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Résumé en Français 

Ce travail de thèse est une contribution à l’intégration des éléments constitutifs 

d’un oscillateur optoélectronique (OEO) en photonique intégrée. Il s’intègre au 

domaine plus vaste de la photonique microonde. 

Dans sa version la plus traditionnelle proposée dès 1996 [Yao-96], la boucle opto-

micronde qu’est l’OEO est constituée d’un laser très stable émettant dans la fenêtre 

télécoms (1.55µm), d’un modulateur électro-optique, d’une longue section de fibre 

(>> 1km) jouant le rôle de retard, d’un photodétecteur, et d’un ensemble de composants 

radio-fréquences (RF) comprenant un amplificateur, un filtre sélectif, et coupleur RF 

(Figure suivante). 

Le système se comporte comme un système bouclé traditionnel et présente une 

condition d’oscillation classique de type Barkhausen permettant la génération de 

signaux RF. Le signal émis par le laser joue le rôle de porteuse optique, et la fibre 

apporte le retard nécessaire à produire le terme de phase nécessaire à l’oscillation de 

l’ensemble rétro-actionné. 

 

Schéma de principe d'un oscillateur optoélectronique (OEO) classique, à ligne à retard 

fibrée. 

 

Comparé à des systèmes plus classiques d’oscillateurs RF tels que les oscillateurs 

à quartz à plusieurs étages, cet ensemble comporte un avantage décisif en termes de 
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pureté spectrale des signaux générés, très bas bruit dans les meilleures réalisations. 

Intrinsèquement, tous les éléments de la boucle mixte concourent à ce résultat, parmi 

lesquels la sélectivité du filtre RF passe-bande est un élément clef. 

Par rapport aux oscillateurs RF basés, par exemple, sur l’utilisation des résonateurs 

à quartz, ce système permet d’atteindre aisément et directement des fréquences RF 

d’opération de plusieurs dizaines de GHz, évitant ainsi l’utilisation d’étages de 

multiplication de fréquences par mise en cascade, et peut conduire à des régimes 

d’oscillation produisant des signaux très bas bruit de phase. Le bruit de phase des 

oscillateurs à quartz fonctionnant à une fréquence de 5GHz est ainsi typiquement de 

– 145 dBc/Hz à 10kHz de la porteuse RF [Leli-18] mais se dégrade rapidement pour des 

fréquences plus élevées. 

La génération de signaux microondes à grande pureté spectrale est ainsi le 

point fort des OEO, qui intéressent tout une gamme d’applications allant des contre-

mesures dans le domaine des radars et la réalisation de porteuses RF très stables (de 

fréquence fRF) pour la transmission d’informations multiplexées à haute fréquence 

(fRF > 10 GHz) jusqu'au applications capteurs. Simultanément, les OEO sont 

classiquement réalisés à partir de composants discrets, assemblés dans des volumes de 

plusieurs dizaines de centimètres carrés, voire plusieurs mètres carrés dans les 

implémentations sur banc optique/RF de développement. Il en résulte une 

problématique de manque d’intégration, qui nuit beaucoup au déploiement des 

applications des OEO. Par ailleurs, la présence d’une longue section de fibre conduit à 

une possible oscillation à chaque fréquence multiple de l’inverse du délai intra-cavité 

() essentiellement introduit par la fibre, ce qui conduit la structure classique de l’OEO 

à un fonctionnement facilement multimode non désiré. 

Pour ces deux raisons, une modification de boucle a été proposée, reposant sur le 

remplacement de la section de fibre optique par un résonateur optique. Dans cette option, 

le résonateur a pour fonction de créer l’équivalent d’un retard temporel important, ce 

qui rend nécessaire l’utilisation de résonateurs à fort facteur de qualité Q (Q =  fRF ), 

typiquement supérieurs à 106 pour des retards équivalents à quelques km de fibre. Par 

ailleurs, la modification de la partie optique de la boucle d’une section de fibre à un 
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résonateur modifie la nature du système bouclé passant d’une structure d’oscillateur à 

retard à celle d’un oscillateur à filtre déphasant. Cette structure modifiée d’OEO a fait 

elle-même l’objet de nombreuses études, conduisant à des réalisations marquantes, 

notamment via l’utilisation de résonateurs à modes de galerie à facteurs de qualité très 

élevés (Q>108) basés sur l’utilisation de sphères de silice [Vol-10]. 

Sur le principe, les plateformes d’intégration photonique et optoélectronique, 

dont les progrès ont été importants ces dernières années, offrent toutes les blocs 

nécessaires à l’intégration complète d’un OEO à résonateur en technologie planaire, sur 

une surface de moins 1 cm2, voire moins de 1 mm2. L’intégration de composants et de 

fonctions à base de semiconducteurs III/V, typiquement sur substrats InP, offre par 

exemple une voie possible complète. La photonique sur silicium, sur laquelle ce travail 

de thèse s’appuie principalement, est une autre voie d’intégration possible, présentant 

avantages et inconvénients par rapport à la voie d’intégration sur plateforme III/V. Les 

modulateurs électro-optiques (à effet plasma de porteurs libres), les résonateurs optiques 

(micro-résonateurs en anneau), les photodétecteurs (Germanium sur silicium), les filtres 

et les amplificateurs RF, sont en principe co-intégrables sur la même plateforme silicium 

[Viv- 13]. Seule la source laser silicium n’est pas disponible, bien que les solutions 

d’intégration de diodes laser III/V sur silicium aient connu récemment des progrès très 

importants tels que des sources très stables co-intégrées soient maintenant directement 

disponibles dans la fenêtre télécoms [Sze-17]. 

Dans ce contexte, différents travaux récents se sont intéressés à l’intégration de 

systèmes puces à boucle opto-microndes pour la génération de signaux à bas bruit. De 

manière assez notable, plusieurs contributions importantes ont été publiées très 

récemment par plusieurs groupes ([Tan-18] : CAS/Chine et Université de 

Valencia/Espagne, [Zha-17] et [Zha-18] : Ottawa University). Ces travaux ont apporté 

des contributions intéressantes mais n’ont pas permis de couvrir l’ensemble des 

problématiques liées à l’intégration d’OEO en photonique. En particulier, l’utilisation 

de circuits photoniques III/V à base d’InP [Tan- 18] induit des problèmes de complexité 

de réalisation des circuits et de puissance consommée, tandis que l’intégration sur 

silicium proposée ([Zha-17], [Zha-18]) n’a pas exploré toutes les voies possibles, et 

l’ensemble n’a donné lieu à ce jour qu’à quelques rares démonstrations expérimentales. 
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L’objectif de cette thèse était d’apporter une contribution à l’intégration des 

oscillateurs optoélectroniques dans la voie d’une intégration sur silicium. La 

contribution principale apportée a été de concevoir, fabriquer, et caractériser des 

résonateurs en anneaux silicium sur isolant (SOI), de les intégrer à des boucles opto-

microondes d’OEO, de démontrer la possibilité de mise en oscillation des structures 

bouclées, et de caractériser leurs performances. Les études menées l’ont donc été en 

travaillant essentiellement sur la base du schéma de principe décrit sur la figure suivante. 

 

Schéma de principe idéalisé d'un oscillateur optoélectronique intégré. 

Le manuscrit a été construit autour de trois chapitres, complétés par une 

introduction et une conclusion, à laquelle nous avons ajouté des perspectives. 

Le chapitre 1 rassemble l’essentiel du contexte et des motivations de la thèse. Un 

rappel des caractéristiques générales principales des oscillateurs microondes est donné, 

puis les deux familles principales d’oscillateurs optoélectroniques étudiés dans la 

littérature y sont introduites. Ce chapitre se termine ensuite par un tour d’horizon des 

objectifs du travail mené, à savoir principalement l’insertion de résonateurs en anneaux 

fabriqués en technologie SOI dans une boucle d’un oscillateur optoélectronique, et 

l’étude des système ainsi réalisés. Plus précisément, le chapitre 1 se pose comme 

objectifs : i) La réalisation de structures bouclées simples reposant des résonateurs ultra-

longs (FSR10GHz) et un simple modulateur électro-optique d’intensité ; ii) 

L’exploration de structures plus originales autorisant une accordabilité de la fréquence 

micro-onde générée la plus large possible ; iii) Une possible application des boucles 

opto-RF ainsi réalisées à la détection d’indice de réfraction pour la réalisation de 

capteurs intégrés sensibles (limite de détection << 10-5). 
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Le chapitre 2 décrit toutes les étapes de modélisation, optimisation, fabrication, et 

caractérisations des résonateurs en anneaux réalisés en photonique SOI en vue de leur 

intégration dans une boucle opto-microonde. Le chapitre 3, quant à lui, rassemble 

l’ensemble des caractérisations expérimentales des deux principales configurations 

d’oscillateurs optoélectroniques étudiées au cours de la thèse. 

Pour décrire de manière décloisonnée l’ensemble des étapes réalisées ainsi que les 

résultats obtenus, nous décrivons ci-après en une seule étape l’ensemble des résultats 

obtenus dans les chapitres 2 et 3. 

Le schéma de configuration de base de la PREMIÈRE CONFIGURATION 

étudiée et le principe de fonctionnement de l'OEO basé sur un résonateur en anneau de 

silicium de FSR directement microondes sont illustrés sur la figure suivante. Dans ce 

schéma, le signal optique est utilisé comme porteuse optique modulée par un modulateur 

d'intensité (IM) qui produit deux bandes latérales dans le domaine optique. Le résonateur 

en anneau (RA) génère un peigne optique qui agit comme un filtre optique. Par le 

battement de deux lignes de peignes optiques adjacentes dans un photodétecteur (PD), 

les lignes spectrales optiques sont ensuite traduites dans le domaine RF. Ce procédé 

consiste essentiellement à créer un filtre passe-bande hyperfréquence équivalent. 

 

Principe de fonctionnement d'un oscillateur optoélectronique avec micro-résonateur 

optique. 
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Cette configuration nécessite un résonateur add-drop (RA) avec une gamme 

spectrale libre optique (FSRopt) suffisamment faible, typiquement dans la gamme des 

cent picomètres ou moins. En conséquence, la longueur du résonateur est alors de 

quelques millimètres au moins. Afin de réduire l'encombrement de la structure, des RA 

ont été dessinés sous forme de spirales. Deux jeux de résonateurs à anneau spiralés de 

largeurs de guides d'ondes différentes de 365 nm et 550 nm ont été conçus et fabriqués. 

Un exemple de résultat de fabrication est donné ci-après. Les dispositifs ont été testés à 

l'aide d'un laser accordable couplé au guide d'ondes d'entrée par l'intermédiaire d’un 

coupleur à réseau avec un angle de couplage correctement ajusté, et le signal extrait de 

la même manière d'un réseau de sortie. Des FSRυ d’environ 15 GHz ont été obtenus par 

cette approche, avec des facteurs de qualité optiques de l’ordre de 3×105 à  = 1,55 µm. 

Ces résonateurs ont été introduits dans la boucle d’oscillateurs opto-électroniques 

constitués d’éléments discrets, toujours par des dispositifs d’injection/extraction de la 

lumière adéquats. Des résultats très concordants de mise en oscillation RF ont été mis 

en évidence, et les oscillateurs opto-électroniques ainsi réalisés ont été caractérisés en 

bruit de phase, comme le montrent les figures suivantes. 

L’ensemble des résultats a conduit à valider de manière probante la possible 

utilisation de résonateurs SOI millémétriques à FSR directement compatibles avec une 

conversion opto-microondes pour la réalisation d’oscillateurs optoélectroniques 

fonctionnant dans une gamme typiquement de moins de 18 GHz. 

 

Micro-résonateur en forme de spirale : (a) vue du composant et sa transmission en (b). 
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Résultats concernant l'oscillateur optoélectronique avec résonateur en spirale : (a) spectre de 

l'oscillateur en mode "Max-Hold" ; (b) bruit de phase de l'oscillateur ; (c) comparaison entre les bruits 

de phase obtenus avec différents types de lasers. 

Dans une SECONDE APPROCHE, nous nous sommes intéressés à une 

configuration plus originale, que nous avons proposée afin de répondre à l’enjeu 

important de la possible accordabilité en fréquence du signal RF généré. La figure 

suivante en détaille le principe. Au lieu d’utiliser le résonateur en anneau afin de 

sélectionner deux raies consécutives amplifiées par le système bouclé hybride, la 

porteuse optique issue du laser CW utilisé est placée à proximité d’une résonance d’un 

RA de FSR beaucoup plus important que précédemment ; dans le même temps, le 

photodétecteur est alimenté simultanément par la raie latérale de modulation issue du 

RA et la porteuse elle-même, qui est également directement rebouclée sur le 

photodétecteur. Après démarrage des oscillations à partir du bruit présent dans la boucle, 

le battement effectué au niveau du photodétecteur est directement issu de la différence 

de fréquence entre la fréquence de la porteuse et celle de la résonance la plus proche, 

soi fRF = |flaser - fresonance|. 

En conséquence, la fréquence microonde générée est alors directement accordable 

par modification de la fréquence de la porteuse ou par modification de la résonance à 

fréquence fixe de la porteuse. Sur le principe, il en résulte ainsi un moyen très simple 

d’obtenir une fréquence RF à la demande (dans la limite des bandes passantes des 

éléments actifs de la boucle : modulateur, photodétecteur, amplificateur) ou de 

transformer l’oscillateur optoélectronique en capteur conditionné en fréquence dès lors 

qu’un stimulus modifie la fréquence de résonance frésonance (effet thermique, modification 

d’indice, etc). 
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Principe de fonctionnement d'un oscillateur optoélectronique à résonateur optique et battement direct 

avec la raie du laser. 

Au travers de modélisations, essais, et caractérisations expérimentales, nous avons 

testé et vérifié ces principes avec succès, ouvrant une riche voie à des applications et des 

prolongements ultérieurs. 

La figure suivante montre ainsi des spectres et des caractéristiques de bruit de 

phase obtenus pour des fréquences RF générées comprises entre environ 6 GHz et 

18 GHz. 

 

Accordabilité du nouvel oscillateur optoélectronique. Figure (a) : fréquences générées sur une plage 

de 6 GHz à 18 GHz ; Figure (b) : mesure du bruit de phase sur la même plage de fréquence ; Figure 

(c) : bruit de phase à 1 MHz d'offset par rapport à la porteuse. 

Une estimation de la modification de fréquence obtenue par une variation 

thermique des indices de réfraction des matériaux constitutifs des résonateurs, en 

particulier de celui du matériau de couverture, nous a ainsi permis d’estimer une limite 

de détection de l’ordre de 10-8 pour la meilleure des réalisations de la thèse. 
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Effet d'une variation de la température du résonateur sur la fréquence de l'oscillateur. Figure (a) : 

influence sur la transmission du résonateur ; Figure (b) : évolution correspondante de la fréquence 

d'oscillation ; Figure (c) : estimation de la variation de la fréquence d'oscillation en fonction de 

l'indice de réfraction de la couche de confinement. 
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Introduction 

The generation of spectral-pure and stable microwave and millimeter wave signals 

are important for many applications. In this domain, oscillators are pivotal functions for 

almost any communication, navigation, surveillance, or test and measurement systems. 

They can be used as local oscillators (LO) to enable frequency up and down conversions, 

or as reference sources for system synchronization. An oscillator can be found in many 

applications such as radars, satellites, radio astronomy, data-telecommunication and 

networks, time and frequency metrology, signal processing, and sensing. The origin of 

oscillators goes back essentially to nearly 1918 1 when the first microwave oscillator 

was invented by using vacuum tubes. In general, a microwave oscillator combines both 

active and passive devices. The oscillation starts when the gain and phase satisfy the so-

called Barkhausen criterion. The oscillation frequency being defined by the passive 

device. One of the drawbacks of microwave oscillators is that the phase noise of the 

oscillation signal tends to increase with the frequency of operation. Many electronic 

design tricks make it possible to minimize the phase noise of oscillators, but a 

fundamental problem remains concerning all-electronic structures, for which the 

optoelectronic oscillator (OEO) has provided essential unlock contributions in 1994 2. 

The underlying idea of an OEO is to rely on a hybrid optical/microwave loop system 

making use of a long length optical fiber with extremely low loss to make microwave 

signals propagate through an optical carrier and resulting as a whole in an ultra-pure and 

stable oscillation frequency. The advantage of OEOs compared to other microwave 

oscillators is that the oscillation frequency can be directly synthesized using high-

selectivity microwave filters. The phase noise of the generated signal, therefore, does 

not increase with operating frequency increase. With great potential for creating low 

phase noise signals at high frequencies, OEOs can be used in many high-end 

applications such as satellites, military radar systems, ... However, the first generations 

of OEOs presented some major challenges. Firstly, they suffered from a frequency drift 

due to temperature fluctuations in the fiber, that needed a bulky temperature 
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control box to overcome this drawback. Secondly, the closed opto-RF loop 

suffered from a multi-mode behavior resulting from the long length optical fiber used 

as a delay line, giving rise to non-constant oscillation frequency starting operation, 

multimode behavior and frequency mode hopping. 

The inherent drawbacks of classical OEOs based on a long optical fiber line 

(>>100 m, up to few kms) proved to be difficult to solve. An alternative solution was 

proposed consisting of replacing the optical fiber delay line by a small size and high-

quality factor optical resonator 3. For such structures, the resonator is acting as a 

microwave filter. This approach brings a great help in reducing the size of OEOs, 

obviating the need for bulky temperature control systems, and offering a potential way 

to completely avoid multi-mode and mode hopping behaviors while still providing low 

phase noise signal properties. Many types of optical resonators have been introduced in 

OEO by making use Fabry-Perot 4, fiber-ring resonators 5,6 or whispering gallery mode 

(WGM) resonators 7,8. However, these resonators generally suffer from a lack of 

integration possibilities, thus preventing really solid perspective in terms of OEO 

integration. 

Today, integrated microwave photonics (IMWP) that consists in combining 

photonic integrated circuits (PIC) technologies and microwave optics has emerged as a 

field with a great interest due to its potential for enhanced functionalities and robustness 

as well as a reduction of size, weight, cost, and power consumption of complex systems 

merging optical and microwave signals 9,10. The recent development of PICs based on 

different material substrates such as III-V semiconductors, Lithium Niobate (LiNbO3), 

the mainstream Silicon on Insulator (SOI) technology, high-index glasses, Nitrides, and 

polymers, have opened new perspectives for the potential integrating IMWP and 

particularly the OEO system. In principle, all the elementary blocks of an OEO (electro-

optical modulators, optical resonators, photodetectors, etc.) have been indeed developed 

for other applications. A full integration of these systems has significant potential to 

provide low phase noise spectrally pure signals within ultra-compact size footprints, 

bringing many advantages in comparison with classical OEO systems. Recent 

developments in this field, i.e. the Brillouin filter based on chalcogenide waveguide or 

the optical delay lines based on InP, showed impressive results. Nevertheless, silicon 
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photonics now is considered as one of the main viable technology platforms for high 

complexity, large-scale photonic circuits because of its compatibility with the 

manufacturing processes and tools used in the CMOS industry. Moreover, the high 

core/cladding index contrast of silicon photonic waveguides allows sub-micrometer 

structure dimensions, tight bends, and close spacings, and in turn, this allows dense 

packing of optical functions on the surface of a chip. In addition, the quick development 

of silicon photonic integrated circuits allows for multiple functions in a single chip 

operating at high frequency. Actually, all basic building blocks necessary for OEO loop 

such as the laser, modulator, the photodetector have been already implemented in the 

SOI platform complemented by III/V diode integration through hybrid on-Si integration 

11–13. Integration on the SOI platform, therefore, can be considered as a promising 

solution to implement ultra-compact OEOs. In this context, one of the solutions is based 

on loops with an electro-optical phase modulator and an indirect phase/intensity 

modulation conversion by using an optical notch filter. Despite this progress, these 

efforts towards the integration of OEO into the silicon photonic platform have not 

resulted in definitive and inconvenient solutions, and a diversity of approaches still 

remains possible. 

In this context, the present work aims at exploring the direct insertion of silicon-

based add-drop ring resonators in the loop of OEO to anticipate, based on the study of 

several configurations, the performances that fully integrated OEOs on silicon would 

have. 

The first chapter begins with an overview introduction about microwave 

oscillators. We will then discuss the classical OEO system performances with its 

working principle, (phase) noise properties, limitations, and applications. Then, a 

particular study will focus on OEOs based on an optical resonator. Several types of 

optical resonators integrated into the OEO loop will be described with their advantages 

and drawbacks. This will allow us, finally, to identify the desirable characteristics for 

the development of OEOs integrated on a chip. 

Chapter 2 then brings together all the milestones and results we have obtained 

concerning the design, the fabrication, and the characterization of integrated silicon 
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photonic resonators designed with a view to their insertion into an OEO loop. To this 

end, we will quickly describe in a preliminary phase the main components of silicon 

photonics, starting with optical waveguides and their typical dimensions and index 

contrast, turns and curved waveguides (particularly useful for the realization of long 

spirals: from a few tens of µm to a few cm), etc. A theoretical review of the properties 

of ring resonators, a description of the principles adopted for the design of lithography 

masks, as well as the optical characterization methods used, will precede the 

presentation and analysis of the properties of the realized planar ring resonators. 

Following the results obtained in chapter 2, chapter 3 mainly presents the 

insertion of the realized SOI micro-ring resonators in OEO loop configurations made of 

external elements (e.g. mainly a laser module, an optical amplitude modulator, RF 

amplifiers, and a photodiode). Three main results obtained in open loop and closed loop 

configurations, and application for bulk index sensing will be investigated in this 

chapter. Recognizing the limitations of traditional OEO structures, particularly in terms 

of the tunability of the generated microwave signal frequency, a new configuration of 

OEO is then proposed. The proposed scheme alleviates the use of complex solution to 

generate ultra-broadband signal tunable frequency without any degradation of the signal 

performance. We will first explain the working principle of the system, and then study 

the optical characterization of the micro-ring resonator, and its integration in the OEO 

loop in both the opened and closed configurations. Then, the frequency tunability of the 

realized OEO will be studied. As a proof of concept of the overall study, we will finally 

apply the realized OEOs to the analysis of refractive index measurements, thus preparing 

a subsequent step of applying the looped chain as a sensor, or even as a biosensor.  
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1 
 Optoelectronic Oscillator 

This chapter will focus on the optoelectronic oscillator with its configuration, 

advantages and drawbacks, the possible way to improve system performances, as well 

as the perspectives to go towards integrated OEOs. Taking into account the fact that the 

OEO is basically a microwave signal generator, we shall first start with some basic 

definitions useful for microwave oscillators before entering more into details about 

OEOs. 

1.1. Oscillators 

The first microwave oscillators were invented at the beginning of the 20th century 

shortly after the development of vacuum tubes 14,15. Signals generated by an 

electronic/RF oscillator can be of different waveform types, including sinusoidal, 

rectangular, triangular, square and pulse shapes. In this work, we will focus on harmonic 

oscillators in which a sinusoidal waveform is generated. 

We shall present here very classical and well-known results, which are not always 

associated together. It is important for us to remind all these theoretical points for a 

better understanding of the oscillators developed in this work. 

1.1.1 Oscillation conditions 

In most general case, oscillator is a nonlinear circuit which converts a DC power 

to an AC power. The basic conceptual operation of a sinusoidal oscillator can be 

described with a feedback circuit shown in Fig 1.1.1. Here we shall use the complex 

formalism, which supposes that the system is linear 
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The system includes an amplifier with a gain value A. The output voltage is noted 

as Vo(jω). This voltage passes through a feedback network with an angular frequency-

dependent transfer function H(jω) and is added to the input of the circuit Vi(jω).  

 

Fig.1.1.1. Block diagram of a sinusoidal oscillator using an amplifier with an angular frequency 

dependent feedback path. 

 

By considering the feedback signal, the output voltage Vo(jω) can be expressed as: 

𝑉𝑜(𝑗𝜔) = 𝐴𝑉𝑖(𝑗𝜔) + 𝐻(𝑗𝜔)𝐴𝑉𝑜(𝑗𝜔) (1.1.1) 

which can be solved to yield the output voltage in terms of the input voltage as: 

𝑉𝑜(𝑗𝜔) =
𝐴

1 − 𝐴𝐻(𝑗𝜔)
𝑉𝑖(𝑗𝜔) (1.1.2) 

where A H(jω) is the loop gain. At one particular angular frequency, if the 

denominator of Eq. (1.1.2) becomes zero, it is possible to achieve a non-zero output for 

a zero-input signal, thus forming an oscillator. The oscillation occurs when the loop 

gains AH(jω) is equal to 1. In addition to a condition on the modulus, the phase of H(jω) 

must thus be equal to 0 mod(2π), with the hypothesis of A being a real and positive 

number, A =  A0: it means that the total phase shift around the loop is 0 mod(2π) or k*2π 

(k being an integer).  

To conclude, the circuit can oscillate when two conditions, known as the 

Barkhausen conditions, are satisfied: firstly , the loop gain must be equal or greater 

than unity and secondly the feedback signal must be phase shifted by 2π after one turn 

in the loop. 
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Here we present the main important points about electronic oscillators by using a 

very classical transfer function, a second order one: 

𝐻(𝑗𝜔) =
𝐻0

1 + 𝑗𝑄 (
𝜔
𝜔0

−
𝜔0

𝜔
)

 (1.1.3) 

, Q being here the quality factor of the microwave filter which can also be 

expressed by 𝑄 =  
𝜔0

𝛥𝜔
  (1.1.4) with Δω=2πΔf and Δf is the filter bandwidth at -3dB. 

 

Fig. 1.1.2. (a) Modulus and (b) Phase of the transfer function H(jω) in case of Q=5 and Q=20; 

H0=1. 

As can be seen in Fig.1.1.2b, the phase shift of the loop is crossing 0 at the 

oscillation frequency which is fosc = f0 (ωosc=ω0). Classically it is said that even without 

input signal (Vi = 0), the oscillator can start generating oscillations by amplifying the 

noise which is always present in the RF components inside the loop, and especially in 

the amplifier. The oscillation starts with small noise inside the loop. The amplitude of 

the oscillation signal increases within the loop, but only the frequencies selected in 

amplitude and phase by the filter can be maintained in the loop, being quickly self-

sustaining if a mechanism is in place to guarantee a unitary gain after a one-turn 

circulation in the loop. After a certain number of turns, the amplitude of the signal is 

indeed limited by non-linearities, mainly caused by the saturation occurring inside the 

amplifier when a large signal is amplified, or by an active control mechanism that limits 

the gain. 
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As mentioned before, noise existing in the loop is essential for the oscillator to 

generate the oscillation signal, however, it influences also the quality of the generated 

signal. The noise inside the oscillator comes from several contributions by different 

origins from passive and active components (e.g. thermal noise, Schottky noise, etc). 

Considering noise coming out from the amplifier, a simple hypothesis that a small 

random phase perturbation produced by the amplifier can be introduced as 𝐴 =  𝐴0𝑒𝑗𝜓𝑛  

can be made. From Eq. (1.1.3) and from the Barkhausen oscillation conditions, it is 

possible to determine the angular oscillation frequency is ωosc = ω0 + δωn as: 

𝛿𝜔 =  
𝜔0

2𝑄
𝛿𝜓𝑛 (1.1.5) 

Here, we can see that the quality factor influence on the noise can be written as: 

0

0

2

d

d Q
 




=

=

 
(1.1.6) 

The quality factor Q of the filter is thus related to the fluctuations of the oscillation 

frequency and large values of Q will be desirable to minimize phase fluctuations 

occurring within the loop. 

The evaluation of the signal generated by the oscillator and therefore the oscillator 

stability depends on two different aspects. The first one is the short-term random 

fluctuation (or spectral purity) of the oscillation frequency, which is usually 

quantified by the phase noise. And the second one is its long-term stability versus time, 

which is the degree of uniformity of the oscillator frequency over time and is limited by 

the aging of the oscillator elements. Finally, the phase noise is usually used to quantify 

the signal generated by an oscillator. 

1.1.2. Oscillator phase noise 

The phase noise is an important parameter to scale in order to evaluate the quality 

of a harmonic oscillator. An ideal oscillator would have a frequency spectrum consisting 

of a single delta function at its operating frequency (red line in Fig. 1.1.3), but a real 

oscillator presents a much wider spectrum (blue line in Fig. 1.1.3). It is because the 

generated signal is affected by many different random noises generated inside the 
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oscillator loop inducing amplitude, phase and frequency fluctuations. This in-loop 

noise is directly linked to the noise generated by the active element (the amplifier) and 

the selectivity of the filtering element. In a feedback oscillator, the phase fluctuations of 

the amplifier are directly converted into frequency fluctuations through the oscillator 

nonlinearity 16. Let us introduce the main definitions allowing to quantify the noise in 

an oscillator signal and mainly the so-called phase noise. 

 

Figure 1.1.3.  Power spectrum of the ideal and real signal generated by the oscillator. Red line: 

Perfect signal, Blue line: signal impacted by phase noise.  

Consider the signal with only noise resulting from random phase 

fluctuations 𝜑𝑛(𝑡). 

𝑉(𝑡) = 𝑉0 𝑐𝑜𝑠[2𝜋𝑓0𝑡 + 𝜑𝑛(𝑡)]

= 𝑉0{𝑐𝑜𝑠(2𝜋𝑓0𝑡) × 𝑐𝑜𝑠[𝜑𝑛(𝑡)] − 𝑠𝑖𝑛(2𝜋𝑓0𝑡) × 𝑠𝑖𝑛[𝜑𝑛(𝑡)]} 

(1.1.7) 

This phase fluctuation 𝜑𝑛(𝑡) induces frequency fluctuations: 

𝑓(𝑡) = 𝑓0 +
1

2𝜋

𝑑𝜑𝑛(𝑡)

𝑑𝑡
 (1.1.8) 

The random phase fluctuation 𝜑𝑛(𝑡) is supposed here to have a wide frequency 

spectrum but an absolute value very small compared to 1. Eq. (1.1.7) can be rewritten 

as: 
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𝑉(𝑡) = 𝑉0 𝑐𝑜𝑠[2𝜋𝑓0𝑡 + 𝜑𝑛(𝑡)] ≈ 𝑉0[𝑐𝑜𝑠(2𝜋𝑓0𝑡) − 𝑠𝑖𝑛(2𝜋𝑓0𝑡) 𝜑𝑛(𝑡)] (1.1.9) 

By introducing the Fourier transform 𝛷𝑛(∆𝑓) of the random phase fluctuation 

𝜑𝑛(𝑡) and changing 𝑠𝑖𝑛(2𝜋𝑓0𝑡) and 𝑐𝑜𝑠(2𝜋𝑓0𝑡) into their complex forms, Eq.(1.1.9) 

becomes:  

𝑉(𝑡) =
𝑉0

2
{𝑒𝑗2𝜋𝑓0𝑡 + 𝑗 ∫ [ϕ𝑛(𝑓)𝑒𝑗2𝜋(𝑓0+𝑓)𝑡]

∞

−∞

𝑑𝑓}

+  
𝑉0

2
{𝑒−𝑗2𝜋𝑓0𝑡 − 𝑗 ∫ [ϕ𝑛(𝑓)𝑒−𝑗2𝜋(𝑓0−𝑓)𝑡]

∞

−∞

𝑑𝑓} 

(1.1.10) 

 

 

 

Fig.1.1.4. The impact of the phase noise into the spectrum of the oscillation signal. 

Fig. 1.1.4 plots the impact of the phase noise into the spectrum of the oscillation 

signal. Here, 
𝑉0

2

2
 is the power of the carrier and 

𝑉0
2

2
|𝛷𝑛(∆𝑓)|

2
 is the power in a 

frequency band of 1 Hz in one side of the carrier. The power repartition is considered 

by both positive and negative frequencies. In addition, from the Parseval theorem, it is 

known that |𝛷𝑛(𝑓)|2 =  𝑆𝜑(𝑓), where 𝑆𝜑(𝑓) is the spectral power density of the phase 

fluctuations 𝜑𝑛(𝑡), which is expressed in rad2/Hz. Therefore, from the previous 

calculation, we can see that the power in a frequency band of 1 Hz in one side of the 

carrier can be written as 
𝑉0

2

2
|𝛷𝑛(𝑓)|2 =

𝑉0
2

2
𝑆𝜑(𝑓). 

The noise power expressed in dB at an offset frequency fn from the carrier is so 

given by 𝑃dB = 10 𝑙𝑜𝑔[|𝛷𝑛(𝑓)|2] or 𝑃dB = 10 𝑙𝑜𝑔[𝑆𝜑(𝑓)]. 
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This result lead to the first definition of the phase noise, which is defined as the 

ratio power in one phase modulation sideband to the total power per unit bandwidth 

(1 Hz) at a particular offset fn, from the oscillation frequency f0, and denoted as L(fn) 17.  

L(𝑓𝑛) =
Area of 1 Hz band width

Total area under the curve
 (1.1.11) 

This definition was directly based on measurement and could be performed by a 

spectrum analyzer. However, this definition considers both amplitude and phase noise 

of the signal. In order to isolate the effect of phase fluctuation only, another definition 

has been introduced by an IEEE standard 18,19, as one half of the double-sideband 

spectral density of phase fluctuation.  

𝐿(𝑓𝑛) =
1

2
𝑆𝜑

+(𝑓𝑛) (1.1.12) 

where 𝑆𝜑
+(𝑓𝑛) = 2𝑆𝜑(𝑓𝑛) is the single band power spectrum density of the random 

phase noise fluctuations, i.e. 𝑆𝜙(𝑓) = |𝛷𝑛(𝑓)|2. When it is expressed in dB, the unit is 

noted dBc/Hz (the letter “c” meaning “from the carrier”). 

It is also possible to introduce the frequency noise and the frequency spectral 

power density. 𝑆𝑓(𝑓𝑛) = 𝑓2𝑆𝜑(𝑓𝑛).  

Finally, it is mainly 𝑳(𝒇𝒏) and 𝑺𝝋(𝒇𝒏) that are usually used in frequency 

metrology to specify the phase noise or the short-term stability of frequency standards.  

There are two origins for non-perfect generated signals: noise components of 

known sources (electrical ~50 Hz, mechanical, acoustic…) that can be identified in a 

phase noise spectrum as noise peaks (called spurious peaks) and noise generated by 

multiple random fluctuations inside the oscillation loop. Some causes of these 

fluctuations are: thermal noise, white noise, flicker noise (characterized by its 1/f noise 

slope) and high frequency noise. Because of these various origins, it is difficult to 

consider all the contributions for modelling the oscillator phase noise. Despite that, a 

simple and well-known analysis has been introduced by Leeson 16, and known as the 

Leeson effect, in 1966 to describe the phase noise behavior in a classical oscillator.  

As we have already seen before, let us consider a random phase fluctuation 

(produced by the amplifier or other sources) 𝜓𝑛(𝑡) having a frequency spectrum. It 



1.1. Oscillators 

12 

 

induces frequency fluctuations characterized by an offset with respect to the center 

oscillation frequency such as 𝑓𝑜𝑠𝑐 =  𝑓0 + 𝑓𝑛. We then analyze the power spectral 

density of phase noise in 2 cases: when |𝑓𝑛| <  
Δ𝑓

2
 (low Q filter) and when |𝑓𝑛| >  

Δ𝑓

2
 

(high Q filter). 

If |𝒇𝒏| <  
𝚫𝒇

𝟐
 with 

𝚫𝒇

𝟐
=

𝒇𝟎

𝟐𝑸
 : under the feedback loop, this frequency remains in the 

bandwidth of the microwave filter:  

𝑓 ∈ [𝑓0 −
𝛥𝑓

2
, 𝑓0 +

𝛥𝑓

2
]  

We then find again the result of section 1.1.1: 𝛿𝜔𝑛 =
𝜔0

2𝑄
𝜓𝑛 or 𝑓𝑛 =

𝑓0

2𝑄
𝜓𝑛(𝑡). 

The output frequency fluctuation therefore can be rewritten as: 

𝑓(𝑡) =  𝑓0 +
𝑓0

2𝑄
𝜓𝑛(𝑡)  (1.1.13) 

From Eq. (1.1.8) and Eq. (1.1.13) we have:  

𝑑𝜑𝑛(𝑡)

𝑑𝑡
=  

𝜔0

2𝑄
𝜓𝑛(𝑡)  or  𝜑𝑛(𝑡) =  

𝜔0

2𝑄
∫ 𝜓𝑛(𝑡)𝑑𝑡 (1.1.14) 

Moving to the phase noise as previously introduced and from the formula 

concerning the Fourier transform about derivative calculation:  

𝑆𝜑𝑛
(𝑓𝑛) =

1

𝜔2
𝑆𝛿𝜔𝑛

(𝑓𝑛) =
1

(2𝜋𝑓)2
(

𝜔0

2𝑄
)

2

𝑆𝜓𝑛
(𝑓𝑛)  

so 𝑆𝜑𝑛
(𝑓𝑛) =

1

𝑓𝑛
2 (

𝑓0

2𝑄
)

2

𝑆𝜓𝑛
(𝑓𝑛). 

If |𝒇𝒏| >  
𝚫𝒇

𝟐
 : in this case, the frequencies 𝑓 = 𝑓0 ± 𝑓𝑛 are totally filtered, the 

feedback loop has no effect and the phase fluctuations can be found at the output. 

Therefore, 𝜑𝑛(𝑡) = 𝜓𝑛(𝑡) and so: 𝑆𝜑(𝑓𝑛) = 𝑆𝜓(𝑓𝑛). 

To summarize both cases we can write the formula, known as the Leeson formula: 

𝑆𝜑(𝑓𝑛) = 𝑆𝜓(𝑓𝑛) [1 +
1

𝑓𝑛
2 (

𝑓0

2𝑄
)

2

] =  𝑆𝜓(𝑓𝑛) [1 +
𝑓𝐿

2

𝑓𝑛
2]  (1.1.15) 
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 𝑓𝐿 =
𝑓0

2𝑄
 is called the Leeson frequency. Eq. (1.1.15) clearly indicates that to 

obtain a low phase noise it is necessary to have a low value of 𝑓𝐿 corresponding to a 

high value of the quality factor Q. 

In case of only white noise at the ouput of the amplifier 𝑆𝜓(𝑓𝑛) = 𝑆𝜓0, we obtain:  

𝑆𝜑(𝑓𝑛) =  𝑆𝜓0 [1 +
𝑓𝐿

2

𝑓𝑛
2]  (1.1.15b) 

But for a general noisy amplifier there will be at its output white noise at higher 

values of the frequency and flicker noise (or 1/f noise) at lower values, the limit between 

these two kinds of noise being noted as 𝑓𝑐 (called corner frequency). In this case it is 

necessary to consider the order of magnitude of the quality factor Q and we shall discuss 

for the offset frequency decreasing from "high" value down to zero. At high frequencies, 

the noise is predominantly white, constant with frequency. At lower frequencies there is 

mainly flicker noise. 

- Case of a low Q which means 𝑓𝐿 > 𝑓𝑐: for |𝑓𝑛| >  𝑓𝐿 there is only white noise 

and 𝑆𝜑(𝑓𝑛) = 𝑆𝜓0, then for 𝑓𝑐 < |𝑓
𝑛
|  < 𝑓𝐿  there is a slope of 

1

𝑓𝑛
2, and finally for 

low offset frequencies flicker noise is the most important and the slop is  
1

𝑓𝑛
3. 

- Case of a high Q which means 𝑓𝐿 < 𝑓𝑐: if |𝑓𝑛| > 𝑓𝑐  there is once again only 

white noise and 𝑆𝜑(𝑓𝑛) = 𝑆𝜓0, then for 𝑓𝐿 < |𝑓
𝑛
|  < 𝑓𝑐  there will be flicker 

noise the output phase noise has a slope  
1

𝑓𝑛
, and finally for the very low offset 

frequencies, smaller than the Leeson frequency |𝑓𝑛|  < 𝑓
𝐿
 the slope is  

1

𝑓𝑛
3. 

These results are summarized in the Figure 1.1.5 plotting the power spectral 

density of phase noise as a function of the offset frequency for both cases low Q and 

high Q. In both cases, for frequencies very close to the carrier at f0, the noise power 

decrease as 
1

𝑓𝑛
3. If the microwave filter has a relative low Q, then from frequency 

between corner frequency and Leeson frequency, 𝑓𝑐 < |𝑓
𝑛
|  < 𝑓𝐿 , the noise power 
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drops as 
1

𝑓𝑛
2,. If the microwave filter has a relative high Q, then from frequency between 

Leeson frequency and corner frequency 𝑓𝐿 < |𝑓
𝑛
|  < 𝑓𝑐the noise power drops as 

1

𝑓𝑛
.  

 

Figure 1.1.5.  Power spectral density of phase noise at the output of an oscillator. (a) fn < Δf/2 

(low Q) and (b) fn > Δf/2 (high Q). 

1.1.3. Passive component of choice for microwave 

oscillators 

Microwave oscillators can be divided into many different types based on frequency 

bandwidths, type of active devices or passive devices (RF filter). Among them, the RF 

filter mainly affects to the cost, frequency tuning range, stability, sensitivity and noise 

performance of the oscillator, and therefore is commonly used to define different types 

of oscillators 15. In most of general cases, the RF filter is determined by the microwave 

resonator used, the quality factor of the filter is defined in Eq. (1.1.4). From 

Eq. (1.1.15), it is easy to see that the oscillator phase’s fluctuation is inversely 

proportional to the microwave resonator’s loaded quality factor. A high microwave 

resonator quality factor thus leads to less fluctuations of the oscillation signal. Many 

types of high Q microwave resonators used for the stabilization of the electronic 

oscillator can be used, such as electro-mechanical (piezo-electrical) resonators, i.e. 

quartz crystals, electromagnetic resonators, i.e. dielectric cavities and acoustic and 

(a) (b)



1.1.3. Passive component of choice for microwave oscillators 

15 

 

electrical delay lines. The choice of the resonator is generally determined by a 

variety of factors, but for the highest achievable Q at room temperature, the crystal 

quartz is the best choice for the stabilization of electronic oscillators 14. However, they 

have limited range of frequency tunability (from 32.7 kHz to some hundreds of MHz) 

20, therefore they cannot be directly used to generate high frequency signals. In order to 

reach higher frequencies, a popular approach is to produce a harmonic of a lower 

frequency oscillator through the use of a frequency multiplier 17 by using reactive diode 

multipliers, resistive diode multipliers, or transistor multipliers. But the main 

disadvantage of this approach is that noise level is increased with the multiplication 

factor M, by 10log10(M2). This is because frequency multiplication is effectively a phase 

multiplication process as well, so phase noise variations get multiplied in the same way 

that frequency is multiplied. For this reason, a new type of oscillator with significantly 

low noise and very high stability, as well as high application frequency is expected. 

This goal can be achieved by embedding optical technology into traditional electrical 

systems, which can bring advantages in low loss, light weight, high frequency operation 

and immunity to electromagnetic interferences. This is the idea behind the invention of 

the opto-electronic oscillator (OEO) system.  

1.2. OEO based on delay line 

The first microwave oscillator using optical components was first introduced in 

1982 by Neyer and Voges 21. Then, in 1991 R. Logan et al. 22 from NASA’s Jet 

Propulsion Laboratory (JPL) published a paper introducing the so-called fiber optic 

stabilized electronic oscillator (FOSO), with the idea to improve phase stabilization 

based on an optical fiber delay line. This oscillator after that was improved by Logan’s 

colleague in 1994 2,23, using kilometers-long optical fiber delay line, and called opto-

electronic oscillator (OEO) system. Up to now, after more than 20 years of development, 

OEO has been spreading into research laboratories and entering into real-world 

applications, ranging from aerospace to telecommunications to instrumentation and 

even sensing. In the following of this manuscript, starting from OEO based on delay 
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line, we will explain the advantages of the system and how can it can overcome 

the limitations of traditional microwave oscillators.  

1.2.1. Principle of operation of OEO based on delay line 

The OEO became to be popular after the paper of X. S. Yao and L. Maleki in 1994 

2; it is known to provide spectrally pure and stable microwave and millimeter-wave 

(mm-W) signals with a great potential for applications in communications, radars or 

sensing 23. A classical OEO comprises a stable continuous wave light source, a fast light 

intensity modulator, a kilometer-long optical fiber delay line and a fast quadratic photo-

detector. Albeit the hybrid nature of the system loop, the OEO structure principle of 

operation relies on a classical Barkhausen-like oscillation condition when feeding the 

detector output signal onto the optical modulator radio-frequency (RF) input to close the 

loop (Fig.1.2.1). 

 

Fig 1.2.1. Basic scheme of an opto-electronic oscillator (OEO). 

 

The OEO starts with the laser light beam which is modulated by an intensity 

modulator before to be sent into a long length optical fiber. This optical fiber is used to 

create a delay but can also be considered as storing energy inside the system. At the 

output of the fiber, the modulated signal arrives on a photodetector to be converted into 
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a microwave signal at frequency fosc. It is then amplified and coupled back to the 

modulator for closing the loop.  

The OEO feedback loop can generate self-sustained oscillations if its overall gain 

is larger than 1, and the waves circulating in it add up in phase 3,23. The former 

requirement can be met with insertion of gain in the loop and, the latter, by controlling 

the phase. The phase oscillation condition allows to determine the oscillation frequency. 

Considering the effect of the fiber as introducing a pure delay (neglecting its 

attenuation), its transfer function can be written as: 𝐻(𝑗𝜔) = 𝑒−𝑗𝜏𝑝𝜔 where τp is the 

propagation time in the fiber. If the propagation time in the electronic components of 

the system can be neglected, the global propagation time in the loop is equal to τp. From 

the oscillation phase condition (see section I.1.1) we have: 𝜔𝑜𝑠𝑐𝜏𝑝 = 𝑘. 2𝜋 (k being an 

integer), where 𝜏𝑝 =  
𝑛𝑒𝑓𝑓𝐿𝑓𝑖𝑏𝑒𝑟

𝑐0
  (1.2.1),  Lfiber being the length of the fiber and neff its 

effective index (neff  = 1.44) and c0 the light velocity in vacuum (c0 = 3×108).  

So, the possible oscillation frequencies can be written as: 

𝑓𝑜𝑠𝑐 = 𝑘
𝑐0

𝑛𝑒𝑓𝑓𝐿𝑓𝑖𝑏𝑒𝑟
  (1.2.2) 

The OEO with such a structure can have many oscillation modes. To select the 

desired frequency at the output of the oscillator, a microwave filter must be added in the 

feedback loop. By this way any frequency supported by the bandwidth of the component 

can be generated under the oscillation conditions.  

This system differs from the previous oscillator circuits by making use of very low 

loss optical fiber delay line (0.2 dB/km) as a key element to create high quality factor 

component for the oscillator producing a signal which is characterized by its high 

spectral purity. The equivalent Qfiber in the long fiber delay line can be written as 23: 

 𝑄𝑓𝑖𝑏𝑒𝑟 = 𝜋𝑓0𝜏𝑝 =  𝜋𝑓0

𝐿𝑓𝑖𝑏𝑒𝑟𝑛𝑒𝑓𝑓

𝑐0
    (1.2.3) 

Clearly, Qfiber increases when the fiber length increases. For an OEO including a 

10 km fiber delay line and operating at 10 GHz frequency, the equivalent Qfiber inside 

the fiber is around 1.5×106.  
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1.2.2. Analytical study of the OEO 

In the OEO, the electro-optic modulator (EOM) is a key element as a transducer 

from RF to optical domain. The second transducer in the system is the photodiode which 

works usually with a linear behavior, which is not the case of the EOM.  

Theoretically, considering a Mach-Zehnder interferometer, the optical power at the 

E/O modulator’s output is related to an AC applied voltage Vin(t) by: 

P(t) =
αP0

2
{1 + ηco s [π (

Vin(t)

Vπ
+

V0

Vπ
)]}  (1.2.4) 

where α is the fractional insertion loss of the modulator, P0 is the input optical 

power, V0 is a constant voltage, Vπ is its half-wave voltage of the modulator, and η 

determines the extinction ratio of the modulator given by (1+η)/(1-η).  

After propagation in the optical fiber, the signal P(t) is converted into an electrical 

signal by the photodetector, which gives after going through an RF amplifier an output 

electrical signal expressed as 23,24: 

𝑉𝑜𝑢𝑡(𝑡) = 𝑃(𝑡)𝜌𝑅𝐺𝐴 = 𝑉𝑝ℎ {1 + 𝜂 𝑐𝑜𝑠 [𝜋 (
𝑉𝑖𝑛(𝑡)

𝑉𝜋
+

𝑉0

𝑉𝜋
)]}  (1.2.5) 

where 𝑉𝑝ℎ = 𝐼𝑝ℎ𝑅𝐺𝐴 is the voltage generated at the output of the amplifier, R is 

the load impedance of the detector, GA is the amplifier's voltage gain, and 𝐼𝑝ℎ =
𝛼𝑃0𝜌

2
 is 

the detected photocurrent where ρ is the responsivity of the detector. 

Eq. (1.2.5) is nonlinear but can be linearized if we force the signal through the 

narrow band pass filter to block all harmonic components 23. The result then allows to 

calculate the spectral power density of the oscillator. The details of this calculation are 

given in refs. 14,23. From this calculation, we have: 

𝑆𝑓𝑜𝑠𝑐
(𝑓𝑛) =

𝛿

(𝛿/2𝜏𝑝)2+(2𝜏𝑝)2(𝜏𝑝𝑓𝑛)
  (1.2.6) 

δ being the signal to noise ratio of the OEO defined as:  

𝛿 =
𝜌𝑁𝐺𝐴

2

𝑃𝑜𝑠𝑐
=

[4𝑘𝐵𝑇𝑒𝑞(𝑁𝐹)+2𝑞𝑒𝐼𝑝ℎ𝑅+𝑁𝑅𝐼𝑁𝐼𝑝ℎ
2 𝑅]𝐺𝐴

2

𝑃𝑜𝑠𝑐
  (1.2.7) 
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where ρN is the total noise density input to the oscillator and is the sum of the 

thermal noise of the amplifier, i.e. 𝜌𝑡ℎ,𝐴 = 4𝑘𝐵𝑇𝑒𝑞(𝑁𝐹) expressed here with the 

equivalent noise 

temperature depending on the noise figure NF of the amplifier,  the shot noise from 

the photodetector 𝜌𝑠ℎ𝑜𝑡 = 2𝑒𝐼𝑝ℎ𝑅 and the laser’s relative intensity noise (RIN) 

𝜌𝑅𝐼𝑁 =  𝑁𝑅𝐼𝑁𝐼𝑝ℎ
2 𝑅. In Eq. (1.2.7), kB is the Boltzman constant, qe is the electron charge, 

Iph is the photocurrent across the load resistor of the photodetector, and NRIN is the RIN 

noise of the pump laser.  

It is noteworthy that Eq. (1.2.7) does not contain the oscillation frequency. This is 

basically denoting an important feature of the OEO: the phase noise of an OEO is fixed 

and is the same for any generated frequency. This feature can be interpreted as: 

Unlike the behavior of classical microwave oscillators where the noise figure increases 

with the working frequency, the OEO can thus provide signals at high frequency without 

any degradation of its phase noise properties.  

From Eq. (I.2.6), we also see that the spectral power density is influenced by the 

delay time τp which is proportional to the fiber length as described by Eq. (1.2.1). So 

evidently the noise can be reduced by any desired amount by simply lengthening the 

fiber. The state of the art showing OEO with a phase noise of -163 dBc/Hz at 6 kHz 

offset frequency from 10 GHz carrier has been obtained with a 16 km long fiber 25. This 

performance was limited by the Flicker noise of the photo-detector used inside the loop.  

To summarize, the main idea behind the OEO is to use a long length optical fiber 

with extremely low loss in order to obtain directly a high oscillation frequency with a 

very low phase noise. This is not possible with an electronic microwave oscillator. This 

first structure proposed for OEOs is indeed facing some problems mainly coming from 

the use of a long fiber delay line, leading to a lack of compactness and integration of the 

entire system. 
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1.2.3. Drawbacks of classical OEO 

As described above, one of the features of OEOs is that many frequencies are 

supported in the loop, being associated with the optical fiber length as indicated in 

Eq. (1.2.2). The distance between two modes is the mode spacing and so-called the Free 

Spectral Range of the oscillator and is noted FSRosc. It depends on the effective refractive 

index neff of the fiber, the global length Lfiber of the fiber loop, and the light velocity in 

vacuum c0. 

𝛥𝑓 = 𝐹𝑆𝑅𝑜𝑠𝑐 =
𝑐0

𝑛𝑒𝑓𝑓𝐿𝑓𝑖𝑏𝑒𝑟
  (1.2.8) 

An example of the oscillation spectrum generated by a fiber based OEO can be 

seen in Fig.1.2.2. On both sided of the center frequency at 18.003 GHz corresponding 

to the oscillation frequency, other peaks at a distance of 134 kHz are visible, in good 

agreement with Eq. (1.2.8) taking into account Lfiber = 1.5 km. These multi-modes 

oscillations raise problems related to the starting conditions of the oscillations (which 

mode wins the competition is not firmly prescribed) and is also responsible for mode 

hopping between the different loop modes during the full-CW operation (i.e. frequency 

instability). 

 

Fig.1.2.2. Example of oscillator spectrum, at 18 GHz, with a fiber length of 1.5 km. The 

oscillator FSR is approximately 134 kHz (only). 
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From previous discussion about the effects of the optical fiber length on both the 

quality factor and the free spectral range, we can see that a trade-off appears between 

a long fiber for a great quality factor and a short one for having a single mode 

oscillation and so to avoid possible mode hopping. 

The first solution used to suppress this multi-mode behavior is to consider an RF 

filter with a bandwidth narrow enough for selecting only one oscillation frequency. For 

example, as mentioned above, for an OEO using 1.5 km fiber, multi-mode 

oscillation can be created with a FSRosc as small as 134 kHz. In order to suppress this 

behavior, a RF filter with the bandwidth smaller than 134 kHz is required. That means 

the desired RF filter should have a quality factor larger than 135 000 (for 18 GHz 

oscillation frequency). A filter with such bandwidth is difficult to realize, especially 

when the length of the fiber is long, and the operation frequency is in the microwave 

and mm-wave range. Moreover, the RF filter bandwidth must be further decreased if the 

fiber length increases. Therefore, in general cases, many spurious modes still pass 

through the RF filter under the oscillation condition of the loop. The oscillator then can 

start at different frequencies each time the loop is closed, which is obviously a drawback. 

Another issue is also related to the optical fiber refractive index dependence on the 

temperature. The effective refractive index neff of a typical single mode fiber (silica) has 

nearly linear dependence on temperature (T) with a slope of ∆neff/∆T~1.2×10-5 /℃ in 

the temperature range between –60 to 85 ℃ 26. Hence, the OEO has a carrier frequency 

variation depending on temperature given by: 

∆𝑓

∆𝑇
= −

𝑓

𝑛𝑒𝑓𝑓

∆𝑛𝑒𝑓𝑓

∆𝑇
  (1.2.9) 

For a 10 GHz carrier, the temperature variation results in frequency drift around 

83 kHz/℃. To avoid this possible oscillation frequency drift, the optical fiber delay line 

should be placed into a temperature-controlled box, which makes the system become 

bulky. 

To conclude, the need for long length optical fiber leads to some major challenges 

to the OEO stability, mainly due to mode hopping and temperature fluctuations in the 
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fiber 3. While the latter can be addressed by using a bulky temperature control system, 

the former is still difficult to solve.  

Many works have aimed at reducing or remove this multi-mode behavior while 

keeping at the same time generated signal spectral purity. The most popular well-known 

approach is based on the use of multi-loop OEO configurations, either relying on dual-

loop 27–32 or master/slave OEOs 33–35. In the dual-loop OEO, two feedback loops with 

different fiber lengths are used. The possible oscillation frequencies must add up in 

phase after each round trip. The modes from each loop which are the closest to each 

other can lock and suppress the other cavity modes. In this configuration, the mode 

spacing is dictated by the shorter loop, resulting in an oscillator having large mode 

spacing. The trade-off of this system comes from the phase noise, which is now an 

average of the noise levels of the two loops individually, i.e.  degraded compared to 

what we have  with a long single loop 28. In addition, since both loops support side 

modes, these modes are not completely eliminated, but merely nearly suppressed 29. 

Similar to the dual-loop OEO, the master/slave OEO makes use of an OEO with a longer 

fiber for a master OEO and a shorter one for a slave OEO. The RF signal from the master 

OEO is injected into the slave one to lock the oscillation frequency and phase. The length 

of the slave OEO’s optical fiber is chosen such that only one mode is allowed within the 

RF-filter in that single loop OEO, therefore, suppressing the spurious modes from the 

master OEO by the destructive interference in the slave OEO’s cavity. None like the 

dual-loop OEO, the phase noise, in this case, is fixed by the long fiber loop of the master 

OEO. A comparison of the best OEO in term of phase noise performances for different 

configurations is given in Table 1.2.1 

Table 1.2.1. Different types of OEO based on delay line and their performances. 

Type of OEO 
Fiber length 

(km) 

Oscillation 

frequency fosc 

(GHz) 

Phase noise 

(dBc/Hz) 

FSRosc 

(kHz) 

Single fiber delay line 

25 
16 km 10 

-163 dBc/Hz 

@ 6 kHz 
13 

Dual-loop 36 1 km/100m 10 -144.7 dBc/Hz > 100 
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@ 10 kHz 

Master/slave 34 4 km/547 m 10 
-140 dBc/Hz 

@ 10 kHz 
354 

 

From table 1.2.1, it can be seen that the multi-loop OEO based on either a dual-

loop configuration or a master/slave one gives possible ways to reduce the 

aforementioned multi-mode behavior of classical OEOs while keeping a low phase noise 

level. However, with a second section of fiber makes the system even more bulky. 

Another solution to improve the performances of OEOs is to replace the fiber delay line 

by a high-quality factor optical resonator. This solution will be discussed in detail in 

section 1.3 of this chapter.  

Although the disadvantage in spurious mode and mode hopping effects that need 

to be improved, OEO with its advantage of self-generating continuous-wave microwave 

frequency with ultra-low phase noise, has been used in widespread applications in 

diverse fields of science and technology ranging from metrology to communication, 

sensing, satellite and radar systems. 

1.2.4. Applications of the opto-electronic oscillator 

Due to its unique characteristics, OEOs are used in many applications where 

traditional microwave oscillators cannot meet the requirements of low phase noise. The 

two outstanding applications of OEO are: RF/optical generation and sensing detection. 

1.2.4a. RF/optical signal generation 

As mentioned before, OEO has been invented to generate high-frequency 

oscillation signals with low phase noise. Therefore, since the first invented in 1994, 

OEO has been indicated as a promising objective in the RF/optical signal generation 

domain. The system has been used for some high-end technology applications where the 

ultra-pure signal is extremely important. For example, since OEO has the ability of 

generating tens of gigahertz low of phase noise microwave signals with great flexibility, 

being mainly limited by the bandwidths of the electrical and optoelectronic employed 



1.2. OEO based on delay line 

24 

 

devices. It has been employed in payload satellites or military radars 37–39 where 

transmitted and received signals are required together with broadband operator and low 

phase noise. Moreover, OEO can be very compact if an ultrahigh-Q whispering-gallery-

mode resonator is used to replace the long length optical fiber. Remarkably, an ultra-

compact OEO package smaller than a coin was reported previously 3,39 with a phase 

noise of - 108 dBc/Hz at 10 kHz offset,  demonstrating the significant potential of this 

system for deployment in satellite payloads and military radars. In addition, OEO was 

proposed for application in satellite telemetry and control 40.  

 

Fig 1.2.5. Main idea of the implementation of the OEO in the 5G Mobile and Wireless Networks 

41. A low phase oscillator signal is distributed to the base stations from a central station via one 

optical link. The number of base stations which benefit from the oscillator line depends on 

several parameters of the OEO and on the conditions of the central station. 

Moreover, the exponential increase in mobile data traffic is considered to be a 

critical driver towards the new era, or 5G, of mobile wireless networks, using mm-W 

signal 41–44. The 5G networks lie in providing very high data rates, extremely low 

latency, manifold increase in a base station. To meet these promising abilities, a mm-W 

source with high spectral purity, frequency tunability, a drastic reduction in size, weight 

and cost is required 42. Those requirements are matching some of the OEO features, 

making the OEO a possible solution of choice in this domain. Fig 1.2.5 describes the 
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main idea of the implementation of an OEO as a central station for 5G networks, by 

removing the local oscillator from the base-station and placing OEO on the center station 

41. By this way, OEO could feed a large number of base stations and thereby divide the 

costs of the OEO signal generation between many stations. Moreover, the oscillation 

signal could be distributed to many stations with a high bit rate and low latency. 

1.2.4b. Applications to sensing 

Besides the features on the RF/optical signal generation, a signal generated by an 

OEO has a great potential for sensing applications. In this option, the target parameter 

or signal to be measured is converted to a frequency shift of the oscillation signal 45,46. 

Then, an analysis of the oscillation frequency in the electrical domain allows to retrieve 

the target parameter. Moreover, the generated signal from the OEO is characterized by 

a narrow linewidth and low phase noise, such that an analysis on the oscillating 

frequency leads to high resolution and high signal to noise ratio (SNR). Diverse 

applications to sensing, measurement, and detection have already been demonstrated by 

using OEO 45–53. 

The OEO based sensing schemes rely on the perturbation of the oscillation 

frequency and FSROEO due to a variation of the time delay Δ𝜏𝑝 of the loop. This time 

delay actually reflects the change of the effective loop length: 𝑐∆𝜏𝑝 = 𝑛𝑒𝑓𝑓∆𝐿 +

𝐿∆𝑛𝑒𝑓𝑓, neff and Δneff  being the mode effective refractive index and its change, and L 

and ΔL the loop physical length and its change. By measuring the change of the 

oscillation frequency, any impact contributing to the physical length and the effective 

refractive index can be measured. Examples of OEO based sensing based on this 

principle can be found in previous articles 47–50,52, and were applied to optical length 

changes 47,  distance measurements 48, temperature 49,50 and refractive index 52 

detections. In another configuration, a high Q optical filter was introduced in the OEO 

loop for implementing a microwave photonic filter (MPF) (see section 1.3 of this 

chapter), leading to similar sensing applications 45,51 53,54. 

In summary, various applications of the OEO system in different domains have 

been discussed, showing its importance for the research community and maybe in the 
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future for the commercial sector. However, a critical limitation lies on the bulk size of 

the system and on a detrimental mode hopping (mainly due to long fiber length). An 

alternative solution to solve these issues is to replace the optical fiber delay line by a 

high Q optical element, it can help to reduce the system's size and avoid mode hopping. 

For this purpose, introducing an optical resonator presents interesting properties.    

1.3. OEO based on optical resonator 

An elegant solution has been proposed to overcome previous drawbacks of OEOs 

by replacing the optical fiber spool by an optical resonator 3. In such direction, many 

kinds of optical elements such as Fabry-Perot etalon 4,55–57, fiber ring resonators 6,58 and 

Whispering-Gallery Mode (WGM) based resonators 59–61 were considered. 

1.3.1. Principle of operation 

A typical configuration of the OEO based on an optical resonator is shown in 

Fig.1.3.1.  
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Fig.1.3.1. Schematic configuration of the OEO based on optical resonator (top) (PD: photo-

detector) and working principle of the system (bottom).

In this OEO structure, the optical signal at the output of a continuous wave laser is 

modulated by an intensity modulator before being coupled into a multimode optical 

resonator with several comb line transmissions. An optical/RF conversion using a 

quadratic conversion based on a photo-detector is then implemented by taking the 

beating of two adjacent resonance frequencies passing through the resonator transfer 

function. One of the most classical solution to achieve this operation is based on the use 

of an optical cavity having a comb of optical resonance frequencies spaced apart by a 

free spectral range (FSRres), e.g. a Fabry-Perot or a ring cavity. This process, in essence, 

relies on using a periodical optical spectrum at the output of the resonator to create a 

microwave signal, thus selecting the microwave frequency corresponding to the free 

spectral range of the resonator (FSRres).  The converted signal after being amplified by 

an RF amplifier to enable sufficient gain for the loop is sent back to the modulator to 

close it. The schematic working principle of this configuration is illustrated in the 

bottom part of Fig.1.3.1. To obtain the oscillation condition, the laser frequency must 

match one of the transmission peaks of the optical resonator and the free spectral range 

of the resonator (FSRres) also needs to belong to the microwave domain. The oscillation 

frequency of the system is proportional to the FSRres of the resonator. 

𝑓𝑜𝑠𝑐 = 𝑘 ∗ 𝐹𝑆𝑅𝑟𝑒𝑠  (1.3.1) 

where k is a positive integer. Because a small cavity length of the resonator can be 

made in order to enlarge the mode spacing of the oscillation frequency, an easy selection 

of one single mode for the oscillator by the microwave filter can be done. Thus, the 

purpose of the microwave bandpass filter in this configuration is to reject the RF signal 

outside the frequency band of interest, and not to perform narrow band-filtering like in 

a conventional OEO based on a delay line. With the small size resonator which can 

provide FSRres in the GHz range, no microwave filter at all is theoretically required, 

although it could be interesting to add one for limiting the noise level injected into the 

modulator. The use of an optical resonator brings a great help in reducing the size of the 

OEOs, obviating the need for bulky temperature control systems and high-performance 

RF filters, making the loop more easily oscillate on only one oscillation mode and 
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avoiding mode hopping. This solution changes the oscillator system nature from a delay 

line oscillator to an optical resonator oscillator one, making the introduced optical 

resonator a key element for the closed loop. Up to now, many types of optical resonators 

have been developed to be used in this purpose. 

 1.3.2. Optical resonator in the OEO system 

An optical resonator can be realized in different configurations, sizes and forms. 

Among the most well-known high optical quality factor resonators, there are Fabry-

Perot etalon 4,55–57, fiber ring resonators 6,58 and Whispering-Gallery Mode (WGM) 

resonators59–63. 

1.3.2a. Fabry-Perot etalons 

A Fabry-Perot (FP) resonator is basically realized with two highly reflecting 

mirrors maintained in parallel. For an application to the OEO, a high-finesse FP was 

used as the mode selector in Refs 55,56. Kim and Cho56 reported a 41.5 mm length FP 

cavity with an FSRres of 3.61 GHz. In another work, Ozdur et al.55 used a 1000 finesse 

curved-curved FP etalon to generated 10.287 GHz RF filter with a FWHM of 13 MHz, 

the resulting OEO showing lower phase noise and higher RF stability compared to the 

similar system based on the fiber delay line. Similarly with Ozdur’s work, a 100 000 

finesse FP etalon with a 1.5 GHz FSRres was used in the OEO 4. By doing so, the authors 

obtained an oscillation frequency of 10.5 GHz with a low phase noise at -120 dBc/Hz at 

10 kHz offset frequency from the microwave carrier. Moreover, one year later, this 

group achieved oscillations at tunable oscillation frequency in the 6 to 60 GHz range57.  

1.3.2b. Fiber ring resonators 

Another kind of optical resonator featuring high optical quality factor is the fiber 

ring resonator (FRR). The FRR takes advantage of the low loss of optical fibers to 

provide an ultra-high optical quality factor (>> 106). It is realized using two symmetrical 

and low loss directional couplers, linked with single mode polarization maintaining 

optical fibers. In the reported OEO based on FRR 6,58, FRR were realized with different 

fiber lengths, i.e. 10 m, 20 m and 100 m, the corresponding optical quality factors being 
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2×108, 5.1×109 and 2×109, respectively. In the experimental setup, a laser Pound-

Drever-Hall (PDH) stabilization loop was used to stabilize the laser frequency to one of 

the resonator’s resonance peaks. The setup provided a signal with a frequency spacing 

equal to the FSR 
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of the fiber ring resonator. The related phase noise results were -90dBc/Hz and -

128 dBc/Hz at 10 kHz offset frequency for 10 m and 100 m long passive cavities, 

respectively (and a 10 GHz oscillation frequency). 

1.3.2c. Whispering-Gallery mode resonators (WGM) 

Another attractive class of optical resonators is the Whispering Gallery Mode 

(WGM) resonators, in which light is trapped in a circling orbit supported by total internal 

reflection at the boundaries of the structure. WGM can be realized in different geometry 

structures (micro-spheres, micro-disks, micro-toroidals) in different materials such as 

silicon, fused silica, Calcium Fluoride, Magnesium Fluoride or lithium tantalate 59. 

 

Fig.1.3.2. Three of the most common types of WGM resonators: (a) a microsphere, (b) a micro 

disk, (c) a microtoroid 59. 

One example of a OEO based on a 108 optical quality factor WGM can be found 

in 60. This OEO provided an oscillation signal at 34.6 GHz with a phase noise 

of - 109 dBc/Hz at 100 kHz offset and a noise floor of -149 dBc/Hz was generated. 

Moreover, a tunable oscillation frequency in the 1-25 GHz range and a phase noise 

varying from - 100 dBc/Hz to - 154 dBc/Hz was also achieved.  

As can be seen from all these references and studies, it appears that the replacement 

of the optical fiber delay line by a high Qopt optical resonator leads to a new kind of OEO 

with low phase noise and potentially avoiding the multi-mode operation and mode 

hopping behavior of classical OEOs. Moreover, shrinking the employed optical 

resonator size can open the possibility for designing an integrated OEO device with 

other functions in a same compact footprint. However, even more compact than fiber 

section OEO, many of the resonator based OEO approaches described here are still 
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based on discrete elements and have only a moderate to very moderate degree of 

integration. In this context, there is in fact a strong interest in further miniaturizing the 

resonator dimension and, if possible, integrating it with the other active and passive 

functions of the opto-RF loop system. This objective may be entirely feasible in view of 

the progress made in recent years by the integrated microwave photonics (IWMP) field.  

1.3.3. Integrated microwave photonics 

Microwave Photonics (MWP) is a growing research and application field in which 

radio-frequency (RF) signals are generated, distributed, processed and analyzed using 

the strength of the photonics technology 10,64. It started in the late 1980s when the 

transport of microwave signals in the electrical domain faced increasing difficulties due 

to bulky devices, heating effects, high losses at higher frequencies, low bandwidth and 

too reduced tunability of high-frequency filters 65. MWP takes the advance of the 

photonics technology to provides functionalities in microwave systems and brings 

advances including reduced sizes, weights, and costs, as well as low and constant 

attenuation over the entire microwave and mm-W modulation frequency ranges, 

immunity to electromagnetic interferences, low dispersion and high data-transfer 

capacity 66. MWP also adds fundamental value by enabling key functionalities to be 

realized in microwave systems using photonics, i.e. filtering, arbitrary waveform 

generation, frequency up/down-conversion, and instantaneous measurement, all of 

which are quite complex or, in some cases, not even possible using RF techniques alone 

67. It is now found in many applications including cellular, wireless, and satellite 

communications, cable television, distributed antenna systems, optical signal 

processing, and medical imaging. 

In early works, MWP systems were formed by discrete components such as lasers, 

modulators, filters, and photodetectors. They were connected together through fiber big 

tails, occupying large size interconnections. Moreover, the use of discrete components 

also led to an increase in system costs (mainly packaging costs) and high-power 

consumption. These factors prevented the widespread application of MWP. An 

evolution appeared with the availability of photonic integrated circuits (PIC), in which 
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MWP components are incorporated in photonic circuits, and this solution is known 

as integrated microwave photonic (IMWP). Conceptually, PICs are very similar to 

electronic integrated circuits. They combine multiple optical components on a single 

chip to form a single multifunctional photonic device. The use of a fewer photonic chips 

inherently simplifies the whole assembly process, compared to discrete components, and 

enables radical miniaturization, cost reduction, and performance enhancement 68. Thus, 

IMWP has the potential to scale down the MWP in term of performance, power, 

footprint and cost efficiency. Moreover, most of the photonic devices are currently 

highly temperature dependent and so require temperature regulation, which consumes a 

large amount of the bias power. As integrated photonics systems require less power for 

temperature control, the power consumed by photonic devices can be reduced 

drastically. 

An important feature of PIC is that a number of different designs can be combined 

on the same wafer because they all use the same fabrication process, and such a wafer 

is usually called a Multi-Project Wafer69. Despite that many materials can be amenable 

to produce PICs, only a few platforms have implemented generic processes and offered 

access to IMWP runs 10: this mainly includes Indium Phosphide (InP), Silicon Nitride 

(Si3N4) and Silicon on Insulator (SOI) technologies. Each of these technological paths 

has its own strengths and weaknesses. Notwithstanding, impressive functions have been 

shown in recent times. Some examples of IMWP using different platforms can be seen 

in Fig.1.3.3. 

InP takes advantage of the monolithically integration scheme and is the only 

material enabling various types of active and passive photonic components, including 

lasers, modulators, optical amplifiers, tunable devices, and photodetectors. This 

platform allows creating a compact circuit with a bending radius of the order of 100 µm. 

However, the limitation of this material substrate comes from the optical waveguide 

losses which are typically high, in the order of at least 1.5-3 dB/cm 73.  

Si3N4 features in ultra-low propagation losses. Depending on the fabrication 

process, Si3N4 waveguide losses can reach as low as 0.1-0.2 dB/cm 74. However, due to 

low index contrast in Si3N4, bending waveguide radius in Si3N4 devices are typical large 
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(50 – 150 µm) which results in moderate compact footprint circuits, while the material 

itself cannot bring on-chip active functions. 

SOI takes benefit of its compatibility with the microelectronic complementary 

metal oxide semiconductor (CMOS) technology to make electronic-photonic co-

integration a real possibility. On the other hand, due to high index contrast between 

silicon and its oxide, SOI waveguide modes are well confined, offering tight bending 

radii (minimum feature size at 1.5 µm in the telecom band 75), thus allowing ultra-

compact circuits. Propagation losses in SOI waveguides can be as low as 0.1dB/cm for 

single-mode operation at telecom wavelengths 76, and various classes of optical Si 

modulators and Ge photodetectors operating at least at 40GBbits.s-1 have been 

demonstrated. In addition, the hybrid integration of III/V laser diodes on silicon has been 

demonstrated by several groups 77. 

 

Fig.1.3.3. Examples of IMWP in different platform. (a) Programmable signal processor SOI 70, 

(b) All-integrated tunable filter in indium phosphide 71 and (c) High spectral resolution 

bandpass filter silicon nitride 72. 

To sum up, many functionalities have been realized in these technologies, such as 

beamforming in InP 78 and Si3N4 79, a true time delay in SOI 80,81, MWP filter in InP 82, 

Si3N4 83, SOI 84,85, phase shifter in SOI 86 , and all of this provides a strong basis to realize 

advanced IMWP circuits. 

Apart from these mainstream approaches, other materials could also be considered. 

For example, Chalcogenide glasses which are highly nonlinear materials have been 

exploited for nonlinear optoacoustic processing based on Brillouin scattering effect to 

provide small bandwidth MWP filters 87,88. On the other hand, Lithium Niobate on 

insulator (LNOI) circuits have  allowed to demonstrate ultra-high Q resonators 89 and 
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compact modulators 90,91. Finally, polymer materials have also been proposed for 

implementation delay lines 92 and beamforming functions 93. Taking into account all 

functionalities, we can see that the future for the IMWP is bright. Concerning 

integration, IMWP not only bring the advantage to allow many functionalities in a single 

chip but also critically enhanced performance, and then opening up many applications 

such as filtering, microwave signal generation, mobile and wireless networks, analog-

to-digital conversion (ADC), frequency measurement or spectrum analysis 10. 

1.3.4. Integrated optoelectronic oscillator 

 As mentioned above, photonic integration has made it possible to make a 

considerable leap forward in the field of microwave photonics. This has, of course, 

resulted in significant progress on OEOs. Table 1.3.2 summarizes some key results 

reported in recent years. 

Table 1.3.1. IOEO based on different approaches. WGM: Whispering gallery mode, ODL: 

optical delay line, SBS: stimulated Brillouin scattering, PM to IM: phase to intensity modulation, 

MDR: micro-disk resonator. 

Architecture 
Working 

frequency 
Level of integration Phase noise 

LiNbO3 WGM 39 35 GHz 

Discretely packaged photonic 

and RF parts (fully integrated 

included source) 

-108 dBc/Hz 

 @ 10kHz 

InP ODL 94 
7.3 and 8.87 

GHz 

Monolithically integrated 

photonic and RF parts 

~ -90dBc/Hz 

@ 1MHz 

Chalcogenide SBS 

95 
5-40 GHz 

Partially integrated photonic 

parts 

-100 dBc/Hz  

@ 10 kHz 

PM to IM based 

on MDR 96 
3 - 8 GHz PM and MDR in the same chip 

-80 dBc/Hz  

@ 10 kHz 

PM to IM based 

on all-pass ring 97 
10-18 GHz 

PM and all-pass ring in the 

same chip 
unknown 
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Among the first integrated OEOs, a high Q lithium niobate (LiNbO3) WGM 

resonator OEO was reported in Refs 39,98. All of the three optical parts of the OEO 

proposed in this work (laser, modulator, WGM filter, and detector) were discretely 

packaged together with the RF devices. The resonator, excited with light from a 

semiconductor laser, served both as the high-Q element and as the modulator in the OEO 

loop. This system achieved an oscillation frequency at 35 GHz and a phase noise level 

of -108 dBc/Hz at 10 kHz offset from the carrier. To our knowledge, this is up to now 

the only OEO with a successful integration of the source, and all the optical and 

electrical RF components. It is now provided by OEwaves (Fig.1.3.4a) 39 and has 

already found application in military platforms 98. 

 

Fig.1.3.4. Different integrated OEO based on different substrates and approaches: (a) Lithium 

niobite (LiNbO3) WGM resonator 39,98, (b) InP optical delay line 94, (c) Chalcogenide 

stimulated Brillouin scattering 95, (d) Phase modulator and micro-disk resonator (MDR) on SOI 

96. 

In another way, Jiantang et al. (Fig.1.3.4b) 94 have successfully demonstrated a 

monolithically integrated photonic and RF parts on a InP substrate. In this proposed 

scheme, light waves from the directly modulated laser (DML) was detected by a photo-

detector (PD) after propagation through an optical delay line (ODL). The DML, ODL, 

and PD were monolithically integrated on the InP photonic platform. The RF 
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components, i.e. the RF filter, the electrical amplifier, attenuator, coupler, bias tee were 

soldered to the board with a reflow oven and tin-lead based solder paste. Two different 

oscillation frequencies at 7.3 and 8.87 GHz were demonstrated by tuning the injection 

current of the laser. Phase noise values of -91 dBc/Hz and - 92 dBc/Hz at 1 MHz offset 

from carrier were obtained for 7.3 GHz and 8.87 GHz, respectively. 

The two types of integrated OEO described above have gained a huge reduction in 

size and weight in comparison with the typical OEO based on a fiber delay line, but the 

frequency tunability was still limited in these works. In this purpose, one of the preferred 

approaches is based in the use of phase modulators. One example of this approach is the 

OEO based on stimulated Brillouin scattering (SBS) (Fig.I.3.4c) 95 made of a 6 cm long 

highly nonlinear chalcogenide rib waveguide with a cross section of 850 nm×2.6 μm. 

By using two distributed feedback (DFB) lasers, one passing through a phase modulator 

and coupled into SBS, the second serving as a pump laser and coupled from the opposite 

side of the chip to generate the narrow-band SBS response, one sideband of a phase-

modulated signal was amplified by the SBS gain, and a phase modulation to intensity 

modulation conversion was performed. A microwave signal was then generated by the 

PD. The entire operation of the system was in fact equivalent to a microwave photonic 

filter, with the passband determined by the SBS gain spectrum. The bandwidth of the 

MPF was  around 34 MHz 99 due to a narrowband signal provided by the SBS 

mechanism. The obtained oscillation frequency at 40 GHz was characterized by a phase 

noise lower than -100 dBc/Hz at 10 kHz offset frequency. Moreover, by tuning the 

frequency of the carrier laser relative to the pump laser, an ultrawide tunability (5-40 

GHz) of the generated microwave signal without any degradation of performance was 

demonstrated.  

Similarly, a combination of phase modulation and optical notch filtering was 

employed in a SOI photonic circuit 96,97 . In this configuration, either a microdisk 

resonator (MDR) 96 or an all-pass ring resonator 97 was used as an optical notch filter to 

filter out one sideband of a phase modulated signal, thus achieving phase modulation to 

intensity modulation conversion. As it was observed, the entire operation was equivalent 

to an MPF, with a bandwidth determined by the bandwidth of the notch of the optical 

notch filter. The center frequency was determined by the wavelength spacing between 
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the optical carrier and the center wavelength of the notch. By feeding back signal to the 

modulator with a sufficient gain, an oscillation frequency was generated. In 96, two 

configurations of MDR with a high resistivity metallic microheater placed on top or a 

p-type doped silicon heater in the MDR were investigated. By controlling the electrical 

power applied to the micro-heater, the resonance frequency of the resonator was tuned, 

leading to the tuning of the center frequency of the bandpass MPF, and thus of the 

frequency of the generated microwave signal. Experimentally, an oscillation frequency 

with a tunable range from 3 to 8 GHz with a phase noise performance around -80 dBc/Hz 

at 10 kHz offset frequency was demonstrated. This scheme of OEO was explored for 

sensing applications. As reported in 97, by tuning the temperature of the all-pass ring, 

the resonance frequency of the resonator was changed, which resulted in a change of the 

oscillation frequency. By calculating the change of oscillation frequency with respect to 

the device temperature change, a sensitivity of 7.7 GHz/℃ was demonstrated, showing 

the ability of the oscillator to be extremely sensitive to small temperature variations. 

To sum-up, integrated OEO show key advantages for RF signal generation in terms 

of small size, high stability, low power consumption, and large frequency tuning range. 

From the successful demonstration listed above, a future for IOEO in a single chip is 

expected to be bright with the potential to open up a new range of applications for RF 

signal generation. Nevertheless, in this domain, more studies are necessary before to 

arrive at a complete system and different approaches remain possible.    

1.4. Conclusion 

In this part, we have presented some elements concerning the evolution of 

microwave signal generation, starting from microwave oscillators to OEO based on 

optical fiber delay lines, and then to OEO based on optical resonators. As it is, each 

generation was born in order to reduce the disadvantages of the previous ones. Clearly, 

the latest generations of OEO based on optical resonators offer many advantages, i.e. 

low phase noise signal at microwave and millimeter wave signal, small size, low power 
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consumption, giving an opportunity to reduce or avoid mode hopping, and 

eliminating the requirement of bulky temperature control system. 

Regarding their integration, very significant progress has been made in recent 

times. However, not all the challenges have been fully achieved; in particular, the 

integration on silicon of all the elements of a complete OEO system, largely tunable in 

frequency, has still not been achieved. The target of this work is to go this way, by 

considering firstly the direct insertion of SOI micro-resonators in OEO loops. Two 

different approaches with 

fixed and tunable frequency schemes will be discussed and explored in this thesis. 

Generating RF/Optical signals has, of course, applications in the field of 

telecommunications or radars. On another hand, as described in section I.2.4b, OEO is 

turning out to be also a very useful system for sensing applications. Looking towards 

this kind of applications, this work will be focused on this option and the capabilities of 

the studied OEO with respect to index sensing will be systematically investigated 

throughout the manuscript. 

Chapter 2 will first, deal with the reason why we have chosen the silicon photonic 

platform for the integration of OEO. Some necessary photonic building already 

developed on SOI will be discussed accordingly. The last three parts of chapter 2 will 

then been focused on the design, the fabrication, and the characterization of optical ring 

resonators in view of their insertion into OEO opto-RF loops. 
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2 
Silicon Ring Resonator Design, 

Fabrication and Characterization for 

OEO Loops 

Among several material platforms which can offer access to integrated microwave 

photonics and particularly to the possible realization of integrated Optoelectronic 

Oscillators (OEOs), we have chosen to work with the Silicon on Insulator (SOI) one. In 

the following of this manuscript, we will explain the reason for this choice. Three main 

building blocks necessary for integrated OEOs and well developed in Si photonics will 

be discussed in this chapter. Then, we will introduce the ability of using OEO for sensing 

detection, as it is one of the main aims of this work. 

2.1. Integration within silicon photonics 

Silicon photonics emerged in the mid-1980s but has really been developed from 

the early 2000s and has established itself as the major photonic integration platform for 

various applications such present and future applications in data centers, high-

performance computing, and sensing 76. Among diverse technological platforms used to 

realize photonics integrated circuits (PICs), SOI photonics is now seen as the 

mainstream one due to some specific advantages. First of all, the ability to use the 

Complementary Metal Oxide Semiconductor (CMOS) technology has become the key 

advance behind silicon photonics, resulting in high volume production capability at low 

cost 76,100. Moreover, Silicon – Si (nSi = 3.48 at λ = 1.55µm) and its oxide - SiO2 

(nSiO2 = 1.44 at λ =1.55µm) can form high-index contrast (∆n~2), and thus high-
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confinement optical waveguides ideally suited for medium to high integration and 

small passive devices in the telecommunication wavelength range 

(1300 nm    1600 nm). The field has rapidly evolved from a ‘scientific hot topic’ to 

an industrially viable platform and starts bringing market benefits. The fast development 

of Si photonic integration circuits has been allowed by the possible realization of 

multiple functions in a single chip. Regarding integrated OEOs, the three main necessary 

components of the opto-RF loop, i.e. the light source, the optical modulator, and the 

signal detector have been developed in/on SOI platform, at least considering the possible 

hybrid integration of III/V devices on Si. 

In the next section, we will introduce the three basic key devices essential for PICs 

and particular for integrated OEOs. Then, we will draw a specific focus on recent 

progress on index sensing in Si photonics in order to introduce the basics that we will 

use later to characterize the index sensing properties of the OEOs demonstrated in 

chapter 3 and chapter 4. 

2.1.1. Basic functions in silicon photonics 

2.1.1a. Lasing in Silicon photonics  

Light source is an indispensable component in every telecommunication system, 

including integrated OEOs. However, laser is a weak point in silicon photonics. It is 

because Si is an indirect bandgap material, and it not naturally capable of providing 

efficient radiative recombination 11. Three main approaches have been proposed to 

achieve light generation in/on silicon: The hybrid integration of luminescent materials 

on silicon, Germanium (Ge)-on-Si lasers, and III-V-based Si lasers 101. Each approach 

has unique properties and advantages, but also drawbacks. 

The hybrid integration of luminescent materials on silicon takes advantage of 

materials that naturally exhibit light emission and that can be integrated on silicon. 

Examples of such materials are carbon-nanotubes 102 or rare-earth materials in which 

Erbium is the most popular employed one 103–105. Taking into the fact that Erbium is a 

well-studied material and it can be considered a (nearly) CMOS compatible material, 
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a lot of research efforts have been pursed in the direction of Er-laser. However, up 

to now, no efficient electrically pumped laser based on Erbium has been reported yet. 

Nevertheless, optical pumped laser based on Erbium doped gain media 104,106,107 has been 

demonstrated, showing promises for Er-silicon-based lasers. 

 

Fig.2.1.1. Examples of silicon-based laser: (a) Microsphere Er doped laser 106, (b) First 

electrical pump silicon laser based on Ge 108 and (c) III-V based silicon laser using hybrid 

InP 109.  

 

In another direction, although Ge is an indirect band gap material, it exhibits a 

pseudo-direct gap behavior 110. This unique band structure allows for Ge to operate 

properly at telecommunication wavelengths around 1.55 µm and potentially to achieve 

efficient light emission by engineering its band structure. Bandgap engineering concepts 

of Ge, either using n-type doping 111, tensile strain layers 112, or germanium-tin (GeSn) 

alloys 113 have been proposed. In addition, the first electrically pumped Ge laser was 

successfully demonstrated in 2012 108, with a lasing wavelength in range from 1520 nm 

to 1570 nm (Fig 2.1.1b). Moreover, Ge-based lasers potentially show advantages of 

processing compatibility with the Si technology, allowing to reduce device fabrication 

under the single flag of group IV materials. 

Finally, III–V based lasers are in fact considered as the present most practical on-

chip optical sources in silicon photonics. III-V semiconductor materials bring the 

advantage of direct bandgap emission, high gain values and band gap tuning by the 

control of alloy compositions 76. Three common approaches were demonstrated: direct 

mounting integration 114, heterogeneous based on bonding 109,115,116, and direct hetero-

epitaxial growth 117–119. High quality hybrid on Si III-V lasers have been reported either 

in heterogeneous based bonding 109 or epitaxial growth 120. More recently, III-V on 
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silicon laser using transfer printing method was proposed 121, demonstrating high output 

power above 2 mW and low threshold current of around 18 mA. 

To summarize, we have shortly discussed here the possible ways of light 

generation in/on silicon. Currently, III-V-based Si lasers formed via bonding techniques 

demonstrate the best performances and show the best opportunities for practical 

applications in the near future. However, in the long term, direct hetero-epitaxial growth 

of III–V materials on Si seems more promising for low-cost and high-yield fabrication 

101. On the other hand, Ge-based Si laser with its advantages on CMOS compatible can 

be considered as a competitive candidate for large scale monolithic integration for the 

long-term approach. 

2.1.1b. Silicon optical modulators 

Electrical to optical signal (E/O) conversion through the modulation process is a 

necessary function for OEOs. The field of silicon optical modulators has attracted strong 

research attention since the two precursory works demonstrated by Intel Corporation in 

2004 122 and Xu et al. 123 in 2005. However, silicon is not an ideal material in which to 

produce an optical modulator since it lacks the linear Pockels electro-optic effect found 

in more traditional photonics materials. Several approaches have been proposed to 

achieve high performance modulation in silicon devices. The most common method is 

based on using the plasma dispersion effect, where free electron and hole concentrations 

in an optical waveguide result in changes in the material’s refractive index and 

absorption 12,124,125. The other method is to introduce a strong electro-optical effect 

material to the silicon platform, examples of them are graphene 126,127, organic polymers 

128,129 or III-V compounds 130. A further approach to achieve modulation in silicon 

involves straining the silicon waveguide to introduce the Pockels effect 131.  

Silicon-based modulators can implement different types of modulation formats, 

including intensity 122,133, phase 125,127 and polarization 126 modulations. All of them are 

suitable for OEOs since OEO based on intensity 134, phase 97 or polarization 135 

modulators have been experimentally studied. With efforts from both academic 

institutes and industry, the performance of modulators based on silicon have been 

improved dramatically. A silicon-based modulator with a flat frequency response 
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exceeding 170 GHz 125 (Fig.2.1.2a) has been investigated by using the plasma 

dispersion effect. Up to now, the modulation speed of on-off keying (OOK) signal 

reached up to 70 Gbit/s 136 and a bit rate of 321.4 Gbit/s modulator was demonstrated 

137.  

 

Fig.2.1.2. Examples of: (a) Silicon-based modulator using plasmonic dispersion effect 125 

and (b) Silicon-based photodetector using Ge 132. 

2.1.1c. Photodetector based on silicon photonics 

Optical to electrical (O/E) signal conversion using a photodetector is an essential 

process used for the realization of OEOs. However, due to its bandgap energy, silicon 

is obviously not a suitable candidate for photodetection at telecom wavelengths. 

Photodetector fabrication therefore requires the integration of either III/V materials 

138,139 or Ge 13. Hybrid III/V materials on Si can be used but require heterogeneous 

integration on Si. In contrast, Ge has strong absorption up to beyond 1.55 µm 

wavelength and this material is already present in current CMOS processes. Ge therefore 

arises as the best candidate for implementing detection in Silicon photonics. After years 

of exploration and optimization, the basic brick "germanium detectors" is now very well 

mastered. State -of-the art Ge waveguide photodetectors can achieve high responsivity 

(around 1 A/W), high bandwidth (around 70 GHz), and low dark current simultaneously 

132,140 (Fig.2.1.2c). In summary, these detectors have the characteristics necessary for 

their effective integration into a fully integrated opto-microwave loop on silicon.  

Beside the three main basic key functions shortly reminded above, Si photonics 

offers many other devices such as optical amplifiers 141,142, optical isolators and rotators 

143,144, optical filters 145,146, (de)multiplexers 147,148, splitters 149, etc. The contribution of 
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these devices brings a bright future for PICs and particularly integrated OEOs. The field 

of application of silicon photonics therefore are very numerous, including data centers, 

high performance computers, telecommunications, microwave photonics, quantum 

computers, sensors and other high-end applications. 

We will focus here only on the sensing properties of the silicon platform, taking 

into account the topics explored in this thesis and the orientation that has been chosen 

to realize and study optoelectronic oscillators in an index sensor configuration. 

Our analysis here will be limited to volume refractive index sensors, the objective 

being essentially, through optical measurements, to detect the smallest possible variation 

in refractive index. 

2.1.2. Silicon photonics for bulk index sensing applications 

The detection of biological species in a fast and reliable way is still today an 

important challenge. In term of biosensing, different principles have been explored, i.e. 

optical, electrical, magnetic and mechanical ones to quote the main ones. Compared to 

other analytical techniques, optical biosensors offer several advantages, i.e. absence of 

risks of electrical shocks or explosion, immunity to electromagnetic interferences, 

miniaturization capabilities, and possibility of data multiplexing 150. In general, optical 

biosensors can operate according to two protocols: fluorescence- based detection and 

label-free detection 150,151. In fluorescence-based detection schemes, fluorescence is 

used as a label to indicate the presence of the target molecule, resulting in an extremely 

sensitive detection. However, this technique suffers from the laborious labeling 

processes that may also interfere with the functionalized molecules. Quantitative 

analysis is challenging due to the fluorescence signal bias, as the number of fluorescence 

on each molecule cannot be precisely controlled 152. In contrast, label-free biosensors do 

not require to label target molecules. Their features are relatively easy and cheap 

operation allowing to perform quantitative and kinetic measurements of molecular 

interactions 150,152. Under the category of label-free detection, several detection methods 

exist, including refractive index (RI) detection, optical absorption detection and Raman 

spectroscopic detections. 
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Here, we will limit our discussion in RI based label-free sensor detection. In the 

principle of RI based label-free sensor detection (Fig.2.1.3), the biomolecular 

interaction taking place at the waveguide surface affects the guiding properties of the 

waveguide, i.e. a variation of the refractive index, via the modification through the 

evanescent field. The variation of the refractive index can be evaluated by any of the 

waveguiding optical properties (intensity, phase, resonant momentum, polarization...). 

The evaluation of this optical change gives a measure of the quantity of detected 

molecules. 

 

Fig 2.1.3. Scheme of the evanescent field sensing 153. 

Today, RI label-free biosensors can be fabricated based on several material 

substrates, but one of the most popular and promising materials is silicon. Silicon 

photonics with CMOS-compatibility offers significant large scale capability, allowing 

for the integration of thousands of sensors on a single millimeter-scale chip 154, thus 

devices can be cheaply built through mass production with industrial silicon 

technologies and they could become the core of portable laboratories. Several silicon 

photonics devices such as Mach–Zehnder interferometers (MZIs) 155–158, micro-ring 

resonators (MRRs) 159–162, Bragg grating resonators 163–165, and one-dimensional (1D) or 

two-dimensional (2D) photonic crystals (PhCs) 166–169 have been developed over the past 

years for biosensing diagnostic applications. Among them, SOI ring resonators are 

the most common configuration used for RI sensing 170. The advantage of using ring 
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resonators compared with other types of RI configurations is the possibility of 

miniaturization and simplicity. 

 

Fig 2.1.4. (a) Typical method used in bulk optical refractive index sensors by measuring the wavelength 

change dependent on the cover refractive index of the sample, (b) The RI sensitivity is determined by 

the slope of the wavelength shift for known changes in the sample cover material RI. 

In addition to the sensing operation, microfluidic channels are often added to the 

experimental system, for the realization of lab-on-chips. The most common materials 

used for the fabrication of the micro-fluidic channels is PDMS (Polydimethylsiloxane) 

151,163,170,171. It is a biocompatible, transparent, rubber-like polymer and can be easily 

patterned using soft lithography, a well-established fabrication method. The 

incorporation between silicon substrate and PDMS is formed through the oxygen plasma 

process, in order to create hydrophobic surface properties in both surface of two 

materials. By doing so, the covalent siloxane bonds (Si-O-Si) is assembled in contact 

between them. 

For typical bulk optical refractive index sensors, changes in the cladding’s 

refractive index (resulting from molecular binding events or concentration changes) 

change the effective index of the propagating mode. The ratio of the change in effective 

index of the propagating mode to the changes in refractive index of the cladding 

medium, is defined as the mode sensitivity, Smode 172,173: 

𝑆𝑚𝑜𝑑𝑒 =
𝛿𝑛𝑒𝑓𝑓(𝑛𝑐𝑙𝑎𝑑 , 𝑛𝑐𝑜 , 𝑛𝑏𝑜𝑥, 𝜔)

𝛿𝑛𝑐𝑙𝑎𝑑

 (2.1.1) 
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where neff is the effective index of the waveguide, nclad is the refractive index of 

cladding medium, nco is the refractive index of the waveguide core material, nbox is the 

refractive index of the buried oxide (BOX) material and ω=2πf is the optical frequency. 

In case of a resonator device, this change in the effective index, in turn, results in a 

change in the resonance wavelength λres of the resonator, which can be measured (Fig 

2.1.4a). The sensor’s refractive index sensitivity is defined as the shift in resonant 

wavelength as a function of the change in refractive index (RIU) of the cladding 

151,152,172,174. 

𝑆 =  
∆𝜆𝑟𝑒𝑠

∆𝑛𝑐𝑙𝑎𝑑
 (nm/RIU) (2.1.2) 

The sensor’s refractive index sensitivity is an important factor used to quantify its 

performances. However, it does not wholly show the capability of the device to detect 

and quantify refractive the index changes. To look for the ability to precisely and 

accurately measure RI changes, the limit of detection (LOD) should be also accounted 

for. Besides, this is the most common parameter used to draw comparisons between 

different types of bulk index sensors 151,172,173. 

LOD is defined as the smallest spectral shift that the sensor can accurately measure 

173.  

𝐿𝑂𝐷 =
𝑅

𝑆
 (2.1.3) 

 where R is the sensor resolution depending on the spectral resolution and the 

system noise factor of the methodology for measuring the spectral shift in response to a 

sample. 

If infinitely high spectral resolution and zero noise systems were available, the 

sensor performance could be characterized by the sensitivity alone. However, in real 

measurements, spectral resolution and system noise are affected by the precision and 

accuracy of the measurement system including its intrinsic spectral resolution and all 

possible noise sources (laser RIN, thermal noise, digital noise in case of data processing 

after signal digitalization, etc.) 173–176. Clearly, the way to improve the LOD of the sensor 

is thus to increase the full chain acquisition system spectral resolution and reduce all the 

noise sources of the system (including the transducer and the acquisition system). 
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However, this option is somewhat difficult in practice. Indeed, a n index resolution 

results in a wavelength variation in the order of =n/n in most interferometric 

optical systems. As a result, for an index detection limit of (n=10-7), the spectral offset 

to be detected is already as small as  = 0.1pm at  = 1500 nm and can even become 

smaller for lower target LOD. These extremely low orders of magnitude make it difficult 

to detect direct spectral detection for measuring refractive index variation as the noise 

sources of acquisition systems most often provide cumulative spectral uncertainties 

greater than these orders of magnitude. Moreover, in conventional optical sensor 

systems, the sensing information encoded through the wavelength shift measurement is 

usually done by using an optical spectrum analyzer (OSA) 177. However, for a given 

spectrum, when using an OSA, the higher sensing resolution requires for lower 

interrogation speed and more time to scan the spectrum range. 

These limitations can be solved by modifying the measurement which allows to 

go back to the refractive index information. Especially, converting the measurement 

signal from the optical domain to the electrical one by using an RF carrier 

frequency as the new measurement can offers an elegant solution for encoding the 

refractive index information on the RF frequency of a microwave signal 175,176,178,179. 

By converting a wavelength variation in the optical domain to a microwave variation in 

microwave domain, signal can be real-time monitored by a digital signal processor 

(DSP) at a high speed and high resolution 176. In addition, the microwave signal 

generated by an OEO can also have low phase noise, a high Q factor, and much higher 

signal-to-noise ratio 180,181, therefore the sensor resolution can be improved by using an 

OEO as a sensor detection for bulk index sensing. Example of this approach can be 

found in ref 175, where a highly precise on-chip sensing device with sensing precision 

approaching 10−8 in effective refractive index units was demonstrated. In addition, on-

chip optical sensing systems allow the simultaneous measurement of several quantities. 

In 182, for example, temperature and refractive index changes with interrogation 

resolutions of 2.4×10-5 K and 9.1 × 10 – 8 RIU were demonstrated, respectively. This 

approach, which involves the design and realization of opto-microwave loops OEO 

for bulk index sensing, is at the heart of this thesis work, with a specific focus on 
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the integration of part of OEO within the silicon photonic platform, as described 

hereafter in this manuscript. 

To conclude this part, the development of OEOs for the generation of microwave 

signals with low phase noise can be applied to the realization of highly sensitive volume 

optical index sensors, in which the measurand is the microwave frequency whose 

variations reflect changes in the optical index. All the silicon photonics building blocks 

necessary for this integration scheme (strictly speaking, excepted the integrated 

sources), including electro-optical modulators, optical waveguides and resonators, and 

photodetectors, are available. But all the problems raised by such an ambitious 

integration scheme have been yet solved and several important milestones have still to 

be demonstrated. 

As indicated in Chapter 1, the path that was mainly chosen in this thesis consists 

in the partial integration of the elements of the loop, essentially that of a ring resonator 

whose function, combined with the other elements, leads to the realization of an 

equivalent  microwave filter. This is why we specifically develop the principle of 

operation of ring resonators in the next section.

2.2. Silicon micro-ring resonators 

Basically, every micro-ring resonator is formed under a waveguide structure. 

Therefore, in the following of this manuscript, before going into details about ring 

resonators (RR), some basic introduction about SOI waveguides and their 

configurations will be given first. 

2.2.1. Waveguide families  

The research field of silicon photonics is now pretty mature and considered as a 

technology platform for large scale integrated photonic circuits 183,184. Silicon on 

insulator waveguides include Si (nSi= 3.48 at 1.55 µm wavelength) on top of SiO2 

(nSiO2=1.44 at 1.55 µm wavelength) and are mainly used in the O and C bands (1.3 µm 

– 1.55 µm) 76,100,185–188, but have also recently shown promises in the mid-infrared 

spectral region 189. SOI waveguides typically consist of a silicon core on top of buried 
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oxide (BOX). 220 nm thin film SOI wafers is a standard silicon thickness used by multi-

project wafer foundries. However, other thicknesses such as 300 nm, 500 nm or 700 nm 

are also in use. Under the CMOS processes compatibility, various kinds of SOI 

waveguides have been fabricated either by fully etching Si down to the bottom oxide 

layer or partially etching it with a timed process stop 184. Examples of frequently used 

silicon waveguide structures are illustrated in Fig.2.2.1.  

Propagating modes in SOI waveguides are found by the solving Maxwell’s 

equations. For many applications, the fundamental (single-mode) transverse electric 

(TE) or transverse magnetic (TM) modes are preferred. The typical mode profile of 

some waveguide structures is showed in Fig.2.2.2. In SOI waveguides, the high index 

contrast between silicon and its oxide (∆n~2.0) allows for downscaling of device 

footprints to the order of submicron waveguides. In many cases, the height of the core 

is typically half of the width 190, thus a typical waveguide core geometry is a 

450 × 220 nm2 rectangle. Moreover, high index contrast between the silicon core and 

its substrate offers for tight bends and close spacing 

waveguide geometries and therefore results in dense packing of optical elements 

on the surface of a chip 76,185,186. 

 

Fig.2.2.1. Various types of SOI waveguide structures. 
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Silicon strip waveguides, also known as channel waveguides, are the most 

common building blocks in silicon photonic integrated circuits. In strip waveguides, the 

modes are well confined in the core region thanks to the high index contrast between 

silicon and silica. This type of waveguides typically offers tight bending radius, e.g. SOI 

strip waveguide with bending radius of 1.5 µm has been reported 75. Rib waveguides, 

on the contrary, are formed by shallow etched ribs and are often used to reduce 

waveguide losses due to the reduced interaction of the electric field intensity with the 

waveguide sidewalls. These waveguides are also widely used for the realization of 

electrooptic devices such as optical modulators because they allow electrical 

connections to be made on the waveguide sides 191.  

Slot waveguides have been proposed to confine the electromagnetic field within a 

subwavelength split and thus serve as a guiding platform for enhancing light/matter 

interactions. In a slot waveguide, light is confined in the low refractive index region 

(slot) thanks to the perpendicular electric field discontinuity condition at high index 

contrast dielectric-dielectric interfaces 192. 
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Fig.2.2.2. Typical mode profiles of various waveguide structures at 1.55 µm wavelength: (a) 

and (b) TE and TM modes strip waveguide, respectively, (c) TE mode rib waveguide and (d) 

TE mode slot waveguide.   

These different families of waveguides have advantages and disadvantages, the 

balance being essentially a compromise between optical confinement of the guided 

mode and propagation losses. With regard to the application we are aiming for, 

namely the realization of bulk optical index sensors, the essential point is to favor 

a strong interaction of the propagative mode with the cladding material and 

simultaneously to minimize propagation losses. In a strip waveguide configuration, 

target molecules of interest interact with the relatively weak evanescent electric field 

(TM mode) of the waveguide core 150,158,193. To increase light-molecule interaction, 

silicon slot waveguide can be used. In this type of waveguides, a large fraction of the 

mode resides in the low index cladding where the molecules are located 150,161,194. 

However, high sensitivity to sidewall roughness induce higher scattering losses in these 

structures than in strip waveguides. State of the art is indeed of ~2 dB/cm for silicon 

single mode slot waveguides 195, while propagation losses as low as 0.45 ± 0.12dB/cm 

at 1.55 µm wavelength have been demonstrated for single-mode SOI strip waveguides 

195. The waveguide structure used for sensing application therefore must be chosen in 

order to take into account the waveguide losses. 

By choosing a strong interaction between field and cladding materials and the 

simplicity of the realization of the waveguides and resonators, we have opted early in 

the thesis for TM-polarized strip waveguides. The relevance of this choice was 

confirmed recently by an article published in the OSA/Optica journal 196, which 

demonstrated, following an exhaustive comparison of SOI waveguide families, that TM 

polarized strip waveguides correspond to the best possible realization for an application 

to the detection of refractive index variations in volume. 

The ring resonators designed and realized in this thesis have therefore been based 

on this geometry of optical waveguides and this light polarization.
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2.2.2. Silicon ring resonators 

Ring resonators (RR) are now a basic device in silicon photonics. A RR is a passive 

device but can become an active one if the integration with an active material or thermal 

contact is performed 187. RRs have wide range of applications in many fields such as 

optical modulators, optical filters , optical sensors, electro-optic devices 76,145,172,197. In 

the basis configuration, RR can be described into two main structures, namely all-pass 

and add-drop RR, as illustrated in Fig.2.2.3a and Fig.2.2.3b, respectively.

 

Fig.2.2.3. Ring resonator configuration: (a) All-pass and (b) Add-drop RR. 

 

In general, a RR is formed by a circle bended waveguide and a bus waveguide 

coupled with the ring. When the light path inside the ring corresponds to a round trip 

phase shift of 2π, waves interfere constructively, and the ring is then at resonance. 

Resonance mode wavelengths are thus given by: 

𝜆𝑟𝑒𝑠 =
𝑛𝑒𝑓𝑓 ∗ 𝐿𝑡𝑜𝑡

𝑚
       𝑚 = 1,2,3 … (2.2.1) 

with Ltot is the optical path length of the resonator and neff is the waveguide mode 

effective index. 

2.2.2a. Power transmission of an all-pass ring resonators 

An all pass RR configuration, as described in Fig.2.2.3a, is a simplest 

configuration of RR, which includes a single side-coupled bus waveguide. Under the 
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assumption that reflections are negligible, from the ratio of the transmitted and the 

incident field, we obtain the intensity transmission pass through the ring Tn 187,198 as: 

𝑇𝑛 =
𝐼𝑝𝑎𝑠𝑠

𝐼𝑖𝑛𝑝𝑢𝑡

=  
𝑎2 − 2𝑟𝑎𝑐𝑜𝑠𝜃 +  𝑟2 

1 − 2𝑎𝑟𝑐𝑜𝑠𝜃 + (𝑟𝑎)2
  (2.2.2) 

with a the single-pass amplitude transmission, including both propagation losses 

in the ring and losses in the waveguide/ring directional coupler. It relates to the power 

attenuation coefficient α (dB/cm) as a2 = exp(−αLtot). θ is single pass phase shift, 

θ = βLtot with β is the propagation constant of the circulating mode, β=(2πneff)/λ, r is the 

self-coupling coefficient, and k is the cross-coupling coefficient. Assuming non-

coupling losses, r and k then satisfy r2 + k2 = 1. 

2.2.2b. Power transmission of an add-drop ring resonator 

An add-drop RR configuration described in Fig.2.2.3b consists of two bus 

waveguides coupled to the ring. The intensity transmission at the through and drop ports 

of the ring are given by 187,198: 

𝑇𝑡ℎ𝑟𝑜𝑢𝑔ℎ =
𝐼𝑝𝑎𝑠𝑠

𝐼𝑖𝑛𝑝𝑢𝑡

=  
𝑟2𝑎2 − 2𝑟1𝑟2𝑎𝑐𝑜𝑠𝜃 +  𝑟1

2 

1 − 2𝑟1𝑟2𝑎𝑐𝑜𝑠𝜃 + (𝑟1𝑟2𝑎)2
 (2.2.3a) 

𝑇𝑑𝑟𝑜𝑝 =
𝐼𝑑𝑟𝑜𝑝

𝐼𝑖𝑛𝑝𝑢𝑡

=  
(1 − 𝑟1

2)(1 − 𝑟2
2) 

1 − 2𝑟1𝑟2𝑎𝑐𝑜𝑠𝜃 + (𝑟1𝑟2𝑎)2
 (2.2.3b) 

If the attenuation is negligible (a ≈ 1), critical coupling occurs at symmetric 

coupling (k1 = k2). For a lossy resonator, critical coupling occurs when the losses match 

the coupling coefficients such as r2a = r1=r. 

2.2.2c. Spectral characteristics 

As explained in chapter I, in the aim of this work, resonances of RR are used to 

perform optical to electrical conversion. This process realizes an equivalent 

microwave photonic filter (MPF) (frequency around 15 GHz as one of the targets of our 

work). The properties of the MPF therefore is relevant to the optical signal of the RR. 

For this reason, in the following of this section, the transmission spectrum of RR will be 

studied, including its figure of merits and the condition required to perform opto / RF 



2.2. Silicon micro-ring resonators 

56 

 

conversion. The typical transmission spectrum for all-pass (a) and add-drop (b) RR are 

described in Fig.2.2.4 (a) and (b), respectively.  

 

Fig.2.2.4. Example of transmission spectrum of (a) all-pass and (b) add-drop RR. 

 

One important figure of merit of the transmission spectra of RR is the free spectral 

range (FSR), which is defined by the frequency (or wavelength) difference between 

two successive resonance peaks. FSR takes the following expressions 198. 

𝐹𝑆𝑅𝜆 =
𝜆2

𝑛𝑔𝐿𝑡𝑜𝑡
  (nm) (2.2.4a) 

or  

𝐹𝑆𝑅𝑓 =
𝑐

𝑛𝑔𝐿𝑡𝑜𝑡
  (Hz) (2.2.4b) 

, with ng the waveguide mode group refractive index. For the target frequency 

around 15 GHz and considering ng = 3.1, we find Ltot ≈ 6 mm.  

Another important parameter is the resonance width, which is defined as the full 

width at half maximum (FWHM) or 3 dB bandwidth of the resonance line shape. 

FWHM can be deduced through the resonance spectrum. 

For all-pass ring: 𝐹𝑊𝐻𝑀 =   
(1−𝑟𝑎)𝜆𝑟𝑒𝑠

2

𝜋𝑛𝑔𝐿𝑡𝑜𝑡√𝑟𝑎
                    (2.2.5a) 

For add-drop ring: 𝐹𝑊𝐻𝑀 =   
(1−𝑟1𝑟2𝑎)𝜆𝑟𝑒𝑠

2

𝜋𝑛𝑔𝐿𝑡𝑜𝑡√𝑟1𝑟2𝑎
              (2.2.5b) 

 As described in chapter I, the quality factor of a microwave filter QRF is an 

important parameter driving the stability and the performance of the generated 
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microwave signals. It is noteworthy that the FWHM of the optical signal is preserved in 

the microwave frequency domain 61. Moreover, the FWHM of the optical signal is 

related with the optical quality factor Qopt by equation 187. 

Qopt =  
λres

FWHM
  (2.2.6) 

From Eq. (1.1.4) and Eq. (2.2.6), it is easy to find the equivalent loaded optical 

quality factor Qopt related with the QRF of the converted signal by 

QRF/Qopt = fRF/fopt (2.2.7), where fopt is the frequency corresponding with the resonance 

wavelength of the resonator (at about 194 THz). From Eq. (2.2.7), we can see that the 

equivalent QRF of an optical resonator is directly proportional to the optical quality factor 

Qopt and to the ratio of fRF/fopt. Since the targeted frequency fRF of our work is around 

15 GHz (meaning fRF/fopt ~ 7×10-5), it is easy to find that in order to obtain the MPF with 

consideration quality factor QRF > 10, the optical resonance needs to have Qopt at or 

above 105.  

The plot of optical quality factors as a function of the resonator length for different 

light propagation loss levels α (dB/cm) are shown in Fig.2.2.5 (a) and (b) for an all-pass 

and add-drop ring, respectively (assuming r1 = r2 = r = 0.99, and ng = 3.1 at 1.55 µm 

wavelength). 

 

Fig.2.2.5. Quality factor as function of perimeter length for different propagation loss in 

(a) all - pass configuration and (b) add - drop ring configuration. 

The physical meaning of the Qopt factor relates to the number of round-trips made 

by the energy in the resonator before being lost to internal loss and the bus waveguide. 
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Obviously, the best Qopt values are obtained when the resonator length Ltot is large and 

round-trips losses are small. However, these two terms, i.e. the propagation losses and 

the resonator length are not independent since the accumulated propagation losses 

increase with the resonator length. As can be seen in Fig.2.2.5, for small propagation 

losses (in case of 0.1 dB/cm and 1 dB/cm), the accumulated loss level remains small, 

thus Qopt increases when the perimeter length is increased. However, when propagation 

losses are large (10 dB/cm), the accumulated losses in the ring increase rapidly with 

resonator length, which then results in the saturation of Qopt. Moreover, in case of 

propagation losses at 3 dB/cm, the calculated Qopt is less than 105 for both all-pass and 

add-drop ring resonators at around 6.5 mm of Ltot (approximate resonator length in this 

work). 

From all the above arguments, it can be understood that controlling low 

propagation losses in long perimeter length resonator is an important task for the 

realization of an integrated OEO. Efforts have thus been made to improve the fabrication 

processes in order to reduce loss factors including the waveguide sidewall roughness 

and the RR directional coupler(s) losses to obtain high Qopt-resonances. We will discuss 

in the detail the fabrication of RR in section 2.4 of this chapter.  

On the other hand, taking into account the fact that Qopt describes the amount of 

energy stored inside the ring, and that this is directly related with the light power 

transferred from the bus waveguide to the ring in the directional coupler region, we take 

hereafter a specific interest in the design of the RR directional coupler. 

2.2.2d. Directional coupler 

In the two RR configurations, a directional coupler is used to transfer light from 

the input waveguide to the ring. This process can be described through the Coupled 

Mode Theory 198–200.  Here, a simple directional coupler in an all-pass ring configuration 

is considered. 

Basically, the directional coupler consists of two parallel waveguides (Fig.2.2.6a), 

where the coupling coefficient is controlled by both the length of the coupler Lc and the 

spacing between the two waveguides d 184. When two parallel waveguides are placed in 
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close proximity, optical power can be exchanged between them 198,200. The coupling of 

light between the bus waveguide and the ring can be separated in three types including 

under-coupling, critical-coupling and over-coupling behaviors. Under-coupling occurs 

when the resonator round trip loss exceeds the cross-coupling strength (k2<1-a2, i.e. 

r > a). Over coupling occurs when the resonator round trip loss is smaller than the cross-

coupling strength (k2>1-a2, i.e. r < a). These two behaviors result in less power coupled 

from the bus waveguide into the ring, which consequently results in less power stored 

inside the resonator. In the intermediate critical coupling regime, when the cross-

coupling strength equals the resonator round trip loss (k2 = 1 - a2, i.e. r = a), the number 

of round-trips that light achieves inside the ring is maximized and the ring Qopt is 

maximized (see relationship (2.2.5a) that shows that FWHM theoretically vanishes 

when r = a). 

 

Fig.2.2.6. (a) Schematic of the super-mode theory of waveguide directional coupler and (b) 

example of symmetric (even) and asymmetric (odd) modes calculated from an optical mode 

solver at 1.55 µm wavelength for a typical SOI waveguide configuration. 

The directional coupler waveguide/waveguide coupling behavior can be 

interpreted as an interference between the symmetric (even) and asymmetric (odd) 
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super-modes (Fig. 2.2.6). They exist in both TE and TM polarizations. When light in 

TE (TM) polarization is launched into one input waveguide, the two even and odd 

(super-) modes are excited simultaneously. In general, the even and odd super-modes 

possess different propagation constants. If all the power is initially in one waveguide, 

the field distribution can be represented as one particular superposition of the even and 

odd super-modes adding coherently in that waveguide’s core 184,198. Since these two 

super-modes have different phase velocities, over some length, they accumulate an 

additional relative phase shift of π. In other words, the sum of the modes becomes a 

difference between the mode fields, so that light is transferred in the nearby adjacent 

waveguide. This process continues back and forth while the two waveguide cores remain 

in close proximity (distance ~λ/2). 

The fraction of power coupled from one waveguide to the another can be expressed 

as:  

𝑘2 =
𝑃𝑐𝑟𝑜𝑠𝑠

𝑃𝑖𝑛
= 𝑠𝑖𝑛2(𝐶𝑐𝑜𝑢𝑝. 𝐿𝑐)    (2.2.8) 

, where Pin is the input power, Pcross is the power coupled across the directional 

coupler, Lc is the coupler length and Ccoup is the coupling coefficient. Assuming a 

lossless coupler and identical coupled waveguides, the fraction of the power remaining 

in the input waveguide is: 

𝑟2 = (1 − 𝑘2) = 𝑐𝑜𝑠2(𝐶𝑐𝑜𝑢𝑝. 𝐿𝑐)  (2.2.9) 

The coupling coefficient calculated based on “super-modes” analysis (which can 

rely on simple numerical calculations of the reflective index neff1 and neff2 of the first 

even and odd modes of the set of coupled waveguides) is: 

𝐶 =  
𝜋. ∆𝑛𝑒𝑓𝑓

𝜆
   (2.2.10) 

So, finally, the beating length describing the needed length to fully transfer light 

power from one waveguide to the adjacent twin one is given by Lb = λ/(2∆neff) (2.2.11).  

In case Lc/Lb ≠ 1, light power is not fully transmitted and the self and cross-

coupling power transmissions can be rewritten as: 
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𝑘2 = 𝑠𝑖𝑛2(𝐶𝑐𝑜𝑢𝑝. 𝐿𝐶) = 𝑠𝑖𝑛2 (
𝜋. ∆𝑛𝑒𝑓𝑓

𝜆
 . 𝐿𝑐) = 𝑠𝑖𝑛2 (

𝜋

2
.
𝐿𝑐

𝐿𝑏

) (2.2.12a) 

𝑟2 = 𝑐𝑜𝑠2(𝐶𝑐𝑜𝑢𝑝. 𝐿𝐶) = 𝑐𝑜𝑠2 (
𝜋. ∆𝑛𝑒𝑓𝑓

𝜆
 . 𝐿𝑐) = 𝑐𝑜𝑠2 (

𝜋

2
.
𝐿𝑐

𝐿𝑏

) (2.2.12b) 

These relationships, obtained from fairly strong hypotheses (no loss and 

waveguide/waveguide coupling of light over a well-defined Lc length whereas in a real 

directional coupler structure, the proximity zone of the two guides is first progressive 

before the two guides are parallel to each other), nevertheless give the general shape of 

the waveguide/ring coupling coefficients and have been useful for the designs performed 

in this thesis. 

Indeed, as indicated above, the realization of an effective microwave bandpass 

filter MPF condition within the loop of an optoelectronic resonator oscillator requires 

very high optical quality factors. The relationship (2.2.12b) is then very useful for sizing 

RR operating close to the critical coupling condition. Recasting r = a indeed gives: 

𝐿𝑐

𝐿𝑏

=
1

𝜋
𝑐𝑜𝑠−1(2 𝑒𝑥𝑝(−𝛼. 𝐿𝑡𝑜𝑡) − 1) (2.2.13) 

This relationship thus finally shows that the ring directional coupler coupling 

length (Lc) can be designed according to the expected waveguide losses (α). 

Thanks to the high index contrast between silicon and its oxide, SOI waveguides 

with submicron dimensions can be fabricated based on classical techniques, e.g. e-beam 

lithography and inductive coupled plasma (ICP) or reactive ion etching (RIE). In this 

case, propagation losses arise due to the interaction of the optical mode with the 

waveguide sidewall surface roughness. For small micro-ring, the round-trip loss yet 

remains acceptable in all cases. The ring critical coupling condition then reveals a weak 

dependence on the exact value of the loss coefficient α. On the contrary, when the ring 

radius is large, the round-trip loss α.Ltot grows as soon as the waveguide losses increase, 

and its precise value can be hardly predicted accurately as it is case to case process 

dependent, making the critical condition more difficult to fulfil from design guidelines. 

The approximate critical condition Lc/Lb calculated for different waveguide loss levels 

(α) and different unfolded ring lengths, considering a SOI waveguide cross-section with 
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350 nm waveguide width, 220 nm waveguide height, 1.484 cladding index for the TM 

mode operating at 1.55 µm wavelength are shown in Fig.2.7. 

 

Fig.2.2.7.  Lc/Lb ratio corresponding to a RR critical condition calculated from Eq. (2.2.13) as 

function of waveguide loss and for different resonator lengths. 

In the presently studied configuration, it can be seen from Fig2.2.7 that with the 

fabrication accuracy that we have for strip waveguides, the most probable α value are in 

the 1 dB/cm to 5 dB/cm. In this loss values range, we see that an uncertainty of α, namely 

from α = 1 dB/cm to α = 4 dB/cm leads to a variation of Lc/Lb for Ltot = 5 mm from 

around 0.4 to around 0.84, while the Lc/Lb variation for Ltot = 50 µm is from around 

0.045 to around 0.14. So, overall, in the long ring case, not knowing the exact waveguide 

loss value can lead to a much strong error in the critical condition. This can explain why 

critically coupling long 

RRs is generally speaking more difficult than for small ones. As explained 

hereafter in section 2.3, we faced this difficulty by benchmarking our fabrication 

processes through the fabrication of various Lc/Lb directional couplers while tuning 

directional coupling gap to control the beating length around λ = 1.55µm.
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In the next section, we describe in a more detailed fashion the simulation and 

design strategy applied to obtain RR suited to the realization of an optoelectronic 

oscillator. 

2.3. Silicon micro-ring resonator design 

In the aim of this work, RRs were considered for their integration in OEO loops 

with an operating frequency at or around 15 GHz and suitable for bulk index sensing 

application. The design of RR that took into account this guideline is described in the 

following of this chapter. 

2.3.1. Waveguide chosen parameters 

Starting from a SOI wafer with a 2 µm buried oxide and a 220 nm silicon thin film, 

a strip waveguide geometry operating in TM light polarization was designed by 

following two main guidelines: i) Being single-mode and 2) Maximizing the sensitivity 

to the top cladding material. 

As explained in sections 1.3.1 and 2.1.2, in the configuration of a RR integrated 

within an OEO loop, any refractive index change of the top cladding material (nclad) can 

induce a modification of the loop generated RF frequency through a modification of the 

RR FSR. The frequency sensitivity to the bulk refractive index can therefore be 

calculated as follows: 

𝑆 =
𝜕𝐹𝑆𝑅

𝜕𝑛𝑐𝑙𝑎𝑑
 (2.3.1) 

As indicated in section 2.1.2, the possibility for the small detectable bulk refractive 

index changes is related to a high sensitivity. Therefore, the chosen waveguide 

parameters were optimized by looking for the possibility of the highest of RR FSR 

change due to the cladding refractive index change. Accordingly, by using an optical 

mode solver, we calculated S as function of waveguide width (w) with variation of 

cladding refractive index in range of 1.3 – 1.4 (refractive index range of the most 

BioSolutions), assuming a resonator length equal to 5.8 mm (see next section) operating 
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in TM light polarization at around 1.55 µm wavelength. The variation of 

waveguide width was limited in range 250 – 600 nm for TM-single mode operation. 

 

Fig.2.3.1. Refractive index sensitivity as function of waveguide width. 

From Fig.2.3.1, we observe a frequency sensitivity decrease when the waveguide 

width increases. The underlying reason is that smaller cross-section waveguides have 

less confined modes into the core region and a large portion of the evanescent field then 

spreads outside the core, thus resulting in a stronger interaction with the cladding 

material. However, an excessive reduction of waveguide core makes the control of the 

waveguide dimension more difficult 201–203. For that reason, the waveguide width was 

fixed at 350 nm leading to a theoretical bulk sensitivity of around 4 GHz/RIU. 

In the performed experimental studies of RR, the optical signal was first 

characterized with RR with PMMA as the cover cladding (nPMMA = 1.484 at =1.55µm). 

The electric field distribution for the TM mode of the retained strip waveguide is finally 

shown in Fig.2.3.2.  
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Fig.2.3.2. Electric field energy distributed for TM mode of strip waveguide at 1.55 µm wavelength. 

At the wavelength of 1.55 µm, the chosen strip waveguide is single mode in TM 

polarization, with an effective index value neff = 1.671 and a group index ng = 3.148.  

The confinement factor in the cladding material of this mode was calculated at 20.3 %. 

For the target frequency around 15 GHz, the corresponding RR length is of few 

millimeters. This constraint leads to a rather unusual long length ring for which 

controlling low optical losses and minimizing the occupied footprint are not 

straightforwardly obvious tasks (such a structure can occupy an area around one or few 

mm2). Therefore, a structure with small device size would facilitate a higher level of 

integration. With this aim in mind, we implemented a spiral shape RR, as good 

candidates to generate long perimeter RR with small footprints.  

Because the spiral shape is typically formed by a series of bended curves, bending 

loss therefore is an important factor contributing to the total loss of the RR. 

Nevertheless, given the high contrast in the index of SOI optical guides, radii of 

curvature of more than a few microns lead to a spectacular minimization of guide losses. 

As a very conservative value, a bending radius of 20 µm was considered for the 

design of the ring resonator in a spiral form.
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2.3.2. Final design of the RR directional coupler 

The main part of the design process for the RR directional coupler has been 

presented previously in section 2.2.2d. By adapting this methodology to the geometry 

of the selected strip waveguides, we have first estimated the beating length as a function 

of the directional coupler gap, as shown in Fig.2.3.4 and in the Table 2.3.1.  

 

Fig.2.3.4. The beating length Lb calculated as function of coupling gap d (SOI waveguide geometry: h 

= 220 nm, w = 350 nm, nPMMA = 1.484, TM waveguide operate at 1.55 µm). 

Using an optical mode solver, we estimated the effective refractive index of the 

two even and odd TM super-modes in the coupling region, the beating length Lb being 

then calculated using Eq. (2.2.11). As observed in Fig.2.3.4a, Lb increases dramatically 

when the coupling gap increases. Thus, long coupling length is needed for large coupling 

gaps. For this reason, the intermediate coupling gap in the 200 – 400 nm range was 

chosen in order to maintain beating lengths at small values and to minimize the 

directional coupler footprint. Table 2.3.1 gives detailed beating length values in the 200-

400nm gap range. 
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Table 2.3.1. Beating length calculated for different coupling gaps (SOI waveguide: h = 220 nm, 

w = 350 nm, nPMMA = 1.484, TM waveguide operate at 1.55 µm). 

Coupling gap (nm) 200 300 400 

Beating length (µm) 4.0 6.0 9.0 

 

Eq. (2.2.13) was used to give an order of magnitude of coupling lengths related to 

coupling gap and possible waveguide losses for an all-pass RR. Based on Eq. (2.2.15), 

the different coupling lengths related with coupling gaps and the possible waveguide 

losses were calculated, assuming a resonator length of 5.8 mm. A list of devices with 

different combinations of coupling gaps/coupling lengths were designed while 

maintaining the total length of the resonator constant to match with the desired FSR, as 

described in the next section. 

2.3.3. Full ring resonator design strategy 

The spiral shape RR was designed in a maximum footprint of 500 µm x 500 µm, 

for being compatible with the main deflection field of the electron beam lithography 

system available in our laboratory. 

 

Fig.2.3.5. Design structure of spiral add-drop RR, R: smallest bending radius, Wc: spacing 

between two successive turns, Lstr: length of straight path length in the spiral shape.
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We designed the spiral RR by starting around an origin point and defined from it 

a (x,y) cartesian coordinate system. Our spiral shape was built up by two interleaved 

spiral branches which connect together through the straight path length and 

symmetrically through the y axis of the Cartesian system. An overview of the final spiral 

RR retained geometry is shown in Fig.2.3.5. 

In Fig.2.3.5, Lstr is the length of the straight path, R is the smallest bending curve 

and Wc is a uniform spacing between two successive turns. The value of Wc was chosen 

in order to take into account the proximity effects of the e-beam lithography system 

which can have an impact when dense patterns with closely positioned features are 

fabricated 204. From the fabrication results, we found that with Wc at 20 µm, the 

proximity effect could be avoided. Hence, Wc = 20 µm was chosen. As indicated in 

section 2.3.2, the smallest bending radius R was also fixed at 25 µm in order to minimize 

bending losses. The final design included seven half circles in each side. Lstr was fixed 

at 102 µm for the final optical path length of 5.8 mm.  

 

Fig.2.3.6. Design structure of the directional coupler. 

The coupler shape was designed to allow the flexible modification of coupling 

length/coupling gaps while maintaining the resonator total length Ltot at a given value. 

The coupler was formed by using two bended curves connected together through a 

straight path waveguide and in conjunction with the outermost straight path of the spiral. 

Each bended curve formed by two opposite bends are showed in Fig. 2.3.6(b). With this 

design structure, the coupling length Lc and also the coupling gap d were easily modified 

without impact into the spiral length (as can be seen in Fig.2.3.7). Thus, a series of RR 

with a variation of coupling gap/coupling lengths could be made.  
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Fig.2.3.7. Schematic of spiral RRs illustrate for the flexibility variation of combination of Lc/d 

(here Lc1/d1 and Lc2/d2) while maintain the spiral length.  

 

2.4. Fabrication processing of micro-ring resonators based 

on the Si technology 

In silicon photonics,  injection/collection of optical signals into the chip is enabled 

by edge couplers and Si grating 205–207. In terms of ease of fabrication, CMOS compatible 

as well as wafer-scale testability, surface grating couplers are by far the most preferred 

scheme of the coupling to integrated circuits 208,209. For that reason, in the full design of 

our RRs, the grating couplers were used to coupled light to and from optical fiber. A 

SEM image of grating coupler is shown in Fig.2.4.3d. The dimensions of grating 

couplers were designed for properly obtaining the highest optical transmission at 12.5 

dB for TM propagation at 1.55 µm wavelength. Identical gratings were placed at output 

ports to extract light from the samples. From the gratings, 800 µm tapers were used to 

guide light to the single mode strip waveguide and from strip waveguide to the output 

port, respectively. The 350 nm single mode strip waveguide was designed with a length 

of 8 mm in order to serve the sensing measurement later performed. 

Devices were fabricated by following two main steps. The first step was the 

generation of devices using a series of python codes (mask preparation), and the second 
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consisted in the sample fabrication itself that was performed at the C2N-Orsay clean 

room with the strong support of Xavier Le Roux. 

2.4.1. Description of the passive Si structures fabrication 

process 

The fabrication process flow that was used for the fabrication of the designed ring 

resonators is shown in Fig.2.4.1. 

 

Fig.2.4.1. SOI RR fabrication process applied within the C2N clean room for the fabrication 

of the silicon photonic samples: (a) Preparation of SOI wafer, (b) ZEP-520A photoresist 

deposition, (c) E- beam lithography, (d) Development, (e) Etching and (f) Cleaning step 

Beside optimizing fabrication steps to control fabrication results, the preparation 

of sample masks was first achieved. In the next section, we describe the method that was 

used to prepare them. 

Fabrication of samples started from a SOI substrate with a 220 nm silicon 

thickness and a 2 µm buried oxide. First, a positive photoresist ZEP-520A was diluted 

in anisole and deposited on top of the full 2” wafer by spin-coating at 6000 rpm in order 

to obtain a uniform thickness of ≈ 100 nm (Fig.2.4.2b). The wafer was cleaved into 

small samples with 2×2 or 2×4 cm2. Then, each sample covered with photoresist was 

heated at 170°C for 3 minutes before the E-beam lithography step (Fig.2.4.2c). After E-

Si

SiO2

ZEP-520 

photoresist

(a)

(d)

(c)(b)

(e)(f)
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beam writing of the patterns, development of the resist by using the ZED-N50 developer 

for 40 seconds and one more 30 second in mixed solution consisting of Methyl isopropyl 

ketone (MIPK) + Isopropyl alcohol (IPA) in volume ratio at 1:3 was achieved. Then 

samples were rinsed by IPA before being dried under nitrogen flow. The development 

step is illustrated in Fig.2.4.2d. Following the development step, its etching step was 

carried out by using Inductive coupled plasma etching (ICP), as shown in Fig.2.4.2e. 

The features were transferred by an Inductive Coupled Plasma (ICP) reactive ion etching 

process using Sulfur hexafluoride SF6 and Octafluorocyclobutane C4F8 gas. The ICP 

etching process was optimized, taking into account the different coils, the injected gas 

flux and etching time. The sample was then immersed in Piranha (H2SO4:H2O2 with the 

ratio 3:1 in volume) solution to remove all remaining resist traces and one last step of 

plasma O2 was applied to eliminate the remaining C4F8 thin film (Fig.2.4.2f).  

2.4.2. Mask preparation for E-beam lithography 

E-beam lithography (EBL) is one of the versatile lithographic tools that is widely 

used to create patterns at the nanoscale. The EBL working principle is relatively simple 

and very similar to photolithography: a focused beam of electrons is scanned across a 

substrate covered by an electron-sensitive material (photoresist) that changes its 

solubility properties according to the energy deposited by the electron beam. Areas 

exposed, or not exposed according to the tone of the resist, are removed by a 

development step 210. The advantage of EBL compared to photolithography is that it 

does not require masking. Through a Python scripting interface, the geometrical designs 

of the desired devices with chosen parameters were generated in the form of a .gds-II 

file. The EBL was then used with a proprietary software converter (nbPat 2.39 in our 

work) to translate the gds- II data into a machine-exposable .npf file. The .npf file 

provided pattern manipulation functions such as main-field and subfield fracturing and 

shape biasing (Fig.2.4.2). It also provided a viewer so that the fracturing results could 

be checked. It is worth noting that taking into account the variation between design and 

fabrication result, the final devices were designed with 50 nm bigger waveguide widths 

and 50 nm smaller coupling gaps in order to obtained target parameters after the final 

fabrication step. 
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There are two main types of electron beam lithography systems: the point-beam 

type and the variable-shaped beam ones 211. Our work used the Nanobeam nB4 from 

Nanobeam Limited in UK. It is the point-beam type EBL system 212. The achieved RR 

designs were prepared for being fabricated in 500 µm x 500 µm main fields consisting 

of a 2D grid of 10 µm x 10 µm size subfields. When the system started to operate, the 

beam was exposed in each subfield until completing one main-field before moving to 

another adjacent main-field. Because the pattern dimensions needed more than one 

writing field exposed, the fields were stitched together via stage movement. The 

deviation from the perfect alignment between consecutive writing subfields or main 

fields could result into stitching errors, which could consequently affect the waveguide 

roughness of fabricated waveguides or even their continuity in the worst cases. One 

possible way to reduce stitching errors (which was verified several times) consisted in 

to regenerating .npf files while ensuring that spiral RR shapes were well located in one 

main-field (Fig.2.4.2a) and waveguide patterns were located in the center of a subfield 

(Fig.2.4.2b). 

 

Fig.2.4.2.  Example of .npf file including (a) RR shape inside 500µm×500µm main-field 

consisting of (b) 10 µm x 10 µm size subfields. 

Although .npf files were modified in order to reduce fabrication roughness, during 

fabrication, another problem was also recognized (Fig.2.4.3c), resulting in an un-fully 

etching of coupling gaps. We observed in fact that the electron beam of our e-beam 

writer tended to preferentially draw first the smallest lengths or widths of the exposed 

polygons. The design of coupling regions including µm long coupling length with only 

few hundreds nm of coupling gaps, patterns were preferentially exposed initially in the 
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direction perpendicular to the propagation of light (e.g. along y in Fig.2.4.3a). If any 

defect occurred during the writing process, the beam writing could jump-up without 

exposing some small regions, a discontinuity along the coupling gap or simply by the 

appearance of defects leading to surface roughness responsible for high propagation 

losses could occur (Fig.2.4.3c). To avoid these defects, we tried to guide the beam 

writing along the propagation of light (e.g. along x in Fig.2.4.3b). To do so, a list of 

successive polygons with x size lengths smaller than the y size ones to form the coupling 

region (Fig.2.4.3b) was made. This approach was systematically applied through the 

Python scripting interface. The SEM image in Fig.2.4.3d shows a fabricated result after 

having applied this method as an example proof of the final correct result. 

 

Fig.2.4.3. (a) and (b):Assume the writing mechanisms of e-beam lithography system along the 

coupling path length, the red line describes a direction of the beam moving stage, (c) 

Fabrication error in the coupling region, (d) Successful fabrication result after applying the 

empirical method to control the beam writing.  

2.4.3. Fabrication results 

Typical fabricated devices are illustrated in Fig.2.4.4. The main designed devices 

are shown in Fig.2.4.4a, each of them having different association coupling 

lengths/coupling gaps. We finally obtained uniform waveguide devices with a 
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waveguide width measured at 365 nm. The small difference observed between 

fabrication results and targeted waveguide width can be explained by fabrication 

imperfections. The zoom-in view shows that in the coupling region and grating coupler 

area, good fabrication results were obtained, i.e. qualitatively satisfying the targeted 

requirements. 

 

Fig.2.4.3. Fabrication result of spiral SOI RR. (a) of spiral rings fabricated in the sample, (b) 

zoom-in in one device, (c) Detail of coupling region, (d) Detail of grating coupler. 

 

2.5. Optical characterization of spiral ring resonators 

To confirm all the fabrication steps described above, optical characterizations of 

the photonic chips and ring resonators were then carried out. Light was injected and 

collected using the chip grating couplers. The grating angle was optimized for TM 

polarized waveguide mode excitation at 1550 nm wavelength (Fig.2.5.2a). The 

experimental setup for optical characterization of silicon RRs is shown in Fig.2.5.1. 
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Cleaved fibers were used for light input and output coupling and the fibers were 

mounted on a precision 3-axis translation stage. All devices were tested using a 

continuous wave (CW) tunable external laser beam coupled to the input waveguide 

through the input grating coupler with a properly adjusted coupling angle and extracted 

the same way from an output grating. For initial alignment, a CCD camera was used to 

position the fiber above the grating. Our experimental setup used CT400 All-Band 

Optical Component Tester as power detector. During the experiment, the signal at the 

output of the laser was first sent to the CT400 and then to a polarization controller before 

being coupled into the device through the grating coupler. Polarization controller was 

used to set the proper polarization at the input grating coupler. The output fiber was 

connected to the CT400 setup. CT400 collected signals from both the laser output and 

the device output. The collected signals then were sent to the computer in order to 

analyze the optical transfer function. The optical transfer function was determined by 

comparing the intensity of the output signal and the one received from output fiber. The 

employed setup comprised an automatic sweep and switch feature offering a nearly 

continuous (resolution of 1 pm) laser wavelength tuning in the 1500 nm -1600 nm 

wavelength range directly controlled through a computer interface.  

 

Fig.2.5.1. Experimental setup for optical characterization of Silicon RR.



2.5. Optical characterization of spiral ring resonators 

76 

 

We first measured the coupling efficiency of gratings. To do so, we performed 

transmission measurements on a waveguide with a grating coupler at both ends. Nearly 

adiabatic tapers were used to connect grating couplers with a single mode waveguide. 

The length of the taper was chosen as 800 µm and the total distance between two grating 

couplers was 1cm. 

A typical obtained experimental result is shown in Fig.2.5.2a. 

 

Fig.2.5.2. (a) The coupling efficiency as a function of a wavelength for nominal grating 

coupler designs and (b) Typical transmission spectral of a spiral RR (coupling gap d = 400 

nm, coupling length LC = 7 µm). 

The observed bell shape in Fig.2.5.2a is the signature of the grating spectral 

response. The measured 1 dB bandwidth is approximately 30 nm. Note that the target 

FSR of RR in this work is around hundred picometers, a small range variation around 1 

nm wavelength is enough for this work, meaning that the bell shape grating spectral 

response does not raise any issue in the work carried out hereafter. The maximum fiber 

to fiber measured transmission level was estimated to -12.5 dB at 1.55 µm wavelength 

for TM propagation. Due to the long length waveguide used to connect two grating 

couplers, the waveguide loss could not be neglected in the calculation of the single 

grating coupler losses. Coupling loss for one coupler was finally estimated as around 

23 %. Although that this value is enough for our experiment, by optimizing the design, 

this coupling efficiency still could be improved. 
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A typical transmission of the add-drop RR is shown in Fig.2.5.2b. We see that at 

specific wavelength λnode, i.e. at 1.573 µm, no resonance mode is constructed inside the 

spiral RR. This is because at this wavelength, intensity input light is passing 

throughaccess waveguide in the coupling region without being transferred into the ring. 

This behavior was explained in 198,213,214 and can be seen as a consequence of the impact 

of coupling length LC (in related with coupling gap d) into the fraction of power coupled  

in the input waveguide. In case when the coupling length LC is equal to an even multiple 

of beating length Lb, based on Eq. (2.2.12a) k vanishes, hence, physically light does not 

see the ring at all. In other situations, when the coupling length LC is equal to an odd 

multiple of beating length Lb, then based on Eq. (2.2.12b), r equals 0. In this case, light 

goes into the ring in the first pass and out in the output port, there is no beam splitting 

and no possible destructive interference or resonance. To summarize, when the chosen 

coupling length LC is equal to multiple of beating length Lb at specific wavelength λnode, 

no resonance peak is constructed at λnode. As the beating length Lb also is a function of 

the coupling gap d (see 2.2.2.4), for fixed coupling length LC, the specific value of λnode 

corresponding to the spectrum node of the drop port optical transmission can be made 

varied as a function of d. 

To calculate the waveguide losses, we used the method introduced by Shijun Xiao 

in 215, which allows to quantify losses in resonators and bends without uncertain 

contributions from fiber coupling in/out or waveguide cleaved facets. 

Table 2.5.1. Losses parameters of our RR. 

LSRR 

(cm) 

λ0 

(nm) 

FSR 

(nm) 

Lc/d 

(µm) 

-10log10(γt) 

(dB) 

δλd 

(nm) 
𝑘𝑝

2 

Round 

trip losses 

(dB/round 

trip) 

Intrinsic 

losses 

(dB/cm) 

Loaded 

Q (x105) 

Instrinsic 

Qi 

(x105) 

0.57 1550 0.134 10.8/0.4 3.5 0.0089 0.27 1.37 2.4 1.72 2.7 

 

 

By using the transmission spectra at both the through and drop RR ports, we 

deduced the minimum transmission of the through port (γt) and the – 3 dB bandwidth 

(δλd) of the drop-port at the resonance wavelength λ0. The fraction of optical power 
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losses (such as bending, absorption and surface scattering due to roughness losses) per 

round-trip in the micro-resonator kp
2 was determined as 𝑘𝑝

2 = 2𝜋 × 𝛿𝜆𝑑√𝜆𝑡/𝐹𝑆𝑅, and 

the total propagation losses were calculated as -10log10(1-kp
2) dB/round-trip. After that, 

the intrinsic quality factor was obtained as Qi=(2πλo)/(FSR×κp
2). The obtained 

parameter values are summarized in Table 2.5.1.  

The zoom-in in the transmission spectrum illustrated in Fig.2.5.2b is showed in 

Fig.2.5.3.   

 

Fig.2.5.3. (a) The zoom-in in the optical transmission and (b) the Lorentzian fitting for the 

resonance peak (coupling gap d = 400 nm, coupling length Lc = 7 µm). 

 

The observed FSR from all the tested devices were found at around FSRfreq = 

16 GHz, typically ranging from 14GHz to 16GHz. We used Lorentzian fitting to 

calculate the quality factors of RR (as can be seen in Fig.2.5.3b). Measured extinction 

ratio and quality factors, obtained from Lorentzian fits, are shown in Fig.2.5.4 for a 400 

nm coupling gap. It is seen that by changing the coupling length, a micro-ring drops port 

extinction ratio varying from 7 dB to 20 dB was monitored as well as loaded quality 

factor Q ranging from 3.3×104 to 1.72×105. The highest extinction ratio and also the 

highest quality factors were obtained for the spiral ring with Lc and d equal to 7 µm and 

0.4 µm, respectively. 
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Fig.2.5.4. Variation of the micro-ring drop port extinction ratio and loaded quality factor Q 

depending on the coupling length (here for a coupling gap d = 400 nm) at 1550 nm wavelength 

(marker: experimental results and line curve: fitting curve).     

To summarize, by optimizing the combination of variation of Lc/d, we have been 

able to reach the target optical quality factor of at least 105 (see 2.2.2.c) with a ring 

resonator FSR around 16GHz, thus favorably preparing the use of integrated Si micro-

resonators in the opto-microwave loop of the opto-electronic oscillators studied in this 

manuscript. Note that in order to increase the resonator Q, a larger width strip waveguide 

at 550 nm was also fabricated by using the same methods. By doing so, we observed 

Qopt of 3.1×105 at 1550 nm wavelength. 

2.6. Conclusion 

To summarize the works presented in this chapter, photonics integration circuits 

(PIC) are discussed here. We first briefly introduce the three main key devices for the 

realization of PICs and particularly of integrated OEOs, including on-Si lasers, 

modulators, and photodetectors, briefly summarizing their properties and describing the 

current state of the art related to their integration in Si photonics. An interesting domain 

application using silicon micro-RR device as bulk index sensor detection is discussed. 
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The limitation of classical resonant optical integrated sensors and the way to solve 

this problem, i.e. by converting optical signal to the microwave domain is explained, 

which then leads to a particular focus on the thesis field, namely the integration of 

a silicon ring resonator into the loop of an optoelectronic oscillator for the 

generation of microwave signals and its application to bulk index sensing. 

In this chapter, we have covered the principle, the design, the fabrication and the 

characterization of integrated ring resonators. First, we have started with a quick 

overview of RR. After that, by optimizing the design and fabrication processes, we have 

obtained the integrated ring resonators with properties satisfying the targeted required 

of an FSR of around ~15 GHz with an optical quality factor Qopt above 105. Two sets of 

spiral ring resonators with different waveguide widths of 365 nm and 550 nm were 

fabricated and characterized. The highest loaded optical quality factor obtained have 

been 1.72×105 and 3.1×105 at1550 nm wavelength for 365 nm and 550 nm waveguide 

widths, respectively. 

The integration of these ring micro-resonators into the loop of optoelectronic 

oscillators will be presented in the next chapter. 
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3 

Investigation of OEO Configurations 

Including Silicon Ring Resonators 

This chapter aims to the integration of silicon ring resonators into OEO closed loop 

systems. We will describe here two different configurations of the OEO loop, 

comprising a laser source, an intensity modulator, a photodetector, an add-drop silicon 

ring resonator, optical and RF amplifiers and a RF coupler for closing the loop. Three 

main studies concerning the open loop, closed loop configuration, and application for 

refractive index sensing measurement will be presented and discussed in this chapter. 

Following the results discussed in Chapter 2, we will first investigate the 

integration of a millimeter-long spiral SOI ring resonator into the OEO loop. The 

insertion of a millimeter-long silicon ring resonator into an OEO loop is a possible and 

interesting path for the direct synthesis of microwave signals. However, this approach 

faces a difficult problem, mainly for controlling low propagation losses in long 

perimeter length resonators corresponding to the targeted oscillation frequency. For that 

reason, in the second part of this chapter, we will propose a new OEO configuration 

which allows to be released from the opto-geometric constraints of requiring a very long 

ring resonators, the RF oscillation frequency being no longer controlled by the FSRλ of 

the ring. Moreover, a wideband tunable oscillation signal, without any degradation in 

the signal quality for an increasing oscillation frequency, is observed based on this 

approach. The details of the proposed OEO configuration will be discussed in the second 

part of this chapter. 
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3.1. Direct insertion of a millimeter -long silicon ring 

resonator into an optoelectronic oscillator loop 

As it has been presented in chapter 2, a millimeter length silicon RRs with FSRν in 

the range of GHz and an optical quality factor higher than 105 (1.72×105 and 3.1×105 at 

1550 nm wavelength for 365 nm and 550 nm waveguide widths, respectively) have been 

successfully demonstrated. Since the required conditions for the integration of a silicon 

RR have been achieved, the insertion of this device into the opto-RF loop of OEOs can 

be performed. 

3.1.1. Study of the realized microwave photonic filter 

In a standard approach to closed looped systems, the study of the open loop 

provides valuable information about its closed loop behavior. Our approach was, 

therefore, to start with a study of the opto-microwave quadrupole obtained by opening 

the OEO loop between the output of the RF coupler and the input of the RF modulator. 

Because of the optical ring-resonator acting as a filter, this quadrupole behaves as a 

microwave bandpass filter and can be considered as a photonic microwave filter (MPF). 

And as a quadrupole it can be characterized by a vector network analyzer (VNA).  

The experimental setup, which is shown in Fig. 3.1.1, is based on the final structure 

of the final OEO setup, as shown in Fig. 3.1.3. The VNA is placed in between the RF 

coupler and the electro-optical modulator, so the obtained S21 parameter of the RF 

quadrupole includes the contribution of the loop optical part. 

The experimental setup made use of a continuous wave (CW) tunable laser 

TUNIC-T100S provided by Yenista Optics Company, for which an output power of 

4 dBm was set for the experiment. The modulator was a Mach-Zehnder intensity 

modulator (IM), MXAN-LN20 from Photline Company. It is made of Lithium-Niobate 

and presents an RF bandwidth of 20 GHz and optical insertion losses of 2.7 dB at 

1.55 µm wavelength. The 
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modulator DC half-wave voltage was set at V = 3.55 V. The photodetector (PD) 

was a XPDV2140R from U2T company with a cut-off frequency around 45 GHz and a 

responsivity of 0.6 A/W at 1.55µm wavelength. An optical EDFA pre-amplifier with 

output power at 16 dBm was also added at the output of the drop port of the silicon RR 

to boost the loop gain and reach the needed gain threshold condition for the generation 

of oscillations. An additional amplification section was made in the RF domain (see “G” 

in Fig.3.1.1), which included a set of 3 amplifiers, the ABL1800-33-3020 provided by 

Wenteq microwave Corp. with a total maximum gain of 60 dB. In the performed open 

loop characterizations, a 10 dB RF coupler, C117-10 from Narda ATM was used. The 

main coupled output was used for the oscillator loop and the attenuated output being 

used for spectrum analyzer monitoring. In this experiment, the coupled output was 

connected to the Port 2 of the network analyzer (VNA HP-8510). For any of the next 

described experimental characterizations, the best optical RR configuration was chosen, 

i.e. mainly speaking with the largest optical quality factor Qopt. 

 

Fig. 3.1.1. Schematic of the studied configuration to characterize the open loop microwave 

response of the OEO, i.e. to study the realized equivalent microwave bandpass filter MPF. PC: 

Polarization controller, IM: Intensity modulator, RR: Ring resonator, EDFA: Erbium-doped 

amplifier, PD: Photo-detector, G: RF amplifier, VNA: Vector network analyzer. 

In terms of chosen waveguide parameters, a spiral ring resonator including 550 nm 

width waveguides (coupling gap d = 400 nm and coupling length Lc = 40 µm) was 

considered, leading to a Free Spectral Range of FSRλ = 112 pm or FSRν ~ 14 GHz. For 

this device, Qopt = 3.1×105 was obtained at  = 1.55 µm but simultaneously with high 
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fiber to fiber insertion loss of 38 dB. Shifting the operating wavelength at  = 1.54 µm 

was responsible for a moderate drop of Qopt down to 2.2×105 with yet a much lower 

fiber to fiber insertion loss level of around 25 dB. Experiments were thus carried out at 

1.54 µm wavelength. 

In the experimental setup, the sample was placed on a Peltier temperature 

controller to prevent the resonator from being affected by temperature variation and the 

laboratory room environment was kept at a constant temperature. The response of MPF 

was given by the transmission coefficient S21 measured by the VNA. To do so, a 

scanning RF signal came out from port 1 of the VNA, feeding the IM and linearly 

modulating the laser carrier. The laser carrier was first locked onto the center of one of 

the RR resonance modes while RF output was collected on port 2 of the VNA. During 

the experiment, the VNA was set with a span from 2 GHz to 19 GHz, an output power 

of 10 dBm and with 801 measurement points, which was the maximum value for the 

available VNA, a HP8510. 

 

Fig.3.1.2. S21 transmission coefficient’s magnitude deduced from the integration of Silicon 

spiral RR. 

From the collected data, we managed to calculate both the open loop gain and 

phase. However, due to large scan bandwidth (2-19 GHz) and the limited number of 

testing points (801), the sweep step was 12.5 MHz, i.e. not enough to precisely 
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determine the phase change of the S21 transmission coefficient. Fig. 3.1.2 shows the S21 

coefficient’s magnitude deduced from the experimental data. 

As it can be seen in Fig.3.1.2, the frequency response of the MPF was observed 

around 14.12 GHz, in good agreement with the optical FSRν of the resonator. Moreover, 

the S21 maximum transmission peak was obtained at 0.5 dB, meaning that its overall 

gain was larger than the loss, thus satisfying the gain condition of the loop.  

From Fig. 3.1.2, we deduced a quality factor of the equivalent MPF microwave 

filter, QRF  16. Since the optical quality factor of the RR is 2.2×105 at 1540 nm 

wavelength (194 THz), a direct application of the frequency scaling ratio between the 

optical and RF quality factors, namely QRF = (fRF/fopt)Qopt (Eq. (2.2.7) in chapter 2) 

leads to QRF  16. The good consistency, resulting from an indirect calculation of QRF 

from the optical quality factor and its direct measurement in the open loop, thus provided 

a validation of the experimental measurements.  

To conclude this part, the open loop configuration of OEO based on silicon spiral 

RR was studied, showing a sufficient gain higher than the loss. The study of OEO based 

on such silicon spiral RR in closed loop configurations is described in the next step.  

3.1.2. Opto-electronic oscillator based on a millimeter-long 

silicon ring resonator 

In the study of the closed OEO configuration, the VNA was removed and we came 

back to the standard OEO full closed-loop configuration. The related experimental setup 

schematic is displayed in Fig.3.1.3. Every condition was maintained as in the open loop 

characterization step. An Agilent PSA-E4446A electrical spectrum analyzer (ESA) was 

used to analyze the output RF signals.  
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Fig. 3.1.3. Experimental setup schematic of the OEO based on a silicon spiral RR. 

 

3.1.2a. Oscillation signal properties. 

A typical generated signal is shown in Fig.3.1.4, with a span of 12 MHz and a 

frequency resolution bandwidth of 2.7 kHz. An oscillation frequency of 14.1198 GHz 

was reported in the performed single shot acquisition mode of the RF spectrum analyzer, 

thus in good agreement with the open loop results presented in section 3.1.1. 

 

Fig.3.1.4. Spectrum of the signal generated by the OEO based on spiral Silicon RR.
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Simultaneously, we also observe the presence of two other peaks with a mode 

spacing of 4 MHz in the collected electrical spectrum and a mode suppression of around 

28 dB was obtained for the next dominant mode. We questioned the origin of these 

peaks and it appeared to us that, in fact the OEO, as it was built, does not correspond 

exactly to a complete integration scheme. At this stage of the progress, the RR was 

inserted into the loop, but different remaining sections of optical fiber were used to 

connect the various elements of the optical part of the system (3 m and 1 m fiber sections 

in the modulator and photodetector, respectively). In addition, an EDFA was present in 

the optical path and optical fiber inside the PC and fiber used to connect each building 

block. Therefore, a total fiber length remains inside the system of approximately a few 

tens of meters. 

Under the closed-loop condition, light propagates through the whole loop but the 

presence of an optical fiber of a few tens of meters, in addition to the ring resonator, 

actually changes somewhat the nature of the loop. In the presence of a fiber, a pure delay 

is introduced, and the resonator's filter transfer function is therefore combined with the 

delay found in a conventional optical fiber OEO. Globally speaking, the oscillator, as a 

whole, cannot be classified entirely neither as a filtering oscillator nor as a pure delay 

oscillator but presents a kind of hybrid character. Moreover, the conventional OEO has 

a fundamentally multi-mode behavior, with mode spacing described by Eq. 1.2.7 (see 

chapter 1). As a result, where one would expect a single-frequency oscillation, 

additional frequency lines are present. The consistency of this hypothesis could be tested 

by evaluating the length of optical fiber that is deduced from the relationship 

LFiber = c/(n.FSRosc), where c is the velocity of light in vacuum and n is effective 

refractive index of optical fiber. Doing so leads to an optical fiber length of around 52 m, 

i.e. in close consistency with the fiber length developed in the setup as illustrated above. 

This multimode frequency behavior is not disturbing as it is well identified and would 

be removed in case of a fully integrated version of an OEO. 

We checked the properties of the loop by opening and closing it a large number of 

times in order to check the repeatability of the birth of RF oscillations. These verification 

tests were successful. In addition, all the acquired spectra gave rise to oscillation lines 

close to 14.12 GHz, but without strictly overlapping each other. A fluctuation of the 
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central oscillation line of a few tens of kHz was indeed observed. In order to evaluate 

the fluctuations of the RF oscillation spectral line, we measured the OEO spectrum by 

keeping the analyzer trace in Max-Hold mode to record the accumulation of the moving 

stage of the oscillation signals. The result is shown in Fig.3.1.5a for a measuring time 

of around a few minutes. Under these conditions, a flat signal spectrum with a bandwidth 

of 34.4 kHz was observed at the center frequency around 14.1198 GHz. This curve can 

actually be considered as the envelope of contributions such as those in Fig.3.1.4, made 

at different times between the RF center oscillation frequency of which being shifted by 

a few kHz. These shapes come from the analyzer resolution bandwidth and from both 

amplitude and phase noises. Different noise sources mainly come from the laser 

frequency noise and the RF amplifiers noise. In particular, the laser frequency noise can 

be converted into amplitude noise inside the resonator and constitutes a source of noise 

for the complete OEO loop 216–219. Indeed, the oscillation signal is created with the 

frequency equal to the distance between the carrier, which is locked onto one resonance 

mode, and the two modulation sidebands matching with an adjacent resonance of this 

mode. If the laser wavelength suffers small fluctuations, the distance between the carrier 

and the modulation sideband can slightly change, which consequently affects the 

variations of the generated RF frequency. In a previous work 94, authors have shown 

fluctuations in the oscillation frequency of approximately 1 MHz. 

 

Fig. 3.1.5. (a) RF spectrum of the signal generated by the OEO acquired in the Max-Hold mode 

of the RF spectral analyser. (b) Phase noise measurement of the generated oscillation frequency 

collected several times. 
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Finally, the phase noise measurement was performed by using the automatic setup 

of the E4446A RF analyzer, working in the "Phase Noise" mode to evaluate the stability 

and the quality of the generated signal. The analyzer phase noise floor of the analyzer 

was - 145 dBm. The experiment was repeated several times and the results were 

overlaid. The related results are shown in Fig.3.1.5b for several detected signals. 

In this operating mode, the RF analyzer performs a real-time calculation of the 

phase noise through the autocorrelation of the phase to get the spectral power density at 

an offset frequency away from carrier referenced (oscillation frequency) 18. For the 

complete process, the oscillating frequency has been observed at the beginning of this 

process. The measurement process being conducted for one range of offset frequency 

after another, it takes some time during which the oscillation frequency can fluctuate as 

it can be seen in Fig.3.1.5a, thus flawing the phase measurement. One example can be 

seen in Fig.3.1.5b. The curves are rather flat, low and not really reproducible with a 

level of ~ – 50 dBc/Hz at offset frequency lower than 35 kHz from the carrier, in 

agreement with the Max-Hold mode accumulation of RF spectra shown in Fig.3.1.5a. 

This curve is related to the fluctuations of the oscillation signal, as indicated in the 

previous observation but also with the measurement method. 

Beyond ~ 35 kHz offset frequency from the RF carrier, the fluctuations of the 

spectral line are less important, and the signal becomes more stable which is indicated 

by a good overlap between all the generated signals. The phase noise level dramatically 

decreases to recover a slope of   ̵20 dB/decade or the 1/f2 behavior resulting from white 

noise in the oscillator as introduced by Leeson in 16, and this part of the curve is 

reproducible. Accordingly, we obtained a phase noise of ̵ 100 dBc/Hz at 100 kHz offset 

frequency from the carrier. In a recent study dedicated to the integration of OEO in Si 

photonics 96, a rather similar plateau phase noise behavior was observed at – 80 dBc/Hz 

between 1 kHz and 100 kHz offset from the carrier while an oscillation frequency 

around 7 GHz was reported. An improvement in noise behavior near the carrier would 

require specific treatment of all elements of the looped system chain. In addition, we 

obtained other peaks at 4 MHz and 8MHz in the phase noise spectrum, which correspond 

to the distance between the oscillation signal and its adjacent 1st and 2nd modes (see 

Fig.3.1.4).  
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The noise performance of the generated signal may be further lowered through 

several improvements: 

1) The low quality (QRF) of the equivalent microwave photonic filter MPF which 

is directly linked with the optical quality factor Qopt of the resonator. Previous 

research in fiber ring resonator based OEO has indicated that the OEO noise is 

inversely proportional to the optical quality factor Qopt of the resonator and can 

be expressed as 5:  

𝐿(𝑓𝑚) = 20. 𝑙𝑜𝑔
𝑓𝑜𝑝𝑡

2√2𝑄𝑜𝑝𝑡.𝑓𝑚
+ 10𝑙𝑜𝑔 (𝑁𝐶𝑅)            (3.1.1) 

where fm is the noise modulation frequency (offset frequency) and NCR is the 

optical noise to carrier ratio. One can clearly see that increasing Qopt could 

contribute to make the loop noise decrease. 

2) The fluctuations of the supply current applied to the EDFA 220. The pump 

current variation can lead to a change of the overall loop gain, which can lead 

to power fluctuations and increase the phase noise of the generated microwave 

signal. 

3) RF noise sources are inherently present in the loop due to the presence of the 

components inside the loop such as the photodetector and the RF amplifiers. 

Previous investigations have thoroughly estimated the contributions of these 

elements 221 and a lot of optimization work would have to be done in this spirit 

and with these tools in order to fully integrate an ultra-low phase noise (e.g., 

<< -120 dBc/Hz at 1MHz) OEO on a silicon chip. 

3.1.2b. Impact of the light source on the oscillation signal quality. 

As mentioned above, the stability of the laser source is one of the important factors 

responsible for the performances of the generated signal by the whole opto-RF loop. 

Our study was therefore further extended here in this direction.  

Following the previously carried out experiments achieved with the tunable laser 

TUNIC-T100S, new tests were carried out with a telecom qualified distributed feedback 

diode (DFB) laser which was known to provide better stability source in comparison 
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with a commercial tunable laser. The available laser was the DFB-1905 LMI (from 

Alcatel), operated at around 1.54 µm wavelength. Two feeding currents were applied 

one to the laser diode and the other one to a Peltier cooler embedded inside the laser 

module, for a fine tuning of the source wavelength. By doing so, matching the laser 

wavelength with one of the resonance peaks of the RR was easily achieved. Once the 

laser wavelength was well stabilized on the center of the resonance peak, the applied 

currents to the laser and Peltier module were kept unchanged. By closing the loop, 

oscillations were generated as previously, and phase noise characteristics were 

monitored. Fig.3.1.6 represents the phase noise spectral measurement of the OEO with 

the two different laser light sources, the tunable (red color) and DFB (blue color) ones, 

respectively. 

 

Fig.3.1.6. Phase noise spectral of OEO based on silicon RR for the two different lasers. 

 

It is obvious to see from Fig.3.1.6 that in both cases, the phase noise curves follow 

a 1/f2 slope behavior for large offset frequency from the carrier. However, the use of a 

more efficient laser leads to a very significant improvement in noise in the 1 ̵ ~40 kHz 

spectral range relative to the carrier. i.e. in case of using the DFB laser. The observed 

flat region in each phase noise spectrum (which as described above, is related with the 

fluctuation of the created signal) is moved down to 1 kHz. This value is much smaller 
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than what has been obtained with the tunable laser. Significantly, 40 dB of noise level 

reduction at 1 kHz offset frequency was observed when the DFB laser was used, thus 

resulting in a slope of 1/f of noise behavior for the offset frequency between 1 and 

100 kHz 16. This result is a confirmation that the laser plays an important role in the 

noise performances of the realized OEOs. The phase condition to obtain the oscillations 

is based on the phase shift in the microwave domain, which is depending on the phase 

shit created in the optical domain by the resonator, a noteworthy highly dispersive 

element. Given the role of dispersion in enhancing laser frequency noise, the use of a 

very frequency-stable laser is probably a prerequisite for further improvement in the 

quality of the generated signal in the future. 

To conclude this part, we have investigated the insertion of silicon spiral ring 

resonators into the opto-RF loop of OEOs. The gathered experimental results report a 

good agreement between the optical FSRλ of ring resonators, open loop gain 

measurements and closed-loop oscillation frequencies of around 14 GHz. 

Overall, the performed implementation demonstrates that the direct integration of 

a mm-long spiral shape silicon ring resonator is a reliable approach for the realization 

of integrated on-chip OEOs and thus can open up a new range of applications of this 

loop. The experimental studies carried out have highlighted the important influence of 

all noise sources in the loop for getting low noise signals. The roles of the laser and 

amplifiers (optical and RF) are probably the most important ones. In the current state of 

the components that have been assembled for the oscillation of the loop, and after 

inserting a millimeter ring resonator into it, a phase noise of the order of - 100 dBc/Hz 

has been measured at 100 kHz of the carrier based on the quality factor resonators of the 

order of 2.105. At the same time, a very significant improvement in noise in the 1 to 40 

kHz offset band relative to the carrier was achieved by using a DFB telecom laser.  

In terms of performance, the investigated route also gives room to another progress 

direction. The experimental results we report are based on ring resonator with a quality 

factor of about 105. SOI ring resonators with higher quality factors of up to 1.7×106 have 

already been demonstrated 222. Such a quality factor would almost yield an eight-fold 

performance improvement compared to our realization, which would reduce the 
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bandwidth of the equivalent microwave filter and lower the phase noise of the 

OEO. Moreover, the perspective of the full OEO system integration on a single chip 

could help to further scale down the loop phase noise properties.  

In the next section, we present the application of the realized OEO loop for bulk 

index sensing, consistently with the thesis objectives presented in part 2.1.2 of 

chapter 2.  

 

3.1.3. Refractive index measurement based on mm-long Si 

RR integrated into an OEO loop 

The main objectives of this part have been presented in part 2.1.2 of chapter 2. To 

summarize quickly and starting now from a working optoelectronic oscillator RF loop 

well and truly oscillating, the challenge here is to evaluate how the generated RF 

frequency is sensitive to the refractive index of the layer present on top of the resonator.  

Silicon RR with 350 nm strip waveguides were considered to provide a better 

sensitivity if compared with the 550 nm strip ones (see part 2.3.1). The optical 

characterization of the device has been discussed in part 2.5 of chapter 2, with 

FSRλ = 134 pm or FSRν ~ 16 GHz.  

 

Fig.3.1.7. (a) Spiral RR with the opened window for sensing detection, (b) Capture picture 

showing the set of available refractive index liquids, and (c) List of used refractive index 

liquids. 
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In order to prepare the samples for sensing measurements centered on the silicon 

ring resonator of the OEO, the 2 µm height PMMA top cladding layer was opened in 

order to create a window along the area of the spiral RRs. To do so, a .gdsII file 

containing area to expose was first prepared through a Python script interface. After that, 

this file was transferred to the Raith 150 system 223, which consisted mainly of a 

scanning electron microscope (SEM) integrated with hardware for doing lithographic 

electron beam exposures. For the exposure step, the sample was first loaded into SEM, 

and here all operations such as focusing, adjusting and alignment were done. The 

working distance was set at 5.5 mm. The computer then run the Raith 150 software to 

start the exposure, with an exposure voltage set to 20 kV. The total exposure time was 

36 minutes. After the lithography step, the development process was conducted by using 

a mixed solution composed of Isopropyl alcohol (IPA) + water in volume ratio at 3:1 

for 6 minutes 224. In the last step, the sample was cleaned by plasma O2 to eliminate the 

remaining organic solution. The fabrication result is illustrated in Fig. 3.7a. In order to 

properly localize the liquid interaction of index/structure in a dedicated volume, the 

sensing window was fabricated by keeping two specific regions (the coupling ones) in 

an area of 170 х 40 µm while removing all the covered cladding cover on the rest of the 

ring (as it can be seen in Fig. 3.7a). 

To investigate the refractive index sensing of the OEO based on silicon RR, a list 

of refractive index liquids provided by Cargille Labs 225 matching the values of 1.516, 

1.572, 1.63 and 1.688 were used (Fig.3.1.7c). Experimentally, a little amount of 

refractive index liquid was dropped on top of the sample to fulfil the opened window 

(Fig.3.1.7b). Two successive experiments were separated by a cleaning process step 

using isopropanol, then a new liquid was drop cast afterwards, the overall process was 

repeated several times. 

In the particular studied configuration, the full RR was not fully covered by the 

liquid index since the coupling regions of 170 µm length were still protected by the 

PMMA top layer (Fig.3.1.7a), this length being yet much smaller than the total 5.8 mm 

perimeter length of the whole structure. With this strategy, we sought to measure the 

frequency variations induced by the FSR variation of the ring due to surface index 

perturbation. Detecting this index variation from the RF frequency changes, we have 
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been able to estimate the index sensing property of the loop based on the mm-long spiral 

RR. 

Keeping the same condition as in the previous step, the oscillation signal was 

indeed observed for the closed OEO loop. After a new cleaning and liquid drop cast, the 

loop newly oscillated, and we could observe an RF frequency change. Unfortunately, 

quantitative measurements by this approach were spoiled by the mode hopping effect 

during the experiments. The occurring of the mode hopping comes from the fact that 

spurious oscillation peaks are presented under the oscillation condition of the loop (as 

explained in 3.1.2). The loop then may lock each time on a slightly different mode 

coming from fiber section. It was therefore not possible to attribute for sure the 

frequency shift to the effect of the new index. 

This problem was circumvented by using another measurement technique based 

on the open loop configuration of the OEO. Indeed, open loop measurements being not 

affected by mode hopping, it was possible to retrieved index variations. This approach 

allowed somewhat to test the OEO loop in its final configuration after integration of all 

its elements and thus without any optical fiber section.  

 

Fig. 3.1.8. (a) Plot of the normalization of S21 when differences cladding index values are used 

and (b) S21 center frequency changed as a function of the refractive index unit. 

 

The experimental setup is the same as the one described in Fig.3.1.1 of this chapter. 

It allowed us to export the S21 transmission coefficient of the open loop and to follow 
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its evolution as a function of the cladding liquid index. This approach was therefore 

applied here by proceeding successively for the different index liquids indicated above. 

Fig.3.1.8a reports the obtained S21 evolution as a function of the bulk top cladding 

refractive index, while Fig.3.1.8b reports the deduced change of the MPF frequency 

response peak as a function of the liquid refractive index. In the refractive index range 

explored (1.516-1.688), a quasi-linear evolution of the central frequency of the MPF 

filter was observed from 16.25 GHz to 16.88 GHz. Calculating the curve slope, a 

sensitivity S of around 3.72 GHz/RIU was obtained. This encouraging result shows the 

potential of the complete structure for index detection. As it was introduced in section 

2.1.2 of chapter 2, the sensor limit of detection (LOD) is defined by the ratio between 

the sensor resolution R and the sensor sensitivity S (LOD = R/S). R depends on the 

spectral resolution and system noise factor of the methodology for measuring the 

spectral shift in response to a sample. In the studied OEO, as illustrated in 3.1.2a and b, 

the generated signal could be observed with a quite stable phase noise at around 40 kHz 

offset frequency from the carrier, meaning that it is possible to distinguish two different 

signals with 40 kHz difference in frequency or in other terms the measurement 

resolution R of the system can be estimated at 40 kHz. From these simple orders of 

magnitude, a minimum refractive index variation around LOD ≈ 10- 5 can be inferred.  

To conclude, the OEO loop configuration studied in this section, i.e. including a 

millimeter-long ring resonator, proves to be an attractive approach for the bulk detection 

of index variation. But in case of other applications (for example radars, wireless 

communications, optical signal processing, electronic warfare system, and modern 

instrumentation), it could be also interesting to be able to tune the oscillation frequency 

220,226. The approach developed in the following section essentially pursues this 

objective. 
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3.2. Wideband tunable microwave signal generation based 

on silicon photonic resonator 

We propose here a new configuration of the OEO system that allows to create a 

wideband tunable oscillation signal without any degradation in the signal properties 

when the oscillation frequency increases. This chapter starts with the explanation of the 

working principle of the proposed approach. The tunability will be confirmed thereafter 

with the aim to develop sensing applications. We will then explore the proposed option 

through the study of refractive index variation detection. 

3.2.1. Principle of operation 

In the previous structure, the microwave signal was generated by the beating of the 

optical carrier and of a sideline of an intensity modulated optical signal, both being 

selected by the optical transfer function of an add-drop resonator. That is possible under 

the condition that the RR FSR must precisely match the frequency difference between 

the carrier and sideline frequencies (FSRν in range of few ten of GHz or FSRλ in range 

of hundreds of pm). In order to avoid the very low FSRλ value required, another possible 

solution is to limit the use of the ring resonator to select only one lateral line of the signal 

from the intensity modulator. The optical carrier can, in fact, be brought directly to the 

input of the photodetector. By this way, the beating between the optical frequencies 

necessary for the synthesis of an RF signal can be created. The basic schematic and 

principle of operation of the proposed OEO are depicted in Fig.3.2.1. 

In the proposed tunable OEO configuration, shown in Fig.3.2.1, the optical signal 

coming from the laser light source (frequency f0) is separated into two arms. One is 

connected directly to the photodetector (PD), while the other feeds an intensity 

modulator (IM) followed by a silicon ring resonator (RR) in an add-drop configuration. 

In this scheme, the input signal of the PD always comprises a part of the un-modulated 

laser light beam. At the initial stage, the modulator output signal grows, just seeded by 

white noise existing inside the loop. If one modulation output signal can go through the 

optical transfer function of the resonator at frequency fR, this signal can then be 
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combined with the optical carrier (f0) at either its left or right sides to generate a 

beating signal at frequency fb at the input of the PD. If the distance between the optical 

carrier (f0) and the signal at fR falls within the working range of the loop, the generated 

beating signal can be converted as a RF frequency fRF (fRF = fb = |f0 - fR|) at the output of 

the PD. At the second round-trip of the loop, the generated RF signal is sent back to the 

modulator. At this stage, only one single sideband 

modulation signal can match the RR resonance peak at frequency fR (see 

Fig.3.2.1b). The RR now serves as an optical bandpass filter, selecting only one 

sideband lobe of the modulated signal. The signal goes to the PD at the second-round 

trip of the loop, creating again an RF signal with frequency fRF. After this point, the loop 

oscillates with an oscillation frequency at fRF. 

 

Fig. 3.2.1.  (a) Basic schematic and (b) Principle of operation of the proposed tunable OEO. In 

(a), IM: Intensity modulator, RR: Ring resonator and PD: Photodetector. In (b), the red curve 

corresponds to the optical carrier (or laser source frequency); the orange curve illustrates the 

sideband lobes of the modulated signal, the blue curve indicates the optical transfer function of 

the RR and the green one represents the generated RF frequency fRF. 
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The main idea behind this approach is to control the frequency of the microwave 

signal by the wavelength spacing between the laser source and the resonance of the 

resonator. Since this spacing can be changed either by sweeping the wavelength of the 

laser or by shifting the resonance peak of the RR, this approach yields a simple tunability 

mechanism. An important advantage of the proposed solution is also to be able to free 

itself from the opto-geometric constraints of making a very long ring resonator, the RF 

frequency no longer being controlled by the FSR of the ring. The rings used in this last 

approach are described in the following section. 

3.2.2. Silicon ring resonator design and fabrication 

In the studied OEO configuration, the oscillation frequency can be generated by 

positioning the laser wavelength at either left or right side of the resonance peak. If the 

distance between laser wavelength and these peaks are in the working range of the loop, 

it is possible to create two oscillation frequencies. This happens when the FSR of the 

RR is equal or smaller than twice the maximum working frequency of the loop (19 GHz 

in our case). To simplify the following experiment, the design of the RR has been made 

in order to allow only one oscillation signal to be generated under the working condition 

of the loop. To do so, the FSR of the resonator has been chosen with a value much higher 

than the maximum frequency supported by the loop. 

 

Fig.3.2.2. (a) Scanning electron microscope image of the fabricated silicon RR, (b) Grating 

coupler and (c) Bending curve. 

 

The fabrication of the add-drop RR started with a 220 nm thick Si thin film on top 

of a 3 µm buried oxide layer. A 450 nm wide strip waveguides designed to operate in a 
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transverse-magnetic (TM) polarization at 1.54 µm has been made for the purpose of 

sensing application. The resonator length L was chosen at 1 mm. Accordingly, the FSRλ 

(defined by Eq. (2.2.4b) was calculated at 77 GHz (ng = 3.9 at 1.54 µm wavelength). In 

the RR design, an adiabatic bend was introduced (Fig.3.2.2c) in order to reduce the 

losses coming from the mode mismatch at the transition between the straight waveguide 

and the circular bend. The detail of the design construction of an adiabatic bend can be 

found in 203. Light was injected and extracted again from the chip using a surface grating 

coupler. Fig.3.2.2b shows the detail of the used grating coupler, the design of which was 

made with some modifications in grating parameters (duty cycle, grating width and 

grating period) compared with the previous gratings used in chapter 2 and in part 3.1 of 

this chapter in order to increase the transmission level and also to reduce the grating 

section footprint.  

 

Fig.3.2.3. Experimental optical transmission of the silicon RR (coupling gap: 300 nm, coupling 

length: 4.5 µm). 

 

The grating coupler was optimized for TM mode propagation and the fiber to fiber 

optical transmission was estimated to - 10.5 dB at 1540 nm wavelength. We used the 

same method explained in chapter 2 to design the add-drop RR. Several devices with 

different combinations of coupling-lengths / coupling-gaps were designed to search for 

the highest possible optical quality factors. The RRs were fabricated by using the same 
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processes as the ones described in section 2.4. A typical transmission spectrum 

measured at both the through and drop ports of the RR with a 300 nm coupling gap and 

a 4.5 µm coupling length is shown in Fig.3.2.3. An FSRλ of 640 pm, corresponding to 

FSRν ≈ 77 GHz, was obtained, while the RR quality factor Qopt estimated to around 

8.1×104. The implementation of this device into the proposed tunable OEO 

configuration is presented in the next section.  

3.2.3. Generation of an oscillation signal 

As in the case of the spiral RR classical OEO, we evaluated the implementation of 

the new RR into the proposed modified OEO both in open and closed loop 

configurations, respectively. 

3.2.3a. Proposed OEO in open loop configuration 

A methodology very similar to the one presented above was applied to the new 

studied configuration. The considered experimental setup is shown in Fig.3.2.4. The 

frequency response was characterized by using again the vector network analyzer 

(VNA-HP8510), that was placed between the RF coupler and the electro-optical 

modulator.  

 

Fig.3.2.4. Experimental setup of the proposed tunable OEO in open loop configuration. OSA: 

Optical spectrum analyzer. PC: Polarization controller, IM: Intensity modulator, RR: Ring 
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resonator, EDFA: Erbium doped amplifier, PD: Photodetector, G: RF amplifiers, VNA: Vector 

network analyzer, OSA: Optical spectrum analyzer.  

We used a 90/10 optical splitter to separate the intensity of the light source coming 

from the CW tunable laser, in which 90 % of the optical power was sent to the Erbium 

doped amplifier (EDFA) followed by the IM, the RR and a second EDFA. After that, a 

50/50 optical combiner was used to collect the signal from the output of the second 

EDFA and the 10% optical power source signal, respectively, as shown in Fig.3.2.4. In 

the experimental setup, a polarization controller (PC) was used in the upper arm of the 

splitter in order to properly control the polarization matching between the laser source 

and the signal going out from the second EDFA. At the output of the 50/50 optical 

combiner, a second coupler (also 50/50) was placed, one arm of which being connected 

to an optical spectrum analyzer (OSA) in order to observe the laser or resonance 

wavelength, and the other arm being connected to PD. The final setup also included as 

in the previous system the series of RF amplifiers with a total maximum gain of 60 dB, 

the 10 dB RF coupler and the VNA. 

 

Fig. 3.2.5.  (a) S21 transmission coefficient’s magnitude of the beating frequency between laser 

and resonance wavelength, (b) S21 transmission coefficient’s phase focus around highest 

magnitude value.  

 

The applied frequency from the VNA was swept between 5 GHz and 12 GHz with 

the maximum available of 801 measurement points. During the experiment, the 
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resonance frequency of the RR fR was first measured by an OSA. Then, the laser 

wavelength f0 was been tuned close to this resonance peak, the beating frequency 

between them was therefore allowed. The S21 transmission coefficient magnitude and 

phase monitored for the response of this beating in the microwave domain are shown in 

Fig. 3.2.5. The maximum gain was obtained at 5.625 GHz frequency. Simultaneously, 

S21 transmission coefficient phase also crosses 0 at 5.625 GHz frequency. In view of 

these two conditions, the generation of oscillations at this frequency could, therefore, be 

anticipated. Subsequently, we closed the loop, the VNA was replaced by an electronic 

spectrum analyzer, 90% of electrical power from the output of RF coupler being sent 

directly to the modulator the remaining 10% being sent to the ESA. All the other 

experimental conditions were kept unchanged. 

3.2.3b. Proposed OEO in closed loop configuration. 

After closing the loop, we noted the presence of oscillations in different 

configurations, and this, in a reproducible way. Fig.3.2.6 illustrates a typically obtained 

electrical spectrum of a generated microwave signal corresponding to the open loop 

configuration results reported in the previous section. As visible, an oscillation 

frequency at 5.625 GHz was achieved, the ESA being configured with a frequency span 

of 6.5 GHz and a resolution bandwidth of 200 kHz. Thanks to the wide span, a higher-

order harmonic at 11.2 GHz is also observed (harmonic 2), which is caused by non-

linearities in the OEO loop 14,96. The zoomed-in view of the 5.625 GHz signal, within a 

frequency span of 12 MHz with a resolution bandwidth of 2.2 kHz, is shown in 

Fig. 3.2.6b. Spurious oscillation peaks coming from the impact of the fiber sections used 

inside the loop are observed (  3.7 MHz), in similarity with the results obtained for 

the fixed frequency OEO configuration based on the spiral silicon RR (see 3.1.2).  
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Fig. 3.2.6.  (a) Oscillation spectrum of the generated signal based on our proposed approach, 

(b) zoom-in view and (c) Phase noise characteristic of the created signal. 

 

Figure 3.2.6c shows the phase noise of the generated signal. As in the case of OEO 

based on spiral RR, a flat level around - 45 dBc/Hz was obtained for the phase noise 

spectrum. However, in this case, the flat region extended up to 100 kHz, which may be 

induced by the use of the second EDFA that probably resulted in broadening the optical 

signal and finally increasing the fluctuation range of the generated signal. A noise level 

of - 115 dBc/Hz at 1 MHz offset frequency from the carrier was obtained. Moreover, 

the other oscillation modes could also be seen in the phase noise spectrum at 4 and 

8 MHz from the carrier, as in the case of the OEO based on a long spiral RR. 

3.2.4. Tunable oscillation signal 

After characterizing the OEO in both the open loop and closed loop configurations, 

we move to the main key advantage resulting from the new structure: the possibility to 

tune the oscillation frequency in a wide range. In order to demonstrate the wide 

tunability of the proposed approach, we swept the laser wavelength while keeping the 

resonance peak unchanged. To do so, the RR sample was placed on a Peltier module to 

keep a constant temperature, thereby preventing resonant wavelength shifts produced 
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by temperature changes. The RR resonance wavelength at 1541.25 nm was first 

observed from the OSA. Then, the laser wavelength was scanned between 1540.10 nm 

and 1540.20 nm.  

 

Fig.3.2.7. (a) Oscillation frequency generated with different laser wavelengths and (b) Plot of 

the oscillation frequency depending on the beating frequency, i.e.  fb = |f0 - fR|. 

 

Figure 3.2.7 plots the fundamental tone of the oscillation spectrum obtained by 

changing the laser wavelength. These experimental results demonstrate a very wide 

frequency tunability for a Si-based OEO, ranging from 5.9 GHz to 18.2 GHz. Note that 

the tuning range is only limited here by the bandwidth of the microwave amplifier used 

inside the loop.  

From the corresponding frequency of the laser and resonance wavelength, we 

calculated the beating frequency, i.e. fb = |f0 - fR|. The evolution of the oscillation signal 

(fosc) as a function of the beating frequency is shown in Fig.5b. The oscillation frequency 

clearly follows the beating frequency, showing a nearly perfect linear evolution with the 

modification of the laser frequency separation from the RR resonance frequency 

(regression coefficient ≈ 0.9997). Note that in this case the laser frequency is placed in 

right side of the resonance peak, which explains why the oscillation signal frequency 

increases with the decreasing laser frequency. 
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Fig.3.2.8. (a) Phase noise characteristic for differences generated signals and (b) Observed 

phase noise level at 1 MHz offset frequency from carrier. 

 

To evaluate the performance of the modified tunable OEO, its phase noise 

characteristics were measured for all the generated signals. The related results are shown 

in Fig.3.2.8. Remarkably, no degradation of the phase noise is observed for increasing 

oscillation frequencies. Fig.3.2.8b represents the deduced noise level at 1 MHz offset 

frequency from the carrier for all the curves illustrated in Fig.3.2.8a. It is clear that the 

phase noise of the generated microwave signals is maintained around -110 dBc/Hz at 

the offset frequency of 1 MHz, which verifies the key advantage of an OEO to have a 

constant phase noise with an increasing oscillation frequency 134.  

3.2.5. Application to index sensing 

Since the proposed OEO configuration had an oscillation frequency dependent on the 

refractive index environment of the RR waveguides, we have tested its characteristics 

for application in measuring optical index variations 97,227. In this operating mode, the 

laser frequency is kept (ideally) fixed and the drift of the resonator resonance under the 

effect of a top cladding material index modification is detected. 

We have chosen a simple way to implement this index change by changing the 

sample temperature, and thus indirectly the local temperature of the ring resonator. 

Given the difficulty in accurately measuring this local temperature, we did not attempt 



3.2.5. Application to index sensing 

107 

 

to estimate its precise value. The study of the transmission spectrum of the RR 

using an add-drop configuration allowing to detect a shift induced by thermal effect, we 

focused on the estimation of the index variation that could be deduced from the 

modification of the optical spectrum 97. During the experiment, the optical 

characterization of the RR and the electrical characterization of the loop based on the 

RR were simultaneously collected. The experimental setup shows in Fig.3.2.9. 

 

Fig.3.2.9. A proof of concept experiment setup dedicated to refractive sensing based on a 

proposed OEO. 

The temperature of the RR was changed by tuning the current injected into a Peltier 

module placed under the sample. In order to reach a sustain local-temperature of the RR, 

the measurement was started 5 min after each switching temperature point in the 

Peltier (in the range from 25℃ to 30℃). The RR was first characterized in the optical 

domain by using tunable external laser (TUNIC-T100S). Right after the optical 

characterization, the closed loop OEO including the RR was measured. In the carried-

out closed-loop experiment, a distributed feedback (DFB) diode laser (model 1905 LMI) 

operated at around 1.54 µm wavelength was used in order to provide the most stable 
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light source as possible (see 3.1.2). The plot of the collected signals is shown in 

Fig.3.2.9. At first 



3.2.5. Application to index sensing 

109 

 

glance, a fairly strong RF frequency change can be observed from 11 GHz to 

18.5 GHz. 

 

Fig.3.2.10. (a) Optical transmission and (b) Electrical spectrum depending on temperature. 

 

A resonant wavelength shifted toward longer wavelengths with increasing 

temperature is seen, which is in agreement with the preceding theoretical and 

experimental analysis for SOI ring resonators 97,228. Meanwhile, the generated oscillation 

signal frequency increases. With the objective of estimating the frequency detection 

sensitivity by RIU (e.g. in Hz-or-GHz/RIU), we first estimated the variation of the 

optical index from the collected optical spectra. This was done through the relationship 

between an RR resonance wavelength () and the effective index (neff) are described by 

Eq. (2.2.1) (see section 2.2.2 of chapter 2) and can be rewritten as below: 𝜆𝑟𝑒𝑠 =

 
𝑛𝑒𝑓𝑓.𝐿𝑡𝑜𝑡

𝑚
, where Ltot is the optical path length and being fixed (1 mm), m is the resonance 

mode order which is also fixed. From Eq. (2.2.1), we deduced: ∆𝑛𝑒𝑓𝑓 =  𝑛𝑒𝑓𝑓
∆λ

λ
 (3.2.1). 

It is noteworthy that, for the case described in section 3.1.3 of this chapter, the 

variations of the RF frequency were only depending on the cladding index changes. 

Here, by changing the temperature of the device, the material index values of the 

complete waveguide, including Si, SiO2 box and cladding, are changed. Therefore, in 

the present studied configuration, the refractive index of the waveguide neff was 
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considered for evaluating the sensing property. From a vectorial optical mode solver, 

the waveguide refractive neff around 1.76 at 1.54µm wavelength was calculated. 

Considering the first detection resonance wavelength and its related oscillation 

frequency as a reference point, the change in refractive index was deduced by using 

Eq. (3.2.1). The difference in oscillation frequency was also estimated. The deduced 

variation of the oscillation signal as a function of refractive index change is plotted in 

Fig.3.2.11. 

 

Fig.3.2.11. Calculation of oscillation changes versus refractive index variations. 

By using a linear fitting procedure, a slope of 94350 GHz/RIU was obtained. This 

value is 40 times order of magnitude better than that has been obtained in 182 with the 

similar approach to study refractive index sensing by detecting frequency changes. In 

term of the limit of detection (LOD), we relied on results presented in section 3.2.2 that 

reported a stable phase noise level around -110 dBc/Hz at 1 MHz offset frequency from 

the carrier. A system resolution R of 1 MHz was thus considered. Then, based on Eq. 

(2.1.3), the limit of detection LOD was estimated at approximately 10-8 RIU. To the best 

of our knowledge, this is the smallest refractive index LOD which has been reported by 

using an OEO scheme. It should be noted that for this first demonstration, the resonator 

geometry was not yet fully optimized to get the largest shift 
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of resonance wavelength due to temperature/refractive index changes. Our result, 

therefore, keeps improvement margin for future investigations. 

 

3.3. Conclusion 

In this chapter, studies of OEO opto-RF loops including silicon ring resonators are 

reported. Two different configurations of OEO based on long/short silicon ring 

resonators have been proposed and studied, showing a promising path for generating 

microwave signals as well as for applications to refractive index sensing. 

In the first configuration, an mm-long spiral RR (6mm) based OEO was studied 

in both open and closed loops. The microwave signal was generated under the beating 

between the optical carrier and a modulation sideband signal, both being selected by the 

optical transfer function of an add-drop resonator. Experimentally, by positioning the 

optical carrier on one of the transmission peaks of the RR, a good agreement between 

the optical FSRλ of the RR and the microwave photonic filter frequency and the closed 

loop oscillation frequency was demonstrated. In the implemented example, it was 

around 14.12 GHz. A phase noise level at -100 dBc/Hz at 100 kHz offset frequency was 

evaluated for the generated oscillation signal. OEO phase noise properties have been 

investigated and proposals have been made to improve the noise performances of the 

loop. In particular, the contribution of the light source, i.e. CW and DFB laser, into the 

stability of the generated signal has been highlighted. The reported experimental results 

show that the use of a more stable laser could lead to a very significant improvement in 

a signal noise property. Significantly, in comparing with OEO based on CW laser, a 40 

dB of noise level reduction at 1 kHz offset frequency was observed when DFB laser was 

employed. These results illustrate the importance of the CW light source of the opto-RF 

loop on the quality of the generated signal. Finally, the application of the OEO based on 

a long spiral RR was explored. The sensing property of the studied structure was 

quantified to around 3.72 GHz/RIU for a refractive index variation in the range of 1.572 

to 1.688. 
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In a second configuration, a tunable OEO structure including a more compact 

silicon ring resonator has been introduced. The originality of the proposed approach lies 

in the way in which the RF frequency is produced. In order to remedy to the non-

tunability of the previous approach, it was decided to make the RR drop port signal beat 

directly with the laser optical carrier. To our knowledge, this solution has not been 

implemented previously in the literature. In practice, in this approach, it is sufficient to 

position the optical carrier near a resonance of the ring to generate an oscillation. The 

oscillation RF signal is created under the beating between the laser light source and the 

single sideband modulation signal selected by an add-drop ring resonator working as an 

effective optical bandpass filter. By changing the wavelength spacing between the 

optical source and the resonance wavelength, a tunable RF oscillation signal was 

realized. The tunability range of this approach is extremely high, essentially limited in 

our case by the bandwidth of the amplifiers used inside the setup. In the implementation 

we have carried out, a tunability from 5.8 GHz to 18.2 GHz was demonstrated. A phase 

noise level of - 110 dBc/Hz at 1 MHz offset frequency from the carrier was obtained for 

all generated signals, showing the possibility to generate high oscillation frequencies 

with the same phase noise level. We then applied this approach to refractive index 

sensing application. An index limit of detection of 10- 8 RIU was derived in case of a 

system resolution limited at 1 MHz. As a whole, the reported results by the two 

approaches contribute to show the potential of integrated OEO for microwave signal 

generation and index sensing application.  
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Conclusion and Perspectives 

The work presented in this manuscript describes an overall study dedicated to the 

insertion of silicon add-drop ring resonators (RR) into several optoelectronic oscillator 

(OEO) systems for the generation of microwave signals. This thesis proposes a 

contribution to the future realization of fully integrated optoelectronic oscillators on 

silicon substrates. 

Taking into the fact that the silicon photonics technology can nowadays offer most 

of the needed integrated functions for the realization of complex integrated opto-

microwave circuits, the RRs presented in this work were designed and fabricated using 

silicon on insulator SOI substrates. 

Two different configurations of OEO based on silicon add-drop RR have been 

proposed and studied in this manuscript. 

In the first approach, a long length micro-ring resonator (6 mm) in the shape of a 

spiral has been directly employed as an effective RF frequency filter (when combined 

with a simple quadratic detection) in order to generate an oscillation signal with a 

frequency equal to its free spectral range FSR. In this configuration, the RR was 

optimized to satisfy the target required of an FSR 15 GHz, while our efforts and 

optimization have led to optical quality factors Qopt typically above 105. The 

implementation of the RR insertion within an OEO loop made of external (bulky) 

elements was succeeded. The demonstrated experiments have shown a good agreement 

between the optical FSR of the RR and the generated frequency. The OEO was 

characterized both in open loop and closed loop configurations, respectively. With an 

oscillation frequency of 14.12 GHz, a phase noise level of -100 dBc/Hz at an offset of 

100 kHz from the carrier was demonstrated. In this first configuration, the sensitivity of 

the generated signal frequency with respect to bulk index cladding (covering the RR 

region) was estimated experimentally. A change of the RF frequency with different 

cladding liquids was observed, and the sensing property of the 
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studied closed loop system was quantified to around 3.72 GHz/RIU for a refractive 

index variation in the 1.512 to 1.688 range. 

In the second approach, an oscillation signal was created under the beating between 

the laser light source and the single sideband modulation signal selected by an add-drop 

ring resonator working as an effective optical bandpass filter. Compared with the 

previous one, this approach showed a strong advantage in a flexible wideband signal 

tunable frequency. By changing the wavelength spacing between the optical source and 

the RR nearest resonance wavelength, either by sweeping the laser wavelength or 

shifting the resonance peak of the RR, a tunable RF signal was realized. In the 

implementation we have carried out, a tunability from 5.9 GHz to 18.2 GHz was 

demonstrated, being only limited by the working operation of the RF amplifier used 

within the realized setup. A phase noise level of -110 dBc/Hz at 1 MHz offset frequency 

was obtained for all generated signals, showing the possibility of creating high 

oscillation frequencies with the same phase noise level. We then applied this approach 

to index sensing application. An index limit of detection of 10-8 RIU was then derived 

by considering system resolution of 1 MHz. 

As a perspective of this work, the integration of all the elements of the opto-

microwave loop is a direct objective. This task is ambitious in terms of the technological 

means to be implemented but, in principle, within reach since all the elements are 

already present "off the shelf". The artist impression following ideas of this work would 

be seen in the figure below.  

 

Artist impression of (a) spiral silicon ring resonator based OEO and (b) tunable OEO based on silicon 

RR. 

In term of RF signal performance, one important step is to further optimize the 

fabrication processes in order to reduce the waveguide loss. In the presented work, 
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devices were realized with waveguide losses around 2 dB/cm. Reducing this loss to or 

lower than 1 dB/cm could bring great help to improve the optical quality factor of RR 

and accordingly reduce the bandpass of the equivalent microwave bandpass filter. In 

parallel with that, improving the laser light source stability would also be an important 

task to further minimize the loop overall phase noise. This task can be done by using 

better laser performance or using a frequency-locked loop for locking the optical light 

source. 

Regarding refractive index sensing, the carried-out work brings an initial 

demonstration that the application of OEO loops to monitor ultra-low index changes is 

a promising path. The next step should consider the fabrication and integration of 

microfluidic channels on top of RRs. The microfluidic device can be made by traditional 

Polydimethylsiloxane PDMS material or newly discovered material such as an off-

stoichiometry-thiol-ene OSTE. With the help of the microfluidic channels, a further step 

– surface functionalization of bio-solutions on top of silicon devices could be studied. 

The final result including fully integrated silicon low cost OEO chips combining 

microfluidic channels could give rise to laboratory experiments and even commercial 

products. 
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Titre : Oscillateurs optoélectroniques à base de résonateurs silicium pour applications à la génération 

de signaux hyperfréquences et aux capteurs. 

Mots clés : Oscillateur optoélectronique, Photonique, Photonique hyperfréquence, Résonateur 

optique, Capteur, Bruit de phase. 

Résumé : Ces travaux portent sur l'insertion de 

résonateurs en anneau de silicium dans des 

boucles d’oscillateurs optoélectroniques (OOE) 

pour la génération de signaux micro-ondes à faible 

bruit de phase et constituent une contribution à la 

future intégration complète des systèmes OOE en 

photonique silicium. L'orientation de l'application 

qui a été explorée a été d'évaluer la performance 

de ces systèmes pour la détection de variations 

d’indice optique en volume. Deux configurations 

différentes de résonateurs en anneau de silicium à 

base d'OOE ont été proposées et démontrées : des 

OOE à base de résonateurs en anneau silicium 

millimétriques et des OOE accordables à base 

d’anneaux plus compacts et d'un schéma 

spécifique de réinjection de porteuse optique. 

Dans la première approche, le signal optique est 

utilisé comme porteuse optique, qui est modulée 

par un modulateur d'intensité qui produit un 

ensemble de deux bandes latérales dans le 

domaine optique, tandis que le résonateur en 

anneau génère un peigne optique qui agit comme 

un filtre optique, transposant son intervalle 

spectral libre (ISL) dans le domaine micro-onde. 

Par le battement des deux raies optiques 

adjacentes dans un photodétecteur, l’information 

est ainsi traduite dans le domaine RF. La 

contribution de notre travail a été de démontrer 

que la réalisation de résonateurs millimétriques 

(environ 6mm) en photonique silicium était une 

approche viable et intéressante pour la réalisation 

directe d'OOE. Dans les configurations étudiées, 

les résonateurs en anneau SOI ont été optimisés 

pour satisfaire la cible requise d'un ISL d’environ 

15 GHz et un facteur de qualité optique supérieur 

à 105. Les résultats expérimentaux obtenus ont 

démontré la viabilité et la stabilité de l'approche 

proposée, tandis qu’un niveau de bruit de phase de 

-100dBc/Hz à un décalage de 100 kHz par rapport 

à la porteuse et une capacité de détection du 

système d’environ 3,72 GHz/RIU ont été 

quantifiés pour une variation de l'indice de 

réfraction comprise entre 1,572 et 1,688, en bon 

accord avec les résultats des simulations. 

En complément de cette première étape, nous 

avons abordé la question très importante de 

l'accordabilité de la fréquence du signal 

hyperfréquence généré. À cette fin, nous avons 

proposé, conçu, puis développé et testé une 

configuration d’OOE originale, basée sur 

l'utilisation d'une seule bande de modulation et 

d'un mécanisme de réinjection de la porteuse 

optique du laser de la boucle. Dans ce schéma, le 

signal oscillant est créé par le battement entre le 

faisceau laser et une bande latérale unique du 

signal de modulation sélectionnée par un 

résonateur en anneau. Dans l'implémentation que 

nous avons réalisée, un résonateur photonique SOI 

avec un ISL de 77 GHz et un facteur de qualité 

optique à 8,1×104 a été utilisé. En modifiant la 

fréquence du laser tout en conservant une longueur 

d'onde de résonance du résonateur fixe, une 

accordabilité de 5,8 GHz à 18,2 GHz a été 

démontrée, étant seulement limitée par le 

fonctionnement de l'amplificateur RF utilisé dans 

les expériences réalisées. Parallèlement, un niveau 

de bruit de phase de -115 dBc/Hz à une fréquence 

de décalage de 1 MHz a été obtenu pour tous les 

signaux générés, démontrant la possibilité de créer 

des fréquences d'oscillation élevées avec le même 

niveau de bruit de phase. Nous avons ensuite 

appliqué cette approche à la détection de l'indice 

de réfraction en volume et démontré une 

sensibilité de détection de 94350 GHz/RIU et une 

limite de détection d'indice de 10-8 RIU en 

considérant une résolution de signal de 1 MHz. 

Au-delà de ces résultats expérimentaux, l'apport 

de cette seconde approche apporte une solution 

simple et flexible au problème de la génération de 

signaux hyperfréquences à fréquences variables à 

la demande, et ouvre des perspectives 

d'application très riches. 

Tous les résultats de la thèse contribuent à la 

question de l'intégration des OOE sur puces 

silicium et permettent d'anticiper diverses 

applications dans le domaine des communications 

et des capteurs. 
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Abstract: This work focuses on the insertion of 

silicon ring resonators into the loops of 

optoelectronic oscillators (OEO) for the 

generation of low phase noise microwave signals 

and is a contribution to the future full integration 

of OEO systems on single silicon chips. The 

application orientation that was explored was to 

evaluate the performance of these systems for bulk 

optical index detection. Two different 

configurations of silicon ring resonators based 

OEO have been proposed and demonstrated: OEO 

based on millimeter-long silicon ring resonators 

and tunable OEO based on more compact silicon 

ring resonators and a specific optical carrier 

reinjection scheme. 

In the first approach, the optical signal is used as 

an optical carrier, which is modulated by an 

intensity modulator that produces a set of 

sidebands in the optical domain, while the ring 

resonator generates an optical comb that acts as an 

optical filter, translating its Free Spectral Range 

(FSR) into the microwave domain. By the beating 

of two adjacent optical comb lines in a 

photodetector, the optical spectral lines are then 

translated into the RF domain. The contribution of 

our work has been to demonstrate that the 

realization of millimeter resonators (about 6mm) 

in silicon photonics was a viable and interesting 

approach for the direct realization of OEO. In the 

investigated configurations, SOI ring resonators 

were optimized to satisfy the required target of a 

FSR of around 15GHz and an optical quality factor 

above 105. The demonstrated experimental results 

showed the viability and the stability of the 

proposed approach, while phase noise level of -

100dBc/Hz at an offset of 100 kHz from carrier 

was obtained and sensing capability of the studied 

system was quantified to around 3.72 GHz/RIU 

for a refractive index variation in the range of 

1.572 to 1.688, in good agreement with simulation 

results. 

In a complementary direction to this first step, we 

addressed the very important issue of the tunability 

of the frequency of the microwave signal 

generated. To this end, we proposed, designed, and 

then developed and tested an original OEO 

configuration based on the use of a single 

modulation band and a mechanism for reinjection 

of the optical carrier from the loop laser. In this 

scheme, the oscillation signal is created under the 

beating between the laser light beam and a single 

modulation signal sideband selected by an add-

drop ring resonator working as an effective optical 

bandpass filter. In the implementation we have 

carried out, a SOI photonic resonator with a FSR 

of 77 GHz and an optical quality factor at 8.1×104 

was used. By changing the laser frequency while 

keeping a fixed resonator resonance wavelength, a 

tunability from 5.8GHz to 18.2GHz was 

demonstrated, being only limited by the working 

operation of the RF amplifier used in the carried-

out experiments. Meanwhile, a phase noise level 

of -115 dBc/Hz at 1MHz offset frequency was 

obtained for all generated signals, showing the 

possibility of creating high oscillation frequencies 

with the same phase noise level. We then applied 

this approach for bulk refractive index sensing 

application and demonstrated a sensing sensitivity 

of 94350GHz/RIU and an index limit of detection 

of 10-8 RIU by considering a signal resolution of 

1MHz. Beyond these experimental results, the 

contribution of this second approach provides a 

simple and flexible solution to the problem of 

generating microwave signals with variable 

frequencies on demand and opens up very rich 

application perspectives. 

All the results of the thesis contribute to the 

question of the integration of OEOs on silicon 

chips and make it possible to anticipate various 

applications in the field of communications and 

sensors. 

 

 

 

 


