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Context

In almost every scienti�c �eld, measurements are performed over time. These obser-
vations lead to a collection of organized data called time series. Today time series
data are being generated at an unprecedented speed from almost every application
domain, for instance:

• In Astronomy, telescopes scan the sky and capture light rays that are used in
the study of the universe. In Large Synoptic Survey Telescope (LSST) project
[lss, 2016], telescopes will capture the electromagnetic radiation of the sky
during ten years to calculate the acceleration of the expansion of the universe.
This will result in an astronomical catalog of time series.

• In Paleoecology, scientists study the evolution of living animal and plant
species in the past. To do this, they extract cores from the soil and look
for the presence of fossils at each depth, thus creating time series represent-
ing the growth or decline in the size of fauna and �ora populations over time
[Lonlac et al., 2018].

• In Medicine, the analysis of electrocardiogram is used to prevent heart at-
tacks [Ding, 2011]. Those electrocardiograms are long time series obtained by
recording the electrical activity of the heart over a period.

• In Biomechanics, the study of human locomotion is perform using sensors
that record the e�orts performed and the movements of the body during the
locomotion.

As a consequence, in the last decade there has been a dramatically increasing
amount of interest in querying and mining such data.

Issues

Time series data mining unveils numerous facets of complexity. The most prominent
problem arise from the uncertainty contained in time series data, the di�culty of
de�ning a form of similarity measure based on human perception, and the high
dimensionality of time series data [Esling and Agon, 2012]. These constraints show
that three major issues are involved :

• Data representation. How can the fundamental shape characteristics of a time
series be represented? What invariance properties should the representation
satisfy? A representation technique should derive the notion of shape by re-
ducing the dimensionality of data while retaining its essential characteristics.
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• Similarity measurement. How can any pair of time series be distinguished or
matched? How can an intuitive distance between two series be formalized?
This measure should establish a notion of similarity based on perceptual crite-
ria, thus allowing the recognition of perceptually similar objects even though
they are not mathematically identical.

• Uncertainty. How to compare the shape of time series without knowing their
exact value? How to measure the impact of uncertainty contained in time
series or to reduce the adverse e�ects of uncertainty?

The aim of our work is to propose algorithms to deal with thoses caracteristics
of time series.

Context of the thesis

This thesis apprehends the scienti�c questions above from a data mining point of
view, within the framework of the analysis of time series coming from Manual
Wheelchair (MWC) locomotion. Also, even if the issues addressed are not lim-
ited to the �eld of Biomechanics time series and concern other areas of applications,
this thesis will deal with the analysis of time series recorded with the wheelchair
ergometer FRET-2.

For improving the mobility of persons con�ned to manual wheelchairs, it is
necessary to be able to assess people in their daily environment. For this pur-
pose, a �eld wheelchair ergometer (FRET-1) has been designed and manufactured
[Dabonneville et al., 2005]. This ergometer is equipped with six component dy-
namometers and other sensors that measures the forces applied to the handrims
as well as the movement of the FRET-1 [Couétard, 2000]. It, therefore, makes it
possible to measure and calculate a large number of the mechanical parameters of
manual wheelchair locomotion.

However, the time series produced have speci�c characteristics:

• they are long because of the acquisition frequency of the sensor (between 80
and 100 Hz),

• they are cyclic; these cycles come from the cyclical character of the locomo-
tion in Manual Wheelchair, which consists of a succession of push phases and
recovery (or freewheeling) phases,

• they are uncertain, this uncertainty is observed during the calibration of the
sensor.

Our work consists of proposing algorithms to extract relevant information from
these time series while taking into account their characteristics. The methods de-
veloped in this work have the aim to assist practitioners for the analysis of Manual
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Wheelchair locomotion; then, special attention will be given to the readability and
ease of interpretation of the results provided by the algorithms.

Plan

The thesis is organised as follows:

• Chapter 1 explains existing models in the �eld of time series processing and
presents strategies for the preprocessing of time series (e.g. noise reduction,
length reduction), their comparisons, their exploitation through visualization,
classi�cation, clustering or prediction.

• Chapter 2 introduces an algorithm called FDTW, which aims to reduce the
length of time series while preserving the information it contains. Its operating
principle is based on that of GRASP, but it is original in that it de�nes its
global search strategy. Experiments conducted on a classi�cation task have
shown that compression does not alter classi�cation performance.

• Chapter 3 proposes a novel framework for uncertain time series clustering,
which is based on the use of a clustering algorithm (UShapelet), and on the
use of a dissimilarity function (FOTS), both being robust to the presence of
uncertainty in time series. We tested this clustering strategy on 17 data sets
from the literature, which allowed us to observe an improvement in the quality
of the obtained results.

• Chapter 4 presents a novel symbolic representation of cyclic time series based
on cycle properties, which we use for the analysis of cyclic time series issued by
human locomotion. This symbolic representation facilitates the visualization
and evaluation of cyclic time series. This chapter also gives an application
of the proposed symbolic representation to data from manual wheelchair lo-
comotion. The results allowed us to measure the asymmetry of wheelchair
locomotion and to establish that this asymmetry decreases with years of prac-
tice. We have also observed that the propulsion capabilities of wheelchair users
with similar levels of spinal cord injury may di�er. These two results highlight
the importance of monitoring manual wheelchair locomotion using measure-
ment instruments and the need of e�cient methods for quickly and correctly
processing this large amount of data.

Ph.D. Thesis 5
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Chapter 1
Knowledge discovery on time

series:Background

1.1 Introduction

Datasets can be grouped into four main categories regarding their temporality
[Roddick and Spiliopoulou, 2002]:

• Static datasets: these are datasets with no temporal context. We have for
example the radius of a wheel, the circumference of a circle, the gravity in a
place.

• Sequences datasets: they consist of ordered sequences of events. This category
includes an order but not time. As an example, we can cite a DNA sequence
(GTTTTCCCAGTCACGAC).

• Time-indexed datasets: they consist of a set of temporal data sequences ; for
example a set of measures taken at a more or less regular time intervals.

• Full-time data: Each tuple has one or more time components; time series
belongs to this latter category.

Time series have several characteristic properties: usually, they are noisy, un-
certain and they often have high dimensionality and high auto-correlation. Each of
those features can interfere with the mining of time series. To remedy this, prepro-
cessing technics have been proposed in the literature.

9



1.2 Preprocessing of time series Chapter 1. Knowledge discovery on time series

1.2 Preprocessing of time series

1.2.1 Denoising time series

Several �lters have been proposed in the literature to remove the noise contained in
time series. In this section, the most frequently used �lters are presented.

Kernel smoothing: this �lter refers to a statistical technique for recovery of
underlying structure in data sets. Its basic principle is to estimate a real-valued
function as the weighted average of neighboring observed data. The weight is de�ned
by a function named kernel, such that closer points to real values are given higher
weights [Wand and Jones, 1994].

Polynomial Regression: this �lter consists in �tting a nonlinear relationship
between the values of an independent variable x (predictor variable) and the corre-
sponding conditional mean of y (variable to explain), denoted E(y |x). This �lter has
been used to describe nonlinear phenomena. More formally, polynomial regression
is de�ned as the problem of �nding a polynomial: g(x) = β0 + β1x + ... + βmx

m of
a certain degree m for wich E(Y − g(x))2 is as small as possible [Kendall, 1961].

Wiener-Kolmogorov Filtering of Short Stationary Sequences: The idea of
this �lter is to produce a statistical estimate of the actual signal from the noisy
signal. Using the Wiener-Kolmogorov �lter assumes the knowledge of stationary
signal, noise spectra, and additive noise [Pollock, 2007].

Filtering in the Frequency Domain: The purpose of frequency-based �lters
is to remove the noise contained in a signal. To achieve this goal, the signal is
initially broken down into a set of frequencies using a Fourier transform. This set of
frequencies is called the signal spectrum. Depending on the application, it may be
appropriate to suppress high or low frequencies, or both, in order to remove signal
noise. These �lters are generally named low-pass, high-pass, bandpass, or notch
�lter. These �lters can also be combined in many ways: in cascade, in parallel, etc
[Buttkus, 2012].

Kalman Filter and the Smoothing Algorithm, also known as linear quadratic
estimation (LQE), is a Bayesian estimation technique used to track stochastic dy-
namic systems being observed with noisy sensors. The �lter produces estimates of
unknown variables that tend to be more accurate than those based on a single mea-
surement alone, by estimating a joint probability distribution over the variables for
each timeframe. The algorithm works in two phases: extrapolation (prediction) and
update (correction). In the extrapolation step, the Kalman �lter produces estimates
of the current state variables, along with their uncertainties, based on the previous

10 Ph.D. Thesis



Chapter 1. Knowledge discovery on time series 1.2 Preprocessing of time series

state variables and their uncertainties. Once the outcome of the next measurement
is observed, these estimates are updated using a weighted average, with a higher
weight being given to estimates with higher certainty. The algorithm is recursive. It
can run in real time, using only the current input measurements and the previously
calculated state and its uncertainty matrix [Matthies et al., 1989].

1.2.2 Reducing uncertainty

Another important step of preprocessing time series is to reduce the uncertainty
that they contained. For this purpose some transformations have been introduced
in literature.

Uncertain moving average: For uncertain time series, each value is associated
with a standard deviation representing uncertainty. The uncertain moving aver-
age (UMA) �lter is then de�ned as the weighted average of the consecutive data
points of a time series over a given time interval. The weights at each timestamp
i are calculated from the inverse of the uncertainty. Thus, in the calculation of
the mean, a weight (w) inversely proportional to the uncertainty will be given to
each data point in the time series. Uncertain moving average returns times series
[Orang and Shiri, 2015]:

xUMA =< xUMA
1 , ..., xUMA

m > (1.1)

for which

xUMA
i =

1

2w + 1

i+w∑
k=i−w

xk
σk
, 1 ≤ i ≤ m. (1.2)

Where σk are uncertainty associated with data points xk.

Z-normalization is used with uncertain moving average to reduce the advert
e�ect of uncertainty in time series. In general, z-normalization improves similarity
search quality, because it makes similarity measures invariant to scaling and shifting.
Given an uncertain time series:

X =< X1, ..., Xm >, (1.3)

its normal form:

X̂ =< X̂1, ..., X̂m > (1.4)

is de�ned as follows:

X̂i =
Xi −X
SX

, (1.5)
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1.2 Preprocessing of time series Chapter 1. Knowledge discovery on time series

where X and SX denote the sample mean and standard deviation of expected
values of X, respectively [Orang and Shiri, 2015]. That is,

X =
1

n

n∑
i=1

E(Xi), (1.6)

SX =

√√√√ 1

(n− 1)

n∑
i=1

(E(Xi)−X)2. (1.7)

1.2.3 Dimensionality reduction

Time complexity of a mining time series algorithm depends on the length of the
time series. Reducing dimensionality of time series allows reducing their processing
time. To achieve this goal, many representations have been proposed and can be
grouped into three main categories:

Non-data-adaptive: Dimension reduction methods are called non-data-adaptive
because they take parameters of which value does not vary according to the consid-
ered data set. One of the �rst work in this family was done by Agrawal
[Agrawal et al., 1993] who used a Discrete Fourier Transform to compress time se-
ries. In the same family, we can also cite the following time series representa-
tions: Discrete Wavelet Transform (DWT) [Chan and Fu, 1999a], Piecewise Linear
Approximation (PLA) [Eriksson et al., 2004], Piecewise Aggregate Approximation
(PAA) [Keogh et al., 2001a].

Data adaptive: This family of time series representation consists of methods
that take the properties of the dataset into account when choosing the method
parameters. All non-data-adaptive representations can be transformed into data-
adaptive representations by adding a parameter selection method to them. As
examples of data-adaptive representations, there are Adaptive Piecewise Constant
Approximation (APCA) [Keogh et al., 2001c], Singular Value Decomposition (SVD)
[De Lathauwer et al., 1994] and Symbolic Aggregate Approximation (SAX) [Lin et al., 2003].

Model based: The assumption here is that time series are described by an un-
derlying model. Dimensionality reduction is achieved by identifying the model pa-
rameters that generate the time series. Several approaches use temporal parametric
models such as statistical modeling by feature extraction [Esling and Agon, 2012],
Auto Regressive Moving Average (ARMA) models [Kalpakis et al., 2001], Markov
Chains (MCs) and Hidden Markov Models (HMM) [Panuccio et al., 2002].
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Chapter 1. Knowledge discovery on time series 1.3 Similarity Measures

After cleaning the time series, we are now ready to extract relevant information
from them. Several data mining tasks can be performed on time series.

1.3 Similarity Measures

Before performing data mining tasks, it is essential to be able to compare time
series. Most often, similarity functions compare time series as humans would do.
Indeed, without much of stretch, human recognition understands and looks at the
likenesses between two time series based on their amplitude, scale, temporal warp-
ing, noise, and outliers. As indicated by [Fu, 2011] [Ralanamahatana et al., 2005]
[Esling and Agon, 2012], any similarity measure for time series comparison ought to
be reliable with human recognition and perception and have the following properties:

• It should perceive perceptually comparative datasets even if they are not math-
ematically identical;

• It should resemble human intuition;

• It should be able to capture global and local similarities;

• It should have a universal meaning that is not restricted to a particular type of
time series datasets and do not assume some constraints on time series data;

• It should be robust to distortions and set of transformations. More speci�cally
it should be robust to amplitude shifting, uniform ampli�cation, uniform time
scaling, dynamic ampli�cation, dynamic time scaling, adding noise and outliers
transformations or any combination of these transformations.

The latter property is also known as invariance.

1.3.1 Time-Series invariances

In this section, we brie�y review common time-series distortions and their invari-
ances. More detailed information can be found in [Batista et al., 2014].

Scaling and translation invariances: We should be able to perceive the similar-
ity of sequences in spite of contrasts in amplitude (scaling) and o�set (translation).
For instance, these invariances may be helpful to analyze seasonal variations in cur-
rency values on foreign trade markets without being biased by in�ation.

Ph.D. Thesis 13



1.3 Similarity Measures Chapter 1. Knowledge discovery on time series

Shift invariance: We should be able to recognize two similar sequences even if
they vary in phase (global alignment) or when there are regions of the sequences
that are aligned and others are not (local alignment). For instance, heartbeats can
be out of phase depending on when we start recording, and handwritings of the
same sentence from various people will require alignment depending on the size of
the letters and on the spaces between words (local alignment).

Uniform scaling invariance: We should be able to compare two sequences even
if they have di�erent lengths. To do so, sequences that di�er in length require
either extending of the shorter sequence or, contracting of the longer sequence.
For instance, this invariance is required for heartbeats recorded at di�erent sample
frequencies (e.g.: 10, 50 ou 100 Hz).

Occlusion invariance: We should be able to compare two time series even if some
of their sub-sequences are missing; we can also compare the sequences by ignoring
the sub-sequences that do not match well. For example, suppose an archaeologist
who has just found a skull in a research site, and would like to determine to which
species this skull belongs. Let us also suppose that we have a database of time series
corresponding to the skulls of living species. We could then compare the time series
from the found skull to those stored in the database. This comparison should be
possible even if the found skull is damaged. In other words, we should be able to
make a comparison even if the time series extracted from the found skull has missing
sub-sequences.

Complexity invariance: We should be able to recognize time series with similar
shape even if they have di�erent complexity. For example, the same audio signals
that were recorded indoors and outdoors might be considered similar, although
outdoor signals will surely be noisier than indoor ones.

Depending on the application domain, some or all the invariances can be required
for the comparison of time series. The preprocessing step can handle some of those
invariances; for instance, z-normalization of time series allows their comparison to
be scaling invariant. However, all invariances cannot be handled by preprocessing
step and should then considered by more sophisticated distances or dissimilarities
functions. In the next section, we review the most common of such distance mea-
sures.

1.3.2 Categories of time series similarity function

Time series similarity measures can be generally divided into following four main
categories:
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Chapter 1. Knowledge discovery on time series 1.3 Similarity Measures

Shape Based similarity function compares two time-series based on the sum
of the distances in a Euclidian space between data points of both times series located
at approximately the same timestamp. By doing so, the distance between two time
series with similar shapes will be low. On the opposite, the distance between time-
series that have a di�erent shapes will be high. In this family, there are Lp norm
[Yi and Faloutsos, 2000] [Keogh and Kasetty, 2003a], and Dynamic time warping
distance [Myers et al., 1980b] for instance. However, those distances are sensitive to
noise.

Edit Based distance allows evaluating the dissimilarity between two character
strings. These dissimilarity functions are able to handle noisy regions and outliers.
The principle of these similarity functions is the following: Edit based distances
count the minimum number of operation necessary to transform a character string
to another. Di�erent edit based dissimilarity functions use di�erent operations to
transform one string to another. A well known edit based distance is Levenshtein dis-
tance. That uses three operations: suppression, insertion and substitution of letters.
Edit based distances in time series domain are based on the same principle. Time
series data points can be skipped during the comparison (deletion) or one data point
can be compared to several data points of the other time series (insertion). Among
the well-known edit based distances in time series domain we can cited: Longest
Common SubSequence (LCSS) [Das et al., 1997], Edit Distance on Real sequence
(EDR) [Chen et al., 2005] and Time Warp Edit Distance (TWED) [Marteau, 2009]
algorithms. LCSS distance uses a threshold parameter for point matching as well
as a warping threshold for allowing gaps for matching two time series. EDR is a
variant of the edit distance for real-valued series. Opposite to LCSS, EDR assigns
penalties based on the length of existing gaps between two series. TWED is a dy-
namic programming algorithm that introduces a parameter to control the elasticity
measure along the time axis.

Feature Based distance: this distance has been designed to ensure some in-
variances such as rotation invariance. Time series can be compared based on their
properties rather than on their shape. So, Feature Based similarity measures com-
pare two time series by computing a feature set for each time series that re�ects
their properties1. For example, DFT and DWT coe�cients can be used to compare
the similarity between time series [Shatkay and Zdonik, 1996].

Structure Based similarity measures: These measures are designed to com-
pare time series on a global scale based on their structure. The general principle
of those similarity functions is to compare time series based on a high-level repre-

1We will use this type of distance later when analyzing manual wheelchair locomotion (Chap.
4).
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sentation that captures global properties of the time series, such as histogram, for
instance [Lin and Li, 2009].

1.4 Datamining task on time series

Indexing time series: The problem of indexing or query by content can be
de�ned as follows: given a query time series Q, and some similarity/dissimilarity
measure D(Q,C), �nd the most similar time series in database DB. When querying
time series by content, a challenge consists in �nding as fast as possible a time series
in the database that is similar to the query. To achieve this goal, some dimen-
sionality reduction technics have been used: for instance, in [Agrawal et al., 1993],
time series have been transformed into a more compact representation using Discret
Fourier Transform (DFT) before their comparison. Many other dimensionality re-
duction techniques have been used for the same purpose, such as Discrete Wavelet
Transform (DWT) and Discrete Cosine Transform (DCT) [Chan and Fu, 1999a].
Other representation approaches used for query by content are PLA, PAA, APCA
[Keogh et al., 2001c], and SAX [Lin et al., 2007]. These latter authors [Lin et al., 2007]
have shown that SAX outperforms other representations for query by content appli-
cations. Another strategy used to ensure the e�ectiveness of research is parallelism
[Yagoubi et al., 2017].

Motif Discovery: Time series motifs are pairs of individual time series, or sub-
sequences of a longer time series, which are very similar to each other and carry
precise information about the underlying source of the time series. The idea for mo-
tif discovery in time series is inspired from DNA analysis. When they exist, motifs
can be used to construct meaningful clusters when clustering time series, which is
the case of unsupervised shapelet algorithm [Ulanova et al., 2015]. Associating each
class with a motif can speed-up the classi�cation of time series; this idea is used by
the shapelet transform algorithm2 [Lines et al., 2012], [Yagoubi et al., 2018].

Anomaly Detection: Anomaly detection refers to the problem of �nding pat-
terns in data that do not conform to the expected behavior. These nonconforming
patterns are often referred to as anomalies, outliers, discordant observations, excep-
tions, aberrations, surprises, peculiarities, or contaminants in di�erent application
�elds. Among these, anomalies and outliers are two terms most commonly used
in the context of anomaly detection; sometimes interchangeably. Anomaly detec-
tion �nds extensive use in a wide variety of applications such as fraud detection for
credit cards, insurance, or healthcare, intrusion detection for cyber-security, fault

2We will use this type of distance later when analyzing manual wheelchair locomotion (Appendix
D ).
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detection in safety-critical systems, and military surveillance of enemy activities
[Chandola et al., 2009].

Temporal Association Rule Discovery: In a transactional database, associa-
tion rules allow searching for items that often appear together in the same trans-
action. For instance, in the database of a shop, the discovered rules will indicate,
which products are often bought together. The association rules do not give any
information on the precedence of the occurrence of one event concerning the other.
Hence the need to de�ne temporal association rules, which are particularly appro-
priate as candidates for causal rules' analysis in temporally adorned medical data,
such as in the histories of patients' medical visits. Patients are associated with both
static properties, such as gender, and temporal properties, such as age or current
medical treatments, any or all of which may be taken into account during mining
[Vasimalla, 2017].

Summarization (Visualization): The problem of time series visualization or
summarization can be de�ned as follows: given a time series Q containing n data
points where, n is an extremely large number, create a (possibly graphics) approxi-
mation of Q, which retains its essential features but �ts on a single page, computer
screen, executive summary. Summarization can be viewed as a higher level cluster-
ing of time series where clusters are associated with text or graphical descriptions.
Some famous approaches of time series summarization are:

• Time searcher: it is a query by content summarization tool. Here, a user
speci�es a set of constraints (intervals) graphically to which time series data
points should belong. Those constraints are called time series boxes
[Hochheiser and Shneiderman, 2003].

• Calendar based visualization of univariate time series data: its goal is
to simultaneously identify patterns and trends on multiple time scales (days,
weeks, seasons). To do so, Calendar based visualization �rst clusters similar
daily data patterns and visualizes the average patterns as graphs and the
corresponding days on a calendar [Van Wijk and Van Selow, 1999].

• The spiral visualization is appropriated with large data sets and supports
much better than line graphs the identi�cation of periodic structures in the
data. Spiral visualization supports both the visualization of nominal and
quantitative data based. The extension of the spiral visualization to 3D
gives access to concepts for zooming and focusing and linking in the data
set [Weber et al., 2001].

• GrammarViz is a visualization tool that allows e�cient discovery of fre-
quent and rare patterns of variable length in time series. It is based on
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the symbolic representation of time series SAX and context-free grammar
[Senin et al., 2014].

Prediction or time series forecasting is one of the most useful data mining tasks
on time series: for example, time series forecasting is used to predict the weather,
the cost of an action in the stock exchange market, or early identi�ed epidemio-
logical risks and raised up alarms. A time series forecasting method is based on a
mathematical model that capture the main characteristics of the time series like sea-
sonality, periodicity, trend, and that can be used to guess unknown (or future) values
of the time series. Many other algorithms used for time series forecasting are based
on Auto-Regressive (AR) models. More sophisticated approaches are also used such
as neural networks and cluster function approximation [Mahalakshmi et al., 2016].

Classi�cation: Classifying time series consists of assigning an unlabelled time
series to one, two or more classes. Many classi�cation algorithms for time series
have been proposed in the literature and can be gathered into four main groups

• Dictionary classi�ers: generally, these classi�ers �rst transform time se-
ries into characters strings that can be decomposed into a set of word or
bag of words, a word being simply a subsequence of the characters string.
Each time series is then described by the occurrence frequency of each word
in it. The set of time series represented in the space of words is called a
dictionary; The classi�cation of time series is then based on the presence or
absence of words in this dictionnary. Several algorithms of the literature are
based on this principle, such as Bag of Patterns [Lin et al., 2012], SAX and
Vector Space Model [Senin and Malinchik, 2013], Bag of SFA Symbols(BOSS)
[Schäfer, 2015], DTW Features [Kate, 2016a], temporal-robust text classi�ca-
tion [Salles et al., 2017] .

• Classi�er-based on the alignment of whole time series: those classi�ers
are based on distance functions that operate over the entire length of the
time series. The di�erence between the classi�ers of this family is based in
part on the characteristics of the distance functions used. These distance
functions can be based on the shape of the time series (Derivative Dynamic
Time Warping [Keogh and Pazzani, 2001a], Weighted Dynamic Time Warping
[Jeong et al., 2011], Complexity-Invariant Distance [Batista et al., 2011]), on
their properties, on their structures or on their symbolic representation (Time
Warp Edit Distance [Marteau, 2008], Move Split Merge [Stefan et al., 2013]).

• Shapelets Classi�ers: Unlike classi�ers based on the comparison of the time
series over their entire length, shapelets classi�ers look for characteristic sub-
sequences in time series called shapelets whose presence or absence indicates
whether or not a time series belongs to a class. We have for example: Shapelet
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Transform [Lines et al., 2012], Learned Shapelets [Grabocka et al., 2014], Fast
Shapelet Tree [Rakthanmanon and Keogh, 2013]

• Intervals Classi�ers: The idea here is to �nd localized discriminatory fea-
tures on time series based on some statistical properties calculated over inter-
vals of variable length. A time series of length m will have m(m−1)/2 possible
contiguous intervals. An interval associated with some statistical properties
and a condition is a literal, which gives some information about what hap-
pened in an interval: for instance, is the mean of a sequence of data points
greater or less than a de�ne threshold? The classi�er tries to �nd a relation-
ship between what happened in an interval and time series classes. Many
classi�ers are based on this principle, such as: Time Series Bag of Features
[Baydogan et al., 2013], Time Series Forest [Deng et al., 2013], Learned Pat-
tern Similarity [Baydogan and Runger, 2016].

Clustering: The clustering of time series consists of grouping them to build very
homogeneous and well-separated groups under some similarity/dissimilarity mea-
sure D(Q, C) [Rani and Sikka, 2012]. "Homogeneous" means that the intra-group
variance is small and "Well separated" means that the inter-groups variance is high.
There are many ways to categorize time series clustering algorithms depending on
the distance function used, the data transformation or the clustering strat-
egy.

When considering distance function, we have two categories of time series
clustering algorithms: those that operate on the whole time series and those that
operates on a sub-sequence of time series.

When considering data transformation, we can gather time series clustering
algorithms into three groups: raw data, feature-based and model-based clustering.

When considering clustering strategy, we have �ve categories of clustering
algorithms:

• Distance-based clustering, which is divided in two sub-categories:

� Partitioning clustering algorithms partition the data in high dimen-
sional space into multiple clusters. We have for example kMeans like
algorithms (kMeans, kMedians, kMedoids, XMeans, KMeans++)

� Hierarchical clustering algorithms are grouped into two subcate-
gories: Agglomerative clustering algorithms �rst consider each ob-
ject of the dataset as a cluster and then try to merge clusters until obtain-
ning one cluster: it is a bottom-up merging strategy. Divisive cluster-
ing algorithms �rst considers that all the data points are in the same
cluster and then try to split this cluster to obtain more homogenous ones:
it is the top-down merging strategy.
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• Density-Based clustering and grid-based clustering algorithm:

� The principle of density-based clustering is the following: given a time
series that will be considered as the center of the cluster, all the time series
of the database that have a distance less or equal to a de�ned threshold
to the center of the cluster are gathered. Thus, the algorithm splits the
space into more or less dense regions; then small dense regions can be
merged into more signi�cant regions. This algorithm allows to identify
clusters of arbitrary shapes [Kriegel et al., 2011, Kharrat et al., 2008].

� Grid-based clustering divides the data space into a grid-like structure,
which allows determining the characteristics of the data [Amini et al., 2011].

• Probabilistic and generative models can be modelled with a generative
process assuming the data follow a particular distribution like a mixture of
Gaussian. Then the model parameters are estimated using the expectation-
maximization algorithm (EM), that considers the parameters that maximize
the likelihood of the model to the data. On this basis we may estimate the
generative probabilities that will be used to construct the generative model
[Merugu and Ghosh, 2003].

• High-dimensional clustering algorithms: time series may be set in a
high dimensional feature space. To cluster them, many methods have been
proposed:

� Subspace clustering: Subspace clustering looks for a cluster in di�er-
ent subspaces of a dataset. A subspace is a subset of the d dimensions of a
given dataset; this algorithm is used because, generally, all the dimensions
of high dimensional data are not useful. Subspace clustering algorithm
identi�es the relevant dimensions that allow �nding clusters. There are
two main subspace clustering branches based on their search strategy.
Top-down algorithms �nd an initial clustering in the full set of dimen-
sions and evaluate the subspaces of each cluster, iteratively improving
the results. Bottom-up approaches �nd dense regions in low dimensional
spaces and combine them to form clusters [Parsons et al., 2004].

� Dimensionality reduction: many dimensionality reduction techniques
have been proposed for clustering purpose. A well-known one is co-
clustering, which consists of simultaneously clustering columns (or di-
mensions) and rows (data points) of a matrix [Dhillon et al., 2003].

� Probabilistic latent semantic indexing (PLSI) and laten dirich-
let allocation (LDA) are typical clustering techniques for text data.
Indeed, text can be clustered in multiple topics and each topic can be as-
sociated with a set of words (or dimension) or a set of rows (documents)
[Hofmann, 2017].
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� Nonnegative matrix factorization is a kind of co-clustering algo-
rithm. It proceeds as follows: a nonnegative matrix X ∈ RM×N can
be factorised into two lower rank matrices U ∈ RM×L and V ∈ RL×N

with L < M and L < N . The idea here is to identify clusters using the
matrix U , which has a lower dimension than X [Wang and Zhang, 2013].

� Spectral clustering: the principle is to cluster time series or data ob-
jects based on the spectrum of their similarity matrix. The spectrum is
used here for dimensionality reduction [Filippone et al., 2008].

In the context of this thesis, the analysis of manual wheelchair locomotion implies to
group manual wheelchair users with similar motor abilities, based on measurements
made during their locomotion in actual conditions: this approach is equivalent to
time series clustering. Several clustering algorithms proposed in the literature are
harmonious compositions, consisting of a representation of time series, an adequate
distance function and an appropriate clustering strategy as illustrated the Tables
1.1, 1.2 and 1.3. Detailed informations is presented in [Rani and Sikka, 2012].
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1.5 Conclusion

Time series are ubiquitous in science and are more and more used in the analysis
of human locomotion. This chapter presents a general framework for extracting
knowledge from time series, starting by time series pre-processing, which allows
reducing the advert e�ects of noise, uncertainty, and dimensionality. Then, we
present strategies that are used to compare time series, and we �nally present data
mining tasks on time series. This chapter presents what has been already done in
the literature and raises the question of extracting relevant information from time
series coming from wheelchair locomotion. The following chapters present some new
strategies that are adapted to the characteristics of these particular time series.

Key points
We highlight di�erent models of data mining that could be useful to our work,
particularly for

• Pre-processing of time series (noise reduction, dimensionality reduction)
• Comparison of time series.
• Di�erent data mining tasks performed on time series.
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Chapter 2
Compression and classi�cation with

Dynamic Time Warping

Abstract : Dynamic Time Warping (DTW) is a time series alignment algo-
rithm that is often used because it considers that it exits small distortions between
time series during their alignment. However, DTW sometimes produces pathological
alignments that occur when, during the comparison of two time series X and Y, one
data point of the time series X is compared to a large subsequence of data points of
Y. In this chapter, we demonstrate that compressing time series using Piecewise Ag-
gregate Approximation (PAA) is a simple strategy that greatly increases the quality
of the alignment with DTW. This result is particularly true for synthetic data sets.

2.1 Introduction

Time series databases are often large and several transformations have been intro-
duced in order to represent them in a more compact way. One of these transfor-
mations is Piecewise Aggregate Approximation (PAA) [Keogh et al., 2001b], which
consists in dividing a time series into several segments of �xed length and replac-
ing the data points of each segment with their averages. Due to its simplicity
and low computational time, PAA has been widely used as a basic primitive by
other temporal data mining algorithms such as SAX [Lin et al., 2003], SAX-TD
[Sun et al., 2014], ESAX [Lkhagva et al., 2006], in order to:

• Construct symbolic representations of time series; [Camerra et al., 2010]
[Ulanova et al., 2015].

• Construct an index for time series; [Zhao and Itti, 2016]
[Keogh and Pazzani, 2000] [Kate, 2016b]. Indeed, PAA allows queries, which
are shorter than length for which the index was built. This very desirable
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feature is impossible with Discrete Fourier Transform, Singular Value Decom-
position and Discrete Wavelet Transform.

• Classify time series.

2.1.1 PAA and Dynamic Time Warping

Time series comparison is an important task that can be done in two main ways.
Either the comparison method considers that there is no time distortion as in Eu-
clidian distance (ED), or it considers that some small time distortions exist between
time axis of time series as in Dynamic Time Warping alignment algorithm (DTW)
[Zhang et al., 2015]. Since time distortion often exists between time series, DTW has
often better results than ED [Chen et al., 2015]. An exhaustive comparison of time
series algorithms [Bagnall et al., 2016a] showed that DTW is among the e�cient
techniques to be used. However, DTW has two major drawbacks: the comparison of
two time series with this algorithm is time-consuming [Rakthanmanon et al., 2012a]
and sometimes DTW produces pathological alignments [Keogh and Pazzani, 2001b].
A pathological alignment occurs when, during the comparison of two time series X
and Y , one datapoint of the time series X is compared to a large subsequence of
datapoints of Y ; A pathological alignment causes a wrong comparison.

Three categories of methods are used to avoid pathological alignments with
DTW:

• The �rst one adds constraints to DTW [Ratanamahatana and Keogh, 2004]
[Yu et al., 2011] [Candan et al., 2012] [Sakoe and Chiba, 1978]
[Jeong et al., 2011] [Salvador and Chan, 2007]. The main idea of these meth-
ods is to limit the length of the subsequence of a time series that can be
compared to a single datapoint of another time series.

• The second one suggests skipping data points that produce pathological align-
ment during the comparison of two time series [Longin et al., 2005]
[Itakura, 1975] [Myers et al., 1980a].

• The third one proposes to replace the datapoints of time series with a high-level
abstraction that captures the local behavior of those time series. A high-level
abstraction can be a histogram of values that captures the distribution of
time series datapoints in space [Zhang et al., 2015] or a feature that captures
the local properties of time series, such as the trend with Derivative DTW
(DDTW) [Keogh and Pazzani, 2001b].

Another simple but yet interesting way to capture local properties of time series is
to consider the mean of segments of the time series as PAA does. Indeed, the use of
the mean reduces the harmful e�ects of singularities contained in the data and thus
allows to avoid pathological alignments. However, one major challenge with PAA is
the choice of the number of segments to consider especially with long time series.
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Figure 2.1: Relation between Accuracy and the number of segment on FISH dataset.
The accuracy is computed from the algorithm one nearest neighbor (1NN) associated
with PDTW. When the number of segments considered is very small (bellow 20),
there is a loss of information and the accuracy is reduced. However, considering
all the points in the time series, do not produce a maximum accuracy due to the
presence of noise or singularities [Keogh and Pazzani, 2001b] in the data.

2.1.2 Choise of a segment number with PAA

If the number of segments considered with PAA is too small, the resulting repre-
sentation is compact, but it contains less information. On the other hand, if the
number of segments is too large, the obtained representation is less compact and
more prone to the noise contained in the original time series (Fig. 2.1). Our idea
is that a number of segments for PAA will be considered as good (1) if it allows
obtaining a compact representation of the time series, and (2) if it preserves the
quality of the alignment of time series. So when considering classi�cation task, one
of the best algorithm to use for evaluating the quality of time series alignment is one
Nearest Neighbor (1NN). Indeed, its classi�cation error directly depends on time
series alignment, since 1NN has no other parameters [Wang et al., 2013].

2.1.3 Summary of Contributions

In this chapter,

• We de�ne the problem of preprocessing time series with PAA for a better
classi�cation with DTW;

• We propose a parameter free heuristic for aligning piecewise aggregate time
series with DTW, which approximates the optimal value of the number of
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segments to be considered with PAA.

The rest of the chapter is organized as follows: in Section 2.2 we recall the def-
initions and background; Section 2.3 explains our approach; Section 2.4 presents
experimental results and comparisons to other methods; Section 2.5 draws conclu-
sions and venues for future work.

2.2 Background and related works

Let's recall some de�nitions.

De�nition 1. A time series X = x1, · · · , xn is a sequence of numerical values
representing the evolution of a speci�c quantity over time. xn is the most recent
value.

De�nition 2. A segment Xi of length l of the time series X of length n (l < n) is
a sequence constituted by l variables of X starting at the position i and ending at
the position i+ l − 1. We have: Xi = xi, xi+1, ..., xi+l−1.

De�nition 3. The arithmetic average of the data points of a segment Xi of length
l is noted X̄i and is de�ned by:

X̄i =
1

l

l−1∑
j=0

xi+j. (2.1)

De�nition 4. Let T be the set of time series. The Piecewise Aggregate Approxima-
tion (PAA) is de�ned as follows:

PAA : T × N∗ → T

(X,N) 7→ PAA(X,N) =

{
X̄k, k ∈ {i× n

N
+ 1, i = 0, · · · , N − 1} if N < |X|

X otherwise

(2.2)

De�nition 5. Let d ⊆ T be a subset of time series, N ∈ N∗, PAAset(d,N) =
{PAA(X,N), ∀X ∈ d}.

2.2.1 Dynamic Time Warping algorithm

DTW [Sakoe and Chiba, 1978] is an algorithm of time series alignment algorithm
that performs a non-linear alignment while minimizing the distance between two
time series. To align two time series: X = x1, x2, · · · , xn; Y = y1, y2, · · · , ym, the
algorithm constructs an n×m matrix where the cell (i, j) of the matrix corresponds
to the squared distance (xi−yj)2 between xi and yj. Then to �nd the best alignment

32 Ph.D. Thesis



Chapter 2. Preprocessing of time series 2.2 Background and related works

between X and Y , DTW constructs the path that minimizes the sum of squared
distances. This path, noted W = w1, w2, . . . , wk, . . . , wK , must respect the following
constraints:

• Boundary constraint: w1 = (1, 1) and wK = (n,m);

• Monotonicity constraint: given wk = (i, j) and : wk+1 = (i′, j′) then: i ≤ i′

and j ≤ j′;

• Continuity constraint: given wk = (i, j) and: wk+1 = (i′, j′) then: i′ ≤ i + 1
and: j′ ≤ j + 1.

The warping path is computed by an algorithm based on the dynamic programming
paradigm that solves the following recurrence:

γ(i, j) = d(xi, yj) +min{γ(i− 1, j − 1),
γ(i− 1, j), γ(i, j − 1)}, (2.3)

where d(xi, yj) is the squared distance contained in the cell (i, j) and γ(i, j) is
the cumulative distance at the position (i, j) that is computed by the sum of the
squared distance at the position (i, j) and the minimal cumulative distance of its
three adjacent cells.

Piecewise Dynamic TimeWarping Algorithm (PDTW) [Keogh and Pazzani, 2000]
is the DTW algorithm applied on Piecewise Aggregate time series [Keogh et al., 2001b].
Let N ∈ N∗, X and Y be two time series:

PDTW (X, Y,N) = DTW (PAA(X,N), PAA(Y,N)). (2.4)

The number of segments N that one considers greatly in�uences the quality of
the alignment of the time series. However, PDTW does not give any information
on the way to choose it. For making this choice, [Chu et al., 2002] proposes the
Iterative Deepening Dynamic Time Warping Algorithm (IDDTW).

2.2.2 Iterative Deepening Dynamic Time Warping

For determining the number of segments, IDDTW only considers values that are
power of 2 and for each value, computes an error distribution by comparing PDTW
with the standard DTW at each level of compression. It takes as inputs: the query
Q, the dataset D, the user's con�dence (or tolerance for false dismissals) user_conf
, and the set of standard deviations StdDev obtained from the error distribution.
Example: Let C and Q be two time series of the dataset D, let best_so_far be
the DTW distance between two time series of the dataset. Suppose the distance
Dpdtw(Q,D) is 40 and the best_so_far is 30. The di�erence between the estimated
distance and the best_so_far is 10. Using the error distribution centred around
the approximation (40), we can determine the probability that the candidate could
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Figure 2.2: IDDTW operating principle. Depth represents approximation levels, A
represents approximate distance and B is best_so_far [Chu et al., 2002].

be better by examining the area beyond the location of the best_so_far (shown
in solid black in Figure 2.2): We disqualify a candidate if this probability is less
than the user's speci�ed error acceptance, the candidate is disquali�ed; otherwise, a
�ner aproximation is used and the test is re-applied to the next depth. This process
continues until the full DTW is performed.

More precisely, IDDTW proceeds as follows:

• the algorithm starts by applying the classic DTW to the �rst K candidates
from the dataset. The results of the best matches to the query are contained
in R, with |R| = K. The best_so_far is determined from argmaxR;

• both the query Q and each subsequent candidate C are approximated using
PAA representations with N segments to determine the corresponding PDTW;

• a test is performed to determine whether the candidate C can be pruned o�
or not. If the result of the test is found to have a probability that it could
be a better match than the current best_so_far, a higher resolution of the
approximation is required. Then each segment of the candidate is split into
two segments to obtain a new candidate;

• the process of approximating Q and C to determine the PDTW should be
reapplied and the test is repeated for all approximations levels until they fail
the test or their true distance DTW is determined.

In this way, IDDTW �nds the number of segments that best approximates DTW
and speeds up its computation. However, IDDTW has three main limitations:

• it only considers the numbers of segments for PDTW that are power of 2;
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• it requires a user-speci�ed tolerance for false dismissals that in�uences the
quality of the approximation, but the algorithm does not give any indication
on how to choose the tolerance;

• it considers DTW as a reference while looking for the number of segments that
best aligns the time series. However, because of pathological alignments, DTW
sometimes fails to align time series properly [Keogh and Pazzani, 2001b].

Our goal is to �nd the number of segments that best aligns the time series and
also speeds up the computation of DTW.

2.3 FDTW: a GRASP based heuristic

We propose a heuristic named parameter Free piecewise DTW (FDTW) [Siyou Fotso et al., 2018]
based on Greedy Randomized Adapted Search Procedure that deals with all the lim-
itations of IDDTW: it considers all the possible values for the number of segments, it
is parameter-free and it �nds a number of segments for PDTW based on the quality
of the time series alignment, namely the error rate for classi�cation task. The next
section introduces FDTW.

2.3.1 Evaluation procedures for the compression quality

Before explaining how to evaluate the quality of time series compression, we �rst
describe the time series datasets that we considered. They are made up of time series
associated with labels that identify their shapes. For instance, in the ECG dataset,
each time series traces the electrical activity recorded during one heartbeat. These
time series are split in two classes: normal heartbeat and myocardial infarction.

Time series classi�cation is a classic problem, which consists in guessing the label
of an unlabeled time series based on its shape. The quality of a time series classi�-
cation model is evaluated from its classi�cation error (ε), or its accuracy (a = 1− ε).
When considering a classi�cation task, one of the best classi�cation algorithm for
evaluating the quality of time series alignment is one Nearest Neighbor (1NN).
Indeed, its classi�cation error directly depends on time series alignment, since 1NN
has no other parameters [Wang et al., 2013].

During this work, a compact representation of time series is considered to be
good if it reduces the length of the original time series, but also if the classi�cation
error obtained by classifying the compact time series is small. The classi�cation error
is small when the time series keep their characteristic shape despite compression.

2.3.2 Problem de�nition

Let D = {di} be a set of datasets composed of time series. We note |di| the number
of time series of the dataset di.
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Let X ∈ di be a time series of the dataset di; we note |X| = n the length of the
time series X. For simplicity of notation we suppose that all the time series of di
have the same length.

De�nition 6.

1NNDTW : D → [0, 1] (2.5)

di 7→ 1NNDTW (di) (2.6)

1NNDTW (di) is the classi�cation error of one Nearest Neighbour with Dynamic
Time Warping on the dataset di.

De�nition 7.

1NNPDTW : D × {1 . . . n} → [0, 1]

(di, N) 7→ 1NNPDTW (di, N)
= 1NNDTW ◦ PAAset(di, N)

(2.7)

1NNPDTW (di, N) is the classi�cation error of 1-NN with PDTW using N
segments on di.

Our goal is to �nd the number of segments that allows PDTW to best align time
series. PDTW gives a good alignment when its classi�cation error with 1NN is low
[Rakthanmanon et al., 2012a]. Our problem is then to �nd the number of segments
N that minimizes 1NNPDTW (di, N).

Formally, given a dataset di, of time series that have a length n, we
look for the number of segments N ∈ {1 . . . n} such that

min
1≤N≤n

{1NNPDTW (di, N)}. (2.8)

2.3.3 Brute-force search

The simplest way to �nd the value for the number of segments that minimized the
classi�cation error is to test all the possible values. Obviously, this method is time
consuming as it requires to test n values to �nd the best one. The time complexity
is:

O(|d|2 × n3), (2.9)

where C is the set of values for the number of segments.
To reduce the time of the search, FDTW proposes to look for the number of

segments with the minimal classi�cation error without testing all the possible values.
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2.3.4 Greedy Randomized Adaptive Search Procedures

The Greedy Randomized Adaptive Search Procedures (GRASP) is a multi-start, or
iterative metaheuristic proposed by Feo and Resende (1995) [Feo and Resende, 1995],
in which each iteration consists of two phases: �rstly a new solution is constructed
by a greedy randomized procedure and this solution is then improved using a local
search procedure.

The greediness criterion establishes that candidates with the best quality are
added to a restricted list of candidates. Then, one of the candidate of the restricted
list is chosen at random when building up the solution. The candidates obtained by
greedy algorithms are not necessarily optimal, but they are used as initial solutions
to be explored by local search. The heuristic we proposed is build upon GRASP
and strengthened with an inclusion of speci�c global search component.

2.3.5 Parameter free heuristic

The idea of our heuristic is the following:

1. We choose Nc candidates number of segments, distributed in the space of pos-
sible values to ensure that we are going to have small, medium and large values as
candidates. The candidates values are: n, n−

⌊
n
Nc

⌋
, n−2×

⌊
n
Nc

⌋
, ..., n−Nc×

⌊
n
Nc

⌋
.

For instance, if the length of time series is n = 12 and the number of candidates is
Nc = 4, we are going to select the candidates 12, 9, 6, 3.

1 2 3 4 5 6 7 8 9 10 11 12

2. We evaluate the classi�cation error with 1NNPDTW for each chosen candidate,
and we select the candidate that has the minimal classi�cation error: it is the best
candidate. In our example, let us suppose that we get the minimal value with the
candidate 6: it is thus the best candidate at this step.

1 2 3 4 5 6 7 8 9 10 11 12

3. We respectively look between the predecessor (i.e., 3 here) and successor (i.e.,
9 here) of the best candidate for a number of segments with a lower classi�cation
error: this number of segments corresponds to a local minimum. In our example,
we are going to test values 4, 5, 7 and 8 to see if there is a local minimum.

1 2 3 4 5 6 7 8 9 10 11 12
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4. We restart at step one while choosing di�erent candidates during each iteration
to ensure that we return a good local minimum. We �x the number of iterations to
k ≤ blog(n)c. At each iteration, the �rst candidate is n− (number_of_iteration −
1).

In short, in the worst case, we test the �rst M candidates to �nd the best one.
Then, we test 2n

M
other candidates to �nd the local minimum. We �nally perform

nb(M) = M + 2n
M

tests. The number of tests to be performed is a function of the
number of candidates. Hence, how many candidates should we consider to reduce
the number of tests? The �rst derivative of nb function vanishes when M =

√
2n

and its second derivative is positive; so the minimal number of tests is obtained
when the number of candidates is : M =

√
2n. At each iteration, the heuristic

tests nb(
√

2n) =
√

8n number of segments. As we have k iterations the number
of candidates tested is: |C| = k

√
8n. The details of the heuristic are presented in

Algorithm 1.

Time complexity: We use the training set to �nd the number of segments
that should be considered with PDTW. For that purpose, we applied 1NN on the
training set that costs

O(|d|2 × n2
√
n). (2.10)

where |d|2 comes from 1NN algorithm and n2
√
n comes from PDTW .

Lemma 1:
For a given dataset di, the quality of the alignment of our heuristic is better than
that of DTW: FDTW (di) ≤ 1NNDTW (di).

Proof:
1NNDTW (di) = 1NNPDTW (di, n). Then, 1NNDTW (di) is one of the candi-
dates considered by the heuristic FDTW . Since FDTW returns the minimal clas-
si�cation error from all candidates, the classi�cation error of 1NNDTW is always
greater than or equal to FDTW .

Nevertheless, a heuristic does not always give the optimal value. To ensure that
it gives a result not far from the optimal value, one approach is to guarantee that
the result of the heuristic always lies within an interval with respect to the optimal
value [Ibarra and Kim, 1975].

In our case, we are looking for the number of segments that allows a good align-
ment of time series. The alignment is good when the classi�cation error with 1NN
is minimal or when the accuracy is maximal.

Let di be a dataset:
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Algorithm 1: Parameter Free Dynamic Time Warping
Input: training_set, length of a time serie : n,
number of iterations : nb_rep
Output: The number of segments to be used N
The accuracy associated to N

1 function FDTW(training_set, n, nb_rep)
2 l← floor(n/sqrt(2 ∗ n))
3 tab_N ← ones(n)
4 forall i ∈ {0, 1, . . . , (nb_rep− 1)} do
5 tab_N_possible_candidates← seq(from = (n− i), to = 1, by = −l)
6 nb_candidats← |tab_N_possible_candidates|
7 for i in {1, 2, . . . , nb_candidates} do
8 if tab_N [tab_N_possible_candidates[i]] 6= 0 then
9 tab_N_candidates[j]← tab_N_possible_candidates[i]
10 tab_N [tab_N_candidates[j]]← 0
11 j ← j + 1

12 mat_r ← 1NNPDTW (training_set, tab_N_candidats)
/* 1NNPDTW return a matrix of couple (N, error) */

13 min← minimun(mat_r)
/* minimum return the couple (N, error) with the minimum

error */

14 result[(i+ 1)]←
localMinimun(min.N,min.error, training_set, tab_N)

15 m← minimun(result)
16 return m

accmax(di) = 1 − min
1≤α≤n

{1NNPDTW (di, α)} is the maximal accuracy for the

dataset di,
accDTW = 1 − 1NNDTW (di) is the accuracy obtained with di and 1NNDTW,

and
accFDTW = 1− FDTW (di) is the accuracy of our heuristic.
To ensure the quality of our heuristic FDTW, we hypothesized that 1NNDTW

is better than Zero Rule classi�er. Zero Rule classi�er is a simple classi�er that
predicts the majority class of test data (if nominal) or average value (if numeric).
Zero Rule is often used as baseline classi�er [Cu°ín et al., 2007]. The minimal value
of the accuracy of Zero Rule is 1

c
where c is the number of classes of the dataset.

Proposition 1.:
For a given dataset di that has ci classes, ci ∈ N∗,

if accDTW ≥ 1
ci
then 1

ci
× accmax ≤ accFDTW ≤ accmax
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Proposition 1 shows that 1NN associated with DTW has a better accuracy than
the baseline classi�er Zero Rule; the FDTW heuristic is a parametric approximation.

Proof:
By de�nition, accFDTW ≤ accmax We look for β ∈ N such that

1

β
× accmax ≤ accFDTW ⇔

accmax
accFDTW

≤ β (2.11)

However,
accmax
accFDTW

≤ 1

accFDTW
because accmax ≤ 1 (2.12)

And,
1

accFDTW
≤ 1

accDTW
because accDTW ≤ accFDTW (2.13)

So,
1

accDTW
≤ ci because

1

ci
≤ accDTW by hypothesis (2.14)

2.4 Experiment and results

Throughout the experiments described in this chapter, FDTW performs three iter-
ations (k=3) when searching for the appropriate number of segments for a dataset.
To evaluate the ability of FDTW heuristic to propose a good number of segments
for PAA, it has been compared to IDDTW algorithm in terms of:

• Execution speed;

• Time series compression ratio;

• Classi�cation error associated with the number of segments found by the
heuristic.

2.4.1 Case studies

PAA is widely used in time series data mining and often as a primitive by other
algorithms such as those allowing to construct a symbolic representation of time
series, those allowing to index a time series or even those allowing to classify time
series. In this section, we present some algorithms for which the preprocessing
performed by FDTW allows to improve the �nal results.

Compression

Compression ratio: An immediate way to evaluate the quality of the segmen-
tation is to compare compression ratios. A segment number N1 will be better than a
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segment number N2 if it allows to obtain a more compact representation with PAA.
The compression ratio is given by:

r =
n−N
n

,

where n is the length of the time series and N is the number of segments considered
with PAA. The closer r is to 1 the better is the compression.

The numbers of segments used here are shown in Table 2.1. For the considered
datasets, the mean compression ratio of IDDTW (r = 0.654) is slightly higher
than that of FDTW (r = 0.605). However, this di�erence is not signi�cant. In-
deed, the wilcoxon test gives a p-value greater than 0.1 (p > 0.1). Therefore, we
cannot reject the hypothesis that the compression ratios of IDDTW and FDTW are
equal.

Application: PAA used with a suitable segment number allows compression of
the time series of the Co�ee dataset without loss of information. Although they are
more compact, the obtained time series capture the main variations of the original
time series (�gure 2.3).

Classi�cation

PAA is used by ShapeDTW [Zhao and Itti, 2016] and DTW_F [Kate, 2016b] to
classify time series. However, to evaluate the actual impact of the segment number
considered on the classi�cation, we tested FDTW to choose the number of segments
to use with 1NN and PDTW.

PDTW was designed to speed up the calculation of DTW without degrading
the accuracy. In our experiments, we observe that when the number of segments is
chosen, this may even lead to an improvement of the results of the classi�cation.

Quality of the number of segments:
A segment number N1 is better than a segment number N2 if the classi�cation error
associated with N1 is smaller than that associated with N2. So, to evaluate the
quality of our heuristic FDTW, we compared its classi�cation errors with that of
IDDTW. The classi�cation error was computed from the results of the 3 fold cross
validation applied on the training set. IDDTW tested all the values of N that were
equal to a power of two and kept the one that had a minimum classi�cation error
(Table 2.1).

Application:
According to the announcement in Lemma 1, the classi�cation error of FDTW
during the learning phase (training error) is less than or equal to that of DTW for
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Figure 2.3: Visual comparison of two time series from the two classes of the co�ee
dataset. Left: the original time series (286 data points), right: representation using
PAA with 88 segments
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all the considered datasets. We used Wilcoxon signed rank test with continuity
correction to test the signi�cance of FDTW against IDDTW. The Wilcoxon signed
rank test gives a p-values, p < 0.01, which demonstrates that FDTW achieves a
signi�cant reduction of the classi�cation error of IDDTW. This also demonstrates
that FDTW allows to �nd segment numbers for PAA that are of better quality than
those found by IDDTW during the learning phase.

N◦ Datasets DTW IDDTW N FDTW N
(training set)

1 50Words 0.349 0.340 256 0.318 80
2 Adiac 0.462 0.426 128 0.426 140
3 ArrowHead 0.250 0.167 16 0.111 14
4 Beef 0.567 0.900 8 0.567 169
5 Car 0.400 0.233 8 0.217 385
6 CBF 0.000 0.000 128 0.000 22
7 Co�ee 0.033 0.133 64 0.000 88
8 Cricket_X 0.210 0.244 256 0.190 84
9 Cricket_Y 0.279 0.285 256 0.272 214
10 Cricket_Z 0.267 0.272 256 0.249 250
11 DistalPhalanxOutlineAgeGroup 0.570 0.541 16 0.534 14
12 DistalPhalanxTW 0.375 0.339 16 0.317 40
13 Earthquakes 0.266 0.266 512 0.223 101
14 ECG 0.240 0.170 8 0.170 11
15 ECGFive Days 0.387 0.220 32 0.220 7
16 Face (all) 0.875 0.873 128 0.870 50
17 Face (four) 0.208 0.125 32 0.083 140
18 Fish 0.343 0.314 16 0.303 27
19 Gun-point 0.201 0.039 32 0.020 38
20 Ham 0.650 0.512 32 0.512 32
21 Haptics 0.587 0.536 64 0.516 239
22 InlineSkate 0.519 0.519 64 0.499 48
23 ItalyPower Demand 0.045 0.060 8 0.045 20
24 Lightning-2 0.183 0.150 16 0.100 179
25 Lightning-7 0.315 0.344 64 0.200 155
26 Medical Images 0.286 0.307 64 0.278 94
27 MiddlePhalanxTW 0.429 0.442 32 0.429 80
28 MoteStrain 0.246 0.246 16 0.190 46
29 OliveOil 0.367 0.367 32 0.333 423
30 OSU leaf 0.310 0.335 32 0.270 33
31 Plane 0.000 0.000 32 0.000 32

continued on next page
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N◦ Datasets DTW IDDTW N FDTW N
(training set)

32 ProximalPhalanxTW 0.317 0.283 4 0.283 4
33 ShapeletSim 0.786 0.246 8 0.143 45
34 SonyAIBORobot Surface 0.198 0.095 16 0.048 22
35 SonyAIBORobot Surface II 0.148 0.111 64 0.037 42
36 Swedish 0.250 0.238 64 0.218 59
37 Symbols 0.037 0.037 32 0.000 34
38 Synthetic Control 0.350 0.410 32 0.350 60
39 Trace 0.000 0.000 64 0.000 108
40 Two patterns 0.000 0.000 32 0.000 32
41 TwoLead ECG 0.125 0.083 64 0.083 52
42 Wafer 0.014 0.012 8 0.008 111
43 Wine 0.684 0.632 128 0.632 20
44 Words Synonyms 0.419 0.423 64 0.382 57
45 Yoga 0.233 0.187 128 0.187 356

Table 2.1: Classi�cation errors associated with the number of segments N chosen
by the heuristics IDDTW and FDTW. When two numbers of segments N1 and N2

are associated with the same classi�cation error, the smallest is considered. The
classi�cation error is calculated based on the 3 fold cross validation applied on the
training set.

Comparison with IDDTW:
To evaluate the quality of FDTW, we compared its classi�cation errors with

that of IDDTW and the minimal one. The minimal classi�cation error was �nd by
applying Brute-force search (BF) on both training set and testing set. FDTW and
IDDTW used the training set to �nd the segment number N with minimal training
error using 3 fold cross validation, and then used this number of segments on the
testing set to compute the classi�cation error. The value of the segment number N
found on the training set may in some cases not be appropriate for the testing set.
It is a generalization error, which is due to the representativeness of the training set
(Table 2.2).

If two numbers of segments N1 and N2 are associated with the same training
error, we retain the largest. IDDTW tested all the values of N that were equal to
a power of two during the learning phase and kept the one that had a minimum
classi�cation error.
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[Chen et al., 2015] Our experiments

N◦ 1NN 1NN 1-NN Brute N(`) IDDTW N(`) FDTW N(`)
Eucli DTW DTW (r) force
dean search
distance

1 0.369 0.310 0.242 (6) 0.262 251(1) 0.268 256(1) 0.268 258(1)
2 0.389 0.396 0.391 (3) 0.379 162(1) 0.432 128(1) 0.414 143(1)
3 0.333 0.367 0.333 (0) 0.233 286(2) 0.3 8(59) 0.367 94(5)
4 0.425 0.274 0.288 (5) 0.192 150(2) 0.301 64(5) 0.301 170(2)
5 0.26 0.25 0.253 (5) 0.233 27(2) 0.283 2(40) 0.283 385(2)
6 0.148 0.003 0.004 (11) 0 118(1) 0.003 128(1) 0.001 128(1)
7 0.000 0.000 0.000 (0) 0 13(22) 0 64(4) 0.000 286(1)
8 0.423 0.246 0.228 (10) 0.228 142(2) 0.256 256(1) 0.269 84(4)
9 0.433 0.256 0.238 (17) 0.231 271(1) 0.241 256(1) 0.244 294(1)
10 0.413 0.246 0.254 (5) 0.221 249(1) 0.223 256(1) 0.233 276(1)
11 0.218 0.208 0.228 (1) 0.2 78(1) 0.225 16(5) 0.223 80(1)
12 0.273 0.29 0.272 (0) 0.263 35(2) 0.288 16(5) 0.278 80(1)
13 0.326 0.258 0.258 (22) 0.198 176(2) 0.258 512(1) 0.276 101(5)
14 0.120 0.230 0.120 (0) 0.13 38(3) 0.19 8(12) 0.180 11(9)
15 0.203 0.232 0.203 (0) 0.117 11(12) 0.289 32(4) 0.117 11(12)
16 0.286 0.192 0.192 (3) 0.091 79(2) 0.194 128(1) 0.148 99(1)
17 0.216 0.170 0.114 (2) 0.08 107(3) 0.352 32(11) 0.102 140(3)
18 0.217 0.177 0.154(4) 0.154 149(3) 0.257 16(29) 0.177 27(17)
19 0.087 0.093 0.087 (0) 0.02 38(4) 0.073 32(5) 0.020 38(4)
20 0.4 0.533 0.400 (0) 0.343 21(20) 0.026 32(13) 0.432 32(13)
21 0.630 0.623 0.588 (2) 0.549 328(3) 0.588 64(17) 0.594 948(1)
22 0.658 0.616 0.613 (14) 0.578 1770(1) 0.627 64(29) 0.622 171(11)
23 0.045 0.050 0.045 (0) 0.033 20(1) 0.043 8(3) 0.033 24(1)
24 0.133 0.167 0.133 (0) 0.1 191(3) 0.167 32(18) 0.100 234(2)
25 0.267 0.267 0.233 (1) 0.183 52(11) 0.367 8(72) 0.367 377(1)
26 0.038 0 0.000 (6) 0 35(4) 0 128(1) 0 135(1)
27 0.439 0.416 0.419 (2) 0.398 27(2) 0.414 32(2) 0.416 80(1)
28 0.121 0.165 0.134 (1) 0.135 14(6) 0.197 16(5) 0.165 84(31)
29 0.246 0.131 0.131 (6) 0.082 70(9) 0.246 16(40) 0.180 524(1)
30 0.479 0.409 0.388 (7) 0.364 31(14) 0.372 32(13) 0.409 35(12)
31 0.316 0.263 0.253 (20) 0.255 95(1) 0.271 64(2) 0.280 34(3)
32 0.292 0.263 0.263 (6) 0.24 75(1) 0.288 4(20) 0.288 4(20)
33 0.461 0.35 0.300 (3) 0.083 54(9) 0.239 64(7) 0.122 48(10)
34 0.305 0.275 0.305 (0) 0.206 37(2) 0.208 16(4) 0.304 26(3)
35 0.141 0.169 0.141 (0) 0.14 5(13) 0.197 16(4) 0.178 45(1)

continued on next page
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continued from previous page

[Chen et al., 2015] Our experiments

N◦ 1NN 1NN 1-NN Brute N(`) IDDTW N(`) FDTW N(`)
Eucli DTW DTW (r) force
dean search
distance

36 0.211 0.208 0.154 (2) 0.165 59(2) 0.195 64(2) 0.208 55(2)
37 0.100 0.050 0.062 (8) 0.044 376(1) 0.059 32(12) 0.060 34(12)
38 0.120 0.007 0.017 (6) 0.007 60(1) 0.437 2(30) 0.007 60(1)
39 0.240 0.000 0.010 (3) 0 47(6) 0 64(4) 0 275(1)
40 0.090 0.000 0.002 (4) 0 21(6) 0 64(2) 0 128(1)
41 0.253 0.096 0.132 (5) 0.045 55(1) 0.073 32(3) 0.112 70(1)
42 0.005 0.020 0.005 (1) 0.007 109(1) 0.013 8(19) 0.008 95(2)
43 0.389 0.426 0.389 (0) 0.204 3(78) 0.463 20(11) 0.37 128(1)
44 0.382 0.351 0.252 (8) 0.337 133(2) 0.365 64(4) 0.343 135(2)
45 0.170 0.164 0.155 (2) 0.149 117(4) 0.158 128(3) 0.154 384(1)

X 0.268 0.227 0.242 0.175 0.232 0.214

Table 2.2: Comparison of generalization errors. In italics, the smallest generaliza-
tion error. In bold, the smallest generalization error between IDDTW and FDTW.
N is the number of segments selected and ` is the number of data points in a segment
(l = b n

N
c). The generalization error is computed on the testing set. Note : DTW (r)

is a constraint version of DTW where the number of consecutive data points that
can be compared to a single point during the warping is bounded. r represents the
size of the warping windows

The results of our experiments showed that FDTW is more performant than
IDDTW. Actually, FDTW resulted in a lower generalization error than IDDTW on
22 datasets and the same generalization error than IDDTW on 8 datasets. The
Wilcoxon signed rank test gives a p-values, 0.01 < p ≤ 0.05, which demonstrates
that FDTW achieved a signi�cant reduction of the generalization error of IDDTW.
Results also showed that FDTW was able to �nd the minimum error for 9 datasets
(Co�ee, ECGFiveDays, Gun-point, ItalyPowerDemand, OliveOil, Plane, Synthetic
control, Trace, Two patterns) and outperforms the smallest classi�cation error re-
ported in the literature on dataset CBF (N◦5).

Heuristic execution speed1:
As already suggested by the time complexity of both FDTW and IDDTW heuris-

tics, IDDTW tests fewer candidates than FDTW and is therefore faster. However,
the number of candidates tested by FDTW reduces exponentially with the length of
the time series (Figure 2.4). Actually, the number of candidates to be tested ranges

1Note: The experiments were conducted on a PC with an Intel Core i7 processor, 16GB of
RAM and a Windows 7 64-bit operating system.
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Figure 2.4: Comparison of the number of tested values of the parameter number of
segments with the FDTW and IDDTW. Datasets are sorted according to the length
of the time series (x-axis).

from 1 to n, n being the length of time series, and FDTW considers
√
n candidates

for each iteration.
In average, FDTW is 8 times faster than Brute-force search with an average

execution time of 176 minutes against 1386 minutes for Brute-force search. IDDTW
is 7 times faster than FDTW and remains the fastest with an average execution time
of 24 minutes. The execution time increases with the length of the time series (Figure
2.5). The increase of Brute-force search execution time is much more important than
that of FDTW and IDDTW, particularly on datasets that contain more than 600
points (e.g. Lightning-2).

Comparison with other classi�cation algorithms:
To evaluate the quality of FDTW, we compared its classi�cation errors (general-

ization error) with that of 35 other classi�cation algorithms [Bagnall et al., 2016b]
of the literature on 84 datasets of UCR archive. The performances of the algorithms
are compared using the Nemenyi test that compares all the algorithms pairwise and
provides an intuitive way to visualize the results (Fig. 2.6). The Nemenyi test allows
ranking classi�cation algorithms according to their average accuracy on 84 datasets.
FDTW obtained good results on the simulated datasets in terms of average accu-
racy (3rd / 37 algorithms) because data of the training set and of the testing set are
generated by the same models.

However, to evaluate the signi�cance of the di�erence between the 35 classi-
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Figure 2.5: Comparison of the execution time of the Brute-force search algorithm,
FDTW and IDDTW.
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Figure 2.6: Critical di�erence diagram for FDTW and 36 other classi�cation algo-
rithms on 6 simulated datasets. FDTW is ranked 3rd / 37 algorithms
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Figure 2.7: Eight types of time series corresponding to the vocabulary of 8 gestures.

�cation algorithms on 84 datasets, we used the Wilcoxon signed rank test with
continuity correction, which has a higher statistical power than Nemenyi test. The
results of these tests show that despite data compression,

• FDTW had a better performance than Naive Bayes (NB), C45, logistic regres-
sion (Logistic), BN;

• FDTW had a similar performance as 26 other algorithms in the literature,
namely: SVMQ, RANDF, ROTF, MLP, EUCLIDEAN_1_NN, DDTW_R1_1NN,
DDTW_RN_1NN, ERP_1NN, LCSS_1NN, MSM_1NN, TWE_1NN, WD-
DTW_1NN, WDTW_1NN, DD_DTW, DTD_C, LS, BOP, SAXVSM, TSF,
TSBF, LPS, PS, CID_DTW, SVML, FS, ACF;

• Only �ve algorithms DTW_F, Shapelet Transform (ST), BOSS, Elastic En-
semble (EE) and COTE performed better overall than FDTW.

These results demonstrate the competitiveness of FDTW. Moreover, this algo-
rithm outperforms the best result reported in the literature on UWaveGestureLi-
braryAll dataset (Fig. 2.7). The challenge with this dataset is to recognize the
gesture made by a user from measurements made by accelerometers. As reported
in [Bagnall et al., 2016a] the best accuracy obtained on this dataset is 83.44% with
TSBF algorithm; FDTW outperforms this result and allows to obtain 91.87% of
accuracy.

Additional experiments are available here [Siyou Fotso et al., 2016]. It is possible
to consider the internal properties of time series to choose the compression ratio to
use with them. However, this approach gives less good results (Appendix B).

2.5 Conclusion and perspective

This chapter deals with the problem of choosing an appropriate number of segments
to compress time series with PAA in order to improve the alignment with DTW. In
this aim, we proposed a parameter Free heuristic named FDTW, wich approximates
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the optimal number of segments to use. The experiments showed that, FDTW
increased the quality of alignment of time series especially on synthetic datasets
where DTW associated with PAA performed better than any other variant of DTW
on a classi�cation task. FDTW was rank 3/37 behind two ensemble classi�cation
algorithms COTE and EE. In general, FDTW is faster than Brute force search but
run lower than IDDTW. However, FDTW gives a better result than IDDTW on
classi�cation task. FDTW also allows reducing the storage space and the processing
time of time series while increasing the quality of the alignment of DTW.

As a perspective, the problem we have dealt with in this chapter could be modeled
as a multi-objective optimization problem where one objective function would be
compression and the other the classi�cation of time series.

Another crucial aspect of time series knowledge discovery is the comparison of
time series especially when those time series are uncertain. This aspect will be
discussed more in-depth in the next chapter.

Key points
• We proposed a heuristic for time series compression with Piecewise Aggregate
Approximation for classi�cation purpose.

• We experimentally showed that in addition to reducing the length and the pro-
cessing time of time series, compression can improve the classi�cation of time series.

Communications:
− Siyou Fotso VS, Mephu-Nguifo E, Vaslin Ph. Parameter Free Piecewise Dynamic
Time Warping. ROADEF, France, Febuary 2017
− Siyou Fotso VS, Mephu-Nguifo E, Vaslin Ph. Parameter free piecewise Dynamic
Time Warping for time series classi�cation. Time Series workshop at International
Conference on Machine Learning, Sydney, Australia, August 2017
− Siyou Fotso VS, Mephu Nguifo E, Vaslin Ph. Grasp heuristic for time series
compression with piecewise aggregate approximation, Journal RAIRO : Operations
Research, accepted. In press.
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Chapter 3
Frobenius correlation based u-shapelets

discovery for time series clustering

Abstract : An unsupervised shapelet (u-shapelet) is a sub-sequence of a time
series used for clustering a time series dataset. The purpose of this chapter is to
discover u-shapelets on uncertain time series. To achieve this goal, we propose a
dissimilarity score robust to uncertainty called FOTS whose computation is based on
the eigenvector decomposition and the comparison of the autocorrelation matrices of
the time series. This score is robust to the presence of uncertainty; it is not very
sensitive to transient changes; it allows capturing complex relationships between time
series such as oscillations and trends, and it is also well adapted to the comparison
of short time series. The FOTS score has been used with the Scalable Unsupervised
Shapelet Discovery algorithm for the clustering of 17 datasets, and it has shown a
substantial improvement in the quality of clustering with respect to the Rand Index.
This work de�nes a novel framework for clustering of uncertain time series.

3.1 Introduction

All measurements performed by a mechanical system contain uncertainty. Indeed,
the uncertainty principle is partly a statement about the limitations of mechan-
ical systems ability to perform measurements on a system without disturbing it
[Folland and Sitaram, 1997]. Thus, time series obtained from sensors are unavoid-
ably uncertain. These time series constitute a vast proportion of the data used
in science, as in medicine with ECGs, in physics with measurements recorded by
telescopes, or in computing with the Internet of Things and so on. Ignoring the
uncertainty of the data during their analysis can lead to rough or inaccurate con-
clusions, hence the need to implement uncertain data management techniques.

Several recent studies have focused on the processing of uncertainty in data min-
ing. Two main approaches allow to take uncertainty into account in data mining

51



3.1 Introduction Chapter 3. Uncertain time series u-shapelet discovery

tasks: either it is taken into account during the comparison by using appropriate dis-
tance functions [Rizvandi et al., 2013, Hwang et al., 2014, Rehfeld and Kurths, 2014,
Orang and Shiri, 2014, Wang et al., 2015, Orang and Shiri, 2017], or its impact is
reduced by transformations performed on the data [Orang and Shiri, 2015]. This
latter strategy is used natively by the u-shapelet algorithm.

3.1.1 Review of u-shapelets

Let us consider a data set consisting of 6 time series corresponding to two birds' calls:
3 time series corresponding to Olive-sided Flycatcher (green) and three time series
corresponding to calls of White-crowned Sparrow (blue). When these time series are
classi�ed using Euclidean distance as a measure of dissimilarity the groups obtained
are not homogeneous (Fig. 3.1 left); in other words, it's not possible to recognize
the bird from its calls. However, if characteristic sub-sequences (u-shapelets) are
considered to classify time series, we obtain more homogeneous groups than with
Euclidean distance (Fig. 3.1 right).

Figure 3.1: Example of classi�cation of time series of two birds' calls (green:
Olive-sided Flycatcher; blue: White-crowned Sparrow) using on the one hand
the Euclidean distance(left), and on the other hand the u-shapelet (right)
[Ulanova et al., 2015]

Once this feature has been observed, the natural question is how to �nd the sub-
sequences that characterize a group of times series, that is, the sub-sequences that
are observed only in a time series subgroup. The u-shapelet discovery algorithm
answers this question and proceeds as follows: (a) The algorithm takes the length of
the pattern as a parameter. (b) On each time series of the base, a window of the same
length as the pattern is dragged, each new sub-sequence obtained by this process
is a candidate pattern. (c) The candidate consider as a pattern is the subsequence
capable of dividing the time series data set into two subsets Da and Db such that
Da contains all the time series which possess the pattern and Db all those which do
not contain the pattern.

Two other constraints are taken into account in the discovery of patterns:

• The �rst is the ability of the pattern to build subsets that are well separated.

• The second is the ability of employers to build subsets that are not unbalanced.
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That is, the size of Da must be at most k times larger than that of Db and vice
versa.

De�nition 8. Two datasets DA and DB are said to be r-balanced if only if
1
r
< |DA|
|DB |

< (1− 1
r
), r > 1

De�nition 9. An Unsupervised-Shapelet is any sub-sequence that has a length
shorter than or equal to the length of the shortest time series in the dataset, and
that allows dividing the dataset into two r-balanced groups DA and DB; where DA

is the group of time series that contains a pattern similar to the shapelet and DB

is the group of time series that does not contain the shapelet.

The similarity between a time series and a shapelet is evaluated using a distance
function.

De�nition 10. The sub-sequence distance sdist(S, T) between a time series T and
a sub-sequence S is the minimum of the distances between the sub-sequence S and
all possible sub-sequences of T of length equal to the length of S.

This de�nition raises the question of which distance measure to use for sdist. In
general, the ubiquitous Euclidean distance (ED) is used, but it is not appropriate for
uncertain time series [Orang and Shiri, 2014]. In the following section, we introduce
a dissimilarity function that is more adapted to uncertainty.

Computing the sdist between a u-shapelet candidate and all time series in a
dataset creates an orderline:

De�nition 11. An orderline is a vector of sub-sequence distances sdist(S, Ti) be-
tween a u-shapelet and all time series Ti in the dataset.

The computation of the orderline is time-consuming. An orderline for a single
u-shapelet candidate is O(NMlog(M)) where N is the number of time series in the
dataset andM is the average length of the time series. The brute force algorithm for
U-shapelets discovery requires K such computations, where K is the number of sub-
sequences. The strategy used by [Ulanova et al., 2015] in Scalable Unsupervised
Shapelet algorithm consists in �ltering the K candidate segments by considering
only those allowing to build r-balanced groups. This selection is e�ciently made
using a hash algorithm.

The assessment of a u-shapelet quality is based on its separation power which is
calculated as follows :

gap = µB − σB − (µA − σA), (3.1)

where µA (resp. µB) denotes mean(sdist(S, DA)) (resp. mean(sdist(S, DB))),
and σA (resp. σB) represents the standard deviation of sdist(S,DA) (resp. standard
deviation of sdist(S,DB)). If DA or DB contains only one element (or an insignif-
icant number of elements that cannot represent a separate cluster), the gap score
is assigned to zero. This ensures that a high gap scored for a u-shapelet candidate
corresponds to a true separation power.
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3.1.2 U-shapelets algorithm for clustering Uncertain Time

Series

U-shapelets clustering is a framework introduced by [Zakaria et al., 2012] who sug-
gested clustering time series from the local properties of their sub-sequences rather
than using their global features [Zhang et al., 2016]. In that aim, u-shapelets clus-
tering �rst seeks a set of sub-sequences characteristic of the di�erent categories of
time series and classi�es a time series according to the presence or absence of these
typical sub-sequences in it.

Clustering time series with u-shapelets has several advantages. Firstly, u-shapelets
clustering is de�ned for datasets in which time series have di�erent lengths, which is
not the case of most techniques described in the literature. Indeed, in many cases,
the equal length assumption is implied, and the trimming to equal length is done by
exploiting expensive human skill [Ulanova et al., 2015]. Secondly, u-shapelets clus-
tering is much more expressive regarding representational power. Indeed, it allows
clustering only time series that can be clustered and do not cluster those that do
not belong to any cluster.

Furthermore, it is very appropriate to use u-shapelets clustering with uncertain
time series because it can ignore irrelevant data and thus, reduce the adverse e�ects
of the presence of uncertainties in the time series. Nevertheless, it is highly desirable
to take into account the adverse impact of uncertainty during u-shapelet discovery.

3.1.3 Uncertainty and u-shapelets discovery issue

Traditional measurement of similarity like Euclidean distance (ED) or Dynamic
Time Warping (DTW) do not always work well for uncertain time series data. In-
deed, they aggregate the uncertainty of each data point of the time series being
compared and thus amplify the negative impact of uncertainty. However, ED plays
a fundamental role in u-shapelet discovery because it is used to compute the gap,
i.e. the distance between the two groups formed by a u-shapelet candidate. The
discovery of u-shapelet on uncertain time series could thus lead to the selection of a
wrong u-shapelet candidate or to assign a time series to the wrong cluster.

In this study, our goal is not to de�ne an uncertain u-shapelet algorithm, but
rather to use a dissimilarity function robust to uncertainty to improve the quality of
the u-shapelets discovered and thus the clustering quality of uncertain time series.

3.1.4 Summary of contributions

• We review the state of the art on similarity functions for uncertain time series
and evaluate them for the comparison of small, uncertain time series.

• We introduce the Frobenius cOrrelation for uncertain Time series u-shapelet
discovery (FOTS), a new dissimilarity score based on local correlation, which
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has interesting and useful properties for comparison of small, uncertain time
series and that makes no assumption on the probability distribution of uncer-
tainty in data.

• We put the source code at the disposal of the scienti�c community to allow
extension of our work [FOTS-SUSh, 2018].

3.2 Background and Related works

3.2.1 Background

An Uncertain Time Series (UTS) X =< X1, . . . , Xn > is a sequence of random
variables where Xi is the random variable modeling the unknown real value number
at timestamp i. There are two main ways to model uncertain time series: multiset-
based model and PDF-based model.

In Multiset-based model, each element Xi(1 ≤ i ≤ n) of an UTS X =<
X1, . . . , Xn > is represented as a set {Xi,1, . . . , Xi,Ni

} of observed values and Ni

denotes the number of observed values at timestamp i (Fig. 3.2).

time

X1 X2 X3 Xn...

Figure 3.2: Multiset-based model of uncertain time series.

In PDF-based model, each elementXi, (1 ≤ i ≤ n) of UTSX =< X1, . . . , Xn >
is represented as a random variable Xi = xi + Xei (Fig. 3.3), where xi is the exact
but unknown value and Xei is a random variable representing the error. It is this
model that we consider in this work.

Several similarity measures have been proposed for uncertain time series. They
are grouped into two main categories:
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time

X1 X2 X3 Xn...

Figure 3.3: PDF-based model of uncertain time series

• Traditional similarity measures such as Euclidean distance are those con-
ventionally used with time series. They use a single uncertain value at each
timestamp as an approximation of the unknown real value.

• Uncertain similarity measures use additional statistical information that
quanti�es the uncertainty associated with each approximation of the real value
: this is the case of DUST, PROUD, MUNICH [Dallachiesa et al., 2012].
[Orang and Shiri, 2015] demonstrated that the performances of uncertain sim-
ilarity measures associated with pre-processing of data are higher than those
of traditional similarity measurements.

3.2.2 State of the art on uncertain similarity functions

Uncertain similarity measures can be grouped into two broad categories : determin-
istic similarity measurements and probabilistic similarity measurements.

Deterministic Similarity Measures

Like traditional similarity measures, deterministic similarity measures return a real
number as the distance between two uncertain time series. DUST is an example of
deterministic similarity measure.

DUST [Murthy and Sarangi, 2013] Given two uncertain time series
X =< X1, . . . , Xn > and Y =< Y1, . . . , Yn > , the distance between two uncer-

tain values Xi, Yi is de�ned as the distance between their true (unknown) values
r(Xi), r(Yi):

dist(Xi, Yi) = |r(Xi)− r(Yi)|. (3.2)
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This distance is used to measures the similarity of two uncertain values.
ϕ(|Xi−Yi|) is the probability that the real values at timestamp i are equal, given

the observed values at that instant :

ϕ(|Xi − Yi|) = Pr(dist(0, |Xi − Yi|) = 0). (3.3)

This similarity function is then used inside the dust dissimilarity function:

dust(Xi, Yi) =
√
−log(ϕ(|Xi − Yi|)) + log(ϕ(0)). (3.4)

The distance between uncertain time series X and Y in DUST is then de�ned as
follows:

DUST (X, Y ) =

√√√√ n∑
i=1

dust(Xi, Yi)
2 . (3.5)

The disadvantage of DUST is that it breaks the triangle inequality for small
distances. Triangular inequality is a desirable property of dissimilarity functions
because it makes it possible to speed-up the comparison of time series. For example,
for density based clustering two time series A and B are considered similar if the
distance between them is less than ε. Thus, if the sum of the distances d (A, B)
and d (B, C) is less than ε, we deduce that the distance d (A, C) is also without
calculating it. The triangular inequality is also used for the exact indexing of time
series [Keogh et al., 2001c].

To remedy this, we introduce a new deterministic distance function based on the
Hellinger distance that evaluate the dissimilarity between uncertain time series and
respects triangular inequality.

Hellinger Based Distance To evaluate the similarity between two probability
distributions, we can measure the area of intersection between these two probability
distributions (Figure 3.4) . If the area of this intersection is zero, then the probability
distributions are disjoint, if it is 1 then the probability distributions are identical.
The area of this intersection can be calculated using the Bhattacharyya coe�cient
(B) [Patra et al., 2015].

TheHellinger distance, based on the use of the Bhattacharyya coe�cient, allows
to measure the dissimilarity between two probability distributions. It is de�ned as
follows:

De�nition 12. The Hellinger distance between two probability measures P and Q
that are absolutely continuous relative to some σ-�nite measure µ on a measurable
space (x, β) is de�ned by the formula:

H(P,Q) = {2[1−B(P,Q)]}
1
2 , (3.6)
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Figure 3.4: Bhattacharyya

where

B(P,Q) =

∫ √
dP

dµ

√
dQ

dµ
dµ. (3.7)

Theorem 1. The Hellinger distance satisfy the triangle inequality
[Ibragimov and Has' minskii, 2013].

Based on Hellinger distance we de�ne the HBD distance (Hellinger Based Dis-
tance) which measures the dissimilarity between two uncertain time series:

De�nition 13. The distance between uncertain time series X =< X1, . . . , Xn >
and Y =< Y1, . . . , Yn > under Hellinger Based Distance is then de�ned as follows:

HBD(X, Y ) =

√√√√ n∑
i=1

H(Xi, Yi)
2 . (3.8)

Theorem 2. HBD distance satisfy the triangle inequality.

Proof. Let X =< X1, . . . , Xn >, Y =< Y1, . . . , Yn >, Z =< Z1, . . . , Zn > be three
uncertain time series, we want to proof that

√√√√ n∑
i=1

H(Xi, Yi)
2 +

√√√√ n∑
i=1

H(Yi, Zi)
2 ≥

√√√√ n∑
i=1

H(Xi, Zi)
2 . (3.9)

First, let us show that:√√√√ n∑
i=1

H(Xi, Yi)
2

×
√√√√ n∑

i=1

H(Yi, Zi)
2

 ≥ n∑
i=1

H(Xi, Yi)H(Yi, Zi) (3.10)
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by squaring the two members of the inequality (3.10) we obtain

(
n∑
i=1

H(Xi, Yi)
2

)
×

(
n∑
i=1

H(Yi, Zi)
2

)
≥

(
n∑
i=1

H(Xi, Yi)H(Yi, Zi)

)2

(3.11)

i.e.

(
n∑
i=1

H(Xi, Yi)
2

)
×

(
n∑
i=1

H(Yi, Zi)
2

)
(3.12)

−

(
n∑
i=1

H(Xi, Yi)H(Yi, Zi)

)2

≥ 0 (3.13)

by developing and reducing the expression(3.13), we obtain

i.e.
∑

i,jε{1,...,k} and i 6=j

(H(Xi, Yi)−H(Yj, Zj))
2 ≥ 0 (3.14)

This shows that the inequality (3.10) is true. Let us now show that HBD satis�es
the triangular inequality : according to Theorem 1,

H(Xi, Yi) +H(Yi, Zi) ≥ H(Xi, Zi) (3.15)

By squaring the two members of the inequality, we obtain

H(Xi, Yi)
2 +H(Yi, Zi)

2 + 2H(Xi, Yi)H(Yi, Zi) ≥ H(Xi, Zi)
2. (3.16)

i.e.
n∑
i=1

H(Xi, Yi)
2+

n∑
i=1

H(Yi, Zi)
2 + 2

n∑
i=1

H(Xi, Yi)H(Yi, Zi) (3.17)

≥
n∑
i=1

H(Xi, Zi)
2. (3.18)

according to inequality 3.10, we obtain

n∑
i=1

H(Xi, Yi)
2+

n∑
i=1

H(Yi, Zi)
2 (3.19)

+2

√√√√ n∑
i=1

H(Xi, Yi)
2

×
√√√√ n∑

i=1

H(Yi, Zi)
2

 ≥ n∑
i=1

H(Xi, Zi)
2. (3.20)
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i.e.

√√√√ n∑
i=1

H(Xi, Yi)
2 +

√√√√ n∑
i=1

H(Yi, Zi)
2

2

≥
n∑
i=1

H(Xi, Zi)
2. (3.21)

i.e.

√√√√ n∑
i=1

H(Xi, Yi)
2 +

√√√√ n∑
i=1

H(Yi, Zi)
2 ≥

√√√√ n∑
i=1

H(Xi, Zi)2. (3.22)

This is what had to be demonstrated

In general, the problem with the deterministic uncertain distances like DUST
or HBD is that their expression varies as a function of the probability distribution
of uncertainty, and the probability distribution of the uncertainty is not always
available in time series datasets.

Probabilistic Similarity Measures

Probabilistic similarities measures do not require knowledge of the uncertainty prob-
ability distribution. Furthermore, they provide the users with more information
about the reliability of the result. There are several probabilistic similarity func-
tions, as MUNICH, PROUD, PROUDS or Local Correlation.

MUNICH [Aÿfalg et al., 2009]: This distance function is suitable for uncertain
time series represented by the multiset based model. The probability that the dis-
tance between two uncertain time series X and Y is less than a threshold ε is equal
to the number of distances between X and Y , which are less than ε, over the possible
number of distances:

Pr(distance(X, Y )) ≤ ε =
|{d ∈ dists(X, Y )|d ≤ ε}|

|dists(X, Y )|
. (3.23)

The computation of this distance function is very time-consuming.
PROUD [Yeh et al., 2009] Let X and Y be two UTS each one modeled by a se-

quence of random variables, the PROUD distance between X and Y is d(X, Y ) =
n∑
i=1

(Xi−Yi)2.According to the central limit theorem [Ho�mann-Jørgensen and Pisier, 1976],
the cumulative distribution of the distances approaches asymptotically a normal dis-
tribution:

d(X, Y ) ∝ N(
∑
i

E[(Xi − Yi)2],
∑
i

V ar[(Xi − Yi)2]). (3.24)
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As a consequence of that feature of PROUD distance, the table of the normal
centered reduced law can be used to compute the probability that the normalized
distance is lower than a threshold:

Pr(d(X, Y )norm ≤ ε). (3.25)

A major disadvantage of PROUD is its inadequacy for comparing time series
of small lengths like u-shapelets. Indeed, the calculation of the probability that
the PROUD distance is less than a value is based on the assumption that PROUD
distance follows asymptotically a normal distribution. Thus, this probability will
be all the more accurate as the compared time series are long (i.e. contain more
than 30 data points).

PROUDS[Orang and Shiri, 2015] is an enhanced version of PROUD, which sup-
pose that random variables coming from time series are independent and identically
distributed.

De�nition 14. The normal form of a standard time series X =< X1, . . . , Xn > is
de�ned as X̂ =< X̂1, . . . , X̂n > in which for each timestamp i (1 ≤ i ≤ n), we have:

X̂i =
Xi − X̄
SX

, X̄ =
n∑
i=1

Xi

n
, SX =

√√√√ n∑
i=1

(Xi − X̄)2

(n− 1)
. (3.26)

PROUDS de�nes the distance between two normalized time series X̂ =< X̂1...X̂n >
and Ŷ =< Ŷ1...Ŷn > (De�nition 14) as follows:

Eucl(X̂, Ŷ ) = 2(n− 1) + 2
n∑
i=1

X̂iŶi. (3.27)

For the same reasons as PROUD, PROUDS is not suitable for the comparison
of short time series. Another disadvantage of PROUDS is that it assumes that
the random variables are independent: this hypothesis is strong and particularly
inappropriate for short time series like u-shapelets. A more realistic hypothesis with
time series would be to consider that the random variables constituting the time
series are M -dependent. Random variables of a time series are called M -dependent
if Xi, Xi+1, ..., Xi+M are dependent (correlated) and the variables Xi and Xi+M+1 are
independent. However, the M -dependent assumption could make PROUDS writing
more complex and its use more di�cult because of the choice of the parameter M .
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Uncertain Correlation [Orang and Shiri, 2017]: Correlation analysis techniques
are useful for feature selection in uncertain time series data. Indeed, correlation indi-
cates the degree of dependency of a feature on other features. Using this information,
redundant features can be identi�ed. The same strategy can be useful for u-shapelet
discovery. Uncertain correlation is de�ned as follows :

De�nition 15. (Uncertain time series correlation) Given UTS X =< X1, . . . , Xn >
and Y =< Y1, . . . , Yn >, their correlation is de�ned as:

Corr(X, Y ) =
n∑
i=1

X̂iŶi/(n− 1), (3.28)

where X̂i and Ŷi are normal forms of Xi and Yi (De�nition 14), respectively. Xi

and Yi are supposed to be independant continous random variables.

If we know the probability distribution of random variables, it is possible to
determine the probability density function associated with the correlation, which
will subsequently be used to calculate the probability that the correlation between
two time series is greater than a given threshold.

Uncertain correlation has however some drawbacks :

• It is too sensitive to transient changes, often leading to widely �uctuating
scores;

• It cannot capture complex relationship in timeseries;

• It requires to know the probability distribution function of the uncertainty
or to make some assumption on the independence of the random variables
contained in time series.

Because of all theses drawbacks, uncertain correlation cannot be used as it is for
u-shapelet discovery. The next paragraph presents a generalisation of correlation
coe�cient that is not an uncertain similarity function but is still interesting for
u-shapelet discovery. Local Correlation [Papadimitriou et al., 2006] is a gener-
alization of the correlation. It computes a time-evolving correlation scores that
tracks a local similarity on multivariate time series based on local autocorrelation
matrix. The autocorrelation matrix allows capturing complex relationship in
time series like the key oscillatory (e.g., sinusoidal) as well as aperiodic trends (e.g.,
increasing or decreasing) that are present. The use of autocorrelation matrices which
are computed based on overlapping windows allows reducing the sensibility to
transient changes in time series.

De�nition 16. (Local autocovariance, sliding window). Given a time series X, a
sample set of windows with length w, the local autocorrelation matrix estimator Γ̂t
using a sliding window is de�ned at time t ∈ N as (Eq.3.29) :
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Γ̂t(X,w,m) =
t∑

τ=t−m+1

xτ,w ⊗ xτ,w. (3.29)

where xτ,ω is a sub-sequence of the time series of length w and started at τ ,
x ⊗ y = xyT is the outer product of x and y. The sample set of m windows is
centered around time t. The number of windows is typically �xed to m = w.

Given the estimates Γ̂t(X) and Γ̂t(Y ) for the two time series, the next step is
how to compare them and extract a correlation score. This goal is reached using the
spectral decomposition. The eigenvectors of the autocorrelation matrices capture
the key aperiodic and oscillatory trends, even in short time series. Thus, the
subspaces spanned by the �rst few (k) eigenvectors are used to locally characterize
the behavior of each series. De�nition 17 formalizes this notion:

De�nition 17. (LoCo score). Given two series X and Y , their LoCo score is
de�ned by

`t(X, Y ) =
1

2
(‖UT

XuY ‖+ ‖UT
YuX‖) (3.30)

whereUX andUY are the k �rst eigenvector matrices of the local autocorrelation
Γ̂t(X) and Γ̂t(Y ) respectively, and uX and uY are the corresponding eigenvectors
with the largest eigenvalue.

Intuitively, two time series X and Y will be considered as close when the angle
α formed by the space carrying the information of the time series X and the vector
carrying the information the time series Y is zero. In other words X and Y will be
close when the value of cos(α) will be 1 (Fig. 3.5).

Space formed by the k first eigenvector of        (eigenspace)

𝛼

u
Y

projection 𝑈𝑥
𝑇𝑢𝑦

|𝑐𝑜𝑠 𝛼| = ||𝑈𝑥
𝑇𝑢𝑦 ||

𝑈𝑥

Figure 3.5: Geometric representation of LoCo similarity.

The only assumption made for the computation of LoCo similarity is that the
mean of time series data point is zero. This could be easily achieved with z-
normalization. LoCo similarity function has many interesting properties and does
not require to:
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• Know the probability distribution of the uncertainty,

• Assume the independence of the random variables or the length of u-shapelets.

LoCo is therefore interesting for feature selection, but we still need a dissimilarity
function to be able to discover u-shapelet. In the next paragraph, we de�ne a
dissimilarity function that has the same properties as LoCo and that is robust to
the presence of uncertainty.

3.3 Frobenius cOrrelation for uncertain Time series

u-Shapelet discovery (FOTS)

3.3.1 Dissimilarity function

The LoCo similarity function de�ned on two multivariate time series X and Y
approximately corresponds to the absolute value of the cosine of the angle formed
by the eigenspaces of X and Y (|cos(α)|). A straightforward idea would be to use
the sin(α) or α-value as a dissimilarity function but this approach does not work
so well, because the sine and the angle are not discriminant enough for eigenvector
comparison for clustering purpose. We thus proposed a new dissimilarity measure
named Frobenius cOrrelation for uncertain Time series u-Shapeletdiscovery (FOTS)
and based on the following de�nition (De�nition. 18):

De�nition 18. Given two series X and Y , their FOTS score is de�ned by

FOTS(X, Y ) = ‖UX − UY ‖F =

√√√√ m∑
i=1

k∑
j=1

(UX − UY )2ij (3.31)

where ‖‖F is the Frobenius norm, m is the length of time series and k is the number
of eigenvectors.

Because FOTS computation is based on the comparison of the k-�rst eigenvectors
of the autocorrelation matrices of the time series, it has the same desirable properties
of the LoCo similarity function, that is:

• It allows to capture complex relationships in time series like the key
oscillatory (e.g., sinusoidal) as well as aperiodic (e.g., increasing or decreasing)
trends that are present;

• It allows to reduce the sensibility to transient changes in time series;

• It is appropriate for the comparison of short time series.
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Moreover, the FOTS dissimilarity function is robust to the presence of un-
certainty due to the spectral decomposition of the autocorrelation matrices of the
time series. The robustness of FOTS to uncertainty is con�rmed by the theorem of
Ho�manWielandt:

Theorem 3. (Ho�manWielandt) [Bhatia and Bhattacharyya, 1993] If X and
X + E are n× n symmetric matrices, then :

n∑
i=1

(λi(X + E)− λi(X))2 ≤ ||E||2F , (3.32)

where λi(X) is the ith largest eigenvalue of X, and ||E||2F is the squared of the
Frobenius norm of E.

The next section explains how FOTS is integrated in the Scalable Unsupervised
Shapelet discovery algorithm [Ulanova et al., 2015].

3.3.2 Scalable u-shapelets Algorithm with FOTS score

In this section we do not de�ne a new SUShapelet algorithm [Ulanova et al., 2015],
but we explain how we use SUShapelet algorithm with FOTS score (FOTS-SUSh)
to deal with uncertainty.

The gap is an essential criterion for the selection of u-shapelets candidate. It is
subject to uncertainty because its calculation is based on the Euclidean distance.
To remedy this, we propose to use the FOTS score instead of a simple Euclidean
distance when calculating the gap in the Scalable u-shapelet algorithm.

• Algorithm 2 presents how we compute the orderline using FOTS score,

• Algorithm 3 calculates the orderline and sorts the time series according to
their proximity to the u-shapelet candidate (line 2 and 3). A u-shapelet is
considered present in a time series if its distance to it is less than or equal to a
given threshold. Thus, algorithm select thresholds to build a cluster Da whose
size varies between lb and ub (line 5). The algorithm then searches among the
selected thresholds the one that has a maximum gap (line 6 to 11).

De�nition 19. The sub-sequence FOTS dissimilarity sdf(S, T ) between a time
series T and a sub-sequence S is the minimum FOTS score between the sub-sequence
S and all possible sub-sequences of T of length equal to the length of S.
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Algorithm 2: ComputeOrderline
Input: u-shapeletCandidate : s,
time series dataset : D
Output: Distance between the u-shapelet Candidate and all the time series

of the dataset
1 function ComputeOrderline(s, D)
2 dis← {} s← zNorm(s)
3 forall i ∈ {1, 2, . . . , |D|} do
4 ts← D(i, :)
5 dis(i)← sdf (s, ts)

6 return dis/|s|

3.4 Experimental Evaluation

3.4.1 Clustering with u-shapelets

There are many ways to cluster time series data described by u-shapelets. This
approach is a direct implementation of the u-shapelet de�nition. The algorithm
iteratively splits the dataset with each discovered u-shapelet into two groups DA

and DB. The time series that belong to DA are considered as members of the
cluster formed by the u-shapelet and are then removed from the dataset. A new
u-shapelet search continues with the rest of the data until there is no more time
series in the dataset or until the algorithm is no more able to �nd u-shapelet. As
a stopping criterion for the number of u-shapelets extracted, the decline of the
u-shapelet gap score is examined: the algorithm stops when the gap score of the
newly-found u-shapelet becomes less than half of the gap score of the �rst discovered
u- shapelet.

Choosing the length N of a u-shapelet: The choice of the length of u-
shapelet is directed by the knowledge of the domain to which the time series belongs.
As part of these experiments, we tested all numbers between 4 and half the length of
the time series. We considered as length of u-shapelet the one that allows to better
cluster the time series.

Choosing the length w of the windows : The use of overlapping windows for
calculating the autocorrelation matrix makes it possible to capture the oscillations
present in the time series. During these experiments, we considered that the size of
the window is equal to half the length of the u-shapelet.

Choosing the number k of eigenvectors: A practical choice is to �x k to a
small value; we used k = 4 throughout all experiments. Indeed, key aperiodic trends
are captured by one eigenvector, whereas key oscillatory trends manifest themselves
in a pair of eigenvectors.
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Algorithm 3: ComputeGap
Input: u-shapeletCandidate : s,
time series dataset : D,
lb, ub : lower/upper bound of reasonable number of time series in cluster
Output: gap : gap score

1 function ComputeGap(s, D, lb, ub)
2 dis← ComputeOrderline(s,D)
3 dis← sort(dis) gap← 0
4 for i← lb toub do
5 DA ← dis ≤ dis(i), DB ← dis > dis(i)
6 mA ← mean(DA), mB ← mean(DB)
7 sA ← std(DA), sB ← std(DB)
8 currGap← mB − sB − (mA + sA)
9 if currGap > gap then
10 gap← currGap

11 return gap

3.4.2 Evaluation Metrics

To evaluate the quality of the u-shapelets found, we use them for a clustering task.
Di�erent measures for time series clustering quality have been proposed, includ-
ing Jaccard Score, Rand Index, Folkes and Mallow index, etc. In our case we had
ground truth class labels for the datasets, we could use this external information
to evaluate the true clustering quality by using Rand Index. Moreover, Rand In-
dex appears to be the quality measure most commonly used [Zakaria et al., 2012]
[Ulanova et al., 2015] [Zhang et al., 2016], and many of the other measures can be
seen as minor variants of it [Halkidi et al., 2001]. The Rand Index [Rand, 1971] is
calculated as follows:

Let Lc be the cluster labels returned by a clustering algorithm and Lt be the set
of ground truth class labels. Let A be the number of time series that are placed in
the same cluster in Lc and Lt, B be the number of time series in di�erent clusters
in Lc and Lt, C be the number of time series in the same cluster in Lc but not in Lt
and D be the number of time series in di�erent clusters in Lc but in same cluster in
Lt. The Rand Index is computed as follows:

Rand Index = (A+B)/(A+B + C +D). (3.33)

3.4.3 Comparison with u-shapelet

Similarly to [Dallachiesa et al., 2012], we tested FOTS-SUSh on 17 real world datasets
coming from UCR archive [Chen et al., 2015] and representing a wide range of appli-
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cation domains1. The training and testing sets have been joined to obtained bigger
datasets. Table 3.1 present detailed information about tested datasets.

Data-set Size of Length No. of Type
dataset Classes

50words 905 270 50 IMAGE
Adiac 781 176 37 IMAGE
Beef 60 470 5 SPECTRO
Car 120 577 4 SENSOR
CBF 930 128 3 SIMULATED
Co�ee 56 286 2 SPECTRO
ECG200 200 96 2 ECG
FaceFour 112 350 4 IMAGE
FISH 350 463 7 IMAGE
Gun_Point 200 150 2 MOTION
Lighting2 121 637 2 SENSOR
Lighting7 143 319 7 SENSOR
OliveOil 60 570 4 SPECTRO
OSULeaf 442 427 6 IMAGE
SwedishLeaf 1125 128 15 IMAGE
synthetic_control 600 60 6 SIMULATED
FaceAll 2250 131 14 IMAGE

Table 3.1: Datasets.

Table 3.2 presents the comparison of the two algorithms.

3.4.4 Comparison with k-Shape and USLM

k-Shape and USLM are two u-shapelets based clustering algorithms for time series
presented in [Zhang et al., 2016]. In this section, we have compared the Rand Index
obtained by FOTS-SUShapelet and the one obtained by k-Shape and USLM on 5
datasets (Table 3.3). The results of k-Shape and USLM was previously reported
in [Zhang et al., 2016]. This comparison shows that in general, FOTS-SUShapelet
perform better than k-Shape and USLM.

3.4.5 Discussion

The use of the FOTS score associated with the SUShapelet algorithm allows to
discover di�erent u-shapelets than those found by the Euclidean distance. The
FOTS-SUSh improves the results of time series clustering because the FOTS score
takes into account the intrinsic properties of the time series when searching for

1In this preliminary work, we evaluated the performance of FOTS on 17 datasets, ongoing
executions will provide results on the 85 datasets in the UCR database.
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Datasets RI_SUSh RI_FOTS
50words 0.811 0.877
Adiac 0.796 0.905
Beef 0.897 0.910
Car 0.708 0.723
CBF 0.578 0.909
Co�ee 0.782 0.896
ECG200 0.717 0.866
FaceFour 0.859 0.910
FISH 0.775 0.899
Gun_Point 0.710 0.894
Lighting2 0.794 0.911
Lighting7 0.757 0.910
OliveOil 0.714 0.910
OSULeaf 0.847 0.905
SwedishLeaf 0.305 0.909
synthetic_control 0.723 0.899
FaceAll 0.907 0.908

Table 3.2: Comparison of the Rand Index of SUSH (RI_SUSh) and FOTS-SUSh
(RI_FOTS). The best Rand Index is in bold

u-shapelets and is robust to the presence of uncertainty. This improvement is par-
ticularly signi�cant when the FOTS score is used for the clustering of time series
containing several small oscillations. Indeed, these oscillations are not captured by
the Euclidean distance whereas they are by the FOTS score whose calculation is
based on the autocorrelation matrix. This observation is illustrated by the result
obtained on the SwedishLeaf dataset.

Time complexity analysis

ED can be computed in O(n) and FOTS score is computed in O(nω), 2 ≤ ω ≤ 3
due to the time complexity of the eigenvector decompositions [Pan and Chen, 1999].
The computation of FOTS score is then more expensive in time than that of ED
(Fig. 3.6). However, its use remains relevant for u-shapelets research as they are
often small.

Robustness to uncertainty

In order to assess the robustness of FOTS to the presence of uncertainty, we selected
two time series from the ItalyPowerDemand dataset and compared them using the
Euclidean Distance on the one hand and the FOTS score on the other. We then
added a white noise that follows a normal distribution of zero mean and 0.1 variance
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Rand
Index

k-Shape USLM FOTS-SUShapelet

CBF 0.74 1 0.909
ECG200 0.70 0.76 0.866
Fac.F. 0.64 0.79 0.910
Lig2 0.65 0.80 0.911
Lig.7 0.74 0.79 0.910
OSU L. 0.66 0.82 0.905

Table 3.3: Comparison between k-Shape, USLM and FOTS-SUShapelet.

Figure 3.6: The execution time of ED and FOTS score is a function of the length
of time series. The computation time of ED is smaller than that of FOTS.

to each of the time series. Then, we recomputed the Euclidean Distance and the
FOTS score between the two time series. The absolute value of the di�erence be-
tween the distance obtained with the non-noise time series and that obtained with
the noisy time series and called error. We observe that when the variance associated
with white noise increases, the error associated with Euclidean Distance increases,
but the error associated with the FOTS score remains almost constant and close to
zero (Fig. 3.7). This shows the robustness of the FOTS score to the presence of
uncertainty in the data. Note: In this experiment, noisy time series are considered
uncertain time series.
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Figure 3.7: Sensitivity of Euclidean Distance and FOTS to the presence of uncer-
tainty.

3.5 Conclusion and Future Work

The purpose of this chapter was to discover u-shapelets on uncertain time series. In
that aim, we have proposed a dissimilarity score (FOTS) adapted to the compar-
ison of short time series, of which computation is based on the comparison of the
eigenvector of the autocorrelation matrices of the time series. This score is robust
in the presence of uncertainty, it is not very sensitive to transient changes, and it
allows capturing complex relationships between time series such as oscillations and
trends.

The FOTS score was used with the Scalable Unsupervised Shapelet Discovery
algorithm for clustering 17 literature datasets and show that FOTS-SUShapelet con-
sumes more time than UShapelet, but has better performances regarding clustering
Rand Index. FOTS-SUSh de�nes a new framework for clustering uncertain time se-
ries because it combines the bene�ts of the u-shapelets algorithm, which reduces the
adverse e�ects of uncertainty, and the bene�ts of the FOTS score, which is robust
to the presence of uncertainty.

As a perspective to this work, we plan to use the FOTS score for fuzzy clustering
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of uncertain time series.
Another important aspect of time series coming from wheelchair locomotion is

that they are cyclic, and the analysis of this movement is based on those cycles. The
next chapter explains how we have captured this important feature.

Key points
•We proposed a correlation-based measure of dissimilarity that captures time series
properties and is robust to the presence of uncertainties.

•We experimentally showed that this measure of dissimilarity improves the quality
of clustering with UShapelets.

Communications :
− Siyou Fotso VS, Mephu-Nguifo E, Vaslin Ph. Découverte d'u-shpalet sur des
séries temporelles incertaines à partir de correlation Frobenius. Rencontres des
Jeunes Chercheurs en Intelligence Arti�cielle (RJCIA 2018), Nancy, France, July
2018
− Siyou Fotso VS, Mephu Nguifo E, Vaslin Ph. Frobenius correlation based u-
shapelets discovery for time series clustering., Pattern Recognition (submitted)
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Chapter 4
Symbolic representation of cyclic time

series based on properties of cycles

Abstract : The analysis of cyclic time series from bio-mechanics is based on
the comparison of the properties of their cycles. As usual algorithms of time series
classi�cation ignore this particularity, we propose a symbolic representation of cyclic
time series based on the properties of cycles, named SAX-P. The resulting character
strings can be compared using the Dynamic Time Warping distance. The application
of SAX-P to propulsive moments of three subjects (S1, S2, S3) moving in Manual
Wheelchair highlight the asymmetry of their propulsion. The symbolic representation
SAX-P facilitates the reading of the cyclic time series and the clinical interpretation
of the classi�cation results.

4.1 Introduction

Generally, during his locomotion, the human being performs cyclic movements (e.g.
: walking, running, swimming, cycling). The bio-mechanical analysis of these move-
ments is performed with various measuring instruments (eg force and acceleration
sensors, kinematic analysis systems) that enable continuous recording over long pe-
riods of many kinematic and dynamic parameters. These recordings produce long
time series composed of many cycles or patterns, representative of the movements
made and e�ort produced by the subject during his displacement (Fig. 4.1).

These cycles are the time series analysis units and have several characteristic
properties such as the minimum value, the area under the cycle [Vegter et al., 2014]
(Fig. 4.2).

For comparing time series, several previous studies suggested to break them into
small segments and then to compare the properties of their segments. A segment of
a time series is a sequence of consecutive values belonging to it [Abonyi et al., 2003].

[Keogh et al., 2001b] proposed replacing each segment of a time series X =
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Figure 4.1: Cyclic time series form manual wheelchair locomotion

x1, x2, · · · , xn by its mean values; x̄i = N
n

∑( n
N
)i

j= n
N
(i−1)+1 xj, transforming the time

series, which is a sequence of values, in the suite of the means of its N segments
X̄ = x̄1 ¯, x2, · · · , x̄N . This method is known as Piecewise Aggregate Approximation
(PAA) (Fig. 4.3). The time series C and Q are then compared by calculating the
distance DR between the suite C̄ and Q̄ of the means of their segments :

DR(C̄, Q̄) =

√√√√ n

N

N∑
i=1

(c̄i − q̄i)2. (4.1)

The main objective of PAA was to reduce the length of the time series. However,
as it computes the segments means, it also allows us to compare two time series C
and Q from the properties of their segments (Equation 4.1 ).

[Lin et al., 2003] were based on the PAA method to provide a symbolic represen-
tation of time series called Symbolic Aggregate Approximation (SAX). The objective
of SAX is to assign a letter to each segment. To do this, the domain of the val-
ues of the time series is divided into intervals so that every point of the temporal
series has approximately the same probability to belong to an interval and a letter
is associated with each of these intervals. Then each segment of the time series is
associated with the letter of the interval to which belongs its average (Fig. 4.4).

With SAX, the distance MINDIST between two strings Q̂ and Ĉ of length N
is calculated from the distance between the borders of the intervals represented by
each character in the string (Equation 4.2).
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Figure 4.2: Properties of a cycle

MINDIST (Q̂, Ĉ) =

√√√√ n

N

N∑
i=1

(dist(q̂i, ĉi))2. (4.2)

q̂i et ĉi are characters and dist() is the distance between the borders of the in-
tervals which represent these characters [Lin et al., 2003]. However, two segments
with very di�erent shapes can have the same average and be represented by the
same letter: the mean is not enough to de�ne a segment. In order to solve this
problem, [Lkhagva and Kawagoe, 2006] proposed the ESAX model that considers
three properties for each segment: its mean, its minimum and maximum (Fig. 4.5).

Thereafter, [Sun et al., 2014] proposed the SAX-TD model that takes into ac-
count two properties for each segment: its mean and trend. They then adjust the
distance used by the SAX method for it to take into account the trend (Fig. 4.6).

Both methods provide better results than the SAX method [Sun et al., 2014].
However, they have the disadvantage of increasing the number of symbols required
to represent the time series. Indeed, the method ESAX triple the size of the repre-
sentation of a time series provided by the SAX method, while the SAX-TD method
the double. In addition, the previous four methods have two major drawbacks: they
consider �xed-size segments, while the cycles are variable-sized segments, and they
do not take into account the characteristic properties of cycles such as the duration
and the surface under a cycle. Our goal is to provide a symbolic representation
that takes into account several properties for each cycle, but without increasing the
number of symbols used for the representation.

The symbolic representations obtained have another advantage; they allow to
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Figure 4.3: Piecewise aggregate approximation of a cyclic time series

Figure 4.4: Symbolic Aggregate approXimation of a cyclic time series

use a large number algorithms available for sequence analysis like novelty detection
(�nding unusual shapes or sub-sequences), motif discovery (�nding repeated shapes
or sub-sequences) [Begum and Keogh, 2014], clustering, classi�cation, indexing and
also some interesting algorithms for text processing or the bio-informatics commu-
nity [Aach and Church, 2001, Papapetrou et al., 2011, Dietterich, 2002].

4.2 SAX-P

A prerequisite to be able to build a symbolic representation based on the cycles of
the cyclic time series is to be able to segment the cyclic time series into consecutive
cycles.
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Figure 4.5: Extended Symbolic Aggregate approXimation of a cyclic time series

Figure 4.6: Trend Symbolic Aggregate approXimation of a cyclic time series

4.2.1 Segmentation of cyclic time series

The principle used to segment cyclic time series is as follows: A cycle contains all the
data points between the beginning of two consecutive peaks. To locate the peaks,
we set a threshold (Fig. 4.8). The threshold considered can be the �rst or the second
quartile of the time series data point.

If the current value of the time series is below this threshold, then it is a peak.
It is then necessary to turn back to �nd the moment of the beginning of the peak.
The �gure (Fig. 4.9) presents the results obtained after segmentation of a cyclic
time series.
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Figure 4.7: Properties of a cycle

Figure 4.8: Threshold for the segmentation of cyclic time series

4.2.2 From cycles to letters

The method SAX-P is based on SAX and works as follows:

1. A cyclic time series is split in successive segments using a threshold for iden-
tifying the beginning and the end of cycles, which have variable durations;

2. Several parameters (properties) are computed on each segment: cycle time,
push time, mean, median, standard deviation, minimum and maximum values,
and the area under the time series curve. As all these parameters have di�erent
units, they must be normalized (i.e. centered and reduced) (Fig. 4.10 );

3. Segments are then gathered in clusters using a classi�cation algorithm
[Esling and Agon, 2012] and each cluster is named by a capital letter (Fig.
4.11);
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Figure 4.9: Segmentation

Figure 4.10: Some properties are computed on each cycle

4. Each segment is replaced by the letter of the cluster to which it belongs, so
that the initial cyclic time series is then represented by a string of characters
(Fig. 4.12);

The distance between two strings, which may have di�erent numbers of char-
acters, is computed using Dynamic Time Warping [Petitjean et al., 2014] which is
known as the best distance measure for several domains [Ding et al., 2008]. The
distance between two characters is the euclidean distance between the centers of the
classes represented by those characters.

Unlike SAX, ESAX and SAX-TD methods that require to �x the length of seg-
ments to consider when building the symbolic representation of a time series, SAX-P
considers the cycles which constitute basic unit of analysis of time series recorded
during cyclic movements and also allows taking into account several characteristic
features for each cycle. Figure 4.12 presents the symbolic representations obtained
with the SAX method (in small letters) and SAX-P (in capital letters). It illustrates
that SAX-P unlike SAX considers cycles of the time series during the construction
of the symbolic representation.
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Figure 4.11: Classi�cation of cycles based on properties

4.3 Application to manual wheelchair locomotion

4.3.1 Dataset description

The data sets used throughout these tests have been obtained from experiments
conducted with 12 subjects1 with disabilities in the aim to understand MWC loco-
motion. The measurements produced cyclic, uncertain and noisy time series (Fig.
4.13). All subsequent processing and analyses are performed on z-moment time
series measured on both rear wheels of the FRET-2.

The data recorded have four main characteristics:
Length of time series: the length of the time series is due to the high acqui-

sition frequency (100 Hz) of the force and torque sensor. For instance, a 10-minute
recording generates a time series of:

100Hz × 60 s× 10mn = 60, 000 data points.

The maximum length (107, 227 data points) of the time series analysed here was
reached by the z-moment of the left wheel of subject S02 (Fig. 4.13). The length
of time series is a crucial issue because their processing time is highly dependent on
their length. As an illustration, the time complexity of comparing two time series
using the DTW alignment algorithm is O(n2) where n is the length of the time
series.

Cycles in time series: The cyclic aspect of the time series comes from the cyclic
nature of wheelchair propulsion. Indeed, this movement consists in a succession of

1The measurements made with subject S01 being of very low intensity, they were not considered
during our analysis.
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Figure 4.12: Symbolic representation of cyclic time series

push periods during which the user applies a force on the handrim of the wheelchair
to propel it, and free-wheel periods during which the user moves his trunk and arms
backwards for preparing the next push. The push phase is recorded by the sensor
and materialized by a peak in Mz measurements, whereas during freewheel periods
Mz values are close to zero (Fig. 4.14).

Uncertainty in time series: The presence of uncertainty in sensor measure-
ments is intrinsic to the calibration process of sensors in general, and of the six-
component dynamometer used in this work. When a force is applied to a piezo-
resistive sensor, it causes a deformation of the sensing element, which consists in
strain gauges 2 stuck on a small metallic beam and connected as a Wheatstone
bridge 3 This deformation induces a change in the resistance of the strain gauges
and thus a change in the output voltage of the Wheatstone bridge. According to
Hooke's law, this is proportional to the force intensity. Thus, when using a cal-
ibrated sensor, the user is to measure a variation in sensor signal and uses the
proportionality relationship (Hooke's law) to infer the intensity of the force that
has been applied. Calibrating a sensor consists in constructing this proportionality
relationship by applying a wide range of forces on the sensor, within the limits of
the mechanical characteristics of the sensing element. Doing so, we record a se-
quence of couples of force intensity and electrical voltage, which is used to compute
a regression line which will then be used to deduce the applied force intensity know-
ing the voltage variation. However, the regression line generally does not de�ne a

2https://fr.wikipedia.org/wiki/Jauge_de_d%C3%A9formation
3https://fr.wikipedia.org/wiki/Pont_de_Wheatstone
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Figure 4.13: Example of a z-moment (Mz) time series measured on the [left/right]
rear wheel of the FRET-2.

perfect proportionality relationship; in fact, it minimizes the error made but does
not cancel it. This error (Fig. 4.15) introduces uncertainty into the estimation of
the applied force intensity. It is thus essential to take this error into account when
evaluating time series to extract relevant information from them. Characterization
of uncertainty is a time-consuming task (Appendix C) and is not always possible
because sensor calibration data are generally not available.

Noise in time series: n the time series analysed here, the noise comes from the
sensitivity of the dynamometer, which has been designed to measure low-intensity
forces applied to the handrim during wheelchair locomotion. These forces can come
from the texture of the ground (e.g. granular road),unexpected contacts of the user's
hands and arms with the handrim during the ecovery phase or other. In cyclic
time series, noise is problematic because it in�uences the division into cycles, the
computation of properties that characterize a propulsion cycle and the calculation
of the distance between two time-series. In the following sections, we explain how
we used these data for analysing wheelchair locomotion.

4.3.2 The symmetry of Manual Wheelchair Locomotion

For a long time, experts have assumed that wheelchair locomotion was symmetrical,
which made it possible to construct measuring instruments consisting of a single
wheel [Brouha and Krobath, 1967]. Subsequently, the conclusions that were drawn
from the measurements made with one wheel were generalized to both upper limbs
of the subject. Then, [Langbein and Fehr, 1993] built a roller ergometer able of
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Figure 4.14: Time series recorded by torsor sensor are noisy

separately measuring the speed and resistance of the left and right wheels of the
MWC during its use. The measurements made with this roller ergometer revealed a
di�erence between the properties measured by the left and right wheels and exhibited
the asymmetric character of wheelchair locomotion. In this paragraph, we used
the SAX-P symbolic representation and the additional information we had on the
subjects to carry out a new analysis of the symmetry of wheelchair locomotion. Even
if a MWC user performs the same number of pushes on both rear wheels during a
straight displacement, these cycles may have di�erent properties, which in our case
is expressed by di�erent letters in the character strings representing the propulsion
cycles applied by the user to the right and left rear wheels. This asymmetry of
wheelchair locomotion can be evaluated by calculating a relative Edit distance that
counts the number of di�erent letters between the characters strings of the right and
left wheels during a same straight displacement (lap).

D(X, Y ) =
1

n

n∑
i=1

[Xi 6= Yi].

Where X, and Y are character strings.

Subject Straight displacement Relative Edit Distance
S02_e1_RD_H4-Cycle-A AAAAAA 0,17
S02_e1_RG_H4-Cycle-A AAAAA
S02_e1_RD_H4-Cycle-B AAAAAAAAAAAAA 0,06
S02_e1_RG_H4-Cycle-B AAAAAAAAAAAA
Continue to the next page
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Subject Straight displacement Relative Edit Distance
Following ...
S02_e1_RD_H4-Cycle-C AAAAAAAAAAA 0
S02_e1_RG_H4-Cycle-C AAAAAAAAAAA
S02_e1_RD_H4-Cycle-D AAAAAAA 0
S02_e1_RG_H4-Cycle-D AAAAAAA
Moyenne 0,05

S03_E3_T_RD-Cycle-A EEBCB 0,40
S03_E3_T_RG-Cycle-A EEECC
S03_E3_T_RD-Cycle-B BBBBCB 0,33
S03_E3_T_RG-Cycle-B EBBBCC
S03_E3_T_RD-Cycle-C EBBBBBC 0,17
S03_E3_T_RG-Cycle-C EBBBBCC
S03_E3_T_RD-Cycle-D EBCBC 0,86
S03_E3_T_RG-Cycle-D EEECBCC
S03_E3_T_RG-Cycle-E EBBBBBC 0,29
S03_E3_T_RD-Cycle-E EBEBBCC
S03_E3_T_RD-Cycle-F EEEBBCC 0,43
S03_E3_T_RG-Cycle-F EEECCCD
S03_E3_T_RG-Cycle-G EEBCCC 0,57
S03_E3_T_RD-Cycle-G BEECBCC
S03_E3_T_RD-Cycle-H EEBCBCC 0,29
S03_E3_T_RG-Cycle-H EBBBBCC
S03_E3_T_RG-Cycle-I CC 1,00
S03_E3_T_RD-Cycle-I BBD
Moyenne 0.48

S04_E1_T_RD-Cycle-A EEDBBCCC 0,38
S04_E1_T_RG-Cycle-A DEEBBCCA
S04_E1_T_RG-Cycle-B EEBDACC 0,63
S04_E1_T_RD-Cycle-B BBBBCCCC
S04_E1_T_RD-Cycle-C ECBCCCC 0,57
S04_E1_T_RG-Cycle-C BBECCC
S04_E1_T_RG-Cycle-D EBBCC 0,57
S04_E1_T_RD-Cycle-D EBBBBBC
S04_E1_T_RD-Cycle-E EBBC 0,50
S04_E1_T_RG-Cycle-E EBC
S04_E1_T_RD-Cycle-F EBC 0,33
S04_E1_T_RG-Cycle-F BBC
Moyenne 0.5
Continue to the next page
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Subject Straight displacement Relative Edit Distance
Following ...

S05_E3_T_RD-Cycle-A BBBBCDD 0,86
S05_E3_T_RG-Cycle-A EEBDBCA
S05_E3_T_RD-Cycle-B BBCDCDBC 0,63
S05_E3_T_RG-Cycle-B BBBCCA
S05_E3_T_RD-Cycle-C EDDDDDCAD 0,78
S05_E3_T_RG-Cycle-C BBBCBCA
S05_E3_T_RD-Cycle-D BBCCDCA 0,29
S05_E3_T_RG-Cycle-D BBCBCCA
S05_E3_T_RD-Cycle-E BBBCDCCD 0,75
S05_E3_T_RG-Cycle-E BCDDCDA
S05_E3_T_RD-Cycle-F BCBDCDCD 0,63
S05_E3_T_RG-Cycle-F DBBCDDAD
S05_E3_T_RD-Cycle-G BC 1,00
S05_E3_T_RG-Cycle-G DA
Moyenne 0.70

S07_e1_T_RD-Cycle-A AEDBDA 0,33
S07_e1_T_RG-Cycle-A EEBBD
S07_e1_T_RG-Cycle-B BBCCC 0,00
S07_e1_T_RD-Cycle-B BBCCC
S07_e1_T_RD-Cycle-C ECDADAA 0,71
S07_e1_T_RG-Cycle-C EBCCD
S07_e1_T_RG-Cycle-D BBBCCD 0,57
S07_e1_T_RD-Cycle-D EBCCADA
S07_e1_T_RD-Cycle-E EBCCCAD 0,57
S07_e1_T_RG-Cycle-E BBBCCC
S07_e1_T_RD-Cycle-F BC 1,00
S07_e1_T_RG-Cycle-F EC
Moyenne 0.53

S08_e3_T_RD-Cycle-A DDDDDAD 0,29
S08_e3_T_RG-Cycle-A DDDDDDA
S08_e3_T_RD-Cycle-B DDDADDDDAA 0,40
S08_e3_T_RG-Cycle-B BDDDDAADAA
S08_e3_T_RD-Cycle-C DDDDDDDDA 0,67
S08_e3_T_RG-Cycle-C AAADAADAA
S08_e3_T_RD-Cycle-D DDDDDDDDC 0,89
S08_e3_T_RG-Cycle-D AAADAAAAA
Continue to the next page
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Subject Straight displacement Relative Edit Distance
Following ...
S08_e3_T_RD-Cycle-E BDDD 0,50
S08_e3_T_RG-Cycle-E DDDA
Moyenne 0.55

S09_e1_T_RD-Cycle-A DADDDA 0,33
S09_e1_T_RG-Cycle-A DDDADA
S09_e1_T_RD-Cycle-B DDAADAAAAA 0,92
S09_e1_T_RG-Cycle-B AADDDDDDDDAA
S09_e1_T_RD-Cycle-C DDAAADADD 0,40
S09_e1_T_RG-Cycle-C DDADDDCDDA
S09_e1_T_RD-Cycle-D DDDDAAA 0,70
S09_e1_T_RG-Cycle-D AADDDDADAA
Moyenne 0.59

S10_e3_RD_H-4-Cycle-A EEBC 0,20
S10_e3_RG_H-4-Cycle-A EEBCD
S10_e3_RD_H-4-Cycle-B EBDCCA 0,83
S10_e3_RG_H-4-Cycle-B BBBBCC
S10_e3_RD_H-4-Cycle-C EBBCCCD 0,29
S10_e3_RG_H-4-Cycle-C BBBCCCC
S10_e3_RD_H-4-Cycle-D EECCCA 0,67
S10_e3_RG_H-4-Cycle-D BBBCCC
S10_e3_RD_H-4-Cycle-E EBCCDC 0,50
S10_e3_RG_H-4-Cycle-E BBBCCC
S10_e3_RD_H-4-Cycle-F CAAAEB 0,86
S10_e3_RG_H-4-Cycle-F BCDCABC
S10_e3_RD_H-4-Cycle-G C 0,50
S10_e3_RG_H-4-Cycle-G CE
Moyenne 0.55

S11_e1_T_RD-Cycle-A BDDA 0,50
S11_e1_T_RG-Cycle-A BBD
S11_e1_T_RD-Cycle-B DDDDADDA 0,38
S11_e1_T_RG-Cycle-B BBDBADDA
S11_e1_T_RD-Cycle-C DDDADADA 0,50
S11_e1_T_RG-Cycle-C BDDDDDDD
S11_e1_T_RD-Cycle-D BDDDAAAA 0,50
S11_e1_T_RG-Cycle-D BDDDDDDD
S11_e1_T_RD-Cycle-E DA 0,67
Continue to the next page
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Subject Straight displacement Relative Edit Distance
Following ...
S11_e1_T_RG-Cycle-E DDD
Moyenne 0.51

S12_e2_RD_H4-Cycle-A DDDAAAA 0,71
S12_e2_RG_H4-Cycle-A BDDDDD
S12_e2_RD_H4-Cycle-B DADDDAAAA 0,44
S12_e2_RG_H4-Cycle-B AADDDDADD
S12_e2_RD_H4-Cycle-C DDAADADDAAAA 0,67
S12_e2_RG_H4-Cycle-C DBDDDDDDDDDD
S12_e2_RD_H4-Cycle-D DDAADD 0,50
S12_e2_RG_H4-Cycle-D DDADD
Moyenne 0.58

Table 4.1: Straight displacement in manual wheelchair
End

In all the laps analysed in this study (Table 4.1), almost all subjects showed a
propulsion asymmetry during their displacements, and this asymmetry was di�erent
for all subjects. Indeed, it is almost null for subject S02 who has only performed A-
type pushes throughout his displacements, whereas it is quite high (0.7) for subject
S05.

Subject Edit distance Duration of practice
S02 0.05 33 years
S03 0.43 7 years
S04 0.5 6 months
S11 0.51 12 years
S07 0.53 7 months 6 days
S08 0.55 3 years 6 months
S10 0.55 2 years
S12 0.58 11 months
S09 0.59 9 months
S05 0.7 2 months

Table 4.2: Asymmetry (Edit distance) of subjects' propulsion with regard to their
number of years of practice.

In order to identify which factors might in�uence propulsion asymmetry, we
cross-referenced the previous results with the number of years of wheelchair loco-
motion practice of the subjects who participated in the experiment (Table 4.2). We
observed that subject S05 who has the least experience in wheelchair locomotion
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Figure 4.15: Plot of Mz residues, which represent the di�erences between Mz values
measured by the sensor and real values applied during the calibration process.

(2 months) has a very asymmetric propulsion (Edit distance = 0.7) whereas
subject S02 who has a long experience of wheelchair practice (33 years) has a very
symmetric propulsion (Edit distance = 0.05). The Pearson's correlation coe�-
cient (r = -0.93) between asymmetry and number of years of wheelchair practice
showed that the longer is the subjects' experience in wheelchair locomotion, the
more symmetrical is their propulsion during a straight displacement.

4.3.3 Group Manual Wheelchair users according to their mo-

tor skills

In the context of the Paralympic Games, for instance, it is essential to be able to
group wheelchair users according to their motor abilities. Indeed, this classi�cation
allows to form teams based on functional and not physiological criteria and thus
to guarantee fairness of competitions. However, the assessment of motor skills can
be subjective, as it is sometimes based on observation of matches, or on a test set
o�ered to the subject in a MWC. In both cases, subjects' mobility is appreciated by
an expert who scores this ability on a scale.

In this section, we present a di�erent, more objective approach for comparing
subjects' mobility based on measurements made during their actual use of the in-
strumented MWC (FRET-2). Our aim was that the method used for the evaluation
of motor abilities remains understandable by clinical and practical experts in the
�eld. The experiments presented in this section were performed by 11 subjects
with di�erent anthropometric and physiological characteristics who propelled the
FRET-2 (Table 4.3)
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First, we applied the SAX-P symbolic representation to the z-moments (Mz)
measured on the right and left wheels of FRET-2 during subjects' displacements.
This method allowed to compare the propulsion cycles performed by the subjects
during their displacements. Next, we compared subjects based on the relative oc-
currence frequency of each cycle type in each subject's displacements (Table 4.4)

A B C D E
S02 64 0 0 0 0
S03 7 43 35 2 28
S04 2 25 26 3 13
S05 9 30 25 25 3
S07 7 17 21 9 7
S08 26 2 1 49 0
S09 29 0 1 39 0
S10 6 21 31 5 10
S11 13 9 0 38 0
S12 22 2 0 42 0
S13 35 11 0 80 0

Table 4.4: Occurrence frequency of each cycle type in each subject's displacements.

This comparison is based on cosine similarity, a method that is used in the
literature to compare text documents using the frequency with which words appear
in these documents. Cosine similarity is de�ned as follows:

Let V1 and V2 be two integer vectors,

cos(V1, V2) =
V1.V2

‖ V1 ‖ × ‖ V2 ‖
.

Where . is the dot product and ‖ d ‖ is the norm of the vector d.
For example, we will evaluate the similarity between subjects S02 and S03.{

VS02 = (64, 0, 0, 0, 0),

VS03 = (7, 43, 35, 2, 28).

First we calculate the dot product between VS02 and VS03:

VS02.VS03 = 64× 7 + 0× 43 + 0× 35 + 0× 2 + 0× 28 = 448.

Then we calculate the vector norm ‖ VS02 ‖, and ‖ VS03 ‖.

‖ VS02 ‖=
√

64× 64 + 0× 0 + 0× 0 + 0× 0 + 0× 0 = 64,

‖ VS03 ‖=
√

7× 7 + 43× 43 + 35× 35 + 2× 2 + 28× 28 = 62.54.
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The cosine similarity is then equal to

cos(VS02, VS03) =
448

64× 62.54
= 0.112.

The similarity matrix between all wheelchair users is de�ned using the same
method (Table 4.5). The cosine similarity of any subject with himself is logically
equal to 1.

S02 S03 S04 S05 S07 S08 S09 S10 S11 S12 S13
S02 1.000 0.112 0.052 0.190 0.232 0.468 0.597 0.152 0.316 0.464 0.398
S03 1.000 0.984 0.798 0.917 0.116 0.104 0.938 0.215 0.109 0.160
S04 1.000 0.841 0.950 0.129 0.107 0.977 0.230 0.120 0.173
S05 1.000 0.942 0.588 0.548 0.863 0.686 0.582 0.635
S07 1.000 0.405 0.392 0.977 0.472 0.396 0.434
S08 1.000 0.988 0.216 0.971 1.000 0.993
S09 1.000 0.208 0.929 0.987 0.967
S10 1.000 0.281 0.205 0.242
S11 1.000 0.973 0.992
S12 1.000 0.994
S13 1.000

Table 4.5: Similarity matrix between all wheelchair users.

The de�nition of a good representation and a good distance function are the
most critical step in any distance based clustering method. Having doing so, we
use a hierachical clustering algorithm for the ease of interpretation of the results as
suggested in [Kumar et al., 2002]. The clustering algorithm starts with each subject
being in a singleton cluster and at each stage combine the closest pair of clusters
into a single cluster until a threshold value is reached or a prede�ned number of
clusters is obtained. In this experiment, we would like to distinguish subject with
high, middle and low locomotion capabilities, we then consider three clusters (Fig.
4.16).

The results of this classi�cation showed that only subject S02 is classi�ed in clus-
ter C1 and he is also the only subject who mainly performed A-type cycles. Subjects
S03, S04, S07 and S10 were classi�ed in cluster C2 and all of them performed a ma-
jority of B- and C-type cycles. Subjects S05, S08, S09, S11, S12, and S13 were
classi�ed in cluster C3 and these subjects mainly performed A- and D-type cycles.
Subject S05 is a particular case because he also performed B- and C-type cycles, and
he could thus have been classi�ed in cluster C2. He was �nally classi�ed in cluster
C3 because of the signi�cant occurrence of D-type cycles during his displacements.
These results allow us to deduce that the subjects who are in the same cluster have
similar motor abilities, and that subjects belonging to cluster C2 have higher motor
abilities than those belonging to cluster C3, who have higher motor abilities than
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Figure 4.16: Classi�cation tree of wheelchair users based on their propulsion abilities.

those belonging to cluster C1 (C2 > C3 > C1). We also infer that the majority
presence of B- and C-type cycles characterize the propulsion of subjects with a sig-
ni�cant motor capacity, that D-type cycles characterize the propulsion of subjects
with an average motor capacity, and that A-type cycles characterize subjects with
a weak motor capacity.

The additional information on wheelchair users (Table 4.3) indicates that the
lonely subject in cluster C2 (S02) has indeed reduced physical abilities, but has
been using his MWC once a week for 33 years. This long experience has allowed him
to acquire a symmetrical propulsion technique, but not to increase his propulsion
capacity. Subjects gathered in cluster C2 had either a thoracic lesion (S03 and
S04) or a lumbar lesion (S07 and S10), whereas subjects gathered in cluster C3
had either a cervical lesion (S08) or a thoracic lesion (S11, S12 and S13). In this
analysis, we wanted to establish that the data measured during locomotion with
a wheelchair �eld-ergometer (FRET-2) provides a di�erent but relevant view of
wheelchair locomotion.

[Athanasiou and Clark, 2009] established that motor abilities of wheelchair users
primarily depend on their level of spinal cord injury. However, through these exper-
iments, we show that assessing motor skills based on measurements made makes
it possible to carry out a more detailed analysis of the motor skills of Manual
Wheelchair users.
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4.4 Conclusion

In this ongoing work, we proposed a method of symbolic representation of cyclic
time series called SAX-P. This method is used to represent a cyclic time series as a
string, each character representing a class of the cycles of the considered time series.
The character strings obtained were then compared using Edith Distance and cosine
similarity. Those comparisons allowed us to highlight the asymmetrical character of
manual wheelchair locomotion, but also to show that manual wheelchair locomotion
became more and more symmetrical with years of practice. The experiments also
showed that knowledge of the physiological characteristics of subjects in manual
wheelchairs was not su�cient for an evaluation of the motor abilities of manual
wheelchair users and that an evaluation of locomotion requires measurements to be
made in the actual situation of use of the manual wheelchair (Appendix A).

Ongoing research is devoted to the evaluation of the robustness of the symbolic
representation (SAX-P) to the presence of uncertainty in the data and on applying
SAX-P to a supervised classi�cation of cyclic time-series in bio-mechanics.

Key points
•We propose a symbolic representation of cyclic time series based on the properties
of the cycles.

•We show that this symbolic representation improves the visualization and process-
ing of cyclic time series from manual wheelchair locomotion.

Communications :
− Siyou Fotso VS, Mephu-Nguifo E, Vaslin Ph. Symbolic representation of cyclic
time series: application to biomechanics. Constructive Machine Learning workshop
at International Conference on Machine Learning , France, July 2015
− Siyou Fotso VS, Mephu-Nguifo E, Vaslin Ph. Représentation symbolique de séries
temporelles cycliques basée sur les propriétés des cycles : application à la biomé-
canique . Treizièmes Rencontres des Jeunes Chercheurs en Intelligence Arti�cielle
(RJCIA 2015), Rennes, France, Jun 2015
− Siyou Fotso VS, E. M. Nguifo, and P. Vaslin, "Symbolic representation of propul-
sion cycles in manual wheelchair locomotion," Comput. Methods Biomech. Biomed.
Engin., vol. 18, no. sup1, pp. 2060�2061, 2015.
− C. Sauret, Siyou Fotso VS, J. Bascou, H. Pillet, E. Mephu-Nguifo, P. Fodé, and
P. Vaslin, "Cluster analysis to investigate biomechanical changes during learning of
manual wheelchair locomotion: a preliminary study," Comput. Methods Biomech.
Biomed. Engin., vol. 18, no. sup1, pp. 2058�2059, 2015.
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General conclusion and Future works

Aims

Our primary objective throughout this work was to analyze manual wheelchair lo-
comotion using measurements made by the sensors when using the wheelchair. This
primary objective is divided into three speci�c goals: how to pre-treat time series
to reduce their length and therefore their processing time, how to take into account
the existence of uncertainty in the time series during their analysis and �nally how
to base the exploitation of time series on the cycles that constitute them. Each of
these speci�c objectives has resulted in proposed models.

Summary of contributions

Reduce the length of time series with FDTW

We proposed a heuristic named FDTW that �nd a suitable parameter to use with the
piecewise aggregate approximation algorithm with the aim to reduce the length of
time series for classi�cation purpose. This heuristic is based on Greedy Randomized
Adaptative Search Procedure but de�nes a speci�c global search strategy. Extensive
experimentation has been run out and shows that the compression with FDTW
allows reducing the length of time series while keeping their main shape. Moreover,
the compression with FDTW can enhance the accuracy of classi�cation because it
will enable avoiding pathological alignment with Dynamic Time Warping algorithm
this amelioration is particularly perceptible with synthetic datasets.

Dealing with uncertainty using FOTS score

We introduce a novel dissimilarity score for the comparison of time series named
FOTS for Frobenius Correlation for Time series uShapelet discovery. This dissimi-
larity score is based on local correlation and allows to capture internal properties of
the time series while being robust to uncertainty because its computation is based on
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the comparison of eigenvectors of the autocorrelation matrices of time series. This
score has been used for clustering purpose with UShapelet clustering algorithm an
shows a signi�cant improvement of the quality of clustering according to the rand
Index.

Taking into accounts cycles with a symbolic representation

Time series coming from wheelchair locomotion are cyclic due to the cyclic aspect
of the wheelchair locomotion. The analysis of the wheelchair locomotion is based
on those cycles, but none of the data mining models of the literature consider this
aspect. We then proposed a symbolic representation of cyclic time series based
on the properties of cycles that allow better visualization of the data and a better
comprehension of the results obtained after the data mining process. We use this
symbolic representation for the analysis of the wheelchair locomotion of eleven users,
and this symbolic representation allows establishing that the wheelchair locomotion
is asymmetric but this asymmetry get lower and lower with the years' of practice.
This symbolic representation also allows a more precise evaluation of motor capa-
bilities of manual wheelchair mainly based on the e�ort measure during their use of
the manual wheelchair.

Future works

Compression with FDTW

One perspective is to model the time series compression problem using a multi-
objective optimization problem where one objective function would be compression
and the other the classi�cation of time series. Another problem we want to explore
is that of multi-dimensional time series compression.

Uncertainty - FOTS

One perspective to this work consists in testing FOTS-SUSh on the 85 data sets
of the UCR database, we also plan to use the FOTS score for classi�cation and
for fuzzy clustering of uncertain time series. It is also important to speed-up the
computation of FOTS based on sequential learning principles [Calandriello, 2017].
We also propose to use the FOTS score for the multidimensional time series shapelet
discovery.

SAX-P

Another important perspective is to evaluate the robustness of the symbolic rep-
resentation (SAX-P) to the presence of uncertainty in the data and on applying

96 Ph.D. Thesis



Chapter 4. SAX-P 4.4 Conclusion

SAX-P to a supervised classi�cation of cyclic time-series in bio-mechanics.

Application

the perspectives on the application to wheelchair locomotion are as follows :

Multidimensionality for a better characterization of the propulsion tech-
nique

The analyses in this thesis are based on the Z moment of the wheels of the manual
wheelchair. However, several measurements, including seat, back and footrest forces,
were taken during the locomotion of the manual wheelchair users. Considering these
signals could allow a better analysis of the subjects' movement and therefore suggests
that we propose multidimensional data mining models that would simultaneously
take into account all the measurements and their characteristics, namely their length,
the presence of uncertainty, and the cyclical nature of speci�c measures.

Fuzziness for a more realistic categorization

As we saw in Chapter 6 with subject S05, a subject can be very likely to belong to
two or more groups. It would, therefore, be wise to associate each assignment with
a degree of trust about the subject's group member. This data mining amounts to
considering fuzzy approaches in the analysis of time series from manual wheelchair
locomotion.
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Appendix A
Analysis of manual wheelchair locomotion

A.1 Introduction

Wheelchair locomotion concerns many people, for di�erent reasons: genetic (myopa-
thy), accidental (spinal cord injury, lower extremity amputee), degenerative (multi-
ple sclerosis, poliomyelitis) or just related to the natural aging of locomotor functions
(muscle degeneration, arthritis of the lower limbs, etc.). Then, in the 34 developed
countries, it is estimated that 1% or 10,000,000 people require a wheelchair. In the
156 developing countries, it is estimated that at least 2% or 121,800,000 people re-
quire a wheelchair. Overall, of the 7,091,500,000 people in the world, approximately
131,800,000 or 1.85% need a wheelchair [Needs and The, 2016]. However, the use of
manual wheelchair is not without risk.

A.2 The problem of locomotion manual wheelchair

locomotion

Although the wheelchair use improves the mobility of its users, doctors quickly re-
alized that it often leads to sedentarization, and to related problems of obesity,
diabetes, etc. Also, to promote daily physical activity, sport has been strongly en-
couraged [Machida et al., 2013]. However, intensive and prolonged sports practice in
Manual WheelChair (MWC) can lead to speci�c injuries and pains [Johnson et al., 2004],
especially in the shoulder, and at the elbow, wrist and hand. For instance in
[Pentland and Twomey, 1991], the authors claimed that 73% of paraplegic individu-
als su�ered from shoulder pain. In addition, prolonged sitting of users causes derma-
tological problems such as bedsores or pressure ulcers, due to immobility, loss of sen-
sitivity and incontinence. These symptoms are recognized as a major cause of discon-
tinuation of wheelchair use [Van der Woude et al., 2006] [Ville and Winance, 2006],
thus the sedentarization of users. [Lundqvist et al., 1991] showed that upper limb
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pain was the main factor correlated with poor quality of life in MWC users. The
challenge for the therapist is then to encourage a daily practice of physical activity
adapted to wheelchair users, for limiting orthopedic problems, and thus to promote
the use of the MWC over time.

Given the problems faced by manual wheelchair users at the level of their au-
tonomy and health, van der Woude et al. [van der Woude and de Groot, 2005]
[Woude et al., 1986] summarized the issues of manual wheelchair locomotion re-
search into three main areas:

• Improving the interface between the subject and his manual wheelchair, that
is, the ergonomy and the adequacy of the system {subject + MWC} with the
external physical environment (ramps, lifts, corridor widths, etc.).

• The improvement of the MWC regarding the design and the mechanical prin-
ciples of propulsion;

• Improving the subject's physical abilities, that is, improving propulsion
techniques, as well as rehabilitation techniques and training programs.

After the construction of a measuring tool, a wheelchair �eld ergometer ??, bio-
mechanical works has been conducted in LIMOS to identify and quantify traumatic
factors such as [De Saint Remy, 2005] [Sauret, 2010].

A.3 Tools to evaluate manual wheelchair locomo-

tion

This section summarises di�erent tools designed over the last 60 years to measure
the e�orts made by subjects moving in a MWC. We put a particular emphasis on
the wheelchair ergometer designed and manufactured at LIMOS, which is at the
origin of the time series that are the subject of our analysis throughout this thesis.

A.3.1 Crank Ergometers

Crank ergometers allow a subject to manually operate a crankset connected to the
�ywheel of an ergo-cycle. The speed is determined by measuring the rotation speed
of the �ywheel, whose diameter is known, or by imposing a cadence, in which case
the rotation speed is considered constant. Crank ergometers established that the
mechanical work of the upper limbs is less e�cient than that of the lower limbs and
also that the physical capacities evaluated by the maximum oxygen consumption of
MWC users depended on their level of spinal injury (cervical, thoracic or lumbar in-
jury)1. One of the main limitations of crank ergometers is that the motion measured

1This assertion will be commented later in chapter 4
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from a crank ergometer is not representative of the MWC propulsion motion, most
of which is propelled by handrims [0Åstrand and Saltin, 1961] [Bergh et al., 1976]
[Stenberg et al., 1967].

A.3.2 Roller Ergometers

To reproduce more precisely the speci�cities of MWC locomotion, Brouha and
Krobathc[Brouha and Krobath, 1967], as early as 1967, used a roller ergometer to
measure cardiac and respiratory responses during continuous MWC exercice. This
tool consisted of a platform on which were �xed two rollers, each rotating around
an axis and on which rested the rear wheels of a real MWC. The MWC frame was
attached to the ergometer, and the subjects simulated locomotion by applying forces
to the handrims, causing the rear wheels of the MWC and the rollers to rotate.

In 1971, Stoboy et al. [Stoboy et al., 1971], using an ergometer inspired by that
of Brouha and Krobath, quanti�ed the mechanical power (in watts) produced by
the user from the relationship between oxygen consumption and mechanical power
calculated during an incremental exercise on a crank ergometer.

The problem with roller ergometers of [Brouha and Krobath, 1967]
[Stoboy et al., 1971] was that they did not take into account the in�uence of

the inertia of translation encountered by the Subject when he moves. To take
this phenomenon into account, the rollers have been connected to a small �ywheel.
However, both rear wheels were on the same rollers, which did not allow to mea-
sure the di�erences in propulsion between the right and left wheels to be explored
[Brouha and Krobath, 1967] [Stoboy et al., 1971].

Then [Langbein and Fehr, 1993] [Langbein et al., 1993] [Langbein et al., 1994]
designed a new roller ergometer called the Wheelchair Aerobic Fitness Trainer
(WAFT), which had an access ramp to facilitate subject and MWC installation
(Figure A.1). When the latter was attached to the ergometer, its rear wheels rested
on three rollers each, which made it possible to di�erentiate the forces applied to
the right and left wheels2.

Other roller ergometers have also been developed over the last four decades and
particularly in the last �fteen years: Eagle Wheelchair Roller [Kerk et al., 1995],
Bromking Turbo Trainer [Goosey-Tolfrey et al., 2001] [Goosey-Tolfrey et al., 2001]
[Price and Campbell, 1999] or very recently the "Computer Monitored Wheelchair
Dynamometer" [Cooper et al., 2003] [DiGiovine et al., 2001]. Other braking sys-
tems have been used, such as mechanical braking using a friction belt on a �ywheel

[Goosey et al., 1998] [Kulig et al., 2001] [Rodgers et al., 1994](Figure A.2), an
electric motor creating a frictional moment around the roller rotation axes

[Coutts and Stogryn, 1987] [Kerk et al., 1995] [Patterson and Draper, 1997]

2This separation is essential to establish the dissymmetry of wheelchair locomotion and is
discussed in more details in chapter 4
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Figure A.1: Wheelchair Aerobic Fitness Trainer (WAFT) photograph
[Langbein and Fehr, 1993].

[Vanlandewijck et al., 1999] or an isokinetic apparatus [Ruggles et al., 1994]. To
determine the speed, angular position sensors [Brouha and Krobath, 1967]

[Coutts and Stogryn, 1987] [Coutts, 1990] [Patterson and Draper, 1997]
[Rodgers et al., 1994], optical encoders [Devillard, 1999] [Devillard et al., 2001]
[Langbein et al., 1993] [Langbein et al., 1994] [Newsam et al., 1996]
[Theisen et al., 1996], tachometers [Cooper, 1990] [Kerk et al., 1995] [Masse et al., 1992]
[Vanlandewijck et al., 1999] or speedometers [Goosey et al., 1998] [Rodgers et al., 1994]

were used.

Figure A.2: Picture of a wheelchair on a roller ergometer with mechanical braking
by friction belt on a �ywheel. [Rodgers et al., 1994].

The main advantage of roller ergometers is that they allow subjects to be studied
with their own MWC. Moreover, they occupy a little space in the laboratory and
allow the MWC to be completely immobilized, thus ensuring the stability of the
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subject on the MWC and facilitating the measurement of various physiological pa-
rameters. However, the various methods for estimating external mechanical power
used up to now still need to be re�ned to better evaluate this parameter. Further-
more, the comparison between the results of studies carried out with di�erent roller
ergometers and di�erent mechanical models must be done with caution since the
parameters neglected or taken into account are not all the same.

A.3.3 Treadmill

Like roller ergometers, the main advantage of treadmills is that they allow subjects
to be studied with their own MWC. Since the four wheels of the MWC roll on
the belt, the rolling friction forces are most certainly equivalent to those existing
on the ground. Unlike roller ergometers, treadmills allow to de�ne a rolling speed
of the belt and also a slope, that is, an inclination of the treadmill with respect
to the horizontal. The main disadvantage of a treadmill comes from the steering
problem related to the control of the trajectory: indeed, a subject could drift and be
ejected from the treadmill; to remedy this, railings have been installed on both sides
using a surface strip that limits lateral movements [Claremont and Maksud, 1985].
However, it has still not been demonstrated that the propulsion technique used was
identical on a treadmill and on the ground.

Figure A.3: Exercise testing on a motor driven treadmill
[Van der Woude et al., 2006]

A.3.4 Wheelchair simulators

To overcome the problems related to rolling resistance, some researchers chose to
�x the rear wheels of the MWC without contact with the ground, on a rigid and
�xed chassis on which the Subject could sit. The advantage of MWC simulators
is that they can test di�erent settings such as seat position or rear wheel camber
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angle, for example. The mechanical propulsion model is also simpli�ed compared to
roller ergometers and conveyor belts, which allows a better quanti�cation of work
and external mechanical power. However, the in�uence of the Subject's movements
on the seat is not taken into account. This aspect is the major disadvantage of the
simulators because neither the forces of resistance to the advance nor the kinematics
of the MWC is modi�ed according to the movements of the Subject on the seat.

Figure A.4: Photograph of an experiment on a simulator connected to a �ywheel
([Brattgård et al., 1970])

A.3.5 Wheelchair Field-Ergometer

To analyse the e�ciency of wheelchair propulsion, a Wireless Wheelchair Ergometer
(WWE or FRET-1) equipped with several sensors has been manufactured [Dabonneville et al., 2005].
The sensors installed on the wheelchair measure the physical stresses applied to the
MWC during actual use and record them.

The sensors are located on the right and left wheels of the MWC, on the footrest,
on the seat and the backrest. These sensors measure the torques applied to each
of the systems mentioned above. Other sensors installed on the FRET-2 are used
to measure the kinematic parameters (speed, acceleration) of the movement of the
MWC (Figure A.5).

The measurements recorded by the sensors, which are the prupose of our analysis,
consist of 41 attributes; of which 30 represent the dynamic parameters (Fx, Fy,
Fz, Mx, My, Mz = 6 components x 5 dynamometers). The 11 other attributes
represent the kinematic parameters of the MWC and its position relative to the
Earth's magnetic North.
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Adjustable Wireless Wheelchair Ergometer (FRET-2)

Adjustable Legrest

6 d.o.f. I.M.U.

Angular Potentiometer

Power supply

Embedded PC 
(WiFi)

Six-component 
Dynamometer 

(Footrest)

Six-component 
Dynamometer 

(Seat)

Adjustable Seat

Six-component 
Dynamometer 
(Left Wheel)

Six-component 
Dynamometer 
(Right Wheel)

Six-component
Dynamometer 

(Backrest)

Adjustable Backrest

Adjustable Height and Wheelbase

Adjustable Width

Figure A.5: Captioned picture of the adjustable wireless wheelchair ergometer
(FRET-2).

The force and torque dynamometer

A "torsor" is a mathematical object that characterizes the e�orts applied on � or
by � a solid. It is composed of two vectors, which have three components each: the
three components (Fx, Fy, Fz) of the resulting force (F) and the three components
(Mx, My, Mz) of the resulting moment (M) that are applied to this solid along
three orthogonal axes (x, y, z). To measure the six components of the "torsor"
applied by wheelchair users on both handrims during their actual displacements on
the ground, an original force and torque dynamometer has been designed, built and
installed on both rear wheels of the FRET-1 and then the FRET-2 (Fig. A.6). This
dynamometer is composed of three bidirectional force sensors that measure all the
forces applied to the handrim which are then used to compute the three components
of the resulting force and the three components of the resulting moment.

The wheel dynamometer used in that study is based on a mechanical principle
already applied for the design of a six-component dynamometer used for the mea-
surement of the forces and torques applied by the pole-and-vaulter system in the
vaulting box during the pole vault.

According to that principle, the handrim is assumed to be rigid and �rmly �xed
on three two-component force transducers designed to measure the handrim dis-
placement with respect to the wheel. In that approach, the handrim is considered
as hanging on the wheel through the force transducers. Each transducer measures
one component of the resulting propulsive force in the tangential direction of the
wheel and one in the direction perpendicular to the plane of the wheel. The vectorial
sum of all these components is equal to the resulting propulsive force in the moving
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Figure A.6: Schematic principle of the six-component force and torque sensor (patent
WO 1995001556 A1) mounted of both rear wheels of the MWC �eld ergometer used
in this study (FRET-2).
Legend

••••••••• R∗(O, x, y, z): moving reference frame linked to the wheel;

• O : centre of the wheelchair rear wheel;

• R : radius of the wheelchair rear wheel;

• A, B, C : locations of the three two-component force tranducers;

• u1, ..., u6 : unit vectors of the six force transducers;

• Fext: external force applied by the user on the handrim;

• P : point of application of Fext on the handrim;

• Angles: a = (ux, Fext); b = (uz, Fext); q = (ux, OP )

reference frame R∗ linked to the wheel. This derives from the fact that the handrim
is static in R∗ with respect to the wheel.

When an external force Fext is applied on the handrim, it is instantaneously
transmitted to the six force transducers so that each of them simultaneously mea-
sures a local force Fi (i = 1 to 6). As the transducers behave as springs, which
sti�ness ki are determined through the calibration procedure, the measurement of
the displacements mi by the strain gauges allows to compute the values of Fi using
Hooke's law (equation A.1)

Fi = kimi. (A.1)

Finally, the force and torque components created by Fext are calculated by equa-
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tion A.2

−→
F ext =

6∑
i=1

~Fi ⇐⇒ [Fext] = [ki] [mi] ⇐⇒ [Fext] =


Fx
Fy
Fz
Mx

My

Mz


(A.2)

Where [Fext] is a column matrix containing the six components of the torsor
applied on the dynamometer; [ki] is the sensitivity matrix of the dynamometer; [mi]
is the column matrix containing the signals measured by the six forces transducers
of the dynamometer. Several mechanical and kinetic parameters can be computed
from the forces and torques measured by the six-component dynamometers mounted
on the MWC �eld ergometer [Sauret, 2010]. All of them have a speci�c and useful
meaning as their relationships are de�ned by a complete mechanical (i.e. dynamic
and kinematic) model of wheelchair propulsion. However, because of their num-
ber and their complexity, these parameters can only be analysed and interpreted
by specialists in biomechanics. To overcome this drawback, in the present study,
relevant mechanical information has been extracted from only some dynamic data
(z-moments Mz) recorded by both rear wheel dynamometers of the instrumented
MWC (FRET-2) [This information have then been used to group subjects in homo-
geneous clusters, which have been compared to clinical injury levels.

A.4 Knowledge discovery on wheelchair time series

After the construction of these measuring instruments (FRET-1 and FRET-2), they
have been used to measure the e�orts made by MWC uses in actual conditions of
wheelchair locomotion. Thus, several experiments have been conducted with several
subjects, where the e�orts produced during actual wheelchair locomotion were mea-
sured with the FRET-2. The abundance of the recorded measurements highlighted
the problem of the exploitation of these measures for knowledge extraction. Two
main and complementary approaches can be used to analyze measurements from
MWC locomotion. The �rst is to use mechanical models to calculate the physical
parameters of motion and the second is to use data mining models to exploit mea-
surements. In this section, we present the contributions of these two approaches,
which will allow us to position our work.
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Manual wheelchair locomotion causes signi�cant mechanical stresses in the upper
limbs [Desroches et al., 2010]. To remedy this problem, biomechanical studies have
been conducted to identify and quantify traumatic factors such as:

• The doctoral thesis of Nicolas DE SAINT REMY (2005) [De Saint Remy, 2005]
who proposed a mechanical model relating the forces applied to a MWC and
its displacement ( Figure A.7 ). This work particularly highlighted the fact
that wheelchair acceleration is a function of subject's movements.

Figure A.7: Balance of forces applied to a manual wheelchair during propulsion.
For the clarity of the �gure, the analysis of the movement of the {subject + MWC}
system is reduced to that of the system's centre of gravity, G [De Saint Remy, 2005]

• The doctoral thesis of Christophe SAURET (2010) [Sauret, 2010] who pro-
posed a method of calculating the mechanical power developed by manual
wheelchair users to move. This model analyzes the kinetics of the {subject +
MWC} system. For that purpose, the author developped a detailed kinematic
model of the {subject + MWC} system (Figure A.8) allowing to record their
movements with a 3D motion analysis system during actual locomotion on the
ground.

More and more works in the literature suggest using the tools developed in
data mining for a better understanding of human locomotion. For example, in
[van der Slikke et al., 2017], the authors ask whether advances in data science and
technology could provide a di�erent and perhaps more objective view of the analysis
of wheelchair users' motor abilities. On one hand, technical advances have made it
possible to measure the e�orts made by wheelchair users during their movement
using sensors. On the other hand, datamining models have been proposed and allow
to perform several task on the data (clustering, classi�cation, . . . ).

In [Faria et al., 2012] the authors explained how they used robotics and data
mining knowledge to build an Intelligent Manual Wheelchair, which can be con-
trolled from multiple interfaces: joysticks, facial expressions, voice commands, head
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Figure A.8: Locations of passive markers for the kinematic analysis of manual
wheelchair locomotion [Sauret, 2010]

movements. Since Intelligent Wheelchair users have various characteristics, a series
of tests have been carried out to classify them and to de�ne pro�les that allow the
MWC to be appropriately adjusted for each user.

In [Athanasiou and Clark, 2009] the authors presented a model based on Bayesian
networks to improve the medical treatment of patients in wheelchairs with a spinal
cord injury. Indeed, the treatment of these patients is based on the level of spinal
cord injury and symptoms. A lesion in the spine has three consequences: an incon-
sistency of the bowel, an inconsistency of the bladder, a loss of the skin sensitivity.
The higher the lesion, the more widespread its e�ects on patients are. Thus a patient
with a low lesion will a�ect the patient's legs and a patient with a high lesion will
see his four limbs a�ected. Because of this loss of sensitivity, symptoms observed
in the patient are often incomplete, which introduces uncertainty into the diagnosis
that is captured by Bayesian networks and conditional probabilities.

A.5 Conclusion

Throughout this chapter, we showed that there is a large number of MWC users in
the world and that it is crucial to analyze this particular means of locomotion to
improve the living conditions of people moving in a MWC. We have presented the

109



main tools designed and manufactured for wheelchair locomotion analysis and some
previous works that used data mining mechanics models to improve the study of
wheelchair locomotion or to help physicians to diagnose its the adverse e�ects.

In the scienti�c literature, mechanical or data mining models are used for manual
wheelchair locomotion analysis. In this thesis, however, we want to design data
mining models that are able to take into account both the speci�cities of MWC
locomotion data and their use to analyze wheelchair locomotion from a new point
of view.
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Appendix B
An optimal approach for time series

segmentation: Application to the

supervised classi�cation

B.1 Introduction

Time series databases are often huge. This is particularly the case of the Large
Synoptic Survey Telescope (LSST) database which records data from of telescopes
[lss, 2016]. It has billions of time series (10 Petabytes). Another example is the
SACR-FRM project that uses sensors to measure the e�orts of a manual wheelchair
user at a sample frequency of 100 Hz [SAC, 2016]. For instance : ten minutes
recording produce time series of 60 000 measurements. Faced to this, several sci-
enti�c works were carried out with the aim of reducing the storage space of time
series and accelerating their treatment. A widely used approach is to change the
representation of time series to reduce their length. This technique was introduced
by Agrawal et al. [Agrawal et al., 1993]; he uses the discrete Fourier transform
to obtain a compact representation of the time series. Other methods have also
been used: the decomposition in eigenvalue [Wu et al., 1996], the discrete wavelet
transform [Chan and Fu, 1999b] and the Piecewise Aggregate Approximate (PAA)
[Keogh et al., 2001c]. This last method has shown its e�ectiveness compared to the
previous three ones because it is easier to understand, to implement, but also faster
to execute and it allows to build indexes in linear time. PAA suggests to split the
time series into segments of the same length, then to replace each segment by the
average of its points. This method generates a compact representation, of time
series composed with as few segments as possible that reduces space storage and
processing time of time series. However, a too compact representation distorts the
time series and causes a loss of information. How then to choose the right number
of segments to consider? Our work is based on a simple observation: the use of
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(a) (b)

Figure B.1: These �gures show the average of two segments. In the �rst case (a) the
data points of the segment are far from the average, in the second case (b) they are
close to the average. Replacing data points of a segment by their average introduces
an error that the can be measured from the gap between the points and the average.

the arithmetic average is relevant when the variance of the population is small as
illustrated in �gure B.1.

We de�ne here a minimal bound for the number of segments to be considered,
and we propose an algorithm which allows choosing the number of segments which
minimizes their mean squared error, with the aim to reduce the length of the time
series without altering the information they contain.

The rest of this appendix is organized as follows: the section B.2 presents a formal
de�nition of our problem and an algorithm to solve it; the section B.3 presents and
comments the results of the experiments and the section B.4 concludes the appendix
and presents some perspectives for this work.

B.2 Granularity of time series segments

B.2.1 Notations and de�nitions

De�nition 1: A time series or time series X = x0, x1, · · · , xm is a sequence of
numerical values representing the evolution of a speci�c quantity over time. xm is
the most recent value.

De�nition 20. A segment Xi of length l of the time series X of size m (l < m)
is a sequence consisting of l consecutive variables X beginning at the position i and
ending at the position i+ l − 1. We have: Xi = xi, xi+1, ..., xi+l−1

De�nition 21. The arithmetic mean of the data points of a segment Xi of size l is
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Figure B.2: This �gure shows the �rst 100 points of the �rst time series of the
fordA dataset available in the UCR [Chen et al., 2015] database. Time series are
normalized. The two horizontal lines delimit the interval corresponding to twice the
standard deviation and minus two times the standard deviation of the points of the
time series. We can observe that the points outside this range are at the ends of the
time series.

denoted X̄i and is de�ned by

X̄i =
1

l

l−1∑
j=0

xi+j. (B.1)

B.2.2 Information theory and minimum number of segments

To mitigate the e�ects of noise during time series processing, Keogh and Kasetty
[Keogh and Kasetty, 2003b] recommend that they are normalized. Normalizing the
time series makes them compatible with a normal distribution [Lin et al., 2007].
According to this method, 95 % of the points in the time series are between plus
and minus two times the standard deviation (σ) and twice the standard deviation
of the points, and thus 5 % of the points of the series are outside this range. These
points correspond to the ends of the series as shown in the �gure B.2.

B.2.3 Notations and de�nitions

De�nition 22. The arithmetic mean of the data points of a segment Xi of size l is
denoted X̄i and is de�ned by :

X̄i =
1

l

l−1∑
j=0

xi+j. (B.2)
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Also, information theory tells that the amount of information relating to an
event is equal to −log2(p) where p is the probability of the event [Shannon, 2001] .
In other words, a very likely event (p −→ 1) brings less information than an unlikely
event (p −→ 0). Therefore, a point outside the interval [−2σ,+2σ] provides more
information than a point within that range. Indeed, the probability that one point
is in the range is 0.95 while the probability that one point is out of range is 0.05 = 1

20

.
If we choose a minimum number (α) of segments less than 5 % of the length of

the time series, we risk to aggregate the data points within the interval [−2σ, 2σ] and
those outside this range. This will have two consequences: �rstly, this aggregation
will alter the information carried by data points. Secondly, this aggregation will
increase the variance of the segments obtained. So we chose to consider 5% of the
number of points in the time series as the minimum number of segments. This allows
us to de�ne the following functions of N→ N:

α : n 7→ α(n) =

{ ⌊
n
20

⌋
if
⌊
n
20

⌋
≥ 2

2 otherwise
(B.3)

β : n 7→ β(n) =
⌊n

2

⌋
(B.4)

β gives the maximum number of segments. Indeed, a segment is made up of at
least 2 points, so there is at most

⌊
n
2

⌋
segments. The number of segments W that

we will consider is greater than or equal to α(|X|) and less than or equal to β(|X|).
The next subsection explains how we choose the value of W.

B.2.4 Minimize the squared error to choose the number of

segments

After dividing a time series into segments, we replace each segment by the average
of the data points that constitute it. The variance between the points of each
segment can be measured from the mean squared error. Our problem is therefore
the following:

Let X = x0, x1, · · · , xn a time series of size n, look for W ∈ N such that α(n) ≤
W ≤ β(n) and

1

n

W∑
i=1

ik∑
j=(i−1)k

(X̄i −Xj)
2 (B.5)

is minimal, where X̄i is the arithmetic mean of a segment of length k.
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To solve this problem, we propose an algorithm that proceeds as follows:

1. For each value of W, with α(n) ≤ W ≤ β(n)

(a) Calculate the squared error of each segment Xi = xi, xi+1, ..., xi+l−1;

(b) Calculate the mean of the quadratic errors;

2. The value of W returned is the one that produces a minimum average squared
error.

These conditions are implemented in algorithm 4:

Algorithm 4: optimalNumberOfSegment
Input: length_min, length_max : repectively the minimal and the

maximal length of a segment.
v : a time series
Output: The optimal number of segment to be use with Piecewise

Aggregate approXimation
1 function optimalNumberOfSegment(length_min, length_max, v)
2 len_v ← length(v)
3 n← length_max− length_min+ 1
4 forall i ∈ {length_min, ..., length_max} do
5 x[j, 1]← i
6 z[j, 1]← (1/len_v) ∗ sum_SSE(v, i)
7 computation of the error j ← j + 1

8 ind_min← indice_minimun(z)
9 return floor(len_v/x[ind_min, 1])

Complexity of the algorithm The calculation of the squared error of a segment
is done in O(

⌊
n
W

⌋
).

The time complexity of calculating the mean squared error for segment splitting
is O(n).

The number of segments varies from
⌊
n
20

⌋
,
⌊
n
19

⌋
. . .
⌊
n
2

⌋
. There are 19 possible

divisions in segments. The time complexity of calculating the value of W which
minimizes the error mean squared is: 19×O(n) = O(n).

To exploit the compact representations of the time series, we must be able to
compare them. The next subsection presents how to compare compact time series
that we get.
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Algorithm 5: sum_SSE
Input: v : a time series.
nbPoints : the length of a segment
Output: The sum of squares error associated with a segment length

1 function sum_SSE(v, nbPoints)
2 n← length(v)
3 ind_debut← 1
4 aux_se← c()
5 tab_indices_debut← c()
6 i← 0
7 while (ind_debut+ nbPoints) ≤ n do
8 tab_indices_debut[i]← ind_debut
9 ind_debut← ind_debut+ nbPoints

10 i← i+ 1

11 m← length(tab_indices_debut)
12 forall i ∈ {1, ...,m} do
13 aux_se[i]← SSE_segment(v, nbPoints, tab_indices_debut[i])

14 return sum(aux_se)

B.2.5 Dynamic Time Warping Algorithm and comparison of

compact representations

The Dynamic Time Warping algorithm (DTW)[Keogh and Ratanamahatana, 2004]
allows to carry out a non-linear correspondence between two time series by mini-
mizing the distance between them. It proceeds as follows:

Let X and Y be two time series;

X = x1, x2, · · · , xn; (B.6)

Y = y1, y2, · · · , ym. (B.7)

To align them, the algorithm constructs a matrix n×m where the element (i, j)
of the matrix corresponds to the square distance (xi − yj)2, which is the alignment
between xi and yj. To �nd the best alignment between the two time series, we build
the path in the matrix that minimizes the sum of the square distances. This path
is calculated by dynamic programming from the following recurrence:

γ(i, j) = d(xi, yj) +min{γ(i− 1, j − 1), γ(i− 1, j), γ(i, j − 1)}, (B.8)

where d(xi, yj) is the square of the distance contained in the cell (i, j) and γ(i, j)
is the cumulative distance at the position (i, j), which is calculated by the sum of the
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square of the distance to the position (i, j) and the minimum cumulative distance
of its three adjacent cells.

Piecewise Aggregate Approximation(PAA) provides Euclidean-based distance
measurement to compare compact representations. However, we chose to use the
Dynamic Time Warping algorithm for the following reasons:

1. PAA of the time series leads to temporal deformation. Indeed, with two time
series of length n, we can apply our algorithm to the �rst time series, then
reduce it to N1 segments and reduce the second to N2 segments with N1 < N2.

2. The DTW algorithm is known to have the best performance for sequence align-
ment in several : in robotics, biometrics, music, climatology, aviation, gesture
recognition, cryptanalysis, astronomy, exploration space [Rakthanmanon et al., 2012b].

B.3 Results and Discussion

First, we present the datasets used during the experiment. Then we evaluate the
performances of the proposed methods in terms of length reduction of time series
and classi�cation errors.

B.3.1 Datasets

We performed tests on 85 datasets that come from the UCR database [Chen et al., 2015]
. Detailed information on the datasets is presented in the Table B.1. In the UCR
database, each data set is divided into a learning set and a test set. Datasets con-
tain between 2 and 60 classes and the time series of these datasets have lengths that
range from 24 to 2709 points. The Table B.1 presents a detailed description of the
datasets. The following paragraph presents the assessment of the performance of
our algorithm on these datasets.

N Name Nb. of
classes

Size of
training
set

Size of
testing set

1 50Words 50 450 455
2 Adiac 37 390 391
3 ArrowHead 3 36 175
4 Beef 5 30 30
5 BeetleFly 2 20 20
6 BirdChicken 2 20 20
7 Car 4 60 60
8 CBF 3 30 900
9 ChlorineConcentration 3 467 3840
Continue to the next page
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N Name Nb. of
classes

Size of
training
set

Size of
testing set

Following ...
10 CinC_ECG_torso 4 40 1380
11 Co�ee 2 28 28
12 Computers 2 250 250
13 Cricket_X 12 390 390
14 Cricket_Y 12 390 390
15 Cricket_Z 12 390 390
16 DiatomSizeReduction 4 16 306
17 DistalPhalanxOutlineAgeGroup 3 139 400
18 DistalPhalanxOutlineCorrect 2 276 600
19 DistalPhalanxTW 6 139 400
20 Earthquakes 2 139 322
21 ECG 2 100 100
22 ECG5000 5 500 4500
23 ECGFiveDays 2 23 861
24 ElectricDevices 7 8926 7711
25 Face (all) 14 560 1 690
26 Face (four) 4 24 88
27 FacesUCR 14 200 2050
28 Fish 7 175 175
29 FordA 2 1320 3601
30 FordB 2 810 3636
31 Gun-Point 2 50 150
32 Ham 2 109 105
33 HandOutlines 2 370 1000
34 Haptics 5 155 308
35 Herring 2 64 64
36 InlineSkate 7 100 550
37 InsectWingbeatSound 11 220 1980
38 ItalyPowerDemand 2 67 1029
39 LargeKitchenAppliances 3 375 375
40 Lightning-2 2 60 61
41 Lightning-7 7 70 73
42 MALLAT 8 55 2345
43 Meat 3 60 60
44 MedicalImages 10 381 760
45 MiddlePhalanxOutlineAgeGroup 3 154 400
. . . . . . . . . . . . . . .
Continue to the next page
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N Name Nb. of
classes

Size of
training
set

Size of
testing set

Following ...

Table B.1: 85 UCR datasets used for experimental validation. The full list is avail-
able in [Chen et al., 2015]
End

B.3.2 Comparison of algorithm performance

Table B.2 presents the comparison of the classi�cation error of 1-Nearest Neighbor
(1-NN) algorithms associated with Euclidean distance (col.4), 1-NN, associated with
the DTW algorithm using a constraint (a deformation window) (col.5), 1-NN asso-
ciated with the algorithm of unconstrained dynamic time warping (DTW) applied
to the raw data (6) and the 1-NN algorithm associated with DTW applied to the
data pre-processed by our algorithm (7). The (col.4) algorithm gives the best results
that are to say ((col.4) ≤ (col.5) and (col.4) ≤ (col.6) and (col.4) ≤ (col.7)) on 20
datasets, the algorithm (col.5) is the best on 47 datasets, the (col.6) algorithm is
the best on 21 datasets, the (col.7) algorithm is the best on 21 datasets. Although
none of these algorithms have the best performance on all datasets, the algorithm
(col.5) averaged the smallest misclassi�cation 0.237 and the most expensive (col.4)
algorithm the largest average error 0,288. The (col.6) and (col.7) algorithms have
relatively close average error rates equal to 0,256 and 0,258 respectively.

To evaluate the e�ects of the change of representation of the time series on
their classi�cation, we compared the length of the time series and the errors of
classi�cation presented by the columns (6) and (7) of Table B.2. Indeed, these two
columns use the same 1-NN classi�cation algorithm and the same distance function
DTW. The only di�erence between these columns is the nature of the data: the (6)
column uses the raw data and the column (7) the compacted data with the method
described above. The result of the comparison between these two columns can be
resumed as follows:

• Regarding the length of the time series; the (6) algorithm uses all the points
of the time series. On the other hand, the (7) algorithm uses compact repre-
sentations whose length varies between 15 % and 34 % of the initial length of
the time series. On average, the compact representations have a length equal
to 20 % of the initial time series

• For classi�cation errors, the error (7) > (6) on 40 datasets, the error of (7) =
(6) on 3 datasets and the error of (7) < (6) on 42 datasets.

These results are encouraging because, despite the reduction in the length of the
time series errors, the classi�cation error with the compact representation is less
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(a) (b)

(c)

Figure B.3: Two-by-two comparison of the classi�cation errors of the algorithm 1-
Nearest Neighbor (1-NN) using Euclidean distance with 1-NN using two variations
of the temporal warping algorithm on raw data and compact data

than or equal to that of the raw data classi�cation for 45 datasets out of the 85
available in the UCR base. These results are summarized in Figure B.3. One of
the reasons for this observed improvement over 42 datasets is as follows: the DTW
algorithm is sensitive to noise, therefore by aggregating the points of the segments,
we reduce the e�ects of noise.

(1) (2) (3) (4) (5) (6) (7)
1 54 0,20 0,369 0,242 (6) 0,31 0,279
2 35 0,20 0,389 0,391 (3) 0,396 0,425
3 50 0,20 0,2 0,200 (0) 0,297 0,246
4 78 0,17 0,333 0,333 (0) 0,367 0,433
5 85 0,17 0,25 0,300 (7) 0,3 0,300
6 85 0,17 0,45 0,300(6) 0,25 0,250
Continue to the next page
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(1) (2) (3) (4) (5) (6) (7)
Following ...
7 96 0,17 0,267 0,233 (1) 0,267 0,217
8 32 0,25 0,148 0,004 (11) 0,003 0,002
9 33 0,20 0,35 0,35 (0) 0,352 0,414
10 234 0,14 0,103 0,07 (1) 0,349 0,285
11 57 0,20 0 0,000 (0) 0 0,036
12 120 0,17 0,424 0,380 (13) 0,3 0,416
13 60 0,20 0,423 0,228 (10) 0,246 0,241
14 60 0,20 0,433 0,238 (17) 0,256 0,277
15 60 0,20 0,413 0,254 (5) 0,246 0,244
16 69 0,20 0,065 0,065 (0) 0,033 0,072
17 20 0,25 0,218 0,228 (1) 0,208 0,198
18 20 0,25 0,248 0,232 (2) 0,232 0,255
19 20 0,25 0,273 0,272 (0) 0,29 0,310
20 85 0,17 0,326 0,258 (22) 0,258 0,276
21 24 0,25 0,12 0,120 (0) 0,23 0,180
22 35 0,25 0,075 0,075 (1) 0,076 0,072
23 34 0,25 0,203 0,203 (0) 0,232 0,259
24 24 0,25 0,45 0,376 (14) 0,399 0,438
25 32 0,24 0,286 0,192 (3) 0,192 0,253
26 70 0,20 0,216 0,114 (2) 0,17 0,170
27 32 0,24 0,231 0,088 (12) 0,095 0,177
28 77 0,17 0,217 0,154(4) 0,177 0,263
29 83 0,17 0,341 0,341 (0) 0,438 0,359
30 83 0,17 0,442 0,414 (1) 0,406 0,360
31 30 0,20 0,087 0,087 (0) 0,093 0,047
32 71 0,16 0,4 0,400 (0) 0,533 0,419
33 387 0,14 0,199 0,197 (1) 0,202 0,206
34 182 0,17 0,63 0,588 (2) 0,623 0,623
35 85 0,17 0,484 0,469 (5) 0,469 0,500
36 268 0,14 0,658 0,613 (14) 0,616 0,615
37 51 0,20 0,438 0,422 (2) 0,645 0,611
38 8 0,33 0,045 0,045 (0) 0,05 0,048
39 120 0,17 0,507 0,205 (94) 0,205 0,203
40 106 0,17 0,246 0,131 (6) 0,131 0,164
41 63 0,20 0,425 0,288 (5) 0,274 0,219
42 170 0,17 0,086 0,086 (0) 0,066 0,097
43 74 0,17 0,067 0,067 (0)

0,067
0,067

44 24 0,24 0,316 0,253 (20) 0,263 0,288
Continue to the next page
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(1) (2) (3) (4) (5) (6) (7)
Following ...
45 20 0,25 0,26 0,253 (5) 0,25 0,268
46 20 0,25 0,247 0,318 (1) 0,352 0,268
47 20 0,25 0,439 0,419 (2) 0,416 0,419
48 21 0,25 0,121 0,134 (1) 0,165 0,133
49 125 0,17 0,171 0,185 (1) 0,209 0,222
50 125 0,17 0,12 0,129 (1) 0,135 0,146
51 95 0,17 0,133 0,133 (0) 0,167 0,167
52 71 0,17 0,479 0,388 (7) 0,409 0,355
53 20 0,25 0,239 0,239 (0) 0,272 0,273
54 170 0,17 0,891 0,773 (14) 0,772 0,809
55 36 0,25 0,038 0,000 (6) 0 0,000
56 20 0,25 0,215 0,215 (0) 0,195 0,249
57 20 0,25 0,192 0,210 (1) 0,216 0,251
58 20 0,25 0,292 0,263 (6) 0,263 0,280
59 120 0,17 0,605 0,560 (8) 0,536 0,501
60 120 0,17 0,64 0,589 (17) 0,603 0,645
61 83 0,17 0,461 0,300 (3) 0,35 0,339
62 85 0,17 0,248 0,198 (4) 0,232 0,210
63 120 0,17 0,659 0,328 (15) 0,357 0,349
64 17 0,24 0,305 0,305 (0) 0,275 0,250
65 16 0,25 0,141 0,141 (0) 0,169 0,189
66 170 0,17 0,151 0,095 (16) 0,093 0,124
67 47 0,20 0,062 0,062 (0) 0,06 0,055
68 32 0,25 0,211 0,154 (2) 0,208 0,184
69 79 0,20 0,1 0,062 (8) 0,05 0,048
70 15 0,25 0,12 0,017 (6) 0,007 0,017
71 55 0,20 0,32 0,250 (8) 0,228 0,193
72 68 0,20 0,192 0,092 (5) 0,162 0,154
73 55 0,20 0,24 0,010 (3) 0 0,070
74 32 0,25 0,09 0,002 (4) 0 0,000
75 20 0,24 0,253 0,132 (5) 0,096 0,283
76 63 0,20 0,261 0,227 (4) 0,273 0,252
77 63 0,20 0,338 0,301 (4) 0,366 0,346
78 63 0,20 0,35 0,322 (6) 0,342 0,334
79 157 0,17 0,052 0,034 (4) 0,108 0,067
80 30 0,20 0,005 0,005 (1) 0,02 0,021
81 46 0,20 0,389 0,389 (0) 0,426 0,315
82 54 0,20 0,382 0,252 (8) 0,351 0,320
83 150 0,17 0,635 0,586 (3) 0,536 0,508
Continue to the next page
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(1) (2) (3) (4) (5) (6) (7)
Following ...
84 150 0,17 0,414 0,414 (9) 0,337 0,320
85 71 0,17 0,17 0,155 (2) 0,164 0,174
X̄ 0,288 0,237 0,256 0,258
σ 0,175 0,161 0,166 0,160

Table B.2: Column (1) presents numbers of the datasets. Column (2) the re-
duced length of the time series. Column (3) is the ratio of the length of the
reduced time series over the length of the initial time series. Column (4) designates
the 1-Nearest Neighbor algorithm, associated to the Euclidean distance. Col-
umn (5) designates the algorithm of 1- Nearer Neighbor, associated with the al-
gorithm of dynamic dynamic temporal deformation using a constraint called
deformation window that allows to stop the comparison of time series when one
perceives that they are very di�erent. Column (6) represents 1-Nearest Neigh-
bor algorithm associated to the unconstrained dynamic time warping applied
to the raw data. Column (7) represents the algorithm. 1-Nearest Neighbor
associated with the dynamic time warping algorithm without constraints,
applied on the compact representations produced by our algorithm. We �rstly
compare, the classi�cation error of the algorithms of columns(6) and (7) the small-
est error is in bold. Then we compare the classi�cation errors of algorithms of
columns(4), (5), (6) and (7) the smallest error is put italics.

End

B.4 Conclusion

The purpose of this appendix was to propose an algorithm for choosing the number of
segments to consider for the compact representation of a time series. In that aim, we
have de�ned a minimum bound for the number of segments to be considered which
is equal to 5 % of the length of the time series. We have proposed an algorithm that
chooses the number W of segments minimizing the mean squared error. Results
of experiments conducted on 42 datasets have shown that the number of segments
chosen allows two improvements:

• IT signi�cantly reduces the length of the time series; time series of reduced
size have a length which varies between 15% and 34% of the initial time series
length

• It improves supervised classi�cation results on a set of 85 datasets used in the
literature.

As a perspective for this work, we plan to vary the number of segments W from
2 to n

2
to see if our value of W is optimum for a task classi�cation. We also plan
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to compare the results of this compact representation to those of other representa-
tions used in the literature. We also plan to parallelize our algorithm to calculate
the right number of segments in linear time. This work allows reducing the stor-
age space and the processing time of the time series. It also allows choosing the
number of segments to consider when designing symbolic representation of time
series. Indeed, several symbolic representations of series of the literature (SAX
[Lin et al., 2003], ESAX [Lkhagva et al., 2006], 1d-SAX [Malinowski et al., 2013],
SAX-TD [Sun et al., 2014], SAX-P [Siyou Fotso et al., 2015]) use the division into
segments recommended by PAA.
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Appendix C
Determination of the probability density

function of uncertainty

C.1 Empirical probability distribution of residuals

Table C.1: descriptive statistic

Min. 1st Qu. Median Mean 3rd Qu. Max.
-24.15 -0.4735 0 0.2416 0.78 25.4

Figure C.1: Distribution of data around the mean

descriptive statistics 35.65% of values of uncertainty are equal to zero

Distribution A priori the empirical probability density function does not allow to
know which probability law follows the residuals (uncertainty). To determine this,
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Figure C.2: Estimated probability density of data

we used statistical tests. The principle of statistical tests is as follows: we assume
that the residues follow a de�ned probability law, and we calculate a p-value. If it is
less than 0.05, the above hypothesis is rejected. Another method is to hypothesize
that the data follow a particular law and to estimate the parameters that best �t
the law. If the theoretical probability density function estimated is closed to the
empirical one, we assume that the probability law follows by residuals is found.

C.2 Theorical probability distribution

Residuals are real values between minus in�nity and plus in�nity. The probability
laws that residuals can follow are therefore:

• A normal law;

• A law of Cauchy;

• A Student's law t;

• A general exponential law;

• A double exponential law;

• Generalized error distribution (GED);

• A Pearson law type 4;

• A generalization of the Student's law.

126



Table C.2: normality test show that residues (uncertainty) do not follow normal
law.

Test Kolmogorov-Smirnov Anderson-Darling Shapiro-Wilk
p-value <2.2e-16 <2.2e-16 <2.2e-16

Normality test : For each tests in (Table C.2), the p-value is signi�cant, so the
sample does not follow a normal distribution.

Cauchy's Law Test : The Q-Qplot line does not match correctly with the data
particularly the two extremities of the diagram (Fig. C.3); we can say that the data
probably do not follow a Cauchy's law.

Figure C.3: Estimated probability density of data for Cauchy's law

Student's Law test: The Quantile-Quantile diagram, from the distribution func-
tion, does not match correctly the data, particularly the two extremities of the
diagram (Fig. C.4). We can then say that the data do not follow a Student's law.

Logistics law: The probability density function matches the data reasonably
well(Fig. C.5), so we can say that the residuals (uncertainty) follow a zero-
in�ated logistic law.
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Figure C.4: Estimated probability density of data for Student's law

Figure C.5: Estimated probability density of data for Logistic law

128



Appendix D
Training and changes on propulsion

technics

In this section, we want to evaluate the e�ect of the experiment on the propulsion
technique used by manual wheelchair users. We assume that the shape of the Mz

moment of the left and right wheels re�ects the propulsion technique used. Thus,
in this paragraph, rather than using an approach that uses cycle properties, we
directly compared time series from a distance function while taking into account the
presence of uncertainty in measurements. To do this, we applied FOTS-UShapelet
to the measurements made and we deliver here the analysis we made of the results
obtained.

FOTS-UShapelet was applied to the time series from the measurement of e�orts
made by eight valid subjects during the �rst week of use and after three weeks of use
of the Manual Wheelchair. Table D.1 details the obtained results. From the shape of
the time series, we could form three large groups that correspond to three techniques
that we have named T1, T2 and T3. For each subject of the experiment, we observe
a di�erence between the propulsion techniques used at the beginning of the trial
period and after three weeks. For example the subject SA01 uses the T1 technique
83% and the T3 technique 17% of the time during the �rst week. However, after three
weeks of using the Manual Wheelchair, he uses the T1 technique 33% of the time
and the T3 technique 67% of the time. So there is a change in the way he moves.
However, the observed changes vary according to the subjects (Table D.1). The
variations in the evolution of propulsion techniques require personalized monitoring
of locomotion and highlight the importance of using a Wheelchair Ergometer when
learning locomotion in a Manual Wheelchair.

Subject Week Trial wheel technic T1 T2 T3
SA01NE T0S ES1 RD 1
SA01NE T0S ES1 RG 1
Continue to the next page
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Subject Week Trial wheel technic T1 T2 T3
Following ...
SA01NE T0S ES2 RD 1
SA01NE T0S ES2 RG 3
SA01NE T0S ES3 RD 1
SA01NE T0S ES3 RG 1 0,83 0,00 0,17

SA01NE T3S ES1 RD 1
SA01NE T3S ES1 RG 3
SA01NE T3S ES2 RD 3
SA01NE T3S ES2 RG 1
SA01NE T3S ES4 RD 3
SA01NE T3S ES4 RG 3 0,33 0,00 0,67

SA02GG T0S ES1 RD 3
SA02GG T0S ES1 RG 1
SA02GG T0S ES2 RD 3
SA02GG T0S ES2 RG 3 0,25 0,00 0,75

SA02GG T3S ES1 RD 1
SA02GG T3S ES1 RG 1
SA02GG T3S ES2 RD 3
SA02GG T3S ES2 RG 1
SA02GG T3S ES3 RD 3
SA02GG T3S ES3 RG 3 0,50 0,00 0,50

SA03JM T0S ES1 RD 1
SA03JM T0S ES1 RG 1
SA03JM T0S ES2 RD 3
SA03JM T0S ES2 RG 1
SA03JM T0S ES3 RD 2
SA03JM T0S ES3 RG 1 0,67 0,17 0,17

SA03JM T3S ES1 RD 1
SA03JM T3S ES1 RG 3
SA03JM T3S ES2 RD 1
SA03JM T3S ES2 RG 1
SA03JM T3S ES3 RD 1
Continue to the next page
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Subject Week Trial wheel technic T1 T2 T3
Following ...
SA03JM T3S ES3 RG 1 0,83 0,00 0,17

SA04BD T0S ES1 RD 3
SA04BD T0S ES1 RG 1
SA04BD T0S ES2 RD 3
SA04BD T0S ES2 RG 1
SA04BD T0S ES4 RD 3
SA04BD T0S ES4 RG 3 0,33 0,00 0,67

SA04BD T3S ES1 RD 1
SA04BD T3S ES1 RG 3
SA04BD T3S ES2 RD 1
SA04BD T3S ES2 RG 1
SA04BD T3S ES3 RD 1
SA04BD T3S ES3 RG 1 0,83 0,00 0,17

SA05AT T0S ES2 RD 3
SA05AT T0S ES2 RG 1
SA05AT T0S ES3 RD 3
SA05AT T0S ES3 RG 3
SA05AT T0S ES4 RD 2
SA05AT T0S ES4 RG 1 0,33 0,17 0,50

SA05AT T3S ES1 RD 2
SA05AT T3S ES1 RG 2
SA05AT T3S ES2 RD 1
SA05AT T3S ES2 RG 3
SA05AT T3S ES3 RD 2
SA05AT T3S ES3 RG 1 0,33 0,50 0,17

SA06BM T0S ES1 RD 3
SA06BM T0S ES1 RG 3
SA06BM T0S ES2 RD 1
SA06BM T0S ES2 RG 2
SA06BM T0S ES4 RD 1
Continue to the next page
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Subject Week Trial wheel technic T1 T2 T3
Following ...
SA06BM T0S ES4 RG 3
SA06BM T0S ES4 RD 3
SA06BM T0S ES4 RG 2 0,25 0,25 0,50

SA06BM T3S ES1 RD 3
SA06BM T3S ES1 RG 1
SA06BM T3S ES2 RD 1
SA06BM T3S ES2 RG 3
SA06BM T3S ES3 RD 3
SA06BM T3S ES3 RG 3 0,33 0,00 0,67

SA07HP T0S ES1 RD 1
SA07HP T0S ES1 RG 1
SA07HP T0S ES2 RD 1
SA07HP T0S ES2 RG 1
SA07HP T0S ES3 RD 1
SA07HP T0S ES3 RG 1 1,00 0,00 0,00

SA07HP T3S ES1 RD 1
SA07HP T3S ES1 RG 3
SA07HP T3S ES2 RD 1
SA07HP T3S ES2 RG 1
SA07HP T3S ES3 RD 1
SA07HP T3S ES3 RG 1 0,83 0,00 0,17

SA08CA T0S ES1 RD 1
SA08CA T0S ES1 RG 1
SA08CA T0S ES2 RD 1
SA08CA T0S ES2 RG 1
SA08CA T0S ES3 RD 1
SA08CA T0S ES3 RG 1 1,00 0,00 0,00

SA08CA T3S ES1 RD 1
SA08CA T3S ES1 RG 1
SA08CA T3S ES2 RD 3
SA08CA T3S ES2 RG 1
Continue to the next page
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Subject Week Trial wheel technic T1 T2 T3
Following ...
SA08CA T3S ES3 RD 1
SA08CA T3S ES3 RG 3 0,67 0,00 0,33

Table D.1: Evolution of manual wheelchair propulsion technique with training
End
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Extraction de connaissances de séries temporelles cy-
cliques et incertaines : application à l'analyse de la
locomotion en fauteuil roulant manuel

Résumé

L'évaluation des capacités motrices des utilisateurs de Fauteuil roulant manuel est
souvent subjective, car elle se base sur l'avis d'un expert. C'est pourquoi, un fauteuil
roulant manuel ergomètre de terrain a été fabriqué. Il permet d'enregistrer les e�orts
e�ectués par les utilisateurs de fauteuil roulant manuel pendant leur déplacement.
Les mesures ainsi e�ectuées sont des séries temporelles ayant les caractéristiques
spéci�ques suivantes : elles sont longues, incertaines et cycliques. En nous appuyant
sur ces mesures ainsi que sur leurs propriétés, l'objectif de cette thèse est d'e�ectuer
une analyse objective de la locomotion en fauteuil roulant manuel. À cet e�et,
nous proposons trois modèles. Le premier modèle est une heuristique permettant
de trouver le nombre judicieux de segment à considérer pour la compression des
séries temporelles avec l'algorithme d'approximation par morceau, tout en concevant
l'information contenue dans les séries temporelles. Si le principe de fonction de
cette heuristique est similaire à celui de la recherche gloutonne randomisée, elle a la
particularité de proposer une stratégie spéci�que de recherche globale. Le deuxième
modèle est une mesure de similarité qui permet de capturer la structure fondamentale
des séries temporelles et qui est robuste à la présence d'incertitude. Cette mesure
de similarité est basée sur la comparaison à l'aide de la norme de Frobenius des
vecteurs propres des matrices d'autocorrélation des séries temporelles. Le troisième
modèle est une représentation symbolique de séries temporelle cycliques basée sur les
propriétés de cycles qui utilise un algorithme de segmentation des séries temporelles
cycliques en cycle et un algorithme de classi�cation non supervisée pour comparer les
cycles en fonction de leurs propriétés. Cette représentation symbolique permet une
meilleure visualisation et une meilleure analyse basée sur les propriétés des cycles
des séries temporelles cycliques. Nos modèles permettent de mettre en évidence le
caractère asymétrique de la locomotion en fauteuil roulant manuel et d'établir que
l'asymétrie de la locomotion diminue avec les années de pratique. Ils permettent
également d'évaluer de manière objective et intelligible les capacités motrices des
utilisateurs de fauteuil roulant manuel.

Séries temporelles, compression, comparaison,
représentation



Extraction of knowledge from cyclical and uncertain
time series: application to Manual Wheelchair loco-
motion analysis

Abstract

The assessment of the motor skills of manual wheelchair users is often subjective be-
cause it is based on expert opinion. Therefore, a manual �eld ergometer wheelchair
was conceived and constructed. It records the e�orts made by manual wheelchair
users during their locomotion. The measurements made are time series with the
following speci�c characteristics: they are long, uncertain and cyclical. Based on
these measurements and their properties, the objective of this thesis is to perform
an objective analysis of manual wheelchair locomotion. To this, we proposed three
models. The �rst model is a heuristic to �nd the appropriate number of segments to
consider for time series compression with the piece aggregate approximation algo-
rithm while keeping the information they contained. If the principle of this heuristic
is similar to that of greedy randomized adaptive search, it has the particularity of
proposing a speci�c global search strategy. The second model is a similarity measure
that captures the fundamental structure of time series and is robust to the presence
of uncertainty. This similarity measure is based on the comparison using the Frobe-
nius norm of eigenvectors of time series autocorrelation matrices. The third model is
a symbolic representation of cyclic time series based on cycle properties that utilises
a segmentation algorithm of cyclic time series in cycles and an unsupervised clas-
si�cation algorithm to compare cycles according to their properties. This symbolic
representation allows better visualization and analysis based on the cycle proper-
ties of cyclic time series. Our models highlight the asymmetrical nature of manual
wheelchair locomotion and establish that the asymmetry of locomotion decreases
with years of practice. They also provide an objective and intelligible assessment of
the motor abilities of manual wheelchair users.

Time series, compression, comparison,
representation University Clermont Auvergne
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