology it has first been confined to some particular disciplines such as pop-
ulation genetics, but for some decades, this situation is changing at a fast pace. Mathematical
methods are increasingly used for model construction and to deepen our knowledge of living sys-
tems.

The growing interest for mathematical biology may be partly explained by the advent of in-
novative profiling technologies that have led to high-throughput production of different types of
biological data at different spatial and temporal scales. In this context, conceptual developments
are essential to organize data and extract relevant information to analyze the interactions between
the components of the systems and understand their behavior.

The novel technological tools for quantitative biology ranges from DNA sequencing for genomics
to high-throughput phenotyping for ecology. Since the first genomic sequencing of the bacteria
Haemophilus influenzae (Fleischmann et al., 1995) and that of the human genome (Lander et al.,
2001; Venter et al., 2001), whole genome sequencing is now commonplace. This constitutes a major
milestone for understanding organism biology, as whole genome provides a catalogue of all genes
and associated molecules that are required for creating a living being, and carries information on
the functioning of the organism under different developmental stages and conditions.

Other techniques such as spectroscopy, electro-chemistry and crystallography have enabled re-
searchers to monitor complex cellular processes by using absorption and emission spectral methods,
flow cytometric analysis, etc. The data generated by the so-called –omics technologies, such as
transcriptomics, proteomics and metabolomics, shift cell analysis toward its interpretation. Indeed,
transcriptomics sheds light on which genes are active in a given cell at a given time, proteomics
reveals which proteins are present in a cell and in what amount, and metabolomics gives access to
the metabolic processes at work in a cell under different conditions. All these components do not
work in isolation but are connected at various levels in networks of varying complexity (Fischer,
2008).

Accurate high-throughput phenotyping strategies have been developed to highlight the quan-
titative phenotypic variation across cells, organs and tissues, developmental stages, years, envi-
ronments and species. This wealth of data challenges systems biologists, quantitative geneticists,
medical researchers and breeders not only to understand the genetic bases of complex trait varia-
tion, but also to use that knowledge to efficiently prevent diseases or derive crop varieties.

In this context, there is a crucial need for model construction to analyze and interpret the
biological systems under investigation. Mathematics, hand-in-hand with the development of new
statistical and computational tools, plays a key role in unifying concepts that allow researchers to
get new insights about the biology of living systems and the regulation of their underlying complex
mechanisms. The models can also help researchers to design further experiments for addressing
new biological questions.

Due to experimental constraints, structures and parameters of biological systems can often not
be assessed directly. Instead, they have to be inferred from limited, noise-corrupted data. Chance
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plays a role in the variability of the biological phenomena, through experimental noise, chance
during the reproduction process, stochasticity in the sub-cellular reactions, etc. These sources of
stochasticity are not independent from each other, structuring the datasets and leading to simi-
larities. The genotypes are linked by common evolutionary history, the genes are not independent
within the genome, the traits are, in a large extent, pleiotropically connected, etc. The integration
of dependence structures in models has both methodological and algorithmic costs (obtaining es-
timators in a realistic computation time is challenging).

In addition, multi-scale approaches are necessary for modeling the biological systems, which
intrinsically and irreducibly integrate processes of various natures at various levels, and can be
described within various frameworks (Lesne, 2013). Biological scales include atomic, molecular,
molecular complexes, sub-cellular, cellular, multi-cellular systems, tissue, organ, multi-organ sys-
tems, organism, population (Prokop and Michelson, 2012). To achieve a holistic understanding
of biological systems a wide range of models have been proposed (Hasenauer et al., 2015). They
are obtained by coupling models at different scales, and accordingly, the most naive approach is
to perform parameter estimation and model selection at each scale. Within a single quantity, the
relevant parameters can encapsulate the net result of various processes, such as a structural feature,
an interaction or the effect of an evolutionary pressure at a higher level.

Such data-driven models can be enriched with available knowledge about the biological pro-
cesses, by integrating both experimental data from other scales and biological knowledge from
the literature. Consider for example the work of Renaud et al. (2006) in which they coupled
knowledge about teeth morphology of fossil rodents with the well-known model of response to
selection (Lande, 1979), in order to study the evolutionary pressures constraining their develop-
ment. They showed that the patterns of intra-specific phenotypic variation were conserved over
long evolutionary time-scales and that departures were caused by climate-related selective pressure.

Finally, biological systems are essentially characterized by an entanglement of bottom-up and
top-down influences following from their evolutionary history. The overall behavior of a system
cannot be intuitively understood in terms of the individual components or interactions, and the
qualitative nature of their behavior can depend on quantitative differences in their structure. More-
over, models must be specific to the investigated issue. They are designed to focus on certain
aspects of the object of study, the other aspects being not considered. For instance, the familiar
ball-and-stick model of chemical structure focuses on a molecule’s chemical bonds. So it does not
capture the resulting polarity in the molecule’s atoms. Thus the models should ignore degrees of
freedom irrelevant to the issue under study and should focus on the characteristic scales. Similarly,
a multi-scale model should not intend to keep track of all details at all scales but only of the
relevant features, whatever their scales, essential to address a particular biological question.

In this context, the focus of my Ph. D. work is to address the general question of the genotype-
phenotype relationship, with particular attention to the study of hybrid vigor (or heterosis), relying
on a big dataset obtained during a previous ANR project HeterosYeast: exploitation of the heterosis
phenomenon for wine yeast improvement. In this project, a set of heterogeneous data, correspond-
ing to different levels of cellular organization (quantitative proteomics, fermentation and life-history
traits), was collected on a diallel-cross design constructed by pairwise crossing a series of strains
belonging to two yeast species, Saccharomyces cerevisiae and S. uvarum, under two different grow-
ing conditions.

The approach involved a combination of mathematical, statistical and computational meth-
ods merged with biological knowledge of the system under study. Multi-scale and model testing
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approaches have been employed for the prediction and understanding of the variation of the inte-
grated phenotypes from protein abundance data and metabolic (flux) traits.

This work is organized as follows:

Chapter 1 provides an overview of the genetic bases of phenotypic variation from a quanti-
tative and a population genetics perspective. The chapter is build gradually, from the concept of
phenotypic variation to its driving evolutionary forces. I finish with the description of particular
experimental designs and of statistical methods for the inference of genetic components.

Chapter 2 covers the experimental material and the analyses already performed on the Het-
erosYeast dataset. For the sake of completeness, a brief overview of the phylogeny and domestica-
tion of S. cerevisiae and S. uvarum is first presented. Secondly, the chapter provides an overview of
the diversity in life-history traits and fermentation in yeast, highlighting the well studied trade-off
between life-history traits. Finally it presents the HeterosYeast dataset, the previously achieved
results and the aims of my Ph. D. work.

Chapter 3 presents the first part of my thesis work consisting in the identification of the ge-
netic and molecular bases of phenotypic variation through the analysis of the diallel data. Among
others the most striking finding has been the decoupling of the variances of heterosis and inbreeding
effects (published in Genetics, Petrizzelli et al. (2019)).

Chapter 4 provides an introduction to constraint-based modeling (CBM) and to the methods
I have used to investigate the molecular bases of phenotypic variation in the HeterosYeast dataset.
The chapter is organized as follows: first I present the formulation of CBM modeling in a mathe-
matical framework, secondly I review methods for integration of proteomic data into CBM models,
then I compare classical methods used to infer metabolic models with the one I use in chapter 5.

Chapter 5 presents the second part of my thesis work consisting in finding predictors of fer-
mentation and life-history traits through the inference of metabolic fluxes. Statistical approaches
have allowed to integrate the three different levels of cellular organization to gain information on
the metabolic and molecular predictors of the integrated traits. This work, Data integration un-
covers the metabolic bases of phenotypic variation in yeast, will soon be submitted to Molecular
Systems Biology.

I conclude withChapter 6 were I draw my final conclusions and propose some future prospects.

Appendix A provides the supplementary material of the published article “Decoupling the
Variances of Heterosis and Inbreeding Effects Is Evidenced in Yeast’s Life-History and Proteomic
Traits” (Chapter 3).

Appendix B provides the supplementary material of the article “Data integration uncovers
the metabolic bases of phenotypic variation in yeast” (Chapter 5).

Appendix C, Probabilities of multilocus genotypes in SIB recombinant inbred lines, covers an
additional research work on which I have worked during my master thesis and that is going to be
submitted soon to Frontiers in genetics. It tackles the biological question of multi-locus frequencies
in sibling (SIB) recombinant inbreed lines (RILs) by means of applied mathematical tools. This
additional chapter provides the general formulation of the problem and the detailed description of
the model for the computation of multi-locus probabilities for any number of loci in SIB-RILS.
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Chapter 1

The genetic bases of phenotypic variation

1.1 Phenotypic diversity
Phenotypic diversity, i.e. the fact that different individuals of a given species exhibit distinct
phenotypes, is very common in natural populations. Understanding how phenotypic variation
emerges and how it is maintained is of fundamental significance in the study of evolution and in
its implications in plant/animal breeding and conservational biology (Andersson, 2001; Forsman,
2014). In this context quantitative genetics plays a key role for understanding the main factors
affecting quantitative traits.

Fisher (1919) was the first to propose a mathematical formalism to tackle this question. Uniting
Mendelian and quantitative genetics, he assumed that trait value is influenced by a large number of
Mendelian genes and by a random environmental variation (Fisher, 1919). In particular, assuming
that the overall population was panmictic, he proposed a probabilistic model for the decomposition
of trait value taking into account the transmission mode of genetic information from one generation
to another. At a reference generation g = 0, he parametrized the phenotypic value, Pi, of a trait
observed for an individual, i, with the additive (Ai) contribution of a large number of genetic
loci, allowing for dominance (Di) within each locus and epistasis (Ii) between the loci. He further
considered Mendelian segregation, i.e. the meiotic effect (Wi) resulting from the random choice of
a gene in a locus out of two during meiosis, and an environmental (εi) effect:

g = 0, Pi = Ai +Di + Ii +Wi + εi (1.1)

The genetic and non-genetic effects were modeled as continuous random variables. Therefore, he
could express offspring phenotypic value, between two randomly chosen individuals, i and j, from
the reference generation as

g = 1, Po =
1
2Ai +

1
2Aj +Do + Io +Wo + εo (1.2)

Indeed, each offspring inherits one gamete (half of the genetic information) from its parents
(1

2Ai +
1
2Aj). Dominance effects are not predictable, in a panmictic population, since it is not

possible to infer the allele received from one parent knowing the one inherited from the other. Sim-
ilarly, epistatic and meiotic effects are specific to each individual, and in absence of environmental
correlations, the offspring-parent environmental effects are independent.

Quantitative traits, also known as complex or polygenic traits, usually show a continuous
range of variation as they are influenced by both environmental and genetic factors.
Quantitative genetics is the study of the inheritance of quantitative traits, such as height
or biomass, as opposed to discretely identifiable phenotypes, such as eye-color.

Quantitative traits and Quantitative genetics

This simple model allows explaining the phenotypic resemblance between relatives, since they
share common genes inherited from their kin, and the diversity observed on the whole population
as a direct consequence of the genetic variation and of environmental factors, which provides the
basis for evolution.



8 Chapter 1. The genetic bases of phenotypic variation

1.1.1 Components of phenotypic variation
Fisher (1919) proposed to characterize quantitative traits by their frequency distribution in a
population. His model decomposed the mean phenotypic value of a trait in a population into
a sum of random variables. The relative importance of the genetic and non-genetic effects can
therefore be accessed by the relative ratio of the variances associated to each component and
the phenotypic variance observed in the population. The model can be rearranged by grouping
the additive and non-additive genetic effects, and the genetic and non-genetic effects. In a given
environnement, we have:

P = A+NA+ ε = G+ ε (1.3)

where NA = D + I +W is the mean value of non-additive genetic effects, G = A+NA is the
the mean value of genetic effects and ε is the micro-environmental effect experienced by each
individual, due to measurement errors, local effects and/or epigenetic factors. Therefore, the
phenotypic variance can be expressed as

Var(P ) = Var(G) + Var(ε) + 2Cov(G, ε) (1.4)

It is immediate to remark that in a population composed only of individuals with the same genotype
(e.g. clones, F1 offspring between two pure lines) phenotypic variation is still possible.

Without loss of generality, we can assume that the expected value of ε is zero for all genotypes,
thus eq. 1.4 reads

Var(P ) = Var(G) + Var(ε) (1.5)

The component of phenotypic variation explained by genetic effects is the only component carrying
the genetic information inherited from one generation to the other. The relative ratio between the
genetic and phenotypic variance is called broad-sense heritability:

H2 =
Var(G)
Var(P ) (1.6)

Since genetic effects are independent by definition, Var(G) = Var(A) +Var(NA). Additive genetic
effects are the only effects carrying transmissible information on a phenotypic trait. Therefore, the
portion of the total phenotypic variance of a quantitative trait that is transmissible from generation
to generation is

h2 =
Var(A)
Var(P ) (1.7)

generally referred to as narrow sense heritability.

1.1.2 Genotype by environment interactions
The ability of one genotype to express multiple phenotypes as a response to different environments
is defined as phenotypic plasticity (fig. 1.1). In the general case, where the population is composed
of genetically different individuals, genotypes may be more or less sensitive to the so-called macro-
environmental effects, noted E. Macro-environmental effects are those that are common to a given
location at a given time to all genotypes. The variance of E may vary with the genotype (Lerner,
1954; Crow, 1960), so the model becomes:

P = G+E +G×E + ε (1.8)

where G×E is the genotype × environment interaction effect.
Phenotypic plasticity can therefore increase phenotypic variation in populations under divergent

selection or create convergence of phenotypes within genetically diverse populations exposed to the
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same selective pressure. In this context, the extent to which phenotypic plasticity is a heritable
character and acts upon adaptive evolution is an open issue (Chevin and Lande, 2015).
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Figure 1.1: Phenotypic plasticity and genotype × environment interactions. Each dashed line rep-
resents a different genotype, G and G′. A, the lines are horizontal: the phenotypic values are not
influenced by environmental changes (E is null). B, the lines are slanted and parallel: environmental
variation produces the same phenotypic variation on the two genotypes (G×E is null, but not E). C,
the lines intersect: the environment influences phenotypic variation in a genotype-dependent manner
(E and G×E are not null).

1.1.3 Parent-offspring regression and the breeder’s equation
Narrow sense heritability, h2, is of particular interest mostly because it represents a quantitative
measure of the quality of prediction of offspring’s phenotypes from parental phenotypes, of resem-
blance between relatives and of the rate of short-term response to natural or artificial selection
from standing variation, without knowing the details of the underlying genes.

Consider for instance the parent-offspring regression: Po = µ+ βPp, where µ is the mean pheno-
typic value of the offspring and β the regression slope:

β =
Cov(Pp,Po)

Var(Pp)
(1.9)

It is possible to obtain an estimate of the covariance between the parental and offspring phenotypic
value using Fisher’s model. Assuming a panmictic population of large effective size, with no
selection, no genotype-environment interaction and independent environmental effects, and keeping
in mind that genetic effects are independent by definition, the covariance between parents and
offspring is:

Cov(Pp,Po) = Cov(Ap +Dp + Ip +Wp +Ep,
1
2Ap +

1
2Am +Do + Io +Wo +Eo) =

1
2Var(A)

(1.10)
where Am is the additive effect of the second parent. Therefore

β =
Var(A)
2Var(P ) =

1
2h

2 (1.11)

Parent-offspring regression can be used to describe the phenotypic value of offspring from one
generation to the other. Let Xt denote the phenotypic value of an individual at generation t. In
a panmictic population with no overlapping generations, the phenotypic value of an offspring at
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generation t+ 1, Xt+1, can be expressed as:

Xt+1 = µt + h2(
Xm
t +Xp

t

2 − µt) + ε (1.12)

The mean phenotypic value of offspring, conditionally to the value of its parents, is therefore

E(Xt+1|Xm
t ,Xp

t ) = µt + h2(
Xm
t +Xp

t

2 − µt) (1.13)

Integrating over the phenotypic values of parents contributing to the next generation allows to
estimate the mean phenotypic value at the next generation. When all parents do not contribute
to the next generation, e.g. due to selection, we obtain:

µt+1 = µt + h2(µs,t − µt) ⇔ µt+1 − µt = h2(µs,t − µt) (1.14)

where µs,t is the mean phenotypic value of parents contributing to the next generation (fig. 1.2).
Eq. 1.14 is generally referred to as Breeder’s equation. In its most common formulation, eq. 1.14

writes
R = h2S (1.15)

where S is the selection differential, the average phenotypic value of selected parents expressed as
a deviation from the mean phenotypic value in the population, and R the response to selection,
the average expected phenotypic value of offspring at the next generation expressed as a deviation
from the previous generation, fig. 1.2.

Figure 1.2: Response to truncation selection (Gillespie, 2004). Above: Phenotypic distribution of
the selected trait in the parent population; α is the selection threshold and S the selection differential.
Below: Phenotypic distribution of offspring. R is the difference of mean phenotype from one generation
to the other.

Breeder’s equation is an accurate description of the response to selection in a single generation.
It is widely used in evolutionary biology to study the adaptation of natural populations. Its
elegance resides in the fact that the complexity of multi-locus inheritance are aggregated into
h2. However, it is not necessarily an accurate predictor of the progress of selection over several
successive generations because each generation of selection changes h2 in ways that are impossible
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to predict (Gillespie, 2004). Indeed, heritability changes with any modification in either additive,
non-additive and/or environmental variances. When there is very little variation of additive effects
with respect to the total phenotypic variance, h2 ∼ 0, and all phenotypic variation is attributed to
chance. There can be extensive selection and yet no evolution.

1.1.4 Selection gradients
It is the amount of additive variance that determines the rate of evolutionary change. Directly
comparing variances on multiple traits is difficult because they are not dimensionless and there-
fore vary with the scale of the trait or organism being measured. Yet, a different formulation of
equation 1.15, and its multivariate version, have been proposed by R. Lande (Lande, 1976, 1979),
coupling mean fitness value in a population to the mean phenotypic value of a trait.

Let wt(x) and ft(x) be the fitness and the probability density function, respectively, associated
to phenotype x at generation t. We can assume that wt(x) is a continuous function, integrable on
the domain of variation of x, Dx. In particular, the population mean fitness is:

w̄t(x) =
∫
Dx
wt(x)ft(x)dx (1.16)

Changes in mean fitness due to selection can be related to changes in the mean value of fitness
related traits. Assume a normal distribution for individual phenotypes

Xt ∼ N (µt, Vart(P )) (1.17)

Therefore, since wt(x) does not depends on the mean phenotypic value µt,

dw̄t
dµt

=
∫
wt(x)

dft(x)

dµt
dx (1.18)

Given that
dft(xt)

dµt
= ft(xt)

xt − µt
Vart(P )

(1.19)

and
µs,t =

∫
xtw(x)ft(x)dx∫
w(x)ft(x)dx

(1.20)

in a panmictic population for which there are not effects of sex on x, equation 1.18, after arrange-
ments, can be written as

µs,t − µt = Vart(P )
dln(w̄t)
dµt

(1.21)

Substituting, eq. 1.21 in eq. 1.14, a novel formulation of the response to selection is obtained:

µt+1 − µt = Var(A)dln(w̄t)
dµt

(1.22)

This equation shows that the response to selection depends on the additive genetic variance of the
trait of interest and on the selection gradient dln(w̄t)

dµt
. Changes of fitness-related mean trait

value at each generation are a result of selection driving fitness value towards a local
maximum.
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Extension to the multivariate case in which multiple are the traits correlated to fitness is
straight-forward, just by assuming normality for these traits. Letting

∆−→µ =


µ1
t+1 − µ1

t

µ2
t+1 − µ2

t

. . .
µnt+1 − µnt

 G =


Var(A1) Cov(A1,A2) . . . Cov(A1,An)

Cov(A1,A2) Var(A2) . . . Cov(A2,An)
. . . . . . . . . . . .

Cov(A1,An) . . . . . . Var(An)

 −→
β =


dln(w̄t)
dµ1
t

dln(w̄t)
dµ2
t

. . .
dln(w̄t)
dµnt


(1.23)

The equation can be written as
∆−→µ = G

−→
β (1.24)

where ∆−→µ is the vector of responses of multiple traits, G the variance-covariance matrix of additive
genetic effects and −→β the vector of selection gradients.

Thus, selection on one trait can result in selection on another trait due to correlations between
them. Similarly, if there is a correlation between additive genetic effects associated to different
traits, a correlation between selection responses can be observed. The β coefficients determine
the adaptive landscape, while the G matrix determines the direction of the phenotypic evolution
following the axes of greater genetic variation.

The response to selection, R, depends on the additive genetic variance, Var(A). But how
do we understand Var(A) in terms of allele frequencies and their additive effects on the
phenotype?

Question

1.1.5 One locus case
The relative portion of genetic variation explained by additive effects depend on the amount of
genetic interactions, on population mating system and on alleles frequencies in the population. To
show this last point, consider a panmictic population (in Hardy-Weinberg equilibrium) of genotypes
with a single biallelic diploid locus. Alleles A1 and A2 are assumed to have frequency p and q,
respectively, and genotypes A1A1, A1A2 and A2A2 to take the genotypic values a, d, −a, i.e. d = a
corresponds to complete dominance of allele A1 over allele A2, and d = 0 to additivity (tab. 1.1).

Genotype A1A1 A1A2 A2A2
Value GA1A1 = a GA1A2 = d GA2A2 = −a
Frequency p2 2pq q2

Table 1.1: Example. Genotypic values and genotypic frequencies for a single biallelic diploid locus.

The mean genotypic value of the population is thus

µ = a(p2 − q2) + 2pqd = (p− q)a+ 2pqd (1.25)

The allele substitution effect, i.e. the change in mean genotype value when an allele A2 is substi-
tuted by allele A1, is

α = a+ d(q− p) (1.26)

The additive effects for allele A1 and A2 are

αA1 = q (a+ (q− p)d) (1.27)
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αA2 = −p (a+ (q− p)d) (1.28)

and the dominance effects
δA1A1 = −2q2d (1.29)

δA1A2 = 2pqd (1.30)

δA2A2 = −2p2d (1.31)

The calculation of the additive and dominance components of genetic variance are straightforward:

Var(A) = 2pq (a+ (q− p)d)2 (1.32)

Var(D) = 4p2q2d2 (1.33)

Additive and dominance genetic variances are expressed as a function of allele frequencies and
genotypic values of the individuals in the population. If no dominance effect is present, d = 0,
Var(D) = 0 and Var(A) = 2pqa2.
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Figure 1.3: Genetic variance components in the biallelic case. Additive and dominance variances are
calculated as a function of the frequency of allele A1 through eq. 1.32- 1.33 (black dotted and solid
lines, respectively). Red line represent the total genetic variance. Top: Complete dominance of A1
(d = a). Center: No dominance (d = 0). Bottom: Complete dominance of A2 (d = −a).
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It is important to realize that the dominance effect contributes to the additive genetic variance.
Suppose for instance that a = −a = 0, then Var(A) = 2pqd2(q− p)2. Furthermore, when there is
complete dominance (d = a or d = −a), the ratio between the additive and dominance variances
depends only on allele frequencies: Var(A)/Var(D) = 2q/p.

In addition, additive genetic variance is higher for low frequencies of the dominant allele
(fig. 1.3). When the frequency of the dominant allele goes to zero, the genetic variance vanishes,
dropping faster than when it goes to 1. The additive variance is always the major component of
the total genetic variation, and when no dominance effect is present it is maximum for intermediate
frequencies (p = q = 1/2).

In this simple example, the dominance effect contributes to the additive genetic variance. In-
troducing additional genetic interaction effects will contribute similarly to the additive variance
component. Therefore, additive effects must be thought as the average genetic effect
transmitted from generation to generation, rather than the mean additive value of
alleles participating to the considered trait value.

Finally, we have seen that the genetic variance depends both on allele frequencies and genotypic
values. If allele frequencies and genotypic values are constant across generations, there will be no
phenotypic evolution of the population. If there is no genetic variation, the phenotypic variation
of the population can only be due to environmental and/or epigenetic factors. As long as these
factors do not vary, phenotypic evolution is not possible, even under selection.

How phenotypic diversity evolves and is maintained depends on the underlying mechanism
responsible for changes in allele frequencies while preserving genetic diversity. As pointed out
above, for a species to evolve there must be heritable phenotypic variation on which selection can
act.

How does selection act on a fraction of segregating alleles within a population? How does this
not lead to an extremely high variance and an intolerably large number of genetic deaths?

Question

1.2 Genetic Polymorphism
Genetic variation is the result of processes generating variability (mutation, migration, segrega-
tion) and of demographic processes (selection and genetic drift). Mutations are changes in allele
sequences through deletion, insertion, or, more commonly, substitutions of single DNA base pairs.
They furnish an almost infinite field of possible gene variations. Migration (or gene flow) is the
movement of genes into or out of a population. The allele frequencies of both the population they
leave and the population they enter will change in relation to the rate of migration. Genetic drift
is a random change in allele frequencies that is specially noticeable in small populations, in popula-
tions experiencing a bottleneck (the population suddenly gets much smaller), or in case of founder
effect (a few individuals leave their population and found a new population). Segregation is the ap-
portionment of alleles among the genotypes of the progeny resulting from the meiosis-fertilization
process.

Natural and artificial selection act on genotypes by changing their probability to participate to
the next generation. Artificial selection is due to the action of plant/animal breeders in choosing
the parents of the next generation. Natural selection is due to differential mortality or fertility in
the population, i.e. to selection of individuals showing higher fitness. Their common feature is
that the parents of the next generation are a selected subgroup of the whole population.

More specifically, fitness is defined as the average contribution to the gene pool of the next
generation that is made by an average individual of specified genotype. Given that the fitness
of a given genotype is manifested through its phenotype, which is affected by the environment it
experiences during its development, its fitness can be different in different selective environments.
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Natural selection acts on a population as long as genetic variation exists and this standing
variation is associated with fitness-related traits (Darwin, 1859). The problem amounts to under-
standing relationship between genetic variation and fitness. For the sake of simplicity, assume a
diploid population whose fitness depends on one biallelic locus (tab. 1.2).

Genotype A1A1 A1A2 A2A2
Fitness wA1A1 wA1A2 wA2A2

Frequency p2 2pq q2

Table 1.2: Fitness and frequencies of genotypes in a mono-locus biallelic model.

At each generation, if selection acts, allele frequencies will change as (Hartl and Clark, 1997)

∆p =
pq

w̄
[p(wA1A1 −wA1A2) + q(wA1A2 −wA2A2)] =

pq

2w̄
dw̄

dp
=
pq

2
dln(w̄)
dp

(1.34)

where dln(w̄)/dp is the selection gradient, pq/2 reflects the additive genetic variation of the allele
frequency p in the population and w̄ denotes the average fitness

w̄ = wA1A1p
2 + 2wA1A2pq+wA2A2q

2 (1.35)

It is easy to see that natural selection will increase the frequency of allele A1 as long as

p >
wA2A2 −wA1A2

wA1A1 − 2wA1A2 +wA2A2
if wA1A1 − 2wA1A2 +wA2A2 > 0 (1.36)

p <
wA2A2 −wA1A2

wA1A1 − 2wA1A2 +wA2A2
if wA1A1 − 2wA1A2 +wA2A2 < 0 (1.37)

Assuming heterozygote inferiority, ineq. 1.36 applies and natural selection will drive allele frequen-
cies towards an extreme value (0 or 1), depending on the initial allele frequencies in the population,
thus eliminating genetic variation (fig. 1.4-A). Assuming heterozygote superiority, ineq. 1.37 ap-
plies and natural selection will drive allele frequencies towards an intermediate value, preserving
genetic diversity (fig. 1.4-B). Nevertheless, heterozygote superiority and/or inferiority are not well
documented (Fiévet et al., 2018). In the dominance case, selection leads to the fixation of the
advantageous alleles (fig. 1.4-C).

In general, it is assumed that, in a stable environment, the additive genetic variance of a
panmictic population of finite size will decline over time, due to genetic drift. Under directional
selection, additive genetic variance is assumed to decline due to both drift and fixation of favorables
alleles, while the speed of fixation is modulated by generation of gametic disequilibrium (Bulmer,
1971).

How genetic variation is maintained depends on the interplay between these different mecha-
nisms. Haldane and Jayakar (1963) have argued that, in natural populations, genetic polymorphism
is the result of conflicting evolutionary pressures, identifying five main conflicts:

The conflict between selection and mutation, or mutation-selection balance. Since most
mutations that affect fitness are deleterious, selection will balance the effects of mutations, and ge-
netic polymorphisms may be maintained in the population. For instance, consider the mono-locus
biallelic model in tab. 1.2, where the A2 allele is produced by mutation of the A1 allele, at a rate
µ, with relative fitnesses wA1A1 = 1, wA1A2 = 1−hs and wA2A2 = 1− s, s being the selection coef-
ficient against the A2A2 genotype and h the degree of dominance of allele A1. An equilibrium can
be attained and allele frequencies will be p = 1−

√
µ
s under complete dominance, and p = 1− µ

hs
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Figure 1.4: Examples of adaptive landscape in the one locus case. Frequencies of allele A1 against
mean fitness in the population. Arrows indicate the direction of selection, i.e. changes in allele A1
frequency due to selection. Natural selection will drive allele frequencies towards: A, an extreme value,
in case of heterozygote inferiority, depending on the initial allele frequencies in the population; B, an
intermediate value, in case of heterozygote superiority; C, 1 for the strongest allele and 0 for the lowest,
in case of dominance. Overall, natural selection drives allele frequencies towards the closest fitness local
optimum.

under partial dominance assuming hs � µ. Similarly, if we consider haploid organisms, a genetic
polymorphism can be maintained in the population if µ < s (Haldane, 1937).

The conflict between selection and segregation. The most common example is when the
heterozygote has a higher fitness than either of the two homozygotes (fig. 1.4-B). For instance,
if wA1A1 = 1− k, wA1A2 = 1 and wA2A2 = 1− s, k and s being the selection coefficients against
A1A1 and A2A2, respectively, an equilibrium can be reached when p = 0 or p = 1 or p = s

s+k . The
first two equilibria are unstable, while the latter is stable and corresponds to the case in which the
average fitness is maximized in the population.

The conflict between fitness and frequency. Selected polymorphisms can be maintained
through negative frequency-dependent selection, i.e. the fitness of a genotype decreases as it be-
comes more frequent. As an example, we can consider that the fitness of a genotype decreases
proportionally to its frequency at a constant c, thus, wA1A1 = 1− cp2, wA1A2 = 1− 2cpq and
wA2A2 = 1− cq2. An equilibrium can be reached when p = 0, p = 1 or p = 1/2. As before, the
first two equilibria are unstable, while the latter is stable and corresponds to the case in which
both alleles are present in equal proportion. As an example, consider the conflict between sexes
under optimal mating rate with costly male sexual harassment. In this case, polymorphism can
emerge through negative frequency-dependent selection on fecundity (Iserbyt et al., 2013).

The conflict between selection and migration. The relative fitness of genotypes may vary
according to different environments. If each genotype is favored in a different subset of environ-
ments, within subdivided populations, local adaptation would have tendency to fix different alleles
in different geographic location, thus allowing the maintenance of genetic diversity between demes
at the level of the whole population. Inter-deme migration or colonization is therefore the main
mechanism to maintain genetic variation, importing new genetic material within a deme.

The conflict between selection in the diploid and the haploid phases or between the
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two sexes. When the fitness associated with the diploid and the haploid phases differs (or simi-
larly, the fitness between genotypes differs between sexes), the relative magnitude of the fitness of
the two states can attain an equilibrium. Interestingly, with an appropriate choice of fitnesses, it
is possible to have more than one stable polymorphism (Otto et al., 2015).

From a practical point of view, genetic polymorphism is the occurrence of different alleles at
a locus within a population at a rate of at least 1%.

Genetic polymorphism

1.2.1 Genetic load
All mechanisms that generate selected polymorphism are necessarily accompanied by the apparition
of genetic load, defined as the proportion by which the average fitness in the population is decreased
in comparison with what it would be if the factor under consideration were absent (Crow, 2001),
i.e.

L(f ) = 1− w̄

wmax
(1.38)

where f denotes the factor of interest and wmax the maximum fitness.
The reduction in mean fitness of a population that is caused by deleterious mutations is called

mutation load; by the recreation of Hardy-Weinberg genotype frequencies in sexual organisms, seg-
regation load (for instance, in random mating populations the homozygous state will be regenerated
by segregation); by unfavorable alleles increasing in frequency due to drift in small populations,
drift load; and by immigrants adapted to a different environment, migration load.

The apparition of genetic load is naturally associated to heterosis (or hybrid vigor). At a
population level, heterosis is defined as the increase in mean fitness of offspring with respect to
the parental population. Indeed, as long as genetic load exists, the population has not reached its
maximum fitness and there is place for heterosis.

Haldane (1937) suggested that this loss of fitness is the price paid by a population for its
capacity for further evolution. Indeed, the apparition of genetic load has important evolutionary
consequences for instance on the fate of small populations, in the evolution of sex and in the
evolution of mating systems. All mechanisms able to reduce the genetic load will be favored by
natural selection.

1.2.2 Segregation load
Segregation load is the reduction on mean fitness of a population that is caused by the recreation of
Hardy-Weinberg genotype frequencies in sexual organisms. Reconsidering the mono-locus biallelic
case presented above (tab.1.2) with wA1A1 = 1, wA1A2 = 1− hs and wA2A2 = 1− s. For h < 0,
the common example of heterozygote superiority applies for any value of s, and at the selection-
segregation equilibrium the genetic load would be null (fig. 1.5, blue dotted line). However,
for h > 0 heterozygosity inferiority applies, and genetic load at equilibrium can reach high values.
In general, genetic load is minimum at the selection-segregation equilibrium.
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Figure 1.5: Mean fitness and genetic load. Frequencies of allele A1 against: A, mean fitness in the
population; B, genetic load. The selection coefficient s is set to 0.1, the degree of dominance of allele
A2 is let to vary: h = 0.5 no dominance (black), h = 1 dominance of the recessive allele (red), h = −1
heterozygote superiority (blue), h = 1.5 heterozygote inferiority (green). The figure shows that genetic
load is minimum when allele frequencies reach their equilibrium value in the population.

1.2.3 Mutational load and drift
Mutational load is the reduction in mean fitness of a population that is caused by deleterious
mutations. In the simple mono-locus biallelic case presented above, assuming that the maximum
relative fitness of a genotype without mutations is equal to 1 (w̄no mut = 1), the average fitness
of the population will be w̄mut = 1− 2pqsh− q2s under mutation-selection balance. Thus, the
mutational load is

L(m) = 2pqsh+ q2s (1.39)

Under partial dominance, assuming that selection is stronger than the mutation rate (hs � µ),
p ∼ 1, q2 ∼ 0 and L(m) ' 2µ; under complete dominance, L(m) ' µ, i.e. selection removes two
copies of mutation at once. Therefore, at a first-order approximation, the mutational load depends
only on the mutation rate at the locus. This implicates that the harmful effect of an increase in
the mutation rate is the same with respect to the case in which the produced mutations are mildly
or severely deleterious. Their effect indeed counterbalance because a more detrimental mutation
comes at lower rate equilibrium frequency.

A generalization to the multi-locus case can be made assuming no epistatic interaction for fitness
between deleterious mutations (no genetic interaction between loci carrying mutations affecting
fitness). The mean fitness in the population can be expressed through a multiplicative fitness
function as the product of the mean fitness effects at each locus:

w̄ =
L∏
l=1

(1− 2µ) ' e−
∑L

l=1 2µ = e−U (1.40)

where the product runs over the L� 0 loci, and U =
∑L
l=1 2µ denotes the genome wide mutation

rate of alleles affecting fitness. Note that assuming mutations follow a Poisson distribution of
parameter U , this term correspond to the probability of no mutation. Therefore, the mutational
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load is
L(m) = 1− e−U (1.41)

When the equilibrium between selection and mutation is reached, even in an excess of mutation
over selection, a population will not degenerate. If however the population is subject to drift and
reproduce asexually, selection, even strong, will not be able to keep the population at equilibrium
(Muller, 1964).

To show this point, consider an initial finite haploid (or diploid without dominance) popula-
tion reproducing asexually and released at the peak of the multiplicative fitness landscape, i.e.
individuals do not carry any mutation and thus have maximum fitness, w̄ = 1 and wmax = 1.
The population reproduces randomly, and at each generation it undergoes selection, mutation and
drift. Under the action of mutation some individuals will soon acquire deleterious mutant alleles.
Let’s consider classes of individuals having the same number of mutations (under a multiplicative
fitness landscape it does not matter the position of the mutant allele in the genome, but only its
number). The fittest class, holding zero mutation, will participate to the next generation only if at
least one individual (i) does not experience mutation and (ii) it is sampled by random drift. If it
is not sampled, the zero mutation class disappears, and the fittest class becomes the class holding
one mutation. Indeed, due to the unidirectional nature of mutations, fittest genotypes can never
be restored, inducing a decline of the mean fitness in the population, and therefor an increase of
the mutational load, in a ratchet-like manner (fig. 1.6).

Figure 1.6: Muller’s ratchet. k is the number of mutations and nk the number of individuals with
k mutations. The red arrows indicate positive (upwards) or negative (downwards) selection. Initially,
accumulation of deleterious mutations will be accompanied by selection of the fittest class of individuals.
Drift continuously removes individuals, and in the long term, the class with less mutations disappears
(due to both drift and mutations). As deleterious mutations accumulates, selection will act on the
opposite direction, until extinction.

A fundamental difference could be obtained with a sexual reproductive regime. Haag and Roze
(2007), using single-locus models, have explored the combined effects of segregation, selection, and
drift in finite populations of sexual and asexual individuals. For partly recessive deleterious alleles,
they found that segregation affected changes in allele frequencies resulting in a greater mutation
load in asexuals than in sexuals. This arises primarily because, in the absence of segregation,
heterozygotes may reach high frequencies due to drift, which is not possible with segregation, as
mating between heterozygotes constantly produces new homozygotes which are efficiently selected
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against. Further, they proposed an extension of their model to the multi-locus case under a multi-
plicative fitness landscape, that could substantially reduce genetic load for sexuals. Indeed, genetic
drift is accompanied by the apparition of random associations between loci (positive and negative).
Positive associations are rapidly fixed by selection while negative are broken by recombination (Hill
and Robertson, 1966), therefore generating a selective advantage for sexual reproduction.

The ratchet-like phenomenon is therefore more pronounced with asexual than sexual reproduc-
tion, as pointed out by Muller (1964). A process termedMuller’s Ratchet describes the phenomenon
of almost irreversible (other than exact reverse mutations) accumulation of deleterious mutations
in asexual populations.

1.2.4 The evolution of sex
Stochastic effects occurring in any finite population tend to generate negative associations between
loci (Hill and Robertson, 1966). Breaking these negative associations increases the variance in
fitness among offspring and the efficiency of natural selection, that is the role of recombination
which therefore increases the rate of adaptation, as is the case in Muller’s Ratchet.

On the other hand, sexual reproduction costs in terms of energy required to find a mate,
increased risk of predation and disease transmission, investment into males (the two-fold cost of
sex) or time (sexually reproducing organisms tends to have fewer offspring and takes much longer
to grow).

A first concern is about the modification of a reproductive system. In nature obligate sexuals
persist, yet organisms able to alternate between reproductive modes exist, e.g. yeasts, lettuce-
leaf aphids or rotifers. To investigate selection for sex in finite populations, numerous theoretical
models have been proposed. Roze (2014) addressed this question by modeling sex rate as a quan-
titative trait on a finite population consisting of haploid individuals. The relative investment into
sexual and asexual reproduction was assumed to depend on one locus and, at each generation,
the probability of an individual to participate to the next generation depended on its fitness and
on its role in the production of offspring (i.e. reproducing asexually or on being the female or
male for sexual reproduction). Individual fitness was assumed to be multiplicative and depended
on the number of accumulated mutations and on the selection coefficient against the deleterious
mutations. This study showed that alleles increasing sex rate escape more easily from low-fitness
genetic backgrounds than alleles coding for lower rates of sex. Furthermore, at mutation-selection
balance, where selection is strong enough to outweigh a substantial cost of sex, interactions between
selected loci had a stronger effect that the sum of individual effects of each locus. This means that
selection on a sex-related allele resulted from its effect in pairwise associations with other loci.
Overall deleterious mutations tend to favor small rates of sex in the presence of strong direct costs.
However, population structure should enhance indirect selection due to stochastic effects and allow
higher rates of sex to be maintained.

Vanhoenacker et al. (2018) proposed a model to account for epistatic interactions for the study
of sex evolution of a haploid population under an isotropic model for stabilizing selection. The
fitness of an individual depended on a variable number of phenotypic traits. Sex was modeled as a
phenotypic trait, and trait values depended on the additive contribution of a large number of loci,
and of a random environmental effect. No covariance between traits was assumed and epistasis
was defined as a deviation from additivity of mutational effects on the (log) fitness genotype. They
showed that positive rates of sex are maintained in the population at equilibrium. Selection of
sex depended on the dimensionality of the pleiotropic fitness landscape and, for weak selection
and not too low rates of sex, on negative linkage disequilibrium caused by epistasis. They further
highlighted that selection gradients exist for sex, since sex breaks the associations between alleles at
different loci generated by selection, increasing the genetic variance among offspring, and allowed
for a better response to directional selection.
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1.2.5 The evolution of mating systems
Another major point to account for is, in sexually reproducing populations, the appearance of
inbreeding depression and the reduction in fitness due to inbreeding. Yet among sexual species,
many reproduce with both selfing and out-crossing and others have developed mechanisms to avoid
selfing, such as self-incompatibility, dioecy, heterostyly or dichogamy.

To investigate this issue, Lande and Schemske (1985) have proposed a multi-locus model for the
study of the evolution of selfing rate. Inbreeding depression was allowed to change with the mean
of selfing rate in a population incorporating recessive mutations and partially dominant lethal and
sub-lethal alleles at many loci. Selfing rate was supposed to depend on one locus, while fitness
depended on an infinite number of loci, with small effect. Letting w̄0 and w̄1 denote the mean
fitnesses of out-crossed and selfed progeny in the population. Inbreeding depression, the reduction
in mean fitness in the population caused by inbreeding, can be expressed as:

δ = 1− w̄1
w̄0

(1.42)

Assuming that all genotypes produce the same amount of pollen, and that any seeds which are not
derived from out-crossing are self-fertilized, the expected fitness of genotypes with selfing rate r is

w = rw̄1 +
1
2 (1− r)w̄0 +

1
2 (1− r̄)w̄0 (1.43)

where the first two terms are components of fitness from selfed and out-crossed seeds, and the last
term is that from pollen fertilizing ovules of other plants (r̄ denoting the mean rate of selfing in
the population).
The condition for the evolution of the selfing rate, r, is therefore

dw

dr
> 0 ⇔ δ <

1
2 (1.44)

i.e. there is selection for increased selfing if the inbreeding depression is less than 50%, i.e. the
two-fold cost of sex. Under different hypotheses on the causality between mating systems different
threshold values for inbreeding depression are found.

In addition, Lande and Schemske (1985) showed that at the selection-mutation balance, under
complete dominance, the mean fitness value of progeny was equal to the mean mutational fitness
for any value of the selfing rate. Under random mating, selfing rate is assumed to be small (r ∼ 0)
and the mean fitness of the out-crossed and of the selfed progeny is

w̄0 =
∏
i

w̄0(i) =
∏
i

(1− µ), (1.45)

w̄1 =
∏
i

w̄1(i) =
∏
i

(1−
√
µs

2 ) (1.46)

where i is the locus index, µ and s are the mutation rate and the selection coefficient at a locus,
respectively, and where it is assumed that selection acts independently on each locus and so fitness
effects are multiplicative across loci. Therefore, inbreeding depression is

δ0 = 1−
∏
i(1−

√
µs
2 )∏

i(1− µ)
' 1− e−

∑
i
(1−e−(

√
µs
2 −µ)) (1.47)

On the other hand, when the rate of selfing is appreciably high, r � 4
√

µ
s ,

w̄0 = 1 (1.48)
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w̄1 =
∏
i

(1− µ

r
) (1.49)

δr = 1−
∏
i

(1− µ

r
) ' 1− e−

∑
i
µ
r (1.50)

These formulas confirm that a small amount of selfing greatly reduces the equilibrium frequency of
recessive lethals through purging of recessive lethals ( δr < δ0 already for r = 1%) (fig. 1.7). Qual-
itatively, a similar result is obtained for partially dominant lethal mutations, where the inbreeding
depression rapidly decreases as selfing rate increases. In comparison the equilibrium inbreeding
depression in a random mating population greatly decreases, allowing for selection of selfing. In
addition, when there is variation in the degree of dominance of the deleterious mutants, an excess
of inbreeding depression can be produced.
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Figure 1.7: Inbreeding depression versus the rate of selfing. As in Lande and Schemske (1985), the
mutation rate is set at µ = 2 · 10−6, the number of loci at n = 5000 and mutations are assumed to
be lethal (s = 1) and fully recessive. In populations allowed to self reproduce, inbreeding depression is
a decreasing function of the selfing rate (blue dotted line, δr) and rapidly falls to zero (for r = 10%,
δr = 0.095). Under random mating, inbreeding depression does not depend on the selfing rate (red
line, δ0). Out-crossing is selected for δr > 0.5, while selfing for δr < 0.5 (horizontal dotted line). Grey
rectangles feature parameters values that cannot be encountered.

Overall, if the selfing rate is under polygenic control and its evolution proceeds by small steps,
there is a bimodal distribution of the selfing rates towards their extreme values: either close to
0 for outcrossing or close to 1 for highly selfed populations. Nevertheless, under random mating,
sporadic events are likely to drive out-crossing species to self-fertilization, rather than vice-versa.
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Figure 1.8: Relation between inbreeding depression (filled circles), mean fitness (open circles) and
selfing rate (in abscissa) in equilibrium populations with synergistic epistasis. For low selfing rates,
mean fitness increases and inbreeding depression decreases with the selfing rate. For high selfing rates,
mean fitness may decrease. U = 1, h = 0.2, α = 0.01, β = 0.02 (Charlesworth et al., 1991).

On the other hand, this model assumes a high mutation rate (instead of ∼ 10−8) and a mul-
tiplicative landscape for non interacting multi-locus effects. Interactions between loci may lead to
higher order of inbreeding depression with comparable mean fitness levels.

Charlesworth et al. (1991) proposed a model of synergistic fitness interactions to explain the
maintenance of high inbreeding depression and out-crossing under the mutational load model. The
proposed model allowed for homozygote and heterozygote mutants, and mutations at multiple loci
were supposed to lower the fitness value relative to the case of independence between loci. The
fitness value of an individual was therefore modeled as:

wn = exp[−(αn+ βn2

2 )] (1.51)

where n = hz + y is the effective number of mutations, expressed as the sum of the number of
mutations in the heterozygous state, z, weighted by the dominance effect of heterozygous loci,
h, and the number of mutations in the homozygous state, y; α is a measure of the strength of
selection and β is a measure of the interaction between loci. They showed that the mean number
of mutations per individual at equilibrium decreased with increased selfing, as for the multiplicative
model, and with increased synergism. This induces a higher mean fitness under the synergistic
model than under the multiplicative model. Synergism reduced the fall-off of inbreeding depression
and increased genetic load with increased selfing. In addition, there can be evolutionarily stable
states at values of selfing rate slightly below complete selfing (fig. 1.8).

Interestingly, figure 1.8 shows that with epistasis, the equilibrium inbreeding depression can be
significant even in predominantly selfing populations. Recall that δ > 0 means that the average
fitness of outcross progenies is higher than the average fitness of selfed progenies. Because the level
of heterozygosity of outcross progenies is expected to be higher than the one of selfed progenies,
this corresponds to heterosis at the population level.

As stated by Charlesworth et al. (1991), all this together helps to explain the persistence of
high heterosis in predominantly self-fertilizing populations, without the need for invoking a general
heterozygote advantage, for which there is little evidence.
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1.2.6 Population structure, inbreeding depression and heterosis
Both the spatial distribution of organisms and their mode of reproduction have important effects
on the change in allele frequencies within populations. In the previous section, we have discussed
on the direct advantages associated to selfing, and the evolution of the mating systems in terms
of the cost of out-crossing and inbreeding-depression. Here, we discuss the effects of population
structure under mutation-selection balance on inbreeding depression and heterosis.

Individuals from the same species are generally found in different geographical areas, forming
subgroups from the same population. The spatial distribution of these subgroups and the way they
interact define a metapopulation. Metapopulations are described by their patch size and by the
degree of isolation between its subunits, i.e. they may or may not interact as individual members
move from one population to another (fig. 1.9).

Real metapopulations belong to the entire set of possible metapopulations whose extremes can
be described as Patchy, Classical, Mainland-island or non-equilibrium metapopulations (Harrison
and Taylor, 1997). Patchy populations are featured by high dispersal between habitat patches so
much that individuals from different patches mix freely, forming effectively a single population.
Classical metapopulations have habitat patches with similar probabilities of extinction and the
persistence of these metapopulations is dependent on the recolonization of locally extinct patches.
Mainland-island metapopulations have a local population that is extinction resistant (i.e. main-
land) and other local populations that have much higher extinction probabilities (i.e. island), but
are maintained by dispersal from Mainlands.

Population subdivision naturally gives the opportunity to define different forms of inbreeding
depression and heterosis. Roze and Rousset (2004) investigated the combined effect of population
structure and rate of selfing on the efficiency of selection against recurrent deleterious mutations,
assuming an island model of population structure. They defined within-deme inbreeding depression
as the fitness reduction of selfed progeny relative to out-crossed progeny from the same deme,
between-deme inbreeding depression as the reduction in fitness of selfed progeny relative to progeny
obtained by out-crossing randomly over the whole meta-population and heterosis as the difference
between the fitness of the out-crossed progeny within deme and the out-crossed progeny over the
whole meta-population.

They showed that selfing reduced within-deme inbreeding depression, between-deme inbreeding
depression and heterosis. Between-deme inbreeding depression decreased with the degree of sub-
division of the meta-population while within-deme inbreeding depression and heterosis increased.
Hence, from a population genetics point of view, heterosis is expected even in predominantly
selfing species in subdivided population. Thus it is important to note that heterosis and in-
breeding depression are not mirror images of each other. Heterosis arises when deleterious, recessive
mutations fixed within parental populations are in the heterozygous state by out-crossing, while in-
breeding depression is usually attributed to the expression of recessive deleterious mutations when
they become homozygous in inbred individuals.

• Sex and mating systems can be viewed as quantitative traits that evolve to minimize
the genetic load.

• Epistasis and recombination may explain the persistence of inbreeding depression at
equilibrium for intermediate levels of sex/out-crossing rates.

• At a metapopulation level, inbreeding depression and heterosis do not evolve in the
same manner.

Remarks
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Figure 1.9: Metapopulation structure based on Stith et al. (1996) and Harrison and Taylor (1997).
Circles in light blue represent occupied habitat patches, white circles represent vacant (unoccupied)
habitat patches. Green (black) closed lines represent the boundaries of local metapopulations (popu-
lations, respectively) and arrows represent dispersal. Metapopulation structure is defined by means of
patch size and patch isolation. Patch size and degree of isolation of the metapopulation are a measure
of its probability of extintion.

1.3 Inbreeding depression and heterosis, the breeder’s perspective
The relative parts of additive, inbreeding and heterosis effects on phenotypic variation are crucial for
understanding the evolutionary potential of a population. Numerous have been the experimental
designs and the statistical methods proposed to address this question (Cochran and Cox, 1950)

In a breeding perspective, Shull (1908) was the first to record experiments on heterosis and
inbreeding depression, observing that when plants were self-pollinated, offspring performance de-
clines in terms of growth and grain yield. However, when unrelated inbred lines were crossed the
growth and yield performances of the hybrid progeny usually exceeded that of the best parent. His
pioneer work in maize predicted that given the large amounts of heterosis within this species, the
best way to maximize yield was to create inbreds from existing population varieties in order to seek
for the best hybrid combinations. To this end, Sprague and Tatum (1942) developed quantitative
genetic techniques to assess the relative importance of additive and non additive effects in trials of
single-cross hybrids. In particular, they proposed to move from the analysis of population varieties
to hybrid varieties, by estimating parameters on single lines that could be used for the selection of
parents and the development of new lines.

They designated General Combining Ability (GCA) the average performance of a line in hybrid
combinations, and Specific Combining Ability (SCA) the difference between the mean phenotypic
value of the progeny and the average performance of the parental lines.

Subsequently, diallel designs were popularized as the most comprehensive designs for estimating
genetic effects, predicting hybrid values and generating breeding populations to be used as basis
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for selection and development of elite varieties (e.g. Hallauer and Filho (1988)).
The simplest and most popular decomposition of genetic effects in diallel designs is that of

Griffing (1956), in which the mean phenotypic value of a cross between lines i and j is modeled as:

yij = µ+GCAi +GCAj + SCAij (1.52)

where µ is the mean phenotypic value of the population.

Diallel designs are mating schemes used by plant/animal breeders and geneticists to inves-
tigate the genetic underpinnings of quantitative traits. They are constructed by pairwise
crossing a set of inbred lines to obtain F1 hybrids. In a full diallel, all parents are crossed
to make hybrids in all possible combinations. Variations include half-diallels with or without
parents, omitting reciprocal crosses.

Diallel designs

A few years later, Eberhart and Gardner (1966) stated that when are included in the diallel
both “crossed varieties” and “selfed varieties”, combining abilities can be separated to include
heterosis and inbreeding effects. The model writes:

yij = µ+
1
2 (ai + di) +

1
2 (aj + dj) + γ(hij + h̄+ hi + hj) (1.53)

where ai (aj , respectively) is the average performance of line i (j) in hybrid combinations, di (dj ,
respectively) is the variety inbreeding; hij is the specific heterosis (difference between the hybrid
and all hybrids sharing at least one parent); h̄ is the average heterosis (average difference between
inbreds and outbreds) and hi (hj) is the variety heterosis (average difference between the inbred
parent i (j) and all crosses sharing the same parents); γ is an indicator variable that takes value 1
if i = j and 0 otherwise.

Numerous other extensions have been proposed to extract other effects, such as maternal and
paternal effects or sex-linked variations (Cockerham and Weir, 1977; Bulmer, 1980; Zhu and Weir,
1996; Greenberg et al., 2010). Recently, Lenarcic et al. (2012) have proposed a comprehensive model
able to decompose the diallel into multiple genetic effects: additive, inbreeding and dominance,
parent of origin (mitochondrial), symmetric and asymmetric interactions and sex specific effects.
The full model of the phenotypic value of a cross between parents i and j, in replica k, reads:

yijk = µ+ x>k β︸︷︷︸
user fixed

+
R∑
r=1

u
(r)
k︸ ︷︷ ︸

user random

+ ai[k] + aj[k]︸ ︷︷ ︸
additive

+ Ii[k]=j[k](βinbred + bi[k])︸ ︷︷ ︸
inbred penalty

+mi[k] −mj[k]︸ ︷︷ ︸
maternal

+

Ii[k] 6=j[k]v(ij[k])︸ ︷︷ ︸
symmetric

+ Ii[k] 6=j[k]w(ij[k])︸ ︷︷ ︸
asymmetric

+ψ(sexk)(φ
a
i[k] + φaj[k])︸ ︷︷ ︸

sex−specific additive

+

ψ(sexk)Ii[k]=j[k](βfemale inbred + φbi[k])︸ ︷︷ ︸
sex−specific inbred penalty

+ψ(sexk)(φ
m
i[k] + φmj[k])︸ ︷︷ ︸

sex−specific maternal

+

ψ(sexk)Ii[k] 6=j[k]φ
v
ij[k]︸ ︷︷ ︸

sex−specific symmetric

+ψ(sexk)Ii[k] 6=j[k]φ
w
ij[k]︸ ︷︷ ︸

sex−specific asymmetric

+εi

(1.54)

The model allows for inclusion of fixed covariates xk and R random-effect components

u
(r)
k ∼ N (0, τ2

r ), ∀r ∈ 1, . . . ,R (1.55)

other than genetic effects. Along with the model, Lenarcic et al. (2012) proposed a hierarchical and
Bayesian approach for the estimation of the parameters of interest. In particular, genetic effects
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are modeled hierarchically and as drawn from a common normal distribution, i.e. additive genetic
effects are assumed ai ∼ N (0,σ2

a), ∀i.
In this context, we adapted the model described above to our particular half-diallel design

(presented in Chapter 2) that includes the diagonal with parental inbred strains from two species.
Thus we included in our model intra- and inter-specific additive effects, inbreeding effects and intra-
and inter-specific heterosis effects.

Formally, let yijk be the observed phenotype for the cross between parents i and j in replica k.
Our model reads:

yijk = µ+ Is(i)=s(j)(Awi +Awj ) + Is(i) 6=s(j)(Abi +Abj )+

+Ii 6=j(Is(i)=s(j)Hwij + Is(i) 6=s(j)Hbij )+

+Ii=j(βs(i) +Bi) + εijk,
(1.56)

where:

• µ is the overall mean;

• s(i) associates to each parental strain i the specie it belongs to:

s(i) ∈ {S. cerevisiae,S. uvarum}

• Awi and Abi denote, respectively, the additive contributions of strain i in intra-specific (within
species, i.e. s(i) = s(j)), and inter-specific (between species, i.e. s(i) 6= s(j)) crosses;

• Hwij and Hbij denote the interaction effect between parents (i, j) in intra-specific (within
species) and inter-specific (between species) crosses, respectively. In our half-diallel design
with no reciprocal crosses, they are assumed to be symmetric, i.e. Hwij = Hwji and Hbij =
Hbji . Hereafter we will refer to these effects as intra- and inter-specific heterosis effects,
respectively;

• βs(i) and Bi are, respectively, the deviation from the fixed overall effect for the species s(i)
and the associated strain-specific contribution of strain i in the case of inbred lines. Hereafter
we will refer to Bi as inbreeding effect;

• εijk is the residual, the specific deviation of individual ijk;

• Icondition is an indicator variable. Its value is equal to 1 if the condition is satisfied and 0
otherwise.

Therefore, for the parental lines we have:

ypiik = µ+ 2Awi + βs(i) +Bi + εiik, (1.57)

for the intra-specific hybrids:

yintraijk = µ+Awi +Awj +Hwij + εijk, (1.58)

and for the inter-specific hybrids:

yinterijk = µ+Abi +Abj +Hbij + εijk. (1.59)

All genetic effects were considered as random variables drawn from a normal distribution. Formally,
letting qqq ∈ {AwAwAw,AbAbAb,BBB,HwHwHw,HbHbHb} denote the genetic effect under consideration:

∀i qi ∼ N (0,σ2
qqq ). (1.60)
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The full mixed-effect genetic model is thus defined by three fixed effects (the intercept µ and the
inbreeding effects βSu and βSc) and five genetic random effect variances (σ2

AwAwAw
, σ2

AbAbAb
, σ2

BBB, σ2
HwHwHw

, σ2
HbHbHb

).

In Chapter 3, I present the detailed description of our findings.

• Quantitative traits are described in populations by variance components.
• Genetic variance components reflect both allele frequency and genetic effects at the

underlying loci.
• All genetic variance components are important in determining the population response

to evolutionary pressures.
• They can be estimated using dedicated cross designs.

Remarks
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Chapter 2

The yeast model and the HeterosYeast Project

Yeast is part of a large group of unicellular fungi widespread in nature. It is a powerful model
system to address core issues in evolutionary biology such us the architecture of the genome and its
evolution, the ecological and genetic structure of natural populations, the mechanisms of selection
that lead to adaptation and the evolution of sex and mating systems (Gu and Oliver, 2009).

There are many advantages working with yeast, in particular with Saccharomyces cerevisiae.
It is easy to grow in the laboratory, genetically tractable, and has been used as a model system
for studying eukaryotic cellular processes for over 50 years. These studies have provided insights
into fundamental eukaryotic processes, including transcription, translation, RNA processing, cell
signaling, cytoskeletal dynamics and vesicle trafficking. Presently, over 75% of yeast ORFs have
known or predicted functions, and much of this information is easily accessible in a variety of
databases on the world wide web (Chervitz et al., 1999; Payne and Garrels, 1997; Güldener et al.,
2005; Bader et al., 2003; Habeler et al., 2002).

Beside, yeast is important in many areas, including agriculture, medicine, biotechnology and
food industry. Specially, S. cerevisiae has been widely used for the production of wine, beer and
bread, but also as cell factory for the production of recombinant proteins for use as pharmaceu-
ticals (Nielsen, 2013), of bulk and fine chemicals (Kavšček et al., 2015) and more recently for the
production of bio-ethanol (Mohd Azhar et al., 2017). Some processes, such as biofuel production
or wine/beer making, require new yeasts to solve specific challenges, especially those associated
with sustainability, novel flavors and altered alcohol contents. For instance the development of
inter-specific strains, such as S. cerevisiae × S. uvarum, could be considered for the beer market.

2.1 Evolutionary history and domestication of Saccharomyces cere-
visiae and S. uvarum

2.1.1 Evolutionary history
The first eukaryotic genome fully sequenced was the genome of S. cerevisiae (Goffeau et al., 1996).
Subsequently, the genomes of about 40 yeast species have been sequenced, which has led to notable
advances in our understanding of evolutionary mechanisms and to the construction of robust yeast
phylogenies (fig. 2.1 to 2.4). Unexpectedly, extensive sequence divergence have been observed
between lineages, reflecting major genomic changes that contrast with the conservation of biological
properties of yeast for very long evolutionary times. Bottleneck events of clonal populations may
explain this observations. Indeed, under favorable conditions the majority of yeast species can
propagate indefinitely by mitotic divisions, i.e. without genetic exchange, forming large haploid or
diploid clonal populations. For example, S. cerevisiae predominantly reproduces asexually, with a
rate of sexual to asexual reproduction around 10−5 under optimal conditions. Accordingly, analysis
of polymorphism at selected loci suggests that in nature genetic exchanges and recombination are
limited in this species. Therefore sub-populations tend to form with independent accumulation of
sequence variations. The genetic drift resulting from such a mode of propagation is high as it offers
the possibility for non-optimized variants to survive and colonize novel niches (Dujon, 2010).
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Figure 2.1: Overview of the sequenced yeast genomes (Dujon, 2010). Colored triangles represent
clades or genera with their most recent designation (on the left). The dotted lines illustrate uncertainty
and/or incongruence between different published phylogenies. Genomic architectures identify three
major groups in Saccharomycotina: Saccharomycetacea (blue); CTG (or Candida) clade (orange);
Dipodacaceae (purple). The arrows point to major evolutionary events. “*” Species for which several
strains have been sequenced.
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Nevertheless, inter-specific hybridization is not rare in yeast, and is accelerated by stressful
conditions. Recent genomic studies have identified S. pastorianus as a hybrid between S. cerevisiae
and S. uvarum (Libkind et al., 2011). However hybridization in Saccharomyces sensu stricto is
generally accompanied by loss of genes, of chromosomal segments or of complete chromosomes,
from which novel lineages could emerge. Those specific gene losses are expected to severely reduce
the meiotic fertility of hybrids.

Species that belong to the same genus and share highly conserved gene synteny can exhibit
large sequence divergence, as is the case for S. cerevisiae and species from the S. bayanus group
(that includes S. uvarum). Experiments to investigate sequence divergence between yeast species
from the same clade suggest that, assuming mutations to be neutral, independent and occurring
at a rate of about 10−10, yeast species derive from very recent clonal expansion from samples
of large populations that had undergone similar successive bottlenecks. This would explain why
Saccharomyces sensu stricto clade have nearly identical chromosomal maps interrupted by only a
few chromosomal translocations.

Finally, the genome of S. cerevisiae contain DNA fragments from S. paradoxus, S. kudriavzevii,
S. uvarum and Zygosaccharomyces bailii, suggesting that recent introgressions have occured. This
process can be caused by the final step in nucleus fusing in inter-specific hybrids that allows
for transfers of chromosomal fragments from one nucleus to another. The ecological proximity
and selective pressures to adapt to high sugar, low-nitrogen and high-ethanol conditions during
fermentation may facilitate this phenomenon, explaining the frequent introgressions observed in
industrial S. cerevisiae strains. Domestication of S. uvarum is similarly supported by introgressions
of genes from S. eubayanus, leading to over-representation of several gene categories involved in
wine fermentation.

2.1.2 Domestication of S. cerevisiae and S. uvarum
Yeast species involved in alcoholic fermentation commonly belong to the clade of Saccharomyces
sensu stricto, to which S. cerevisiae and S. uvarum are part. S. cerevisiae is extensively used in the
food industry, for wine, beer, bread, etc., while S. uvarum has a more restricted use, for white wine
fermentation, e.g. in the northern regions of France, and/or for red wine fermentation in Hungary,
Italy and Spain. It is also the major yeast involved in cider making (Naumov et al., 2000).

S. cerevisiae is well known for its capacity of being highly fermentative, osmotolerant, heat
resistant and to be able to survive in low pH environments. S. uvarum produces less acetic acid and
ethanol, more glycerol and succinic acid, and synthesizes malic acid without posterior degradation.
Furthermore, S. uvarum is well recognized for its ability in producing volatile compounds such as
phenyl-ethanol, acetate and thiols, and for being cryotolerant.

In Saccharomyces, several cases of genome modifications through hybridization, introgressions
and genome rearrangements have been documented. In particular, S. cerevisiae lineages used in the
food industry have become genetically distinct from their wild relatives (Sicard and Legras, 2011),
highlighting the human influence on their evolution (fig. 2.2). Oenological strains show a higher
degree of heterozygosity as compared to strains in natural environments, reflecting a higher rate of
sexual reproduction and/or an advantage of heterozygotes under oenological conditions (Hittinger,
2013). Moreover, the vast majority of oenological S. cerevisiae strains belong to the same genetic
group, probably derived from a major domestication event of Mesopotamian origin, where most
wine strains “migrated” through two major routes, the Danube valley and the Mediterranean Sea
(Legras et al., 2007).

S. uvarum domestication has only recently been investigated (Almeida et al., 2014). S. uvarum
would come from the super-continent Gondwana in the southern hemisphere. This was suggested
by the fact that (i) its main host, Nothofagus tree, only lives in the southern hemisphere, and (ii)
it displays in the southern hemisphere high genetic diversity and high frequency of isolation. In
the northern hemisphere S. uvarum is the host of Quercus (oaks), which belongs to the same order
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Figure 2.2: Neighbor-joining trees based on SNP differences of S. cerevisiae strains: A, branch lengths
are proportional to the number of segregating sites that differentiate each pair of strains. Font color of
strain name denotes geographic origin and circle color denotes ecological niche as specified in the key.
(Schacherer et al., 2009). B, clean lineages highlighted in grey, with color indicating source (name)
and geographic origin (dots) (Liti et al., 2009).

as Nothofagus (Fagales), and is also associated with anthropogenic environments such as wine-
making and cider-making environments. Phylogenetic analysis resolved the various representatives
of S. uvarum into three main clades showing high genetic differences (fig. 2.3): a first group com-
posed of Holarctic strains (found in the northern hemisphere), a second group of South American
strains and the third of Australasian strains. In the northern group genetic differences between
strains are weak, with traces of recent hybridization with Saccharomyces strains from industrial
environments.

In the clade Saccharomyces sensu stricto, inter-specific hybridizations between domesticated
strains are common, as attested by the chromosomal introgressions (Sicard and Legras, 2011;
Libkind et al., 2011; Giudici et al., 1998). For instance, S. pastorianus domesticated species is
now known to come from the fusion of a S. cerevisiae ale-strain and S. eubayanus, a species
recently isolated in Patagonia (Libkind et al., 2011), which is itself a hybrid between S. cerevisiae
and a species related to the genetically complex S. bayanus group. The hybridization between
S. cerevisiae and S. eubayanus has resulted in the creation of a hybrid with the strong fermentative
ability of S. cerevisiae and the cold tolerance of S. eubayanus (Gibson and Liti, 2015).

More recently, the “Muri” strain, a unique hybrid between S. cerevisiae and S. uvarum, has
been isolated from Norwegian farmhouse beer (fig. 2.4). The strain possesses a range of industrially
desirable phenotypic properties such as broad temperature tolerance, ethanol resistance, efficient
carbohydrate use and formation of desirable aroma-active esters (Krogerus et al., 2018). Identifying
the mechanisms under selection during domestication process may clarify the emergence of new
traits.

How does human selection targeted the ability to complete fermentation in yeast?
Question
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Figure 2.3: Geographic distribution, phylogeny and population structure of S. uvarum. a, maximum
likelihood phylogeny of the genus Saccharomyces based on a concatenated alignment of 14 gene
sequences; b-c, geographic origin of the different strains of S. uvarum; d, whole genome Neighbor-
Joining phylogeny of 54 strains based on 129096 SNPs (Almeida et al., 2014)
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Figure 2.4: A, phylogeny of S. cerevisiae strains from Gallone et al. (2016) that shows that the Muri
strains clusters with S. cerevisiae beer strains. B, phylogeny of S. uvarum and hybrid strains from
Almeida et al. (2014) and Krogerus et al. (2018) that shows that Muri and other hybrid strains descent
from the Holartic group. Branches are colored according to lineage. Muri strain is highlighted in red.
Branch lengths represent the number of substitutions per site. Black dots on nodes indicate bootstrap
support value > 95%.
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2.2 Variability of life-history and fermentation traits in yeast
2.2.1 Relationships between life-history traits and resource availability
The traits associated to the life-cycle, such as reproduction rate (r), carrying capacity (or maximum
population size K) and cell size (S) are generally referred to as life-history traits. These traits are
tightly linked to the fitness of the organism (Stearns and Hoekstra, 2005).

As stated above, yeasts have a complex life-cycle, largely studied in S. cerevisiae, that responds
directly to environmental conditions and includes reproduction in both the haploid and diploid
states via budding. Under non limiting conditions, diploid cells reproduce asexually. When nutri-
ents are depleted, the mechanism of mating switches, cells enter in meiosis and sporulate. Spores
divide equally into Mata and Matα mating-types. Haploid cells can then reproduce vegetatively
through budding, or can mate with the opposite mating-type (Bardwell, 2004; Greig and Leu, 2009).
Therefore there are tight interrelations between life-history traits, which can be the result of both
evolutionary processes and physico-chemical cellular constraints. The balance of energy allocation
to reproduction, growth or survival represents a life-history strategy (Schluter Dolph et al., 1991).
Spor et al. (2008) have shown in S. cerevisiae that there is a continuum of strategies distributed
between two extremes: the “ant” and the “grasshopper” strategies. In batch cultures, yeasts first
consume glucose through fermentation. When glucose is exhausted, metabolism switches to respi-
ration. The “ant” strategy consists of quick reproduction (high rf ), high carrying capacity (high
K), and small cell size (small S) in fermentation, but low reproduction rate rr in respiration. The
“grasshopper” strategy consists of slow reproduction (low rf ), low carrying capacity (low K), large
cell size (large S) in fermentation and high reproduction rate in respiration (high rr). The strategy
chosen by S. cerevisiae strains depends on the ecological niche. In particular, forest and labora-
tory strains generally adopt the “ant” strategy, while industrial strains opt for the “grasshopper”
strategy (Spor et al., 2008).

The differences in life-history traits reflect differences in habitats of origin: strains from similar
habitats (even geographically isolated) have similar life-history strategies, i.e. niche-driven evo-
lution had probably led to phenotypic convergence. To investigate this point, Spor et al. (2014)
performed an evolutionary experiment with six yeast strains, chosen along the K-cell size gradient,
in environments differing for the amount of resources (1% and 15% of glucose) and the time spent
in the media (48h and 96h). Experiments were performed independently in batch cultures for the
four environments. The authors showed that each ancestral strain evolved different combinations of
life-history traits under the different selection regimes, adapting to the local conditions. The strains
evolved under the same selection regime developed similar life-history traits. Strains adopted the
“ant” strategy in poor media, with low glucose consumption, whereas strains in rich media selected
the “grasshopper” strategy with high glucose consumption rate. Therefore, the K-cell size trade-off
seems to be explained by resource availability. Phenotypic convergence could be partly accounted
for by selection of mutations in genes involved in the same pathways. In particular, Spor et al.
(2014) identified mutations at the BMH1 locus with antagonistic phenotypic effects depending on
the selection regime.

2.2.2 Fermentation trait variation is linked to life-history traits
Similarly, environment is the main factor shaping alcoholic fermentation. Albertin et al. (2011),
studying the ability of nine different strains of S. cerevisiae from winery, brewing and distillery
origins, have shown that glucose uptake displays plastic and genetic variability. Oenological strains
consume all sugar and produced more CO2 in less time in oenology medium than beer and distillery
strains, which displayed slow or incomplete fermentation. In the brewer and bakery mediums the
maximum CO2 release rate (Vmax) was higher and was reached faster, and fermentation ended
faster, than in the oenology medium.
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Furthermore, Albertin et al. (2011) have shown that Vmax is highly correlated with K and not
with Jmax, the maximum CO2 release rate per cell, suggesting that human selection targeted the
ability to complete fermentation by influencing the ability to reproduce rather than the metabolic
efficiency. Similarly, K was significantly correlated to nitrogen consumption and biomass, but
negatively correlated to the amount of acetic acid and trehalose measured at the end of fermenta-
tion. again, K was found to be negatively correlated with cell size, while cell size was positively
correlated with trehalose and the reproduction rate in respiration (rr), and with Jmax.

2.2.3 Relation K-cell size and protein abundance variation
The trade-off between K and cell size is robust: it has been found in yeast isolated in natural
populations (Spor et al., 2009), in industrial strains associated to different food processes (Spor
et al., 2008; Albertin et al., 2011) and in strains derived from experimental evolution (Spor et al.,
2014).

Albertin et al. (2013A) analyzed this evolutionary constraint with quantitative proteomics,
focusing on the abundances of the enzymes and isoforms of alcoholic fermentation, using the same
nine food-processing strains as those of Albertin et al. (2011). They showed that the enzymatic
pool allocated to the fermentation proteome was constant over the culture media and the strains,
but there was variability in abundance of individual enzymes and sometimes much more of their
post-translationally modified isoforms. This suggests the existence of selective constraints on total
protein abundance and trade-offs between isoforms. Interestingly, abundance variation of some
isoforms was significantly associated to metabolic traits and growth-related traits. In particular,
cell size and K were highly correlated with the degree of N-terminal acetylation of the alcohol
dehydrogenase. Thus the fermentation proteome was found to be shaped by human selection,
through the differential targeting of a few isoforms for each food-processing origin of strains. These
results highlighted the importance of post-translational modifications in the diversity of metabolic
and life-history traits.

Understanding the mechanisms shaping yeast biodiversity needs a comprehensive study of the
different levels of cellular organization and analysis of their relationships, from the molecular
and genetic point of view.

Remarks

2.3 HeterosYeast: Exploitation of the heterosis phenomenon for wine
yeast improvement

In the continuity of the previous studies, the ANR interdisciplinary project “HeterosYeast: Ex-
ploitation of the heterosis phenomenon for wine yeast improvement”, 2009-2013, coordinated by
Dominique de Vienne and Philippe Marullo, provided a large set of heterogeneous data to investi-
gate heterosis for fermentation and life-history trait variation. The HeterosYeast project focused
on three tightly related goals: better understanding of the genetic and molecular bases of hetero-
sis, developing predictors of heterosis and, in the long run, derive yeast hybrid strains with high
oenological performance. HeterosYeast relied on a diallel design, which is the most comprehensive
design to decompose the genetic effect and their variance for quantitative traits, as stated in section
1.3.
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2.3.1 Construction of the diallel design

Parental strains
Among the myriad of yeast species, S. cerevisiae and S. uvarum have been chosen since they are
characterized by the ability to achieve grape must fermentation. They differ in their habitat and
in a number of phenotypic traits, but natural hybrids between the two species exists. The original
strains of the experimental design were seven S. cerevisiae and four S. uvarum strains associated
to various food processes (oenology, brewery, cider fermentation and distillery) or isolated from
natural environments (oak exudates) (tab. 2.1).

Table 2.1: Parental yeast strains used for the construction of the diallel design. All strains are
diploid. They come from various origins and are associated to different food processes. Homozygous
diploid strains are named “W”, “D”, “E” and “U”, for forest, distillery, oenology and uvarum strains,
respectively.
Original strains
Strains Genotype Species Ploidy Collection/Supplier Origin Reference

YSP128 HO/HO S. cerevisiae diploid SGRP Forest Oak exudate, Pennsyl-
vania, USA

Liti et al. (2009)

Alcotec 24 ho/ho S. cerevisiae diploid Hambleton Bard Distillery, UK Albertin et al. (2011)
CLIB-294 HO/HO S. cerevisiae diploid CIRM-Levures Distillery, Cognac, France Albertin et al. (2011)
VL1 HO/HO S. cerevisiae diploid Laffort Oenologie Enology, Bordeaux, France Marullo et al. (2006)
F10 HO/HO S. cerevisiae diploid Laffort Oenologie Enology, Bordeaux, France Marullo et al. (2009)
VL3c HO/HO S. cerevisiae diploid Laffort Oenologie Enology, Bordeaux, France Marullo et al. (2004)
BO213 HO/HO S. cerevisiae diploid Laffort Oenologie Enology, Bordeaux, France Marullo et al. (2006)
PM12 HO/HO S. uvarum diploid ISVV Grape must fermentation, Ju-

rançon, France
Masneuf-Pomarède et al.
(2007)

PJP3 HO/HO S. uvarum diploid ISVV Grape must fermentation,
Sancerre, France

Masneuf-Pomarède et al.
(2007)

Br6.2 HO/HO S. uvarum diploid ADRIA Normandie Cider fermentation, Nor-
mandie, France

Albertin et al. (2013A)

RC4-15 HO/HO S. uvarum diploid ISVV Grape must fermentation, Al-
sace, France

Masneuf-Pomarède et al.
(2007)

Homozygous diploid parental strains
Strains Genotype Derivation Ploidy Collection/Supplier Reference

W1 HO/HO YSP128 diploid ISVV Blein-Nicolas et al. (2013)
D2 ho/ho Alcotec24 diploid ISVV Albertin et al. (2011)
D1 HO/HO CLIB-294 diploid ISVV Albertin et al. (2011)
E3 HO/HO VL1 diploid ISVV Albertin et al. (2011)
E4 HO/HO F10 diploid ISVV Albertin et al. (2011)
E5 HO/HO VL3c diploid ISVV Blein-Nicolas et al. (2013)
E2 HO/HO BO213 diploid ISVV Marullo et al. (2009)
U1 HO/HO PM12 diploid ISVV Blein-Nicolas et al. (2013)
U2 HO/HO PJP3 diploid ISVV Blein-Nicolas et al. (2013)
U3 HO/HO Br6.2 diploid ISVV Blein-Nicolas et al. (2013)
U4 HO/HO RC4-15 diploid ISVV da Silva et al. (2015)

Nine out eleven strains were analyzed previous to the construction of the diallel (Blein-Nicolas
et al., 2013; Marullo et al., 2009). The clustering of the lines depended on the type of trait consid-
ered (fig. 2.5). The strains of S. uvarum and a group of S. cerevisiae displayed similar fermentative
performances despite strong proteomic and genomic differences. Indeed, the proteomes of the two
species were contrasted, which could be related to a differential recruitment of proteins of the
glucose pathway encoded by duplicated genes. Altogether, these results indicate that the ability
of S. cerevisae and S. uvarum to complete grape fermentation must arise through different evo-
lutionary roads, involving different metabolic pathways and sets of proteins (Blein-Nicolas et al.,
2013).

This set of strains showing a high variability at every level of cellular organization seemed
appropriate for the construction of the diallel cross. Nevertheless, they could not be used as such
as parents of a diallel design because they were suspected to be heterozygous at many loci. The
way the strains were made homozygous is described in details in (da Silva et al., 2015). Briefly,
monosporic clones were isolated by tetrad dissection using a micromanipulator. All original strains
but D2 were homothallic (HO/HO), therefore fully homozygous diploid strains were spontaneously
obtained by fusion of opposite mating type cells. For D2 that was ho/ho, one isolated haploid
meiospore was diploidized via transient expression of the HO endonuclease. These strains, called
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W1, D1, D2, E2, E3, E4 and E5 for S. cerevisiae and U1, U2, U3 and U4 for S. uvarum, were used
as the parental strains for the construction of a half diallel design with diagonal. All strains were
grown at 24°C in YPD medium (da Silva et al., 2015).

Genetics 
(SNPs and SAPs)

Proteomics
(abundancies)

Phenotypes
(Life-history+fermentation)

Figure 2.5: Clustering of S. cerevisiae and S. uvarum (Blein-Nicolas et al., 2013). Among the 15
strains analyzed in this study, nine have been employed as the parental strains in the diallel design of
the HeterosYeast Project. Clustering of six strains of S. uvarum (orange) and nine strains of S. cerevisiae
(blue) based on: (i) sequence variability inferred from 498 SNPs and 2681 SAPs (left); (ii) proteome
variability assessed from abundances of 401 proteins (center); (iii) lag-phase time, times to complete
30%, 50% and 100% of fermentation, cell size, and population size at 30% of CO2 release (right).

Hybrid construction
In order to produce intra- and interspecific hybrids, the eleven diploid parental strains were trans-
formed with a cassette containing the HO allele disrupted by a gene of resistance, as previously
described in Albertin et al. (2013B). After transformation, monosporic clones were isolated, and the
mating-type (Mata or Matα) of antibiotic-resistant clones was determined using testers of known
mating-type. Strain transformation allowed conversion to heterothallism for the homothallic strains
(all but D2) and antibiotic resistance allowed easy hybrid selection. For each hybrid construction,
parental strains of opposite mating- types were put in contact for 2 to 6 hours in YPD medium
at room temperature, and then plated on YPD-agar containing the appropriate antibiotics. The
55 possible hybrids from the 11 parental strains, namely 21 S. cerevisiae intraspecific hybrids,
6 S. uvarum intraspecific hybrids and 28 interspecific hybrids, were obtained. For each cross, a
few independent colonies were collected. After recurrent cultures on YPD-agar corresponding to
∼80 generations, the nuclear chromosomal stability of the hybrids was controlled by pulsed field
electrophoresis, as well as homoplasmy (only one parental mitochondrial genome) as detailed in
Albertin et al. (2013B).

2.3.2 Phenotypic characterization
This unique biological material was grown in triplicate in fermentors with a medium close to oeno-
logical conditions at two temperatures (18° C and 26° C, optimum for S.u. and S.c., respectively).
Thus a total of 396 alcoholic fermentations were performed. In order to access a multi-level de-
scription of the heterosis phenomenon, two types of phenotypic traits were measured or estimated
from sophisticated data adjustment models (da Silva et al., 2015; Blein-Nicolas et al., 2015):

• Protein abundances. Using high-throughput shotgun LC-MS/MS technique, the intensities
of more than 10 000 peptides allowed estimating the abundances of ∼ 1400 proteins, and
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as many as 97 360 protein-per-hybrid-per-temperature combinations were analyzed in the
Pappso facility (http://pappso.inra.fr). The abundances of 615 proteins present in all strains
were measured from both shared and proteotypic peptides relying on original Bayesian devel-
opments (Blein-Nicolas et al., 2012). Massive variations were found, that clearly differentiated
the two species (see above). Heterosis was found for numerous proteins in variable propor-
tions depending on the parental strain and on the temperature considered (from 8.4 % to
61.2 %). In the intra-specific hybrids, this proportion was higher at non-optimal temperature.
Unexpectedly, heterosis for protein abundance was strongly biased toward positive values in
inter-specific hybrids but not in intra-specific hybrids, and the proportion of hybrids in which
a protein was heterotic was positively correlated to the number of putative transcription fac-
tors of the encoding gene. Computer simulations assuming concave relationships between
protein abundances and their controlling factors accounted quite well for these observations
(Blein-Nicolas et al., 2015), which is consistent with the role of non-linear processes in the
emergence of heterosis (Fiévet et al., 2018).

• Fermentative traits. A total of 35 fermentative traits (~ 13 000 data points) were obtained,
which were classified into: kinetics traits (estimated from the CO2 release curve), population
dynamics traits (estimated from cell concentrations over time), basic oenological products
(ethanol, residual sugar, acetic acid, etc.), and aromatic traits. Mixed anova models and
multivariate analyses showed that, depending on the types of trait, the sources of variation
(strain, temperature and strain × temperature effects) differed in a large extent. For instance
the kinetics traits and some population traits (temporal variables, growth traits, CO2 flux)
were very sensitive to temperature, unlike key metabolites for oenology. However some of the
latter and various population traits (maximum CO2, carrying capacity, viability, cell size)
exhibited large strain per temperature interactions. The global comparison of the three types
of hybrids (S.c.×S.c., S.u.×S.u. and S.c.×S.c.) revealed that hybridization could generate
multi-trait phenotypes with improved oenological performances. In addition the inter-specific
hybrids displayed better homeostasis with respect to temperature, which could explain why
interspecific hybridization is so common in natural and domesticated yeasts, and open the
way to applications for wine-making (da Silva et al., 2015).

Figure 2.6 summarizes the experimental protocol of the HeterosYeast project.
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Figure 2.6: Experimental protocol. Fully homozygous diploid strains were used as parental strains in
a half-diallel design. W1, D1, D2, E2, E3, E4 and E5 are S. cerevisiae strains, U1, U2, U3 and U4
S. uvarum strains. Fermentations were carried out in Sauvignon blanc grape juice and run at 18°C and
26°C in triplicate in fermentors for a total of 396 experiments. Thirty-five traits were collected and
grouped into four classes (Fermentation Kinetics Traits, Life-history traits, Basic Oenological Param-
eters and Aromatic Traits). Protein abundances have been quantified for each strain × temperature
combination (da Silva et al., 2015).

2.4 Aim of the thesis
The exceptional dataset produced in the HeterosYeast project was far from being fully exploited.
In particular such a set of heterogeneous data, which corresponds to different levels of cellular
organization, was ideally convenient for multi-scale modelling and testing models for predicting
the variation of integrated phenotypes from protein and metabolic traits, taking into account the
dependence structures between variables, but also between observations.

The aim of my thesis was to develop original mathematical and statistical models in systems
biology to investigate the molecular and genetic bases of phenotypic variation in yeast and to
integrate different types of data measured at different scales.

I have adopted two main approaches to address these issues.

Analysis of the diallel design. A first goal was to characterize phenotypic variation at each
level of cellular organization by means of genetic variance components. To this end, I exploited the
particular half-diallel cross design to infer the parts of variance attributed to additive, inbreeding
and heterosis effects for each trait, distinguishing intra and interspecific additive and heterosis
effects. Then the integration of the different levels of cellular organization has been performed
by clustering traits displaying similar partition of variance components, to search for parallel be-
haviour between proteins and life history/fermentation traits that could suggest functional links.
A major finding of this first part of my thesis work is the possible decoupling between the heterosis
and inbreeding variances (Chapter 3, article: Decoupling the Variances of Heterosis and
Inbreeding Effects Is Evidenced in Yeast’s Life-History and Proteomic Traits published
in Genetics; Petrizzelli et al. (2019)).

Search for predictors of fermentation and life-history traits. The second part of the thesis
work consisted in finding predictors of fermentation and life-history traits. To this end, I predicted
an additional phenotypic level, the metabolic fluxes, which result from the metabolic network
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functioning and integrate the activities of possibly many proteins. I proposed a novel method to
introduce protein abundance data into constraint-based models and predicted steady-state fluxes
for each strain separately. Finally, I used statistical approaches to integrate the three different
levels of cellular organization to gain information on the metabolic and molecular predictors of the
integrated traits. This constitutes the Chapter 5, Data integration uncovers the metabolic
bases of phenotypic variation in yeast, which will be submitted soon to Molecular Systems
Biology.
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ABSTRACT Heterosis (hybrid vigor) and inbreeding depression, commonly considered as corollary phenomena, could never-
theless be decoupled under certain assumptions according to theoretical population genetics works. In order to explore this
issue on real data, we analyzed the components of genetic variation in a population derived from a half-diallel cross between
strains from Saccharomyces cerevisiae and S. uvarum, two related yeast species involved in alcoholic fermentation. A large
number of phenotypic traits, either molecular (coming from quantitative proteomics) or related to fermentation and life-history,
were measured during alcoholic fermentation. Because the parental strains were included in the design, we were able to
distinguish between inbreeding effects, which measures phenotypic differences between inbred and hybrids, and heterosis,
which measures phenotypic differences between a specific hybrid and the other hybrids sharing a common parent. The sources
of phenotypic variation differed depending on the temperature, indicating the predominance of genotype by environment
interactions. Decomposing the total genetic variance into variances of additive (intra- and inter-specific) effects, of inbreeding
effects and of heterosis (intra- and inter-specific) effects, we showed that the distribution of variance components defined
clear-cut groups of proteins and traits. Moreover, it was possible to cluster fermentation and life-history traits into most proteomic
groups. Within groups, we observed positive, negative or null correlations between the variances of heterosis and inbreeding
effects. To our knowledge, such a decoupling had never been experimentally demonstrated. This result suggests that, despite a
common evolutionary history of individuals within a species, the different types of traits have been subject to different selective
pressures.

KEYWORDS Hybrid vigor; inbreeding depression; diallel crossing; mixed effect genetic model

Heterosis, or hybrid vigor, refers to the common superior-
ity of hybrids over their parents for quantitative traits. This
phenomenon has been observed for virtually any quantitative
trait, from mRNA abundances to fitness, and in a large diver-
sity of species, including microorganisms. For decades it has
been extensively studied and exploited for plant and animal
breeding, since it affects traits of high economical interest such
as biomass, fertility, growth rate, disease resistance etc. (Gowen
1952; Schnable and Springer 2013).
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There are three classical, non exclusive genetic models to
account for hybrid vigor: dominance, overdominance and epis-
tasis. In the dominance model, the hybrid superiority results
from the masking of the deleterious alleles of one parent by the
non deleterious ones of the other parent (Davenport 1908). In
the overdominance model, the hybrid superiority is due to the
advantage per se of the heterozygous state at a given locus (Hull
1946). Actually, more common is pseudo-overdominance, which
is due to dominance at two loci linked in repulsion, e.g. in maize
(Graham et al. 1997; Lariepe et al. 2012) or yeast (Martì-Raga et al.
2017). Lastly, the epistasis model postulates favorable intergenic
interactions created in the hybrids (Powers 1944). In particular,
"less-than-additive" (antagonistic) epistasis, which is quite com-
mon in plant and animal species (Redden 1991; Shao et al. 2008)
can account for best-parent heterosis (Fievet et al. 2010). In this
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last paper, it is theoretically shown that epistasis can result in
best-parent heterosis even if there is no dominance at any locus.
The respective parts of the various genetics effects in heterosis
depends on the trait, the species and the genetic material (Xiao
et al. 1995; Huang et al. 2016; Seymour et al. 2016). Altogether,
heterosis appears to be a pervasive phenomenon, accounted for
by the common non-linearity of the genotype-phenotype map
(Wright 1934; Omholt et al. 2000; Fiévet et al. 2018).

Because heterosis is associated with heterozygosity, heterosis
for life-history traits is associated with genetic load: the average
population fitness can never exceed the maximum fitness. Ge-
netic load drives the evolution of sexual reproduction, of mating
systems as well as the fate of small populations. Indeed, high
levels of homozygosity in outcrossing species is generally associ-
ated with decreased growth rate, survival or fertility (discussed
in Charlesworth and Willis (2009)). In population genetics, in-
breeding depression is defined as the fitness of self-fertilized
progenies as compared with fitness of outcrossing progenies. In
sexual species, the balance between selfing and outcrossing is
driven by the genetic load due to inbreeding depression relative
to the cost of sexual reproduction (twice as expensive as clonal re-
production): selfing can evolve whenever inbreeding depression
is less costly than the sexual reproduction, or after purging dele-
terious mutations as can arise in small populations (Lande and
Schemske 1985). However, heterosis due to less-than-additive
epistasis could explain the large number of predominantly (but
not fully) selfing species exhibiting a persistent amount of in-
breeding depression and heterosis (Charlesworth et al. 1991).
Considering a metapopulation, Roze and Rousset (2004) defined
inbreeding depression as the fitness reduction of selfed progeny
relative to outcrossed progeny within populations, and heterosis
as the difference between the fitness of the outcrossed progeny
within population and the outcrossed progeny over the whole
metapopulation. They showed that while selfing reduced both
inbreeding depression and heterosis, inbreeding depression de-
creased and heterosis increased with the degree of subdivision
of the metapopulation. Hence, from a population genetics point
of view, heterosis is expected even in predominantly selfing
species.

In a breeding perspective, the pioneer work of Shull (1908)
in maize predicted that given the large amounts of heterosis
within the species, the best way to maximize yield was to create
inbreds from existing population varieties in order to seek for
the best hybrid combinations. Diallel designs were popularized
as the most comprehensive designs for estimating genetic effects,
predicting hybrid values and generating breeding populations to
be used as basis for selection and development of elite varieties
(i.e. Hallauer and Filho (1988)). The simplest and most popular
analytic decomposition of genetic effects in diallel designs is that
of Griffing (1956), in which the mean phenotypic value, yij, of
the cross between lines i and j is modeled as:

yij = µ + GCAi + GCAj + SCAij, (1)

where µ is the mean phenotypic value of the population, GCAi
(resp. GCAj) is the General Combining Ability of line i (resp. j),
i.e. the average performance of line i (resp. j) in hybrid combina-
tions expressed as a deviation from the mean value of all crosses,
and SCAij is the Specific Combining Ability of hybrid i× j. It is
defined as the difference between the mean phenotypic value
of the progeny and the sum of the combining abilities of the
parental lines (Sprague and Tatum 1942). Therefore, superior
individuals can be selected from their GCA and/or SCA. Nu-
merous extensions of the Griffing’s model have been proposed

to extract other effects, such as maternal and paternal effects or
sex-linked variations (Cockerham and Weir 1977; Bulmer 1980;
Zhu and Weir 1996; Greenberg et al. 2010). In many crop species,
combining ability groups have been identified, with lines from
the same group characterized by high specific combining ability
with other groups (Hallauer et al. 1988). Generally, combining
ability groups are redundant with population structure within a
species (Melchinger and Gumber 1998; Ramya et al. 2018), which
is consistent with the population genetics predictions of Roze
and Rousset (2004).

When parental lines are included in the analysis, GCA and
SCA effects can be decomposed in more suitable genetic effects.
Indeed, the value of a particular hybrid can be compared either
to the average value of its inbred parents, or to the average value
of the other hybrids sharing either parent. Heterosis can be
split into average heterosis (average difference between inbreds
and outbreds), variety heterosis (average difference between one
inbred parent and all crosses sharing the same parents), and
specific heterosis (difference between the hybrid and all hybrids
sharing at least one parent) (Eberhart and Gardner 1966). A
modern version of this model have been proposed by Lenarcic
et al. (2012) along with a Bayesian framework to estimate the
genetic effects.

In this work, we study a half-diallel design with diagonal
constructed from the crosses between 11 yeast strains belong-
ing to two close species, Saccharomyces cerevisiae and S. uvarum.
The design included both intra- and inter-specific crosses. Two
categories of phenotypic traits were considered: (i) protein abun-
dances measured at one time point of alcoholic fermentation
(Blein-Nicolas et al. 2013, 2015); (ii) a set of fermentation traits
measured during and/or at the end of fermentation, which were
divided into kinetic parameters, basic enological parameters,
aromas and life-history traits (da Silva et al. 2015). All traits were
independently measured at two temperatures.

We propose a decomposition of the genetic effects based on
Lenarcic et al. (2012) that takes into account the presence of two
species in the diallel design and that distinguishes heterosis
and inbreeding effects. We could characterize every trait by the
set of its variance components and we could clearly cluster the
traits from this criterion, which suggests that traits sharing a
similar pattern of variance components could share common
life-history. We were able to assign each fermentation trait to
one group of protein traits, which shows that integrated phe-
notypes and proteins can share similar life-history. Finally, our
results show a poor correlation between the variances of het-
erosis and inbreeding effects within groups. This confirms the
importance of epistatic interactions in determining the compo-
nents of phenotypic variation both within and between close
species. Altogether, our results suggest that despite a common
demographic history of individuals within a species, the genetic
variance components of the traits can be used to trace back other
trait-specific evolutionary pressures, like selection.

Materials and Methods

Materials

The genetic material of the experimental design consisted in
7 strains of S. cerevisiae and 4 strains of S. uvarum associated to
various food-processes (enology, brewery, cider fermentation
and distillery) or isolated from natural environment (oak ex-
udates). These strains, called W1, D1, D2, E2, E3, E4, E5 for
S. cerevisiae and U1, U2, U3, U4 for S. uvarum could not be used
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as such as parents of a diallel design because they were sus-
pected to be heterozygous at many loci. Monosporic clones
were isolated from each of these strains using a micromanipula-
tor (Singer MSM Manual; Singer Instrument, Somerset, United
Kingdom), as indicated in da Silva et al. (2015). All strains but
D2 were homothallic (HO/HO), therefore fully homozygous
diploid strains were spontaneously obtained by fusion of op-
posite mating type cells. For D2 (ho/ho), the isolated haploid
meiospore were diploidized via transient expression of the HO
endonuclease (Albertin et al. 2009). The derived fully homozy-
gous and diploid strains were used as the parental strains of a
half-diallel design with diagonal, i.e. including the inbred lines.
The parental lines were selfed and pairwise crossed, which re-
sulted in a total of 66 strains: 11 inbred lines, 27 intra-specific
hybrids (21 for S. cerevisiae, noted S. c., and 6 for S. uvarum, noted
S. u.) and 28 inter-specific (noted S. u. × S. c). For each hybrid
construction, parental strains of opposite mating type were put
in contact for 2 to 6 hours in YPD medium at room temperature,
and then plated on YPD-agar containing the appropriate antibi-
otics. The nuclear and mitochondrial stability of the hybrids was
checked after recurrent cultures on YPD-agar corresponding to
≈ 80 generations (see details in Albertin et al. (2013a)). In addi-
tion, for each of the 28 interspecific hybrids, both parental sets of
more than 600 proteins were detected in a proteomic approach
Blein-Nicolas et al. (2015), with no evidence of hybrid instability.

The 66 strains were grown in triplicate in fermentors at two
temperatures, 26° and 18°, in a medium close to enological condi-
tions (Sauvignon blanc grape juice) (da Silva et al. 2015). From a
total of 396 alcoholic fermentations (66 strains × 2 temperatures
× 3 replicas), 31 failed due to poor fermenting abilities of some
strains. The design was implemented considering a block as
two sets of 27 fermentations (26 plus a control without yeast to
check for contamination), one carried out at 26° and the other
at 18°. The distribution of the strains in the block design was
randomized to minimize the residual variance of the estimators
of the strain and temperature effects, as described in Albertin
et al. (2013b).

For each alcoholic fermentation, two types of phenotypic
traits were measured or estimated from sophisticated data ad-
justment models: 35 fermentation traits and 615 protein abun-
dances.

The fermentation traits were classified into four categories
(da Silva et al. 2015):

• Kinetics parameters, computed from the CO2 release curve
modeled as a Weibull function fitted on CO2 release quan-
tification monitored by weight loss of bioreactors: the fer-
mentation lag-phase, t-lag (h); the time to reach the inflec-
tion point out of the fermentation lag-phase, t-Vmax (h); the
fermentation time at which 45 gL−1 and 75 gL−1 of CO2
was released, out of the fermentation lag-phase, t-45 (h) and
t-75 (h) respectively; the time between t-lag and the time at
which the CO2 emission rate became less than, or equal to,
0.05gL−1h−1, AFtime (h); the maximum CO2 release rate,
Vmax (gL−1h−1); and the total amount of CO2 released at
the end of the fermentation, CO2max (gL−1).

• Life history traits, estimated and computed from the cell
concentration curves over time, modeled from population
growth, cell size and viability quantified by flow cytome-
try analysis: the growth lag-phase, t-N0(h); the carrying
capacity, K (log[cells/mL]); the time at which the carrying
capacity was reached, t-Nmax (h); the intrinsic growth rate,
r (log[cell division/mL/h]); the maximum value of the esti-

mated CO2 production rate divided by the estimated cell
concentration, Jmax (gh−110−8cell−1); the average cell size
at t-Nmax, Size-t-Nmax(µm); the percentage of living cells at
t-Nmax, Viability-t-Nmax (%); and the percentage of living
cells at t-75, Viability-t-75 (%).

• Basic enological parameters, quantified at the end of fermen-
tation: Residual Sugar (gL−1); Ethanol (%vol); the ratio be-
tween the amount of metabolized sugar and the amount of
released ethanol, Sugar.Ethanol.Yield (gL−1%vol−1); Acetic
acid (gL−1 of H2SO4); Total SO2 (mgL−1) and Free SO2
(mgL−1).

• Aromatic traits, mainly volatile compounds measured at
the end of alcoholic fermentation by GC-MS: two higher
alcohols (Phenyl-2-ethanol and Hexanol, mgL−1); seven es-
ters (Phenyl-2-ethanol acetate, Isoamyl acetate, Ethyl-propanoate,
Ethyl-butanoate, Ethyl-hexanoate, Ethyl-octanoate and Ethyl-
decanoate, mgL−1); three medium chain fatty acids (Hex-
anoic acid, Octanoic acid and Decanoic acid, mgL−1); one thiol
4-methyl-4-mercaptopentan-2-one, X4MMP(mgL−1) and the
acetylation rate of higher alcohols, Acetate ratio.

For proteomic analyses the samples were harvested at 40 % of
CO2 release, corresponding to the maximum rate of CO2 release.
Protein abundances were measured by LC-MS/MS techniques
from both shared and proteotypic peptides relying on original
Bayesian developments (Blein-Nicolas et al. 2012). A total of 615
proteins were quantified in more than 122 strains × temperature
combinations as explained in details in Blein-Nicolas et al. (2015).

Cross-referencing MIPS micro-organism protein classifica-
tion (Ruepp et al. 2004), KEGG pathway classification (Kanehisa
and Goto 2000; Kanehisa et al. 2016, 2017) and Saccharomyces
Genome database (Cherry et al. 2012), we attributed each protein
to a single functional category based on our expert knowledge
(Table ST1). Considering the genes encoding the proteins, we
also assigned to each protein a number of putative transcription
factors (TFs). A total of 313 TFs with a consensus DNA-binding
sequence were retrieved from the Yeastrack database (Teixeira
et al. 2014; Abdulrehman et al. 2011; Monteiro et al. 2008; Teixeira
et al. 2006).

Statistical Methods
In order to estimate the genetic variance components for the
different phenotypic traits, we adapted the model described in
Lenarcic et al. (2012) to our particular half-diallel design that
includes the diagonal with parental inbred strains from two
species. Thus we included in our model intra- and inter-specific
additive effects, inbreeding effects and intra- and inter-specific
heterosis effects.

Formally, let yijk be the observed phenotype for the cross
between parents i and j in replica k. Our model reads:

yijk = µ + Is(i)=s(j)(Awi + Awj ) + Is(i) 6=s(j)(Abi
+ Abj

)+

+Ii 6=j(Is(i)=s(j)Hwij + Is(i) 6=s(j)Hbij
)+

+Ii=j(βs(i) + Bi) + εijk,

(2)

where:

• µ is the overall mean;
• s(i) associates to each parental strain i the specie it belongs

to:
s(i) ∈ {S. cerevisiae, S. uvarum}

• Awi and Abi
denote, respectively, the additive contributions

of strain i in intra-specific (within species, i.e. s(i) = s(j)),
and inter-specific (between species, i.e. s(i) 6= s(j)) crosses;
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• Hwij and Hbij
denote the interaction effect between parents

(i, j) in intra-specific (within species) and inter-specific (be-
tween species) crosses, respectively. Due to our half-diallel
design (no reciprocal crosses), they are assumed to be sym-
metric, i.e. Hwij = Hwji and Hbij

= Hbji
. Hereafter we will

refer to these effects as intra- and inter-specific heterosis
effects, respectively;

• βs(i) and Bi are, respectively, the deviation from the fixed
overall effect for the species s(i) and the associated strain-
specific contribution of strain i in the case of inbred lines.
Hereafter we will refer to Bi as inbreeding effect;

• εijk is the residual, the specific deviation of individual ijk;
• Icondition is an indicator variable. Its value is equal to 1 if the

condition is satisfied and 0 otherwise.

Therefore, for the parental lines we have:

yp
iik = µ + 2Awi + βs(i) + Bi + εiik, (3)

for the intra-specific hybrids:

yintra
ijk = µ + Awi + Awj + Hwij + εijk, (4)

and for the inter-specific hybrids:

yinter
ijk = µ + Abi

+ Abj
+ Hbij

+ εijk. (5)

All genetic effects were considered as random variables
drawn from a normal distribution. Formally, letting qqq ∈
{AwAwAw, AbAbAb, BBB, HwHwHw, HbHbHb} denote the genetic effect under consider-
ation:

∀i qi ∼ N (0, σ2
qqq ). (6)

The full mixed-effect genetic model is thus defined by three
fixed effects (the intercept µ and the inbreeding effects βSu and
βSc) and five genetic random effect variances (σ2

AwAwAw
, σ2

AbAbAb
, σ2

BBB, σ2
HwHwHw

,
σ2

HbHbHb
).
We did not declare mitochondrial effects because many genes

encoding mitochondrial proteins are repressed under fermenta-
tion conditions, and because inter-specific hybrids harbor similar
fermentation features for most fermentation kinetics and enologi-
cal parameters whatever their mitochondrial genotype (Albertin
et al. 2013a). In addition, we did not know the mitochondrial
inheritance for most of the intra-specific crosses (table ST3).

The fitting algorithm
Fixed effects, variance components of the genetic effects as well
as their Best Linear Unbiased Predictors (BLUPs) were estimated
using the hglm package in R (Ronnegard et al. 2010) that im-
plements the estimation algorithm for hierarchical generalized
linear models and allows fitting correlated random effects as
well as random regression models by explicitly specifying the
design matrices both for the fixed and random effects. The
model, based on a maximum likelihood estimation, is deemed
to produce unbiased statistics (Gumedze and Dunne 2011).

A separate analysis was conducted for each trait at each
temperature, considering the vector of observations for the
trait/temperature combination of interest, y, and re-writing
model (eq. (2)) in matrix form:

yyy = Xβββ + Zuuu + εεε, (7)

where X is the design matrix for the fixed effects, Z the de-
sign matrix for the random effects, βββ = (µ, βS.u., βS.c.) and

uuu = (AwAwAw, AbAbAb, BBB, HwHwHw, HbHbHb) are respectively the vectors of fixed
effect parameters and random effect parameters, and εεε is the
vector of residual errors. With this notation, the construction of
the model is straightforward from the data (for details see The
fitting algorithm in Supplementary Materials).

Whenever the full model (eq. 2) failed to converge, we con-
sidered the subsequent model obtained by removing one effect
at a time following the hierarchy imposed by the order of the
fitting algorithm, i.e. first heterosis, second inbreeding effects
and finally additive effects. The full model converged for all
proteomic data. For the fermentation traits, the model did not
converge for most of the Ethyl esters (Ethyl-propanoate, Ethyl-
butanoate, Ethyl-hexanoate, Ethyl-octanoate and Ethyl-decanoate), as
well as for Acetate Ratio and for Acetic acid that were removed
from the analysis. For all other fermentation traits, the full model
converged, except for t.lag at 18°, for which the additive model
applied. For this trait, other genetic variance components were
set to zero.

Figure 1 Correlation between estimated variance components
and their true value. Variances have been estimated on a sim-
ulated half-diallel between 11 parental strain (seven belonging
to a specie, four to the other). Phenotypic values have been
computed as detailed in section Testing for the reliability of the
model.

In order to test the robustness of the results, a bootstrap analy-
sis was performed by sampling the 55 hybrids with replacement,
conditionally to the 11 parental strains. Each bootstrap sample
was submitted to the same analysis as described above. For each
variance component, we checked that the estimations in the ex-
perimental sample were close to the median of the estimations
in the bootstrap samples.

Testing for the reliability of the model
Computer simulations were performed to test the statistical
power of the hglm algorithm in predicting the values of the ob-
servables while producing unbiased estimations of the model
parameters. We simulated a half-diallel between 11 strains,
seven belonging to a species, four to the other. We computed
the phenotypic values of each simulated cross by first draw-
ing µ, βspecie1, βspecie2, σ2

AwAwAw
, σ2

AbAbAb
, σ2

BBB, σ2
HwHwHw

, σ2
HbHbHb

and σ2
εεε from a

Gamma distribution fitted from the values estimated by the
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model on our dataset (see fig. SF1). Second, for each random
effect qqq ∈ {AwAwAw, AbAbAb, BBB, HwHwHw, HbHbHb, εεε} we drew

∀i qi ∼ N (0, σ2
qqq ) (8)

and computed the phenotypic values as in eq. 2, generating
three replicas per cross.

We repeated the simulation 1000 times. We fitted the model
and checked that the estimation of the random effects, the pre-
dicted phenotypic values as well as their variance components
were close enough to the true values (fig. 1) and we noticed
that inbreeding parameters were the most variable (fig. SF2 in
Supplementary figures).

In addition, since we were interested in the correlation struc-
ture between the variance components of the genetic effects, we
checked that possible correlations between random effects were
not a statistical artifact of the model. Therefore, we simulated
uncorrelated variances of random effects and we checked that no
correlation structure was found between the estimated variance
components, as can be seen in fig. 1. Simulations performed
with different numbers of parental lines led to similar results
(not shown).

Fermentation traits
Before fitting our model, we updated eq. 2 in order to account
for a block effect:

yijkl = yijk + blockl + εijkl , (9)

assuming that
∀l blockl ∼ N (0, σ2

blockblockblock). (10)

Many fermentation traits, mostly aromatic, were log-
transformed in order to deal with the variable mean of the resid-
uals. So as to handle the null values in the observations, we
chose to consider the following transformation:

yijk = log(max(yijk, δ)) (11)

where δ ∼ U (0, min(yyy)). In this situation, as we introduced
a random term in our analysis, which may skew parameter
estimation, we decided to: (i) perform the log-transformation,
(ii) compute the fitting algorithm, (iii) record the parameter’s
estimation, then after having computed it a hundred times, (iv)
consider the median of the estimators in order to achieve a more
robust statistics.

Protein abundances
For each cross, protein abundances have been quantified on av-
erage. Yet, to perform a diallel analysis at the proteomic level,
replicas are critical for quantifying genetic variation. Therefore,
we generated pseudo replicas using the residual variance esti-
mated when quantifying protein abundances (Blein-Nicolas et al.
2013). Formally, let yij be the average protein abundance of the
cross between parents i and j. We generated three replicas as
follows:

yijk = yij + εk (12)

εk ∼ N (0, σ̂2
ε ) for k = 1, 2, 3 (13)

where σ̂2
ε is the residual variance. Simulations of pseudo replicas

and parameter estimations were performed 100 times. The final
value of the parameters was the median of its estimation.

Variance component analysis
For each trait, our mixed model generates a vector of variance
components

vvv = (σ̂2
AwAwAw

, σ̂2
AbAbAb

, σ̂2
BBB, σ̂2

HwHwHw
, σ̂2

HbHbHb
) (14)

and the results were summarized in a matrix with rows being
the different trait by temperature combinations, and columns
the relative contribution of each component to the total genetic
variance of the trait. We chose to perform unsupervised clas-
sification to compare the distributions of variance components
between traits. Following the recommendations of Kurtz et al.
(2015), percentages of variance components were transformed
into real numbers using the following clr-transformation:

clr(σ̂2
qqq ) = log(

σ̂2
qqq

(∏k∈QQQ σ̂2
kkk )

1/Nq
) (15)

where Nq is the total number of random effects and QQQ is the
set of random variables fitted by the model. For fermentation
traits, Nq = 7 (accounting for block and residual variances,
eq. 9), while Nq = 6 for proteomic traits (eq. 2). We chose
the clr-transformation because it satisfies scale invariance, sub-
compositional dominance and perturbation invariance properties
(Tsagris et al. 2011). Therefore the distance relationship between
the original profiles is preserved by the selected sub-vectors
thanks to the sub-compositional dominance property of the clr-
transformation (see section Subcompositional dominance and
distances in Supplementary Materials). The clr-transformation
allowed us to test finite Gaussian mixture models using model-
based clustering proposed in the Mclust package in R (Scrucca
et al. 2016). Percentage of good assignments were computed by
separating the data into training and validation sets.

This procedure was first applied separately for proteomic and
fermentation traits (see Structuration of genetic variability at the
fermentation trait level in Supplementary Materials). Protein
groups were tested for enrichment in either Kegg pathways, tran-
scription factors and heterotic proteins. Fermentation traits were
tested for enrichment in the different trait categories (kinetic
parameters, life-history, basic enological parameters, aromatic
traits). For each cluster, Pearson’s chi-square test of enrichment
was computed on protein functional category frequencies taking
as prior probability the expected categorical frequency found in
the MIPS database.

Further, fermentation traits were assigned to clusters identi-
fied on protein abundances profiles based on their membership
probability computed through Gaussian finite mixture models.

Data Availability
The data that support the findings of the current study are avail-
able at figshare DOI:10.6084/m9.figshare.7378412. Supplemen-
tary materials contain:

• Demonstration of the relationship between the subcompo-
sitional dominance property and distances in the Euclidean
space;

• Detailed description of the fitting algorithm;
• Description of the construction of the simulated values on

a half-diallel design based on the genetic models supposed
to explain heterosis and inbreeding;

• Demonstration of the equality between the variances of
heterosis and inbreeding effects in three parents half-diallel
designs with no maternal effects;

• Clustering analysis for the fermentation and life-history
traits;
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Figure 2 Clustering profiles of genetic variance components for protein abundances (A) against profiles of fermentation traits (B)
predicted in each cluster. Cluster numbers are reported on the left, on the right the number of proteins or traits found in each cluster.

• Strains characterization based on the estimated BLUP of
their genetic effects;

• Table ST1: Protein functional category classification (avail-
able at figshare DOI:10.6084/m9.figshare.6683666 );

• Table ST2: Raw values of genetic variances and broad sense
heritability (BSH) estimated and analyzed in this study for
protein abundances, and fermentation and life-history traits
(available at figshare DOI:10.6084/m9.figshare.7128152 );

• Table ST3: Mitochondrial inheritance of the phenotyped
crosses of our study;

• Table ST4: Table of results from the Pearson’s chi-square
test of cluster enrichment in proteins with a particular func-
tional category;

• Figure SF1: Density distribution of the genetic variances
estimated by the model;

• Figure SF2: Predicted BLUPs and phenotypic values versus
their prior value used to compute the values of simulated
diallels;

• Figure SF3: Clustering profiles of fermentation and life-
history traits;

• Figure SF4: Global correlations of the genetic variance com-
ponents for both protein abundances and the more inte-
grated traits;

• Figure SF5: Representation of the standardized Pearson’s
chi-square residuals of each cluster computed at 18° versus
those at 26° estimated for the analysis of cluster enrichment
in proteins with a particular functional category;

• Figure SF6: Correlation plot between genetic effects of fer-
mentation and life-history trait profiles;

• Figure SF7: Intra-cluster correlations of variance compo-
nents profiles for fermentation and life-history traits;

• Figure SF8: Variance components of fermentation and life-
history traits at the two temperatures;

• Figure SF9: Summary example of the density distribution

of a genetic variance estimation through bootstrap analysis;
• Figure SF10: Representation of the relationship between

the variances of heterosis and inbreeding effects simulated
through different genetic models;

• Figure SF11: For each trait and for each genetic effect are
shown the strains with highest and lowest contribution at
both temperatures;

• Figure SF12: For each trait are shown the estimated BLUPs
of each genetic parameter.

Results

In order to estimate genetic variance components from a diallel
cross involving two yeast species, we proposed a decomposition
of genetic effects based on the model of Lenarcic et al. (2012)
that allowed to split the classical General (GCA) and Specific
(SCA) Combining Abilities into intra- and inter-specific additive
and heterosis effects, and to take into account inbreeding effects,
defined as the difference between the inbred line value and the
average value of all the crosses that have this inbred as parent.

Simulations showed that despite the small number of par-
ents in the diallel, our model led to unbiased estimations of
variance components, and that correlations between variance
components did not arise from unidentifiability of some model’s
parameter (fig. 1). Significance of variance components was
assessed by bootstrap sampling. We found that whenever the fit-
ting algorithm converged, variance component estimations were
significant. For some traits and some variance components, the
bootstrap distributions of the estimated variances were bimodal,
suggesting a strong influence of a particular hybrid combination.
However, the estimates were globally closed to the median of
the bootstrap distribution (see example fig. SF9). Therefore, we
are confident with our estimations, conditionally to the parents
of the diallel.
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Table 1 Pearson’s chi-square test for count data: comparison between the number of heterotic proteins in each cluster and group
membership probability. The statistics clearly highlight clusters enriched of heterotic proteins (p-value<0.05).

Cluster 1 2 3 4 5 6 7 8 9

Number of proteins 11 168 39 65 144 102 627 24 50

Number of heterotic proteins 7 35 3 22 13 13 72 5 2

Proportion of heterotic proteins 0.64 0.21 0.08 0.34 0.09 0.13 0.11 0.21 0.04

Chi-square standardized residuals 4.42 2.56 –1.07 4.40 –1.69 –0.35 –2.39 0.91 1.93

Because temperature has a major effect on many traits and
because, in previous work, numerous strain × temperature ef-
fects have been detected (da Silva et al. 2015; Blein-Nicolas et al.
2015), the model was applied to each trait separately at the two
temperatures. We obtained estimations of fixed and random
effect parameters, their corresponding variances, residuals and
residual variances. For each trait, normality of residuals and
homogeneity of variances was checked. Broad sense heritability
was measured as the ratio of the sum of genetic variance compo-
nents to the total phenotypic variance. It varied between 0.05 to
0.98 for protein abundances and between 0.04 to 0.95 for fermen-
tation traits. Altogether, protein abundance measurements were
highly repeatable (median heritability of 0.53), while fermenta-
tion traits were more variable. Median broad sense heritability
was 0.77 for fermentation kinetic trait, 0.49 for life-history traits,
0.36 for basic enological products and 0.32 for aromatic traits.
Whatever the amount of residual variance, all genetic variance
components were significant for all traits, except for t.lag at 18°,
for which only the variances of additive effects were significant.
We found that variances associated to each genetic effect dif-
fer in a large extent between the two temperatures (shown for
fermentation traits in fig. SF12).

Because of their potential interest for wine-making, BLUPs of
fermentation traits are presented in section Strain characteriza-
tion of Supplementary Materials. In the following, we focus on
genetic variance components.

Structuration of genetic variance components at the pro-
teomic level

A Gaussian mixture model was used to classify the proteins
according to their genetic variance components. The best model
clearly identified nine clusters, each characterized by a partic-
ular profile of genetic variance components (fig. 2). Cluster 1
(88.4% of good assignments) consists of 11 proteins that have
high variance of intra-specific heterosis effects and the smallest
variance of inter-specific heterosis effects. Clusters 2, 4 and 9
have a very small variance of inbreeding effects. Clusters 2 and 4
differ from cluster 9 by their significant variance of inter-specific
additive effects. 6.4% of proteins from cluster 2 (composed of
168 proteins with 93.2% of good assignments) can be attributed
to cluster 4 and 10.4% of proteins from cluster 4 (65 proteins,
80.5% good assignments) to cluster 2. Proteins from clusters 3
(80.5% of good assignments) and 7 (93.3% of good assignments)
have similar profiles.

Indeed, 19.5% of the proteins from cluster 3 can be attributed
to cluster 7 and 4% of the proteins from cluster 7 can be attributed
to cluster 3. Cluster 3 consists in 39 proteins with relatively
higher variance of additive and inbreeding effects. Cluster 7 has
627 proteins with higher variance of heterosis effects. Proteins
from cluster 5 (144 proteins, 96% of good assignments) have

significant variance of intra-specific additive effects but null
variance of inter-specific additive effects and high heterosis and
inbreeding effects variances. On the contrary, cluster 6 (102
proteins, 96.2% of good assignments) has null variance of intra-
specific additive effects, small variance of additive inter-specific
effects, and high variance of heterosis and inbreeding effects.
Cluster 8 (96.9% of good assignments) consists of 24 proteins
that have null variances of additive effects and high variances
of heterosis and inbreeding effects. Finally, the 50 proteins in
cluster 9 (95.4% of good assignments) are characterized by a null
variance of additive inter-specific and inbreeding effects and
high variance of intra-specific and inter-specific heterosis effects.
Overall the same protein is generally found in two different
clusters at the two temperatures (only 37% of proteins belong to
the same cluster at the two temperatures).

The nine clusters were also clearly distinguishable from each
other from their pattern of correlation between variance compo-
nents (fig. 3). Globally, all variance components are negatively
correlated, except for the variances of heterosis effects, σ2

HwHwHw
and

σ2
HbHbHb

, that are positively correlated (r = 0.47, fig. SF4).
Therefore, we can state that the 615 proteins at 18° and 26°

form highly structured and well defined clusters according to
their genetic variance component profiles.

Proteins sharing a similar variance component structure
share functional properties
In each protein cluster we tested for enrichment in functional cat-
egories at the two temperatures separately. Clusters were split
into two groups of proteins, those measured at 18° and those
measured at 26°, and the enrichment analysis was performed
for each group. The statistical tests were significant for each
cluster, except for cluster 1 at 18° and cluster 6 at 26° (tab. ST4).
Even though one protein generally falls into two different clus-
ters at two different temperatures, functional enrichments were
globally the same at the two temperatures. Indeed, we found a
high correlation between Pearson’s chi-squared residuals at both
temperatures, except for clusters 3 and 9 (fig. SF5). Whenever a
functional category was enriched/depleted at one temperature,
it also tended to be enriched/depleted at the other temperature.

Cluster 1 is enriched with proteins quantified at 26° linked to
response to stress, mating and transcription, and depleted with
proteins related to cell fate and protein synthesis. Cluster 3 is
enriched with proteins measured at 18° linked to amino-acid
and nucleotide metabolism, and at 26° to cell fate and response
to stress. Cluster 6 is enriched with proteins quantified at 18°
linked to protein synthesis and nucleotide metabolism, and de-
pleted in proteins linked to metabolism, other than amino acid,
nucleotide and carbon metabolism. Cluster 9 is enriched in pro-
teins linked to transcription at both temperatures, it is enriched
in proteins measured at 18° linked to response to stress and

Heterosis vs Inbreeding 7
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Figure 3 Patterns of correlations between genetic variance components of protein abundances. Points correspond to proteins, type and
color combinations identify the clusters obtained by their classification based on a Gaussian Mixture model. Numbers from 1 to 9
identify class centers for each cluster.

mating, and depleted in proteins linked to protein synthesis and
cell fate; at 26° it is enriched in proteins linked to nucleotide
metabolism and transport. The other protein clusters have the
same profile at both temperatures. Cluster 2 is enriched with
proteins linked to amino-acids and carbon metabolism, cell fate
and response to stress, and depleted in proteins linked to trans-
port and mating. Cluster 4 is enriched in proteins linked to
amino-acid metabolism, and to stress response at 26°. Cluster 5
is enriched in proteins linked to protein synthesis, amino-acid,
nucleotide and other but not carbon metabolism, and depleted in
proteins linked to transcription. Cluster 7 is enriched in proteins
linked to amino-acids and carbon metabolism, and depleted in
proteins linked to transcription, transport and signal. Cluster
8 is enriched in proteins linked to cell fate, stress response, nu-
cleotide metabolism and mating, and depleted in proteins linked
to other metabolisms, transport and protein synthesis. Hence,
genetic variance components tend to cluster proteins having
similar functions at both temperatures.

Concerning the number of transcription factors, we found no
correlation between the number of transcription factors and the
components of genetic variation of protein abundances.

Finally, Pearson’s chi-square test have been performed in
order to investigate if there were differences between clusters

regarding the proportion of heterotic proteins quantified in Blein-
Nicolas et al. (2015). Results are shown in tab. 1: cluster 1, 2, 4 are
enriched with heterotic proteins while in clusters 5, 7, 9 heterotic
proteins are scarce (χ2 = 54.29, p-value<0.05). Hence, heterotic
proteins are preferably found in clusters characterized by low
variance of inbreeding effects and high variances of intra-specific
and inter-specific heterosis effects.

Briefly, despite poor correlations between variance compo-
nents measured for the same protein at two temperatures, the
nine clusters of proteins identified from the distribution of vari-
ance components group together proteins of similar function,
based on their functional annotation. Heterotic proteins that
show non-additive inheritance between parents and hybrids are
mostly found in protein clusters with high variances of intra-
specific and inter-specific heterosis effects and low variance of
inbreeding effects.

Variance components of fermentation traits fall into the pro-
teomic landscape

Using for the fermentation/life history traits the same clustering
approach as for the proteins, we clearly identified three profiles
of genetic variance components (fig. SF3; see description in the
section Structuration of genetic variability at the fermentation

8 Petrizzelli et al.
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Figure 4 Variance components of fermentation traits. Fermentation traits are assigned to clusters identified at the proteomic level
based on their membership probability computed through Gaussian finite mixture models. They are identified by the type and color
combination of the cluster to which they are assigned. Numbers 1 to 9 identify class centers for each protein cluster. Labels are
only given for outlier traits, i.e. those that do not belong to the 95% confidence interval of the genetic variance estimates of protein
abundances on the plotted direction.

trait level of Supplementary Materials).

In order to compare the patterns of genetic variation of pro-
tein abundances and fermentation traits, we tried to assign fer-
mentation traits to proteomic clusters based on the Gaussian
Mixture model fitted on protein abundances profiles, as ex-
plained in section Variance component analysis of Materials
and Methods. We chose for each fermentation trait the cluster
of maximal membership probability. Most traits were assigned
to a single protein cluster with a probability higher than 80%.
The exceptions were Sugar/EthanolYield (26°), X4MPP (26°),
t.75 (26°), t.lag (26°) and t.lag at both temperatures. Average
variance components for each cluster are represented in fig. 2.
Altogether, the 56 fermentation traits fall into eight proteomic
clusters, most of them being assigned to clusters 1 (16 traits),
2 (12 traits), 7 (12 traits), 3 (6 traits), 5 (5 traits). Note that no
trait was assigned to cluster 8, which corresponds to the cluster
with the lowest variances of additive effects. Despite similarities
with protein abundance traits, fermentation traits are character-
ized by higher variance of additive and inbreeding effects and
globally higher contrasts in genetic variance components (fig. 4).
Overall, 8 traits were attributed to the same cluster at the two
temperatures: Jmax, r, t-Nmax, Viability-t-75, X4MMP, Hexanoic

acid, Hexanol, Ethanol.

In addition, we investigated, for each temperature, the link
between protein category in each cluster and type of fermen-
tation trait. We see that at 18°, most Basic Enological Parame-
ters (BEP) fall in cluster 2 where we found proteins involved
in metabolism and stress response. Life History Traits fall in
cluster 7 (amino-acid and carbon metabolism) and carrying ca-
pacity K falls in cluster 9 (cell growth) while t-Nmax is found in
cluster 6 (nucleotide metabolism and protein synthesis). At 26°,
most Aromatic Traits fall in cluster 1 (cell fate, stress response),
most Fermentation Kinetics traits are found in cluster 7 (amino-
acid and carbon metabolism), and BEP are in cluster 4 (stress
response).

In conclusion, traits are generally attributed to different clus-
ters at the two temperatures, based on the underlying compo-
nents of genetic variation. Those clusters are characterized by
the enrichment in proteins with a certain functional category,
that may vary between temperatures. Interestingly, we found
an association between traits linked to different metabolic pro-
cesses and proteins involved in such processes just by taking
into account their genetic variance decomposition.

Heterosis vs Inbreeding 9
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Figure 5 Pearson’s correlation test performed to investigate the intra-cluster correlations on proteomic data. For each cluster, correlation
between variances of the genetic effects are indicated by a color-code. Warm colors stand for negative correlations and cold colors for
positive correlations. * significant at p < 0.05; ** significant at p < 5 · 10−3; *** significant at p < 5 · 10−4; **** significant at p < 5 · 10−5.
No symbol: not significant.

Intra-cluster correlations between variance components
Pearson’s correlation coefficients were computed for each pair
of variance components within each cluster of proteins. Results
clearly show different correlation structures between groups,
particularly concerning correlation between the variances of het-
erosis and inbreeding effects (fig. 5). In cluster 1, variances of
additive effects strongly and negatively correlate with each other.
In cluster 3, there is a slightly negative correlation between σ2

AwAwAw
and the variances of heterosis effects, and there is a strong corre-
lation between σ2

AbAbAb
and variance of inbreeding effects. Cluster 4

is characterized by a weak negative correlation between σ2
AwAwAw

, σ2
AbAbAb

,
σ2

HwHwHw
variances, and between σ2

AbAbAb
, and the variances of heterosis

and inbreeding effects. Clusters 5 and 7 preserve the global
correlation structure. In cluster 2, the variances of intra-specific
heterosis and inbreeding effects are negatively correlated, in
cluster 6 the variances of heterosis and inbreeding effects are
positively correlated, in cluster 8 the variances of inter-specific
heterosis and inbreeding effects are positively correlated, and

in cluster 9 the variances of heterosis and inbreeding effects
are negatively correlated. Altogether, when a statistical signifi-
cant correlation between the variances of additive, heterosis and
inbreeding effects is found, it is negative.

Variances of additive effects tend to be negatively correlated
to variances of heterosis and inbreeding effects, and there is no
straightforward relationship between the variances of heterosis
and inbreeding effects: σ2

BBB can be either negatively (cluster 9) or
positively (cluster 6) correlated to both σ2

HbHbHb
and σ2

HwHwHw
, negatively

correlated to σ2
HwHwHw

(cluster 2), positively correlated to σ2
HbHbHb

(clus-
ter 8). However, σ2

BBB can also be independent from either σ2
HwHwHw

or
σ2

HbHbHb
(clusters 1, 2, 3, 4, 5, 7, 8).

Discussion

In this paper, we focused on the comparative analysis of genetic
variance components estimated through the decomposition of
traits value quantified in a half-diallel cross during or at the end

10 Petrizzelli et al.
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Figure 6 Correlation between the variances of heterosis and
inbreeding effects for: A) Additive model with symmetrical
dominance (no epistasis), B) Additive model with dominance
of the strongest allele, additive × additive and dominance ×
dominance epistasis. The simulated half-diallel consisted of 11
parental lines. Phenotypic values were supposed to depend
on 10 loci, and the number of alleles per loci was imposed to
11. Allele values were drawn from a gamma distribution (k=10,
θ=20) and epistatic effects from a normal distribution (N (0, 3)).

of alcoholic fermentation. The cross design involved 11 yeast
strains from two related species naturally associated with wine
fermentations, S. cerevisiae and S. uvarum, and the set of traits
quantified spanned from protein abundances to fermentation
and life-history.

Genetic variances have been estimated through a comprehen-
sive genetic model that allowed us to decompose the phenotypic
value of a cross, including the parental inbred strains, in terms of
additive and interaction effects. This decomposition can be de-
scribed in the following way. The parental inbred lines have two
identical haploid genomes, while the hybrids have two different
haploid genomes, each inherited by one parent. Additive effects
refer to the average value conferred by a single haploid genome
with respect to any other haploid genome, and interaction ef-
fects refer to the non-additive effect of a particular genotype
computed as the difference between the particular diploid value
and the average additive effect of its haploid genomes. The pres-
ence of the parental inbreds in the experimental design permits
a decomposition of those effects into heterosis and inbreeding
effects. Inbreeding effect is defined as the difference between
the value of the inbred strain (with the same haploid genome
twice) and the average of all the crosses having at least one
copy of the haploid parental genome. Heterosis effect is defined
as the difference between a single pairwise genome combina-
tion and the average value of hybrids having one or the other
haploid genome. Thanks to the presence of two different yeast
species in our experimental design, we could distinguish intra-
specific and inter-specific genetic effects. Indeed, the additive
effect of a strain and the heterosis effect of a hybrid between
two strains may differ depending on whether the strains belong
to the same species or not. Therefore, intra-specific (respec-
tively inter-specific) additive effect refers to the average value
conferred by a single haploid genome with respect to any other
haploid genome from the same specie (respectively from another
species), and intra-specific (respectively inter-specific) heterosis
effect refers to the difference between a single pairwise genome
combination from the same specie (respectively from the two
species) and the average value of the intra-specific (respectively
inter-specific) hybrids having one or the other haploid genome.

This general model could be adapted to consider mitochon-
drial effects, which we did not declare for biological and techni-
cal reasons given in Materials and Methods. If such effects do
exist in our genetic material they are expected to be weak and
confounded with other effects.

The variance components of the genetic effects defined above
have been estimated using the linear mixed model (LMM) de-
scribed in eq. 2. Whenever a variance component was significant,
it meant that genetic differences were found between strains. We
checked the ability of the LMM to estimate genetic parameters
by means of computer simulations and the robustness of the esti-
mations through bootstrap analysis. In the simulations, despite
residual variances that were not well correlated to their true
value, estimated genetic variances were found to highly corre-
late with their true value (fig. 1). However, residuals quantified
on the proteomic data highly correlate with their true value (see
section Protein abundances). Bootstrap analysis, performed by
sampling the 55 hybrids with replacement, conditionally to the
11 parental strains, revealed that for each variance component
the estimations in the experimental sample were close to the me-
dian of the estimations in the bootstrap samples. For some traits
and some variance components, the distribution of the bootstrap
estimated variances were bimodal, suggesting a strong influence
from a particular hybrid combination. However, it was never
flat or smooth, in agreement with the non arbitrary choice of the
parameters. Therefore, we are confident about the estimations of
the genetic variances, conditionally to the parents of the diallel.

We were able to characterize the 615 proteins and the 28 fer-
mentation and life-history traits quantified at 18° and 26° by a
particular profile of genetic variance components despite the
small number of parental inbred strains from which the half-
diallel was built. We found that variances of intra- and inter-
specific effects differed in a large extent, pointing out that the
genetic effects are highly influenced by crossing strains from the
same species or not. The degree of intra- and inter-specific ge-
netic variation captures the evolutionary history the two species
have undergone for the different traits. For instance, traits with
a low variance of intra-specific additive effects but high variance
of inter-specific additive effects have a high potential to evolve
in inter- but not intra-specific crosses.

Each trait has been treated at each temperature separately,
considering trait × temperature as independent characters. In-
deed, genotype-by-environment interactions affect very com-
monly phenotypic variation. In particular, it is well documented
that the genetic architecture of a trait is not stable under varying
environments, highlighting the fact that evolutionary processes
may depend largely upon ecological conditions (Falconer 1960;
Lynch and Walsh 1998; Hermisson and Wagner 2004; Robinson
et al. 2009; Malosetti et al. 2013). Accordingly we found a weak
correlation between genetic variances at the two temperatures.

The molecular phenotypes (protein abundances) reflect the
underlying genetic factors involved in the cellular processes
regulating the most integrated traits. So we investigated the
distribution of the components of genetic variation of protein
abundances in relation to fermentation and life-history trait
variance components. We found nine clear-cut clusters of protein
variance components, and we were able to assign traits to these
clusters based on their genetic variance components. Overall,
the profiles of the fermentation and life-history traits associated
to each cluster were close to that of the proteomic level, but
they were characterized by higher variance of additive effects;
further, we could not assign any trait to cluster 8, which has null
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variance of additive effects, i.e. which is the group with the less
heritable proteins. Altogether these results reveal that the most
integrated traits have a higher evolutionary potential compared
to protein abundances.

We tested for cluster enrichment in protein functions, based
on the functional annotation of the proteins. Clusters were found
to group together proteins of similar functions. Despite the fact
that 63% of the proteins were found in different clusters at the
two temperatures, the metabolic functions were preserved. This
suggests temperature-specific regulatory changes that achieve
the maintenance of cell functions. At the trait level, 16 over 28
fermentation/life-history traits (57%) fell into the same cluster
at the two temperatures (fig. SF8). For the 12 remaining traits,
changes in the distribution of variance components between the
two temperatures can be explained by G× E interactions.

Beside, we have shown that the clusters were characterized
by a particular profile of genetic variance components, which
suggests that traits that group together share a similar evolution-
ary history. If all traits were neutral, they would have shown the
same equilibrium level of total genetic variance of approximately
2NVm (N the effective population size and Vm the mutational
variance (Lynch and Hill 1986)) with a similar partition of ge-
netic variance components. The existence of different profiles of
variance components probably reflects that the different types
of traits have been subject to particular selective pressures.

Beyond, the nine clusters were clearly distinguishable from
each other from their pattern of correlation between variance
components. Overall, the variances of intra- and inter-specific
additive effects were negatively correlated to the variances of
heterosis and inbreeding effects. This may reveal differences
in the patterns of allele frequencies at the underlying loci. In a
biallelic case, additive genetic variance is always maximum for
intermediate allele frequencies, while dominance and epistatic
variances (which are components of the variances of heterosis
and inbreeding effects) are maximum for more extreme allele
frequencies (Hill et al. (2008)). A trait with a high variance of
additive effects is therefore expected to have lower dominance
or epistatic variances. Conversely, a trait with low variance
of additive effects may exhibit high dominance and epistatic
variances.

In the common view, heterosis and inbreeding are corollary
effects. However, we have shown that the variances of heterosis
and inbreeding effects could be negatively, positively or not
correlated to each other. For a better understanding of such
a decoupling, we simulated a half-diallel design between N
parental strains (for details see section Half-diallel simulation
construction in Supplementary Materials). We computed the
phenotypic values of the parental lines and hybrids starting with
a simple additive model (neither dominance at any locus nor
epistasis), then we added dominance and/or epistasis effects.
We considered different degrees of dominance for each couple
of alleles (including dominance of the strongest allele, h=0) and
additive × additive and dominance × dominance epistasis, and we
let the number of alleles per locus to vary. We considered all
possible combinations of these effects. Finally we decomposed
the values of the simulated traits into additive, heterosis and
inbreeding effects.

Not surprisingly, the variances of heterosis and inbreeding
effects are both null when there is neither dominance nor epis-
tasis. If there is additive × additive epistasis with no dominance,
the variances of heterosis and inbreeding effects are strictly cor-
related, with very low variance of heterosis effects. In the other

conditions, the results depend on the number of parental lines.
With three parents, the variance of heterosis and inbreeding
effects are strictly equal, as it can be shown analytically (see sec-
tion Inbreeding depression and heterosis variances are equal in
three-parent diallel in Supplementary Materials). Otherwise the
correlation between the variances of heterosis and inbreeding
effects varies in function of the number of loci affecting the trait
of interest, on the frequency of alleles in the population and on
the presence of dominance and epistatic effects. In general, the
correlation between the variances of heterosis and inbreeding
effects tends to become null when the number of parental lines,
the number of alleles per locus and the number of loci increase.
Given these parameters, whether there is dominance or not,
and whatever the type of dominance, the lowest correlations
between the variances of heterosis and inbreeding effects are
observed when there are both types of epistasis together (fig. 6
and fig. SF10). However in no case we get negative correlations
between the two variances. Further, we decided to consider
the data obtained on all the different cases together and we
run as previously a Gaussian Mixture Model to cluster genetic
variances components. We computed intra-cluster correlations
varying the number of alleles per locus, the number of loci and
the distribution in which we drew allele values. Those correla-
tions did not show profiles similar to those obtained with real
data (correlations between genetic effects are commonly positive
or null).

Classical genetic studies and modern molecular evolutionary
approaches now suggest that inbreeding effects and heterosis are
predominantly caused by the presence of recessive deleterious
mutations in the population (Charlesworth and Charlesworth
1999; Charlesworth and Willis 2009). Therefore understand-
ing the effects of selection against deleterious alleles is crucial.
Population structure also plays a key role in this framework. In-
deed, population subdivision increases homozygosity through
inbreeding, an effective process for purging deleterious alleles,
but it also decreases selection efficiency by decreasing the ge-
netic diversity. Allele frequency changes also modify the genetic
variance components (Hill et al. 2008; Barton 2017). A more
complex model, which takes into account selection, allele fre-
quency, population structure and the presence of deleterious
mutations is thus needed to explain our observations. Glémin
et al. (2003) have discussed about the patterns of correlation
between inbreeding effects and heterosis in a structured popu-
lation assuming low frequencies of deleterious mutations, only
present in the heterozygous state. They defined within- and
between-demes inbreeding depression as the decline in mean
fitness of selfed individuals relative to out-crossed individuals
within the demes and as the decline in mean fitness of selfed
individuals relative to out-crossed individuals between demes,
respectively; and heterosis as the excess in mean fitness of in-
dividuals produced by out-crosses between demes relative to
mean fitness of individuals produced by out-crosses within the
demes. They stated that population structure decreases within-
demes inbreeding depression while it increases between-deme
inbreeding depression, and that increasing the inbreeding coeffi-
cient reduces within- and between-deme inbreeding depression
and heterosis. A similar result was obtained by Roze and Rous-
set (2004) who considered a diffusion model in a population of
partially selfing individuals subdivided according to an island
model, with a large but finite number of demes. They found that
generally within-deme inbreeding depression and heterosis are
positively correlated upon selfing and, when the degree of pop-
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ulation subdivision is high, inbreeding depression and heterosis
are negatively correlated. To our knowledge, the present study
reports the first experimental example of such a decoupling.

In conclusion, our findings have special relevance in three
main directions: (i) Detection of Quantitative Trait Loci (QTL). Vari-
ances of additive effects are crucial for the detection of genes
with significant quantitative effect, and variances of hetero-
sis/inbreeding effects for the detection of gene-gene interactions
when the part of genetic variance they explain is large; (ii) Inte-
gration of proteomic data into Genome Scale Metabolic (GSM) model:
we assigned fermentation traits to clusters obtained on the com-
ponents of genetic variation of protein abundances. Traits asso-
ciated to a metabolic process were linked to proteins involved to
such process, therefore we are confident that integrating proteins
related to the most integrated traits into a GSM could improve
their prediction, with particular attention to the prediction of
heterosis; (iii) Model heterosis and inbreeding variation: we have
highlighted various patterns of variation between the variances
of heterosis and inbreeding effects that cannot be explained with
simple quantitative genetics models. It would be interesting to
construct in silico experiments to search for the key parameters
that drive these patterns.
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3.5 Conclusions
In this analysis, I have characterize phenotypic variation at each level of cellular organization by
means of genetic and residual variance components contributing to each trait through the decom-
position of the particular diallel-cross design.

Traits have been treated at each temperature as independent characters and the portion of variance
attributed to genetic effects was further decomposed into additive, inbreeding and heterosis effects,
distinguishing intra- and inter-specific additive and heterosis effects.

The analysis of variance components in the population have allowed to identify:

• the presence of genotype-by-environment interaction at every level of cellular organization;

• the independence of heterosis variances on the type of cross at the proteomic level;

• a buffering mechanism towards genetic interaction for life-history and fermentation traits;

• groups of protein abundances and fermentation and life-history traits that have possibly been
submitted to the same selective pressures;

Along, the most striking result was the possible decoupling between heterosis and inbreeding de-
pression that can be explained by simple genetic models with epistatic interactions.

Beside, integration of the two different levels of cellular organization have been performed through
association of proteins and fermentation/life-history traits sharing a similar partition of genetic
variance components: groups identified at the proteomic level shared functional properties, and it
was possible to associate fermentation and life-history traits to proteomic groups.

In the following, I focus in the characterization of the more integrated traits (life-history and
fermentation) by means of the underlying metabolic fluxes in order to investigate the main mech-
anisms underlying multi-trait variation. Indeed, metabolic fluxes result from network functioning
and integrate the activities of possibly many proteins. To this end, I have introduced protein
abundance data into constraint-based models and predicted steady-state fluxes for each strain per
temperature separately.
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Chapter 4

Metabolism modeling

Life-history traits are the observable results of unobservable processes that occur at a cellular scale.
During the last decades, novel profiling technologies and high-throughput techniques have made
possible the inventory of a majority of biological components underlying phenotypic variation
along with genome-scale characterization of genomic sequences. This included transcriptomic,
metabolomic and proteomic data at individual level. Quantification of omic data have enabled
biologists to view and study cell as a system of interacting components. The metabolism of a
cell can be seen as a network in which compounds are transformed through a series of steps into
other compounds. This process is governed by enzymes, which are catalysts allowing reactions to
proceed more rapidly and which tune the rate of the metabolic reactions, for example in response
to changes in the cell’s environment or to signals from other cells.

Based on genome annotation and biochemical knowledge, genome-scale metabolic models have
been proposed for the description of cell metabolism. They can be used to study genotype-
phenotype relationships, and their application to microbial strain engineering is increasing in
popularity. To this end, the determination of flux distributions is essential, for a better under-
standing of the interplay between different metabolic pathways, for investigating the genetic and
molecular bases of the multi-trait variation and, lastly, for the prediction of the integrated pheno-
types. Nevertheless, metabolic fluxes are difficult to measure. Metabolic Flux Analysis is powerful
(Antoniewicz, 2015), but it is based on RMN and differential usage of radioactive isotopes. It
remains low-throughput and cannot be applied on numerous individuals. Technical developments
in mass spectrometry popularized metabolomics (Nicholson and Lindon, 2008), which allows to
characterize in some extent the metabolome, i.e. the set of metabolites in a cell, tissue, organ or
organism. However, the technique still suffers from standardization procedures and does not allow
for high-throughput quantitative comparisons (Riekeberg and Powers, 2017).

Sophisticated methods for the analysis of the global organization of cellular behavior have been
proposed, one of them being constraint-based reconstruction and analysis applied to genome-scale
metabolic networks (Bordbar et al., 2014). In this chapter, I briefly review the main approaches
developed for constraint-based modeling of cellular metabolism, and I present the main properties
of the yeast central carbon metabolism model that I use in the Chapter 5.

Metabolism is the set of chemical reactions that take place within each cell of a living organism
and that provides energy for vital processes and for synthesizing new organic material.

Metabolism

4.1 Constraint-Based Modeling (CBM)
The metabolism of a cell can be described by the complex network of chemical reactions between
M metabolites and N reactions. In the toy model below, metabolite M1 enters the cell and is
transformed into M2 and M3, while M2 can also be produced by an isomerization of M3. M2 is
exported outside the cell at a rate v4. Fluxes are reaction rates vi that depend on enzyme activities.
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M1

M3

M2
v0 v1

v2 v3

v4

The dynamics of the process results in temporal changes of metabolite concentrations mi of
Mi. Here, m1 changes following:

ṁ1 = v0 − v1 − v2

4.1.1 Mathematical formalism
In a mathematically consistent framework, it is possible to define an M ×N stoichiometric matrix
S in which rows correspond to the stoichiometric coefficients of the corresponding metabolites of
all the reactions. In the toy model above, the stoichiometric coefficients are 1, −1 or 0. Assuming
mass-balance and limited interval of variation for the different reactions, the problem consists in
finding the set of fluxes v ∈ RN such that

Sv = ṁ (4.1)

vinf ≤ v ≤ vsup (4.2)

where ṁ ∈ RM is the set of metabolite input/output rates, and the vectors vinf , vsup are the
extremes of variability of the fluxes. In general, M ≤ N and the system of stoichiometric equations
is typically under-determined. Rather than deriving a single solution, constraint-based models have
an associated solution space:

L = {v|Sv = ṁ, vinf ≤ v ≤ vsup}

in which all feasible v exist given the imposed constraints that account for the different processes
acting on and in cells.

Eq. 4.1 describes metabolic fluxes that are constrained by network topology. In general, it is
assumed that cells consume and produce metabolites at a constant rate in a mass-balance manner,
that is cells are under steady-state and ṁ = 0 represents a further constraint. Fluxes are also
constrained by upper and lower bounds, generally known from the literature and used to model a
specific cellular process (ineq. 4.2). Further constraints such as physiologically relevant fluxes can
be introduced to reduce L. Different techniques have been proposed to deduce network behavior
by dimensional reduction of L, most of them based on two key components: the method of analysis
to predict fluxes and observed/known constraints on the biological system.

Flux Balance Analysis (FBA). The first constraint-based method for biological predictions was
Flux Balance Analysis (Fell and Small, 1986; Varma and Palsson, 1994). In FBA, an objective
function is introduced and is assumed to be maximized/minimized by the cell, such as the con-
sumption/production of metabolites or of biomass. It requires experimental inputs to establish
the metabolite composition of cell biomass. Notice that the optimal solution to the flux-balance
problem is rarely unique with many possible, and equally optimal, solutions.

Flux Variability Analysis (FVA). The method consists in the identification of lower and up-
per values of fluxes through each reaction iteratively when the flux of the objective is typically
constrained to its maximum/minimum value (Gudmundsson and Thiele, 2010). Reactions that
support a low variability of fluxes are likely to be of a higher importance to an organism.
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Both methods, FBA and FVA, require identification of objective functions given the experi-
mental data. However, objective functions may change under changing environments and under
different conditions.

Markov Chain Monte Carlo techniques (MCMC). This approach does not require to assume
any objective. It consists in sampling in L to provide a probability distribution for the feasible
fluxes. The imposition of constraints in the model defines the associated solution space of the
CBM, i.e.

L ≡ L(ṁ; vinf ; vsup) (4.3)

Simple constraints include input and output ranges on the basis of uptake/secretion of metabolites
and genetic knockouts by setting reactions to zero. More advanced techniques include setting
metabolite rates or flux bounds to experimentally measured values (reviewed in section 4.2).

4.1.2 Exploring the space of possible solutions
MCMC techniques have been proposed to approximately compute the posterior distribution of
fluxes in L, such as the Hit and Run (HR) algorithm (Bélisle et al., 1993). Recently, a novel method,
which combines statistical physics and Bayesian approaches, and which does not require sampling
in L, has been proposed by Braunstein et al. (2017), the Expectation Propagation algorithm (EP
algorithm).

Hit and Run algorithm

The problem consists in efficiently generate samples in L ⊂ RN with polygonal constraints imposed
by the lower and upper bounds of fluxes. The algorithm proposed by Bélisle et al. (1993) consists
in iteratively exploring the solution space by increasing the dimensionality (k):

• Step 0. Choose a starting point v0 ∈ L, with k = 0;

• Step 1. Generate a random direction ek ∈ RN , with
∥∥∥ek
∥∥∥ = 1;

• Step 2. Choose λk ∈ Λk, where Λk = {λ ∈ R : vk + λek ∈ L} from the density distribution

fk(λ) =
f(vk + λek)∫
f(vk + rek)dr

(4.4)

and where f(v) is the prior density distribution of v ∈ L, assuming a multinomial distribu-
tion.

• Step 3. Set vk+1 = vk + λkek and k = k+ 1;

• Step 4. Return to Step 1.

The accuracy obtained with HR depends of course on the number of samples, and sampling accu-
rately can be very time consuming.

Expectation propagation algorithm

Braunstein et al. (2017) formulated the problem as follows: consider the set of fluxes v compatible
with eq. 4.1 and ineq. 4.2. It is possible to define a quadratic energy function E(v) whose mini-
mum(s) lies on the assignment of variables v satisfying the stoichiometric constraints in equation
4.1:

E(v) = 1
2 (Sv− ṁ)>(Sv− ṁ) (4.5)
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It is easy to see that if v satisfies eq. 4.1, E(v) will be at a/the minimum. Therefore, the likelihood
of observing ṁ given a set of fluxes v can be expressed as a Boltzmann distribution:

P (ṁ|v) =
(
β

2π

)M
2
e−

β
2 (Sv−ṁ)T(Sv−ṁ) (4.6)

where β is a positive parameter, the inverse of temperature in statistical physics jargon, that
governs the penalty of whose configurations of fluxes that are far from the minimum of the energy.
Using Bayes formula, the posterior probability of observing the set of fluxes v given ṁ is:

P (v|ṁ) =
P (ṁ|v)P (v)

P (ṁ)
(4.7)

where the prior

P (v) =
N∏
n=1

ψn(vn) =
N∏
n=1

1(vn ∈ [vinfn , vsupn ])

vsupn − vinfn

(4.8)

The function 1(vn ∈ [vinfn , vsupn ]) is an indicator function that takes values 1 if vn ∈ [vinfn , vsupn ] and
0 otherwise. It constraints flux values to verify the inequality imposed in eq. 4.2. An expression
for the posterior distribution is:

P (v|ṁ) =
1

P (ṁ)

(
β

2π

)M
2
e−

β
2 (Sv−ṁ)T(Sv−ṁ)

N∏
n=1

ψn(vn) (4.9)

Computation of the marginal distribution P (vn|ṁ) for each n ∈ {1, 2, . . . ,N} requires cal-
culation of multiple integrals, which is computationally very expensive and cannot be performed
analytically in a efficient way. Therefore, the EP technique suggests to replace the prior distribution
of fluxes, but not the n-th flux, by a Gaussian distribution

φm(vm; am, dm) =
e−

(vm−am)2
2dm

√
2πdm

(4.10)

whose mean and variance are constrained to be equal to the one of ψm(vm). To this end, consider
the n-th flux, its corresponding approximate prior φn(vn; an, dn) and define a tilted distribution
Q(n) as

Q(n)(v|ṁ) ≡ 1
ZQ(n)

e−
β
2 (Sv−ṁ)T(Sv−ṁ)ψn(vn)

∏
m 6=n

φm(vm) (4.11)

where ZQ(n) is the normalization constant:

ZQ(n) =
∫
dnve−

β
2 (Sv−ṁ)T(Sv−ṁ)ψn(vn)

∏
m6=n

φm(vm) (4.12)

The problem consists in finding the unknown parameters an and dn of φn(vn; an, dn) such that the
multivariate-truncated Gaussian distribution

Q(v|ṁ) ≡ 1
ZQ

e−
β
2 (Sv−ṁ)T(Sv−ṁ)

N∏
n=1

φn(vn) (4.13)

is as close as possible to Q(n). This process can be performed by matching the first two moments
of the distribution {

〈vn〉Q(n) = 〈vn〉Q
〈v2
n〉Q(n) = 〈v2

n〉Q
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from which a relation for the parameters an and dn can be found through sequentially repeating
the update step for all fluxes and iterate until a numerical convergence is reached.

4.2 Integration of experimental data
The advent of high-throughput techniques have allowed quantification of omic data that have en-
couraged scientists to propose novel methods for the integration into CBM. They can be used to
add an additional layer of constraints for reaction fluxes (Patil and Nielsen, 2005), to determine
context specific flux distributions (Lobel et al., 2012) or to compare and validate FBA predictions
(Schuetz et al., 2012). Indeed, experimental data, even incomplete, provides information about the
intra-cellular processes in the organisms. Different approaches have been proposed, with different
rationales and advantages:

GIMME (Gene Inactivity Moderated by Metabolism and Expression) uses quantitative gene ex-
pression data and one or more presupposed metabolic objectives to produce the context-specific
reconstruction that is most consistent with the available data (Becker and Palsson, 2008). Under
the assumption that environmental changes determine metabolic pathway usage, enzymes associ-
ated to metabolic pathways that are not used are assumed to be not synthesized. Therefore, the
method searches for sub-models by constraining to zero the fluxes to which no associated gene
expression data is observed. In this way, each condition may be characterized by a different com-
bination of fluxes.

Eflux. A variation of GIMME was proposed (Colijn et al., 2009) that used transcriptomic expres-
sion data to model the maximum possible flux through metabolic reactions. When the expression
for a particular enzyme-coding gene is low (relative to some reference), a tight constraint is posed.
When expression is high the constraint is looser. Then FBA is performed with the applied con-
straints and an appropriate objective function. The method was successfully applied to study light
and temperature acclimation in Arabidopsis thaliana (Töpfer et al., 2013). Instead of a single
objective function, the authors considered the maximization of a collection of metabolic functions
that were characterized under different environmental conditions. The method allowed to deter-
mine which metabolic pathways, from both primary and secondary metabolism, were significantly
affected in the experiments.

IOMA or Integrative Omics-Metabolic Analysis method is formulated as a quadratic program-
ming problem that seeks a steady-state flux distribution, in which flux through reactions with
measured proteomic and metabolomic data are as consistent as possible with kinetically derived
flux estimations (Yizhak et al., 2010). It assumes that protein abundances are proportional to
kinetic fluxes:

vkini = Ei(kEi + εi) (4.14)

where vkini denotes the flux of the i-th kinetic reaction, Ei the abundance of the enzyme associated
to the i-th reaction, kEi the kinetic constant associated to reaction i and εi is a residual. The
problem turns in finding the set of fluxes and of kinetic constants that satisfy the stoichiometric
and constrains on fluxes while minimizing the variance of the residuals. In addition, metabolomic
data can be exploited to estimate kinetic constants.

Profile comparison. The method proposed by Lee et al. (2012) is based on maximization of the
correlation between experimentally measured absolute gene expression data or protein abundances
and predicted internal reaction fluxes. It assumes that the likely solution in L minimizes the
distance between absolute gene expression profile and that of fluxes. The problem is formulated as
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a linear programming problem, and turns in finding the set of fluxes for which:

Z =
k∑
j=1

1
σi
|vi −Ei| (4.15)

is minimum.
In their work, Lee et al. (2012) have shown that the method proposed outperformed with respect

to traditional methods in predicting exchange fluxes (Table 4.1), using quantitative transcriptomic
data acquired from S. cerevisiae cultures under two growth conditions. This approach improved
prediction and did not require knowledge of the biomass composition of the organism under the
conditions of interest. For these reasons, I have chosen to adopt a similar approach for predicting
metabolic fluxes in the HeterosYeast dataset.

Flux Observed Predicted
Profile comparison FBA GIMME

Ethanol 23.8 25.7 0 0
CO2 22.7 31.5 37.6 31.5
Glycerol 3.54 0 0 0
Acetate 0.311 0.016 0 0
Trehalose 0.0356 0.0301 0 0
Lactate 0.00873 0.0301 0 0

Table 4.1: Observed and predicted exchange fluxes from different data-integration methods (Lee et al.,
2012). The profile comparison method results in a better prediction of fluxes.

4.3 The DynamoYeast model
The DynamoYeast is a previously developed constraint-based model of central carbon metabolism
of S. cerevisiae (Celton et al., 2012). This model comprises the cytosol, mitochondria and extra-
cellular medium and includes upper and lower glycolysis, the PPP (Pentose Phosphate Pathway),
the synthesis of glycerol, the synthesis of ethanol, and the reductive and oxidative branches of the
TCA as the main metabolic pathways. It consisted of 70 reactions and 60 metabolites. Figure 4.1
shows a representation of this model. In red are indicated flux constraints for exchange metabolic
fluxes.

4.3.1 Sampling the solution space
The feasible space of solution L of fluxes from the DynamosYeast model was first characterized
by the posterior distribution of fluxes obtained through the HR sampling method (implemented in
R by Meersche et al. (2009)). We compared the efficiency of the HR algorithm to the predictions
obtained through the EP algorithm (Braunstein et al., 2017).

The posterior density distribution obtained by HR and EP algorithms were compared after
running the HR with a burning length equal to 106 and a jump of 0.5, for a number of iteration
from 106 to 107, and the EP algorithm with a high β parameter (Boltzmann inverse temperature
parameter). Figure 4.2 shows the sampled space of solution through the HR (histograms) and the
EP estimate (red curve). Even though the results were not exactly the same, the two distributions
were similar.
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Figure 4.1: Representation of the DynamosYeast model of central carbon metabolism of S. cerevisiae.
In red are indicated flux constraints for the exchange fluxes. Proteins associated to the reactions are
in red capital letters
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Figure 4.2: Marginal probability densities of sixteen fluxes of the yeast carbon metabolism, randomly
chosen. The histograms represent the result of the HR for T ∼ 107 sampling points. The red line is
the result of the EP estimate.

Figure 4.3: Comparison of the results of HR versus EP. The plot shows the relation between eight
pairwise fluxes. Correlation ellipses, computed by the EP algorithm, are drawn in red. Dot points
represent the mean value of fluxes computed through EP. HR sampling points: T ∼ 5 · 106.
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Figure 4.4: Comparison of the results of HR versus EP. The plots on the right are scatter plots of
the means and on the left variances of the approximated marginals computed via EP against the ones
estimated via HR for an increasing number of explored configurations T , top T ∼ 106, bottom T ∼ 107.

Figure 4.4 shows the relation between means and variances estimated through EP and HR for
different number of iterations sampled points in L. It shows that the correlation between means and
variances estimated through the two methods increase as the number of the HR samples increases.
Assuming that the HR algorithm returns the true distribution of fluxes, it is easy to see that means
are well predicted by the EP algorithm, although variances are underestimated.

We further investigated if the EP algorithm well predicted the variance-covariance matrix be-
tween the DynamoYeast fluxes. Figure 4.3 shows the relation between eight pairwise fluxes ran-
domly chosen. Correlation ellipses (red curve) have been obtained through the EP algorithm. As
can be seen, the EP algorithm well predicts the variance-covariance matrix between fluxes satisfying
eq. 4.1 and 4.2, on the basis of the HR predictions.

4.3.2 Constraining the solution space with experimental data
Nidelet et al. (2016) have analyzed the diversity of metabolic fluxes of 43 yeast strains from S. cere-
visiae from six different ecological origins, grown in wine fermentation conditions. Typical wine
fermentation comprises a lag phase, a growth phase of approximately 24–36 h followed by a sta-
tionary phase, during which most of the sugar is fermented. In the study, production of biomass
and metabolites, including ethanol, glycerol, acetate, succinate, pyruvate and alpha-ketoglutarate
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were measured during the growth phase (at 11 g/L CO2 released), which can be considered as
steady state (Table 4.2).

Figure 4.5: Between-strain variations for 14 fluxes from central carbon metabolism in yeast. For each
of 47 strains, the fluxes were predicted by minimizing glucose uptake rate and constraining the observed
exchange fluxes around their experimental observation. Fluxes are normalized by the average flux of
each reaction, and represented by a value between 0 and 3, where 1 is the average flux. Reactions with
the subscript "_t" correspond to transport reactions.

Measured exchange fluxes have been introduced as additional constraints of the constraint-based
DynamosYeast model, and fluxes known to be irreversible in the context of fermentation have been
bounded in just one direction. Further, butanediol and acetoin formation fluxes, Aceto_But and
Acald_Aceto, were set to 0. Finally, under mass balance and steady state assumptions (ṁ = 0),
fluxes have been predicted through minimization of glucose uptake rate.

In order to check the DynamosYeast model, we reproduced the data from Nidelet et al. (2016)
and predicted internal fluxes for each of the 43 yeast strains, using as additional constraints the
observations. Figure 4.5 shows a schematic representation of the variability of predicted fluxes
between the 43 strains. Most fluxes, including the biomass pseudo-flux, show a wide range of
variation among strains, except for the glycolysis and ethanol synthesis pathways (Nidelet et al.,
2016).

We also reproduced two figures from Nidelet et al. (2016). Figure 4.6 shows the between-strains
coefficient of variation, that confirm that all strains seem to be optimized for glycolysis and ethanol
production, while the most variable pathway was the pentose-phosphate.

Moreover, the analysis of pairwise correlations between fluxes revealed two antagonistic ways of
functioning of central carbon metabolism (figure 4.7). Mitochondrial fluxes are positively correlated
to each other, and positively correlated with pentose phosphate pathway, while glycolysis fluxes
are positively correlated, and negatively correlated to mitochondrial fluxes. High glycolysis is
associated with high biomass production.
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Name Origin Succinate Glycerol Acetate Pyruvate AKG Ethanol Biomass
6464 Bread 2.29 27.04 2.31 0.87 0.20 276.56 1.24
CBS1171 Bread 1.58 26.51 1.47 0.99 0.13 256.72 1.66
CLIB215 Bread 2.34 26.00 0.98 1.01 0.28 270.48 2.02
CLIB215_3B Bread 2.56 29.66 1.92 1.17 0.26 291.76 1.91
7_7 Flor 1.54 23.92 6.53 0.56 0.15 272.35 1.44
F25 Flor 0.87 22.68 6.38 0.49 0.11 251.43 1.22
FS2D Flor 1.47 24.21 6.63 0.68 0.24 277.12 1.12
GUF54_A1 Flor 1.87 23.48 6.77 1.03 0.26 280.77 1.07
MJ73 Flor 1.63 23.37 6.02 0.82 0.32 272.92 1.63
P3_D5 Flor 1.49 20.48 4.77 0.85 0.19 272.30 1.26
TA12_2 Flor 1.66 22.88 4.76 0.96 0.27 277.92 1.50
TS12_A7 Flor 3.03 21.97 5.70 0.72 0.24 268.66 1.71
VPDN_Fino Flor 3.24 21.63 3.23 0.84 0.26 269.14 1.13
OakR3 MedOak 1.69 27.16 4.42 1.05 0.17 293.53 1.60
ZP848 MedOak 1.88 26.75 4.75 1.04 0.16 277.65 2.09
ZP851 MedOak 1.75 26.54 3.56 1.02 0.16 276.84 1.68
OakA11 Oak 1.36 28.64 7.12 1.00 0.12 279.12 2.11
OakB21 Oak 1.45 27.38 6.74 1.00 0.12 270.88 2.13
ZP1050 Oak 1.93 27.34 5.54 0.92 0.16 297.84 1.71
ZP611 Oak 1.85 26.96 5.03 0.97 0.26 291.79 2.08
245 Rum 1.59 24.68 4.08 0.63 0.17 257.83 1.97
309 Rum 2.16 26.71 4.36 0.80 0.30 278.00 1.87
460 Rum 2.08 23.94 3.93 0.97 0.27 277.96 1.97
390_D2 Rum 2.05 24.37 3.95 0.94 0.21 276.10 1.38
CBS7957 Rum 1.79 22.50 3.70 0.91 0.15 271.30 1.70
CBS7959 Rum 1.68 22.63 4.75 0.98 0.19 282.28 1.35
EDV493 Rum 2.11 21.82 3.17 0.76 0.15 277.20 1.66
1014_F5 Wine 2.15 25.21 3.24 1.33 0.49 285.37 1.22
20B2 Wine 1.76 21.68 2.47 0.91 0.40 272.31 1.71
22A4 Wine 1.89 21.66 2.57 0.82 0.46 253.04 1.73
6320_A7 Wine 1.94 23.27 3.68 1.06 0.44 273.04 2.21
D47_6 Wine 2.03 23.18 1.88 0.76 0.20 324.46 1.87
EC1118 Wine 1.83 22.90 3.95 0.81 0.15 295.43 2.20
F12_3B Wine 2.23 24.77 2.96 0.86 0.23 287.49 1.95
GE7_4A Wine 1.97 22.07 2.31 0.84 0.22 309.87 1.44
K1_28_1A Wine 2.37 21.58 2.05 0.83 0.39 282.86 1.34
L1414 Wine 1.66 22.15 3.39 0.86 0.36 292.66 1.94
Lava32_15 Wine 1.88 26.35 4.02 0.87 0.23 301.04 2.00
Lava32_6 Wine 1.77 22.99 3.23 0.86 0.30 284.45 1.61
M15-3B Wine 1.89 21.88 3.61 0.79 0.20 295.00 1.46
MC10 Wine 1.85 22.22 3.49 0.96 0.31 289.20 1.62
MC3C Wine 2.06 22.84 3.11 1.08 0.39 298.98 2.00
N15_4 Wine 1.91 21.43 1.20 0.76 0.35 280.96 1.72

Table 4.2: External metabolite and biomass fluxes measured for 43 yeast strains from different origins
(Nidelet et al., 2016).
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Figure 4.6: Barplot of between-strain coefficients of variation. The coefficient of variation (ratio of
the standard deviation to the mean) of each flux is represented as a vertical bar. The vertical bars are
ordered by metabolic pathways: glycolysis and ethanol synthesis (blue), PPP (green), glycerol synthesis
(orange), acetaldehyde node (blue marine), reductive branch of the TCA (brown), oxidative branch of
the TCA (yellow) and output fluxes (violet).
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Figure 4.7: Correlation Matrix between internal metabolic fluxes. Pearson correlation values between
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to the same pathway generally group together.

What if we constrain the flux solution space with the exchange fluxes only?
Question
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4.3.3 FBA solution versus the EP distribution

Figure 4.8: Probability distributions of the feasible solution space. In red (resp. orange) is indicated the
null posterior distribution of fluxes through the EP algorithm (resp. HR sampling) when no experimental
data is introduced; in light green (resp. dark green) the posterior distribution of fluxes through the
EP algorithm (resp. HR sampling) when exchange fluxes are constrained by experimental observations.
Dashed black line indicates the FBA solution obtained through minimization of glucose uptake, given
the experimental observations.

HR and EP algorithms can be used to explore the probability distribution of the feasible solution
space, with or without experimental observations, instead of minimizing an objective function. We
used the DynamoYeast model to compute four probability distributions of fluxes (figure 4.8):

1. The feasible solution space computed with the HR algorithm, hereafter called "null distribu-
tion" (in orange in the figure).

2. Null posterior distribution obtained with the EP algorithm (red).

3. Posterior distribution obtained with the HR algorithm after constraining the range of varia-
tion of observed exchange fluxes (dark green).

4. Posterior distribution obtained with the EP algorithm after constraining the range of varia-
tion of observed exchange fluxes (light green).

All four distributions were compared to the FBA solution found in Nidelet et al. (2016) by
minimizing glucose uptake and constraining the range of variation of exchange fluxes by the obser-
vations (black dotted line).

Figure 4.8 shows typical results obtained after a simulation run for one of the 43 yeast strains.
Again, we show that the null distributions found by the EP algorithm are consistent with the
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ones proposed by the HR algorithm. When constraining with the observed exchange fluxes, a
much smaller range of the null feasible space is explored (compare the green distributions to the
red ones). This tells us that the observation of exchange fluxes fully constrain the functioning of
central carbon metabolism. Unsurprisingly, the CO2 flux, which is directly observed, is correctly
predicted.

The distributions of the HR solutions constrained by the observations appear as rectangles
in figure 4.8. In order to better discriminate between the probabilities within the constrained
range of variation, we would need to increase the total number of iterations. On the contrary, the
EP algorithm provides a full probabilistic distribution of the constrained feasible space at a low
computational cost.

Amazingly, the observed CO2 flux is close to the a posteriori mode of the null EP distribution
of the feasible space. In more than 50% of cases, the CO2 flux can be higher than the observed
fluxes. This shows that there could be other modes of cell functioning that would lead to higher
rates of transformation of glucose into CO2 and energy.

In all constrained cases, one can compare the mode of the a posteriori distribution (in green)
to the FBA solution (dark dashed lines) (Figure 4.8). For most fluxes, the FBA solution does
not correspond to the a posteriori mode of the constrained EP distribution. Remember that the
constrained a posteriori distribution reflects all possible fluxes leading to exchange fluxes compa-
rable to the observations. Among them, the FBA solution is the one corresponding to the lower
consumption rate. Hence, all other solutions correspond to higher glucose consumption rate. The
position of the FBA solutions within the posterior distribution is interesting. For the Ru5p_R5p
reaction (pentose-phosphate), the FBA solution is at the right of the constrained distribution.
Hence, lower fluxes in the pentose-phosphate pathways could lead to the same observations at the
price of a higher glucose consumption rate. This suggests that pentose-phosphate pathway helps
producing energy while saving resources. On the contrary, mitochondrial transport of succinate
(Succ_tm) and acetate (Ac_tm) shows a FBA solution at leftmost of the constrained solution
space. Further comparisons, with alternative objective functions would be interesting in the future
to better understand metabolic choices of living species.

Altogether, this study confirmed that it is possible to use the EP algorithm to find feasible
ranges of non observed fluxes, once constraining the CBM with observations.

4.4 Conclusion
The EP algorithm is likely to give a good approximation for the posterior joint distribution of
fluxes of the DynamosYeast model. In the following, we used this algorithm to predict unob-
served metabolic fluxes for each strain per temperature combination from the HeterosYeast dataset
through integration of proteomic data. In the HeterosYeast data set, we could not propose an ob-
jective function to minimize. Furthermore, the only observed exchange flux was the CO2 flux. In
Chapter 5, we propose a new method based on profile comparison (Lee et al., 2012) to integrate
proteomic data information into the CBM.
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Data integration uncovers the metabolic bases of
phenotypic variation in yeast
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ABSTRACT The relationships between levels of integration, from gene expression to complex phenotypic traits, are a key
feature for understanding the genotype-phenotype map. We proposed a novel method that incorporates protein abundance
data into constraint-based modelling to elucidate the biological mechanisms underlying phenotypic variation. In particular,
we studied yeast genetic diversity at three levels of phenotypic complexity: protein abundances, metabolic fluxes and life-
history/fermentation traits. Protein abundances and life-history/fermentation traits were measured in a population obtained
by pairwise crossing of strains representative of two yeast species, Saccharomyces cerevisiae and S. uvarum. Metabolic
fluxes were estimated using Bayesian models by constraining a metabolic model of central carbon metabolism with measured
abundances of involved enzymatic proteins. At the trait level, there were weak differences between species along with high
diversity within species, and a strong negative correlation was observed between production traits like population carrying
capacity (K) and traits associated to growth and fermentation rates (Jmax). The metabolic fluxes predicted from protein
abundance variations revealed that this negative correlation is sustained by a differential usage of energy production pathways:
TCA cycle and glycolysis. In addition, we identified protein sets that confirmed that high K was associated with high TCA fluxes,
respiration and energy conversion levels, while high Jmax was associated with high glycolytic fluxes, fermentation and protein
recycling. By coupling phenomic data with mathematical modeling of metabolism, we explained the trade-off between two yeast
life-history traits, K and Jmax, by a differential pathway usage for the production of energy reserves and cellular compounds.

KEYWORDS Data integration; Genotype-Phenotype map; Metabolism modelling; life-history trade-offs

Introduction

Phenotypic diversity within the living world results from mil-
lions of years of evolution. Most evolutionary pressures like
mutation, random genetic drift, migration or recombination
shape phenotypic diversity by directly changing the genetic
composition of populations. The effects of selection are more
difficult to predict because the fittest individuals are picked out
from their phenotype, which results from a complex interaction
between genotype and environment (Fisher 1930). An additional
layer of complexity results from the fact that life-history traits
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(Stearns 1992) are the observable results of unobservable pro-
cesses that occur at the cellular scale. During the last decades,
there has been a growing interest for a better understanding of
the so-called genotype-phenotype map in evolutionary biology
(see e.g. Wagner and Zhang (2011)). In parallel, novel profiling
technologies and accurate high throughput phenotyping strate-
gies have led to the genome-scale characterization of genomic
sequences as well as to the quantification of transcriptomic, pro-
teomic and metabolomic data at the individual level. Linking
cellular processes to observable phenotypic traits is becoming a
new discipline in Biology, known as integrative biology.

Unicellular organisms are choice model species for integra-
tive biology because most observable traits are direct products
from cell metabolism, without the complications of the tissue
and organ levels that need to be taken into account in multicellu-
lar species. Schematically, cells sense the environment and trans-
fer the information via signal transduction chains that interact
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with the gene regulation network. The gene regulatory network
modulates transcription, translation and post-translational mod-
ifications according to environmental signals, which results in
variations of protein abundances. Differential abundances of
enzymatic proteins affect the fluxes of matter and energy that
are related to phenotypic traits, including life-history traits and
fitness. Thus, in unicellulars, five integration levels are usu-
ally considered: genomic, transcriptomic, proteomic (including
post-translational modifications), metabolic and cellular or ob-
servable trait level. The last level is the most integrated, and it
encompasses a variety of traits more or less related to fitness.

While genomic, transcriptomic, proteomic and trait levels are
now readily measurable on numbers of individuals thanks to
technical progresses, metabolic fluxes are still difficult to mea-
sure. Metabolic Flux Analysis is powerful (Antoniewicz 2015).
However, it is based on RMN and differential usage of radioac-
tive isotopes. It remains low-throughput and cannot be ap-
plied on numerous individuals. Technical developments in mass
spectrometry popularized metabolomics (Nicholson and Lindon
2008), which allowed to characterize the metabolome, that rep-
resents the complete set of metabolites in a cell, tissue, organ
or organism. However, the technique still suffers from stan-
dardization procedures and does not allow for high-throughput
quantitative comparisons (Riekeberg and Powers 2017).

Taking advantage from the recent progresses in genome-scale
functional annotation, constraint-based metabolic models pro-
vide a mathematical framework that allows predicting internal
cellular fluxes from a priori knowledge on thermodynamic con-
straints on individual enzymatic reactions, steady state hypothe-
ses and the genome-scale stoichiometry matrix of all metabolic
reactions. The idea is that a given set of environmental condi-
tions will drive a cell to a steady state during which internal
metabolites stay at a constant concentration while exchange
fluxes are constant and correspond to a constant import/export
rate. However, because the number of metabolites is much
higher than the number of reactions, the system has an infinite
number of solutions. Flux Balance Analysis (Fell and Small 1986;
Watson 1984) consists in choosing, among all possible solutions,
the one that maximizes the biomass pseudo-flux. From a pop-
ulation geneticist point of view, this method is questionable
because evolution is not always based on optimization princi-
ples (Gould and Lewontin 1979). However, it was shown to
be relevant in some cases, like chemostat culture of Escherichia
coli (Edwards et al. 2001). Data-driven methods have also been
proposed, that consist in choosing the most likely solution given
observed transcriptomic, proteomic or metabolomic data (see
the review by Töpfer et al. (2015)). Among all these methods, the
one from Lee et al. (2012) sounds promising for studies at the
population/species level. It is based on the realistic assumption
that, at the genome scale, fluxes should covary with enzymatic
protein abundances. Whatever the method, comparisons rely
on the probability distribution of the solution space, which is
analytically untractable because of the soichiometry constraints.
Recently, Braunstein et al. (2017) proposed a bayesian probabilis-
tic method to characterize the solution space, that proved to be
much faster than the classical hit-and-run algorithm (Bélisle et al.
1993) and allow for analyses at both genome- and population-
scales.

The so-called HeterosYeast project consisted in studying the
molecular bases of heterosis in yeast species at two different
levels of integration, the proteomic level and the observable
trait level (Blein-Nicolas et al. 2013, 2015; da Silva et al. 2015).

A diallel design including two yeast species involved in wine
fermentation was realized and the hybrid and parental strains
were monitored during fermentation on grape juice at two tem-
peratures. Observable and proteomic traits were analyzed sep-
arately. Briefly, the most important findings were homeostasis
of the interspecific hybrids observed at the trait level da Silva
et al. (2015) and the predominance of inter-specific heterosis at
the proteomic level Blein-Nicolas et al. (2015). A more careful
analysis of genetic variance components confirmed that observ-
able phenotypic traits tend to exhibit higher additive genetic
variances and lower interaction variances than proteomic traits
(Petrizzelli et al. 2019). Yet, the link between variation at the trait
level and variation at the proteomic level is still missing.

Given the important yeast genomic ressources (Cherry et al.
2012a), a number of curated genome-scale metabolic models
are now available (Caspi et al. 2014). Among those, the Dy-
namoYeast model (Celton et al. 2012) describes yeast central
carbon metabolism. It is small enough (70 reactions) to remain
tractable, and has been tested against experimental data (Nidelet
et al. 2016).

The availability of the HeterosYeast dataset, of a curated
metabolic model of yeast central carbon metabolism and of a
probabilistic approach to explore the solution space, encouraged
us to integrate the experimental proteomic data in the metabolic
model in order to predict unobserved metabolic fluxes. We used
predicted fluxes to bridge the gap between proteomic data and
observable traits, and better understand the metabolic bases of
life-history traits variation.

Material and Methods

Materials
The HeterosYeast dataset. The genetic material of the experi-
mental design consisted in 7 strains of S. cerevisiae and 4 strains
of S. uvarum associated to various food-processes (enology, brew-
ery, cider fermentation and distillery) or isolated from natural
environment (oak exudates). The 11 parental lines were selfed
and pairwise crossed, which resulted in a half-diallel design
with a total of 66 strains: 11 inbred lines, 27 intra-specific hy-
brids (21 for S. cerevisiae, noted S. c., and 6 for S. uvarum, noted
S. u.) and 28 inter-specific (noted S. u. × S. c). The 66 strains
were grown in triplicate in fermentors at two temperatures, 26°C
and 18°, in a medium close to enological conditions (Sauvignon
blanc grape juice, da Silva et al. (2015)). From a total of 396
alcoholic fermentations (66 strains × 2 temperatures × 3 repli-
cas), 31 failed due to poor fermenting abilities of some strains.
The design was implemented considering a block as two sets of
27 fermentations (26 plus a control without yeast to check for
contamination), one carried out at 26°C and the other at 18°. The
distribution of the strains in the block design was randomized
to minimize the residual variance of the estimators of the strain
and temperature effects, as described in Albertin et al. (2013b).

For each alcoholic fermentation, two types of phenotypic
traits were measured or estimated from sophisticated data ad-
justment models: 35 fermentation traits and 615 protein abun-
dances.

The fermentation traits were classified into four categories
(da Silva et al. 2015):

• Kinetics parameters, computed from the CO2 release curve
modeled as a Weibull function fitted on CO2 release quan-
tification monitored by weight loss of bioreactors: the fer-
mentation lag-phase, t-lag (h); the time to reach the inflec-
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tion point out of the fermentation lag-phase, t-Vmax (h); the
fermentation time at which 45 gL−1 and 75 gL−1 of CO2
was released, out of the fermentation lag-phase, t-45 (h) and
t-75 (h) respectively; the time between t-lag and the time at
which the CO2 emission rate became less than, or equal to,
0.05gL−1h−1, AFtime (h); the maximum CO2 release rate,
Vmax (gL−1h−1); and the total amount of CO2 released at
the end of the fermentation, CO2max (gL−1).

• Life history traits, estimated and computed from the cell
concentration curves over time, modeled from population
growth, cell size and viability quantified by flow cytome-
try analysis: the growth lag-phase, t-N0(h); the carrying
capacity, K (log[cells/mL]); the time at which the carrying
capacity was reached, t-Nmax (h); the intrinsic growth rate,
r (log[cell division/mL/h]); the maximum value of the esti-
mated CO2 production rate divided by the estimated cell
concentration, Jmax (gh−110−8cell−1); the average cell size
at t-Nmax, Size-t-Nmax(µm); the percentage of living cells at
t-Nmax, Viability-t-Nmax (%); and the percentage of living
cells at t-75, Viability-t-75 (%).

• Basic enological parameters, quantified at the end of fermen-
tation: Residual Sugar (gL−1); Ethanol (%vol); the ratio be-
tween the amount of metabolized sugar and the amount of
released ethanol, Sugar.Ethanol.Yield (gL−1%vol−1); Acetic
acid (gL−1 of H2SO4); Total SO2 (mgL−1) and Free SO2
(mgL−1).

• Aromatic traits, mainly volatile compounds measured at
the end of alcoholic fermentation by GC-MS: two higher
alcohols (Phenyl-2-ethanol and Hexanol, mgL−1); seven es-
ters (Phenyl-2-ethanol acetate, Isoamyl acetate, Ethyl-propanoate,
Ethyl-butanoate, Ethyl-hexanoate, Ethyl-octanoate and Ethyl-
decanoate, mgL−1); three medium chain fatty acids (Hex-
anoic acid, Octanoic acid and Decanoic acid, mgL−1); one thiol
4-methyl-4-mercaptopentan-2-one, X4MMP(mgL−1) and the
acetylation rate of higher alcohols, Acetate ratio.

For proteomic analyses the samples were harvested at 40 % of
CO2 release, corresponding to the maximum rate of CO2 release.
Protein abundances were measured by LC-MS/MS techniques
from both shared and proteotypic peptides relying on original
Bayesian developments (Blein-Nicolas et al. 2012). A total of 615
proteins were quantified in more than 122 strains × temperature
combinations as explained in details in Blein-Nicolas et al. (2015).

Genetic value of protein abundances and fermenta-
tion/life-history traits. In this analysis we considered the
genetic values of protein abundances and fermentation/life-
history traits, rather than their measured/computed value. In
a previous study, Petrizzelli et al. (2019) have decomposed the
phenotypic values of a trait at a given temperature, PT , into its
genetic, GT , and residual, ε, contributions:

PT = GT + ε (1)

The genetic value, GT , has been decomposed in terms of additive
and interaction effects, taking into account the structure of the
half-diallel design. The presence of two different species and
of the parental inbreds in the experimental design let them to
further distinguish between intra- and inter-specific additive
genetic effects (Aw and Ab, respectively) and to decompose
the interaction effects into inbreeding (B) and intra- and inter-
specific heterosis effects (Hw, Hb). Therefore, the genetic value
of a trait at a given temperature T has been modeled by:

Gpi
T = µT + 2Awi , T + βs(i), T + Bi, T (2)

G
Hw

ij
T = µT + Awi , T + Awj , T + Hwij , T , (3)

GHb
ik

T = µT + Abi , T + Abk , T + Hbik , T . (4)

for a parental strain pi (eq. 2), for a intra-specific hybrid Hw
ij be-

tween parents pi and pj (eq. 3), and for the inter-specific hybrid
Hb

ik between parents pi and pk (eq. 4). µ is the overall mean and
βs(i) is the deviation from the fixed overall effect for the species:

s(i) ∈ {S. cerevisiae, S. uvarum}

We retrieved the genetic values for all proteomic data. For
the fermentation traits, the model did not converge for most of
the ethyl esters (Ethyl-propanoate, Ethylbutanoate, Ethyl-hexanoate,
Ethyl-octanoate and Ethyl-decanoate), as well as for Acetate Ratio
and for Acetic acid. These traits were removed from the analysis.

Protein functional annotation
Cross-referencing MIPS micro-organism protein classification
(Ruepp et al. 2004), KEGG pathway classification (Kanehisa
and Goto 2000; Kanehisa et al. 2016, 2017) and Saccharomyces
Genome database (Cherry et al. 2012b), we attributed each pro-
tein to a single functional category based on our expert knowl-
edge.

The first two hierarchical levels of MIPS functional annota-
tion have been taken into account to assign proteins into 34
different categories. For 01.metabolism, 02.energy and 10.cell cycle
and DNA processing categories all secondary levels were used,
resulting in 20 different functional categories. The 11.transcrip-
tion category was subdivided in into the transcription sub-group
(11.06 and 11.02) and into the RNA processing sub-group (11.04).
Similarly, 12.protein synthesis category was split into ribosomal
proteins (12.01) and translation (12.04, 12.07, 12.10) sub-groups;
20.transport category into vacuolar transport (20.09) and transport
(20.01, 20.03) sub-groups.

Instead the first hierarchical category was used for 14.pro-
tein fate, 30.signal transduction, 32.detoxification, 34.homeostasis,
40.cell growth and death, 42.cytoskeleton Further, we fused the
16.binding function and 18.02.regulation category into 16.binding,
and 32.transposon movement with 10.01.DNA processing. Finally,
41.mating and 43.budding categories were included in 10.03.cell
cycle category.

DynamosYeast model
We exploited the DynamoYeast model, a previously developed
constraint-based model of central carbon metabolism of S. cere-
visiae (Celton et al. 2012). This model includes upper and lower
glycolysis, the pentose phosphate pathway (PPP), the synthe-
sis of glycerol, the synthesis of ethanol and the reductive and
oxidative branches of the tricarboxylic acid (TCA) cycle as the
main metabolic pathways. It consists of 60 metabolites and 70
reactions, including one input flux, the glucose uptake, and
10 output fluxes (Figure 1), taking place in the cytosol, in the
mitochondria or in the extracellular medium.

The range of variation of the fluxes was fixed to allow
alcoholic fermentation. Therefore, malate dehydrogenase,
Oaa_Mal, fumarase, Mal_Fum, fumarate reductase, Fum_Succ,
and mitochondrial malate dehydrogenase, Oaa_Mal_m, fu-
marase, Mal_Fum_m, fumarate reductase, Fum_Succ_m and cit-
rate synthase, Oaa_Cit_m, reactions were imposed to be irre-
versible with vin f = 0. Furthermore, fructose flux was not
included in the model, and mitochondrial glutamate dehydro-
genase, Glu_Akg_m as well as butanediol formation, Aceto_But

5.2. Material and Methods 89



Figure 1 Representation of the DynamosYeast model of central carbon metabolism of S. cerevisiae. Metabolites are in black. Names
of enzymatic proteins that catalyse the reactions are in red. Constraints on exchange fluxes are in red between square brackets and
correspond to fermentation, with glucose as unique input flux.

reactions were set to zero. Overall, there were 16 reversible and
52 irreversible fluxes.

Following the conventions implemented by many genome-
scale-metabolic models, many reactions of the DynamoYeast
model for central carbon metabolism of S. cerevisiae are associ-
ated with genes and proteins via gene-protein-reaction (GPR)
associations (Thiele and Palsson 2010).

In general, there can be a many-to-many mapping from genes
to reactions, for example one reaction can be linked to pro-
tein (P1 and P2) or P3. The first Boolean AND relationship
means that the reaction is catalyzed by a complex between
two gene products. Since the maximum of the complex is
given by the minimum of its components, the weighting of
the complex is defined as: P1 AND P2 = min(P1, P2). The
OR relationship allows for alternative catalysts to the reactions.
As such total capacity is given by the sum of its components:
(P1 AND P2) OR P3 = min(P1, P2) + P3 (Lee et al. 2012). Fol-

lowing these rules, for each of the 11 yeast strains and the 55
hybrids at both temperatures, we estimated the protein abun-
dances associated to the reactions in the DynamosYeast model,
leading to a total of 33 reactions weightings out of 70.

Methods
Constraint-based modeling of metabolic networks
Metabolic networks can be described in terms of the relations
between M metabolites, m, and N reactions, v, at a given time t:

(v, m)t

Their topology can be expressed through the M× N stoichio-
metric matrix S, in which rows correspond to the stoichiometric
coefficients of the corresponding metabolites in all reactions.

Under mass-balance assumption and thermodynamic bounds
of reaction rates, the dynamics of the network is governed by
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the linear system of constraints and inequalities:

Sv = ṁ (5)

vin f ≤ v ≤ vsup (6)

where ṁ ∈ RM is the vector of the M input/output rates of
metabolites, v ∈ RN is the set of N reactions, and vin f , vsup are
the extremes of variation of the set of fluxes.

Under steady state assumption, ṁ = 0 and the feasible space
of solutions is expressed as:

L ≡ {v ∈ RN |Sv = 0, vin f ≤ v ≤ vsup} (7)

In general, N is larger than M and the solution space L has
infinite cardinality.

Prediction of the feasible space of solutions
We propose to characterize the feasible space of solutions L
through the posterior probability of flux values obtained by the
Expectation Propagation (EP) model described in Braunstein
et al. (2017).

Instead of exploring L through sampling, as classical methods
do, Braunstein et al. (2017) have proposed to combine statistical
physics and Bayesian approaches to infer the joint distribution
of metabolic fluxes. To do so, given the set of metabolite in-
put/output rates, ṁ, they encoded the stoichiometric constrains,
within the likelihood posterior probability, defining a Boltzmann-
like distribution with energetic quadratic function

E(v) = 1
2
(Sv− ṁ)>(Sv− ṁ) (8)

while the inequality constrains were encoded in the prior proba-
bility of fluxes. Via the Bayes theorem, this method provided a
model for posterior density of flux distribution.

Therefore, each point v in L follows the truncated multivari-
ate normal distribution

∀v ∈ L; v ∼ NT(µ, Σ|vin f , vsup, ṁ) (9)

where µ is the vector of the mean posterior values of fluxes and
Σ the posterior variance-covariance matrix of fluxes estimated
through the EP algorithm.

This formalism allows associating to each set of metabolic
fluxes v its posterior probability of being observed

pv = P(v|µ, Σ, vin f , vsup, ṁ) (10)

Different values for the extremes of variation can be supplied
to model a particular process, for example for modeling reactions
known to be irreversible in a specific context, i. e.

vin f
i = 0 or vsup

i = 0

or for introducing experimental data constrains, i. e.

vi = vobs
i ± ε

for the i-th reaction.
Given that µ and Σ depend on the imposed range of internal

and exchange fluxes, vin f , vsup, metabolic fluxes will take partic-
ular values with probabilities that depend on a priori knowledge
and on the chosen metabolic processes.

The algorithm implemented in Braunstein et al. (2017) was
translated into R code. Extraction of the stoichiometric matrix
from the DynamosYeast model have been performed with the
sybil package in R (Gelius-Dietrich et al. 2013).

Prediction of metabolic fluxes from proteomic data
In living systems, most metabolic reactions are catalyzed by
enzymes, and quantitative proteomic data retain information
about enzyme abundancies. Therefore, the metabolism of a
cell, at a given time, is characterized by the set of fluxes, of
metabolites and of protein abundances

(v, m, E)t

where E = (E1, E2, . . . , EN), and Ei is the abundance of enzyme i
associated with the reaction flux vi. Indeed, even though reac-
tion rates are not directly proportional to enzyme abundancies,
a certain covariation between protein abundances and flux re-
action rates is expected at the metabolic network scale. It can
be used to infer intracellular metabolic fluxes with reasonable
accuracy (Lee et al. 2012).

Among all possible solutions from the feasible space L, we
proposed to choose the one that minimizes the objective func-
tion:

Z =
1
pv

N

∑
i=1

(Ei − |vi|)2 (11)

i.e. the Euclidean distance between the quantified abundance
of proteins Eobs and the associated fluxes, weighted by pv, the
posterior probability of observing the set of metabolic fluxes v.

The properties of the truncated multivariate normal dis-
tribution ensure that the solution of the objective function is
unique and no sophisticated algorithm is needed to find this
solution. For each set of observation Eobs, we proposed to
sample Ns points of the feasible space of solutions. Therefore,
∀k ∈ {1, 2, 3 . . . Ns}, we got vk ∈ L and pvk . We calculated Z(k)

and selected the set of flux values, vpredicted, for which Z(k) was
the minimum.

In practice, it is never possible to associate each reaction of the
metabolic network with a protein abundance. First, quantitative
proteomics is not exhaustive. Second, reactions of a metabolic
model are not always associated with an enzyme. Assuming
steady state condition and introducing information about pro-
tein abundances and measured external metabolic fluxes allows
to describe the system as:

(1obsv + 1obs v, mconst, 1obsE + 1obs E)t

where 1obs (1obs) is an indicator vector: its component-wise value
would be equal to 1 if the associated flux/protein component
have been observed (unobserved), 0 otherwise. Taking this into
account, we reformulated the problem as following:

• Observed fluxes were introduced as additional constraints
with

vi ∼ N (vobs
i , σ2

vi
)

where σvi was set to a small value.
• The objective function was calculated only on the subset of

observed enzyme abundances:

Z =
1
pv

Nobs

∑
i=1

(Ei − |vi|)2

Prediction of metabolic fluxes have been performed by cou-
pling the DynamosYeast model to our experimental data (protein
abundances and the CO2 reaction rate, the only measured flux in
our study). We constrained the solution space L through the use
of the maximum CO2 release rate, measured at the same time
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point as the one used for proteomics analyses (Blein-Nicolas et al.
2015). For each strain observed at each temperature, selection of
a particular solution have been made through minimization of
the objective function defined in eq. 11, given the observations.

Testing the prediction algorithm
The prediction algorithm is based on the assumption that fluxes
and enzyme abundances covary. Indeed, any reaction rate can
be expressed as a more or less complex function of enzyme
abundances, kinetic constants and metabolite concentrations
(Fell and Cornish-Bowden 1997):

vi = kcati Ei f (κ, m, E)

where kcat is the catalytic constant, κ is a set of other kinetic
constants, E is the set of abundances of enzymes other than
enzyme i. The f function can be more or less complex depending
on the mode of regulation.

To test the accuracy of the prediction of metabolic fluxes from
protein abundance data, we used the feasible solution space of
the Dynamoyeast model and different kinds of functions that
relate reaction rates to enzyme abundances. Specifically, we
inverted the relationship, expressing protein abundance as a
function of the reaction rate from a simplified formalism derived
from the Metabolic Control Theory (Kacser and Burns 1981):

vinitial =
1

1
Ai Ei

+ ∑
j 6=i

1
AJ Ej

where the A′js are positive or negative constant terms. Given
that enzyme concentrations cannot be negative, and taking
∀j, Aj = ±1, we get the hyperbolic relation:

Ei =

∣∣∣∣
vinitial

1− vinitial

∣∣∣∣ (12)

We also tested the case where protein abundances and flux reac-
tion rates were linearly related:

Ei = k |vinitial | (13)

k being an uniform random number k ∼ U (0.1, 3)
Finally, we considered the case where protein abundances

and flux reaction rates are linked by a sigmoidal function (Ni-
jhout et al. 2003), which we approximated with a Hill function:

Ei =

∣∣∣∣
vn

initial
1− vn

initial

∣∣∣∣ (14)

where n is the Hill coefficient, sampled in the set
Ω = {2, 3, 4, 5}.

Formally, for each simulation, we sampled an initial set of
fluxes vinitial ∈ L. We estimated the complete set of enzy-
matic protein abundances, Einitial using (12, 13 or 14). Then, we
minimized the Z objective function to predict the set of fluxes
vpredicted that best fit enzyme abundances. Accuracy of the pre-
dictions was measured by the correlation coefficient between
vpredicted and vinitial . Computer simulations were performed to
test the influence of two main parameters: (i) the number of
sampled points Ns; (ii) the number of quantified proteins, Nobs,
included in the minimization process.

Practically, we assumed to be under steady state condition
(ṁ = 0) and we sampled Ns points of the solution space from
the multivariate posterior joint distribution of fluxes through

the EP algorithm Braunstein et al. (2017). We drew an additional
point in the solution space of L, vinitial , and we calculated protein
concentrations from the inverse problem. We retained the set
of fluxes, vpredicted for which Z was minimum. The numbers
Nobs and Ns were let to vary (Ns ∈ {102, 103, 104, 105, 106} and
Nobs ∈ {1, 2, 3 . . . }).

In terms of computational time, it would be expensive to
consider all different combinations of observed enzymatic pro-
teins associated to the metabolic model that can be included in
eq. 11 (there are Nobs(1 + (Nobs − 1) + (Nobs − 1)(Nobs − 2) +
· · ·+ (Nobs − 1)!) combinations). Therefore, for a given Ns, our
strategy was to randomly choose one-by-one a protein to in-
clude in the computation of the Z function and therefore for the
prediction of metabolic fluxes, vpredicted.

We randomly choose one reaction, v1, over the complete set
of reactions in the model, and we minimized

Z1 =
1
pv

(E1 − |v1|)2 (15)

to select one over the Ns possible solutions of L, vpredicted
1 . At the

next iteration, we randomly chose an additional flux v2 and its
associated protein abundance E2, and we minimized

Z2 =
1
pv

2

∑
i=1

(Ei − |vi|)2 (16)

to predict vpredicted
2 . This procedure is performed until the com-

plete set of reactions is selected. Overall, simulations have been
run a thousand of times for different values of Ns and Nobs.

Statistical Analysis
In order to study the main features characterizing fermentation
and life-history traits in the HeterosYeast dataset, we analyzed
the components of variation of a dataset consisting of three
different levels of cellular organization: protein abundances E,
metabolic fluxes V and fermentation/life-history traits T:

D = (E, V, T)

The total number of observations was 127 strain × temperature
combinations (66 strains × 2 temperatures − 5 missing data
due to the poor fermenting abilities of some strains). The whole
dataset consisted of 615 protein abundances, 70 metabolic fluxes
and 28 fermentation and life-history traits.

Two types of analysis using several multivariate approaches
were performed: an analysis at a single phenotypic level and an
analysis integrating the different levels.

We run Principal Component Analyses (PCA) to identify
the largest sources of variation in the datasets and the simi-
larities/differences observed between the different phenotypic
levels. We included prior knowledge regarding the yeast species
in the analysis to perform a supervised analysis with sparse
Partial Least Squares Discriminant Analysis (sPLS-DA) in order
to extract and combine discriminating features that best separate
the different groups. The number of selected features have been
tuned using 3-fold cross-validation repeated 1000 times.

Furthermore, integration of the different levels of cellular or-
ganization have been performed in a unsupervised framework
through a regularized Canonical Correlation Analysis (rCCA),
using the mixomics package in R (Lê Cao et al. 2009; Rohart et al.
2017). We first searched for the key features that maximize the
correlation between metabolic fluxes and fermentation traits.
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Figure 2 Correlations between initial and predicted fluxes in simulated datasets using the DynamoYeast model. Enzymatic protein
abundances were expressed in terms of a hyperbolic function of the initial fluxes using eq. 12. Colors indicate the number of points Ns
that were sampled in the solution space L. A. Boxplot representation as a function of the number Nobs of observed proteins. Each box
represents thousand simulations. B. Changes observed for the correlation during a single simulation run when increasing one by
one the number of observed proteins from 1 to 70. C. Relation between the initial and the predicted fluxes shown for one simulation
with Nobs = 33 and Ns = 104. D. Relation between the initial and the predicted fluxes shown for one simulation with Nobs = 33 and
Ns = 106.

Second, we looked for groups of proteins that maximized the
correlation with the most integrated traits (tuning of the regular-
ization parameters have been performed through leave-one-out
cross-validation procedure on a 1000× 1000 grid between 0.0001
to 1). Finally, Pearson’s chi-square of enrichment was computed
on protein functional category frequencies taking as prior prob-
ability the expected categorical frequency found in the MIPS
database.

Since the correlation matrix between traits and fluxes was
clearly structured, we computed the matrix of Euclidean dis-
tance between traits, based on the correlations with metabolic
fluxes, and clustered traits using the hclust package in R. This
procedure allowed us to define five trait groups that showed
similar correlation patterns with fluxes of the central carbon
metabolism. Finally, we stored the linear correlation coefficients
between proteins (P = 615 proteins) and traits (T = 28) in a
(T × P) matrix and ran a Linear Discriminant Analysis to seek
for proteins that best discriminate between trait groups, con-
sidering traits as individuals. Functional analysis of proteins
that best correlate with LDA axes was performed using the 34
protein functional categories defined above.

Results

The HeterosYeast dataset provided priceless observations on the
genetic diversity of yeast strains involved in the winemaking
process at different levels of cellular organization: phenotypic
traits either related to life-history or fermentation (da Silva et al.
2015), and quantitative proteomic data (Blein-Nicolas et al. 2015).
All traits were estimated or measured at 18°C and 26°C on a half-
diallel design between 7 strains of S. cerevisiae and 4 strains of
S. uvarum, with a total of 127 strain× temperature combinations.
In order to access an intermediate level of integration between
protein abundances and traits, we used a curated Constraint-
Based Model (CBM) of yeast central carbon metabolism (Celton
et al. (2012); Figure 1) to predict unobserved fluxes at the CBM
scale that best match the observed patterns of variations of pro-
tein abundances.

To this end, the strategy we proposed was to: (i) characterize
the feasible space of solution L through the posterior density
distribution of fluxes, given by the EP algorithm (Braunstein
et al. (2017)); (ii) select a unique solution through minimization
of the objective function Z (eq. 11) that measures the Euclidean
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distance between observed enzyme abundances and reaction
rates.

Below, we first describe the method and its validation using
simulated datasets. Then, we analyze the relationships between
the different integration levels, using predicted fluxes from cen-
tral carbon metabolism and the HeterosYeast dataset.

Sampling the feasible solution space with the Expectation
Propagation algorithm

Sampling points of the feasible space of solution L can be per-
formed directly from the posterior truncated multivariate nor-
mal distribution of fluxes defined in eq. 9. We compared the Hit
and Run (HR) algorithm (Meersche et al. 2009) to the EP poste-
rior distribution of fluxes to test the goodness in prediction of the
EP on the DynamosYeast posterior. The EP methodology gave a
good approximation for the mean and variances of the posterior
marginal distribution of fluxes (Supplementary method Sam-

pling the solution space and Figure SF1-SF2), as well as for the
variance-covariance matrix between fluxes (Figure SF3). These
results are similar to the ones obtained in Braunstein et al. (2017).
Therefore, we decided to rely on the EP algorithm to sample the
feasible solution space of the CBM.

Protein abundances are good predictors of the initial set of
metabolic fluxes

Computer simulations have been performed to access the good-
ness in prediction of the proposed method, as detailed in sec-
tion Testing the prediction algorithm. The two main parameters
to test were: (i) the number of sampled points Ns of L; (ii) the
number Nobs of observed proteins to be included in Z (eq. 11).
Simulations showed that minimization of eq. 11 leads to a high
correlation between vinitial and vpredicted (Figure 2-A). Correla-
tions ranged from 0.65 to 0.99 (p-value < 0.05). By increasing the
number of sampled points in L, Ns, the mean correlation slightly
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increased and its variance decreased. The number of observed
protein abundances, Nobs had a more complex influence on the
prediction accuracy. When increasing Nobs, the correlation be-
tween vinitial and vpredicted either increases, decreases or stays
constant, as illustrated in Figure 2-B. However, the order of mag-
nitude of the variations were small, and the correlation tends
to be more stable for a high Ns value (Figure 2-B). When con-
sidering the actual number of enzyme abundances (Nobs = 33)
that matched between the HeterosYeast proteomic data and the
DynamoYeast CBM, we observed a high correlation between
vinitial and vpredicted after setting Ns = 106 (Figure 2-C). Alto-
gether, we considered that our algorithm was efficient to predict
unobserved fluxes from enzyme abundances, given the structure
of the metabolic network.

Predicting unobserved fluxes from the observed variation of
protein abundances
The HeterosYeast proteomic data were used in the context of the
DynamoYeast model of yeast central carbon metabolism. From
the 615 protein abundances, we were able to quantify the pro-
teins (or protein complexes) associated to 33 of the 70 reactions
in the metabolic model. For each strain × temperature com-
bination, observed CO2 release rates were used as additional
constraints in the form of a priori knowledge to get the feasible
solution space L. We sampled Ns = 106 points in the space of
solutions to select a unique solution of L that minimizes the
Euclidean distance between fluxes and enzymes abundances.
We therefore predicted the 69 unobserved fluxes in the CBM
for each of the 127 strain × temperature combinations. Then
statistical approaches have been used to investigate the compo-
nents of variation and the structure of the new dataset consisting
of 615 protein abundances (E), 70 metabolic fluxes (V) and 28
fermentation and life-history traits (T):

D = (E, V, T)

Patterns of variation depend on the integration levels
The 127 observations of the new dataset D had a specific struc-
ture. There was 7 parental strains (S.c.) and 21 intraspecific
hybrids (S.c.×S.c.) from S. cerevisiae, 4 parental strains (S.u.) and
6 intraspecific hybrids (S.u.×S.u.) from S. uvarum, and 28 inter-
specific hybrids (S.c.×S.u.). All strains were observed during
alcoholic fermentation on wine grape juice at two temperatures,
18°C and 26°C (da Silva et al. 2015).

To better understand the patterns of variation at each inte-
gration level, Principal Component Analysis (PCA) have been
computed on each type of trait separately. Results are pre-
sented in Figure 3, where strains are identified by species, type
of cross (intra-specific hybrid, inter-specific hybrid or parental
strain) and temperature. The first PCA component accounted
for 20%, 23% and 27% of the total variation, the second for
14%, 18% and 19% for protein abundances, metabolic fluxes and
fermentation/life-history traits, respectively. Depending on the
integration level, we observed different patterns of phenotypic
diversity.

At the proteomic level (E), the first two PCA axes contributed
to both differences between temperatures and between species
and type of cross. Heterosis is observed for all types of hybrids
at both temperatures. First, S.u.×S.u. hybrids are clearly differ-
entiated from their S.u. parents. Second, S.c.×S.u. interspecific
hybrids are closer to their S.c. parents than to their S.u. par-
ents. Finally, S.c.×S.c. hybrids are close to their S.c. parents,
but the range of variation between S.c.×S.c. hybrids is larger

than the one between parental strains. Altogether, the protein
abundance of an hybrid strain cannot be predicted by the mean
of its parental values.

At the trait level (T), we observed a high temperature effect,
with axis 1 (27% of the variation) separating clearly strains that
grew at 26°C from those that grew at 18°C. At 26°C, strains were
characterized by high growth rate (r), high CO2 fluxes (Jmax and
Vmax), high Hexanol and Decanoic acid and low carrying capacity
(K) and low fermentation times (AFtime, t-lag, t-75, t-45) (Fig-
ure SF4). At 18°C, strains were characterized by low growth
rates and CO2 fluxes and high K and fermentation times (Figure
SF4). Those two groups of traits mostly vary with the temper-
ature, although some differences between strains are observed
within rather than between types of cross, especially at 18°C. At
26°C, S.u. strains perform slightly better than S.c. strains (higher
growth rates, faster fermentation times). The types of cross are
clearly separated along PCA axis 2. Again, heterosis is observed
for intraspecific hybrids. However, interspecific hybrids seem
to be in-between the two parental strains. Traits that explain
the differences between observations along axis 2 were cell-size
(Size-t-Nmax) and Ethanol at the end of fermentation (positively
correlated to axis 2), aroma production at the end of fermenta-
tion, as well as Sugar.Ethanol.Yield (negatively correlated) (Figure
SF4). Note that those traits are not influenced by the temperature.
Hence, at the trait level, we observed differences between yeast
species for traits related to aroma production that were not in-
fluenced by the temperature. Most fermentation and life-history
traits showed a strong temperature effect and high differences
between strains within type of cross, and a weak heterosis.

At the flux level (V ), temperature separated the observations
on axis 1, but both axis 1 and axis 2 differentiated strains indepen-
dently of their origin. Notice however that the range of variation
of the hybrids is larger than the one of the parental strains, that
indicates differences between inbred and hybrid strains. Alto-
gether, central carbon metabolic fluxes were influenced by the
temperature and showed strong differences between strains that
were not related to the type of cross and the parental species.
Sparse Partial Least Squares Discriminant Analysis (sPLS-DA)
have been computed on metabolic fluxes in order to select the
main features characterizing species × temperature combina-
tions (Figure 3). As previously, the first axis differentiated strains
observed at different temperatures. Six fluxes contributed to
the first axis of the sPLS-DA: CO2, ethanol, pyruvate decar-
boxylase, alcohol dehydrogenase, 6-phosphogluconolactonase
and phosphogluconate dehydrogenase fluxes (Figure SF5). All
were negatively correlated with axis 1 and were involved in
fermentation. This shows that fermentation was more efficient
at 26°C. The second axis differentiated inbred strains from intra-
specific hybrids with genotype × temperature interaction: both
S.u.×S.u. and S.c.×S.c. hybrids have higher coordinates than
their parents at 26°C, while S.u.× S.u. have lower coordinates
than their parents at 18°C, and S.c.×S.c. hybrids are confounded
with their parental strains. Inter-specific hybrids are character-
ized by a wide range of variation at both temperatures. Fluxes
that contributed to axis 2 were in majority mitochondrial fluxes.
Mitochondrial acetyl-CoA formation, mitochondrial citrate syn-
thase, mitochondrial aconitate hydratase, mitochondrial isoci-
trate dehydrogenase (NAD+) and mitocondrial transport fluxes
of pyruvate, oxaloacetate and acetaldehyde were negatively
correlated with the second axis, while mitochondrial transport
of 2-oxodicarboylate, ethanol and CO2 fluxes were positively
correlated (Figure SF5).
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In short, we found at each integration level a strong effect of
the temperature, large differences between strains, and evidence
for heterosis, i.e. differences between hybrids and mid-parent
values. However, the patterns differed between the proteomic
and the most integrated level. At the proteomic level, proteins
involved in differences between strains were the same as the
ones involved in differences between species and between tem-
perature. At the flux level, there were few differences between
species. Differences between temperatures were associated to
enzymatic reactions related to fermentation, while differences
between strains were associated to enzymatic reactions either
involved in fermentation, or in the part of the TCA that occurs in
the mitochondria. At the trait level, differences between temper-
atures were associated to differences in growth and fermentation
traits, that were relatively conserved within species but showed
between-strain variations. Differences between species mostly
concerned volatile compounds at the end of fermentation, that
are produced by the secondary metabolism.

Fermentation and life-history traits are associated with differ-
ent metabolic pathways of the yeast carbon metabolism

Regularized Canonical Correlation Analysis (rCCA) have been
performed to investigate correlations between metabolic fluxes
and fermentation/life-history traits (Figure 4). Fermentation
and life-history traits were divided mainly in two groups show-
ing contrasting profiles. The first group consisted of traits that
clustered with the carrying capacity, K. They were characterized
by a negative correlation with fluxes involved in the glycolysis,
ethanol synthesis and pentose phosphate pathway, and by a
positive correlation with fluxes in the TCA reductive branch. In
contrast, the second group consisted of traits that clustered with
the intrinsic growth rate, r, and were characterized by a posi-
tive correlation with fluxes involved in the glycolysis, ethanol
synthesis and pentose phosphate pathway and by a negative
correlation with fluxes in the TCA reductive branch. Consis-
tently, the biomass pseudo-flux was positively correlated with r
and negatively with K.

When looking at the flux correlation structure revealed by
Figure 4, we can see the opposition between the two well-known
ways of producing energy in yeast. Fermentation is associ-
ated to an extensive usage of glycolysis and pentose-phosphate
metabolic pathways, while respiration is associated to high TCA
fluxes. Hence, high growth rate and CO2 fluxes (Jmax, Vmax)
and correspondingly fast fermentation (low fermentation times)
seem to be associated to central carbon metabolism oriented
towards fermentation, while high carrying capacity, low growth
rate and slow fermentation seem to be associated to central car-
bon metabolism oriented towards respiration.

The K group could be divided into three subgroups, depend-
ing mainly on the correlations between the traits and the fluxes of
glycerol synthesis and of acetaldehyde: AFtime, K and CO2max
(subgroups designated by the name of the main trait in boldface).
The AFtime subgroup showed a slightly negative correlation,
the K subgroup a slightly positive correlation and the CO2max
subgroup a positive correlation. AFtime grouped most traits
correlated with the duration of fermentation, AFTime, t-45, t-75,
t-Nmax; K grouped traits measuring the lag time and beginning
of fermentation (t-lag, t-Vmax), the carrying capacity (K) and
the level of Octanoic acid (fatty acid) at the end of fermentation,
while the CO2max grouped traits correlated with fermentation
products (total CO2, Ethanol and sugar-ethanol yield), two volatile
esters, Isoamyl acetate and Phenyl-2-ethanol acetate, as well as cell

size and cell viability measured close to the end of fermentation,
and t-N0.

Similarly, within the r group we distinguished two clusters
of traits: Vmax and SO2. Vmax grouped traits that correlated
with Vmax and r, as well as the amount of hexanol (alcohol) and
hexanoic and decanoic acids (fatty-acid) that were quantified at the
end of fermentation. SO2 grouped basic oenological parameters
measured at the end of fermentation (total and free SO2, residual
sugar), cell viability measured once carrying capacity is reached
(Viability-t-Nmax), and two volatile compounds Phenyl-2-ethanol
(alcohol) 4-methyl-4-mercaptopentan-2-one (thiol).

Briefly, we were able to associate fermentation and life-
history traits to metabolic fluxes based on their correlation
patterns. In particular, we found that the negative correlation
between r and K is explained by a different pathway usage of
the central carbon metabolism. High r and low K are associated
with glycolysis and fermentation, while low r and high K are
associated with TCA cycle and respiration.

Metabolic bases of yeast phenotypic trait variation

In order to confirm the association between integrated traits
variation and differential usage of central carbon metabolism,
we tried to identify the proteins outside the DynamoYeat model
that were involved in the trait patterning, as observed from the
correlation between traits and fluxes. We performed a Linear
Discriminant Analysis on the correlation matrix between the
T traits and the E proteins using as discriminant features the
five groups of fermentation and life-history traits showing a
similar correlation structure with metabolic fluxes, obtained in
the previous analysis (see section Statistical Analysis).

Linear Discriminant Analysis clearly separated the five trait
categories on the first axis, that explains 99% of the total variation
(Figure 5). AFtime and K traits were close, and had positive
coordinates on LDA1; Vmax had high negative coordinates,
SO2 had a slightly negative mean and CO2max had a slightly
positive mean on LDA1. Given the high discriminative power of
LDA1, it is clear that proteins positively or negatively correlated
to LDA1 participate to the differentiation between AFtime and
Vmax trait groups.

Functional analysis of proteins that best correlate with the
first axis of the LDA was performed on the group of proteins
showing a correlation of 0.85 in the positive and in the negative
direction. Pearson’s chi square test of enrichment showed that
the group of proteins negatively correlated to the first axis was
enriched in proteins linked to protein fate, cytoskeleton, detoxifi-
cation, growth and death but also to the fermentation, glycolysis
and phosphate pathway. The group of proteins that positively
correlated with LDA1 was enriched in proteins linked to energy
conversion, nitrogen and sulfur pathway, metabolism, energy
reserves, electron and respiration. This result was represented
as a cloud of words on Figure 5.

In conclusion, the association between trait variation and
central carbon metabolism observed at the flux level is confirmed
by the proteomic analysis. Proteins that covary with traits of
the Vmax group and with glycolytic and fermentation fluxes are
enriched in proteins involved in glycolysis and fermentation,
but also in protein synthesis and degradation (protein fate), and
cytoskeleton, that can be associated to cell division. Proteins
that covary with traits of the AFtime group and with TCA and
respiration fluxes are enriched in proteins involved in TCA and
respiration, but also in electron transport, energy conversion
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Figure 4 Regularized Canonical Correlation Analysis on metabolic fluxes and fermentation/life-history traits. Penalization pa-
rameters have been tuned through leave-one-out cross-validation method on a 1000 × 1000 grid between 0.0001 and 1 ( λ1 = 0.8,
λ2 = 0.0001). Canonical correlation values between metabolic fluxes and fermentation/life-history traits are represented as a gradient
of colors from blue (−1) to red (+1). Metabolic fluxes and fermentation/life-history traits have been clustered using the hclust method.
Colored row side bars indicate the five groups obtained on fermentation and life-history traits.

and nitrogen and sulfur metabolism.

Discussion

In this work, we applied cutting-edge methods for data inte-
gration to an original yeast dataset. The HeterosYeast dataset
comprised quantitative proteomics, fermentation traits and life-
history traits measured during wine fermentation on a wide
range of strains from two yeast species. The objective was
to integrate information at different levels of cellular organi-
zation (proteomic and metabolic fluxes) to better understand
the metabolic bases of yeast phenotypic variation, in particular
for life-history traits related to fitness. The key point of this
study was to incorporate proteomic data in a constraint-based
metabolic model to estimate unobserved metabolic flux values.
Then, using a combination of multivariate analyses dedicated
to a heterogeneous datasets of high dimension, we were able to
show that the metabolic flux level retains information that was
not directly interpretable at the proteomic or at the trait level.
In particular, we showed that the negative correlation between
traits associated with population growth rate and traits associ-
ated to maximal population size (carrying capacity) could be
explained by a differential usage of central carbon metabolism:
fermentation versus respiration.

Constraint-based modeling can predict unobserved fluxes
from observations at the cellular level
Functional genome annotations, allied with current knowl-
edge in biochemistry, now allows describing cell metabolism
at genome-scale, using constraint-based metabolic models that
take into account the stoichiometry of each reaction and incor-
porate thermodynamic constraints (Palsson 2015). Without any
a priori knowledge, the number of steady-state solutions for reac-
tion rates are infinite, but can be reduced by observations. Three
types of experimental data can be used in this process: (i) ex-
change metabolic fluxes; (ii) metabolite input/output rates and
(iii) protein abundances. External metabolic fluxes and metabo-
lite input/output rates can be used directly in constraint-based
models to reduce the feasible space of solutions, L (eq. 5 and
ineq. 6) under the steady state assumption.

Protein abundances, linked to the metabolic fluxes in the
model through GPR (gene-protein-reaction) association, carry
information on the network functioning and on the state of the
metabolic network at a given time and under a specific condition.
Following Lee et al. (2012), we used protein abundance profiles
to find the set of metabolic fluxes that minimized the Euclidean
distance between metabolic fluxes and enzyme abundances. In-
deed, even though the relationship between flux and enzyme
abundances is commonly non-linear, the level of use of a given
pathway is more or less associated with the abundance of its
enzymes (Sabarly et al. 2016).
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The method that we propose relies on a probabilistic ap-
proach. Following Braunstein et al. (2017), we chose to charac-
terize the feasible space of solutions L by means of its poste-
rior density distribution through the Expectation Propagation
(EP) algorithm. The computation time of EP algorithm is much
shorter than the well known Hit and Run (Bélisle et al. 1993),
and it provides both samples of metabolic fluxes in L and their
associated posterior probability. In the selection process of a
unique solution of L, we minimized Z, the Euclidean distance
between the observed abundances of proteins and the associ-
ated metabolic fluxes weighted by the inverse of the probability
of observing such set of fluxes, pv (eq.11). This minimization
process involved sampling in L, and selection was made after
computation of the Z value over a high number of sampled
points.

Computer simulations confirmed the good prediction effi-
ciency of our method. In particular, we showed that the pre-
diction efficiency was not affected by non linearities of the flux-
enzyme relationship. The most important parameter was the
number of reactions Nobs for which proteomic observations were
available, as compared to the CBM size n. When Nobs was too
low, adding a new information could lead to a decrease of the
prediction efficiency. A decrease in the correlation between ini-
tial and predicted fluxes means that, once a new enzyme is
added, the solution that minimizes the total Euclidean distance
leads to flux predictions farther from their true value. This can
occur whenever there is a weak correlation between the first
n− 1 fluxes, and the additional flux vn. Therefore, it is impor-
tant that observations on protein abundances do cover the main
features in the architecture of the metabolic network. In our case,
33 reactions with observed protein abundances out of the 70 re-
actions of de DynamoYeast model were sufficient to reach a high
prediction accuracy. Recent progresses in gel-free/label-free
quantitative proteomics now allow to quantify thousands of pro-
teins and should ensure a good coverage even for genome-scale

metabolic models (Belouah et al. 2019).
Even though our flux predictions are not expected to be exact,

we are confident that our method reveals the main orientations
of cell metabolism. It takes advantage of additional information
about the known architecture of the metabolic network to pre-
dict unobserved fluxes from observed protein abundances and
globally add information on the system.

Unraveling the metabolic bases of life-history trait variation
The proposed approach has been used to predict metabolic
fluxes from central carbon metabolism in a population obtained
from a half-diallel cross between two yeast species, S. cerevisiae
and S. uvarum, for which the genetic values of 615 protein abun-
dances and 28 fermentation/life-history traits have been esti-
mated under fermentation conditions at two different tempera-
tures, 18°C and 26°C, leading to a total of 127 observations on 66
different yeast strains (Albertin et al. 2013a). As described above,
we predicted metabolic fluxes for each strain × temperature
combination by coupling the DynamosYeast model, a highly cu-
rated constrained based model of the central carbon metabolism
(Celton et al. 2012), using the observed CO2 release rate as a priori
knowledge, and measurements of protein abundances associ-
ated to 33 out of the 70 reactions in the model.

The final dataset consisted in three matrices of 127 × 615 pro-
tein abundances, 127 × 70 central carbon fluxes, and 127 × 28
fermentation/life-history traits. The total number of phenotypes
(713) greatly exceeded the number of observations and we used
regularization techniques for the multivariate analyses (Rohart
et al. 2017). In order to connect patterns of variation observed
at different levels, we used a top-down strategy, from the most
integrated to the less integrated level. First, we explored the
correlations between traits and metabolic fluxes. Second, we
tracked the proteins outside the metabolic model that best ex-
plained the correlation structure between traits and fluxes.

In our dataset, we observed a negative correlation between
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traits associated to growth and CO2 fluxes, and traits associ-
ated to population size and duration of the fermentation pro-
cess. Those negative correlations resulted in different life-history
strategies that have been observed elsewhere, on different yeast
collections either from industrial (Albertin et al. 2013b) or natural
origin (Spor et al. 2008, 2009). It roughly corresponds to the well-
known r-K trade-off in ecology (Pianka 1970). More recently
Collot et al. (2018) suggested that such trade-off could emerge
from eco-evolutionary feedback loops because competing strains
also modify their environment through the production of dif-
ferent sets of metabolites. The HeterosYeast dataset shows that
the choice of a strategy is plastic (da Silva et al. 2015) and can be
modified by the environment (here the fermentation tempera-
ture).

Adding information about central carbon metabolic fluxes,
we showed that such trade-off can be explained by metabolic
switches between fermentation associated to glycolysis, and
respiration, associated to TCA cycle. Such duality in the func-
tioning of yeast central carbon metabolism has already been
observed when matching the DynamoYeast model to experi-
mentally measured exchange fluxes (Nidelet et al. 2016) in a
collection of S. cerevisiae strains. The switch between the two
modes of functioning (Figure 4) depends partly on the isoforms
of the alcohol dehydrogenase (ADH). Interestingly, Albertin et al.
(2013b) already found that the trade-off between cell-size and
K was related to changes in the percentage of acetylation of the
ADH 1p, with high levels being associated to large cells and low
K.

Because this paper was devoted to a proof of concept, we
deliberately chose to focus on central carbon metabolism and
we used the DynamoYeast model because it describes a small
number of reactions, as compared to available genome-scale
models (Caspi et al. (2014)). Therefore, we were not able to ex-
plain between-strains variations for traits related to secondary
metabolism like aroma production, that merely discriminated
between the two yeast species of the HeterosYeast dataset. More-
over, only a small subset of the proteomic data were coupled to
the metabolic model. Seeking the proteins that most explain trait
patterns that was revealed at the flux level, we were able to find
proteins that were associated to the r-K trade-off at the trait level.
The analysis of protein’s functional annotations confirmed the
already known link between glycolysis and pentose-phosphate
pathways and fermentation, and the link between extensive
usage of TCA and respiration.

Altogether, by coupling phenomic data with mathematical
modeling of metabolism and cutting-edge statistical analyses
taking into account high-dimensionality and heterogeneity of
the measures, we were able to explain the commonly observed
trade-off between two set of yeasts life-history traits by a dif-
ferential pathway usage of energy production. Glycolysis and
fermentation lead to fast growth and resource consumption.
TCA and respiration lead to slow growth and high population
sizes. The duality between the two alternative usages of cen-
tral carbon metabolism is encoded into the architecture of the
metabolic network.
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Chapter 6

Conclusions and perspectives

Yeast species from the Saccharomyces sensu stricto phylogenetic group, including S. cerevisiae
and S. uvarum studied here, are important in many areas such as agriculture, biotechnology and
medicine. Beside its utility to meet human needs and customs, yeast represents a powerful model
system to address core issues in biology. Its short generation time, and the fact that it is easy to
grow and manipulate in the laboratory, have allowed to achieve major breakthroughs. In partic-
ular, the whole genome sequencing of S. cerevisiae (Goffeau et al., 1996) switched the focus from
individual genes and functions to a global view of how the cellular networks interact, which has
renewed interest on metabolism and its regulation (introduced in Chapter 4). A striking feature
of metabolism is the similarity of the basic pathways, even between distant species such as yeast
and human, which allows for instance the study in yeast of pathways involved in human diseases.
However, pathway usage and regulation can drive huge phenotyic differences between close species,
which raises the question of the genotype-phenotype map.

The main results of the thesis were obtained with two complementary modelling approaches
applied to the same biological material, in order to: (i) analyze the phenotypic variation from a
quantitative and population genetics perspective; (ii) investigate the genotype-phenotype map from
an evolutionary systems biology point of view. These approaches were developed on a large yeast
dataset collected on a diallel design (HeterosYeast project, chapter 2), where observations were
organized in types of crosses (intra- and inter-specific hybrids or parental strains from two yeast
species). Measurements were collected at different levels of phenotypic integration, from proteomic
to life-history traits, during the wine fermentation process. This dataset allowed to question the
complex relationship between genotypes, phenotypes and fitness in populations. Beside, develop-
ments related to a better-understanding of the structure of yeast phenotypic diversity and of the
wine fermentation process, along with methodological developments, are proposed in my thesis.
These methods have actually a broad applicability domain.

The evolution of life-history traits

The first modelling approach was introduced in Chapter 1, in which phenotypic variation is pre-
sented as the result of processes of evolution and adaptation. A key component of adaptation and
evolvability is the partition of the phenotypic variance into additive and non-additive genetic com-
ponents, and environmental components (G×E and residual). In this context, the diallel design of
the HeterosYeast project was of particular interest. Among all statistical approaches proposed in
the literature to analyze genetic and non genetic variance components from such designs, I decided
to shape the model proposed by Lenarcic et al. (2012).

The results are reported in Chapter 3. Each measured trait was characterized by its variance
components, and comparisons were performed among traits. This work revealed genotype × envi-
ronment interactions at every level of cellular organization (variance components differed between
the two temperatures). It allowed the classification of traits × temperatures combinations into a
few number of clearly distinct groups of traits, that excluded the hypothesis that all traits have
neutrally evolved under the same process. A possible interpretation is that traits sharing a similar
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variance component profile have a common evolutionary history. Moreover, within some groups
of traits we have shown that inbreeding and heterosis variance components were decoupled. This
original result highlights that inbreeding and heterosis evolved independently. We also showed that
epistasis is necessarily involved in this decoupling. These results call for theoretical developments
in evolutionary genetics to identify the mechanisms and the driving forces at stake, and for exper-
iments on others species to evaluate whether such findings are common in biological systems.

From a breeder’s perspective, the above-mentioned analysis has allowed to infer the variance-
covariance matrix between additive genetic effects for traits analyzed in the HeterosYeast popu-
lation. By using the well-known equation of response to selection (Chapter 1, section 1.1.4), it is
possible to predict the results of one generation of selection. Consider for example table 6.1 in
which are listed desirable fermentation traits for white wine production (Philippe Marullo, pers.
comm.). It is possible to construct a selection index that considers the observed value for the
selected traits and the associated weighting coefficient. The naive approach is to consider the
weighted sum between these two quantities. Thus, selection can be performed on crosses showing
an index value above a certain threshold and the calculation of the selection gradient is straightfor-
ward. The response to selection equation would return the average expected phenotypic value of
offspring’s at the next generation. It would also return the expected response to selection for traits
that are not selected directly. Hence, using the method I proposed for the estimation of variance
components, we could predict the evolution of non selected traits, including protein abundances,
after one generation of selection.

Objectives Weighting
Trait Blanc 18 garde Blanc 18 primeur Blanc 18 garde Blanc 18 primeur
AFtime min min 1 1
t.lag min min 1 1
Hexanol low low 0,25 0,25
Octanoic acid low 0,1
Phenylethanol-acetate low high 0,5 0,5
Isoamyl-acetate low high 0,5 0,5
Residual sugar <2 <2
Phenylethanol low high<400 0,5 0,5
4MMP high high 1 1
Decanoic acid low 0,1
SO2L/SO2T high high 0,5 0,5

Table 6.1: Objectives in white grape must fermentation. Objectives for traits of enological interest
for grape must fermentation at 18 degrees for garde and primeur wines. To each objective is given
a weighting coefficient based on enological interests. Objectives may change with the desired type of
wine.

Also, the additive components of the variance covariance matrix associated to the HeterosYeast
population correspond to the famous G matrix of the adaptive fitness landscapes. Eigenvectors
associated to the G matrix would reveal the possible directions for evolution and could help un-
derstanding the geometry of yeast multitrait fitness landscape.

In general, the statistical model proposed in this first modelling approach can be employed in
any problem concerning pairwise interactions between physical or biological entities. In ecology,
the same model could be used to investigate competition between individuals for resources in a
given environment, to access the performances in mixtures and to quantify the mixing ability for
panels of genotypes, populations or species.
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Integrative biology

In the second modelling approach the high-level phenotypes are understood as resulting of the
integration processes of multiple cellular scales. In this context, I predicted an intermediary
level of cellular organization: the metabolic fluxes. The general mathematical framework for
metabolism modelling (through constraint-based models) and the methods classically used in the
inference of metabolic fluxes are presented in Chapter 4. The proposed modelling approach is
illustrated throughout Chapters 4 and 5 and consisted in interfacing quantitative proteomic data
with constraint-based metabolic models relying on

• Genome annotations that allow genome-wide association of enzymatic reactions to gene ex-
pression/protein abundances.

• The hypothesis that protein abundance drives pathway usage and that, at the genome-scale,
there should be a correlation between protein abundances and fluxes.

Contrary to the existing approach based on the same principles (Lee et al., 2012), my ap-
proach is fully data-driven and does not rely on any hypothesis about optimization principles of
cell metabolism, that are questionable from an evolutionary point of view. It relies on a probabilis-
tic description of the feasible space for fluxes, given stoichiometric and thermodynamic constraints
(Braunstein et al., 2017), and further reduction by observations of cellular fluxes introduced as
additional constraints. Then, amongst all possible solutions, we chose the one that best matches
the observed distribution of protein abundances.

Future prospects would be to apply the method to a yeast genome-scale model (Heavner et al.,
2013), but also to other biological systems. For instance, there is in our laboratory a huge collection
of proteomic and phenotypic data collected on maize leaf at different developmental stages, and
there exists a genome-scale metabolic model for the maize leaf (Simons et al., 2014A,B). Combining
the data, the genome-scale model and the proposed method, I am confident that it would help in
underpinning the molecular bases of leaf development variation.

Using as a toy model a reduction of yeast central carbon metabolism through the proofed
DynamoYeast model (Chapter 4, section 4.3), I was able to show that introducing an additional
layer of phenotypic integration, namely metabolic fluxes, between proteomic and observable traits,
allowed me to better-understand the well-known ecological r−K trade-off as a trade-off between
metabolic pathway usages. To do this, I used cutting-edge statistical methods designated for het-
erogeneous datasets of high dimensionality, that proved to be efficient. The r−K trade-off could
thus be associated with different modes of glucose consumption rates (high or low). The “ant”
strategy recalled in chapter 2 was associated to quick reproduction, high carrying capacity and
small cell size in fermentation and low reproduction rate in respiration (chapter 2 section 2.2.1),
but also to a low glucose consumption rate, possibly associated to higher fluxes in the pentose-
phosphate pathways.

Metabolic choices of living species are a kind of puzzle far from being fully understood. The
preliminary analysis performed to investigate the FBA strategy of a lower consumption rate of glu-
cose have been revisited in this work in Chapter 2 section 4.3.3. By comparing the FBA solution
to the feasible space reduced by experimental observations, I showed that the usage of pentose-
phosphate pathway is a way of economizing resources, i.e. producing energy at lower price, in
terms of glucose consumption. Further comparisons with alternative objective functions would be
interesting to better understand of the underlying metabolic bases of the variation of phenotypic
traits.
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Beyond methodological development that may be useful for the scientific community (hope-
fully!), my thesis shows that mathematical and statistical modelling allied with the evolutionary
framework helps understanding the diversity of the living world.
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Supplementary materials for Petrizzelli et al.
2019

A.1 Subcompositional dominance and distances
We consider the central log-ratio transformation in order to pursue our analysis without consid-
ering both the block effect and residuals for the more integrated traits and residuals for protein
abundances. We are aloud to do so since the clr-transformation satisfies the subcompositional
dominance property, i.e., for each couple of vectors, xxx and yyy, and for each pair of subvectors x̂xx and
ŷyy of xxx and yyy, respectively, obtained by selecting the same set of components, the distance between
the subvectors is always less than or equal to the distance between the original vectors, i.e.

d(xxx,yyy) ≥ d(x̂xx, ŷyy) (S1)

Therefore, for each zzz such that d(xxx,yyy) ≥ d(xxx,zzz), we have that, dividing eq.(S1) by d(xxx,zzz)
d(x̂xx,ẑzz) ≥ 1

αd(x̂xx, ẑzz) ≥ kd(x̂xx, ŷyy) (S2)

where α = d(xxx,yyy)
d(xxx,zzz) ≥ 1 and k = d(x̂xx,ẑzz)

d(xxx,zzz) ≤ 1. So, since k/α ≤ 1

d(x̂xx, ŷyy) ≥ d(x̂xx, ẑzz) (S3)

As a consequence, distance relationship between the original vectors is preserved by selected sub-
vectors.

A.2 The fitting algorithm
The hglm package implements the estimation algorithm for hierarchical generalized linear models.
It fits generalized linear models with random effects, where the random effect may come from a
conjugate exponential-family distribution (Gaussian, Gamma, Beta or inverse-Gamma) and it is
possible to explicitly specify the design matrices both for the fixed and random effects, which allows
fitting correlated random effects as well as random regression models.
In order to perform the diallel analysis, we considered y, the vector of observations for the trait of
interest, and we re-wrote the model (eq.(1.56)) in matrix a form:

yyy = Xβββ + Zuuu+ εεε (S4)

where X is the design matrix for the fixed effects, Z the design matrix for the random effects,
βββ = (µ,βS.uvarum,βS.cerevisiae) and uuu = (AwAwAw,AbAbAb,BBB,HwHwHw,HbHbHb) are respectively the vectors of fixed
effects parameters and random effects parameters, and εεε is the vector of random errors. With this
notation, the construction of the model is straight forward since we just have to construct the
design matrices for both fixed and random effects.

Let n be the number of observations, J the total number of parental strains, Nintra (resp. Ninter)
the number of intra-specific (resp. inter-specific) crosses, and K the total number of random effects
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parameters. X is a n× 3 matrix, with, by construction, the first column equal to (1, 1, ..., 1), while
the elements of the second and third columns (for respectively S. uvarum and S. cerevisiae) are 1
or 0 depending on whether the strain is inbred and or not.
Z will be a n×K matrix and, more precisely, it can be thought as the following block matrix:

Z =

 ZAwAwAw ZAbAbAb ZBBB ZHwHwHw ZHwHwHw

 (S5)

where ZAwAwAw , ZAbAbAb , ZBBB, ZHwHwHw , ZHbHbHb denote the design matrices, respectively, of the random effect
parameters AwAwAw, AbAbAb, BBB, HwHwHw and HbHbHb. In particular, ZAwAwAw , ZAbAbAb , ZBBB are n× J matrices, ZHwHwHw is a
n×Nintra matrix and ZHbHbHb is a n×Ninter matrix with entries:

zAwijAwijAwij
=



2 If the i-observation belongs to a parental strain, the j-th;
1 If the i-observation belongs to an hybrid achieved through

an intra- specific cross in which the parental strain j is
involved;

0 otherwise;

(S6)

zAbijAbijAbij
=


1 If the i-observation belongs to an hybrid achieved through

an inter- specific cross in which the parental strain j is
involved;

0 otherwise;

(S7)

zBijBijBij =

{
1 If the i-observation belongs to a parental strain, the j-th;
0 otherwise;

(S8)

and, enumerating the intra-specific/inter-specific hybrid strains with kintra/kinter from 1 toNintra/Ninter,
respectively,

zHwikintraHwikintra
Hwikintra

=

{
1 If the i-observation belongs to the kintra- hybrid strain;
0 otherwise;

(S9)

zHbikinter
Hbikinter
Hbikinter

=

{
1 If the i-observation belongs to the kinter- hybrid strain;
0 otherwise;

(S10)

A.3 Half-diallel simulation construction
In order to elucidate our findings about the decoupling of inbreeding and heterotic variances, we
simulated a half-diallel between N parental strains. We supposed the phenotypic values of each
trait to depend on a fixed number of loci, L, and we considered all the possible combinations
of genetic effects, namely presence/absence of dominance, of additive × additive epistasis and of
additive × additive epistasis.
We let the number of alleles at each locus to vary between 1 and N and we drew values for al-
lele a at locus i (ai) from a Gamma distribution (Γ(k, θ)), for additive × additive epistatic effect
between ai and aj (aaij) and for dominance × dominance epistatic effect (ddij) from a Gaussian
distribution (N (0,σ2)). The dominance effect between alleles a and b at locus i (diab) are drawn
from an uniform distribution U(0,m) with m = 0.5 for dominance of the strongest allele, and
m = 1 for symmetrical dominance. Therefore, the phenotypic value of the parental lines Pk and
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of the hybrid, Hlk, between parents Pk and Pl are given by:

1) Additive model1) Additive model1) Additive model
yPk = 2

∑
i

ki , yHlk =
∑
i

ki +
∑
i

li (S11)

2) Additive model plus dominance2) Additive model plus dominance2) Additive model plus dominance

yPk = 2
∑
i

ki , yHlk =
∑
i

ki +
∑
i

li +
∑
i

dikl (S12)

3) Additive model plus additive × additive effect3) Additive model plus additive × additive effect3) Additive model plus additive × additive effect

yPk = 2
∑
i

ki +
∑
ij

aaij , yHlk =
∑
i

ki +
∑
i

li (S13)

4) Additive model plus dominance × dominance effect4) Additive model plus dominance × dominance effect4) Additive model plus dominance × dominance effect

yPk = 2
∑
i

ki , yHlk =
∑
i

ki +
∑
i

li +
∑
ij

ddij (S14)

5) Additive model plus additive × additive and dominance × dominance effect5) Additive model plus additive × additive and dominance × dominance effect5) Additive model plus additive × additive and dominance × dominance effect

yPk = 2
∑
i

ki +
∑
ij

aaij , yHlk =
∑
i

ki +
∑
i

li +
∑
ij

ddij (S15)

6) Additive model plus dominance and additive × additive effect6) Additive model plus dominance and additive × additive effect6) Additive model plus dominance and additive × additive effect

yPk = 2
∑
i

ki +
∑
ij

aaij , yHlk =
∑
i

ki +
∑
i

li +
∑
i

dikl (S16)

7) Additive model plus dominance and dominance × dominance effect7) Additive model plus dominance and dominance × dominance effect7) Additive model plus dominance and dominance × dominance effect

yPk = 2
∑
i

ki , yHlk =
∑
i

ki +
∑
i

li +
∑
i

dikl +
∑
ij

ddij (S17)

8) Additive model plus dominance, additive × additive and dominance × dominance effect8) Additive model plus dominance, additive × additive and dominance × dominance effect8) Additive model plus dominance, additive × additive and dominance × dominance effect

yPk = 2
∑
i

ki +
∑
ij

aaij , yHlk =
∑
i

ki +
∑
i

li +
∑
i

dikl +
∑
ij

ddij (S18)

A.4 Inbreeding depression and heterosis variances are equal in three-
parent diallel

Inbreeding and heterosis variances are equal in the particular case of a three-parent diallel when
no maternal effect is present. It can be easily seen by the direct computation of their value.
In order to do that we decompose the phenotypic values of the i−parent, Pi, as

P di = µ+ 2Ai (S19)

and of the i× j hybrid, Hij , as
Hd
ij = µ+Ai +Aj (S20)

where µ = 1
6 (P1 + P2 + P3 +H12 +H13 +H23) is the mean phenotypic value of the population

and
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Ai =
1
3 (Pi +

∑
j 6=i

Hij)− µ (S21)

the GCA of strain i. Therefore, we can express the inbreeding depression variance as the deviation
of the decomposed phenotypic value of the parents, P d, and their true value P

V ar(inbreeding) =
1
3
∑
i

(P di − Pi − (P d − P ))2 (S22)

and the heterosis variance analogously

V ar(heterosis) =
1
3
∑
i<j

(Hd
ij −Hij − (Hd −H))2 (S23)

In which we have used the fact that Hij = Hji, since no maternal effects are present.
Substituting S19 and S21 in S22, we get

V ar(inbreeding) =
1
3

3∑
i=1

(µ+ 2Ai − Pi −
1
3

3∑
k=1

(µ+ 2Ak − Pk))2 =

=
1
3

3∑
i=1

(µ+
2
3 (Pi +

∑
j 6=i

Hij)− 2µ− Pi −
1
3

3∑
k=1

(µ+
2
3 (Pk +

∑
j 6=k

Hkj)− 2µ− Pk))2 =

=
1

243

3∑
i=1

(6Pi + 6
∑
j 6=i

Hij − 9µ− 9Pi −
3∑

k=1
(2Pk + 2

∑
j 6=k

Hkj − 3µ− 3Pk))2 =

=
1

243

3∑
i=1

(6
∑
j 6=i

Hij − 9µ− 3Pi +
3∑

k=1
Pk − 4

∑
j<k

Hkj + 9µ)2 =

=
1

243

3∑
i=1

(−2Pi + Pj + Pk + 2Hik + 2Hij − 4Hkj)
2

(S24)

where i 6= j 6= k. In the same way, substituting S20 and S21 in S23, we get

V ar(heterosis) =
1
3
∑
i<j

(µ+Ai +Aj −Hij −
1
3
∑
k<m

(µ+Ak +Am −Hkm))
2 =

=
1
3
∑
i<j

(
1
3 (Pi + Pj +

∑
k 6=i

Hik +
∑
k 6=j

Hjk)− µ−Hij−

−1
3
∑
k<m

(
1
3 (Pk + Pm +

∑
l 6=k

Hkl +
∑
l 6=m

Hml)− µ−Hkm))
2 =

=
1

243
∑
i<j

(3(Pi + Pj +
∑
k 6=i

Hik +
∑
k 6=j

Hjk)− 9µ− 9Hij − (2
∑
k

Pk +
∑
k<m

Hkm − 9µ))2 =

=
1

243
∑
i<j

(3(Pi + Pj +
∑
k 6=i

Hik +
∑
k 6=j

Hjk)− 9Hij − 2
∑
k

Pk −
∑
k<m

Hkm)
2 =

=
1

243
∑
i<j

(Pi + Pj − 2Pk − 4Hij + 2Hik + 2Hjk)
2

(S25)
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where again i 6= k 6= j. Therefore,

V ar(inbreeding) =

=
1

243

3∑
i=1

(−2Pi + Pj + Pk + 2Hik + 2Hij − 4Hkj)
2 =

=
1

243 ((−2P1 + P2 + P3 + 2H12 + 2H13 − 4H23)
2 + (−2P2 + P1 + P3 + 2H12 + 2H23 − 4H13)

2+

+(−2P3 + P1 + P2 + 2H13 + 2H23 − 4H12)
2 =

1
243

∑
i<j

(−2Pk + Pi + Pj + 2Hik + 2Hjk − 4Hij)
2 =

= V ar(heterosis)

(S26)

A.5 Structuration of genetic variability at the fermentation trait level
A Gaussian mixture model is run to classify life-history and fermentation traits according to their
genetic variance components.

The best model clearly identify three clusters (fig.S3 and fig.S6). Cluster 1 (99.9% of good
assignments) is composed by 9 traits, characterized by having null inter-specific additive variance
component, relatively low inter-specific heterosis variance and high intra-specific additive and in-
breeding components. In this cluster we can find most volatile compounds such as Octanoic acid
and Hexanol at both temperatures, Phenyl-2-ethanol, Phenyl-2-ethanol acetate and Decanoic acid
at 18°C, the kinetic parameter CO2max and the life-history trait Size-t-Nmax at 26°C. Cluster
2 (98.9% of good assignments) consists of 28 traits that are characterized by high inter-specific
additive and inbreeding components (σ2

AbAbAb
and σ2

BBB), relatively low heterosis (σ2
HwHwHw

and σ2
HbHbHb

) and
intra-specific additive variances (σ2

AwAwAw
). Most kinetic parameters and life-history traits belongs

to this cluster: t-lag, Vmax, t-45, r, t-Nmax, Jmax and Viability-t-Nmax at both temperatures; t-
Vmax and t-75 at 26°C; AFtime, t-N0, Size-t-Nmax at 18°C. We can also find some basic enological
parameters and aromatic traits - Isoamyl acetate and Hexanoic acid at both temperatures; Phenyl-
2-ethanol and Phenyl-2-ethanol acetate at 26°C; X4MMP, Free SO2 and Total SO2 at 18°C. Traits
attributed to cluster 3 (19 traits, 97.3% of good assignments) have high additive and heterotic
variances and null inbreeding variance. The rest of the basic enological parameters and aromatic
traits along with some kinetics parameters and life-history traits belongs to it.

As for protein abundances, we choose to consider life-history and fermentation traits at two
temperatures (18°C and 26°C) as different traits. Indeed, after computation of genetic variance
components for each trait, correlations between temperatures are not found to be significant except
for 6 traits (t-Vmax, t-45, r, t-Nmax, Viability-t-Nmax and Hexanol) that are highly and positively
correlated. All of them fall in the same cluster at the two temperatures, except t-Vmax. Overall,
we find that 79% of traits do not belong to the same cluster at the two temperatures. Further,
Pearson’s correlation tests are performed to investigate the correlation between genetic effects at
the two temperatures. They were not significant except for the additive inter-specific component
(cor = 0.74, p-value<0.05). Therefore, at the fermentation trait level, genotype by environment
interactions predominate.

Globally, correlations between variance components, when present, are found to be negative
(fig.S4). However, the pattern changes when considering intra-group correlations. Indeed, in cluster
2, even if inbreeding is negatively correlated to the heterotic variances, it is positively correlated
to the additive inter-specific variance, and in cluster 3, additive genetic variances are positively
correlated to each other. In cluster 1, there is no statistical significant correlation between genetic
effects (fig.S7).

Therefore, we can state that three well defined groups of traits can be differentiated according
to their genetic variance profiles and we show that the part of phenotypic variation explained by
the model’s parameters depends on trait’s category and temperature: in cluster 1, we can find
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mostly aromatic traits; in cluster 2 kinetics parameters and life-history traits and in cluster 3
most enological parameters. Further, closely related phenotypes show similar profiles in terms of
variance components, such as CO2max, Ethanol and Residual Sugar that clusters together at 18°C;
Total SO2 and Free SO2 are found in cluster 2 at 18°C and in cluster 3 at 26°C; t-N0 and t-lag in
cluster 2 at 18°C. We finally see that inbreeding variance can be either negatively, or not correlated
to heterotic effects.

A.6 Strain characterization
We characterized the strains based on their genetic contribution to the total phenotypic value of a
trait at a certain temperature (fig. S11). Strain D1 is found to be the strain with the lowest additive
contribution for Phenyl-2-ethanol at both temperatures and for Sugar.Ethanol.Yield (except in
inter-specific crosses at 18°C), with the highest additive intra-specific contribution for Decanoic
and Octanoic acid, while displaying the highest heterosis contribution for Octanoic acid when
crossed with E2 at 18°C, with E5 and U1 at 26°C, and for Decanoic acid when crossed with E4 at
26°C and U2 at 18°C. D2 and E2 strains have the highest or lowest additive contributions across
almost all traits, mostly fermentation kinetics parameters and life history traits. In particular, D2
strain shows the highest intra- and inter-specific additive effects, and inbreeding values for t.45,
t.75 and AFtime at both temperatures, where the highest heterosis effect is achieved when crossed
with E2, U1 for t.45 at 18°C, with E5 and U1 for t.75 with the first at both temperatures and
the latter at 18°C. Similarly, the additive intra-specific effect of U4 is the highest or the lowest
for almost all aromatic traits at 18°C (higher for Phenyl-2-ethanol, Hexanol and Hexanoic acid;
lowest for Decanoic acid and Octanoic acid). Strain U1 shows the highest additive inter-specific
effect in aromatic traits at 26°C (Phenyl-2-ethanol, Phenyl-2-ethanol acetate, Hexanol, Hexanoic
acid and Octanoic acid). In particular, the heterosis effect in the inter-specific cross with strain
D2 is the highest for Hexanol and with strain E2 for Phenyl-2-ethanol. For all traits, E5 produces
intermediate heterosis values when crossed with E2, E3, E4, W1, U1 and U4 at 18°C, but its cross
with E4 results in the highest heterosis value for t.Nmax, and the lowest for Decanoic acid with
E3 and for Total SO2 with W1 at 26°C. In the same way, crosses between E3 and U1, U2 or U3,
between E4 and U1 or W1 never show extreme heterosis values for any trait.

A.7 Supplementary tables

Table S1: Diallel table representing the mitochondrial inheritance for each phenotyped cross: the data
clearly shows too many unknowns to enter a mitochondrial effect in the model. Backslashes indicate
the not phenotyped reciprocals.

P1\ P2 D1 D2 E2 E3 E4 E5 W1 U1 U2 U3 U4
D1 D1 D2 unknown \ unknown \ unknown \ U2 U3 U4
D2 \ D2 E2 \ E4 \ W1 \ \ \ \
E2 \ \ E2 unknown unknown E5 unknown \ U2 U3 U4
E3 D1 D2 \ E3 unknown \ W1 \ U2 U3 \
E4 \ \ \ \ E4 E5 W1 U1 U2 U3 U4
E5 D1 unknown \ unknown \ E5 unknown U1 U2 U3 \
W1 \ \ \ \ \ \ W1 \ U2 U3 \
U1 D1 D2 E2 E3 \ \ CW1 U1 \ \ \
U2 \ D2 \ \ \ \ \ unknown U2 \ \
U3 \ D2 \ \ \ \ \ unknown unknown U3 \
U4 \ unknown \ E3 \ E5 W1 unknown unknown unknown U4
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A.8 Supplementary figures

Figure S1: Density of the variance components estimated by the hglm algorithm for the 1230 proteins.
Red dashed lines represent the fitted distributions used to simulate and test parameter inference of the
proposed model.
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Figure S2: Fitted Best Linear Unbiased Predictors of the random effects parameters and predicted
phenotypic value plotted against the simulated genetic parameters and the simulated phenotypic value.
Fixed the number of parental strains and the number of individuals of each species, we performed the
simulation 1000 times. Here, we show the case of eleven parents, with 7 belonging to one specie and
4 to the other.

Figure S3: Clustering profiles of fermentation and life-history traits. Clusters number are reported on
the left, on the right the number of traits found in each cluster.
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Figure S4: Global correlations between genetic variance components: on the left correlations at the
proteomic level, on the right at the more integrated level. * significant at p < 0.05; ** significant
at p < 5 · 10−3; *** significant at p < 5 · 10−4; **** significant at p < 5 · 10−5. No symbol: not
significant.
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Figure S5: Pearson’s chi-square test of enrichment: For each cluster are represented the chi-square
standardized residuals at 18° (abscissa) and at 26° (ordinate).
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Figure S6: Life-history and fermentation traits profiles. Traits are identified by their label, color
combinations identify the clusters obtained by their classification based on a Gaussian Mixture model.

Figure S7: Pearson’s correlation test performed to investigate the intra-cluster correlations at the trait
level: for each cluster, the figure shows the correlation between variances of the genetic effects. *
significant at p < 0.05; ** significant at p < 5 · 10−3; *** significant at p < 5 · 10−4; **** significant
at p < 5 · 10−5. No symbol: not significant.
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Figure S8: Variance components of fermentation traits. Left: Traits measured at 18°C. Right: Traits
measured at 26°C. Each variance component is attributed a different color. Traits are ranked according
to their cluster number at 18°C. Trait category and cluster number is indicated on the right-hand-side
of the plot.

Figure S9: Bootstrap summary example: Distribution of intra-specific variance estimates for the
growth lag-phase, t.N0, at A) 18° and B) 26°C.
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Figure S12: Interval plots. For each fermentation and life-history trait we plot the Best Linear
Unbiased Predictors of the random genetic effects estimated through the decomposition of our diallel
design. The random genetic effect estimates, namely Âw, Âb, B̂, Ĥw, Ĥb are plotted in blue (18°C), or
in red (26°C). Horizontal bars are added to show, for each parameter, the region of highest density that
covers nearly 95% (∼ ±2σ̂qqq) of the parameter density. On the left hand-side of each plot we list, for
each genetic effect, the strains which have the lowest and the greatest value of the respective genetic
effect. The plot shows that: (i) genetic effects differ in a large extent between the two temperatures;
(ii) additive and heterosis effects depend on the type of cross in which a line is involved (intra- or
inter-specific); (iii) for some traits, genetic variances are strongly influenced by a particular hybrid
combination.
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Appendix B

Supplementary materials for “Data integration
uncovers the metabolic bases of phenotypic
variation in yeast”

B.1 Sampling the solution space
Let L denote the solution space of eq. 5 with constraints (eq. 6). Our aim is to sample random
elements in the convex set L in order to characterize it by means of posterior joint distribution
between fluxes. In order to do so, classical methods, like the well-known Hit and Run algorithm
are available (Meersche et al. 2009). Braunstein et al. 2017 turn to map the original problem of
sampling the feasible space of solutions L into the inference problem of the joint distribution of
metabolic fluxes, letting the linear and inequality constrains to be encoded within the likelihood
and the prior probabilities, which via the Bayes theorem provides a model for the flux posterior
distribution density.

We compared the posterior density distribution obtained by the Hit and Run (HR) sampling to
the Expectation Propagation algorithm (EP). We run the HR with a burning length equal to 106

and with a jump of 0.5, for a number of iteration from 106 to 107, and the EP algorithm with a
high β parameter (Boltzmann inverse temperature parameter). Fig. SF1 shows the sampled space
of solutions through the HR (histograms) and the EP estimate (red curve). Fig. SF2 shows the
Pearson correlation coefficients between variances and means estimated through EP and HR for
different number of iterations. As can be seen, the Pearson correlation increases as the number of
the HR samples increases. Assuming that HR samples the true distribution of fluxes, means are
well predicted by the EP algorithm, although variances are underestimated.

We further investigated if the EP algorithm well predicted the variance-covariance matrix of
the DynamoYeast fluxes. In fig. SF3 are shown the relation between 8 pairwise fluxes chosen at
random, and the correlation ellipses (red curve) computed by the EP algorithm. As can be seen,
the EP algorithm well predicts the variance-covariance matrix between fluxes satisfying eq. 5, on
the basis of the HR predictions.
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B.2 Supplementary figures

Figure SF1: Marginal probability densities of sixteen fluxes of the yeast carbon metabolism, randomly
chosen. The histograms represent the result of the HR for T ∼ 107 sampling points. The red line is
the result of the EP estimate.
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Figure SF2: Comparison of the results of HR versus EP. The plots on the left are scatter plots of
the means and on the right variances of the approximated marginals computed via EP against the
ones estimated via HR for an increasing number of explored configurations T, top T ∼ 106, bottom
T ∼ 107.

Figure SF3: Comparison of the results of HR versus EP. The plot shows the relation between 8 pairwise
fluxes. Correlation ellipses, computed by the EP algorithm are drawn in red. Dot points represent the
mean value of fluxes computed through EP. For HR samples, T ∼ 5 · 106.
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Correlation FT and LHT to PC axes
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Figure SF4: Correlation between fermentation and life-history traits and the first two axis of the
Principal Component Analysis. The figure shows traits for which the correlation was more more that
0.5 or less to −0.5 (p-value<0.05). The first axes is negatively correlated to the growth rate (r), CO2
fluxes (Jmax and Vmax), Hexanol and Decanoic acid and positively with the carrying capacity (K ) and
fermentation times (AFtime, t-lag, t-75, t-45). The second axes is positively correlated to cell-size
(Size-t-Nmax) and Ethanol at the end of fermentation, while negatively with aroma production at the
end of fermentation, as well as Sugar.Ethanol.Yield.



B.2. Supplementary figures 133

Pyr_tm

Pyr_Accoa_m

Acald_tm

Cit_Icit_m

Oaa_Cit_m

Eth_tm

Acald_Eth_m

Oaa_tm

CO2_tm

Akg_t

Icit_Akg_m_nad

Akg_tm

−0.3 −0.2 −0.1 0.0 0.1 0.2

Correlation Metabolic Fluxes and sPLS−DA 

CO2_t

Pyr_Acald

Eth_t

Acald_Eth

6pgc_Ru5p

6pgl_6pgc

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0.0

Figure SF5: Correlation between metabolic fluxes and the first two axis of the sparse Partial Least
Square Discriminant Analysis. The CO2, pyruvate decarboxylase, ethanol, alcohol dehydrogenase, 6-
phosphogluconolactonase and phosphogluconate dehydrogenase fluxes contributed to the first axis of
the sPLS-DA, and all were negatively correlated to it. The second axis was negatively correlated to
the mitochondrial acetyl-CoA formation, mitochondrial citrate synthase, mitochondrial aconitate hy-
dratase, mitochondrial isocitrate dehydrogenase (NAD+) and mitocondrial transport fluxes of pyruvate,
oxaloacetate and acetaldehyde fluxes, while positively to mitochondrial transport of 2-oxodicarboylate,
ethanol and CO2 fluxes.
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Supplementary Material

1 SUPPLEMENTARY MATHEMATICS

Here we prove the equation
NQ(L) = 2L−2(2L−1 + 1) (S1)

Proof: If L is the number of loci, there are 4L IBD (identical by descent) probabilities Q(i1, i2, . . . iL)
where il = 0, 1, 2 or 3 and furthermore these probabilities add up to 1. A number of these probabilities
are equal because of two symmetries: (1) the two homologous chromosomes in each individual play
identical roles, and (2) the siblings play identical roles (assuming no sex-dependence of meiosis, so that the
recombination rates rl,l′ are sex-independent). It is thus appropriate to use only one representative of each
equivalence class generated by these symmetries. A way to do this is to first impose that this representative
have its first index, i1, equal to zero. Second, we can then specify exactly one element in each class by
imposing that the indices of the representative Q’s have either

1. il ∈ {0, 1} ∀l ∈ {2, .., L}, or

2. il ∈ {0, 1} ∀l ∈ {2, .., K − 1}, iK = 2 and il ∈ {0, 1, 2, 3} ∀l ∈ {K + 1, .., L}
The number of equivalence classes and thus of Q’s to consider is then

NQ(L) = 2L−1 +
L∑

l=2

2l−24L−l = 2L−1 + 22L−2
L∑

l=2

2−l (S2)

Given that
∑L

l=2 2
−l is a geometric progression of common ratio 2−1 from 2 to L, the sum of its terms can

be expressed as:
L∑

l=2

2−l =
2−2 − 2−(L−1)

1− 2−1
= 2−1 − 2−L (S3)

Substituting S3 in S2, we get

NQ(L) = 2L−1 + 22L−2(2−1 − 2−L) = 2L−1 + 22L−3 − 2L−2 (S4)

Factorizing with respect to 2L−2 and after simplification, this gives

NQ(L) = 2L−2(1 + 2L−1). (S5)

1
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2 IMPUTING USING THE EXACT RIL PROBABILITIES

We compared the performance of the missForest R package to our new approach that exploits the exact
multilocus genotype probabilities. As mentioned in the Main, our method is based on focusing on missing
data forming blocks of consecutive markers. When the block is large (this happens stochastically), it may
be impossible in practice (for time and memory) to compute the needed multilocus genotype probabilities.
To overcome this difficulty, we have implemented a “divide and conquer” method whereby inside the
block we first focus on a subset of just 3 of those markers. After imputation is done on these 3, imputation
requiring calculating multilocus probabilities involving 5 loci because of the flanking markers, we proceed
to consider the remaining markers with missing data; these are now organized into one or more blocks
of smaller size. The divide and conquer process can thus be repeated iteratively until there are no more
markers to impute. A choice has to be made in the “divide” step for selecting the 3 most relevant markers.
We do that by a bottom-up greedy approach where markers are successively removed, one step at a time.
At each step, we first find the 2 markers that are closest (in this test we include the flanking markers and
distances are in cM); if only one marker has missing data, we remove it; if both have missing data, we
remove the one which is closest to its other adjacent marker.

For each value of the fraction of missing data (0.1, 0.2, 0.3, 0.4, 0.5 and 0.7), and for each replicate of a
SIB RIL population (cf. the scatter plot of the Main), we determined the fraction of missing data that were
incorrectly imputed in each method. Based on these replicates, Fig. S1 provides the box plots for each level
of missing data studied. Clearly, the distributions of values hardly overlap, allowing us to conclude that
using the exact multilocus RIL probabilities leads to a big improvement.
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Figure S1: Box plots to compare imputation error rates between the missForest machine learning algorithm
and our approach using the exact values of the multilocus genotype probabilities. The fraction of missing
data applied to the datasets are given at the top of each plot. For almost all cases, there is hardly any overlap
between the distributions of the two algorithms, the exact approach is systematically better.
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3 THE SELF-CONSISTENT EQUATIONS FOR THREE LOCI

Here we provide the coefficients entering each of the NQ(L) = 10 self-consistent equations for L = 3.

3.1 The self consistent equation for Q(0, 0, 0)

Figure S2 displays the 8 factors in the self-consistent equation for Q(0, 0, 0):

Q(0, 0, 0) = 1
2(1− r12)(1− r23)[Q(0, 0, 0) +Q(2, 2, 2)] + 1

4(1− r12)[Q(0, 0, 2) +Q(2, 2, 0)] + 1
4(1− r13)[Q(0, 2, 0) +Q(2, 0, 2)] + 1

4(1− r23)[Q(0, 2, 2) +Q(2, 0, 0)] (S6)

After use of symmetry to keep only non-equivalent Qs, this leads to

Q(0, 0, 0) = (1− r12)(1− r23)Q(0, 0, 0) + 1
2(1− r12)Q(0, 0, 2) + 1

2(1− r13)Q(0, 2, 0) + 1
2(1− r23)Q(0, 2, 2)
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Figure S2: The graphical representation of the factors multiplying each Q on the right-hand side of Eq. S6 for Q(0, 0, 0).
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3.2 The self consistent equation for Q(0, 0, 1)

Figure S3 displays the 8 factors in the self-consistent equation for Q(0, 0, 1):

Q(0, 0, 1) = 1
2(1− r12)r23[Q(0, 0, 0) +Q(2, 2, 2)] + 1

4(1− r12)[Q(0, 0, 2) +Q(2, 2, 0)] + 1
4r13[Q(0, 2, 0)Q(2, 0, 2)] + 1

4r23[Q(0, 2, 2) +Q(2, 0, 0)] (S7)

After use of symmetry to keep only non-equivalent Qs, this leads to

Q(0, 0, 1) = (1− r12)r23Q(0, 0, 0) + 1
2(1− r12)Q(0, 0, 2) + 1

2r13Q(0, 2, 0) + 1
2r23Q(0, 2, 2)
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Figure S3: The graphical representation of the factors multiplying each Q on the right-hand side of Eq. S7 for Q(0, 0, 1).
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3.3 The self consistent equation for Q(0, 0, 2)

Figure S4 displays the 8 factors in the self-consistent equation for Q(0, 0, 2):

Q(0, 0, 2) = 1
4(1− r12)[Q(0, 0, 1) +Q(2, 2, 3)] + 1

4(1− r12)[Q(0, 0, 3) +Q(2, 2, 1)] + 1
8 [Q(0, 2, 1) +Q(2, 0, 3)] + 1

8 [Q(0, 2, 3) +Q(2, 0, 1)] (S8)

After use of symmetry to keep only non-equivalent Qs, this leads to

Q(0, 0, 2) = 1
2(1− r12)Q(0, 0, 1) + 1

2(1− r12)Q(0, 0, 2) + 1
4Q(0, 2, 1) + 1

4Q(0, 2, 3)
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Figure S4: The graphical representation of the factors multiplying each Q on the right-hand side of Eq. S8 for Q(0, 0, 2).
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3.4 The self consistent equation for Q(0, 1, 0)

Figure S5 displays the 8 factors in the self-consistent equation for Q(0, 1, 0):

Q(0, 1, 0) = 1
2r12r23[Q(0, 0, 0) +Q(2, 2, 2)] + 1

4r12[Q(0, 0, 2) +Q(2, 2, 0)] + 1
4(1− r13)[Q(0, 2, 0) +Q(2, 0, 2)] + 1

4r23[Q(0, 2, 2) +Q(2, 0, 0)] (S9)

After use of symmetry to keep only non-equivalent Qs, this leads to

Q(0, 1, 0) = r12r23Q(0, 0, 0) + 1
2r12Q(0, 0, 2) + 1

2(1− r13)Q(0, 2, 0) + 1
2r23Q(0, 2, 2)
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Figure S5: The graphical representation of the factors multiplying each Q on the right-hand side of Eq. S9 for Q(0, 1, 0).
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3.5 The self consistent equation for Q(0, 1, 1)

Figure S6 displays the 8 factors in the self-consistent equation for Q(0, 1, 1):

Q(0, 1, 1) = 1
2r12(1− r23)[Q(0, 0, 0) +Q(2, 2, 2)] + 1

4r12[Q(0, 0, 2) +Q(2, 2, 0)] + 1
4r13[Q(0, 2, 0) +Q(2, 0, 2)] + 1

4(1− r23)[Q(0, 2, 2) +Q(2, 0, 0)] (S10)

After use of symmetry to keep only non-equivalent Qs, this leads to

Q(0, 1, 1) = r12(1− r23)Q(0, 0, 0) + 1
2r12Q(0, 0, 2) + 1

2r13Q(0, 2, 0) + 1
2(1− r23)Q(0, 2, 2)
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Figure S6: The graphical representation of the factors multiplying each Q on the right-hand side of Eq. S10 for Q(0, 1, 1).
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3.6 The self consistent equation for Q(0, 1, 2)

Figure S7 displays the 8 factors in the self-consistent equation for Q(0, 1, 2):

Q(0, 1, 2) = 1
4r12[Q(0, 0, 1) +Q(2, 2, 3)] + 1

4r12[Q(0, 0, 3) +Q(2, 2, 1)] + 1
8 [Q(0, 2, 1) +Q(2, 0, 3)] + 1

8 [Q(0, 2, 3) +Q(2, 0, 1)] (S11)

After use of symmetry to keep only non-equivalent Qs, this leads to

Q(0, 1, 2) = 1
2r12Q(0, 0, 1) + 1

2r12Q(0, 0, 2) + 1
4Q(0, 2, 1) + 1
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Figure S7: The graphical representation of the factors multiplying each Q on the right-hand side of Eq. S11 for Q(0, 1, 2).
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3.7 The self consistent equation for Q(0, 2, 0)

Figure S8 displays the 8 factors in the self-consistent equation for Q(0, 2, 0):

Q(0, 2, 0) = 1
4(1− r13)[Q(0, 1, 0) +Q(2, 3, 2)] + 1

8 [Q(0, 1, 2) +Q(2, 3, 0)] + 1
4(1− r13)[Q(0, 3, 0) +Q(2, 1, 2)] + 1

8 [Q(0, 1, 3) +Q(2, 1, 0)] (S12)

After use of symmetry to keep only non-equivalent Qs, this leads to

Q(0, 2, 0) = 1
2(1− r13)Q(0, 1, 0) + 1

4Q(0, 1, 2) + 1
2(1− r13)Q(0, 2, 0) + 1
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Figure S8: The graphical representation of the factors multiplying each Q on the right-hand side of Eq. S12 for Q(0, 2, 0).
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3.8 The self consistent equation for Q(0, 2, 1)

Figure S9 displays the 8 factors in the self-consistent equation for Q(0, 2, 1):

Q(0, 2, 1) = 1
4r13[Q(0, 1, 0) +Q(2, 3, 2)] + 1

8 [Q(0, 1, 2) +Q(2, 3, 0)] + 1
4r13[Q(0, 3, 0) +Q(2, 1, 2)] + 1

8 [Q(0, 3, 2) +Q(2, 1, 0)] (S13)

After use of symmetry to keep only non-equivalent Qs, this leads to

Q(0, 2, 1) = 1
2r13Q(0, 1, 0) + 1

4Q(0, 1, 2) + 1
2r13Q(0, 2, 0) + 1
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Figure S9: The graphical representation of the factors multiplying each Q on the right-hand side of Eq. S13 for Q(0, 2, 1).
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3.9 The self consistent equation for Q(0, 2, 2)

Figure S10 displays the 8 factors in the self-consistent equation for Q(0, 2, 2):

Q(0, 2, 2) = 1
4(1− r23)[Q(0, 1, 1) +Q(2, 3, 3)] + 1

8 [Q(0, 1, 3) +Q(2, 3, 1)] + 1
8 [Q(0, 3, 1) +Q(2, 1, 3)] + 1

4(1− r23)[Q(0, 3, 3) +Q(2, 1, 1)] (S14)

After use of symmetry to keep only non-equivalent Qs, this leads to
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Figure S10: The graphical representation of the factors multiplying each Q on the right-hand side of Eq. S14 for Q(0, 2, 2).
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3.10 The self consistent equation for Q(0, 2, 3)

Figure S11 displays the 8 factors in the self-consistent equation for Q(0, 2, 3):

Q(0, 2, 3) = 1
4r23[Q(0, 1, 1) +Q(2, 3, 3)] + 1

8 [Q(0, 1, 3) +Q(2, 3, 1)] + 1
8 [Q(0, 2, 1) +Q(2, 1, 3)] + 1

4r23[Q(0, 3, 3) +Q(2, 1, 1)] (S15)

After use of symmetry to keep only non-equivalent Qs, this leads to
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Figure S11: The graphical representation of the factors multiplying each Q on the right-hand side of Eq. S15 for Q(0, 2, 3).
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Appendix D

Résumé en Français

Modélisation mathématique et intégration de données biologiques
complexes : analyse du phénomène d’hétérosis chez la levure

Les espèces de levure du groupe phylogénétique Saccharomyces sensu stricto, y compris S. cere-
visiae et S. uvarum étudiées ici, sont importantes dans de nombreux domaines tels que l’ agri-
culture, la biotechnologie et la médecine. Outre son utilité pour répondre aux besoins et
aux coutumes de l’homme, la levure représente un système modèle puissant pour traiter les
problèmes fondamentaux en biologie. Son temps de génération réduit et sa facilité de culture
et de manipulation en laboratoire ont permis de réaliser des avancées majeures. En partic-
ulier, le séquençage complet du génome de S. cerevisiae (Goffeau et al., 1996) a accompagné
un changement de perspective partant de l’analyse individuel des gènes et ces fonctions à
une vision globale d’interaction des réseaux cellulaires, ce qui a suscité un intérêt renouvelé
pour le métabolisme et sa régulation. Une caractéristique frappante du métabolisme est la
similitude des voies fondamentales, même entre des espèces éloignées telles que la levure et
l’homme, ce qui permet par exemple d’étudier chez la levure les voies impliquées dans les mal-
adies humaines. Cependant, l’utilisation et la régulation des voies peuvent entraîner d’énormes
différences phénotypiques entre les espèces voisines, ce qui soulève la question de la relation
génotype-phénotype.

Dans ce contexte, mon travail de thèse porte sur la question générale de la relation génotype-
phénotype, en prêtant une attention particulière à l’étude de la vigueur hybride (ou hétérosis)
chez la levure. Pour cela j’ai utilisé une approche associant biologie, mathématiques et statis-
tiques et je me suis appuyé sur un jeu de données généré lors du projet ANR interdisciplinaire
HeterosYeast: exploitation du phénomène d’hétérosis pour l’amélioration des levures d’œnologie
(décrit dans le chapitre 2). Ce jeu de données a été recueilli sur un dispositif demi-diallèle con-
struit en réalisant tous les croisement deux à deux entre sept souches de S. cerevisiae et quatre
de S. uvarum (pour un total de 11 souches parentales et 55 hybrides) dans deux températures
(18°C et 26°C) et il est composé d’un nombre de données hétérogènes correspondant à dif-
férentes niveaux d’intégration phénotypique, de la protéomique aux traits d’histoire de vie, au
cours du processus de fermentation du vin blanc (figure D1).

L’ensemble des observations, organisé en types de croisements (inter et intra-spécifique) et
associé à différentes niveaux de complexité cellulaire, était idéalement adapté pour la mod-
élisation multi-échelle et pour tester des modèles de prédiction de la variation de phénotypes
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Figure D1: Protocole expérimental. Des souches diploïdes entièrement homozygotes ont été
utilisées comme souches parentales selon un schéma semi-diallèle. W1, D1, D2, E2, E3, E4 et
E5 sont des souches S. cerevisiae, U1, U2, U3 et U4 S. uvarum. Les fermentations ont été
effectuées dans jus de raisin cépage Sauvignon blanc à 18°C et 26°C en triple exemplaire dans des
fermenteurs pour un total de 396 expériences. Trente-cinq traits ont été rassemblés et regroupés en
quatre classes (traits de cinétique de fermentation, traits d’histoire de vie, paramètres œnologiques
de base et traits aromatiques). Les abondances de protéines ont été quantifiées pour chaque
combinaison de souche × température (da Silva et al., 2015).

intégrés à partir de caractères protéiques et métaboliques (flux), ce qui m’a permis de pro-
poser des approches de modélisation statistique et d’intégration de données biologiques afin
de : (i) analyser la variation phénotypique du point de vue quantitatif et de la génétique des
populations ; (ii) étudier la carte génotype-phénotype du point de vue de la biologie des sys-
tèmes évolutifs.

Cet ensemble de données a permis de questionner la relation complexe entre génotypes,
phénotypes et fitness dans les populations. De plus, des développements liés à une meilleure
compréhension de la structure de la diversité phénotypique des levures et du processus de
fermentation du vin, ainsi que des développements méthodologiques, sont proposés dans ma
thèse. Ces méthodes ont en réalité un large domaine d’applicabilité.

Ci-dessous Vous trouverez un résumé des modèles employés au cours de ma thèse, les ma-
jeurs résultats associés ainsi que des perspectives futures.

L’évolution des traits d’histoire de vie

La première approche de modélisation a été introduite dans le chapitre 1, dans lequel la vari-
ation phénotypique est présentée comme le résultat des processus d’évolution et d’adaptation.
Un composant clé de l’adaptation et de l’évolutivité est la partition de la variance phénotyp-
ique en composants génétiques additifs et non additifs, et en composants environnementaux
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(G × E et résiduels). Dans ce contexte, la conception du demi-diallèle du projet HeterosYeast
présentait un intérêt particulier. Parmi toutes les approches statistiques proposées dans la
littérature pour analyser les composants de variance génétique et non génétique à partir de
tels modèles, j’ai décidé de adapter le modèle proposé par Lenarcic et al. (2012) à la structure
particulier du semi-diallèle, qui inclut la diagonale avec les souches parentales consanguines de
deux espèces. J’ai donc inclus dans mon modèle les effets additifs intra et inter-spécifiques, les
effets de dépression de consanguinité et les effets d’hétérosis intra et inter-spécifiques.

Formellement, prenons yijk le phénotype observé pour le croisement entre les parents i et
j dans la réplique k. Le modèle est défini par :

yijk = µ+ Is(i)=s(j)(Awi +Awj ) + Is(i) 6=s(j)(Abi +Abj )+

+Ii 6=j(Is(i)=s(j)Hwij + Is(i) 6=s(j)Hbij )+

+Ii=j(βs(i) +Bi) + εijk,

(D1)

Où :

• µ est la moyenne globale ;

• s(i) associe à chaque souche parentale i l’espèce à laquelle il appartient :

s(i) ∈ {S. cerevisiae,S. uvarum}

• Awi et Abi notent, respectivement, les contributions additives de la souche i en croise-
ments intra-spécifiques (au sein d’une espèce, i.e. s(i) = s(j)), et inter-spécifiques (entre
espèces, i.e. s(i) 6= s(j));

• Hwij et Hbij désignent l’effet d’interaction entre les parents (i, j) en croisement intra-
spécifique (au sein d’une espèce) et inter-spécifique (entre les espèces), respectivement.
Dans notre conception demi-diallèle sans croisements réciproques, Hwij et Hbij sont sup-
posées être symétriques, i.e. Hwij = Hwji et Hbij = Hbji . Ces effets sont désignés sous le
nom d’effets d’hétérosis intra et inter-spécifiques, respectivement ;

• βs(i) et Bi sont respectivement l’écart par rapport à l’effet global fixé pour l’espèce s(i)
et la contribution de la souche i associée à la souche dans la cas des lignées pures. Dans
la suite, je ferai référence à Bi en tant qu’effet de dépression de consanguinité ;

• εijk est le résidu, l’écart spécifique de l’individu ijk;

• Icondition est une variable indicatrice. Sa valeur est égale à 1 si la condition est remplie
et à 0 sinon.

Tous les effets génétiques ont été considérés comme des variables aléatoires tirées d’une
distribution normale. Formellement, si qqq ∈ {AwAwAw,AbAbAb,BBB,HwHwHw,HbHbHb} est l’effet génétique sous con-
sidération:

∀i qi ∼ N (0,σ2
qqq ). (D2)
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Le modèle génétique complet à effets mixtes est donc défini par trois effets fixes (l’interception
µ et les effets de depression de consanguinité βSu et βSc) et cinq variances des effets génétiques
aléatoires (σ2

AwAwAw
, σ2

AbAbAb
, σ2

BBB, σ2
HwHwHw

, σ2
HbHbHb

).

Les analyses ont été réalisées aux deux températures indépendamment et pour chaque trait
séparément (35 phénotypes et 615 protéines). Chaque combinaison trait × température a
été caractérisé par ses composantes de variance et des comparaisons ont été effectuées entre
eux. Avant l’interprétation des résultats, une étude de simulation a été réalisée pour s’assurer
que le faible nombre de parents présents dans le plan d’expérience n’induisaient pas de biais
d’estimation des paramètres.

La sortie de cette analyse est un ensemble de vecteurs de 5 coordonnées décrivant les
composantes de la variance, ce qui a nécessité une nouvelle modélisation pour interpréter ces
résultats. La stratégie adoptée a été d’utiliser un modèle de mélange gaussien diagonal sur les
615 vecteurs de variance estimés sur les protéines pour obtenir une classification en 9 groupes
(figure D2) puis de classer les autres traits phénotypiques dans ces 9 classes en utilisant le
modèle de mélange comme un modèle d’apprentissage.

Les résultats sont rapportés au chapitre 3. En bref, ce travail a révélé des interactions
génotype × environnement à tous les niveaux d’organisation cellulaire (les composantes de
la variance différaient entre les deux températures) et a permis de classer les combinaisons
traits × température en groupes clairement distincts, ce qui excluait l’hypothèse que tous les
traits ont évolué de manière neutre au cours du même processus évolutif. Une interprétation
possible est que les traits partageant un profil de composant de variance similaire ont une his-
toire évolutive commune. De plus, au sein de certains groupes de caractères, j’ai montré que
les composantes de variance de la dépression de consanguinité et de l’hétérosis étaient décou-
plées. Ce résultat original met en évidence que dépression de consanguinité et hétérosis ont
évolué indépendamment. J’ai également montré que l’épistasie est nécessairement impliquée
dans ce découplage. Ces résultats (publiés en Genetics, Petrizzelli et al. (2019)) appellent des
développements théoriques en génétique évolutive pour identifier les mécanismes et les forces
motrices en jeu, et des expériences sur d’autres espèces pour évaluer si tels résultats sont com-
muns dans les systèmes biologiques.

Du point de vue des sélectionneurs, l’analyse susmentionnée a permis d’inférer la matrice
de variance-covariance entre les effets génétiques additifs pour les caractères analysés dans la
population de levure du projet HeterosYeast. En utilisant l’équation bien connue de la réponse
à la sélection (Chapitre 1, section 1.1.4), il est possible de prédire les résultats d’une génération
de sélection. Considérons par exemple le tableau D1 dans lequel sont énumérés les carac-
téristiques de fermentation souhaitables pour la production de vin blanc (Philippe Marullo,
communication personnelle). Il est possible de construire un indice de sélection prenant en
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Figure D2: Patrons de corrélations entre les composantes de la variance génétique des abondances
des protéines. Les points correspondent aux protéines, les combinaisons de types et de couleurs
identifient les grappes obtenues par leur classification basée sur un modèle de mélange gaussien.
Les nombres de 1 à 9 identifient les centres de classe pour chaque groupe.

compte la valeur observée pour les caractères sélectionnés et le coefficient de pondération asso-
cié. L’approche naïve consiste à considérer la somme pondérée entre ces deux quantités. Ainsi,
la sélection peut être effectuée sur des croisements présentant une valeur d’indice supérieure
à un certain seuil et le calcul du gradient de sélection est simple. La réponse à l’équation de
sélection renverrait la valeur phénotypique moyenne attendue de la progéniture à la génération
suivante. Cela renverrait également la réponse attendue à la sélection pour les traits qui ne
sont pas sélectionnés directement. Par conséquent, en utilisant la méthode que j’ai proposée
pour l’estimation des composantes de la variance, c’est possible de prédire l’évolution de car-
actères non sélectionnés, y compris l’abondance de protéines, après une génération de sélection.

De plus, les composants additifs de la matrice de covariance de variance associée à la popu-
lation HeterosYeast correspondent à la fameuse matrice G des paysages de fitness. Les vecteurs
propres associés à la matrice G révéleraient les directions possibles de l’évolution et pourraient
aider à comprendre la géométrie du paysage de remise en forme multi-trait chez la levure.
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Objectifs Coefficient
Trait Blanc 18 garde Blanc 18 primeur Blanc 18 garde Blanc 18 primeur
AFtime min min 1 1
t.lag min min 1 1
Hexanol low low 0,25 0,25
Octanoic acid low 0,1
Phenylethanol-acetate low high 0,5 0,5
Isoamyl-acetate low high 0,5 0,5
Residual sugar <2 <2
Phenylethanol low high<400 0,5 0,5
4MMP high high 1 1
Decanoic acid low 0,1
SO2L/SO2T high high 0,5 0,5

Table D1: Objectifs de la fermentation des moûts de raisins blancs. Objectifs pour les caractères
présentant un intérêt œnologique pour la fermentation des moûts de raisins à 18 degrés pour les
vins garde et primeur. Un coefficient de pondération basé sur les intérêts œnologiques est attribué
à chaque objectif. Les objectifs peuvent changer avec le type de vin souhaité.

En général, le modèle statistique proposé dans cette première approche de modélisation peut
être utilisé pour tout problème concernant les interactions par paires entre entités physiques ou
biologiques. En écologie, le même modèle pourrait être utilisé pour étudier la compétition entre
individus pour des ressources dans un environnement donné, pour accéder aux performances
en mélanges et pour quantifier la capacité de mélange de groupes de génotypes, de populations
ou d’espèces.

Biologie intégrative

Dans la seconde approche de modélisation, les phénotypes au niveau plus intégré sont considérés
comme résultant des processus d’intégration de multiples échelles cellulaires. Dans ce contexte,
j’ai proposé de prédire un niveau intermédiaire d’organisation cellulaire : les flux métaboliques.

Le cadre mathématique général de la modélisation du métabolisme (au moyen de modèles
basés sur des contraintes) et les méthodes classiquement utilisées pour l’inférence des flux
métaboliques sont présentés au chapitre 4. L’approche de modélisation proposée est illustrée
dans les chapitres 4 et 5, et a consisté à interfacer des données protéomiques avec un modèle
métabolique à base de contraintes reposant sur :

• l’annotations du génome permettant l’association de réactions enzymatiques à l’expression
génique/abondance de protéines à l’échelle du génome ;

• l’hypothèse selon laquelle l’abondance des protéines conditionne l’utilisation des voies et
qu’il devrait exister, à l’échelle du génome, une corrélation entre les abondances et les
flux de protéines.
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Figure D3: Représentation du modèle DynamosYeast du métabolisme carboné central
chez S. cerevisiae. Les métabolites sont notés en noir. Les contraintes sur les flux d’échange sont
en rouge entre crochets et correspondent à la fermentation, avec le glucose comme flux d’entrée
unique. Les flèches bleues dénotent les réactions pour lesquels l’abondance de protéines/complexe
de protéines enzymatique associée a été mesurée. La flèche rouge dénote le seul flux de sortie
mesuré lors du projet HeterosYeast.

Contrairement aux approches classiques et basée sur les mêmes principes de Lee et al.
(2012), mon approche est entièrement pilotée par les données et ne repose sur aucune hypothèse
sur les principes d’optimisation du métabolisme cellulaire, qui sont discutables du point de vue
de l’évolution. Il s’appuie sur une description probabiliste de l’espace faisable des flux, étant
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donné les contraintes stœchiométriques et thermodynamiques (Braunstein et al., 2017), ainsi
que sur une réduction additionnelle de l’espace faisable des flux par la valeur des flux cellulaires
observés. Ensuite, parmi toutes les solutions possibles, j’ai choisi celle qui correspond le mieux
à la distribution observée de l’abondance des protéines.

En utilisant un modèle stœchiométrique réduit du métabolisme central carboné de la le-
vure, le modèle DynamoYeast, et les données HeterosYeast (figure D3), j’ai ainsi pu prédire
un ensemble de flux pour chaque combinaison souche × température. Puis, j’ai comparé les
patrons de corrélations entre les caractères à plusieurs niveaux d’intégration. Pour ce faire, j’ai
utilisé des méthodes statistiques de pointe conçues pour des jeux de données hétérogènes de
grande dimensionnalité, qui se sont révélés efficaces.

Les résultats sont rapportés au chapitre 5. En bref, une analyse canonique régularisée des
corrélations a été utilisés pour identifier des liens entre les flux et les phénotypes. Les données
révèlent deux grandes familles de caractères de fermentation ou de traits d’histoire de vie dont
l’interprétation biochimique est cohérente en termes de trade-off, et qui n’avaient pas été mises
en évidence à partir des seules données de protéomique quantitative. En particulier, la cor-
rélation négative entre r et K s’explique par une utilisation différente du métabolisme carboné
central. Un r élevé et un K faible sont associés à la glycolyse et à la fermentation, tandis que
les r bas et les K élevés sont associés au cycle de Krebs et à la respiration.

Une analyse discriminante linéaire sur la matrice de correlation entre proteines (variables)
et flux metaboliques (individues) a confirmé ce le lien entre la variation des traits et le flux du
métabolisme carboné central. En fait, les protéines qui coïncident avec les groupes de traits
associés à r et avec les flux glycolytiques et de fermentation sont enrichies en protéines im-
pliquées dans la glycolyse et la fermentation, mais également dans la synthèse et la dégradation
des protéines et le cytosquelette, qui peuvent être associés aux division cellulaire. Les protéines
qui coïncident avec le groupe de traits associées à K et avec les flux de TCA et de respiration
sont enrichies en protéines impliquées dans le TCA et la respiration, mais également dans le
transport d’électrons, la conversion d’énergie et le métabolisme de l’azote et du soufre.

En fin, j’ai pu montrer que l’introduction d’un niveau d’intégration phénotypique supplé-
mentaire et intermédiaire, les flux métaboliques, entre les traits protéomiques et les traits
observables, permet de mieux comprendre le bien connu compromis écologique r−K en tant
que compromis entre les utilisations de la voie métabolique.

Le compromis r−K pourrait ainsi être associé à différents modes de taux de consommation
de glucose (élevé ou faible). La stratégie “ant” rappelée au chapitre 2 était associée à une re-
production rapide, à une capacité de charge élevée et à une petite cellule lors de la fermentation
et à un faible taux de reproduction lors de la respiration (chapitre 2 section 2.2.1), mais aussi à
un faible taux de consommation de glucose, éventuellement associé à des flux plus importants
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dans les voies du pentose-phosphate.

Les choix métaboliques des espèces vivantes sont une sorte de casse-tête loin d’être parfaite-
ment compris. Les analyses préliminaires effectuées pour étudier la stratégie FBA d’un taux
de consommation de glucose inférieur ont été revues dans ce travail au chapitre 2 section 4.3.3.
En comparant la solution FBA à l’espace réalisable réduit par les observations expérimentales,
j’ai montré que l’utilisation de la voie du pentose-phosphate était un moyen d’économiser des
ressources, en produisant de l’énergie à un prix inférieur, en termes de consommation de glu-
cose. Il serait intéressant de faire d’autres comparaisons avec d’autres fonctions objectives pour
mieux comprendre les bases métaboliques sous-jacentes de la variation des traits phénotypiques.

Les perspectives futures seraient d’appliquer la méthode à un modèle à l’échelle du génome
de levure (Heavner et al., 2013), mais également à d’autres systèmes biologiques. Par exemple,
il existe dans notre laboratoire une vaste collection de données protéomiques et phénotyp-
iques recueillies sur la feuille de maïs à différents stades de développement, ainsi qu’un modèle
métabolique à l’échelle du génome pour la feuille de maïs (Simons et al., 2014A,B). En com-
binant les données, le modèle à l’échelle du génome et la méthode proposée, je suis convaincu
que cela contribuerait à renforcer les bases moléculaires de la variation du développement des
feuilles.

Au-delà du développement méthodologique qui pourrait être utile à la communauté scien-
tifique (espérons-le!), Ma thèse montre que la modélisation mathématique et statistique alliée
au cadre évolutif aide à comprendre la diversité du monde vivant.
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d’hétérosis chez la levure

Mots clés : Vigueur hybride, consanguinité, dispositif diallèle, intégration de données, métabolisme, levure
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quantitative avec un modèle stoichiométrique du
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sieurs niveaux d’intégration. Les données révèlent
deux grandes familles de caractères de fermenta-
tion ou de traits d’histoire de vie dont l’interprétation
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