
HAL Id: tel-02292973
https://theses.hal.science/tel-02292973

Submitted on 20 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-Based Testing of Timed Distributed Systems : A
Constraint-Based Approach for Solving the Oracle

Problem
Nassim Benharrat

To cite this version:
Nassim Benharrat. Model-Based Testing of Timed Distributed Systems : A Constraint-Based Ap-
proach for Solving the Oracle Problem. Other. Université Paris Saclay (COmUE), 2018. English.
�NNT : 2018SACLC021�. �tel-02292973�

https://theses.hal.science/tel-02292973
https://hal.archives-ouvertes.fr

Test à base de modèles de systèmes temporisés
distribués : une approche basée sur les contraintes

Pour résoudre le problème de l’oracle

Thèse de doctorat de l'Université Paris-Saclay
Préparée à CentraleSupélec

École doctorale n°573 : interfaces : Approches interdisciplinaires,
Fondements, applications et innovation (Interfaces)

Spécialité de doctorat : Informatique

Thèse présentée et soutenue à Gif Sur Yvette, le 14/02/2018, par

 Nassim BENHARRAT

Composition du Jury :

Marc AIGUIER
Professeur des universités, CentraleSupélec (Laboratoire MICS) Président

Xavier URBAIN
Professeur des universités, Université Lyon 1 (Équipe Drim, LIRIS) Rapporteur

Ioannis PARISSIS
Professeur des universités, Grenoble INP (Laboratoire LCIS) Rapporteur

Delphine LONGUET
Maitre de conférences, Université Paris-Sud (Laboratoire LRI) Examinateur

Arnault LAPITRE
Ingénieur de recherche, CEA Saclay (Laboratoire LIST) Examinateur

Pascale LE GALL
Professeur des universités, CentraleSupélec (Laboratoire MICS) Directeur de thèse

Christophe GASTON
Ingénieur de recherche, CEA Saclay (Laboratoire LIST) Examinateur

N
N

T
 :

 2
0

18
S

A
C

L
C

0
2

1

To my loved ones
To my mentors

iii

iv

Acknowledgments

Prof. Pascale Le Gall introduced me to research when I first visited MOSAIC team for
an internship at Ecole Centrale de Paris. Her dedication, suggestions, and guidance con-
verted the lost student that arrived in 2014 into someone able to have his own ideas,
express them and convert them into a Ph.D. thesis. Most importantly, she supported my
work with valuable suggestions and stimulating discussions that strongly influenced the
content of my thesis. Thanks Pascale for your patience, for teaching me how an article
should be written and presented. I extend my gratitude to Christophe Gaston, for his
support, encouragement, and guidance through every step of this work and for all he
has taught me during this thesis. It was an honor and a pleasure to work with you both.
Especial thanks to Arnault Lapitre for his help and the interesting discussions and sug-
gestions about my work.

I sincerely thank the reviewers and the jury: Xavier Urbain and Ioannis Parissis for ac-
cepting reviewing this thesis and for all the comments they made; Marc Aiguier and
Delphine Longuet for accepting to be in my Ph.D. thesis committee.

I would like also to thank my colleagues in CEA LIST-LISE research team for stimulating
discussion and providing peer review of the work described in this thesis. In particular,
I would like to thank Frédérique Descreaux for her patience, welcome, and assistance.
I want to thank my colleagues with whom I have shared not only the office and lunch
breaks, but also amusing and unforgettable moments: Amel Belaggoun, Anthony Legen-
dre, Mohamed Benazouz, Gabriel Pedroza, Jean-Yves Pierron, Jean-Pierre Gallois, Alain
Faivre and François Le Fevre, for their understanding, friendship and for their good hu-
mor.

I owe unconditional thanks for the support of my family who had to encourage me.
Thank you for the trust you have given me, a big thank you for your support during
my studies. I would also like to thank my parents for their unfailing support, and thanks
to whom I could reach this stage. They always have been there for me, in all situations
and I am infinitely grateful to them. My heartfelt thanks go to my dear wife for her pa-
tience and daily unwavering support. You have not ceased to comfort me and you have
always been able to cheer me up.

Nassim Benharrat
Paris, France

December 2017

v

vi

Abstract

Model-based testing of reactive systems is the process of checking if a System Under Test
(SUT) conforms to its model. It consists of handling both test data generation and verdict
computation by using models. In this thesis, we specify the behavior of reactive systems
with so-called Timed Input Output Symbolic Transition Systems (TIOSTS), that are timed
automata enriched with symbolic mechanisms to handle data.

When TIOSTSs are used to test systems with a centralized interface, that is, a system with
a single user interface, the user interacts with the interface and may then completely order
events occurring at this interface (i.e., inputs sent to the system and outputs produced
from it). Interactions between the tester and the SUT are sequences of inputs and outputs
named traces, separated by delays in the timed framework, to form so-called timed traces.

Distributed systems are collections of communicating local components which interact
with their environment at physically distributed interfaces. The distributed nature of any
observation of such systems is known to make distributed testing hard to solve. In addition,
interacting with such a distributed system requires exchanging values with it by means
of several interfaces in the same testing process. Different events occurring at different
interfaces cannot be ordered any more since it is not possible to compare their respective
moments at which they occurred. In this regard, this thesis focuses on conformance testing
for distributed systems where a separate tester is placed at each localized interface and may
only observe what happens at this interface. In our work, we assume that there is no global
clock but only local clocks for each localized interface. The semantics of such systems can
be seen as tuples of timed traces (one timed trace per localized interface representing a local
vision of the system in question). We consider a framework for distributed testing from
TIOSTS along with corresponding test hypotheses and a distributed conformance relation
called dtioco. Global conformance can be tested in a distributed testing architecture using
only local testers without any communication between them. We propose an algorithm to
check valid communication policy for a tuple of timed traces by formulating the verification
of message passing in terms of Constraint Satisfaction Problem (CSP). Therefore, we were
able to implement the computation of test verdicts by orchestrating both localised off-line
testing algorithms and the verification of constraints defined by message passing that can
be supported by a constraint solver. Lastly, we validated our approach on a real case study
of a telecommunications distributed system.

Keywords: Model-based testing, Distributed testing, Timed Input Output Symbolic
Transition Systems, Off-line testing, Constraint Satisfaction Problem, Constraint-based
testing.

vii

viii

Résumé

Le test à base de modèles des systèmes réactifs est le processus de vérifier si un système
sous test (SUT) est conforme à sa spécification. Il consiste à gérer à la fois la génération
des données de test et le calcul de verdicts en utilisant des modèles. Dans cette thèse,
nous spécifions le comportement des systèmes réactifs à l’aide des systèmes de transitions
symboliques temporisées à entrée sortie (TIOSTS).

Quand les TIOSTSs sont utilisés pour tester des systèmes avec une interface centralisée,
l’utilisateur interagit avec toute l’interface et peut alors ordonner complètement les
événements (i.e., les entrées envoyées au système et les sorties produites). Les interactions
entre le testeur et le SUT consistent en des séquences d’entrées et de sortie nommées traces,
pouvant être séparées par des durées dans le cadre du test temporisé, pour former ce que
l’on appelle des traces temporisées.

Les systèmes distribués sont des collections de composants locaux communiquant entre
eux et interagissant avec leur environnement via des interfaces physiquement distribuées.
La nature distribuée des observations est connue pour rendre le test distribué difficile à
résoudre. Différents événements survenant à ces différentes interfaces ne peuvent plus
être ordonnés car il n’est pas possible de comparer leurs moments respectifs auxquels ils
se sont produits. Cette thèse concerne le test de conformité pour les systèmes distribués
où un testeur séparé est placé à chaque interface localisée et peut seulement observer
ce qui se passe à cette interface. Dans notre travail, nous supposons qu’il n’y a pas
d’horloge commune mais seulement des horloges locales pour chaque interface localisée. La
sémantique de tels systèmes est définie comme des tuples de traces temporisées (une trace
temporisée par interface localisée représentant une vision locale du système distribué en
question). Nous considérons une approche du test des systèmes distribués dans le contexte
de la relation de conformité distribuée appelée dtioco. La conformité globale peut être
testée dans une architecture de test distribuée en utilisant uniquement des testeurs locaux
sans aucune communication entre eux. Nous proposons un algorithme pour vérifier la
politique de communication pout un tuple de traces temporisées en formulant le problème
de message-passing en termes de problème de satisfaction de contraintes (CSP). Nous avons
mis en œuvre le calcul des verdicts de test en orchestrant à la fois les algorithmes du test
off-line de chacun des composants et la vérification des communications par le biais d’un
solveur de contraintes. Enfin, nous avons validé notre approche sur un cas étude de taille
significative.

Mots clés : Test à base de modèles, Test distribué, Systèmes de transition symboliques
temporisés à entrée sortie, Test off-line, Problème de satisfaction de contraintes, Test à
base de contraintes.

ix

x

LIST OF FIGURES

List of Figures

2.1 Train Local Controller TIOSTS . 13

2.2 A program computing the absolute value of a variable 19

2.3 Symbolic tree of the program computing absolute value of a variable 20

2.4 Symbolic tree produced by SE of Timed Input/Output Symbolic Transition
System (TIOSTS) GTLC . 23

2.5 SE of symbolic state Init with quiescence enrichment 25

2.6 SE of symbolic state η1 with quiescence enrichment 26

3.1 Model-Based Testing process . 30

3.2 Online vs. Offline Test Generation[43] . 32

3.3 On-line vs Off-line testing activities [74] . 32

3.4 Off-line MBT approach process of [7] . 34

3.5 Verdict computation process and local verdicts [7] 37

3.6 Our verdict computation process and local verdicts 40

4.1 Internet considered as a distributed system 46

4.2 Illustration of a Local Area Network (LAN) and a Wide Area Network (WAN)
distributed architectures [63]. 47

4.3 Scalar clocks annotating mechanism using Lamport algorithm [65] 49

4.4 Vector clocks annotating mechanism. 51

4.5 Observability problem in distributed testing with multiple observers 53

4.6 A deadlock situation in a distributed system 54

4.7 Controlability problem in distributed testing with multiple local testers . . 54

4.8 Global-tester-based testing architecture . 56

4.9 Local-tester-based testing architecture . 56

4.10 Hybrid testing architecture . 57

4.11 Local testing architecture with communication between testers 58

4.12 Hybrid testing architecture with communication between testers 58

4.13 Our distributed testing architecture . 59

4.14 A routing scheme for multicast communication 61

4.15 Communication checking process as introduced in [37] 63

4.16 An example of a distributed system . 63

4.17 An execution of communication checking algorithm of [37] on a correct tuple
of timed traces . 64

4.18 Train Control System Example . 68

4.19 Distributed interface of the Train Control System as two communicating
black boxes: TLCi, for i = 1, 2 . 69

4.20 An example of a distributed observation of TCS 69

xi

LIST OF FIGURES

4.21 Multiple configurations for uninitialized multi-trace µ′ 72
4.22 An example of an observable multi-trace . 73
4.23 Constraint-based process for Communication Checking 73
4.24 Communication testing algorithm and produced verdicts 74
4.25 Communication checking of tuple of traces µ′′init using Algorithm 1 76
4.26 Distributed Specification of the Train Control System 77
4.27 Implementation framework work-flow for distributed testing by orchestration 80
4.28 xLIA code for a symbolic transition . 80
4.29 Implementation process of Algorithm 1 . 81
4.30 DOM generated after parsing XML file containing a distributed interface data 83
4.31 DOM generated after parsing XML file containing multitrace data 84

5.1 Validation process of our testing approach 91
5.2 The running process of symbolic execution in DIVERSITY [27, 4]. 98
5.3 From a global trace to a correct distributed observation 101
5.4 Communication checking of a CDO get by projection 101
5.5 Application of a classical mutation on an observable multitrace 104
5.6 Breaking an Round-Trip Communication (RTC) and generating a Faulty

Distributed Observation (FDO) . 107
5.7 PhoneX clients and server . 109
5.8 Interaction scenario of a successful call operation 109
5.9 The PhoneX architecture . 110
5.10 TIOSTS model GS of the Active Session . 112
5.11 PhoneX distributed testing Architecture . 112
5.12 PhoneX distributed system composed of 10 components 113

A.1 Interaction scenario of a call scenario with Line Busy notification 121
A.2 Interaction scenario of a call scenario with No Answer notification 122

B.1 TIOSTSs Gsrc and Gdest of Caller and Called clients 124
B.2 TIOSTSs GX of PhoneX Central . 125

xii

LIST OF TABLES

List of Tables

4.1 Main functions used in our implementation framework to check communication 82
4.2 Mapping associated with tuple of traces of Example 4.4 84

5.1 Main operations used in the definition of ΩQueue 92
5.2 Technical functions used in generating a multitrace 93
5.3 Mutation schemas on multitraces . 102
5.4 Technical functions used in implementing classical mutation on a tuple of

traces . 103
5.5 Experimental data for correct multitraces and their mutants 114

D.1 A summary of the channel names of the PhoneX system interface. 131

xiii

LIST OF TABLES

xiv

LIST OF TABLES

List of Abbreviations

SDL Specification and Description Language
FIFO First In First Out
LTS Labelled Transition System
FSM Finite State Machine
SMT Satisfiability Modulo Theories
TLC Train Local Controller
TCS Train Control System
MBT Model-Based Testing
SE Symbolic Execution
PC Path Condition
EC Execution Context
ST Symbolic Tree
TPC Time Path Condition
DPC Data Path Condition
CSP Constraint Satisfaction Problem
TIOSTS Timed Input/Output Symbolic Transition System
IOSTS Input/Output Symbolic Transition Systems
TIOLTS Timed Input/Output Labelled Transition Systems
SUT System Under Test
DUT Distributed System Under Test
ioco Input/Output Conformance Relation
tioco Timed/Input Output Conformance Relation
dtioco Distributed Timed Input/Output Conformance Relation
DFS Depth First Search
BFS Breadth First Search
RFS Random First Search
HoJ Hit-Or-Jump
DS Distributed System
LAN Local Area Network
WAN Wide Area Network
CDO Correct Distributed Observation
FDO Faulty Distributed Observation
RTC Round-Trip Communication
UML Unified Modeling Language
CPU Central Processing Unit
VM Virtual Machine
xLIA eXecutable Language for Interaction and Assemblage
API Application Programming Interface

xv

LIST OF TABLES

DOM Document Object Model

xvi

CONTENTS

Contents

List of Figures x

List of Tables xiii

List of Abbreviations xvi

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Scope and Contributions . 3

1.2.1 Scope of the Thesis . 3

1.2.2 Research Approach and Contributions 3

1.3 Thesis Outline . 4

1.4 Publications . 5

2 Formal Background 7

2.1 Typed Equational Logic . 7

2.2 Solving Constraints . 10

2.3 Timed Input Output Symbolic Transition Systems (TIOSTS) 10

2.3.1 Syntax . 10

2.3.2 Semantics . 13

2.4 Symbolic Execution . 18

2.4.1 Symbolic Execution of Programs . 18

2.4.2 Symbolic Execution of TIOSTS . 20

3 Centralized Model-Based Conformance Testing from TIOSTS 29

3.1 Model-Based Testing: State of the Art . 29

3.1.1 Model-Based Testing Process . 30

3.1.2 Model-based Testing Classification 31

3.1.3 On-line versus Off-line MBT . 32

3.2 Off-line Centralized Conformance Testing from TIOSTS 34

3.2.1 Overview . 34

3.2.2 An Adaptation of the Centralized off-line Testing Algorithm 37

3.2.2.1 System Under Test and Timed Conformance Relation . . . 37

3.2.2.2 Our Off-line Centralised Testing Algorithm 38

3.2.2.3 Local Verdict Computation 39

3.2.2.4 Rule-based Algorithm . 40

xvii

CONTENTS

4 A Distributed Testing Framework for Solving the Oracle Problem 45

4.1 An Overview of Works Related to Distributed Testing 45

4.2 Distributed Testing Architectures . 55

4.2.1 Global-tester-based testing architecture 55

4.2.2 Local-tester-based testing architecture 56

4.2.3 Hybrid testing architecture . 57

4.3 A Baseline Approach to solve the Oracle Problem for Timed Distributed
Systems . 58

4.3.1 The Distributed Testing Architecture and Hypotheses 59

4.3.2 Communication Checking . 60

4.4 Constraint-based Oracle Algorithm . 67

4.4.1 Distributed Systems and Communication 67

4.4.1.1 Observation of a Distributed System 67

4.4.1.2 Valid Communication of a Distributed System 69

4.4.2 Constraint-based analysis for Communication Checking 73

4.4.3 Modeling Timed Distributed Systems and Conformance relation . . 76

4.4.3.1 Distributed Specification 77

4.4.3.2 Distributed System Under Test 78

4.4.3.3 The dtioco Conformance Relation 78

4.5 Implementation: Distributed Testing by Orchestration 79

4.5.1 Off-line Centralized Testing . 80

4.5.2 Communication Checking . 81

4.5.3 Global Verdicts . 85

5 Validating our Testing Approach 89

5.1 Randomly Generating Observable Multitraces 91

5.1.1 Generating multitraces . 91

5.1.2 Generating observable multitraces 96

5.2 Generating CDOs with DIVERSITY . 97

5.2.1 Global Trace Generation . 97

5.2.2 From Global Timed Traces to CDOs by Projection 99

5.3 A Mutation-based Approach to generate FDOs 102

5.3.1 Classical mutations . 102

5.3.2 Breaking a round-trip communication (RTC mutation) 105

5.4 The PhoneX Case Study . 108

5.4.1 PhoneX System Overview . 108

5.4.2 PhoneX System Interface . 110

5.4.3 PhoneX Modeling Effort . 110

5.4.4 Testing PhoneX . 112

6 Conclusions and Perspectives 117

6.1 Summary . 117

6.2 Future Research . 118

A PhoneX other call scenarios 121

A.1 PhoneX Line busy scenario . 121

A.2 No Answer scenario . 122

xviii

CONTENTS

B PhoneX TIOSTS models 123
B.1 Caller client TIOSTS model . 123
B.2 Called client TIOSTS model . 123
B.3 PhoneX central TIOSTS model . 124

C Algorithms Java Implementation 127
C.1 Java Implementation of function BuildConstraint 127
C.2 Java Implementation of Main function DObervation2CSP 129

D PhoneX Distributed Interface 131

Bibliography 133

xix

CONTENTS

xx

1. Introduction

Chapter 1

Introduction

Contents

1.1 Motivation . 1

1.2 Thesis Scope and Contributions 3

1.2.1 Scope of the Thesis . 3

1.2.2 Research Approach and Contributions 3

1.3 Thesis Outline . 4

1.4 Publications . 5

1.1 Motivation

Distributed systems [65, 20, 83] consist of a number of independent subsystems running
concurrently on different machines that interact with each other through communication
networks to meet a common goal. In other words, the subsystems are autonomous, i.e.,
they possess full control over their parts at any time and have to take into account that
they are being used by other subsystems and have to react properly to requests.

Distributed systems are challenging to implement correctly because they must handle con-
currency and failure. Messages can be delayed, duplicated or reordered. Coordination and
resource sharing can be difficult if proper protocols or policies are not in place. In addition,
most of them are real time and hence they display a less deterministic global behavior than
centralized systems. The complexity of distributed systems and their inherent concurrency
leads to a complex design and implementation that must address both communication
scheduling and computation. Generally, in these systems there is no global clock which
can schedule distributed events i.e., each localized subsystem has its own local clock and
the delays in the message communications or even the occurrence order of the events are
unknown. These systems also exhibit concurrency, in which the timing of events in the
system can affect the output results.

Because of the complexity of distributed systems and with the aim to prevent a faulty
behavior, testing and verifying distributed systems are paramount in order for them to
behave as expected, however, the issues described above make testing of these systems very
hard to accomplish [80].

1

1. Introduction

A system can be tested at different levels in its development process and abstraction.
Based on the degree of visibility of the system’s implementation, there is black-box testing
and white-box testing [68]. Black-box testing assumes only access to the interface of
the system’s implementation and not its code. On the other hand, white-box testing
assumes that tests are derived based on the internal details of the system. Between
the two previous extreme situations, the degree of visibility between these two can vary,
leading to grey-box testing [49]. In the context of black-box testing, we only have the
specification of the System Under Test (SUT) from which all the expected behaviors can
be derived and that provides the information to build the test scenarios. When the specifi-
cation is described by a formal model, we are in the domain of Model-Based Testing (MBT).

MBT is a software testing technique in which the test cases are derived from a model that
describes the functional aspects of the SUT [90]. This technique usually means functional
testing for which the test specification is given as a test model. The test model is derived
from the system requirements and it describes how user actions and system states relate to
each other. The MBT process comprises four steps: (a) Modeling the expected behavior
of the system; (b) Generation of a set of test cases; (c) Execution of the test cases on
the implementation and (d) Checking of the test results to detect differences between
the SUT and the specification using a mathematical conformance relation. Input/Output
Conformance Relation (ioco) was the first conformance relation to be considered in MBT
[86, 87] for reactive systems as one of the most established relation. Then Timed/Input
Output Conformance Relation (tioco) was introduced by Krichen and Tripakis in [60] in
the context of MBT of real-time reactive systems as ioco does not consider timed systems.
In [37] Distributed Timed Input/Output Conformance Relation (dtioco) was introduced
for testing timed distributed systems.

With the goal to analyse the consistency of distributed system’s implementation against it
specification model, we focus our attention on the fourth step of the MBT process that we
call the oracle problem. Dealing with the other steps of MBT process is left as future work.

Moreover, the difficulty within distributed systems is to define a global coherent time which
schedules all local events. Several works have defined clock synchronization mechanisms
[56, 41] to solve the problem of ordering events in a distributed system. However using
these approaches often is difficult to implement in practice and may require a significant
amount of computational resources, in particular memory. To overcome this issue, logical
clocks were first introduced by Lamport [65] as a concept to schedule events in a distributed
system. Later, Fidge [33] then Mattern [66] enhanced this concept to produce a global
ordering of distributed events which corresponds to a real scheduling. In the same context,
Hierons et al. in [44] and Gaston et al. in [37] treated causality of events for solving the
oracle problem in a distributed system in a similar way to the one used by Lamport, Fidge
and Mattern. However, the authors of [44, 37] do not explicitly ground their approach on
logical clocks. Yet, the problem addressed by their approaches concerns more the issue
of finding an order; which would make a group of observations of such an execution on
different remote interfaces; the witness of a correct global distributed system execution.

Our work revolves around the following thesis statement:
“The focus of my thesis is to design and develop a testing methodology and architecture for
distributed systems focusing on the oracle problem in order to check the consistency of a

2

1.2. Thesis Scope and Contributions

distributed system execution”.

More precisely, we address the following issue:

“When considering a distributed testing architecture where a separate tester is localized on
each subsystem of the system, how consistency check of the global view of the distributed

system behavior can be realized?”

The observations made hitherto lead us to the following scope which drives the work
described in this thesis.

1.2 Thesis Scope and Contributions

1.2.1 Scope of the Thesis

In this thesis, a Distributed System (DS) can be defined as a tuple of communicating
subsystems with no global clock but only local clocks for each local subsystem. In this
context, an observation made of a distributed system can be seen as a tuple of so-called
timed traces : one timed trace to describe the behavior of each subsystem. Testers are able
to measure durations between the communication actions of the timed traces and time
units are identical for all clocks with no clock drift. We might not synchronise the instant
at which testers start and end observing. However, each local tester start observing when
its associated localized sub-system is reset.

We consider the SUT as black-box system which means that we do not have knowledge
about its internals, thus, we can only rely on its observable inputs proposed by the envi-
ronment and the outputs produced by it.

Let us suppose that we are testing from a model M. Our aim is to formally reason about
the correctness of a concrete SUT S w.r.t its specification model M. We focus on the
problem of producing an automated solution to the oracle problem. In our work, the oracle
problem is the problem of checking that an observation made by a distributed system
(here a tuple of timed traces) is the one which is allowed by a model M. In the case of
a distributed system, a model M carries out the local specification of local subsystems
together with the communication pattern of the distributed system.

1.2.2 Research Approach and Contributions

To address the needs described above and to make testing of distributed systems easier
we have been developing in this dissertation an orchestration framework that is able to
solve the oracle problem in distributed testing and provides an automated solution to
the oracle problem. The verdicts resulting from checking conformance of the distributed
SUT against its distributed specification are produced according to the dtioco conformance
relation [37, 12]. Furthermore, our framework carries out the following two activities: (1)
the problem of checking each local observation against its corresponding local model; and
(2) checking that the tuple of observations respects a valid communication pattern. In
particular, this dissertation involves a combination of the following contributions:

3

1. Introduction

� We adapt the offline testing algorithm for verdict computation given in [7]. Indeed,
in [7], the authors proposed a centralized offline testing approach (from test case
generation to verdict computation), which provides an algorithm for verdict compu-
tation based on tioco conformance relation [60, 61]. The work of [7] cannot be used
directly for our goal since it cannot be used for our system semantics. Moreover,
our centralized offline testing algorithm will not consider test purposes as the one
presented in [7].

� We propose a constraint-based algorithm for solving the oracle problem for multicast
communications in a timed setting. In other words, we propose an algorithm to check
that a tuple of observations represents a valid communications pattern. This algorithm
expresses the communication policy as a Constraint Satisfaction Problem (CSP): it
constructs a set of constraints that can be satisfied if and only if the given tuple
of local observations has a valid communication pattern. Therefore, a standard
constraint solver can be used to solve this problem. In other words, we characterize
the set of possible synchronizations in a symbolic manner by constructing constraints
that carry on symbolic durations occurring in local observations.

� We implement an orchestration framework combining the two following activities: (1)
we analyze tuple of observations from the communication perspective by executing
our proposed algorithm to check communication in terms of CSP and also (2) we
analyze each observation of the tuple with respect to its associated local model by
executing our centralized off-line testing algorithm.

� In order to validate our tooling, we propose an approach for generating distributed
observations. The approach consists of two random generation algorithms: Correct
Distributed Observations (CDOs) and Faulty Distributed Observations (FDOs). A
fault injection technique is used to generate an FDO. Both CDOs and FDOs will
be submitted to our testing framework in order to observe corresponding testing
verdicts. A CDO must never cause a fail verdict whereas an FDO may cause fail
verdicts.

1.3 Thesis Outline

In accordance with the contributions we specified above, we structure our thesis as follows:

� Chapter 2: provides a preliminary definition of data structures regarding the formal
definition of observation that can be made in distributed testing and describes system
models. Indeed, in this thesis, we use Timed Input Output Symbolic Transition
Systems to model the expected behavior of a distributed system.

� Chapter 3: presents centralized model-based testing and provides an algorithm for
solving the oracle problem in the context of local conformance testing.

� Chapter 4: reviews the state of the art relevant to the context of distributed testing
and describes our distributed testing architecture. This chapter provides an algorithm
for checking the oracle problem, i.e., analysing a tuple of localized traces with regard
to a communication policy, in terms of CSP. We also discuss implementation issues.

4

1.4. Publications

� Subsequently, Chapter 5, is dedicated to the validation of our implementation frame-
work and the evaluation of the scalability of our approach with regard to the soundness
of our algorithms. An experimentation of our testing approach on a real-sized case
study of a telecommunication distributed system is given as an illustration.

� Chapter 6: emphasizes the contribution of our work and identifies challenges and
research gaps that require further exploration.

1.4 Publications

A portion of our work has been published in the following conference paper:

� Nassim Benharrat, Christophe Gaston, Robert M Hierons, Arnault Lapitre, and
Pascale Le Gall. Constraint-based oracles for timed distributed systems. In IFIP
International Conference on Testing Software and Systems, pages 276-292. Springer,
2017.

5

1. Introduction

6

2. Formal Background

Chapter 2

Formal Background

Contents

2.1 Typed Equational Logic . 7

2.2 Solving Constraints . 10

2.3 Timed Input Output Symbolic Transition Systems (TIOSTS) 10

2.3.1 Syntax . 10

2.3.2 Semantics . 13

2.4 Symbolic Execution . 18

2.4.1 Symbolic Execution of Programs 18

2.4.2 Symbolic Execution of TIOSTS 20

In this chapter, we introduce our formal preliminaries. We start in Section 2.1 by defining
the classical typed equational logic whose syntactic part will be used later as a mean to
define data in the TIOSTS formalism. In Section 2.2, we recall some information about
CSP together with related tools, i.e, constraint solvers. We present the syntax of the
TIOSTS formalism and give their semantics in Section 2.3. We conclude the chapter
by providing in Section 2.4 the definitions related to Symbolic Execution techniques for
TIOSTS.

2.1 Typed Equational Logic

We use classical typed equational logic to represent and reason about data. The typed
equational logic is a restriction of the logic of the first-order predicates in meaning that
the only predicate used is equality (=). The typed logic consists in partitioning the data
according to a finite set of types S.

For two sets A and B, we use the notation BA to denote the set of applications from
A to B. For all sets Ai with i ∈ {1, . . . n}, the notation

∐
i∈{1,...n}Ai denotes the dis-

joint union of the sets A1 . . . An. The notation R≥ (resp. R>) denotes the set of (resp.
strictly) positive real numbers. For a set A, A∗ denotes the set of all finite sequences
of elements of A, ε denotes the empty sequence and the symbol ’.’ is used for concatenation.

7

2. Formal Background

We start by presenting the syntax of typed equational logic by introducing the concepts of
signature, first-order terms and formulas.

Definition 2.1 (Signature). A signature is a couple Ω = (S,Op) where S is a set of type
names and Op is a set of function names provided with a profile s1 . . . sn−1 → sn in S+.

A function name of the form f which is associated with a profile s1 . . . sn−1 → sn is denoted
f : s1 . . . sn−1 → sn and represents a function taking n− 1 arguments of types s1 . . . sn−1

and computing a value of type sn. A function name of the form f :→ s denotes a constant
value of type s.

In the sequel, we suppose that S contains primitive types such as Integer and Real and a
particular type Boolean to denote two possible truth values: true and false.

Example 2.1 (Primitive real number data type). As an example of a signature, we
introduce ΩReal = (SReal, OpReal) which is associated with the specification of real numbers
arithmetic with:

� SReal = {Real,Boolean}

� OpReal = {0 :→ Real, 1 :→ Real
true :→ Boolean,
false :→ Boolean,
+ : Real.Real→ Real, (addition)
− : Real.Real→ Real, (subtraction)
∗ : Real.Real→ Real, (multiplication)
≤: Real.Real→ Boolean (inequality ′′equal to or less than′′).
<: Real.Real→ Boolean (inequality ′′strictly less than′′).
. . .}

A set V of so-called variables typed in S is a set of the form
∐
s∈S Vs. The function

type : V → S is the function that associates the type s to the variable x if and only if
x ∈ Vs.

The set of terms TΩ(V) and formulas FΩ(V) over V are defined as follows:

Definition 2.2 (Term and Formula). Let V =
∐
s∈S Vs be a set of typed variables in S.

The set of Ω-terms with variables in V is denoted TΩ(V) =
∐
s∈S TΩ(V)s and is inductively

defined as follows:

� if x ∈ Vs then x ∈ TΩ(V)s

� if f has a profile s1 . . . sn−1 → sn (with n > 0) and (t1 . . . tn−1) ∈ TΩ(V)s1 ×
· · · × TΩ(V)sn−1 then f(t1 . . . tn−1) ∈ TΩ(V)sn (with for the particular case n = 0,
f ∈ TΩ(V)s0)

The set of typed equational Ω-formulas over V is denoted FΩ(V) and is inductively defined
as follows:

� True and False are in FΩ(V).

� for any s ∈ S, for any t and t′ in TΩ(V)s, we have t = t′ is in FΩ(V)

8

2.1. Typed Equational Logic

� for any ϕ1 and ϕ2 in FΩ(V), we have ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ¬ϕ1 are in FΩ(V)

The function type is extended canonically to TΩ(V) as usual.

Example 2.2. Using the signature ΩReal = (SReal, OpReal), we consider the variable names
typed in SReal, V = VBoolean

∐
VReal where VBoolean = ∅ and VReal = {x, y}. The following

are terms in TΩ(V):

0, x, y, +(0, 0) and +(x, y), −(x, y) and ∗(x, y) are in TΩ(V)Real and term < (x, y) is in
TΩ(V)Boolean. For terms with two operands, we often use the infix notation, e.g. x + y
instead of +(x, y).

We may define the following formulas in FΩ(V): x = y,¬(0 = x), < (x, y) =≤ (x+0, y+0).

A substitution over V is an application ρ : V → TΩ(V) preserving types. The identity
substitution over V is denoted idV . Any substitution ρ in TΩ(V)V may be extended
canonically to the set of terms and formulas as usual.

Example 2.3. Consider the signature ΩReal and the set of variables VReal = {x, y}. We
define the following substitutions ρ : VReal → TΩ(V) such that:
ρ(x) = x+ 1 and ρ(y) = y + 1. We have for example ρ(x+ y) = (x+ 1) + (y + 1).

As we treat the question of testing timed reactive systems [61, 7], we consider signatures Ω
that include a particular type time in S to denote values representing durations, provided
with usual operations <,+ such that <: time.time→ Boolean and + : time.time→ time.
Type time is the restriction of the type Real to positive real numbers. Variables of type
time are named clocks and variables of any type s ∈ S\{time} are named data variables

A model associated with a signature is a mathematical structure used to interpret all
symbols of the signature.

Definition 2.3 (Model). A Ω-model is a set M =
∐
s∈SMs provided with a function

fM : Ms1 × · · · ×Msn−1 →Msn for each f : s1 . . . sn−1 → sn in Op.

The set Mtime is denoted D (for the set of durations) and is isomorphic to the set of
positive real numbers R≥. D+ is the set of strictly positive durations is isomorphic
to the set of strictly positive real numbers R>. D+ is provided with usual operations:
+ : D+ ×D+ → D+; and <,≤: D+ ×D+ which have their usual meanings in R>.

To give semantical meaning to variables, we introduce the notion of interpretation. An
interpretation is an application ν : V →M preserving types.

Any interpretation ν in MV may be extended canonically to the set of terms and formulas
as usual. Now we define the notion of formula satisfaction.

Definition 2.4 (Formula satisfaction). For any interpretation ν ∈ MV and a formula
ϕ ∈ FΩ(V), we say that the interpretation ν satisfies the formula ϕ denoted M |=ν ϕ if
and only if:

� Boolean values: we have M |=ν True and M��|=νFalse,

� Equality: if ϕ is of the form t = t′ with t, t′ in TΩ(V)s for any type s in S, we have
ν(t) = ν(t′),

9

2. Formal Background

� Conjunction if ϕ is of the form ϕ1 ∧ ϕ2 with ϕ1, ϕ2 in FΩ(V), we have M |=ν ϕ1

and M |=ν ϕ2,

� Disjunction if ϕ is of the form ϕ1 ∨ϕ2 with ϕ1, ϕ2 in FΩ(V) we have M |=ν ϕ1 or
M |=ν ϕ2,

� Negation: if ϕ is of the form ¬ψ with ψ in FΩ(V), we have M��|=νψ,

Notation 2.1. A formula ϕ in FΩ(V) is said to be satisfiable if there exists an interpreta-
tion ν in MV such that M |=ν ϕ. We use the function IsSat : FΩ(V) → {True, False}
such that IsSat(ϕ) returns True if and only if ϕ is satisfiable.

2.2 Solving Constraints

In the following, given a formula ϕ ∈ FΩ(V), V ar(ϕ) denotes the set of all variables occur-
ring in ϕ. When a formula ϕ in FΩ(V) is satisfiable, we use the notation Sat(ϕ) to represent
a solution of the satisfaction problem for ϕ, that is an interpretation ν ′ ∈MV ar(ϕ) satisfying:

There exists ν in MV such that M |=ν ϕ and ∀x ∈ V ar(ϕ), ν ′(x) = ν(x) (by construction,
we have M |=ν′ ϕ).

At the tooling level, we use usual Satisfiability Modulo Theories (SMT)-solvers [13, 11]
like CVC4 [8], Z3 [25] and Yices [29] where it is possible to setup the adequate typed
equational logic in the aim to interpret typed variables and check satisfiability of formula
built over those variables. In practice, most of SMT-solvers implement typed equational
logic with primitive types such as Real, Integer and Boolean. For example we use the set
of positive real numbers R≥ to check satisfiability of constraints built over variables in D.

Example 2.4. Let Ω = (S,Op) be a signature and V be a set of variables. We define
Vtime = {d0, d1} and we give the formula ϕ = (d0 > d1) ∧ (d1 + 2 > d0 + 1) in FΩ(Vtime)
We have V ar(ϕ) = {d0, d1}. We check satisfiability of ϕ using a standard SMT-solver like
Yices [29]. We have IsSat(ϕ) is True, indeed, there exists an interpretation ν in DV such
that ν(d0) = 1 and ν(d1) = 1/2 and we have D |=ν ϕ. We have then, Sat(ϕ) may denote
the interpretation [d0 7→ 1, d1 7→ 1/2].

In the sequel, we suppose the existence of a signature Ω = (S,Op) and a model M .

2.3 Timed Input Output Symbolic Transition Systems (TIOSTS)

In this section, we present the TIOSTS specification formalism. TIOSTS [32, 6, 7] are
symbolic timed automata employed to specify the behavior of reactive timed systems. That
is, open systems whose behavior depends on external stimuli (inputs from the environment)
and where time to produce an output is as important as the output produced itself. TIOSTS
are extensions of so-called Input/Output Symbolic Transition Systems (IOSTS) [31, 36]
introducing constraints over execution delays of transitions.

2.3.1 Syntax

TIOSTSs are defined over TIOSTS-signatures which are used to introduce particular
variables whose valuations define abstractly a state of the system. A TIOSTS-signature
also introduces a set of channels names to communicate with the environment.

10

2.3. Timed Input Output Symbolic Transition Systems (TIOSTS)

Definition 2.5 (TIOSTS-signature). A TIOSTS-signature is defined as a triple Σ =
(A, T,C) where:

� A =
∐
s∈S\{time}As is a set of data variables where for all s ∈ S \ {time} we have

As ⊆ Vs;

� T ⊆ Vtime is a set of clocks;

� C =
∐
s∈S\{time}Cs is a set of so-called channels provided with a type s in S\{time}

and where any Cs can be partitioned as Cins
∐
Couts where Cins is a set of input channels

of type s and Couts is a set of output channels of type s. Cin =
∐
s∈S\{time}C

in
s is

the set of all input channels and Cout =
∐
s∈S\{time}C

out
s is the set of all output

channels.

Elements of A are used to store input values, to denote system state evolutions and to
define guards. Clocks are used to denote durations between occurrences of receptions
and emissions of values through channels. Those durations may be constrained by defin-
ing guards over those clocks. As in the case of terms and variables, we use a function
type : C → S\{time} associating channels with their types.

We now define so-called communication actions over typed channels. Communication
actions can be inputs or outputs sent or received through channels.

Definition 2.6 (Communication actions). Let Σ = (A, T,C) be a TIOSTS-signature. The
set of communication actions over Σ is defined as Act(Σ) = I(Σ) ∪O(Σ) where:

� I(Σ) = {c?x | c ∈ Cin, x ∈ Atype(c)}

� O(Σ) = {c!t | c ∈ Cout, t ∈ TΩ(A)type(c)}

Elements of I(Σ) and O(Σ) are called inputs and outputs respectively. In order to sim-
plify the exposition, at the level of our modeling framework, we consider messages that
contain only a single piece of data. However, at the tooling level, without adding any
particular difficulties, messages may contain 0 (signals c! or c?), 1 or n data (c!(t1, . . . , tn)
or c?(x1, . . . , xn), the xi being different variables of A).

TIOSTSs are structures composed of a set of states, an initial state and labeled transitions
going from one state to another. Those latter transitions are composed of data guards
and time guards which are conditions to be satisfied on data variables and time variables
respectively in order to execute the transition; communication actions introduced in
Definition 2.6 and substitutions representing modifications on both time and data variables
when firing the transition.

Definition 2.7 (TIOSTS). Let Σ = (A, T,C) be a TIOSTS-signature. A TIOSTS over Σ
is a triple (Q, q0, T r), where:

� Q is a set of states,

� q0 ∈ Q is the initial state,

� Tr is a set of labeled transitions of the form (q,T, φt, φd, act, ρ, q′) where:

– q, q′ ∈ Q,

11

2. Formal Background

– T ⊆ T ,

– φt ∈ FΩ(T),

– φd ∈ FΩ(A),

– act ∈ Act(Σ),

– ρ : A→ TΩ(A) is a substitution.

For a transition defined by the tuple (q,T, φt, φd, act, ρ, q′), q (resp. q′) is the source (resp.
target) state of the transition. φt and φd are firing conditions respectively on clocks and
data variables. φt is called time guard φd is called data guard. T ⊆ T is a set of clocks (to
be reset to 0 when the transition is executed). Values assigned to variables occurring in T
are updated implicitly and refer to the instant of occurrence of act. act is a communication
action and ρ assigns new values to data variables in A when the transition is executed in
order to represent state evolutions.

Notation 2.2. In the following, for any TIOSTS G of the form (Q, q0, T r) defined over a
TIOSTS-signature Σ = (A, T,C), we use the notations states(G), init(G) and Trans(G)
to refer to Q, q0 and Tr. In the same way, for any transition tr in Trans(G) of the
form (q,T, φt, φd, act, ρ, q′) we use the notations source(tr), target(tr), clocks(tr), φt(tr),
φd(tr), act(tr) and ρ(tr) to refer to q, q′,T, φt, φd, act and ρ respectively.

In the sequel, in particular, when considering TIOSTS examples, in order to depict a
transition of the form (q,T, φt, φd, act, ρ, q′) we use the graphical convention:

q
T [φt] [φd] act ρ−−−−−−−−−−→ q′

When there are no new substitutions, it corresponds to the identity function idA (that
is, the variables are substituted by themselves) and we omit it in the depiction. When
there are no necessary conditions for firing a transition (either a data condition or a time
condition), this corresponds to the fact that the guards are True, in this case, we omit the
guards.

Example 2.5 (Train Local Controller). In the remaining of this chapter, we use a toy
example for illustration. Train Local Controller (TLC) [37] is a system designed to manage
safety by monitoring the location of a central train by ensuring that the train automatically
decreases its speed when safety is threatened. The TLC system is specified by a TIOSTS
GTLC containing 4 states (q0 the initial state, q1 , q2 and q3) as depicted in Figure 2.1.

GTLC is defined over the TIOSTS-signature ΣTLC = (A, T,C) where:

� A = {acc, v, p1, p2} is a set containing 4 data variables: acc whose associated values
are in the set {−1, 0, 1}, acc = 0 means that the central train does not accelerate.
acc = 1 (respectively acc = −1) means that the central train increases (respectively
decreases) its speed. v is used to store the speed of the central train and p1 for
storing the position of the train and p2 for storing the position (received form the
environment) of another train which may have a symmetric role as the one modeled
by GTLC ;

� T = {w,w′} is a set containing 2 clocks: w, which is reset at each emission of the
position p1 and w′, which is reset at each reception of the position p2;

12

2.3. Timed Input Output Symbolic Transition Systems (TIOSTS)

� C = {start, driver, pos1, pos2, emergencyMode} is the set of channels through which
data variables are communicating.

GTLC specifies the following behavior: After an initialization phase (transition t1), the
central train sends its position p1 to the environment (indeterministic behavior illustrated
through transitions t3 and t4), and in return, it is supposed to receive p2 (the environment)
which is an estimation of another train’s position that has a symmetric role as the one
modeled by GTLC (transition t5). In this loop, two consecutive communication actions are
supposed to be separated by a delay of less than 10 time units. If the estimated position
p2 is not received on time, the central train goes into an emergency mode (not detailed
here) (transition t6). At any moment in the loop, the driver may ask to modify the train
acceleration (transitions t2 and t7). The new value is taken into account only if it does not
affect the safety of the system (transition t3). Safety is threatened if the condition named
cond holds, that is, the distance between trains is less than the distance that can be covered
by the train with the current acceleration. If safety is threatened, then the acceleration of
the central train is set to -1 in order to reduce its speed (transition t4).

iq0

iq1

{ }

0
'

0
?
',

)3(
a

a

a

a

i

ii
ii

i
i

ii

v
initp
initp

acc
start

ww

−
ii

i
accdriver

w
?
]10'[<

iq2

{ }

ii
iiiiii

iiii
i

i
i
i

ppos
waccwvpp

waccvv
acc

cond
w
w

!
'**)2/1()'*(

'*
1
][

10'

2++
+

¬
<

a

a

a

{ }

ii
iiiiii

iiii
i

i
i
i

ppos
waccwvpp

waccvv
acc
cond
w
w

!
'**)2/1()'*(

'*
1

][
10'

2++
+
−

<

a

a

a

iq3

{ }
'?

10
'

)3(ii

i

i

ppos
w
w

−

<

trueodeemergencyM
w

i

i
!

10≥

t1
0q

1q

{ }

0

0
?
',

22
11

←v
initp
initp

acc
start

ww

a

a

a

accdriver
w

?
]10'[<

2q

t5
t3

t2

t4

{ }

2
11

11

'*)2/1()'*(
'*)1(

)1(
!
][

]10'[

wwvpp
wvv

acc
ppos

cond
w
w

−+
−+

−

<

a

a

a

3q

t6

{ }

22 ?
]10[

'

ppos
w
w

<

trueodeemergencyM
w

!
]10[≥

{ }

2
11

11

'**)2/1()'*(
'*

1
!

][
]10'[

waccwvpp
waccvv

acc
ppos

cond
w
w

++
+

¬
<

a

a

a

t7

accdriver
w

?
]10[<

d

d

it1

d

d

it4d

d

it3

d

d

it2

d

d

it6

d

d

it5

ii

i
accdriver

w
?
]10[<

d

d

it7

With: init1 = 42, init2 = 300 and cond ≡ (p1 < p2) ∧ (p2 ≤ (v ∗ 20) + 200))
Figure 2.1: Train Local Controller TIOSTS

2.3.2 Semantics

TIOSTSs specify sequences of actions separated by numeric durations. Those sequences
are called timed traces. In [62, 7] authors propose to accept any possible decomposition
of durations in timed traces. For example, the duration 0.7 may be decomposed as the
sum of delays 0.4 and 0.3 since 0.7 = 0.4 + 0.3. It may also be represented as 0.1 + 0.1 +
0.1 + 0.4, etc. In order to take into account all such durations, authors in [62, 7] define
timed traces as the set of all sequences obtained by applying arbitrary decompositions

13

2. Formal Background

of durations. In [81] Schmaltz et al. raises the issue of timed trace normalization and
mentioned that if there can be two successive delays in a timed trace, e.g., σ = i?.d1.d2.o!,
it would be more natural to normalize to timed traces with no consecutive delays. Hence
σ = i?.d.o! with d a duration is a normalized timed trace such that d = d1 + d2. Hence, it
is possible to associate to each timed trace a normalized one.

In this thesis, we deal with timed traces in a way that considers durations in a normalized
way [81, 14]. This choice is a consequence of the way we represent durations and communi-
cation actions in Chapter 4, where we deal with distributed system semantics. Therefore
the remaining of this section is a reformulation of the semantics of TIOSTS as presented
in [7], in order to only consider normalized timed traces.

We introduce a definition to represent communication actions semantically.

Definition 2.8 (Concrete actions). Let C = Cin
∐
Cout be a set of channels. The set of

concrete actions over C is defined as Act(C) = I(C) ∪O(C) where:

� I(C) = {c?v | c ∈ Cin, v ∈Mtype(c)}

� O(C) = {c!v | c ∈ Cout, v ∈Mtype(c)}

The value v is the interpretation of the received or emitted terms.

Concrete actions are values exchanged through channels. Variable interpretations are
canonically extended to symbolic actions (ν(c?x) = c?(ν(x)) and ν(c!t) = c!ν(t)).

Notation 2.3. Given act ∈ Act(C) of the form c∆v with ∆ ∈ {!, ?}, chan(act) refers to
c, act refers to its so-called mirror action, c∆v with ! =? and ? =!.

A concrete action is generally observed after a delay has occurred since the previous
occurrence of a concrete action. This is captured by the notion of concrete events. When
one cannot observe an action, following [87], we use the symbol ‘δ’ used to denote the
absence of observation of a concrete action (i.e. quiescence).

Definition 2.9 (Concrete events). The set of concrete events over C is defined as Evt(C) =
(D+ ∪ { }) × (Act(C) ∪ {δ}). The set of initialised concrete events over C is defined as
IEvt(C) = D+ × (Act(C) ∪ {δ}).

Roughly speaking, events are structures representing the observation of an emission or a
reception where the variables and terms present in the communication actions are inter-
preted in a model M after waiting for a (measured) non-null delay.

An initialised event of the form (d, a) is an observation of concrete action a after that a tester
observes a positive delay d. In fact, in a centralized testing framework, a tester is supposed
to measure duration from the initial instant or between two consecutive actions. Sometimes,
it is not possible to observe such a common initial instant. Therefore, we define uninitialised
events in which its duration cannot not be observed. Hence, symbol ‘ ’ denotes the absence
of the observation of a delay (i.e (, a)) so that the observation needs not be stamped
with a strictly positive duration. In addition, between two consecutive concrete actions,
we require that the delay is greater than zero so that two events do not occur simultaneously.

14

2.3. Timed Input Output Symbolic Transition Systems (TIOSTS)

Let us point out that usually, in a pure timed framework, the symbol δ is used to represent
quiescence of a system may be useless (e.g. [58, 57, 37]). Here, the use of δ is a side effect
of considering atomic actions as events. Indeed, expressing that a system is quiescent after
a duration d has to be representable as an event, and thus, we need a symbol to represent
these quiescent situations as a couple (d, δ).

Notation 2.4. Given ev ∈ Evt(C), we let act(ev) = a and delay(ev) = d if ev = (d, a)
with d ∈ D+, else delay(ev) = 0 (i.e, ev = (, a)).

Example 2.6. Consider the signature ΣTLC of TLC system illustrated in Example 2.5.
The pair ev = (6, pos2?50) is a concrete initialised event where 6 is the time measured
before the observation of the concrete action pos2?50 and 50 is the interpretation value of
the received position through channel pos2 in the latter action. We have delay(ev) = 6 and
act(ev) = pos2?50.

In the sequel δEvt(C) (resp. δIEvt(C)) denotes the set of unobservable events (resp.
unobservable initialized events) {ev | ev ∈ Evt(C), act(ev) = δ} (resp. {ev | ev ∈
IEvt(C), act(ev) = δ}).

We now define concrete timed traces as sequences of events:

Definition 2.10 (Concrete timed traces). The set ITraces(C) of initialised timed traces
over C is (IEvt(C) \ δEvt(C))∗.(ε+ δEvt(C))+δIEvt(C).
The set UTraces(C) of uninitialised timed traces over C is {u(σ) | σ ∈ ITraces(C)} where
u(σ) denotes ε if σ = ε and (, a).σ′ if σ is of the form (d, a).σ′.
The set TTraces(C) of timed traces over C is UTraces(C) ∪ ITraces(C).

Any event of an initialised timed trace contains a duration and a concrete action. For the
first event, this duration represents a delay between some distinguished moment (e.g. since
the time at which a tester started to measure the duration) and the first observed action.
Uninitialised traces are timed traces for which no initial instant is identified. Finally, note
that quiescence is only observed at the end of traces, when no communication action has
been observed.

Example 2.7. This is an example of a concrete timed trace built over the signature ΣTLC

defined in Example 2.5.

σ = (1, start?).(3, driver?1).(3.pos1!42).(12, emergencyMode!true) denotes the following
behavior: one waits for 1 time unit and enters initialization phase, the driver asks to modify
the central train’s acceleration and receives value 1 after waiting for 3 time units. The
system waits for 3 time units and sends position 42 to the environment. The central train
waits for the environment to send its position (here the environment may be represented by
another train which has a symmetric role as the central one). However this action is not
performed on time, hence, after waiting for more than 10 time units (here 12 time units),
the train goes into an emergency mode.

Timed traces of a TIOSTS are built from sequences of transitions. We start by introducing
so-called snapshots representing numeric states before and after the transition execution.

Definition 2.11 (Snapshots). Let G = (Q, q0, T r) be a TIOSTS over Σ. The set of all
snapshots of G, denoted SnpM (G) is the set Q×MA∪T .

15

2. Formal Background

A snapshot characterizes a given numeric state of G, that is supposed to be reached after
some executions.

Definition 2.12 (Runs of transitions). Let G = (Q, q0, T r) be a TIOSTS over Σ. For a
transition tr = (q,T, φt, φd, act, ρ, q′) ∈ Tr, the set of runs of tr, denoted as Runs(tr) ⊆
SnpM (G)×Evt(C)× SnpM (G) is defined as the set of triple ((q, νi), ev, (q

′, νf)) such that
M |=νi φd and there exists and intermediate interpretation ξ ∈MA∪T verifying:

� if act is of the form c!t, then for all z ∈ A we have ξ(x) = νi(x).

� if act is of the form c?x, then all z ∈ A\{x} we have ξ(z) = νi(z),

� for all ω ∈ T , ξ(ω) = νi(ω) + delay(ev) and M |=ξ φt and such that for all z ∈ A we
have νf (z) = ξ ◦ ρ(z), for all ω ∈ T \ T we have νf (ω) = ξ(ω) and for all ω ∈ T we
have νf (ω) = 0. Finally act(ev) = ξ(act(tr)).

A run of a transition is simply a triple that is defined by a snapshot denoting the numeric
state before executing the transition; a concrete event associated with the firing of the
transition; and finally a snapshot denoting the numeric state after the transition execution.

In Definition 2.12, ξ is an intermediate interpretation whose purpose is to let time pass
from initial interpretation νi for all clocks (ξ(w) = νi(w) +delay(ev)) and take into account
a potential input value (denoted by ξ(x) if act = c?x). Data guards of the transition should
be satisfied by initial interpretation νi. Time guards of the transition should be satisfied
by ξ and if it is the case then the transition can be fired resulting on a final interpretation
νf updating data variables according to ρ and resetting clocks occurring in T.

Example 2.8. Let us consider the TIOSTS GTLC depicted in Figure 2.1 and defined over
the signature ΣTLC = (A, T,C) in Example 2.5. We recall that ΣTLC is defined as follows:

� A = {acc, v, p1, p2}

� T = {w,w′}

� C = {start, driver, emergencyMode, pos1, pos2}

Consider the transition t2 as illustrated in GTLC :

q1
[w′<10] driver?acc−−−−−−−−−−−−→ q1

We give a possible run r of the transition t2 as follows:

(q1, νi)
(8,driver?1)−−−−−−−→ (q1, νf)

where νi and νf are defined as follows:

Interpretation of variables

νi(acc) = 0, νi(v) = 0, νi(p) = 42, νi(p
′) = 300, νi(w) = 0, νi(w

′) = 0

ξ(acc) = 1, ξ(v) = 0, ξ(p) = 42, ξ(p′) = 300, ξ(w) = 8, ξ(w′) = 8

νf (acc) = 1, νf (v) = 0, νf (p) = 42, νf (p′) = 300, νf (w) = 0, νf (w′) = 0

16

2.3. Timed Input Output Symbolic Transition Systems (TIOSTS)

Notation 2.5. The set of runs of all transitions of G, denoted Runs(G), is in the set
SnpM (G)×Evt(C)×SnpM (G). For any run r in Runs(G) of the form ((qi, νi), ev, (qf , νf))
we use the notations source(r), target(r) and event(r) to refer to (qi, νi), (qf , νf) and ev
respectively.

The paths of TIOSTS are finite sequences of consecutive transitions whose first transition
starts at the initial state of the considered TIOSTS. We define the notion of TIOSTS paths
as follows:

Definition 2.13 (Paths of a TIOSTS). Let G = (Q, q0, T r) be a TIOSTS defined over a
TIOSTS-signature Σ = (A, T,C). The set of paths of G denoted Paths(G) ⊆ Tr∗ is the
set which contains the empty sequence ε and all finite sequences tr1 . . . trn such that:

� source(tr1) = q0

� target(tri) = source(tri+1) for all i < n.

Example 2.9. Consider the TIOSTS GTLC depicted in Figure 2.1 and defined over the
signature Σ = (A, T,C) in Example 2.5. A possible path p from GTLC is:

q0
start?−−−−−→
acc7→0
v 7→0
p1 7→42
p2 7→300

q1.q1
[w′<10] [¬cond] pos1!p1−−−−−−−−−−−−−−−−−−−→

acc7→1
v 7→v+acc∗w′

p1 7→p1+(v∗w′)+(1/2)∗acc∗w′2

q2.q2
[w<10] pos2?p2−−−−−−−−−→ q1

The semantics associated with a finite path is defined by the semantics that is given to the
transitions that compose the path.

Definition 2.14 (Timed traces from a path of TIOSTS). Let G = (Q, q0, T r) be a TIOSTS
defined over a TIOSTS-signature Σ = (A, T,C). For a path p of G, the set of initialized
timed traces of p, denoted ITraces(p) is defined as follows:

� ITraces(p) is {ε} if p = ε

� if p is of the form tr1. · · · .trn, ITraces(p) contains all sequences of events ev1 · · · evn
such that there exists a sequence of runs r1 · · · rn satisfying: for all i ≤ n, ri is a run
of tri of the form (snpi, evi, snp

′
i+1) and for all j < n we have snp′j = snpj+1 and

such that all events are initialised.

The set of uninitialized timed traces of p, denoted UTraces(p) is the set {u(σ) | σ ∈
ITraces(p)} where u(σ) denotes ε if σ = ε and (, a).σ′ if σ is of the form (d, a).σ′ with
d ∈ D+.
The set of timed traces of p, denoted TTraces(p) is ITraces(p) ∪ UTraces(p).

Example 2.10. Consider the TIOSTS GTLC depicted in Figure 2.1 and defined over the
signature ΣTLC = (A, T,C) in Example 2.5. Consider the path p illustrated in Example 2.9:

q0
start?−−−−−→
acc7→0
v 7→0
p1 7→42
p2 7→300

q1.q1
[w′<10] [¬cond] pos1!p1−−−−−−−−−−−−−−−−−−→

acc7→1
v 7→v+acc∗w′

p1 7→p+(v∗w′)+(1/2)∗acc∗w′2

q2.q2
[w<10] pos2?p2−−−−−−−−−→ q1

A possible initialized timed trace of p is: σ = (1, start?).(3, pos1!42).(5, pos2?300). When
one cannot observe the initial delay of σ, we have σ = (, start?).(3, pos1!42).(5, pos2?300)
is uninitialized timed trace of p. Both σ and σ′ are defined in TTraces(p).

17

2. Formal Background

Finally, the behaviors of a TIOSTS, also called its semantics, are defined as the set of all
the timed traces that can be obtained from its paths.

Definition 2.15 (Timed traces of a TIOSTS). Let G = (Q, q0, T r) be a TIOSTS defined
over a TIOSTS-signature Σ = (A, T,C). The set of initialized timed traces of G, denoted
TTraces(G), is defined as follows:

� For all p ∈ Paths(G) we have UTraces(p) ⊆ TTraces(G),

� For all σ ∈ TTraces(G) such that there exists no path p and no event ev with
act(ev) ∈ O(C) satisfying σ.ev ∈ UTraces(p), for all d ∈ D+ we have σ.(d, δ) ∈
TTraces(G) if σ 6= ε and (, δ) ∈ TTraces(G) if σ = ε.

� For all σ.(d, a) ∈ TTraces(G) for all d′ ∈ D+ with d′ ≤ d we have σ.(d′, δ) ∈
TTraces(G).

Timed traces of a TIOSTS are possible successions of events that are couples of observed
delays before that a concrete action generated form a TIOSTS has occurred. Note that a
succession of events of Evt(C) of the form ev1 · · · evn such that all events are initialised
except for i = 1, (i.e, ev1) is of form (, a1) and for all i > 1, evi is of form (di, ai) define a
unique way to represent a timed trace of G.

Example 2.11. Consider the TIOSTS GTLC depicted in Figure 2.1 and defined over the
signature ΣTLC in Example 2.5. Some possible timed traces that can be generated from
GTLC are: σ = (, start?).(3, pos1!42).(5, pos2?300), and σ′ = (, start?).(3, pos1!42).(5, δ).
σ denotes the following behavior: one cannot observe the initial moment before entering
the initialization phase, the system waits for 3 time units and sends position 42 to the
environment. Finally, the central train waits for 5 time units before that the environment
sends position 300 to it (here 300 is the position of another train which has a symmetric
role as the central one). σ′ denotes a prefix of the behavior of σ (without the last action)
as the tester may not be able to observe the last action.

2.4 Symbolic Execution

2.4.1 Symbolic Execution of Programs

Symbolic Execution (SE) was initially defined for programs [53, 22, 53, 54]. Its main usage
is to analyze the feasibility of the executions paths of the program of interest. From a
practical perspective, it consists in executing the program, not for actual input values, but
for symbolic input parameters. The goal of this execution is to characterize constraints
(called path conditions) on those input parameters for each execution path of the program.
Any actual input satisfying a path condition will lead to a program execution following the
path associated with the path condition. Of course, if the path condition is not satisfiable
this means that its associated path is not executable.

A Path Condition (PC) is a condition on the input symbols of the program such that a
path is feasible if and only if its PC is satisfiable.

Exploration of paths of a program leads to the construction of a Symbolic Tree (ST).
Each path of the tree is obtained by following a sequence of instruction. Each time a new

18

2.4. Symbolic Execution

instruction is added to the sequence, the SE process builds a structure whose purpose is
to represent, as an abstract memory state, the possible values associated to the variables
handled in the program. This structure, called symbolic state, is composed of:

� A control point, often denoted as a number, associated with the instruction to be
processed;

� Symbolic values of the program variables in the current state (after having executed
the instruction);

� The PC computed to reach the current state.

Example 2.12 (Symbolic execution of a program). Let us consider the program depicted
in Figure 2.2 which computes the absolute value of an input variable x. We are interested
in the instructions enumerated from 1 to 6 in this program.

0 int absoluteVal(int x){

1 int y;

2 if(x≥ 0)

3 y:=x;

4 else

5 y:=-x;

6 return (y);

7 }

Figure 2.2: A program computing the absolute value of a variable

The construction of the symbolic tree of the program depicted in Figure 2.3 is performed as
follows:

� the initial symbolic state: is composed of the instruction number (1), of the variables
of the program x and y which are initialized with the symbolic variables x0 and y0

respectively, and the PC is set to True since there is no condition on the variables;

� instruction (2) is executed symbolically. The associated symbolic state contains the
number of instruction 2, state variables have not changed their values and the PC
is still at True. As this is a conditional instruction, there are two possibilities and
therefore two outgoing transitions.

� when (x ≥ 0) is considered as verified, the instruction y := x is executed symbolically.
The associated symbolic state is built with the instruction number (3), the value of y
is updated, and receives x0 (the symbolic value of x), and the PC is updated to x0 ≥ 0
which is the condition for which this branch can be chosen;

� the instruction (6) is executed symbolically, the value of y which is x0 is returned.
The symbolic state contains the number of the instruction, the symbolic values of x
and y which are both x0. The PC is the same as that of the previous state;

� when (y ≥ 0) is not true, the instruction y := −x is executed symbolically. The
associated symbolic state is built with the instruction number (4), the new value of y
becomes −x0 and the symbolic value of x does not change. The PC has been updated
since the condition for which this path can be taken is ¬(x0 ≥ 0);

19

2. Formal Background

� the instruction (6) is executed symbolically, the value of y which is −x0 is returned.
The symbolic state contains the number of the instruction, the symbolic values of x
and y which are respectively x0 and −x0. The PC is still at ¬(x0 ≥ 0).

The symbolic tree obtained considers all the possible paths of the program. Each PC obtained
at a leaf of the tree provides the necessary condition to take the path that ends by this leaf.
In our case, if the input value represented by the symbolic value xo is positive (it satisfies
the PC of the left leaf) then the left path is taken, if it is negative (it satisfies the PC of the
right leaf) then it is the path on the right which is taken. The two PCs are complementary,
in the sense that an input value of x cannot satisfy at the same time the two PCs associated
with the two paths.

1
x : x0, y : y0

PC: True

2
x : x0, y : y0

PC: True

3
x : x0, y : y0

PC: x0 ≥ 0

6
x : x0, y : y0

PC: x0 ≥ 0

4
x : x0, y : −x0

PC: ¬(x0 ≥ 0)

6
x : x0, y : −x0

PC: ¬(x0 ≥ 0)

Figure 2.3: Symbolic tree of the program computing absolute value of a variable

Symbolic execution of programs was used for program verification [19, 16], program
debugging [53, 54] and symbolic model-checking [50]. It is also used in the test cases
generation from programs [18, 75].

2.4.2 Symbolic Execution of TIOSTS

Symbolic execution techniques have been extended to modeling formalisms, essentially to
perform MBT. These formalisms are essentially used to the description of automata, as for
example the IOSTS [38]. The main difference between SE of programs and SE of IOSTS is
that the executions for IOSTSs are no longer reduced to couples (input of a program/output
of the program) but must symbolically denote sequences of interactions (i.e inputs and
outputs) between the SUT and the user because IOSTS automata denote reactive systems.
Then SE techniques have been extended to TIOSTS [32, 7] where symbolic treatment of
time variables is added.

In order to represent symbolic values of a TIOSTS, we define so-called symbolic states.
For this purpose, we suppose that a set of so-called fresh variables F =

⋃
s∈S Fs is given.

Ft ⊆ F denotes the set of fresh variables of type time. Fd = F\Ft denotes the set of data

20

2.4. Symbolic Execution

(or non-time) fresh variables.

In the sequel, a TIOSTS G = (Q, q0, T r) defined over a TIOSTS-signature Σ = (A, T,C)
is supposed given. Symbolic states are structures to store useful information characterizing
constraints related to executions.

Definition 2.16 (Symbolic states). A symbolic state of G is a quadruple (q, πt, πd, λ) where
q ∈ Q, πt ∈ FΩ(Ft), πd ∈ FΩ(Fd) and λ is a substitution defined as λ : A ∪ T → TΩ(F)
preserving types.

q denotes the state reached after the execution leading to η, πt is a constraint on durations
between communication actions called Time Path Condition (TPC) and πd is a constraint
on symbolic data values called Data Path Condition (DPC). Both constraints (TPC and
DPC) must be satisfied for the symbolic execution to reach symbolic state η. λ denotes
the current terms (built over symbolic values) assigned to data variables of A and time
variables of T .

Notation 2.6. In the sequel, ΣF stands for the TIOSTS-signature (Fd, Ft, C). For any
λ : A ∪ T → TΩ(F) we also note λ : TΩ(A ∪ T)→ TΩ(F) and λ : FΩ(A ∪ T)→ FΩ(F) its
canonical extensions respectively to terms and formulas. We also note λ : Act(Σ)→ Act(ΣF)
its extension to communication actions defined as λ(c?x) = c?λ(x), λ(c!t) = c!λ(t) and
λ(δ) = δ.

Notation 2.7. We note S(G) the set of all symbolic states of G. Let us introduce symbolic
state Init = (q0, T rue, True, λ0) ∈ S(G) denoted by Init(G) such that for all x, y ∈ A with
x 6= y, λ0(x) and λ0(y) are distinct fresh variables and forall z ∈ T , λ0(z) = 0 1 in F . For
any symbolic state η = (q, πt, πd, λ) ∈ S(G), q(η), πt(η),πd(η) and λ(η) stand respectively
for q, πt, πd and λ.

In order to reason symbolically about events, we introduce the following definition.

Definition 2.17 (Symbolic Event). Let ΣF = (Fd, Ft, C) be a TIOSTS-signature.
The set of symbolic events over ΣF is defined as Evt(ΣF) = (Ft ∪ { })× (Act(ΣF) ∪ {δ}).
The set of initialised symbolic events over ΣF is defined as IEvt(ΣF) = Ft×(Act(ΣF)∪{δ}).

Similarly to the way we defined TIOSTS semantics by starting to define runs of a transition,
symbolic execution of a TIOSTS is based on the symbolic execution of a transition.

Definition 2.18 (Symbolic Execution of transitions). Let tr = (q,T, φt, φd, act, ρ, q′) be a
transition in Tr and η = (q, πt, πd, λ) be a symbolic state in S(G). Let us define λi as:

� if act is of the form c?x, λi(x) = y with y a new fresh variable in Fd and ∀z ∈ A, z 6=
x, λi(z) = λ(z), else (act is not of the form c?x) ∀x ∈ A, λi(x) = λ(x);

� ∀ω ∈ T, λi(ω) = λ(ω) + z where z is a new fresh time variable in Ft.

The symbolic execution SEη(tr) of tr from η is the symbolic transition st = (η, evs, η
′) ∈

S(G)× Evt(ΣF)× S(G) with evs is a symbolic event in Evt(ΣF) where:

� act(evs) = λi(act)

� delay(evs) = z

1Init is unique up to different fresh variable renaming in F .

21

2. Formal Background

� η′ = (q′, π′t, π
′
d, λ
′) where:

– π′t = πt ∧ λi(φt) and π′d = πd ∧ λ(φd)

– ∀ω ∈ T, λ′(ω) = 0; ∀ω ∈ T\T, λ′(ω) = λi(ω); ∀x ∈ A, λ′(x) = λi(ρ(x)).

A symbolic execution of a transition tr is an event of the form (ds, acts) where ds is a new
fresh time variable (i.e. not used in the definition of G) used to represent durations (they
are typed as clocks) and each acts is of the form c?z or c!t where z is a new fresh variable
and t is a term built over the same equational logic signature as terms of G but on a set of
new fresh variables.

Notation 2.8. Given a symbolic transition st = (η, evs, η
′), the variable delay(st) is called

the symbolic delay of st and is defined as delay(evs)
2. The notations source(st), event(st)

and target(st) stand respectively for η, evS and η′. We note Fresh(st) = {delay(st)} if
act ∈ O(Σ) and Fresh(st) = {delay(st), λi(y)} if act is of form c?y. Fresh(st) is called
the set of fresh variables of symbolic transition st.

The symbolic execution associated with a TIOSTS is then defined simply by executing
exactly once all executable transitions from all symbolic states.

Definition 2.19 (Symbolic Execution of TIOSTS). A symbolic execution of a TIOSTS
G = (Q, q0, T r) is a couple SE(G) = (Init, ST) where:

� Init = (q0, T rue, True, λ0) is such that ∀x ∈ T, λ0(x) = 0 and ∀x, y ∈ A ∪ T , with
x 6= y, we have: λ0(x), λ0(y) in F with λ0(x) 6= λ0(y) ;

� ST is the set of all symbolic executions of all transitions tr occurring in Tr from any
η ∈ S(G) such that q(η) = source(tr) and Fresh(st) ∩ λ0(A ∪ T) = ∅. Moreover for
any two distinct symbolic transitions st1 and st2 in ST , Fresh(st1)∩Fresh(st2) = ∅.

SE(G) is a tree-like structure whose nodes are symbolic states used to capture information
related to the possible executions of G. Notice that all paths in SE(G) denote in an
abstract way all possible executions of G. At the beginning of the execution, there is no
constraint on time and on data as it is signified by the two occurrences of True respectively
for TPC and DPC in the symbolic state Init. Always concerning the initial state, time
variables are initialized to the null duration 0 and all other variables are initialized with
fresh variables of F .

Example 2.13 (SE of TIOSTS G from Example 2.5). Figure 2.4 depicts the symbolic
execution tree of TIOSTS GTLC of the TLC system as depicted in Figure 2.1. Notice that
the symbolic tree is cut after symbolic states η2, η4, η5 and η6 where we revisit states q1,
q2, q1 and q1 respectively. Once, the TLC starts executing, the driver asks to receive the
acceleration value (from the environment). Notice that in the branching state symbolic η1,
depending on the value of variables p1 and p2 there are two possibilities:

� if p1 < p2 then the central branch is taken

� if p1 ≥ p2 then the right branch is taken

From η1, the driver may always ask for the acceleration from the environment and then the
system loops into η1, in this case, the left branch is taken.

2Given st = (η, evs, η
′) a symbolic transition, we have delay(st) = 0 if η is the symbolic state Init

22

2.4. Symbolic Execution

]0',0,0
22,0

11,0,0[:)(

:)(
:)(

0:)(

←←←←←← wwpposppvvaccaccInit

TrueInitd
TrueInitt
qInitq

Init

λ
π
π

?),0(startz

]0',0,1
22,1

11,1,1[:)1(

:)1(
:)1(

1:)1(
1

←←←←←← wwppppvvaccacc

Trued
Truet
qq

ηλ
ηπ
ηπ
η
η

]2[:)2(
:)2(

101:)2(
1:)2(

2

accacc
Trued

zt
qq

←

<

ηλ
ηπ

ηπ
η

η

)2?,1(accdriverz

0'
,0

zw
zw

←
←

1'
,1

zw
zw

←
←

]0),2
2(*)2/1()2*1(1

11,21,1[:)3(

2001
2

1
1:)3(

102:)3(
2:)3(

3

←−+←−←−←

≤<
<

wzzvppzvvacc

ppd

zt
qq

ηλ
ηπ

ηπ
η

η

)1
1!1,2(pposz

2'
,2

zw
zw

←
←

]0),(*)2/1()*(,,1[:)(
)200()(:)(

10:)(
:)(

2
331

1
11314

1
2

1
2

1
14

34
24

4

←−+←−←−←
>∨≥

<

wzzvppzvvacc
ppp

z
qq

d

t

ηλ
ηπ

ηπ
η

η

)1
1!1,3(pposz

3'
,3

zw
zw

←
←

]3[:)5(
)3(:)5(

)104()3(:)5(
2:)5(

5

accacc
dd

ztt
qq

←

<∧

ηλ
ηπηπ

ηπηπ
η

η

)3?,4(accdriverz

42'
,4

zzw
zw

+←
←

]0',2
22[:)6(

)3(:)6(
)105()3(:)6(

1:)6(
6

←←

<∧

wpp
dd

ztt
qq

ηλ
ηπηπ

ηπηπ
η

η

)2
2?2,5(pposz52'

,5
zzw

zw
+←

←

[]:)7(
)3(:)7(

)106()3(:)7(
3:)7(

7

ηλ
ηπηπ

ηπηπ
η

η

dd
ztt

qq
≥∧

)!,6(trueodelemergencyMz

62'
,6

zzw
zw

+←
←

Figure 2.4: Symbolic tree produced by SE of TIOSTS GTLC

In order to deal with quiescence, we complete symbolic execution of TIOSTS by new
transitions. Until now, transitions of TIOSTS carry events with actions that are necessary
inputs or outputs. In order to manipulate quiescence inside symbolic execution trees, we
consider the symbol “δ” as a special action modeling the absence of reaction.

The quiescence situation can be observed only in the case of a truncated trace: indeed,
as long as a trace is not interrupted, the trace is only a sequence of events, each one
consisting of a duration and an action. As soon as the trace is interrupted, it can be

23

2. Formal Background

interrupted just at the end of an event, that is just after an action, and thus the trace
ends with an action, or else, the trace can be interrupted during an event itself. This last
case corresponds to the observation of a duration, without the observation of an action,
this duration being shorter than the duration associated with the interrupted event. This
explanation emphasizes that the quiescence can be positioned, associated with a duration,
only at the end of a trace. The symbolic quiescence transitions will thus appear only at the
end of the paths of a symbolic execution tree, with as target states, new states, which will
be ending states by nature, generically denoted as ηδ, with new control states of the form qδ.

Notation 2.9. In the sequel:

� for all q ∈ Q, let us note Trans(q) the set of all transitions tr verifying source(tr) = q
and React(q) the set all transitions tr verifying source(tr) = q and act(tr) ∈ O(Σ);

� for all η ∈ S(G), let us note Trans(η) the set of all transitions st of ST verifying
source(st) = η and React(η) the set of all transitions st verifying source(st) = η
and act(st) ∈ O(ΣF).

Next definition shows how to complete a symbolic tree with transitions reflecting quiescence
and time passing.

Definition 2.20 (Symbolic Execution of TIOSTS with quiescence enrichment). The
quiescence and time passing enrichment of SE(G) denoted SE(G)δ is the couple (Init, ST ∪
STδ) where STδ is defined as follows:

� time based quiescence (1): Let us note πδt1(η) the formula in FΩ(Ft) restricted to
True if Trans(q(η)) = ∅ and equal to

∨
str∈Trans(η)(z < delay(str))∧πt(target(str)))

otherwise.

Then, (η, (z, δ), ηδt) ∈ STδ with ηδt = (qδt1 , πt(η) ∧ πδt1(η), πd(η), progz(λ(η))) where
for λ : A ∪ T → FΩ(F), progz(λ) : A ∪ T → FΩ(F ∪ {z}) is defined by ∀x ∈
A, progz(λ)(x) = λ(x) and ∀cl ∈ T, progz(λ(cl)) = λ(cl) + z. Here, z stands for an
additionnal time variable that has to be considered for making πδt1(η) satisfiable;

� time based quiescence (2): Let us note πδt2(η) the formula in FΩ(Ft) restricted to
True if React(q(η)) = ∅ and equal to

∧
str∈React(η) ∀delay(str),¬φt(tr) otherwise.

Then, (η, (z, δ), ηδt) ∈ STδ with with z a new fresh variable in Ft and ηδt = (qδt2 , πt(η)∧
πδt2(η), πd(η), progz(λ(η))).

� data based quiescence: Let us note πδd(η) the formula in FΩ(Fd) restricted to True
if React(η) = ∅ and equal to

∧
str∈React(η) ¬πd(target(str)) otherwise.

Then (η, (z, δ), ηδd) ∈ STδ with z a new fresh variable in Ft and ηδd = (qδd, πt(η), πd(η)∧
πδd(η), progz(λ(η))).

Time based quiescence corresponds to two kinds of situations.

� The first kind of situations expresses that time-based quiescence transitions can be
executed if whenever we might wait for a positive symbolic duration before an action
(input or output) occurs then we wait for a shorter positive symbolic duration. By
noting that delay(str) is the symbolic delay in Ft associated with the transition str,

24

2.4. Symbolic Execution

we have that the constraint πδt1(η) states that there exists a transition str of source
η for which the condition (z < delay(str)) associated to the time path condition
(πt(target(str))) is satisfiable with z a new symbolic delay in Ft.

� The second kind of situations expresses that time-based quiescence transitions can
be executed if no transition labeled by an output can be executed anymore due to
unsatisfiable time constraints. We have that the constraint πδt2(η) states that for all
output transitions str of source η, whatever the delay is, the time path condition
(πt(target(str))) cannot be satisfied.

Data based quiescence transitions can be executed only if no transition labelled by an
output can be executed anymore due to unsatisfiable data constraints.

Example 2.14 (Quiescence enrichment of SE(G)). Figure 2.5 depicts the application of
the quiescence enrichment on the symbolic state Init of symbolic tree depicted in Figure 2.4.
Notice that we add the following quiescence symbolic states:

� ηδt1 with condition z1 < z0, indeed, ∃str ∈ Trans(Init) s.t str = (Init, (z0, start?), η1)
and delay(str) = z0

� ηδt2 and ηδd with condition True for data and time passing respectively. Indeed,
React(Init) = ∅.

]0',0,0
22,0

11,0,0[:)(

:)(
:)(

0:)(

←←←←←← wwppppvvaccaccInit

TrueInitd
TrueInitt
qInitq

Init

λ
π
π

?),0(startz

]0',0,1
22,1

11,1,1[:)1(

:)1(
:)1(

1:)1(
1

←←←←←← wwppppvvaccacc

Trued
Truet
qq

ηλ
ηπ
ηπ
η

η

0'
,0

zw
zw

←
←

),1(δz

)(:)(

:)(

01;0:)(

:)(

1

1

1

11

1

Init
t

True
td

zzz
tt

t
q

t
q

t

λδηλ

δηπ

δηπ

δδη

δη

<∃

1'
,1

zw
zw

←
←

)(:)(

:)(

:)(

:)(

Initd

Truedd

Truedt

dqdq
d

λδηλ

δηπ

δηπ

δδη

δη

),3(δz

3'
,3

zw
zw

←
←

]0',0,1
22,1

11,1,1[:)1(

:)1(
:)1(

1:)1(
1

←←←←←← wwppppvvaccacc

Trued
Truet
qq

ηλ
ηπ
ηπ
η

η

]0),2
2(*)2/1()2*1(1

11,21,1[:)3(

2001
2

1
1:)3(

102:)3(
2:)3(

3

←−+←−←−←

≤<
<

wzzvppzvvacc

ppd

zt
qq

ηλ
ηπ

ηπ
η

η
)1!1,2(pposz

2'
,2

zw
zw

←
←

),3(δz

)1(:)(

:)(

23;2:)(

:)(

1

1

1

11

1

ηλδηλ

δηπ

δηπ

δδη

δη

t

True
td

zzz
tt

t
q

t
q

t

<∃

3'
,3

zw
zw

←
←

)1(:)(

2001
2

1
1:)(

:)(

:)(

ηλδηλ

δηπ

δηπ

δδη

δη

d

ppdd

Truedt

dqdq
d

>≥

),4(δz

4'
,4

zw
zw

←
←

),2(δz

)(:)(

:)(

:)(

:)(

2

2

2

22

2

Init
t

True
td

True
tt

t
q

t
q

t

λδηλ

δηπ

δηπ

δδη

δη

2'
,2

zw
zw

←
←

),5(δz

)1(:)(

:)(

)102(:2:)(

:)(

2

2

2

22

2

ηλδηλ

δηπ

δηπ

δδη

δη

t

True
td

zz
tt

t
q

t
q

t

≥∀

5'
,5

zw
zw

←
←

Figure 2.5: SE of symbolic state Init with quiescence enrichment

Figure 2.6 depicts the application of the quiescence enrichment on the symbolic state η1 of
symbolic tree depicted in Figure 2.4. In this case we have, React(Init) = {pos1!p1}, hence,
we add the following quiescence symbolic states:

� ηδt1 where output pos1!p1 cannot be executed if we wait for a shorter positive duration
z3 < z2 where z2 is the symbolic delay before observing pos1!p1.

25

2. Formal Background

� ηδt2 where output pos1!p1 cannot be executed due to unsatisfiable time constraints
¬πt(η3)

� ηδd where output pos1!p1 cannot be executed due to unsatisfiable data constraints
¬πd(η3).

]0',0,0
22,0

11,0,0[:)(

:)(
:)(

0:)(

←←←←←← wwppppvvaccaccInit

TrueInitd
TrueInitt
qInitq

Init

λ
π
π

?),0(startz

]0',0,1
22,1

11,1,1[:)1(

:)1(
:)1(

1:)1(
1

←←←←←← wwppppvvaccacc

Trued
Truet
qq

ηλ
ηπ
ηπ
η

η

0'
,0

zw
zw

←
←

),1(δz

)(:)(

:)(

01;0:)(

:)(

1

1

1

11

1

Init
t

True
td

zzz
tt

t
q

t
q

t

λδηλ

δηπ

δηπ

δδη

δη

<∃

1'
,1

zw
zw

←
←

)(:)(

:)(

:)(

:)(

Initd

Truedd

Truedt

dqdq
d

λδηλ

δηπ

δηπ

δδη

δη

),3(δz

3'
,3

zw
zw

←
←

]0',0,1
22,1

11,1,1[:)1(

:)1(
:)1(

1:)1(
1

←←←←←← wwppppvvaccacc

Trued
Truet
qq

ηλ
ηπ
ηπ
η

η

]0),2
2(*)2/1()2*1(1

11,21,1[:)3(

2001
2

1
1:)3(

102:)3(
2:)3(

3

←−+←−←−←

≤<
<

wzzvppzvvacc

ppd

zt
qq

ηλ
ηπ

ηπ
η

η
)1!1,2(pposz

2'
,2

zw
zw

←
←

),3(δz

)1(:)(

:)(

23;2:)(

:)(

1

1

1

11

1

ηλδηλ

δηπ

δηπ

δδη

δη

t

True
td

zzz
tt

t
q

t
q

t

<∃

3'
,3

zw
zw

←
←

)(:)(
)200()(:)(

:)(
:)(

1

1
2

1
2

1
1

ηληλ
ηπ

ηπ
η

η

δ
δ

δ
δδ

δ

d

dd

dt

dd

d

ppp
True
qq

>∨≥

),4(δz

4'
,4

zw
zw

←
←

),2(δz

)(:)(

:)(

:)(

:)(

2

2

2

22

2

Init
t

True
td

True
tt

t
q

t
q

t

λδηλ

δηπ

δηπ

δδη

δη

2'
,2

zw
zw

←
←

),5(δz

)1(:)(

:)(

)102(:2:)(

:)(

2

2

2

22

2

ηλδηλ

δηπ

δηπ

δδη

δη

t

True
td

zz
tt

t
q

t
q

t

≥∀

5'
,5

zw
zw

←
←

Figure 2.6: SE of symbolic state η1 with quiescence enrichment

Symbolic execution tree SE(G)δ resulting from the symbolic execution of TIOSTS G
characterizes in a natural way the set of all timed traces of G. To represent timed traces
of SE(G)δ, we begin by characterizing so-called symbolic paths of SE(G)δ.

Definition 2.21 (Symbolic Paths from SE of TIOSTS). Let SE(G)δ = (Init, ST) be the
symbolic execution tree associated with G. The set of symbolic paths of SE(G)δ denoted
Paths(SE(G)δ) is the set which contains the empty sequence ε and all finite sequences of
symbolic transitions st1 . . . stn such that:

� for all i ≤ n, sti ∈ ST

� source(st1) = Init

� for all j ≤ n, q(target(stj)) = q(source(stj+1))

A symbolic path ps is a sequence of consecutive edges relating symbolic states and labelled
by symbolic events.

Notation 2.10. For a symbolic path ps in Paths(SE(G)δ) of the form we denote final(ps) =
target(stn). By convention final(ε) = Init.

The timed trace semantics for a symbolic execution tree are defined in a natural way. If
we solve both data and time path condition of a given path (that is, the path condition
of its last symbolic state), one can evaluate all the symbolic actions labeling this path
and extract the corresponding timed trace. In general, it is not guaranteed that a given
symbolic path ps defines timed traces, as it depends on its associated data and time path
condition.

26

2.4. Symbolic Execution

Property 2.1 (Symbolic Paths Satisfiability). Let SE(G)δ = (Init, ST) be the symbolic
execution tree associated with G. A symbolic path ps in Paths(SE(G)δ) is satisfiable if there
exists an interpretation ν ∈MF verifying M |=ν πt(final(ps)) and M |=ν πd(final(ps)).
In this case, the notation ν(ps) denote the set of all interpretations ν ∈ MF such that
M |=ν πt(final(ps)) and M |=ν πd(final(ps)). In the sequel, the set of all satisfiable paths
of SE(G)δ is denoted SPaths(SE(G)δ)

Symbolic paths resulting from symbolic execution of a TIOSTS characterize event sequences
called symbolic initialized timed traces.

Definition 2.22 (Symbolic initialized timed traces). Let ps be a symbolic path in Paths(SE(G)δ)
of the form st1 . . . stn. The symbolic initialized timed trace trs associated with ps is the
sequence of symbolic events ev1 . . . evn ∈ Evt(ΣF)∗ accumulated along ps.

The set of executions (initialized timed traces) associated to ps is characterised by the
sequence ev1 . . . evn of symbolic events labelling the consecutive edges and by the final
symbolic state final(ps). Each symbolic event of the sequence is of the form (di, acti).
Each di is a new fresh variable (i.e. not used in the definition of G) used to represent
durations (they are typed as clocks) and each acti is of the form c?zi or c!ti where zi is a
new fresh variable and ti is a term built over the same equational logic signature as terms
of G but on a set of new fresh variables.

In the following, we state definition of so-called concrete timed traces by interpretation
associated with a given symbolic timed trace of a satisfiable path. A concrete timed trace
is the interpretation of a symbolic timed trace obtained by replacing all symbolic events by
their interpretation.

Definition 2.23 (Concrete timed traces by interpretation). Let SE(G)δ = (Init, ST) be
a symbolic execution tree of G. Let trs a symbolic timed trace of the form evs1 . . . ev

s
n

associated with its satisfiable symbolic path ps in SPaths(SE(G)δ). A concrete timed trace
get by interpretation from trs is the sequence ev1 . . . evn ∈ Evt(C)∗ such that there exists
an interpretation ν ∈ ν(ps) verifying:

� delay(ev1) = 0 and delay(evi) = ν(delay(evsi)) for all 1 < i ≤ n

� act(evi) = ν(act(evsi))

The set TTraces(ps) denotes the set of all concrete timed traces obtained by interpreting
the associated symbolic timed trace of ps with any interpretation in ν(ps). The set of all
concrete timed traces of SE(G)δ is

TTraces(SE(G)δ) =
⋃

ps∈SPaths(SE(G)δ)

TTraces(ps)

Since SE(G)δ is obtained from the symbolic execution tree of G we have that TTraces(SE(G)δ)
characterizes in a natural way the set of all timed traces of G (i.e by removing only the
unsatisfiable paths from SE(G)δ). Finally, since an TIOSTS and its symbolic execution
share the same semantics of timed trace, we can either consider a TIOSTS or its symbolic
execution when tackling the issue of MBT over TIOSTS.

In this chapter, we have presented the formal concepts on which our work is founded.
Chapter 3 tackles, in the context of MBT, the issue of detecting differences between a SUT

27

2. Formal Background

which has a single interface of communication and its TIOSTS model in order to decide
conformance using a single tester connected to the SUT in question by implementing tioco
conformance relation.

28

3. Centralized Model-Based Conformance Testing from TIOSTS

Chapter 3

Centralized Model-Based
Conformance Testing from
TIOSTS

Contents

3.1 Model-Based Testing: State of the Art 29

3.1.1 Model-Based Testing Process . 30

3.1.2 Model-based Testing Classification 31

3.1.3 On-line versus Off-line MBT . 32

3.2 Off-line Centralized Conformance Testing from TIOSTS 34

3.2.1 Overview . 34

3.2.2 An Adaptation of the Centralized off-line Testing Algorithm . . . 37

In this chapter, we present main activities presented in the field of centralized model-based
conformance testing. Section 3.1 provides a brief state of the art on MBT. We present the
off-line approach for performing MBT with TIOSTSs in Section 3.2. In Section 3.2.1, we
present the work of [7] that will be adapted in Section 3.2.2 for providing a centralized
MBT approach well-suited to our formal background introduced in Chapter 2.

3.1 Model-Based Testing: State of the Art

When we are dealing with black box testing we only assume access to the interface
(inputs/outputs) of the system implementation and not to its code. We also assume that
we have the specification of the system describing all the expected behaviors of the SUT
which can be stimulated via its interface in order to observe how it responses. We may
then differentiate between the inputs or stimulus proposed by the environment and the
outputs or reactions produced by the system. When the specification is described by a
formal model, we are in the domain of MBT. MBT as presented in [90] is the process which
evaluates conformance of a SUT w.r.t a reference model automatically. An advantage of
using models in testing is that once the models have been built and assuming tools are
available, the testing of the system can be performed more quickly and automatically.
Another advantage is that, when the system evolves, it is often sufficient to update the
model incrementally with the corresponding changes in the system.

29

3. Centralized Model-Based Conformance Testing from TIOSTS

3.1.1 Model-Based Testing Process

Figure 3.1: Model-Based Testing process

In software testing, there are several techniques to model the application behavior. In other
words, there are several notations to describe the behavior of a system as a model. In [30],
the authors present the most appropriate notations for testing. Some of these notations
are: Labelled Transition System (LTS) [87], Finite State Machine (FSM) [71], Statecharts
[42], Unified Modeling Language (UML) [78], Markov chains [48], and Petri nets [76].

Figure 3.1 illustrates a typical model-based testing process which comprises four steps:

� Building the model: The model represents a correct behavior of a system and should
be as abstract as possible without missing important information.

� Generating test cases: The model that has been built in the previous activity is used
to create the test cases. There are two types of test case generation: Off-line and
online test generation.

� Executing the test cases: In order to execute test cases that have been previously
generated from the model, we need to translate them into an executable form.

� Checking conformance (also called solving oracle problem): After executing the test
cases and getting the actual outputs of the system, we have to evaluate and analyze
the results, that is, to conclude if the System Under Test behaves as it is expected in
the reference model.

Model building: Since the model is a description of the system’s behavior, the model
should be understandable by all testers, even if they do not have any experience or
knowledge in the application domain, or if they do not know what the system performs.
Moreover, the model should be precise, clear, and should be presented in a formal way. In
[73] Prenninger et al. presented different model abstraction techniques that are applied in
MBT. Different guidelines that can be used to improve understanding of the SUT to build
a coherent model are suggested in [30, 82]. In Test Case Generation, the specification
model that has been built in the previous activity is used to generate test cases. The tester
typically has to specify or provide information about criteria or the purpose of the test cases,
the inputs and sometimes the expected outputs of the system. When the SUT is complex,
it often means that the number of test cases is very large or even infinite. So, automation
makes possible to generate test cases for complex systems such as distributed systems. To

30

3.1. Model-Based Testing: State of the Art

improve the quality of the system, we need to select good test cases that will help the
tester to find as many failures as possible in the system. There are several model coverage
criteria in the literature that help the tester to control the test generation process. Utting
et al. [89] discuss the most commonly used criteria which are: structural coverage criterion,
data coverage criterion, requirements-based coverage criterion, stochastic criterion1 and
Fault-based criterion (also called mutation coverage [2]). In Test case execution, the
tester executes test cases generated from the model, after adapting them into an executable
form. Then, the tester applies these executable test cases to the SUT to produce the actual
outputs of the system. Finally, Conformance checking is the process consisting in a
comparison2 between the actual outputs of the SUT with the expected outputs provided
by the test cases by implementing a mathematical conformance relation. Conformance
relations tioco [60, 61, 7] and dtioco [37] will be discussed in the next chapters of this thesis.
This activity produces results called test verdicts. A test verdict (verdict for short) may be
Pass, Fail, or Inconclusive as follows:

� A test is passed when the real outputs produced from SUT conform to the expected
outputs as given in the specification model.

� It fails if they do not conform to the specification.

� When the testing activity does not consider the whole specification as a target, but
only a part of it, often called test purpose, then due to non-determinism issues that
often occur when considering reactive systems, it is not possible to ensure that the
test purpose has been reached, the test is then to be inconclusive (see the work of
[7]).

3.1.2 Model-based Testing Classification

Utting et al. [89] presented a taxonomy of MBT approaches. Classification criteria used
are related to the model, to the test generation algorithms, and to test execution techniques
(On-line or Off-line). Some of the classification criteria are:

� The Model notation criterion: MBT can be classified according to the Model notation
used in the process. Several notations such as state-based notations, trace-based
notations, and transition-based notations are presented in [89].

� Test generation criterion: Test cases can be generated randomly, by a dedicated
graph search (as Breadth First Search (BFS) [15], Depth First Search (DFS) [84],
Random First Search (RFS) [4] or Hit-Or-Jump (HoJ) algorithms[4]) or through
symbolic execution or model checking.

� On-line and off-line criterion (See Figure 3.2): this criterionof represents the relative
timing between test generation and test execution activities. Off-line testing means
that test cases are generated and stored for example in a file before running them, so
that they can be executed many times without new computing efforts. In on-line
testing, test cases are generated while the system is running: at any moment, test
case generation depends on the previous actual outputs of the SUT. In Section 3.1.2,
we will detail the differences between off-line and on-line case generation techniques.

31

3. Centralized Model-Based Conformance Testing from TIOSTS

Figure 3.2: Online vs. Offline Test Generation[43]

In this thesis, in the context of MBT classification, we use TIOSTS (see Definition 2.7)
which is a transition-based model notation. As we are only interested in solving the oracle
problem (that is checking conformance), we suppose that the test cases are already present,
thus, our testing approach that we will present in Chapter 4 is purely defined as off-line.

3.1.3 On-line versus Off-line MBT

There are two main techniques to deploy MBT; on-line and off-line MBT [92, 43]. As
we mentioned previously, test cases can be generated off-line and later executed, or they
can be generated and executed on-the-fly. In the sequel, we detail a little more those two
techniques (See Figure 3.3).

(a) (b)

Figure 3.3: On-line vs Off-line testing activities [74]

On-line MBT Process: In on-line testing (see Figure 3.3(a)), we combine test generation
and execution. Test generator and the SUT are connected. Hence, the test generation

1A probabilistic model is the environment model which represents the behavior of the environment of
the SUT models. Test cases are generated based on the probabilities that are assigned to the transitions.

2Ideally, this comparison is performed automatically.

32

3.1. Model-Based Testing: State of the Art

process can react to the actual outputs of the SUT and thus test data are generated and
executed one after the other. A SUT is often hardly controllable at the test execution
phase, typically because, for the sake of abstraction, its reference model may include non-
deterministic situations. For this reason, when dealing with automatic test case generation,
approaches in which test inputs to be sent to the SUT are computed on-the-fly are very
popular: they permit to stimulate it in a flexible manner depending on observed SUT
executions, and depending on the goal of the testing process in terms of behaviors to cover.

In reference to Figure 3.3(a), on-line testing consists in:

1. Submitting an input sequence computed from the model to the SUT after translation
into an adaptable format.

2. Comparing (on-the-fly) between the actual outputs of the SUT with the expected
outputs provided by the test cases and computing a test verdict.

There are several advantages of on-line testing. On-line testing may potentially continue
for a long time. The state-space-explosion problem may be reduced because only a limited
part of the state-space needs to be stored at any point in time. Moreover, on-line test
generators often allow non-determinism in timed models: Since they are generated event-by-
event they are automatically adaptive to the non-determinism of the specification and SUT.

A disadvantage of on-line testing is that the reference model must be analyzed on-line
and in real-time which require very efficient test generation techniques. Although some
guidance is possible, test generation is typically randomized which means that satisfaction
of coverage criterion cannot be first guaranteed.

Off-line testing Process: The other alternative is the off-line testing (see Figure 3.3(b))
which means that test cases are generated strictly before they are run on the SUT. Test
cases can be automatically re-generated to reflect the change, rather than manually updat-
ing every test case and test script. Off-line testing approaches are generally applied with
timed systems. In fact, time allows expressing instants at which inputs have to be sent to
the SUT. For example, in[43], the authors describe an off-line test generation approach for
real-time systems specified as timed automata, in [7] the authors present an approach for
off-line based testing systems.

In reference to Figure 3.3(b), off-line testing consists in:

1. Computing the full input sequence from test case generated from the model.

2. Submitting the sequence to the SUT after translation into an adaptable format.

3. Storing the real output sequence produced by the SUT during the execution phase.

4. Comparing between the actual outputs of the SUT with the expected outputs provided
by the test cases and computing a test verdict.

Off-line testing approach presents several advantages going from test case generation to
test phase implementation. In this alternative of testing, the tester can generate test
suites once, and then execute them as many times as desired on SUT. Off-line testing

33

3. Centralized Model-Based Conformance Testing from TIOSTS

as depicted in Figure 3.3(b) allows to avoid the intertwining3 of the test generation, test
execution, and verdict computation processes. For example, this helps to separate both
test generation and test execution and then to perform them on different machines and in
different environments, as well as in different times.

There are two main disadvantages of off-line test generation. One advantage is that the ref-
erence model must be analyzed entirely, which often results in a state explosion which limits
the size of the specification that can be managed. Another problem is non-deterministic
implementations and specifications. In this case, the output and its timing cannot be
predicted. Typically, the test case may take the form of a test-tree that branches for all
possible outcomes. This may lead to very large test cases. In particular for real-time
systems, the test case may need to branch for all time instances where an output could be
executed.

In the following, in Section 3.2.1 we present an overview of the work of [7] as our baseline
off-line approach of performing MBT over TIOSTS based on conformance relation tioco
[58, 62]. In Section 3.2.2 we present an adaptation version of algorithm for solving the
oracle problem of [7] which is well-suited for our new representation of timed traces as
presented in Definition 2.15.

3.2 Off-line Centralized Conformance Testing from TIOSTS

In this section, we present tioco conformance relation [60, 61, 7] relating the correctness of
a localized SUT against its localized specification TIOSTS model. We present briefly the
approach of [7] as an existing baseline approach for centralized off-line testing where the
authors exposed the oracle problem from a centralized testing perspective.

3.2.1 Overview

In [7], the authors presented an approach for applying a complete off-line testing approach
over TIOSTS models (see Figure 3.4). Then they, introduced an off-line testing algorithm
based on the timed conformance relation tioco[58, 62].

Figure 3.4: Off-line MBT approach process of [7]

3The intertwining consists in interlacing between test generation, test execution, and verdict computation
processes in such a way that one can lose the test controllability.

34

3.2. Off-line Centralized Conformance Testing from TIOSTS

The authors of [7] started by defining a testing framework for SUT described as Timed
Input/Output Labelled Transition Systems (TIOLTS) which are automata4 whose tran-
sitions are labeled either by concrete actions (inputs or outputs) or by delays. Given a
TIOLTS A, as for TIOSTS a path of A is defined as a sequence of consecutive concrete
transitions. The set of all paths of A is denoted Paths(A). A concrete timed trace of A is
hence built by concatenating consecutive concrete actions and delays of its correspond-
ing path and where we have the ability to split up and add up time values in the set of
strictly positive delays D+. The set of all concrete timed traces of A is denoted TTraces(A).

System Under Test (SUT). The authors of [7] defined a SUT as a TIOLTS satisfying two
properties Input enableness and Time elapsing. Input enableness condition expresses that
an SUT is always able to receive an input. Indeed, most of the times, a tester can submit
an input to SUT at any time within the testing process duration. Time elapsing condition
expresses that the absence of a reaction amounts to observe no reaction during a strictly
positive delay: i.e, for any state q in SUT, if there is no transition from q labeled by an
output, we have that there exists a transition from q labeled with a duration. That is
to say, if a SUT does not react to an input submitted by a tester, then SUT will wait
throughout a given positive duration. The set of all concrete timed traces of an SUT S is
denoted TTraces(S).

Unlike the approach of [7], our approach for centralized testing which will be described in
Section 3.2.2, defines an SUT as a set of timed traces (as defined in Definition 2.15) that
respects some properties. We choose this new representation because a SUT may be only
observable by means of timed traces that a tester builds while interacting with it.

Timed conformance relation. The authors of [7] which were interested in the problem of
checking conformance between a SUT and its specification used the timed conformance
relation tioco as a mathematical relation between concrete timed traces of the SUT and
timed traces that can be generated from the reference model. tioco conformance rela-
tion states that after a specified sequence of interactions between the local tester and
local SUT represented in terms of a concrete timed trace σ, any reaction r (i.e, either
an output or an observation of a delay) of the SUT must be specified in the reference model.

As presented in Section 3.1.3, off-line testing approach is described as a process of four steps.
After defining the specification model and generating test suites in step 1, the authors of [7]
were interested in steps 2 and 3 which correspond respectively to input sequence submission
to SUT and output sequence storing by a local tester when it interacts with a local SUT.
They defined a test data as a couple (σi, σo) gathering submitted input sequence σi to SUT
and output sequence σo produced during test execution step. The connection between σi
and σo forms a timed trace of the SUT. For describing the connection mechanism, the
authors introduced two functions to handle test execution step: projection function and
merging function. Projection function: is the function to extract a sub-timed trace from
the timed trace generated from the reference model containing only consecutive input
actions and delays. The Merging function: allows combining an input sequence and an
output sequence according to delays occurring in them. In the following, given a timed
trace σ, the input projection of σ is denoted σ↓I , and given two timed traces σ1 and σ2

4A TIOLTS is a numerical representation of a TIOSTS

35

3. Centralized Model-Based Conformance Testing from TIOSTS

the merging operation of σ1 and σ2 is denoted Merge(σ1, σ2).

The authors of [7] introduced an off-line algorithm for verdict computation following the
next steps: input sequence selection, test execution, and verdict computation:

� Input sequence selection: For a given TIOSTS G, the authors of [7] used the
notation SE(G)δ for symbolic execution of all symbolic transitions in Tr with quies-
cence enrichment. From the tree-like structure produced by symbolic execution of G,
they extract a path which corresponds to a so-called test purpose which is defined as
a feasible path tp in Paths(SE(G)δ), then, they build input sequences corresponding
to timed traces of the selected path tp. Given a test purpose tp, they selected an
input sequence by the application of the projection function (previously presented) on
a trace tr chosen in TTraces(tp). Having presented how to select an input sequence
from a test purpose tp in Path(SE(G)δ), the authors introduced IS(p) as the set of
all input sequences extracted from all timed traces in TTraces(tp). Formally:

IS(p) = {σ↓I |σ ∈ TTraces(tp)}

In the sequel, we suppose that an SUT S, a test purpose tp and an input sequence
σtp↓I are given (σtp↓I is the notation which stands for a input sequence extracted from
tp). We describe the process of test execution as follows:

� Test execution: Having defined how to extract σtp↓I from a given test purpose tp,
the execution phase denotes the stage where a tester submits an input sequence
to SUT which in turn reacts by producing output sequence. The test execution is
the function which submits σtp↓I to S and denoted sigmatp↓I ;S σo where σo is the
produced timed trace as a reaction of the SUT.

In real time, one must wait for a given duration (which corresponds to the execution phase)
until that SUT delivers output sequences. In this case SUT sends an output sequence
σo and we note: σtp↓I ;S σo. We merge the two previous sequences (input and output
sequences) in the aim of producing the corresponding execution timed trace σS such that
σS = Merge(σtp↓I , σo).

Verdict computation. The algorithm takes as inputs three arguments: SE(G)δ which denotes
symbolic execution on G; tp which designates the test purpose to cover and σS: the timed
trace to be analyzed in order to deliver a verdict concerning the correctness of S assessment
together with the coverage of tp by σS w.r.t tioco. Off-line testing algorithm (as depicted
in Figure 3.5) of [7] analyses elements of σS one element at a time and produces a test
verdict in {PASS, FAIL,WEAK PASS, INCONCi, INCONCr} as follows:

� Verdict FAIL is emitted when an unspecified output o or delay d is read from σS.

� Verdict PASS is emitted when tp is the only path covered in SE(G)δ by σS.

� Verdict WEAK PASS is emitted when tp is covered in SE(G)δ by σS together with
the covering of other paths in SE(G)δ.

� Verdict INCONCr when some paths are covered in SE(G)δ by σS but not tp.

� Verdict INCONCi when an unspecified input i is read from timed trace σS.

36

3.2. Off-line Centralized Conformance Testing from TIOSTS

Figure 3.5: Verdict computation process and local verdicts [7]

3.2.2 An Adaptation of the Centralized off-line Testing Algorithm

Herein, we introduce our adaptation of centralized testing algorithm for solving the oracle
problem of [7] which is based on our new presentation of timed traces defined as normalized
sequences of events. Section 3.2.2.1 deals with modeling the SUT and introduces our
adapted definition of tioco while Section 3.2.2.2 details the verdict computation algorithm.

3.2.2.1 System Under Test and Timed Conformance Relation

In the sequel, given a set of channels C, we introduce the following notations:

Notation 3.1. Given a timed trace σ in TTraces(C), we let Pref(σ) denotes the set of
prefixes of σ defined as {ε} if σ is ε and Pref(σ′) ∪ {σ} if σ is of the form σ′.ev.

Definition 3.1 (System Under Test (SUT)). Let C be a set of channels. A System Under
Test (SUT) is defined over C as a non-empty subset S of UTraces(C) such that:

� Input completeness: for any σ in S of the form σ′.ev′, for any ev ∈ Evt(C) such
that act(ev) ∈ I(C) and delay(ev) ≤ delay(ev′), we have σ′.ev ∈ S. Moreover for
any i ∈ I(C) we have (, i) ∈ S.

� Quiescence (1): for all σ ∈ S we have:

∀ev ∈ Evt(C).(act(ev) ∈ O(C)⇒ σ.ev /∈ S)

⇒

(σ 6= ε⇒ (∀d ∈ D+, σ.(d, δ) ∈ S)) ∧ ((, δ) ∈ S)

� Quiescence (2): (, δ) ∈ S and for all σ ∈ S of the form σ′.ev with delay(ev) 6= 0
(and thus σ′ 6= ε) for all d < delay(ev) we have σ′.(d, δ) ∈ S.

� Reaction prefix: for any σ in S, we have Pref(σ) ⊆ S.

The SUT definition specifies that:

� Input completeness: any timed trace of a SUT can be completed by any input.
This condition is required so that a SUT cannot refuse an input from the environment
or any stimulation sent by the tester.

37

3. Centralized Model-Based Conformance Testing from TIOSTS

� Quiescence corresponds to two kinds of situations. The first kind of situations
(Quiescence (1)) are the ones where the SUT will not react anymore until it receives
a new stimulation. The second kind (Quiescence (2)) expresses that whenever we
might wait for a positive duration before an action occurs, we can observe quiescence
if we stop the observation of the trace in a shorter positive duration.

� Reaction prefix: the set of timed traces of a SUT is stable by prefix, i.e a prefix of
an observation is an observation. in particular ε ∈ S.

The conformance of a SUT S with respect to a TIOSTS G is defined as a mathematical
relation between S and the set of timed traces of G. Intuitively an SUT S conforms to G
according to tioco if and only if for any timed trace σ common to S and G, any reaction
(waiting for a delay d and observing an emission of an output o or waiting for a quiescent
reaction δ) of the SUT S after σ must be allowed by G.

Definition 3.2 (tioco). Let C be a set of channels. Let S and G be respectively a SUT and
a TIOSTS, both defined over the same set of channels C. S conforms to G denoted S tioco
G iff for any σ ∈ TTraces(G) ∩ S and for any ev ∈ Evt(C) with act(ev) ∈ O(C) ∪ {δ} we
have:

σ.ev ∈ S⇒ σ.ev ∈ TTraces(G)

3.2.2.2 Our Off-line Centralised Testing Algorithm

We now present our off-line testing algorithm inspired and adapted from the one defined in
[7]. As we presented in Section 3.2.1, the centralised testing algorithm of [7] which is designed
for timed models analyses a timed trace which is an ordered sequence of actions and delays
and computes a verdict in the set of keywords {PASS, FAIL, INCONCi,WEAK PASS, INCONCr}.

Our adaptation of [7] is first motivated by the need of dealing with normalized timed
traces defined as sequences of events. Moreover, we are not concerned with test case
generation, and thus, we will not consider test purposes. In fact, we are only interested in
the process of verdict computation. Hence, we suppose the existence of a finite timed trace
as a local observation on a SUT and which will be analyzed in order to check conformance
of this observation in question against a TIOSTS model w.r.t tioco conformance relation.
Thus, our testing algorithm is a simplified version of one defined in [7] as it does not
specialize the verdict computation up to a test purpose that serves as a guide for test
case generation and as the reference for computation verdict: then, our algorithm will not
deliver verdicts WEAK PASS and INCONCr. Indeed, instead of checking whether or
not a timed trace is appropriate up to a test purpose previously selected, we will only
check that it is allowed or not by the reference model w.r.t the conformance relation.
We adopt this weak position since in this document, we are essentially interested in the
question of the analyse of observed traces up to a specification. The question of analysing
a timed trace up to a selected test purpose is rather related to the challenge of generat-
ing test cases in charge of covering a given test purpose. As this point is not discussed
in this document, this explains that we only consider a weak version of verdict computation.

In the sequel, we suppose the existence of a SUT S, a TIOSTS model G. We assume that
a finite uninitialized timed trace σ has been computed as an execution of SUT S and we
proceed to the verdict computation of σ.

38

3.2. Off-line Centralized Conformance Testing from TIOSTS

3.2.2.3 Local Verdict Computation

Our local verdict computation algorithm takes as input the symbolic structure SE(G)δ
(see Definition 2.20 from Chapter 2) computed from the reference model G obtained
by symbolic execution techniques. We recall that SE(G)δ is a tree-like structure whose
nodes are symbolic states that are used to capture all information related to the possible
executions of G.

As introduced in Definition 2.21 from Chapter 2, a symbolic path p in SE(G)δ is a sequence
of consecutive edges relating symbolic states and labelled by symbolic events. The set
of executions (e.g. timed traces) associated to p can be characterised by the sequence
ev1 . . . evn of symbolic events labelling the consecutive edges.

In the sequel, a set F of fresh variables is supposed given. Ft ⊆ F is the set of fresh time
variables and Fd = F\Ft is the set of fresh data variables.

We recall that each symbolic event of the sequence is of the form (di, acti) where each di
is a new fresh variable in Ft used to symbolically represent durations and each acti is of
the form c?zi or c!ti where zi is a new fresh data variable in Fd and ti is a term in TΩ(Fd)
built over the same equational logic signature Ω as terms in G and over the set Fd of new
fresh variables.

The computation verdict concerns the conformance of the SUT S against TIOSTS G. In
other words, we seek to know if σ belongs to the set of uninitialised timed trace defined
by a possible symbolic path belonging to SE(G)δ. For this, we begin by introducing some
intermediate definitions that are needed in the algorithm in order to define verdicts.

A context is a mathematical structure denoting paths of SE(G)δ = (Init, ST) potentially
covered by a timed trace, together with additional identification constraints induced by
the timed trace (the sequence of previously encountered inputs/outputs).

Definition 3.3 (Context). A context is a triple (η, ψt, ψd) where η denotes the end state of
a symbolic path of SE(G)δ, ψt is a formula of FΩ(Ft) expressing identification constraints
on fresh time variables and ψd is a formula of FΩ(Fd) expressing identification constraints
between fresh data variables and values emitted and received in the timed trace.

Identification constraints are the conjunction of constraints of the form z = v, where z is a
fresh variable and v, is a value, that is inherited from the concrete timed trace σ under
analyse. These constraints allow to particularize symbolic paths that already partially
match with the beginning of the trace σ.

Notation 3.2. For a context ct = (η, ψt, ψd) the notation state(ct) stands for η, the target
state of the potentially covered path. Since there may be more than one path that is covered
by a timed trace, we manipulate sets of contexts generically denoted SC.

We introduce some technical functions useful to reason about sets of contexts, in particular
in order to compute the sequence of sets of contexts resulting from the successive observation
of elementary actions. The function Next(ev, SC) computes the set of all contexts that
can be reached from a given set of contexts SC, when a new event ev ∈ Evt(C) occurs.

39

3. Centralized Model-Based Conformance Testing from TIOSTS

Definition 3.4 (Next(ev, SC): Execution of set of contexts driven by an event). Let SC
be a finite set of contexts and ev be in Evt(C) with act(ev) of the form c4u with 4 ∈ {?, !}
and u a value5. Next(ev, SC) is the set of all contexts that can be reached by triggering a
symbolic transition of SE(G)δ consistently with ev. We have (η′, ψ′t, ψ

′
d) ∈ Next(ev, SC) if

and only if there exists a context (η, ψt, ψd) in SC and symbolic transition st = (η, ev′, η′)
in ST with act(ev′) of the form c4t such that:

� ψ′t is the formula in FΩ(Ft) restricted to True if delay(ev) = 0 and equal to ψt ∧
(delay(st) = delay(ev)) when πt(η

′) ∧ ψt ∧ (delay(st) = delay(ev)) is satisfiable
otherwise.

� ψ′d is the formula in FΩ(Fd) equal to ψd ∧ (t = u) when πd(η
′) ∧ ψd ∧ (t = u) is

satisfiable.

The general idea of the algorithm is to read one by one the elements of the timed trace σ,
and either compute the next set of contexts or emit a verdict.

3.2.2.4 Rule-based Algorithm

Local verdict

computation

0η

1η 2η

3η
4η 5η 6η

Symbolic

execution tree

σExecution trace

0q

1q

2q

TIOSTS

model

Symbolic

execution

PASS

FAIL

INCONC

Figure 3.6: Our verdict computation process and local verdicts

As depicted in Figure 3.6, our goal is to compute a V erdict belonging to the set of keywords:
{FAIL, PASS, INCONC} where:

� V erdict is FAIL if the situation in which we observe an output is not allowed by
the specification.

� V erdict is PASS if the observed timed belongs to the specification

� V erdict is INCONC if the timed trace is allowed by the conformance relation tioco,
but does not belong to the specification, i.e. the last event of the timed trace is an
input that is not specified in the specification.

Notation 3.3. For a non-empty timed trace σ of the form ev.σ′ we use the notation
head(σ) to denote ev and tail(σ) to denote σ′.

For that, we will take into account the knowledge of the associated contexts. The algorithm
is then given as a set of rules of the form:

5Values are assimilated to constant terms

40

3.2. Off-line Centralized Conformance Testing from TIOSTS

SC(ev) σsuf
Result

cond

where:

� σsuf is the remaining timed trace to be analyzed with respect to the first analyzes
stored in SC(ev) and to SE(G)δ. If we are at the end of the timed trace we have
σsuf = ε. Otherwise, σsuf = ev′.σ′suf

� cond are the conditions under which the rule can be applied

� Result is either a verdict or of the form SC ′(ev′) σ′suf . Moreover, if σsuf = ε then
Result is necessarily a verdict since the initial timed trace σ is fully analyzed. If
Result is SC ′(ev′) σ′suf , then it means that σsuf has been written as ev′.σ′suf . We
will access respectively to ev′ and σ′suf from σsuf by using the notations head(σsuf)
and tail(σsuf).

Notation 3.4. Let us suppose that σ can be written as σpref .ev.σsuf where ev is an event.
The notation SC(ev) represents the set of contexts SC reached after reading the beginning
σpref .ev of the timed trace with the last analyzed element ev. At the initialization step,
when no element of σ has been analyzed, then we use the symbol τ , that is SC(τ).

Rules of our testing algorithm are described as follows:

Initialization Rule:

{(Init, T rue, True)}(τ) σ

Next Rule: An event with an action and a delay is read from the trace, SC is not empty.

SC(ev) σ

Next(head(σ), SC)(head(σ)) tail(σ)
SC 6= ∅, σ 6= ε

Fail Rule: An event with an unspecified output and a delay is read from the trace.

SC(ev) σ

FAIL
SC = ∅; act(ev) ∈ O(C) ∪ {δ}

Inconclusive Rule: An event with an unspecified input is read from the trace.

SC(ev) σ

INCONC
SC = ∅; act(ev) ∈ I(C)

Pass Rule: The read event permits to cover a path in SE(G)δ.

SC(ev) σ

PASS
σ = ε; SC 6= ∅

� Initialization: corresponds to the initialization phase where the set of contexts
contains only one context stating that we begin at the symbolic state Init, there are
no constraints identified yet.

� Next Rule: is applied to compute a new set of contexts. This is done as long as
SC is not empty and there are still elements of the timed trace to read

41

3. Centralized Model-Based Conformance Testing from TIOSTS

� Fail Rule: concerns the FAIL verdict emitted when the timed trace denotes an
incorrect behavior.

� Inconclusive Rule: introduces the verdict INCONC. According to this rule,
INCONC is emitted when σ is not included in SE(G)δ due to input under-specification.
More precisely, σ is then of the form σpref .ev.σsuf , with σpref in SE(G)δ but σpref .ev
is not with act(ev) ∈ I(C).

� Pass Rule: introduces the PASS verdict emitted when the trace (which is fully
analyzed without generating any of the previous verdicts) denotes a correct behavior,
i.e there exists a covered path p in SE(G)δ.

We notice that unless σ can be decomposed as σpref .ev.σsuf , where σpref is a specified
timed trace and σpref .ev is not (in which case we have FAIL or INCONC depending on
the nature of act(ev)), all events of σ will be analyzed even though the emission of PASS
is not possible anymore. This choice allows us to always emit FAIL if a timed race reveals
a non conformance.

Example 3.1. Let us apply our rule-based algorithm to the TLC system from Exam-
ple 2.5. Consider symbolic tree SE(GTLC)δ produced from application of symbolic ex-
ecution on TIOSTS G with quiescence enrichment. Symbolic tree SE(GTLC)δ speci-
fies correct behavior of TLC system of Example 2.5. Let us assume that we have a
timed trace σ which is an execution of the TLC system as illustrated in Example 2.11:
σ = (, start?).(3, pos1!42).(5, pos2?300). We proceed to verdict computation of σ as follows:

(a) (,start?) (3, pos1!42) (5, pos2?300)

ψt=True;ψd=True;SC={(Init, ψt, ψd)}(τ); (Initialization)

(b) (,start?) (3, pos1!42) (5, pos2?300)

ev = (, start?); delay(ev) = 0
ψt ← True
πd(η1) = True
ψd ← ψd∧πd(η1) is satisfiable
Next(ev, SC)−→SC={(η1, ψt, ψd)}(ev);(Next Rule)

(c) (,start?) (3, pos1!42) (5, pos2?300)

ev = (3, pos1!42)
πt(η3) = z2 < 10
ψt ← ψt∧πt(η3)∧(z2=3) is satisfiable
πd(η3) = p1 < p2 ≤ 200
ψd ← ψd∧πd(η3)∧(p1=42) is satisfiable
Next(ev, SC)−→SC={(η3, ψt, ψd)}(ev);(Next Rule)

(d) (,start?) (3, pos1!42) (5, pos2?300)

ev = (5, pos2?300)
πt(η6) = πt(η3)∧z5 < 10
ψt ← πt(η6)∧z5=5 is satisfiable
πd(η6) = πd(η3)
ψd ← ψd∧πd(η6)∧(p′2=50) is satisfiable
Next(ev, SC)−→SC={(η6, πt, πd)}(ev);(Next Rule)

(e) (,start?) (3, pos1!42) (5, pos2?300)

σ = ε; SC 6=∅
(Pass Rule)

In this chapter, we have tackled the issue of performing centralized MBT over TIOSTSs and
adapting the process of checking conformance to fit our formal background of Chapter 2.

42

3.2. Off-line Centralized Conformance Testing from TIOSTS

In Chapter 4 we present and discuss our contributions in order to propose a verdict
computation process and thus solving the oracle problem in distributed MBT.

43

3. Centralized Model-Based Conformance Testing from TIOSTS

44

4. A Distributed Testing Framework for Solving the Oracle Problem

Chapter 4

A Distributed Testing Framework
for Solving the Oracle Problem

Contents

4.1 An Overview of Works Related to Distributed Testing 45

4.2 Distributed Testing Architectures 55

4.2.1 Global-tester-based testing architecture 55

4.2.2 Local-tester-based testing architecture 56

4.2.3 Hybrid testing architecture . 57

4.3 A Baseline Approach to solve the Oracle Problem for Timed
Distributed Systems . 58

4.3.1 The Distributed Testing Architecture and Hypotheses 59

4.3.2 Communication Checking . 60

4.4 Constraint-based Oracle Algorithm 67

4.4.1 Distributed Systems and Communication 67

4.4.2 Constraint-based analysis for Communication Checking 73

4.4.3 Modeling Timed Distributed Systems and Conformance relation 76

4.5 Implementation: Distributed Testing by Orchestration 79

4.5.1 Off-line Centralized Testing . 80

4.5.2 Communication Checking . 81

4.5.3 Global Verdicts . 85

4.1 An Overview of Works Related to Distributed Testing

Several definitions of Distributed Systems have been given in the literature [65, 20, 83].
Lamport [65] characterizes a distributed system as a set of asynchronous communicating
processes. A commonly used definition in software engineering community is the one of
Tanenbaum et al. [83], in which authors define a DS as:

”A collection of independent computers that appear to the users of the system as a single
computer”.

45

4. A Distributed Testing Framework for Solving the Oracle Problem

This definition introduces two main features of distributed systems: The first one is that
DS is a collection of nodes, each being able to behave independently of each other. Nodes
can be either a hardware device or a software process. The second one is that users (i.e.,
people or applications) believe they are dealing with a single system. This means that
one way or another the nodes need to collaborate. This collaboration lies at the heart of
developing distributed systems.

For the purpose of this thesis, we propose to use the following definition of distributed
systems:

”A DS consists of collection of localized autonomous entities, connected through a commu-
nication network, which enables those entities to coordinate their activities and to exchange
the system resources, so that users perceive the whole distributed system as a one single
executing entity”.

A distributed system by Tannenbaum’s definition would surely also be one by our definition;
however, our definition is more in line with the current state of the art as perceived by
today’s users of distributed systems and it characterizes the kind of systems that we will
study throughout this thesis.

Internet is considered as a distributed system with multiple clients and servers for acceding
and sharing linked data. Within the Internet, Servers maintain collections of data while
clients provide user-interfaces for presenting and accessing this data. A Web browser is
the user-interface to Internet, it includes Web pages that link to other ones. On the other
hand, Web servers can refer to either the hardware (the machine) or the software (the
application) which runs on the server side of the system and delivers Web content that can
be accessed through communication networks.

Figure 4.1 depicts a working arrangement of the Internet as a distributed system.

Figure 4.1: Internet considered as a distributed system

Internet communication networks can be classified into two categories: LAN and WAN.
According to [79, 63] a LAN spans a small geographical area, typically a single building or
a cluster of buildings, while a WAN spans a large geographical area (e.g. a nation) which
needs a switched large network. A WAN can be defined as a network linking several LANs.
Figure 4.2 depicts an architecture of a LAN and a WAN in Internet.

46

4.1. An Overview of Works Related to Distributed Testing

(a) (b)

Figure 4.2: Illustration of a LAN and a WAN distributed architectures [63].

Distributed systems can be especially difficult to program, for a variety of reasons. They
can be difficult to design, difficult to manage, and, above all, difficult to test. Testing a
normal system can be trying even under the best of circumstances, and no matter how
diligent the tester is, bugs can still get through. Now take all of the standard issues and
multiply them by multiple processes written in multiple languages running on multiple
boxes that could potentially all be on different operating systems, and there is potential
for a real disaster.

Individual component testing, usually done via automated test suites, certainly helps
by verifying that each component is working correctly. Component testing, however,
usually does not fully test all the bits of a distributed system. Testers need to be able
to verify that data at one end of a distributed system makes its way to all other parts
of the system and, perhaps more importantly, that it is visible to the various compo-
nents of the distributed system in a manner that meets the consistency requirements of
the system as a whole. In the next, we discuss the open issues in testing distributed systems.

As a DS is a collection of communicating localized subsystems, it might expose failure
due to some of them. In addition, the network communication which is based on message
passing mechanism might expose transmission errors. Those two kinds of errors have
different natures from the oracle computation problem point of view. To identify errors
related to localized systems, on has to analyze sequences of events which can be fully
ordered since all of them can be associated with dates by a common clock. On the contrary
identifying communication errors involve analyses that aim at logically ordering events
that occur on different remote interfaces. Indeed as the DS does not have any global clocks,
logging its execution does not come to build a unique sequence of events, but rather a
collection of such sequences, one for each of the localized systems.

Lamport [65] characterizes a distributed system as a set of asynchronous communicating
processes. Exchanged messages between local processes of a distributed system are es-
sentially intended for the coordination of local tasks executed by those processes (i.e to
synchronize their communication). The difficulty within distributed computing is to define
a global coherent time which schedules all local events. To overcome this issue, logical time
was first introduced by Lamport [65] as a concept to schedule events in a distributed system.

47

4. A Distributed Testing Framework for Solving the Oracle Problem

Causal dependency and Logical clocks: Let E be a set of so-called events. There
exists a causal dependency between two events e and e′ if an event must occur before the
other one and we note e→ e′. Given a set of events E and a set of so-called timestamps
T , Lamport [65] introduced the notion of logical clock as the function c which associates a
date to a given event e in E defined as follows:

c :

{
E → T
e 7→ c(e)

For two given events e and e′ we have: e→ e′ ⇒ c(e) < c(e′).

Scalar Logical clocks: Lamport [65] has been a pioneer in proposing techniques to
analyze logs of distributed systems execution, with a particular emphasis on identifying
causality between messages exchanged by localized subsystems. This was done based
on a formal setting called ”logical scalar clocks”. For a distributed system composed of
n localized subsystems, Lamport [65] characterizes a localized subsystem as a process
identified with its number p ∈ [1, . . . , n]. A process is then seen as an ordered sequence of
events. Given a process composed of m events, a scalar logical clock [65] is a couple (p, e)
which stands for a timestamp associated to an event where p ∈ [1, . . . , n] is the process
number in and e ∈ [1, . . . ,m] is the event number.

In [65] Lamport presented an algorithm for annotating distributed events of an execution of
DS with scalar clock. For a distributed system (P1, . . . , Pi, . . . , Pn) composed of n processes,
Lamport states that each process Pi (i ∈ [1, . . . , n]) has a logical scalar clock ci initiated at
0. Locally, for each local event of Pi, we increment ci by 1 (ci ← ci + 1) and the event in
question is timestamped locally by ci. In the case of exchanging messages we distinguish
two rules:

� Emission of a message m by Pi: we increment ci by 1, then we send the message m
with (i, ci) as a timestamp.

� Reception of a message m with a clock cj (j ∈ [1, . . . n] and j 6= i): ci ← max(ci, cj)+1.
In this case, we mark the reception of message m with ci.

We illustrate Lamport clock advancing algorithm by means of an example. We give the
traces tr1, tr2 and tr3 as possible executions of three processes P1, P2 and P3 as follows:

� tr1 = e11.e12.e13.e14.e15

� tr2 = e21.e22.e23.e24

� tr3 = e31.e32.e33.e34.e35

Following Lamport algorithm [65] presented previously and by applying scalar clocks
advancing mechanism, traces tr1, tr2 and tr3 are annotated with timestamps as presented
graphically in Figure 4.3. First, logical clocks ci are initiated at 0. Then, we follow rules
presented previously to advance timestamps logically. For example, we have:

� Timestamp of the event e23 is 6, indeed, message m5 received had logical clock value
of 5 and local clock is only at 3.

48

4.1. An Overview of Works Related to Distributed Testing

� Timestamp of the event e34 is 4, indeed, we increase local clock by one since its value
(ci = 3) is greater than clock value of message m3.

� For events e11, e12, e13, we increment local clock by one.

Figure 4.3: Scalar clocks annotating mechanism using Lamport algorithm [65]

Logical scalar clocks define an order in the set of events observed from the execution of a
given DS. Indeed, for two events e and e′, we have e is less than e′ if and only if timestamp
of e is strictly less than timestamp of e′. This order is only partial because several events
can have the same timestamps. Lamport [65] extended this partial order to a total one
denoted ≺ by assuming the following decision: if two events with same timestamps occur,
the event on the process with the smallest identifier predates the other one, that is, if e
and e′ are two events that run on processes Pi and Pj then we have:

e ≺ e′ ⇔ (ci(e) < cj(e
′)) ∨ (ci(e) = cj(e

′) with i < j)

From the previous example, we can achieve the following total order: e11 ≺ e31 ≺ e12 ≺
e21 ≺ e32 ≺ e13 ≺ e22 ≺ e33 ≺ e14 ≺ e34 ≺ e35 ≺ e23 ≺ e24 ≺ e15. As we can notice, events
e11 and e31 have the same timestamp value which is equal to 1 but as e11 occurred on
process 1 and e31 occurred on process 3 and 1 < 3 then e11 ≺ e31.

For two events e and e′, the relation c(e) < c(e′) is not sufficient to decide about causal
dependency between e and e′. Yet, it is useful to determine whether or not there is a causal
dependency between two events. The notion of vector logical clock was introduced later in
[33] to ensure that the reciprocal of the causal dependency holds. In other words to ensure
that:

c(e) < c(e′)⇒ e→ e′.

Vector Logical clocks: Later, Fidge [33] presented the limitations of using logical scalar
clocks to schedule distributed events. Indeed, global scheduling obtained by using scalar
clock is indeed arbitrary and does not necessarily correspond to a real scheduling. For
example, we have c(e32) = 2 and c(e22) = 3, yet, in practice, e22 can occur before e32.
Indeed, for two events e and e′ such that c(e) < c(e′), one cannot decide about causal
dependency between e and e′. Specifically, the relation c(e) < c(e′) ⇒ e → e′ does not
hold. For this reason, Mattern [66] then Fidge [34] introduced vector logical clocks that
ensure that previous relation holds.

Mattern [66] and Fidge [33, 34] define a vector logical clock of a distributed system of n
processes as a data vector v of n logical clocks, one clock per process. In [66] Mattern

49

4. A Distributed Testing Framework for Solving the Oracle Problem

presented an algorithm for annotating a distributed observation of DS with vector clocks
as follows:

Let us consider a distributed system (P1, . . . , Pi, . . . , Pn) of n communicating processes.
Locally, each process Pi has a vector clock vi of n elements and where each element vi[j]
contains clock values of process Pj (i, j ∈ {1, . . . , n}. We update vector clocks vi w.r.t the
following rules:

1. Initially, we have vi[j] = 0.

2. Before process Pi timestamps an event, it executes vi[i] = vi[i] + 1

3. Whenever a message m is sent from Pi to Pj :

� Process Pi executes vi[i] = vi[i] + 1 and sends vi with m.

� Process Pj receives vi with m and merges vector clocks vi and vj as follows:

vj [k] =

{
max(vj [k], vi[k]) + 1, if j = k(as in Lamport clocks)

max(vj [k], vi[k]), otherwise

Initially, all clocks are initialized at 0. Each time a process Pi experiences an internal event,
it increments its own logical clock in the vector by one. Each time a process prepares to
send a message, it sends its entire vector together with the message being sent. Each time
a process receives a message, it increments its own logical clock in the vector by one and
updates each element in its vector by taking the maximum of the value in its own vector
clock and the value in the vector in the received message (for every element). This last
part ensures that everything that subsequently happens at Pj is now causally related to
everything that previously happened at Pi.

Vector clock formalism defines a partial order relation on the set of dates w.r.t the following
equivalence relations given that v and v′ are two vectors of n logical clocks:

� v ≤ v′ ⇔ ∀i ∈ {1, . . . , n}, v[i] ≤ v′[i].

� v < v′ ⇔ v ≤ v′ and ∃i ∈ {1, . . . , n} s.t v[i] < v′[i].

� v ‖ v′ ⇔ ¬(v < v′) and ¬(v′ < v).

We illustrate vector clock advancing algorithm by means of an example. We give the traces
tr1, tr2 and tr3 as possible executions of three processes P1, P2 and P3 as follows:

� tr1 = e11.e12.e13.e14.e15

� tr2 = e21.e22.e23.e24

� tr3 = e31.e32.e33.e34.e35

Following vector clock advancing algorithm presented previously, traces tr1, tr2 and tr3 are
annotated with timestamps as presented graphically in Figure 4.4. For example, we have:

� v(e13) = (3, 0, 0) and v(e14) = (4, 0, 3). We have v(e13) < v(e14), hence, e13 → e14.

50

4.1. An Overview of Works Related to Distributed Testing

� v(e32) = (0, 0, 2) and v(e13) = (3, 0, 0). We have v(e32)‖v(e13), then, neither (e32 →
e13) holds nor (e13 → e32) holds.

Figure 4.4: Vector clocks annotating mechanism.

Related work: Some testing approaches used logical time, as a technique for testing
distributed systems. The following is a brief list of some works on testing distributed
(concurrent) systems using logical clocks:

� In [51], Kim et al. studied the problem of testing concurrent distributed systems as
black-boxes modeled as asynchronous communicating finite state machines (ACFSM).
The authors defined and presented with illustrative examples an approach to derive
test cases in a formal way for concurrent distributed systems. The approach defined
a technique to avoid the state explosion problem by introducing a causality relation
model based on logical clocks advancing mechanism. By adopting a causality relation
model, the authors of this paper expressed a true concurrency model and hence
avoided classical approaches in distrusted testing that use interleaving methods for
the events in a concurrent system. Kim et al. [51] introduced the Minimal Causality
Path (MCP) notion using logical clocks as global event sequence path with minimal
length. Those paths were later used in test case generation in order to avoid the
state space explosion problem. This work also introduced for new definitions such
as Observationally Rate (OR), Stable State (SS) and Controllability Rate (CR). Yet,
this work assumed that atomic actions in the model consume exactly one unit of
logical time, hence, the model cannot be considered as applicable to the real world
situations.

� In [52], Kim et al. extended work presented in [51] by relaxing the unit-time
assumption to any natural or real numbers in describing timing constraints and
by presenting a computationally efficient algorithm for deriving test cases from the
model with respect to the relaxed event duration assumed previously.

� In [17], Choi et al. proposed a test sequence generation algorithm in a formal way
using logical clocks. Their work aims to solve both controllability and observationally
problems occurred in distributed testing with concurrent events. The proposed
algorithm is generic and can be used for any possible communication paradigm.
Authors of the paper took benefit from the use of logical clocks and hence they can
make difference between concurrent events and causal ones by labeling and comparing
the logical clock values of the events of a test sequence. In this new approach, the local
testers generate additional signals to control concurrent events when these last can be

51

4. A Distributed Testing Framework for Solving the Oracle Problem

identified. Using reachability tree generation techniques, the authors demonstrated
that the proposed algorithm can solve the so-called contro-observation problem in a
formal way. This work proposed a new test architecture for solving the latter problem.
A Specification and Description Language (SDL) tool is used to verify the correctness
of the proposed algorithm. Yet, authors of [17] applied their algorithm to the message
exchange for the establishment of Q.2971 point-to-multipoint call/connection1 as a
case of study.

� Recently, in [24], Ponce et al. extended the ioco conformance relation [85] to
test concurrent distributed systems specified with true concurrency and hence they
defined the co-ioco conformance relation. In [72], Ponce et al. assumed that global
observation in distributed testing cannot be reconstructed from local observations
made in local interfaces of a distributed system. Hence, they proposed to use vector
logical clocks in order to regain global conformance from local testing. In this work,
authors presented a framework which only considers synchronous communication
for concurrent systems specified; for a first time; as a network of Labeled Transition
systems (LTSs); and then as one distributed Petri net. An adaptation of the previous
test generation algorithm for co-ioco for handling vector timestamps was presented
in this work.

Even though the works of Hierons et al. [44] and Gaston et al. [37] do not explicitly
ground their approach on logical scalar or vector clocks, the way they treat causality of
events for solving the oracle problem in distributed systems is similar to the one used by
Lamport, Fidge and Mattern. However, the main goal of Lamport was to build a causal
order between events observed when a distributed systems execute. The problem addressed
in [44] and [37] concerns more the question:

Does it exist such an order which would make a group of observations of such an executions
on different remote interfaces the witness of a correct global distributed system execution?

A part of the answer was tackled and a dressed in [37]. The work in [37] will be presented
in more details in Section 4.3.

The complexity of the problem just discussed illustrates the consequences of the lack of
observability when trying to solve the oracle problem in Distributed systems. Indeed, even
though all internal communications happens in a total order, this order cannot be easily
observed due to the lack of the global clock.

Observability problem is a situation where a tester cannot distinguish between the
global sequence produced by the SUT and the one which is expected according to
the distributed specification model despite those two traces being different. As de-
picted in Figure 4.5, let us consider a distributed architecture where there are two
observers called, for instance, Obs1 at local interface L1 and Obs2 at local interface
L2 respectively. In Figure 4.5(a), we consider that SUT produces the global sequence
σSUT = input(i1).output(o1).input(i1).output(o2).output(o1) where the response to a

1In telecommunications, point-to-multipoint communication is communication which is accomplished
via a distinct type of one-to-many connection, providing multiple paths from a single location to multiple
locations[63].

52

4.1. An Overview of Works Related to Distributed Testing

first input i1 at L1 leads to output o1 at L1 and a second input i1 leads to o1 at L1

and o2 at L2. After projection, local observer Obs1 expects to observe the sequence
input(i1).output(o1).input(i1).output(o1) and local observer Obs2 expects to observe the
sequence output(o2). On the other hand, in Figure 4.5(b), the specification SPEC contains
global sequence σSPEC = input(i1).output(o2).output(o1).input(i1).output(o1) where o2 at
L2 is an output in response to the first input i1 rather than the second one. Although global
observations σSUT and σSpec are different, they have the same projections at local interfaces
L1 and L2, and hence, it is not possible to distinguish between them in distributed testing
with multiple observers.

input

SUT

output

input

SPEC

1T
2T

1i

1o

2i

1Obs 2Obs

input
1i

output 1o

output
2

o

input
1i

output 1o

time

time

SUT

1Obs 2Obs

input
1i

output 1o

output
2

o

input
1i

output 1o

time

Tester Tester

Observer Observer Observer Observer

Interface
1L Interface

2L

Interface
1L Interface

2L Interface
1L Interface

2L

input 2i

(a)

input

SUT

output

input

SPEC

1T
2T

1i

1o

2i

1Obs 2Obs

input
1i

output 1o

output
2

o

input
1i

output 1o

time

time

SUT

1Obs 2Obs

input
1i

output 1o

output
2

o

input
1i

output 1o

time

Tester Tester

Observer Observer Observer Observer

Interface
1L Interface

2L

Interface
1L Interface

2L Interface
1L Interface

2L

input 2i

(b)

Figure 4.5: Observability problem in distributed testing with multiple observers

The lack of observability in distributed system testing is a cause of difficulties to identify
deadlocks. A deadlock is a situation in which two or more competing actions are each
waiting for the other to finish, and thus neither ever does. In a DS there is a difficulty
to detect deadlocks. Hence, it is desirable to detect such problem while testing, indeed
deadlock problem may hamper a DS that need to function extremely efficiently.

Figure 4.6 illustrates a deadlock situation in a distributed system composed of two local
systems. Let us consider two systems labeled Sys1 and Sys2 that are exchanging internal
messages i1 and i2. Sys1 cannot send i2 towards Sys2, in fact, it is waiting to receive
input i1 which supposed to be sent from Sys2, however, Sys2 cannot send i1 towards Sys1,
in fact, it is waiting to receive input i2 which supposed to be sent from Sys1 after the
reception of i1 from Sys2. Both Sys1 and Sys2 are each waiting for the other to send its
message, and thus neither ever does.

53

4. A Distributed Testing Framework for Solving the Oracle Problem

time

2Sys1Sys

m
essage

1
i
m
es
sa
ge

2i

System System

Figure 4.6: A deadlock situation in a distributed system

From the point of view of the tester having to stimulate the system under test, the coun-
terpart of the observability problem is the so-called controllability problem.

Controlability problem is a situation where a local tester cannot determine when to
apply a particular input to a SUT. This problem introduces non-determinism into testing.

For example, as depicted in Figure 4.7, let us consider a situation where a local tester
T1 at local interface L1 applies an input i1 to an SUT. This should lead to output o1 at
interface L1, and a tester T2 at local interface L2 should then send input i2. Here local
tester T2 is not able to know when to send i2 since it does not observe the previous input
and output at interface L1.

input

SUT

output

input

SPEC

1T
2T

1i

1o

2i

1Obs 2Obs

input
1i

output 1o

output
2

o

input
1i

output 1o

time

time

SUT

1Obs 2Obs

input
1i

output 1o

output
2

o

input
1i

output 1o

time

Tester Tester

Observer Observer Observer Observer

Interface
1L Interface

2L

Interface
1L Interface

2L Interface
1L Interface

2L

input 2i

Figure 4.7: Controlability problem in distributed testing with multiple local testers

A consequence of the lack of controllability is the problem of reproducibility of event as
Ghosh et al. underline [39] reproducing a specific behavior of a system is often required
for testing. Yet, in distributed testing, reproducing specific execution behavior is often
hard to achieve because of concurrent processing along with the presence of asynchronous
communication and the lack of full control over the environment.

54

4.2. Distributed Testing Architectures

4.2 Distributed Testing Architectures

The activity of a tester consists in interacting with the SUT in order to execute the available
test cases and then to observe the response of the SUT due to this stimulation2.

According to [94] and [59], a given tester may be global or local. Hence, we may either
associate only one global tester with the whole SUT or associate one local tester with
each localized subsystem. A more general configuration exists and allows both previous
situations [59]. These are the three possible testing architecture for testing a DS. They
are respectively referred to global-tester-based testing architecture, local-tester-based testing
architecture and hybrid testing architecture [94, 59]. Section 4.2.1, Section 4.2.2 and
Section 4.2.3 are devoted, respectively, to discuss those three kind of testing architectures.

4.2.1 Global-tester-based testing architecture

We first start with the simplest architecture provided with a global tester, which entirely
simulates the environment of the distributed SUT during a test run by means of a ded-
icated communication network . In Figure 4.8, we present a global-tester-based testing
architecture3 by interaction with it through the black connectors denoting the dedicated
network. A global tester TG may have total control over the distributed (SUT). The global
tester is implemented as sequential machine TG and runs in parallel with the distributed
SUT observing and controlling if necessary all external and internal actions of the SUT
(grey-box testing approach). In some global-tester-based testing approaches, the global
tester centrally collects local observations of the distributed SUT made at local interfaces
(without controlling) and derives a global test verdict.

An advantage of using this type of testing architecture is its simplicity. In fact, when
a global tester is employed, a global view on the distributed SUT can be provided as a
unique sequence which preserves the correct causal dependencies between the actions of the
distributed SUT. However, one of the drawbacks of this architecture is that it requires strict
control over the execution of distributed SUT when it presents concurrency. In particular,
since the tester uses a dedicated network to communicate with localized sub-systems, one
has to deal with the problem of introducing communication latency between the tester and
the different sub-systems. The techniques dealing with this problem fall in the class of
so-called remote testing techniques. For example, to illustrate this kind of approaches, in
[46], Jard et al. used logical clocks to prove that remote asynchronous testing can gain
the same power as local testing. Authors of [46] said that the tester needs to reorder
events of the SUT using logical stamps in order to reach the same testing power as in
synchronous local testing. Authors of [46] presented an operational technique to derive
the correct test cases for remote asynchronous testing. In [23], David et al. presented a
testing framework on black box remote testing of real-time systems using Uppaal-TIGA4

testing tool. In [23] authors addresses the challenge of communication latency between
the tester and the SUT in remote testing that may lead to interleaving of inputs and outputs.

2In case of monitoring, the role of the tester is limited to observe the behavior of the SUT and to decide
whether the generated behavior is accepted or not

3Also referred to as “centralized” testing architecture
4http://people.cs.aau.dk/ adavid/tiga/

55

4. A Distributed Testing Framework for Solving the Oracle Problem

Network

Global Tester
GT

Local

component

L2

Local

component

L3

Local

component

L4

Local

component

L1

Network

Local

component

L2

Local

component

L3

Local

component

L4

Local

component

L1

Local Tester 1T

Local Tester 2T

Local Tester 4T

Local Tester 3T

Figure 4.8: Global-tester-based testing architecture

4.2.2 Local-tester-based testing architecture

In Figure 4.9 we present a local-tester-based testing architecture5 where a local tester Ti
is associated with each local component and derives a local test verdict. It consists of
several concurrently operating local testers which process together, but independently. In
this testing architecture, the local tester Ti may control inputs from the environment and
observe outputs occurring on channels connected to its local interface. In this architecture,
the tuple consisting of all local testers (T1, T2, T3) is referred as a distributed tester

Network

Global Tester
GT

Local

component

L2

Local

component

L3

Local

component

L4

Local

component

L1

Network

Local

component

L2

Local

component

L3

Local

component

L4

Local

component

L1

Local Tester 1T

Local Tester 2T

Local Tester 4T

Local Tester 3T

Figure 4.9: Local-tester-based testing architecture

5Also referred to as “decentralized” testing architecture

56

4.2. Distributed Testing Architectures

4.2.3 Hybrid testing architecture

In Figure 4.10 we present a hybrid-tester-based testing architecture. Hybrid testing archi-
tecture allows both global and local-based testing situations. That is, for a given component
of the SUT, the latter may be connected to more than one tester simultaneously. On the
other hand, a given tester may be either associated with one or several components of the
SUT as well.

Network

Local

component

L2

Local

component

L3

Local

component

L4

Local

component

L1

Local Tester 1T

Local Tester 2T

Local Tester 4T

Local Tester 3T

Global Tester
GT

Figure 4.10: Hybrid testing architecture

In case of the presence of more than one tester (we refer to local-based or hybrid-based
architectures), the correct global view on the behavior of the distributed SUT must be
maintained by all existent testers. This can be achieved if coordination procedures are
established between all testers. Coordination between testers can be implemented by
exchanging messages between testers by means of communication shared channels in order
to synchronize their activities. In this case, the different testers communicate with each
other by exchanging messages about their respective observations about the SUT. Since
we may deal with real-time systems, these exchanged messages should contain the instants
at which these observations are made. In the absence of coordination between local testers,
one of the drawback, is that a distributed tester may assign a successful verdict to a test
run although the SUT contains faults. This is possible because there is no global view on
the SUT if a distributed tester is used.

In case of local testing architecture, local testers testers Ti may coordinate their activities
and communicate with each other via a shared channel (depicted in orange) like it is
illustrated in Figure 4.11. In case of hybrid testing architecture, all testers (global one
TG and local ones Ti) may either coordinate their activities and communicate with each
other via a shared channel (depicted in orange) like it is illustrated in Figure 4.12. In
all presented testing architectures testers may also observe values (inputs and outputs)
sent and received through internal channels. This technique is referred as grey-box testing
approach [37].

57

4. A Distributed Testing Framework for Solving the Oracle Problem

Network

Local

component

L2

Local

component

L3

Local

component

L4

Local

component

L1

Local Tester 1T

Local Tester 2T

Local Tester 4T

Local Tester 3T

Multicast Channel

Network

Local

component

L2

Local

component

L3

Local

component

L4

Local

component

L1

Local Tester 1T

Local Tester 2T

Local Tester 4T

Local Tester 3T

Multicast Channel

Global Tester
GT

Figure 4.11: Local testing architecture with communication between testers

Network

Local

component

L2

Local

component

L3

Local

component

L4

Local

component

L1

Local Tester 1T

Local Tester 2T

Local Tester 4T

Local Tester 3T

Multicast Channel

Network

Local

component

L2

Local

component

L3

Local

component

L4

Local

component

L1

Local Tester 1T

Local Tester 2T

Local Tester 4T

Local Tester 3T

Multicast Channel

Global Tester
GT

Figure 4.12: Hybrid testing architecture with communication between testers

4.3 A Baseline Approach to solve the Oracle Problem for
Timed Distributed Systems

In this section, we present the general context on testing timed distributed systems. We
use the works of [7] and [37] as a baseline approaches for our distributed testing approach.

In [7], the authors have proposed an off-line centralized symbolic testing framework (from
test case generation to verdict computation), which provides algorithms for both test case
generation and verdict computation based on tioco conformance relation. The work of
[7] needed to be adapted to be used for our goal. This adaptation has been presented
in Section 3.2.2. The core of the adaptation consisted in taking into account our new
definition of timed traces based on events [12]. Moreover, our new centralized off-line

58

4.3. A Baseline Approach to solve the Oracle Problem for Timed Distributed Systems

testing algorithm does not consider test purposes as the one presented in [7]. It only takes
an execution time trace together with an execution symbolic tree of the TIOSTS reference
model as an input and delivers a verdict as an output.

In the same context, the authors of [37] have proposed an extension of tioco [7] to deal
with testing timed distributed systems and introduced the dtioco conformance relation.
Moreover, they proposed an algorithm for solving the oracle problem in this context. Our
work aims to provide a new timed distributed testing solution focusing on the oracle
problem in the context of the dtioco. The main difference with the one in [37] is that
we use constraints to symbolically deal with durations occurring in timed traces. Details
about our approach are given in Section 4.4.

In Section 4.3.1 we will introduce the distributed testing architecture together with the
testing assumptions used in [37]. This architecture, as well as those assumptions, are also
assumed in our work. Details about how Gaston et al. [37] verified valid communication in
a tuple of timed traces is given in Section 4.3.2.

4.3.1 The Distributed Testing Architecture and Hypotheses

Multicast

Network

Global Tester

Local Tester

L
o

c
a
l T

e
s

te
r

L
o

c
a
l

T
e
s

te
r

GT

1T

2
T

3T

Local

component

L1

Local

component

L2
Local

component

L3

Local

component

L4

L
o

c
a

l
T

e
s

te
r

4T

Figure 4.13: Our distributed testing architecture

Figure 4.13 depicts the testing architecture. It is a particular kind of the hybrid testing
architecture. In Figure 4.13 we have limited the number of localized subsystems composing
the distributed SUT to three for the sake of clarity. Hence, the SUT is composed of com-
ponents L1, L2 and L3. Each Li has external channels connected to the environment and
internal channels shared with other components in order to exchange values. A local tester
Ti is associated with each localized subsystem Li and a global tester TG communicates
with local testers Ti and collects observations made at local interfaces.

59

4. A Distributed Testing Framework for Solving the Oracle Problem

Moreover, as DSs present a network part, in testing distributed, we may allow a tester
(local or global) to either observe or/and control internal communications between local
components. Thus, so-called grey-testing approach is introduced as a distributed testing
architecture [94].

In our testing context, each Ti may control inputs it submits to local component Li and it
may observe outputs occurring on the external channels connected to the environment. The
local tester may also observe values passing through internal channels (grey-box testing).
Each Li executes in a centralized way so that behaviors observed by each local tester Ti
can be viewed as timed traces (i.e, the local tester can observe the order of the actions
occurring on its channels and can measure duration between consecutive actions).

In some real-time testing approaches [59], since each tester has its own local clock, a phase
of clock synchronization [56, 41] is needed between the clocks of the testers. Yet, in our
work, we assume that there is no global clock in the distributed system but only local clocks
for each localized subsystem with no possibility of clock synchronization. By assumption,
we assume that all local testers use clocks progressing at the same rate. In other words,
there is no clock drift and therefore time units in the different timed traces of the different
testers are the same.

Moreover, each local tester starts observing when its associated localized sub-system is
reset. This is called the local reset assumption.

The semantics of such distributed systems using testing architecture described previously
with these testing assumptions can be seen as tuples of timed traces (one component per
localized system representing a local vision of the subsystem in question). In addition, we
do not accept any communication between local testers.

4.3.2 Communication Checking

The aim of [37] was to define and implement an algorithm to test conditions which define
consistency communication rules within a distributed system. Communications in the
internal network are considered as one-to-many multicast (multicast for short). Multicast
[21, 70, 3, 79] is the term used in network communication protocols standards [63] to
describe communication where a piece of information is sent from one point called source
to a subset of other points of the network called destinations.

Figure 4.14 depicts a multicast routing scheme in a communication network. In the case of
multicast communication, as we have multiple receivers, we are immediately faced with
two problems: (1) how to identify the receivers of a multicast message and (2) how to
address the message sent to these receivers. A possible solution by using our architecture
and deploying multicast communication is that a message sent by a unique component can
be received by several recipients that listen on the shared channel of interest.

60

4.3. A Baseline Approach to solve the Oracle Problem for Timed Distributed Systems

Source

Destinations

Shared

channels

Figure 4.14: A routing scheme for multicast communication

In our context, messages are represented (referring to Chapter 3) as ordered sequences of
events. In our case, multicast is modeled by the fact that localized subsystems share internal
communication channels. Indeed, when a localized subsystem emits a message m on an in-
ternal channel c, we have that all other localized subsystems sharing the same channel c may
receive the exchanged message m. The global tester retrieves all timed traces of each local
tester and is in charge of analyzing them with respect to so-called communication rules [37].

An execution that may be observed by a global tester is denoted by a tuple of timed traces.
An empty tuple whose all elements denote empty sequences corresponds to no interaction
having occurred with the system is a correct tuple. We can extend a correct tuple by
adding to any component either an input from the environment or an output. Outputs are
considered as non-blocking when sent to the environment and when sent to other entities
of the distributed system. There are two fundamental types of communications: internal
ones are on shared channels and external ones that concern the local interfaces.

The time that takes a message to reach a recipient is not quantifiable, in fact, messages
travel between interfaces within a multicast network and there is no global clock (we
cannot measure the global time). Causality of communications is maintained in a correct
tuple if a message cannot be received more often than the total number of emissions in
the system. In a correct tuple, time elapses in the same manner for all local interfaces
whose corresponding trace is not empty. Moreover, in distributed testing, we cannot make
any suppositions on the different moments at which the different testers stop observing
their corresponding interfaces. To take into account this issue, we accept as admissible
observations, tuples of observations made of traces prefixes. In the sequel, we call all
admissible tuples of observations of DS, observable multitraces. A tuple of timed traces
which respects the previous rules is said to respect the so-called observable multitrace
property.

Communication errors are observed only when an internal reception is identified for which
no associated internal emission is found. Yet, no other type of communication action
can reveal a communication error. In practice, such an error may represent a wrong
message sent by the network itself. In [37] it is assumed that the local testers do not miss
internal emissions because otherwise, one could not always know if an internal input has
its corresponding internal output.

61

4. A Distributed Testing Framework for Solving the Oracle Problem

Communication Checking Process [37]

In [37], authors defined an algorithm to check whether a tuple of observations respects or
not the observable multitrace property defined by system communication rules introduced
previously. The algorithm introduced in [37] aims of studying all the possible temporal
ordering of the communication actions occuring in a tuple under study. The execution
of this algorithm can be represented as a tree whose initial root node is the tuple to
be analyzed and each branch leads to a new node where either a communication action
has been identified as the latest communication action to be added in the order or time
has passed. In order to consider all the possible temporal synchronization, the durations
occurring in traces of the tuple are decomposed in a basic common unit of time (for
example the duration (3) is decomposed into the sequence (1).(1).(1)). Indeed, this is ex-
actly what is done in practice since the clock itself imposes the basic delay defining the unity.

Process to check the observable multitrace property in a tuple of timed traces as presented
in [37] consists in three main steps:

� Read the initial tuple of observations (σc1, . . . , σ
c
n) from the beginning to the end.

� Store elements already read of (σc1, . . . , σ
c
n) in a tuple observations ot = (µ1, . . . , µn)

which is considered as correct from a communication perspective (i.e, forms an
observable multi-trace).

� Keep elements still to be read of (σc1, . . . , σ
c
n) in a tuple of observations mt =

(σ1, . . . , σn).

The algorithm of [37] analyzes all configurations for interleaving emissions and receptions
of different local components. Hence, it produces all combinations of couples (mt, ot)
where mt stores elements still to be read of the original tuple of observations to check its
observable property and ot stores elements already read by the algorithm. We note that
any element µi (resp. σi) of mt (resp. of ot) is a prefix (resp. is a suffix) of σci (i.e for each
i in {1, . . . , n} σci = µi.σi).

Figure 4.15 depicts overall process to check the observable multitrace property. The algo-
rithm produces a tree-like structure formed by all possible couples (mt, ot) for interleaving
emissions and receptions of different local components. In each branch of this tree, the
algorithm returns a verdict (True or False) about the correctness of the tuple of observa-
tions with respect to system communication properties. Process for checking observable
multitrace property returns True (ends with success) when it returns a configuration
(mt, ot) where the tuple of observations to be analyzed mt is the empty tuple (ε, . . . , ε)
and the read tuple of observations ot is identical to the initial tuple (σc1, . . . , σ

c
n). It returns

False when all generated configurations (mt, ot) in the produced tree-structure are those
where either mt 6= (ε, . . . , ε) or or 6= (σc1, . . . , σ

c
n); in other words, if the reading of mt

cannot be continued until reaching the empty tuple of observations (ε, . . . , ε), then the
initial tuple to be checked does not valid observable multitrace property.

62

4.3. A Baseline Approach to solve the Oracle Problem for Timed Distributed Systems

Figure 4.15: Communication checking process as introduced in [37]

Example 4.1. We give a simple example of deploying the communication checking algo-
rithm of [37]. We consider two communicating subsystems Sys1 and Sys2 (as depicted in
Figure 4.16) exchanging internal messages m1 and m2 through channels c1 and c2 respec-
tively. In addition Sys1 may communicate through channels start for receiving messages
from the environment and end for sending messages towards the environment. We consider
the tuple of timed traces µ = (σ1 = start?.(1).c1!m1.(2).c2?m2.(1).c2?m2.(1).end!, σ2 =
c1?m1.(1).c2!m2). Recall that in [37] the authors uses the classical formalism of timed
traces defined as ordered sequences of actions (i.e, emissions annotated with ! and reception
annotated by ?) separated by positive integers to denote durations elapsed between those
actions.

Figure 4.16: An example of a distributed system

We have that the tuple of timed traces µ = (σ1, σ2) constitutes a correct tuple of timed
traces. Indeed, all receptions in µ have been preceded by an emission. Figure 4.17 depicts
the tree-like structure produced by the execution of communication checking algorithm of
[37]. Actions already read by the algorithm (i.e, emissions and receptions) are printed in
orange, while, elapsed durations are printed in blue.

63

Node (1):
mt = (start?.(1).c1!m1.(2).c2?m2.(1).(1).c2?m2.(1).end!, c1?m1.(1).c2!m2)
ot = (ε, ε)

Node (3):
False

Node (2):
mt = ((1).c1!m1.(2).c2?m2.(1).c2?m2.(1).end!, c1?m1.(1).c2!m2)
ot = (start?, ε)

Node (5):
False

Node (4):
mt = (c1!m1.(2).c2?m2.(1).c2?m2.(1).end!, c1?m1.(1).c2!m2)
ot = (start?.(1), ε)

Node (7):
False

Node (6):
mt = ((2).c2?m2.(1).c2?m2.(1).end!, c1?m1.(1).c2!m2)
ot = (start?.(1).c1!m1, ε)

Node (9):
mt = ((1).c2?m2.(1).c2?m2.(1).end!, (1).c2!m2)
ot = (start?.(1).c1!m1.(1), c1?m1)

Node (16):
mt = (c2?m2.(1).c2?m2.(1).end!, c2!m2)
ot = (start?.(1).c1!m1.(1).(1), c1?m1.(1))

Node (18):
mt = (c2?m2.(1).c2?m2.(1).end!, ε)
ot = (start?.(1).c1!m1.(1).(1), c1?m1.(1).c2!m2)

Node (19):
mt = ((1).c2?m2.(1).end!, ε)
ot = (start?.(1).c1!m1.(1).(1).c2?m2, c1?m1.(1).c2!m2)

Node (20):
mt = (c2?m2.(1).end!, ε)
ot = (start?.(1).c1!m1.(1).(1).c2?m2.(1).c2?m2, c1?m1.(1).c2!m2)

Node (21):
mt = ((1).end!, ε)
ot = (start?.(1).c1!m1.(1).(1).c2?m2.(1).c2?m2, c1?m1.(1).c2!m2)

Node (22):
mt = (end!, ε)
ot = (start?.(1).c1!m1.(1).(1).c2?m2.(1).c2?m2.(1).end!, c1?m1.(1).c2!m2)

Node (23):
mt = (ε, ε)
ot = (start?.(1).c1!m1.(1).(1).c2?m2.(1).c2?m2.(1).end!, c1?m1.(1).c2!m2)

Node (24):
True

Node (17):
False

Node (8):
mt = ((1).c2?m2.(1).c2?m2.(1).end!, c1?m1.(1).c2!m2)
ot = (start?.(1).c1!m1.(1), ε)

Node (11):
mt = (c2?m2.(1).c2?m2.(1).end!, (1).c2!m2)
ot = (start?.(1).c1!m1.(1).(1), c1?m1)

Node (15):
False

Node (10):
mt = (c2?m2.(1).c2?m2.(1).end!, c1?m1.(1).c2!m2)
ot = (start?.(1).c1!m1.(1).(1), ε)

Node (13):
mt = (c2?m2.(1).c2?m2.(1).end!, (1).c2!m2)
ot = (start?.(1).c1!m1.(1).(1), c1?m1)

Node (14):
False

Node(12):
False

Figure 4.17: An execution of communication checking algorithm of [37] on a correct tuple of timed traces

4.3. A Baseline Approach to solve the Oracle Problem for Timed Distributed Systems

Communication checking algorithm of [37] returns the value True (that means ends with
success) when the tuple to be analyzed mt is the empty tuple (ε, . . . , ε) and the read
multitrace ot is identical to the complete initial multitrace (σc1, . . . , σ

c
n). For example, in

the node (24) we have succeeded to empty the initial tuple mt, hence, we end with True
at node (24). On the other hand, if the reading cannot be continued until reaching the
empty tuple, then the initial multitrace does not represent an observable multitrace and
the algorithm returns the value False.

The algorithm analyzes mt following two cases: either there exists a timed trace σi of mt
beginning with an action ai (i in {1, . . . , n}) (Case (1)), or a duration d can be read on all
admissible timed traces (Case (2)):

Case 1. An action ai can be read by the algorithm from σi. Hence, ai will be removed
from timed trace still to be read and added to the timed trace already read only if one of
following conditions if fulfilled:

� Action ai is a non-blocking reception from the environment. For example, in the node
(2), we have consumed start? as non-blocking reception from environment.

� Action ai is an emission toward the environment or other subsystems. For example,
in the node (6), we have consumed c1!m1 as non-blocking emission from Sys1 towards
Sys2. In the node (23), we have consumed end! as non-blocking emission towards
environment.

� Action ai is a reception of a message m on the channel c coming from one of the
other subsystems and the number of occurrences of ai in µi (elements already read
by the algorithm for the subsystem i) is strictly less than the number of emissions
already read by the algorithm (i.e the number of c!m occurring in ot) provided that
none of subsystems j (j 6= i) that can emit on the channel c has a trace fully read
i.e, ∀j| subsystem j can emit on c, σj 6= ε. For example, at node (6), we have a
valid internal reception c1?m1 observed at subsystem Sys2 because there is a sufficient
internal emissions c1!m1 observed at subsystem Sys1 and the trace σ1 is not fully
read.

� Action ai is a reception of a message m on the channel c coming from one of the other
subsystems and there exists a subsystem j that can emit on the channel c whose timed
trace is already fully read i.e, ∃j| subsystem j can emit on c, σj = ε. Indeed, when a
local tester does not wait enough to observe the whole local timed trace, algorithm to
check the observable multitrace property of [37] assume that the system can consume
the internal input in question if there exists a subsystem which can emit on the same
channel as the internal input’s channel and whose its observed timed trace is fully read
by the local tester in question. For example, at node (21), we have a valid internal
reception c2?m2 observed at subsystem Sys1 because the trace σ2 observed at Sys2 is
already fully read and subsystem Sys2 may send internal message m2 on channel c2.

In [37], the authors used the predicate FullyRead(chan(a),mt) which is True when there
exists j 6= i s.t subsystem j can emit on chan(ai) where chan(ai) is the channel of action
a) and the timed trace σj (occurring in mt) is the empty timed trace ε. This predicate is
used for both sub-cases (3) and (4).

65

4. A Distributed Testing Framework for Solving the Oracle Problem

Case 2. A duration d = 1 can be read by the algorithm if one of the non-empty timed
traces σi starts with a duration di > 0 and if for all timed traces σi starting with an action,
the reading of the timed trace has not been started yet, i.e. µi = ε. In this case, the duration
d is subtracted from all durations di occurring at the beginning of traces σi (di is simply
removed if di = 1) and added to the corresponding µi. For example, at node (4), we may
elapse duration (1) because the reading of timed trace σ2 has not been started yet. At node
(16), as we have already started the reading of σ1 and σ2, we must elapse time identically
for both subsystems Sys1 and Sys2.

Example Analysis

Communication checking algorithm of [37] applied on the latter example generates a
tree-like structure denoting all function calls that stand for couples created (mt, ot) where
ot is the tuple already ready of timed traces which constitutes an observable multitrace
and mt is the tuple to be read. Since there is no global clock but only local ones with no
drift, the algorithm considers all configuration of interleaving emissions and receptions of
different subsystems sharing the communication network. In this example, we note that
the execution generates 24 recursive calls. The algorithm of [37] aims naively to empty
elements of tuple mt and insert those elements into ot following rules to constitute an
observable multitrace. As the execution time of the algorithm depends on the number
of recursive calls, we note that this time will be clearly high if we choose to increase the
number of timed traces forming the tuple in question.

The latter analysis shows that the latter algorithm’s execution time depends naively on the
number of couples (mt, ot) generated after every call. This can have a direct consequence
to get this execution time increase clearly high. Hence, the question to ask is how to
improve the algorithm’s performance and then how to reduce its execution time.

Limitations of Algorithm presented in [37]

The algorithm of [37] for checking observable multitrace property presents an important
limitation in terms of combinatorial explosion problem. We discuss this issue and we give
a hint to a solution that avoids this problem in Section 4.4.2 when we introduce our new
approach for checking communication.

The algorithm presented in [37] to check valid communication pattern in a tuple of obser-
vations of a DS deals with time in a fully numerical manner and required the analysis of
all possible temporal synchronizations of local traces, one unit of time per unit of time;
clearly, this lead to a combinatorial explosion. A solution for resolve this problem is to
characterize the set of possible synchronizations in a symbolic manner, by constructing
constraints carrying on durations occurring in local traces, and so, combinatorial explosion
of the previous algorithm of [37] is circumvented.

Our contribution consists in proposing an algorithm for analysing tuples of observations
according to or communication rules. This algorithm expresses the communications policy
as a CSP and so standard constraint solvers can be used to solve it.

66

4.4. Constraint-based Oracle Algorithm

4.4 Constraint-based Oracle Algorithm

Herein, we introduce our distributed testing framework. As glimpsed in Section 4.1, a
distributed system is described as a collection of localised components exchanging data
through a communication network. To test distributed systems, we adapt and extend
centralized testing framework of [7] devoted to timed unitary testing and based on an
adaptation of conformance relation tioco [60, 61, 7]. Our associated testing architecture
is the same as the one presented in [37] described in Section 4.3.1. In short, local testers
have the power to observe what happens when localized subsystem communicate with
the environment through external channels and what happens when localized subsystems
communicate between them via the network through internal channels. Local testers are
in charge of analyzing local traces with respect to a TIOSTS model modeling the intended
behaviors of the localized subsystem to which it is connected. The global tester collects
local observation within a tuple and emits a global verdict relating to the correctness of the
distributed system w.r.t an adaptation of conformance relation dtioco [37]. As compared
to [37] the main difference in our approach [12] is that the global tester relies on constraint
solving techniques while in [37] it is based on enumeration techniques aiming at studying
all the possible ordering of communication actions.

The remaining of this chapter is structured as follows: In Section 4.4.1 we give our formal
preliminaries about the concepts of a valid communication in a distributed system. In
Section 4.4.3 we model a distributed system as a collection of communicating TIOSTSs and
we define an observation of a distributed SUT as a tuple of local timed traces as presented
in Definition 2.15. In Section 4.4.2 we introduce a new algorithm to decide if a distributed
observation respects a valid communication pattern based on constraint solving. Finally,
in Section 4.4.3.3 we give our definition of the distributed conformance relation dtioco.

4.4.1 Distributed Systems and Communication

4.4.1.1 Observation of a Distributed System

We now define a distributed interface as a collection of localised interfaces.

Definition 4.1 (Distributed interface). A distributed interface is a tuple Λ = (C1, · · · , Cn),
with n ≥ 1, where for all i ≤ n, Ci is a set of channels such that for any i 6= j we have
Couti ∩ Coutj = ∅. C(Λ), which is equal to

⋃
i≤nCi, is the set of channels of Λ with

C(Λ)in =
⋃
i≤nC

in
i and C(Λ)out =

⋃
i≤nC

out
i .

The condition Couti ∩ Coutj = ∅ ensures that for a channel c, messages emitted through c
can only be emitted from a unique sender to model one-to-many multicast communication
mechanism. This is a simplification hypothesis that makes the later formalisation lighter.

Definition 4.2 (Internal and External channels). Let Λ = (C1, · · · , Cn) be a distributed
interface. For a given localised interface Ci of Λ, Cinti defined as

⋃
{Ci ∩Cj |j ≤ n ∧ j 6= i}

is the set of internal channels of Ci. C
ext
i defined as Ci\Cinti is the set of external channels

of Ci.

In our distributed architecture, the set of internal channels is used to exchange messages
with other localised subsystems. On the other hand, the set of external channels is used to
exchange messages with the system environment.

67

4. A Distributed Testing Framework for Solving the Oracle Problem

Notation 4.1. Given a distributed interface Λ = (C1, · · · , Cn). We let Cint(Λ) de-
note

⋃
i≤nC

int
i , Cext(Λ) denote

⋃
i≤nC

ext
i , and Act(Λ) denote I(Λ) ∪ O(Λ) with I(Λ) =⋃

i≤n I(Ci) and O(Λ) =
⋃
i≤nO(Ci). Iint(Λ) (resp. Oint(Λ)) is the subset of I(Λ) (resp.

O(Λ)) whose elements are inputs (resp. outputs) through internal channels. We let
Actint(Λ) = Iint(Λ) ∪ Oint(Λ), Evt(Λ) = Evt(C(Λ)), and Evtintin (Λ) be the set of events
whose action is an internal input. For any c!v ∈ O(Λ), Sender(Λ, c!v) stands for the index
j such that c ∈ Coutj .

A distributed observation will be a tuple of timed traces where each timed trace represents
a local observation.

Definition 4.3 (Distributed observation). Let Λ = (C1, · · · , Cn) be a distributed interface.
A distributed observation is a tuple (σ1, . . . , σn) where each σi is in TTraces(Ci) with i ≤ n.
Tup(Λ) denotes TTraces(C1)× . . .×TTraces(Cn) is the set of all distributed observations
made over Λ.

Example 4.2 (Distributed interface and distributed observation). In Example 2.5 an
illustration of a TLC system is given. This TLC communicates with the environment to
perform some control and safety process. Herein, we model the environment as another
TLC which has a symmetric role as the central TLC. The collocation between the two TLCs
defines a so-called Train Control System (see Figure 4.18) that may be represented by a
distributed interface ΛTCS.

Figure 4.18: Train Control System Example

Distributed interface. A Train Control System (TCS) which is depicted Figure 4.19 as
two black-box communicating systems; is a system designed to ensure safety by monitoring
locations of trains and locomotives, providing analysis and reporting, and automation of
track warrants and similar orders. In this example we analyze a TCS involving two TLC
components, one per train (say train 1 and train 2), going in the same direction on a rolling
stock. The couple ΛTCS = (CTLC1 , CTLC2) defines a distributed interface through which
the two TLCs may communicate to ensure that the train on the rear side automatically
decreases speed as soon as the one in front of it is too close. The CTLCi is a localized
interface that is used for exchanging messages through external channels: starti, driveri and
emergencyModei for communicating with the environment and through internal channels:
posi for sending internal messages and pos3−i for receiving internal messages.

Namely, we have CextTLCi
= {starti, driveri, emergencyModei}, CintTLCi

= {posi, pos3−i} and

CTLCi = CextTLCi

∐
CintTLCi

with i in {1, 2}.

68

4.4. Constraint-based Oracle Algorithm

Figure 4.19: Distributed interface of the Train Control System as two communicating black
boxes: TLCi, for i = 1, 2

Distributed observation. An example of a distributed observation µ = (σ1, σ2) is depicted
in Figure 4.20.
µ = (σ1 = (1, start1?).(1, pos1!42).(3, pos2?300), σ2 = (2, start2?).(1, pos2!300).(2, pos1?42))
µ defined in Tup(ΛTCS) with σi a timed trace defined in TTraces(CTLCi) for i in {1, 2}.

Time trace σ1 corresponds to the following behavior: the train 1 starts its execution after
waiting 1 time unit from initialization and sends its relative position after that 1 time unit
elapses; then it is notified with the relative position of train 2 after 3 time units. Time
trace σ2 corresponds to the following behavior: the train 2 starts its execution after waiting
2 time units from initialization and sends its relative position after that 1 time unit elapses;
then it is notified with the relative position of train 1 after 2 time units.

?1start

42!1pos
?2start

42?1pos

)1(

300!2pos

)2(

1σ 2σ

)1(

)1(

300?2pos

)2(

)3(

Figure 4.20: An example of a distributed observation of TCS

In the sequel, a distributed interface Λ = (C1, . . . , Cn) is supposed given.

4.4.1.2 Valid Communication of a Distributed System

A valid observation of a distributed system is a tuple of local observations which respect a
set of communication rules transposed from [37] to fit with our definition of timed traces
based on events. We use the notion of a multi-trace, which is a tuple of timed traces

69

4. A Distributed Testing Framework for Solving the Oracle Problem

characterizing compatible communications between a collection of localised components as
follows:

� A tuple of timed traces with empty interactions is a multi-trace

� External events with non-blocking outputs are always sent to the environment.

� Extremal events with user inputs are never refused from the environment.

� Internal exchanged events between local components must respect a so-called causality
of communications. i.e.

– A nth occurrence of an internal input can be received if earlier at least n
occurrences of the corresponding output have already been sent.

In the following, we introduce some intermediate functions useful to the definition of
multi-traces.

Notation 4.2. For σ ∈ TTraces(C), dur(σ) denotes the duration of σ, which is 0 if σ
is ε, and otherwise is the sum of all delays of events in σ. Moreover, for an action a in
Act(C), |σ|a denotes the number of occurrences of a in σ. pref(σ, a, n) stands for the
smallest prefix of σ that contains n occurrences of a when this prefix exists. Finally, using
the pref operation, we introduce an operation that measures the elapsed time at the nth
occurrence of an event a from the beginning of the trace. By convention, if a trace contains
strictly fewer than n occurrences of a, then the associated duration is that of the entire
trace.

dur occ(σ, a, n) =

{
dur(pref(σ, a, n)) if pref(σ, a, n) exists
dur(σ) othewise

We define the notion of a multi-trace, which is a tuple of timed traces characterizing
compatible communications between a collection of localised components.

Definition 4.4 (Multi-traces). The set of initialized multi-traces of Λ, denoted IMTraces(Λ),
is the subset of ITraces(C1)× · · · × ITraces(Cn) defined as follows:

� Empty multi-trace: (ε, · · · , ε) ∈ IMTraces(Λ),

� multi-trace Extension: for any µ = (σ1, . . . , σn) ∈ IMTraces(Λ), for ev ∈
IEvt(Ci) for i ≤ n, (σ1, . . . , σi.ev, . . . , σn) ∈ IMTraces(Λ) provided that: if act(ev) ∈
I(Ci)∩Iint(Λ), we have |σj |act(ev)

≥ |σi|act(ev) +1 and dur occ(σj , act(ev), |σi|act(ev) +

1) < dur(σi.ev) with j = Sender(Λ, act(ev)).

The set UMTraces(Λ) of uninitialised multi-traces of Λ is {(u(σ1), · · · , u(σn))|(σ1, · · · , σn) ∈
IMTraces(Λ)}.
Finally, the set MTraces(Λ) of multi-traces of Λ is the set UMTraces(Λ)∪IMTraces(Λ).

An empty multitrace whose all elements denote empty sequences corresponds to no inter-
action having occurred with the environment. We can extend a multitrace by adding to
any trace either an input from the environment or an output. Outputs are considered as
non-blocking when sent to the environment and when sent to other localized subsystems of
the distributed system. There are two fundamental types of communications: internal ones
are on shared channels and external ones that concern the local interfaces. We consider an

70

4.4. Constraint-based Oracle Algorithm

internal communication as one- to-many multicast: This means that a message sent (from
a unique sender) can be caught by the multiple receivers who might listen on the channel
in question. Finally, a message cannot be received more often than the total number of
emissions in the system provided that time elapses in the same manner for all local interfaces.

Initialized multi-traces denote tuples of traces observed at local interfaces given a common
distributed execution. Each timed trace occurring in an initialized multi-trace starts with
an event introducing a duration. All those durations are supposed to start at a common
initial instant. Yet, in the context of communicating distributed systems, it is generally
not possible to observe a common initial instant which synchronises distributed executions.
Indeed, there is no global clock for ordering distributed events but only local clocks to
order events on localized interfaces. Therefore, we define uninitialized multi-traces as the
tuple of distributed observations in which the initial durations are not observable.

Example 4.3 (Multi-traces). From Example 4.2 we have that tuple of timed traces
µ = (σ1, σ2) defines a distributed observation defined in Tup(ΛTCS).

Initialized multi-traces. The tuple µ is an initiated multi-trace in IMTraces(ΛTCS) since
there is an initial observable instant at the beginning of timed traces σ1 and σ2and since it
respects valid communication pattern described in Section 4.4.1.2. Indeed, µ corresponds to
a situation in which all receptions have been preceded by an emission; in particular, there
are exactly as many emissions as receptions, and measured duration to observe a reception
is indeed strictly greater than observed duration before sending input corresponding to the
reception in question. For instance, we need 4 time units before that we receive position of
train 2 (observation of action pos2?300 in σ1), this reception is indeed possible when we
have emission of position of train 2 after elapsing 3 time units in σ2 (observation of action
pos2!300 in σ2) and we have 4 > 3.

Uninitialized multi-traces. As it is generally not possible to observe a common initial
instant, we may consider all configurations for different initial moments of each subsystems
and then multiple configurations of the uninitialized multi-traces. we define µ′ = (σ′1, σ

′
2)

as an uninitialized multi-trace (see Figure 4.21 for the two possible configurations). µ′ in
UMTraces(ΛTCS) where:

� σ′1 = u(σ1) = (, start1?).(1, pos1!42).(3, pos2?300)

� σ′2 = u(σ2) = (, start2?).(1, pos2!300).(2, pos1?42)

We note that both µ and µ′ are in MTraces(ΛTCS), the set of all multi-traces.

71

4. A Distributed Testing Framework for Solving the Oracle Problem

?1start

42!1pos
?2start

42?1pos

)1(

300!2pos

)2(

'
1σ

'
2σ

)1(

300?2pos

)3(

?1start

42!1pos
?2start

42?1pos

)1(

300!2pos

)2(

'
1σ

'
2σ

)1(

300?2pos

)3(

(a)

?1start

42!1pos
?2start

42?1pos

)1(

300!2pos

)2(

'
1σ

'
2σ

)1(

300?2pos

)3(

?1start

42!1pos
?2start

42?1pos

)1(

300!2pos

)2(

'
1σ

'
2σ

)1(

300?2pos

)3(

(b)

Figure 4.21: Multiple configurations for uninitialized multi-trace µ′

In distributed testing [37], we assume that there is a separate tester at each localized
interface and there is no global clock for globally ordering distributed events. Hence, we
cannot make any assumption on the different moments at which the different local testers
stop observing their associated interfaces. To capture this, we accept as valid observations,
tuples made of multi-trace prefixes.

Definition 4.5 (Observable multi-traces). The set of initialised observable multi-traces of
Λ, denoted IOTraces(Λ), is the smallest set containing IMTraces(Λ) and such that for
any (σ1, · · · , σi.ev, · · · , σn) ∈ IOTraces(Λ) we have (σ1, · · · , σn) ∈ IOTraces(Λ).
The set of uninitialised observable multi-traces of Λ, denoted UOTraces(Λ), is the set
{(u(σ1), · · · , u(σn))|(σ1, · · · , σn) ∈ IOTraces(Λ)}.
Finally, the set OTraces(Λ) of observable multi-traces of Λ is the set UOTraces(Λ) ∪
IOTraces(Λ).

Initialised observable multi-traces characterize observations starting at a common initial
instant but ending at different instants depending on the considered component of the
interface. Of course, since there is a common initial instant it is possible to order the
moments at which the observations of the different traces of the tuple occur (σi ends
before σj if dur(σi) < dur(σj)). However, as for multi-traces, in general, such an initial
instant cannot be identified in testing. Therefore, real observations of system executions
should be defined by tuples containing only uninitialised timed traces, which is captured
by uninitialised observable multi-traces.

Example 4.4 (Observable multi-traces). We have that tuple of timed traces µ = (σ1, σ2)
defines an initialized multi-trace in IMtraces(ΛTCS). As we cannot make any assumption
on the different moments at which the different local testers stop observing their associated
interfaces, we define σpref1 = (1, start1?).(1, pos1!42) as a prefix of σ1; we have then

µpref = (σpref1 , σ2) is an initialized observable multi-trace in IOTraces(ΛTCS). As in
the case of uninitialized multi-traces, we define µ′′ = (σ′′1 , σ

′′
2) (see Figure 4.22) as an

uninitialized observable multi-trace in UOTraces(ΛTCS) where:

� σ′′1 = u(σpref1) = (, start1?).(1, pos1!42)

72

4.4. Constraint-based Oracle Algorithm

� σ′′2 = u(σ2) = (, start2?).(1, pos2!300).(2, pos1?42)

We note that both µpref and µ′pref are in OTraces(ΛTCS), the set of all observable multi-
traces.

?1start

42!1pos
)1(

)2(

''
1σ

''
2σ

)1(

N
o
n

 o
b
s
e
rv

a
b

le
 p

o
rt

io
n

300!2pos

?2start

42?1pos

Figure 4.22: An example of an observable multi-trace

4.4.2 Constraint-based analysis for Communication Checking

Approach overview

Figure 4.23: Constraint-based process for Communication Checking

In our approach for communication checking (as depicted in Figure 4.23), we use a
constraint-based analysis for analyzing tuples of timed traces and checking whether or
not those tuples satisfy the property of being an observable multitrace. This problem is
formalized as a CSP [88] and so a standard constraint solver can be used (for example
CVC4 [9], Yices2 [28] or Z3[26]).

73

4. A Distributed Testing Framework for Solving the Oracle Problem

Intuitively, our technique is based on the following intuition: any uninitialised observable
multi-trace µ = (σ1, · · · , σn) is such that each σi is either empty or of the form (, ai).σ

′
i.

Furthermore, µ has been obtained from an initialised observable multi-trace of the form
µ′ = (σ′′1 , · · · , σ′′n) where σ′′i is ε if σi is ε and of the form (di, ai).σ

′
i if σi is of the form (, ai).σ

′
i.

Therefore, for some ev ∈ Evtintin (Λ) and for some (σ1, · · · , σn) ∈ UOTraces(Λ), one can
decide whether (σ1, · · · , σi.ev, · · ·σn) ∈ UOTraces(Λ) by determining whether there exists
such durations d1, · · · , dn satisfying µ′′ = (σ′′1 , · · · , σ′′i .ev, · · ·σ′′n) ∈ IOTraces(Λ).

Based on this principle, we will consider that those symbolic durations exist if by considering
them as n variables d1, · · · , dn typed in D, we are able to construct a constraint on those
variables characterizing these properties. More precisely, we construct a constraint such
that each interpretation of {d1, · · · , dn} that satisfies the constraint can be used to define
such an initialised observational multi-trace µ′′. In the sequel, we present formally the
algortihm to check valid communication in a distributed observation.

Constraint-based Algorithm

We introduce our constraint-based approach for checking communication of a distributed
system. We propose a (new) algorithm which expresses the communications policy as a
constraint satisfaction problem and so a standard constraint solver can be used to check
communication of a distributed system.

Comunication

verdict

computation

System

Communication Rules

),...,,...,1(ni σσσTuple of traces

comPASS

comFAIL

Figure 4.24: Communication testing algorithm and produced verdicts

For a tuple of timed traces µ = (σ1, . . . , σn) we may check its so-called observable multitrace
property, by implementing the function:

ComChekΛ : Tup(Λ)× {d1, . . . , dn} → {PASScom, FAILcom}

As presented in Figure 4.24, the process to check valid communication pattern in a dis-
tributed observation µ returns a verdict V erdictcom in the set of keywords {PASScom, FAILcom}
as follows:

� V erdictcom is PASScom: if and only if µ ∈ UOTRaces(Λ).

� V erdictcom is FAILcom: if and only if µ /∈ UOTRaces(Λ).

The goal of Algorithm 1 is to check whether those observations reveal communication errors
by checking whether they are in UOTraces(Λ). Algorithm 1 is based on the property that
an uninitialised observable multi-trace µ = (σ1, · · · , σn) is such that each σi is either empty
or of the form (, ai).σ

′
i, but in the latter case µ has been obtained from an initialised

74

4.4. Constraint-based Oracle Algorithm

Algorithm 1: ComChekΛ(µ, d): An algorithm to check valid communication pattern

Data: µ = (σ1, · · · , σn) tuple of timed traces, Λ distributed interface
Result: a verdict stating whether or not µ is an observable multi-trace

1 begin
2 E ← ∅;
3 for i ∈ [1 · · ·n] do
4 ρ← ε ;
5 foreach ev ∈ σi do
6 ρ← ExtendC(ρ, ev) ;
7 if act(ev) ∈ I(Cint(Λ)) then
8 a← act(ev);

9 j ← Sender(Λ, act(ev));
10 E ← E ∪ {(di + dur(ρ) > dj + dur occ(σj , a, |ρ|a)}/* E ∈ FΩ({d1, · · · , dn})

*/;
11 if ¬IsSat(E) then
12 return FAILcom /* It’s not an observable multi-trace */;

13 return PASScom /* It is an observable multi-trace */;

observable multi-trace of the form µ′ = (σ′′1 , · · · , σ′′n) where σ′′i is ε for σi = ε and of the
form (di, ai).σ

′
i for σi of the form (, ai).σ

′
i. Thus, (σ1, · · · , σi.ev, · · ·σn) ∈ UOTraces(Λ) if

and only if there exist durations d1, · · · , dn where µ′′ = (σ′′1 , · · · , σ′′i , · · ·σ′′n) ∈ IOTraces(Λ).

We check whether such durations exist by considering them as n variables d1, · · · , dn
(of type D); we construct constraints on these variables characterizing the properties of
observable traces (line 10). By definition, only the occurrence of an internal input might
break the property. There are two reasons for allowing an initialised observable multi-trace
to be extended by an internal input. The first is that a sufficient number of corresponding
internal outputs have previously been emitted. The second is that at the time when the
extension is performed, the trace emitting the corresponding internal output is no longer
observed.

If σi is the trace extended by internal input a, ρ = σi.a (line 6) and σj is the trace at the
interface that sends a (line 9), the first case correspond to situation in which pref(σj , a, |ρ|a)
exists and C: di + dur(ρ) > dj + dur occ(σj , a, |ρ|a) holds.

The latter case corresponds to situations in which pref(σj , a, |ρ|a) does not exist and C ′:
di + dur(ρ) > dj + dur(σj) holds. However, by definition of dur occ, when pref(σj , a, |ρ|a)
does not exist we have that dur occ(σj , a, |ρ|a) = dur(σj), which means that the constraints
C and C ′ are equivalent. Therefore both cases can be treated in the same way by requiring
that C holds, as is done in Algorithm 1. Every new constraint to be considered is added
to the set E (line 10).

Example 4.5 (Checking communication in a distributed observation). In the following,
we apply Algorithm 1 for checking communication on tuple of timed traces µ′′ = (σ′′1 , σ

′′
2)

defined in Example 4.4 as an uninitialized observable multi-trace (see Figure 4.25(a)).

To check communication in µ′′ by using Algorithm 1, we first consider symbolic durations

75

4. A Distributed Testing Framework for Solving the Oracle Problem

d1, d2 in Vtime and build the initialized tuple of timed traces (as depicted in Figure 4.25(b)):

µ′′init = (σ′′1init , σ
′′
2init

) where:

� σ′′1init = (d1, start1?).(1, pos1!42)

� σ′′2init = (d2, start2?).(1, pos2!300).(2, pos1?42)

We check communication in µ′′ by determining whether there exists such durations d1, d2

in D satisfying µ′′init ∈ IOTraces(ΛTCS). Based on this principle, our algorithm analyses
tuple of traces µ′′, detects the only internal reception (2, pos1?42) and construct the con-
straint d2 + 1 + 2 > d1 + 1 relating the principle stating that in a multi-trace every internal
reception must be observed before that its corresponding internal emission has been observed.

We have then, tuple µ′′ is correct form communication perspective if and only if there exists
d1, d2 in D such that d2 + 1 + 2 > d1 + 1 is satisfiable. In this case, a standard constraint
solver (as Yices2) can be used to solve this problem and find for example interpretations,
d1 = 1, d2 = 1 that may be a solution.

?1start

)1(

42!1pos
?2start

42?1pos

)1(

300!2pos

)2(

1d
2d

N
o
n
 o

b
s
e
rv

a
b
le

 p
o
rt

io
n

?1start

)1(

42!1pos
?2start

42?1pos

)1(

300!2pos

)2(

"
1init

σ "
2init

σ

N
o

n
 o

b
s
e
rv

a
b
le

 p
o

rt
io

n

''
1σ

''
2σ

(a)

?1start

)1(

42!1pos
?2start

42?1pos

)1(

300!2pos

)2(

"
1init

σ
1d

2d
"
2init

σ

N
o
n
 o

b
s
e
rv

a
b
le

 p
o
rt

io
n

?1start

)1(

42!1pos
?2start

42?1pos

)1(

300!2pos

)2(

"
1init

σ "
2init

σ

N
o

n
 o

b
s
e
rv

a
b
le

 p
o

rt
io

n

(b)

Figure 4.25: Communication checking of tuple of traces µ′′init using Algorithm 1

4.4.3 Modeling Timed Distributed Systems and Conformance relation

In this section we present our theoretical testing framework, that is how we denote
distributed system specifications (distributed specifications for short), distributed systems
under test and give the definition of our conformance relation.

76

4.4. Constraint-based Oracle Algorithm

4.4.3.1 Distributed Specification

The next definition captures the notion of distributed specification and its associated
semantics. We define distributed specifications over distributed interfaces as tuples of
communicating TIOSTSs.

Definition 4.6 (Distributed Specification). Let Λ = (C1, · · · , Cn) be a distributed interface.
A distributed specification over Λ is a tuple Spec = (G1, · · ·Gn) such that for all i ≤ n we
have Gi is a TIOSTS over a signature of the form Σi = (Ai, Ti, Ci). The semantics of Spec,
denoted OTraces(Spec) is defined as (TTraces(G1)×· · ·×TTraces(Gn))∩UOTraces(Λ).

Example 4.6 (Distributed specification). In Example 4.2 we defined the distributed in-
terface ΛTCS = (CTLC1 , CTLC2). Herein, we model a TCS distributed specification as two
communicating TLCs: TLC1 and TLC2 . A TLCi is a TIOSTS communicating through
localized interface CTLCi as described in Example 2.5.

The symbol i should be replaced by two possible values, 1 and 2. The distributed specification
TCS = (TLC1, TLC2) as depicted in Figure 4.26 ensures that the train on the rear side
automatically decreases speed as soon as the one in front of it is too close. The relative
position of trains is given by their positions, which can be accessed by consulting the value of
variable pi: if p1 < p2, then train 1 is behind train 2. The TLCi is an automata containing
4 states (qi0 the initial state, qi1 , qi2 and qi3), communicating through CTLCi and having 4
data variables (acci in {−1, 0, 1} for the acceleration of the train, vi for the speed of the
train, pi for the position value of the train, p′i for the estimation of the position of the other
train) and 2 clocks (wi, which is reset at each emission of the position and w′i, which is
reset at each reception of the position of the second train).

iq0

iq1

{ }

0
'

0
?
',

)3(
a

a

a

a

i

ii
ii

i
i

ii

v
initp
initp

acc
start

ww

−
ii

i
accdriver

w
?
]10'[<

iq2

{ }

ii
iiiiii

iiii
i

i
i
i

ppos
waccwvpp

waccvv
acc

cond
w
w

!
'**)2/1()'*(

'*
1
][

10'

2++
+

¬
<

a

a

a

{ }

ii
iiiiii

iiii
i

i
i
i

ppos
waccwvpp

waccvv
acc
cond
w
w

!
'**)2/1()'*(

'*
1

][
10'

2++
+
−

<

a

a

a

iq3

{ }
'?

10
'

)3(ii

i

i

ppos
w
w

−

<

trueodeemergencyM
w

i

i
!

10≥

t1

0q

1q

{ }

0

0
?
',

22
11

←v
initp
initp

acc
start

ww

a

a

a

accdriver
w

?
]10'[<

2q

t5
t3

t2

t4

{ }

2
11

11

'*)2/1()'*(
'*)1(

)1(
!
][

]10'[

wwvpp
wvv

acc
ppos

cond
w
w

−+
−+

−

<

a

a

a

3q

t6

{ }

22 ?
]10[

'

ppos
w
w

<

trueodeemergencyM
w

!
]10[≥

{ }

2
11

11

'**)2/1()'*(
'*

1
!

][
]10'[

waccwvpp
waccvv

acc
ppos

cond
w
w

++
+

¬
<

a

a

a

t7

accdriver
w

?
]10[<

d

d

it1

d

d

it4d

d

it3

d

d

it2

d

d

it6

d

d

it5

ii

i
accdriver

w
?
]10[<

d

d

it7

TLCi, for i = 1, 2
With: init1 = 42 and init2 = 300 and condi ≡ (pi < p′i) ∧ pi ≤ (vi ∗ 20) + 200

Figure 4.26: Distributed Specification of the Train Control System

77

4. A Distributed Testing Framework for Solving the Oracle Problem

We recall that a TLCi specifies the following behavior: After an initialization phase, the
train of interest sends its position to the other train, and in return, the other train is
supposed to send its position. In this loop, two consecutive communication actions are
supposed to be separated by a delay of less than 10 units of time. If the remote train does
not send its position on time, the local train goes into an emergency mode (not detailed
here). At any moment in the loop, the driver may ask to modify the train acceleration. The
new value is taken into account only if it does not affect the safety of the system (safety is
threatened if condition ρ holds, that is, the distance between trains is less than the distance
that can be covered by the rear train with the current acceleration). If safety is threatened,
then the acceleration of the rear train is set to -1 in order to reduce its speed.

4.4.3.2 Distributed System Under Test

Similarly to distributed specifications, a Distributed System Under Test (DUT) is defined
as a tuple of SUTs (as introduced in Definition 3.1).

Definition 4.7 (Distributed System Under Test). Let Λ = (C1, · · · , Cn) be a distributed
interface. A DUT over Λ is a tuple DS = (LS1, . . . ,LSn) where for all i ≤ n we have LSi
is an System Under Test defined over Ci. Moreover, DS is associated with a semantics
denoted as a set Obs(DS) ⊆ LS1 × · · · × LSn. Elements of Obs(DS) are called distributed
executions of DS.

Obs(DS) is a mathematical object representing all the possible executions of DS. As such
it is naturally defined as a subset of LS1 × · · · × LSn. However, note that some tuples
in Obs(DS) may reveal communication faults due to a faulty communication network.
Therefore we may not assume that we have Obs(DS) ⊆ UOTraces(Λ).

4.4.3.3 The dtioco Conformance Relation

In this section, we introduce a slightly adapted version of the conformance relation dtioco
[37] that grounds our distributed testing framework. In our testing architecture, we made
the assumption that for each localised interface, there is a local tester that controls external
inputs at this interface and observes external outputs as well as internal inputs and outputs.
Therefore, at each localised interface Ci, the corresponding tester does not interact with
the full SUT LSi, but it rather interacts with LSi in the context of the system DS. This
restriction of LSi consists in all the traces of LSi that occur in at least one tuple of Obs(DS).
This restriction is in our context defined as follows.

Definition 4.8 (SUT projection). Let DS = (LS1, . . . ,LSn) be a DUT defined over Λ.
The projection of LSi on DS is the SUT LSi|DS defined over Ci that contains all timed
traces σ s.t. there exists (σ1, . . . , σi, . . . , σn) in Obs(DS) with σ = σi.

We now introduce the conformance relation dtioco.

Definition 4.9 (dtioco). Let Spec = (G1, . . . ,Gn) and DS = (LS1, . . . ,LSn) be resp. a
distributed specification and a DUT over the same interface Λ.
DS dtioco Spec if and only if:

Local conformance: ∀i ≤ n,LSi|DS tioco Gi and,

Communication correctness: Obs(DS) ⊆ UOTraces(Λ).

78

4.5. Implementation: Distributed Testing by Orchestration

Note that in [37], the dtioco definition was given in a different manner which consisted
mainly in transposing the tioco definition to observable multitraces. Then a formulation very
similar the one in Definition 4.9 was given by means of a theorem claiming DS dtioco Spec
was equivalent to local conformance and communication correctness. For sake of simplicity
here, we directly defined dtioco based on those two properties reflecting precisely our two
steps testing process:

� Centralized testing of each projection of LSi on DS using conformance relation tioco
as introduced in Definition 3.2,

� Checking the correctness of internal communications to satisfy the observable multi-
trace property.

Section 4.5 presents the implementation of this testing process.

4.5 Implementation: Distributed Testing by Orchestration

Herein, we describe our implementation framework for distributed testing where an observa-
tion made in testing is a tuple of timed traces: one timed trace for each location. We focus
on the problem of producing an automated solution to the oracle problem. The verdicts
are produced according to the dtioco conformance relation as introduced in Definition 4.9.
Producing those verdicts requires carrying out two activities: the (standard) problem
of checking each local trace against its corresponding model (according to tioco); and
checking that the tuple of timed traces conforms to a valid communication pattern. For
that reason, the results produced by our algorithm will consist of a local verdict associ-
ated to each timed trace and a communication verdict associated to the tuple of timed traces.

To solve the standard problem of checking each local observation against the corresponding
model, we use our laboratory tool: DIVERSITY [27] which offers MBT facilities based on SE
technique. An algorithm was implemented in DIVERSITY [7] for off-line centralized testing.
The implementation of this latter algorithm follows rules of the algorithm presented in [7]
to compute a verdict. Furthermore, the implementation was developed in a way that a user
has the ability to whether declare a test purpose or not, so to have a complete set of verdicts
as presented in [7] when considering a test purpose in testing or a restricted set of verdicts
as we presented in Chapter 3 when we do not consider a test purpose. To match our off-line
testing framework presented in Chapter 3 we used the implementation without test purpose.

To solve the problem of checking that a tuple of timed traces conforms to a valid com-
munication pattern, we give an implementation of Algorithm 1 to check communication
in a distributed observation which translates the latter problem in terms of a constraint
satisfaction problem so that an SMT-solver can be used to solve the problem.

Figure 4.27 depicts our implementation which orchestrates the different trace analysis
processes previously discussed. Its constituents will be detailed in the remaining of that
section.

79

4. A Distributed Testing Framework for Solving the Oracle Problem

Comunication

verdict

computation

System

Communication Rules

),...,,...,(1 nl σσσTuple of traces

Local verdict

computation

0η

1η 2η

3η
4η 5η 6η

Symbolic

execution tree

lσExecution trace

0q

1q

2q

TIOSTS

model

Symbolic

execution

{ }
{ }

∈
∈≤≤∀

=

comcomcom

llli

comnG

FAILPASSVerdict

INCONCFAILPASSVerdictnl
whereVerdictVerdictVerdictVerdict

,

,,,1
:),,...,(1

comPASS

comFAIL

PASS

FAIL

INCONCDIVERSITY

instance

DIVERSITY process

DIVERSITY process

DIVERSITY process

1

l

n

Algorithm 1

implementation

process

lG)(lGSEδ

GVerdict

Figure 4.27: Implementation framework work-flow for distributed testing by orchestration

4.5.1 Off-line Centralized Testing

DIVERSITY [27, 5] is a multi-purpose and customizable platform for formal analysis based
on symbolic execution. It has been designed for the purpose of managing the diversity of
different semantics, but also the diversity of possible analysis based on symbolic execution
(test generation, proof, deadlock search, etc.). DIVERSITY provides a pivot language called
eXecutable Language for Interaction and Assemblage (xLIA) which is a generic language
with a wide variety of primitives. xLIA has previously been used to encode specifications in
SDL [93], UML statemachines [91], Simulink stateflow [1], etc. In particular, xLIA supports
classical automata syntax involving symbolic data and communication actions. In our case,
we encode the TIOSTS formalism with xLIA. We illustrate in Figure 4.28 an example of cod-
ing a transition with timing constraint depicted in Figure in DIVERSITY platform. We re-
call that a transition is defined by a tuple (q,T, φt, φd, act, q′) (see Definition 2.7). Consider a
transition trans = (SourceState, {clk}, clk ≤ TIMEOUT, True, c?x, TargetState). The
action of tr is an reception of a symbolic variable x through channel c, T contains time
variable clk, tr is executed provided that clk ≤ TIMEOUT is True and there is no data
guard for tr (φd is true).

0 state SourceState {

1 transition trans --> TargetState {

2 input c(x);

3 tguard(clk <= TIMEOUT);

4 }

5 }

Figure 4.28: xLIA code for a symbolic transition

DIVERSITY employs symbolic execution techniques to generate a symbolic tree which
represents all the possibles executions of the system. The symbolic tree is obtained by
simulating the system specification with input symbols rather than concrete values for
data. Each path of the tree has a constraint on input symbols, for the execution to follow
that particular path. Sequences of concrete test inputs are computed by solving these path
conditions using a constraint solver. For that purpose, DIVERSITY integrates solvers such

80

4.5. Implementation: Distributed Testing by Orchestration

as CVC4 6[9], Yices2 7[28] and Z3 8[26].

Based on those symbolic execution facilities, an off-line centralized testing algorithm for
tioco is already implemented in DIVERSITY. It produces different verdicts V erdict ∈
{PASS, FAIL,WEAK PASS, INCONCi, INCONCr} (see Section 3.2.1). It is possible
to edit a configuration file in DIVERSITY in order to relax some input parameters of
the algorithm, for example, to avoid considering the test purposes. We used such a
configuration of DIVERSITY where we do not consider a test purpose. The only inputs
of our restricted testing algorithm are the reference TIOSTS model and a timed trace to
be analyzed. It produces a verdict in the set of keywords {PASS, FAIL, INCONC} as
discussed in Section 3.2.2.4 (see Figure 3.6):

� Verdict is FAIL when an event with an unspecified output or delay is read from σ.

� Verdict is PASS when there is a path in SE(G)δ covered by σ.

� Verdict INCONC when an unspecified input is read from σ.

4.5.2 Communication Checking

In this section, we present our implementation of Algorithm 1 for checking communication
of distributed systems. We have chosen Java as our main programming language and Eclipse
as its developing tool for their flexibility. Figure 4.29 describes our implementation process
for Algorithm 1. In the sequel, we present main functions that are used to implement
Algorithm 1 to check the observable multitrace property.

Figure 4.29: Implementation process of Algorithm 1

Main functions in our implementation framework are implemented within Java classes.
Each class incorporates so-called attributes which denote variables and methods that are
used when a class is instantiated as an object.

Table 4.1 describes those main functions and their associated packages.

6http://cvc4.cs.stanford.edu/web/
7http://yices.csl.sri.com/
8https://z3.codeplex.com/

81

4. A Distributed Testing Framework for Solving the Oracle Problem

Function Package Description

XML2DInterface DInterface
Read an XML file containing information of a distributed interface

and build its distributed interface object

XML2DObservation DObservation
Read an XML file containing information of a distributed observation

and build its distributed observation object

CheckConformance CheckCom Checks conformance between a distributed observation and a distributed interface

DObservation2MapTab CheckCom
Read elements of a distributed observation and build a mapping table

which associates each internal event of a trace
with its duration measured form initialization

BuildConstraint CheckCom
Constructs a constraint on the detection of an event

whose action is an internal input at some designated place
in a distributed observation

DObservation2CSP CheckCom
Read elements of the mapping table associated with a distributed observation

and build a file (in SMT-Lib) format containing the set of constraints
related to the observation of the reception of each internal event

Table 4.1: Main functions used in our implementation framework to check communication

Distributed Interface Implementation

Package DInterface has a central class which includes one single attribute used to store data
of a distributed interface after the reading of an XML file. The constructor of this class
takes as argument XML file’s name which stores the distributed interface data. Thanks
to the use of an open source library from Java Application Programming Interface (API)
for parsing XML files9, The parser traverses the XML file and creates the corresponding
Document Object Model (DOM)10 nodes. These DOM objects are linked together in a
tree structure. Once the parser is done, the user gets this DOM object structure back from
it. Then we can traverse the DOM structure back and create the distributed interface object.

Here is an example of an XML file including a distributed interface data, and a DOM tree
that illustrates the principle of turning XML into DOM:

Listing 4.1 depicts an example of XML file of TCS distributed interface illustrated in
Example 4.2.

Listing 4.1: XML file containing a distributed interface description

<?xml version="1.0"?>

<DInterface name="TCS">

<LInterface name="TLC1">

<extern>

<chan type="signal">start1:?</chan>

<chan type="real">driver1:?</chan>

<chan type="boolean">emergencyModel1:!</chan>

</extern>

<intern>

<chan type="real">pos1:!</chan>

<chan type="real">pos2:?</chan>

</intern>

</LInterface>

<LInterface name="TLC2">

9see: http://docs.oracle.com/Javase/tutorial/jaxp/dom/readingXML.html
10The Document Object Model provides API that let the programmer create, modify, delete, and

rearrange nodes

82

4.5. Implementation: Distributed Testing by Orchestration

<extern>

<chan type="signal">start2:?</chan>

<chan type="real">driver2:?</chan>

<chan type="boolean">emergencyModel2:!</chan>

</extern>

<intern>

<chan type="real">pos1:?</chan>

<chan type="real">pos2:!</chan>

</intern>

</LInterface>

</DInterface>

The corresponding DOM structure of Listing 4.1 is depicted in Figure 4.30:

DInterface

LInterface

intern

chanchan

extern

chanchanchan

LInterface

intern

chanchan

extern

chanchanchan

Figure 4.30: DOM generated after parsing XML file containing a distributed interface data

We give the corresponding output captured from Eclipse console as follows:

Distributed Interface "TCS":

0) Localized interface "TLC1":

External channels: [start1:?:signal, driver1:?:real, emergencyMode1:!:boolean]

Internal channels: [pos1:!:real, pos2:?:real]

1) Localized interface "TLC2":

External channels: [start2:?:signal, driver2:?:real, emergencyMode2:!:boolean]

Internal channels: [pos1:?:real, pos2:!:real]

Distributed Observation Implementation

Package DObservation has a central class package which includes one main class with one
single attribute used to store data of a distributed observation from the reading of an XML
file. The parser traverses the XML file and creates the corresponding DOM object which
in its turn is used to generate the distributed observation object.

Listing 4.2 depicts the XML file of distributed observation illustrated in Example 4.4.

Listing 4.2: XML file containing a distributed observation data

<?xml version="1.0"?>

<DObservation dinterface="TCS">

<trace linterface="TLC1">

<event><duration>0</duration><action type="signal">start1?</action></event>

<event><duration>1</duration><action type="real">pos1!42</action></event>

</trace>

<trace linterface="TLC2">

<event><duration>0</duration><action type="signal">start2?</action></event>

<event><duration>1</duration><action type="real">pos2!300</action></event>

<event><duration>2</duration><action type="real">pos1?42</action></event>

</trace>

</DObservation>

83

4. A Distributed Testing Framework for Solving the Oracle Problem

The corresponding DOM structure of Listing 4.2 is depicted in Figure 4.31:

DObservation

trace

event

actionduration

event

actionduration

event

actionduration

trace

event

actionduration

event

actionduration

Figure 4.31: DOM generated after parsing XML file containing multitrace data

We give the corresponding output captured from Eclipse console as follows:

Tuple Of Traces TCS:[

TLC1:(_,start1?).(1,pos1!42),

TLC2:(_,start2?).(1,pos2!300).(2,pos1?42)

]

Communication Checking Implementation

In implementation of our communication checking algorithm, given a distributed interface
Λ = (C1, . . . , Cn), we provide a tuple of timed traces µ = (σ1, . . . , σn) defined in Tup(Λ)
with an a hash map used to associate each timed trace σi defined in TTraces(Ci) with a
array containing the duration measured from initialization of each internal input that might
be received by localized interface Ci. This associative array11 is updated in an iterative
manner by analysing all elements of µ as follows: for a timed trace σi in µ, when encountering
an event with input internal action act to be multicasted to localized interfaces Cj that
might receive it (with j 6= i), we measure the duration from initialization of act and add it to
the array associated with σj (with j 6= i). In this way, Our implementation of Algorithm 1
to check the observable multitrace property of µ may then easily analyse elements of
µ and build the constraint associated to each detection of an internal communication
between elements of µ. It builds a file (written in an SMT-Lib format[10]) that contains
all constraints built after completely reading the tuple of traces µ.

Example 4.7. To check distributed observation µ illustrated in Section 4.5.2, our imple-
mentation associates µ with the mapping table depicted in Table 4.2.

Trace Mapping Table

TLC1 [pos2!300:{1}]

TLC2 [pos1!42:{1}]

Table 4.2: Mapping associated with tuple of traces of Example 4.4

Listing 4.3 depicts a the corresponding SMT-Lib file created after execution of our imple-
mentation of Algorithm 1.

Listing 4.3: Output from Eclipse console after checking distributed observation of Exam-
ple 4.4

11An associative array is an abstract data type composed of a collection of (key, value) pairs, such that
each possible key appears at most once in the collection.

84

4.5. Implementation: Distributed Testing by Orchestration

(set-option :produce-models true)

(set-logic QF_LRA)

(declare-fun d1 () Real)

(declare-fun d2 () Real)

(assert (> d1 0))

(assert (> d2 0))

(assert (> (+ d1 1) (+ d2 3)))

(check-sat)

(get-model)

(exit)

Finally, an external call of an SMT-solver like CVC4, Z3 or Yices2 may solve the problem by
finding an interpretation of symbolic duration that satisfies the formula built in Listing 4.3.
Otherwise, the solver may return an error code.

Implementation of Algorithm 1 in Java is presented in Appendix C. In Appendix C.1, we
present Java source code of function BuildConstraint to build a constraint on the detection
of an internal input in a distributed observation. Appendix C.2 present Java source code
of function DObervation2CSP which translate the problem of checking communication in a
distributed observation into a CSP by building a file written in SMT-Lib format containing
all constraints built on the detection of each internal input.

Evaluation

First, note that a class for carrying out unitary validation of all previous packages is also
implemented. Our new algorithm to check communication in a distributed observation is
more efficient than the one presented in [37]. Indeed, we have avoided the combinatorial
problem of the algorithm of [37] by translating the problem of checking an observable
multitrace property in a tuple if traces into a constraint satisfaction problem and so an
SMT-Solver may return a solution. To validate the efficiency of our implementation in
Java, we encountered a difficulty in measuring the execution time of the main function.
The problem is that execution time was, in fact, different at each function run in Java
and in a huge range. Professional engineer-testers report that benchmarking is indeed a
difficult science especially if the programming language interacts with Central Processing
Unit (CPU) through a Virtual Machine (VM) 12.

To figure out how to obtain correct measurements we choose to run the program multiple
times and discarding the first run. Hence, a useful solution, for example, is to compute the
mean value of the last 10 measurements.

4.5.3 Global Verdicts

We focus on the problem of producing an automated solution to the oracle problem. We
require then, the implementation relation dtioco in order to determine the verdict of a
test run (whether it is pass or fail) and produce a global verdict and we showed that to
solve the oracle problem it is sufficient to carry out two activities: (1) we analyze the tuple
of timed traces from the communication perspective by executing Algorithm 1 to check
communication and (2) also each local timed trace of the tuple with respect to its associated
local model by using the off-line testing algorithm implementation in DIVERSITY (without

12A virtual machine is an emulation of a particular computer system

85

4. A Distributed Testing Framework for Solving the Oracle Problem

considering a test purpose).

For this, we implemented an approach of testing a distributed system (focusing on the
oracle problem) by separating the verification of local traces using DIVERSITY tool and
the verification of the tuple of traces with respect to the definition of observable multi-traces.
If there are n subsystems, the global verdict V erdictG has n+ 1 verdicts written in the
form (V erdict1, . . . , V erdictn, V erdictcom) where for l in [1, . . . , n], V erdictl is the local
verdict in the set of keywords {PASSl, FAILl, INCONCl} associated to the lth compo-
nent and where V erdictcom which is the communication verdict in the set of keywords
{PASScom, FAILcom} is the verdict relating to the verification of the communication policy.

For this, we implement an orchestrator under which it is possible to analyse the tuple of
traces from the communication perspective and also each trace of the tuple with respect to
its associated local TIOSTS model. Our implementation runs (in parallel) n+ 1 processes
(Process1, . . . , P rocessn, P rocesscom) where:

� Processi (with i ≤ n): is an instance of DIVERSITY tool for centralized testing a
localized subsystem in a system of n components

� Processcom: is an instance of our implementation of Algorithm 1 for communication
checking.

Orchestration Process

We build a script which orchestrates the work of running in parallel n + 1 processes as
we described previously. our script does not take into account what order the different
processes completed in. However, it does not exit until all the spawned processes had
exited. In other words, we do not exit the script until having all the testing verdicts.

The simplest way to achieve this is to use the wait command. We have simply forked all
processes with & Linux command to run them in parallel, and then follow them with a
wait command as follows (Listing 4.4):

Listing 4.4: An example of running in parallel n+1 processes to orchestrate testing

#!/bin/sh

/local/test/my-process-1 --args1 &

/local/test/my-process-2 --args2 &

/local/test/my-process-3 --args3 &

...

/com/test/my-process-n+1 --args-n+1 &

wait

echo all processes complete

print verdicts

exit

It is the simplest way to implement our orchestrator and print all testing verdict once
we have analyzed fully the distributed observation. When one runs the script, all (n+1)
processes will be forked in parallel, and the script will wait until all the processes have
completed before exiting. Anything after the wait command will execute only after the

86

4.5. Implementation: Distributed Testing by Orchestration

forked processes have exited.

Another way to implement our orchestrator is to determine the exit codes of the processes
we forked. We may program our processes to associate each test verdict (either local or
communication verdict) with an exit code. Since we need to know if any of the tests failed
and return an error code from the parent shell script if they did. We, hence, may stop the
orchestrator for example, once we have a process has returned a fail test verdict.

In Chapter 5 we present an approach to validate our distributed testing framework.

87

4. A Distributed Testing Framework for Solving the Oracle Problem

88

5. Validating our Testing Approach

Chapter 5

Validating our Testing Approach

Contents

5.1 Randomly Generating Observable Multitraces 91

5.1.1 Generating multitraces . 91

5.1.2 Generating observable multitraces 96

5.2 Generating CDOs with DIVERSITY 97

5.2.1 Global Trace Generation . 97

5.2.2 From Global Timed Traces to CDOs by Projection 99

5.3 A Mutation-based Approach to generate FDOs 102

5.3.1 Classical mutations . 102

5.3.2 Breaking a round-trip communication (RTC mutation) 105

5.4 The PhoneX Case Study . 108

5.4.1 PhoneX System Overview . 108

5.4.2 PhoneX System Interface . 110

5.4.3 PhoneX Modeling Effort . 110

5.4.4 Testing PhoneX . 112

In order to validate our distributed testing approach described in Section 4.4, we adopt a
step-by-step validation approach as presented in Figure 5.1. First, we generate so-called
correct distributed observations; then, we follow a mutation-based approach in order to
inject faults in them and produce so-called faulty distributed observations. Both correct
distributed observations tuples and mutated ones will be submitted to our testing frame-
work in order to observe corresponding testing verdicts and analyze results.

A Correct Distributed Observation (CDO) is a tuple of timed traces that respect valid
communication patterns and where each local timed trace describes a correct behavior of its
local component. On the other hand, a Faulty Distributed Observation (FDO) is a tuple of
timed traces that either do not respect valid communication patterns or contain at least a
timed trace that does not represent a correct behavior of the corresponding local component.

To generate and check a CDO, we adopt the following process: first, we introduce an
algorithm to randomly generate observable multitraces (see Definition 4.5), i.e, prefixes
of tuples of timed traces that respect valid communication patterns (see Definition 4.4).
Those tuples will be used as inputs for Algorithm 1 in order to validate our communication

89

5. Validating our Testing Approach

verification approach. Then, we use DIVERSITY tool1 [5] to build local timed traces by
projection, focusing on the behaviors of local components. Those local traces will be used
as inputs for the rule-based algorithm for verdict computation described in Section 3.2.2.3.
Moreover, DIVERSITY tool allows us to generate tuples of timed traces that are correct
by construction with respect to both local analyses and communication rules by coupling
composition and projection mechanisms. In fact, by using DIVERSITY, we are able to
generate a global trace that represents the global behavior of a distributed system built by
composing its local components. Then, resulting multitraces are directly constructed by
considering a tuple made of all projections for each component. Those generated correct
tuples of traces are submitted to our orchestrated testing framework.

Mutation Testing [69, 45, 55, 47] is a fault–based software testing approach which was
first used in programs to inject faults that represent the mistakes that programmers often
make. Such faults are deliberately seeded into the original program, by a simple syntactic
change, to create a set of faulty programs called mutants, each containing a different
syntactic change. Mutation-based testing promises to be effective in identifying adequate
test data which can be used to find real faults. We adapt mutation-based techniques used
in mutation testing with the aim to generate FDO from CDO (by injecting faults in them).
For that, we apply random mutations on CDO and hence modify their data with the aim
to inject communication errors or modify the correct behavior of localized components.
Generated tuples of traces (after faults injection) are submitted to our orchestrator testing
framework.

In order to assess the scalability of our testing framework, we apply our distributed testing
approach on a case study of a significant size, called PhoneX, which is a telecommunication
system for multiple call management provided by Ericsson company [77]. This case study
will serve us to illustrate our approach of testing of distributed systems. We will be led
first to design the distributed specification model, then to generate (from the model)
CDOs with long local traces that are as representative as possible of normal use by using
DIVERSITY. From those correct tuples of traces, we will simulate an execution of a
faulty PhoneX distributed system by applying a mutation-based approach. Finally, we ap-
ply our testing approach by orchestration on those tuples and analyze corresponding results.

Overview. Section 5.1 describes our framework to generate observable multitraces randomly.
In Section 5.2 we present our technique to generate correct distributed observations using
DIVERSITY tool. In Section 5.3, we present a mutation-based technique to generate faulty
distributed observations. That is, distributed observations with either potential local faults
or communication ones. In Section 5.4, we apply our testing approach on the PhoneX
study case and then, we give and comment some experimental results.

1http://projects.eclipse.org/proposals/eclipse-formal-modeling-project

90

5.1. Randomly Generating Observable Multitraces

Figure 5.1: Validation process of our testing approach

5.1 Randomly Generating Observable Multitraces

Herein, we present our framework to generate randomly an observable multitrace. First,
we define a function to generate randomly an uninitialized multitrace by following rules for
building a correct tuple of timed traces accordingly to Definition 4.4. Randomness is used
in choosing a localized interface in a distributed interface or generating non-null positive
durations and data values to build actions and events. An observable multitrace may be
generated then, by simply considering a prefix of a generated multitrace.

5.1.1 Generating multitraces

We build a correct tuple of timed traces by following communication policy rules by
choosing randomly a channel of an internal output in a distributed interface and a data
value (of the same data type) to be multicasted through this channel. The notion of
multicast will be taken into account by storing those multicasted messages in queues of
actions for components that might receive this message (i.e, which listen on the same
channel) and dequeuing them when we choose the same shared channel for an internal input.

Like many other works, we use the notion of queuing to capture message-passing multi-
casting mechanism in communication between local components of a distributed system.
Exchanged messages will be stored in the queue by preserving the same order of receipt.

FIFO Queues. A First In First Out (FIFO) queue is a type of data collection structure
where any value inserted first, will be the first to be consumed. We introduce the signature
ΩElem = (SElem, OpElem) associated to the specification of so-called elements where
SElem contains type Elem to represent elements provided with successor and predecessor

91

5. Validating our Testing Approach

operations as follows:

� SElem = {Elem}

� OpElem = {∅ :→ Elem,
succ : Elem→ Elem (successor),
pred : Elem→ Elem (predecessor)}

We give now the signature ΩQueue = (SQueue, OpQueue) for a queue of elements and we
define the following classical operations:

� SQueue = SElem ∪ {Queue}

� OpQueue = OpElem ∪ {[] :→ Queue,
isEmpty : Queue→ Boolean,
dequeue : Queue→ Elem,
enqueue : Queue.Elem→ Queue}

Table 5.1 describes the role of each operation related to the queuing mechanism:

Operation Description

[] Returns the empty queue

isEmpty Returns True if empty. It returns False otherwise.

dequeue For a non empty queue, returns the queue after deletion deprived of its first element

enqueue Inserts a new value in the back of the queue.

Table 5.1: Main operations used in the definition of ΩQueue

In the sequel, we denote by Queue(E) the set of all queues defined over a generic set of
elements E.

When multicasting internal messages between local components, we introduce the notion
of memory as a way to store internal actions and the delay elapsed as perceived by local
components. A memory is a couple (d,Q) where d is the duration in D+ accumulated when
elapsing time synchronously for all timed traces and Q is a FIFO queue in Queue(Act(C))
in which we store received actions each time we multicast an internal output action from
other timed traces. Those multicasted actions will be later consumed. The set of all
memories defined over a distributed interface Λ is the set Mems(Λ).

We assume that each tuple of timed traces µ = (σ1, · · · , σn) defined in Tup(Λ) is given
with a tuple of memories (m1, . . . ,mn). We now introduce some useful technical functions:

Auxiliary Functions

Notation 5.1. The notation Z> denotes the set of strictly positive integers.

In the sequel, let Λ = (C1, . . . , Cn) be a distributed interface and C be a set of channels.
Table 5.2 describes auxiliary technical functions that we will use in the implementation of
generating multitraces mechanism.

Function - Might Receive an internal output
MightReceiveΛ : Act(∪i≤nCi)× Z> → {True, False}
Let act be and action in Act(∪i≤nCi) of an internal output and i a position in {1, . . . , n}.

92

5.1. Randomly Generating Observable Multitraces

Function Description

MightReceiveΛ(act, i)
Returns True if local interface Ci might receive internal output act.

Returns False otherwise.

MultitcastMessageΛ(act, i)

Multicasts an internal output action to all memories
(except the sender memory itself) that might receive it.

It stores that action in the corresponding
queue of actions of the receiver component

ExtendC(σ, ev) Extends a timed trace with a new event

mirror(act) Returns the mirror of an action.

length(σ) Length of trace is defined as the total number of events in that trace

size(µ) Returns the total number of events of µ.

uninitialized(µ) Returns the uninitialized tuple of timed traces from µ.

Table 5.2: Technical functions used in generating a multitrace

MightReceiveΛ(act, i) is True if chan(act) ∈ Ci and False otherwise.

Function - Multicast an internal output action
MultitcastMessageΛ : Mems(Λ)×Act(∪i≤nCi)→Mems(Λ)
Let mem = (m1, . . . ,mn) be a tuple of memories in Mems(Λ) where mi = (di,Qi) for all
i ≤ n and act is the internal output to be multicasted inmem. MultitcastMessageΛ(mem, act)
is the tuple of memories (m′1, . . . ,m

′
n) wherem′i = (di, enqueue(Qi, act)) ifMightReceiveΛ(act, i)

is True and m′i = mi otherwise.

Function - Timed trace extension with an event
ExtendC : TTraces(C)× Evt(C)→ TTraces(C)
ExtendC(σ, ev) is defined if and only if either σ is ε, or σ is of the form σ′.ev′ with
act(ev′) 6= d and delay(ev) 6= 0. In both cases we have: ExtendC(σ.ev) = σ.ev.

Function - Mirror action
mirror : Act(C)→ Act(∪i≤nCi)
Let act be an action in Act(C), mirror(act) is defined as act.

Function - Length of a timed trace
length : TTraces(C)→ Z>
Let σ be a timed trace in TTraces(C) of the form ev1 . . . evn, length(σ) is n (with the
particular case n = 0 if σ = ε).

Function - Size of tuple of timed traces
size : Tup(Λ)→ Z>
Let µ = (σ1, . . . , σn) in Tup(Λ) be a tuple of timed traces, size(µ) is defined as

∑
i≤n length(σi).

Function - Uninitialized tuple of timed traces
uninitialized : Tup(Λ)→ Tup(Λ)
Let µ = (σ1, . . . , σn) in Tup(Λ) be a tuple of timed traces , uninitialized(µ) is the tuple
of traces (σ′1, . . . , σ

′
n) where σ′i is ε if σi is ε and is of the form (, a).σ′′i if σi is of the form

(d, a).σ′′i .

93

5. Validating our Testing Approach

In the sequel, a signature Ω = (S,Op) and a model M =
∐
s∈SMs are given. Randomness

in generating a multitrace is illustrated in (randomly) generating: (1) a positive duration
in D+ and (2) a data value in M . Thus, we require the use of following technical functions:

� randomDuration : D+ ×D+ → D+ such that for two positive durations x and y
in D+ such that x < y we have randomDuration(x, y) returns a random positive
duration in [x, . . . , y].

� randomDataM : S → Ms such that for a type s ∈ S we have randomDataM (s)
returns a random data value in Ms

� We also need to choose a (random) element in a set of elements. Given a generic set
of elements E, randomElement(E) returns a random element e ∈ E.

Main Function

Function - Generating randomly an uninitialized multitrace
GenerateMultitraceΛ : Z> ×M →MTraces(Λ)
Let size be an integer which designates the size of the multitrace to be generated.
GenerateMultitraceΛ(size,M) returns a multitrace µ in MTraces(Λ) built by follow-
ing rules of valid communication patterns.

94

5.1. Randomly Generating Observable Multitraces

Algorithm 2: Random generation of a multitrace

This algorithm generates randomly an uninitialized multitrace by following rules defining valid
communications. We suppose that LIMIT is maximum positive integer value used in
computing.
Input: Λ = (C1, . . . , Cn): a non-empty and valid distributed interface,

M : a set of data,
size: the size of the multitrace to be generated

Output: µ = (σ1, · · · , σn): a randomly generated uninitialized multitrace.
1 GenerateMultitraceΛ(size,M) :
2 /*Initialization*/
3 µ← (σ1, . . . , σn)/*Where σi = ε*/
4 mem← ((d1,Q1), . . . , (dn,Qn))/*Where di = 0 and Qi = []*/
5 /*Random generation*/
6 while size(µ) < size do
7 i← randomElement({1, . . . , n})
8 c← randomElement(Ci)
9 d← randomDuration(1, LIMIT)

10 mem← ((d1 + d,Q1), . . . , (dn + d,Qn))/*Synchronous time elapsing*/
11 /*We have Ci = Cint

in

∐
Cint

out

∐
Cext

in

∐
Cext

out*/
12 switch c do
13 case External Output /*c ∈ Cext

out*/
14 v ← randomDataM (type(c))
15 ev ← (di, c!v)
16 µ← (σ1, . . . , ExtendCi(σi, ev), . . . , σn)

17 case External Input /*c ∈ Cext
in */

18 v ← randomDataM (type(c))
19 ev ← (di, c?v)
20 µ← (σ1, . . . , ExtendCi

(σi, ev), . . . , σn)

21 case Internal Output /*c ∈ Cint
out*/

22 v ← randomDataM (type(c))
23 mem←MultitcastMessageΛ(mem, c!v)/*Multicast action */
24 ev ← (di, c!v)
25 µ← (σ1, . . . , ExtendCi

(σi, ev), . . . , σn)

26 case Internal Input /*c ∈ Cint
in */

27 if ¬isEmpty(Qi) then
28 act← dequeue(Qi))
29 ev ← (di,mirror(act))
30 µ← (σ1, . . . , ExtendCi

(σi, ev), . . . , σn)

31 /*Reset the accumulated duration for current component*/
32 mem← (m1, . . . , (0,Qi), . . . ,mn)/

33 return uninitialized(µ)

34

Algorithm 2 describes the process of (randomly) generating a multitrace. It generates
randomly an uninitialized multitrace by following rules of building a correct tuple of timed
traces which respects valid communication rules. Randomness is illustrated in both choosing
(randomly) a localized interface with its index i and choosing (randomly) a channel c in this
latter selected localized interface (lines 7 and 8). We produce (randomly) a non-null posi-
tive duration in a range [1, . . . , LIMIT] (line 13) and a data value in the typed set Mtype(c).

95

5. Validating our Testing Approach

Process: First, we initialize our function ingredients: we have an empty tuple of timed
traces (ε, . . . , ε) and an empty tuple of memories ((0, []), . . . , (0, [])) (lines 3 and 4). As
long as the size of the tuple of timed traces to be generated is less than our predetermined
size we select (randomly) a channel c. together with a non-null duration d (lines 7 to 9).
We elapse time synchronously for all local memories (we update delays di in local contexts
with the random produced delay d) (line 10). Following the nature of the selected channel
c: we choose randomly a data value v in Mtype(c). If the latter channel is an external output
(resp. input) we extend the trace of position i with event (di, c!v) (resp. (di, c?v)) (lines 16
and 20). If the latter channel is an internal output we multicast the action c!v (line 23)
and we extend the trace i with event (di, c!v). If the latter channel is an internal input we
poll an action a form the back of the queue in context at position i (if the corresponding
queue is not empty) and we extend the trace at position i with event (di, a) (lines 27 to
30). In line 32, the elapsing duration associated to the selected component (i) is reset,
while elapsing durations associated to the other components have been increased (line 10)
and will be reset only when the corresponding component will be later selected. Finally,
we return the uninitialized (without observed duration in initial events of each timed trace)
correct tuple of timed traces (line 33).

5.1.2 Generating observable multitraces

An observable multitrace is defined as a prefix of a multitrace. A strategy to generate
randomly an observable multitrace µ = (σ1, . . . , σn) which size is size is first to generate
randomly an uninitialized multitrace µ′ = (σ′1, . . . , σ

′
n) of size ratio × size where ratio

is a positive integer (that one may enter randomly), and then to select the prefixes of
timed traces σ′i (chosen randomly) until size(µ) = size. Therefore, we get an observable
multitrace µ which is the prefix of a random generated multitrace µ′ and whose size
corresponds to the targeted size. size(µ) = size(µ′)/ratio.
Before introducing algorithm to generate observable multitraces, we introduce the following
functions:

Function - Prefix (without the last event) of a timed trace
prefixC : TTraces(C)→ TTraces(C)
Let σ be a timed trace in TTraces(C) of the form ev1, . . . , evn, prefixC(σ) is ε if σ is ε
and σ′ if σ if of the form σ′.ev (and σ′ 6= ε).

Function - Generating randomly an observable multitrace
GenerateObsMultitraceΛ : Z> × Z> ×M → OTraces(Λ)
Let Λ = (C1, · · · , Cn) be a distributed interface, size be a positive integer which desig-
nates the size of the multitrace to be generated and ratio is a positive integer. Function
GenerateObsMultitraceΛ(size, ratio,M) returns a tuple of traces µ in OTraces(Λ) of size
size.

Algorithm 3 describes the process of (randomly) generating an observable multitrace.

96

5.2. Generating CDOs with DIVERSITY

Algorithm 3: Random generation of an observable multitrace

This algorithm generates an observable multitrace randomly. It returns an observable
multitrace by following the two next steps: Generate a multitrace, then get the prefix of the
generated multitrace using the previously defined strategy
Input: Λ = (C1, . . . , Cn): a distributed interface

M : a set of data
size: the size of the generated observable multitrace ratio: a user-defined prefix
quotient.

Output: µ = (σ1, · · · , σn): a randomly generated observable multitrace.
1 GenerateObsMultitraceΛ(size, ratio,M) :
2 µ← GenerateMultitraceΛ(size× ratio,M)
3 while size(µ) 6= size do
4 i← randomElement({1, . . . , n})
5 µ← (σ1, . . . , prefixCi

(σi), . . . , σn)

6 return µ

5.2 Generating CDOs with DIVERSITY

5.2.1 Global Trace Generation

In the context of DIVERSITY platform, a system is defined by a set of communicating
xLIA models (equivalent to TIOSTS formalism of Definition 2.7) where communication is
modeled y asynchronous data passing. In fact, for any output of a value on a given channel
(i.e, written on the associated buffer), that value may be consumed later by another xLIA
model considering this value as an input action on the same channel (i.e, read from the
associated buffer).

DIVERSITY [4] implements symbolic execution processing (depicted in Figure 5.2) which
can be customized by some on-fly using filtering mechanisms: steps (i), . . . , (v). The
scheduling of these steps is cyclic. Each cycle consists in updating a queue of Execution
Context (EC). At the initialization of the first iteration of the cycle, the queue contains
EC0 (equivalent to symbolic state Init when using TIOSTS formalin-see Notation 2.7)
which characterizes the initial symbolic values associated with the variables where the PC
is restricted to True because no constraint has yet been encountered. Each iteration step
consists in: selecting one or more ECs (removed from the queue); computing their children
ECs by symbolically executing all outgoing transitions from the control states reached in
the parent ECs; deciding whether or not the parent ECs are added to the tree; in which
case, their children ECs are added to the queue. The whole symbolic processing is based
on the notation of filtering. The purpose of a filter is to dynamically accept or reject
ECs according to a specific user coverage purpose. It can be seen as a selection strategy to
complement the traversal strategy in order to increase the chances of reaching the targeted
coverage while avoiding combinatorial explosion.

Steps of the symbolic processing. In the following, we present steps of symbolic
processing depicted in Figure 5.2.

� Step (i) Selection of EC candidates for Step (ii): One or more EC are selected from
the queue according to a customizable strategy such as RFS, BFS and DFS and HoJ.

97

5. Validating our Testing Approach

Some heuristics may, however, associate a weight with each of the EC, and thus
induce an order thereof in the queue which becomes a priority queue.

� Step (ii) Pre-filtering: It consists in applying one or more filters to reason on ECs
before computing their children. If the EC successfully passes the control of each
of the chained filters, it continues its way in the symbolic processing flow, through
Step (ii− a). Otherwise, Step (ii− b), the EC will be ignored or possibly tagged and
inserted into the symbolic tree under construction. In the favorable case where all
user coverage objectives are met, the symbolic processing stops.

� Step (iii) Symbolic execution: Each EC issued from Step (ii − a) is evaluated
symbolically. During the evaluation its children EC1, . . . , ECn are computed by
symbolically executing outgoing transitions.

� Step (iv) Post-filtering: It is similar to Step (ii), except that the filter involved
in post-filtering reasons on the EC and its children to decide of the future of the
symbolic processing. After passing the post-filters, there are two possibilities:

1. Step (iv − a) If successful, the symbolic processing continue with Step (v) in
which case the EC is added to the symbolic tree.

2. Step (iv − b) If failed, the EC and, its children EC1, . . . , ECn are ignored or
inserted in the symbolic tree.

As in Step (ii), in the favorable case where all user coverage objectives are met, the
symbolic processing stops.

� Step (v): All the children EC1, . . . , ECn resulting from Step (iv − a) are enqueued
and the symbolic processing iterates with Step (i).

EC

Pre-filter #1

Hit-or-Jump

Pre-filter #N

(ii) P
re

-filte
rin

g

(i) POP (v) PUSH

(ii-b)

(ii-a)

(iv-a)

(iv-b)

Symbolic tree

Execution queue

...

ECn

(iv
) P

o
s
t-filte

rin
g

(iii) Symbolic execution

(children ECs computation)

EC

Post-filter #N

Post-filter #1

...

EC1

..
.

EC

ECnEC1

EC

EC

...

depth N

Figure 5.2: The running process of symbolic execution in DIVERSITY [27, 4].

Following the steps of the symbolic processing of a xLIA model describing a distributed
specification in DIVERSITY, we may choose a path in the symbolic tree, and then, a timed
trace that represents the global correct behavior of the distributed system.

98

5.2. Generating CDOs with DIVERSITY

5.2.2 From Global Timed Traces to CDOs by Projection

To generate a correct tuple of timed traces by construction, we first generate a global trace
using SE techniques in DIVERSITY platform as presented in Section 5.2.1. For this, we use
buffers to store internal messages to be exchanged between local components. Those buffers
simulate internal communications using one timed queue per component. Since the recep-
tion of a message can be delayed, the composition of xLIA models specifies asynchronous
communications. Indeed, as DIVERSITY may model timed systems, it manages time elaps-
ing by generating a symbolic duration at each transition evaluation. DIVERSITY builds a
global trace following a given coverage criterion, focusing on some targeted behaviors in
order to construct global traces that are as representative as possible of normal use. Those
global traces describe a correct behavior of the distributed system built using asynchronous
communications via buffering and time elapsing techniques. We may build a CDO of a
distributed system modeled by xLIA models by considering a tuple made of all projections
of the global trace for each local component. For this, we use a projection technique to get
local timed traces which describe correct behaviors of local components. The tuple of traces
made of those local traces is by definition correct from a communication point of view.
Indeed, any internal output of a value on a given channel can be consumed later by other
components (that listen on the same shared channel, and thus represent potential receivers).

Let Spec = (G1, . . . ,Gn) be a distributed specification defined over an interface Λ =
(C1, . . . , Cn). Let us suppose that Spec is written in the xLIA formalism and we suppose
the existence of the equivalent xLIA model SpecX = (GX

1 , . . . ,GX
n) where each equivalent

xLIA local model GX
i is defined over the same signature Σi = (Ai, Ti, Ci). The xLIA model

SpecX simulates a composition of local TIOSTSs Gi asynchronously via buffering internal
messages that might be sent and received.

A global trace σ which describes a correct behavior of the distributed specification Spec
may be generated using SE techniques from the xLIA model SpecX . We have timed trace

σ is defined as an element of the set of timed traces TTraces(
n⋃
i=1

Ci).

Let C be a local interface. The projection of σ on C is denoted πC(σ). Algorithm 4
describes the process of projecting a global timed trace on a local interface.

99

5. Validating our Testing Approach

Algorithm 4: Projection of a global timed trace on a local interface

This algorithm returns the projection of a global timed trace σ on a local interface C
Input: σ = [ev1, . . . , evn]: a global generated timed trace,

C: a local interface (set of channels),
Output: πC(σ): the projection of σ on C

1 πC(σ) :
2 if σ = ε then
3 return ε

4 else
5 d← 0
6 σ′ ← ε
7 for ev ∈ [ev1, . . . , evn] do
8 d← d+ delay(ev)
9 a← act(ev)

10 if chan(a) ∈ C then
11 ev′ ← (d, a)
12 σ′ ← ExtendC(σ′, ev′)
13 d← 0

14 return σ′

Process: Algorithm 4 outputs the projection of a global timed trace σ (that represents a
behavior of a distributed specification built over xLIA models) on a local interface C. The
projection of an empty timed trace is an empty timed trace (line 2-3). For all events ev in
σ, if the channel of act(ev) belongs to the set of channels modeled by the local interface C
(line 10) then, the algorithm builds an event ev′ = (d, a) where a is the action act(ev) and
d is the accumulated delay that when reading elements of σ (line 11). Then, the algorithm
stores ev′ in the timed trace to be produced as the projection of σ on C (line 12) which
is denoted πC(σ). The accumulated delay d is reset to 0 at each step, an event from σ is
stored in πC(σ) (line 13).

Now, given a distributed interface Λ = (C1, . . . , Cn), a global timed trace σ in TTraces(
n⋃
i=1

Ci),

we have that the tuple of traces (πC1(σ), . . . , πCn(σ)) is in OTraces(Λ).

Example 5.1 (Generating a CDO and Checking valid communication). Consider dis-
tributed interface ΛTCS = (CTLC1 , CTLC2) from Example 4.2 and distributed specification
TCS = (GTLC1 ,GTLC2) illustrated in Example 4.6. Let us suppose that DIVESITY pro-
duces global trace σxLIATCS depicted in Figure 5.3(a) using composing mechanism by queuing
described in Section 5.2.1. σxLIATCS corresponds to a situation in which all receptions have been
preceded by an emission. Now by applying projection mechanism described in Algorithm 4,
we generate the tuple of timed traces (σTLC1 , σTLC2) as illustrated in Figure 5.3.

The tuple of traces (σTLC1 , σTLC1) which is depicted in Figure 5.4(a) by the means of
interaction diagram, defines by construction an observable multitrace (i.e correct tuple of
traces that respects valid communication pattern). In fact, each local trace of this tuple
σTLC1 and σTLC1 is the projection on its local interface CTLC1 and CTLC2 respectively of
the global trace σxLIATCS where all receptions have been preceded by an emission. To check the
correctness of this tuple, we suppose the existence of a virtual common instant at which

100

5.2. Generating CDOs with DIVERSITY

both local components TLC1 and TLC2 start their execution and hence the existence of
symbolic durations d1 and d2 in Vtime as depicted in Figure 5.4(b). In this tuple:

� 1st reception pos1?42 is observed correctly in σ2 provided that: d2 + 2 > d1 + 6 . . . ϕ1

� 1st reception pos2?300 is observed correctly in σ1 provided that: d1 +10 > d2 +1 . . . ϕ2

� 2nd reception pos1?42 is observed correctly in σ2 provided that: d2 + 7 > d1 + 12 . . . ϕ3

� 2nd reception pos2?300 is observed correctly in σ1 provided that: d16+13 > d2+6 . . . ϕ4

We let Vtime = {d1, d2}, and we give the formula ϕ =
∧
i∈{1,...,4} ϕi in FΩ(Vtime). We have

IsSat(ϕ) is True, indeed, there exists an interpretation ν ∈ (D+)V such that ν(d1) = 1/2
and ν(d2) = 6 and we have D+ |=ν ϕ. Sat(ϕ) may denote the set of solutions [d1 7→
1/2, d2 7→ 6]. Hence, (σTLC1 , σTLC2) ∈ OTraces(Λ).

=

start1?

(3)

driver1?1

(3)

pos1!42

(1)

start2?

(1)

pos2!300

(1)

pos1?42

(1)

pos2?300

(2)

pos1!42

(1)

pos2!300

(1)

pos1?42

(2)

pos2?300

Projection

=

start1?

(3)

driver1?1

(3)

pos1!42

(4)

pos2?300

(2)

pos1!42

(4)

pos2?300

=

start2?

(1)

pos2!300

(1)

pos1?42

(4)

pos2!300

(1)

pos1?42

1TLCσxLIA

Specσ
2TLCσ

(a)

=

start1?

(3)

driver1?1

(3)

pos1!42

(1)

start2?

(1)

pos2!300

(1)

pos1?42

(1)

pos2?300

(2)

pos1!42

(1)

pos2!300

(1)

pos1?42

(2)

pos2?300

Projection

=

start1?

(3)

driver1?1

(3)

pos1!42

(4)

pos2?300

(2)

pos1!42

(4)

pos2?300

=

start2?

(1)

pos2!300

(1)

pos1?42

(4)

pos2!300

(1)

pos1?42

1TLCσxLIA

Specσ
2TLCσ

(b)

Figure 5.3: From a global trace to a correct distributed observation

(a) (b)

Figure 5.4: Communication checking of a CDO get by projection

101

5. Validating our Testing Approach

5.3 A Mutation-based Approach to generate FDOs

Generated correct distributed observations may be modified by applying some simple
mutation schemes. We apply mutations on either a correct tuple of traces generated by
DIVERSITY tool or an observable multitrace generated randomly in order to modify
either local traces (in the aim to get local traces which do not respect correct behavior of
local components) or breaking the so-called RTC in the aim to inject a communication fault.

We describe the mutation schemas in Table 5.3. While Mutation schemas #2 and #4 do
not require any conditions on system signature, mutation schemas #1 and #3 require that
added or modified events respect syntactic requirements from the system signature and
concerning channels and data types.

Mutation schema #5 is designed to break the key property of multitraces, that is that
time is necessarily elapsing when messages are transmitted. Applying mutation schema #5
consists of breaking a detected RTC.

While the first four mutation schemas do not necessarily create faulty multitraces, mutation
schema #5 creates by construction at least a communication fault. In the following, our
framework to generate distributed observation with potential non-conformance faults will
be presented as a couple of two frameworks: A framework to apply so-called classical
mutations and a framework to apply so-called RTC mutations.

Mut. schema Description

#1 Choose (randomly) a position in µ and insert an event ev

#2 Choose randomly an event ev in µ and delete it

#3 Choose randomly an event ev in µ and modify its data

#4 Choose randomly an event ev in µ and modify its duration

#5
Choose randomly a Round-Trip-Communication

in µ and break it.

Table 5.3: Mutation schemas on multitraces

5.3.1 Classical mutations

Classical mutations are those listed in Table 5.3 from #1 to #4. Table 5.4 describes some
functions useful to perform classical mutations:
The following functions perform respectively mutations on events, timed traces and a tuple
of timed traces.

Function - Random mutation on an event
MutateEventC : Evt(C)×M → Evt(C)
Let ev be an event. MutateEventC(ev) returns an event in Evt(C) where either data or
delay of ev is mutated.

Function - Random mutation on a timed trace
MutateTraceC : TTraces(C)×M → TTraces(C)
Let σ be an a timed trace in TTraces(C). MutateTraceC(σ,M) may either choose (ran-
domly) an event ev in σ and performs a random mutation on ev by calling function

102

5.3. A Mutation-based Approach to generate FDOs

Function Description

changeDurationC(ev,D+)
Returns a new event (d, act(ev))

where d is a random duration in D+

changeDataC(ev,M)
Returns a new event (delay(ev), a) where a = c4v′

if act(ev) is of the form c4v and v is a random data value in Mtype(c)

newEventC(M)
Returns a new event (d, c4v)

where d is a random duration in D+, c ∈ C, 4 ∈ {?, !}
and v is a random data value in Mtype(c)

removeEventC(σ)
If σ is of the form ev1, . . . , evn it returns a new timed trace in TTraces(C)

where event evi at position i chosen randomly in [1, . . . , n] is removed.

insertEventC(σ) Extends σ with a new event ev = newEventC(M) by calling ExtendsC(σ, ev).

Table 5.4: Technical functions used in implementing classical mutation on a tuple of traces

MutateEventC(ev,M), or delete a random event by calling function removeEventC(σ)
or add a new event at the tail of σ by calling function insertEventC(σ). It then returns
the new mutant timed trace in TTraces(C).

Function - Random mutation on a tuple of timed traces
MutateTupleΛ : Tup(Λ)×M → Tup(Λ)
Let µ = (σ1, · · · , σn) be a tuple of timed traces in Tup(Λ). MutateMultitarceΛ(µ,M)
chooses randomly a time trace σi in µ and performs a mutation on σi by calling function
MutateTraceC(σi). It then returns the new mutant tuple of timed trace defined in Tup(Λ).

In the sequel, we give only Algorithm 5 to describe the process of event mutation. Algorithms
describing the process of timed trace mutation and tuple of traces mutation are trivial.

Algorithm 5: Random generation of an event mutant

This algorithm performs a random mutation on an event. It returns a mutant event after
applying a random designated mutation.
Input: C: a non-empty set of typed channels,

ev: an event,
M : a model,

Output: A mutant event ev′.
1 MutateEventC(ev,M) :
2 Select Mut← chooseMutationIn(MUTATE EV ENT)
3 switch Select Mut do
4 case Change Duration
5 ev′ ← changeDuration(ev,D+)

6 case Change Data
7 ev′ ← changeData(ev,M)

8 return ev′

Algorithm 5 performs (randomly) a classical mutation on a given event ev. Following the
type of the mutation, the function will select randomly: we may either change the duration
of event ev (line 5), or its data (line 7).

Example 5.2 (Classical mutation of a tuple of timed traces). Consider distributed inter-
face ΛTCS = (CTLC1 , CTLC2) from Example 4.2 and distributed specification TCS =

103

5. Validating our Testing Approach

(GTLC1 ,GTLC2) illustrated in Example 4.6. Consider tuple of timed traces µTCS =
(σTLC1 , σTLC1) depicted in Figure 5.5(a). The tuple of traces µTCS denotes an observable
multitrace as we demonstrated previously in Example 5.1.

Function MutateTupleΛTCS (µTCS) may return the new mutated tuple of traces µmutTCS =
(σTLC1 , σ

mut
TLC1

) depicted in Figure 5.5(b). In this tuple, we notice that event (1, pos2?42) is
deleted from timed trace σTLC1, probably, by calling function removeEventCTLC2

(σTLC2)
as described in Table 5.4.

The new tuple of traces (after mutation) µmutTCS does not denote a correct timed trace of
TIOSTS GTLC2 (which is the local specification model of component TLC2 of the TCS dis-
tributed system). To demonstrate this, we apply our rule-based algorithm for verdict computa-
tion to TLC2 component from Example 2.5. Consider symbolic tree SE(GTLC2)δ depicted in
Figure 2.5 produced from application of symbolic execution on TIOSTS GTLC2 which specifies
correct behavior of TLC system of Example 2.5. Let us assume timed trace σmutTLC2

denotes
an execution of TLC2 system: σmutTLC2

= (, start?).(1, pos2!300).(4, pos1!300)(1, pos1?42).

(a) (b)

Figure 5.5: Application of a classical mutation on an observable multitrace

We proceed to verdict computation of σmutTLC2
as follows:

(a) (, start2?) (1, pos2!300) (4, pos2!300) (1, pos1?42)

ψt=True;ψd=True;SC={(Init, ψt, ψd)}(τ); (Initialization)

(b) (, start2?) (1, pos2!300) (4, pos2!300) (1, pos1?42)

ev = (, start?); delay(ev) = 0
ψt ← True
πd(η1) = True
ψd ← ψd∧πd(η1) is satisfiable
Next(ev, SC)−→SC={(η1, ψt, ψd)}(ev);(Next Rule)

104

5.3. A Mutation-based Approach to generate FDOs

(c) (, start2?) (1, pos2!300) (4, pos2!300) (1, pos1?42)

ev = (1, pos2!300)
πt(η4) = z3 < 10
ψt ← ψt∧πt(η4)∧(z3=1) is satisfiable
πd(η4) = (p2 ≥ p′2) ∨ (p′2 > 200)
ψd ← ψd∧πd(η4)∧(p2=300) is satisfiable
Next(ev, SC)−→SC={(η4, ψt, ψd)}(ev);(Next Rule)

(d) (, start2?) (1, pos2!300) (4, pos2!300) (1, pos1?42)

ev = (4, pos2!300)
SC=∅; act(ev) ∈ O(CTLC2

); delay(ev) ∈ D+

(Fail Rule)

5.3.2 Breaking a round-trip communication (RTC mutation)

RTC mutation is the mutation number #5 described in Table 5.3. Herein, we present an
approach to mutate an observable multitrace (i.e, a CDO) in order to generate another
tuple of timed traces with a communication fault (i.e, a FDO). We recall that there is no
global clock which schedules distributed events observed on local interfaces, but only local
clocks (with the hypothesis which states that time must elapse in the same way for all
local interfaces).

To mutate a CDO in order to generate a FDO by implementing an RTC mutation, we
first have to detect a RTC in it, then, we apply several classical mutations on delays of
events in the RTC of interest in the aim to inject a communication fault in it. We first
define the notion of communication between two local subsystems in a tuple of timed traces.

Communication. Let C1 and C2 be two local interfaces such that ∃c ∈ Cint1 ∩ Cint2 . Let
σ1, σ2 be two non empty timed traces in TTraces(C1) and TTraces(C2) respectively. A
communication com is a couple (evs, evd) where evs ∈ Evt(C1) is an event of an internal
output action and evd is an event in Evt(C2) where its action act(evd) = act(evs). The set
of all communications defined over C1 and C2 is denoted Coms(C1, C2).

Notation 5.2. Let C1 and C2 be two local interfaces such that ∃c ∈ Cint1 ∩ Cint2 . Given a
communication com = (evs, evd) in Coms(C1, C2), src(com) returns so-called source event
evs of com, dest(com) returns so-called destination event evd of com.

In the sequel, we need to compute the time elapsed between two sequential events evi and
evj that exist in the same timed trace. For this we introduce the function time(evi, evj)
defined as follows:

Time elapsed between two events. Let C be a local interface. Let σ be a non empty
timed trace in TTraces(C) of the form ev1 . . . evn. Let i and j two positions in [1, . . . , n]
with i ≤ j. Time elapsed between evi and evj is denoted as time(evi, evj) in D+ and

defined as
∑k=j

k=i+1 delay(evk).

Notation 5.3. Let C be a local interface. Let σ be a non-empty timed trace in TTraces(C)
of the form ev1, . . . , evn. We note evi ≺ evj if i < j ≤ n.

We define the notion of RTC as a couple of two communications that are connected by
some conditions.

105

5. Validating our Testing Approach

Round-trip Communication (RTC). Let Λ = (C1, . . . , Cn) be a distributed interface
where there exists an ordered subset of indexes {j1, . . . , jm} ⊆ {1, . . . , n} with m ≤ n
and where ∀i < m ∃comi ∈ Coms(Cji , Cji+1) and for i = m, ∃ comm ∈ Coms(Cjm , Cj1).
Let (σ1, . . . , σn) be a tuple of timed traces defined in Tup(Λ). An RTC rtc is a tuple
(com1, . . . , comm) of communications where:

� ∀i < m, comi = (evis, ev
i
d) is a communication in Coms(Cji , Cji+1) where evis and evid

are two events of σji and σji+1 respectively.

� ∀i < m, evid ≺ evi+1
s .

� for i = m, comm = (evms , ev
m
d) is a communication in Coms(Cjm , Cj1) where evms

and evmd are two event of σjm and σj1 respectively.

� for i = m, ev1
s ≺ evmd .

� ev1
s , ev

m
d are two events of σj1 and evm−1

d , evms are two events of σjm

� if time(ev1
s , ev

m
d) = d and time(evm−1

d , evms) = d′ then d > d′.

The set of all Round-trip communications defined over Λ is denoted RTComs(Λ). The
process of breaking a RTC is described as follows:

Process of breaking an RTC. When one detects an RTC rtc = (com1, . . . , comm) in a
tuple of timed traces (σ1, . . . , σn) with m ≤ n such that we have:

time(src(com1), dest(comm)) = d and,

time(dest(comm−1), src(comm)) = d′ and,

d > d′.

We may mutate randomly delays of events src(com1),dest(comm),dest(comm−1) and
src(comm) in order to have:

time(src(com1), dest(comm)) < time(dest(comm−1), src(comm))

In this case, we guarantee that we have broken the RTC in question.

Example 5.3 (Breaking a RTC). Consider distributed interface ΛTCS = (CTLC1 , CTLC2)
from Example 4.2. The tuple of timed traces (σ1, σ1) depicted in Figure 5.6(a). (σ1, σ2) is
an observable multitrace as we demonstrated in Example 5.1.
In (σ1, σ2), we detect the RTC rtc = (com1, com2) where:

� com1 = (ev1, ev2) ∈ Coms(CTLC1 , CTLC2) where ev1 = (3, pos1!42) is an event of σ1

and act(ev1) ∈ O(CTLC1) and ev2 = (4, pos1?42) is an event of σ2 and act(ev2) =
act(ev1).

� com2 = (ev′2, ev
′
1) ∈ Coms(CTLC2 , CTLC1) where ev′2 = (3, pos2!300) is an event

of σ2 and act(ev′2) ∈ O(CTLC2) and ev′1 = (2, pos2?300) is an event of σ1 and
act(ev′1) = act(ev′2)

� ev1, ev′1 are events of σ1 and ev2, ev′2 are events of σ2 such that:

106

5.3. A Mutation-based Approach to generate FDOs

– time(ev1, ev
′
1) = 4 + 2 + 4 = 10 and time(ev2, ev

′
2) = 4 and 10 > 4

We apply a delay mutation on event ev′2 such that ev′2 = (8, pos2!300). Then, we build (with
the mutated event) a new tuple of timed traces (σ1, σ

mut
2) which is defined in Tup(Λ) where

we have:

time(ev1, ev
′
1) = 10 and time(ev2, ev

′
2) = 11 and 10 < 11

The new mutated tuple of traces (σ1, σ
mut
2) (depicted in Figure 5.6(b)) denotes an incorrect

tuple of timed traces. In fact, to check the correctness of this tuple, we suppose the existence
of a virtual common instant at which both local components TLC1 and TLC2 start their
execution and hence the existence of symbolic durations d1 and d2 in Vtime. In this tuple:

� First internal reception pos1?42 in σ2 may be observed correctly provided that: d2+2 >
d1 + 6 . . . ϕ1

� First internal reception pos2?300 in σ1 may be observed correctly provided that:
d1 + 10 > d2 + 1 . . . ϕ2

� Second internal reception pos1?42 in σ2 may be observed correctly provided that:
d2 + 14 > d1 + 12 . . . ϕ3

� Second internal reception pos2?300 in σ1 may be observed correctly provided that:
d1 + 16 > d2 + 13 . . . ϕ4

We let Vtime = {d1, d2}, and we give the formula ϕ =
∧
i∈{1,...,4} ϕi in FΩ(Vtime). We have

IsSat(ϕ) is False indeed, there does not exist an interpretation ν ∈ (D+)V such that
D+ |=ν ϕ. We have Sat(ϕ) = ∅. Hence, (σ1, σ

mut
2) /∈ OTraces(Λ)

(a) (b)

Figure 5.6: Breaking an RTC and generating a Faulty Distributed Observation (FDO)

107

5. Validating our Testing Approach

5.4 The PhoneX Case Study

We illustrate our distributed testing approach for global verdict computation by applying
our testing tool on correct distributed observations generated directly from PhoneX model
or faulty ones generated by applying adapted mutation-based techniques. The main goals
of this case study are listed as follows:

� Create a PhoneX distributed specification model in DIVERSITY modeling platform.

� Generate correct distributed observations2 using the PhoneX model with DIVERSITY
tool using composition and projection techniques.

� Simulate a faulty execution of the PhoneX system. This may be done by applying
mutations on generated correct distributed observations with the aim to inject
communication errors or to modify correct behaviors of local components of the
system.

� Validate generated either correct distributed observations or faulty ones by applying
our distributed testing toolchain and compute global test verdicts.

We use a distributed system of 10 components and generated correct distributed observations
benchmarks containing from 100 to 10000 events. On those benchmark data, we apply
adapted mutation-based techniques to generated 1000 mutated distributed observations
from one correct distributed observation. We report on these experimentations, for this
purpose, we compare the measured time of checking communication with the measured
timed to perform local conformance checking and discuss results.

5.4.1 PhoneX System Overview

In this section, we present PhoneX as a case study developed first to promote Model-driven
software development principles. The distributed nature of PhoneX makes it suitable for
illustrating our testing approach.

PhoneX [77] is a central telecommunication system with communicating entities over the
network. PhoneX (Figure 5.7) is a toy protocol created for demonstration purposes to
promote Model-driven software development principles. It is signaling protocol to establish
sessions that resembles well-known telecommunication protocols. PhoneX clients are devices
that can register themselves to the PhoneX server which acts like a telecommunication
switch. After checking registration, the caller client can call other clients (named called
clients) via the server by providing the number of the called device.

The main goal with PhoneX is to create an end to end (i.e. from models to test execution)
toolchain to apply our distributed testing approach.

PhoneX server provides very basic services. Examples of these services:

� Message routing: It keeps track of the registered clients and routes the messages
based on the called numbers.

� Called client not available: In case a number is called which is not registered, then it
informs the client which initiated the session, that the called number is not available.

2Observable multitraces where each local timed trace describes a correct behavior of its local component

108

5.4. The PhoneX Case Study

Figure 5.7: PhoneX clients and server

� Called client busy: In case the device with the called number is already online, then
the client who initiated the session is informed, that the called device is busy.

In the following, we give basic scenarios of PhoneX system execution.

Successful call scenario. An example signaling flow for the successful session setup
and call establishment between two clients can be seen in Figure 5.8. In this scenario, a
caller with Phone112 initiates a call (doCall(113)) to the user of Phone113. The PhoneX
server, after receiving Calling(112, 113), checks if Phone113 is registered, available, and
then starts StartSession(112, 113) for communication management and remains available.
Session113

112 informs Phone113 that Phone112 tried to get in contact (CalledBy(112)).
The user of Phone113 can accept the call (doAcceptCall) and informs Session113

112 using
AcceptingCall which can establish communication (multicasting InitCall). Each user can
end the call (the user of Phone112 hangs up, doEndCall) and report it (EndingCall) to
Session113

112 that closes the connection by multicasting TermCall and becomes available
(EndSession(112, 113)) again.

Calling (112,113)

CalledBy 112

AcceptingCall

InitCall
InitCall

EndingCall

TermCall
TermCall

112
113

EndSession

doCall

 113

doEndCall

Caller

112

doAcceptCall

Called

113

Session

(112,113)

StartSession (112,113)

Figure 5.8: Interaction scenario of a successful call operation

Other scenarios of PhoneX system execution are given in Appendix A. Appendix A.1
describes a Line busy scenario. Appendix A.2 depicts a No Answer scenario.

109

5. Validating our Testing Approach

5.4.2 PhoneX System Interface

Herein, we present PhoneX system interface as a set of channels (internal and external)
through which local components of PhoneX system exchange messages. PhoneX system
interface (as depicted in Figure 5.9) defines set of channels (internal and external) through
which local components of PhoneX system exchange messages. Components Caller client
and Called client define two roles that registered phones can have. PhoneX is the component
that plays the role of the telecommunication central. An active session is a generic
representation of sessions created by PhoneX central to manage communications caller and
called clients. Communication channels model the media used by components.

Caller

Client

Called

Client
PhoneX

Active

Session

Calling

srcid destid

onStartSessi

),(destsrc idid

CalledBy

allAcceptingC

ljectingCalRe

Error EndSession

T
er

m
C

al
l

EndingCall

EndingCall

In
it

C
al

l

Caller

User

Called

User

doCall

doEndCall

lldoAcceptCa

jectCalldo Re

doEndCall

NoAnswer

Figure 5.9: The PhoneX architecture

The description of all channels used to construct system interface of PhoneX case study is
given in Appendix D.

5.4.3 PhoneX Modeling Effort

In our context, the modeling effort relates to the identification of the different modeling
features used in TIOSTS from the requirement of PhoneX case study. We model PhoneX
distributed system as a collection of TIOSTS communicating via a communication network.
We model PhoneX distributed system as a collection of TIOSTS communicating via a
communication network. Our system is comprised of four communicating components, a
caller client, a Called client, the PhoneX central and an Active session when a call can be
established between two different clients.

� Caller client specified with TIOSTS Gsrc (see Figure B.1(a) in Appendix B.1):
describes the behavior of a client, which initiates a call. It sends call signals to be
treated by PhoneX central. At any moment it may end the call it has emitted.

� Called client specified with TIOSTS Gdest (see Figure B.1(b) in Appendix B.2):
describes the behavior of a client, which may receives a call. It receives call signals
from the active session in order to either accept the call or reject it. At any moment
it may end the call he/she has received.

� PhoneX specified with TIOSTS GX (see Figure B.2 in Appendix B.3) is in charge
of establishing a call between the two clients. If a no session between a caller and
a called clients is already active then it starts and registers a new session between
the two clients. PhoneX central keeps track of both registered clients in the Client
database and active sessions in the Session database. If no session is active between

110

5.4. The PhoneX Case Study

the caller and called clients, then PhoneX central starts a session provided that
called number is registered in the database and is a valid one. It rejects calls with an
unknown number, or when the called number is busy or when calling number is a
not valid one.

� An active session specified with TIOSTS GS (see Figure 5.10): is in charge of initiating
(if it is already established) a terminating a call between two different3 and registered
clients in the Client database. Once a session is started between a caller and a called
client, it initiates a call. PhoneX central gets notified that a session is finished by
emitting a no answer signal when the called client does not answer within a giving
timeout delay. It may also notify PhoneX central that the session is finished when
the call is terminated between the caller and the caller clients.

There can be several instances of a TIOSTS model Gsrc (resp. Gdest) during a test: each
instance is identified with a id which corresponds to the caller (resp. called) number. For
example, for a caller client 112 (resp. called client 113), we associate a TIOSTS model
G112
src (resp. G113

dest). There must be as many instances of a Session TIOSTS model as the
number of instances of the called model, for a session between caller 112 and called client

113, we associate model G(112,113)
S . In the following, we describe only the active session

model behavior. The rest of models behaviors are given in Appendix B.

Session behavior (depicted in Figure 5.10). When a new session is started, a Session
TIOSTS is instantiated. At the Idle state, Session receives src and dest numbers, it then
reaches Starting. It notifies called client dest with a call operation emitted by caller client
src and reaches Initiating. At Initiating, it may reach either Accepted when called client
accepts the call during a waiting delay or Terminating if a no-answer is observed during a
waiting delay or the call get rejected. At Accepted, active session initiates and establishes
a call between caller src and called dest and reaches state Established. At the latter state,
either caller or called client may end the call (session reaches Terminating state). At
Terminating state session sends a terminating signal to both caller and called clients and
reaches Ending. Finally, it return to Idle by notifying PhoneX central of ending the active
session (src, dest).

3A client cannot call itself

111

5. Validating our Testing Approach

Initiating

Accepted

!InitCall

Established

Terminating

Idle

{ }Sclk
srcCalledBy!

Ending

Session TIOTS

?
][

allAcceptingC
TIMEOUTclkS ≤

?EndingCall

?Re ljectingCal

!TermCall

),(! destsrcEndSession

Starting

),?(destsrconStartSessi

!
][

NoAnswer
TIMEOUTclkS >

Initiating

Accepted

?
][

allAcceptingC
TIMEOUTclkS ≤

Figure 5.10: TIOSTS model GS of the Active Session

TIOSTS Gsrc, Gdest are described in Appendix B.1 and B.2 respectively, GX is described
in Appendix B.3.

5.4.4 Testing PhoneX

In this section, we present our PhoneX testing architecture. We apply our distributed
testing approach by orchestration on PhoneX. Then, we draw experimental results of
testing PhoneX system.

PhoneX Testing Architecture

Session

(112,113)

1
1

2

113

Network

Global Tester

Local Tester

L
o

c
a

l T
e

s
te

r

L
o

c
a
l

T
e
s

te
r

GT

1T

2
T

3T
L

o
c

a
l

T
e

s
te

r

4T

Figure 5.11: PhoneX distributed testing Architecture

112

5.4. The PhoneX Case Study

Figure 5.11 illustrates the architecture used to carry our testing approach. We give an
example of a client Phone112 trying to call another client Phone113 through PhoneX central
which creates a session4 Session113

112. Only local components which are clients (here caller
Phone112 and called Phone113) can communicate with environment. Hence each client has
channels connected to the environment (in black connections) to receive signal from users
and internal channels (in gray connections) to exchange values with other components
(here PhoneX central, active session Session113

112, caller client Phone112 and called client
Phone113). A tester Ti with 1 ≤ i ≤ 4 is associated with each local component and Ti
may control inputs (here from client users) and observe outputs occurring on channels
connected to the environment. The tester may also observe values sent through internal
channels (represented by the magnifying glasses). Each localized subsystem executes in a
centralised way so that the local tester can observe the order of actions occurring on its
channels and can measure durations between consecutive actions. Therefore, behaviors
observed by each tester Ti can be viewed as timed traces and may be analyzed with respect
to the set of timed traces of the model specifying the local component in question. We
cannot directly combine the timed traces observed at different local interfaces since there
is no global clock but only local clocks ordering local events. Internal communications,
represented by a network are multicast: a message sent can be received by several recipients
(all those who listen on the channel of interest). Messages are never lost but the time
to reach a recipient is not quantifiable since it travels between interfaces and there is no
global clock (we cannot measure it). Recall, however, that we assume that all testers use
clocks progressing at the same rate. A global tester (also called a global checker) TG links
to local interfaces and collects local observations to build a tuple of timed traces, then, it
performs a communication analysis to check whether or not the collected observed tuple of
traces respects valid communication pattern.

Setting Up the Experiments

The size of the PhoneX system depends on the number of clients. In the following, we
consider a system of 10 localised subsystems (depicted in Figure 5.12): 3 caller clients, 3
called clients, 3 active sessions and a PhoneX central.

112 113

114 115

116 117

Session

(112,113)

Session

(114,115)

Session

(116,117)

Figure 5.12: PhoneX distributed system composed of 10 components

4We may create as much active session as the number of called clients in the distributed architecture

113

5. Validating our Testing Approach

Experimental Results

Correct multitraces generated by Diversity 1000 Mutated tuples of traces

#events #internal. com. checking local. testing #com. errors average of

com (for all traces) com. checking

759 340 17ms 6s519ms 713 17.371ms

1587 700 28ms 21s761ms 729 27.648ms

3633 1589 49ms 1m34s178ms 800 40.934ms

6486 2830 59ms 7m5s797ms 737 60.140ms

7797 3400 69ms 10m52s378ms 722 66.315ms

9999 4357 88ms 24m14s860ms 738 80.825ms

Table 5.5: Experimental data for correct multitraces and their mutants

In Table 5.5, the third column (com. checking) gives the time5 needed to solve the constraint
associated to the verification of communications described in a multitrace whose number
of events is given in the first column and number of internal communications is given in
the second column. The fourth column provides the time6 needed to analyse all local
traces. For each multitrace, we generate 1000 mutated tuples of traces and we count the
ratio of multitraces that are faulty with regards to communication policy (before the last
column). Finally, in the last column, we give the average time to check the communication
constraint of the mutated tuples. Experiments have been performed on a 3.10Ghz Intel
Xeon E5-2687W working station with 64 GB of RAM on Linux Ubuntu 14.04.

We can easily observe in the table the exponential explosion in the time of local testing.
Indeed, DIVERSITY uses exploration strategies that would have to reach a number of
evaluation steps (used as a stop criterion), and that is costly. For information purposes,
using BFS strategy to explore a trace of 6384 elements, we computed more than 4000
execution steps.

Communication checking time which is the measured time to check that tuple of timed
traces respects or not valid communication pattern is the addition of two times: time2build
which is the time necessary to build the conjunction of constraints relating to the detection
of all internal receptions in the tuple of traces. and time2solve which is the measured time
to solve the conjunction of constraints relating to the detection of all internal receptions in
the tuple of traces using a constraint solver (in our case we have used the Yices2 constraint
solver).

Time to build constraints (that we denote as time2build) is O(N) with N the number of
events in a tuple of traces. In fact, the translation of a multitrace into a CSP performs a
classical loop over events occurring in the tuple of traces.

Time to solve constraints (that we denote as time2solve) is an experimental time whose
complexity depends on the type of constraint solver to be used and the structure of
constraint to be built. In our case, we have experimented CV C4[9], Z3[26] and Y ices2[28]
constraint solvers and we have observed that Y ices2 seems to produce the best results in
solving constraints of the form di + x > dj + y where di + x is the time measured from

5using the Yices2 constraint solver[28]
6using the CVC4 constraint solver[9] embedded in DIVERSITY platform.

114

5.4. The PhoneX Case Study

initialization to the observation of and internal input in component i and dj + y is time
measured from initialization to the observation of the corresponding internal output in
component j.

115

5. Validating our Testing Approach

116

6. Conclusions and Perspectives

Chapter 6

Conclusions and Perspectives

Contents

6.1 Summary . 117

6.2 Future Research . 118

6.1 Summary

Distributed Systems (DSs) consist of a number of independent components running concur-
rently on different machines that interact with each other through communication networks
to meet a common goal. In this thesis, we showed that testing DSs is more difficult than
testing centralized systems. Difficulties of testing DSs were highlighted in this thesis.

In the context of model-based testing of distributed systems, the oracle problem is the
problem of checking of test results to detect differences between a DUT and its specification
in order to decide conformance. This thesis presented a model-based distributed testing
approach which focused on solving the oracle problem where the DUT consists of multiple
localized subsystems under test communicating through a communication network. In
this context, we specified, in Chapter 2, local entities composing the DUT using TIOSTS
formalism.

In Chapter 3, we presented a model-based testing approach where we proposed an algorithm
for solving the oracle problem in the context of local conformance testing based on tioco
conformance relation.

Chapter 4 presents our contributions in the context of distributed MBT. Section 4.2
describes our distributed testing architecture and shows that non conformance can be
detected locally (this is the case when the error belongs locally to a subsystem), yet,
communication errors coming from the interaction between localized subsystems cannot be
detected locally. In this regard, we assumed there is a separate tester at each localized
interface which only obverses the interactions made at its interface. Since there is no global
clock, we assumed that we cannot directly combine the timed traces observed at each local
interface. We show that under the assumption that each local interface has a local clock,
we can reconstruct a global view of the distributed system from local timed traces, using
rules of valid communication pattern, and therefore global conformance can be reached

117

6. Conclusions and Perspectives

by using only local testers. Section 4.4.1 presented semantics of distributed systems that
can be seen as tuples of local timed traces. To ensure the consistency of communications
between localized SUTs, we introduced a set of properties that reflect correct interactions
between components providing local timed traces. To capture this, we have introduced the
notion of multitrace to denote a tuple of timed traces where elements that can be observed
by each local tester respect valid communication pattern. Yet, as we cannot make any
assumption on the different moments at which the different local testers stop observing
their associated interfaces, we may accept as valid observations, tuples made of multi-trace
prefixes that we denote as observable multitraces.

Conformance is decided by implementing dtioco conformance relation which verifies, first,
the correctness of each stimulated localized SUT against its TIOSTS model, then, it checks
the consistency of internal communications by testing whether properties that reflect
correct interactions between local subsystems hold or not.

Our implementation framework for testing timed distributed systems consists in timed
unitary testing for each stimulated localized SUT along with testing for internal communi-
cations. We developed in Section 4.5 of Chapter 4 our testing framework for solving the
oracle problem. We have proposed an algorithm to check valid communication pattern
by formulating the latter in terms of constraint solving problem. This latter algorithm
was implemented in Java. Then we have presented an orchestration-based technique to
implement the computation of global test verdicts.

In Chapter 5 we presented a validation approach to our implementation framework. We
evaluated the scalability of our approach with regard to the soundness and performance
of our algorithms. An experimentation of our testing approach on a real case study of a
telecommunication distributed system was illustrated in this chapter.

6.2 Future Research

Although this thesis tackles several issues of model-based conformance testing for dis-
tributed systems, there are many challenges in this research domain that need further
investigation.

Extensions to other communication protocols (e.g., smart grids protocols [67, 64, 40],
TCP/IP [35]) may be one of the challenges to be considered as a motivation to enhance
our communication checking approach in a distributed system.

In our work, we have assumed that each local tester starts observing when its associated
localized sub-system is reset. Relaxing this assumption is left for future work.

This work does not give a complete framework to test timed distributed systems. First,
there is a need to define and implement suitable test case generation algorithms. In
particular, it is necessary to define distributed test purposes and to find test generation
strategies to drive system execution so that they follow those test purposes. Second, in
this work, we assume that local clocks progress at the same rate; it should be possible to
generalize the results to the case where clocks can drift. Finally, we also intend to consider

118

6.2. Future Research

the case where the sending and receiving of internal messages is hidden.

Another open issue that needs to be tackled is the problem of detecting deadlock in DSs.
To the best of our knowledge, we could not find a work talking about using the MBT
activities to detect deadlock in distributed systems. So having a technique that uses all
the activities of MBT to detect deadlock in DSs is left as future work.

From the practical point of view, although the algorithm to check valid communication
pattern presented in this thesis have been implemented and the prototype allows us to do
some experiments (see Appendix C), we plan, as a future work, to incorporate this imple-
mentation in the DIVERSITY core in order to have a centralized tool used to implement
a model-based testing approach (from test case generation to verdict computation) for
distributed systems.

119

6. Conclusions and Perspectives

120

A. PhoneX other call scenarios

Appendix A

PhoneX other call scenarios

Contents

A.1 PhoneX Line busy scenario . 121

A.2 No Answer scenario . 122

A.1 PhoneX Line busy scenario

An example that represents a call pattern with a line busy notification is depicted in
terms of multiple life-lines in Figure A.1. It denotes the following behavior: Once a call
is initiated between the caller client Phone112 and the called client Phone113, an active
session Session112

113 is registered in the Session database. Now, a calling signal is emitted by
another caller Phone111 to join called client Phone113 (Calling (111, 113)). In this case,
there is already an active session where the called number is 113, hence, PhoneX notifies,
caller Phone111 with a message LineBusy. Indeed, the call cannot be settled between
clients Phone111 and Phone113 as long as client Phone113 is already taken by an active
session.

LineBusy

Calling (112,113)

CalledBy 112

AcceptingCall

InitCall
InitCall

112
113

111

StartSession (112,113)

Calling (111,113)

Session

(112,113)

doAcceptCall

Called

113

Caller

112

doCall

113

Caller

111

doCall

113

=

doCall?113

(1)

Calling!(112,113)

(16)

InitCall?

=

Calling?(112,113)

(1)

StartSession!(112,113)

(17)

Calling?(111,113)

(1)

Error!LineBusy

=

StartSession?(112,113)

(1)

CalledBy!112

(5)

AcceptingCall?

(2)

InitCall!

=

CalledBy?112

(2)

doAcceptCall?

(1)

AcceptingCall!

(7)

InitCall?

112
srcσ Xσ)113,112(

Sσ 113
destσ

=

doCall?113

(1)

Calling!(111,113)

(4)

Error?LineBusy

111
srcσ

=

doCall?113

(1)

Calling!(112,113)

(1)

Calling?(112,113)

(1)

StartSession!(112,113)

(1)

StartSession?(112,113)

(1)

CalledBy!112

(1)

CalledBy?112

(2)

doAcceptCall?

(1)

AcceptingCall!

(1)

AcceptingCall?

(2)

InitCall!

(4)

InitCall?

(1)

InitCall?

(1)

doCall?113

(1)

Calling!(111,113)

(1)

Calling?(111,113)

(1)

Error!LineBusy

(2)

Error?LineBusy

sysσ
=

doCall?113

(1)

Calling!(112,113)

(1)

(1)

(1)

(1)

(1)

(2)

(1)

(1)

(2)

(4)

(1)

InitCall?

=

Calling?(112,113)

(1)

StartSession!(112,113)

(1)

(1)

(1)

(2)

(1)

(1)

(2)

(4)

(1)

(1)

(1)

(1)

Calling?(111,113)

(1)

Error!LineBusy

=

StartSession?(112,113)

(1)

CalledBy!112

(1)

(2)

(1)

(1)

AcceptingCall?

(2)

InitCall!

=

CalledBy?112

(2)

doAcceptCall?

(1)

AcceptingCall!

(1)

(2)

(4)

InitCall?

112
srcσ Xσ)113,112(

Sσ 113
destσ

=

doCall?113

(1)

Calling!(111,113)

(1)

(1)

(2)

Error?LineBusy

111

srcσ

Projection D
e
la

y

A
d
d
it
iv

it
y

D
e
la

y

A
d
d
it
iv

it
y

D
e
la

y

A
d
d
it
iv

it
y

D
e
la

y

A
d
d
it
iv

it
y

D
e
la

y

A
d
d
it
iv

it
y

Figure A.1: Interaction scenario of a call scenario with Line Busy notification

121

A. PhoneX other call scenarios

A.2 No Answer scenario

An example that represents a call pattern with a no-answer notification is depicted in terms
of multiple life-lines in Figure A.2. It denotes the following behavior: Caller Phone112

initiates a call operation to join client Phone113 (Calling(111, 113) is emitted). PhoneX
central receives the Calling signal and after checking registration (Phone113 is an allowed-
to-call in the Client database and no active session is already opened with destination
client Phone113), it starts a new session Session112

113. The latter session sends a CalledBy
signal to called client Phone113 and waits for a response within a TIMEOUT duration.

In our scenario, active session Session112
113 notifies caller client Phone112 with a NoAnswer

signal, indeed, it has wait for a delay which is strictly greater than TIMEOUT which
corresponds to a situation in which called client Phone113 does not accept the call operation.
The active session terminates the call process by multicasting signal TermCall towards
both caller and called clients Phone112 and Phone113 respectively. The current active
session is finished when client identifiers 112 and 113 are emitted from active session
Session112

113 towards PhoneX central through channel EndSession.

=

doCall?113

(1)

Calling!(112,113)

(12)

NoAnswer?

(5)

TermCall?

=

Calling?(112,113)

(1)

StartSession!(112,113)

(18)

EndSession?

=

StartSession?(112,113)

(1)

CalledBy!112

(7)

NoAnswer!

(5)

TermCall!

(3)

EndSession!

=

CalledBy?112

(13)

TermCall?

112
srcσ Xσ)113,112(

Sσ 113
destσ

=

doCall?113

(1)

Calling!(112,113)

(1)

Calling?(112,113)

(1)

StartSession!(112,113)

(1)

StartSession?(112,113)

(1)

CalledBy!112

(1)

CalledBy?112

(6)

NoAnswer!

(1)

NoAnswer?

(4)

TermCall!

(1)

TermCall?

(1)

TermCall?

(1)

EndSession!

(1)

EndSession?

sysσ
=

doCall?113

(1)

Calling!(112,113)

(1)

(1)

(1)

(1)

(1)

(6)

(1)

NoAnswer?

(4)

(1)

TermCall?

=

Calling?(112,113)

(1)

StartSession!(112,113)

(1)

(1)

(1)

(6)

(1)

(4)

(1)

(1)

(1)

(1)

EndSession?

=

StartSession?(112,113)

(1)

CalledBy!112

(1)

(6)

NoAnswer!

(1)

(4)

TermCall!

(1)

(1)

(1)

EndSession!

=

CalledBy?112

(6)

(1)

(4)

(1)

(1)

TermCall?

112
srcσ Xσ)113,112(

Sσ 113
destσ

Projection

D
e
la

y

A
d
d
it
iv

it
y

D
e
la

y

A
d
d
it
iv

it
y

D
e

la
y

A
d

d
it
iv

it
y

D
e

la
y

A
d

d
it
iv

it
y

Calling (112,113)

CalledBy 112

NoAnswer

TermCall
TermCall

112
113

EndSession

doCall 113

Caller

112
Called

113

Session

(112,113)

StartSession (112,113)

T
IM

E
O

U
T

Figure A.2: Interaction scenario of a call scenario with No Answer notification

122

B. PhoneX TIOSTS models

Appendix B

PhoneX TIOSTS models

Contents

B.1 Caller client TIOSTS model . 123

B.2 Called client TIOSTS model . 123

B.3 PhoneX central TIOSTS model 124

B.1 Caller client TIOSTS model

Caller client behavior (depicted in Figure B.1(a)). At the Idle state, caller src re-
ceives a call from the environment (a caller) to make a call operation with called dest (caller
reaches Starting state), then, it joins PhoneX central by sending to it src and dest (caller
reaches Initiating state). Caller returns to Idle state when it receives an error code from
PhoneX (PhoneX cannot establish a call due to violated condition of call establishment) or
a signal to terminate the call from the active session (due to a call rejection by called client).

At Initiating, src may reach Established if a call is established by active session or state
Terminating if a no-answer (from called client) is observed during a waiting delay. When
a call is established (at Established), src may return to Idle by receiving a terminating
signal from the active session (due to an ending call by called client) or receive a signal from
the environment (a caller) to end the call in progress (caller reaches UserEndingCall). At
UserEndingCall, the caller may also return to Idle by due to an ending call by the called
client, it then, receives a terminating signal from the active session. From UserEndingCall,
the caller notifies the active session for terminating the call and reaches Terminating
state. At Terminating, caller src returns to Idle by receiving a terminating signal from
the active session. Now, the caller is ready to make another call.

B.2 Called client TIOSTS model

Called client behavior (depicted in Figure B.1(b)). This role is symmetric (on the
called client side) to the one described in Appendix B.1). At the Idle state, called client
dest receives a called-by signal from the active session (caller reaches Initiating state).
At this state, it may return to Idle when it receives a terminating signal from the active
session (if a no-answer is observed during a waiting delay) or reach Rejecting if it receives

123

B. PhoneX TIOSTS models

a rejection signal. At Rejecting, dest notifies the active session (of rejecting the call) and
reaches Terminating.

From Initiating, dest reaches Accepting when called user accepts the call, it then, notifies
the active session and reaches Accepted. dest may reach Established if a call is established.
At Established, dest may return to Idle by receiving a terminating signal from the active
session (due to an ending call by caller client). As described for caller client, dest may
end the call and reach UserEndingCall and then Terminating. At Terminating, dest
returns to Idle by receiving a terminating signal. Now, called client dest is free to accept
another call.

Idle

Starting

Initiating

Established

UserEndingCall

destdoCall ?

?doEndCall

Caller TIOTS

msgCodeError ?

Terminating

!EndingCall

?InitCall

?TermCall

?TermCall

?NoAnswer

),(! destsrcCalling

?TermCall

?TermCall

(a)

Idle

Initiating

Accepted

Established

srcCalledBy ?

UserEndingCall

!allAcceptingC

Rejecting

Called TIOTS

Terminating

Accepting

?lldoAcceptCa

!Re ljectingCal

?InitCall

?TermCall

!EndingCall

?doEndCall

?Re jectCalldo

?TermCall

?TermCall

?TermCall

(b)

Figure B.1: TIOSTSs Gsrc and Gdest of Caller and Called clients

B.3 PhoneX central TIOSTS model

PhoneX central behavior (depicted in Figure B.2). At the Idle state, PhoneX
may receive a new call with src and dest numbers and reach Calling or get notified of
the ending of an already active session and return to Idle. At Calling, PhoneX may
start a new session (src, dest) and return to Idle provided that dest is a registered and
allowed-to-call number in the Client database and there is no active session with called
client dest. Otherwise, PhoneX may also return to Idle when dest is not registered in
Client database (it notifies caller with code error UnknownNumber) or calling dest is
not allowed (it notifies caller with code error NotAllowed) or called client dest is busy (it
notifies caller with code error LineBusy).

124

B.3. PhoneX central TIOSTS model

Idle

Calling

NotAllowedError
destberallowedNumis

destrknownNumbeis
destionactiveSessis

!
)](_
&&)(_

&&)(_[

¬

¬

berUnknownNumError
destrknownNumbeis
destionactiveSessis

!
&&)(_
&&)(_[

¬
¬

PhoneX TIOTS

),?(destsrcEndSession

),(!
)](_

&&)(_
&&)(_[

destsrconStartSessi
destberallowedNumis

destrknownNumbeis
destionactiveSessis¬

LineBusyError
destionactiveSessis

!
)](_[

),?(destsrcCalling

Initiating

Accepted

!InitCall

Established

Terminating

Idle

{ }Sclk
srcCalledBy!

Ending

Session TIOTS

?
][

allAcceptingC
TIMEOUTclkS ≤

?EndingCall

?Re ljectingCal

!TermCall

),(! destsrcEndSession

Starting

),?(destsrconStartSessi

!
][

NoAnswer
TIMEOUTclkS >

)(a

)(b

Figure B.2: TIOSTSs GX of PhoneX Central

125

B. PhoneX TIOSTS models

126

C. Algorithms Java Implementation

Appendix C

Algorithms Java Implementation

Contents

C.1 Java Implementation of function BuildConstraint 127

C.2 Java Implementation of Main function DObervation2CSP . . . 129

C.1 Java Implementation of function BuildConstraint

This appendix depicts Java source-code of function BuildConstraint which constructs a
constraint on the detection of an event whose action is an internal input at some designated
place in a distributed observation. This function takes as input a distributed observation, a
distributed interface, an event and its date (from initialization) to validate its observation
at a designated place and an array containing durations of all traces in the distributed
observation. This function is supposed to return a constraint if there exists a subsystem
that might send its corresponding internal output in a non-empty distributed observation.
Otherwise, it returns an empty constraint.

Let us point out that there are two reasons for allowing an event whose action is an internal
input to be accepted as a valid reception in a distributed observation. The first reason
is that a sufficient number of corresponding internal outputs have been emitted prior to
the consumption of this internal input. The second reason is that, at the time when the
observation is performed, the trace emitting the corresponding internal output is no longer
observed.

Listing C.1: Function to build a constraint on the detection of an internal input in a
distributed observation

0 /*

1 *The function takes as input: a distributed observation: DO which denotes the tuple of traces which

is supposed to contain an event to be correctly observed in a designated position in DO named

trace_index, a distributed interface DI to provide DO with both internal and external channel

sets, an event EV and its date (measured from initialization), the place and finally an array

containing the durations of all traces in DO.

2 *The function builds a constraint on the observation of EV if its action is an internal input in DO.

It returns an empty string of characters otherwise.

3 */

4 public static String BuildConstraint(DObservation DO, Event EV, int evDate, int trace_index,

DInterface DI, Vector<Integer> traces_durations){

5 StringBuilder constraint=new StringBuilder();/*Build an empty string which is supposed to

contain a constraint of the form Di+x>Dj+y */

127

C. Algorithms Java Implementation

6
7 if(DO.isEmpty())/*If DO is empty return the empty string as a constraint*/

8 return constraint.toString();

9
10 Trace TR= DO.get(trace_index);/*Get TR which is the trace at position trace_index*/

11 HashMap<String, Parameter> output_buffer= TR.getOutputBuffer();/*Retrieve the mapping table of

TR*/

12
13 /*EV is an event whose action is an internal input at TR*/

14 if(EV.getAction().isInputInt(DI.getSystemSet().get(trace_index))){

15 int reception_index= -1;

16 if (output_buffer.get(EV.getAction().getOpposite().toString())!=null){

17 Queue<Integer> reception_buffer= output_buffer.get(EV.getAction().getOpposite().toString

()).getReceive_buffer();

18 reception_index= output_buffer.get(EV.getAction().getOpposite().toString()).getId();

19
20 /*EV is an event whose action is an internal input at TR whose its corresponding output

is observed at trace whose position is reception_index*/

21 if (!reception_buffer.isEmpty()){

22 if(ENABLED_DEBUG)

23 System.out.println(EV+": is input internal && its corresponding output observed in

: "+reception_index);

24
25 constraint

26 .append("(> ").append("(+ D").append(trace_index).append(" ").append(evDate).append(")

")

27 .append("(+ D").append(reception_index).append(" ").append(reception_buffer.poll()).

append("))");

28
29 if(ENABLED_DEBUG)

30 System.out.println("==> Constraint to be checked for "+EV+" is: "+constraint);

31 }

32 /*EV is an event whose action is an internal input at TR whose its corresponding output

is not observed at trace whose position is reception_index*/

33 else{

34 if(ENABLED_DEBUG)

35 System.out.println(EV+": is input internal && corresponding output not observed in

: "+reception_index);

36
37 /*Build the corresponding constraint*/

38 constraint

39 .append("(> ").append("(+ D").append(trace_index).append(" ").append(evDate).append(")

")

40 .append("(+ D").append(reception_index).append(" ").append(durations.get(

reception_index)).append("))");

41
42 if(ENABLED_DEBUG)

43 System.out.println("==> Constraint to be checked for "+EV+" is: "+constraint);

44 }

45 }

46
47 /*EV is an event whose action is an internal input at TR where its corresponding output is

not observed at trace whose position is reception_index*/

48 else{

49 if(ENABLED_DEBUG)

50 System.out.println(EV+": is input internal && corresponding output not observed in: "+

reception_index);

51
52 reception_index= Check.indexSender(EV.getAction(), DI);

53
54 /*Build the corresponding constraint*/

55 constraint

56 .append("(> ").append("(+ D").append(trace_index).append(" ").append(evDate).append(") ")

57 .append("(+ D").append(reception_index).append(" ").append(durations.get(reception_index)

).append("))");

58
59 if(ENABLED_DEBUG)

60 System.out.println("==> Constraint to be checked for "+EV+" is: "+constraint);

128

C.2. Java Implementation of Main function DObervation2CSP

61 }

62 }

63 /*EV is an event whose action is not an internal input at TR*/

64 else{

65 if(ENABLED_DEBUG)

66 System.out.println(EV+" is not an internal input in sub-system: "+trace_index);

67 }

68 return constraint.toString();

69 }

C.2 Java Implementation of Main function DObervation2CSP

This appendix depicts Java source-code of function DObervation2CSP to check observable
multitrace property as described in Section 4.5.2. The function takes as input a distributed
observation, a distributed interface and a File object. It analyses elements of the distributed
observation iteratively and produces a file written in SMT-Lib Format containing constraints
related to the detection of each internal communication. In addition, the function is
supposed to return the number of built constraints used as a metric in our evaluation.

Listing C.2: Function to translate the communication checking problem into a CSP

0 /*

1 *The function takes as input: a distributed observation: DO which denotes the tuple of traces to be

analyzed, a distributed interface DI to provide DO with both internal and external channel

sets and finally a File object file to be filled with constraints written in SMT-Lib.

2 *The function builds a file written in SMT-Lib format containing constraints related to the

detection of each internal communication in DO.

3 *It also deliver the number of built constraints that we use as a metric.

4 */

5 public static int DObervation2CSP(DObservation DO, DInterface DI, File file) throws IOException{

6 int nbConstraints=0;/*We initialize the number of built constraints*/

7 int[] evDates = new int[DO.getComponents().size()];/*We use an array to store the measured

duration of each analysed event*/

8 Arrays.fill(evDates, 0);

9 Vector<Integer> vect_durations= DO.getTracesDuration();/*This array contains the duration of

each trace in DO*/

10
11 /*Initial filling of the SMT-file with positive symbolic durations*/

12 fw.write("(set-option :produce-models true)\n");

13 fw.write("(set-logic QF_LRA)\n\n");

14
15 for(int i=0;i<DO.nbTraces();i++){

16 fw.write("(declare-fun D");

17 fw.write(String.valueOf(i));

18 fw.write(" () Real)\n");

19 fw.write("(assert (> D");

20 fw.write(String.valueOf(i));

21 fw.write(" 0))\n");

22 nbConstraints++;

23 }

24 fw.write("\n");

25
26 /*Analysing elements of DO one by one*/

27 for(int trace_idx=0; trace_idx<DO.nbTraces(); trace_idx++){

28 Trace TR= DO.get(trace_idx);

29 for(int j=0; j<TR.size(); j++){

30 Event EV= (Event) TR.getElementList().get(j);/*Retrieve the head of each trace in DO*/

31 evDates[trace_idx]=evDates[trace_idx]+ EV.getDuration();/*Retrieve the delay measured

form initialization of the actual event*/

32 String constraint= BuildConstraint(DO, EV, evDates[trace_idx],trace_idx, DI,

vect_durations);/*Calling the BuildConstraint function to build a constraint when an

internal event is detected*/

33 /*Write the built expression in file if it is not empty. An empty expression is synonym

to the detection to no internal event*/

129

C. Algorithms Java Implementation

34 if (!constraint.isEmpty()){

35 fw.write("(assert ");

36 fw.write(constraint);

37 fw.write(")\n");

38 nbConstraints++;

39 }

40 }

41 }

42 /*Prepare the SMT-file by writing in it the SMT-Lib commands for the use of an SMT-Solver*/

43 fw.write("\n");

44 fw.write("(check-sat)\n");

45 fw.write("(get-model)\n");

46 fw.write("(exit)\n");

47
48 return nbConstraints; /*Return the total number of constraints built*/

49 }

130

D. PhoneX Distributed Interface

Appendix D

PhoneX Distributed Interface

PhoneX system interface (as depicted in Figure 5.9) defines the set of channels (internal
and external) through which local subsystems (of PhoneX system) exchange messages.
The description of all channels used to construct system interface of PhoneX case study is
given in the following table:

Channel Type Description

doCall External Used to send dest as a phone number to be called, from a caller user to a caller
client in order to start a call conversion

doAcceptCall External Used to send a doAcceptCall signal from a called user to a called client to
accept a call initiated by a caller client

doRejectCall External Used to send a doRejectCall signal from a called user to a called client to
reject a call initiated by a caller client

doEndCall External Used to send a doEndCall signal from a caller (resp. called) a user to a caller
(resp. called) client in order to end-up an already existing a call conversion

Calling Internal Used to send both caller and caller ids (src and dest) from a caller client to
the PhoneX central

Error Internal If a call conversion cannot be established between clients with
numbers src and dest, the PhoneX central sends an error code
(UnknownNumber,NotAllowed,LineBusy) in destination of the caller
client src with the aim to end-up the process of initiating a call

StartSession Internal After creating a session between clients with numbers src and dest, the latter
numbers are sent by the PhoneX central to the created session through this
channel

CalledBy Internal src id of the caller client is sent from the active session to the called client dest
through this channel

NoAnswer Internal Due to a non responding timeout (if caller client dest is already in conversion
within another active session), the created session sends a NoAnswer signal
in destination of the caller client src through this channel

AcceptingCall Internal After receiving an AcceptCall from a caller user, the called client dest sends
an AcceptingCall signal to the the active session through this channel

InitCall Internal After accepting a call by a called client dest, the active session initiates a call
conversion between the caller client src and the called client dest by multicas-
ting InitCall signal in destination of src and dest clients

RejectingCall Internal After receiving an RejectCall from the caller user, the called client dest sends
an RejectingCall signal to the the active session

EndingCall Internal After receiving an EndCall from caller (resp. called) user, caller (resp. called)
client may send an EndingCall signal to the the active session

TermCall Internal After ending-up the call by either the caller client src or the called client dest,
the active session labeled with (src, dest) terminates the call conversion be-
tween the caller client src and the called client dest by multicasting TermCall
signal in destination of src and dest clients

EndSession Internal Once a call conversion is terminated between the caller src and the called client
dest, the active session sends those numbers through EndSession channel in
destination of the PhoneX central in order to terminate this active session

Table D.1: A summary of the channel names of the PhoneX system interface.

131

D. PhoneX Distributed Interface

132

BIBLIOGRAPHY

Bibliography

[1] Rajeev Alur, Aditya Kanade, S Ramesh, and KC Shashidhar. Symbolic analysis for
improving simulation coverage of simulink/stateflow models. In Proceedings of the 8th
ACM international conference on Embedded software, pages 89–98. ACM, 2008.

[2] Paul E Ammann, Paul E Black, and William Majurski. Using model checking to
generate tests from specifications. In Formal Engineering Methods, 1998. Proceedings.
Second International Conference on, pages 46–54. IEEE, 1998.

[3] Susan M. Armstrong, Alan O. Freier, and Keith A. Marzullo. Multicast transport
protocol. RFC, 1301:1–38, 1992.

[4] Mathilde Arnaud, Boutheina Bannour, and Arnault Lapitre. An illustrative use case
of the diversity platform based on uml interaction scenarios. Electronic Notes in
Theoretical Computer Science, 320:21–34, 2016.

[5] Mathilde Arnaud, Boutheina Bannour, and Arnault Lapitre. An illustrative use case
of the DIVERSITY platform based on UML interaction scenarios. Electr. Notes Theor.
Comput. Sci., 320:21–34, 2016.

[6] B. Bannour, C. Gaston, and D. Servat. Eliciting unitary constraints from timed
sequence diagram with symbolic techniques: application to testing. In 18th APSEC.
IEEE, 2011.

[7] Boutheina Bannour, Jose Pablo Escobedo, Christophe Gaston, and Pascale Le Gall.
Off-line test case generation for timed symbolic model-based conformance testing. In
ICTSS, pages 119–135. Springer, 2012.

[8] Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean, Dejan Jo-
vanović, Tim King, Andrew Reynolds, and Cesare Tinelli. Cvc4. In International
Conference on Computer Aided Verification, pages 171–177. Springer, 2011.

[9] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jo-
vanović, Tim King, Andrew Reynolds, and Cesare Tinelli. Cvc4. In Proceedings of
the 23rd International Conference on Computer Aided Verification, CAV’11, pages
171–177, Berlin, Heidelberg, 2011. Springer-Verlag.

[10] Clark Barrett, Aaron Stump, and Cesare Tinelli. The smt-lib standard: Version 2.0.
In Proceedings of the 8th International Workshop on Satisfiability Modulo Theories
(Edinburgh, England), volume 13, page 14, 2010.

[11] Clark W Barrett, Roberto Sebastiani, Sanjit A Seshia, and Cesare Tinelli. Satisfiability
modulo theories. Handbook of satisfiability, 185:825–885, 2009.

133

BIBLIOGRAPHY

[12] Nassim Benharrat, Christophe Gaston, Robert M Hierons, Arnault Lapitre, and
Pascale Le Gall. Constraint-based oracles for timed distributed systems. In IFIP
International Conference on Testing Software and Systems, pages 276–292. Springer,
2017.

[13] Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfiability, volume
185. IOS press, 2009.

[14] Laura Brandan Briones. Theories for model-based testing: Real-time and coverage.
University of Twente, 2007.

[15] Alan Bundy and Lincoln Wallen. Breadth-first search. In Catalogue of Artificial
Intelligence Tools, pages 13–13. Springer, 1984.

[16] Tsong Yueh Chen, TH Tse, and Zhiquan Zhou. Semi-proving: an integrated method
based on global symbolic evaluation and metamorphic testing. ACM SIGSOFT
Software Engineering Notes, 27(4):191–195, 2002.

[17] Young Choi, Hee Youn, Soonuk Seol, and Sang Yoo. Distributed test using logical
clock. In Formal Techniques for Networked and Distributed Systems, pages 69–84.
Springer, 2002.

[18] L. A. Clarke. A system to generate test data and symbolically execute programs.
IEEE Trans. Softw. Eng., 2(3):215–222, May 1976.

[19] Alberto Coen-Porisini, Giovanni Denaro, Carlo Ghezzi, and Mauro Pezzé. Using
symbolic execution for verifying safety-critical systems. SIGSOFT Softw. Eng. Notes,
26(5):142–151, September 2001.

[20] George F Coulouris, Jean Dollimore, and Tim Kindberg. Distributed systems: concepts
and design. pearson education, 2005.

[21] Jon Crowcroft and Karen Paliwoda. A multicast transport protocol. In SIGCOMM ’88,
Proceedings of the ACM Symposium on Communications Architectures and Protocols,
Stanford, CA, USA, August 16-18, 1988, pages 247–256, 1988.

[22] John A Darringer and James C King. Applications of symbolic execution to program
testing. Computer, 11(4):51–60, 1978.

[23] Alexandre David, Kim G Larsen, Marius Mikučionis, Omer L Nguena Timo, and An-
toine Rollet. Remote testing of timed specifications. In IFIP International Conference
on Testing Software and Systems, pages 65–81. Springer, 2013.

[24] Hernán Ponce De León, Stefan Haar, and Delphine Longuet. Conformance relations
for labeled event structures. In TAP, pages 83–98. Springer, 2012.

[25] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. Tools and
Algorithms for the Construction and Analysis of Systems, pages 337–340, 2008.

[26] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Proceedings
of the Theory and Practice of Software, 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS’08/ETAPS’08,
pages 337–340, Berlin, Heidelberg, 2008. Springer-Verlag.

134

BIBLIOGRAPHY

[27] Eclipse Formal Modeling Project (DIVERSITY) web site. https://projects.

eclipse.org/proposals/eclipse-formal-modeling-project. Accessed: 2017-09-
29.

[28] Bruno Dutertre. Yices 2.2. In Armin Biere and Roderick Bloem, editors, Computer-
Aided Verification (CAV’2014), volume 8559 of Lecture Notes in Computer Science,
pages 737–744. Springer, July 2014.

[29] Bruno Dutertre and Leonardo De Moura. The yices smt solver. Tool paper at
http://yices. csl. sri. com/tool-paper. pdf, 2(2):1–2, 2006.

[30] IK El-Far and JA Whittaker. Model-based software testing. encyclopedia of software
engineering (edited by jj marciniak), 2001.

[31] Jose Pablo Escobedo, Christophe Gaston, Pascale Le Gall, and Ana Cavalli. Testing
web service orchestrators in context: A symbolic approach. In Software Engineering
and Formal Methods (SEFM), 2010 8th IEEE International Conference on, pages
257–267. IEEE, 2010.

[32] J.P. Escobedo, C. Gaston, and P. Le Gall. Timed Conformance Testing for Orchestrated
Service Discovery. In Proc. of Int. Conf. Formal Aspects of. Component Software
(FACS). Springer, 2011.

[33] Colin Fidge. Timestamps in message-passing systems that preserve the partial ordering.
Australian Computer Science Communications, 10(1):56–66, 1988.

[34] Colin Fidge. Logical time in distributed computing systems. Computer, 24(8):28–33,
1991.

[35] Behrouz A Forouzan. TCP/IP protocol suite. McGraw-Hill, Inc., 2002.

[36] Lars Frantzen, Jan Tretmans, and Tim AC Willemse. Test generation based on
symbolic specifications. In International Workshop on Formal Approaches to Software
Testing, pages 1–15. Springer, 2004.

[37] Christophe Gaston, Robert M Hierons, and Pascale Le Gall. An implementation
relation and test framework for timed distributed systems. In IFIP International
Conference on Testing Software and Systems, pages 82–97. Springer, 2013.

[38] Christophe Gaston, Pascale Le Gall, Nicolas Rapin, and Assia Touil. Symbolic
execution techniques for test purpose definition. In TestCom, volume 3964, pages
1–18. Springer, 2006.

[39] Sudipto Ghosh and Aditya P Mathur. Issues in testing distributed component-based
systems. In First ICSE workshop on testing distributed component-based systems,
pages 211–220, 1999.

[40] Vehbi C Gungor, Dilan Sahin, Taskin Kocak, Salih Ergut, Concettina Buccella, Carlo
Cecati, and Gerhard P Hancke. Smart grid technologies: Communication technologies
and standards. IEEE transactions on Industrial informatics, 7(4):529–539, 2011.

[41] Riccardo Gusella and Stefano Zatti. The accuracy of the clock synchronization achieved
by tempo in berkeley unix 4.3 bsd. IEEE transactions on Software Engineering,
15(7):847–853, 1989.

135

https://projects.eclipse.org/proposals/eclipse-formal-modeling-project
https://projects.eclipse.org/proposals/eclipse-formal-modeling-project

BIBLIOGRAPHY

[42] David Harel. Statecharts: A visual formalism for complex systems. Science of computer
programming, 8(3):231–274, 1987.

[43] Anders Hessel, Kim G Larsen, Marius Mikucionis, Brian Nielsen, Paul Pettersson, and
Arne Skou. Testing real-time systems using uppaal. In Formal methods and testing,
pages 77–117. Springer, 2008.

[44] Robert M Hierons, Mercedes G Merayo, and Manuel Núnez. Using time to add order
to distributed testing. In FM, pages 232–246. Springer, 2012.

[45] W. E. Howden. Weak mutation testing and completeness of test sets. IEEE Transac-
tions on Software Engineering, SE-8(4):371–379, July 1982.

[46] Claude Jard, Thierry Jéron, Lénaick Tanguy, and César Viho. Remote testing can
be as powerful as local testing. In Formal Methods for Protocol Engineering and
Distributed Systems, pages 25–40. Springer, 1999.

[47] Yue Jia and Mark Harman. An analysis and survey of the development of mutation
testing. IEEE transactions on software engineering, 37(5):649–678, 2011.

[48] John G Kemeny and James Laurie Snell. Finite markov chains, volume 356. van
Nostrand Princeton, NJ, 1960.

[49] Mohd Ehmer Khan and Farmeena Khan. A comparative study of white box, black
box and grey box testing techniques. International Journal of Advanced Computer
Sciences and Applications, 3(6):12–1, 2012.

[50] Sarfraz Khurshid, Corina S Păsăreanu, and Willem Visser. Generalized symbolic
execution for model checking and testing. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, pages 553–568. Springer,
2003.

[51] Myungchul Kim, Jaehwi Shin, Samuel T Chanson, and Sungwon Kang. An approach for
testing asynchronous communicating systems. IEICE transactions on communications,
82(1):81–95, 1999.

[52] Myungchul Kim, Jaehwi Shin, Samuel T Chanson, and Sungwon Kang. An enhanced
model for testing asynchronous communicating systems. In Formal Methods for
Protocol Engineering and Distributed Systems, pages 337–356. Springer, 1999.

[53] James C. King. A new approach to program testing. SIGPLAN Not., 10(6):228–233,
April 1975.

[54] James C King. Symbolic execution and program testing. Communications of the
ACM, 19(7):385–394, 1976.

[55] Kim N King and A Jefferson Offutt. A fortran language system for mutation-based
software testing. Software: Practice and Experience, 21(7):685–718, 1991.

[56] H. Kopetz and W. Ochsenreiter. Clock synchronization in distributed real-time systems.
IEEE Trans. Comput., 36(8):933–940, August 1987.

136

BIBLIOGRAPHY

[57] M. Krichen. A formal framework for black-box conformance testing of distributed
real-time systems. Int. Journal of Critical Computer-Based Systems, 3(1/2):26–43,
2012.

[58] M. Krichen and S. Tripakis. Black-box time systems. In Proc. of Int. SPIN Workshop
Model Checking of Software. Springer, 2004.

[59] Moez Krichen. A formal framework for conformance testing of distributed real-time
systems. In International Conference On Principles Of Distributed Systems, pages
139–142. Springer, 2010.

[60] Moez Krichen and Stavros Tripakis. Black-box conformance testing for real-time
systems. In SPIN, volume 2989, pages 109–126. Springer, 2004.

[61] Moez Krichen and Stavros Tripakis. Conformance testing for real-time systems. Formal
Methods in System Design, 34(3):238–304, 2009.

[62] Moez Krichen and Stavros Tripakis. Conformance testing for real-time systems. Form.
Methods Syst. Des., 34(3):238–304, June 2009.

[63] James F Kurose and Keith W Ross. Computer networking: a top-down approach,
volume 4. Addison Wesley Boston, USA, 2009.

[64] Murat Kuzlu, Manisa Pipattanasomporn, and Saifur Rahman. Communication network
requirements for major smart grid applications in han, nan and wan. Computer
Networks, 67:74–88, 2014.

[65] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, 1978.

[66] Friedemann Mattern. Virtual time and global states of distributed systems. Parallel
and Distributed Algorithms, 1(23):215–226, 1989.

[67] Patrick McDaniel and Stephen McLaughlin. Security and privacy challenges in the
smart grid. IEEE Security & Privacy, 7(3), 2009.

[68] Glenford J Myers, Corey Sandler, and Tom Badgett. The art of software testing. John
Wiley & Sons, 2011.

[69] Robert Nilsson, Jeff Offutt, and Jonas Mellin. Test case generation for mutation-based
testing of timeliness. Electronic Notes in Theoretical Computer Science, 164(4):97–114,
2006.

[70] Katia Obraczka. Multicast transport protocols: a survey and taxonomy. IEEE
Communications magazine, 36(1):94–102, 1998.

[71] Alexandre Petrenko and Nina Yevtushenko. Testing from partial deterministic fsm
specifications. IEEE Transactions on Computers, 54(9):1154–1165, 2005.

[72] Hernán Ponce-de León, Stefan Haar, and Delphine Longuet. Distributed testing of
concurrent systems: vector clocks to the rescue. In International Colloquium on
Theoretical Aspects of Computing, pages 369–387. Springer, 2014.

137

BIBLIOGRAPHY

[73] Wolfgang Prenninger and Alexander Pretschner. Abstractions for model-based testing.
Electronic Notes in Theoretical Computer Science, 116:59–71, 2005.

[74] Olli-Pekka Puolitaival. Model-based testing tools. Presentation at Software Testing
Day at TUT, 2008.

[75] C. V. Ramamoorthy, S. B. F. Ho, and W. T. Chen. On the automated generation
of program test data. IEEE Transactions on Software Engineering, SE-2(4):293–300,
Dec 1976.

[76] Wolfgang Reisig. Petri nets: an introduction, volume 4 of eatcs monographs on
theoretical computer science, 1985.

[77] Ericsson Int. report. Investigation on how to integrate Diversity (MBT tool) and
Titan (TTCN-3 executor) to provide an open source MBT tool chain, 2016-08-26.

[78] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified modeling language
reference manual, the. Pearson Higher Education, 2004.

[79] Laxman H Sahasrabuddhe and Biswanath Mukherjee. Multicast routing algorithms
and protocols: A tutorial. IEEE network, 14(1):90–102, 2000.

[80] Ahmad Saifan and Juergen Dingel. Model-based testing of distributed systems. School
of Computing Queen’s University Canada, 2008.

[81] Julien Schmaltz and Jan Tretmans. On conformance testing for timed systems. Formal
Modeling and Analysis of Timed Systems, pages 250–264, 2008.

[82] Ian Sommerville and Pete Sawyer. Requirements engineering: a good practice guide.
John Wiley & Sons, Inc., 1997.

[83] Andrew S Tanenbaum and Maarten Van Steen. Distributed systems: principles and
paradigms. Prentice-Hall, 2007.

[84] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM journal on
computing, 1(2):146–160, 1972.

[85] Jan Tretmans. Conformance testing with labelled transition systems: Implementation
relations and test generation. Computer networks and ISDN systems, 29(1):49–79,
1996.

[86] Jan Tretmans. Test Generation with Inputs, Outputs and Repetitive Quiescence.
Number TR-CTIT-96-26 in CTIT technical report series. Centre for Telematics and
Information Technology (CTIT), Netherlands, 1996. CTIT Tecnnical Report Series
96-26.

[87] Jan Tretmans. Model Based Testing with Labelled Transition Systems, pages 1–38.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[88] Edward Tsang. Foundations of constraint satisfaction: the classic text. BoD–Books
on Demand, 2014.

138

BIBLIOGRAPHY

[89] M. Utting, B. Legeard, A. Pretschner, and University of Waikato. Department of
Computer Science. A Taxonomy of Model-based Testing. Working paper series
(University of Waikato. Department of Computer Science). Department of Computer
Science, University of Waikato, 2006.

[90] Mark Utting and Bruno Legeard. Practical model-based testing: a tools approach.
Morgan Kaufmann, 2010.

[91] Marlon E Vieira, Marcio S Dias, and Debra J Richardson. Object-oriented specification-
based testing using uml statechart diagrams. In Proceedings of the Workshop on
Automated Program Analysis, Testing, and Verification (at ICSE’00), 2000.

[92] Stephan Weißleder. Test models and coverage criteria for automatic model-based test
generation with UML state machines. PhD thesis, Humboldt University of Berlin,
2010.

[93] Tao Xie, Darko Marinov, Wolfram Schulte, and David Notkin. Symstra: A framework
for generating object-oriented unit tests using symbolic execution. In TACAS, volume
3440, pages 365–381. Springer, 2005.

[94] Peter Zimmerer. Test architectures for testing distributed systems. 12th International
software quality week (QW 99), 1999.

139

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Titre : Test à base de modèles de systèmes temporisés distribués : Une approche basée sur les contraintes pour
résoudre le problème de l’oracle

Mots clés : Test Distribué Temporisé, Test à base de Modèles, Test à base de Contraintes, Problème de
Satisfaction de Contraintes, Systèmes de Transition Symboliques Temporisés à Entrée Sortie, Test Off-line.

Résumé : Le test à base de modèles des systèmes
réactifs est le processus de vérifier si un système
sous test (SUT) est conforme à sa spécification. Il
consiste à gérer à la fois la génération des données
de test et le calcul de verdicts en utilisant des
modèles. Nous spécifions le comportement des
systèmes réactifs à l'aide des systèmes de transitions
symboliques temporisées à entrée-sortie (TIOSTS).
Quand les TIOSTSs sont utilisés pour tester des
systèmes avec une interface centralisée, l'utilisateur
peut ordonner complètement les événements (i.e., les
entrées envoyées au système et les sorties produites).
Les interactions entre le testeur et le SUT consistent
en des séquences d'entrées et de sortie nommées
traces, pouvant être séparées par des durées dans le
cadre du test temporisé, pour former ce que l'on
appelle des traces temporisées. Les systèmes
distribués sont des collections de composants locaux
communiquant entre eux et interagissant avec leur
environnement via des interfaces physiquement
distribuées. Différents événements survenant à ces
différentes interfaces ne peuvent plus être ordonnés.

Cette thèse concerne le test de conformité des
systèmes distribués où un testeur est placé à chaque
interface localisée et peut observer ce qui se passe à
cette interface. Nous supposons qu'il n'y a pas
d’horloge commune mais seulement des horloges
locales pour chaque interface. La sémantique de tels
systèmes est définie comme des tuples de traces
temporisées. Nous considérons une approche du test
dans le contexte de la relation de conformité
distribuée dtioco. La conformité globale peut être
testée dans une architecture de test en utilisant des
testeurs locaux sans communication entre eux. Nous
proposons un algorithme pour vérifier la
communication pour un tuple de traces temporisées
en formulant le problème de message-passing en un
problème de satisfaction de contraintes (CSP). Nous
avons mis en œuvre le calcul des verdicts de test en
orchestrant à la fois les algorithmes du test
centralisé off-line de chacun des composants et la
vérification des communications par le biais d'un
solveur de contraintes. Nous avons validé notre
approche sur un cas étude de taille significative.

Title: Model-Based Testing of Timed Distributed Systems: A Constraint-Based Approach for Solving the
Oracle Problem

Keywords: Timed Distributed Testing, Model-based Testing, Constraint-based Testing, Constraint
Satisfaction Problem, Timed Input Output Symbolic Transition Systems, Off-line Testing.

Abstract : Model-based testing of reactive systems
is the process of checking if a System Under Test
(SUT) conforms to its model. It consists of handling
both test data generation and verdict computation by
using models. We specify the behaviour of reactive
systems using Timed Input Output Symbolic
Transition Systems (TIOSTS) that are timed
automata enriched with symbolic mechanisms to
handle data. When TIOSTSs are used to test
systems with a centralized interface, the user may
completely order events occurring at this interface
(i.e., inputs sent to the system and outputs produced
from it). Interactions between the tester and the
SUT are sequences of inputs and outputs named
traces, separated by delays in the timed framework,
to form so-called timed traces. Distributed systems
are collections of communicating local components
which interact with their environment at physically
distributed interfaces. Interacting with such a
distributed system requires exchanging values with
it by means of several interfaces in the same testing
process. Different events occurring at different
interfaces cannot be ordered any more.

This thesis focuses on conformance testing for
distributed systems where a separate tester is placed
at each localized interface and may only observe
what happens at this interface. We assume that there
is no global clock but only local clocks for each
localized interface. The semantics of such systems
can be seen as tuples of timed traces. We consider a
framework for distributed testing from TIOSTS
along with corresponding test hypotheses and a
distributed conformance relation called dtioco.
Global conformance can be tested in a distributed
testing architecture using only local testers without
any communication between them. We propose an
algorithm to check communication policy for a tuple
of timed traces by formulating the verification of
message passing in terms of Constraint Satisfaction
Problem (CSP). Hence, we were able to implement
the computation of test verdicts by orchestrating
both localised off-line testing algorithms and the
verification of constraints defined by message
passing that can be supported by a constraint solver.
Lastly, we validated our approach on a real case
study of a telecommunications distributed system.

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Thesis Scope and Contributions
	Scope of the Thesis
	Research Approach and Contributions

	Thesis Outline
	Publications

	Formal Background
	Typed Equational Logic
	Solving Constraints
	Timed Input Output Symbolic Transition Systems (TIOSTS)
	Syntax
	Semantics

	Symbolic Execution
	Symbolic Execution of Programs
	Symbolic Execution of TIOSTS

	Centralized Model-Based Conformance Testing from TIOSTS
	Model-Based Testing: State of the Art
	Model-Based Testing Process
	Model-based Testing Classification
	On-line versus Off-line MBT

	Off-line Centralized Conformance Testing from TIOSTS
	Overview
	An Adaptation of the Centralized off-line Testing Algorithm
	System Under Test and Timed Conformance Relation
	Our Off-line Centralised Testing Algorithm
	Local Verdict Computation
	Rule-based Algorithm

	A Distributed Testing Framework for Solving the Oracle Problem
	An Overview of Works Related to Distributed Testing
	Distributed Testing Architectures
	Global-tester-based testing architecture
	Local-tester-based testing architecture
	Hybrid testing architecture

	A Baseline Approach to solve the Oracle Problem for Timed Distributed Systems
	The Distributed Testing Architecture and Hypotheses
	Communication Checking

	Constraint-based Oracle Algorithm
	Distributed Systems and Communication
	Observation of a Distributed System
	Valid Communication of a Distributed System

	Constraint-based analysis for Communication Checking
	Modeling Timed Distributed Systems and Conformance relation
	Distributed Specification
	Distributed System Under Test
	The dtioco Conformance Relation

	Implementation: Distributed Testing by Orchestration
	Off-line Centralized Testing
	Communication Checking
	Global Verdicts

	Validating our Testing Approach
	Randomly Generating Observable Multitraces
	Generating multitraces
	Generating observable multitraces

	Generating CDOs with DIVERSITY
	Global Trace Generation
	From Global Timed Traces to CDOs by Projection

	A Mutation-based Approach to generate FDOs
	Classical mutations
	Breaking a round-trip communication (RTC mutation)

	The PhoneX Case Study
	PhoneX System Overview
	PhoneX System Interface
	PhoneX Modeling Effort
	Testing PhoneX

	Conclusions and Perspectives
	Summary
	Future Research

	PhoneX other call scenarios
	PhoneX Line busy scenario
	No Answer scenario

	PhoneX TIOSTS models
	Caller client TIOSTS model
	Called client TIOSTS model
	PhoneX central TIOSTS model

	Algorithms Java Implementation
	Java Implementation of function BuildConstraint
	Java Implementation of Main function DObervation2CSP

	PhoneX Distributed Interface
	Bibliography

