
HAL Id: tel-02293176
https://theses.hal.science/tel-02293176

Submitted on 20 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward Scalable Hierarchical Clustering and
Co-clustering Methods : application to the Cluster

Hypothesis in Information Retrieval
Xinyu Wang

To cite this version:
Xinyu Wang. Toward Scalable Hierarchical Clustering and Co-clustering Methods : application to the
Cluster Hypothesis in Information Retrieval. Technology for Human Learning. Université de Lyon,
2017. English. �NNT : 2017LYSE2123�. �tel-02293176�

https://theses.hal.science/tel-02293176
https://hal.archives-ouvertes.fr

N° d’ordre NNT : 2017LYSE2123

THESE de DOCTORAT DE L’UNIVERSITÉ DE LYON

Opérée au sein de

L’UNIVERSITÉ LUMIÈRE LYON 2

École Doctorale : ED 512 Informatique et Mathématiques

Discipline : Informatique

Soutenue publiquement le 29 novembre 2017, par :

Xinyu WANG

Toward Scalable Hierarchical Clustering

and Co-clustering Methods:

Application to the Cluster Hypothesis in Information Retrieval

Devant le jury composé de :

Christel VRAIN, Professeure des universités, Université d’Orléans, Présidente

Lynda TAMINE-LECHANI, Professeure des universités, Université Toulouse 3, Rapporteure

Gilbert SAPORTA, Professeur, Conservatoire National des Arts et Métiers, Rapporteur

Marie-Jeanne LESOT, Maître de Conférences HDR, Université Paris 6, Examinatrice

Jérôme DARMONT, Professeur des universités, Université Lumière Lyon 2, Directeur de thèse

Julien AH-PINE, Maître de Conférences, Université Lumière Lyon 2, Co-Directeur de thèse

Contrat de diffusion

Ce document est diffusé sous le contrat Creative Commons « Paternité – pas d’utilisation

commerciale - pas de modification » : vous êtes libre de le reproduire, de le distribuer et de

le communiquer au public à condition d’en mentionner le nom de l’auteur et de ne pas le

modifier, le transformer, l’adapter ni l’utiliser à des fins commerciales.

Abstract

As a major type of unsupervised machine learning method, clustering has been widely

applied in various tasks. Different clustering methods have different characteristics. Hi-

erarchical clustering, for example, is capable to output a binary tree-like structure, which

explicitly illustrates the interconnections among data instances. Co-clustering, on the

other hand, generates co-clusters, each containing a subset of data instances and a subset

of data attributes. Applying clustering on textual data enables to organize input docu-

ments and reveal connections among documents. This characteristic is helpful in many

cases, for example, in cluster-based Information Retrieval tasks. As the size of available

data increases, demand of computing power increases. In response to this demand, many

distributed computing platforms are developed. These platforms use the collective com-

puting powers of commodity machines to parallelize data, assign computing tasks and

perform computation concurrently.

In this thesis, we first address text clustering tasks by proposing two clustering methods,

Sim_AHC and SHCoClust. They respectively represent a similarity-based hierarchical

clustering and a similarity-based hierarchical co-clustering. We examine their proper-

ties and performances through mathematical deduction, experimental verification and

evaluation. Then we apply these methods in testing the cluster hypothesis, which is

the fundamental assumption in cluster-based Information Retrieval. In such tests, we

apply the optimal cluster search to evaluation the retrieval effectiveness of different clus-

tering methods. We examine the computing efficiency and compare the results of the

proposed tests. In order to perform clustering on larger datasets, we select Apache Spark

platform and provide distributed implementation of Sim_AHC and of SHCoClust. For

distributed Sim_AHC, we present the designed computing procedure, illustrate con-

fronted difficulties and provide possible solutions. And for SHCoClust, we provide a

distributed implementation of its core, spectral embedding. In this implementation, we

use several datasets that vary in size to examine scalability.

Keywords: hierarchical clustering, co-clustering, Information Retrieval, the cluster hy-

pothesis, distributed computing.

iii

Résume

Comme une méthode d’apprentissage automatique non supervisé, la classification au-

tomatique est largement appliquée dans des tâches diverses. Différentes méthodes de

la classification ont leurs caractéristiques uniques. La classification hiérarchique, par

exemple, est capable de produire une structure binaire en forme d’arbre, appelée dendro-

gramme, qui illustre explicitement les interconnexions entre les instances de données. Le

co-clustering, d’autre part, génère des co-clusters, contenant chacun un sous-ensemble

d’instances de données et un sous-ensemble d’attributs de données. L’application de la

classification sur les données textuelles permet d’organiser les documents et de révéler

les connexions parmi eux. Cette caractéristique est utile dans de nombreux cas, par ex-

emple, dans les tâches de recherche d’informations basées sur la classification. À mesure

que la taille des données disponibles augmente, la demande de puissance du calcul aug-

mente. En réponse à cette demande, de nombreuses plates-formes du calcul distribué

sont développées. Ces plates-formes utilisent les puissances du calcul collectives des ma-

chines, pour couper les données en morceaux, assigner des tâches du calcul et effectuer

des calculs simultanément.

Dans cette thèse, nous travaillons sur des données textuelles. Compte tenu d’un cor-

pus de documents, nous adoptons l’hypothèse de «bag-of-words» et applique le modèle

vectoriel. Tout d’abord, nous abordons les tâches de la classification en proposant deux

méthodes, Sim_AHC et SHCoClust. Ils représentent respectivement un cadre des méth-

odes de la classification hiérarchique et une méthode du co-clustering hiérarchique, basé

sur la proximité. Nous examinons leurs caractéristiques et performances du calcul, grâce

de déductions mathématiques, de vérifications expérimentales et d’évaluations. Ensuite,

nous appliquons ces méthodes pour tester l’hypothèse du cluster, qui est l’hypothèse fon-

damentale dans la recherche d’informations basée sur la classification. Dans de tels tests,

nous utilisons la recherche du cluster optimale pour évaluer l’efficacité de recherche pour

tout les méthodes hiérarchiques unifiées par Sim_AHC et par SHCoClust . Nous aussi

examinons l’efficacité du calcul et comparons les résultats. Afin d’effectuer les méthodes

proposées sur des ensembles de données plus vastes, nous sélectionnons la plate-forme

v

vi

d’Apache Spark et fournissons implémentations distribuées de Sim_AHC et de SHCo-

Clust. Pour le Sim_AHC distribué, nous présentons la procédure du calcul, illustrons les

difficultés rencontrées et fournissons des solutions possibles. Et pour SHCoClust, nous

fournissons une implémentation distribuée de son noyau, l’intégration spectrale. Dans

cette implémentation, nous utilisons plusieurs ensembles de données qui varient en taille

pour examiner l’échelle du calcul sur un groupe de noeuds.

Mots-clés: classification ascendante hiérarchique, co-clustering, recherche d’informations,

l’hypothèse de cluster, calcul distribué.

Acknowledgments

To me, near four years’s PhD study on this thesis is like a mountain hike. The mountain

peak is insight, but it is never easy to reach. It takes restless effort to keep moving up

step by step. Along the exploration, there were obstacles and difficult moments, but

what motivated me to go on were the excitement of getting to know the unknown and

getting skilled with the unfamiliar. The knowledge and skills that I obtained in my study

are like the beautiful mountain view that is only possible to see and to enjoy at a certain

attitude. I am thankful that I am not alone in this journey, there are lovely people who

guide me, accompany me and support me along this journey. I really appreciate to have

them, and I would like to take this opportunity to give my sincere thanks to:

My supervisors Julien and Jérôme. I’d like to thank them for having chosen me for

this thesis, for having helped me go through many administrative difficulties in the early

phase of my study, for having provided me valuable advises, suggestions and corrections

in my research works, for their effort and time in revising my writings and in organizing

thesis defense for me.

My friends and colleagues, Pavel, Rado, Jairo, Adrien, Ciprian, Mr. Chauchat, Julien.C,

Philips, Somayeh and other lovely people in ERIC lab. I thank them for their useful

comments in my work, for their inspiration of new ideas, for their kindness of offering

me financial support when my contract was delayed, for their encouragement, and for

offering me opportunities to take my mind off research and to have fun with games,

BBQs and beers.

My parents Baozhen and Huibin. I am thankful to have parents like them, who love me

with respecting my choices, who understand me and support me with their best. With

their love, support and understandings, I could pursue my dreams with least limitations.

My husband Yolan. I am grateful to have him, who accompanies me with his love and

his confidence in me.

I also thank the REQUEST project, which financed my PhD study.

vii

Contents

Abstract iii

Résume v

Acknowledgments vii

Contents viii

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Context . 1
1.2 The REQUEST Project . 2
1.3 Challenges . 2
1.4 Contributions . 4
1.5 Thesis Outline . 7
1.6 Notations . 7

2 State of the Art 9

2.1 Introduction . 9
2.1.1 Clustering Texts . 10

2.1.1.1 The “Bag-of-Words" Assumption 10
2.1.1.2 The Vector Space Model 10
2.1.1.3 Commonly-used Proximity Measures 11
2.1.1.4 Text Clustering Algorithms: An Overview 11

2.1.2 Distributed and Parallel Computing 13
2.1.2.1 MapReduce . 14
2.1.2.2 Apache Spark . 17
2.1.2.3 MapReduce v.s. Spark . 20
2.1.2.4 Distributed Storage Systems 21

2.2 Agglomerative Hierarchical Clustering . 22
2.2.1 Overview . 22
2.2.2 Conventional Methods and the Lance-Williams Formula 24

2.2.2.1 Conventional Methods . 24
2.2.2.2 The Lance-Williams Formula 26

2.2.3 Nearest Neighbor Chain Approaches 26

ix

Contents x

2.2.4 Approaches for Large Datasets . 29
2.2.5 On-line AHC Algorithms . 29
2.2.6 Distributed and Parallel Approaches for AHC 30

2.2.6.1 Parallel Approaches . 30
2.2.6.2 Distributed Approaches 31

2.3 Co-clustering . 31
2.3.1 Overview . 31
2.3.2 Latent Block Models . 32
2.3.3 Graph Partitioning Approaches . 34

2.3.3.1 Graph Laplacians, Properties and Spectral Clustering . . 36
2.3.3.2 Mathematical Insight: Spectral Graph Partitioning by

Optimizing Ncut . 39
2.3.3.3 Co-clustering Documents and Terms Using Spectral Graph

Partitioning . 41
2.3.4 Co-clustering Using Non-negative Matrix Factorization 45

2.3.4.1 Non-negative Matrix Factorization 45
2.3.4.2 Approaches for Co-clustering 46
2.3.4.3 Connection Between NMF and Spectral Graph Partitioning 47

2.3.5 Distributed and Parallel Approaches 48
2.4 Tests of the Cluster Hypothesis . 48

2.4.1 Overview . 48
2.4.2 Classic Tests . 49

2.4.2.1 Comparison Tests of Cluster-based and Document-based
Search . 49

2.4.2.2 Tests Using Hierarchical Clustering 50
2.4.3 Refined Tests . 52
2.4.4 Language Model-based Tests . 53
2.4.5 Applications of the Cluster Hypothesis in IR 54

2.5 Conclusion . 55

3 The Similarity-based Agglomerative Hierarchical Clustering Frame-
work 57

3.1 Motivation . 57
3.2 The Similarity-based Hierarchical Clustering Framework, Sim_AHC . . . 59

3.2.1 Mathematical Deduction . 59
3.2.2 Extension to Kernel Functions . 63
3.2.3 Sparsification of the Cosine Similarity Matrix 64

3.3 Experimental Verification . 65
3.3.1 Datasets, Preprocessing and Evaluation Measures 65
3.3.2 Experiment Settings and Results 67

3.3.2.1 Equivalence between Sim_AHC and the Lance-Williams
Formula . 68

3.3.2.2 Impact of Sparsifying Similarities on Scalability 68
3.3.2.3 Impact of Sparsifying Similarities on Clustering Quality . 70

3.4 Discussion . 71
3.5 Conclusion . 71

4 The Similarity-based Hierarchical Co-clustering Method 73

Contents xi

4.1 Motivation . 73
4.2 The Computing Procedure of SHCoClust 74
4.3 Experiments: Clustering Effectiveness and Efficiency 78

4.3.1 Datasets, Preprocessing and Evaluation Measures 78
4.3.2 Comparisons of Clustering Effectiveness 79
4.3.3 Examination of Clustering Efficiency with Sparsification 81
4.3.4 Discussion of Complexity and Scalability 84

4.4 Visualization . 85
4.5 Conclusion . 86

5 Testing the Cluster Hypothesis 89

5.1 Motivation . 89
5.2 Datasets, Preprocessing and Experiment Setting 91
5.3 A New Cluster Hypothesis Test Using Sim_AHC 92

5.3.1 Comparison of Retrieval Effectiveness Among Seven Clustering
Methods . 93

5.3.2 Influence of Improving Efficiency via Sparsification on Retrieval
Effectiveness . 98

5.3.3 Summary . 101
5.4 A New Cluster Hypothesis Test Using SHCoClust 101

5.4.1 Comparison of Retrieval Effectiveness Among Seven Clustering
Methods . 102

5.4.2 Impact of Sparsification on Retrieval Effectiveness 107
5.4.3 Summary . 108

5.5 Comparison between Two Proposed Tests 110
5.5.1 On Retrieval Effectiveness . 110
5.5.2 On Computing Efficiency . 113
5.5.3 Summary . 113

5.6 Conclusion . 113

6 The Distributed Implementations 115

6.1 Introduction . 115
6.2 The Distributed Implementation of Sim_AHC 116

6.2.1 Computing Procedure . 116
6.2.2 Experiments . 118

6.2.2.1 Settings and Configurations 118
6.2.2.2 Spark Web UI . 119
6.2.2.3 Exploration and Troubleshooting 121

6.2.3 Summary . 127
6.3 The Distributed Implementation of Spectral-embedding 128

6.3.1 Computing Procedure . 128
6.3.2 Experiments and Analysis . 131

6.4 Conclusion . 133

7 Conclusions and Perspectives 135

7.1 Conclusions . 135
7.2 Perspectives . 137

Contents xii

Bibliography 147

List of Figures

2.1 Overview of text clustering algorithms . 12
2.2 MapReduce execution overview [1] . 15
2.3 MapReduce word count example . 16
2.4 Growth of RDDs’ lineage when counting words in PySpark commands . . 18
2.5 Spark cluster architecture . 19
2.6 When MapReduce runs an iterative job 21
2.7 When Spark runs an iterative job . 21
2.8 Overview of clustering methods . 22
2.9 Example of dendrogram . 23
2.10 Commonly used conventional AHC methods [2] 25
2.11 Comparison of conventional AHC methods (left) and the NN-chain algo-

rithm (right) [3] . 27
2.12 Dendrograms without and with height inversion 28
2.13 Latent block model as a graphical model 32
2.14 An illustration of (a) a bipartite graph and (b) its partitions. di denotes

a document, tj denotes a term, eij denotes an edge that links di and tj .
V1 and V2 denote two sub-graphs. 34

2.15 A cockroach graph partitioned by (a) an ideal cut and by (b) a Spectral-
SVD method . 45

3.1 Results of applying Sim_AHC on the Reuters, SMART and 20NG datasets
using linear and Gaussian kernels . 69

4.1 Comparisons of clustering quality among conventional AHC, BSC, SHCo-
Clust with and without sparsification . 81

4.2 Results of linear kernel and Gaussian kernel with sparsification 83
4.3 Doc-term matrix (a) before and (b) after SHCoClust, (c) dendrogram of

co-clusters and (d) content the median-sized co-cluster 85

5.1 Illustration of results in Table 5.3 for each tested dataset 95
5.2 Results of sparsifying S obtained by linear kernel 99
5.3 Results of sparsifying S obtained by Gaussian kernel 100
5.4 Illustration of results in Table 5.6 for each tested dataset 104
5.5 Results of sparsifying Sco obtained by linear kernel 108
5.6 Results of sparsifying Sco obtained by Gaussian kernel 109

6.1 Computing procedure of distributed Sim_AHC using Spark RDDs. Cx

and Cy denotes two clusters, Sxy denotes their pairwise similarity and S′
xy

denotes their self similarity. 117

xiii

List of Figures xiv

6.2 Screenshot of Spark web UI homepage . 120
6.3 Screenshot of jobs of a Spark application 121
6.4 Screenshot of stages inside a Spark job . 121
6.5 Screenshot of DAG of a Spark job . 121
6.6 Screenshot of Spark executors . 122
6.7 Screenshot of running process using 2cir_10xe5 dataset 125
6.8 Computing procedure of distributed spectral embedding 129

List of Tables

2.1 A few RDDs’ transformations and actions functions 17
2.2 Types of commonly-used RDDs . 19
2.3 Commonly-used distance measures for numeric and binary data [4] 24
2.4 Graphic and geometric methods for computing D(Cij , Ck) [5] 25
2.5 Lance-Williams formula: methods and parameter values 26

3.1 Descriptions of experimented datasets . 66
3.2 Best ARI results for each collection when τ = 0 (baseline) and when τ > 0

(sparsified S) . 70

4.1 Experimented Datasets . 79
4.2 Highest ARI, relative gain in memory and in time with sparsiciation . . . 84

5.1 Experimented datasets . 91
5.2 Clustering methods that obtain at least two lowest averaged E values at

β = 0.5, 1 and 2 . 94
5.3 Retrieval effectiveness measured by averaged optimal E values for seven

clustering methods in Sim_AHC using linear and Gaussian kernels 96
5.4 Standard deviation of optimal E values for seven clustering methods, cor-

responding to Table 5.3 . 97
5.5 Clustering methods that obtain at least two lowest averaged optimal E

values at β = 0.5, 1 and 2 . 103
5.6 Retrieval effectiveness measured by averaged optimal E values for seven

clustering methods in SHCoClust using linear and Gaussian kernels 105
5.7 Standard deviation of optimal E values for seven clustering methods, cor-

responding to Table 5.6 . 106
5.8 T values of T-tests with H0 : µ0 = µ1 and H1 : µ0 ̸= µ1 at α = 95%.

µ0 indicates the mean of optimal E values obtained in Sim_AHC, µ1 for
SHCoClust. Values highlighted in red are smaller than critical value. . . . 112

6.1 Commonly used Spark application properties 119
6.2 Datasets experimented in distributed Sim_AHC 122
6.3 Experimented datasets . 131
6.4 Performance of distributed spectral embedding using SMART, AP, WSJ

and ZSDF datasets . 132

xv

Chapter 1

Introduction

1.1 Context

We are now living in an era of data. We use Twitter to share our opinions, we have

Facebook to connect with our families and friends, we view job offers and profiles on

LinkedIn, and we search for answers on Google. The Internet, devices and applications

are part of our modern life, they make our life more convenient and comfortable. On the

other hand, we contribute to provide data through them. Everyday, huge amounts of

data are being generated, processed and analyzed. A new concept appeared in news and

research articles, “Big Data". It refers to the challenges and technologies that address

the four V’s of Big Data, veracity, variety, velocity and volume, which are impossible to

be processed with a common method.

Among all types of data (images, logs, texts and videos) that are produced over the

Web, textual data is surely one of the types that draws much attention of researchers.

Compared to other types of data, textual data is easier to generate, easier to collect and

ubiquitous in every domain. Analysis on textual data allows researchers to extract public

opinions on Twitter, to identify user groups on Facebook or to recommend jobs for users

on LinkedIn. Text clustering is one of the analyses that applies clustering methods on

textual data. It provides useful descriptive information on a collection of textual files,

and is commonly used in organizing files, e.g., grouping similar documents such as news

and tweets.

Information retrieval (IR) is a wide domain that extensively applies textual analysis. The

general objective is to retrieve texts, which are supposed to be relevant to a given query,

with efficiency and effectiveness. Commonly-used Web search engines such as Google,

Bing and Yahoo! are successful IR applications. Such engines are document-based IR

1

Chapter 1. Introduction 2

systems, which return a list of ranked documents in response to a user query. Some less

famous engines such as Yippy1 and Carrot22 are cluster-based IR systems, which return

a list of documents from a number of clusters that are presumably relevant to a user

query. To address Big Data, there are challenges exposed to both IR systems in terms

of computing efficiency and retrieval effectiveness.

1.2 The REQUEST Project

The REQUEST3 project, short for REcursive QUEry and Scalable Technologies, is a

French national project that finances this thesis. Its general objectives are to explore

and develop technologies in the aspects of Big Data analysis, visualization and cloud com-

puting. Seven industrial entities, Thales, SNCF, Talend, Syllabs, Altic, Aldecis Isthma,

and six academic laboratories, ERIC (Lyon), LIP6 (Paris), LIMSI (Orsay), LABRI (Bor-

deaux), L2TI (Paris), UTT (Troyes), initially take part in this project. To address the

analytics of massive volume data, REQUEST focuses on the development of scalable

approaches based on NoSQL (not only SQL) storage and distributed computing. Three

topics are covered in this project:

1. intelligent recursive and iterative IR,

2. scalable algorithms and distributed implementations,

3. new approaches of visualization.

Engaged in the work that covers topic 1 and topic 2, my team emphasizes our research

with clustering methods, applications to IR, as well as scalable and distributed algo-

rithms. Our tasks are to find scalable clustering methods, apply them in IR tasks, and

implement them in a distributed manner.

1.3 Challenges

There are two types of clustering, flat clustering and hierarchical clustering. The result

of a flat clustering method presents clusters without interconnections. There is no in-

formation on how clusters and how objects inside a cluster are connected. For example,

given an input of six data instances, A, B, C, D, E and F, applying a flat clustering

1https://yippy.com/
2http://search.carrot2.org/stable/search
3https://www.thalesgroup.com/fr/worldwide/big-data/news/request-programme-launched

http://search.carrot2.org/stable/search
https://yippy.com/
https://www.thalesgroup.com/fr/worldwide/big-data/news/request-programme-launched

Chapter 1. Introduction 3

method may return two clusters, ABC and DEF. But there is no way to know whether

A firstly merges with B or with C. And there is no way to know whether D is closer to

E or to F. This information, however, is available in hierarchical clustering, which we

consider more informative than flat clustering. In IR tasks, this character of hierarchical

clustering is advantageous as it organizes a collection of documents with extra details on

their connections, and thus it allows an IR system to better guide users in information

seek. However, hierarchical clustering is computationally expensive. Its time complexity

is O(N3) for conventional agglomerative methods, and for divisive hierarchical cluster-

ing, complexity can be NP-hard. In many cases, hierarchical clustering is not preferred

due to its high complexity, despite its advantageous character. It is thus essential to

design an innovative method that makes the hierarchical clustering to perform correctly,

using limited computing resources. The capability of an algorithm to achieve expected

results using limited computing resources (such as memory and computing time) on rela-

tively large dataset is referred to as “scalability". Nevertheless, limited by the computing

procedure of the hierarchical clustering, making it scalable is not trivial.

There are many research works that try to improve the efficiency of hierarchical cluster-

ing. A common drawback of these works is that they are not generic, i.e., they work on

one or a few methods, but are not applicable to other methods of the same type. We are

interested in finding a generic framework that is applicable for all conventional hierar-

chical clustering methods. Another issue found in past works is that they either require

some extra structure (for example, a clustering feature tree in the BIRCH method [6]) or

deploy a sampling procedure in order to reduce processing time. An obvious disadvan-

tage of sampling is that it is likely to hurt the accuracy of the results. Is it possible to

find a generic framework that is scalable and capable to produce deterministic results?

This is one of the problems that this thesis devotes to solve for conventional hierarchical

clustering.

Another clustering method, co-clustering, is also being widely studied and applied. Un-

like usual clustering methods, which only group objects, a co-clustering method groups

objects and their features at the same time. It outputs a number of co-clusters, each

containing a subset of objects and a subset of features. For example, an individual co-

cluster obtained from a collection of documents is composed of a set of similar documents

and a set of words that are associated to the set of documents. Co-clusters are like flat

clusters. There is no information on how co-clusters and elements inside a co-cluster are

connected. As there is not sufficient study on this subject in the past research works, it

inspires us to look for a new approach that is capable to simultaneously group objects

and features, as well as to retain the connections among elements inside a co-cluster and

among co-clusters. The challenge of this task is to find such an approach.

Chapter 1. Introduction 4

As a branch in the domain of IR, applying clustering methods in IR tasks has been studied

for many decades. Cluster-based IR applications have a fundamental assumption, the

cluster hypothesis. It states that similar documents in a cluster tends to respond to the

same query. There exist many works that test this hypothesis using several conventional

hierarchical clustering methods. However, in terms of retrieval effectiveness, these works

draw different conclusions. The difference in their conclusions are likely caused by the

differences in experimental settings, experimented datasets and evaluation measures.

Performing a cluster hypothesis test using a specific clustering method allows us to know

how well a query is answered to (retrieval effectiveness) and how fast a query is responded

(retrieval efficiency). This knowledge is essential in understanding the performance of a

clustering method in an IR task. However, the challenge is: how to perform a test on the

cluster hypothesis, given the fact that there are different experimental settings, datasets

and evaluation measures.

Distributed computing is becoming more and more popular in processing large datasets.

As hardware is commonly available at low cost, it is feasible to group commodity ma-

chines and use their collective computing power to handle data processing. With the

aid of open source applications that are capable of handling concurrency, job scheduling

and data replication, applying distributed computing becomes practical and convenient.

Still, there are many technical details to consider in practice in order to achieve efficiency

and ensure computing accuracy. And the most challenging part is how to program a

user-defined algorithm so that it can be correctly performed on a distributed computing

platform.

1.4 Contributions

To serve the REQUEST project’s objectives and to tackle the challenges, we introduce

the contributions in this thesis.

• We study previous works on hierarchical clustering and co-clustering, analyze their

advantages and drawbacks, propose new approaches, verify, experiment and eval-

uate them. The proposed algorithms are:

1. Sim_AHC [7], the similarity-based hierarchical clustering framework.

As mentioned previously, applying AHC is prohibitively expensive due to its

high complexity. To address this issue, different AHC algorithms have been

proposed in past works (Section 2.2). However, these algorithms are either

not generic, or their results are not deterministic due to the use of sampling.

Chapter 1. Introduction 5

A great interest for us is to find a framework that is generic to all conven-

tional clustering methods and produces deterministic results. Inspired by

the connection between similarities and distances, we propose Sim_AHC. It

uses similarities instead of distances, and outputs a binary tree-like structure

that can thoroughly illustrate the connections of sub-clusters, which are com-

posed of data instances. This is a generic framework for seven conventional

hierarchical clustering methods and it outputs deterministic results. More

importantly, as its similarities are all between zero and one, a thresholding

strategy can be applied to sparsify the similarity matrix in order to achieve

computing efficiency.

Through our experiments, we find that the computing efficiency of Sim_AHC

can be largely improved in terms of memory use and running time, with

clustering quality being guaranteed. In fact, Sim_AHC clusters as well as,

or better than conventional AHC methods that use distances. This holds

true, even when the similarity matrix is substantially sparsified in Sim_AHC.

Besides, thanks to the usage of inner product, any kernel function can be

applied in Sim_AHC. These properties make Sim_AHC superior to distance-

based hierarchical clustering methods.

2. SHCoClust [8], the similarity-based hierarchical co-clustering method.

Interested in a hybrid approach that is capable of performing co-clustering

while maintaining the connections of elements inside a co-cluster and among

co-clusters, we propose SHCoClust. The output is also a binary tree-like struc-

ture. However, sub-clusters are composed of both data instances and features.

This allows us to explore co-clusters that are organized by a hierarchy. When

clustering texts, SHCoClust models a collection of documents as a bipartite

graph, whose vertices are documents and terms. The objective is to form sev-

eral sub-graphs, inside each of which vertices are closely associated. However,

the associations among sub-graphs are weak. SHCoClust can be regarded as

an extension of Sim_AHC applied in a space that is composed of eigenvectors

of the Laplacian matrix of the bipartite graph.

In terms of clustering quality, our experiments demonstrate that SHCoClust

significantly outperforms the conventional hierarchical clustering methods. In

comparison to the Spectral Bipartite Co-clustering method [9], improvement

in clustering quality is obtained in SHCoClust when the input similarity ma-

trix is sparsified. Besides, SHCoClust inherits the advantageous property of

Sim_AHC in attenuating high complexity. As inner product based similari-

ties are used, its input similarity matrix can be sparsified in order to achieve

better efficiency, and this strategy does not harm the clustering quality.

Chapter 1. Introduction 6

• Application to testing the cluster hypothesis.

We propose two tests on the cluster hypothesis, using Sim_AHC and SHCoClust,

respectively. There are several interests for us to perform these tests: firstly, they

allow us to understand how well and how fast a query is responded using a clustering

method. Secondly, some of past works that test the cluster hypothesis conclude

differently on which clustering method has better retrieval effectiveness. We are

interested to provide a benchmark on this issue. Besides, we discover that only

four conventional clustering methods are tested previously, leaving the conclusions

on the other methods unknown. Thus the third interest of our tests is to provide a

complete conclusion for all methods. Lastly, retrieval efficiency is barely discussed

in these tests. As an important factor that measures performance, it is essential to

provide experimental evidence on this issue. In our experiments, we examine the

efficiency by addressing the impact of sparsifying the similarity matrix. Besides,

comparisons between the two tests are provided in terms of retrieval effectiveness

and efficiency.

In our experiments, optimal cluster Search is applied to search for the optimal

cluster for a given query. We use the E-measure to evaluate retrieval effectiveness.

Similarities that are generated by linear kernel and Gaussian kernel are used in

all experiments. In the test that applies Sim_AHC, we find that the average link

and the Ward method are the most effective clustering methods. In contrast, in

the test that applies SHCoClust, a wider rage of methods such as centroid, single

link and McQuitty demonstrate better effectiveness than the others in some cases.

In terms of efficiency, we show that the retrieval effectiveness is barely affected by

sparsification in both tests. Concretely, when the similarity matrix is getting more

and more sparsified, retrieval effectiveness tends to be invariant.

• Implementation using a recent distributed computing platform. After comparing

different distributed computing architectures, we select the Apache Spark Engine4

since it best suits our needs for computation speed and for compatibility. Utiliz-

ing its Resilient Distributed Databases (RDDs), we implement two algorithms, the

distributed Sim_AHC and the distributed spectral embedding. Implementing a

user-defined program in Spark is not a trivial task. Unlike in conventional pro-

gramming, the performance of a Spark program is also dependent on the number

partitions of RDDs, the length of RDD’s lineage, the assigned number of cores,

the assigned distributed memory, as well as the choice of caching or uncaching an

RDD. There is no rule of thumb on how to choose these parameters, because they

are really task-dependent. The only way is to explore along programming and to

4spark.apache.org/

spark.apache.org/

Chapter 1. Introduction 7

learn a suitable setting by experimenting. In this thesis, apart from implementation

details, we also provide the learned experience in each implementation.

1.5 Thesis Outline

This thesis is composed of seven chapters, they are structure as follows:

In Chapter 2, we present state of the art, in which we detail background knowledge,

related concepts, previously proposed approaches, existing techniques and software that

concern (1) agglomerative hierarchical clustering, (2) co-clustering, (3) the cluster hy-

pothesis tests and (4) distributed computing and architectures.

Chapter 3 and Chapter 4 respectively illustrate the proposed algorithms, Sim_AHC and

SHCoClust. In detail, we exhibit, elaborate on and discuss mathematical deduction,

computing procedures, properties, experimental verification, results and visualization.

In the experiments, we carry out text clustering tasks on several datasets.

Chapter 5 presents the applications of testing the cluster hypothesis using the proposed

methods. Unlike in text clustering, we use the E-measure to evaluate retrieval effec-

tiveness in the context of optimal cluster search, and we adopt different experimental

settings. This chapter is subdivided into three parts. In the first two parts, we elaborate

on the proposed tests on the cluster hypothesis. In each individual part, we address two

subjects: (1) a comparison of retrieval effectiveness among seven conventional hierarchi-

cal clustering methods, and (2) the impact of sparsification on retrieval effectiveness and

efficiency. The third part of this chapter contributes to a comparison between the two

tests on overall retrieval effectiveness and on general computing efficiency.

Chapter 6 shows the details of the distributed implementations. We present data struc-

ture, computing settings, technical problems as well as solutions.

Finally, chapter 7 concludes this thesis and exhibits research perspectives.

1.6 Notations

Chapter 1. Introduction 8

D a dataset
D pairwise dissimilarity matrix
n the number of data instances/samples
m the number of data attributes/features
i a row index, i = 1, . . . , n
j a column index, j = 1, . . . ,m
A a data matrix of n-by-m
K the number of desired clusters
A a data matrix of n-by-m
aij a value in the ith row and the jth column of A
z a partition of data instances
w a partition on data attributes
g the number of partitions of data instances
h the number of partitions of data attributes
k an index of z, k = 1, . . . , g
l an index of w, l = 1, . . . , h

G a bipartite graph
V the set of vertices of G, vi ∈ V
Vi a subset of V
E the set of edges
d a document
t a term
e an edge

W the adjacency matrix of G
wij an element of W
D the degree matrix

degi degree of vertex vi
L the graph Laplacian matrix
v an eigenvector
V a matrix with eigenvectors vi as columns
Ci a cluster
yi the i-th row of V
An the scaled weighted matrix of A
M the number of nonzero values in An

S a similarity matrix, S = (sij)i,j=1,...,n

F a factorized matrix from A
G a factorized matrix from A

Chapter 2

State of the Art

2.1 Introduction

In the State of the Art, we present concepts, existing approaches, techniques that concern

the content of this thesis in detail. As the principle tasks of this thesis are about clustering

texts, so this chapter starts with fundamental knowledge on this subject. This includes

the basic assumption, the base model, and commonly-used proximity measures for text

clustering. After we present these concepts, an overview of popular and recent text

clustering algorithms is presented. Since this thesis also concerns implementations of

the proposed methods using distributed computing, we also introduce some fundamental

knowledge on distributed and parallel computing. In this part, readers can have a better

idea of the techniques chosen in this thesis. After presenting necessary concepts in Section

2.1, we develop three more sections in this chapter. Each is on a specific topic. These

topics are the agglomerative hierarchical clustering, the co-clustering, and the tests of

the cluster hypothesis.

For the agglomerative hierarchical clustering, we first introduce the conventional methods

and the Lance-Williams formula. After this, several approaches of the nearest neighbor

chain are illustrated. In the end of this Section, some on-line AHC algorithms, as well

as the distributed and parallel approaches of AHC are presented.

The section of co-clustering starts with the approaches of the latent block model, a

group of statistical models. Then the graph partitioning approach is presented. As

this approach is used in SHCoClust, which is proposed in the thesis, more details of

mathematical insight and properties are provided. Furthermore, several existing methods

of this approach are elaborated on and compared among. This section also contains some

algorithms that apply non-negative matrix factorization in co-clustering. As it is in fact

9

Chapter 2. State of the Art 10

related to the core method of the graph partitioning method, an explanation on this

relation is given in the end of the section.

The last section of this chapter contributes to the tests of the cluster hypothesis. As this

thesis proposes two new tests on this hypothesis, it is necessary to present concepts and

tests on this subject. Concretely, the classic tests, the refined tests and the language-

model-based tests are presented. In the end of this section, applications of the cluster

hypothesis in IR is shortly discussed.

The objective of this chapter is to present, in details, the concepts, approaches, compar-

isons and discussions that are indispensable for readers to understand the content of this

thesis.

2.1.1 Clustering Texts

2.1.1.1 The “Bag-of-Words" Assumption

Clustering textual data groups similar documents and reveals hidden connections. As

textual data is more complex than numeric data, it requires to be treated differently.

There are a few assumptions for processing textual data, different assumptions lead to

different approaches. The “bag-of-words" assumption is one of the most popular ones.

It considers a piece of text (or a document) as a set of words. In this assumption, the

ordering of words is ignored, only their existence matters. There are other assumptions

that believe the ordering of words conveys necessary information, which is taken as

features in corresponding models.

Depending on the choice of assumption, clustering methods on textual data vary. In gen-

eral, these methods can be categorized into distance-based algorithms, phrase-based algo-

rithms, probabilistic generative models, textual streams methods and graph approaches.

In the scope of this thesis, we focus on the distance-based algorithms and develop our

approaches on top of the bag-of-words assumption, so that we can compare our methods

with past research works, most of which apply the same setting.

2.1.1.2 The Vector Space Model

Based on the bag-of-words assumption, textual data can be represented in the vector

space model, in which any document in a given collection is considered as a vector with its

contained unique terms (or words) as features (or attributes). In such a way, a collection

of documents can be treated as a matrix, in which each row is a document vector and

each column is indexed by a term. Depending on specific needs, this document-term

Chapter 2. State of the Art 11

matrix can either be binary, or filled with term weights. Commonly-used term weighting

schemes are term frequency (TF), term frequency-inverse document frequency (TF-IDF)

and BM25. In each scheme, a term in the vocabulary is assigned with a weight, reflecting

its importance in the collection. As documents often contain different number of terms,

the document-term matrix is usually normalized, standardized or scaled. If documents

contain too many terms, feature reduction is necessary. It helps reduce the number of

features and to transform the features into a different space, where clustering or other

learning tasks can be performed with better effectiveness.

2.1.1.3 Commonly-used Proximity Measures

For distance-based algorithms and when the TF-IDF scheme is applied, cosine similarity

is often used to measure the proximity between two documents di and dj :

cosine(di, dj) =
< di · dj >
∥di∥ · ∥dj∥

.

where < · > indicates an inner product, and ||d|| indicates the Euclidean norm of a

document vector d. Under the vector space model, where documents are featured by

their terms, the cosine similarity measures the angle of two document vectors in the

projected space. Being 0 means that the document vectors are orthogonal, thus entirely

dissimilar; and being 1 indicates that the document vectors are pointing to the same

direction, they are entirely identical.

Depending on the choice of models, different proximity measures should be used. For ex-

ample, when documents are represented as probability distributions over terms, Kullback-

Leibler divergence [10] is often used as a proximity measure. It measures how one prob-

ability distribution diverges from a second expected probability distribution.

2.1.1.4 Text Clustering Algorithms: An Overview

Aggarwal and Zhai [10] present two major types of clustering algorithms: distance-

based methods and word-phrase-based methods. Distance-based clustering algorithms

contain two members, agglomeartive hierarchical clustering (AHC) and distance-based

partitioning algorithms (Figure 2.1). The AHC approach processes the pairwise distances

of input documents, and outputs a binary tree structure that explicitly presents the

interconnections among input documents. More details on this approach are provided

in Section 2.2. In contrast, the K-medoid and the K-means algorithms are partitioning

algorithms. They return flat clusters of documents. The distances of documents to

their cluster representatives are supposed to be minimized in convergence. A hybrid

Chapter 2. State of the Art 12

Figure 2.1: Overview of text clustering algorithms

approach that uses both hierarchical and partitional algorithms is introduced, it is called

the Scatter-Gather clustering method [10, 11]. This method uses a hierarchical clustering

algorithm on a sample of the input documents in order to determine a robust initial set of

seeds, which are then used in conjunction with a standard K-means clustering algorithm

to find clusters.

The words-phrase-based clustering approaches include three main methods: (1) co-

clustering with words and documents, (2) clustering with frequent words patterns, and

(3) clustering with frequent phrases. Co-clustering is related to subspace clustering. It

groups documents and terms simultaneously and outputs co-clusters, each of which con-

tains a partition of documents and a partition of words. Different co-clustering methods

are detailed in Section 2.3. As one representative method of clustering with frequent

words patterns, the approach introduced in [12] uses frequent terms sets for text clus-

tering. The main idea of this approach considers low dimensional frequent term sets as

cluster candidates, i.e., a frequent term set is regarded as a descriptor of a cluster. Look-

ing for a set of carefully chosen frequent term sets is thus a clustering process, which is

based on the mutual overlap of frequent sets with respect to the sets of supporting doc-

uments. Clustering with frequent phrases differs from other text clustering methods by

treating a document as a string instead a bag of words. So that the ordering information

of words in a document is retained. This clustering approach uses an indexing method

to organize the phrases in the collection of documents, and then uses this organization to

create clusters. In [13], the authors introduce Suffix Tree Clustering, which identifies sets

of documents that share common phrases and uses this information to create clusters

and to summarize their content for users.

Chapter 2. State of the Art 13

There are other text clustering approaches, such as probabilistic document clustering

and semi-supervised methods. Topic modeling is an example of probabilistic document

clustering. The idea is to create a probabilistic generative model that represents a col-

lection of documents as a function of hidden random variables, whose parameters are

estimated from the document collection [10]. PLSI (Probabilistic Latent Semantic In-

dexing) [14] and LDA (Latent Dirichlet Allocation) [15] are two representative methods

for topic modeling. Semi-supervised learning is a technique situated between supervised

and non-supervised learning. With some prior but incomplete knowledge of document

labels, semi-supervised learning processes such knowledge to perform a clustering or a

classification task. There exist different semi-supervised approaches in text clustering.

For instance, [16], a method that incorporates supervision in a non-supervised partitional

clustering method; [17] represents a number of semi-supervised learning using probabilis-

tic frameworks; and [18] is a graph-based method that incorporates prior knowledge in

the clustering process.

In this thesis, we focus on one of the distance-based text clustering methods, agglom-

erative hierarchical clustering, and one of the word-phrase-based clustering approaches,

co-clustering with words and documents.

2.1.2 Distributed and Parallel Computing

A conventional computer program processes a given input sequentially using available

resources of a single machine. If the given input is too large to fit in the memory of

the machine, techniques that take advantage of concurrent computing are practically

required. Bekkerman et al. [19] point out that there are two major directions in which

concurrent execution of tasks can be realized: data parallelism and task parallelism.

The former refers to executing the same computation on multiple inputs concurrently,

and the latter refers to segmenting the overall algorithm into parts, some of which can

be executed concurrently. With the development of hardware technologies, computing

devices become cheaper and more powerful. This trend offers remarkable increase in

computing capabilities to handle both data and task parallelism.

Parallel computing platform and distributed computing platform are the two types of

platforms that support data parallelism and task parallelism, respectively. The parallel

computing platform is characterized by organizing processing units in some structure,

and by the access to shared memory via direct communication among the units. Mod-

ern parallel platforms are usually based on hybrid typologies, in which processing units

are organized hierarchically, with multiple layers of shared memory [19]. The Graphics

Processing Units (GPUs) are a good example of such an architecture. GPUs are usually

Chapter 2. State of the Art 14

composed of dozens of multiprocessors, each is comprised of multiple stream processors.

These stream processors are organized in “blocks", and any individual block has access to

relatively small locally shared memory and a much larger globally shared memory [20].

Other parallel platforms include multi-core processing and Message Passing Interface

(MPI).

Compared to parallel platforms, distributed computing platforms typically have larger

physical distances among processing units, for which less direct communication is usually

supported by local (or remote) network. Therefore, they have higher latency and lower

bandwidth. However, distributed computing platforms have advantages. For example,

individual processing units can be heterogeneous. Moreover, these platforms automati-

cally schedule jobs, synchronize, transfer and recover data (data recovery only happens

when a computing unit fails to respond). MapReduce, Apache Spark, Dryad, Pregel and

CIEL are a few popular distributed platforms. They actually use a distributed storage

system to store data, but to a user, all the computation is like running on a single ma-

chine. Dean and Ghemawat [1], Zaharia et al. [21], Ingersoll [22], Gropp [23], Barney

[24] provide detailed insights on these distributed platforms.

The distributed implementations illustrated in this thesis are built on the Apache Spark

platform1, which is an advanced directed acyclic graph (DAG) execution engine that

supports cyclic data flow and in-memory computing. The core concept of Spark are the

resilient distributed datasets (RDDs), which makes Spark low I/O cost and fast com-

puting engine. Spark has been shown to be 100 timess faster than Hadoop MapReduce.

Moreover, it provides user-friendly APIs (Application Programming Interfaces) and rich

Machine Learning libraries for Python, R, Java and Scala. Despite many advantages,

Spark is developed from the MapReduce computing scheme.

2.1.2.1 MapReduce

First introduced by J. Dean and S. Ghemawat from Google, MapReduce [1] is a pro-

gramming model for processing large datasets. The main idea of this model is based

on two types of functions: a map function that processes a key-value pair to generate a

set of intermediate key-value pairs; and a reduce function that merges all intermediate

values associated with the same intermediate keys. A practical convenience provided

by this model is that programs written in this functional style are automatically par-

allelized and executed on a cluster of machines. This advantage exempts programmers

from the details of partitioning the input data, scheduling the executing tasks across a

set of machines, handling machine failures, and managing inter-machine communication.

1https://spark.apache.org/

https://spark.apache.org/

Chapter 2. State of the Art 15

The machines that MapReduce functions operate on are called nodes. One node executes

the master program, while the other nodes run copies of a worker program. The master

is responsible for assigning tasks to workers and storing the status of assigned task on

each worker. During the execution of a job, master and workers interact in both the map

and the reduce phases. Dean and Ghemawat [1] summarize seven steps that are involved

in executing a MapReduce job (Figure 2.2).

Figure 2.2: MapReduce execution overview [1]

1. The input is firstly split into M pieces by the MapReduce library in the user

program. Then many copies of the program are copied on nodes.

2. The master program is responsible to assign tasks to workers. There are M map

tasks and R reduce tasks to assign. Once an idle worker is detected, a task is then

assigned to it.

3. If the worker is assigned a map task, it reads from the corresponding input split,

and parses the content into key-value pairs. These pairs are later passed to the

user-defined map function, which outputs intermediate key-value pairs and buffers

them in memory.

http://www.lebigdata.fr/mapreduce-tout-savoir

Chapter 2. State of the Art 17

key-value pairs and sums up the list of occurrences for each word. The final output is a

set of word-occurrences pairs.

MapReduce is an innovative programming model that is capable to process large datasets

on a cluster of commodity computers. However, it suffers from considerable I/O overhead,

as the intermediate key-values pairs are unavoidably written to and read from the local

disk. When it performs an iterative algorithm, the processing can be greatly slowed

down, as the output of the preceding iteration is stored on local disk and then read

in the following iteration. Due to this reason, MapReduce is not an ideal platform for

iterative algorithms.

2.1.2.2 Apache Spark

Apache Spark is an in-memory distributed computing architecture for iterative and in-

teractive applications. The core concept of Spark are RDDs [21], each of which is an

immutable collection partitioned across a cluster of nodes. An RDD can be cached in

memory. This mechanism allows each node to cache its respective slices for local com-

putation and reuses them in other operations. The advantage of caching RDDs is that

it avoids much I/O overhead. There are two operations supported by RDD abstraction:

transformations and actions. An input dataset is firstly converted into a set of RDDs.

By applying transformation functions, the input RDDs are transformed and this process

generates a lineage of RDDs. Transformations are lazy functions, they do not execute

until an action function is called. An action function executes all the transformation

functions that construct the RDDs’ lineage and returns final results, which are displayed

or stored on local disk. Table 2.1 lists a few transformations and actions functions.

Transformations Actions
map(func) reduce(func)

flatMap(func) collect()
filter(func) count()

groupByKey() first()
reduceByKey() take(n)

sortByKey() saveAsTextFile(path)
mapValues(func) counteByKey()

union() foreach(func)
distinct() collectAsMap()

... ...

Table 2.1: A few RDDs’ transformations and actions functions

The properties of RDDs make Spark an ideal programming model for bulk iterative

algorithms [21]. These properties are:

Chapter 2. State of the Art 19

Type Description
HadoopRDD result of reading from HDFS via function textFile()

MapPartitionRDD result of calling map(), flatMap(), filter(), etc
CoalescedRDD result of repartition() or coalesce() transformations

PairRDD result of groupByKey(), join(), zip(), etc

Table 2.2: Types of commonly-used RDDs

In Spark, a user program is an application. Each application is composed of a number

of jobs, and each job has a number of tasks. In terms of executing an application, Spark

provides two modes: the local mode and the cluster mode. When Spark launches an

application in local mode, all the tasks are actually run on one machine but in a multi-

threading way. This mode is useful in developing, testing and debugging programs using

small datasets. Cluster mode is deployed when a cluster of nodes is configured. De-

pending on the types of resource manager, there three cluster modes: standalone mode,

Spark on Apache Mesos, and Spark on Hadoop YARN. The standalone mode is Spark’s

built-in cluster environment. It is available in the default distribution of Spark and it

is the easiest way to run a Spark application on a top of a cluster. Apache Mesos and

Hadoop Yarn are two different resource managing softwares. Mesos is built to be a global

resource manager for an entire data center. It determines what resources are available

when a job request comes into the Mesos master. Once the job request is accepted, it

places the job on the workers. Hadoop YARN (short for Yet Another Resource Negotia-

tor) is the second-generation MapReduce. It is a central resource manager for a Hadoop

cluster. It monolithic schedules jobs after evaluating all available resources.

Figure 2.5: Spark cluster architecture

Figure 2.5 illustrates the structure of a cluster of nodes when a cluster mode is deployed3.

It is composed of a driver program and several worker nodes, which are linked by a

cluster manager (this can be the Spark built-in cluster manager or Mesos or YARN).

In a cluster mode, an application runs as an independent set of processes on a cluster,

3https://spark.apache.org/docs/latest/cluster-overview.html

https://spark.apache.org/docs/latest/cluster-overview.html

Chapter 2. State of the Art 20

these processes are coordinated by the SparkContext, which is initialized in the driver

program. Executors run the processes and store data on worker nodes. With the cluster

manager allocating resources, Spark acquires executors from cluster nodes and sends user

program to the executors, on which the user program is split into tasks, each task is a

unit process4.

Spark provides two sets of Machine Learning libraries (MLlib), the RDD-based5 and

the DataFrame-based6. A Spark DataFrame7 is a distributed collection of data that is

organized into named columns. It is conceptually equivalent to a table in a relational

database or a data frame in R/Python, but with richer optimizations under the hood.

DataFrames can be constructed from a wide array of sources such as existing RDDs,

structured data files and tables in Hive8. Starting from Spark 2.0, the RDD-based MLlib

entered maintenance mode and new features are only added to DataFrame-based MLlib.

From the production point of view, it is more efficient to use DataFrame-based MLlib in a

business project, as the built-in ML functions allow users to quickly implement standard

pipelined-programs without digging into implementation details like using the RDD-

based libraries. However, these functions leave users little control over the data, and

user programs are limited to a relatively small set of types and operations. Besides, for

Python programmers, DataFrame-based ML functions are heavily wrapped in Java, this

makes it hard to change parameters in a function or change it in order to suit a specific

need. For functions that are not yet implemented in the DataFrame-based MLlib, it is

challenging to implement user-defined programs. The RDD-based MLlib, on the other

hand, contains more fine-grained functions and operations. Though more details have to

be considered along implementation, it provides users more control on data and it allows

users to implement their own algorithms using RDDs. Due to this reason, we choose to

implement the proposed methods using Spark RDDs instead of DataFrames.

2.1.2.3 MapReduce v.s. Spark

Figure 2.6 and Figure 2.7 illustrate the major difference between Hadoop MapReduce

and Apache Spark when they perform an iterative algorithm9. In the former platform,

output that is generated in a preceding iteration is stored on HDFS, and the following

iteration reads from HDFS to continue the computation. It is obvious that much I/O

overhead is produced, which can largely slow down the computation. Differently, on the

4https://spark.apache.org/docs/latest/cluster-overview.html
5https://spark.apache.org/docs/latest/mllib-guide.html
6https://spark.apache.org/docs/latest/ml-guide.html
7https://spark.apache.org/docs/latest/sql-programming-guide.html
8https://hive.apache.org/
9https://www.tutorialspoint.com/spark_sql/spark_sql_quick_guide.htm

https://spark.apache.org/docs/latest/cluster-overview.html
https://spark.apache.org/docs/latest/mllib-guide.html
https://spark.apache.org/docs/latest/sql-programming-guide.html
https://spark.apache.org/docs/latest/ml-guide.html
https://www.tutorialspoint.com/spark_sql/spark_sql_quick_guide.htm
https://hive.apache.org/

Chapter 2. State of the Art 21

Spark platform, the intermediate output is stored in the distributed memory, allowing

immediate data access for the following iterations. In this way, the computing time

can be substantially shortened. This is one principle reason that makes Spark more

advantageous than MapReduce in running an iterative algorithm.

Figure 2.6: When MapReduce runs an iterative job

Figure 2.7: When Spark runs an iterative job

2.1.2.4 Distributed Storage Systems

Distributed Storage Systems are constructed by a number of network-connected inex-

pensive storage devices to store a massive amount of data with reliability and ubiquitous

availability [25]. Examples of prevailing applications are Distributed Hash Table (DHT),

Google File System (GFS) and Hadoop File System (HDFS).

HDFS has a master-worker architecture. An HDFS cluster is composed of a single

NameNode and a number of DataNodes. The NameNode is the master server that

managers the file system namespace and regulates access to files like opening, closing,

and renaming files and directories. A DataNode is a worker node that manages its own

storage. A file that is stored on HDFS is internally split into one or more blocks and

these blocks are stored in a set of DataNodes. It is the NameNode that determines the

mapping of blocs to DataNodes. The DataNodes, on the other hand, are responsible for

reading and writing requests and for performing block creation, deletion and replication

upon instruction from the NameNode 10.

10https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

Chapter 2. State of the Art 22

To a user, access to files stored on HDFS is like accessing files stored on a single machine.

Commands11 that operate on HDFS files are similar to Linux commands.

2.2 Agglomerative Hierarchical Clustering

2.2.1 Overview

Clustering is a major unsupervised machine learning method. As shown in Figure 2.8

[2], clustering can be categorized into hard and fuzzy clustering. In hard clustering, each

data instance belongs to one cluster; in fuzzy clustering, on the other hand, a data in-

stance can be possessed by several clusters. Hard clustering further contains partitional

and hierarchical clustering. Partitional clustering is also called flat clustering, it outputs

individual clusters that do not connect to each other. K-means is an example of flat clus-

tering. Hierarchical clustering outputs a binary tree-like structure, called dendrogram

(Figure 2.9). A dendrogram explicitly exhibits the connections among clusters, i.e., how

data instances are grouped iteratively. This presentation is advantageous in revealing in-

terconnections of data instances and sub-clusters. A classic example of dendrogram is the

revolutionary tree that exhibits the evolutionary relationship among various biological

species, based on similarities and differences in their physical or generic characteristics.

Figure 2.8: Overview of clustering methods

There are two types of hierarchical clustering, the divisive (DHC) and the agglomerative

(AHC), both need to go through a number of iterations, but in different manners. Given

11https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/

FileSystemShell.html

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/FileSystemShell.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/FileSystemShell.html

Chapter 2. State of the Art 23

Figure 2.9: Example of dendrogram

a dataset D of n instances, DHC begins with splitting D into two clusters, and iteratively

splits the generated clusters until each data instance becomes a cluster itself. It is a top-

down process. AHC functions in the opposite way. It starts with n individual clusters,

and merges a pair of clusters that have the minimal distance in each iteration. Eventually,

it outputs a cluster of n instances. This is a bottom-up process. In terms of complexity,

though AHC can reach O(n3) in the worst case, it is usually favored over DHC, which

is more computationally demanding. Because in each iteration, DHC has to find the

best split among 2n−1 − 1 possibilities. When n is large, finding an optimal split can be

NP-hard. It is the reason why we chose AHC over DHC in this thesis.

Many AHC methods were proposed in the past decades. In principle, these methods can

be categorized into:

• conventional AHC methods,

• nearest neighbor chain algorithms, and

• other approaches.

Apart from those methods that try to reduce the time complexity of AHC by algorith-

mic optimization, other methods try to improve computing efficiency by utilizing the

technologies of distributed and parallel computing. According to the specific techniques,

these methods can be classified into parallel methods and distributed methods.

Chapter 2. State of the Art 24

2.2.2 Conventional Methods and the Lance-Williams Formula

2.2.2.1 Conventional Methods

Given a dataset of n instances, the general procedure of conventional AHC is shown in

Algorithm 1. The output of this procedure is a dendrogram that grows upwards.

Algorithm 1 General procedure of AHC

Data: Pairwise dissimilarity matrix D of input data

Initialize a dendrogram of n leaves with null height values

while number of iterations < n do
1. (Ci, Cj) = argmin(Cx,Cy)D(Cx, Cy), i.e. search for the minimal distance in D and

the pair of clusters (Ci, Cj),

2. merge Ci and Cj into Cij and add a corresponding parent node in the dendrogram

with height value D(Ci, Cj),

3. compute distance between Cij and another cluster Ck, and update D accordingly.

end

Result: A dendrogram of 2n− 1 nodes

There are different distance measures to compute D(Ci, Cj), some of the commonly-

used measures for numeric and for binary data are listed in Table 2.3, where X =

(x1, . . . , xm) and Y = (y1, . . . , ym) denote two vectors of m features. Note that the

Minkowski distance becomes Manhattan distance, Euclidean distance and maximum

distance, when its parameter p takes values of 1, 2 and ∞, respectively.

Data type Distance Formula

Binary
Jaccard distance Djac(X,Y) = |X △ Y |/|X ∪ Y |
Dice distance Ddice = |X △ Y |/(|X|+ |Y |)

Numeric
Minkowski distance Dmin(X,Y) =

(

∑m
j=1 |xj − yj |p

)1/p

Mahalanobis distance Dmah(X,Y) = ∥X − Y ∥A =
√

(X − Y)A(X − Y)T

Average distance Dave(X,Y) =
(

1
m

∑m
j=1(xj − yj)

2
)1/2

Table 2.3: Commonly-used distance measures for numeric and binary data [4]

In the vector space model, when documents are vectorized using the TF-IDF weighting

system, values are all numeric and non-negative. Under this model, documents are

actually projected into the feature space, where the projection is sphere-like. Therefore,

the Euclidean distance is usually chosen to determine the dissimilarity of two document

vectors. And it is our choice to compute D(Ci, Cj) in the general procedure of AHC.

Chapter 2. State of the Art 25

In AHC, an essential step is to compute D(Cij , Ck) after Ci and Cj are merged. Shown

in Figure 2.10, there are two types of methods, the graphic and the geometric. The

former type uses cluster graphic representations to compute D(Cij , Ck), the single link

method, the complete link method, the group average method and the weighted group

average method belong to this type. The group average method is also named as average

link or UPGMA (unweighted pair group method with arithmetic mean), and its weighted

variation is the weighted group average method, which is also referred as the McQuitty

method or WPGMA (weighted pair group method with arithmetic mean). While for

the geometric methods, they use cluster centroids to determine the distance between Cij

and Ck. The centroid method, the median method and the Ward method are of this

type. Table 2.4 lists the distance updating formulas of these methods, where −→c ij denotes

the centroid of cluster Cij , i.e. −→c ij =
|i|−→c i+|j|−→c j

|i|+|j| , with |i| representing the number of

members in cluster Ci, and−→ω ij denotes the median of cluster Cij with−→ω ij =
1
2(
−→ω i+

−→ω j).

Figure 2.10: Commonly used conventional AHC methods [2]

Type Method Distance updating formula D(Cij , Ck)

G
ra

ph
ic

single min(d(i, k), d(j, k)) min
x∈Cij ,y∈Ck

D(x, y)

complete max(d(i, k), d(j, k)) max
x∈Cij ,y∈Ck

D(x, y)

average (nid(i, k) + njd(j, k))/(ni + nj)
1

|Ci||Cj |
∑

x∈Cij ,y∈Ck

D(x, y)

weighted (d(i, k) + d(j, k))/2

G
eo

m
et

ri
c centroid

√

nid(i, k) + njd(j, k)

ni + nj
− ninjd(i, j)

(ni + nj)2
||−→c ij −−→c k||2

median

√

d(i, k)

2
+

d(j, k)

2
− d(i, j)

4
||−→ω ij −−→ω k||2

Ward

√

(ni + nk)d(i, k) + (nj + nk)d(j, k)− nkd(i, j)

ni + nj + nk

√

2|Cij ||Ck|
|Cij |+ |Ck|

· ||−→c ij −−→c k||2

Table 2.4: Graphic and geometric methods for computing D(Cij , Ck) [5]

Chapter 2. State of the Art 26

2.2.2.2 The Lance-Williams Formula

Lance and Williams [26] formulate the above-mentioned methods in a unified way and

name this formulation as the Lance-Williams formula. Equation 2.1 and Table 2.5 present

this formula and list the methods and their parameter values.

D(Cij , Ck) =αiD(Ci, Ck) + αjD(Cj , Ck) + βD(Ci, Cj)

+ γ|D(Ci, Ck)−D(Cj , Ck)|
(2.1)

Methods αi αj β γ

single 1/2 1/2 0 -1/2
complete 1/2 1/2 0 1/2

average |Ci|
|Ci|+|Cj |

|Cj |
|Ci|+|Cj |

0 0

McQuitty 1/2 1/2 0 0

centroid |Ci|
|Ci|+|Cj |

|Cj |
|Ci|+|Cj |

− |Ci||Cj |
(|Ci|+|Cj |)2

0

median 1/2 1/2 -1/4 0

Ward |Ci|+|Ck|
|Ci|+|Cj |+|Ck|

|Cj |+|Ck|
|Ci|+|Cj |+|Ck|

− |Ck|
|Ci|+|Cj |+|Ck|

0

Table 2.5: Lance-Williams formula: methods and parameter values

This formula provides much convenience in computing D(Cij , Ck) using the seven conven-

tional AHC methods, which can be applied by simply fitting corresponding parameter

values into the formula. However, it does not change the complexity of storage and

computation. For these methods, the computation requires O(n2) storage for n initial

objects, and O(n3) time complexity [27].

2.2.3 Nearest Neighbor Chain Approaches

Over decades, many AHC algorithms have been proposed for better efficiency. These in-

clude Sibson’s SLINK algorithm [28], Rohlf’s MST (Minimum Spanning Tree) algorithm

[29] for single link, Defays’ method for complete link method [30], and the reciprocal

nearest neighbor methods of de Rham [31] and Juan [32]. Murtagh surveys these al-

gorithms in [27, 33] and discusses their time and storage complexity. According to his

survey, methods that use nearest neighbor chain to find reciprocal nearest neighbors have

O(n2) time and storage complexity. An exception is the storage complexity of the Ward

method, which is O(n). Though with lower time complexity, the nearest neighbor chain

approaches are not applicable for the centroid and the median methods.

Applying nearest neighbor chain (NN-chain) to perform AHC consists of two steps: (1)

construct the NN-chain for each data instance and (2) look for the pairs of points that

are reciprocal or mutual nearest neighbors (RNNs). Once the RNNs are found, they are

Chapter 2. State of the Art 27

Figure 2.11: Comparison of conventional AHC methods (left) and the NN-chain
algorithm (right) [3]

agglomerated as one cluster. The computing procedure of such a NN-chain algorithm is

shown in Algorithm 2.

Algorithm 2 Computing procedure of the NN-chain algorithm [27]

Data: Pairwise dissimilarity matrix D of input data
Initialize a dendrogram of n leaves with null height values
while number of iterations < n do

1. select an artitrary data point,
2. grow the NN-chain from this point until a pair of reciprocal nearest neighbors is
obtained,
3. agglomerate these points by replacing them with a cluster point, add one node
in the dendrogram, and update the dissimilarity matrix.

end
Result: A dendrogram of 2n− 1 nodes

Differing from the conventional AHC methods that globally select and merge the pair

of clusters that have the minimal distance, the NN-chain algorithm looks for the pair of

reciprocal nearest neighbors in a chain, which is a local structure. A comparison of the

two approaches is illustrate in Figure 2.11.

The NN-chain algorithm is claimed to produce the same results for five conventional AHC

methods, they are single link, complete link, average link, McQuitty and Ward methods.

These clustering methods do not generate height inversions in their dendrograms, i.e.,

the height of a child node is always lower than the height of its parent nodes. This can

be formulated as:

D(Ci, Cj) < D(Ci, Ck) or D(Ci, Cj) < D(Cj , Ck) =⇒ D(Ci, Cj) < D(Cij , Ck) (2.2)

Chapter 2. State of the Art 28

It is a form of Bruynooghe’s reducibility property [34]. A clustering method, whose

dissimilarity matrix satisfies this property, produces a dendrogram shown as the left

sub-figure in Figure 2.12. The single link, complete link, average link, the McQuitty

and the Ward methods all output dendrograms of this type. The centroid and median

methods, on the other hand, output dendrograms with height inversions, shown as the

right sub-figure. Therefore, results of NN-chain output by these two methods cannot be

guaranteed to have the same hierarchy as the conventional approaches.

Figure 2.12: Dendrograms without and with height inversion

Müllner [5] proves the correctness of the NN-chain approach. Furthermore, he proposes

a generic algorithm that overcomes the inversion problem for the median and centroid

methods, based on Anderberg’s idea of maintaining a list of nearest neighbors for each

data point [35]. The major improvement of this algorithm is the transformation of the

list of nearest neighbors into a cached priority queue. With such a structure, the time

used for repeated minimum searches is reduced. But this modification does not really

improve the complexity for the median and centroid methods. It is claimed to have

a time complexity of O(n3) for the median and centroid methods, and O(n2) for the

other methods unified by the Lance-Williams formula. As to the storage complexity, it is

O(n2) for all. A shortcoming of this generic approach is that, for the geometric clustering

methods, they are limited to the Euclidean distance. Plus, in this approach does not

explain how the inversion problem is solved for the centroid and median methods.

Fast-RNN is another work that improves the efficiency of the NN-chain approach [36].

This work adopts the RNN clustering algorithm [37], which has O(n2m) time and O(n)

storage complexity. n and m denote the number of data instances and the number of

features, respectively. The main innovation of fast-RNN algorithm is that, its NN-chain

is constructed by a dynamic space partitioning strategy using slices. Given a predefined

distance parameter ϵ, an iterative slicing procedure is applied to search for a list of nearest

neighbor candidates for each data point. The candidates are interesting points that are

located within a slice of width 2ϵ centered at a data point in a multi-dimensional space.

Chapter 2. State of the Art 29

Attaching a candidate list of nearest neighbors to data point is a similar data structure

used in [5]. However, the way of updating proximity between a newly merged cluster

and a remaining cluster differs in fast-RNN. It employs a similarity measure that uses

cluster centroids. This requires tracking the mean values and variances of clusters along

the clustering procedure. Though fast-RNN returns identical results as the conventional

RNN algorithm with better efficiency, it has some obvious constraints. One constraint

is that it needs an extra step to find a proper value for ϵ, which does not seem to be

a trivial task. Besides, this method is only shown to be applicable for the average link

clustering method. Limited by its proximity measure, this method is not suitable for

graph methods.

2.2.4 Approaches for Large Datasets

Aside from algorithms that focus to decrease the complexity of AHC, there are other

approaches that try to make AHC applicable for large datasets. A well-known algorithm

is BIRCH [6], which is capable to handle large datasets and is robust against outliers.

The key feature of BIRCH is its use of a clustering feature (CF) tree, which is designed

to capture important clustering information in the original data while requiring less

storage. After the CF tree is constructed, an AHC algorithm is applied to the set of

summaries to perform global clustering. BIRCH achieves a computational complexity of

O(n). Nevertheless, as BIRCH is independent from the Lance-Williams formula, it does

not provide any method that is included in the formula.

Another famous algorithm is CURE [38], which applies a set of well-scattered points

to represent a cluster. In this way, rich cluster shapes (other than hyperspheres) can

be discovered. In addition, the chaining effect of minimum spanning tree, as well as

the tendency to favor clusters with similar centroids can be avoided. CURE reduces

computational complexity with a random sampling and partitioning strategy. Thus,

its complexity is dependent on the size of the sampled dataset. Concretely, its time

complexity is O(n2
sample log nsample) and its space complexity is O(nsample). The main

drawback of CURE is that its results are indeterministic due to its sampling procedures.

2.2.5 On-line AHC Algorithms

Apart from clustering on static datasets, some algorithms are capable to perform AHC

on on-line datasets. These algorithms include MCUPGMA [39] for average link, ESPRIT

hcluster [40] for single link and complete link, and SparseHC [41] for single link, complete

link and average link.

Chapter 2. State of the Art 30

Claimed to be a memory-efficient on-line algorithm, SparseHC scans a stored distance

matrix chunk-by-chunk, compresses the information in the currently loaded chunk, then

applies adjacency map (an efficient graph representation) to store unmerged cluster con-

nections. It permits constant access to these connections for clustering with reduced

computation time. This strategy empirically allows SparseHC to achieve a linear stor-

age complexity. According to experimental results, SparseHC does decrease the memory

growth. However, in terms of time complexity, only the efficiency of single link is shown

improved.

2.2.6 Distributed and Parallel Approaches for AHC

There are various approaches that adopt distributed or parallel computing to speed

up AHC. In literature, we can find parallel approaches that employ GPUs [42], MPI

[43], multi-threading [3] and multi-processing [44]. For distributed approaches, there are

[45, 46] and [47] that use MapReduce and Spark, respectively.

2.2.6.1 Parallel Approaches

Shalom et al. [42] implement parallel single link and complete link clustering methods

on GPU using CUDA (compute unified device architecture). Invited by NVIDIA12,

CUDA is a parallel computing platform and application programming interface (API)

that allow software developers to use GPU for general purpose processing. Du and

Lin [43] parallelize the single link method based on MPI for multiple-instruction and

multiple-data environments. Jeon and Yoon [3] propose a parallelizing scheme for multi-

threaded shared-memory machines to alleviate the cost of performing AHC, based on

the concept of nearest neighbor chains. The proposed method allocates available threads

into two groups, one for managing nearest neighbor chains, and the other for updating

distance information. Hendrix et al. [44] present SHRINK, a scalable algorithm that

implements the single link method in OpenMP (open multi-processing). OpenMP is

an API that supports multi-platform shared memory multiprocessing programming. It

uses a portable, scalable model that provides programmers a flexible interface to develop

parallel applications on different platforms, which vary from standard desktop computers

to supercomputers. The main parallelizing strategy of SHRINK is to divide the input

dataset into overlapping subsets. Dendrogram is generated for each subset using the

SLINK algorithm [28]. A full dendrogram is eventually constructed by combining small

individual dendrograms.

12http://www.nvidia.com/content/global/global.php

http://www.nvidia.com/content/global/global.php

Chapter 2. State of the Art 31

2.2.6.2 Distributed Approaches

Wang and Dutta [45] present PARABLE, a hierarchical clustering algorithm for the

MapReduce framework. It proceeds in two main steps: local hierarchical clustering on

nodes using mappers and reducers, and integration of results by a dendrogram alignment

technique. As this approach randomly splits data into smaller partitions in the first step,

it only outputs approximate results. Jin et al. [46] formulate the single link method as

an MST (minimum spanning tree) construction problem on a complete graph. This

method firstly decomposes the complete graph into a set of non-overlapped subgraphs,

then computes the intermediate sub-MSTs for each subgraph, and merges all sub-MSTs

to output final result. Additionally, this approach can treat incremental data insertion

for a separate data subset and integrate it with the existing result. The MapReduce

implementation of this method achieves a significant speed up. However, evaluation of

clustering quality is not given in this work. Later, Jin et al. [47] provide an extended

work of [46] by offering another distributed implementation using the Spark platform.

Compared with their former work, the authors argue that, the new implementation

performs significantly better in terms of performance and scalability. Still, evaluation on

clustering quality is not discussed.

2.3 Co-clustering

2.3.1 Overview

Co-clustering is a subspace clustering method, it performs clustering in both data and

feature spaces by simultaneously partitioning data instances and their attributes into sub-

groups, which are called co-clusters. Each co-cluster contains a subset of data instances

and a subset of attributes. For example, for a gene expression dataset, a co-cluster is

composed of a subset of closely grouped genes and a subset of conditions that are highly

associated to the subset of genes. For a collection of documents, co-clustering returns

a subset of documents mixed with a subset of “describing" terms. In research works on

co-clustering, it is also named as block clustering, direct clustering, cross-clustering, si-

multaneous clustering, bi-clustering, two-way clustering, two-mode clustering or two-side

clustering [48]. In this thesis, we use the name of co-clustering.

For over four decades, co-clustering has been applied in many different domains such as

text mining, bio-informatics, Web mining, etc. In text mining, a collection of documents

is usually represented as a document-term matrix. As this matrix is often sparse and of

high dimensions, co-clustering offers a good solution to reduce dimensions and to sum-

marize the data. Two widely cited works are [9] and [49] that respectively apply spectral

Chapter 2. State of the Art 33

Figure 2.13 presents a graph model that illustrates the process of randomized data gen-

eration in LBMs. Determined by parameter α, a is an observed variable presented in

the data matrix A. z and w are latent variables that are controlled by parameters π and

ρ. This process consists of:

• generating labelings z = (z1, . . . , zn) into g clusters according to the categorical

distribution π = (π1, . . . , πg),

• generating labelings w = (w1, . . . , wm) into h clusters according to the categorical

distribution ρ = (ρ1, . . . , ρh), and

• generating a real value aij for i = 1, . . . , n and j = 1, . . . ,m according to the

distribution f(.;αziwj
).

Let Z and W respectively denote the possible labels z for the set of data instances and

w for the set of data attributes, the probability density function of a is defined as:

f(A;θ) =
∑

(z,w∈Z×W)

p(z, w)f(A|z, w;θ) (2.3)

with θ = (π,ρ,α). Three methods are proposed to estimate parameters in Equation 2.3

using its log-likelihood, they are LBVEM (the variational EM approach), LBCEM (the

classification EM approach) and LBSEM (the stochastic EM-Gibbs approach)13.

LBVEM and LBCEM are two approximations to estimate θ based on a distribution

on Z × W , denoted by R = P (z, w|A,θ). LBVEM imposes that the distribution of

labels is assumed to be independent, i.e., R(z, w) = R(z)R(w) with R(z) =
∏

i q(zi) and

R(w) =
∏

j q(wj). By maximizing an approximation of the derived likelihood through

a number of iterations, LBVEM obtains cluster labels for rows and for columns in A.

LBCEM consists of inserting a classification step between E and M steps in estimating θ.

Both LBVEM and LBCEM guarantee the convergence, and they are simple to implement

and scalable [48].

LBSEM is a simple adaptation to LBVEM of the standard stochastic EM algorithm

[61]. However, unlike the standard method that incorporates a stochastic step between

the E and the M steps to simulate missing data based on their conditional distribution,

LBSEM applies a Gibbs sampling scheme to simulate the couple (z, w). This is the

characteristic that makes LBSEM and LBVEM different. Unlike LBVEM, LBSEM uses

no approximation, and it is less sensitive to starting values.

13EM is short for expectation-maximization.

Chapter 2. State of the Art 34

Depending on the data type of matrix A, several variations of LBVEM and LBCEM are

derived, with incorporating suitable data distributions. For example, when A is binary,

there are Bernoulli LBVEM and Bernoulli LBCEM; when A is continuous, there are

Gaussian LBVEM and Gaussian LBCEM algorithms; and when A is being considered

as a contingency table, there are Poinsson LBVEM and Poisson LBCEM.

When A is being considered as a contingency table, Charrad et al. [62] proposes a method

to determine the number of co-clusters, by alternatively applying K-means algorithm on

rows and on columns to form a number of co-clusters that optimize their χ2 values.

2.3.3 Graph Partitioning Approaches

Unlike LBMs, graph partitioning approaches model a data matrix as an undirected bi-

partite graph, in which two sets of vertices are connected by a number of edges. No edge

occurs between two vertices of the same set, and every edge carries a sort of association

between two connected vertices. This association is measure by a value of weight. Figure

2.14(a) illustrates an example, in which a bipartite graph models a small document-term

matrix. Its vertices are composed of documents and terms, and each of its edges carries

a TF-IDF value. With this model, finding co-clusters in a data matrix is equivalent to

partitioning its bipartite graph into several sub-graphs. Figure 2.14(b) displays a solu-

tion that partitions the bipartite in Figure 2.14(a) into two sub-graphs, V1 and V2. Each

sub-graph contains a subset of documents and a subset of terms.

(a) (b)

Figure 2.14: An illustration of (a) a bipartite graph and (b) its partitions. di denotes
a document, tj denotes a term, eij denotes an edge that links di and tj . V1 and V2

denote two sub-graphs.

The objective of a clustering method is to divide input data instances into several groups

such that instances in the same group are similar and those in different groups are dis-

similar [63]. Likewise, when partitioning a bipartite graph, we aim to obtain sub-graphs

such that vertices and edges in the same sub-graph are tightly associated, meanwhile

vertices and edges in different sub-graphs are loosely connected. To achieve this, we

Chapter 2. State of the Art 35

need to partition the graph by removing the weak edges, that carry the least association

between two sub-graphs. In graph theory, the concept that partitions a graph into two

disjoint sub-graphs is cut. For two disjoint sub-graphs, V1 and V2, their cut is defined as

cut(V1, V2) =
∑

i∈V1,j∈V2

eij (2.4)

and for K disjoint sub-graphs, V1, . . . , VK , their cut is defined as

cut(V1, . . . , VK) =
K
∑

i=1

cut(Vi, Vi)

with Vi denoting the complement of Vi, that is Vi ∪ Vi = V .

Von Luxburg [63] argues that when K > 2, the solution of mincut often results in

separating one individual from the rest of the graph. It outputs sub-graphs of very

unbalanced sizes. In practice, sub-graphs are expected to be “reasonably large". There

exist two common objective functions to encode the desired scenarios: the RatioCut

[64] and the normalized cut Ncut [65], defined in Equation 2.5 and in Equation 2.6,

respectively:

RatioCut(V1, . . . , VK) =

K
∑

i=1

cut(Vi, Vi)

|Vi|
(2.5)

Ncut(V1, . . . , Vk) =

K
∑

i=1

cut(Vi, Vi)

vol(Vi)
(2.6)

where |Vi| denotes the number of vertices in Vi, and vol(Vi) denotes the sum of degrees

of all vertices in Vi. The degree of a vertex is the sum of values of all its edges. The

sets of sub-graph vertices satisfy Vi ∩ Vj = ∅ and V1 ∪ · · · ∪ VK = V . Equations 2.5

and 2.6 have small values if the sub-graphs Vi are not too small. When cut(Vi, Vi) = 1,

Equations 2.5 and 2.6 respectively reach the minimum if all |Vi| or all vol(Vi) coincide.

Both scenarios result in balanced sub-graphs, measured by the number of vertices or edge

weights. However, minimizing either function with balancing conditions is a NP-hard

task [66]. Spectral clustering [63] provides a solution to solve relaxed versions of these

problems. The co-clustering methods proposed in [9, 67] detail two approaches that

use normalized spectral clustering by relaxing Ncut. A derived approach that applies

an isoperimetric embedding is explained in [68]. As these approaches output the same

number of row-wise and column-wise clusters, resulting co-clusters are along the diagonal

of the input data matrix.

Chapter 2. State of the Art 36

In order to have a better understanding on how spectral clustering can be used as a

solution in graph partitioning to perform co-clustering, we present basic concepts of

spectral clustering, its mathematical insight and some state-of-the-art approaches.

2.3.3.1 Graph Laplacians, Properties and Spectral Clustering

Let G = (V,E) denote a bipartite graph constructed by a set of vertices V = (vi)i=1,...,n

and a set of edges E, and let W = (wij)i,j=1,...,n denote the weighted adjacency matrix

of G. wij = 0 means that vertices vi and vj are not connected, and wij = wji as G is

undirected. The degree of a vertex vi ∈ V is defined as degi =
∑n

j=1wij , it is the sum

that runs over all vertices adjacent to vi. The degree matrix D is a diagonal matrix with

degrees deg1, . . . , degn on the diagonal. As we start with K = 2, thus V = V1 ∪ V2. Let

f = [f1, . . . , fn]
T denote the partition vector defined as

fi =







+1, i ∈ V1,

−1, i ∈ V2.
(2.7)

Spectral clustering is favored in many applications over traditional clustering methods,

as it can be solved efficiently by standard linear algebra software and has better clus-

tering quality. The main tools for spectral clustering are graph Laplacian matrices.

Von Luxburg [63] presents two types of graph Laplacian: unnormalized and normal-

ized. The unnormalized graph Laplacian matrix is defined as L = D −W . Details on

its properties can be found in [69, 70]. For normalized graph Laplacian, there are two

forms of matrices. One is defined as Lsym = D−1/2LD−1/2 and the other is defined

as Lrw = D−1L. The former is a symmetric matrix, while the latter is closely related

to random walk. Their properties are detailed in [71]. In [63], the author summarizes

some general properties of unnormalized and normalized Laplacian matrices, and several

properties of Lsym and Lrw. As these properties are essential in understanding spectral

clustering methods and graph partitioning co-clustering approaches, we present them

below:

• General properties of graph Laplacian matrix.

1. For every f ∈ Rn, there is

fTLf =
1

2

n
∑

i,j=1

wij(fi − fj)
2. (2.8)

2. L is symmetric and positive semi-definite.

Chapter 2. State of the Art 37

3. The smallest eigenvalue of L is zero, and the corresponding eigenvector is the

constant one vector, e = [1, . . . , 1]T .

4. L has n non-negative, real-valued eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λn.

• Main properties of the normalized graph Laplacian matrix.

1. For every f ∈ Rn, there is

fTLf =
1

2

n
∑

i,j=1

wij

(

fi√
degi

− fj
√

degj

)2

. (2.9)

2. λ is an eigenvalue of Lrw with eigenvector v if and only if λ is an eigenvalue

of Lsym with eigenvector D1/2v.

3. λ is an eigenvalue of Lrw with eigenvector v if and only if λ and v solve the

generalized eigenproblem Lv = λDv.

4. 0 is an eigenvalue of Lrw with the constant one vector e as eigenvector. 0 is

an eigenvalue of Lsym with eigenvector D1/2e.

5. Lsym and Lrw are positive semi-definite and have n non-negative real-valued

eigenvalues 0 = λ1 ≤ · · · ≤ λn.

• From eigenvalue 0 of L to the connected components.

The multiplicity14 of the eigenvalue 0 of a graph Laplacian matrix is related to the

number of connected components in the bipartite graph. Given G as an undirected

graph with non-negative weights on all edges, the multiplicity K of the eigenvalue

0 of L equals the number of connected components V1, . . . , VK in the graph. For

unnormalized L and for normalized Lrw, the eigenspace of eigenvalue 0 is spanned

by the indicator vectors eV1
, . . . , eVK

of those components; for Lsym, the eigenspace

of eigenvalue 0 is spanned by the vectors D1/2eV1
, . . . , D1/2eVK

.

Von Luxburg [63] presents an intuitive explanation on the relation stated above.

Assuming that all vertices in G are ordered according to the K connected compo-

nents they belong to, the adjacency matrix W and the Laplacian matrix L thus

have a block diagonal form such as

L =















L1

L2

. . .

LK















.

14The geometric multiplicity of an eigenvalue is the number of linearly independent eigenvectors as-
sociated with it.

Chapter 2. State of the Art 38

Each block Li is a proper graph Laplacian on its own, and it corresponds to the ith

connected component. The spectrum of L is given by the union of the spectra of Li,

and the corresponding eigenvectors of L are the eigenvectors of Li. Every Li has

eigenvalue 0 with multiplicity 1, and the corresponding eigenvector is the constant

one vector e on the i-th connected component. Therefore, L has as many eigenval-

ues 0 as there are connected components, and the corresponding eigenvectors are

the indicator vectors of the connected components.

• Unnormalized and normalized spectral clustering methods.

There exist many approaches that apply the properties of unnormalized and nor-

malized Laplacian matrices to solve clustering problems. Assuming that the input

dataset contains x1, . . . , xn instances, these approaches require a pairwise similar-

ity matrix S = (sij)i,j=1,...,n with sij = s(xi, xj) to construct a similarity graph.

Three representative approaches are respectively represented by Algorithm 3, Al-

gorithm 4 and Algorithm 5. The common point in these approaches is that they

apply the K-means method on a transformed matrix constructed from the first K

eigenvectors of a Laplacian matrix.

Algorithm 3 Spectral clustering using unnormalized L [63]

Require: Similarity matrix S ∈ Rn×n, K clusters to construct
1: Construct a similarity graph G from S, let W be the weighted adjacency matrix, and

let D be the diagonal matrix.
2: Compute the unnormalized Laplacian L = D −W .
3: Compute the first K eigenvectors v1, . . . , vK of L.
4: Let V ∈ Rn×K be the matrix containing the vectors v1, . . . , vK as columns.
5: For i = 1, . . . , n, let yi ∈ RK be the vector corresponding to the ith row of V .
6: Cluster the points (yi)i=1,...,n in RK with the K-means algorithm into clusters

C1, . . . , CK .
Ensure: Clusters V1, . . . , VK with Vi = {j|yj ∈ Ci}.

Algorithm 4 Spectral clustering using Lrw [65]

Require: Similarity matrix S ∈ Rn×n, K clusters to construct
1: Construct a similarity graph G from S, let W be the weighted adjacency matrix, and

let D be the diagonal matrix.
2: Compute the first K eigenvectors v1, . . . , vK of the generalized eigenproblem (D −

W)v = λDv.
3: Let V ∈ Rn×K be the matrix containing the vectors v1, . . . , vK as columns.
4: For i = 1, . . . , n, let yi ∈ RK be the vector corresponding to the i-th row of V .
5: Cluster the points (yi)i=1,...,n in RK with the K-means algorithm into clusters

C1, . . . , CK .
Ensure: Clusters V1, . . . , VK with Vi = {j|yj ∈ Ci}.

Chapter 2. State of the Art 39

Algorithm 5 Spectral clustering using Lsym [72]

Require: Similarity matrix S ∈ Rn×n, K clusters to construct
1: Construct a similarity graph G from S, let W be the weighted adjacency matrix, and

let D be the diagonal matrix.
2: Compute the normalized Laplacian Lsym = D−1/2(D −W)D−1/2.
3: Let V ∈ Rn×K be the matrix containing the vectors v1, . . . , vK as columns.
4: Form the matrix U ∈ Rn×K from V by normalizing the row sums to have norm 1,

i.e., uij =
vij√∑
K v2

iK

5: For i = 1, . . . , n, let yi ∈ RK be the vector corresponding to the i-th row of U .
6: Cluster the points (yi)i=1,...,n in RK with the K-means algorithm into clusters

C1, . . . , CK .
Ensure: Clusters V1, . . . , VK with Vi = {j|yj ∈ Ci}.

2.3.3.2 Mathematical Insight: Spectral Graph Partitioning by Optimizing

Ncut

In order to understand how spectral clustering can solve graph partitioning by relaxing

an optimization problem, we detail mathematical deduction and reasoning in this section.

We explain several graph partitioning co-clustering approaches that apply Ncut and our

reasoning focuses on Ncut. This reasoning explains the mathematical formulation in

Section 2.3.3.3, which SHCoClust is established on. To make it simple, we consider the

simplest case, when K = 2, i.e., it is only required to cut G into two parts, V = V1 ∪ V2.

Accordingly, the objective function of minimizing Ncut becomes

minNcut(V1, V2) =
cut(V1, V2)

vol(V1)
+

cut(V2, V1)

vol(V2)
. (2.10)

In Ncut, an element in the partition vector f takes a form of

fi =







√

vol(V2)
vol(V1)

, if i ∈ V1,

−
√

vol(V1)
vol(V2)

, if i ∈ V2.
(2.11)

The optimization problem shown in Equation 2.10 is non convex. However, with the aid

of Equation 2.8, it can be converted to a convex problem.

Chapter 2. State of the Art 40

2fTLf =

n
∑

i,j=1

xij(fi − fj)
2 (2.12)

=
∑

i∈V1

j∈V2

xij

(

√

vol(V2)

vol(V1)
+

√

vol(V1)

vol(V2)

)2
+
∑

i∈V1

j∈V2

xij

(

−
√

vol(V1)

vol(V2)
−
√

vol(V2)

vol(V1)

)2

(2.13)

=
∑

i∈V1

j∈V2

xij

(vol(V2)

vol(V1)
+

vol(V1)

vol(V2)
+ 2
)

+
∑

i∈V1

j∈V2

xij

(vol(V1)

vol(V2)
+

vol(V2)

vol(V1)
+ 2
)

=
(

∑

i∈V1

j∈V2

xij +
∑

i∈V1

j∈V2

xij

)(vol(V1)

vol(V2)
+

vol(V2)

vol(V1)
+ 2
)

(2.14)

= 2cut(V1, V2)
(vol(V1)

vol(V2)
+

vol(V2)

vol(V2)
+

vol(V2)

vol(V1)
+

vol(V1)

vol(V1)

)

(2.15)

= 2cut(V1, V2)
(vol(V)

vol(V2)
+

vol(V)

vol(V1)

)

= 2vol(V)
(cut(V1, V2)

vol(V2)
+

cut(V1, V2)

vol(V1)

)

= 2vol(V)Ncut(V1, V2) (2.16)

Note that in Equation 2.12, xij replaces wij because of the relation presented in Equation

2.22. With Equation 2.11, Equation 2.12 is extended to be Equation 2.13. In Equation

2.14, applying the definition of cut explained in Equation 2.4 and expanding the scalar

2 to be two more items results in Equation 2.15. Finally, given K = 2, vol(V) =

vol(V1) + vol(V2) and with the definition of Ncut shown in Equation 2.6, Equation 2.16

is obtained. As vol(V) is a constant, the objective function presented in Equation 2.10

is in fact equivalent to

min fTLf (2.17)

s.t. Df ⊥ e,

fTDf = vol(V).

Note that Equation 2.11 is another constraint for the new optimization problem presented

in Equation 2.17. However, with this constraint, the entries of the solution vector f are

only allowed to take two particular values, making the optimization problem NP-hard.

A solution is to relax this constrain by allowing the entries in f to be reals, i.e., fi ∈ R.

With this relaxation, the optimization problem can be solved with the aid of Laplacian

Chapter 2. State of the Art 41

properties (Section 2.3.3.1). Let f = D−1/2g, this substitution in Equation 2.17 results

in

min gTD−1/2LD−1/2g (2.18)

s.t. g ⊥ D1/2e,

∥g∥2 = vol(V).

where D−1/2LD−1/2 = Lsym, D1/2e is the first eigenvector of Lsym and vol(V) is a

constant. Problem 2.18 is in the form of the standard Rayleigh-Ritz theorem (also

named Rayleigh quotient). Solution g is given by the second eigenvector of Lsym, and f

is in fact the second eigenvector of the generalized eigenproblem Lv = λDv.

2.3.3.3 Co-clustering Documents and Terms Using Spectral Graph Parti-

tioning

Dhillon [9] proposes a co-clustering approach, in which a document collection is modeled

as a bipartite graph and graph partitioning is applied to discover co-clusters. Let A =

(aij)i=1,...,n.j=1,...,m denote a document-term matrix that is extracted from a collection

of documents. Each element of A is a TF-IDF score, i.e., aij = tij × log
(|n|
|ni|

)

, where

tij denotes the frequency of term tj in document di, |n| denotes the total number of

documents in the collection, and |ni| denotes the number of documents that contain term

tj . In this work, A is modeled as a bipartite graph G, whose vertices are documents and

terms, and a TF-IDF score is considered as an association between a document and a

term. An interesting point presented in this work is that the author presents the concept

of duality of term clustering and document clustering, and he shows how this duality

is related to graph partitioning. As this method outputs the same number of clusters

on documents and on terms, let us assume that both document set I and term set J

contain K clusters, with indexes l = 1, . . . ,K. A document cluster is denoted by zl,

with z1 ∪ · · · ∪ zK = I and zl ∩ zl′ = ∅, l ̸= l′. A term cluster is denoted by wl, with

w1 ∪ · · · ∪ wK = J and wl ∩ wl′ = ∅, l ̸= l′. By definition, “a given term tj belongs

to a term cluster wl if its association with the document cluster zl is greater than its

association with any other document cluster" [9]. Therefore, there exists:

wl =

(

tj :
∑

di∈zl

aij ≥
∑

di∈zl′

aij , l
′ = 1, . . . ,K

)

. (2.19)

Likewise, a document cluster can be defined as:

Chapter 2. State of the Art 42

zl =

(

di :
∑

tj∈wl

aij ≥
∑

tj∈wl′

aij , l
′ = 1, . . . ,K

)

. (2.20)

Equations 2.19 and 2.20 illustrate that a given document clustering determines a term

clustering, which in turn determines a better document clustering. This connection is

a duality of term and document clustering. The “best" term and document clustering

would correspond to a sub-graph such that the crossing edges between partitions have

minimum weights. This is achieved when

cut(z1 ∪ w1, . . . , zK ∪ wK) = min
V1,...,VK

cut(V1, . . . , VK). (2.21)

As stated in Section 2.3.3, optimizing Equation 2.21 results in unbalanced clusters.

Dhillon [9] avoids this problem by minimizing Ncut (Section 2.3.3.2). He starts with

a bi-partitioning problem when K = 2, then extends the approach to multi-partitioning.

However, different from the assumptions of spectral clustering (Section 2.3.3.1), this

approach defines the adjacency matrix and the degree matrix respectively to be

W =

[

0 A

AT 0

]

, D =

[

D1 0

0 D2

]

(2.22)

with D1(i, i) =
∑

j aij and D2(j, j) =
∑

i aij , indicating the sum of edge-weights incident

on document i and on term j, respectively.

This results in a Laplacian matrix

L =

[

D1 −A
−AT D2

]

. (2.23)

In Section 2.3.3.2, with K = 2, we show that the second eigenvector of the generalized

eigenproblem Lv = λDv provides a real relaxation to the discrete optimization of fining

the minimum normalized cut. In [9], the author uses Expressions 2.22 and 2.23 in the

generalized eigenproblem to find the solution. Let vector v be a vertical combination of

vector v1 and of vector v2. The following equation can be derived:

[

D1 −A
−AT D2

][

v1

v2

]

= λ

[

D1 0

0 D2

][

v1

v2

]

. (2.24)

From Equation 2.24, it is easy to obtain:

Chapter 2. State of the Art 43

D1v1 −Av2 = λD1v1, −AT v1 +D2v2 = λD2v2. (2.25)

Assuming that each document contains at least one term and each term is contained at

least in one document, D1 and D2 are then non-singular. Equation 2.25 can then be

expressed as:

D
1/2
1 v1 −D

−1/2
1 Av2 = λD

1/2
1 v1, −D−1/2

2 AT v1 +D
1/2
2 v2 = λD

1/2
2 v2. (2.26)

Equation 2.26 can be further simplified into:

(1− λ)D
1/2
1 v1 = D

−1/2
1 Av2, (1− λ)D

1/2
2 v2 = D

−1/2
2 AT v1. (2.27)

Let µ = D
1/2
1 v1 and ν = D

1/2
2 v2 hold, this produces v1 = D

−1/2
1 µ and v2 = D

−1/2
2 ν.

With these, Equation 2.27 can be rewritten as:

(1− λ)µ = D
−1/2
1 AD

−1/2
2 ν, (1− λ)ν = D

−1/2
2 ATD

−1/2
1 µ. (2.28)

Let An = D
−1/2
1 AD

−1/2
2 . Accordingly, AT

n = D
−1/2
2 ATD

−1/2
1 holds. Let σ = (1 − λ)

Equation 2.28 becomes:

σµ = Anν, σν = AT
nµ. (2.29)

Equation 2.29 in fact represents the canonical forms of the Singular Value Decomposition

(SVD) of matrix An. σ is a singular value, while µ and ν are the corresponding left and

right singular vectors for σ. As shown in Section 2.3.3.2, when K = 2, the solution

to Problem 2.17 is the eigenvector that associates to the second eigenvalue, λ2. As

σ2 = 1 − λ2, the solution to Equation 2.24 is then the left and right singular vectors

µ2 and ν2 that associate to σ2. µ2 indicates the bi-partitioning of documents, while

ν2 gives the indicator of bi-partitioning for terms. The full computing procedure of this

bi-partitioning approach is presented in Algorithm 6.

Though the mathematical reasoning of this approach starts from Expressions 2.22 and

2.23, in fact the final solution only depends on An, which is much smaller than the other

matrices. This is an obvious advantage.

Based on Algorithm 6, when K > 2, a multi-partitioning solution can be obtained in

a recursive manner. However, in [9], a more direct approach is provided by applying

Chapter 2. State of the Art 44

Algorithm 6 Spectral Bi-partitioning on documents and terms [9]

Require: An input document-term matrix A of shape n×m
1: Compute diagonal matrices D1 and D2 from A.
2: Compute matrix An by An = D

−1/2
1 AnD

−1/2
2 .

3: Apply SVD on An to obtain the left and the right singular vectors µ2 and ν2 that
associate to the second singular value σ2.

4: Obtain the optimal eigenvector v in the generalized eigenproblem Lv = λDv by
computing v1 = D

−1/2
1 µ2 and v2 = D

−1/2
2 ν2.

5: For i = 1, . . . , n+m, let yi ∈ R be the vector corresponding to the i-th row of v.
6: Cluster the points (yi)i=1,...,n+m with the K-means algorithm into clusters C1, C2.

Ensure: Clusters V1 and V2 with {Vi = j|yi ∈ Ci}.

K-means on a matrix that is constructed from singular vectors µ2, . . . ,µ⌈logK
2
⌉+1 and

ν2, . . . ,ν⌈logK
2
⌉+1. In fact, this matrix can be interpreted as projections of documents

and terms in a space of RK . This is referred as “spectral embedding" [63]. Though

there is nothing proved to use K-means clustering in this space to construct discrete

partitions from the real valued representation yi, the Euclidean distance turns out to be

a meaningful quantity. This provides favorable evidence for applying K-means to achieve

multi-partitioning in [9], where the author experimentally demonstrates good clustering

quality. Since the Euclidean distance is considered as a meaningful metric in spectral

embedding, and clustering using K-means in this space is experimentally proven to be

good, analogously, it is reasonable to apply other clustering methods, such as hierarchical

clustering methods, to obtain co-clusters organized in a hierarchy.

A drawback of [9] is that there is no discussion on the computing complexity of Al-

gorithm 6. A similar co-clustering method is proposed in [67]. Likewise, it also uses

the left and the right singular vectors to solve the graph partitioning problem, with

the purpose to obtain balanced clusters by minimizing Ncut. The major difference this

approach introduces is that it constructs multi-partitioning by recursively performing

bi-partitioning. Besides, a discussion on computation complexity to obtain the left and

the right singular vectors is elaborated. Zha et al. [67] state that the computation com-

plexity of their approach is O(CKsvdM), where C denotes the number of recursions,

Ksvd denotes the number of singular values and M denotes the number of nonzero val-

ues in matrix An. Usually, the computation complexity of a complete SVD process can

reach O(min(nm2,mn2)) in decomposing a matrix of size n-by-m [73]. However, in this

work, the authors apply the Lanczos bi-diagonalization procedure [74] to reduce the com-

plexity of obtaining the left and the right singular vectors. In principle, this procedure

goes through a number of iterations to compute partial SVDs. In each iteration, two

matrix-vector multiplications Anµ and AT
nν are calculated. Consequently, the computa-

tion complexity of obtaining the left and the right singular vectors becomes proportional

to the number of nonzero values in the input matrix An.

Chapter 2. State of the Art 45

The approaches proposed in [9, 67] are sometimes referred to “Spectral-SVD" co-clustering

methods. As these approaches are based on a relaxation imposed on the optimization

problem (Section 2.3.3.2), there is no guarantee on the quality of such a solution with

respect to the exact solution. An good example can be found in [75], where the authors

prove that Spectral-SVD methods fail to produce the best partition in a cockroach graph,

which looks like a ladder with several rimes removed. Figure 2.15 (a) illustrates the opti-

mal cut on a cockroach graph obtained by either RatioCut or Ncut, which results in two

horizontal sub-graphs. However, by Spectral-SVD, it obtains two vertical sub-graphs

shown as Figure 2.15 (b), where the cut is not optimized.

(a)

(b)

Figure 2.15: A cockroach graph partitioned by (a) an ideal cut and by (b) a Spectral-
SVD method

To overcome this problem, Rege et al. [68] propose the Isoperimetric Co-clustering Al-

gorithm (ICA), which is another approach that performs co-clustering by partitioning a

weighted bipartite graph. However, different from the Spectral-SVD methods that try to

minimize Ncut or RatioCut, ICA heuristically minimizes the ratio of the perimeter of the

bipartite graph partition and the area of the partition under an appropriate definition

of graph-theoretic area. In the experiments, ICA is proven to partition the cockroach

graph more effectively than the Spectral-SVD methods. However, it is also more difficult

to implement.

2.3.4 Co-clustering Using Non-negative Matrix Factorization

2.3.4.1 Non-negative Matrix Factorization

Apart from discovering co-clusters using graph-partitioning approaches, another impor-

tant branch of methods is based on matrix factorization. As in text clustering, the input

Chapter 2. State of the Art 46

TF-IDF matrices are usually non-negative, therefore non-negative matrix factorization

(NMF) is much studied for clustering as well as for co-clustering.

Given a non-negative matrix A = (aij)i=1,...,n;j=1,...,m, NMF tries to decompose A into

two non-negative matrices, such that A ≈ FG, where F ∈ Rn×k and G ∈ Rm×k. F and

G can be obtained by solving:

min ∥A− FGT ∥2 s.t F,G ≥ 0. (2.30)

As the function ∥A − FGT ∥2 is not convex with variables F and G, it is only possible

to find local minima to the optimization problem. Lee and Seung [76] propose “multi-

plicative update rules" as a method to solve the optimization problem. They claim that

it is a good compromise between speed and ease of implementation, in comparison with

gradient descent and conjugate gradient methods. NMF can be applied in a wide range

of domains, such as image processing, recommender systems and document clustering

[77]. If A presents a document-term matrix, NMF provides F and G as the clustering

indicator matrices of documents and of terms, respectively. In this case, there are k clus-

ters of documents and k clusters of terms. In [78], it is shown that when the orthogonal

constraint GTG = I is added, NMF becomes equivalent to K-means clustering.

2.3.4.2 Approaches for Co-clustering

Li and Ding [78] survey a range of NMF variations, among which Tri-Factorization

(TF) based methods are often used to solve co-clustering problems. Briefly, TF aims to

decompose matrix A into three non-negative matrices. A formulation of TF proposed in

[79] is described as:

min ∥A− FSGT ∥2 s.t F TF = GTG = I and F, S,G ≥ 0

where F ∈ Rn×k, S ∈ Rk×c and G ∈ Rm×c. Matrix S is introduced to absorb the different

scales between A, F and G. Besides, it offers increased degrees of freedom, so that low-

rank matrix representation remains accurate when F returns row clusters and G returns

column clusters. An obvious drawback of TF is that it is computationally expensive, due

to intensive matrix multiplications. Wang et al. [80] propose a Fast Nonnegative Matrix

Tri-factorization (FNMTF) that reduces the computational cost by using fewer matrix

multiplications. The objective function is defined as:

min ∥A− FSGT ∥2 s.t. F ∈ Ψn×k, G ∈ Ψm×c.

Chapter 2. State of the Art 47

The main difference between TF and FNMTF is that the orthonormal constraints on F

and G change. The outputs of FNMTF are matrix F for row clustering and matrix G

for column clustering.

2.3.4.3 Connection Between NMF and Spectral Graph Partitioning

Ding et al. [81] show an interesting link between NMF and graph partitioning via spectral

clustering. They prove that using graph Laplacian matrix in minimizing the objective

function such as Ncut and RatioCut can be equivalently carried out via non-negative

matrix factorization. Concretely, this association is introduced by inserting a division

of vol(V) to the objective function in Expression 2.17. With L = D −W and fTDf =

vol(V), a new objective function can be written as:

min
fT (D −W)f

fTDf
s.t. Df ⊥ e. (2.31)

Recall that f = D−1/2g is used to establish Expression 2.18. With g = D1/2f , the

authors use a normalized vector h, such that h = g
∥g∥ , to rewrite Expression 2.31 as

min hT (I − W̃)h s.t. h ⊥ D1/2e (2.32)

with W̃ = D−1/2WD−1/2. As the scaled cluster indicator vector h obeys the orthonormal

condition, its matrix H = (h1, . . . , hn) satisfies HTH = I. With hT Ih being a constant,

minimizing the objective function 2.32 is equivalent to

max Tr(HT W̃H) s.t. HTH = I, H > 0. (2.33)

The authors point out that allowing H to be continuous is the spectral relaxation of

Ncut. The solution to Expression 2.33 is given by the k principle eigenvectors of matrix

W̃ . This approach is previously detailed in Section 2.3.3.3. Another option the authors

provide is to rewrite Expression 2.33 into

min ∥W̃ −HHT ∥2 s.t. H ≥ 0. (2.34)

Expression 2.34 is in the conventional form of NMF. It thus can be solved as an NMF

problem. Once H is obtained, the original cluster indicator vector f can be obtained by

optimizing

Chapter 2. State of the Art 48

min ∥h− D1/2f

∥D1/2f∥∥
2. (2.35)

This gives an equivalent solution to using spectral graph partitioning.

2.3.5 Distributed and Parallel Approaches

Along with approaches that try to improve computational efficiency from algorithmic

aspects, there exist many methods that take advantage of hardware parallelism. Pa-

padimitriou and Sun [82] propose DisCo, a scalable framework under which co-clustering

algorithms that employ a checkerboard structure can be implemented with MapReduce.

Given a matrix A of n rows and m columns, and r and c denoting row group assign-

ments and column group assignments, the goal of DisCo is to find r and c such that,

after permutation based on r and c, the correlated sub-matrices are grouped together. As

searching for the optimal group assignments is NP-hard, DisCo introduces a local search

by alternating between row and column assignments while holding the other assignments

fixed.

BiTM (Bi-clustering using Topological Maps) performs co-clustering based on self-organizing

maps [83]. Its implementation is built on Apache Spark. BiTM consists of a topological

map and a set of observations. It iteratively looks for the column and row assignments

that associate observations to the topological map. The output is a block structure.

Su et al. [84] introduce sequential updates for alternate minimization co-clustering (AMCC)

[54] and propose Co-ClusterD, a distributed framework that consists of two approaches

to parallelize AMCC by (1) dividing clusters and (2) batching points. Co-ClusterD is im-

plemented based on iMapReduce [85], a distributed framework on Hadoop that supports

iterative algorithms.

2.4 Tests of the Cluster Hypothesis

2.4.1 Overview

Information retrieval (IR) is a wide domain, there are many research works that con-

tribute in different directions. For example, collaborative IR analyses user-to-user collab-

oration in order to perform shared IR tasks [86, 87]; selective search provides perspectives

on how to organize a very large document collection so that it can be searched accurately

Chapter 2. State of the Art 49

and efficiently [88, 89]; query performance prediction is studied to estimate retrieval ef-

fectiveness in the absence of relevance judgments [90, 91]; and cluster-based IR systems

apply clustering methods in performing IR tasks [92, 93, 94].

The cluster hypothesis is the fundamental assumption of applying clustering methods in

IR. This hypothesis states that “the associations between documents convey information

about the relevance of documents to requests" [92]. It implies that, for a query, relevant

documents tend to be more similar to each other than the non-relevant documents.

Therefore, relevant documents are likely to appear in the same clusters. For more than

four decades, different tests on the cluster hypothesis have been experimented from

various aspects. They provide theoretical yet valuable knowledge in studying the retrieval

effectiveness and efficiency of a target clustering method in an IR application.

Based on objectives and approaches, these tests can be categorized into classic tests,

refined tests and language-model based tests.

2.4.2 Classic Tests

Generally speaking, classic tests can be classified into two kinds. The first kind fo-

cuses on comparing retrieval effectiveness between a specifically designed cluster based

search and conventional inverted file system (IFS) search. The overlap test [92], the

nearest neighbor test [93] and the density test [95] are representatives of this kind. They

first examine whether the cluster hypothesis characterizes the experimented collections,

then compare the effectiveness of retrieving documents using a designed search strategy,

against document-based search. The other kind of tests emphasizes a specific cluster-

ing family, hierarchical clustering, which is capable to explicitly reveal the connections

of all documents, and is thus more informative and beneficial in retrieving documents.

While many works compare retrieval effectiveness among a set of hierarchical clustering

methods, some other tests examine the different strategies of searching documents in the

dendrogram output by a hierarchical clustering method.

2.4.2.1 Comparison Tests of Cluster-based and Document-based Search

Overlap Test. Jardine and van Rijsbergen [92] test the cluster hypothesis based on the

assumption that “given a query, the similarity between two relevant documents should be

higher than the similarity between a relevant and a non-relevant document". They mea-

sure the overlap (or say the separation) between two similarity distributions of relevant

pairs and non-relevant pairs. A collection with a low overlap value is believed to cluster

strongly together for a set of queries, and relevant documents are thus better separated

Chapter 2. State of the Art 50

from non-relevant documents. Within this experimental setting, their overlap test using

the Cranfield-200 collection concludes that cluster-based searches have the potential to

greatly outperform IFS. The same result is obtained in a later test, in which the full

Cranfield15 collection is experimented [96].

Nearest Neighbor Test. Voorhees [93] provides an alternative method, the nearest

neighbor test. She assumes that the k nearest neighbors of a document d are the k

documents that are the most similar to d. Therefore, if the cluster hypothesis holds

for a collection, then many of the nearest neighbors of a relevant document would also

be relevant. For each relevant document of each query, this test examines whether the

assumption holds by computing the k nearest neighbors of a relevant document and

recording the number of relevant documents in the set of neighbors. Four datasets

(MED, CACM, CISI16 and INSPEC) are experimented, with k ∈ [0, 5]. The nearest

neighbor test concludes that the cluster hypothesis holds for the MED collection, but

not for the CISI collection. The extent to which the cluster hypothesis characterizes a

collection seems to have little effect on how well cluster searching performs as compared

to a sequential search of the collection [93].

Density Test. El-Hamdouchi and Willett [95] propose the density test. The concept of

density is defined as “the total number of postings in the collection divided by the product

of the number of documents in the collection and the number of terms which have been

used for the indexing the collection". For example, given a collection of n documents

indexed by an average of m terms, which are selected from a vocabulary of M terms,

the density is m/M . Given a collection, documents that only have a few terms from the

vocabulary are unlikely have common terms with other documents. Thus they tend to

have low inter-document similarities. However, when a document-term matrix is densely

populated, documents tend to share a large number of terms, therefore higher similarities

are expected. Based on this assumption, the density test expects that collections with

high density values would give better results in clustered search than those with low

values. This test is empirically demonstrated to be more correlated than the overlap

and the nearest-neighbor tests, with the relative improvement posted by cluster-based

retrieval [97]. Besides, this test does not require query or relevance data, so it can be

applied to test collections whose query set is unavailable.

2.4.2.2 Tests Using Hierarchical Clustering

Comparing retrieval effectiveness among different hierarchical clustering meth-

ods.
15A textual collection of 1,400 short abstracts of aeronautical system articles.
16http://ir.dcs.gla.ac.uk/resources/test_collections/

http://ir.dcs.gla.ac.uk/resources/test_collections/

Chapter 2. State of the Art 51

Inspired by the initial work on the cluster hypothesis [92], many subsequent works de-

vote their tests to examining the retrieval effectiveness of different hierarchical clustering

methods. Differing from flat clustering, hierarchical clustering is more informative in

revealing the internal connections among a set of input documents. It outputs a binary

tree structure, named dendrogram, which is able to explicitly illustrate how individual

documents are grouped. In cluster-based retrieval applications, dendrograms can illus-

trate how relevant documents are located, and thus can be very beneficial in guiding

information seeking. In Section 2.2.1, we state that the agglomerative hierarchical clus-

tering (AHC) is practically preferred to divisive hierarchical clustering, as the latter can

be NP-hard. In testing the cluster hypothesis, many research works have extensively

applied four AHC methods to compare their retrieval effectiveness. These methods are

single link, complete link, average link and Ward method. However, in terms of retrieval

effectiveness, results of these tests are not consistent. Griffiths et al. [98] claim that “av-

erage link gave the best results" in his test, while Willett [99] concludes that single link

displays the poorest performance, and that “complete link is probably the most effective

method". Yet, Griffiths et al. [100] state that “Ward’s method was found to give the

best overall results". In addition, discussion on computing efficiency is usually out of

the scope of these works. As complexity of conventional AHC is up to O(n3), efficiency

is an important factor to consider in practice. Moreover, a common incompleteness of

these works is that they do not cover all members in the conventional AHC family. As

illustrated in Figure 2.10, there are seven conventional AHC methods, but only four of

them have been tested and compared.

Comparing cluster-based searching strategies.

Based on hierarchical clustering, another branch of tests concentrates on comparisons of

two different cluster-based searching strategies: top-down search and bottom-up search

[96, 99]. The result of these strategies is a cluster of documents instead of a set of ranked

documents. In the top-down search, the query enters via the root of the dendrogram. It

is then matched against two child clusters. The child cluster with higher query-cluster

similarity is chosen to continue the search. The search moves down until it finds one

cluster that satisfies a pre-defined retrieval criterion. This pre-defined retrieval criterion

can be a minimal number of relevant documents contained in the cluster. Alternatively,

it can be a critical similarity value, at which the similarities of query and clusters start

to decrease. This searching strategy has a time complexity of O(log n). However, a

general problem of this strategy is that it often produces a large cluster that contains

most of relevant documents and many non-relevant documents, resulting in high recall

and low precision. This problem can be avoided using the bottom-up search, which

starts with leaf clusters of the dendrogram and moves up toward the root until some

retrieval criterion is met. Nevertheless, this search is not efficient if there are too many

Chapter 2. State of the Art 52

documents at the leaf nodes. A recommended way is to determine a starting cluster for

the search by manually selecting a single relevant document at the leaf level. However,

this search strategy is likely to output a relevant cluster that has high precision but low

recall. In [99], it is stated that “bottom-up searching will generally give better results

than top-down searching, especially when the very small bottom-level clusters are used".

A similar conclusion is stated in [94], where the author proves that bottom-up search is

superior to top-down search via a probabilistic model.

Optimal cluster search.

In both searching strategies, it is required to compute the similarity between a query and

a cluster representative. Usually, a centroid is used as the representative of a cluster.

When the size of a cluster is small, such a representative can be considered to be a

reasonable description. However, for a large cluster, it becomes less suitable to represent

a cluster using a representative. Differing from the two search strategies, the optimal

cluster search [92] does not involve actual matching between a query and a cluster

representative. In scanning the hierarchy of the dendrogram, a cluster is considered as

the optimal cluster if it has the minimal E-measure, which is defined as

E = 1− (β2 + 1)PR

β2P +R
(2.36)

with P and R denoting the precision and recall, respectively. β is a parameter that

balances the importance of precision and recall. It usually takes values 0.5, 1 and 2.

When β = 1, the E-measure is equivalent to the F -measure.

Compared to top-down search and bottom-up search, optimal cluster search is superior,

as it adopts the (harmonic) mean of precision and recall. It avoids to retrieve either large

clusters that result in high precision and low recall, or small clusters that have high recall

and low precision. In addition, it is still possible to adjust between precision and recall

by choosing different values for β. Another advantage of optimal cluster search is that

it does not require to compute any cluster representative. In fact, it directly concerns

the internal connections of documents in the dendrogram when it computes the retrieval

effectiveness for a query. Thus, it eliminates the bias brought from external sources to

the document hierarchy.

2.4.3 Refined Tests

Several recent works refine some of the classic tests by adopting a different distance

measure or new experimental settings.

Chapter 2. State of the Art 53

Smucker and Allan [101] claim that the nearest neighbor test applies an insufficient

measure in testing the cluster hypothesis, as it only requires documents to be locally

clustered. Thus, it cannot distinguish whether a set of relevant documents are locally

or globally clustered. For some similarity measures and some document collections,

the nearest neighbor test may fail to detect when relevant documents do cluster well.

By modeling documents into a weighted and directed graph, this work proposes a new

measure, the normalized mean reciprocal distance (nMRD), which is able to capture

global document-to-document similarities. It proves to be an effective measure for testing

the cluster hypothesis.

Tombros [102] refines the overlap test and re-examines the retrieval effectiveness of hi-

erarchical clustering in a dynamic fashion. Differing from the previous tests designed in

[93, 94], in which clustering is applied statically over the whole document collection prior

to querying. This test applies clustering only on the top-n ranked documents, which are

retrieved in response to a query. The retrieval effectiveness is then measured by op-

timal cluster search, and compared against an IFS. The conclusions of such dynamic

cluster-based retrieval confirm that the effectiveness of optimal query-specific cluster sig-

nificantly outperforms optimal IFS. Moreover, under this dynamic setting, average link

outperforms single link, complete link and Ward method.

2.4.4 Language Model-based Tests

All the tests mentioned above are based on the “bag-of-words" assumption and the vector

space model. Another set of tests on the cluster hypothesis adopt the language model

[103, 104]. In such a model, a document is not considered as a set of terms, but as a

distribution of terms. A detailed survey on the language model can be found in [105].

Differing from vector space model-based tests, in which similarity/dissimilarity measures

are often the Euclidean distance, the cosine similarity, the Dice coefficient, or the Jaccard

coefficient. In language model-based tests, this metric is measured by the expected

negative cross entropy between the documents’ Dirichlet-smoothed unigram language

models, i.e.,

S(di, dj) = exp

(

− CE

(

p
Dir[0]
di

(.)||pDir[µ]
dj

(.)

))

where di and dj are two documents, CE is the cross entropy (or Kullback-Leibler di-

vergence), Dir is the Dirichlet smoothing, and µ is its parameter. µ is set to 1000 in

[104].

Chapter 2. State of the Art 54

Raiber and Kurland [104] model several web-scaled datasets using the language model

and retest the nearest neighbor test. They conclude that “the cluster hypothesis can

hold, as determined by a specific test, for large scale Web corpora to the same extend

it does for newswire corpora". In comparing the retrieval effectiveness of the nearest

neighbor clusters, the single link hierarchical clusters and the document-based ranking

system, they state that the nearest neighbor clusters outperform the others.

Raiber and Kurland [104] also retest the overlap test, the density test and the nMRD

test on top-n retrieved documents (n = 50, 100, 250, 500) from nine various datasets

[103]. The objective is to find the impact of correlation between a cluster hypothesis test

and the effectiveness of cluster-based retrieval. Their work reveals that the correlation

between the two is influenced by the type, the size of collections, the tested methods,

and the number of documents in the retrieved list.

2.4.5 Applications of the Cluster Hypothesis in IR

The Cluster Hypothesis provides the core assumption and theoretical base for selective

search, a parsimonious retrieval strategy in IR. Selective search partitions a collection

based on document similarity in order to obtain topic-based subsets, and it searches

only a few subsets that are estimated to contain relevant documents for a given query

[88]. Compared to traditional search, which divides the collection into subsets and then

processes the query against all shards in parallel, selective search outperforms its coun-

terpart using limited computing resources. A well-studied question in selective search

is how to smartly partition a collection so that documents in the same partitions are

semantically similar.

Apart from academic research, commercial cluster-based retrieval systems provide al-

ternatives to commonly-used document-based search engines. Yippy.com17 and Car-

rot2.org18 are two search engines of this genre. In responding to a query, a list of ranked

documents and a list of concept clusters are returned. By clicking a cluster label, a

set of child concept clusters displays. The ranked documents change accordingly, as

users click the clusters that they are interested in. Compared to document-based search,

this searching procedure is more navigating and helpful when user’s information need is

unclear.
17https://yippy.com/
18http://search.carrot2.org/stable/search

https://yippy.com/
http://search.carrot2.org/stable/search

Chapter 2. State of the Art 55

2.5 Conclusion

In this chapter, we aim to present the state of the art that is related to the content of

this thesis.

Firstly we introduce the basic knowledge on text clustering, distributed and parallel

computing. Then, we emphasize on three topics: agglomerative hierarchical cluster-

ing, co-clustering and tests on the cluster hypothesis. Detailed concepts and existing

approaches are presented for each topic. Concretely, in agglomerative hierarchical clus-

tering, we introduce approaches that are most related to the methods concerned in this

thesis. They are the conventional AHC methods and the Lance-Williams formula. Be-

sides, the nearest neighbor chain approach is also presented and discussed.

With respect to co-clustering, we first present a statistical model, the latent block model.

Then, we detail the graph partitioning approach by elaborating on its properties and

mathematical insight, which offer good explanations to one of the proposed methods

in this thesis, the SHCoClust. Moreover, we introduce another co-clustering approach,

which is based on non-negative matrix factorization. As this method is related to the

Spectral-SVD methods, we believe it offers a good insight for the proposed method.

Comes lastly is the tests on the cluster hypothesis. We detail three main kinds of tests,

the classic tests, the refined tests, and the language model-based tests. By reading this

section, reads can have a good understanding on the concept of the cluster hypothesis,

as well on different tests proposed in the past. In this thesis, we contribute to the classic

tests. Concretely, we propose new tests that apply Sim_AHC and SHCoClust, with focus

on comparing retrieval effectiveness among different hierarchical clustering methods and

addressing efficiency issue.

Chapter 3

The Similarity-based Agglomerative

Hierarchical Clustering Framework

3.1 Motivation

As stated in Chapter 1, we are interested in agglomerative hierarchical clustering (AHC),

as it is capable to explicitly reveal the internal connections of data instances. In this sense,

it is superior to flat clustering. In addition, AHC is more efficient than its counterpart,

the divisive hierarchical clustering, which can reach NP-hard. However, as mentioned

in section 2.2, chapter 2, AHC methods are still computationally costly. The time com-

plexity of computing a conventional AHC method can reach O(N3). Nearest neighbor

chain (NN-chain) methods are more efficient [33, 106], as their time complexity is up to

O(N2). Yet, as they are constrained by the reducibility property, these methods can-

not work with median and centroid methods. Others methods, such ad CURE [38] and

BIRCH [6], claim to address large datasets. But they also have disadvantages. For ex-

ample, CURE reduces data by random sampling and partitioning. Though it decreases

time complexity to O(N2
samplelogNsample), the results are indeterministic due to the ran-

dom procedures. As to BIRCH, its time complexity is O(N), but an extra structure, the

clustering features (CF) tree, has to be employed in order to store compact summaries

of the original data. A more recent approach, SparseHC [41], is capable to perform on-

line AHC by principally structuring clusters with an adjacency hash map. According to

experimental results, this method does decrease memory growth, but time complexity is

improved only for single link. Besides, this approach is not generic, it is only applicable

for single link, complete link and average link.

We are interested in a method that is generic for all conventional AHC methods, inde-

pendent from any external structure, deterministic in its results and scalable. Scalability

57

Chapter 3. Sim_AHC 58

is an important property for an algorithm. In parallel and distributed computing, a

scalable algorithm means that computing can be performed concurrently, so that the

total running time decreases as the number of computing units increases on the same

input. In a traditional computing mode, where computing is performed sequentially, a

scalable algorithm can be interpreted as being capable to perform the same computing

task while occupying much less resources, such as memory and running time, compared

to a non-scalable algorithm on the same input. Therefore, such an algorithm can process

larger datasets with limited computing resources available.

To satisfy our requirements, we propose a similarity-based agglomerative hierarchical

clustering framework, Sim_AHC. It is called “a framework" as it can address all of con-

ventional AHC methods. It is thus generic. In addition, it does not require any other

external structure, nor a random sampling procedure. Therefore, its results are deter-

ministic and it is independent from any external structure. Sim_AHC can be considered

as a new expression of the Lance-Williams (LW) formula, but uses inner product-based

similarities instead of distances. This change provides two important advantages.

• On one hand, as the similarities lie between 0 and 1, it is feasible to employ a fil-

tering strategy to sparsify the input similarity. This results in less memory to store

non-zero similarity values, as well as less computing time to perform clustering.

Sim_AHC is thus scalable.

• On the other hand, as similarities are based on inner products, it is possible to use

different kernel functions to compute similarities. This property allows Sim_AHC

to perform AHC methods on non-linearly separable datasets more effectively.

This chapter is organized as follows: in Section 3.2, we detail Sim_AHC from several as-

pects: the mathematical deduction, its extension to kernel functions, and some advice on

sparsifying the input similarity matrix. Through the mathematical deduction, the read-

ers can have a good understanding on how we replace distances in the Lance-Williams

formula with inner product similarities to produce Sim_AHC. Besides, detailed reason-

ing on the equivalence of the two frameworks is illustrated as well. We then show how

the basic form of inner product similarity can be extended to any kernel function. Next,

we point out how to correctly sparsify a general similarity matrix, which can be obtained

from negative vectors. After the theoretical properties of Sim_AHC are explained, we

present our experiments and results in Section 3.3. Our experiments using linear ker-

nel and Gaussian kernel aim at testing (1) the equivalence between Sim_AHC and its

counterpart, the Lance-Williams formula, and (2) the impact of sparsifying the input

similarity matrix on scalability and on clustering quality. Our empirical results tested

on three datasets demonstrate that Sim_AHC is equivalent to the AHC algorithm using

Chapter 3. Sim_AHC 59

the Lance-Williams formula. In addition, the impact of sparsifying the input similar-

ity matrix is positive, for the gain of efficiency does not compromise clustering quality.

Concretely, clustering quality tends to be preserved as the input similarity matrix is

getting more and more sparsified. It collapses when the matrix is largely sparsified at

some level. Before this collapsing point, up to 90% memory usage can be freed, and up

to 85% running time is saved with our tested datasets. Meanwhile, clustering quality is

preserved as high as or better than using full-sized similarity matrix as input.

3.2 The Similarity-based Hierarchical Clustering Framework,

Sim_AHC

In this section, we introduce Sim_AHC from several aspects. Firstly, we start with the

mathematical reasoning to show how this framework is deduced and how it is equivalent

to the Lance-Williams formula. Secondly, we extend the framework to kernel functions.

Lastly, we present a strategy to sparsify the input similarity matrix.

3.2.1 Mathematical Deduction

Assuming we are dealing with a dataset of n instances and m features, let a matrix A of

shape n-by-m represent this dataset. With x and y being two row vectors from A, the

Euclidean distance of x and y can be expressed as:

DEuclidean(x, y) =

√

√

√

√

m
∑

i=1

(xi − yi)2. (3.1)

The inner product of x and y is defined as:

⟨x, y⟩ =
m
∑

i=1

xiyi. (3.2)

It is clear that the Euclidean distance of x and y can be expressed in the form of an

inner product, so as the squared Euclidean distance. Using inner products, the squared

Euclidean distance of x and y can be expressed as:

D2
Euclidean = ⟨x, x⟩+ ⟨y, y⟩ − 2⟨x, y⟩. (3.3)

Chapter 3. Sim_AHC 60

Let us assume that the similarity between x and y, S(x, y), is defined by the inner

product of their normalized form, i.e.,

S(x, y) = ⟨ x

||x|| ,
y

||y|| ⟩. (3.4)

S(x, x) = S(y, y) = 1 always holds. Given Equation 3.3, the corresponding dissimilarity

D(x, y) can be defined as:

D(x, y) = || x

||x|| −
y

||y|| ||
2 = S(x, x) + S(y, y)− 2S(x, y) = 2(1− S(x, y)). (3.5)

Now let x and y be two vectors Cx and Cy, each representing a cluster. Under the above

assumptions, we can provide an equivalent expression of the Lance-Williams formula

using S instead of D. Recall that in the first iteration of the AHC algorithm (Algorithm

1), there are n clusters, each being one data point Cx. With Equation 3.5, we can deduce

a relationship shown as follows:

(Ci, Cj) = argmin
(Cx,Cy)

D(Cx, Cy)

= argmax
(Cx,Cy)

(

− 1

2
D(Cx, Cy)

)

= argmax
(Cx,Cy)

[

S(Cx, Cy)−
1

2

(

S(Cx, Cx) + S(Cy, Cy)
)

]

. (3.6)

When the pair (Ci, Cj) that has the largest similarity is found, Ci and Cj are merged into

one cluster C(ij). With Ck denoting any remaining cluster, for the subsequent iterations,

we show that the Lance-Williams formula can be recast as follows:

−1

2
D(C(ij), Ck) = S(C(ij), Ck)−

1

2

(

S(C(ij), C(ij)) + (αi + αj)S(Ck, Ck)
)

(3.7)

where:

S(C(ij), Ck) = αiS(Ci, Ck) + αjS(Cj , Ck) + βS(Ci, Cj) (3.8)

−γ|S(Ci, Ci)/2− S(Ci, Ck)− S(Cj , Cj)/2 + S(Cj , Ck)|
S(C(ij), C(ij)) = (αi + β)S(Ci, Ci) + (αj + β)S(Cj , Cj). (3.9)

Chapter 3. Sim_AHC 61

Formulas 3.6 and 3.7 are equivalent to (Ci, Cj) = argmin(Cx,Cy)D(Cx, Cy) in the con-

ventional AHC procedure, while the recurrence formulas 3.8 and 3.9 are the counter-

parts of the Lance-Williams formula (Equation 2.1) that establishes our method. With

S(Cx, Cx) = 1 holding for all n singletons {Cx}, we show below that our formulation is

equivalent to the Lance-Williams formula for each clustering scheme listed in Table 2.5:

• Single link and complete link methods.

It is easy to show that Equation 3.8 reduces to S(C(ij), Ck) = αiS(Ci, Ck) +

αjS(Cj , Ck) + βS(Ci, Cj) − γ|S(Ci, Ck) − S(Cj , Ck)|, and Equation 3.9 reduces

to S(C(ij), C(ij)) = 1, as αi + αj + 2β = 1 with parameter values in Table 2.5.

Since αi + αj = 1 holds in Equation 3.7, then Equation 3.6 with the reduced up-

dating rules of Equations 3.8 and 3.9 are globally equivalent to the conventional

procedure. Note that, for the other methods, γ = 0, so Equation 3.8 boils down to

S(C(ij), Ck) = αiS(Ci, Ck) + αjS(Cj , Ck) + βS(Ci, Cj).

• Average link, McQuitty, centroid, median and Ward methods.

Recall that S(Cx, Cx) = 1 holds for all n singletons {Cx}. In Equation 3.7, when

the term S(Cij , Cij) is replaced by Equation 3.9, with some simple linear algebra

manipulations, Equation 3.7 becomes:

−1

2
D(C(ij), Ck) = S(C(ij), Ck)− (αi + αj + β).

With the value of the term −(αi +αj + β) being equal or greater than −1, we can

divide the five clustering methods into two groups: (1) the average link, McQuitty

and Ward methods that have −(αi+αj+β) = −1, and (2) the centroid and median

methods who satisfy −(αi + αj + β) > −1:

1. Regarding the average link, McQuitty and Ward methods, with the aid of

Table 2.5, it is not difficult to prove that −(αi + αj + β) = −1 always

holds. Consequently, for these methods, Equation 3.6 with the updating rules

S(C(ij), Ck) = αiS(Ci, Ck)+αjS(Cj , Ck)+βS(Ci, Cj) and S(C(ij), C(ij)) = 1

is globally equivalent to the general AHC procedure.

2. Concerning the centroid and median methods, since αi + αj = 1 in Equation

3.7, the coefficient assigned to S(Ck, Ck) vanishes. However, αi+αj +2β ̸= 1

in Equation 3.9. Hence, S(C(ij), C(ij)) ̸= 1. Therefore, it is important to apply

the weighting system determined in Equation 3.9 for the global equivalence

of the centroid and median methods to hold.

Chapter 3. Sim_AHC 62

Wrapping up all particular cases discussed above, the computing procedure of Sim_AHC

goes through the following steps.

• At each iteration, we solve:

(Ci, Cj) = argmax
(Cx,Cy)

S(Cx, Cy)−
1

2

(

S(Cx, Cx) + S(Cy, Cy)
)

. (3.10)

• After having merged (Ci, Cj) into C(ij), the similarity matrix S is updated by

applying the two following equations:

S(C(ij), Ck) = αiS(Ci, Ck) + αjS(Cj , Ck) + βS(Ci, Cj) (3.11)

−γ|S(Ci, Ck)− S(Cj , Ck)|
S(C(ij), C(ij)) = δiS(Ci, Ci) + δjS(Cj , Cj). (3.12)

The new expression leaves the values of parameters αi, αj , β and γ unchanged as in

the original Lance-Williams formula. To guarantee the equivalence for each clustering

method, the values of the newly added parameters δi and δj can be determined freely,

as long as their sum satisfies the following conditions:

δi + δj =



















1
2 for median

|Ci|
2+|Cj |

2

(|Ci|+|Cj |)2
for centroid

1 for other methods.

At beginning of this Section, we use A to denote a data matrix. In a text mining task,

A = {a(ij)}i=1,...,n;j=1,...,m can be considered as a document-term matrix of shape n-by-m,

with n denoting the number of documents in the corpus. After some preprocessing, each

document is represented by a vector of m terms. When the TF-IDF weighting strategy

is applied, aij is the TF-IDF value of the jth term in the ith document. Before input

A to Sim_AHC, it is important to perform row-wise normalization on A, so that each

individual document vector is scaled to unit norm. Let ai. denote a document vector

represented by m TF-IDF values. It is suitable to adopt the l2-norm to normalized ai.

into:

âi. =
ai.
∥ai.∥

with ∥ai.∥ =

√

√

√

√

m
∑

j=1

a2ij (3.13)

Chapter 3. Sim_AHC 63

with ∥ai.∥ denoting the norm of ai. and âi. denoting the normalized form. Normalization

on A outputs Â. The input to Sim_AHC is the pairwise similarity matrix S of Â,

S = ÂÂT . Algorithm 7 details the computing procedure of Sim_AHC.

Algorithm 7 Sim_AHC computing procedure

Data: The pairwise similarity matrix S

Initialize a dendrogram of n leaves with null height values

while number of iterations < n do
1. Search for the pair of clusters (Ci, Cj) that has the maximal similarity in S, by

Equation 3.10,

2. Merge Ci and Cj into C(ij) and add a corresponding parent node in the dendro-

gram with height value [S(Ci, Cj)− 1
2(S(Ci, Ci) + S(Cj , Cj))],

3. Compute the similarity of C(ij) and any other cluster Ck and update S accord-

ingly, by Equations 3.11 and 3.12.

end

Result: A dendrogram of 2n− 1 nodes

Unlike the dendrogram output by a conventional AHC method, the dendrogram output

by Sim_AHC is growing downwards. The height of a newly merged cluster is [S(Ci, Cj)−
1
2(S(Ci, Ci) + S(Cj , Cj))]. This is equal to −1

2D(Ci, Cj), a negative value.

3.2.2 Extension to Kernel Functions

Recall that the basic assumption of Sim_AHC is Equation 3.4. The usage of inner

products in Sim_AHC allows us to naturally extend its clustering methods to kernel

functions [107]. Consequently, in our method, broader similarity measures can be easily

employed and non-linearly separable datasets can be addressed more effectively.

Let ϕ : I → F represents a mapping from a low dimensional space to a possibly infinite

dimensional space. A kernel function K on two data vectors x and y in space I is

defined as K(x, y) = ⟨θ(x), θ(y)⟩. It is in fact the inner product of two mapped vectors

in space F . If K is a linear kernel, the S matrix in our approach is filled with cosine

similarities, and more importantly, its diagonal entries should be constant. Gaussian and

Laplacian kernels satisfy this condition naturally, but other kernels must be normalized.

To generalize all cases, we obtain a normalized kernel similarity matrix by:

S(x, y) =
K(x, y)

√

K(x, x)K(y, y)
. (3.14)

Chapter 3. Sim_AHC 64

3.2.3 Sparsification of the Cosine Similarity Matrix

For a document-term matrix A that is filled with TF-IDF values, as TF-IDF values are

non-negative, the similarity values in the resulting similarity matrix S lie between 0 and

1. However, in the general case, S can contain negative values. In that case, let m < 0

be the minimal value in S and |m| its absolute value. It is always possible to transform

S in order to have non negative values using the following re-scaling operator, ∀x, y ∈ Â:

S(x, y)← S(x, y) + |m|
1 + |m| . (3.15)

Since this mapping is monotonically increasing, S remains an inner product matrix and,

in addition, its diagonal is filled with value 1.

Assuming that S is non negative, we propose to apply a simple thresholding operator

that depends on a parameter τ ∈ [0, 1]. Any pair of clusters that has a similarity value

below τ is considered being far enough from each other, thus their similarity is replaced

by 0. Similarities that are over τ are unchanged in S. Formally, this process can be

expressed as:

S(x, y)← S(x, y)I(S(x,y)≥τ) (3.16)

where I(S(x,y)≥τ) = 1 if S(x, y) ≥ τ and I(S(x,y)≥τ) = 0 otherwise.

When S exists in memory as a sparse matrix, i.e., only non-zero values are actually

stored, the thresholding strategy with τ results in an S matrix sparser than the original

one. Therefore, less memory is required to store S and less computing time is demanded

to compute on it. However, this strategy is unsuitable for distances, even normalized

distances that have value between 0 and 1. Because for distances, zero and close-to-zero

values are the most important as they signify high similarity, these values have to be

stored instead of being ignored.

Next, we propose to restrict the search for pairs of clusters to merge in Equation 3.10

into the following subset: S = {(Ck, Cl) : S(Ck, Cl) > 0}. This permits to reduce

running time, since the bottleneck of the general AHC algorithm is actually the time

used in searching for the optimal proximity value, which has O(N2) time complexity.

Accordingly, we propose to replace Equation 3.10 with:

(Ci, Cj) = argmax
(Ck,Cl)∈S

S(Ck, Cl)−
1

2
(S(Ck, Ck) + S(Cl, Cl)). (3.17)

Chapter 3. Sim_AHC 65

As we shall see in the next section, this approach not only dramatically reduces processing

time, but also achieves better clustering results.

3.3 Experimental Verification

The goals of our experiments are to demonstrate that:

1. under the assumptions exposed previously, the framework based on Equations 3.10,

3.11 and 3.12 is equivalent to the conventional AHC procedure (Algorithm 1), and

the Lance-Williams formula (Equation 2.1);

2. sparsifying the cosine similarity matrix obtained by Formula 3.16, and applying

Sim_AHC (Equations 3.17, 3.11 and 3.12) considerably decreases memory use and

running time, while better clustering results can be obtained.

To this end, we experiment on text clustering tasks. Indeed, hierarchical clustering is

particularly interesting in this case, since it allows expressing the relationships between

different topics in a collection and at different granularity levels. Moreover, cosine sim-

ilarities are classic proximity functions used for documents. In addition, hierarchical

document organization based on the conventional AHC procedure faces the problem of

scalability, since text collections are usually large. Our experiments seek to overcome

these limits.

It is important to note that our purpose is not to compare different AHC methods among

each other, but rather to exemplify the properties of Sim_AHC in comparison to the

conventional AHC procedure that use the Lance-Williams formula. As a consequence,

the results obtained by the conventional approach serve as our baseline.

3.3.1 Datasets, Preprocessing and Evaluation Measures

In our experiments, we use three well-known corpora that are employed in text clustering

benchmarks: Reuters-215781 [108], SMART [9] and 20Newsgroups2 [109]. The Reuters

corpus is a collection of newswire articles, assembled and indexed with categories by

personnel from Reuters Ltd. Its ApteMode is a collection of 10,788 financial articles

from 90 categories (classes). This collections is skewed (yet less than the original corpus)

with 36.7% of the documents in the most common classes, and only 2 documents in

each of the five least common classes. In our experiment, we generate a sample of the

ApteMode collection, named Reuters, by firstly ignoring the classes that have less than

1Distribution 1.0, ApteMod version.
2We use the same dataset as in http://qwone.com/~jason/20Newsgroups/.

http://qwone.com/~jason/20Newsgroups/

Chapter 3. Sim_AHC 66

50 documents, and then randomly sampling (without replacement) a number of articles

from each remaining class. The SMART corpus contains three classes, MENDLINE,

CISI and CARNFILED, containing 1033, 1460, and 1400 journal abstracts on medicine,

informatics and aerodynamics, respectively. The 20Newsgroups corpus contains 18,821

news articles from 20 classes. The number of documents in each class varies between 628

to 999. In our experiments, we use a sample of the 20Newsgroup corpus, named 20NG,

by randomly selecting (without replacement) 300 documents from 15 classes. Details of

datasets used in our experiments can be found in Table 3.1.

No. No. No.
Dataset Classes included Cla Docs Terms

Reuters
earn×1000, acq×700, crude×150,
money-fx×150, grain×200, interest×100, 10 2446 2547
trade×100, ship×50, wheat×50, corn×50

SMART MEDLINE×1033, CISI×1460, CRANFILED×1400 3 3893 3025

20NG

misc.forsale, sci.electronics, comp.sys.ibm.pc.hardware,
rec.sport.hockey, talk.politics.guns,
comp.os.ms-windows.misc, soc.religion.christian, 15 4483 4455
rec.autos, rec.motorcycles, sci.crypt, sci.med, sci.space
rec.sport.baseball, talk.politics.mideast, comp.graphics

Table 3.1: Descriptions of experimented datasets

Based on the “bag-of-words" assumption and the vector space model, a simple prepro-

cessing is performed on each dataset: (1) terms that appear in less than 0.2% and in more

than 95% documents in a collection are removed, (2) no stemming or lemmatization is ap-

plied on the remaining terms, no stop word is removed, (3) the TF-IDF weighting scheme

is applied, and (4) l2 normalization on each document vector is applied 3. “No.Docs"

and “No.Terms" in Table 3.1 indicate the number of documents and the number of terms

after preprocessing. Consequently, preprocessing generates a document-term matrix,

where each row is a document vector represented by a set of terms in the columns.

We use the adjusted Rand index (ARI) and (the absolute value of) the cophenetic cor-

relation (CC) between dendrograms to compare the clustering outputs. CC is employed

to evaluate how far our dendrogram is from the one produced by the conventional AHC

procedure. In this case, higher is better and the maximum value 1 means that the

dendrograms are equivalent and thus represent the same hierarchy. ARI is an external

assessment criterion that evaluates the quality of the clustering output in regard to a

given ground-truth. It requires to flatten the dendrogram with the correct number of

clusters, then the obtained partition and the ground-truth are compared to each other.

3A Python script for preprocessing is available at https://github.com/xywang/text_

preprocessing/blob/master/preprocessing.py

https://github.com/xywang/text_preprocessing/blob/master/preprocessing.py
https://github.com/xywang/text_preprocessing/blob/master/preprocessing.py

Chapter 3. Sim_AHC 67

Greater ARI values imply better clustering outputs. The maximum value 1 is observed

when the ground-truth is perfectly recovered.

3.3.2 Experiment Settings and Results

Given a document-term matrix A, two types of matrices are generated: the cosine sim-

ilarity matrix S and the corresponding distance matrix D as defined by Equation 3.5.

Note that since the document-term matrix consists of non negative values, similarity

values in S are all between 0 and 1 (s ∈ [0, 1]), therefore no rescaling operator is needed.

Given a clustering method, the S matrix is taken as input to Sim_AHC, while the related

dense matrix D is taken as input to the conventional AHC algorithm. Consequently, two

dendrograms are returned and we compute the CC in order to assess the similarity

between the two outputs. Two cases are of interest: (1) when τ = 0, which means no

sparsification and the dense S is used; and (2) when τ > 0 and increases, which leads to

sparser and sparser S matrices.

In addition to 0, we choose other threshold values τ at the 10th, 25th, 50th, 75th and 90th

percentiles of distribution of values in S. Let k denote the rank of a percentile so that

k ∈ {0, 10, 25, 50, 75, 90} with the convention that the 0th percentile is 0. Accordingly,

when k grows the kth percentile τ is greater and greater and the S matrix becomes

sparser and sparser.

We experiment with two types of kernel: linear and Gaussian. The linear kernel is

simply the inner product in I between normalized vectors as defined in Equation 3.4.

The Gaussian kernel between two points x, y ∈ Â is given by K(x, y) = exp(−γ∥x−y∥2).
It corresponds to a cosine measure in F . In our experiment we set γ to 1/p by default4.

In Figure 3.1, we show the results obtained for all seven methods on the Reuters, SMART

and 20NG datasets, respectively. Results for linear and Gaussian kernels are arranged in

the left and right blocks. Rows correspond to AHC methods (using their abbreviations)

and columns to collections. In each graph, each point corresponds to one of the measure-

ments listed afterwards with respect to an S matrix; the x-axis corresponds to percentile

ranks (divided by 100) which define the threshold values τ (not shown); solid lines with

plus signs represent the relative memory use; dashed lines with cross signs show the rel-

ative running time; and dotted lines with circle symbols indicates the absolute value of

cophenetic coefficient (CC), dotted lines with triangle symbols give the ARI values. We

report the curves of several measurements (y-axis) when S is progressively sparsified as

the percentile rank (x-axis) increases. In addition to CC and ARI graphs (dotted lines

4Note that this default setting is used in popular SVM packages. In this case γ is very low, the
Gaussian kernel provides values close to 1 and data points in a pair is close to each other.

Chapter 3. Sim_AHC 68

with circle and triangle symbols, respectively), the percentage of memory use of a sparse

S with respect to the dense S, i.e., memory use at τi ̸=0
memory use at τ=0 , and the proportion of running time

when using a sparse S as compared to the dense S, i.e., running time at τi ̸=0
running time at τ=0 , are plotted

as well (solid lines with plus symbols and dashed lines with cross symbols, respectively).

Therefore, memory and processing time costs related to the full S (corresponding to the

0th percentile where τ = 0) serve as baselines (with y-axis value of 100%). In these cases,

the lower the percentages the bigger the gains.

3.3.2.1 Equivalence between Sim_AHC and the Lance-Williams Formula

In Figure 3.1, for all datasets and both kernels, CC values are all equal to one when τ = 0

(0th percentile shown at the origin). This empirically demonstrates that our approach is

equivalent to AHC using the Lance-Williams formula.

Next, as percentile rank increases, CC values generally decrease, illustrating the fact

that dendrograms move away from Lance-Williams formula based results. However,

when using the linear kernel, CC values generally remain high even when the majority of

similarity values are removed. Concerning the Gaussian kernel, CC values drop rapidly

after having thresholded 10% of the lowest similarities, but they start increasing again

after this fall.

However, the single link method presents a peculiar behavior: for all collections and both

kernels, it always recovers the result given by the usual AHC procedure despite the fact

that 90% of the S matrix is sparsified. In other words, our framework is able to obtain

the same dendrogram as the original Lance-Williams formula, but with 90% of memory

usage and running time saved.

3.3.2.2 Impact of Sparsifying Similarities on Scalability

Let M ≤ N2 be the number of non-zero cells in S. The storage cost of our approach

is O(M). The time complexity5 is O(NM), which indicates a linearly relationship with

respect to storage complexity.

In Figure 3.1, solid lines with plus symbols give the percentage of size of the sparse S with

respect to the dense S. As expected, this quantity linearly decreases as the percentile

rank k grows.

Next, dashed lines with cross signs show the proportion of processing time observed with

a sparse S with respect to the running time achieved with the dense S. We observe

5Similarly to the general AHC algorithm based on a dissimilarity matrix where M = N(N − 1).

Chapter 3. Sim_AHC 69

Linear kernel Gaussian kernel
Reuters SMART 20NG Reuters SMART 20NG

SIN

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
4

0
.
8

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
4

0
.
8

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
4

0
.
8

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
4

0
.
8

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
4

0
.
8

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
4

0
.
8

COM

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
4

0
.
8

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
4

0
.
8

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
4

0
.
8

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
4

0
.
8

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
4

0
.
8

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
4

0
.
8

AVE

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
4

0
.
8

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
4

0
.
8

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
4

0
.
8

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
4

0
.
8

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
4

0
.
8

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
4

0
.
8

MCQ

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
4

0
.
8

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
4

0
.
8

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
4

0
.
8

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
4

0
.
8

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
4

0
.
8

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
4

0
.
8

MED

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
4

0
.
8

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
4

0
.
8

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
4

0
.
8

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
4

0
.
8

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
4

0
.
8

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
4

0
.
8

CEN

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
4

0
.
8

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
4

0
.
8

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
4

0
.
8

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
4

0
.
8

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
4

0
.
8

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
4

0
.
8

WAR

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
4

0
.
8

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
4

0
.
8

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
4

0
.
8

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
4

0
.
8

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
4

0
.
8

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
4

0
.
8

Figure 3.1: Results of applying Sim_AHC on the Reuters, SMART and 20NG
datasets using linear and Gaussian kernels

Chapter 3. Sim_AHC 70

linear curves as well, which depicts the linear relationship between memory and time

complexities.

The sparsification of the S matrix enables decreasing storage complexity and running

time. Besides, it also has an impact on clustering quality.

Previously, we have noticed that CC values were decreasing as S was sparser and sparser.

In the following, we examine some cases in which our framework wins on both sides:

scalability and quality.

3.3.2.3 Impact of Sparsifying Similarities on Clustering Quality

We focus on the quality of clustering output by analyzing ARI values. We observe that

average link, McQuitty and Ward techniques work out better in general. Surprisingly,

many of the best results are obtained with a very sparse S matrix and not with the full

one. In Table 3.2, we report the best outcomes of this phenomenon. Mem% and Time%

indicate the percentage of saved memory and processing time, respectively, when the

sparse S is compared to the dense S.

Method kernel τ Mem% Time% CC ARI

Reuters
Average Gaussian 0 0 0 1 0.543
Average Gaussian 0.99 -75 -62 0.81 0.539

SMART
Average Linear 0 0 0 1 0.939
Average Linear 0.078 -90 -85 0.96 0.944

20NG
Ward Gaussian 0 0 0 1 0.100
Ward Gaussian 0.99 -50 -47 0.26 0.154

Table 3.2: Best ARI results for each collection when τ = 0 (baseline) and when τ > 0
(sparsified S)

For Reuters, the best ARI value is provided by average link with a full S given by the

Gaussian kernel. However, comparable performance is obtained with the same method

and kernel, but with a sparse S that saves 75% memory and 62% processing time.

Concerning SMART, average link gives the best ARI value as well, but with a linear

kernel. Compared to the Lance-Williams formula-based AHC algorithm, Sim_AHC

obtains a higher ARI while saving 90% memory and 85% running time.

Regarding 20NG, the Ward technique with Gaussian kernel works out the best. Our

method allows increasing the baseline ARI value up to 54% while consuming around half

of memory and running time.

Chapter 3. Sim_AHC 71

3.4 Discussion

We have introduced Sim_AHC, an equivalent formulation of the Lance-Williams formula

based on cosine similarities instead of Euclidean distances. Our AHC procedure, which

relies on this formulation and a sparsified cosine similarity matrix, not only has better

scalability properties, but is also able to output better clustering results.

We believe that two reasons account for this phenomenon. Firstly, sparsifying the S

matrix reduces the noise by removing the lowest similarity values, therefore leading to

better clustering performances. Secondly, when two clusters (Ci, Cj) are merged together,

their respective neighborhoods (clusters having a non null similarity value with Ci and

Cj respectively) are fused as well, so that C(ij) has a larger neighborhood than both Ci

and Cj . Furthermore, the updating rule (Equation 3.11) allows reinforcing the similarity

value of C(ij) with Ck if the latter cluster belongs to both initial neighborhoods. In fact,

our approach can be viewed as a sort of “transitive closure” starting with reliable seeds

(the pairs with highest similarity values) and propagating similarities through “trusted”

neighborhoods.

However, the main drawback of our method is that, either sparsifying S does not improve

the ARI value at all (see complete link applied to Reuters with Gaussian kernel in

Figure 3.1, for instance), or improvements are not regular and setting the threshold

value τ becomes difficult. Further theoretical investigations should be undertaken in

these respects to have a better understanding of the properties of our framework.

3.5 Conclusion

In this chapter, we introduce Sim_AHC, a similarity-based agglomerative hierarchical

clustering framework. Unlike other similar methods proposed in the past, Sim_AHC is

a generic framework as it covers all conventional AHC methods unified in the Lance-

Williams formula. Its results are deterministic, because it does not involve any sampling

process. It is also independent from any extra structure. Through mathematical reason-

ing and experimental verification on several text clustering tasks, we demonstrate that

Sim_AHC is theoretically and empirically equivalent to the Lance-Williams formula.

However, Sim_AHC can be easily extended to kernel functions, as it uses inner product

at base. This features makes it capable to address non-linearly separable datasets more

effectively, unlike the Lance-Williams formula. More importantly, having all similarities

between 0 and 1 in this framework helps set up a threshold value to sparsify the input

similarity matrix, in order to reduce memory use and running time. Our experiments

show that up to 85% running time and 90% memory use can be spared using Sim_AHC.

Chapter 3. Sim_AHC 72

Surprisingly, the efficiency gain does not compromise clustering quality, which tends to

remain constant or even improve compared to using a full-sized input. This discovery

proves that Sim_AHC is scalable, as it is capable to obtain the same or better results

while using limited computing resources.

In the next chapter, we introduce a variation of Sim_AHC that is capable to group both

documents and terms.

Chapter 4

The Similarity-based Hierarchical

Co-clustering Method

4.1 Motivation

Introduced in Section 2.3 of Chapter 2, co-clustering is a subspace clustering method

that simultaneously groups data instances and their features. It results in a number of

co-clusters, each of which contains a partition of closely situated data instances and a

partition of highly associated features. Depending on the content of an input dataset,

data instances and their features coexist in the same co-cluster interpret each other

accordingly. For example, performing co-clustering on a gene expression dataset, where

genes are featured by a set of conditions, produces co-clusters, each containing a subgroup

of genes that exhibit highly correlated activities for a subgroup of conditions [50]; for a

textual dataset, where documents are featured by a set of terms, co-clustering can find

“describing" terms for similar documents in a co-cluster.

We believe that this advantageous property of co-clustering provides interesting insights.

For instance, when applying in cluster-based IR tasks, co-clustering can retrieves not

only documents but also terms, providing useful extra knowledge in seeking information.

However, knowledge on how co-clusters and how elements in a co-cluster are connected

is absent. We are interested in a method that is able to organize co-clusters and elements

in a co-cluster, illustrating their interconnections. This is our initial motivation to work

on a hierarchical co-clustering method.

Previously, in 2.3 of Chapter 2, we review a number of co-clustering techniques. In prin-

ciple, three groups of methods are presented: LBMs, graph partitioning approaches and

NMF-based approaches. Comparing these methods, we choose to build a hierarchical

73

Chapter 4. SHCoClust 74

co-clustering method using Spectral-SVD, which is applied in some of the graph parti-

tioning approaches. Our reasons are: first of all, Spectral-SVD-based graph partitioning

approaches are more likely to be combined with a hard clustering method. However, to

LBMs and NMF-based approaches, embedding an external clustering method in them

is not trivial. Secondly, our basic assumption is the “bag-of-words" assumption and the

vector space model, we consider a document as a set of terms instead of a distribution.

Thus it is not very suitable to choose LBMs, which are dependent on the distribution

of the input. LBMs are more suitable for the assumption of language model, where

document is considered as a distribution of terms. Thirdly, compared to NMF-based

approaches, the graph partitioning approaches that apply Spectral-SVD are based on

a convex optimization problem. Though it relaxes some constraints, this optimization

problem returns a global minima. However, NMF-based approaches are based on a

non-convex optimization formulation, which only returns a local minima.

In this chapter, we introduce SHCoClust, a similarity-based hierarchical co-clustering

method. Concretely, given a document collection as input, we consider it as a bipartite

graph with documents and extracted terms being vertices. Firstly we apply “spectral

embedding" to project the corresponding document-term matrix into a space, which is

constructed by the eigenvectors of the graph Laplacian; then we apply Sim_AHC on

the projected data to generate a dendrogram, which iteratively aggregates documents

and terms; lastly, we cut this dendrogram to obtain a number of sub-dendrograms, each

organizing a number of documents and a number of terms in a hierarchy. In the rest of

this chapter, we present the computing procedure of SHCoClust in Section 4.2, and we

empirically illustrate its properties by performing and evaluating several text clustering

experiments in Section 4.3.

4.2 The Computing Procedure of SHCoClust

In Section 2.3.3.2, we illustrate mathematical details on how the discrete optimization

problem of Ncut is relaxed when then we only need to cut a graph into two sub-graphs,

K = 2. And we show that the relaxed optimization problem in fact has the form of

the standard Rayleigh-Ritz theorem, Equation 2.18, to which the second eigenvector of

the symmetric normalized graph Laplacian Lsym is the solution. Using this knowledge,

we explain the Spectral Bi-partitioning Co-clustering method [9] in Section 2.3.3.3, it

is shown that the solution can also be provided by the second left and right singular

vectors of the diagonally normalized input document-term matrix, An, Equations 2.29.

In fact, based on the relation, σ2 = 1 − λ2, where λ2 indicates the second eigenvalue of

Lsym, and σ2 denotes the second singular value of An, the second eigenvector of Lsym

Chapter 4. SHCoClust 75

and the second left and right singular vectors of An provide the equivalent solution to

the relaxed optimization problem of Ncut. However, compared to looking for the second

left and right singular vectors of An, solving the problem using the second eigenvector of

Lsym requires to perform computation on a much larger matrix, see Equation 2.23. In

order to achieve better performance, we prefer to look for the singular vectors of An.

For multi-partitioning, where several sub-graphs (or clusters) are generated, there are

two options: either recursively performing bi-partitioning, or applying a flat clustering

method, such as K-means, on the resulted matrix composed by singular vectors. Compar-

ing the two options, the second one is preferred, as recursively performing bi-partitioning

is more computationally expensive than applying a flat clustering method. Moreover,

the second option provides possibility to apply any other clustering method rather than

K-means.

In the multi-partitioning case of Algorithm 6, applying K-means method returns flat

co-clusters, which are of the same level. It is thus not possible to know how co-clusters

are connected. In addition, inside such a co-cluster, the documents and terms are also

of the same level, there is no information on how they are linked. Differently, AHC or

Sim_AHC outputs a dendrogram. This is a binary tree structure that can display how

documents are merged step by step. However, the connection among terms is ignored. It

would be very interesting to have a hybrid structure that is capable to return co-clusters,

and to display the connections of clustered documents and terms in a co-cluster, as well

as to preserve the information on how co-clusters are linked at different levels. We believe

that this hybrid structure that combines the properties of co-clustering and hierarchical

clustering is more beneficial than any the contributing method. It surely provides us a

better understanding of our data.

For such purpose, we propose SHCoClust, a similarity-based hierarchical co-clustering

method. It is inspired by the Spectral Bi-partitioning Co-clustering algorithm [9], in

the sense that it applies “spectral embedding" to project the input data into a space

constructed by the singular vectors, then it performs clustering on the projected data in

order to obtain real cluster labels for the input. Differently, we perform Sim_AHC on

the projected data with the purpose to organize co-clusters and elements in an individual

co-cluster in a form of dendrogram. The principle reason of choosing Sim_AHC over the

conventional AHC method is that we are interested to make advantage of its scalability

property. In addition, its compatibility with kernel functions makes it more favored over

the conventional method.

The input to SHCoClust is a square data matrix. In the scope of this thesis, we address

text clustering tasks, thus our input is a document-term matrix, denoted by A. Let n

and m denote the number of rows and the number of columns of A, they also signify the

Chapter 4. SHCoClust 76

number of documents and the number of terms. The computing procedure of SHCoClust

is presented in Algorithm 8.

Algorithm 8 Computing procedure of SHCoClust

Require: An input document-term matrix A of shape n×m
1: Compute diagonal matrices D1 and D2 from A.
2: Compute matrix An by An = D

−1/2
1 ×A×D

−1/2
2 .

3: Apply SVD on An to obtain l left singular vectors, µ1,µ2, . . . ,µl, and l right singular
vectors ν1,ν2, . . . ,ν l.

4: Construct matrix U by µ2, . . . ,µl, and matrix V by ν2, . . . ,νl.

5: Apply matrix multiplication D
−1/2
1 × U and D

−1/2
2 × V to output Z1 and Z2.

6: Vertically combine Z1 and Z2 to output matrix Z.
7: For i = 1, . . . , n+m, let yi ∈ R be the vector corresponding to the i-th row of Z.
8: Apply l2 normalization on Z, and compute pairwise similarity matrix S from it.
9: Re-scale S by Formula 3.15.

10: while num_iterations< n do
11: Search for the pair of rows (Zi, Zj) that has the maximal similarity in S, by

Equation 3.10,
12: Merge Zi and Zj into Z(ij) and add a corresponding parent node in the dendrogram

with height value [S(Zi, Zj)− 1
2(S(Zi, Zi) + S(Zj , Zj))],

13: Compute the similarity of Z(ij) and any other row Zk and update S accordingly,
by Equations 3.11 and 3.12.

14: end while
Ensure: A dendrogram of 2(n+m)− 1 nodes

The computing procedure of SHCoClust shown in Algorithm 8 is basically composed of

two parts: spectral embedding that projects the input data into a space of eigenvectors,

and application of Sim_AHC on the projected data to perform clustering.

1. Lines 1-6 correspond to the spectral embedding. This part is consisted of three

steps: generation of the diagonally normalized matrix An, application of SVD and

production of the projected data matrix Z.

• The generation of the diagonally normalized matrix An. Given the

document-term matrix A, we compute the diagonal matrices D1 and D2 by

D1(i, i) =
∑m

j=1Aij and D2(j, j) =
∑n

i Aij . D1 and D2 store the row sums

and column sums of A. If A is represented as a graph, its documents and

terms are vertices, its edges carry the TF-IDF weights, D1 and D2 are in

fact the degree matrices for the document vertices and for the term vertices,

respectively. Having D1 and D2, they generate An by matrix multiplication.

The mathematics behind this is explained by Equations 2.25 to 2.29.

• The application of SVD. Applying SVD on An with a given parame-

ter l, the number of desired singular values, outputs l left singular vectors,

Chapter 4. SHCoClust 77

µ1,µ2, . . . ,µl, and l right singular vectors ν1,ν2, . . . ,νl. A left singular vec-

tor µ contains n elements, and a right singular vector ν contains m elements.

It is important to note that their corresponding singular values should be in

such an order: 1 = σ1 ≥ σ2 ≥ · · · ≥ σl. Recall the relation between a singular

value of An and an eigenvalue of the graph Laplacian L, σ = 1 − λ, and the

eigenvalues are ordered as 0 = λ1 ≤ λ2 ≤ According to the Rayleigh-

Ritz theorem, in a bi-partitioning task when there are two eigenvalues, the

eigenvector that corresponds to the non-zero eigenvalue is the solution to the

optimization Problem 2.18. When it comes to a multi-partitioning task, we

are interested in the eigenvectors that correspond to the non-zero eigenvalues.

In terms of singular vectors, those who correspond to singular values that are

smaller than 1 provide the solution. This is why we exclude the first left sin-

gular vector and the first right singular vector in matrices U and V . U is of

shape n× (l−1), and V is of shape m× (l−1). In [9], the author determines l

by l = ⌈log2 k⌉, where k is the number of desired clusters. However, it is lack

of empirical training or theoretical proof. In our experiment, we learn this

parameter by grid search for each tested dataset, and the l value that leads

to the smallest difference between the original data and the projected data is

selected.

• The production of the projected matrix Z. After U and V are generated,

they are used to multiply D1 and D2, the degree matrices of document vertices

and of term vertices. The process of multiplication can be considered as

projecting documents to a space constructed by left singular vectors in U ,

and projecting terms to a space constructed by right singular vectors in V .

Two matrices are output, Z1 and Z2, they contain projected documents and

terms in the space of singular vectors. They are of shape n × (l − 1) and

m × (l − 1), respectively. The following step is to vertically concatenate Z1

and Z2, that is, to fuse projected documents and terms in a space of l − 1

dimensions. Performing clustering in this space outputs co-clusters consisted

of documents and terms.

2. Lines 7-14, performing Sim_AHC on matrix Z to generate hierarchical co-clusters.

As Z is a matrix of projected data mixed with documents and terms, it is im-

portant to index Z so that we are able to know which rows correspond to the set

of documents and which rows correspond to the set of terms. Before preforming

Sim_AHC, Z should be normalized so that each row has norm 1, this is based on

the basic assumption of Sim_AHC, see Equation 3.4. Then we can compute the

pairwise similarity matrix S from the normalized Z. If inner product is chose to

compute the pairwise similarities, S is filled with cosine similarity values. And its

Chapter 4. SHCoClust 78

diagonal is constantly 1. Like in a common Sim_AHC process, kernel functions can

be used to compute pairwise similarities, as shown in Equation 3.14. In our experi-

ments, we use linear kernel (inner product) and Gaussian kernel to test SHCoClust

in several text clustering tasks. In order to take advantage of the scalability prop-

erty of Sim_AHC, we are interested to sparsify S to improve clustering efficiency.

However, different from a document-term matrix filled with non-negative TF-IDF

values, Z possibly contain many negative values, it is thus important to re-scale its

pairwise similarity matrix S by Formula 3.15 in order to have all similarity values

between 0 and 1. After the re-scaling, we are able to set up a threshold value

τ ∈ [0, 1] to sparsify S in a proper manner.

Sim_AHC goes through a number of iterations. More S is sparsified, less iter-

ations Sim_AHC needs to go through. In each iteration, a pair of document-

document, term-term or document-term is merged and an internal node is created

in the dendrogram. Due to the relation shown in Equation 3.7, the dendrogram

grows downwards, the height of a newly merged node is negative, and its value is

[S(Zi, Zj) − 1
2(S(Zi, Zi) + S(Zj , Zj))]. A full dendrogram output by SHCoClust

contains n +m leaves and n +m − 1 internal nodes. Cutting the dendrogram at

some height results in a number of flat co-clusters, each contains a sub-dendrogram

of documents and terms, in Section 4.4, visualization of a sampled dataset is pre-

sented.

4.3 Experiments: Clustering Effectiveness and Efficiency

Our experiments on SHCoClust emphasize two aspects, the clustering effectiveness and

the clustering efficiency. For the first aspect, we compare clustering quality among SHCo-

Clust, the Spectral Bipartite Co-clustering method (SBC) [9] and the conventional AHC

methods. In order to examine whether sparsification influences the clustering quality, we

sparsify the similarity matrix S in SHCoClust and compare the clustering quality against

the use case of using a full-sized S. As to clustering effectiveness, we are interested to

examine how clustering quality is affected when S is getting more and more sparsified,

using both linear kernel and Gaussian kernel.

4.3.1 Datasets, Preprocessing and Evaluation Measures

Six experimented datasets are sampled from the corpora mentioned in Section 3.3.1,

their details can be found in Table 4.1. In the rest of the paper, theses datasets are

referred by their indexes shown in column “Ind.". Based on the bag-of-words assumption

Chapter 4. SHCoClust 79

and the vector space model, each dataset is preprocessed into a document-term matrix,

whose rows are document vectors and columns are terms. A few steps are involved in

preprocessing, in detail, stop words are removed, terms that have document frequency

higher than 20% and lower than 1% are removed, and TF-IDF weighting strategy is

applied. “nb.docs" and “nb.terms" indicate the numbers of documents and of terms

after the preprocessing. “K" is the ground-truth number of clusters, “l" is the learned

parameter for SVD. “Z shape" indicates the shape of matrix Z obtained by the step of

spectral embedding in Algorithm 8. “ARPACK"1 is used as solver in SVD.

Dataset Ind. K nb.docs nb.terms l Z shape
Reuters R5 5 500 652 4 (1152, 3)

R7 7 2100 2133 4 (4233, 3)
R10 10 2450 5075 5 (7525, 4)

SMART S0 3 1500 2272 3 (3772, 2)
S1 3 3893 6812 3 (10705, 2)

20NG NG8 8 3200 1118 4 (4318, 3)
NG20 20 2000 1104 6 (3104, 5)

Table 4.1: Experimented Datasets

To evaluate clustering quality, we use the adjusted Rand Index (ARI) [110] and the

normalized Mutual Information (NMI) [111]. They both measure the similarity between

a list of ground-truth cluster labels and a list of predicted labels. The Rand Index

measures the similarity between two list of labels by considering all pairs of samples and

counting pairs that are assigned in the same or different clusters in the two lists. The ARI

is the “corrected" version of the Rand Index, because it is adjusted for chance using the

scheme of: ARI = RI−E[RI]
max(RI)−E[RI] , with RI stands for the Rand Index, and E[.] denotes an

expected value. The value of ARI ranges from 0 to 1, with 1 indicating that the two lists

of cluster labels are identical, and 0 for being entirely different. NMI is normalization

of the Mutual Information score. Its value is also between 0 and 1, with 1 indicating

a perfect correlation between two compared lists, and 0 for non mutual information

between the two. In order to use these two measures, we flatten the dendrogram obtained

by SHCoClust to K clusters, then compute ARI and NMI using the predicted and the

ground-truth cluster labels.

4.3.2 Comparisons of Clustering Effectiveness

We are interested in how well SHCoClust performs. Is it better or worse than the

benchmark methods, such as SBC and the conventional AHC? And does sparsification

affect clustering quality, positively or negatively? To answer these questions, we design

our first experiments that are consisted of four tests as follows:
1https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/arpack.py

https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/arpack.py

Chapter 4. SHCoClust 80

1. SHCoClust without sparsification v.s. conventional AHC.

2. SHCoClust with sparsification v.s. without.

3. SHCoClust without sparsification v.s. BSC.

4. SHCoClust with sparsification v.s. BSC.

In tests that concern sparsification, threshold values τ at percentiles ranks {10, 25, 50,

75, 90}% of similarities in S are used to sparsify S. In this experiment, we apply linear

kernel to obtain S, which is in fact filled with cosine similarities. The results of this

experiment are illustrated in Figure 4.1. From top to down, each row maps to one test

that is distinguished by its index. Each column lists the corresponding results for a

tested dataset. Graph in each cell is a bar chart that is highlighted by a vertical line

at x=0. The y-axis in each graph is labeled by the abbreviations of seven clustering

methods. Bars in these graphs indicate the “difference" of values for ARI (the red, or

the dark bars in a gray-scale printed paper) and for NMI (the blue, or the light ones)

using a clustering method, obtained by subtraction of two tested approaches (A v.s. B,

A−B). In the case of sparsification, we chose the highest value of ARI or NMI obtained

in each clustering methods through the sequence of τ , then subtract it with the ARI or

NMI value obtained by the approach in comparison.

In Figure 4.1, we can discovery a few interesting findings:

• Compared to conventional AHC, clustering quality is largely improved using SHCo-

Clust for all clustering methods, except for single link and the Ward method. In

datasets of S0 and S1, the increase is tremendous, ARI and NMI are raised up to

0.8 and 0.7 at maximum.

• When sparsification is applied in SHCoClust, the clustering quality is further en-

hanced. However, this enhancement does not compromise SHCoClust’s efficiency.

Instead, as most highest ARI and NMI values are obtained when τ ∼ 1, the effi-

ciency of SHCoClust is considerably improved, thanks to a largely sparsified input.

• SHCoClust (without sparsification) obtains close results to SBC for all clustering

methods, except for single link. Though improvements can be found in R5, NG8

and R7, other datasets do not display any. However, when sparsification is applied

in SHCoClust, some noticeable amelioration can be observed. Comparing graphs

of test 3) and of test 4), bars generally exhibit a left-to-right drift, diminishing

their heights in the left side of the vertical line at x=0, and growing their heights

in the right side. This drift is very apparent in R7 and NG20, where ARI and NMI

Chapter 4. SHCoClust 81

No. R5 R7 S0 S1 NG8 NG20

1)

WAR

MED

CEN

WEI

AVE

COM

SIN

−0.2 0.0 0.2

WAR

MED

CEN

WEI

AVE

COM

SIN

0.0 0.1 0.2

WAR

MED

CEN

WEI

AVE

COM

SIN

0.00
0.25

0.50
0.75

WAR

MED

CEN

WEI

AVE

COM

SIN

0.0 0.2 0.4 0.6 0.8

WAR

MED

CEN

WEI

AVE

COM

SIN

0.0 0.1 0.2 0.3

WAR

MED

CEN

WEI

AVE

COM

SIN

−0.2 −0.1 0.0 0.1 0.2

2)

WAR

MED

CEN

WEI

AVE

COM

SIN

0.000
0.025

0.050
0.075

WAR

MED

CEN

WEI

AVE

COM

SIN

−0.10
−0.05

0.00
0.05

WAR

MED

CEN

WEI

AVE

COM

SIN

0.0 0.1 0.2

WAR

MED

CEN

WEI

AVE

COM

SIN

0.000
0.025

0.050
0.075

0.100

WAR

MED

CEN

WEI

AVE

COM

SIN

0.000
0.005

0.010
0.015

WAR

MED

CEN

WEI

AVE

COM

SIN

0.00
0.02

0.04
0.06

3)

WAR

MED

CEN

WEI

AVE

COM

SIN

−0.4 −0.2 0.0

WAR

MED

CEN

WEI

AVE

COM

SIN

−0.3 −0.2 −0.1 0.0

WAR

MED

CEN

WEI

AVE

COM

SIN

−0.6 −0.4 −0.2 0.0

WAR

MED

CEN

WEI

AVE

COM

SIN

−0.6 −0.4 −0.2 0.0

WAR

MED

CEN

WEI

AVE

COM

SIN

−0.3 −0.2 −0.1 0.0

WAR

MED

CEN

WEI

AVE

COM

SIN

−0.20
−0.15

−0.10
−0.05

0.00

4)

WAR

MED

CEN

WEI

AVE

COM

SIN

−0.4 −0.2 0.0

WAR

MED

CEN

WEI

AVE

COM

SIN

0.000
0.025

0.050
0.075

WAR

MED

CEN

WEI

AVE

COM

SIN

−0.6 −0.4 −0.2 0.0

WAR

MED

CEN

WEI

AVE

COM

SIN

−0.6 −0.4 −0.2 0.0

WAR

MED

CEN

WEI

AVE

COM

SIN

−0.3 −0.2 −0.1 0.0

WAR

MED

CEN

WEI

AVE

COM

SIN

−0.025
0.000

0.025
0.050

Figure 4.1: Comparisons of clustering quality among conventional AHC, BSC, SHCo-
Clust with and without sparsification

bars are largely pulled towards right, regarding all clustering methods. However,

in other datasets, single link seems to be the least affected.

To summarize, SHCoClust significantly improves clustering quality compared to the

conventional AHC for most clustering methods. It obtains close results as SBC with-

out sparsification. However, when sparsification is applied, SHCoClust demonstrates

improvements over SBC.

4.3.3 Examination of Clustering Efficiency with Sparsification

In our second experiment, we examine the improvement of clustering efficiency when

the similarity matrix S is getting more and more sparsified, and we record the changes

of clustering effectiveness in order to observe if clustering quality compromises when

computing efficiency is improved via sparsification. In addition, we extend the similar-

ity function in SHCoClust to Gaussian kernel, given by K(x, y) = exp(−γ∥x − y∥2) for

Chapter 4. SHCoClust 82

x, y ∈ D, γ = 1/dim(I) by default2. Three representative datasets R5, S0 and NG8

are experimented and are compared to their results obtained by linear kernel. The in-

put kernel matrix is sparsified in the same fashion as in the previous experiment. For

each threshold value, ARI, NMI, relative memory usage and relative running time are

recorded. Figure 4.2 illustrates the results of this experiment. Indexed by the abbrevia-

tions of clustering methods in row and the names of datasets in column, each graph in

Figure 4.2 contains four lines: the solid line with “+" sign denotes the NMI values, the

dashed line with triangle sign is for ARI, while the solid line with “o" sign and the solid

line with “x" sign represent the relative memory usage and the relative running time,

respectively. The x-axis corresponds to the percentile ranks that define the threshold

values τ (not shown). At each τ ∈ (0, 1), exact memory usage and running time are

recorded, and are divided by those at τ = 0, i.e., when no thresholding is applied, to

obtain the relative memory usage and the relative running time.

In Figure 4.2 we can see that, as the percentile rank increases, memory usage and running

time decrease correspondingly, however, ARI and NMI tend to preserve their values at

some level until the percentile rank approaches closely to 1. More precisely, before the

percentile rank crosses 75%, in most cases, we can obtain ARI and NMI values as high

as (or higher than) using the full-sized input. In some other cases, ARI and NMI even

boost after percentile rank is over 75%, like in S0 (of linear kernel at average link).

Among seven clustering methods, single link is the most peculiar, its ARI and NMI are

invariant to the effect of sparsification, however, in R5 (of linear and Gaussian kernel)

and NG8 (of Gaussian kernel), ARI of single link boosts at percentile rank = 90%, at

which point memory usage and running time are largely reduced. Comparing the two

kernel functions, overall similar behavior can be observed regarding the four curves. In

some cases, Gaussian kernel returns higher metric values than linear kernel, and vice

versa. Among the three experimented datasets, results of S0 are globally better, while

R5 and NG8 display limited difference in their results.

Principle conclusions we can draw from this experiment are that:

• SHCoClust is capable to guarantee the clustering quality even when its input is

largely sparsified, requiring considerably reduced memory usage and running time.

τ at percentile rank of 75% is a heuristically good threshold in our experiment

(90% for single link).

• The clustering quality does not compromise when computing efficiency is improved

by sparsifying the similarity matrix S. On the contrary, clustering effectiveness

is even increased when using a sparsified S. This is likely due to the fact that

2This default setting is used in popular SVM packages. Besides, when γ is low, Gaussian kernel
provides close-to-one values and higher similarities between pairs of points.

Chapter 4. SHCoClust 83

Linear kernel Gaussian kernel

R5 S0 NG8 R5 S0 NG8

SIN

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

COM

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AVE

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MCQ

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CEN

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MED

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

WAR

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 4.2: Results of linear kernel and Gaussian kernel with sparsification

sparsifying S matrix reduces the noise by removing the lowest similarity values,

therefore leading to better clustering performances.

• SHCoClust can be easily employed with a kernel function, though only linear and

Gaussian kernels are experimented here, we believe that its compatibility with

kernel functions enables it to handle non-linearly separable datasets more effectively

in other tasks.

Chapter 4. SHCoClust 84

4.3.4 Discussion of Complexity and Scalability

Mentioned in Section 2.3.3.3, the computation complexity of a complete SVD process

can reach O(min(nm2,mn2)) in decomposing a matrix of size n-by-m [73]. This is the

complexity of performing spectral embedding in Algorithm 8. As matrix Z is of shape

(n+m)×(l−1), the storage complexity for its pairwise similarity matrix S is O((n+m)2)

and the time complexity of applying Sim_AHC on Z can reach O((n+m)3). Sparsifying

S with τ results in M non-zero values stored for computation, M < (n+m)2, eventually

reduces storage complexity to O(M) and time complexity to O((n+m)M). The linear

relationship between the storage and time complexity is demonstrated by the lines of

relative memory and relative running time in Figure 4.2. Let τ∗ define a threshold value,

at which clustering quality is preserved as high as possible, meanwhile S is sparsified to

have M as small as possible. As stated previously, τ at percentile rank of 75% is the

τ∗ for most cases in our experiment. Table 4.2 exhibits the consummation of resources

measured by memory gain and time gain at τ∗, at which highest ARIs are obtained

(marked by *). The clustering methods that output ARIs* and the ARI values of SBC

are listed. −x in Mem% and Time% indicates the relatively reduced memory and time

compared to using a full-sized input.

Dataset Method τ∗ value Mem% Time% ARI* BSC
R5 Median 0.242 -25 -8 0.395 0.263
R7 Ward 0.998 -75 -61 0.158 0.069
S0 Average 0.996 -90 -86 0.803 0.753
S1 Centroid 0.778 -50 -11 0.770 0.752

NG8 Centroid 0.880 -75 -43 0.287 0.222
NG20 Ward 0.998 -75 -37 0.158 0.094

Table 4.2: Highest ARI, relative gain in memory and in time with sparsiciation

From this table we can see that all ARIs* are higher than those of SBC, implying a

better clustering quality in SHCoClust. Moreover, ARIs* are obtained with significantly

reduced memory usage and running time. Except for R5 dataset, in which median

method only gains 8% in time and 25% in memory, other datasets obtain up to 86%

time gain and 75% memory gain on average. This proves that SHCoClust is good at

economizing computing resources, meanwhile preserving the clustering effectiveness. In

other words, if given limited computing resources, SHCoClust is able to process relatively

large datasets. This reflects the scalability of SHCoClust.

Chapter 4. SHCoClust 86

4.5 Conclusion

In this chapter, a new algorithm, the similarity-based hierarchical co-clustering method,

SHCoClust, is presented. We are interested in the advantageous property of co-clustering,

which is capable to perform clustering in both data space and in feature space. Begin-

ning with explaining the choice among several co-clustering techniques, we select the

graph partitioning approach, as it allows to embed an arbitrary hard clustering method.

The drawback of this kind of approaches is that they output flat co-clusters, and el-

ements inside one co-cluster are not structured. Therefore, it is not possible to know

how co-clusters are connected with each other, and how elements inside a co-cluster are

organized. Inspired by the spectral embedding introduced in Section 2.3.3.3, we propose

a hybrid learning method that is capable to perform hierarchical co-clustering. In such

a way, co-clusters and elements inside an individual co-cluster are organized in a tree

structure. It allows us to have a better understanding on an input dataset by examining

how co-clusters and their elements are structured.

After presenting the motivation of this work, we present the proposed method by illus-

trating its computing procedure and the related mathematical details. We hope to give

enough information to present a clear idea and method for readers. In the experiment

part, we examine the proposed method from two aspects, the clustering effectiveness and

computing efficiency. For the first aspect, we compare clustering quality of the proposed

method with two benchmark methods in two scenarios, with a full-sized similarity ma-

trix or with a sparsified one. By four different tests, it is concluded that the proposed

method significantly improves clustering quality compared to the conventional AHC for

most clustering methods, and it achieves improvements over SBC when sparsification

is applied on the similarity matrix. As to computing efficiency, we examine the im-

provement of clustering efficiency when the similarity matrix is getting more and more

sparsified, and how this influences clustering quality. Using linear and Gaussian kernels

on three datasets, we discover that sparsifying similarity matrix can largely improve com-

puting efficiency by reducing memory use and running time, more importantly, clustering

quality does not compromise while computing efficiency is improved via sparsification.

On the contrary, clustering effectiveness is improved when similarity matrix is sparsified.

Furthermore, we present a discussion on the complexity of the proposed method and a

visualization on a sampled dataset. We show that the proposed method is capable to

perform co-clustering, meanwhile, organizing co-clusters and elements inside individual

co-cluster in a tree-like structure. It provides richer knowledge on the input data than

either a pure co-clustering method or a pure hierarchical clustering method.

Chapter 4. SHCoClust 87

Mentioned in Section 4.3.4, for most cases in our experiments, the threshold value at

percentile rank of 75% is the heuristically optimal threshold value, at which the ARI is

preserved as high as possible while the similarity matrix is sparsified to have as less non-

zero values as possible. A future work would be to determine a well-designed method to

determine such a optimal threshold value for general cases when input datasets vary in

size and in type.

Chapter 5

Testing the Cluster Hypothesis

5.1 Motivation

Previously, we present Sim_AHC and SHCoClust in Chapter 3 and in Chapter 4. As

sated in Section 1.2 of Chapter 1, the task that our team undertakes is the “intelligent

recursive and iterative information retrieval", for which we are required to apply clus-

tering and co-clustering algorithms on IR tasks. However, IR is a wide field, it contains

too many interesting research subjects that we do not have enough time for. Since our

previous works are all clustering-based, we narrow down our research topic to the cluster

hypothesis, which is the fundamental hypothesis of employing clustering methods in IR.

By testing this hypothesis using Sim_AHC and SHCoClust, we are able to obtain impor-

tant knowledge on how effectively a given query is responded, and with what efficiency.

These knowledge, though theoretical, allow us to have basic but fundamental ideas on

the retrieval behaviors of applying Sim_AHC and SHCoClust.

Since 1970s, many researchers have devoted their efforts to testing the cluster hypothesis

from different aspects. Depending on the content of these works, we categorize these

tests into classic tests, refined tests and language-model-based tests. For the classic

tests, a group of research works emphasize comparisons of retrieval effectiveness between

cluster-based and document-based retrieval systems; while some other works focus on

testing the cluster hypothesis using hierarchical clustering methods; or on comparing

cluster-based searching strategies in a hierarchy of clusters. The refined tests propose

improved modification on some of the classic tests. Both classic tests and refined tests

are based on the “bag-of-words" assumption, and they apply the vector space model to

process their inputs. Differently, the language-model-based tests assume that documents

are distributions of terms, thus the basic function that is used to measure similarities

89

Chapter 5. The Cluster Hypothesis Tests 90

among documents varies from the other tests. More details on these works can be found

in Section 2.4 in Chapter 2.

Recall that the basic assumption adopted in our research for text clustering is the “bag-

of-words" assumption and the vector space model. Therefore, the language-model-based

tests are out of the scope of this thesis. As we devote much of our time to studying

conventional AHC methods and the Lance-Williams formula, we are most interested in

the cluster hypothesis tests that employ AHC methods. Interestingly, after carefully

reviewing these tests, we find out that their conclusions are not consistent regarding

which clustering method is the most effective. This inconsistency is likely caused by

the differences in tested datasets, experimental settings and evaluation measures. In

addition, these tests merely examine four AHC methods1 in the Lance-Williams formula,

leaving the retrieval performance of the other three methods unknown. Moreover, only

retrieval effectiveness is addressed in these works, knowledge on retrieval efficiency is

left blank. As AHC methods are computationally costly, it is practically important to

examine their retrieval efficiency. These findings motivate us to design new tests that

cover all AHC methods in the Lance-Williams formula within a universal experimental

framework, and to examine the retrieval effectiveness and efficiency.

In the rest of this chapter, we elaborate on two proposed tests on the cluster hypothesis

using Sim_AHC and SHCoClust, respectively. In each test, we employ optimal cluster

search and the E-measure to evaluate retrieval effectiveness and compare it among seven

AHC methods. Recall that a cluster-based retrieval process applies a search strategy

and outputs a cluster that is believed to be the most relevant to a query. There are three

search strategies, the top-down, the bottom-up and the optimal cluster search (Section

2.4.2.2). Among these strategies, we choose optimal cluster search in our experiments.

It is superior to its counterparts, as it does not depend on cluster representatives. Besides,

it allows to compute a measure that balances between precision and recall, in order to

avoid retrieving large clusters (that results in low precision but high recall) and small

clusters (that have low recall but high precision). This measure used in optimal cluster

search is called E-measure, it is defined as Equation 2.36. The characteristics of optimal

cluster search and the E-measure allow us to evaluate retrieval effectiveness without bias,

as they directly concern the structure of a dendrogram without depending on external

object, such as a cluster representative.

In addition to examining and comparing retrieval effectiveness of different clustering

methods, we also address efficiency issue. As Sim_AHC and SHCoClust are more effi-

cient when their similarity matrices are sparsified, we test whether improving efficiency

via sparsification influences the retrieval effectiveness measured by the E-measure. After
1These methods are: the single link, the complete link, the average link and the Ward method

Chapter 5. The Cluster Hypothesis Tests 91

presenting the two proposed tests, we illustrate an empirical comparison between them

in order to have a better understanding on their retrieval performance.

The outline of this chapter is structured as follows: in Section 5.2, details on tested

datasets, preprocessing and experiment setting are presented. In Section 5.3, a new test

on the cluster hypothesis using Sim_AHC is introduced. Another test that uses SHCo-

Clust is illustrated in Section 5.4. In each test, we compare the retrieval effectiveness

of seven hierarchical clustering methods, and we examine the impact of improving effi-

ciency via sparsification on the effectiveness. In Section 5.5, we compare between the two

proposed tests by performing statistical tests, and discuss their computing complexity.

5.2 Datasets, Preprocessing and Experiment Setting

Five datasets from two collections are used in our experiments. Three of the Classic-4

datasets2, MED, CISI and CACM, have been tested in previous works [93, 102, 112].

Introduction on MED (or MEDLINE) and CISI datasets can be found in Section 3.3.1

in Chapter 3. CACM dataset is a collection of abstracts from computer science jour-

nals. The other two datasets are sampled from Associated Press (AP) and Wall Street

Journal (WSJ) collections, which are part of the TREC collection3. The full AP and

WSJ collections in TREC contain 242,275 newswire articles and 161,512 journal articles,

respectively. Table 5.1 lists the details of the five experimented datasets.

Collection Classic-3 TREC
Dataset MED CISI CACM AP WSJ
nb.docs 1033 1460 2936 3147 1937
nb.terms 651 578 263 1562 1345
nb.queries 30 76 52 61 27

nb.docs/query 23 41 15 2 2

Table 5.1: Experimented datasets

For each dataset, a simple preprocessing is employed: stop words are removed; terms

that have document frequency higher than 20% and lower than 2% are removed; the

remaining terms are stemmed by Porter Stemmer [113]; TF-IDF weighting scheme is

applied and l2 normalization is performed on each document vector. The output of

preprocessing for each dataset is a document-term matrix, whose number of documents

and number of terms are indicated by nb.docs and nb.terms in Table 5.1.

2It contains the SMART datasets (MED, CISI and CRAN). We do not use CRAN (or CRANFIELD)
dataset in the cluster hypothesis tests, because query indexes in its query file do not match those in its
relevance judgment file. http://ir.dcs.gla.ac.uk/resources/test_collections/

3https://catalog.ldc.upenn.edu/LDC93T3A

https://catalog.ldc.upenn.edu/LDC93T3A
http://ir.dcs.gla.ac.uk/resources/test_collections/

Chapter 5. The Cluster Hypothesis Tests 92

Each dataset contains a complete query set and a relevance judgment file, which specifies

a list of relevant documents to a query. In evaluation, we use the query set and the

relevance judgment file to compute E-measure. The number of queries for each dataset

is given by nb.queries, and the number of relevant documents per query is given by

nb.docs/query.

For the TREC datasets (AP and WSJ), the relevance judgments files of TREC-2 are

used4. They concern 100 queries indexed from 51 to 150 by the TREC convention. For

AP collection, there are 97 queries extracted in total. On average, each query has 110

relevant documents. For WSJ collection, 50 queries are extracted, each query has 91

relevant documents on average. As our tested datasets are sampled, they contain less

documents than the full collections, so we remove the documents that are not contained

in these tested datasets from the list of relevant documents for each query. This results

in 61 and 27 queries for the sampled AP and WSJ datasets, respectively. And each query

has 2 relevant documents on average.

Our experiment is consisted of a number of tests. In each test, a full-sized or a sparsified

pairwise similarity matrix S, generated by either linear kernel or Gaussian kernel, is

used as input. We then apply one of the seven AHC methods (either in Sim_AHC or in

SHCoClust) to produce a dendrogram, which is later cut at each height to output a set

of flattened clusters. For each query in the query set, we search for its optimal cluster

by scanning all the flattened clusters, for each of which we compute an E value. The

cluster that has the minimal E value is the optimal cluster. The final output of such a

test is a key-value pair, with a query ID being the key and the optimal E value (i.e., the

E value of the optimal cluster that corresponds to the query) being the value.

Recall that E-measure [92] is used to evaluate retrieval effectiveness. Expressed as E =

1− (β2+1)PR
β2P+R

, smaller E value indicates better retrieval effectiveness. P and R represent

precision and recall, respectively, which can be expressed by P = tp
d and R = tp

q . d is

the number of documents in an optimal cluster, q is the number of relevant documents

for a query, tp = d∩ q is the number of true positive documents. β is the parameter that

balances the importance between precision and recall, it takes values of 0.5, 1 and 2.

5.3 A New Cluster Hypothesis Test Using Sim_AHC

In this section, a new test on the cluster hypothesis is introduced. Differing from those

tests that apply conventional AHC methods, this test applies the similarity-based hierar-

chical clustering framework, Sim_AHC. In Chapter 3, we mathematically and empirically

4http://trec.nist.gov/data/qrels_eng/

http://trec.nist.gov/data/qrels_eng/

Chapter 5. The Cluster Hypothesis Tests 93

demonstrate that Sim_AHC is equivalent to the conventional AHC procedure with the

Lance-Williams formula. Using inner product-based similarities, Sim_AHC allows to

employ a threshold value to sparsify the similarity matrix in order to improve computing

efficiency. Its experiments demonstrate that the sparsifying strategy not only improve

efficiency, but also guarantee or improve clustering quality.

In this test, we apply Sim_AHC to testing the cluster hypothesis. The objective of this

test is three-folded: first of all, we are interested in complementing previous research

works, where only four AHC methods are tested. In this test, all conventional AHC

methods that are unified in the Lance-Williams formula and in Sim_AHC are tested.

Secondly, by applying optimal cluster search and computing the E-measure, we compare

retrieval effectiveness among these methods and provide a benchmark using a universal

experimental setting. Thirdly, we address efficiency issue in this test. Concretely, we

examine the influence of sparsifying similarity matrix on retrieval efficiency, and on

retrieval effectiveness.

5.3.1 Comparison of Retrieval Effectiveness Among Seven Clustering

Methods

Table 5.3 and Table 5.4 display results of our first experiment. Each cell in Table 5.3 is

an averaged optimal E value, which is the mean value of all optimal E values for a set

of queries in a tested dataset. Suppose that a dendrogram is produced after applying

the single link clustering method on MED dataset, whose query set contains 30 queries,

Q = {q1, . . . , q30}. By optimal cluster search, we find an optimal cluster for a query and

obtain the corresponding optimal E value. For this set of queries, the averaged optimal

E value is computed as 1
30

∑30
i=1Ei, it is equal to 0.452 (at β = 0.5). Correspondingly,

the standard deviation of optimal E values for the queries of MED dataset is 0.157,

shown in Table 5.4.

In this experiment, the input similarity matrix S is generated by linear kernel and by

Gaussian kernel. No thresholding strategy is applied, thus the full-sized S is used in

computation. Values in Table 5.3 that are highlighted in bold are column-wise minimums.

They signify the best retrieval effectiveness among seven clustering methods at a β value.

As the averaged optimal E values are very close, we use three decimals to distinguish

them. When these values are too close, we select the column-wise lowest using four

decimals, but only three are shown. Likewise, in Table 5.4 column-wise minimal standard

deviation is highlighted.

By observing Table 5.3, we can see that in both kernels Ward dominates the other

methods with better retrieval effectiveness; McQuitty and average link achieve the best

Chapter 5. The Cluster Hypothesis Tests 94

effectiveness in some cases. A brief summary of Table 5.3 is provided in Table 5.2,

which lists the clustering methods that obtain at least two lowest averaged E values at

β = 0.5, 1 and 2.

Kernel/Dataset MED CISI CACM AP WSJ
Linear kernel Ward Ward Ward Ward McQuitty

Gaussian kernel average Ward Ward Ward McQuitty

Table 5.2: Clustering methods that obtain at least two lowest averaged E values at
β = 0.5, 1 and 2

In Table 5.4, we can see that standard deviation values are generally small, indicating

that the overall difference between an optimal E value and the averaged optimal E value

is small. Compared to MED, CISI and CACM datasets, AP and WSJ datasets have

more larger standard deviation values. This is likely caused by the reduced number of

relevant documents in their relevance judgment files. Small optimal clusters that contain

relevant files tend to generate very low optimal E values, but larger optimal clusters that

do not contain any relevant file tend to output very high optimal E values. This causes

standard deviation values to increase in AP and WSJ datasets.

With Table 5.2, we can confirm that our results obtained from MED (using linear kernel),

CISI, CACM and AP datasets conform to the conclusion in [100], which states that “Ward

method was found to give the best overall results", though this work retrieves several

clusters instead of one. As to the conclusions of [98, 102], which claim that “average link

gave the best results", we only have the result obtained by MED dataset using Gaussian

kernel to support them. In fact, compared to average link, we find that McQuitty achieves

the same or better efficiency. Furthermore, our results disagree with the finding in [99],

which concludes that “complete link is probably the most effective method". In our

experiments, complete link performs poorly. Single link, centroid and median methods

usually obtain larger averaged optimal E values than the other methods, showing poor

retrieval effectiveness.

For two kernels, they obtain close results in many cases. Among all tested datasets,

MED obtains generally lower E values than the other datasets, it is also the smallest

collection. For MED, CISI and CACM datasets, their averaged optimal E values tend

to increase as the values of β increase. On the contrary, for AP and WSJ datasets, as

the values of β increase, averaged optimal E values tend to decrease. This is actually

related to the sizes of optimal clusters and the number of relevant documents per query.

In MED, CISI and CACM datasets, the sizes of optimal clusters increase as the values of

β increase. The size of an optimal cluster influences precision and recall. Larger optimal

cluster tends to have lower precision but higher recall. When β = 2, E-measure assigns

more importance to precision, making larger optimal clusters to have higher E values.

Chapter 5. The Cluster Hypothesis Tests 95

As to AP and WSJ datasets used in our experiments, the number of relevant documents

per query is very small. In this case, larger clusters are likely to contain all relevant

files, resulting in higher precision. Small clusters, on the other hand, probably have low

precision as they do not contain any relevant document. This eventually makes E values

to decrease when β moves from 0.5 to 2.

To compare among the averaged optimal E values obtained at β = 0.5, 1 and 2, we

provide Figure 5.1 that illustrates the results of each dataset in Table 5.3. Numbers 1-7

along x-axis index seven clustering methods, from single link to Ward method. Dotted

line with circle sign, solid line with triangle sign and dashed line with plus sign present

the averaged optimal E values at β = 0.5, 1 and 2, respectively. Note that in order to

clearly display the difference of the three lines, each plot has its own scale for y-axis.

Kernel MED CISI CACM AP WSJ

L
in

ea
r

●

●

● ●

●

●

●

1 2 3 4 5 6 7

0.
4

0.
5

0.
6

0.
7

0.
8

●

●
● ●

●

●

●

1 2 3 4 5 6 7

0.
55

0.
65

0.
75

0.
85

●

●
● ●

● ●

●

1 2 3 4 5 6 7

0.
55

0.
65

0.
75

0.
85

●

● ● ●

●

●

●

1 2 3 4 5 6 7

0.
4

0.
5

0.
6

0.
7

0.
8

●

● ● ●

●

●

●

1 2 3 4 5 6 7

0.
5

0.
6

0.
7

0.
8

0.
9

G
au

ss
ia

n

●

●

●
● ● ●

●

1 2 3 4 5 6 7

0.
40

0.
50

0.
60

0.
70

●

●
● ●

●
●

●

1 2 3 4 5 6 7

0.
55

0.
65

0.
75

●

●
● ●

●
●

●

1 2 3 4 5 6 7

0.
55

0.
65

0.
75

0.
85

●

● ● ●

●
●

●

1 2 3 4 5 6 7

0.
4

0.
5

0.
6

0.
7

0.
8

●

● ● ●

●

●

●

1 2 3 4 5 6 7

0.
5

0.
6

0.
7

0.
8

0.
9

Figure 5.1: Illustration of results in Table 5.3 for each tested dataset

From Figure 5.1 we can see that, for MED, CISI and CACM datasets, the averaged

optimal E values obtained at β = 1 and β = 2 are very close to each other, and they are

higher than those obtained at β = 0.5. However, for AP and WSJ datasets, the averaged

optimal E values obtained at β = 0.5 and β = 1 are close to each other, and farther

from those obtained at β = 2. We can also observe that the three lines are fluctuating

for all tested datasets. The lowest and the highest points along the three lines in each

plot show the most effective and the least effective clustering methods for a dataset

using a kernel function. There are a few common things shared by these plots: (1) the

lowest point usually appears at integer 7, indicating that Ward method gives the best

retrieval effectiveness in most cases; (2) the highest point often appears at integer 1 and

5, implying that single link and centroid method give the worst retrieval effectiveness;

and (3) average link is as effective as McQuitty method in most cases, as the three lines

are almost flat at integers 3 and 4.

C
hapter

5.
T

h
e

C
lu

ster
H

ypo
th

esis
T
ests

96

L
in

ea
r

ke
rn

el Dataset MED CISI CACM AP WSJ
β = 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

single 0.452 0.549 0.582 0.678 0.774 0.761 0.686 0.779 0.813 0.713 0.694 0.622 0.757 0.736 0.666
complete 0.498 0.625 0.658 0.641 0.747 0.750 0.607 0.713 0.730 0.612 0.573 0.467 0.645 0.611 0.523
average 0.453 0.519 0.489 0.611 0.700 0.686 0.626 0.708 0.706 0.611 0.578 0.474 0.632 0.597 0.504

McQuitty 0.469 0.554 0.538 0.611 0.709 0.700 0.620 0.709 0.709 0.610 0.572 0.461 0.628 0.593 0.498
centroid 0.591 0.716 0.752 0.757 0.844 0.814 0.682 0.765 0.787 0.829 0.828 0.805 0.899 0.905 0.902
median 0.526 0.639 0.682 0.683 0.789 0.790 0.668 0.748 0.753 0.766 0.744 0.682 0.819 0.801 0.756

Ward 0.438 0.518 0.513 0.598 0.696 0.696 0.574 0.670 0.675 0.609 0.571 0.463 0.645 0.608 0.517

G
au

ss
ia

n
ke

rn
el Dataset MED CISI CACM AP WSJ

β = 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2
single 0.452 0.549 0.582 0.678 0.774 0.761 0.686 0.779 0.813 0.713 0.694 0.622 0.757 0.736 0.666

complete 0.492 0.616 0.645 0.640 0.746 0.749 0.605 0.708 0.725 0.612 0.574 0.466 0.645 0.610 0.520
average 0.454 0.520 0.498 0.612 0.703 0.691 0.627 0.714 0.714 0.616 0.584 0.483 0.637 0.601 0.503

McQuitty 0.467 0.552 0.549 0.612 0.711 0.703 0.618 0.705 0.706 0.615 0.577 0.466 0.631 0.598 0.507
centroid 0.479 0.527 0.512 0.688 0.755 0.734 0.715 0.769 0.762 0.807 0.788 0.717 0.855 0.833 0.775
median 0.490 0.562 0.561 0.671 0.755 0.742 0.685 0.754 0.747 0.760 0.732 0.642 0.804 0.776 0.705

Ward 0.455 0.540 0.530 0.600 0.695 0.691 0.575 0.675 0.682 0.611 0.573 0.465 0.644 0.608 0.519

Table 5.3: Retrieval effectiveness measured by averaged optimal E values for seven clustering methods in Sim_AHC using linear and Gaussian
kernels

C
hapter

5.
T

h
e

C
lu

ster
H

ypo
th

esis
T
ests

97

L
in

ea
r

ke
rn

el Dataset MED CISI CACM AP WSJ
β = 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

single 0.157 0.175 0.189 0.133 0.115 0.119 0.169 0.125 0.116 0.226 0.230 0.274 0.234 0.239 0.284
complete 0.144 0.153 0.155 0.120 0.099 0.103 0.145 0.118 0.122 0.192 0.187 0.200 0.191 0.195 0.238
average 0.163 0.179 0.198 0.136 0.118 0.120 0.136 0.112 0.126 0.207 0.199 0.212 0.174 0.168 0.206

McQuttiy 0.153 0.167 0.175 0.125 0.109 0.109 0.136 0.108 0.125 0.197 0.192 0.211 0.175 0.169 0.197
centroid 0.176 0.194 0.193 0.139 0.091 0.098 0.154 0.135 0.142 0.226 0.229 0.266 0.190 0.187 0.201
median 0.166 0.177 0.181 0.144 0.102 0.090 0.148 0.110 0.120 0.216 0.223 0.272 0.189 0.206 0.260

Ward 0.162 0.179 0.175 0.143 0.118 0.108 0.149 0.136 0.143 0.187 0.179 0.191 0.167 0.175 0.216

G
au

ss
ia

n
ke

rn
el Dataset MED CISI CACM AP WSJ

β = 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2
single 0.157 0.175 0.189 0.133 0.115 0.119 0.169 0.125 0.116 0.226 0.230 0.274 0.234 0.239 0.284

complete 0.144 0.159 0.163 0.121 0.100 0.104 0.145 0.117 0.121 0.191 0.186 0.198 0.189 0.191 0.232
average 0.164 0.179 0.190 0.132 0.117 0.119 0.139 0.116 0.127 0.204 0.196 0.214 0.171 0.162 0.195

McQuitty 0.156 0.169 0.178 0.125 0.110 0.111 0.135 0.107 0.123 0.199 0.194 0.214 0.180 0.178 0.210
centroid 0.178 0.206 0.212 0.140 0.108 0.101 0.145 0.127 0.137 0.183 0.181 0.218 0.158 0.168 0.196
median 0.156 0.179 0.187 0.138 0.098 0.090 0.151 0.108 0.110 0.196 0.194 0.227 0.173 0.183 0.223

Ward 0.158 0.182 0.181 0.145 0.117 0.110 0.150 0.141 0.147 0.188 0.181 0.194 0.169 0.178 0.218

Table 5.4: Standard deviation of optimal E values for seven clustering methods, corresponding to Table 5.3

Chapter 5. The Cluster Hypothesis Tests 98

5.3.2 Influence of Improving Efficiency via Sparsification on Retrieval

Effectiveness

In Section 3.3.2 of Chapter 3, we observe that improving efficiency by sparsifying the

similarity matrix S in Sim_AHC does not harm clustering quality, which on the contrary

gets improved in many cases. We give two reasons to explain this phenomenon in Section

3.4: first of all, sparsifying S “purifies" similarities by removing non-significant values.

Secondly, fusing a pair of similar clusters allows their respective neighborhoods to be

combined, making it is more likely to absorb another cluster that is initially close to

either of the neighborhoods.

Though measuring clustering quality is different from measuring retrieval effectiveness,

these two associate with each other. Intuitively, better retrieval effectiveness is more

likely obtained when documents are well clustered, in which documents in one cluster

are highly similar and documents from different clusters are largely dissimilar. This

motivates us to examine whether improving computing efficiency by sparsifying similarity

matrix S influences retrieval effectiveness.

Like our previous experiments that involve sparsification, in this experiment, our base-

line is still the absolute running time (in seconds) and memory usage when a full-sized

similarity matrix S is used as input. We record the relative running time and relative

memory usage when S is sparsified by a threshold value τ . Likewise, the set of τ values is

selected from the {10, 25, 50, 75, 90}% percentile ranks of values in S. Results of this ex-

periment are displayed in Figure 5.2 (when S is generated by linear kernel) and in Figure

5.3 (when S is generated by Gaussian kernel), where x-axis corresponds to the percentile

ranks. Dotted line with circle sign and solid line with triangle sign represent the relative

memory usage and the relative running time, respectively. Dashed lines with plus sign,

cross sign and square sign indicate the averaged optimal E values at β = 0.5, 1.0 and

2.0, respectively.

When S is sparsified by a τ value, only its non-zero values are kept in memory. Performing

a clustering method from Sim_AHC on a sparsified S outputs a reduced dendrogram,

which is smaller than the dendrogram output by a full-sized S. This reduced dendrogram

is cut at each height to generate a set of flat clusters, whose sizes vary from small to

large. Flat clusters that are obtained near dendrogram’s leaf nodes are usually smaller

than those obtained near the dendrogram’s root. For each query in the query set that is

attached to the dataset in test, optimal cluster search is performed to find the optimal

cluster for this query. Once the optimal cluster is found, an optimal E value is obtained,

accordingly. In order to reflect how a specific dendrogram responds to all queries that

Chapter 5. The Cluster Hypothesis Tests 99

come from the same set, we average over their optimal E values to get the averaged

optimal E value for the set of queries. This value is recorded and plot.

MED CISI CACM AP WSJ

SIN

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

COM

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0 ●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AVE

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MCQ

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CEN

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MED

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

WAR

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 5.2: Results of sparsifying S obtained by linear kernel

From Figure 5.2 and Figure 5.3, we can see that retrieval effectiveness tends to be in-

variant to the effect of sparsification, because the lines of E values keep almost flat as

relative memory use and running time gradually decrease when percentile ranks (along

x-axis) increases. Some subtle fluctuations of E curves can be found in the plots of

COM-MED and COM-CISI in Figure 5.2 and in Figure 5.3, in which three E curves

lift up along the increase of percentile ranks. This indicates that retrieval effectiveness

Chapter 5. The Cluster Hypothesis Tests 100

MED CISI CACM AP WSJ

SIN

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

COM

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AVE

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MCQ

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CEN

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

MED

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

WAR

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 5.3: Results of sparsifying S obtained by Gaussian kernel

of using complete link in MED and CISI datasets becomes worse when the similarity

matrix S is getting more and more sparsified. However, the opposite discovery can be

found in the plots of centroid method applying on MED, CISI, AP and WSJ datasets

in Figure 5.3, where E curves drop down when percentile rank is approaching to 1. It

implies that even similarity matrix S is sparsified, with less memory use and less running

time, retrieval effectiveness is actually improved.

In most plots, E curves tend to preserve at their levels and fluctuate very subtly as S

Chapter 5. The Cluster Hypothesis Tests 101

is being more and more sparsified. This is likely caused by the fact that most optimal

clusters are small and they situate near the leaf nodes of a dendrogram. Sparsifying

S mostly influences clusters that have small similarities, and these clusters are usually

located near the root of the dendrogram. That is why sparsifying S does not really affect

optimal clusters. And retrieval effectiveness is preserved. This is an interesting discovery.

It implies that with sparsifying S, we can achieve the same retrieval effectiveness using

much less computing resources.

Comparing two kernels, they obtain similar results. Though it is difficult to see much

differences between Figure 5.2 and Figure 5.3, based on recorded values, we observe

that Gaussian kernel always achieves better retrieval effectiveness than linear kernel for

centroid and median methods. This holds for all datasets except for CACM dataset. In

addition, both kernels obtain exactly the same results using single link for any full-sized

or sparsified S.

5.3.3 Summary

In this section, we introduce a new test on the cluster hypothesis using the similarity-

based hierarchical clustering framework, Sim_AHC. From the aspects of retrieval effec-

tiveness and efficiency, we examine this test by comparing retrieval effectiveness among

seven clustering methods, and by investigating the impact of improving efficiency via

sparsification on retrieval effectiveness. In comparing seven clustering methods, we con-

clude that Ward outperforms the other methods. This conclusion agrees with some of

past research works. In examining the influence of sparsifying similarity matrix on re-

trieval effectiveness, our experiments using linear kernel and Gaussian kernel demonstrate

that improving computing efficiency by sparsifying similarity matrix does not harm re-

trieval effectiveness. In fact, retrieval effectiveness is almost invariant to the effect of

sparsification. This result implies that using a largely sparsified similarity matrix, with

substantially reduced memory and running time, retrieval effectiveness can be guaran-

teed. Comparing between linear kernel and Gaussian kernel, we find out that Gaussian

kernel improves retrieval effectiveness of centroid and median methods.

5.4 A New Cluster Hypothesis Test Using SHCoClust

Unlike Sim_AHC, which performs clustering only on documents, SHCoClust groups

both documents and terms at the same time. This characteristic makes it unique in

the sense that it organizes co-clusters in a hierarchy and structures elements in a co-

cluster. As stated previously, a cluster-based IR system built on such a method can be

Chapter 5. The Cluster Hypothesis Tests 102

advantageous, as it is capable to return relevant documents and “describing" terms of

these documents. In this sense, richer knowledge is provided for seeking information.

In previous section, by examining how well document clusters respond to a query in

Sim_AHC, we obtain a few interesting findings. This makes us curious about the re-

trieval performance of SHCoClust. How well its document clusters respond to a query

using a co-clustering method? Similarly, as the computing efficiency of SHCoClust can

also be improved by sparsifying its similarity matrix, we are interested to see whether its

retrieval effectiveness can be likewise guaranteed when sparsification is applied, as shown

in the test of Sim_AHC. For such purposes, in this section, we perform a new test that

applies SHCoClust to compare retrieval effectiveness among seven clustering methods,

and to examine the impact of sparsifying similarity matrix on retrieval effectiveness.

Recall that in SHCoClust, a document-term matrix is firstly projected into a space that

is constructed by eigenvectors of a graph Laplacian matrix, then clustering is performed

on the projected data. Though the same set of datasets are used in this test, different

processes are required by SHCoClust. First of all, spectral embedding is applied on

a preprocessed document-term matrix to obtain matrix Z. Secondly, Z is normalized.

Note that it is important to correctly map documents and terms to their corresponding

vectors in Z. Thirdly, similarity matrix Sco is computed from Z and it is re-scaled to have

similarity values between 0 and 1. The set of threshold values τ is selected from percentile

ranks at {10, 25, 50, 75, 90}% of similarities in Sco. When a τ is used to sparsify Sco, a

reduced dendrogram is produced. In order to correctly measure retrieval effectiveness

based on relevance judgment information, it is necessary to remove all terms from an

output dendrogram. Otherwise, the number of terms would increase the size of a cluster,

lowering precision and affecting E value.

5.4.1 Comparison of Retrieval Effectiveness Among Seven Clustering

Methods

In comparing retrieval effectiveness among seven clustering methods of SHCoClust, a

full-sized similarity matrix Sco is used as input. With such an input, a clustering method

produces a complete dendrogram, which is then cut at each height to generate a set

of flat clusters. After removing terms from each flat cluster, optimal cluster search is

performed on these flat clusters for each query to look for its optimal cluster and the

optimal E value. The information provided by a relevance judgment file is used at this

step to compute E values. The optimal E value is recorded for each query. However, in

order to reflect how well a dendrogram responds to all queries of an input dataset, we

average the optimal E values over the number of queries. This averaged optimal E value

is used to evaluate the overall retrieval effectiveness of a clustering method on a dataset.

Chapter 5. The Cluster Hypothesis Tests 103

Table 5.6 and Table 5.7 illustrate the results of this experiment. A value in Table 5.6

is an averaged optimal E value, i.e., the mean value of optimal E values of all queries

in a tested dataset. And a value in Table 5.7 is a corresponding standard deviation.

Column-wise minimums in both tables are highlighted in bold. In Table 5.6, a bold

value signifies the best retrieval effectiveness achieved by a clustering method at a β

value. And in Table 5.7, a bold value marks the method that produces the most stable

optimal E values at a β value.

To compare retrieval effectiveness among seven clustering methods from Table 5.6, a

summary is provided in Table 5.5, in which the clustering method that achieves at least

two minimums across three β values is listed for each dataset. When no such a method

exists, a “−" sign is used. From this table, we can see that for linear kernel, average link

outperforms the others in CISI and CACM datasets, with complete link for AP and WSJ

datasets. For Gaussian kernel, the best performing method is Ward for CISI dataset,

centroid for AP dataset, single link for CACM and WSJ datasets.

Kernel/Dataset MED CISI CACM AP WSJ
Linear kernel - average average complete complete

Gaussian kernel - Ward single centroid single

Table 5.5: Clustering methods that obtain at least two lowest averaged optimal E
values at β = 0.5, 1 and 2

It is interesting to see that the clustering methods that return the minimal averaged

optimal E values in this test are very different from those in the test of Sim_AHC, where

only Ward, McQuitty and average link are the winners. Results in this test provide a

wider range of outperforming methods, especially for Gaussian kernel. However, one

thing in common with the Sim_AHC test is that, as β increases from 0.5 to 2, the

averaged optimal E values increase for MED, CISI and CACM datasets, and decrease

for AP and WSJ datasets (Table 5.6). Likewise, this is influenced by the sizes of optimal

clusters and the number of relevant documents per query.

By observing Table 5.3 and Table 5.6, we find that, in comparison with Sim_AHC, SHCo-

Clust returns higher (averaged optimal) E values for MED, CISI and CACM datasets,

and lower E values for AP and WSJ datasets. This implies that SHCoClust has bet-

ter retrieval effectiveness than Sim_AHC for AP and WSJ datasets, but for the other

datasets Sim_AHC has better retrieval effectiveness. And from Table 5.4 and Table

5.4, we can observe that, compared to Sim_AHC, SHCoClust usually obtains lower

standard deviation for MED, CISI, CACM datasets and higher standard deviation for

AP and WSJ datasets. There are two reasons to explain these: (1) in SHCoClust, the

dendrogram of a clustering method grows by aggregating both documents and terms.

Chapter 5. The Cluster Hypothesis Tests 104

Compared to Sim_AHC, SHCoClust requires a larger number of iterations to complete

clustering, and it eventually outputs a larger dendrogram, with documents and terms

being its leaf nodes. When flattening this dendrogram to perform optimal cluster search,

a larger number of flat clusters (with terms being removed) are generated, providing

more candidates for the optimal cluster; (2) AP and WSJ datasets have only a few rele-

vant documents per query. Therefore, it is more probable for a generated flat cluster to

contain all relevant documents for a query. As SHCoClust generates more flat clusters

than Sim_AHC, it is more likely to find small clusters that have precision equal to 1.

Besides, as the number of relevant documents is small, recall tends to be high as well.

MED, CISI and CACM datasets, on the other hand, have more relevant document per

query. Therefore, it is like to have lower recall than AP and WSJ datasets.

Kernel MED CISI CACM AP WSJ

L
in

ea
r

●
● ● ● ● ● ●

1 2 3 4 5 6 7

0.
65

0.
70

0.
75

0.
80

● ●
● ● ● ● ●

1 2 3 4 5 6 7

0.
70

0.
75

0.
80

● ● ● ● ● ● ●

1 2 3 4 5 6 7

0.
65

0.
75

0.
85

● ●

● ● ● ● ●

1 2 3 4 5 6 7

0.
45

0.
50

0.
55

●

●
● ● ● ●

●

1 2 3 4 5 6 7

0.
40

0.
45

0.
50

G
au

ss
ia

n

●
● ● ● ● ● ●

1 2 3 4 5 6 7

0.
65

0.
70

0.
75

0.
80

● ●
● ● ● ● ●

1 2 3 4 5 6 7

0.
70

0.
75

0.
80

● ● ● ● ● ● ●

1 2 3 4 5 6 7

0.
65

0.
75

0.
85

● ●

● ● ● ● ●

1 2 3 4 5 6 7

0.
45

0.
50

0.
55

●

●
● ● ● ●

●

1 2 3 4 5 6 7

0.
40

0.
45

0.
50

Figure 5.4: Illustration of results in Table 5.6 for each tested dataset

Figure 5.4 plots the results in Table 5.6. Like in Figure 5.1, integers 1-7 along x-axis

map to seven clustering methods. Dotted line with circle sign, solid line with triangle

sign and dashed line with plus sign represent the averaged optimal E values at β = 0.5,

1 and 2, respectively. Note that each plot has its own scale for y-axis. From Figure

5.4, we can observe that, all E curves are less fluctuate than in Figure 5.1 and tend to

keep flat. This indicates that unlike in Sim_AHC, clustering methods in SHCoClust are

close to each other in terms of retrieval effectiveness. One thing in common to Figure

5.1 is that, E values at β = 0.5 are lower than those at β = 1 and 2 in MED, CISI and

CACM datasets. In AP and WSJ datasets, however, E values at β = 2 is lower than

those at β = 0.5 and 1. In particular, in MED dataset, E curves are better separated in

SHCoClust than in Sim_AHC.

C
hapter

5.
T

h
e

C
lu

ster
H

ypo
th

esis
T
ests

105

L
in

ea
r

ke
rn

el Dataset MED CISI CACM AP WSJ
β = 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

single 0.686 0.772 0.726 0.728 0.790 0.742 0.690 0.789 0.811 0.484 0.503 0.467 0.473 0.488 0.458
complete 0.676 0.770 0.718 0.733 0.792 0.740 0.684 0.787 0.808 0.484 0.503 0.458 0.439 0.451 0.413
average 0.678 0.758 0.706 0.725 0.789 0.734 0.683 0.784 0.806 0.505 0.521 0.470 0.456 0.467 0.426

McQuitty 0.680 0.760 0.714 0.729 0.788 0.735 0.684 0.785 0.810 0.504 0.523 0.474 0.457 0.463 0.418
centroid 0.677 0.753 0.699 0.726 0.788 0.740 0.683 0.787 0.810 0.505 0.521 0.470 0.456 0.466 0.425
median 0.679 0.757 0.720 0.729 0.789 0.737 0.687 0.789 0.808 0.505 0.523 0.473 0.457 0.463 0.418

ward 0.679 0.754 0.698 0.725 0.787 0.741 0.681 0.787 0.814 0.499 0.517 0.469 0.445 0.456 0.419

G
au

ss
ia

n
ke

rn
el Dataset MED CISI CACM AP WSJ

β = 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2
single 0.673 0.759 0.749 0.733 0.818 0.800 0.675 0.774 0.797 0.525 0.562 0.529 0.493 0.502 0.453

complete 0.645 0.744 0.707 0.722 0.798 0.767 0.677 0.778 0.796 0.514 0.539 0.490 0.566 0.559 0.498
average 0.645 0.735 0.679 0.722 0.788 0.745 0.683 0.782 0.796 0.525 0.546 0.491 0.566 0.559 0.498

McQuitty 0.651 0.730 0.687 0.721 0.788 0.747 0.680 0.778 0.793 0.525 0.548 0.499 0.556 0.546 0.469
centroid 0.643 0.734 0.687 0.723 0.790 0.752 0.687 0.781 0.796 0.506 0.529 0.483 0.568 0.560 0.496
median 0.643 0.737 0.703 0.722 0.790 0.750 0.682 0.778 0.789 0.512 0.532 0.480 0.552 0.545 0.477

Ward 0.650 0.740 0.691 0.728 0.787 0.744 0.678 0.780 0.795 0.514 0.536 0.485 0.539 0.537 0.480

Table 5.6: Retrieval effectiveness measured by averaged optimal E values for seven clustering methods in SHCoClust using linear and Gaussian
kernels

C
hapter

5.
T

h
e

C
lu

ster
H

ypo
th

esis
T
ests

106

L
in

ea
r

ke
rn

el Dataset MED CISI CACM AP WSJ
β = 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

single 0.079 0.066 0.088 0.119 0.119 0.133 0.139 0.119 0.119 0.249 0.247 0.278 0.318 0.303 0.304
complete 0.075 0.057 0.090 0.090 0.090 0.121 0.142 0.132 0.132 0.232 0.222 0.256 0.309 0.292 0.291
average 0.076 0.064 0.092 0.118 0.117 0.133 0.139 0.130 0.130 0.232 0.219 0.255 0.299 0.283 0.285

McQuitty 0.075 0.064 0.085 0.118 0.116 0.131 0.143 0.131 0.132 0.233 0.219 0.251 0.298 0.280 0.281
centroid 0.076 0.072 0.099 0.118 0.117 0.128 0.139 0.122 0.120 0.233 0.220 0.255 0.298 0.282 0.283
median 0.075 0.067 0.086 0.119 0.117 0.131 0.138 0.121 0.120 0.233 0.218 0.250 0.298 0.280 0.281

Ward 0.073 0.072 0.092 0.118 0.116 0.130 0.137 0.121 0.123 0.228 0.216 0.251 0.315 0.297 0.291

G
au

ss
ia

n
ke

rn
el Dataset MED CISI CACM AP WSJ

β = 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2
single 0.100 0.111 0.106 0.131 0.130 0.141 0.126 0.138 0.169 0.259 0.227 0.251 0.304 0.284 0.288

complete 0.095 0.092 0.101 0.097 0.097 0.121 0.134 0.137 0.155 0.212 0.187 0.232 0.282 0.262 0.267
average 0.093 0.096 0.121 0.098 0.098 0.123 0.134 0.137 0.155 0.213 0.185 0.223 0.276 0.263 0.281

McQuitty 0.097 0.093 0.102 0.100 0.102 0.128 0.139 0.139 0.154 0.233 0.206 0.235 0.272 0.242 0.245
centroid 0.105 0.109 0.117 0.099 0.098 0.122 0.134 0.137 0.154 0.231 0.209 0.245 0.270 0.254 0.273
median 0.098 0.105 0.118 0.099 0.100 0.128 0.140 0.140 0.155 0.235 0.210 0.241 0.275 0.250 0.263

Ward 0.090 0.086 0.104 0.101 0.100 0.127 0.136 0.139 0.155 0.209 0.184 0.232 0.286 0.270 0.277

Table 5.7: Standard deviation of optimal E values for seven clustering methods, corresponding to Table 5.6

Chapter 5. The Cluster Hypothesis Tests 107

5.4.2 Impact of Sparsification on Retrieval Effectiveness

In the test of Sim_AHC, shown in Section 5.3.2, we find out that retrieval effectiveness is

guaranteed when similarity matrix is getting more and more sparsified. Unlike sparsifying

a similarity matrix in Sim_AHC, in SHCoClust sparsification is applied on a similarity

matrix that is obtained from projected data. This difference might lead to different

conclusions from the experiment of Sim_AHC. Interested in finding this out, in this

section we examine the influence of sparsification on retrieval effectiveness in SHCoClust.

Likewise, the baseline of our experiment is the absolute running time Tτ=0 and memory

use Mτ=0 when a full-sized Sco is taken as input. Given a threshold value τ , τ > 0, Sco

is sparsified by only keeping its non-zero values that are greater or equal to τ in memory.

A clustering method is applied on a sparsified Sco and an incomplete dendrogram is

output. The memory use that is occupied by the sparsified Sco, Mτ , and the running

time of performing clustering, Tτ , are recorded. The relative memory use, Mτ

Mτ=0
, and

the relative running time, Tτ

Tτ=0
, are computed and plotted. The output dendrogram is

flattened at each height, resulting a set of flat clusters. In order to compute E-measure,

only documents are kept in each flat cluster (terms are removed). Using the relevance

judgment information in a dataset, the optimal cluster is searched for each query and

corresponding optimal E value is computed. In the end, the averaged optimal E value

is calculated for all queries.

Figure 5.5 and Figure 5.6 illustrate experiment results of sparsifying Sco, which is ob-

tained using linear kernel and Gaussian kernel, respectively. Like in Figure 5.2 and in

Figure 5.3, percentile ranks are along x-axis; (green) dotted line with circle sign rep-

resents relative memory use, Mτ

Mτ=0
, and (orange) solid line with triangle sign denotes

relative running time, Tτ

Tτ=0
. Dashed lines with plus sign, cross sign and square sign

indicate the averaged optimal E values at β = 0.5, 1 and 2, respectively.

It is interesting to see that a similar conclusion can be drawn from this experiment

as in the test of Sim_AHC, that is, retrieval effectiveness tends to be invariant to the

effect of sparsifying similarity matrix. It is clear that, in the results of both linear and

Gaussian kernels, the lines of the averaged optimal E values are almost straight in all

plots, in which relative running time and relative memory use decrease as percentile rank

increases. In fact, these lines are even more constant than the results obtained in the

same experiment of Sim_AHC. In addition, results obtained from two kernels are also

very close.

Chapter 5. The Cluster Hypothesis Tests 108

MED CISI CACM AP WSJ

SIN

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

COM

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AVE

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MCQ

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CEN

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MED

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

WAR

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 5.5: Results of sparsifying Sco obtained by linear kernel

5.4.3 Summary

In this section, we propose a new test on the cluster hypothesis using SHCoClust. In

our experiments, we firstly illustrate results of comparing retrieval effectiveness among

seven clustering methods, then we examine the impact of sparsifying similarity matrix on

retrieval effectiveness and on computing efficiency. In the first experiment, we find out

that Ward method is no more the dominating one as concluded in the test of Sim_AHC.

Chapter 5. The Cluster Hypothesis Tests 109

MED CISI CACM AP WSJ

SIN

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

COM

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AVE

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MCQ

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0 ●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CEN

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MED

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

WAR

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 5.6: Results of sparsifying Sco obtained by Gaussian kernel

A wider range of methods are shown to be performing. However, the difference of the

averaged optimal E values obtained by seven methods is in fact quite small. In the

second experiment, we obtain a similar conclusion, i.e., sparsifying similarity matrix

results in better computing efficiency without harming retrieval effectiveness. This is

probably caused by the fact that most optimal clusters are located near the leaf nodes of

an output dendrogram. Sparsification disconnects clusters that have small similarities,

and these clusters are likely near the root. Therefore, optimal clusters are not affected by

sparsifying the similarity matrix, and retrieval effectiveness keeps invariant as threshold

Chapter 5. The Cluster Hypothesis Tests 110

value increases. Unlike Sim_AHC, SHCoClust goes through more iterations and outputs

larger dendrograms. This results in more flat clusters for optimal cluster search, and

provides more candidates to be selected as the optimal cluster for a query. It is why

SHCoClust has lower variance of the optimal E values than Sim_AHC.

5.5 Comparison between Two Proposed Tests

In Section 5.3 and Section 5.4, we design and carry out two new tests on the cluster

hypothesis using Sim_AHC and SHCoClust, respectively. In each test, we compare

retrieval effectiveness among seven clustering methods and examine the impact of im-

proving computing efficiency by sparsification on retrieval effectiveness. In this section,

we compare the two tests to find out which clustering framework has better retrieval

effectiveness. Besides, we provide a discussion on the complexity of the two clustering

frameworks.

5.5.1 On Retrieval Effectiveness

One way to compare retrieval effectiveness between Sim_AHC and SHCoClust is to

compare results in Table 5.3 and in Table 5.6. In order to perform a fair comparison,

we carry out a set of paired two-tailed Student T-tests between the results obtained in

the Sim_AHC test and the results obtained in the SHCoClust test. Our objective is

to examine whether the retrieval effectiveness of Sim_AHC is the same or significantly

different from that of SHCoClust. If they are significantly different, we compare their

averaged optimal E values to conclude which one is more effective.

Previously, it is explained that the averaged optimal E value is the mean value of a

list of optimal E values for a set of queries. To perform one T-test, we take two lists

of optimal E values. One list is from Sim_AHC and the other list is from SHCoClust

using the same clustering method on the same dataset with the same kernel function

at the same β value. The null hypothesis is H0 : µ0 = µ1, with µ0 and µ1 denoting

the averaged optimal E value of Sim_AHC and of SHCoClust, respectively. And the

alternative hypothesis is H1 : µ0 ̸= µ1. It is a paired T-test, because the two lists of

optimal E values in comparison are generated from the same dataset for the same query

set using the same clustering method, but from two different frameworks.

In each T-test, we compute a statistical T value and compare it against the corresponding

critical value at confidence level α = 95%. If the absolute T value is greater than its

critical value, the null hypothesis H0 is rejected and the alternative hypothesis H1 is

Chapter 5. The Cluster Hypothesis Tests 111

accepted; otherwise, the alternative hypothesis H1 is rejected and the null hypothesis H0

is accepted. Table 5.8 displays T values of all T-tests, with those whose absolute value

are smaller than critical value being highlighted in red.

From Table 5.8, we can observe that most (absolute) T values are greater than critical

values, implying that in most cases the retrieval effectiveness of Sim_AHC is significantly

different from that of SHCoClust. In some cases, (absolute) T values are smaller than

critical values. As we can see, for MED, CISI and CACM datasets, red T values often

appear at single link, median and centroid methods. However, for AP and WSJ (using

Gaussian) datasets, red T values occur in complete link, average link, McQuitty and

Ward methods.

For T-tests that accept H1 in MED, CISI and CACM datasets, we further compare

the averaged optimal E values of Sim_AHC (Table 5.3) and SHCoClust (Table 5.6), we

conclude that for these datasets Sim_AHC is significantly more effective than SHCoClust

using complete link, average link, McQuitty and Ward methods. On the other hand, for

T-tests that accept H1 in AP and WSJ datasets, we find that SHCoClust is significantly

more effective than Sim_AHC using single link, centroid and median methods.

C
hapter

5.
T

h
e

C
lu

ster
H

ypo
th

esis
T
ests

112

Critical value 2.045 1.992 2.009 2.000 2.056
L
in

ea
r

ke
rn

el Dataset MED CISI CACM AP WSJ
β = 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

single -7.901 -7.270 -5.038 -3.231 -1.150 1.660 -0.138 -0.426 0.060 5.173 4.116 3.007 4.311 3.905 3.232
complete -7.191 -5.698 -2.271 -6.804 -4.261 0.603 -3.810 -5.094 -5.506 3.265 1.885 0.257 3.420 2.834 2.180
average -6.736 -7.234 -6.786 -6.822 -6.458 -4.082 -2.533 -4.253 -5.911 2.630 1.479 0.122 3.334 2.842 2.237

McQuitty -7.146 -6.566 -5.780 -7.566 -5.897 -2.792 -2.582 -3.930 -5.599 2.624 1.249 -0.324 2.815 2.368 1.766
centroid -2.596 -1.018 1.495 1.428 3.058 4.054 -0.031 -1.073 -1.285 8.559 7.472 6.809 5.669 5.653 5.863
median -5.127 -3.880 -1.309 -2.388 -0.045 3.128 -0.763 -2.298 -4.124 6.760 5.252 4.231 5.594 5.152 4.490

Ward -7.512 -7.603 -7.467 -6.676 -5.407 -3.089 -4.772 -5.769 -6.872 2.924 1.485 -0.175 3.388 2.788 2.059

G
au

ss
ia

n
ke

rn
el Dataset MED CISI CACM AP WSJ

β = 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2
single -6.430 -5.959 -4.481 -2.960 -2.858 -3.200 0.393 0.163 0.529 3.809 2.580 1.609 3.238 2.909 2.582

complete -5.295 -4.667 -2.339 -5.312 -4.050 -1.701 -3.394 -4.257 -5.248 2.776 1.057 -0.744 0.891 0.459 0.069
average -6.270 -6.839 -6.010 -6.747 -6.288 -4.762 -2.581 -3.603 -4.884 2.423 1.075 -0.240 1.154 0.709 0.094

McQuitty -6.113 -6.135 -4.851 -7.062 -5.776 -3.705 -2.663 -3.884 -5.528 2.238 0.748 -0.881 1.317 0.999 0.847
centroid -4.618 -5.934 -5.643 -1.743 -2.142 -1.221 1.067 -0.410 -1.186 9.189 7.682 5.918 5.281 4.953 4.525
median -5.470 -5.998 -5.180 -2.746 -2.258 -0.520 0.123 -1.054 -1.950 7.005 5.532 4.020 4.143 3.728 3.269

Ward -6.708 -6.704 -6.394 -6.920 -5.970 -4.240 -4.469 -5.844 -7.218 2.792 1.123 -0.628 1.741 1.241 0.752

Table 5.8: T values of T-tests with H0 : µ0 = µ1 and H1 : µ0 ̸= µ1 at α = 95%. µ0 indicates the mean of optimal E values obtained in Sim_AHC,
µ1 for SHCoClust. Values highlighted in red are smaller than critical value.

Chapter 5. The Cluster Hypothesis Tests 113

5.5.2 On Computing Efficiency

In Section 3.3.2.2 and Section 4.3.4, we provide some discussion on the time complexity

of Sim_AHC and of SHCoClust. Given a document-matrix A of shape n×m, without

sparsification, the time complexity of Sim_AHC is O(n3), and O(min(nm2,mn2) +

(n + m)3) for SHCoClust. As shown previously, better computing efficiency can be

achieved by sparsifying similarity matrix S, resulting in M non-zero values being stored

in memory, M ≪ n2. This strategy reduces time complexity of Sim_AHC to O(nM),

and of SHCoClust to O(min(nm2,mn2) + (n + m)M). Comparing the two clustering

frameworks, SHCoClust is more costly than Sim_AHC no matter sparsifying S or not,

because it requires to apply spectral embedding and to perform clustering on a similarity

matrix of shape (n+m)× (n+m). However, it allows to retrieve both documents and

terms, which Sim_AHC cannot do.

5.5.3 Summary

In this section, we compare retrieval effectiveness between Sim_AHC and SHCoClust

by performing a set of paired two-tailed T-tests. We conclude that Sim_AHC is more

effective than SHCoClust using complete link, average link, McQuitty and Ward methods

in MED, CISI and CACM datasets. On the contrary, SHCoClust is more effective than

Sim_AHC using single link, centroid and median methods in AP and WSJ datasets. In

terms of computing efficiency, determined by the computing procedures, SHCoClust is

more costly than Sim_AHC.

5.6 Conclusion

In this chapter, two new tests on the cluster hypothesis are performed using Sim_AHC

and SHCoClust. The motivation of performing these tests is to obtain important knowl-

edge on how effectively a query is responded using different clustering methods, and

with what computing efficiency. We believe that this knowledge is fundamental for us

to understand the retrieval behaviors of the proposed clustering frameworks. Another

interest of this work is to provide a benchmark on this topic. In reviewing past works,

we find out that conclusions drawn from the cluster hypothesis tests are not consis-

tent, in comparing retrieval effectiveness among several hierarchical clustering methods.

The inconsistency is likely caused by the difference in datasets, experiment setting and

evaluation. Additionally, in the past works, only four out of seven conventional clus-

tering methods are tested. This motivates us to propose new tests, in which we use

universal datasets, experiment settings and evaluation measure to test seven clustering

Chapter 5. The Cluster Hypothesis Tests 114

methods in the framework of Sim_AHC and of SHCoClust. As Sim_AHC is equivalent

to conventional AHC and the Lance-Williams formula, retrieval effectiveness obtained

by Sim_AHC is the same to the conventional AHC framework. Another contribution

of this work is that we provide insight of retrieval efficiency for the cluster hypothesis

tests that apply hierarchical clustering methods. Concretely, we examine the impact of

improving efficiency by sparsifying similarity matrix on retrieval effectiveness.

In the test that uses Sim_AHC, we discover that Ward method is the dominating method,

who achieves the best retrieval effectiveness in most cases. This conclusion agrees with

some of the past works. However, in the test that uses SHCoClust, a wider range of

performing methods is returned. As to the impact of improving efficiency by sparsifying

similarity matrix on retrieval effectiveness, both tests present similar result, i.e., retrieval

effectiveness is almost invariant to the impact of sparsification. We observe that when

threshold value approaches to 1, with reduced memory use and running time, retrieval

effectiveness is guaranteed. This is an interesting discovery, which implies that it is likely

to achieve the same retrieval effectiveness with largely reduced memory use and running

time. We explain that sparsification disconnects clusters that are near the root of a

dendrogram, but it gives little impact on most optimal clusters, who are close to the leaf

nodes of the dendrogram. In comparing the retrieval effectiveness between the proposed

tests, we perform a sets of paired two-tailed T-tests. We conclude that Sim_AHC is

significantly more effective than SHCoClust using complete link, average link, McQuitty

and Ward methods. However, SHCoClust is more effective than Sim_AHC using single

link, centroid and median methods.

Chapter 6

The Distributed Implementations

6.1 Introduction

Previously, we demonstrate that the computing efficiency of Sim_AHC and SHCoClust

can be improved by sparsifying their similarity matrix. This strategy allows Sim_AHC

and SHCoClust to address relatively larger datasets with limited computing resources on

a single machine, where calculation is processed sequentially. Introduced in Section 2.1.2,

distributed and parallel computing are capable to take advantage of hardware to improve

efficiency by assigning computing tasks among a set of processors. These processors can

be either located in one machine (parallel), or connected via a local or remote network

(distributed). For each type of computing, there exists a number of softwares.

We improve the efficiency of Sim_AHC and SHCoClust from an algorithmic point of

view. Interested in further enhancing their efficiency, we choose distributed computing

to accelerate the speed of calculation in case of processing larger input. Compared parallel

computing, distributed computing is capable to handle issues such as data replication,

machine failure, job scheduling and recovery. These functions save us time from many

extra problems in implementing our programs. This is the main reason that we choose

distributed computing.

Among many distributed computing softwares, we choose Apache Spark. Mentioned in

Section 2.1.2.2, Apache Spark is an in-memory architecture, which allows intermediate

datasets to be cached in distributed memory of a cluster of nodes. This characteristic

prevents the intermediate datasets from being stored on hard disk. Unlike MapReduce

platform, where a lot of I/O overhead is produced due to reading and writing from and

to hard disk, Spark is more efficient because it avoids this overhead. For some iterative

algorithm, it is advantageous.

115

Chapter 6. The Distributed Implementations 116

The core of Spark is the RDDs (Resilient Distributed Datasets). Any input read from

a distributed file system can be cached as a set of RDDs across a cluster of nodes. It is

important to note that RDDs are immutable and are not materialized immediately. There

are two types of operations for RDDs, transformation and action. A transformation

function transforms RDDs from one type to another, constructing a lineage of RDDs.

An action function, on the other hand, executes all the transformation functions of the

lineage and returns an output, which can stored in hard disk or displayed. Both types

of functions operate on many data items (contained in RDDs) concurrently.

In this chapter, we illustrate the distributed implementations of Sim_AHC and of SHCo-

Clust, by presenting details of computing procedure, data structure, problems and so-

lutions. To us, implementing Sim_AHC and SHCoClust is a process of “learning by

doing". Though the performance of distributed Sim_AHC is not as good as expected,

we gain some valuable practical programming knowledge using Spark. We share this

learned knowledge in this chapter as well. For SHCoClust, like many other Spectral-

SVD methods, it uses spectral embedding as core. We provide an implementation of

distributed spectral embedding and make it applicable not only in SHCoClust but also

in other Spectral-SVD methods. In Section 6.2 and Section 6.3, we present implementa-

tion details of distributed Sim_AHC and distributed spectral embedding, respectively.

6.2 The Distributed Implementation of Sim_AHC

6.2.1 Computing Procedure

Illustrated in Algorithm 7, having pairwise similarity matrix S, the computing procedure

of Sim_AHC is composed of three steps in each iteration: firstly, searching for the pair of

closest clusters; secondly, merge this pair into one cluster; and lastly, update similarity

matrix S. Unlike this procedure, where computation is processed sequentially and a

similarity in S can be assigned with a new value, distributed Sim_AHC needs to cache

S as a set of RDDs in the distributed memory, and applies functions to update S while

respecting that RDDs are immutable. The characteristic of RDDs determines that we

cannot update S by assigning a new value to a similarity in it as in a conventional

program. But what we can do is to create a set of new RDDs and delete a set of

old RDDs. Based on this rule, we design a computing procedure in Figure 6.1. Given

a collection of documents, we firstly preprocess it into a document-term matrix, then

we store this matrix as a set of document vectors on HDFS. The program of distributed

Sim_AHC reads from HDFS, loads these vectors and cache them as a set of RDDs in the

distributed memory. After a number of iterations, the program outputs a dendrogram.

Chapter 6. The Distributed Implementations 117

Figure 6.1: Computing procedure of distributed Sim_AHC using Spark RDDs. Cx

and Cy denotes two clusters, Sxy denotes their pairwise similarity and S′

xy denotes their
self similarity.

In details, the computing procedure of distributed Sim_AHC during each iteration is

composed of five steps.

1. Firstly, our program initializes Spark RDDs by reading document vectors from

HDFS. The type of the RDDs is HadoopRDD. Then all document vectors are

indexed by unique ID numbers, which are associated to document names. The

indexing is achieved by a map function, which converts the type from HadoopRDD

into MapPartitionRDD, because individual items are in a form of key-value pair.

The key is an ID number and the value is a document vector. Next, a cartesian

function is applied on the MapPartitionRDD to compute pairwise similarities and

self similarities. For example, given a pair of indexed document vectors such as

(C1, [val1, val2, . . . , valm]) and (C2, [val1, val2, . . . , valm]), the output of the carte-

sian function on these two vectors is still in a form of key-value pair, such as

((C1, C2), (S12, S
′
12)), where S12 is the inner product-based similarity of the two

document vectors, and S′
12 = S12 − 0.5 × [S11 + S22] is their self similarity of.

As document vectors are normalized during preprocessing, if an inner product is

applied in the function that generates S12, it is cosine similarity. This can be ex-

tended to other kernel functions. If the number of documents is n, the output of

Step 1 contains n2 pairs. By applying a filtering function (a transformation func-

tion), we reduce the number of pairs to n(n− 1)/2. The filtered output is a set of

MapPartitionRDDs, it is illustrated as a pairwise similarity table in Figure 6.1.

Chapter 6. The Distributed Implementations 118

2. In the second step, our program searches for the pair of documents that has the

largest pairwise similarity in the pairwise similarity table. This operation is an

action function. Once it is called, all the transformation functions that are previ-

ously called on RDDs are materialized, and it outputs the key-value pair that has

the maximal similarity. Let (Ci, Cj) denote the pair of documents that have the

largest similarity, Sij , and the corresponding self similarity is S′
ij . Once (Ci, Cj) is

found, it is appended into a list, which is used to build a dendrogram.

3. In the third step, we firstly remove the entry ((Ci, Cj), (Sij , S
′
ij)) from the original

pairwise similarity table. The remaining entries are categorized into: (1) entries

that contain index Ci in their keys, (2) entries that contain index Cj in their keys,

and (3) the other entries that contain neither i nor j in their keys. Accordingly,

the pairwise similarity table is split into three different tables: The i-k table, the

j-k table and the ¬i-¬j table. Ck denotes any other remaining (document) cluster.

This splitting process is achieved by three filtering functions. Recall that filter()

is an RDD transformation function. The three tables are of MapPartitionRDD,

whose items are cached across the cluster of nodes.

4. It is worth mentioning that entries in i-k table and in j-k table share the same set of

indexes Ck in their keys. In this step, our program firstly aligns index Ck between

the two tables, then applies Equation 3.11 and Equation 3.12 on the aligned pairs

to update both pairwise similarities and self similarities. Depending a clustering

method, the similarities are computed accordingly. The output of this step is the

ij-k table. It is a UnionRDD because a union function is applied upon i-k table

and j-k table.

5. In the last step, our program combines ij-k table and ¬i-¬j table to form a “new

pairwise similarity table", which is used in the next iteration. This combination is

also achieved by an union function.

In order to obtain a complete dendrogram, our program theoretically requires n − 1

iterations. In each iteration, it runs through Step 2-5. The program is available at

https://github.com/xywang/spark_ahc. Note that all tables mentioned above are en-

capsulated as RDDs.

6.2.2 Experiments

6.2.2.1 Settings and Configurations

Our experiments are run on a cluster of five Linux machines, which are connected via

a local network. We name this cluster as “minicluster". Each machine in minicluster

https://github.com/xywang/spark_ahc

Chapter 6. The Distributed Implementations 119

has 8G RAM and 4 cores. Hadoop 2.6 and Spark 2.0.0 are installed and configured on

every machine. SSH communication is established. Spark standalone cluster mode is

deployed, with one machine executing the driver program while the others performing

executor processes. Our program is implemented in Python 2.7. In Spark, the Python

API (Application Programming Interface) is often referred as PySpark1. PyCharm IDE

(Integrated Development Environment) 4.5.1 is installed and configured on minicluster

to facilitate programming.

When launching a Spark application, it is essential to specify configuration properties

for the cluster, such as the number of executors, the number of executor cores, the size of

executor memory, etc. There are many properties that can be configure2, Table 6.1 lists

several commonly used properties in our Spark applications. These properties can be set

in Spark configuration file, or in user program, or through spark-submit command.

Property Default Meaning
spark.app.name (none) The application name.

spark.driver.cores 1 Number of cores to use for the driver process.
spark.driver.memory 1G Amount of memory to use for the driver process.

spark.executor.memory 1G Amount of memory to use per executor process.
spark.executor.cores all Number of cores to use on each executor.

Table 6.1: Commonly used Spark application properties

6.2.2.2 Spark Web UI

Once launching a Spark application, SparkContext is initialized in driver program, the

lineage of RDDs starts to grow by transformation functions. As these functions are not

materialized immediately, it is difficult to debug a Spark program. One practical way

is to observe running process from Spark web UI (User Interface). Every SparkContext

launches a web UI, which is accessible by the address http://<driver-node-ip>:4040

in a web browser. Spark web UI displays useful information of a Spark application. This

includes (1) a list of scheduler jobs, stages and tasks, (2) information of running executors,

(3) a summary of RDDs’ sizes and memory usage and (4) environment information.

A Spark application is composed of a set of jobs, each job is further composed of a list of

stages, each stage has several tasks. Figure 6.2 is a screenshot of Spark web UI homepage,

which contains three parts of information: (1) cluster general information and status,

(2) workers’ information and status, and (3) applications’ information and status. If

there is an running application, we can access the list of jobs, shown in Figure 6.3. Each

job is indexed by an ID number, information such as applied functions, submitted time,

1https://spark.apache.org/docs/latest/api/python/index.html
2https://spark.apache.org/docs/latest/configuration.html

https://spark.apache.org/docs/latest/configuration.html
http://<driver-node-ip>:4040
https://spark.apache.org/docs/latest/api/python/index.html

Chapter 6. The Distributed Implementations 120

Figure 6.2: Screenshot of Spark web UI homepage

duration, number of succeeded stages and number of succeeded tasks is given for each job.

This information allows us to know the processing duration of different functions, and to

decide which function to modify to improve efficiency. Furthermore, by clicking an active

job, we can access the details of undergoing stages, shown in Figure 6.4. Similarly, each

stage is indexed with an ID number, information such as applied functions, submitted

time, duration, the number of succeeded tasks, input size and the size of shuffle write

is present. This information allows us to have more details on bottlenecks and failures.

We can also access the DAG (Directed Acyclic Graph) visualization of a job, shown in

Figure 6.5. It shows the growth of lineage of RDDs through consecutive stages inside a

job. It helps us to track the growth of RDDs’ lineage. If the lineage is too long, it is

then necessary to cut the lineage in order to save memory and to accelerate calculation.

Additionally, we can access to the information of executors, shown in Figure 6.6. This

information allows us to know the status, number of RDDs’ blocks, size of storage mem-

ory, number of cores, number of active, failed, complete tasks, etc for each executor.

With this information, we can observe whether work load is balanced among executors.

Spark web UI provides essential information when running a Spark application, it is the

most important tool to debug and improve a Spark user program.

https://jaceklaskowski.gitbooks.io/mastering-apache-spark/spark-rdd-partitions.html
http://spark.apache.org/docs/latest/rdd-programming-guide.html

Chapter 6. The Distributed Implementations 123

if it is set too small for a large dataset, the computation is inefficient as well. This

is a dataset-dependent parameter.

In our early experiments using Iris dataset, we artificially set the number of parti-

tions to 2 when the data is read from HDFS. Through iterations, we observe that

the number of partitions is tripled in each iteration, and processing is getting slower

and slower. By tracking the number of partitions of the tables shown in Figure 6.1,

we find out that the problem is caused by the union() function, which is applied

in Step 4 and in Step 5. In PySpark, when applying the union() function, such as

RDD3 ← RDD1.union(RDD2), the number of partitions of the produced RDDs

is the sum of the number of partitions of the input RDDs. For example, if RDD1

and RDD2 each has m partitions, RDD3 eventually has 2m partitions. Back to

our experiment, the usage of union() in Step 4 and Step 5 results in tripled number

of partitions in iteration, slowing down the process.

There are two ways to control the number of partitions, one is by repartition()

function, the other one is by coalesce() function. Once passing a desired number

of partitions “numPartitions", both functions are able to change the number of

partitions of an input RDDs to numPartitions. The difference is that repartition()

function requires to reshuffle the data in the RDDs so that it can create more or

fewer partitions and balance data across the new set of partitions. This process

always shuffles all data over the network5. As to coalesce() function, it only de-

creases the number of partitions to numPartitions. It avoids shuffling data, and

thus is more efficient when we only want to have fewer partitions.

Due to the difference between the repartition() function and the coalesce() function,

we choose to use coalesce() function to control the number of partitions after the

union() function in Step 5. Specifically, we set coalesce(numPartitions=2), so that

the number of tasks observed in Spark UI goes through a loop of “2-4-6-2" in each

iteration. For Iris dataset, this modification makes each iteration to finish in less

than 0.5s, and entire processing time is around 70s (averaged over seven clustering

methods).

• Applying checkpoint to cut the lineage of RDDs.

Since we find a way to control the number of partitions, and distributed Sim_AHC

performs correctly on Iris dataset. We feed a larger dataset, 2cir_10xe3.txt to

test the performance of our implementation. We observe that though the number

of partitions is under control, occupied memory on each worker increases as the

number of iterations increases. After the 200th iteration, all workers’ memory

is filled up and the program is forced to stop. In DAG visualization, we find

5http://spark.apache.org/docs/latest/rdd-programming-guide.html

http://spark.apache.org/docs/latest/rdd-programming-guide.html

Chapter 6. The Distributed Implementations 124

that RDDs’ lineage grows larger and larger as the number of iterations increases.

Concretely, in one iteration, the RDDs of the pairwise similarity table (Figure 6.1)

are the parent of the RDDs of i-k table, j-k table and ¬i-¬j table. And the child

RDDs of i-k table and j-k table, the ij-k table unions with the ¬i-¬j table to

produce a new pairwise similarity table, which is used in the next iteration. As we

can see, in this process, the lineage of RDDs grows with child RDDs being used

as parent RDDs between two consecutive iterations. This cycle makes the entire

RDDs’ lineage to grow till the end of the program. It is possible to execute on such

a long lineage if the input dataset is relatively small, for example, the program

works on Iris dataset. However, when the dataset gets larger, like 2cir_10xe3.txt,

the lineage becomes too large to fit in the memory before the program reaches its

end.

Spark is a in-memory distributed platform, it allows RDDs to be cached in the

distributed memory of a cluster of nodes. The function persist() is done to do

so. Besides, unwanted RDDs can be uncached to free distributed memory by

unpersist() function. In our program, the input file is cached after it is read from

HDFS. In order to cope the problem of lineage, the first solution that we come up

with is to unpersist the RDDs of the pairwise similarity table after a number of

iterations, then persist them again in a number of following iterations. This solution

can be considered as a trade-off between efficiency and memory use. However, in

practice, it does not improve the performance. After some trials, we find out that

caching and unchaching RDDs only move them into and out of distributed memory,

the growth of lineage is not affected.

Therefore we set up a checkpoint on the RDDs’ lineage to cut it after a number of it-

erations. The checkpoint() function stores cached RDDs in the checkpoint directory

on HDFS and all references of parent RDDs are removed. In our experiment that

uses 2cir_10xe3 dataset, we checkpoint RDDs after every 30 iterations. In every

31st iteration, checkpointed RDDs are reconstructed from checkpoint directory and

used in the next 29 iterations. Though reconstructing RDDs from checkpoint direc-

tory consumes some time, overall processing proceeds correctly in our experiment.

We observe that as the number of iterations increases (there are 1999 iterations

for 2cir_10xe3 dataset, with number of partitions being 5), the processing time

per iteration gradually reduces from 5s to 0.7s, and checkpoint reconstruction time

reduces from 3.3min to 30s. It is reasonable to have this decrease in time as the size

of pairwise similarity table is reduced along iterations. The whole processing time

of 2cir_10xe3 dataset takes around two hours to generate a complete dendrogram.

• Approaches that try to find the maximal similarity.

Chapter 6. The Distributed Implementations 126

to observe running time. On several small samples (each has a few hundred

rows) from 2cir_10xe5 dataset, we observe that as threshold value increases,

the processing time of the count() function on resulting child RDDs decreases,

and the number of counted values decreases as well. Similar to the count()

function, RDD’s max() function is also an action function, our tests imply that

applying max() function on filtered RDDs would reduce the time of looking

for the maximal similarity. However, if we use a threshold value to sparsify

pairwise similarities, then search for the maximal in the filtered values, a ques-

tion is: as pairwise similarities are updated after each iteration, how can we

dynamically determine a threshold value that returns a non-empty (yet not

too large) list of similarities in each iteration? Recall that it is impossible to

return all similarities to the driver program when the input data is large, thus

prior knowledge on the basic statistics of the similarities is unknown. In fact,

in order to determine a proper threshold value, it is unavoidable to have an

idea on the distribution of similarities, and this requires an action function on

the whole RDDs’ lineage, which is as expensive as looking for the maximal.

3. After many tests involved in the two solutions stated above, it seems that

as long as the maximal similarity is searched in the full set of similarities,

it is hard to avoid materializing the entire RDDs’ lineage. For a dataset

that has n objects, we are only interested to find the closest pair. If we are

able to group the dataset into a few groups, each of which is composed of

similar objects, then our objective is merely to find the closest pair in one of

these groups, instead of computing all pairwise similarities and searching the

maximal among them. So we formulate our problem to a problem of “looking

for the nearest neighbor". A solution that we find to solve this problem

is Locality Sensitive Hashing (LSH) [114]. The objective of LSH is to find

the most similar pairs that are above some lower bound in similarity. The

general procedure of LSH is composed of two steps: (1) it converts input

data into a set of signatures, which are short but good representatives of

data instances; and (2) it assigns similar data instances into different groups

via their signatures. Depending on choice of similarities (such as Jaccard

similarity, cosine similarity, etc), the method that computes signatures varies

[115]. For example, Jaccard similarity is commonly used in searching similar

web-pages, the corresponding hashing function that is used to compute the

signatures of web-pages is MinHashing. Given a family of l hashing functions,

H = {h1, . . . , hl}, each hash function operates on each data instance in the

input dataset (assuming it has n instances and m features), generating a

signature matrix of shape n × l. This process is like projecting the input

dataset into a new space of l dimensions. Each signature represents an input

Chapter 6. The Distributed Implementations 127

data instance. Next step is to assign signatures into a number of groups,

each group containing a set of similar data instances. Two more parameters

are required here, the number of bands b and the number of signatures in

each band r, b × r = l holds. We can consider that the signature matrix is

vertically cut into b parts, each part having r columns. Hashing signatures in

the signature matrix band by band and row by row outputs a matrix of n× b.

In the resulting matrix, if two rows are identical, then they are similar objects

that are assigned into one group. Parameter t ≈ (1/b)1/r is the threshold in

LSH that defines how similar data instances have to be in order for them to

be considered as a desired “similar pair". If avoidance of false negatives is

important, it is better to select b and r that produce a value lower than t;

if speed is important and it is desired to limit false positives, it is better to

select b and r that produce a higher threshold [114].

• Python v.s. Scala.

Spark is implemented in Scala6, though it provides Python as an API, there is

difference between a Spark Scala program and a Spark Python program in terms of

performance. A Scala program runs much faster than a Python program on Spark.

Python and Scala have different executing environments, Python code is interpreted

by interpreter while Scala code is complied by JVM (Java Virtual Machine). In

Spark, communication between a Python program and Scala functions is achieved

by a wrapper package, “Py4J"7, which enables Python programs running in a

Python interpreter to dynamically access objects in a JVM. However, translation

between the two different environments takes time. The performance difference is

evident when a Python program is complex and requires frequent exchange with

Scala functions in a Spark application.

6.2.3 Summary

In this section, we present the implementation of distributed Sim_AHC, by providing

details on its computing procedure, debugging tool and practical knowledge learned from

experimentation.

In looking for an answer to explain why this implementation cannot really work well on

large datasets, we doubt that Spark may not be the suitable platform to an iterative

algorithm like Sim_AHC, in which RDDs’ lineage accumulates and only partial RDDs

6https://www.scala-lang.org/
7https://www.py4j.org/

https://www.scala-lang.org/
https://www.py4j.org/

Chapter 6. The Distributed Implementations 128

are required to be materialized for later iterations. Recall that “Spark is for bulk iterative

algorithms" [21].

The concepts of “bulk iterations" and of “incremental iterations" are distinguished in

[116]: the former compute a complete new results from input data; while in the latter

one, each iteration result only modifies or adds to some small subset of the input data.

In the case of Sim_AHC, it is more like an incremental iterative algorithm rather than

a bulk iterative algorithm, because its result obtained in each iteration is dependent on

previous iteration. This process requires mutable state to be updated and carried to the

next iteration. Spark is not well-optimized to address this kind of iterative algorithms.

Recall that Spark RDDs are immutable, and manipulation on this property impacts

computational efficiency of iterative algorithms.

6.3 The Distributed Implementation of Spectral-embedding

As seen in Algorithm 8, the core of SHCoClust is spectral embedding, which projects

input data into a space that is constructed by the eigenvectors of graph Laplacian ma-

trix. Given a document-term matrix A, performing spectral embedding on A projects

it into a new space, where A becomes Z. SHCoClust applies Sim_AHC on Z, while

the bipartite spectral graph partitioning method [9] applies K-means on Z. Another

distributed implementation that we provide here is the distributed spectral-embedding.

As spectral embedding is the basic step in Spectral-SVD methods, we believe that our

implementation provides an option for other searchers to perform spectral embedding in

their works.

6.3.1 Computing Procedure

Figure 6.8 illustrates the computing procedure of distributed spectral-embedding. The

input is a collection of raw documents that are stored on HDFS. After preprocessing, this

collection is converted into a distributed document-term matrix A, which is also store

on HDFS. There are two other inputs, which are saved as two lists in the master node

(where runs the driver program). They are the inverse squared root of the row sums and

of the column sums of A, denoted by D
−1/2
1 and D

−1/2
2 .

Differing from a conventional program, where data is cached in the RAM of a single

machine. In a Spark program, an object may be cached in the RAM of the master node

or in the distributed RAM of the workers. Thus a Spark program operates on both local

data types and distributed data types. The Spark local vector (dense or sparse), labeled

https://spark.apache.org/docs/latest/mllib-data-types.html

Chapter 6. The Distributed Implementations 130

In principle, there are fours steps to process spectral embedding in a distributed manner:

1. Loading and parallelizing inputs. As the lists of D
−1/2
1 and of D

−1/2
2 are saved

locally, in the first step, they have to be loaded, parallelized and converted to

distributed matrices. Concretely, after being loaded as two lists, D−1/2
1 and D

−1/2
2

are firstly used to construct two usual sparse diagonal matrices on the master

node. Then the two sparse matrices are converted to two sets of Spark sparse

vectors, which are parallelized to the cluster via SparkContext. Finally, each set

of parallelized vectors is converted into a distributed IndexedRowMatrix, then to a

distributed BlockMatrix. Similarly, the distributed matrix A is also loaded by the

SparkContext from HDFS. On HDFS, A is actually saved as a collection of row

vectors, each of which is a Spark sparse vector. After it is loaded, A is converted

into an IndexedRowMatrix and then to a BlockMatrix.

2. Generating matrix An. Shown in Algorithm 8, An is obtained by D
−1/2
1 ×A×D−1/2

2 .

In this distributed implementation, An is generated by two multiplications. The

first one is D
−1/2
1 × A and its result is again multiplied by D

−1/2
2 . Recall that

A, D−1/2
1 and D

−1/2
2 are now distributed BlockMatrices, the multiplication can be

achieved by a built-in multiply() function. Consequently, An is also a BlockMatrix.

3. Performing SVD. After An is generated, it is time to apply SVD on An to output

the matrices of the left singular vectors U and of the right singular vectors V .

As mentioned previously, Spark does not yet provide a built-in SVD function for

BlockMatrix. In order to apply SVD, we convert An to an IndexedRowMatrix. It

results U , an IndexedRowMatrid and V , a Spark local dense matrix.

Note that singular values returned by Spark’s built-in SVD function are ordered

decreasingly. In Algorithm 8, the first column of U and of V are removed be-

fore they are used to multiply with D
−1/2
1 and D

−1/2
2 . To simply this process in

this implementation, the multiplications of D−1/2
1 × U and D

−1/2
2 × V are firstly

performed, then the first columns of the resulting matrices are removed.

To perform D
−1/2
1 × U , U is converted from an IndexedRowMatrix into a Block-

Matrix. This multiplication results in a BlockMatrix, which is then converted into

an IndexedRowMatrix. And for D
−1/2
2 × V , as V is a Spark local dense matrix,

D
−1/2
2 is firstly converted from a BlockMatrix into an IndexedRowMatrix. Then

the built-in multiply() function of an IndexedRowMatrix is applied. This multipli-

cation directly outputs an IndexedRowMatrix.

In order to remove the first columns in the resulting IndexedRowMatrices, we have

to convert these two matrices into two sets of Spark indexed vectors, from which

it is possible to remove elements in a specific column.

Chapter 6. The Distributed Implementations 131

4. Generating final output. The last step is to combine the two sets of distributed

indexed vectors resulted from D
−1/2
1 × U and from D

−1/2
2 × V . The combination

outputs Z, a set of distributed indexed vectors, which is stored as a set of Spark

pickle files on HDFS.

After Z is output, there are different ways to perform clustering on Z. For example, we

can use the distributed Sim_AHC on Z to apply (distributed) SHCoClust, we can also

apply a Spark built-in clustering method, such as K-means to apply the (distributed)

bipartite spectral graph partitioning method. In order to achieve efficiency, it is better

to cache Z in the distributed memory during calculation.

It is worth to mention that when parallelizing a data object via SparkContext, the

number of partitions is equal to the number of executor cores by default. However,

in this distributed implementation, we observe that the number of partitions of Z is

usually larger than the default value. This is caused by the fact that the combination

of D−1/2
1 × U and D

−1/2
2 × V is performed by a union() function, which automatically

sums up the number of partitions of the two sets of RDDs. If Z is loaded from HDFS

to perform clustering, it is advised to adjust the number of partitions of Z in order to

achieve better performance.

6.3.2 Experiments and Analysis

In our experiments, we test the performance of distributed spectral embedding. Table

6.3 lists the experimented datasets, among which the SMART, AP and WSJ datasets

are mentioned in Section 5.2. AP-1 and AP-2 are two sampled datasets from the full

AP collection. The ZSDF dataset contains all files from four collections provided in

our purchased TREC corpus10. These collections are “Ziff", “San Jose Mercury News",

“Dept. of Energy" and “Federal Register". “Size (Mb)", “Num.Docs" and “Num.Terms"

respectively list the size, the number of documents and the number of extracted terms

of each dataset.

Dataset Size (Mb) Num.Docs Num.Terms
START 5.8 3,893 6,812
AP-1 26.3 10,458 1,564
AP-2 53.1 20,845 1,551
WSJ 534.2 173,252 1364
AP 766.2 242,918 1540

ZSDF 1759.9 638,884 1500

Table 6.3: Experimented datasets

10https://catalog.ldc.upenn.edu/LDC93T3A

https://catalog.ldc.upenn.edu/LDC93T3A

Chapter 6. The Distributed Implementations 132

For each dataset, singular values obtained by the distributed implementation are firstly

verified against those output by a conventional Python program. It is shown that the

singular values obtained by the distributed and by the conventional programs are al-

ways identical. After this verification, we move to examine the performance in several

scenarios, where the size of assigned executor memory and the number of total cores

vary. Results of this experiment are listed in Table 6.4. “ExeMem(Gb)" indicates the

size of assigned memory (measured by gigabytes) in each executor, and “Num.TotCores"

is the number of total cores assigned to the cluster. We configure minicluster to have five

worker nodes, i.e., one machine hosts the driver program as well as a worker program,

and the other four machines only host worker programs. “Time.SVD(s)" records the

running time (measured in seconds) of performing SVD, and “Time.UI(s) records the

total processing time (measured in seconds) from Spark UI.

Dataset ExeMem (Gb) Num.TotCores Time.SVD (s) Time.UI (s)

SMART
1 5 14.2 34
1 10 12.3 32
1 15 12.4 33

AP-1
2 5 17.6 38
2 10 18.7 40
2 15 17.8 43

AP-2
2 5 34.4 60
2 10 32.7 55
2 15 23.4 46

AP
3 5 438 540
3 10 372 468
3 15 331 438

WSJ
6 5 234 372
6 10 197 342
6 15 115 216

ZSDF
6 10 405 600
6 15 392 595
6 20 380 582

Table 6.4: Performance of distributed spectral embedding using SMART, AP, WSJ
and ZSDF datasets

When the assigned executor memory is fixed, for small datasets, it is hard to see the

influence of the number of total cores on running time. As we can see in the experiments

that use SMART and AP-1 datasets, the processing time for SVD and the total running

time first decrease then increase as more cores are assigned. As to larger datasets, some

trend can be observed. It is clear that in the experiments of AP-2, AP, WSJ and ZSDF

datasets, as the number of total cores increase, the processing time of SVD and the total

running time both decrease.

Chapter 6. The Distributed Implementations 133

One explanation is that when too many cores are used to process a relatively small

dataset, the benefit of distributed computing is lessened by the overhead of network

communication and the cost of data shuffling among executors. However, when a dataset

is large enough for a number of assigned cores and the amount of assigned memory, the

overhead of network communication and the cost data shuffling become less dominant

compared to the amount of processing time. As result, the time gain of distributed

computing becomes more evident.

The results of this experiment imply that our implementation is capable to scale, when

the number of cores increases, the processing time decreases. However, there is a con-

dition for this scalability, i.e., the number of cores assigned in processing should be

suitable to the size of input dataset. Otherwise, the computation cannot benefit from

being distributed.

One of the bottlenecks of this implementation is the Spark built-in SVD() function. This

function is implemented in Java and wrapped with py4j package so that it can be used as

a Python function. However, it is not possible to adjust the level of parallelism inside this

function through Python. By observing the running process, we think that the number

of tasks is fixed in this function, and it cannot automatically adapt to the number of

assigned cores. For a relatively large dataset, this can be problematic as the available

computing power cannot be utilized, and cached data has to wait for being processed.

Another bottleneck is the BlockMatrix, which cannot yet accept a really large dataset.

And it does not support operations on sparse matrix either.

6.4 Conclusion

In this section, we present two distributed implementations, the distributed Sim_AHC

and the distributed spectral embedding. For both implementations, we illustrate details

on their computing procedures, debugging tool, data types and configuration parameters.

Implementing a Spark program is different from implementing a conventional program.

Configuration parameters, such as the number of cores, the size of executor memory,

etc., have important impact on the performance of a Spark application. And there is no

rule of thumb to set optimal values to these parameters. The only solution is to learn

them from experiments. In implementing the distributed Sim_AHC, we obtain valuable

experience from many failures. Though this program is being made better through many

troubleshooting trials, it is still not performing as expected for a real large dataset. So

far it is capable to return accurate results on small and medium-sized datasets. What is

more important is our experience learned from this progress, such as the control over the

number of partitions, the necessity of cutting an endlessly growing lineage by checkpoint,

Chapter 6. The Distributed Implementations 134

application of LSH to find similar objects, etc. Some of these learned knowledge provide

us valuable practice in implementing the distributed spectral embedding and other pro-

grams using Spark. For SHCoClust, we implement its core, the spectral embedding, in

a distributed manner. The key point of this implementation is to correctly convert data

types between local types and distributed types, and to choose suitable distributed types

when data is presented in a distributed matrix. Though there exist some bottlenecks

due to some Spark built-in functions, this distributed implementation works properly. In

our experiments, we demonstrate its scalability on several datasets that vary in size. We

believe that this implementation provides an option in performing spectral embedding

for methods that apply spectral embedding.

Chapter 7

Conclusions and Perspectives

7.1 Conclusions

In this thesis, with addressing text clustering tasks as our focus, we elaborate on our

contributions on toward scalable hierarchical clustering methods, tests on the cluster

hypothesis and distributed implementations.

First of all, interested in organizing documents in a collection and in preserving their

interconnections, we study hierarchical clustering methods. Our focus is the conven-

tional AHC methods that are unified by the Lance-Williams formula. The problem of

conventional AHC methods is that they are computationally costly, due to their high

complexity. To overcome this drawback, we propose Sim_AHC, a similarity-based hi-

erarchical framework. It is equivalent to the Lance-Williams formula, but it uses inner

product-based similarities instead of distances. This characteristic makes Sim_AHC

advantageous: (1) as its similarities are between 0 and 1, we can apply a thresholding

strategy to sparsify its similarity matrix. This results in improved computing efficiency.

In our experiments, we find out that sparsification indeed leads to reduced running time

and memory use. And surprisingly, clustering quality is preserved and even improved.

Our analysis is that by sparsifying similarity matrix, noise is removed. Furthermore, it

connects neighborhoods and absorbs data points that are close to these neighborhoods.

(2) using inner product-based similarities can easily extend similarities in Sim_AHC to

kernel functions. In our experiments, we perform tests using similarity matrix that is

generated by both linear and Gaussian kernels. In the work of Sim_AHC, our initial

objective is to provide an equivalent framework to the Lance-Williams formula, with

better computing efficiency.

Secondly, co-clustering methods draw our attention with its capability of simultane-

ously clustering data instances and data features. This property is beneficial in text

135

Chapter 7. Conclusions and Perspectives 136

clustering, as it can return co-clusters of documents and terms. However, in common co-

clustering methods, there is no information on how resulting co-clusters are connected

and how elements in a co-cluster is structured. This motivates us to propose SHCo-

Clust, a similarity-based hierarchical co-clustering method. It is a hybrid algorithm that

processes the characteristic of co-clustering and hierarchical clustering. But it is more

advantageous than the two. One one hand, the output of SHCoClust has richer informa-

tion. It outputs a dendrogram, but unlike a dendrogram that is output by a hierarchical

clustering, its dendrogram aggregates both documents and terms. By cutting this den-

drogram, we can obtain a number of sub-dendrograms, each of which is a co-cluster

that organizes its elements in a hierarchy. On the other hand, SHCoClust also uses

inner product-based similarities. Like Sim_AHC, it can be extended to different kernel

functions. And more importantly, a thresholding strategy can be applied in SHCoClust

to achieve better computing efficiency. In our experiments, we discover that clustering

quality of SHCoClust is guaranteed or improved when sparsification is applied. Compar-

ing with conventional AHC methods, clustering quality in SHCoClust is much improved.

More importantly, we find that when sparsification is applied, on average 75% running

time and memory use can be spared, while preserving clustering quality.

Thirdly, after applying Sim_AHC and SHCoClust in text clustering tasks, we further

apply them in testing the cluster hypothesis. We believe that by testing this hypothesis,

we are able to have better understanding on retrieval effectiveness and efficiency of these

two frameworks. Another interest of doing this work is to provide a benchmark on this

topic. In reviewing past research works, we find that in terms of which clustering method

achieves the best retrieval effectiveness, there are different conclusions. Besides, efficiency

issue is not sufficiently discussed in these works. In our tests that applies Sim_AHC

and SHCoClust, we use optimal cluster search and the E-measure to evaluate retrieval

effectiveness. In comparing retrieval effectiveness among seven clustering methods, we

conclude that Ward method is the most effective method in most cases in the test of

Sim_AHC. However, in the test of SHCoClust, a wider range of performing methods

is obtained. In terms of efficiency, we examine the influence of improving efficiency by

sparsifying similarity matrix on retrieval effectiveness. We discover that in both tests

retrieval effectiveness tends to be invariant to the effect of sparsification, with substantial

memory use and running time being reduced. Our analysis is that sparsifying similarity

matrix like disconnects clusters that are near the root of a dendrogram, but leaves little

impact on optimal clusters that are usually near the leaf nodes of the dendrogram. And

in our experiments, we find that most optimal clusters are small clusters that are near

the leaf nodes. In comparing Sim_AHC and SHCoClust, we discover that in MED,

CISI and CACM datasets, Sim_AHC is more effective than SHCoClust using complete

link, average link, McQuitty and Ward methods. On the contrary, SHCoClust is more

Chapter 7. Conclusions and Perspectives 137

effective than Sim_AHC using single link, centroid and median methods in AP and

WSJ datasets. Besides, as SHCoClust generates more flat clusters than Sim_AHC, it

has smaller variance of optimal E values than Sim_AHC.

Lastly, we provide distributed implementations of Sim_AHC and SHCoClust using

Apache Spark engine. Along our study of Spark and implementing Sim_AHC and

the core of SHCoClust, spectral embedding, we learn that the performance of a Spark

program depends not only on the implementation, but also on the configuration of com-

puting resources. After many trials and tests, we manage to implement the distributed

Sim_AHC and the distributed spectral embedding. Along this process, we gain useful

practical experience of using Spark and we share this experience in this thesis. We hope

this can be a helpful reference for other people that are interest in implementing similar

algorithms.

7.2 Perspectives

There are some points that we like to improve in our works: first of all, sparsification

used in Sim_AHC and SHCoClust depends on a threshold value. Usually we pass a

list of threshold values to see which one gives the best clustering quality with the least

computing resources. But in practice, we probably want a function that can determines

such a threshold value automatically. On this subject, we have not examined sufficiently.

And this is one of the further works that we would like to contribute. Secondly, in

testing the cluster hypothesis using Sim_AHC and CoClust, we feel that there is more

to do in examining optimal clusters. During our experiments, we observe that the size

of optimal cluster usually links to its location in a dendrogram and affects the value of

precision and recall. But we do not have systematic knowledge on this matter. It would

be worth examining the link between the size of optimal cluster to retrieval effectiveness

in the future. Lastly, as stated previously, we doubt that Spark may not be the suitable

platform for Sim_AHC. An alternative might be using a parallel distributed computing

platform. And we would like to look into this direction. We also notice that Spark is

gradually moving to DataFrame from RDDs. Maybe we can use DataFrame to improve

the implementation of distributed spectral embedding.

Appendix A

Publication List

International Conferences

1. Xinyu Wang, Julien Ah-Pine, and Jerome Darmont. Shcoclust, a scalable similarity-

based hierarchical co-clustering method and its application to textual collections.

In IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 17), Naples,

Italy, July 2017.

2. Julien Ah-Pine and Xinyu Wang. Similarity based hierarchical clustering with an

application to text collections. In International Symposium on Intelligent Data

Analysis, pages 320331. Springer, 2016.

National Conferences

1. Xinyu Wang, Julien Ah-Pine, and Jerome Darmont. A new test of cluster hypoth-

esis using a scalable similarity-based agglomerative hierarchical clustering frame-

work. In Rencontres Jeunes Chercheurs en Recherche dInformation (CORIA 17),

Marseille, March 2017.

2. Julien Ah-Pine and Xinyu Wang. Classification ascendante hiérarchique à noyaux

et pistes pour un meilleur passage à léchelle. In Journées de Statistique de la SFDS,

Lille, France, 2015.

3. Julien Ah-Pine and Xinyu Wang. Classification ascendante hiérarchique à noyaux

et une application aux données textuelles. In EGC, volume vol.RNTI-E-33 of EGC

2017. Revue des Nouvelles Technologies de lInformation, Grenoble, France, 2017.

139

Appendix B

Résume

Comme une méthode d’apprentissage automatique non supervisé, la classification au-

tomatique est largement appliquée dans des tâches diverses. Différentes méthodes de

la classification ont leurs caractéristiques uniques. La classification hiérarchique, par

exemple, est capable de produire une structure binaire en forme d’arbre, appelée dendro-

gramme, qui illustre explicitement les interconnexions entre les instances de données. Le

co-clustering, d’autre part, génère des co-clusters, contenant chacun un sous-ensemble

d’instances de données et un sous-ensemble d’attributs de données.

Dans cette thèse, nous travaillons sur des données textuelles. Compte tenu d’un cor-

pus de documents, nous adoptons l’hypothèse de «bag-of-words» et applique le modèle

vectoriel. Nos données saisies sont transformées à une matrice de document-terme, qui

est remplie de poids TF-IDF. L’avantage de regrouper des documents à l’aide du re-

groupement hiérarchique est qu’il organise des documents et ne nécessite pas de nombre

du groupes prédéfinis. Cependant, la procédure du calcul est coûteuse en raison d’une

haute complexité. Dans le cadre de cette thèse, nous travaillons sur les techniques clas-

siques de classification ascendante hiérarchique et nous proposons le Sim_AHC [7]. C’est

une expression de la formule de Lance et Williams [26] en fonction de produits scalaires

plutôt qu’en termes de distances. Nous établissons les conditions dans lesquelles cette

nouvelle expression est équivalence à la méthode initiale. L’intérêt de cette approche est

double. Tout d’abord, nous pouvons étendre naturellement les techniques classiques de

classification ascendante hiérarchique aux fonctions noyaux. Ensuite, le raisonnement

sur des matrices de produits scalaires est davantage propice à la définition de méthodes

de seuillage de mesures de proximités. Nous proposons alors de pré-traiter la matrice de

proximités de façon à la rendre éparse afin de permettre un meilleur passage à l’échelle

de ces techniques de classification.

141

Chapter 7. Conclusions and Perspectives 142

Avec la formule de Lance et Williams et les méthodes classiques de classification ascen-

dante hiérarchique comme notre base de référence, nos expériences utilisant des prox-

imités générées par le noyau gaussien et le noyau linéaire démontrent que, les résul-

tats obtenus par Sim_AHC sont identiques à ceux produits par les méthodes initiales.

Plus important encore, lorsque la matrice de proximités est rendue plus en plus éparse,

l’utilisation de la mémoire et du temps de fonctionnement diminuent. Par contre, la

qualité de la classification est garantie, grâce au fait que les bruits sont supprimés par le

seuillage.

Contrairement à la classification hiérarchique, le co-clustering effectue la classification

dans l’espace de données et l’espace des attributs. Cependant, le co-clustering ne peut

pas préserver l’interconnexion des éléments qu’il regroupe. Pour surmonter cet incon-

vénient, nous proposons SHCoClust [8], la méthode de co-clustering hiérarchique basée

sur la similarité. Il est considéré comme une méthode hybride de Sim_AHC et de co-

clustering spectral. Concrètement, dans SHCoClust, nous modelons un corpus de docu-

ments comme une graphe bipartite, dont les sommets sont des documents et des termes.

Ensuite, nous appliquons la méthode de spectral-SVD [63] pour couper la graphe en

plusieurs sous-graphes, chaque étant un co-cluster. La méthode de spectral-SVD, en

fait, construit une espace avec les vecteurs propres de la matrice laplacienne de la graphe

bipartite. Puis, elle projette la matrice originale dans cette espace. Nous appliquons la

classification hiérarchique Sim_AHC sur la matrice transformée.

SHCoClust hérite des caractéristiques de la classification hiérarchique Sim_AHC et du

co-clustering spectral. Il produit un dendrogramme composé à la fois de documents et de

termes. En coupant le dendrogramme, nous pouvons obtenir un certain nombre de co-

clusters, dont chacun est un co-cluster hiérarchique, c’est-à-dire que les interconnexions

de documents et de termes dans un co-cluster sont préservées. Plus important encore,

comme SHCoClust utilise également des proximités du produit scalaire, nous pouvons

également l’étendre aux fonctions du noyau et nous pouvons appliquer une stratégie du

seuillage pour rendre la matrice éparse. Nos expériences démontrent que la qualité de la

classification de SHCoClust est en grande partie améliorée par rapport aux méthodes de

la classification hiérarchique conventionnelle. Par rapport à la méthode de co-clustering

spectral, SHCoClust réalise une amélioration lorsque sa matrice de proximités est rendu

éparse. En outre, nous constatons que, en épargnant la matrice de proximités, bien

que moins de mémoire et moins de temps soient nécessaires pour effectuer le calcul, la

qualité de la classification peut être garantie. Dans nos ensembles de données testés, en

moyenne, un gain du mémoire et un gain du temps jusqu’à 75 % sont obtenus sans nuire

à la qualité de la classification.

Chapter 7. Conclusions and Perspectives 143

L’hypothèse de cluster [92] est une hypothèse fondamentale pour les applications de la

recherche d’informations basées sur la classification automatique. Il indique que les doc-

uments dans le même groupe ont tendance à être pertinents pour la même requête. En

testant cette hypothèse, il nous permet de examiner comment une requête est répondu.

De nombreux travaux [93, 94, 95, 98, 100] passés effectuent des tests sur cette hypothèse,

en utilisant des méthodes de la classification hiérarchique conventionnelle. Certains de

ces travaux vérifient si l’hypothèse de cluster répond à un ensemble de données testé.

Certains comparent des stratégies de recherche d’information dans un dendrogramme.

Autres examinent lequel méthode de la classification hiérarchique donne la meilleur effi-

cacité de recherche.

Cependant, les conclusions des travaux par rapport à la méthode de la classification la

plus efficace ne sont pas cohérentes, en raison des différences dans les mesures d’évaluations,

les paramètres expérimentaux et les ensembles de données testés. En outre, l’efficacité

du calcul n’est pas discutée. Puis, seulement quartes méthodes de la classification hiérar-

chique conventionnelle sont testés. Intéressés à fournir une référence mise à jour et plus

complète pour les tests de la l’hypothèse de cluster, nous proposons deux nouveaux tests

en appliquant les méthodes proposées, le Sim_AHC [119] et le SHCoClust. Pour chaque

méthode, nous obtenons d’abord des dendrogrammes générés par les méthodes de la

classification. Ensuite, nous utilisons l’E mesure pour évaluer l’efficacité de la recherche

sur un dendrogramme. L’E mesure est une mesure impartiale qui calcule la moyenne

harmonique de la précision et du rappel. Une valeur haute signifie une bonne efficacité

de recherche. L’utilisation de l’E mesure est dans le contexte de la recherche de clus-

ter optimale, qui permet de trouver le cluster le plus pertinent à une requête dans un

dendrogramme. Dans nos expériences, nous utilisons l’E mesure pour testr et comparer

l’efficacité des méthodes de la classification dans le Sim_AHC et dans le SHCoClust.

Puis, pour examiner l’efficacité du calcul, nous aussi testons l’influence de rendre la ma-

trice de proximités éparse sur l’efficacité de la recherche, et nous appliquons une test

statistique pour comparer les résultats obtenus par le Sim_AHC et par le SHCoClust.

Par rapport à la méthode la plus efficace, nos expériences utilisant des proximités générées

par le noyau linéaire et le noyau gaussien montrent que la méthode du lien moyen et la

méthode de Ward sont les méthodes les plus efficaces lors de l’utilisation de Sim_AHC.

Cependant, lors de l’utilisation de SHCoClust, les méthodes les plus efficaces deviennent

le lien simple, le lien moyen, le centroïde, Ward et McQuitty. Nos résultats sont par-

tiellement d’accord avec des découvertes dans les travaux passés sur le même sujet. En

termes d’influence de rendre la matrice du proximités éparse sur l’efficacité de recherche,

nous constatons que l’efficacité a tendance à être invariante. En fait, les valeurs de l’E

mesure se gardent presque au même niveau, même si la matrice de proximités est rendu

plus en plus éparse. C’est un résultat intéressant. Il signifie que c’est possible d’avoir la

Chapter 7. Conclusions and Perspectives 144

même efficacité de recherche en utilisant beaucoup moins de mémoire et de temps pour

effectuer le calcul.

En comparant les résultats de la test du Sim_AHC et de la test du SHCoClust à l’aide

d’un test de Student, nous découvrons que Sim_AHC est plus efficace que SHCoClust

lorsqu’il utilise des méthodes de lien simple, lien complet, lien moyen, McQuitty et

Ward dans de petits ensembles de données. Cependant, SHCoClust est plus efficace que

Sim_AHC en utilisant des méthodes de lien simple, lien moyen et centroïde dans des

ensembles de données relativement plus grandes.

Intéressés par effectuer le calcul pour des ensembles de données vastes, nous choisissons

l’Apache Spark1 pour implémenter Sim_AHC et SHCoClust. Le Spark est une plate-

forme du calcul distribué. Il utilise la capacité du calcul collective d’un groupe de noeuds

pour traiter des ensembles de données vastes. En général, le Spark fonctionne sur un

système de fichier distribué, qui est établi sur un groupe de machines. Après une ini-

tialisation, le Spark coupe des tâches du calcule et les assigne aux noeuds, qui ensuite

effectuent leurs tâches simultanément. Le concept de base du Spark est les données dis-

tribuées résilientes (RDDs) [21]. Comme une abstraction grossier, une RDD est en fait

un morceau de données qui est mit en mémoire-cache distribué. Le RDD est immuable

et il y a deux groupes de fonctions qui peuvent traiter RDDs. Ces sont les fonctions

de transformation et d’actions. Les fonctions de transformation permet aux RDDs de

croître en une forme de lignée, et les fonctions d’actions coupe la lignée de RDDs, ef-

fectue le calcul et renvoie les résultats. La caractéristique de RDD demande une façon

différente que les programme conventionnels en terme d’implémentation.

Bien que le Spark gère automatiquement la planification des travaux, la réplication des

données et la communication réseau parmi les noeuds, il existe encore de nombreux

paramètres à régler afin d’optimiser l’efficacité et l’évolutivité du calcul, par exemple, le

nombre de morceaux des RDDs, le nombre de tâches à assigner et la taille de mémoire-

cache à utiliser dans chaque noeud. Il est aussi important de contrôler la longueur de

la lingée des RDDs. Nous fournissons deux implémentations distribuées, le Sim_AHC

distribué et la méthode de spectral-SVD distribuée. Pour chaque implémentation, nous

illustrons la procédure et la performance du calcul. Nous trouvons que l’implémentation

du Sim_AHC distribué ne fonctionne pas aussi bien que prévu. Après avoir essayé

des solutions différentes, nous concluons que le Spark est peut-être pas une plate-forme

du calcul appropriée pour un algorithme comme Sim_AHC, dans lequel une itération

dépend l’itération précédente. Le Spark est plutôt un bon choix pour les algorithmes qui

fonctionnent aux itérations indépendantes par lot. Dans cette thèse, nous partageons

nos connaissances savantes de nos expériences, en croyant qu’elles seraient utiles pour

1https://spark.apache.org/

https://spark.apache.org/

Chapter 7. Conclusions and Perspectives 145

d’autres chercheurs, qui s’intéressent à la mise en oeuvre de la méthode hiérarchique à

l’aide de Spark. Pour l’implémentation distribuée de SHCoClust, nous proposons une

façon distribuée de réaliser la méthode de spectral-SVD. Dans nos expériences, nous

utilisons des données de tailles différentes pour examiner la caractéristiques de l’échelle.

Mots-clés : classification ascendante hiérarchique, co-clustering, recherche d’informations,

l’hypothèse de cluster, calcul distribué.

Bibliography

[1] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on

large clusters. Communications of the ACM, 51(1):107–113, 2008.

[2] Guojun Gan, Chaoqun Ma, and Jianhong Wu. Data clustering: theory, algorithms,

and applications. SIAM, 2007.

[3] Yongkweon Jeon and Sungroh Yoon. Multi-threaded hierarchical clustering by

parallel nearest-neighbor chaining. IEEE Transactions on Parallel and Distributed

Systems, 26(9):2534–2548, 2015.

[4] Michel Marie Deza and Elena Deza. Encyclopedia of distances. In Encyclopedia of

Distances, pages 1–583. Springer, 2009.

[5] Daniel Müllner. Modern hierarchical, agglomerative clustering algorithms. arXiv

preprint arXiv:1109.2378, 2011.

[6] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: an efficient data

clustering method for very large databases. In ACM Sigmod Record, volume 25,

pages 103–114. ACM, 1996.

[7] Julien Ah-Pine and Xinyu Wang. Similarity based hierarchical clustering with an

application to text collections. In International Symposium on Intelligent Data

Analysis, pages 320–331. Springer, 2016.

[8] Xinyu Wang, Julien Ah-Pine, and Jerome Darmont. Shcoclust, a scalable

similarity-based hierarchical co-clustering method and its application to textual

collections. In IEEE International Conference on Fuzzy Systems (FUZZ-IEEE

17), Naples, Italy, July 2017.

[9] Inderjit S Dhillon. Co-clustering documents and words using bipartite spectral

graph partitioning. In Proceedings of the seventh ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 269–274. ACM, 2001.

[10] Charu C Aggarwal and ChengXiang Zhai. A survey of text clustering algorithms.

In Mining text data, pages 77–128. Springer, 2012.

147

Bibliography 148

[11] Douglass R Cutting, David R Karger, Jan O Pedersen, and John W Tukey. Scat-

ter/gather: A cluster-based approach to browsing large document collections. In

Proceedings of the 15th annual international ACM SIGIR conference on Research

and development in information retrieval, pages 318–329. ACM, 1992.

[12] Florian Beil, Martin Ester, and Xiaowei Xu. Frequent term-based text clustering.

In Proceedings of the eighth ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 436–442. ACM, 2002.

[13] Oren Zamir and Oren Etzioni. Web document clustering: A feasibility demonstra-

tion. In Proceedings of the 21st annual international ACM SIGIR conference on

Research and development in information retrieval, pages 46–54. ACM, 1998.

[14] Thomas Hofmann. Probabilistic latent semantic indexing. In Proceedings of the

22nd annual international ACM SIGIR conference on Research and development

in information retrieval, pages 50–57. ACM, 1999.

[15] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation.

Journal of machine Learning research, 3(Jan):993–1022, 2003.

[16] Charu C Aggarwal, Stephen C Gates, and Philip S Yu. On using partial supervision

for text categorization. IEEE Transactions on Knowledge and data Engineering,

16(2):245–255, 2004.

[17] A Blum and T Mitchell. Learning to classify text from labeled and unlabeled

documents. In Conference on Computational Learning Theory, 1998.

[18] Xiang Ji and Wei Xu. Document clustering with prior knowledge. In Proceedings of

the 29th annual international ACM SIGIR conference on Research and development

in information retrieval, pages 405–412. ACM, 2006.

[19] Ron Bekkerman, Mikhail Bilenko, and John Langford. Scaling up machine learning:

Parallel and distributed approaches. Cambridge University Press, 2011.

[20] Mohammed J Zaki and Ching-Tien Ho. Large-scale parallel data mining. Springer

Science & Business Media, 2000.

[21] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,

Murphy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient

distributed datasets: A fault-tolerant abstraction for in-memory cluster computing.

In Proceedings of the 9th USENIX conference on Networked Systems Design and

Implementation, pages 2–2. USENIX Association, 2012.

[22] Grant Ingersoll. Introducing apache mahout. Scalable, commercial-friendly ma-

chine learning for building intelligent applications. IBM, 2009.

Bibliography 149

[23] William Gropp. Tutorial on mpi: The message-passing interface. Mathematics

and Computer Science Division Argonne National Laboratory Argonne, IL, 60439,

2009.

[24] Blaise Barney. Openmp tutorial. Lawrence Livermore National Laboratory,

https://computing. llnl. gov/tutorials/openMP/# Abstract, 2011.

[25] Andrew S Tanenbaum and Maarten Van Steen. Distributed systems. Prentice-Hall,

2007.

[26] Godfrey N Lance and William Thomas Williams. A general theory of classificatory

sorting strategies: Ii. clustering systems. The computer journal, 10(3):271–277,

1967.

[27] Fionn Murtagh and Pedro Contreras. Algorithms for hierarchical clustering: an

overview. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,

2:86–97, 2012.

[28] Robin Sibson. Slink: an optimally efficient algorithm for the single-link cluster

method. The computer journal, 16(1):30–34, 1973.

[29] F James Rohlf. Hierarchical clustering using minimum spanning tree, 1973.

[30] Daniel Defays. An efficient algorithm for a complete link method. The Computer

Journal, 20(4):364–366, 1977.

[31] C De Rham. La classification hiérarchique ascendante selon la méthode des voisins

réciproques. Les cahiers de l’analyse des données, 5(2):135–144, 1980.

[32] J Juan. Programme de classification hiérarchique par l’algorithme de la recherche

en chaîne des voisins réciproques. Les cahiers de l’analyse des données, 7(2):219–

225, 1982.

[33] F. Murtagh. A survey of recent advances in hierarchical clustering algorithms. The

Computer Journal, 26(4):354–359, 1983. doi: 10.1093/comjnl/26.4.354.

[34] Michel Bruynooghe. Méthodes nouvelles en classification automatique de données

taxinomiques nombreuses. Statistique et Analyse des données, 2(3):24–42, 1977.

[35] Michael Rex Anderberg. Cluster analysis for applications. PhD thesis, Office of

the Assistant for Study Support, 1972.

[36] Roberto J López-Sastre, Daniel Oñoro-Rubio, Pedro Gil-Jiménez, and Saturnino

Maldonado-Bascón. Fast reciprocal nearest neighbors clustering. Signal Processing,

92(1):270–275, 2012.

Bibliography 150

[37] Bastian Leibe, Krystian Mikolajczyk, and Bernt Schiele. Efficient clustering and

matching for object class recognition. In BMVC, pages 789–798, 2006.

[38] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. Cure: an efficient clustering

algorithm for large databases. In ACM SIGMOD Record, volume 27, pages 73–84.

ACM, 1998.

[39] Yaniv Loewenstein, Elon Portugaly, Menachem Fromer, and Michal Linial. Efficient

algorithms for accurate hierarchical clustering of huge datasets: tackling the entire

protein space. Bioinformatics, 24(13):i41–i49, 2008.

[40] Yijun Sun, Yunpeng Cai, Li Liu, Fahong Yu, Michael L Farrell, William McK-

endree, and William Farmerie. Esprit: estimating species richness using large col-

lections of 16s rrna pyrosequences. Nucleic acids research, 37(10):e76–e76, 2009.

[41] Thuy-Diem Nguyen, Bertil Schmidt, and Chee-Keong Kwoh. Sparsehc: a memory-

efficient online hierarchical clustering algorithm. Procedia Computer Science, 29:

8–19, 2014.

[42] S Shalom, Manoranjan Dash, and Minh Tue. An approach for fast hierarchical ag-

glomerative clustering using graphics processors with cuda. Advances in Knowledge

Discovery and Data Mining, pages 35–42, 2010.

[43] Zhihua Du and Feng Lin. A novel parallelization approach for hierarchical cluster-

ing. Parallel Computing, 31(5):523–527, 2005.

[44] William Hendrix, Md Mostofa Ali Patwary, Ankit Agrawal, Wei-keng Liao, and

Alok Choudhary. Parallel hierarchical clustering on shared memory platforms.

In High Performance Computing (HiPC), 2012 19th International Conference on,

pages 1–9. IEEE, 2012.

[45] Shen Wang and Haimonti Dutta. Parable: A parallel random-partition based

hierarchical clustering algorithm for the mapreduce framework. Technical Report

CCLS-11 04, 2011.

[46] Chen Jin, Zhengzhang Chen, William Hendrix, Ankit Agrawal, and Alok Choud-

hary. Incremental, distributed single-linkage hierarchical clustering algorithm using

mapreduce. In Proceedings of the Symposium on High Performance Computing,

pages 83–92. Society for Computer Simulation International, 2015.

[47] Chen Jin, Ruoqian Liu, Zhengzhang Chen, William Hendrix, Ankit Agrawal, and

Alok Choudhary. A scalable hierarchical clustering algorithm using spark. In

Big Data Computing Service and Applications (BigDataService), 2015 IEEE First

International Conference on, pages 418–426. IEEE, 2015.

Bibliography 151

[48] Gérard Govaert and Mohamed Nadif. Co-clustering. John Wiley & Sons, 2013.

[49] Inderjit S Dhillon, Subramanyam Mallela, and Dharmendra S Modha. Information-

theoretic co-clustering. In Proceedings of the ninth ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 89–98. ACM, 2003.

[50] Sara C Madeira and Arlindo L Oliveira. Biclustering algorithms for biological

data analysis: a survey. IEEE/ACM Transactions on Computational Biology and

Bioinformatics (TCBB), 1(1):24–45, 2004.

[51] Amos Tanay, Roded Sharan, and Ron Shamir. Biclustering algorithms: A survey.

Handbook of computational molecular biology, 9(1-20):122–124, 2005.

[52] Guandong Xu, Yu Zong, Peter Dolog, and Yanchun Zhang. Co-clustering analysis

of weblogs using bipartite spectral projection approach. Knowledge-Based and

Intelligent Information and Engineering Systems, pages 398–407, 2010.

[53] Thomas George and Srujana Merugu. A scalable collaborative filtering framework

based on co-clustering. In Data Mining, Fifth IEEE international conference on,

pages 4–pp. IEEE, 2005.

[54] Arindam Banerjee, Inderjit Dhillon, Joydeep Ghosh, Srujana Merugu, and Dhar-

mendra S Modha. A generalized maximum entropy approach to bregman co-

clustering and matrix approximation. Journal of Machine Learning Research, 8

(Aug):1919–1986, 2007.

[55] Gérard Govaert and Mohamed Nadif. Clustering with block mixture models. Pat-

tern Recognition, 36(2):463–473, 2003.

[56] Gerard Govaert and Mohamed Nadif. An em algorithm for the block mixture

model. IEEE Transactions on Pattern Analysis and machine intelligence, 27(4):

643–647, 2005.

[57] Gérard Govaert and Mohamed Nadif. Fuzzy clustering to estimate the parameters

of block mixture models. Soft Computing-A Fusion of Foundations, Methodologies

and Applications, 10(5):415–422, 2006.

[58] Gérard Govaert and Mohamed Nadif. Clustering of contingency table and mixture

model. European Journal of Operational Research, 183(3):1055–1066, 2007.

[59] Gérard Govaert and Mohamed Nadif. Block clustering with bernoulli mixture

models: Comparison of different approaches. Computational Statistics & Data

Analysis, 52(6):3233–3245, 2008.

Bibliography 152

[60] Gérard Govaert and Mohamed Nadif. Latent block model for contingency table.

Communications in StatisticsTheory and Methods, 39(3):416–425, 2010.

[61] Gilles Celeux, Didier Chauveau, and Jean Diebolt. Stochastic versions of the

em algorithm: an experimental study in the mixture case. Journal of Statistical

Computation and Simulation, 55(4):287–314, 1996.

[62] Malika Charrad, Yves Lechevallier, Mohamed Ben Ahmed, and Gilbert Saporta.

On the number of clusters in block clustering algorithms. In FLAIRS Conference,

2010.

[63] Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing,

17(4):395–416, 2007.

[64] Lars Hagen and Andrew B Kahng. New spectral methods for ratio cut partitioning

and clustering. IEEE transactions on computer-aided design of integrated circuits

and systems, 11(9):1074–1085, 1992.

[65] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE

Transactions on pattern analysis and machine intelligence, 22(8):888–905, 2000.

[66] Dorothea Wagner and Frank Wagner. Between min cut and graph bisection. Math-

ematical Foundations of Computer Science 1993, pages 744–750, 1993.

[67] Hongyuan Zha, Xiaofeng He, Chris Ding, Horst Simon, and Ming Gu. Bipartite

graph partitioning and data clustering. In Proceedings of the tenth international

conference on Information and knowledge management, pages 25–32. ACM, 2001.

[68] Manjeet Rege, Ming Dong, and Farshad Fotouhi. Bipartite isoperimetric graph

partitioning for data co-clustering. Data Mining and Knowledge Discovery, 16(3):

276–312, 2008.

[69] Bojan Mohar, Y Alavi, G Chartrand, and OR Oellermann. The laplacian spectrum

of graphs. Graph theory, combinatorics, and applications, 2(871-898):12, 1991.

[70] Bojan Mohar. Some applications of laplace eigenvalues of graphs. In Graph sym-

metry, pages 225–275. Springer, 1997.

[71] Fan RK Chung. Spectral graph theory, volume 92. American Mathematical Soc.,

1997.

[72] Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral clustering: Analysis

and an algorithm. In Advances in neural information processing systems, pages

849–856, 2002.

Bibliography 153

[73] Michael Holmes, Alexander Gray, and Charles Isbell. Fast svd for large-scale ma-

trices. In Workshop on Efficient Machine Learning at NIPS, volume 58, pages

249–252, 2007.

[74] Zhaojun Bai, James Demmel, Jack Dongarra, Axel Ruhe, and Henk van der Vorst.

Templates for the solution of algebraic eigenvalue problems: a practical guide.

SIAM, 2000.

[75] Stephen Guattery and Gary L Miller. On the quality of spectral separators. SIAM

Journal on Matrix Analysis and Applications, 19(3):701–719, 1998.

[76] Daniel D Lee and H Sebastian Seung. Algorithms for non-negative matrix fac-

torization. In Advances in neural information processing systems, pages 556–562,

2001.

[77] Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-negative

matrix factorization. Nature, 401(6755):788, 1999.

[78] Tao Li and Chris HQ Ding. Nonnegative matrix factorizations for clustering: A

survey., 2013.

[79] Chris Ding, Tao Li, Wei Peng, and Haesun Park. Orthogonal nonnegative matrix

t-factorizations for clustering. In Proceedings of the 12th ACM SIGKDD interna-

tional conference on Knowledge discovery and data mining, pages 126–135. ACM,

2006.

[80] Hua Wang, Feiping Nie, Heng Huang, and Fillia Makedon. Fast nonnegative

matrix tri-factorization for large-scale data co-clustering. In IJCAI Proceedings-

International Joint Conference on Artificial Intelligence, volume 22, page 1553,

2011.

[81] Chris Ding, Xiaofeng He, and Horst D Simon. On the equivalence of nonnegative

matrix factorization and spectral clustering. In Proceedings of the 2005 SIAM

International Conference on Data Mining, pages 606–610. SIAM, 2005.

[82] Spiros Papadimitriou and Jimeng Sun. Disco: Distributed co-clustering with map-

reduce: A case study towards petabyte-scale end-to-end mining. In Data Mining,

2008. ICDM’08. Eighth IEEE International Conference on, pages 512–521. IEEE,

2008.

[83] Tugdual Sarazin, Mustapha Lebbah, and Hanane Azzag. Biclustering using spark-

mapreduce. In BigData Conference, pages 58–60, 2014.

Bibliography 154

[84] Sen Su, Xiang Cheng, Lixin Gao, and Jiangtao Yin. Co-clusterd: a distributed

framework for data co-clustering with sequential updates. In 2013 IEEE 13th

International Conference on Data Mining, pages 1193–1198. IEEE, 2013.

[85] Yanfeng Zhang, Qixin Gao, Lixin Gao, and Cuirong Wang. imapreduce: A dis-

tributed computing framework for iterative computation. Journal of Grid Com-

puting, 10(1):47–68, 2012.

[86] Lynda Tamine and Laure Soulier. Collaborative information retrieval: Con-

cepts, models and evaluation. In Advances in Information Retrieval - 38th Eu-

ropean Conference on IR Research, ECIR 2016, Padua, Italy, March 20-23, 2016.

Proceedings, pages 885–888, 2016. doi: 10.1007/978-3-319-30671-1_86. URL

https://doi.org/10.1007/978-3-319-30671-1_86.

[87] Lynda Tamine and Laure Soulier. Collaborative information retrieval: Frameworks,

theoretical models, and emerging topics. In Proceedings of the 2016 ACM on

International Conference on the Theory of Information Retrieval, ICTIR 2016,

Newark, DE, USA, September 12-6, 2016, pages 7–8, 2016. doi: 10.1145/2970398.

2970442. URL http://doi.acm.org/10.1145/2970398.2970442.

[88] Anagha Kulkarni and Jamie Callan. Selective search: Efficient and effective search

of large textual collections. ACM Transactions on Information Systems (TOIS),

33(4):17, 2015.

[89] Yubin Kim, Jamie Callan, J Shane Culpepper, and Alistair Moffat. Efficient dis-

tributed selective search. Information Retrieval Journal, 20(3):221–252, 2017.

[90] Gilad Katz, Anna Shtock, Oren Kurland, Bracha Shapira, and Lior Rokach.

Wikipedia-based query performance prediction. In Proceedings of the 37th interna-

tional ACM SIGIR conference on Research & development in information retrieval,

pages 1235–1238. ACM, 2014.

[91] Hadas Raviv, Oren Kurland, and David Carmel. Query performance prediction for

entity retrieval. In Proceedings of the 37th international ACM SIGIR conference

on Research & development in information retrieval, pages 1099–1102. ACM, 2014.

[92] Nick Jardine and Cornelis Joost van Rijsbergen. The use of hierarchic clustering

in information retrieval. Information storage and retrieval, 7(5):217–240, 1971.

[93] Ellen M Voorhees. The cluster hypothesis revisited. In Proceedings of the 8th annual

international ACM SIGIR conference on Research and development in information

retrieval, pages 188–196. ACM, 1985.

http://doi.acm.org/10.1145/2970398.2970442
https://doi.org/10.1007/978-3-319-30671-1_86

Bibliography 155

[94] W Bruce Croft. A model of cluster searching based on classification. Information

systems, 5(3):189–195, 1980.

[95] Abdelmoula El-Hamdouchi and Peter Willett. Techniques for the measurement of

clustering tendency in document retrieval systems. Journal of Information Science,

13(6):361–365, 1987.

[96] Cornelis Joost Van Rijsbergen and W Bruce Croft. Document clustering: An

evaluation of some experiments with the cranfield 1400 collection. Information

Processing & Management, 11(5):171–182, 1975.

[97] Oren Kurland. The cluster hypothesis in information retrieval. In European Con-

ference on Information Retrieval, pages 823–826. Springer, 2014.

[98] Alan Griffiths, Lesley A Robinson, and Peter Willett. Hierarchic agglomerative

clustering methods for automatic document classification. Journal of Documenta-

tion, 40(3):175–205, 1984.

[99] Peter Willett. Recent trends in hierarchic document clustering: a critical review.

Information Processing & Management, 24(5):577–597, 1988.

[100] Alan Griffiths, H Claire Luckhurst, and Peter Willett. Using interdocument similar-

ity information in document retrieval systems. Readings in Information Retrieval,

Morgan Kaufmann Publishers, San Francisco, CA, pages 365–373, 1997.

[101] Mark D Smucker and James Allan. A new measure of the cluster hypothesis. In

Conference on the Theory of Information Retrieval, pages 281–288. Springer, 2009.

[102] Anastasios Tombros. The effectiveness of query-based hierarchic clustering of doc-

uments for information retrieval. PhD thesis, University of Glasgow, 2002.

[103] Fiana Raiber and Oren Kurland. The correlation between cluster hypothesis tests

and the effectiveness of cluster-based retrieval. In Proceedings of the 37th interna-

tional ACM SIGIR conference on Research & development in information retrieval,

pages 1155–1158. ACM, 2014.

[104] Fiana Raiber and Oren Kurland. Exploring the cluster hypothesis, and cluster-

based retrieval, over the web. In Proceedings of the 21st ACM international con-

ference on Information and knowledge management, pages 2507–2510. ACM, 2012.

[105] ChengXiang Zhai. Statistical language models for information retrieval. Synthesis

Lectures on Human Language Technologies, 1(1):1–141, 2008.

[106] M. Bruynooghe. Classification ascendante hiérarchique des grands ensembles de

données : un algorithme rapide fondé sur la construction des voisinages réductibles.

Cahiers de l’analyse des données, 3(1):7–33, 1978.

Bibliography 156

[107] Nello Cristianini and John Shawe-Taylor. An introduction to support vector ma-

chines and other kernel-based learning methods. Cambridge university press, 2000.

[108] Thorsten Joachims. Text categorization with support vector machines: Learning

with many relevant features. In European conference on machine learning, pages

137–142. Springer, 1998.

[109] Ken Lang. NewsWeeder : learning to filter netnews. In Proceedings of the Twelfth

International Conference on Machine Learning, pages 331–339, 1995.

[110] Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of classifica-

tion, 2(1):193–218, 1985.

[111] Aaron F McDaid, Derek Greene, and Neil Hurley. Normalized mutual infor-

mation to evaluate overlapping community finding algorithms. arXiv preprint

arXiv:1110.2515, 2011.

[112] Abdelmoula El-Hamdouchi and Peter Willett. Comparison of hierarchic agglom-

erative clustering methods for document retrieval. The Computer Journal, 32(3):

220–227, 1989.

[113] Martin F Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.

[114] A Rajaraman and JD Ullman. Finding similar items. Mining of Massive Datasets,

77:73–80, 2010.

[115] Jingdong Wang, Heng Tao Shen, Jingkuan Song, and Jianqiu Ji. Hashing for

similarity search: A survey. arXiv preprint arXiv:1408.2927, 2014.

[116] Stephan Ewen, Kostas Tzoumas, Moritz Kaufmann, and Volker Markl. Spinning

fast iterative data flows. Proceedings of the VLDB Endowment, 5(11):1268–1279,

2012.

[117] Julien Ah-Pine and Xinyu Wang. Classification ascendante hiérarchique à noyaux

et pistes pour un meilleur passage à l’échelle. In Journées de Statistique de la SFDS,

Lille, France, 2015. URL https://hal.archives-ouvertes.fr/hal-01504642.

[118] Julien Ah-Pine and Xinyu Wang. Classification ascendante hiérarchique à noyaux

et une application aux données textuelles. In EGC, volume vol.RNTI-E-33 of EGC

2017. Revue des Nouvelles Technologies de l’Information, Grenoble, France, 2017.

URL https://hal.archives-ouvertes.fr/hal-01525446.

[119] Xinyu Wang, Julien Ah-Pine, and Jerome Darmont. A new test of cluster hypoth-

esis using a scalable similarity-based agglomerative hierarchical clustering frame-

work. In Rencontres Jeunes Chercheurs en Recherche d’Information (CORIA 17),

Marseille, March 2017.

https://hal.archives-ouvertes.fr/hal-01504642
https://hal.archives-ouvertes.fr/hal-01525446

	Abstract
	Résume
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 The REQUEST Project
	1.3 Challenges
	1.4 Contributions
	1.5 Thesis Outline
	1.6 Notations

	2 State of the Art
	2.1 Introduction
	2.1.1 Clustering Texts
	2.1.1.1 The ``Bag-of-Words" Assumption
	2.1.1.2 The Vector Space Model
	2.1.1.3 Commonly-used Proximity Measures
	2.1.1.4 Text Clustering Algorithms: An Overview

	2.1.2 Distributed and Parallel Computing
	2.1.2.1 MapReduce
	2.1.2.2 Apache Spark
	2.1.2.3 MapReduce v.s. Spark
	2.1.2.4 Distributed Storage Systems

	2.2 Agglomerative Hierarchical Clustering
	2.2.1 Overview
	2.2.2 Conventional Methods and the Lance-Williams Formula
	2.2.2.1 Conventional Methods
	2.2.2.2 The Lance-Williams Formula

	2.2.3 Nearest Neighbor Chain Approaches
	2.2.4 Approaches for Large Datasets
	2.2.5 On-line AHC Algorithms
	2.2.6 Distributed and Parallel Approaches for AHC
	2.2.6.1 Parallel Approaches
	2.2.6.2 Distributed Approaches

	2.3 Co-clustering
	2.3.1 Overview
	2.3.2 Latent Block Models
	2.3.3 Graph Partitioning Approaches
	2.3.3.1 Graph Laplacians, Properties and Spectral Clustering
	2.3.3.2 Mathematical Insight: Spectral Graph Partitioning by Optimizing Ncut
	2.3.3.3 Co-clustering Documents and Terms Using Spectral Graph Partitioning

	2.3.4 Co-clustering Using Non-negative Matrix Factorization
	2.3.4.1 Non-negative Matrix Factorization
	2.3.4.2 Approaches for Co-clustering
	2.3.4.3 Connection Between NMF and Spectral Graph Partitioning

	2.3.5 Distributed and Parallel Approaches

	2.4 Tests of the Cluster Hypothesis
	2.4.1 Overview
	2.4.2 Classic Tests
	2.4.2.1 Comparison Tests of Cluster-based and Document-based Search
	2.4.2.2 Tests Using Hierarchical Clustering

	2.4.3 Refined Tests
	2.4.4 Language Model-based Tests
	2.4.5 Applications of the Cluster Hypothesis in IR

	2.5 Conclusion

	3 The Similarity-based Agglomerative Hierarchical Clustering Framework
	3.1 Motivation
	3.2 The Similarity-based Hierarchical Clustering Framework, Sim_AHC
	3.2.1 Mathematical Deduction
	3.2.2 Extension to Kernel Functions
	3.2.3 Sparsification of the Cosine Similarity Matrix

	3.3 Experimental Verification
	3.3.1 Datasets, Preprocessing and Evaluation Measures
	3.3.2 Experiment Settings and Results
	3.3.2.1 Equivalence between Sim_AHC and the Lance-Williams Formula
	3.3.2.2 Impact of Sparsifying Similarities on Scalability
	3.3.2.3 Impact of Sparsifying Similarities on Clustering Quality

	3.4 Discussion
	3.5 Conclusion

	4 The Similarity-based Hierarchical Co-clustering Method
	4.1 Motivation
	4.2 The Computing Procedure of SHCoClust
	4.3 Experiments: Clustering Effectiveness and Efficiency
	4.3.1 Datasets, Preprocessing and Evaluation Measures
	4.3.2 Comparisons of Clustering Effectiveness
	4.3.3 Examination of Clustering Efficiency with Sparsification
	4.3.4 Discussion of Complexity and Scalability

	4.4 Visualization
	4.5 Conclusion

	5 Testing the Cluster Hypothesis
	5.1 Motivation
	5.2 Datasets, Preprocessing and Experiment Setting
	5.3 A New Cluster Hypothesis Test Using Sim_AHC
	5.3.1 Comparison of Retrieval Effectiveness Among Seven Clustering Methods
	5.3.2 Influence of Improving Efficiency via Sparsification on Retrieval Effectiveness
	5.3.3 Summary

	5.4 A New Cluster Hypothesis Test Using SHCoClust
	5.4.1 Comparison of Retrieval Effectiveness Among Seven Clustering Methods
	5.4.2 Impact of Sparsification on Retrieval Effectiveness
	5.4.3 Summary

	5.5 Comparison between Two Proposed Tests
	5.5.1 On Retrieval Effectiveness
	5.5.2 On Computing Efficiency
	5.5.3 Summary

	5.6 Conclusion

	6 The Distributed Implementations
	6.1 Introduction
	6.2 The Distributed Implementation of Sim_AHC
	6.2.1 Computing Procedure
	6.2.2 Experiments
	6.2.2.1 Settings and Configurations
	6.2.2.2 Spark Web UI
	6.2.2.3 Exploration and Troubleshooting

	6.2.3 Summary

	6.3 The Distributed Implementation of Spectral-embedding
	6.3.1 Computing Procedure
	6.3.2 Experiments and Analysis

	6.4 Conclusion

	7 Conclusions and Perspectives
	7.1 Conclusions
	7.2 Perspectives

	Bibliography

