A. Ahmed, period captured by regional seismic networks: evidence for diking events and interactions with a nascent transform zone, Geophys. J. Int, vol.205, pp.1244-1266, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01284416

K. Aki, Maximum likehood estimate of b in the formula log n = abM and its confidence limits, Bull. Earthq. Res. Inst, vol.43, pp.237-239, 1965.

K. Aki, Evidence for magma intrusion during the Mammoth Lakes Earthquakes of May 1980 and implications of the absence of volcanic (harmonic) tremor, J. geophys. Res, vol.89, issue.B9, pp.7689-7696, 1984.

G. Baer, Y. Hamiel, G. Shamir, and R. Nof, Evolution of a magmadriven earthquake swarm and triggering of the nearby Oldoinyo Lengai eruption, as resolved by InSAR, ground observations and elastic modeling, Earth planet. Sci. Lett, vol.272, pp.339-352, 2007.

R. D. Ballard and T. H. Van-andel, Morphology and tectonics of the inner rift valley at Lat 36 ? 50'N on the Mid-Atlantic Ridge, Bull. geol. Soc. Am, vol.88, pp.507-530, 1977.

R. D. Ballard, W. B. Bryan, J. R. Heirtzler, G. Keller, J. G. Moore et al., Manned submersible observations in FAMOUS areaMid-Atlantic Ridge, Science, vol.190, issue.4210, pp.103-108, 1975.

A. H. Barclay, D. R. Toomey, and S. C. Solomon, Seismic structure and crustal magmatism at the Mid-Atlantic Ridge, 35 ? N, J. geophys. Res, vol.103, issue.B8, pp.827-844, 1998.

E. A. Bergman and S. C. Salomon, Earthquake swarm on the MidAtlantic Ridge: products of magmatism or extensional tectonics?, J. geophys. Res, vol.95, issue.B4, pp.4943-4965, 1990.

D. R. Bohnenstiehl, M. Tolstoy, R. P. Dziak, C. G. Fox, and D. K. Smith, Aftershock sequences in the mid-ocean ridge environment: an analysis using hydroacoustic data, Tectonophysics, vol.354, pp.49-70, 2002.

D. R. Bohnenstiehl, R. P. Dziak, M. Tolstoy, C. G. Fox, and M. Fowler, Temporal and spatial history of the 1999-2000 Endeavour Segment seismic series, Geochem. Geophys. Geosyst, vol.5, issue.9, p.9003, 2004.

B. Brandsdottir and P. Einarsson, Seismological evidence for lateral magma intrusion during the July 1978 deflation of the Krafla Volcano in NE-Iceland, J. Geophys, vol.47, pp.160-165, 1980.

B. Brandsdottir, P. Einarsson, P. Gasparini, R. Scarpa, and K. Aki, Volcanic tremor and low-frequency earthquakes in Iceland, IAVCEI Proceedings in Volcanology, pp.212-222, 1992.

J. P. Canales, R. A. Dunn, R. Arai, and R. A. Sohn, Seismic imaging of magma sills beneath an ultramafic-hosted hydrothermal system, Geology, vol.45, issue.5, pp.451-454, 2017.

M. Cannat, Emplacement of mantle rocks in the seafloor at Mid-ocean ridges, J. geophys. Res, vol.98, pp.4163-4172, 1993.

M. Cannat, Mid-Atlantic Ridge-Azores hotspot interactions: along-axis migration of a hotspot-derived event of enhanced magmatism 10 to 3 Ma ago, Earth planet. Sci. Lett, vol.173, issue.3, pp.257-269, 1999.

M. E. Chapman, Techniques for interpretation of geoid anomalies, J. geophys. Res, vol.84, issue.B8, pp.3793-3801, 1979.

P. Choukroune, J. Francheteau, and X. Le-pichon, In situ structural observations along Transform Fault A in the FAMOUS area, Mid-Atlantic Ridge, Bull. geol. Soc. Am, vol.89, pp.1013-1029, 1978.

A. Dannowski, J. P. Morgan, I. Grevemeyer, and C. R. Ranero, Enhanced mantle upwelling/melting caused segment propagation, Oceanic Core Complex die off, and the death of a transform fault -the Mid-Atlantic Ridge at 21.5 ? N, J. geophys. Res, vol.123, issue.2, pp.941-956, 2018.

C. D. De-groot-hedlin and J. A. Orcutt, Excitation of T-phases by seafloor scattering, J. acoust. Soc. Am, vol.109, issue.5, pp.1944-1954, 2001.

R. S. Detrick, J. D. Mudie, B. P. Luyendyk, and K. C. Macdonald, Nearbottom observations of an active transform fault: Mid-Atlantic Ridge at 37 ? N, Nature, vol.246, pp.59-61, 1973.

R. S. Detrick, J. C. Mutter, P. Buhl, and I. I. Kim, No evidence from multichannel reflection data for a crustal magma chamber in the MARK area on the Mid-Atlantic Ridge, Nature, vol.347, pp.61-64, 1990.

R. S. Detrick, H. D. Needham, and V. Renard, Gravity anomalies and crustal thickness variations along the Mid-Atlantic Ridge between 33 ? N and 40 ? N, J . geophys. Res, vol.100, issue.B3, pp.3767-3787, 1995.

R. P. Dziak, Empirical relationship of T-wave energy and fault parameters of northeast Pacific Ocean earthquakes, Geophys. Res. Lett, vol.28, issue.13, pp.2537-2540, 2001.

R. P. Dziak and C. G. Fox, The January 1998 earthquake swarm at Axial Volcano, Juan de Fuca Ridge: hydroacoustic evidence of a seafloor volcanic activity, Geophys. Res. Lett, vol.26, issue.23, pp.3429-3432, 1999.

R. P. Dziak and C. G. Fox, Long-term seismicity and ground deformation at Axial Volcano, Juan de Fuca Ridge, Geophys. Res. Lett, vol.26, issue.24, pp.3641-3644, 1999.

R. P. Dziak, C. G. Fox, and A. E. Schreiner, seismoacoustic event at CoAxial segment, Juan de Fuca Ridge: evidence for a lateral dike injection, Geophys. Res. Lett, vol.22, pp.135-138, 1993.

R. P. Dziak, D. K. Smith, D. R. Bohnenstiehl, C. G. Fox, D. Desbruyeres et al., Evidence of a recent magma dike intrusion at the slow spreading Lucky Strike segment, MidAtlantic Ridge, J. geophys. Res, vol.12, p.109, 2004.

D. E. Eason, R. A. Dunn, J. P. Canales, and R. Sohn, Segment-scale variations in seafloor volcanic and tectonic processes from multibeam sonar imaging, Mid-Atlantic Ridge Rainbow region (35 ? 45 -36 ? 35 N), Geochem. Geophys. Geosyst, vol.17, pp.3560-3579, 2016.

P. Einarsson, Earthquakes and present-day tectonism in Iceland, Tectonophysics, vol.189, pp.261-279, 1991.

G. Ekström, M. Nettles, and A. M. Dziewonski, The global CMT project 2004-2010: centroid-moment tensors for 13,017 earthquakes, Phys. Earth planet. Inter, pp.1-9, 0201.

J. Escartin, M. Cannat, G. Pouliquen, A. Rabain, and J. Lin, Crustal thickness of V-shaped ridges south of the Azores: interaction of the MidAtlantic Ridge (36 ? -39 ? N) and the Azores hot spot, J. geophys. Res, vol.106, issue.B10, pp.719-740, 2001.

C. G. Fox, R. P. Dziak, H. Matsumoto, and A. E. Schreiner, Potential for monitoring low-level seismicity on the Juan de Fuca Ridge using military hydrophone arrays, Technol. Soc. J, vol.27, pp.22-30, 1994.

C. G. Fox, H. Matsumoto, and A. L. Tai-kwan, Monitoring Pacific Ocean seismicity from an autonomous hydrophone array, J. geophys. Res, vol.106, issue.B3, pp.4183-4206, 2001.

C. Frohlich, Note concerning non-double-couple source components from slip along surfaces of revolution, J. geophys. Res, vol.95, issue.B5, pp.6861-6866, 1990.

C. Frohlich, Earthquakes with non-double-couple mechanisms, Science, vol.264, pp.804-809, 1994.

C. Frohlich, Characteristics of well-determined non-double-couple earthquakes in the Harvard CMT catalog, Phys. Earth planet. Inter, vol.91, pp.213-228, 1995.

C. Frohlich and S. D. Davis, Single-link cluster analysis as a method to evaluate spatial and temporal properties of earthquake catalogues, Geophys, J. Int, vol.100, issue.1, pp.19-32, 1990.

C. Frohlich, A. Riedesel, and K. D. Apperson, Note concerning possible mechanisms for non-double-couple earthquake sources, Geophys. Res. Lett, vol.16, issue.6, pp.523-526, 1989.

S. Gac, J. Dyment, C. Tisseau, and J. Goslin, Axial magnetic anomalies over slow-spreading ridge segments: insights from numerical 3-D thermal and physical modelling, Geophys. J. Int, vol.154, issue.3, pp.618-632, 2003.
URL : https://hal.archives-ouvertes.fr/insu-01309409

S. Gac, C. Tisseau, J. Dyment, and J. Goslin, Modelling the thermal evolution of slow-spreading ridge segments and their off-axis geophysical signature, Geophys. J. Int, vol.164, issue.18, pp.341-358, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00111135

A. Gale, M. Laubier, S. Escrig, and C. H. Langmuir, Constraints on melting processes and plume-ridge interaction from comprehensive study of the FAMOUS and north FAMOUS segments, mid-atlantic ridge, Earth planet. Sci. Lett, vol.365, pp.209-220, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01903800

P. Gente, Characteristics and evolution of the segmentation of the Mid-Atlantic Ridge between 20 ? N and 24 ? N during the last 10 million years, Earth planet. Sci. Lett, vol.129, pp.55-57, 1995.

P. Gente, J. Dyment, M. Maia, and J. Goslin, Interaction between the Mid-Atlantic Ridge and the Azores hot spot during the last 85 Myr: emplacement and rifting of the hot spot-derived plateaus, Geochem. Geophys. Geosyst, vol.4, issue.10, pp.1-23, 2003.

J. Goslin, Extent of Azores plume influence on the Mid-Atlantic Ridge north of the hotspot, Geology, vol.27, issue.11, pp.991-994, 1999.

J. Goslin, Spatiotemporal distribution of the seismicity along the Mid-Atlantic Ridge north of the Azores from hydroacoustic data: insights into seismogenic processes in a ridge-hot spot context, Geochem. Geophys. Geosyst, vol.13, issue.2, pp.489-514, 1985.
URL : https://hal.archives-ouvertes.fr/insu-00681683

E. Gracia, J. L. Charlou, J. Radford-knoery, and L. M. Parson, Nontransform offsets along the Mid-Atlantic Ridge south of the Azores (38 ? N-34 ? N): ultramafic exposures and hosting of hydrothermal vents, Earth planet. Sci. Lett, vol.177, pp.89-103, 2000.

B. Gutenberg and C. F. Richter, Frequency of earthquakes in California, Bull. seism. Soc. Am, vol.34, issue.4, pp.185-188, 1944.

J. R. Heirtzler and T. H. Van-andel, Project FAMOUS: its origin, programs and setting, Internatl. Seismol. Cent, vol.88, pp.481-487, 1997.

B. R. Julian, A. D. Miller, and G. R. Foulger, Non-double-couple earthquakes 1, Theory, Rev. Reviews of Geophyics, vol.36, issue.4, pp.525-549, 1998.

H. Kawakatsu, Enigma of earthquakes at ridge-transform-fault plate boundaries distribution of non-double couple parameter of Harvard CMT solutions, Geophys. Res. Lett, vol.18, issue.6, pp.1103-1106, 1991.

F. W. Klein, T. Wright, and J. Nakata, Aftershock decay, productivity, and stress rates in Hawaii: indicators of temperature and stress from magma sources, J. geophys. Res, vol.111, issue.B7, p.7307, 2006.

K. C. Macdonald, Near-bottom magnetic anomalies, asymmetric spreading, oblique spreading, and tectonics of the Mid-Atlantic Ridge near lat. 37 ? N, Bull. geol. Soc. Am, vol.88, pp.541-555, 1977.

M. Maia and P. Gente, Three-dimensional gravity and bathymetry analysis of the Mid-Atlantic Ridge between 20 ? N and 24 ? N: flow geometry and temporal evolution of the segmentation, J. geophys. Res, vol.103, issue.B1, pp.951-974, 1998.

M. Maia, J. Goslin, and P. Gente, Evolution of the accretion processes along the Mid-Atlantic Ridge north of the Azores since 5.5 Ma: an insight into the interactions between the ridge and the plume, Geochem. Geophys. Geosyst, vol.8, issue.3, p.3013, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00140487

L. S. Magde, A. H. Barclay, D. R. Toomey, R. S. Detrick, and J. A. Collins, Crustal magma plumbing within a segment of the Mid-Atlantic Ridge, 35 ? N, Earth planet. Sci. Lett, vol.175, pp.55-67, 2000.

P. Nyffenegger and C. Frohlich, Aftershock occurrence rate decay properties for intermediate and deep earthquake sequences, Geophys. Res. Lett, vol.27, issue.8, pp.1215-1218, 2000.

J. Pan and M. Dziewonski, Comparison of mid-oceanic earthquake epicentral differences of travel time, centroid locations, and those determined by autonomous underwater hydrophone arrays, J. geophys. Res, vol.110, p.7302, 2005.

R. L. Parker, The rapid calculation of potential anomalies, J. geophys. Res, vol.31, pp.447-455, 1973.

L. Parson, E. Gracia, D. Coller, C. German, and D. Needham, Secondorder segmentation: the relationship between volcanism and tectonism at the MAR, 38 ? N-35 ? 40'N, Earth planet, Sci. Lett, vol.178, pp.231-251, 2000.

M. Paulatto, J. P. Canales, R. A. Dunn, and R. A. Sohn, Heterogeneous and asymmetric crustal accretion: new constraints from multi-beam bathymetry and potential field data from the Rainbow area of the MidAtlantic Ridge (36 ? 15 N), Geochem. Geophys. Geosyst, vol.16, pp.2994-3014, 2015.

J. ;. Perrot, . Rv-le, and . Suroît, HYDROBS-MOMAR 2010 cruise, 2010.

J. ;. Perrot, . Rv-le, and . Suroît, HYDROBS-MOMAR 2011 cruise, 2011.

I. B. Ramberg, D. F. Gray, and R. Raynolds, Tectonic Evolution of the FAMOUS Area of the Mid-Atlantic Ridge, Bull. geol. Soc. Am, vol.88, pp.609-620, 1977.

I. Reid and K. C. Macdonald, Microearthquake study of the MidAtlantic Ridge near 37 ? N using sonobuoys, Nature, vol.246, pp.88-90, 1973.

A. M. Rubin, Dike-induced faulting and graben subsidence in volcanic rift zones, J. geophys. Res, vol.97, pp.1839-1858, 1992.

A. M. Rubin and D. Gillard, Dike-induced earthquakes: theoretical considerations, J. geophys. Res, vol.103, p.30, 1998.

A. Shuler and M. Nettles, Earthquake source parameters for the 2010 western Gulf of Aden rifting episode, Geophys. J. Int, vol.190, pp.111-1122, 2012.

A. Shuler, M. Nettles, and G. Ekström, Global observation of vertical-CLVD earthquakes at active volcanoes, J. geophys. Res, vol.118, pp.138-164, 2013.

N. Simão, J. Escartín, J. Goslin, J. Haxel, . Cannat et al., Regional seismicity of the Mid-Atlantic Ridge: observations from autonomous hydrophone arrays, Geophys. J. Int, vol.183, issue.3, pp.1559-1578, 2010.

J. M. Sinton and R. S. Detrick, Mid-ocean ridge magma chambers, J. geophys. Res, vol.97, issue.B1, pp.197-216, 1992.

D. K. Smith and J. R. Cann, Building the crust at the Mid-Atlantic Ridge, Nature, vol.365, pp.707-715, 1993.

D. K. Smith, M. Tolstoy, C. G. Fox, D. R. Bohnenstiehl, H. Matsumoto et al., Hydroacoustic monitoring of seismicity at the slowspreading Mid-Atlantic Ridge, Geophys. Res. Lett, vol.29, issue.11, pp.13-14, 2002.

W. J. Teague, M. J. Carron, and P. J. Hogan, A comparison between the Generalized Digital Environmental Model and levitus climatologies, 1990.

S. Toda, R. S. Stein, and T. Sagiya, Evidence from the AD 2000 Izu islands earthquake swarm that stressing rate governs seismicity, Nature, vol.419, pp.58-61, 2002.

R. Thibaud, P. Gente, and M. Maia, A systematic analysis of the Mid-Atlantic Ridge morphology and gravity between 15 ? N and 40 ? N: constraints of the thermal structure, J. geophys. Res, vol.103, issue.B10, pp.223-247, 1998.

M. Tolstoy, D. R. Bohnenstiehl, M. Edwards, and G. Kurras, Seismic character of volcanic activity at the ultraslow-spreading Gakkel Ridge, Geology, vol.29, pp.1139-1142, 2001.

E. Tsang-hin-sun, J. Royer, and J. Perrot, Seismicity and active accretion processes at the ultraslow-spreading Southwest and intermediatespreading Southeast Indian ridges from hydroacoustic data, Geophys. J. Int, vol.206, issue.2, pp.1232-1245, 2016.

T. Utsu and Y. Ogata, Statistical analysis of seismicity, IASPEI Software Library, vol.6, pp.13-94, 1997.

T. Utsu, Y. Ogata, and R. S. Matsu'ura, The centenary of the Omori formula for a decay law of aftershock activity, J. Phys. Earth, vol.43, pp.1-33, 1995.

P. Wessel, W. H. Smith, R. Scharroo, J. Luis, and F. Wobbe, Generic mapping tools: improved version released, EOS, Trans. Am. geophys. Un, vol.94, pp.409-410, 2013.

W. S. Wilcock, Seismic constraints on caldera dynamics from the 2015 Axial Seamount eruption, Science, vol.354, issue.6318, pp.1395-1398, 2016.

T. Yang, Y. Shen, S. Van-der-lee, S. C. Solomon, and S. Hung, Upper mantle structure beneath the Azores hotspot from finite-frequency seismic tomograph, Earth planet. Sci. Lett, vol.250, pp.11-26, 2006.

J. Goslin, N. Lourenço, R. P. Dziak, D. R. Bohnenstiehl, J. Haxel et al., Long-term seismicity of the Reykjanes Ridge (North Atlantic) recorded by a regional hydrophone array, Geophys. J. Int, vol.162, issue.2, pp.516-524, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00119194

L. Knopoff and M. J. Randall, The Compensated Linear VectorDipole: A possible Mechanism for Deep Earthquakes, J. geophys. Res, vol.75, issue.26, pp.4957-4963, 1970.

C. G. Fox and R. P. Dziak, Hydroacoustic detection of volcanic activity on the Gorda Ridge, vol.II, pp.2513-2530, 1996.

R. E. Abercrombie and G. Ekström, Earthquake slip on oceanic transform faults, Nature, vol.410, issue.6824, p.74, 2001.

K. Aderhold and R. E. Abercrombie, The 2015 mw 7.1 earthquake on the charlie-gibbs transform fault : Repeating earthquakes and multimodal slip on a slow oceanic transform, 2016.

, Geophysical Research Letters, vol.43, issue.12, pp.6119-6128

A. Ahmed, C. Doubre, S. Leroy, M. Kassim, D. Keir et al., period captured by regional seismic networks : Evidence for diking events and interactions with a nascent transform zone, Geophysical Journal International, vol.205, issue.2, pp.1244-1266, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01284416

S. Allerton, J. Escartín, and R. C. Searle, Extremely asymmetric magmatic accretion of oceanic crust at the ends of slow-spreading ridge segments, Geology, vol.28, issue.2, pp.179-182, 2000.

G. Baer, Y. Hamiel, G. Shamir, and R. Nof, Evolution of a magma-driven earthquake swarm and triggering of the nearby oldoinyo lengai eruption, as resolved by insar, ground observations and elastic modeling, east african rift, Earth and Planetary Science Letters, vol.272, issue.1-2, pp.339-352, 2007.

A. Balanche, Conversion sismo-acoustique au passage du fond océanique, 2009.

A. Balanche, C. Guennou, J. Goslin, and C. Mazoyer, Generation of hydroacoustic signals by oceanic subseafloor earthquakes : A mechanical model, Geophysical Journal International, vol.177, issue.2, pp.476-480, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00385522

R. D. Ballard and T. H. Van-andel, Morphology and tectonics of the inner rift valley at lat 36 ? 50 ? n on the mid-atlantic ridge, Geological Society of America Bulletin, vol.88, issue.4, pp.507-530, 1977.

A. H. Barclay, D. R. Toomey, and S. C. Solomon, Seismic structure and crustal magmatism at the mid-atlantic ridge, 35°n, Journal of Geophysical Research : Solid Earth, vol.103, issue.B8, pp.17827-17844, 1998.

A. H. Barclay, D. R. Toomey, and S. C. Solomon, Microearthquake characteristics and crustal vp/vs structure at the mid-atlantic ridge, p.35, 2001.

. ?-n, Journal of Geophysical Research : Solid Earth, vol.106, issue.B2, pp.2017-2034

M. D. Behn, W. R. Buck, and I. S. Sacks, Topographic controls on dike injection in volcanic rift zones, Earth and Planetary Science Letters, vol.246, issue.3-4, pp.188-196, 2006.

M. D. Behn and G. Ito, Magmatic and tectonic extension at mid-ocean ridges : 1. controls on fault characteristics, Geochemistry, Geophysics, Geosystems, issue.8, p.9, 2008.

M. Belachew, C. Ebinger, D. Coté, D. Keir, J. Rowland et al., Comparison of dike intrusions in an incipient seafloor-spreading segment in afar, ethiopia : Seismicity perspectives, Journal of Geophysical Research : Solid Earth, issue.B6, p.116, 2011.

R. Bell and W. Buck, Crustal control of ridge segmentation inferred from observations of the reykjanes ridge, Nature, vol.357, issue.6379, p.583, 1992.

E. A. Bergman and S. C. Solomon, Earthquake swarms on the mid-atlantic ridge : Products of magmatism or extensional tectonics, Journal of Geophysical Research : Solid Earth, vol.95, issue.B4, pp.4943-4965, 1990.

D. Bideau, R. Hékinian, B. Sichler, E. Gracia, C. Bollinger et al., Contrasting volcanic-tectonic processes during the past 2 ma on the mid-atlantic ridge : submersible mapping, petrological and magnetic results at lat, p.34, 1998.

, Marine Geophysical Researches, vol.20, issue.5, pp.425-458

A. Björnsson, Dynamics of crustal rifting in ne iceland, Journal of Geophysical Research : Solid Earth, vol.90, issue.B12, pp.10151-10162, 1985.

D. K. Blackman, C. E. Nishimura, and J. A. Orcutt, Seismoacoustic recordings of a spreading episode on the mohns ridge, Journal of Geophysical Research : Solid Earth, vol.105, issue.B5, pp.10961-10973, 2000.

D. Bohnenstiehl and R. P. Dziak, Mid-ocean ridge seismicity. Encyclopedia of Ocean Sciences, p.15, 2009.

D. Bohnenstiehl, M. Tolstoy, R. Dziak, C. Fox, and D. Smith, Aftershock sequences in the mid-ocean ridge environment : An analysis using hydroacoustic data, Tectonophysics, vol.354, issue.1-2, pp.49-70, 2002.

D. R. Bohnenstiehl, R. P. Dziak, M. Tolstoy, C. G. Fox, and M. Fowler, Temporal and spatial history of the 1999-2000 endeavour segment seismic series, 2004.

G. Geochemistry, Geosystems, issue.9, p.5

D. R. Bohnenstiehl and M. Tolstoy, Comparison of teleseismically and hydroacoustically derived earthquake locations along the north-central mid-atlantic ridge and equatorial east pacific rise, Seismological Research Letters, vol.74, issue.6, pp.791-802, 2003.

D. R. Bohnenstiehl, M. Tolstoy, D. K. Smith, C. G. Fox, and R. P. Dziak, Time-clustering behavior of spreading-center seismicity between 15 and 35 n on the mid-atlantic ridge : Observations from hydroacoustic monitoring, Physics of the Earth and Planetary Interiors, vol.138, issue.2, pp.147-161, 2003.

E. Bonatti, Not so hot" hot spots" in the oceanic mantle, Science, vol.250, issue.4977, pp.107-111, 1990.

B. Brandsdóttir and P. Einarsson, Seismic activity associated with the september 1977 deflation of the krafla central volcano in northeastern iceland, Journal of Volcanology and Geothermal Research, vol.6, issue.3-4, pp.197-212, 1979.

, BIBLIOGRAPHIE 285

A. Briais, D. Aslanian, L. Géli, and H. Ondréas, Analysis of propagators along the pacific-antarctic ridge : Evidence for triggering by kinematic changes. Earth and Planetary, Science Letters, vol.199, issue.3-4, pp.415-428, 2002.

W. R. Buck, P. Einarsson, and B. Brandsdóttir, Tectonic stress and magma chamber size as controls on dike propagation : Constraints from the 1975-1984 krafla rifting episode, Journal of Geophysical Research : Solid Earth, issue.B12, p.111, 2006.

W. R. Buck, L. L. Lavier, and A. N. Poliakov, Modes of faulting at mid-ocean ridges, Nature, vol.434, issue.7034, p.719, 2005.

E. Calais, N. Oreye, J. Albaric, A. Deschamps, D. Delvaux et al., Strain accommodation by slow slip and dyking in a youthful continental rift, east africa, Nature, vol.456, issue.7223, p.783, 2008.
URL : https://hal.archives-ouvertes.fr/insu-00346693

J. P. Canales, R. S. Detrick, J. Lin, J. A. Collins, and D. R. Toomey, Crustal and upper mantle seismic structure beneath the rift mountains and across a nontransform offset at the mid-atlantic ridge (35 ? n), Journal of Geophysical Research : Solid Earth, vol.105, issue.B2, p.2699, 2000.

J. P. Canales, R. A. Dunn, R. Arai, and R. A. Sohn, Seismic imaging of magma sills beneath an ultramafic-hosted hydrothermal system, Geology, vol.45, issue.5, pp.451-454, 2017.

J. P. Canales, S. C. Singh, R. S. Detrick, S. M. Carbotte, A. Harding et al., Seismic evidence for variations in axial magma chamber properties along the southern juan de fuca ridge, Earth and Planetary Science Letters, vol.246, issue.3, pp.353-366, 2006.

J. Cann, D. Blackman, D. Smith, E. Mcallister, B. Janssen et al., Corrugated slip surfaces formed at ridge-transform intersections on the mid-atlantic ridge, Nature, vol.385, issue.6614, p.329, 1997.

J. R. Cann, D. K. Smith, J. Escartin, and H. Schouten, Tectonic evolution of 200 km of mid-atlantic ridge over 10 million years : Interplay of volcanism and faulting, Geophysics, Geosystems, vol.16, issue.7, pp.2303-2321, 2015.
URL : https://hal.archives-ouvertes.fr/insu-01874621

M. Cannat, Emplacement of mantle rocks in the seafloor at mid-ocean ridges, Journal of Geophysical Research : Solid Earth, vol.98, issue.B3, pp.4163-4172, 1993.

M. Cannat, How thick is the magmatic crust at slow spreading oceanic ridges, Journal of Geophysical Research : Solid Earth, vol.101, issue.B2, pp.2847-2857, 1996.

M. Cannat, A. Briais, C. Deplus, J. Escart?n, J. Georgen et al., Mid-atlantic ridge-azores hotspot interactions : along-axis migration of a hotspot-derived event of enhanced magmatism 10 to 4 ma ago, Earth and Planetary Science Letters, vol.173, issue.3, pp.257-269, 1999.

M. Cannat, C. Mevel, M. Maia, C. Deplus, C. Durand et al., Thin crust, ultramafic exposures, and rugged faulting patterns at the mid-atlantic ridge (22-24 n), Geology, vol.23, issue.1, pp.49-52, 1995.

M. Cannat, C. Rommevaux-jestin, D. Sauter, C. Deplus, M. et al., Formation of the axial relief at the very slow spreading southwest indian ridge (49 to 69 e), Journal of Geophysical Research : Solid Earth, vol.104, issue.B10, pp.22825-22843, 1999.
URL : https://hal.archives-ouvertes.fr/insu-01586126

M. Cannat, D. Sauter, A. Bezos, C. Meyzen, E. Humler et al., Spreading rate, spreading obliquity, and melt supply at the ultraslow spreading southwest indian ridge, Geochemistry, Geophysics, Geosystems, issue.4, p.9, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00290733

S. M. Carbotte, D. K. Smith, M. Cannat, and E. M. Klein, Tectonic and magmatic segmentation of the global ocean ridge system : A synthesis of observations, Geological Society, vol.420, pp.420-425, 2015.

M. E. Chapman, Techniques for interpretation of geoid anomalies, Journal of Geophysical Research : Solid Earth, vol.84, issue.B8, pp.3793-3801, 1979.

N. Chapman and R. Marrett, The directionality of acoustic t-phase signals from small magnitude submarine earthquakes, The Journal of the Acoustical Society of America, vol.119, issue.6, pp.3669-3675, 2006.

R. F. Coates, The Advanced Sonar Course : Further Topics in Underwater Acoustics, Seiche.Com Limited, 2001.

K. Crane and R. D. Ballard, Volcanics and structure of the famous narrowgate rift : evidence for cyclic evolution : Amar 1, Journal of Geophysical Research : Solid Earth, vol.86, issue.B6, pp.5112-5124, 1981.

W. C. Crawford, A. Rai, S. C. Singh, M. Cannat, J. Escartin et al., Hydrothermal seismicity beneath the summit of lucky strike volcano, midatlantic ridge, Earth and Planetary Science Letters, vol.373, pp.118-128, 2013.

P. Cristini and D. Komatitsch, Some illustrative examples of the use of a spectralelement method in ocean acoustics, The Journal of the Acoustical Society of America, vol.131, issue.3, pp.229-235, 2012.

A. Dannowski, J. P. Morgan, I. Grevemeyer, and C. R. Ranero, Enhanced mantle upwelling/melting caused segment propagation, oceanic core complex die off, and the death of a transform fault : The mid-atlantic ridge at 21.5°n, Journal of Geophysical Research : Solid Earth, vol.123, issue.2, pp.941-956, 2018.

R. Das, H. Wason, and M. Sharma, Global regression relations for conversion of surface wave and body wave magnitudes to moment magnitude, Research : Solid Earth, vol.59, issue.2, pp.3767-3787, 2011.

J. D'eu, J. Royer, and J. Perrot, Long-term autonomous hydrophones for largescale hydroacoustic monitoring of the oceans, OCEANS, 2012-Yeosu, pp.1-6, 2012.

L. Di-iorio and C. W. Clark, Exposure to seismic survey alters blue whale acoustic communication, Biology letters, vol.6, issue.1, pp.51-54, 2010.

L. Dosso, H. Bougault, and J. Joron, Geochemical morphology of the north midatlantic ridge, 10-24 n : Trace element-isotope complementarity, Earth and Planetary Science Letters, vol.120, issue.3-4, pp.443-462, 1993.

L. Dosso, H. Bougault, C. Langmuir, C. Bollinger, O. Bonnier et al., The age and distribution of mantle heterogeneity along the mid-atlantic ridge (31-41 n), Earth and Planetary Science Letters, vol.170, issue.3, pp.269-286, 1999.

R. A. Dunn, R. Arai, D. E. Eason, J. P. Canales, and R. A. Sohn, Three-dimensional seismic structure of the mid-atlantic ridge : An investigation of tectonic, magmatic, and hydrothermal processes in the rainbow area, Journal of Geophysical Research : Solid Earth, vol.122, issue.12, pp.9580-9602, 2017.

R. A. Dunn, V. Leki?, R. S. Detrick, and D. R. Toomey, Three-dimensional seismic structure of the mid-atlantic ridge (35 n) : Evidence for focused melt supply and lower crustal dike injection, Journal of Geophysical Research : Solid Earth, issue.B9, p.110, 2005.

D. Dusunur, J. Escartín, V. Combier, T. Seher, W. Crawford et al., Seismological constraints on the thermal structure along the lucky strike segment (mid-atlantic ridge) and interaction of tectonic and magmatic processes around the magma chamber, Marine Geophysical Researches, vol.30, issue.2, pp.105-120, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00468070

J. Dyment, F. Szitkar, and D. Levaillant, Ridge propagation, oceanic core complexes, and ultramafic-hosted hydrothermalism at rainbow (mar 36°n) : Insights from a multiscale magnetic exploration, Earth and Planetary Science Letters, vol.502, pp.23-31, 2018.

R. Dziak, D. Bohnenstiehl, J. Cowen, E. Baker, K. Rubin et al., Rapid dike emplacement leads to eruptions and hydrothermal plume release during seafloor spreading events, Geology, vol.35, issue.7, pp.579-582, 2007.

R. Dziak, D. Bohnenstiehl, H. Matsumoto, C. Fox, D. Smith et al., P-and t-wave detection thresholds, pn velocity estimate, and detection of lower mantle and core p-waves on ocean sound-channel hydrophones at the mid-atlantic ridge, Bulletin of the Seismological Society of America, vol.94, issue.2, pp.665-677, 2004.

R. P. Dziak, Empirical relationship of t-wave energy and fault parameters of northeast pacific ocean earthquakes, Geophysical Research Letters, vol.28, issue.13, pp.2537-2540, 2001.

R. P. Dziak and C. G. Fox, The january 1998 earthquake swarm at axial volcano, juan de fuca ridge : Hydroacoustic evidence of seafloor volcanic activity, Geophysical Research Letters, vol.26, issue.23, pp.3429-3432, 1999.

R. P. Dziak, C. G. Fox, and A. E. Schreiner, The june-july 1993 seismo-acoustic event at coaxial segment, juan de fuca ridge : Evidence for a lateral dike injection, Geophysical Research Letters, vol.22, issue.2, pp.135-138, 1995.

R. P. Dziak, S. R. Hammond, and C. G. Fox, A 20-year hydroacoustic time series of seismic and volcanic events in the northeast pacific ocean, Oceanography, vol.24, issue.3, pp.280-293, 2011.

R. P. Dziak, J. H. Haxel, H. Matsumoto, T. Lau, S. Heimlich et al., Ambient sound at challenger deep, mariana trench, Oceanography, vol.30, issue.2, pp.186-197, 2017.

R. P. Dziak, D. K. Smith, D. R. Bohnenstiehl, C. G. Fox, D. Desbruyeres et al., Evidence of a recent magma dike intrusion at the slow spreading lucky strike segment, mid-atlantic ridge, Journal of Geophysical Research : Solid Earth, vol.109, issue.B12, 2004.

D. E. Eason, R. A. Dunn, P. Canales, J. Sohn, and R. A. , Segment-scale variations in seafloor volcanic and tectonic processes from multibeam sonar imaging, midatlantic ridge rainbow region, p.35, 2016.

). ?-n and . Geochemistry, Geophysics, Geosystems, vol.17, issue.9, pp.3560-3579

P. Einarsson and B. Brandsdóttir, Seismological evidence for lateral magma intrusion during the july 1978 deflation of the krafla volcano in ne-iceland, 1978.

G. Ekström, M. Nettles, and A. Dziewo?ski, The global cmt project 2004-2010 : Centroid-moment tensors for 13,017 earthquakes, Physics of the Earth and Planetary Interiors, vol.200, pp.1-9, 2012.

J. Escartín and J. Canales, Detachments in oceanic lithosphere : Deformation, magmatism, fluid flow, and ecosystems, Transactions American Geophysical Union, vol.92, issue.4, pp.31-31, 2011.

, BIBLIOGRAPHIE 289

J. Escartin, M. Cannat, G. Pouliquen, A. Rabain, L. et al., Crustal thickness of vshaped ridges south of the azores : Interaction of the mid-atlantic ridge (36 hot spot, Journal of Geophysical Research : Solid Earth, vol.106, issue.B10, pp.21719-21735, 2001.
URL : https://hal.archives-ouvertes.fr/insu-01827660

J. Escartin, P. Cowie, R. Searle, S. Allerton, N. Mitchell et al., Quantifying tectonic strain and magmatic accretion at a slow spreading ridge segment, p.29, 1999.

. ?-n, Journal of Geophysical Research : Solid Earth, vol.104, issue.B5, p.10421

J. Escartín and J. Lin, Ridge offsets, normal faulting, and gravity anomalies of slow spreading ridges, Journal of Geophysical Research : Solid Earth, vol.100, issue.B4, pp.6163-6177, 1995.

J. Escart?n and J. Lin, Tectonic modification of axial crustal structure : Evidence from spectral analyses of residual gravity and bathymetry of the mid-atlantic ridge flanks. Earth and planetary science letters, vol.154, pp.279-293, 1998.

J. Escartín, C. Mevel, S. Petersen, D. Bonnemains, M. Cannat et al., Tectonic structure, evolution, and the nature of oceanic core complexes and their detachment fault zones, 2017.

. ?-n, Geochemistry, Geophysics, Geosystems, vol.18, pp.1451-1482

J. Escartín, D. K. Smith, J. Cann, H. Schouten, C. H. Langmuir et al., Central role of detachment faults in accretion of slow-spreading oceanic lithosphere, Nature, vol.455, issue.7214, p.790, 2008.

M. Ewing, G. P. Woollard, A. Vine, and J. Worzel, Recent results in submarine geophysics, Geological Society of America Bulletin, vol.57, issue.10, pp.909-934, 1946.

C. Fox, J. Cowen, R. Dziak, E. Baker, R. Embley et al., Detection and response to a seafloor spreading episode on the central gorda ridge, AGU Fall Meeting Abstracts, 2001.

C. G. Fox and R. P. Dziak, Hydroacoustic detection of volcanic activity on the gorda ridge, Deep Sea Research Part II : Topical Studies in Oceanography, vol.45, pp.2513-2530, 1996.

C. G. Fox, H. Matsumoto, and T. A. Lau, Monitoring pacific ocean seismicity from an autonomous hydrophone array, Journal of Geophysical Research : Solid Earth, vol.106, issue.B3, pp.4183-4206, 2001.

C. G. Fox, W. E. Radford, R. P. Dziak, T. Lau, H. Matsumoto et al., Acoustic detection of a seafloor spreading episode on the juan de fuca ridge using military hydrophone arrays, Geophysical Research Letters, vol.22, issue.2, pp.131-134, 1995.

T. Francis, The detailed seismicity of mid-oceanic ridges, Earth and Planetary Science Letters, vol.4, issue.1, pp.39-46, 1968.

C. Frohlich and S. D. Davis, Single-link cluster analysis as a method to evaluate spatial and temporal properties of earthquake catalogues, Geophysical Journal International, vol.100, issue.1, pp.19-32, 1990.

C. Frohlich and S. D. Davis, Teleseismic b values ; or, much ado about 1.0, Journal of Geophysical Research : Solid Earth, vol.98, issue.B1, pp.631-644, 1993.

S. Gac, J. Dyment, C. Tisseau, and J. Goslin, Axial magnetic anomalies over slowspreading ridge segments : insights from numerical 3-d thermal and physical modelling, 2003.
URL : https://hal.archives-ouvertes.fr/insu-01309409

, Geophysical Journal International, vol.154, issue.3, pp.618-632

S. Gac, C. Tisseau, J. Dyment, and J. Goslin, Modelling the thermal evolution of slowspreading ridge segments and their off-axis geophysical signature, Geophysical Journal International, vol.164, issue.2, pp.341-358, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00111135

J. B. Gaherty and R. A. Dunn, Evaluating hot spot-ridge interaction in the atlantic from regional-scale seismic observations, Geochemistry, Geophysics, Geosystems, vol.8, issue.5, 2007.

A. Gale, S. Escrig, E. J. Gier, C. H. Langmuir, and S. L. Goldstein, Enriched basalts at segment centers : The lucky strike, p.37, 2011.

G. Geochemistry, Geosystems, issue.6, p.12

A. Gale, M. Laubier, S. Escrig, and C. H. Langmuir, Constraints on melting processes and plume-ridge interaction from comprehensive study of the famous and north famous segments, mid-atlantic ridge, Earth and Planetary Science Letters, vol.365, pp.209-220, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01903800

P. Gente, Etude morphostructurale comparative de dorsales océaniques à taux d'expansion variés : schéma d'évolution morphologique de l'axe des dorsales : liaison avec l'hydrothermalisme, 1987.

P. Gente, J. Dyment, M. Maia, and J. Goslin, Interaction between the mid-atlantic ridge and the azores hot spot during the last 85 myr : Emplacement and rifting of the hot spot-derived plateaus, Geochemistry, Geophysics, Geosystems, issue.10, p.4, 2003.

P. Gente, R. A. Pockalny, C. Durand, C. Deplus, M. Maia et al., Characteristics and evolution of the segmentation of the midatlantic ridge between 20 n and 24 n during the last 10 million years, Earth and Planetary Science Letters, vol.129, issue.1-4, pp.55-71, 1995.

M. Giusti, J. Perrot, R. P. Dziak, A. Sukhovich, M. et al., The august 2010 earthquake swarm at north famous-famous segments, mid-atlantic ridge : Geophysical evidence of dike intrusion, Geophysical Journal International, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01901931

J. Goslin, Extent of azores plume influence on the mid-atlantic ridge north of the hotspot, Geology, vol.27, issue.11, pp.991-994, 1999.

J. Goslin, SIRENA cruise, RV Le Suroît, 2002.

J. Goslin, MARCHE 1 LEG 1 cruise, RV Le Suroît, 2006.

J. Goslin, MARCHE 2 cruise, RV Le Suroît, 2007.

J. Goslin, N. Lourenço, R. P. Dziak, D. R. Bohnenstiehl, J. Haxel et al., Longterm seismicity of the reykjanes ridge (north atlantic) recorded by a regional hydrophone array, Geophysical Journal International, vol.162, issue.2, pp.516-524, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00119194

J. Goslin, J. Perrot, J. Royer, C. Martin, N. Lourenço et al., Spatiotemporal distribution of the seismicity along the mid-atlantic ridge north of the azores from hydroacoustic data : Insights into seismogenic processes in a ridge-hot spot context, Geochemistry, Geophysics, Geosystems, issue.2, p.13, 2012.
URL : https://hal.archives-ouvertes.fr/insu-00681683

J. Goslin, J. Thirot, O. Noël, and J. Francheteau, Slow-ridge/hotspot interactions from global gravity, seismic tomography and 87sr/86sr isotope data, Geophysical Journal International, vol.135, issue.2, pp.700-710, 1998.

E. Gràcia, D. Bideau, R. Hekinian, and Y. Lagabrielle, Detailed geological mapping of two contrasting second-order segments of the mid-atlantic ridge between oceanographer and hayes fracture zones, p.33, 1999.

, Journal of Geophysical Research : Solid Earth, vol.104, issue.B10, pp.22903-22921

E. Gràcia, D. Bideau, R. Hekinian, Y. Lagabrielle, and L. M. Parson, Along-axis magmatic oscillations and exposure of ultramafic rocks in a second-order segment of the midatlantic ridge, p.33, 1997.

, ? n). Geology, vol.25, issue.12, pp.1059-1062

E. Gràcia, J. L. Charlou, J. Radford-knoery, and L. M. Parson, Non-transform offsets along the mid-atlantic ridge south of the azores (38 ? n-34 ? n) : ultramafic exposures and hosting of hydrothermal vents, Earth and Planetary Science Letters, vol.177, issue.1-2, pp.89-103, 2000.

R. Grandin, E. Jacques, A. Nercessian, A. Ayele, C. Doubre et al., Seismicity during lateral dike propagation : Insights from new data in the recent manda hararo, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01006080

G. Geochemistry, Geosystems, issue.4, p.12

N. Grindlay, P. Fox, and K. Macdonald, Second-order ridge axis discontinuities in the south atlantic : Morphology, structure, and evolution. Marine Geophysical Researches, vol.13, pp.21-49, 1991.

N. R. Grindlay, J. A. Madsen, C. Rommevaux-jestin, and J. Sclater, A different pattern of ridge segmentation and mantle bouguer gravity anomalies along the ultra-slow spreading southwest indian ridge (15 and Planetary Science Letters, vol.161, pp.243-253, 1998.

B. Gutenberg and C. F. Richter, Frequency of earthquakes in california, Bulletin of the Seismological Society of America, vol.34, issue.4, pp.185-188, 1944.

S. M. Haver, H. Klinck, S. L. Nieukirk, H. Matsumoto, R. P. Dziak et al., The not-so-silent world : Measuring arctic, equatorial, and antarctic soundscapes in the atlantic ocean, Deep Sea Research Part I : Oceanographic Research Papers, vol.122, pp.95-104, 2017.

J. Haxel and R. Dziak, Evidence of explosive seafloor volcanic activity from the walvis ridge, south atlantic ocean, Geophysical Research Letters, issue.13, p.32, 2005.

J. Heirtzler and T. H. Van-andel, Project famous : Its origin, programs, and setting, vol.88, pp.481-487, 1977.

R. Hey, A new class of "pseudofaults" and their bearing on plate tectonics : A propagating rift model, Earth and Planetary Science Letters, vol.37, issue.2, pp.321-325, 1977.

E. Hooft, R. Detrick, D. Toomey, J. Collins, L. et al., Crustal thickness and structure along three contrasting spreading segments of the mid-atlantic ridge, 33.5-35 n, Journal of Geophysical Research : Solid Earth, vol.105, issue.B4, pp.8205-8226, 2000.

. International-seismological-centre, On-line Bulletin, Internatl. Seismol. Cent, 2016.

B. Isacks, J. Oliver, and L. R. Sykes, Seismology and the new global tectonics, Journal of Geophysical Research, vol.73, issue.18, pp.5855-5899, 1968.

G. Ito and J. Lin, Oceanic spreading center-hotspot interactions : constraints from along-isochron bathymetric and gravity anomalies, Geology, vol.23, issue.7, pp.657-660, 1995.

T. Jaggar, How the seismograph works. The Volcano Letter, vol.268, pp.1-4, 1930.

G. Jamet, Modélisation d'ondes sismo-acoustiques par la méthode des éléments spectraux. Application à un séisme dans l'Atlantique Nord, 2014.

G. Jamet, C. Guennou, L. Guillon, C. Mazoyer, and J. Royer, T-wave generation and propagation : A comparison between data and spectral element modeling, The Journal of the Acoustical Society of America, vol.134, issue.4, pp.3376-3385, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01073248

G. Jamet, C. Guennou, L. Guillon, and J. Royer, Very low frequency wave propagation numerical model, Proceedings of Meetings on Acoustics ECUA2012, vol.17, p.70099, 2012.

F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt, Computational ocean acoustics, 2000.

G. Johnson and P. Vogt, Mid-atlantic ridge from 47 to 51 north, Geological Society of America Bulletin, vol.84, issue.10, pp.3443-3462, 1973.

R. H. Johnson and R. A. Norris, Geographic variation of sofar speed and axis depth in the pacific ocean, Journal of Geophysical Research, vol.73, issue.14, pp.4695-4700, 1968.

R. H. Johnson and R. A. Norris, T-phase radiators in the western aleutians, Bulletin of the Seismological Society of America, vol.58, issue.1, pp.1-10, 1968.

R. H. Johnson, J. Northrop, and R. Eppley, Sources of pacific t phases, Journal of Geophysical Research, vol.68, issue.14, pp.4251-4260, 1963.

B. R. Julian, A. D. Miller, and G. Foulger, Non-double-couple earthquakes 1. theory, Reviews of Geophysics, vol.36, issue.4, pp.525-549, 1998.

H. Kanamori, Magnitude scale and quantification of earthquakes, Tectonophysics, vol.93, issue.3-4, pp.185-199, 1983.

D. R. Ketten, Estimates of blast injury and acoustic trauma zones for marine mammals from underwater explosions. Sensory systems of aquatic mammals, pp.391-407, 1995.

F. W. Klein, T. Wright, and J. Nakata, Aftershock decay, productivity, and stress rates in hawaii : Indicators of temperature and stress from magma sources, Journal of Geophysical Research : Solid Earth, issue.B7, p.111, 2006.

L. Knopoff and M. J. Randall, The compensated linear-vector dipole : A possible mechanism for deep earthquakes, Journal of Geophysical Research, vol.75, issue.26, pp.4957-4963, 1970.

D. Komatitsch, C. Barnes, and J. Tromp, Wave propagation near a fluid-solid interface : A spectral-element approach, Geophysics, vol.65, issue.2, pp.623-631, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00669051

D. Komatitsch and J. Vilotte, The spectral element method : an efficient tool to simulate the seismic response of 2d and 3d geological structures, Bulletin of the seismological society of America, vol.88, issue.2, pp.368-392, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00669068

L. S. Kong, S. C. Solomon, and G. Purdy, Microearthquake characteristics of a midocean ridge along-axis high, Journal of Geophysical Research : Solid Earth, vol.97, issue.B2, pp.1659-1685, 1992.

B. Kuo and D. W. Forsyth, Gravity anomalies of the ridge-transform system in the south atlantic between 31 and 34.5 s : Upwelling centers and variations in crustal thickness, Marine Geophysical Researches, vol.10, issue.3-4, pp.205-232, 1988.

C. Läderach, E. Korger, V. Schlindwein, C. Müller, and A. Eskstaller, Characteristics of tectonomagmatic earthquake swarms at the southwest indian ridge between 16, Journal International, vol.190, issue.1, pp.429-441, 2012.

S. Le-douaran and J. Francheteau, Axial depth anomalies from 10 to 50 ? north along the mid-atlantic ridge : correlation with other mantle properties, Earth and Planetary Science Letters, vol.54, issue.1, pp.29-47, 1981.

J. Lecoulant, C. Guennou, L. Guillon, and J. Royer, 3-d modeling of the generation and propagation of acoustic t-waves at seafloor spreading ridges, 2019.

E. Leroy, Surveillance acoustique des baleines bleues Antarctique dans l'océan Indien austral : traitement, analyse et interprétation, 2017.

E. C. Leroy, F. Samaran, J. Bonnel, and J. Royer, Seasonal and diel vocalization patterns of antarctic blue whale (balaenoptera musculus intermedia) in the southern indian ocean : A multi-year and multi-site study, PloS one, vol.11, issue.11, p.163587, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01396671

E. C. Leroy, F. Samaran, J. Bonnel, and J. Royer, Identification of two potential whale calls in the southern indian ocean, and their geographic and seasonal occurrence, The Journal of the Acoustical Society of America, vol.142, issue.3, pp.1413-1427, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01902719

J. Lin and J. P. Morgan, The spreading rate dependence of three-dimensional mid-ocean ridge gravity structure, Geophysical Research Letters, vol.19, issue.1, pp.13-16, 1992.

J. Lin, G. Purdy, H. Schouten, J. Sempere, and C. Zervas, Evidence from gravity data for focused magmatic accretion along the mid-atlantic ridge, Nature, vol.344, issue.6267, p.627, 1990.

D. Linehan, Earthquakes in the west indian region. Eos, Transactions American Geophysical Union, vol.21, pp.229-232, 1940.

P. Lonsdale, Structural geomorphology of a fast-spreading rise crest : The east pacific rise near 3 ? 25 ? s, Marine Geophysical Researches, vol.3, issue.3, pp.251-293, 1977.

J. F. Luis, J. Miranda, A. Galdeano, P. Patriat, J. Rossignol et al., The azores triple junction evolution since 10 ma from an aeromagnetic survey of the midatlantic ridge, Earth and Planetary Science Letters, vol.125, issue.1-4, pp.439-459, 1994.

K. C. Macdonald, Mid-ocean ridges : Fine scale tectonic, volcanic and hydrothermal processes within the plate boundary zone, Annual Review of Earth and Planetary Sciences, vol.10, issue.1, pp.155-190, 1982.

K. C. Macdonald, P. Fox, L. Perram, M. Eisen, R. Haymon et al., A new view of the mid-ocean ridge from the behaviour of ridge-axis discontinuities, Nature, vol.335, issue.6187, p.217, 1988.

K. C. Macdonald and B. P. Luyendyk, Deep-tow studies of the structure of the midatlantic ridge crest near lat 37 n, vol.88, pp.621-636, 1977.

K. C. Macdonald, D. S. Scheirer, and S. M. Carbotte, Mid-ocean ridges : Discontinuities, segments and giant cracks, Science, vol.253, issue.5023, pp.986-994, 1991.

C. Macleod, R. Searle, B. Murton, J. Casey, C. Mallows et al., Life cycle of oceanic core complexes, Earth and Planetary Science Letters, vol.287, issue.3-4, pp.333-344, 2009.

J. A. Madsen, D. W. Forsyth, and R. S. Detrick, A new isostatic model for the east pacific rise crest, Journal of Geophysical Research : Solid Earth, vol.89, issue.B12, pp.9997-10015, 1984.

L. S. Magde, A. H. Barclay, D. R. Toomey, R. S. Detrick, and J. A. Collins, Crustal magma plumbing within a segment of the mid-atlantic ridge, 35 n, Earth and Planetary Science Letters, vol.175, issue.1-2, pp.55-67, 2000.

L. S. Magde and D. W. Sparks, Three-dimensional mantle upwelling, melt generation, and melt migration beneath segment slow spreading ridges, Journal of Geophysical Research : Solid Earth, vol.102, issue.B9, pp.20571-20583, 1997.

L. S. Magde, D. W. Sparks, and R. S. Detrick, The relationship between buoyant mantle flow, melt migration, and gravity bull's eyes at the mid-atlantic ridge between 33 n and 35 n, Earth and Planetary Science Letters, vol.148, issue.1-2, pp.59-67, 1997.

M. Maia and P. Gente, Three-dimensional gravity and bathymetry analysis of the mid-atlantic ridge between 20 n and 24 n : Flow geometry and temporal evolution of the segmentation, Journal of Geophysical Research : Solid Earth, vol.103, issue.B1, pp.951-974, 1998.

M. Maia, J. Goslin, and P. Gente, Evolution of the accretion processes along the midatlantic ridge north of the azores since 5.5 ma : An insight into the interactions between the ridge and the plume, Geochemistry, Geophysics, Geosystems, vol.8, issue.3, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00140487

L. G. Mastin and D. D. Pollard, Surface deformation and shallow dike intrusion processes at inyo craters, long valley, california. Journal of Geophysical Research : Solid Earth, vol.93, issue.B11, pp.13221-13235, 1988.

S. Maus, U. Barckhausen, H. Berkenbosch, N. Bournas, J. Brozena et al., Emag2 : A 2-arc min resolution earth magnetic anomaly grid compiled from satellite, airborne, and marine magnetic measurements, Geochemistry, Geophysics, Geosystems, issue.8, p.10, 2009.

M. A. Mcdonald, J. A. Hildebrand, S. M. Wiggins, R. , and D. , A 50 year comparison of ambient ocean noise near san clemente island : A bathymetrically complex coastal region off southern california, The journal of the Acoustical Society of America, vol.124, issue.4, pp.1985-1992, 2008.

J. J. Mcguire, J. A. Collins, P. Gouédard, E. Roland, D. Lizarralde et al., Variations in earthquake rupture properties along the gofar transform fault, east pacific rise, Nature Geoscience, vol.5, issue.5, p.336, 2012.

S. R. Mcnutt, Seismic monitoring and eruption forecasting of volcanoes : a review of the state-of-the-art and case histories, Monitoring and mitigation of volcano hazards, pp.99-146, 1996.

H. Medwin and C. S. Clay, Fundamentals of acoustical oceanography, 1997.

D. K. Mellinger and C. W. Clark, Blue whale (balaenoptera musculus) sounds from the north atlantic, The Journal of the Acoustical Society of America, vol.114, issue.2, pp.1108-1119, 2003.

J. M. Miranda, P. Silva, N. Lourenço, B. Henry, and R. Costa, Study of the saldanha massif (mar, 36 ? 34 ? n) : Constrains from rock magnetic and geophysical data. Marine Geophysical Researches, vol.23, pp.299-318, 2002.

K. Mogi, Regional variations in magnitude-frequency relation of earthquakes, Bull. Earthq. Res. Inst, vol.45, pp.313-325, 1967.

J. P. Morgan and D. W. Forsyth, Three-dimensional flow and temperature perturbations due to a transform offset : Effects on oceanic crustal and upper mantle structure, Journal of Geophysical Research : Solid Earth, vol.93, issue.B4, pp.2955-2966, 1988.

J. P. Morgan and E. Parmentier, Causes and rate-limiting mechanisms of ridge propagation : A fracture mechanics model, Journal of Geophysical Research : Solid Earth, vol.90, issue.B10, pp.8603-8612, 1985.

C. Müller and W. Jokat, Seismic evidence for volcanic activity discovered in central arctic, Transactions American Geophysical Union, vol.81, issue.24, pp.265-269, 2000.

W. H. Munk, R. C. Spindel, A. Baggeroer, and T. G. Birdsall, The heard island feasibility test, The Journal of the Acoustical Society of America, vol.96, issue.4, pp.2330-2342, 1994.

S. L. Nieukirk, D. K. Mellinger, S. E. Moore, K. Klinck, R. P. Dziak et al., Sounds from airguns and fin whales recorded in the mid-atlantic ocean, The Journal of the Acoustical Society of America, vol.131, issue.2, pp.1102-1112, 1999.
URL : https://hal.archives-ouvertes.fr/insu-00687273

Y. Niu, D. Bideau, R. Hékinian, and R. Batiza, Mantle compositional control on the extent of mantle melting, crust production, gravity anomaly, ridge morphology, and ridge segmentation : A case study at the mid-atlantic ridge 33-35 n, Earth and Planetary Science Letters, vol.186, issue.3, pp.383-399, 2001.

R. A. Norris and R. H. Johnson, Submarine volcanic eruptions recently located in the pacific by sofar hydrophones, Journal of Geophysical Research, vol.74, issue.2, pp.650-664, 1969.

P. Nyffenegger and C. Frohlich, Recommendations for determining p values for aftershock sequences and catalogs, Bulletin of the Seismological Society of America, vol.88, issue.5, pp.1144-1154, 1998.

P. Nyffenegger and C. Frohlich, Aftershock occurrence rate decay properties for intermediate and deep earthquake sequences, Geophysical Research Letters, vol.27, issue.8, pp.1215-1218, 2000.

Y. Ogata, Estimation of the parameters in the modified omori formula for aftershock frequencies by the maximum likelihood procedure, Journal of Physics of the Earth, vol.31, issue.2, pp.115-124, 1983.

E. A. Okal, The generation of t waves by earthquakes, Advances in Geophysics, vol.49, pp.1-65, 2008.

K. Okino, D. Curewitz, M. Asada, K. Tamaki, P. Vogt et al., Preliminary analysis of the knipovich ridge segmentation : influence of focused magmatism and ridge obliquity on an ultraslow spreading system, Earth and Planetary Science Letters, vol.202, issue.2, pp.275-288, 2002.

J. Olive, M. D. Behn, and B. E. Tucholke, The structure of oceanic core complexes controlled by the depth distribution of magma emplacement, Nature Geoscience, vol.3, issue.7, p.491, 2010.

J. Olive and J. Escartín, Dependence of seismic coupling on normal fault style along the northern mid-atlantic ridge, Geochemistry, Geophysics, Geosystems, vol.17, issue.10, pp.4128-4152, 2016.
URL : https://hal.archives-ouvertes.fr/insu-01875638

F. Omori, On the after-shocks of earthquakes, The University, vol.7, 1894.

J. Pan and A. M. Dziewonski, Comparison of mid-oceanic earthquake epicentral differences of travel time, centroid locations, and those determined by autonomous underwater hydrophone arrays, Journal of Geophysical Research : Solid Earth, issue.B7, p.110, 2005.

M. Park, R. I. Odom, and D. J. Soukup, Modal scattering : A key to understanding oceanic t-waves, Geophysical Research Letters, vol.28, issue.17, pp.3401-3404, 2001.

R. Parker, The rapid calculation of potential anomalies, Geophysical Journal of the Royal Astronomical Society, vol.31, issue.4, pp.447-455, 1973.

R. Parnell-turner, J. Escartin, J. Olive, D. K. Smith, and S. Petersen, Genesis of corrugated fault surfaces by strain localization recorded at oceanic detachments, Earth and Planetary Science Letters, vol.498, pp.116-128, 2018.

L. Parson, E. Gràcia, D. Coller, C. German, and D. Needham, Second-order segmentation ; the relationship between volcanism and tectonism at the mar, p.38, 2000.

A. T. Patera, A spectral element method for fluid dynamics : laminar flow in a channel expansion, Journal of computational Physics, vol.54, issue.3, pp.468-488, 1984.

M. Paulatto, J. P. Canales, R. A. Dunn, and R. A. Sohn, Heterogeneous and asymmetric crustal accretion : New constraints from multibeam bathymetry and potential field data from the rainbow area of the mid-atlantic ridge (36 ? 15 ? n), Geochemistry, Geophysics, Geosystems, vol.16, pp.2994-3014, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01365927

J. Perrot, , 2010.

L. Hydrobs-momar2010-cruise and . Suroît,

J. Perrot, , 2011.

L. Hydrobs-momar2011-cruise and . Suroît,

J. Perrot, , 2012.

. Hydrobs-momar2012-cruise and . Thalassa,

J. Perrot, , 2014.

L. Hydrobs-momar2014-cruise and . Suroît,

J. Perrot, HYDROMOMAR16 cruise, RV Thalassa, 2016.

J. Perrot, HYDROMOMAR18 cruise, RV L'Atalante, 2018.

B. C. Pijanowski, L. J. Villanueva-rivera, S. L. Dumyahn, A. Farina, B. L. Krause et al., Soundscape ecology : the science of sound in the landscape, BioScience, vol.61, issue.3, pp.203-216, 2011.

A. Rabain, M. Cannat, J. Escart?n, G. Pouliquen, C. Deplus et al., Focused volcanism and growth of a slow spreading segment (mid-atlantic ridge, vol.35, 2001.

, Earth and Planetary Science Letters, vol.185, issue.1-2, pp.211-224

I. Reid and K. Macdonald, Microearthquake study of the mid-atlantic ridge near 37 ? n, using sonobuoys, Nature, vol.246, issue.5428, p.88, 1973.

C. F. Richter, An instrumental earthquake magnitude scale, Bulletin of the Seismological Society of America, vol.25, issue.1, pp.1-32, 1935.

M. Riedesel, J. A. Orcutt, K. C. Macdonald, and J. S. Mcclain, Microearthquakes in the black smoker hydrothermal field, east pacific rise at 21 n, Journal of Geophysical Research : Solid Earth, vol.87, issue.B13, pp.10613-10623, 1982.

C. Rommevaux, C. Deplus, P. Patriat, and J. Sempéré, Three-dimensional gravity study of the mid-atlantic ridge : Evolution of the segmentation between 28 and 29 n during the last 10 my, Journal of Geophysical Research : Solid Earth, vol.99, issue.B2, pp.3015-3029, 1994.
URL : https://hal.archives-ouvertes.fr/insu-01928262

J. Royer, R. Chateau, R. Dziak, and D. Bohnenstiehl, Seafloor seismicity, antarctic ice-sounds, cetacean vocalizations and long-term ambient sound in the indian ocean basin, Geophysical Journal International, vol.202, issue.2, pp.748-762, 2015.
URL : https://hal.archives-ouvertes.fr/insu-01235343

A. M. Rubin, Dike-induced faulting and graben subsidence in volcanic rift zones, Journal of Geophysical Research : Solid Earth, vol.97, issue.B2, pp.1839-1858, 1992.

A. M. Rubin and D. Gillard, Dike-induced earthquakes : Theoretical considerations, Journal of Geophysical Research : Solid Earth, vol.103, issue.B5, pp.10017-10030, 1998.

A. M. Rubin, D. Gillard, and J. Got, A reinterpretation of seismicity associated with the january 1983 dike intrusion at kilauea volcano, hawaii, Journal of Geophysical Research : Solid Earth, vol.103, issue.B5, pp.10003-10015, 1998.

D. Rundquist and P. Sobolev, Seismicity of mid-oceanic ridges and its geodynamic implications : a review, Earth-Science Reviews, vol.58, issue.1-2, pp.143-161, 2002.

W. B. Ryan, S. M. Carbotte, J. O. Coplan, S. O'hara, A. Melkonian et al., Global multi-resolution topography synthesis, Geochemistry, Geophysics, Geosystems, issue.3, p.10, 2009.

D. T. Sandwell, R. D. Müller, W. H. Smith, E. Garcia, F. et al., New global marine gravity model from cryosat-2 and jason-1 reveals buried tectonic structure, Science, vol.346, issue.6205, pp.65-67, 2014.

D. Sauter, M. Cannat, S. Rouméjon, M. Andreani, D. Birot et al., Continuous exhumation of mantle-derived rocks at the southwest indian ridge for 11 million years, Nature Geoscience, vol.6, issue.4, p.314, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00809312

D. Sauter, P. Patriat, C. Rommevaux-jestin, M. Cannat, A. Briais et al., The southwest indian ridge between 49 15 ? e and 57 e : Focused accretion and magma redistribution, Earth and Planetary Science Letters, vol.192, issue.3, pp.303-317, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00104250

J. Schilling, M. Zajac, R. Evans, T. Johnston, W. White et al., Petrologic and geochemical variations along the mid-atlantic ridge from 29 degrees n to 73 degrees n, American Journal of Science, vol.283, issue.6, pp.510-586, 1983.

V. Schlindwein, Teleseismic earthquake swarms at ultraslow spreading ridges : indicator for dyke intrusions ?, Geophysical Journal International, vol.190, issue.1, pp.442-456, 2012.

V. Schlindwein, A. Demuth, E. Korger, C. Läderach, and F. Schmid, Seismicity of the arctic mid-ocean ridge system, Polar Science, vol.9, issue.1, pp.146-157, 2015.

V. Schlindwein, C. Müller, J. , and W. , Seismoacoustic evidence for volcanic activity on the ultraslow-spreading gakkel ridge, arctic ocean, Geophysical Research Letters, issue.18, p.32, 2005.

V. Schlindwein and F. Schmid, Mid-ocean-ridge seismicity reveals extreme types of ocean lithosphere, Nature, vol.535, issue.7611, p.276, 2016.

C. Scholz, The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes, Bulletin of the seismological society of America, vol.58, issue.1, pp.399-415, 1968.

D. Schorlemmer, S. Wiemer, and M. Wyss, Variations in earthquake-size distribution across different stress regimes, Nature, vol.437, issue.7058, p.539, 2005.

H. Schouten, K. D. Klitgord, and J. A. Whitehead, Segmentation of mid-ocean ridges, Nature, vol.317, issue.6034, p.225, 1985.

, BIBLIOGRAPHIE 299

A. E. Schreiner, C. G. Fox, and R. P. Dziak, Spectra and magnitudes of t-waves from the 1993 earthquake swarm on the juan de fuca ridge, Geophysical Research Letters, vol.22, issue.2, pp.139-142, 1995.

R. Searle, P. Cowie, N. C. Mitchell, S. Allerton, C. J. Macleod et al., Fault structure and detailed evolution of a slow spreading ridge segment : The mid-atlantic ridge at 29 ? n, Earth and Planetary Science Letters, vol.154, issue.1-4, pp.167-183, 1998.

R. Searle and J. Escartin, The rheology and morphology of oceanic lithosphere and mid-ocean ridges. Mid-ocean ridges : hydrothermal interactions between the lithosphere and oceans, vol.148, pp.63-93, 2004.

R. Searle, B. Murton, K. Achenbach, T. Lebas, M. Tivey et al., Structure and development of an axial volcanic ridge : Mid-atlantic ridge, 45 n, Earth and Planetary Science Letters, vol.299, issue.1-2, pp.228-241, 2010.

J. Sempéré, J. Lin, H. S. Brown, H. Schouten, and G. Purdy, Segmentation and morphotectonic variations along a slow-spreading center : The mid-atlantic ridge, p.24, 1993.

. ?-n, Marine Geophysical Researches, vol.15, issue.3, pp.153-200

J. Sempéré, J. Palmer, D. M. Christie, J. P. Morgan, and A. N. Shor, Australianantarctic discordance, Geology, vol.19, issue.5, pp.429-432, 1991.

J. Sempéré, G. Purdy, and H. Schouten, Segmentation of the mid-atlantic ridge between 24, 1990.

. ?-n, Nature, vol.344, issue.6265, p.427

J. P. Severinghaus and K. C. Macdonald, High inside corners at ridge-transform intersections, Marine Geophysical Researches, vol.9, issue.4, pp.353-367, 1988.

P. R. Shaw, Ridge segmentation, faulting and crustal thickness in the atlantic ocean, Nature, vol.358, issue.6386, p.490, 1992.

P. R. Shaw and J. Lin, Causes and consequences of variations in faulting style at the mid-atlantic ridge, Journal of Geophysical Research : Solid Earth, vol.98, issue.B12, pp.21839-21851, 1993.

A. Shuler, M. Nettles, and G. Ekström, Global observation of vertical-clvd earthquakes at active volcanoes, Journal of Geophysical Research : Solid Earth, vol.118, issue.1, pp.138-164, 2013.

G. Silveira and E. Stutzmann, Anisotropic tomography of the atlantic ocean, Physics of the Earth and Planetary Interiors, vol.132, issue.4, pp.237-248, 2002.

G. Silveira, E. Stutzmann, A. Davaille, J. Montagner, L. Mendes-victor et al., Azores hotspot signature in the upper mantle, Journal of Volcanology and Geothermal Research, vol.156, issue.1-2, pp.23-34, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00271098

N. Simao, J. Escartin, J. Goslin, J. Haxel, M. Cannat et al., Regional seismicity of the mid-atlantic ridge : observations from autonomous hydrophone arrays, Geophysical Journal International, vol.183, issue.3, pp.1559-1578, 2010.
URL : https://hal.archives-ouvertes.fr/insu-01876119

N. M. Simao, Seismicity of the Mid-Atlantic Ridge in the MoMAR area at a regional scale, observed by autonomous hydrophone arrays, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00586976

S. C. Singh, W. C. Crawford, H. Carton, T. Seher, V. Combier et al., Discovery of a magma chamber and faults beneath a mid-atlantic ridge hydrothermal field, Nature, vol.442, issue.7106, p.1029, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00271247

M. Sinha, S. Constable, C. Peirce, A. White, G. Heinson et al., Magmatic processes at slow spreading ridges : Implications of the ramesses experiment at 57 ? 45 ? n on the mid-atlantic ridge, Geophysical Journal International, vol.135, issue.3, pp.731-745, 1998.

J. M. Sinton, S. M. Smaglik, J. J. Mahoney, and K. C. Macdonald, Magmatic processes at superfast spreading mid-ocean ridges : Glass compositional variations along the east pacific rise 13°-23°s, Journal of Geophysical Research : Solid Earth, vol.96, issue.B4, pp.6133-6155, 1991.

H. Slabbekoorn, N. Bouton, I. Van-opzeeland, A. Coers, C. Ten-cate et al., A noisy spring : the impact of globally rising underwater sound levels on fish, Trends in ecology & evolution, vol.25, issue.7, pp.419-427, 2010.

D. K. Smith and J. R. Cann, Constructing the upper crust of the mid-atlantic ridge : A reinterpretation based on the puna ridge, kilauea volcano, Journal of Geophysical Research : Solid Earth, vol.104, issue.B11, pp.25379-25399, 1999.

D. K. Smith, J. R. Cann, and J. Escartín, Widespread active detachment faulting and core complex formation near 13 n on the mid-atlantic ridge, Nature, vol.442, issue.7101, p.440, 2006.

D. K. Smith, J. Escartin, M. Cannat, M. Tolstoy, C. G. Fox et al., Spatial and temporal distribution of seismicity along the northern mid-atlantic ridge (15°-35°n), Journal of Geophysical Research : Solid Earth, issue.B3, p.108, 2003.
URL : https://hal.archives-ouvertes.fr/insu-01830101

D. K. Smith, M. Tolstoy, C. G. Fox, D. R. Bohnenstiehl, H. Matsumoto et al., Hydroacoustic monitoring of seismicity at the slow-spreading mid-atlantic ridge, 2002.

, Geophysical Research Letters, vol.29, issue.11, pp.13-14

W. H. Smith and D. T. Sandwell, Global sea floor topography from satellite altimetry and ship depth soundings, Science, vol.277, issue.5334, pp.1956-1962, 1997.

R. Sohn, J. Canales, and R. Dunn, Hypocenter Catalog Data from the Mid-Atlantic Ridge -Rainbow Vent Field acquired in 2013. Interdisciplinary Earth Data Alliance (IEDA), 2018.

R. A. Sohn, J. P. Canales, and S. E. Humphris, Kinematics and geometry of active detachment faulting beneath the trans-atlantic geotraverse (tag) hydrothermal field on the mid-atlantic ridge, Geology, vol.35, issue.8, pp.711-714, 2007.

S. C. Solomon, P. Y. Huang, and L. Meinke, The seismic moment budget of slowly spreading ridges, Nature, vol.334, issue.6177, p.58, 1988.

S. Spencer, D. K. Smith, J. R. Cann, J. Lin, and E. Mcallister, Structure and stability of non-transform discontinuities on the mid-atlantic ridge between 24 n and 30 n, Marine Geophysical Researches, vol.19, issue.4, pp.339-362, 1997.

K. M. Stafford, C. G. Fox, and D. S. Clark, Long-range acoustic detection and localization of blue whale calls in the northeast pacific ocean, The Journal of the Acoustical Society of America, vol.104, issue.6, pp.3616-3625, 1998.

D. S. Stakes, J. W. Shervais, and C. A. Hopson, The volcanic-tectonic cycle of the famous and amar valleys, mid-atlantic ridge (36 ? 47 ? n) : Evidence from basalt glass and phenocryst compositional variations for a steady state magma chamber beneath the valley midsections, amar 3, Journal of Geophysical Research : Solid Earth, vol.89, issue.B8, pp.6995-7028, 1984.

A. Sukhovich, J. Irisson, J. Perrot, and G. Nolet, Automatic recognition of t and teleseismic p waves by statistical analysis of their spectra : An application to continuous records of moored hydrophones, Journal of Geophysical Research : Solid Earth, vol.119, issue.8, pp.6469-6485, 2014.
URL : https://hal.archives-ouvertes.fr/insu-01058954

O. Swainson, Velocity and ray paths of sound waves in sea water, US Coast and Geodetic Survey, Field Engineers Bull, vol.10, p.64, 1936.

L. R. Sykes, Mechanism of earthquakes and nature of faulting on the mid-oceanic ridges, Journal of Geophysical Research, vol.72, issue.8, pp.2131-2153, 1967.

L. R. Sykes, Seismicity of the mid-oceanic ridge system. The Earth's Crust and Upper Mantle, pp.148-153, 1969.

L. R. Sykes, Earthquake swarms and sea-floor spreading, Journal of Geophysical Research, vol.75, issue.32, pp.6598-6611, 1970.

J. Talandier, O. Hyvernaud, E. A. Okal, and P. Piserchia, Long-range detection of hydroacoustic signals from large icebergs in the ross sea, antarctica. Earth and Planetary Science Letters, vol.203, issue.1, pp.519-534, 2002.

Y. J. Tan, M. Tolstoy, F. Waldhauser, and W. S. Wilcock, Dynamics of a seafloorspreading episode at the east pacific rise, Nature, vol.540, issue.7632, p.261, 2016.

Y. Tanioka and L. J. Ruff, Source time functions, Seismological Research Letters, vol.68, issue.3, pp.386-400, 1997.

P. Tapponnier and J. Francheteau, Necking of the lithosphere and the mechanics of slowly accreting plate boundaries, Journal of Geophysical Research : Solid Earth, vol.83, issue.B8, pp.3955-3970, 1978.

W. J. Teague, M. J. Carron, and P. J. Hogan, A comparison between the generalized digital environmental model and levitus climatologies, Journal of Geophysical Research : Oceans, vol.95, issue.C5, pp.7167-7183, 1990.

R. Thibaud, Déformation superficielle de la lithospère et structure crustale le long de la dorsale médio-atlantique : modélisation analogique, 1998.

R. Thibaud, P. Gente, M. , and M. , A systematic analysis of the mid-atlantic ridge morphology and gravity between 15 ? n and 40 ? n : Constraints of the thermal structure, Journal of Geophysical Research : Solid Earth, vol.103, issue.B10, pp.24223-24243, 1998.

I. Tolstoy and M. Ewing, The t phase of shallow-focus earthquakes, Bulletin of the Seismological Society of America, vol.40, issue.1, pp.25-51, 1950.

M. Tolstoy, D. Bohnenstiehl, M. Edwards, and G. Kurras, Seismic character of volcanic activity at the ultraslow-spreading gakkel ridge, Geology, vol.29, issue.12, pp.1139-1142, 2001.

M. Tolstoy, J. Cowen, E. Baker, D. Fornari, K. Rubin et al., A sea-floor spreading event captured by seismometers, Science, vol.314, issue.5807, pp.1920-1922, 2006.

D. R. Toomey, S. C. Solomon, and G. Purdy, Microearthquakes beneath median valley of mid-atlantic ridge near 23 ? n : Tomography and tectonics, Journal of Geophysical Research : Solid Earth, vol.93, issue.B8, pp.9093-9112, 1988.

J. Tromp, D. Komattisch, and Q. Liu, Spectral-element and adjoint methods in seismology, Communications in Computational Physics, vol.3, issue.1, pp.1-32, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00721213

E. Tsang-hin-sun, Dynamique spatiale et temporelle de dorsales à taux d'expansion contrastés dans l'océan Indien par une approche hydroacoustique, 2016.

E. Tsang-hin-sun, J. Royer, and J. Perrot, Seismicity and active accretion processes at the ultraslow-spreading southwest and intermediate-spreading southeast indian ridges from hydroacoustic data, Geophysical Journal International, vol.206, issue.2, pp.1232-1245, 2016.

B. E. Tucholke and J. Lin, A geological model for the structure of ridge segments in slow spreading ocean crust, Journal of Geophysical Research : Solid Earth, vol.99, issue.B6, pp.11937-11958, 1994.

T. Utsu, Computer program package : Statistical analysis of point processes for seismicity, saseis. IASPEI Software Library for personal computers, vol.6, pp.13-94, 1997.

T. Utsu and Y. Ogata, The centenary of the omori formula for a decay law of aftershock activity, Journal of Physics of the Earth, vol.43, issue.1, pp.1-33, 1995.

F. J. Vine and D. H. Matthews, Magnetic anomalies over oceanic ridges, Nature, vol.199, issue.4897, pp.947-949, 1963.

P. R. Vogt, Plumes, subaxial pipe flow, and topography along the mid-oceanic ridge, Earth and Planetary Science Letters, vol.29, issue.2, pp.309-325, 1976.

F. Waldhauser and M. Tolstoy, Seismogenic structure and processes associated with magma inflation and hydrothermal circulation beneath the east pacific rise at 9, 2011.

G. Geochemistry, Geosystems, issue.8, p.12

W. A. Watkins, M. A. Daher, J. E. George, and D. Rodriguez, Twelve years of tracking 52-hz whale calls from a unique source in the north pacific, Deep Sea Research Part I : Oceanographic Research Papers, vol.51, pp.1889-1901, 2004.

P. Wessel, W. H. Smith, R. Scharroo, J. Luis, and F. Wobbe, Generic mapping tools : improved version released, Transactions American Geophysical Union, vol.94, issue.45, pp.409-410, 2013.

R. S. White, J. Drew, H. R. Martens, J. Key, H. Soosalu et al., Dynamics of dyke intrusion in the mid-crust of iceland, Earth and Planetary Science Letters, vol.304, issue.3-4, pp.300-312, 2011.

J. A. Whitehead, H. J. Dick, and H. Schouten, A mechanism for magmatic accretion under spreading centres, Nature, issue.5990, p.146, 1984.

W. S. Wilcock, E. E. Hooft, D. R. Toomey, P. R. Mcgill, A. H. Barclay et al., The role of magma injection in localizing black-smoker activity, Nature Geoscience, vol.2, issue.7, p.509, 2009.

W. S. Wilcock, K. M. Stafford, R. K. Andrew, and R. I. Odom, Sounds in the ocean at 1-100 hz. Annual review of marine science, vol.6, pp.117-140, 2014.

W. S. Wilcock, M. Tolstoy, F. Waldhauser, C. Garcia, Y. J. Tan et al., Seismic constraints on caldera dynamics from the 2015 axial seamount eruption, Science, vol.354, issue.6318, pp.1395-1399, 2016.

C. M. Williams, R. A. Stephen, and D. K. Smith, , vol.30, 2006.

G. Geochemistry, Geosystems, issue.6, p.7

C. J. Wolfe, G. Purdy, D. R. Toomey, and S. C. Solomon, Microearthquake characteristics and crustal velocity structure at 29°n on the mid-atlantic ridge : The architecture of a slow spreading segment, Journal of Geophysical Research : Solid Earth, vol.100, issue.B12, pp.24449-24472, 1995.

D. J. Wright, Formation and development of fissures at the east pacific rise : Implications for faulting and magmatism at mid-ocean ridges, GEOPHYSICAL MONOGRAPH-AMERICAN GEOPHYSICAL UNION, vol.106, pp.137-152, 1998.

M. Wyss, F. Klein, K. Nagamine, and S. Wiemer, Anomalously high b-values in the south flank of kilauea volcano, hawaii : evidence for the distribution of magma below kilauea's east rift zone, Journal of Volcanology and Geothermal Research, vol.106, issue.1-2, pp.23-37, 2001.

T. Yang, Y. Shen, S. Van-der-lee, S. C. Solomon, and S. Hung, Upper mantle structure beneath the azores hotspot from finite-frequency seismic tomography, Earth and Planetary Science Letters, vol.250, issue.1-2, pp.11-26, 2006.

Y. Yang and D. W. Forsyth, Improving epicentral and magnitude estimation of earthquakes from t phases by considering the excitation function, Bulletin of the Seismological Society of America, vol.93, issue.5, pp.2106-2122, 2003.

I. Yeo, R. C. Searle, K. L. Achenbach, L. Bas, T. P. Murton et al., Eruptive hummocks : Building blocks of the upper ocean crust, Geology, vol.40, issue.1, pp.91-94, 2012.

D. Yu, D. Fontignie, and J. Schilling, Mantle plume-ridge interactions in the central north atlantic : A nd isotope study of mid-atlantic ridge basalts from 30 n to 50 n, Earth and Planetary Science Letters, vol.146, issue.1, pp.259-272, 1997.

Z. Yu, J. Li, Y. Liang, X. Han, J. Zhang et al., Distribution of large-scale detachment faults on mid-ocean ridges in relation to spreading rates, Acta Oceanologica Sinica, vol.32, issue.12, pp.109-117, 2013.

D. Inspiré-de, L'astérisque indique les expériences non-hydroacoustiques. Example of diking episodes and migration, Exemple d'épisodes d'intrusion de dikes et migration, 2007.

, Réseaux hydroacoustiques déployés dans l'Atlantique nord de 1999 à nos jours. Hydroacoustic arrays of the north Atlantic Ocean from 1999 to present, p.75

, Différente valeur de D 1 en fonction des catalogues. Different D 1 value regarded to the catalog

, Les nombres entre parenthèse correspondent aux événements localisés avec au minimum 4 hydrophones. Summarize of the different parameters for each hydroacoustic catalogue, south of the Azores. The numbers in brackets correspond to the events localised with at least 4 hydrophones, p.107

, Nombres de séismes total enregistrés par les réseaux terrestres (catalogue ISC) dans les réseaux respectifs et entre 15

?. , , p.40

?. N. , Nombres de séismes communs aux catalogues ISC (m b ,M S et M w ) et hydroacoustiques. Total number of earthquakes recorded by the land-based station (ISC catalog) within the respective arrays and between 15 ? N-40

?. N. , Number of common earthquakes to the ISC (m b ,M S et M w ) and

, Caractéristiques des 2 modèles. Characteristics of the 2 models, p.125

. Al, Seismicity rate and other characteristics defined for each supersegment of the clustered and declustered hydroacoustic and ISC catalogues. The results obtained by Smith et al. (2003) are indicated in brackets and those indicated with a star correspond to the period of, Taux de sismicité et autres caractéristiques définis pour chaque supersegment des catalogues hydroacoustiques et ISC, complets et déclusterisés, (i.e. avec et sans les séquences sismiques). Les résultats obtenus par Smith et, 1990.

. Al, Seismicity rate and other characteristics defined for each segment of the clustered and declustered hydroacoustic and ISC catalogues. The results obtained by Smith et al. (2003) are indicated in brackets and those indicated with a star correspond to the period of, Taux de sismicité et autres caractéristiques définis pour chaque segment des catalogues hydroacoustiques et ISC avec et sans les séquences sismiques. Les résultats obtenus par Smith et, 1973.

, Les symboles + et ++ indiquent respectivement un écart ou un grand écart entre les valeurs du taux de sismicité. Global results of the seismicity rate calculated from the events of the hydroacoustic and teleseismic catalogues : complete, declustered, and only related to seismic crises. The symbols + and ++ indicate a difference or a big difference between the seismicity rate values, Résultats généraux du taux de sismicité calculé à partir des événements des catalogues hydroacoustiques et télésismiques : complet, déclusterisé, et lié uniquement aux crises sismiques

?. Le-point-triple-des-açores-;-?-n).-d'après-carbotte, b) Profil bathymétrique le long de l'axe de la DMA entre les failles transformantes Atlantis, 1990.

, After Carbotte et al. (2015). b) Bathymetric profile along the MAR axis between Atlantis (30 ? N) and Kane (24 ? N) transform faults. The discontinuities are located at depth-maxima and bound the segments. Mean depth of the tranform faults is ? 800-1200 m and ? 600 m for the non-transform discontinuities, Bathymetric map of the northern MAR between Fifteen-Twenty (15 ? N) transform fault and the Azores triple junction (40 ? N), p.17, 1990.

, MBA map of the MAR between the Oceanographer and Hayes transform faults. TF = transform fault, NTO = nontransform discontinuity, Carte de la MBA de la DMA entre les failles transformantes Oceanographer et Hayes (ligne blanche épaisse). TF = faille transformante, NTO = discontinuité non-transformante. D'après Detrick et, 1995.

. Magde, Migration latérale du magma le long de chaque segment par des dikes. Models of mantle upwelling (black arrows) and melt migration (red arrows), explaining crustal thickness variations along the segments of slow spreading-ridge, after Magde et al. (1997). a) Old model : mantle-diapir or three-dimensional upwelling focusing the melt at the segment center. b) Model proposed by, Modèles de remontée du flux mantellique (flèches noires) et migration du magma (flèches rouges) expliquant les variations d'épaisseur crustale le long des segments de dorsales lentes, 1997.

, Schémas des segments d'une dorsale lente

, Schéma des deux types de NTO présents au niveau des dorsales lentes, p.22

, Bathymetric map of the MAR showing the migration of the NTOs (2 nd order discontinuities), which form oblique structures. Off-axis traces can be easily identified, Carte bathymétrique de la DMA montrant la migration des NTOs (discontinuités du 2 nd ordre), formant des structures obliques. Les traces fossiles hors axe sont facilement identifiables. D'après Thibaud et, 1998.

D. Thibaud, Classification of the segments of the northern DMA, 1998.

?. N. , Link between axial thermal stucture of the lithosphère and the axial valley morphology

A. Eason, 10 a) Schéma de la répartition des failles pour un segment de dorsale lente, d'après Searle and Escartin (2004). b) Schéma d'un segment, où l'accrétion est associée à des failles de détachements océaniques et des mégamullions, d'après Escartín and Canales (2011). a) Model of faulting pattern of a slow spreading ridge segment, after Searle and Escartin (2004). b) Cartoon of a segment, where accretion is associated with oceanic detachment faults and oceanic core complexes, after Escartín and Canales, 2011.

. Modèle-d'accrétion-symétrique and E. Olive, a) Schéma typique d'une section de dorsale avec un mode d'accrétion : (Haut) symétrique, i.e. répartition des contraintes entre l'accrétion crustale dans la zone néovolcanique (courbe orange) et la déformation tectonique (courbe noire) distribuée sur les failles normales (séismes = étoiles rouges). (Bas) asymétrique, i.e. appauvrissement de l'apport magmatique induisant une lithosphère plus épaisse (zone grise) et des contraintes tectoniques plus localisées (étoiles bleues). b) Distribution du mode d'accrétion, symétrique (AB), asymétrique (DB) ou indéterminé (UN), entre 12 asymetric accretion along the northern DMA, after Olive and Escartín (2016). a) Scheme of a ridge cross section with a mode of seafloor accretion : (Top) symetric, i.e. partitioning of strain between crustal accretion in the neovolcanic zone (orange curve) and tectonic deformation (black curve) distributed on normal faults (earthquakes = red stars). (Bottom) asymetric, i.e. reduced magma supply leading to thicker lithosphere and more localized tectonic strain. b) Distribution of the mode of accretion, 2016.

?. N. ,

?. and ?. Gente, Dosso et al., 1999). a) Bathymétrie. b) Anomalie de Bouguer réduite au manteau (MBA). c) Ratio normalisé des éléments traces (La/Sm) dans les basaltes. Hotspot influence along the northern MAR axis, données géophysiques issues de Thibaud, 1993.

, Les différentes dorsales indiquées sont : dorsales Juan de Fuca et Gorda (JdF et GR, 60 mm/an), dorsale Est-Pacifique Nord (NEPR, 110 mm/an) et Sud (SEPR, 140 mm/an), dorsale des Galapagos (GSC, 45-60 mm/an), dorsale du Chili (ChR), dorsale PacifiqueAntarctique (PAR, 65 mm/an), dorsales Kolbeinsey/Mohns (KR, 15-20 mm/an), dorsale de Reykjanes (RR, 20 mm/an), dorsale de l'Atlantique Nord (NMAR, 25 mm/an) et Sud (SMAR, 30 mm/an), Carte de sismicité du catalogue NEIC (National Earthquake Information Center) avec M?5, 1980.

. Centrale, Pacific-Antarctic Ridge (PAR, 65 mm/an), Kolbeinsey/Mohns Ridges (KR, 15-20 mm/an), Reykjanes Ridge (RR, 20 mm/an), Northern (NMAR, 25 mm/an) and Southern (SMAR, 30 mm/an) Mid-Atlantic Ridges, Carlsberg Ridge (CaR, 30 mm/an), Central (CIR, 35 mm/an), Southwest (SWIR, 15 mm/an) and Southeast (SEIR, 70 mm/an) Indian Ridges, Sud-Ouest (SWIR, 15 mm/an) et Sud-Est (SEIR, 70 mm/an) Indiennes. D'après Bohnenstiehl and Dziak, vol.5, p.37, 1980.

, Les coins internes (IC) et externes (OC) sont indiqués, de même que la zone de fracture (ZF, pas de mouvement transformant), Mécanismes au foyer reflétant le type de mécanisme de rupture caractéristique des dorsales océaniques. D'après Rundquist and Sobolev, 2002.

. Seir and . Tsang-hin-sun, DMA (1 : bruit ambiant 69.8 dB, 2 : signal d'un séisme, 3 : augmentation du bruit ambiant 99 dB), d'après Dziak et al. (2004b). b) Migration de l'activité sismique lors de l'essaim de Juillet, p.42, 2001.

A. De, . Nord, and . Simao, Top) a) Seismic sequence, hydroacoustic (black circle), land based events (white star), and segments (blue for asymmetric accretion, red for symmetric one) are indicated. b) MBA map c) Modified Omori Law fit with the obtained p ? value. d) Time vs Source Level (acoustic magnitude) . e) Size-frequency distribution with the Source Level of completness SL c of the sequence. (Bottom) Scheme of segment showing the generic modes of faulting, and relation between fault strength and rate decay of seismic sequences (star), Haut) a) Séquence sismique, événements hydroacoustiques (cercle noir), télésismiques (étoile blanche), 2010.

, Acoustic spectrum of different natural (blue and green) and anthropogenic (red) sources of the oceanic ambient noise, Spectre sonore des différentes sources naturelles (bleu et vert) et anthropiques (rouge) du bruit ambiant océanique. D'après Coates, 2001.

, Sonogramme et spectrogramme d'une onde T, de tirs sismiques et deux espèces de baleines issus des enregistrements hydroacoustiques de l'océan Atlantique. Flowchart of the ocean soundscape composition, composed of three components (geophysical, anthropogenic, and biological), which are influenced by broad drivers, anthropique et biologique), elles-mêmes influencées par divers facteurs. D'après Haver et, 2017.

, Variation des 3 paramètres principaux contrôlant la vitesse du son à 3 latitudes de l'océan Atlantique. Variation of the 3 major parameters controlling the sound speed at three latitudes of the Atlantic Ocean

. Jensen, Polar (without a sound-speed minimum, purple line) and low-latitude (with a sound-speed minimum, blue line) generic sound-speed profiles (Left), Profils de vitesse pour une région polaire (sans minimum de vitesse, ligne violette) et pour une latitude moyenne (avec un minimum de vitesse, ligne bleue) -(Gauche). D'après, p.61, 2000.

, Schéma de la génération et de la propagation d'une onde T. Cartoon of the generation and propagation of a T-wave

W. Exemple-d'un-sonogramme-d'onde-t-;-d'après, Example of a T-phase time series. The T-phase is composed of a lens or envelope of energy until few minutes in duration. The T-phase has a short onset time, and then gradually decays back after its maximum amplitude, 2006.

, Sismogramme généré par un séisme ayant eu lieu le 24 octobre en Alaska. First historic recording of a T-wave at Hawaii Volcano Observatory in 1927 (after Jaggar (1930)). Seismogram generated by an earthquake occuring the 24 October 1927 in Alaska, Premier enregistrement historique d'une onde T à l'observatoire d'Hawaï en 1927 (d'après Jaggar, 1930.

W. Mécanismes-pouvant-générer-une-onde-t-(d'après, (a) Conversion à partir d'une pente. Le rayon incident se propage le long de l'interface inclinée d'angle ? en se réfléchissant avec un angle 2? à chaque cycle de réflexion, jusqu'à atteindre l'angle critique d'entrée dans le SOFAR. (b) Diffusion par une interface rugueuse. (c) Profondeur critique sous laquelle les ondes ne se propagent pas dans le canal SOFAR. (d) Emission directe d'énergie acoustique dans le canal SOFAR à partir d'un mont sous-marin agissant comme radiateur, 2006.

, A ray propagating downslope will become more nearly horizontal by an angle equal to twice the slope of the bottom for every cycle of reflection. (b) Rough seafloor scattering. (c) Critical depth below which waves are not able to propagate in the SOFAR channel axis. (d) Acoustic energy emitted directly in the SOFAR channel through a seamount which may act as a radiator

;. ). Okal, First, the abyssal phase, is produced by scattering of an irregular seasurface. Secondly, the downslope converted phase. First phase is generated in the immediate vicinity of the epicenter compared to the second which is formed by the slopes of the islands, reason of its delay, Deux phases d'ondes T visibles sur l'enregistrement du séisme du 29 juillet 1965, au large des îles Aléoutiennes. Premièrement, l'onde T "abyssale" géné-rée par un phénomène de diffusion due à la rugosité d'une interface, ici la surface du l'eau, p.70, 1965.

. Expérience-hydroacoustique, Des sons de sources diverses et lointaines (jusqu'à plusieurs milliers de kilomètres) peuvent être enregistrés par l'hydrophone placé dans le canal SOFAR. Hydroacoustic experiment. Sounds from various and distant sources (up to several thousand kilometers) can be recorded by the hydrophone moored in the SOFAR channel

, Atlantique nord et de l'océan Indien. Hydrophone arrays deployed by the LGO since 1999

, Les failles transformantes (TF) majeures sont indiquées. Deployment map of hydrophone arrays in the northern Atlantic Ocean since, Carte du déploiement des réseaux d'hydrophones dans l'océan Atlantique nord depuis 1999 (AUHs représentés par des étoiles colorées), 1999.

, Major transform faults (TF) are marked

, Schéma d'une ligne de mouillage et schéma des hydrophones conçus par le LGO (gauche) et par le PMEL-NOAA (droite), p.79

, Work station screen of the SEAS software developped by the PMEL-NOAA : identification, analyse and localisation of the T-waves recorded by the hydrophones array. Each hydrophone recording is represented by its spectrogram over time. The same event can be recorded by different hydrophones, Interface graphique du logiciel SEAS développé par le PMEL-NOAA : identification, analyse et localisation des ondes T enregistrées par le réseau d'hydrophones, p.81

T. K. Andy, T. K. Lau-;-andy, and . Lau, Predicted error fields for the South Azores array (6 AUHs represented by squares). From top to bottom Predicted error in latitude, longitude (in kilometers) and origin time (in seconds). (pers. com, Champs d'incertitude calculés pour le réseau Sud Açores, p.83, 2017.

T. K. Andy, T. K. Lau-;-andy, and . Lau, Predicted error fields for the MARCHE 1 array (4 AUHs represented by squares). From top to bottom Predicted error in latitude, longitude (in kilometers) and origin time (in seconds). (pers. com, p.84, 2017.

T. K. Andy, T. K. Lau-;-andy, and . Lau, Predicted error fields for the MARCHE 2 array (3 AUHs represented by squares). From top to bottom Predicted error in latitude, longitude (in kilometers) and origin time (in seconds). (pers. com, p.85, 2017.

T. K. Andy, T. K. Lau-;-andy, and . Lau, Predicted error fields for the MARCHE 3 array (4 AUHs represented by squares). From top to bottom Predicted error in latitude, longitude (in kilometers) and origin time (in seconds). (pers. com, p.86, 2017.

T. K. Champs-d'incertitude-calculés-pour-le-réseau-hydromomar-;-andy and . Lau, Predicted error fields for the HYDROMOMAR 2010 -2011 array (5 AUHs represented by squares). From top to bottom Predicted error in latitude, longitude (in kilometers) and origin time, vol.87, 2010.

T. K. Andy and . Lau, Predicted error fields for the HYDROMOMAR 2012 -2014 array (4 AUHs represented by squares). From top to bottom Predicted error in latitude, longitude (in kilometers) and origin time, 2017.

, Dans cet exemple, la valeur D est exprimée uniquement en km. (a) 11 événements (cercle) sont liés à leur plus proche voisin (lignes continues), puis au groupe voisin le plus proche (lignes pointillées et + + +). (b) Tous les événements sont reliés (10 liens). (c) Pour définir les séquences, les plus grands liens sont enlevés. Dans ce cas, les groupes sont formés par des événements ayant lieu dans une zone de 20 km, Schéma du regroupement des événements selon un paramètre D selon l'analyse hiérarchique Single-Link Cluster

D. Frohlich and D. , events (circle), each is linked to its nearest neighbour (solid lines), then each group formed in this way is linked to its nearest neighbouring group (dashed and + + + lines). (b) All events are joined (10 links). (c) In order to determine clusters, larger links are removed. Here, clusters are defined by events occuring in an area of 20 km. No events of one group is within 20 km of an other group event. After Frohlich and Davis (1990), Diagram of clustering in Single-Link Cluster analysis with a D parameter, p.11, 1967.

, Répartition des différents types de magnitude le long de l'axe de la dorsale, entre les failles transformantes de Charlie-Gibbs, vol.52, p.18

?. De-fifteen-twenty,

?. De, De haut en bas, magnitude de volume m b, vol.de sur, 1995.

, ? N) and Fifteen-Twenty (15 top to bottom, body-wave magnitude m b , surface-wave magnitude M S and moment magnitude M w, p.100, 1995.

, Distribution des événements du catalogue ISC depuis 1964, entre 15 -55 of the events from ISC catalogue since 1964, between 15 -55 ? N. Lower magnitudes m b ? 4 are truly recorded since 1995

, Gauche-Haut) Zoom sur la zone MoMAR identifiée par le rectangle pointillé sur la carte de droite. (Gauche-Bas) Répartition spatiale des forts séismes disposant d'un tenseur des moments fournis par le catalogue CMT. (Right) Distribution of the events between 1995-2014 of the ISC catalogue with a body-wave magnitude (black circles) and surface-wave magnitude (red circles). (Left-Top) Zoom in on the MoMAR area identified by the dashed rectangle on the right map. (Right-Top) Spatial distribution of the events strong enough to have a moment tensor provided by the CMT catalogue, Droite) Distribution des événements du catalogue ISC entre 1995 et 2014 associés à une magnitude volume (cercles noirs) et de surface (cercles rouges)

S. Sa, S. I. Sa, S. I. Sasi, . M1, and . M2, HM10-11 and HM12-14) localisés à l'intérieur des polygones respectifs défi-nis pour chaque réseau Hydroacoustic events of the 8 catalogues, Evènements hydroacoustiques des 8 catalogues

, La boîte bleue contient 50% de chaque séries de données, ses bords inférieur et supérieur représentent le 1 er et 3 e quartile. La médiane de chaque série est indiquée par la ligne verte et les croix vertes correspondent aux valeurs marginales. Boxplot of the uncertainty of localisation and origin time inside the array and within 150 km of the ridge axis.The blue box includes 50% of each data set, its lower and upper edges represent the 1 st et 3 rd quartile. The median of each data set is indicated by the green line and the green crosses correspond to the outliers, Diagramme en boîte des incertitudes de localisation et temps origine à l'inté-rieur de chaque réseau et dans les 150 km de l'axe de la dorsale, p.108

, Events of the HM10-11 (blue) and HM12-14 (gray) catalogs. (a) Number of events detected within the array for each hydrophone of the HM10-11 and HM12-14 catalogues. (b) Number of events detected by at least 4 hydrophones and the same hydrophone combination, Evénements des catalogues HM10-11 (bleu) et HM12-14 (gris). (a) Nombre d'événements détectés à l'intérieur du réseau par chaque hydrophone pour les catalogues HM10-11 et HM12-14. (b) Nombre d'événements détectés par au moins 4 hydrophones et la même combinaison d'hydrophones (1 : LS-M2-M6-M7, vol.2, pp.2-6

, La magnitude acoustique de complétude (Slc) donne un seuil de détection de l'ordre de SLc ? 205 dB et ? 203 dB, respectivement. Size-frequency distribution for the South Azores and the South Azores + SIRENA catalogues. The Source Level of completeness (Slc) shows a detection threshold in the order of SLc ? 205 dB and ? 203 dB, Distribution taille-fréquence pour les événements des catalogues South Azores et South Azores + SIRENA

, La magnitude acoustique de complétude (Slc) donne un seuil de détection de l'ordre de 196 ? Slc ? 208 dB. Size-frequency distribution for the MARCHEs catalogues. The Source Level of completeness (Slc) shows a detection threshold in the order of 196, Distribution taille-fréquence les événements des catalogues MARCHEs

. .. , De haut en bas, magnitude de volume m b , de surface M S et de moment M w . Extrapolation de la magnitude de complétude (Mslc) pour le réseau South Azores. Magnitude-frequency distribution for the teleseismic events (ISC catalogue), Distribution taille-fréquence pour les événements des catalogues HYDROMOMARs. La magnitude acoustique de complétude (Slc) donne un seuil de dé-tection de l'ordre de 201 ? Slc ? 206 dB

, De haut en bas, magnitude de volume m b , de surface M S et de moment M w . Extrapolation de la magnitude de complétude (Mslc) pour les réseaux MARCHEs. Magnitude-frequency distribution for the teleseismic events (ISC catalogue). From top to bottom, body-wave m b , surface-wace M S and moment M w magnitude. Extrapolation of the magnitude of completeness (Mslc) for the MARCHEs arrays, Distribution magnitude-fréquence pour les événements enregistrés par les ré-seaux sismologiques terrestres (catalogue ISC)

, De haut en bas, magnitude de volume m b , de surface M S et de moment M w . Extrapolation de la magnitude de complétude (Mslc) pour les réseaux HYDROMOMARs. Magnitude-frequency distribution for the teleseismic events (ISC catalogue). From top to bottom, bodywave m b , surface-wace M S and moment M w magnitude. Extrapolation of the magnitude of completeness (Mslc) for the HYDROMOMARs arrays, Distribution magnitude-fréquence pour les événements enregistrés par les ré-seaux sismologiques terrestres (catalogue ISC), p.116

, Relation entre les différents types de magnitudes et Source Level des événe-ments communs aux catalogues ISC et hydroacoustiques. De haut en bas, m b , M S et M w . Relation between the different types of magnitude and the Source Level for the common events to the ISC and hydroacoustic catalogues. From top to bottom, m b , M

, Encart bas situe la zone d'étude (rectangle noir) par rapport à la position du réseaux d'hydrophones HM10-11 (étoiles rouges). (Droite-Haut) Domaine de calcul SPECFEM-2D des deux modèles le long d'un profil (épicentre 1). (Upper left) Bathymetric map of the North FAMOUS and FAMOUS segments of the northern MAR. Locations of the 3 chosen epicenters (red triangles). The 6 associated spokes represent the 2D bathymetric profiles through which the simulations will be runed. The epicenter of the real earthquake (yellow star) used to define the seismic source (normal fault). Events relative to the FAMOUS seismic crisis (white circles). Lower inset shows the locations of the study area (black rectangle) relative to the HM10-11 array of hydrophones (red stars). (Upper right) Computation domain SPECFEM-2D of the two models along one profile (epicenter 1), Carte bathymétrique des segments North FAMOUS et FAMOUS de la DMA Nord. Localisations des 3 épicentres choisis (triangles rouges). Les 6 rayons associés représentent les profils bathymétriques le long desquels sont calculés les simulations. L'épicentre du séisme réel (étoile jaune) utilisé pour définir la source sismique du modèle (faille normale)

, Acoustic energy distribution of the 100 m above the seafloor receivers (circles), based on the first arrivals, for the 3 epicenter locations and the 3 hypocenter depths of the seismic source. Color scale reflects the energy associated to each receiver and normalized against the maximum energy released in the 45 simulations of the model A (E M AX )

, Acoustic energy distribution in the SOFAR channel, averaged over each group of vertically aligned receivers in the water layers (at 600, 800, 1000, 1200 et 1400 m depth, circles) for the 3 epicenter locations and the 3 hypocenter depths of the seismic source. Color scale reflects the energy associated to each receiver and normalized against the maximum energy released in the 45 simulations of the model B, Distribution de l'énergie acoustique dans le canal SOFAR, moyennée pour chaque groupe vertical de récepteurs dans la colonne d'eau (à 600, vol.800, 1000.

, MBA calculée par avec les données satellitaires le long de l'axe de la DMA Nord. MBA computed from sallite data along the ridge axis of the northern MAR, vol.132

. Cannat, High-resolution MBA map displays the result of the gravimetric analysis computed through : the calculation of the gravimetric anomalies (Chapman, 1979) and the gravimetric data of the seven profiles of the SUDACORES experiment (solid black line, Carte de la MBA haute résolution affichant le résultat de l'analyse gravimé-trique réalisée avec : les calculs des anomalies gravimétriques (Chapman, 1979) et les données gavimétriques des 7 profils de l'expérience SUDACORES, 1999.

C. De and L. Mba-;-paulatto, Highresolution MBA map, MARINER experiment. a) After the MBA data computed by Paulatto et al. (2015). b) result of the gravimetric analysis high-resolution. The MBA values are relative. The axial valleys of the AMAR, AMAR minor North, AMAR minor South et South AMAR segments are represented (from north to south, dotted line), à partir des données de l'expérience MARINER. a) D'après les données de MBA traitées par, 2015.

, Distribution temporelle des événements hydroacoustiques (cercle noir) et télésismiques (cercle orange) le long de l'axe. Les zones de fractures et failles transformantes principales (ligne rouge continue), discontinuités non-transformantes (ligne rouge pointillée) et les segments sont identifiés. Spatial and temporal distribution of the seismicity along the MAR axis in the MoMAR area. From top to bottom, histograms of the number of events in bins of 2 km for the clustered and declustered catalogues, ISC and MARCHEs (M1, M2 et M3). Time-distance distribution of the hydroacoustic events (black circle) and teleseismic (orange circle) along the axis. Main fracture zones and transform faults (red solid line), non-transform discontinuities (red dashed line) and segments are identified, bas, histogrammes du nombre d'événe-ments par boîte de 2 km pour les catalogues complets et déclusterisés, ISC et MARCHEs (M1, M2 et M3)

, Distribution temporelle des événements hydroacoustiques (cercle noir) et télésismiques (cercle orange) le long de l'axe. Les zones de fractures et failles transformantes principales (ligne rouge continue), discontinuités non-transformantes (ligne rouge pointillée) et les segments sont identifiés. Spatial and temporal distribution of the seismicity along the MAR axis in the MoMAR area. From top to bottom, histograms of the number of events in bins of 2 km for the clustered and declustered catalogues, ISC and HYDROMOMARs (HM10-11 et HM12-14). Time-distance distribution of the hydroacoustic events (black circle) and teleseismic (orange circle) along the axis. Main fracture zones and transform faults (red solid line), non-transform discontinuities (red dashed line) and segments are identified, De haut en bas, histogrammes du nombre d'événements par boîte de 2 km pour les catalogues complets et déclusterisés, ISC et HYDROMOMARs (HM10-11 et HM12-14)

, Schéma de deux formes caractéristiques du taux de sismicité à l'échelle du segment. Cartoon of two characteristics shapes of the seismicity rate at the segment scale

, Bas) hydroacoustiques, complet et déclusterisé, du catalogue SIRENA entre 2002 et 2003. Histograms of the number of events : (Top) teleseismic from the clustered and declustered ISC catalogue of the SIRENA area between 1995 and 2014. (Bottom) hydroacoustic from the clustered and declustered SIRENA catalogue from 2002 to, Histogramme du nombre d'événements : (Haut) télésismiques des catalogues ISC, complet et déclusterisé, dans la zone SIRENA entre, 1995.

, Bas) hydroacoustiques des catalogues, complet et déclusterisé, de la zone MoMAR (SASI, M1, M2, M3, HM10-11 and HM12-14) entre 2002 et 2014. Histograms of the number of events : (Top) teleseismic from the clustered and declustered ISC catalogue of the MoMAR area between 1995 and 2014. (Bottom) hydroacoustic from the clustered and declustered catalogues of the MoMAR area (SASI, M1, M2, M3, HM10-11 and HM12-14) from 2002 to, Histogramme du nombre d'événements : (Haut) télésismiques des catalogues ISC, complet et déclusterisé, dans la zone MoMAR entre, 1995.

, Bas) hydroacoustiques des catalogues, complet et déclusterisé, de la zone sud-Açores (SA et SASI) entre 1999 et 2003. Histograms of the number of events : (Top) teleseismic from the clustered and declustered ISC catalogue of the South Azores area between 1995 and 2014. (Bottom) hydroacoustic from the clustered and declustered catalogues of the South Azores area (SA and SASI) from 1999 to, Histogramme du nombre d'événements : (Haut) télésismiques des catalogues ISC, complet et déclusterisé, dans la zone sud-Açores, p.153, 1995.

, Summarising cartoon of the relation between the shapes of the seismicity rate and the ? MBA value at the segment scale, Schéma récapitulatif de la relation entre les formes du taux de sismicité et la valeur du ? MBA à l'échelle du segment

, Symétrique = rouge, asymétrique = bleu et indéterminé = vert. Chaque section est normalisée par la longueur totale de son supersegment. Diagrams of the proportion of sections of each supersegment, associated with a mode of accretion, 2016.

, Distribution de différents paramètres le long de l'axe, p.38

?. , , p.15

?. Smith, MBA calculé à partir des données satellitaires. c-d) Nombre d'événements par segment, normalisé sur une longueur de segment de 40 km est calculé : (c) à partir d'événements hydroacoustiques (moyenné par an). (d) à partir des événements télésismiques du catalogue ISC sur 20 ans, Obliquité. La bande de couleur représente les modes d'accrétions définis par Olive and Escartín, p.38, 1973.

?. , , p.15

?. Smith, MBA computed from the satellite data. c-d) Number of events by segment, normalized to a segment length of 40 km is calculated : (c) for the hydroacoustic events (mean over a year). (d) for the teleseismic events over 20 years from the ISC catalogue (1995-2014) and over 28 years, AB abyssal hill bearing (symmetric), DB detachment bearing (asymmetric), 1973.

, Schéma récapitulatif des modes d'accrétions dominant définis pour des sections de la DMA entre 15

?. N. , , p.166

E. Olive, DB-UN segments associés à ces deux modes (vert et bleu). Les segments de la zone MoMAR regroupent 2 segments définis par Olive and Escartín (2016) (rouge foncé et bord rouge clair) et 7 segments en dehors de la zone d'étude d'Olive and Escartín (2016), considérés comme symétriques (rouge foncé). La moyenne est calculée pour chaque groupes (trait de couleur) et pour l'ensemble des groupes (trait gris). Diagrams gathering the seismicity rate of each segment for the events of the complete, declustered catalogues, and those related to clusters. a) hydroacoustic (circle) b) teleseismic (triangle) catalogues. According to its mode of seafloor accretion, Graphiques regroupant le taux de sismicité de chaque segment pour les événe-ments du catalogue complet, déclusterisé, et les événements associés uniquement à des séquences sismiques. a)hydroacoustique (cercle) b) télésismique (triangle), p.167, 2016.

, Pour les catalogues complets (couleur foncée) et déclusterisés (couleur claire) : a) hydroacoustiques, et b) télé-sismiques. Diagrams of the seismicity rate depending on the obliquity of each supersegment (orange = SA, red = MoMAR). For the complete (dark color) and declustered (light color) : a) hydroacoustic, and b) teleseismic catalogues, p.172

, Pour les catalogues complets et déclusterisés : c) hydroacoustiques, et d) télésismiques. Diagrams of the seismicity rate depending on the obliquity of each segment (orange = SA, red = MoMAR). For the complete and declustered : a) hydroacoustic, and b) teleseismic catalogues. Diagrams of the seismicity rate depending on the obliquity of each segment associated with a symetric mode of accretion (yellow = SA, red = MoMAR). For the complete and declustered : c) hydroacoustic, and d) teleseismic catalogues, Diagrammes du taux de sismicité en fonction de l'obliquité pour chaque segment (orange = SA, rouge = MoMAR)

, Bathymétrie (courbe noire) et MBA (courbe bleue) à partir des données satellitaires. (Milieu et Bas) Sismicité des catalogues complets (courbe bleue) et déclusterisés (courbe noire) : (Milieu) Hydroacoustique, (Bas) Télésismique. Geophysical data distribution along the northern MAR at long wavelength, 20 km (and 10 km) low-pass filter. (Top) Derived satellite bathymetry (black curve) and computed MBA (blue curve). (Middle and Bottom) Seismicity of the complete (blue curve) and declustered (black curve) catalogues : (Middle) Hydroacoustic, (Bottom) Teleseismic, Distribution le long de la DMA Nord des données géophysiques à grande échelle, filtre passe-bas 20 km (et 10 km). (Haut)

. Bohnenstiehl, 2010) (jaune) et celles non étudiées (en rouge). Maps of the seismic clusters detected with a Single Link Cluster analysis. The colors distinguish the : clusters analysed in this chapter, Carte des séquences sismiques détectées par la méthode Single Link Cluster. Les couleurs différencient les : séquences analysées dans ce chapitre (vert), séquences déjà étudiées, 2003.

. Dziak, 2010) (yellow) and the clusters non studied (red), p.205, 2004.

. Ekström, The hydroacoustic (circle) and teleseismic (triangle) events are represented. The full moment tensor solution GCMT (Ekström et al., 2012) is linked to the corresponding hydroacoustic event, Localisation des 3 séquences sismiques de type "crise d'envergure". Les événe-ments hydroacoustiques (cercle) et télésismiques (triangle) sont représentés. La représentation du tenseur des moments GCMT, 2009.

, en fonction du Source Level : a-b) Crise H2b & zoom c-d) Crise H2aS & zoom e-f) Crise H2a & zoom. Les événements détectés : uniquement par les AUHs (cercle noir)

, 10 (Haut) Localisation des 2 séquences télésismiques de type "crise d'envergure". Les événements télésismiques (triangle) sont représentés et la représentation du tenseur des moments GCMT (Ekström et al., 2012) est reliée à l'événement télésismique correspondant. Profil le long duquel sont projetés les événements (ligne rouge). Bathymétrie d'après Ryan et al. (2009). (Bas) Profil de migration des crises H2a et H2aS. (Top) Location of the 2 teleseismic clusters "major crise". The teleseismic (triangle) events are represented and the full moment tensor solution GCMT (Ekström et al., 2012) is linked to the corresponding hydroacoustic event, Source Level distribution versus time of the events of the clusters "major crises" : a-b) H2b crise & zoom c-d) H2aS crise & zoom e-f) H2a crise & zoom, p.229, 2009.

, Localisation de 2 séquences sismiques en centre de segment. Les événements hydroacoustiques (cercle) et télésismiques (triangle) sont représentés. Profil le long duquel sont projetés les événements de la crise M3b (ligne rouge) a)

, Bathymétrie b) MBA et c) Aimantation du plancher d'après Sohn, 2018.

, The hydroacoustic (circle) and teleseismic (triangle) events are represented. Profile along which the events of the cluster M3b are projected (red line). a) Bathymetry b) MBA and c) seabed magnetization after Sohn et al. (2018). d) Profile of migration, p.235

. Ryan, The hydroacoustic (circle) and teleseismic (triangle) events are represented. Bathymetry after, Localisation de 2 séquences sismiques en centre de segment. Les événements hydroacoustiques (cercle) et télésismiques (triangle) sont représentés. Bathymétrie d'après, 2009.

, The events detected by : only the AUHs (black dot), the AUHs and the land based stations (red dot), Distribution temporelle des événements des séquences sismiques, localisées en centre de segment, en fonction du Source Level. Les événements détectés : uniquement par les AUHs (cercle noir), par les AUHs et les stations terrestres (cercle rouge)

. Ekström, Location of 2 clusters in segment flank. The hydroacoustic (circle) and teleseismic (triangle) events are represented. The full moment tensor solution GCMT (Ekström et al., 2012) is linked to the corresponding hydroacoustic event. a) Bathymetry b) MBA and c) seabed magnetization after Sohn et al. (2018), Localisation de 2 séquences sismiques en flanc de segment. Les événements hydroacoustiques (cercle) et télésismiques (triangle) sont représentés. La représentation du tenseur des moments GCMT, 2018.

, Source Level distribution versus time of the events of the clusters localised in segment flank. The events detected by : only the AUHs (black dot), the AUHs and the land based stations (red dot) ; associated with a moment tensor, Distribution temporelle des événements des séquences sismiques, localisées en flanc de segment, en fonction du Source Level

. Ryan, Location of 5 clusters in an inside or outside corner of a segment. The hydroacoustic (circle) and teleseismic (triangle) events are represented, Localisation de 5 séquences sismiques au niveau d'un interne ou externe de segment. Les événements hydroacoustiques (cercle) et télésismiques (triangle) sont représentés. Bathymétrie d'après, p.246, 2009.

, Source Level distribution versus time of the events of the clusters localised in an inside or outside corner. The events detected by : only the AUHs (black dot), the AUHs and the land based stations (red dot), Distribution temporelle des événements des séquences sismiques, localisées au niveau d'un coin interne ou externe de segment, en fonction du Source Level

. Ryan, Localisation de 8 séquences sismiques au niveau d'une NTO ou d'une zone de relais. Les événements hydroacoustiques (cercle) et télésismiques (triangle) sont représentés. Bathymétrie d'après a), 1995.

. Cannat, Location of 2 clusters in a NTO or a relay zone. The hydroacoustic (circle) and teleseismic (triangle) events are represented. The full moment tensor solution GCMT (Ekström et al., 2012) is linked to the corresponding hydroacoustic event, 1995.

. Cannat, , 1999.

, Location of 2 clusters in the NTO between the segments AMAR minor South and South AMAR. The hydroacoustic (circle) and teleseismic (triangle) events are represented. The full moment tensor solution GCMT (Ekström et al., 2012) is linked to the corresponding hydroacoustic event. a) Bathymetry b) MBA and c) seabed magnetization after, Localisation de 2 séquences sismiques au niveau de la NTO entre les segments AMAR minor South et South AMAR. Les événements hydroacoustiques (cercle) et télésismiques (triangle) sont représentés, p.253, 2018.

, Source Level distribution versus time of the events of the clusters localised in a NTO or a relay zone. The events detected by : only the AUHs (black dot), the AUHs and the land based stations (red dot) ; associated with a moment tensor, Distribution temporelle des événements des séquences sismiques, localisées au niveau de NTO ou de zone de relais, en fonction du Source Level. Les événe-ments détectés : uniquement par les AUHs (cercle noir)

, Annexes Annexe A : Réseaux d'hydrophones de l'Atlantique nord South Azores SIRENA, 1999.

B. Annexe, Source acoustique des ondes T Article de conférence & présentation orale au Congrès Français d'Acoustique

. C-f-a-/-v-i-s-h-n-o, , 2016.

, Influence de la topographie sur la répartition d'énergie de la source acoustique des ondes T, C. Guennou, M. Giusti et J. Perrot UBO -UMR, vol.6538

. Lors-de-l'expérience-hydrobs-momar, des hydrophones mouillés dans le canal SOFAR ont enregistré les ondes T générées par un essaim de séismes liés à une crise volcanique sous-marine. La distribution des épicentres de cette crise sismique est un élément majeur dans l'apport de nouvelles informations sur la structure de la DMA. L'épicentre du séisme assimilé au point de conversion sismo-acoustique, est localisé à partir des temps d'arrivée pointés aux maxima d'énergie spectrale observée dans le signal enregistré par les hydrophones. L'objectif de cette étude est d'analyser la distribution de l'énergie aux points de conversion avoisinant l'épicentre, en fonction de l'influence de la bathymétrie très contrastée au niveau de la DMA, ainsi que l'influence de la profondeur des séismes. Nous utilisons le logiciel SPECFEM 2D pour simuler l'énergie émise immédiatement après la conversion entre la croûte océanique et l'eau. Les résultats démontrent que l'influence de la profondeur des séismes sur la conversion des ondes est plus importante que celle de la bathymétrie avec un maximum d'énergie qui, au sud des Açores sur la dorsale Médio-Atlantique (DMA), 2010.

L. Tolstoy and W. M. Ewing, The T-phase of shallow focus earthquakes, Bulletin of Seismological Society of America, vol.40, pp.25-51, 1950.

E. A. , The generation of T-waves by earthquakes, Advances in Geophysics, vol.49, pp.1-65, 2008.

R. H. Johnson, J. Northrop, and R. Eppley, Sources of Pacific T-phases, Journal of Geophysical Research, vol.68, pp.4251-4260, 1963.

C. D. De-groot-hedlin and J. A. Orcutt, Synthesis of earthquake-generated T-waves, Geophysical Research Letters, vol.26, pp.1227-1230, 1999.

C. G. Fox, H. Matsumoto, and T. A. Lau, Monitoring Pacific Ocean seismicity from an autonomous hydrophone array, Journal of Geophysical Research, vol.106, pp.4183-4206, 2001.

J. Pan and A. M. Dziewonski, Comparison of mid-oceanic earthquake epicentral differences of travel time, centroid locations, and those determined by autonomous underwater hydrophone array, Journal of Geophysical Research, vol.110, 2005.

J. Perrot, L. Hydrobs-momar-2010-cruise, and . Suroît, , 2010.

J. Perrot, L. Hydrobs-momar-2011-cruise, and . Suroît, , 2011.

G. Jamet, Modélisation d'ondes sismo-acoustiques par la méthode des éléments spectraux. Application à un séisme dans l'Atlantique Nord, 2014.

G. Jamet, C. Guennou, L. Guillon, C. Mazoyer, and J. ,

. Royer, T-wave generation and propagation: a comparison between data and spectral element modeling, Journal of the Acoustical Society
URL : https://hal.archives-ouvertes.fr/hal-01073248

, America, vol.134, 2013.

J. Tromp, D. Komatitsch, and Q. Liu, Spectral-element and adjoint methods in seismology, Communications in Computational Physics, vol.3, pp.1-32, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00721213

M. Cannat, A. Briais, C. Deplus, J. Escartin, J. Georgen et al.,

M. Ago, Earth and Planetary Science Letters, vol.173, pp.257-269, 1999.

A. Balanche, Conversion sismo-acoustique au passage du fond océanique, 2009.

A. Balanche, C. Guennou, J. Goslin, and C. Mazoyer, Generation of hydroacoustic signals by oceanic subseafloor earthquakes: a mechanical model, Geophysical. Journal International, vol.177, pp.476-480, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00385522

M. Park, R. I. Odom, and D. J. Soukup, Modal scattering: A key to understanding oceanic T-waves, Geophysical Research Letters, vol.28, pp.3401-3404, 2001.