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RESUME

La télédétection spatiale est d’une importance primordiale pour la cartographie et la surveillance
des problémes environnementaux. Son intérét réside dans la capacité des capteurs satellitaires
spatiaux a fournir des informations globales et permanentes de la planéte, aux échelles locale a
globale. La télédetection radar a montré son grand potentiel ces dernieres années dans la
caractérisation des états de surface du sol. L’état de la surface du sol, et en particulier I’humidité
et la rugosite, exerce une influence fondamentale sur la répartition de la pluie entre infiltration,
rétention superficielle et ruissellement. 1l a un role essentiel dans les processus hydrologiques de
surface et ceux associés a 1’érosion et aux processus d’évapotranspiration. La caractérisation et
la prise en compte de ces conditions de surface constituent actuellement un enjeu important pour
la modélisation a base physique des processus hydrologiques ou pour le couplage surface-
atmosphére. Dans ce cadre et depuis plusieurs années, plusieurs études scientifiques ont montré
le potentiel des données micro-ondes actives dans 1’estimation de 1’état hydrique du sol et de sa
rugosité de surface.

Les nouveaux systemes radar (SAR "Synthetic Aperture Radar”) ont permis d’ouvrir de
nouvelles perspectives pour 1’observation de la terre grace a 1’amélioration de la résolution
spatiale (métrique sur TerraSAR-X et COSMO-SkyMed) et temporelle (TerraSAR-X, COSMO-
SkyMed, Sentinel-1). La disponibilité depuis peu des nouveaux capteurs radar bande C Sentinel-
1 (Sentinel-1A et Sentinel-1B) rend indispensable 1’évaluation des données Sentinel-1 pour la
caractérisation des états de surface du sol et en particulier la rugosité de surface.

Le travail de thése se structure en trois parties. La premiére partie consiste a évaluer les modéles
de rétrodiffusion de radar les plus utilisés (IEM, Oh, Dubois and AIEM) en utilisant un large
ensemble de données de SAR et des mesures expérimentales des parametres du sol. Cette
évaluation permet de trouver le modele de rétrodiffusion le plus robuste qui simule le mieux le
signal radar afin de l'utiliser par la suite dans la procédure d'inversion du signal radar pour
estimer la rugosité du sol. Le deuxiéme axe de recherche de cette thése consiste a proposer un
modele de rétrodiffusion radar semi-empirique pour les polarisations HH, HV et VV. Ce
nouveau modele sera construit a lI'aide d'une grande base de données réelle. Ce nouveau modéle
sera également utilisé dans la procédure d'inversion du signal radar pour estimer la rugosité du
sol. Le dernier axe de cette thése consiste a construire une méthode d’inversion du signal radar
en utilisant les réseaux de neurones afin d’évaluer le potentiel des données Sentinel-1 pour
I’estimation de la rugosité des sols en milieux agricoles. Ces réseaux de neurones seront
entrainés a l'aide d'un ensemble de données synthétiques élaborées a partir des modéles de
rétrodiffusion radar choisis (IEM calibré par Baghdadi et du nouveau modéle proposé) et validés
en utilisant deux ensembles de données: un ensemble de données synthétiques et une base de
données réelle (images Sentinel-1 et mesures in situ d’humidité et de rugosité du sol). La base
de données réelle a été collectée en Tunisie (Kairouan) et en France (Versailles).

Mots clés : Radar, Sentinel-1, surfaces agricoles, rugosité du sol, modéles de rétrodiffusion
radar



ABSTRACT

Spatial remote sensing is of paramount importance for mapping and monitoring environmental
problems. Its interest lies in the ability of space satellite sensors in providing permanent
information of the planet, at local, regional and global scales. Also, it provides spatial and
repetitive territories visions and ecosystem views. Radar remote sensing has shown great
potential in recent years for the characterization of soil surface conditions. The state of the soil
surface, in particular moisture and roughness, has a fundamental influence on the distribution of
rainfall between infiltration, surface retention and runoff. In addition, it plays an essential role in
surface hydrological processes and those associated with erosion and evapotranspiration
processes. Characterization and consideration of these surface conditions have been recently
considered as an important issue for physically based modeling of hydrological processes or for
surface-atmosphere coupling. In this context and for several years, several scientific studies
have shown the potential of active microwave data for estimation of the soil moisture and the
surface roughness.

New SAR (Synthetic Aperture Radar) systems have opened new perspectives for earth
observation through improved spatial resolution (metric on TerraSAR-X and COSMO-SkyMed)
and temporal resolution (TerraSAR-X, COSMO-SkyMed, Sentinel-1) . The recent availability
of new Sentinel-1 C-band radar sensors (free and open access) makes it essential to evaluate the
potential of Sentinel-1 data for the characterization of soil surface conditions and in particular
surface roughness.

The work revolves around three parts. The first part consist of evaluation of the most used radar
backscattering models (IEM, Oh, Dubois, and AIEM) using a wide dataset of SAR data and
experimental soil measurements. This evaluation gives the ability to find the most robust
backscattering model that simulates the radar signal with good agreement in order to use later
in the inversion procedure of the radar signal for estimating the soil roughness. The second
research axe of this thesis consists of proposing an empirical radar backscattering model for HH,
HV and VV polarizations. This new model will be developed using a large real dataset. This
new model also will be used in the inversion procedure of the radar signal for estimating the soil
roughness. The last axe of this thesis consists of producing a method to invert the radar signal
using neural networks. The objective is to evaluate the potential of Sentinel-1 data for estimating
surface roughness. These neural networks will be trained using wide synthetic dataset produced
from the radar backscattering models chosen (IEM calibrated by Baghdadi and the new
proposed model) and validated using two datasets: one synthetic dataset and one real (Sentinel 1
images and in-situ measurements). The real datasets are collected from Tunisia (Kairouan) and
France (Versailles).

Keywords: Radar, Sentinel-1, agricultural areas, soil roughness, radar backscattering models
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I. Chapter 1: Introduction



1.1 Context

The soil is not just the surface we walk on, build on, nor the land we cultivate; it is the source
of our life and a wealth that we must preserve. From the 1950s, the intensification of
agricultural land accelerated the processes of soil degradation, thus affecting their
biophysical-chemical properties. The first component directly affected by intensification is
soil fertility in particular (organic matter and soil structural stability).

Generally, several soil processes could be identified based on specific physical conditions and
physical, chemical or biological activities. The soil processes are classified mainly into seven
categories (Bockheim and Gennadiyev, 2000): (i) the translocation which is related to
physical movements and always in the downward direction, (ii) the Organic Changes which
occur mainly on the surface and follow a specific sequence, (iii) the Podzolization which
happens in cool, humid climates where the bacterial activity is low, (iv) the gleying which
takes place under water-logged and anaerobic conditions, (v) the salinization, (vi) the
recarbonatation, (vii) eventually, the desilication that is common in hot-wet tropical and

equatorial climates.

The study and modeling of the continental surfaces functioning and their interactions with the
atmosphere are essential research subjects to understand the climatic system of the earth.
These surfaces constantly exchange the amount of movement, energy, water and chemical
constituents, such as carbon, nitrogen, etc... As for continental hydrology, the processes
involved in the water cycle and quantifying the exchanges of matter and energy shall be
understood. Surface states essentially control the distribution of rainfall between soil storage,
underground infiltration, runoff and evapotranspiration. Hydrodynamic characteristics,
roughness and vegetation cover are major determinants of hydrological processes (soil water
interception and return to the atmosphere), and those associated with erosion (Ambroise,
1999; Auzet et al., 2005).

Runoff and erosion in agricultural soils are major problem for territorial managers. For
several years, several regions in Europe have been facing an increase in natural disasters:
floods, loss of fertile land, soil degradation and water quality. The soil conditions (i.e.
moisture and surface roughness) have an essential role in surface hydrological processes.
Runoff occurs when the amount of rain exceeds the infiltration capacity of the soil (Le
Bissonnais, 1990; Brun et al., 1990; Francois, 1988; Zobeck and Onstad, 1987).



Soils with silty texture are particularly sensitive to runoff because they are subjected to
crusting phenomenon as a result of episodes (Le Bissonnais and Singer, 1992). The
interactions between meteorological conditions, agricultural practices and soil texture cause
significant and fast changes in the hydraulic properties of the soil surfaces. The deterioration
of soil infiltrability and surface storage capacity is strongly influenced by the phenomena of
crusting and degradation of roughness and the genesis conditions of runoff, causing erosive
problems (Govers et al., 2000; King and Le Bissonnais, 1992).

Soil moisture is a key parameter in the different processes involved in the hydrological cycle
(water cycle). Knowledge of moisture is necessary to assess water resources and to carry out
water balances. Information on the spatial distribution of soil moisture optimizes water
reassignment during droughts and provides support for flood forecasting and management.
From an agronomic point of view, soil moisture is a crucial variable for crop development.
Thus, assessing it allows better monitoring and management of irrigation, leading to a more

precise farming.

Another characteristic of the soil to be considered is the surface roughness. It is a physical
parameter that characterizes the surface state. For agricultural soils, roughness defines the
microrelief of the soil surface on the clods scale and is due to small accidents in the field
(natural, cultivation techniques or both). Knowing the state of surface roughness is necessary
for understanding the different processes. It is a key parameter in the estimation of water
storage capacity within the soil horizons as well as modeling runoff. This latter phenomenon
has a great influence on the erosion processes (Roose, 1996) and determines the floods

following a rainy event.

The evolution in time and space of the physical, hydraulic and geometric properties of soil
surfaces is an information that can be integrated into hydrological models for forecasting the
water balance and the processes of runoff and erosion (Auzet et al., 2005; Baghdadi et al.,
2004; Boiffin, 1984; Casenave and Valentin, 1989; King et al., 2005; Ludwig et al., 1995;
Quesney et al., 2000; Weisse et al., 2003). Moreover, soil and water resources’ management
are key issues, not only from the environmental point of view, but also from a socioeconomic

perspective (Condrea and Bostan, 2008).

There are many in situ experimental methods to measure surface soil moisture (Gardner,

1986; Topp et al., 1980). These methods allow precise soil moisture estimates only at the



local scale. Since several years, the scientific community has demonstrated the potential of
spatial observation for estimating soil parameters. Spatial remote sensing allows repetitive
measurements and provides access to spatial information at scales that can be very fine.

In this context, remote sensing is of paramount importance for mapping and monitoring
environmental problems. Its interest lies in the ability of space-based satellite sensors to

provide global and permanent information about the planet.

1.2 State of art

.2.1 Remote sensing data for soil characterization

Active microwave remote sensing is specifically well suitable in agricultural fields concerning
the characterization of soil surface conditions. Synthetic Aperture Radar (SAR) sensors allow
all-weather measurements, independently of weather conditions (cloud cover, day/night...).
They use microwave frequencies with wavelengths between 1 mm to 1 m. Theses microwave
frequencies are very sensitive to the geometric and dielectric properties which are themselves
dependent on surface parameters (roughness, soil moisture, soil composition and vegetation
cover). SAR signal also depends on different instrumental parameters (polarization, incidence

angle, and radar wavelength).

Studies using radar remote sensing started at the end of the 70s with in-situ or airborne
scatterometers (Ulaby et al., 1978). The developments of these studies became more
important in the 1990s with satellite and airborne SAR (ERS-1/2, JERS, SIR-C,
RADARSAT-1 ...). Most studies were carried out in C-band (wavelength ~6 cm), L-band
(wavelength ~22 cm), and more recently in X-band (wavelength ~3 cm). Firstly, the satellite
SAR sensors that were accessible to the scientific community had an instrumental
configuration of mono-polarization and a single incidence angle (ERS-1/2, JERS). The second
generation of radar sensors with new instrumental configurations (RADARSAT,
ASAR/ENVISAT, PALSAR/ALQS, TerraSAR-X, COSMO-SkyMed, Sentinel-1) allowed the
scientific community to gather images in multi-polarization and sometimes polarimetric mode
(scattering matrix). These SAR second generation provide images in high spatial resolution
(about 1 m for TerraSAR-X and COSMO-SkyMed) and high temporal resolution (up to one
image by day). In addition, the launch of the Sentinel-1 C-band SAR, which is based on a
constellation of two satellites (A and B units) makes it possible to obtain SAR data for global
areas at high spatial and temporal resolutions (spatial resolution of 10 m and time revisit of 6

days over Europe) with free and open access Sentinel satellites. These new SAR sensors with
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C-band are suitable for hydrological and agronomic applications (Alexakis et al., 2017;
Aubert et al., 2011; Baghdadi et al., 2002a, 2011a, 2012a; Hajnsek et al., 2009; Holah et al.,
2005; Paloscia et al., 2008; Srivastava et al., 2003, 2009; Zribi et al., 2005a).

Some low resolution spatial sensors are also suitable for meteorological and climatic
applications on a global scale such as, AMSR-E, AMSR2 (microwave radiometers), SMOS,
SMAP (L-band microwave radiometers), and ASCAT/METOP (C-band scatterometer). They
provide users of soil moisture products with a temporal frequency on few days with a spatial
resolution around 25-40 km (Champagne et al., 2016; Chan et al., 2016; Entekhabi et al.,
2010; Jackson et al., 2012; Mohanty et al., 2017; Wigneron et al., 2017).

For bare agricultural soils or soils with little vegetation, the radar signal is dependent on the
two parameters of the surface: the dielectric constant related to the soil moisture and the
surface roughness. Several radar backscatter models have been developed in recent years with
the aim to model the backscattering of natural surfaces and to reverse the radar response to
find the different parameters of the soil surface. These models depend on the sensor
characteristics (incidence, frequency, polarization...) and those of the target (soil moisture and
surface roughness). From a perspective of anticipation or coherence of information on various
natures, it is essential to rely on models capable for estimating soil parameters. Numerous
radar backscattering models have been developed in order to estimate soil parameters (i.e. soil
moisture and surface roughness) (Zribi and Dechambre, 2003, Baghdadi et al., 2004, 2006a,
2011b, 2015, 2016a; Chen et al., 2003; Dubois et al., 1995; Fung et al., 1992; Oh, 2004; Oh et
al., 1992, 1994, 2002). However, ground measurements of different soil parameters are

necessary to calibrate these models in order to have accurate estimations.
1.2.2 Potential of radar data for monitoring soil conditions

Synthetic Aperture Radar (SAR) data have been used for a long time to estimate and map soil
moisture. Several radar backscattering models were developed in order to estimate soil
parameters (i.e. soil moisture and surface roughness). The availability of high spatial and
temporal resolutions SAR Sentinel-1 data and these models make the intere st to estimate soil
parameters accurately. In the case of bare soils (or soils with little vegetation), the estimation
of soil moisture and surface roughness was performed by inverting the measured SAR
backscatter through SAR backscattering models (both empirical and physical). Unlike
physical models, empirical or semi-empirical models need to be calibrated each time the study



area changes by using site-specific in situ measurements and SAR observations. The most
commonly semi-empirical models are the models of Oh (Oh, 2004; Oh et al., 1992, 1994,
2002) , Dubois (Dubois et al., 1995) and Baghdadi (Baghdadi et al., 2016a); while, the most
popular physical models are Integral Equation Model (IEM) (Fung et al., 1992), IEM
calibrated by Baghdadi, called in this thesis “IEM_B” (Baghdadi et al., 2002b, 2004, 20064,
2011a, 2011b, 2015), and Advanced Integral Equation Model (AIEM) (Chen et al., 2003).

Several studies have been carried out to evaluate and compare the robustness of the
backscattering models such as, Oh, Dubois and IEM (original IEM, IEM_B and AIEM). Zribi
et al. (1997) evaluated the Oh model and IEM using L-, C- and X-bands SAR data and in situ
measurements. Results showed that the IEM provides accurate simulations (RMSE about 2.0
dB) only over smooth surfaces. In addition, for rough surfaces and medium incidence angle,
Oh model simulations retrieve backscattering values very close to the measured ones, while
showing poor correlation with measured backscattering coefficients over smooth areas.
Baghdadi and Zribi (2006) evaluated the backscattering models IEM, Oh and Dubois by using
large C-band SAR data and in situ measurements. Results showed that these models
frequently tend to over-estimate or under-estimate the radar signal (in the order of 3.0 dB) and
the errors on model simulation depend on height surface roughness, Hrms, soil moisture, mv,
and/or incidence angle. Baghdadi et al. (2011b) evaluated the potential of IEM, Oh and
Dubois models by using TerraSAR-X images acquired over France and Tunisia and
experimental datasets of in situ measurements (mv ranged between 5 vol. % and 41 vol. %
and Hrms between 0.42 cm and 4.55 cm). In this case, the semi-empirical Oh model correctly
simulated the backscattering (showing over or under-estimation of the backscatter <1 dB, and
RMSE <3 dB), while Dubois model showed a poor correlation between real data and
simulations, with RMSE between 2.2 and 4.4 dB and over or under-estimation of the
backscatter of about 3.4 dB. In addition, the IEM correctly simulates the backscattering at X-
band for Hrms < 1.5 cm by using the exponential correlation function and for Hrms > 1.5 cm
by using the Gaussian correlation function. Panciera et al. (2014) compared the performances
of the IEM, Dubois and Oh models by using fully polarized L-band airborne data (incidence
angles between 24° and 38°) and in situ measurements (mv between 5 vol. % and 39 vol. %
and Hrms between 1 cm and 7.6 cm) acquired over the study area in southeastern Australia.
At HH polarization, the three models simulated the backscattering with almost similar
accuracy, showing a mean error between the simulated and the observed backscattering

coefficients of about 1.6 dB in absolute value (standard deviation “std” about £2.5 dB). At



V'V polarization, the Oh model resulted to be more accurate than IEM and Dubois models: the
mean errors between the simulated and observed backscattering were equal to 4.5 dB (std =
+2.0 dB), 1.7 dB (std = £2.3 dB), and —0.4 dB (std = £2.4 dB) for IEM, Dubois, and Oh
model, respectively. Moreover, several studies confirmed that the use of the calibrated
correlation length, as proposed by Baghdadi et al. (2002, 2004, 2006, 2011a, 2011b, 2015) is
able to improve the performance of the IEM at both HH and VV polarizations (Dong et al.,
2013; McNairn et al., 2010; Panciera et al., 2014). Dong et al. (2013) used the calibrated
correlation length in the AIEM to simulate SAR data in C-band. Results showing that the
RMSE reduced from 3.1 to 1.7 dB at HH and VV polarizations and from 31.0 dB to 5.1 dB at
HV polarization. Panciera et al. (2014) showed that the use of calibrated correlation length
decreases the errors on IEM simulation with a bias equal to about —0.3 dB (standard deviation
about £1.1 dB) at both HH and VV polarizations.

Several studies were done in order to investigate the SAR data for monitoring roughness
states over bare agricultural soils. Baghdadi et al., (2002a) examined the potential of the first
generation of SAR data (ERS-2 and RADARSAT-1) to estimate surface roughness over bare
agricultural soils. Results showed that the use of high incidence angles about 45° are more
appropriate to differentiate numerous roughness classes (smooth, medium and rough) over
bare agricultural soils. Moreover, Baghdadi et al. (2012a) used neural networks
(NNs)techniques to estimate soil moisture mv and surface roughness Hrms from C-band
polarimetric RADARSAT-2 data. Results indicated that the accuracy on the soil roughness
estimates was about 0.5 cm using polarimetric data. The estimation is better for Hrms-values
lower than 2 cm than for Hrms-values higher than 2 cm. For higher Hrms, the neural networks

under-estimate the surface roughness.
1.3 Plan of the thesis

The general objective of this work is to explore and evaluate the potential of the Sentinel-1
radar sensor to estimate surface roughness over bare agricultural soil. The originality is that
few studies have been done to estimate soil roughness from SAR data and never before have
been estimated from Sentinel-1 data. The recent launch of Sentinel-1 C-band SAR providing
full earth coverage at high spatial and temporal resolutions with free and open access satellite

justifies this work.



Thus, the first part of this thesis is to analyze the quality of the most popular radar
backscattering models in order to find the model that best fit the SAR measurements. Integral
Equation Model “IEM”, Integral Equation Model calibrated by Baghdadi “IEM_B”, Oh,
Dubois, and Advanced Integral Equation Model “AIEM” will be evaluated using a wide
dataset of SAR data and experimental soil measurements. The results will show the
performance of each model in order to identify the most robust backscattering model that will
be used later in the inversion procedure for estimating the soil roughness.

After evaluating the existing radar backscattering models (semi-empirical, empirical and
physical) using a wide reference dataset of SAR (Synthetic Aperture Radar) data and
experimental soil measurements, a new radar backscattering model will be proposed. The
objective is to develop an empirical radar backscattering model. Never before a backscattering
model has been built and validated on such a large dataset: wide range of incidence angles
(18°-57°), dataset in L, C and X bands, dataset well distributed geographically for regions
with different climate conditions (humid, semi-arid and arid sites) and involving many SAR

SENSOrs.

The last research part of this thesis consists of proposing a method to invert the radar signal
using neural networks technique. The objective is to evaluate the potential of Sentinel-1 data
for estimating soil roughness. The best model found in the first part of this thesis and the new
empirical model developed in the second part will be used to train and validate neural
networks. Finally, the neural networks will be validated using a real dataset composed of

Sentinel-1 images and in-situ measurements, collected in Tunisia and France.

This thesis is composed of several chapters. This first chapter is a general introduction that
describes the importance of soil parameters and the potential of remote sensing techniques for
their monitoring. The second chapter introduces the concept of radar remote sensing
technique and describes the interaction of electromagnetic waves with agricultural soils. The
soil surface parameters (roughness and moisture content) as well as the different methods for
estimating these parameters are described. Next, the most popular radar backscattering models
(empirical, semi-empirical and analytical) will be described and evaluated in chapter 3. A new
semi-empirical backscattered model will be proposed in chapter 4. Finally in chapter 5, neural
networks trained on dataset simulated from radar backscattering models (the IEM modified by
Baghdadi and the new proposed model) will be used to estimate the soil roughness from
Sentinel-1 radar images. Conclusions and perspectives are presented in chapter 6.



I1.Chapter 2: Generalities



I1.1 Introduction

This chapter is an introduction to radar remote sensing, its principle measurement and its
instrumental characteristics. Some reminders are introduced in section 2 on electromagnetic
waves and their interactions with surfaces in agricultural areas. Section 3 of this chapter
describes the descriptive parameters of soil (moisture and roughness). Section 4 shows the
sensitivity of radar signal to soil moisture and surface roughness. In this thesis, our study
focuses on soils in bare agricultural areas. Thus, to conclude this chapter, the electromagnetic
backscattering models are introduced, which simulate the radar signal by linking it to the

geophysical parameters of the soil surface, mainly moisture and roughness.
1.2 Radar remote sensing

Radar is an active sensor for Earth observation, operates in the microwave frequencies of the
electromagnetic spectrum (300 MHz to 30 GHz). The principle of radar, for the observation
of surfaces, consists of emitting an electromagnetic wave in a selected configuration
(frequency, polarization, incidence angle). This wave propagates in space to the observed
surface and part of the emitted energy is returned in the direction of observation. It is then
said that the energy is backscattered. It is a function of both the characteristics of the system
and the nature of the surface (electrical properties and surface state) (Baghdadi and Zribi,
2016).

In the general introduction, we have already mentioned the advantages of the radar. It is used
day and night and is almost insensitive to the weather conditions. For the observation of the
Earth, most radars are synthetic aperture radars (SARs) which provide images with high and
very high spatial resolution (from 1m for TerraSAR-X and CosmoSky-Med to 10 m for
Sentinel-1 for example). These new SAR images have made it possible to retrieve surface soil

parameters with a high spatial resolution.
11.2.1 Instrumental Parameters

The main instrumental parameters of radar remote sensing described in this subsection are

frequency, polarization and incidence angle.
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11.2.1.1 Radar frequency

Radar systems operate on the microwave domain. The frequency of the transmitted signal is
the number of waves passing through a given point during the interval of one second. It is
measured in Hertz. The frequency ranges in the microwave domain (from 0.3 to 300GHz)
Wavelength is a measure of the physical distance between peaks of a sine wave propagated in
space. Most radar signals have wavelengths measured in centimeters or millimeters.
Wavelength and frequency have inverse relationship = c¢/A : the higher the frequency, the
shorter the wavelength. The wavelengths range in the microwave domain between 1m and

Imm.

For the Earth observation, the frequency bands particularly used in radar imagery are
summarized in the table 11.1.

Frequency Wavelength ~ Space sensors
Band (GHz) (cm)
Biomass (not
b 0.3-1 100-30 launched)
] 1.2 30-15 PALSAR/ALOS
ERS, ASAR,
RADARSAT,
c 4.20-5.75 7.1-5.2 SENTINEL-1,
TerraSAR-X,
X 5.75-10.9 5.2-2.7 Cosmo-SkyMed

Table 11.1. The main frequency band used in radar imagery and examples of space sensors
(past, present or future).

Using radar images in L, C, and X bands to perform studies for the characterization of the soil
surface moisture in agricultural areas, in-situ measurements of soil moisture are taken at a
depth between 0 and 10 cm. This measurement depth is related to the penetration depth of the

radar wave (op) that is generally equal to few centimeters in C and X bands. In L-band, this
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depth could reach a few dozen cm for very dry soils. Moreover, the penetration depth of the
radar signal in C-band decreases from 5 to 1 cm for a clay soil when the soil moisture
increases from 10 to 30 vol. % (HH polarization and 15° incidence angle) (Bruckler et al.,
1988). Indeed, the thickness of this surface layer depends on the radar wavelength (A) (more
penetration with greater wavelengths) and the dielectric constant of soil (water content and

soil composition) (Ulaby et al., 1978):

We'

2.1
2m/e"” 1)
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Where €' is the real part of the dielectric constant and €" its imaginary part.

The dielectric constant is a physical quantity also known as complex permittivity. The amount
of water present in a soil affects its electrical properties and consequently the radar signal.
The microwave dielectric constant of soil is related to soil moisture content and to a lesser
extent soil texture (Ulaby et al., 1978). This constant is a complex number expressed in the
form e=¢'-je". The real part €' affects the moisture content more, while the imaginary part &"

essentially depends on the electrical conductivity of the soil solution.

11.2.1.2 Polarization

The polarization is a property of the electromagnetic wave that describes the orientation of the
electric field in the plane perpendicular to the direction of propagation. For radars existing in
the Earth observation field, this is a linear polarization in two directions (horizontal and
vertical). For example, Sentinel-1 has selectable single polarizations (VV or HH) for the
Wave mode and selectable dual polarizations (two polarizations: VV+VH or HH+HV) for all

other modes.

11.2.1.3 Incidence angle

The incidence angle () is the angle between the incident propagation direction and the
normal surface, in the plane of propagation. The first generation of satellite radar had a fixed
sight (for ERS-1/2, 0 is centered at 23°). Other sensors have been equipped with variable-
focus antennas that can acquire images with incidence angles ranging from 20° to 46° for

Sentinel-1.
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The launch of multi-incidence SAR satellites (ASAR, RADARSAT-1/2, TerraSAR-X,
COSMO-SkyMed, Sentinel-1) have allowed to estimate under very limited conditions the soil
moisture and surface roughness simultaneously, even though multi-incidence acquisitions
actually represent two acquisitions on two different dates. However, it is assumed that the soil
parameters have not changed between the two acquisition dates. For this configuration, the
radar images are acquired at two different incidence angles, generally one image with a weak
incidence (Bweak~20°) and another image with a strong incidence (Bstrong~40°) (Baghdadi and
Zribi, 2016).

11.2.2 Radar backscattering coefficient

The backscattering coefficient (¢°) is the usual radar term for the measurement of the
backscattering of a target by the radar. It expresses the ratio between the power transmitted by
the antenna to the ground and that returned by the target for a given configuration system
(polarization, frequency, angle of incidence). It defines the ability of an illuminated surface to
reflect incident energy towards the antenna. It is usually expressed in decibels (dB), on a

logarithmic scale:

o%gp =10 - |0910 (Golinear) (2-2)

1.3 Description of soil parameters

11.3.1 Soil moisture

Soil moisture is defined as the water contained in the soil. Obtained from rainfall, snowmelt,
irrigation, or from the tube of liquid of groundwater. Soil moisture content is an important

variable of climatological, hydrological and environmental systems.

The moisture content in the surface layers of the soil is an important parameter for many
applications in hydrology, agriculture and meteorology. Soil moisture is one of the few
directly observable hydrological variables that play an important role in the water and energy
budgets necessary for climate studies. Estimation of soil properties as soil moisture is an
important variable for many water management and agricultural applications (Verhoest et al.,
2008). Moreover soil moisture information could also be used to predict natural disasters such

as flooding and for environment changing such as soil erosions (Lakhankar et al., 2006).
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Soil moisture measurements in situ are expensive and take time. Also these measurements
might have some problems during the sampling process that make all the measurement
incorrect. There are several methods to measure soil moisture, such as the gravimetric method

and Time-Domain Reflectrometry (TDR).

11.3.2 In situ measurements

[1.3.2.1 The gravimetric method

The gravimetric method consists in first measuring the moisture content of a soil sample taken
from a cylinder. The wet content Wp (% or g.g™%) is calculated using the wet weight (Ph: soil
weight after sampling) and the dry weight (Ps). The dry weight (Ps) is obtained by drying the
sample from the sampled soil with a temperature of 105 °C for 24 h.

This method determines the wet weight of a soil sample by comparing the wet mass to its dry

mass, according to the following equation:

(2.3)

Ph —PS
Wp(vol.%) = 100 * [ ]
h

P
With:

Ph: soil moisture mass
Ps: dry soil mass

Wp: water content in weight %

The moisture volume mv (% or cm®/cm?) is deduced from the wet weight W, (% or g.g*) by

multiplying it by the apparent density of the soil:

(2.4)
mv(%) = Da Wy (%)

Da: apparent density = the dry soil mass / the cylinder volume
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[1.3.2.2 The TDR (Time Domain Reflectometry)

This instrument measures the propagation speed of a microwave signal by waveguides
pressed into the soil. This speed is a function of the soil dielectric permittivity, related to the
soil water content. For surface measurements, this method is fast with equipment that allows
extensive measurements of soil moisture. This instrument can be placed deeply in a horizontal
position for automated measurements. It is better to precede a previous calibration of the
device by doing a comparison with measurements obtained by the gravimetric method
(calibration for each soil type). Moreover, the TDR measurements are not valid for frozen soil

where an important drop in the moistures registered by the probe can be observed.

The gravimetric method is considered the most accurate but it requires a lot of effort and time
to collect the soil samples. For this reason, soil moisture content is usually measured using a
calibrated TDR (Figure 11.1). Figure 11.1b shows the calibration line of TDR established by

expressing TDR measurements as a function of the gravimetric measurements.
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Figure 11.1. (a) The Thetaprobe instrument. (b) Thetaprobe calibration curve, black circles
represent moisture measurements.

11.3.3 Surface roughness
Roughness is a parameter that describes the soil microtopography. When the transmitted radar
signal interacts with a rough surface, the energy of the wave is reflected in all directions and

in particular in the radar’s direction. The description of the surface roughness of bare
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agricultural soils is based on three parameters: the standard deviation height (Hrms), the
correlation length (L) and the autocorrelation function (Ogilvy and Ogilvy, 1991; Ulaby et al.,
1986).

There are several techniques that could be used for soil roughness measurement: pin
profilometer (Figure 11.2), laser profilometer (Figure 11.3), and 3D photogrammetry. The pin
profilometer 1D can be represented by a function f(x) = z, where x is on the horizontal axis
and z is the profile height with respect to this axis. Moreover, the use of the laser or 3D
photogrammetry allows for the most accurate rendering of soil roughness (high spatial
resolution) with a precise estimation of the roughness parameters, Hrms and L (Davidson et
al., 2000; Mattia and Le Toan, 1999).

However, the pin profilometer is the very widely used due to cost reasons. Most pin
profilometers are 1 or 2 m long with a sampling interval of 0.5, 1, or 2 cm. The measures are
often taken in both directions, parallel and perpendicular to the row direction, in order to
consider the directional effect of soil tilling (several profiles in each direction). The
autocorrelation functions, calculated using different roughness profiles of a reference plot, are

averaged, and the roughness parameters Hrms and L estimated (Baghdadi and Zribi, 2016).

Figure 11.2. Roughness profile made by a needle profile-meter in the parallel direction
to the furrows (1D profile from a pin profilometer: 1 m long and a sampling interval of 2 cm)
(Baghdadi and Zribi, 2016).

16



Figure 11.3. Examples of roughness profile: 3D profile from a laser scanner (Baghdadi and
Zribi, 2016).

The standard deviation height (Hrms) expresses the vertical variation of the soil roughness.
The Hrms values depend on the agricultural operations and the rain or snow ground effects.

The parameter is defined as follows:

Hrms? = ((z(x) — (z))*) (2.5)

Where z (x) is the measured altitude on the x axis, and <z> is the mean height.

The Hrms parameter is not sufficient to characterize the soil surface. It does not take into

account the relation which may exist between different surface points.

In order to take into account the relationship that may exist between the altitudes of two
surface points separated by a distance u, we define the autocorrelation function (p(u)) of the

surface and calculating the correlation length L:
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({z(x + W) — (2)}.{z(x) — (2)})

Hrms?

p(w) = (2.6)

When u = 0, the distance between the altitudes of two surface points is zero, the correlation
between these two points is maximum and the autocorrelation function is one: p(u) = 1. When
u increases, the points move away and become less correlated and the

function p(u) decreases.

Finally, there is a distance for which the points are considered to be uncorrelated. This
distance is the correlation length (L). It is defined as the distance (from the origin profile) in
which the autocorrelation function equals e (Figure 11.4). When the roughness is low and the
ground is smooth, the autocorrelation function has an exponential shape. Conversely, for high
roughness, the autocorrelation function has a Gaussian shape (Ulaby et al., 1982) (Equation
2.7). Zribi (1998) introduced the fractal dimension to the description of the autocorrelation
function’s shape for bare soils in agricultural fields. For one-dimensional roughness profiles,

the autocorrelation functions are defined as follows:

2(X) = Hrms? e_(LJ : exponential @.7)
= Hrms? e_(Lj : Gaussian
= Hrms? e_m : fractal

with a = -2D+4, where D is the fractal dimension. When the fractal dimension varies, the
shape of the autocorrelation function changes: it goes from an exponential function from for
D=1.5 to a Gaussian shape for D=1. The experimental measurements show a fractal
dimension between 1.25 and 1.45, where an autocorrelation function power o between 1.1
and 1.5.
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Figure 11.4. Example of a correlation function, L is the correlation length.

The inversion of the radar signal to estimate all surface parameters of the soil (Hrms, L, D,
and soil moisture) is impossible without simplifications in the description of the roughness
(too many variables and too few observations). In this context, Zribi and Dechambre (2002)
proposed a new roughness parameter Zs (which equal to Hrms?/L) combining Hrms and L.
This parameter Zs takes into account the influence of both surface height variations (Hrms)
and soil surface slope (Hrms/L). Low values of Zs correspond to low values of Hrms and/or
large values of L, whereas large values of Zs correspond to large values of Hrms and/or low
values of L. Smooth soil surfaces are described by a low Zs (<0.1 cm), whereas rough soils

lead to a large value of Zs (>1 cm).

Moreover, Zribi et al. (2014a) proposed a new parameter Zg, which combines the standard
deviation of heights Hrms, the correlation length L, and the shape of the autocorrelation

function (described by the power o):

19



Zg = Hrms (Hrm%_)a 28)

For a fixed value of a, high values of Zg correspond to high values of Hrms or low values of

L, and low values of Zg correspond to low values of Hrms and/or high values of L.

In the case of a fixed correlation length L, high values of Zg correspond to high values of
Hrms or low values of o, and low values of Zg correspond to low values of Hrms and/or high
values of a. In general, a smooth soil surface is characterized by a low value of Hrms and a
medium to large value of L, thus to a small value of Zg. Moreover, rough surface is generally
associated with a high value of Hrms, a medium to large value of L, and a value of o about 1,
and thus to a high value of Zg. In addition, rough surfaces, corresponding to eroded soils, are
often characterized by a high value of Hrms, a medium to large value of L and a value of a

about 2, thus to a medium value of Zg.

Several studies (e.g. Lievens et al., 2009; Oh and Kay, 1998) showed that the precision of in-
situ measurements root mean surface height (Hrms) and correlation length (L) are very
sensitive to the length and the horizontal resolution Ax of the roughness profiles (Lievens et
al., 2009; Oh and Kay, 1998). An underestimation is observed of Hrms and L using small
profiles. Moreover, the estimate correlation length (L) increase using roughness profiles with
large sampling intervals. For agricultural soils, with about ten profiles measuring 1 m, Hrms
can be measured with a precision of 10%, while the precision of the estimation of L is around
15 to 20% (a more important error for strong L values). Measuring L and Hrms with an error
better than 5%, the sampling interval Ax must be smaller than 0.2L and 0.5L respectively (Oh
and Kay, 1998). The Hrms values are generally seen between 0.3 cm (very smooth fields that
have just been sown) and 4 cm (fields that have just been plowed). The lengths of correlation

L measured on the agricultural plots are predominantly between 3 and 25 cm.
1.4 Radar signal sensitivity to soil parameters
11.4.1 Sensitivity of radar signal to soil roughness

Many studies (Aubert et al., 2011a; Baghdadi and Zribi, 2016; Baghdadi et al., 2008a; Gorrab
et al., 2015a) showed that the backscattering radar signal for bare soil increases with the rms
surface height (Hrms) according to the logarithmic or exponential law. Then after certain
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thresholds, the backscattering radar signal becomes constant (Figure I1.5). This threshold after
which the signal becomes constant depends on the wavelength and the radar’s incidence
angle. According to several studies, the radar signal rapidly saturates with the soils roughness
(Hrms) when the wavelength and or the incidence angle are weak. This saturation of the radar
signal occurs when kHrms is higher than 1 (where K is the radar wave number = 2z/)) (Figure
[1.5). Moreover, this saturation corresponds to Hrms values of 4 cm in L-band, 1 cm in C-
band and around 0.5 cm in X-band (Baghdadi and Zribi, 2016). Figure 11.5 also illustrates the
dynamic weakness of the radar backscattering coefficient in two cases, first in the case of
weak incidence angles (variation of 7 dB for 20°-25°, Figure 11.5a), than in the case of strong
incidence angles (variation of 10 dB for 45°-50°, Figure 11.5b).
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Figure 11.5. Sensitivity of the radar signal to soil roughness. SAR sensors in C and L bands
were used. The signal is represented as a function of kHrms (Baghdadi and Zribi, 2016).
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11.4.2  Sensitivity of the radar signal to soil moisture

The radar signal approximately follows a logarithmic law with soil moisture. Moreover, this
logarithmic function represented approximately as a linear function for soil moisture between
10 and 35 vol. % (Figure 11.6). When the soil moisture increases than about 35 vol. %, the
radar signal stabilizes and starting to decrease with the increasing of the soil moisture. So that,
the estimation of soil moisture is difficult after 35 vol. % (e.g. Baghdadi et al., 2007; Holah et
al., 2005).
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Figure 11.6. Sensitivity of the radar signal in C and X bands to soil moisture. The Hrms
values vary between 0.5 and 1.5 cm. (a): C-HH(20°-24°), (b): C-HH(43°-45°) (c): X-HH(25°-
28°), (d): X-HH(50°-52° ) (Baghdadi and Zribi, 2016).

Numerous studies (Aubert et al., 2011a; Baghdadi and Zribi, 2016; Baghdadi et al., 2007;
Choker et al., 2017) show the radar signal’s sensitivity to soil moisture as a function of
different radar parameters (incidence angle, polarization, wavelength). Over bare soil, the
optimal radar signal configuration to get the better sensitivity to soil moisture consists of X-
band (in comparison to L and C bands), HH polarization and a low incidence angle (Anguela
et al., 2010; Aubert et al., 2011; Baghdadi and Zribi, 2016; Beaudoin et al., 1990; Toan, 1982;
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Ulaby et al., 1986; Weisse et al., 2003). These radar’s incidence angles are ranging from 15°
to 35° (Beaudoin et al., 1990; Lievens et al., 2009; Ulaby et al., 1986).

The sensitivity of radar signal to soil moisture, in C-band it is approximately between 0.15
dB/vol.% and 0.3 dB/vol.% (Baghdadi et al., 2008; Le Hégarat-Mascle et al., 2002; Quesney
et al., 2000; Srivastava et al., 2003). For the effect of wavelength, Aubert et al. (2011) showed
that the sensitivity of the radar signal toward the soil moisture is twice high in X-band than in
C-band (about 0.35 dB/vol. % in X-band and 0.15 dB/Vol. % in C-band). Narvekar et al.
(2015) showed that the sensitivity to soil moisture in L-band is approximately the same as in
C-band. Moreover, the sensitivity for all frequency decreases as the incidence angle increases
(Baghdadi and Zribi, 2016; Baghdadi et al., 2008a) (Figure 11.6).

I1.5 SAR data processing

Before processing the SAR images, the data are radiometrically calibrated, which allows the
backscattering coefficient (c°) to be extracted from the signal intensity of each pixel. This
calibration enables to carry out multi-temporal analysis of different images (using either the
same, or different sensors, but the same radar frequency, incidence angle and polarization).
The pixel-by-pixel interpretation of SAR images are extremely difficult because of the
presence of speckle noise. It is due to the coherent interference of waves reflected from many
elementary scatterers. Due to these reasons, soil surface characteristics are always estimated
over homogeneous sectors including several pixels, or at the scale of single fields (which
helps to reduce the speckle effect). The mean backscattering coefficients are calculated from
calibrated SAR images, by averaging the linear intensity values of all pixels within the field
(or sub-field). The reduction in speckle noise and the improvement in the quality of
backscattering estimations are thus highly dependent on the size of homogeneous units used
(Joughin et al., 1993; Lee et al., 1994).

1.6 Radar backscattering modeling and evaluation
The radar backscattered models have been the subject of many studies based on theoretical or
experimental research. In general, there are several classes of models: empirical, semi-

empirical and physical models. These models will be briefly discussed in chapter three.
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11.6.1 Case of bare soil
11.6.1.1 Modeling of radar backscattering on bare soils

The modeling of the radar backscattered signal was developed in order to link and analyze the
radar signal’s sensitivity to the physical parameters of the soil surface (roughness and water
content in particular) as a function of SAR configurations (mainly radar wavelength,
incidence angle and polarization) (Baghdadi and Zribi, 2016; Baghdadi et al., 2004, 2006a,
2011b, 2015, 2016a; Beckmann and Spizzichino, 1987; Fung et al., 1992; Rice, 1951; Ulaby
etal., 1986).

The empirical models require calibration using in situ measurements and SAR observations
acquired (Baghdadi et al., 2004, 2006a, 2011b, 2015, 2016a; Dubois et al., 1995; Oh, 2004;
Oh et al., 1992, 1994, 2002). In addition, the range of validity of the empirical models is

limited to the range of variations in the data used for model calibration.

In addition, the physical models are based on laws of the resolution of Maxwell's equations,
with physical approximations limiting their areas of validity. The disadvantages of these
models are the complexity of implementations and require many parameters in simulations.
The development of these models have been the goal of several studies such as (Chen et al.,
2003; Fung, 1994; Fung et al., 1992; Ulaby et al., 1986). In the IEM model (Fung et al.,
1992), the discrepancy between SAR simulations and SAR measurements is mainly related to
the description of surface roughness which is an important input to SAR backscattering
models (Baghdadi et al., 2011b; Mattia et al., 2003; Verhoest et al., 2008). The surface
roughness is described by three parameters: the standard deviation of the height (Hrms), the
correlation length (L) and the shape of the correlation function (Fung et al., 1992). The
correlation length is usually measured with an uncertainty which introduces an error on
simulated backscattering coefficients (Baghdadi et al., 2000; Davidson et al., 2000; Le Toan
et al., 1999; Lievens et al., 2011). A few studies proposed a semi-empirical calibration of
SAR backscattering models in order to reduce the uncertainty on SAR simulations (Baghdadi
et al., 2002b, 2004, 2006a, 2011a, 2011b, 2015; Rahman et al., 2007) . In Baghdadi et al.
(2002b, 2004, 2006, 2011a, 2011b, 2015) the method consisted of replacing the measured L
by a fitting parameter, so-called Lopt, which was found to be related to Hrms (Lopt increases
with Hrms). Lopt is a function of Hrms (linear, exponential, or power calibration) which
depends on SAR parameters (incidence angle, polarization and frequency). This calibration

reduces IEM’s input soil parameters (Hrms and mv instead of Hrms, L and mv). Rahman et al.
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(2007) proposed a method for deriving L through the IEM. In this method, the radar signal is
modeled as a function of only Hrms and L, and the contribution of soil moisture on
backscattering coefficients is ignored (dry soil). Thus, L could be estimated by inverting the
IEM.

11.6.1.2 Estimation of soil parameters using radar backscattering on bare soils

For bare soil, many studies have shown the potential of radar data to retrieve soil parameters
(moisture and roughness) (Aubert et al., 2011; Baghdadi and Zribi, 2006; Baghdadi et al.,
2002a, 2007, 2008a, 2012a; Le Hégarat-Mascle et al., 2002; Zribi et al., 2005b). The SAR
signal increases with increasing soil moisture for values between 0 and 35% (Aubert et al.,
2011a; Baghdadi et al., 2007; Gorrab et al., 2015a; Holah et al., 2005). Beyond this threshold,
the backscattering coefficients tend to saturate and then decreases with increasing soil
moisture (Holah et al., 2005). Most bare soil moisture estimation studies have used SAR data
in X and C bands and the results show a precision on the estimation of soil moisture between
3 and 6 vol.% (Aubert et al., 2011; Baghdadi et al., 2012, 2016b; EIl Hajj et al., 2014; Paloscia
et al., 2013; Srivastava et al., 2003, 2009; Zribi et al., 2011). Moreover, in C-band, the
accuracy of the soil moisture estimates depends on the effect of surface roughness and of the
sensor incidence angle. On the other hand, in X-band, the effect of roughness on the accuracy
of the soil moisture estimation is negligible and the quality of estimates is slightly better with
low incidence angle (RMSE < 1 vol.%) (Aubert et al., 2011a, 2013; Galarneau et al., 2001;
Hégarat-Mascle, 2000; Quesney et al., 2000). Thus, the accuracy of the moisture estimates in
X-band is twice as well as that obtained in C-band data (3 vol.% in the X-band compared with
6 vol.% in the C-band) (Baghdadi and Zribi, 2016).

Baghdadi et al. (2002a) analyzed the potential of synthetic aperture radar (SAR) data for
monitoring roughness states over bare agricultural fields using one ERS image (23°) and two
RADARSAT images (39° and 47°). The relationships between the backscattering coefficient,
incidence angle, soil surface roughness and row direction have been examined in order to
determine the best SAR configuration for such monitoring. The result showed a strong
dependence of incidence angle on the discrimination between radar return over areas of
different surface roughness. The influence of soil roughness on radar return is more sensitive
at a high incidence angle (47°), over the influence of other soil parameters, making it possible
to differ and map various surface roughness classes (smooth, medium and rough) over

agricultural fields.
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In addition, Baghdadi et al. (2012a) developed an approach to estimate soil surface parameters
from C-band polarimetric SAR data in the case of bare agricultural soils. An inversion
technique based on multi-layer perceptron (MLP) neural networks was introduced. The neural
networks were trained and validated on a noisy simulated dataset generated from the Integral
Equation Model (IEM) on a wide range of surface roughness and soil moisture. The
performances of neural networks in retrieving soil moisture and surface roughness over bare
soils were tested using or not a priori knowledge on soil moisture. The inversion approach
was then validated using RADARSAT-2 images in polarimetric mode. The polarimetric
parameter a; (alpha angle that corresponds to the first eigenvector of coherency matrix) was
used to discriminate two soil moisture classes (very wet soils, and dry to wet soils) and the
anisotropy parameter A to separate two soil roughness’s (smooth with kHrms<1.0 and rough
with kHrms>1.0). The inversion errors obtained with the RADARSAT-2 images on the mv
estimates is about 6.5 vol.% with a priori information on mv compared with 9.8 vol.% without
a priori information on mv. The use of polarimetric parameters slightly improves the soil
moisture estimates in comparison to the case without a priori information on mv (8.3 vol.% as
compared to 9.8 vol.%). This is due to the weak dynamics of the polarimetric parameters
(alpha angle, entropy, anisotropy) with the soil parameters for the C-band. Results show also
that the estimation of soil surface roughness (Hrms) is possible with accuracy around 0.5 cm
(RMSE). The estimation is better for Hrms lower than 2 cm. For higher Hrms, the NNs
underestimate the surface roughness.

11.6.2 Case of soil with vegetation cover

The presence of vegetation makes the inversion of the radar signal much more complicated
because the vegetation not only attenuates the backscattered signal but also produces its own
contribution. Thus, in the presence of vegetation, the total backscattered radar signal is the
result of contributions from soil attenuated by the vegetation and the vegetation contribution.
The possibility of estimating soil moisture in the presence of vegetation from SAR images has
been widely studied using C-band radar data (De Roo et al., 2001; Gherboudj et al., 2011; He
et al., 2014; Notarnicola et al., 2006; Prevot et al., 1993; Sikdar and Cumming, 2004; Wang et
al., 2011; Yu and Zhao, 2011; Zribi et al., 2011). Conversely, very few studies have been
conducted using X-band radar data (El Hajj et al., 2014; Kseneman et al., 2012; Kweon et al.,
2012) or L-band (Paloscia et al., 2012; Wigneron et al., 1995).
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The most used models to estimate soil moisture in the presence of vegetation are the
Michigan Microwave Canopy Scattering model "MIMICS” (Ulaby et al., 1990) and the Water
Cloud Model "WCM” (Attema and Ulaby, 1978). MIMICS is based on the theoretical
principle of the first order radiative transfer model to simulate radar backscatter from soil and
vegetation parameters. In MIMICS vegetation is described in detail (stem diameter and leaf
slope, among others), which makes it possible to better quantify the contribution of vegetation
to the total backscattered radar signal and thus a better estimation of soil moisture. However,
MIMICS is complicated to use, and requires a large number of input parameters. For this
reason, most studies have used the WC model because it is relatively simple and requires only
few input variables (De Roo et al., 2001; Gherboud;j et al., 2011; Kweon et al., 2012; Prevot et
al., 1993; Sikdar and Cumming, 2004; Wang et al., 2011; Yang et al., 2012; Zribi et al.,
2011).

In the WCM, the total backscattered radar signal is modeled as the sum of soil attenuated by
vegetation and vegetation contribution. The contribution of vegetation (direct backscatter and
attenuation) is calculated using mainly a single biophysical parameter (leaf area index,
vegetation water content, NDVI, biomass, or vegetation height) representing the effect of
vegetation. The soil contribution is calculated as a function of soil moisture and roughness
using a radar backscattering model. Optical data are often required to reverse the radar signal
using the WCM. Indeed, the optical data are complementary to the radar data, and their
interest lies in their sensitivity to the physical vegetation parameters. In the WCM, the
biophysical parameters allow to evaluate the vegetation contribution to the radar signal, and to
then reverse the soil contribution in order to estimate soil moisture (Baghdadi et al., 2016b; El
Hajj et al., 2014; Fieuzal et al., 2011; He et al., 2014; Hosseini and Saradjian, 2011,
Notarnicola et al., 2006; Prakash et al., 2012).

The Water Cloud model (WCM) defines the backscattered radar signal in a linear scale (c%ot)
which is the sum of the contribution from the vegetation (c%eg), the soil (c%il) attenuated by
the vegetation (T2 o%.il), and multiple soil-vegetation scatterings that are often neglected:

Gotot: o° veg T T2 o0 soil (2.9

0%eg = A.Vi.cos 0 (1-T?) (2.10)
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T2 = exp (-2.B.Va.sec 0) (2.11)

Where:

e V1 and V2 are vegetation descriptors (NDVI: Normalized Differential
Vegetation Index, BIO: biomass, VWC: vegetation water content, HVE:
vegetation height, LAI: foliar index, FAPAR: fraction of solar radiation
absorbed, and FCOVER: canopy fraction)

e 0 is the incidence angle

e A and B are WCM parameters dependent on vegetation parameters, and radar
configurations

e mv is the volumetric moisture content of the soil.

The soil contribution o%il that depends on the soil moisture and surface roughness with SAR
instrumental parameters can be simulated using physical backscattering model (IEM) or
empirical models (Oh, Dubois, Baghdadi) (Baghdadi et al., 2016b; Dubois et al., 1995; Oh,
2004; Oh et al., 1992, 1994, 2002).

Several studies have used the WCM to estimate soil moisture in presence of vegetation. The
results showed a soil moisture precision between 2 and 8 vol.% (De Roo et al., 2001; El Hajj
et al., 2014; Gherboudj et al., 2011; He et al., 2014; Notarnicola et al., 2006; Prevot et al.,
1993; Sikdar and Cumming, 2004; Wang et al., 2011; Yang et al., 2012; Yu and Zhao, 2011,
Zribi et al., 2011). Prevot et al. (1993) combined radar data in C and X bands to estimate the
soil moisture of wheat plots (LAI of wheat between 0.1 and 8 m#m?). The accuracy on the
soil moisture estimation was 6.5 vol. %. Similar precision was obtained by Zribi et al. (2011)
using ASAR (C band) images acquired on wheat plots (LAl between 0.01 and 3.7 m?/m?).
Kweon et al. (2012) estimated soil moisture from soybean plots using X-band SAR data with
an accuracy of 3 vol. % (VWC "water content” and LAI "leaf index" at 1.8 kg/m? and 4.5
m?/m?, respectively). He et al. (2014) combined radar data (C-HH and C-VV) and optical data
to estimate soil moisture. The results showed an accuracy of about 3 vol.%. Gherboudj et al.
(2011) combined "WC" and "Oh" models to estimate soil moisture with vegetation (wheat,
peas, lentils, fallows, pasture and canola) from C-band radar data. Soil moisture was estimated
with an accuracy of 6 vol.% for vegetation heights between 11 and 97 cm. Finally, De Roo et
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al. (2001) used the MIMICS model in conjunction with the "Oh model™ to estimate soil
moisture in soybean plots (with VWC between 0.02 and 0.97 kg/m?) from the C and L
polarimetric data. Accuracy of soil moisture estimates was about 2 vol.%.

I1.7 Conclusion

Through the diversity of the radar backscattering models over bare soils, my first work is to
evaluate the most commonly backscatter models using a wide dataset of SAR data and in situ
measurements acquired over numerous agricultural sites in France, Italy, Germany, Belgium,
Luxembourg, Canada and Tunisia. Thus, this study could be of a great importance for
scientific community since it helps understanding backscatter models performance for a wide
range of soil surface conditions, acquired for several study areas through the world by
numerous SAR sensors. Never before have all these backscatter models been evaluated
together in the same literature with such a wide dataset. This step is very important to find the
model that produces good agreement between the radar data and the simulations in order to be

used in the inverse mode later in this thesis.
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I11. Chapter 3: Evaluation of radar backscattering models
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I11.1 Introduction

The aim of this chapter is to evaluate the most popular backscattering SAR models (Oh,
Dubois, IEM, IEM_B, and AIEM) by using a wide range of SAR data and in situ
measurements. With the arrival of Sentinel-1A and -1B satellites that provide free high
resolution SAR data with 6 days revisit time, several research teams work actually on
developing methods for mapping soil moisture using these Sentinel-1 data. Most of methods
for soil moisture mapping are based on backscatter models for soil moisture estimations. The
objective of this part is to evaluate the most commonly backscatter models using a wide
dataset of SAR data and in situ measurements acquired over numerous agricultural sites in
France, Italy, Germany, Belgium, Luxembourg, Canada and Tunisia. Thus, this study could
be of a great importance for scientific community since it help on understand backscatter
models performance for wide range of soil surface conditions, acquired for several study areas
through the world by numerous SAR sensors. Never before have been evaluated all these
backscatter models together in the same literature with such a wide dataset. In addition, this
study is the first that evaluates the backscatter models using L-, C- and X-bands together. A
description of the study areas and different datasets used in this study is provided in Section 2.
Section 3 the models are described. The results are shown in Section 4. Finally, Section 5

presents the conclusion.
111.2 Dataset
111.2.1 Study Areas

A wide range of datasets composed of AIRSAR, SIR-C, JERS-1, PALSAR-1, ESAR, ERS,
RADARSAT, ASAR and TerraSAR-X acquisitions over numerous agricultural sites in
France, Italy, Germany, Belgium, Luxembourg, Canada and Tunisia (Table 1l1.1), have been
used in this research work. In addition, in situ measurements of soil moisture and surface

roughness were carried out simultaneously to SAR acquisitions over bare soil surfaces.
111.2.2 Satellite Data

A large number of L-, C- and X-band images (approximately 1.25 GHz, 5.3 GHz and 9.6
GHz, respectively) were acquired between 1994 and 2014 with different incidence angles
(between 18° and 57°) and in HH, VV and HV polarizations (Table 111.1). The spatial
resolution of SAR images is between 1 m and 30 m (Table Ill.1). Images were first
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radiometrically calibrated to enable the extraction of the backscattering coefficients (c°).

Then, the mean backscattering coefficients were computed from calibrated SAR images by

linearly averaging the o” values of all pixels within the plot.
111.2.3 Field Data

Field measurements of soil moisture and surface roughness have been collected from bare
plots selected over the study areas. Each plot is a homogeneous surface (similar soil type,
moisture content and surface roughness) of around one hectare or more. In situ measurements
of soil moisture (mv, in vol. %) were carried out for a soil layer of 5 cm or 10 cm in each
reference plot by using both the gravimetric method or a calibrated TDR (time domain
reflectometry) probe. For each bare soil reference field the average soil moisture (mv) of all

samples was calculated. The soil moisture ranged between 2 vol. % and 47 vol. %.

Roughness measurements were carried out by using laser or needle profilometers (mainly 1 m
and 2 m long, and with 1 cm and 2 cm sampling intervals); while for some in situ
measurement campaigns, a meshboard technique was used. Several roughness profiles along
and across the direction of tillage were acquired in each reference field. The standard
deviation of surface heights (Hrms) and the correlation length (L) were calculated by using
the mean of all experimental correlation functions. In our dataset, Hrms ranged from 0.2 cm to
9.6 cm and the L from 1.2 cm to 38.5 cm. The reference plots in the datasets were chosen with

low density of stones.

A total of 2442 experimental data of soil moisture content and surface roughness were
available, together with the corresponding values of backscattering coefficient, of which 1262
at HH polarization, 790 at VVV polarization, and 390 at HV polarization (Table I11.1).
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Spatial

Site SAR Sensor ) Freq Year Number of Data
Resolution
Orgeval (Fr) 30m x 30
(Zribi et al., 1997) SIR-C m L 1994
Orgeval (Fr)
(Baghdadi et al., SIR-C, ERS, 30 m x 30 C 1994; 1995; 2008;
2008a, 2013; Zribi et ASAR m 2009; 2010
al., 1997)
Orgeval (Fr)
(Baghdadi et al., PALSAR-1 30 “I‘nx 0y 2009
2008a)
Orgeval (Fr)
(Baghdadi et al., TerraSAR-X Imx1m X 2008, 2009, 2010
2012b)
Pays de Cz?ux (Fr) 30 m x 30
(Baghdadi et al., ERS; RADARSAT m C 1998; 1999
2002a, 2004)
Villamblain (Fr)
ity ¢ wwmsan e
2005) ASAR 30 m x 30 measurements
) . TerraSAR-X m 66 in L-band
Villamblain (Fr) .
(Baghdadi et al., X 2008; 2009 766 {n C-band
2011, 2013) 430 in X-band
30 m x 30 VV:790
Thau (Fr) RADARSAT m C 2010: 2011 2010 measurements
(Baghdadi et al., 2007) TerraSAR-X 1mx1m X ! 159 in L-band
Touch (Fr) 411 %n C-band
(Baghdadietal, 2007,  ERS-2 ASAR -0 nr‘: ¢ 2004; 2006; 2007 2201;‘1]-)::3 nd
Holah et al., 2005) )
Mauzac (Fr) mea.surements
(Bag};glaiii)et al., TerraSAR-X Imx1m X 2009 31121;:1]&-P;:ndd
C .
Garons (FD) 64 in X-band
(Baghdadi et al., TerraSAR-X Imx1m X 2009
2011c¢)
Kairouan (Tu)
(Zribi et al., 2014b) C 2012
Kairouan (Tu)
. ASAR 30m x 30
(Baghdadi et al., TerraSAR-X m
2011c; Gorrab et al., X 2010; 2012; 2013;
2015b; Zribi et al., 2014
2014b)
( AuzZ::Z?ZI(F;)O - TerraSAR-X Imxlm X 2009
Versailles (Fr)
(Baghdadi et al., TerraSAR-X Imx1m X 2010
2011c¢)
Seysses. (Fr) TerraSAR-X Imx1m X 2010
(Baghdadi et al.,
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2011¢)

Chateauguay (Ca) 30 m x 30

(Baghdadi et al., 2004) RADARSAT m C 1999
(Bag:;Zfi}ilztt (a?.,a)zom) RADARSAT ? nrlnx Poc 1999
(Bagﬁ;’;l: Sr)z oos) FRS RADARSAT 30 Tnx 0 ¢ 1996; 1997
(Dso:; Zig;e ;33) RA?)?S{I;;AT ? n:nx Poc 2008; 2009
(Maxzteetr;iltl)%ﬂ SIR-C » n:nx . 1994
(LievAeli:tetf ;1L.,u2)o1 1; PALSAR-1 30 “I‘nx 0y 2008
Rahman et al., 2007)
(Liev?rgleet(;gf)Z o1 PALSAR-1 30 n:nx 00 2008; 2009
(Lie\i:rvl:lg ;3e2)011) PALSAR-1 » nrlnx T 2007
(lezrr?s“;‘:ﬂ((;;; " ESAR 2mx2m L 2006
Bovem vl 1995 L 1991
dd A
(Macelloni et al., 1999) JERS-1 ’
Montespertoli (It) L 1994

(Paloscia et al., 1999)

Table 111.1. Description of the dataset used in this study. “Fr”: France, “It”: Italy, “Ge”:
Germany, “Be”: Belgium, “Lu”: Luxembourg, “Ca”: Canada, “Tu”: Tunisia. The radiometric
accuracy of SAR data is about 1 dB.

111.2.4 Soil texture

Twenty one agricultural study sites were used. The texture compositions (Silt; Clay; Sand) are
described below (Table 111.2).

Site Texture Composition (Silt; Clay; Sand)
Orgeval (Fr) (78%; 17%; 5%)
Pays de Caux (Fr) (70%, 13%, 17%)
Villamblain (Fr) (60%,30%, 10% )
Thau (Er) (53%, 35%, 12%)
Touch (Fr) (55%, 21%, 24%)
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Mauzac (Fr)

(48%, 16%, 36%)
Garons (Fr) (54%, 40%, 6% )
Kairouan (Tu) (11%, 32%, 57% )
Yzerons (Fr) (13%, 20%, 67% )
Versailles (Fr) (58%, 24%, 18%)
Seysses (Fr) (50%, 16%, 34%)
Chateauguay (Ca) (43%, 37%, 20%)
Brochet (Ca) (43%, 37%, 20%)
Alpilles (Fr) (54%, 40%, 6%)
Sardaigne (It) (23%, 30%, 47%)

1
Matera (It) (59%; 14%; 27%)

Al L
zette (Lu) (50%; 30%; 20%)

Dijle (Be) (84%; 12%; 4%)

Zwalm (Be) (72%; 13%; 15%)

Demmin (Ge) (25%; 7%; 68%)

Montespertoli (It) (400/ - 20%: 40% )

Table I11.2. Description of the Texture Composition dataset (Silt; Clay; Sand) used in this
study. “Fr”: France, “It”: Italy, “Ge”: Germany, “Be”: Belgium, “Lu”: Luxembourg, “Ca”:
Canada, “Tu”: Tunisia.

I11.3 Description of the Backscattering Models
111.3.1 The Semi-Empirical Dubois Model
Dubois et al. (1995) proposed a semi-empirical model for simulating the backscattering

coefficients in HH and VV polarizations (O-EIH and o, ) over bare soils. The expression of

O'Em and oy, depends on the incident angle (0), the soil dielectric constant (e, which is a
function of the soil moisture content), the soil roughness defined by the standard deviation of
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surface height (Hrms), and the radar wavelength (A = 2n/k where k is the wave number). The
model optimized for bare soils according to the validity domain defined by kHrms < 2.5, mv <
35 vol. %, and 6 > 30° is expressed as:

%, =1072% [—00533 GJ 100945120 (i Hers sin )07
sin® o

cos*® 0 (1)
G|q|H =10 2.75[ - J 100.0289tan9 (k Hrms Sin 6)1.4 }\’0.7

where 0 is expressed in radians and A in cm, and oy, and &, are expressed in linear units.

111.3.2 The Semi-Empirical Oh Model

Oh (2004) and Oh et al. (1992b, 1994, 2002) developed between 1992 and 2004 several
versions of a semi empirical backscattering model. Basing on theoretical models,
scatterometer measurements and airborne SAR observations, the Oh model is built over a

wide variety of bare soil surfaces. The Oh model relates the co-polarized ratio p (= aﬂH / va)

and the cross-polarized ratio g (= G(I)-IV/G(\]/V) to incident angle (0), wave number (k), standard

deviation of surface height (Hrms), correlation length (L), and soil moisture (mv) or dielectric

constant ( €, ).

The initial version of the Oh model (Oh et al., 1992) is defined as:

0 Jar,
p _ GIJH _ 1_(9_%) ) e—kHrms (32)
cSVV
GO kH o
q=—§- =023, (1-erm) (3.3)
vv

where;
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N
v

0

(3.4)

Oh et al. (1994) proposed a new expression for q to incorporate the effect of the incidence

angle:

"%W =025, (0.1 +sin® e)(1— e‘[1'4‘1'“°]"m5) (35)

O

q:

Oh et al. (2002) again modified the expressions for p and g, and the following expression for

the cross-polarized backscatter coefficient was proposed:

o° 0 0.35my 0-6°
p _ % —1_ [%j . e—0.4(k Hrms)™"™ (3.6)
Cwv
S Hrms : " —0.9(k Hrms)°®
q=t—0.1 +sin1.30 | (1-e ) (3.7)
c L
\'AY%
oYy =0.11mv°’ cos*? 0 (1— @022 (k Hrme)™ ) (3.8)

Oh and Kay (1998) demonstrated that the measurement of the correlation length is not
accurate and that the ratio q is not sensitive to the roughness parameter (defined as Hrms/L).

Thus, (Oh, 2004) proposed a new equation for g that ignores the correlation length (L):

0
=5 20,095 (0.13+sin1.50)1* (L e 5™ (3.9)

Oyy

The Oh model (Oh, 2004) is optimized for bare soils in the following validity domain: 0.13 <
kHrms < 6.98, 4 <mv (vol. %) <29.1, and 10° < 6 < 70°.
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The estimation of soil moisture and surface roughness from Oh model requires two

backscattering coefficients at least, with one co-polarized coefficient (GHH or G yv) and one
cross-polarized coefficient (O-(F)IV or Gi),H). The availability of G(\J/V and o@H allows using the

ratio g and G(;,V in the inversion process of SAR data, while the ratio p/q, as well as G(;W, Is

used in the case where SAR data are available in the both HH and HV polarizations.
111.3.3 The Physical Integral Equation Model (IEM)

The Integral Equation IEM is a physical model (Fung, 1994), where the soil is characterized

by the dielectric constant (&, ), the standard deviation of surface height (Hrms), the form of

the correlation function, and the correlation length (L). The IEM also takes into account the
sensor parameters such as the incidence angle (0), the polarization (pq with p,q = H or V), and
the radar wave number (k = 2z/A where A is the wavelength). The IEM has a validity domain
that covers the range of roughness values that are commonly encountered for agricultural

surfaces:

kHrms <3
(3.10)

((k Hrms cos6)* /,/0.46k L) exp{—\/0.92k L(1—sin e)} <0.25

Over bare soils in agricultural areas, the backscattering coefficient of the surface contribution

is expressed at HH and VVV polarizations as:

k2 ak2HrmS? cos? (4k*Hrms?® cos® 6)" ) .
agng\fpp\ e ez W ™ (2ksin0,0)
k i Hrms? cos? 0 o (4K Hrms2 c0s”0)" ) :
Re(fpp Fo)e " "Z ~ W™ (2ksin®,0) (3.11)
k2 2 _2k?Hrms? cos? 0 (k HrmS COS e) (n)
+§‘Fpp‘ e 5 — W™ (2ksin6,0)

At cross polarization, the backscattering coefficient is as follows:
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k2
0
Oy, = —€

167

where:

—2k?Hrms? coszei S (szrmSZ COSZ e)mm

n=l m=1 n!m!
(3.12)
ﬂ[|Fhv(u,v)|2+Fhv(u,v) Fh’;(—u,—v)}w(”)(u—ksine,v)W(m)(u+ksine,v)du dv
—2R 2
fn =——; T = R (3.13)
cos9o cos O

h

44, COSO— /g1, —sin® O

Fresnel coefficient at horizontal polarization

14, €080+ &, —sin?0 (3.14)

&, €080~/ p, & —sin* 0

& €080 +4/1,&, —sin* 0

: Fresnel coefficient at vertical polarization (3.15)

. .
F = 2M[4Rh —(1——](1+ R )2] (3.16)

£,€0S* 0

sin’0 9 1 )
P =2 coso [[1_ UE, —sin? ej(l_ RV) +[1_5_J(1+ Rv) ] (3.17)

r

2
, —2+6R2+(1+R) +& (1-R)?
F(uv) = uv 8R N &, 318
M keosO| (JkZ —u? —v? g k? —u? —v? (5.18)
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R=—y__1 (3.19)

&, . dielectric constant, obtained on the basis of volumetric water content (mv). In our

study, Hallikainen empirical model is used (Hallikainen et al., 1985).

Hr - relative permittivity.

Re: real part of the complex number.

*

PP conjugate of the complex number fPP.

W® is the Fourier transform of the nth power of the surface correlation ,(x, y)

function:
w ™ (a,b) = 1 J‘J‘pn (X, y)e—i(ax+by)dxdy (3.20)
27

The distribution of 5 (x, y) is exponential for low surface roughness values and Gaussian

for high surface roughness values.
111.3.4 IEM Modified by Baghdadi (IEM_B)

Several studies reported important discrepancies between backscattering coefficients
simulated by IEM and those measured by SAR sensors (Baghdadi et al., 2002a; Boisvert et
al., 1997; Gorrab et al., 2015b; Panciera et al., 2014; Rakotoarivony et al., 1996; Remond,
1997; Zribi et al., 1997). Baghdadi et al. (2002b) showed that the discrepancy between the
observed and IEM simulated backscattering coefficients is mainly due to the correlation
length parameter which is difficult to measure with a good accuracy. To reduce such
incongruities between simulated and measured backscattering values, Baghdadi et al. (2006,
20114, 2011c, 2015) proposed a semi-empirical calibration of the IEM backscattering, which
consists of replacing the in situ measured correlation length by a fitting parameter (Lopt). Lopt

depends on surface roughness conditions and SAR configurations (incidence angle,
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polarization and radar wavelength). This calibration has been performed by using large
experimental datasets and SAR configurations (incidence angles from 23° to 57°, and HH,
HV, and VV polarizations), and it has been carried separately at X-band in (Baghdadi et al.,
2011c), C-band in (Baghdadi et al., 2006a, 2011b) and L-band in (Baghdadi et al., 2015). The
proposed calibration reduces the IEM’s input soil parameters from three to two (Hrms and mv

only, instead of Hrms, L and mv).

Lopt is computed at L-, C-, and X-bands using a Gaussian correlation function and it is

described as follows:

Lopt(Hrms, 0, HH) = 18.102e~1891" [ymg 07644020 !

_ (3.21)
Lopt(Hrms, 0 ,VV) = 18.075e~21715" Hrms 12594 0.8308 0

In X-band: {

Lopt(Hrms, 0 ,HH) = 0.162 + 3.006 (sin 1.23 6 )~14%* Hrms
In C-band: < Lopt(Hrms, 0,HV) = 0.9157 + 1.2289 (sin0.1543 0)7%3139 Hrms  (3.22)
Lopt(Hrms, 9,VV) = 1.281 + 0.134 (sin 0.19 0)~1>° Hrms

LOP (HT'mS, 0 ,HH) = 2.6590 0 —1.4493 4+ 3.0484 Hrms 9 —0.8044

In L-band:
{LOpt(Hrms, 0,VV) =5.8735 0 “1981% 4 13015 Hrms 0 ~1**%8

(3.23)

where 0 is in radians; Lopt and Hrms are in centimeters. Several studies showed that the use
of the fitting parameter Lopt allows more correct estimations of the radar backscattering
coefficient (Baghdadi et al., 2015; Dong et al., 2013; Gorrab et al., 2015a).

111.3.5 The Advanced Integral Equation Model

The Advanced Integral Equation Model (AIEM) (Chen et al., 2003) is the updated version of
the Integral Equation Model (IEM) (Fung, 1994). In a comparison with the IEM, two
improvements have been integrated into the AIEM: (1) the complete expressions for the
Kirchhoff field coefficient and the complementary field coefficient based on the removal of
the simplification assumption of the Green’s function have been included in the AIEM (Chen
et al., 2003) and (2) a continuous Fresnel reflection coefficient is obtained using a transition
model (Wu et al., 2001). This update allows a more precise calculation of the simple

scattering for a surface with a wide range of dielectric constant ( ), large standard deviation
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of heights Hrms, and various remote sensing configurations. The AIEM simulates the radar

backscattering coefficients basing on the same parameters as the IEM.
I11.4 Results and Discussion

This section shows the evaluation results of the five radar backscattering models Dubois, Oh,
IEM, IEM_B and AIEM using large datasets, characterized by various radar wavelength (L, C
and X), wide range of incidence angles and large geographical distribution in regions with
different climate conditions (humid, semi-arid and arid sites). The size of reference plots is at
least of 2 ha. For each plot, SAR data was simulated through backscatter models using in situ
measurements (mv, Hrms and L) averaged within that plot. Then, the simulated SAR signal
were compared with the backscattering coefficients computed from calibrated SAR images by

linearly averaging the <° values of all pixels within the plot
111.4.1 Evaluation of the Dubois Model

The evaluation of Dubois model was carried out for different scenarios using all data, per

radar wavelength, and by range of soil moisture, kHrms, and incidence angle.

Using all data, the Dubois model slightly over-estimates the radar signal by about 1.0 dB in
HH polarization and slightly under-estimates the radar signal by about 0.7 dB in VV
polarization (Table I11.3, Figures I11.1 and 111.2). RMSE is about 4.0 dB and 2.9 dB at HH and
VV polarization, respectively (Table I11.3). The analysis of the error according to each radar
frequency band separately (L, C and X) shows an over-estimation in HH polarization, which
is almost the same at L-, C- and X-bands (between 0.9 dB and 1.1 dB). In VV polarization,
the Dubois model under-estimates the radar signal by about 1.8 dB and 0.4 dB for X and C
bands, respectively. For L band, the Dubois model fits correctly the radar signal in VV
because the difference between real data and simulations is about 0.2 dB. The RMSE in HH is
the same as at X- and C-bands, and is about 4.1 dB and decreases to 3.0 dB at L-band. In VV
polarization, the RMSE increases with the radar frequency (2.5 dB at L-band, 2.8 dB at C-
band and 3.1 dB at X-band).
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Model Statistics Dé;\ltla L-Band C-Band X-Band k:';gs kH;gS > r?/\éf 0/200 20 o}gol. 0 <30° goi
) ) 1. +0.
Dubois  Bias (dB) 0 -1.0 -11 -09 +04 -2.9 -26 +0.3 4.2 3
for HH
ol R 40 30 41 41 36 46 46 34 55 32

Dubois  Biass@®) O —02 +04 +18 +12 02 405 +1.0 -06 T+
for VV 7 S

ol RE 29 25 28 31 30 25 28 30 29 29

Table I11.3. Comparison between the Dubois model output and real data using the entire
dataset, and by separating two intervals of kHrms, soil moisture (mv) and incidence angle (6).

Bias = real data — simulations.
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Figure 111.1. Comparison between backscattering coefficient values obtained from SAR
images and those estimated from the Dubois model at HH polarization. (a) Dubois model
simulations vs. SAR data; (b) difference between SAR signal and the Dubois model vs. soil
roughness (kHrms); (c) difference between SAR signal and the Dubois model vs. soil
moisture (mv); (d) difference between SAR signal and Dubois model vs. incidence angle.
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Figure 111.2. Comparison between backscattering coefficient values obtained from SAR
images and those estimated using the Dubois model at VV polarization. (a) Dubois model
simulations vs. SAR data; (b) difference between SAR signal and the Dubois model vs. soil
roughness (kHrms); (c) difference between SAR signal and the Dubois model vs. soil
moisture (mv); (d) difference between SAR signal and Dubois model vs. incidence angle.

The analysis of the error of the Dubois model according to the validity domain was studied by
range of surface roughness (kHrms), soil moisture (mv) and incidence angle (Table 111.3). The
Dubois model underestimates the radar signal for kHrms < 2.5 (validity domain of the Dubois
model) by about 0.4 dB and 1.2 dB in HH and V'V polarizations, respectively. In the case of
kHrms < 2.5, the RMSE is about 3.6 and 3.0 dB for HH and V'V polarizations, respectively. In
addition, the Dubois model overestimates the radar signal for kHrms > 2.5 by about 2.9 dB in
HH polarization with RMSE about 4.6 dB. In VV polarization, the Dubois model fits
correctly the radar signal in the case of kHrms > 2.5 with a difference between real and
simulated data of about 0.2 dB and a RMSE of 2.5 dB (Table I11.3).
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Moreover, the evaluation of the Dubois model was carried out by range of soil moisture (mv).
Results show an overestimation in HH pol. by about 2.6 dB and a slightly underestimation in
V'V by about 0.5 dB with mv-values lower than 20 vol.% (RMSE = 4.6 and 2.8 dB at HH and
VV, respectively) (Table 111.3). Besides, the Dubois model correctly simulates the
backscattering coefficient in HH pol. with a difference between real data and simulations
about 0.3 dB and underestimates the radar signal in VV by about 1.0 dB with mv-values
greater than 20 vol. %. In the case of mv-values greater than 20 vol. %, the RMSE is about 3.4
dB and 3.0 dB for HH and VV polarization respectively. Finally, the performance of Dubois
model was studied according to ranges of incidence angle (Table 111.3). For 6 < 30° (outside
the validity domain of the Dubois model), the Dubois model overestimates the radar signal by
—4.2 dB in HH polarization (RMSE = 5.5 dB) and slightly underestimates the radar signal in
VV polarization (real data — simulations = —0.6 dB) with a RMSE of 2.9 dB. At 6 > 30°, the
Dubois model correctly simulates the backscattering coefficient in HH pol. with a difference
between real data and model of 0.3 dB at HH polarization and underestimates the
backscattering at VV pol. by about 1.5 dB (RMSE = 3.2 dB and 2.9 dB for HH and VV

polarizations, respectively).
111.4.2 Evaluation of the Oh Model

The Oh model versions developed in 1992, 1994, 2002 and 2004 were applied to our datasets.
The evaluation of the different Oh model versions was carried out firstly using all data,
successively for each radar wavelength (L, C and X bands), and finally by range of soil

moisture, kHrms and incidence angle (Table 111.4, Figures 111.3-111.11).

Using the entire dataset, results showed that the different versions of Oh model correctly
simulate the backscattering at both HH and VV polarizations with difference between real
data and simulations varying between —0.9 and +0.4 dB at HH pol. and between (—1.3 dB and
+0.4 dB) in VV pol. The RMSE values are approximately the same for all models and in both
HH and VV polarizations, i.e., between 2.4 dB and 2.8 dB. The Oh 1992 model simulates
slightly better the backscattering than the other versions (Table I11.4). For HV polarization,
the Oh 2002 model simulates correctly the backscattering with a difference between real and
simulated data of about +0.7 dB, with RMSE equal to 2.9 dB.
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mv < mv >
All L- C- X- kHrms  kHrms 29 1 vol. 29 1 vol.

Data Band Band Band <20 >20 % %

Bias(@) +04 +25 +0.1 00 +13 -05 03 +1.9

(Ohet RMSE@B) 2.6 3.7 2.4 2.5 2.9 2.3 2.3 3.1
al., 1992) Biass(@) +0.1 +21 +04 -12 +10 -07 04 +1.5
RMSE@B) 24 34 2.3 2.1 2.7 2.0 2.3 2.7

Biss@) -09 +13 -12 -12 -005 -17 -16 +0.5

Model Pol. Statistics

HH

onet " RMSE@B) 28 28 27 28 26 29 29 25
4199 T Bas@e) 13 +0.7 13 21 05 21 -17 04
RMSE(@B) 2.6 2.6 26 27 24 29 28 22

o Bm@e) 03 +21 09 10 +0.3 09 0.7 +04
RMSE(@B) 2.7 32 27 28 27 26 27 25

Onet . Bes@®) +0.7 +L5 +10 0.9 +18 07 +05  +0.8
al., 2002) RMSE@B) 2.9 3.1 2.7 3.8 3.2 25 3.0 2.6
o, Em@® 06 +18 -12 +04 02 -10 07 05

RMSE (dB) 2.5 2.9 2.7 2.0 2.5 2.6 2.6 2.5
py  Bias(d®) -05 +21 -10 -06 06 +15 -09 +0.4
(Oh, RMSE (dB) 2.6 3.3 2.7 2.3 2.6 2.6 2.7 2.6
2004) vy DBias(B) -1.1 +14 -15 -14 -02 -20 -13 -0.8
RMSE (dB) 2.6 2.8 2.8 2.1 24 2.8 2.6 2.6
Table 111.4. Comparison between real data and Oh models for all data and different ranges of
kHrms and soil moisture (mv). Bias = real data — simulations.

In L-band, the different versions of the Oh model underestimate the backscattering at both HH
and VV polarizations. This underestimation varies between 1.3 dB and 2.5 dB in HH
polarization and between 0.7 dB and 2.1 dB in VV polarization (Table 111.4). The RMSE is
slightly higher in HH than in VV polarization (between 2.8 dB and 3.7 dB in HH and between
2.6 dB and 3.4 dB in VVV). The Oh 1994 version better simulates the backscattering than other
versions of Oh model, with an underestimation of the backscattering between 1.3 dB and 0.7
dB and RMSE of 2.8 and 2.6 dB for HH and VV polarizations, respectively. At HV
polarization, the Oh model underestimates the backscattering by about 1.5 dB with RMSE
equal to 3.1 dB.

In C-band, the Oh 1992 model correctly simulates the backscattering in both HH and VV
polarizations with differences between real and simulated data of 0.1 dB and 0.4 dB at HH
and VV polarizations, respectively (Table 111.4). Besides, the RMSE is of 2.4 dB at HH and
2.3 dB at VV pol. Moreover, the other Oh versions overestimate the backscattering in both
HH and VV polarizations (between 0.9 dB and 1.5 dB) with similar RMSE between 2.6 dB
and 2.8 dB. At HV polarization, the Oh 2002 model slightly underestimates the backscattering
by about 1.0 dB with a RMSE of 2.7 dB.
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The analysis of results obtained in X-band shows that Oh model versions simulate the radar
signal with difference between real data and simulations between 0.0 and —1.2 dB in HH and
between +0.4 and —2.1 dB in VV (Table 111.4, Figures 111.3-111.11). The RMSE is between 2.3
and 2.8 dB in HH and between 2.0 and 2.7 dB in VV polarization. For HV polarization, the
Oh model over-estimates the backscattering by about 0.9 dB with RMSE of 3.8 dB.

The analysis of the error was studied by selecting two ranges of surface roughness (kHrms <
2.0 and kHrms > 2.0) (Table 111.4). This range is different from the general validity domain of
the Oh model (0.13 < kHrms < 6.98) because it covers the entire dataset except only a few
points. For kHrms < 2.0, the 1994, 2002 and 2004 Oh models simulate correctly the
backscattering at both HH and VV polarizations with differences between real data and
simulations between —0.5 and +0.6 dB and RMSE between 2.4 dB and 2.7 dB. The Oh 1992
model underestimates the backscattering by 1.3 dB and 1.0 dB at HH and V'V polarizations,
respectively (RMSE is 2.9 for HH pol. and 2.7 dB for VV pol.). For kHrms > 2.0, the 1992
and 2002 Oh versions simulate correctly backscattering at both HH and V'V polarizations with
difference between real and simulated data between —0.5 dB and —1.0 dB with RMSE
between 2.3 and 2.6 dB. The 1994 Oh model over-estimates the backscattering at both HH
and VV polarizations by about 1.7 dB and 2.1 dB, respectively (RMSE = 2.9 dB). The last
version of the Oh model (Oh, 2004) underestimates the backscattering in HH polarization by
about 1.5 dB (RMSE = 2.6 dB) and over-estimates it in VV polarization by about 2.0 dB
(RMSE= 2.8 dB). At HV polarization, for kHrms < 2, the Oh 2002 model underestimates the
backscattering in HV by 1.8 dB (RMSE = 2.5 dB). In addition, Oh model correctly fits the
backscattering for kHrms > 2.0, with a difference between the real and simulated data of about
—0.7 dB and RMSE of 2.5 dB.

Finally, the performance of the Oh model was studied according to its validity domain by
selecting two intervals of soil moisture (mv < 29.1 and mv > 29.1 vol. %: validity domain of
Oh model). For mv < 29.1 vol. %, the 1992 and 2002 Oh versions correctly simulate the
backscattering coefficient at both HH and VV polarizations with a difference between real
and simulated data varying between —0.3 dB and —0.7 dB. In addition, the 1994 and 2004 Oh
models overestimate the backscattering at both HH and V'V polarizations (Table 111.4) with
RMSE between 2.6 dB and 2.9 dB. In conclusion, for mv < 29.1 vol. %, the 1992 Oh model
provides the best simulations. For mv > 29.1 vol. %, the 1994, 2002 and 2004 Oh models
correctly simulate the backscattering with a difference between real and simulated data
between —0.8 dB and +0.5 dB, while the 1992 Oh model underestimates the backscattering by
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about 1.9 dB and 1.5 dB at HH and VV polarizations, respectively (RMSE = 3.1 dB for HH
and 2.7 dB for VV). The RMSE values are approximately the same in the Oh 1994, 2002 and
2004 versions, and range between 2.2 dB and 2.6 dB. At HV polarization, the Oh model
correctly simulates the backscattering for both range of mv-values, with RMSE of 3.0 dB for
mv < 29.1 vol. % and RMSE of 2.6 dB for mv > 29.1 vol. %.

The validity domain of Oh model according to the incidence angle (10° < 6 < 70°) covers the
entire dataset. Moreover, our results showed that the performance of the Oh model is not

dependent on the incidence angle.

In conclusion, the Oh models simulate correctly the backscattering. Results showed that Oh
1992 version is slightly better than other model versions. The performance of Oh model
seems to be better in C- and X-bands than L-band. Moreover, most versions of the Oh model

correctly simulate the backscattering in most cases although outside its mv validity domain.
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Figure 111.3. Comparison between backscattering coefficients derived from SAR images and
those estimated from the Oh 1992 model at HH polarization, (a) Oh model simulations vs.
SAR data; (b) difference between SAR signal and Oh model results vs. soil roughness
(kHrms); (c) difference between SAR signal and Oh model results vs. soil moisture (mv); (d)
difference between SAR signal and Oh model results vs. incidence angle.

50



o Ll-band s C-band = X-band 15 -

ol-band < C-band x X-band

- 10_
5 - . =5
=
-10 - =
— = 0
5—'15_ @ ° c.)5
£ o -
-20 -
S 5

N
(]
|
1
=
o
1

'30 T T T T T T 1

-15 T T T T 1
-30-25-20-15-10 -5 0 S5 0 2 4 6 3 10
SAR (dB) k Hrms
(a) (b)
15 - 15 -
olL-band =2 C-band = X-band ol-band aC-band x X-band

=

o
1

[

l=]
|

- 5 5
=)
Z
e 0 0
(=]
z >
<
7]

_
o
1
L]
[}
o
I

_
"
1
[y
"

0 5 10 15 20 25 30 35 40 45 50 15 20 25 30 35 40 45 50 55 60

Soil moisture (vol. %) Incidence angle (°)
() (d)

Figure 111.4. Comparison between backscattering coefficients derived from SAR images and
those estimated from the Oh 1992 model at VVV polarization, (a) Oh simulations vs. SAR data;
(b) difference between SAR signal and the Oh model vs. soil roughness (kHrms); (c)
difference between SAR signal and Oh model results vs. soil moisture (mv); (d) difference
between SAR signal and Oh model results vs. incidence angle.
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111.4.3 Evaluation of the IEM

The IEM was tested on our dataset using both a Gaussian correlation function (GCF) and an
exponential correlation function (ECF). The evaluation of the IEM was carried out firstly
using the entire dataset, later on for each radar wavelength (L-, C- and X-bands) and finally

according to the validity domain of the IEM (Equation 3.10).

Using all data, the IEM simulates the backscattering in HH polarization with an RMSE of
10.5 dB and 5.6 dB for GCF and ECF, respectively (Table 111.5). At VV polarization, the
RMSE is 9.2 dB for GCF and 6.5 dB for ECF. At HV polarization, the RMSE is higher than
30.0 dB for both GCF and ECF. Some points show a large discrepancy between the real data
and the IEM simulations performed using both ECF and GCF (Figures 111.12—111.17). In case
of the ECF (Figures 111.15-111.17), these points are mainly outside the IEM validity domain
(Equation 3.10). In case of GCF (Figures 111.12—111.14), the huge error is due to the high
sensitivity of the IEM to roughness parameters (Hrms and L). Using the GCF, the IEM
underestimates the backscattering coefficients for data with low Hrms values (kHrms < 3),
high L values (L > 4 cm) and with high incidence angle (6 > 35°). Using the ECF, the
sensitivity of backscattering to the roughness parameters is much lower (Figures 111.15—
[11.17). (Altese et al., 1996), Zribi et al. (1997, 2005a) and (Callens et al., 2006) showed that

in agricultural areas, the ECF usually provides better agreement to real data than the GCF.

The results obtained in L-band show that the IEM simulates the backscattering in HH pol.
using both GCF and ECF with differences between real data and model simulations ranges
between —0.9 dB and +0.6 dB, with an RMSE of 3.6 dB for GCF and 2.9 dB for ECF (Table
[11.5). At VV polarization, the IEM overestimates the backscattering by about 2.5 dB and 1.3
dB for GCF and ECF, respectively (RMSE of 5.0 dB for GCF and 3.5 dB for ECF). At HV
polarization, the IEM simulates the backscattering using GCF with RMSE of 14.5 dB using
GCF, and lower RMSE (6.8 dB) using ECF.

According to the results observed in C-band, the IEM simulates the backscattering using GCF
with RMSE of 11.2 dB and 8.6 dB for HH and VV polarizations, respectively (Table 111.5).
The RMSE is lower with ECF than GCF about 4.1 dB for HH and 4.9 dB for VV
polarizations. At HV polarization, the RMSE is higher than 25.0 dB using both GCF and
ECF.
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The results obtained in X-band show that the IEM simulates the backscattering with higher
RMSE than L- and C-bands, the RMSE in HH pol. being about 10.6 dB for GCF and 8.3 dB
for ECF. At VV polarization, the RMSE is 11.3 dB for GCF and 9.4 dB for ECF. At HV
polarization, the IEM simulates the backscattering with high RMSE which is larger than 54.0
dB using both GCF and ECF.

Model Pol. Statistics All Data Ble;r; d C-Band  X-Band Val:gistiSeDtoh;ain Va(l)i(tjjittsyi/dlgc}m:\in
HH Bias (dB) +0.8 -09 +0.7 +1.5 +2.6 -1.8
RMSE (dB) 10.5 3.6 11.2 10.6 12.4 6.7
. Bias (dB) +17.2 +52 +11.8 +46.3 +18.0 +14.1
EMUsngOCF V' omseB) 384 145 267 740 28.5 50.1
W Bias (dB) +04 25 +0.7 +3.5 +1.2 -0.9
RMSE (dB) 9.2 5.0 8.6 11.3 115 3.1
HH Bias (dB) +0.8 +0.6 -1.0 +4.2 -1.2 +3.8
RMSE (dB) 5.6 2.9 4.1 8.3 3.2 7.8
) Bias (dB) -158 +1.2 -19.9 0.0 -15.8 -17.1
IEMUSngECE V' pmsE@e) 314 6.8 251  54.4 20.1 443
W Bias (dB) +2.2 -1.3 +05 +6.7 -0.9 +7.1
RMSE (dB) 6.5 3.5 49 9.4 3.7 9.4
i Bias (dB) -0.3 -0.1 -0.6 +0.3
RMSE (dB) 2.0 2.3 2.1 1.8
IEM Bwith . Bias(dB) -1.3
Lopt using GCF RMSE (dB) 3.1
W Bias (dB) +0.1 +0.2 0 +0.3
RMSE (dB) 1.9 2.3 1.9 1.8
i Bias (dB) +2.3 -3.2 +29 +3.1
AIEM using RMSE (dB) 12.2 5.4 134 11.7
GCF W Bias (dB) 0.0 -4.1 +0.5 +0.5
RMSE (dB) 10.8 5.9 114 11.0
HH Bias (dB) -2.3 -3.0 -36 +0.2
AIEM using RMSE (dB) 4.4 4.4 4.6 4.2
ECF v Bias (dB) -1.8 -24 =23 -0.7

RMSE (dB) 3.8 4.4 3.8 3.7

Table 111.5. Comparison between real data and IEM versions (original IEM model, IEM_B
and AIEM) using both GCF and ECF. (1) all data; (2) for different SAR wavelength; (3)
according to the validity domain of IEM. Bias = real data — model simulations.

The analysis of the error was also studied according to the validity domain of the IEM
(Equation (3.10)). Inside the validity domain, the RMSE is larger than 11.5 dB for both HH
and VV polarizations using GCF. Better results were obtained using ECF, where the IEM
correctly simulates the backscattering at both HH and VV polarizations with differences
between real and simulated data between —1.2 dB and —0.9 dB with RMSE of 3.2 dB at HH
and 3.7 dB at VVV polarizations, using data concerning the IEM validity domain. Outside the
IEM validity domain, the IEM simulates the backscattering with RMSE of 6.7 dB for HH and
3.1 dB for VV using GCF; whereas RMSE is 7.8 dB for HH and 9.4 dB for VV polarization
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using ECF. At HV polarizations, model simulations show large differences from real data for
both GCF and ECF for points inside or outside the validity domain of the IEM (in this case,
RMSE is larger than 20 dB). Errors observed on IEM simulations were also studied as a
function of the difference between Lopt and the measured correlation length (L). Results show
that the IEM using GCF gives poor simulations mainly when the measured correlation length
was over-estimated (L > Lopt). In this case, the IEM strongly under-estimates the SAR
backscatter. In addition, the performance of the IEM was also analyzed using ECF according
to the difference between Lopt and L. Results show the same performance of the IEM

whatever the difference between Lopt and L.
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Figure 111.12. Comparison between backscattering coefficients derived from SAR images
and those estimated from IEM at HH polarization using GCF. (a) IEM simulations vs. SAR
data; (b) difference between SAR signal and IEM vs. soil roughness (kHrms); (c) difference
between SAR signal and IEM vs. soil moisture (mv); (d) difference between SAR signal and
IEM vs. incidence angle.
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Figure 111.13. Comparison between backscattering coefficients derived from SAR images
and those estimated from IEM at VVV polarization using GCF. (a) IEM simulations vs. SAR
data; (b) difference between SAR signal and IEM vs. soil roughness (kHrms); (c) difference
between SAR signal and IEM vs. soil moisture (mv); (d) difference between SAR signal and
IEM vs. incidence angle.
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Figure 111.14. Comparison between backscattering coefficients derived from SAR images
and those estimated from IEM at HV polarization using GCF. (a) IEM simulations vs. SAR
data; (b) difference between SAR signal and IEM vs. soil roughness (kHrms); (c) difference
between SAR signal and IEM vs. soil moisture (mv); (d) difference between SAR signal and
IEM vs. incidence angle.
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Figure 111.15. Comparison between backscattering coefficients derived from SAR images
and those estimated from IEM at HH polarization using ECF. (a) IEM simulations vs. SAR
data; (b) difference between SAR signal and IEM vs. soil roughness (kHrms); (c) difference
between SAR signal and IEM vs. soil moisture (mv); (d) difference between SAR signal and
IEM vs. incidence angle.
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Figure 111.16. Comparison between backscattering coefficients derived from SAR images
and those estimated from IEM at VVV polarization using ECF. (a) IEM simulations vs. SAR
data; (b) difference between SAR signal and IEM vs. soil roughness (kHrms); (c) difference
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Figure 111.17. Comparison between backscattering coefficients derived from SAR images
and those estimated from IEM at HV polarization using ECF. (a) IEM simulations vs. SAR
data; (b) difference between SAR signal and IEM vs. soil roughness (kHrms); (c) difference
between SAR signal and IEM vs. soil moisture (mv); (d) difference between SAR signal and
IEM vs. incidence angle.
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As a conclusion, we could say that the IEM better simulates the backscattering in L-band than
in C- and X-bands. Moreover, the results show a better fitting with real data using ECF
instead than GCF, which agrees with the validity domain of the IEM.

111.4.4 Evaluation of IEM Modified by Baghdadi (IEM_B)

The IEM_B was also tested on our dataset. This model version was run using GCF (Figures
[11.18-111.20). In comparison to the original IEM, results show that the RMSE was
significantly lower. Using the entire dataset, the IEM_B correctly simulates the backscattering
at both HH and VV polarizations showing low differences between real data and model
simulations (—0.3 dB for HH and +0.1 dB for VV) with approximately similar RMSE of about
2.0 dB (Table I11.5). Moreover, the evaluation of the IEM_B was tested separately for each
SAR band. Results show that the IEM_B correctly simulates the backscattering in comparison
to the original model for all bands and in both HH and VV polarizations with a difference
between real data and model simulations lower than 1.0 dB and with approximately similar
RMSE between 1.8 and 2.3 dB (Table 111.5). At HV polarization, the IEM_B slightly over-
estimates the backscattering by about 1.3 dB with RMSE of 3.1 dB, (the IEM_B was run only
at C-band). Moreover, results show that the IEM_B simulations in both HH and V'V pol., are
slightly better in X- and C-bands than in L-band. The analysis of the difference between IEM_B
simulations and SAR data versus the difference between Lopt and the measured correlation
length (L) shows that IEM_B simulates well SAR data whatever the value of the difference

between Lopt and L.
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Figure 111.18. Comparison between backscattering coefficients derived from SAR images
and those estimated from IEM_B at HH polarization using GCF. (a) IEM_B simulations vs.
SAR data; (b) difference between SAR signal and IEM_B vs. soil roughness (kHrms); (c)
difference between SAR signal and IEM_B vs. soil moisture (mv); (d) difference between SAR
signal and IEM_B vs. incidence angle.
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Figure 111.19. Comparison between backscattering coefficients derived from SAR images
and those estimated from IEM_B at VVV polarization using GCF. (a) IEM_B simulations vs. SAR
data; (b) difference between SAR signal and IEM_B vs. soil roughness (kHrms); (c) difference
between SAR signal and IEM_B vs. soil moisture (mv); (d) difference between SAR signal and
IEM_B vs. incidence angle.
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Figure 111.20. Comparison between backscattering coefficients derived from SAR images
and those estimated from IEM_B in C-band at HV polarization using GCF. (a) IEM_B
simulations vs. SAR data; (b) difference between SAR signal and IEM_B vs. soil roughness
(kHrms); (c) difference between SAR signal and IEM_B vs. soil moisture (mv); (d) difference
between SAR signal and IEM_B vs. incidence angle.

111.4.5 Evaluation of the Advanced Integral Equation Model (AIEM)

The AIEM was tested on our dataset at HH and V'V polarizations using both GCF and ECF.
For all data, the AIEM simulates the backscattering at HH and VV polarizations using GCF
with RMSE larger than 10 dB (Table 111.5, Figures 111.21 and 111.22). Moreover, results show
better agreements of the AIEM with real data using ECF (Figures 111.23 and 111.24). Indeed,
the AIEM tends to overestimates the backscattering by about 2.3 dB at HH and 1.8 dB at VV
(RMSE is 4.4 dB for HH and 3.8 dB for VVV). Using the ECF, Figures 111.23 and 111.24 show
high overestimations of the backscattering for low values of surface roughness (kHrms < 4)
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and for incidence angles higher than 35°. Moreover, Figures 111.23 and 111.24 show high
underestimation of the radar signal (using ECF) in both HH and V'V polarizations for points
with high surface roughness (kHrms > 6), low mv-values (mv < 5 vol. %, and with low
incidence angles (0 < 20°). Figures I11.21 and 111.22 show that some points show high
discrepancies between the real data and the AIEM simulations using GCF. Due to the high
sensitivity to surface roughness of the AIEM using GCF, these points correspond mainly to
surface with kHrms < 3, L >4 cm and 6 > 35°.

The performance of the AIEM was also evaluated for each SAR wavelength. Results show
that in L-band the AIEM simulates the backscattering with RMSE of about 5.0 dB at both HH
and VV polarizations using the GCF. In C and X-bands, the AIEM using GCF simulates the
backscattering with RMSE higher than in L-band (RMSE > 11 dB). Moreover, AIEM better
simulates better the backscattering in using GCF than ECF for all wavelength (RMSE about 4
dB).

In conclusions, the AIEM is able to better simulate better the backscattering than the original
IEM only using the ECF with better results in X-band than in C- and L-bands.
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Figure 111.21. Comparison between backscattering coefficients derived from SAR images
and those estimated from AIEM at HH polarization using GCF. (a) AIEM simulations vs.
SAR data; (b) difference between SAR signal and AIEM vs. soil roughness (kHrms); (c)
difference between SAR signal and AIEM vs. soil moisture (mv); (d) difference between SAR

signal and AIEM vs. incidence angle.
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Figure 111.22. Comparison between backscattering coefficients derived from SAR images
and those estimated from AIEM at VV polarization using GCF. (a) AIEM simulations vs.
SAR data; (b) difference between SAR signal and AIEM vs. soil roughness (kHrms); (c)
difference between SAR signal and AIEM vs. soil moisture (mv); (d) difference between SAR
signal and AIEM vs. incidence angle.
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Figure 111.23. Comparison between backscattering coefficients derived from SAR images
and those estimated from AIEM at HH polarization using ECF. (a) AIEM simulations vs.
SAR data; (b) difference between SAR signal and AIEM vs. soil roughness (kHrms); (c)
difference between SAR signal and AIEM vs. soil moisture (mv); (d) difference between SAR
signal and AIEM vs. incidence angle.
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Figure 111.24. Comparison between radar backscattering coefficients calculated from SAR
images and those estimated from AIEM for VV polarization using ECF. (a) AIEM
simulations vs. SAR data; (b) difference between SAR signal and AIEM vs. soil roughness
(kHrms); (c) difference between SAR signal and AIEM vs. soil moisture (mv); (d) difference
between SAR signal and AIEM vs. incidence angle.
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comparison (RMSE versus Bias). (a) for HH polarization; (b) for VV Polarization.
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I11.5 Conclusions

Physical (IEM, IEM_B and AIEM) and semi-empirical (Oh and Dubois) backscattering
models were tested using a wide dataset composed by large intervals of surface conditions
(mv between 2 vol. % and 47 vol. %, Hrms between 0.2 cm and 9.6 cm and kHrms from 0.2
and 13.4), the dataset was acquired over bare soils in various agricultural study sites (France,
Italy, Germany, Belgium, Luxembourg, Canada and Tunisia) characterized by large variety of
climatological conditions and using SAR sensors in L-, C- and X-bands with incidence angle
between 18° and 57°.

Results (Figure 111.25) show that the IEM modified by Baghdadi (IEM_B used the empirical
correlation length instead of measured correlation length) provides the most accurate SAR
simulations (bias lower than 1.0 dB and RMSE lower than 2.0 dB) with slightly better
performance in X-band (RMSE = 1.8 dB) than in L- and C-bands (RMSE between 1.9 and 2.3
dB). At HV polarization, the IEM_B was only run at C-band. Results show that the RMSE
strongly decreases from values higher than 25.1 dB, using the original IEM, to 3.1 dB, using
IEM_B. In contrast, high RMSE were found using both IEM and AIEM using Gaussian
correlation function (RMSE higher than 9.2 dB) for both HH and VV polarizations because of
the high sensitivity of the Gaussian correlation function to roughness parameters, mainly for
kHrms < 3 and L > 4 cm. Moreover, results show better simulations of measured
backscattering coefficients for both IEM and AIEM using exponential correlation function
(RMSE > 5.6 dB for IEM and RMSE > 3.8 dB for AIEM) at HH and VV polarizations. At
HV polarization, IEM results show very high errors (RMSE larger than 30.0 dB using both
Gaussian correlation function and exponential correlation function). The AIEM better
simulates the backscattering than the original 1EM only using the exponential correlation
function with slightly better results in X-band than in C- and L-bands. In contrast, the IEM
simulates better the backscattering in L- band than C- and X-bands (Table I11.5).

Using the empirical models, all the Oh model versions show good agreements (RMSE < 3.0
dB) with measured backscattering with slightly better performance of the Oh 1992 version
(bias less than 1.0 dB and RMSE less than 2.6 dB) at both HH and V'V polarizations. The Oh
model provides better results than Dubois model which simulates the backscattering in HH
with RMSE of 4.0 dB, and slightly better simulations for VV with RMSE of 2.9 dB. At HV
polarization, the Oh 2002 version correctly simulates the backscattering with difference
between real and simulated data of about +0.7 dB and RMSE of 2.9 dB. The performance of
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the Oh 1992 version in HH and VV polarizations is better in C- and X-bands (bias between
—1.2 and +0.4 dB with RMSE < 2.5 dB) than in L-band (bias > +2.0 with RMSE > 3.0 dB).

It should be mentioned that the use of different in situ sampling methods and SAR acquisition
techniques may also contribute to the modelling errors. Indeed, the datasets comprises both
airborne and space-borne acquisitions, which may cause scaling effects. In addition, in situ
data have been collected using different techniques, both regarding soil moisture (gravimetric
and TDR, sometimes at different sampling depths) and roughness (different profile length and

sampling intervals, and post-processing methods).

This study evaluated the robustness of the most used backscattering models by means of
statistical indices (Bias and RMSE). These statistical indices should guide in choosing the
appropriate model for backscattering coefficients simulation. As it has been shown in the
present study, the IEM modified by Baghdadi (IEM_B) was the most accurate model among
the others. Thus, it is preferred to use the IEM_B in the inversion procedure of SAR
backscattering coefficient in order to more accurately estimate soil moisture and roughness

parameters.
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IV. Chapter 4: A New Empirical Model for Radar
Scattering from Bare Soil Surfaces
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IV.1 Introduction

Soil moisture content plays an important role in meteorology, hydrology, agronomy,
agriculture, and risk assessment. This soil parameter can be estimated using synthetic aperture
radar (SAR). Today, it is possible to obtain SAR data for global areas at high spatial and
temporal resolutions with free and open access Sentinel-1 satellites (6 days with the two

Sentinel-1 satellites, at 10 m spatial resolution).

The retrieval of soil moisture content and surface roughness requires the use of radar
backscatter models capable of correctly modeling the radar signal for a wide range of soil
parameter values. This estimation from imaging radar data implies the use of backscattering

electromagnetic models, which can be physical, semi-empirical or empirical.

This estimation from imaging radar data implicates the use of backscattering electromagnetic
models (Physical, empirical or semi-empirical. The physical models such as Integral Equation
Model (IEM), Small Perturbation Model (SPM), Geometrical Optic Model (GOM) and
Physical Optic Model (POM) that based on physical approximations corresponding to a range
of surface conditions (soil moisture and surface roughness) provide site-independent
relationships but have limited validity depending upon the soil roughness. Moreover, the
semi-empirical or empirical models are often valid only for specific soil conditions and needs
calibration on other soil conditions. Users preferred the empirical models because of their
facility in implementation and inversion (Chai et al., 2015; Gherboudj et al., 2011; Kirimi et
al., 2016; Le Hégarat-Mascle et al., 2002; Rao et al., 2013; Zribi and Dechambre, 2003; Zribi
etal., 2011).

Popular semi-empirical models developed over bare soils as Oh model (Oh, 2004; Oh et al.,
1992, 1994, 2002) and Dubois model (Dubois et al., 1995). The Oh model uses the ratios of
the measured backscatter coefficients HH/VV and HV/VV to estimate volumetric soil
moisture (mv) and surface roughness (Hrms), while the Dubois model links the backscatter
coefficients in HH and VV polarizations to the soil’s dielectric constant and surface
roughness. Numerous studies evaluated several semi-empirical models, but these models
showed conflict in the results obtained. Some studies show good agreement between
measured backscatter coefficients and those predicted by the models, while others have found
great discrepancies between them (Baghdadi and Zribi, 2006; Baghdadi et al., 2011c; Le
Hégarat-Mascle et al., 2002; Wang et al., 2014, 1997; Zribi and Dechambre, 2003; Zribi et al.,
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2011). The discrepancy between simulations and measurements often reaches several

decibels, making soil parameter estimates not useful.

The goal of this chapter is to produce a new robust, empirical, radar backscattering model.
The simple formulations of Dubois model that directly relates the radar signal to soil
(dielectric constant and soil roughness) and SAR parameters (incidence angle, polarization
and radar wavelength) lead us to select the formulations of Dubois model as basic of the new
model. The formulations of Oh model was not used because only the co-polarized ratio p and

cross-polarized ratio g are available.

First, the performance of the Dubois model is analyzed using a large dataset acquired at
several worldwide study sites by numerous SAR sensors. The dataset consists of SAR data
(multi-angular and multi-frequency) and measurements of soil moisture and surface
roughness over bare soils. Then, the different terms of Dubois equations that describe the
dependence between the SAR signal and both sensor and soil parameters have been validated
or modified to improve the modelling of the radar signal. Ultimately, a new semi-empirical
backscattering model has been developed for radar scattering in the HH, VV, and HV

polarization from bare soil surfaces.

A description of the dataset is presented in section 2, section 3 describes and analyzes the
potential and the limitations of the Dubois model in radar signal simulations over bare soils.
In section 4, the new model is described and its performance is evaluated for different
available SAR data (L-, C- and X-bands, incidence angles between 20° and 45°). Conclusions

are presented in section 5.

IV.2 Dataset description

A wide experimental dataset was used, consisting of SAR images and ground measurements
of soil moisture content and roughness collected over bare soils at several agricultural study
sites (Chapter 111, Table I11.1). SAR images were acquired by various airborne and spaceborne
sensors (AIRSAR, SIR-C, JERS-1, PALSAR-1, ESAR, ERS, RADARSAT, ASAR,
TerraSAR-X). The radar data were available in L-, C- and X-bands (approximately 1.25 GHz,
5.3 GHz and 9.6 GHz, respectively); with incidence angles between 18° and 57°; and in HH,
VV and HV polarizations. For several reference plots, the mean backscatter coefficients have
been obtained from radiometrically and geometrically calibrated SAR images by averaging

backscatter coefficient values for each plot for all pixels within the plot.
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A total of 1569 experimental data acquisitions with radar signal, soil moisture content and
roughness were available for HH polarization, 930 for VV polarization, and 605 for HV
polarization. This dataset is approximately the same as descripted in chapter Ill, section 111.2.

IV.3 Validation and analysis of the Dubois model
IV.3.1 Description of Dubois model
A complete description of Dubois model is done in chapter 111, section 111.3.1.

IV.3.2 Comparison between simulated and real data

The Dubois model overestimates the radar signal by 0.7 dB in HH polarization and
underestimates the radar signal by 0.9 dB in VV polarization for all data combined (Table
IV.1). The results show that the overestimation in HH is of the same order for L-, C- and X-
bands (between 0.6 dB and 0.8 dB). For the L-band, a slight overestimation of approximately
0.2 dB of SAR data is observed in VV polarization. Also in VV polarization, Dubois model
based simulations underestimate the SAR data in C- and X-bands by approximately 0.7 dB
and 2.0 dB, respectively.

The rms error (RMSE) is approximately 3.8 dB and 2.8 dB in HH and VYV, respectively
(Table 1V.1). Analysis of the RMSE according to the radar frequency band (L, C and X
separately) shows in HH an increase of the RMSE with the radar frequency (2.9 dB in L-
band, 3.7 dB in C-band, and 4.1 dB in X-band). In VV polarization, the quality of Dubois
simulations (RMSE) is similar for L- and C-bands but is less accurate in X-band (2.3 dB in L-
band, 2.6 dB in C-band, and 3.2 dB in X-band).

Dubois for HH Dubois for VV
Bias (dB) RMSE (dB) Bias (dB) RMSE (dB)

For all data -0.7 3.8 +0.9 2.8
L-band -0.8 2.9 -0.2 2.3
C-band -0.6 3.7 +0.7 2.6
X-band -0.7 4.1 +2.0 3.2
kHrms <2.5 +0.4 34 +1.3 2.9
kHrms > 2.5 2.7 4.5 -0.1 2.5
mov <20 vol.% -2.0 4.3 +0.9 2.8
mo > 20 vol. % +0.5 3.2 +0.9 2.8
0< 30° -4.1 5.4 -0.6 2.9

0> 30° +0.6 3.0 +1.5 2.7

Table IV.1. Comparison between the Dubois model and real data for all data and by range of
kHrms, soil moisture (mv) and incidence angle (0). Bias = real data — model.
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In addition, the agreement between Dubois model simulations and SAR data is analyzed
according to soil roughness, moisture content and incidence angle (Figures IV.1 and IV.2). The
results indicate a slight underestimation of the radar signal by the Dubois model in the case of
kHrms lower than 2.5 (Dubois validation domain) for both HH and V'V polarizations (Figures
IV.1b, IV.2b; Table IV.1). For surfaces with a roughness kHrms greater than 2.5, an
overestimation of the radar signal is obtained with the Dubois model in HH while the model
works correctly in VV (Figures IV.1b, IV.2b; Table IV.1). Higher under- and overestimations
are observed in HH than they are in VV (reach approximately 10 dB in HH).

Analysis of the error as a function of soil moisture (mv) shows that for both VVV-polarized
data, whatever the mv-values, and HH-polarized data with mv-values higher than 20 vol.%,
the observed bias between real and simulated data is small (Figures 1V.1c and IV.2c; Table
IV.1). However, a strong overestimation of the radar signal is observed by the Dubois model
in HH for mv-values lower than 20 vol.% (-2.0 dB, Table IV.1).

Finally, the discrepancy between SAR and the model is larger in HH for incidence angles
lower than 30° (outside of the Dubois validity domain) than for incidence angles higher than
30° (Table IV.1). The Dubois model strongly overestimates the radar signal in HH for
incidence angles lower than 30° but agrees closely with the measured data for incidence
angles higher than 30° (Figures 1V.1d, IV.2d; Table 1V.1). In VV polarization, the Dubois
model slightly overestimates the radar signal for incidence angles lower than 30° and
underestimates the signal for incidence angles higher than 30° by +1.5 dB (Figures 1V.1d and,
IV.2d; Table I1V.1).

In conclusion, the Dubois model simulates VV better than it does HH (RMSE=2.8 and 3.8
dB, respectively). The disagreements observed between the Dubois model and measured data

are not limited to data that are outside the optimal application domain of the Dubois model.
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Figure IV.1. For HH polarization, (a) comparison between radar backscattering coefficients
calculated from SAR images and estimated from the Dubois model, (b) difference between
the SAR signal and the Dubois model relative to soil roughness (kHrms), (c) difference
between the SAR signal and the Dubois model relative to soil moisture (mv), (d) difference
between the SAR signal and the Dubois model relative to incidence angle. The best regression

model is ploted in gray.

84



5 1 ol-band & Cband x X-band 15 4 olL-band 2 C-band x X-band
0 - A 10 -
A ™)
—_ -5 - X S 5
93 % 4 2
= o b4 o
©2-10 - % i S o0
E s 3
0-15 - XX g -5
[eXe] %( x 2
-20 - R y = 0.87x - 2.07 -10 - y =-0.61x + 2.23
R2=0.4 R2=10.09
-25 . . . . : . , -15 T T T T 1
25 -20 -15 -10 -5 0 5 Y 2 4 6 8 10
SAR [dB] k Hrms
(a) (b)
15 - oL-band & C-band x X-band 15 4 ol-band 2 C-band x X-band
10 - 10 |
) o X A% A X
25 AN QMA aly o0 X X
] | Ada s A i
o o A A
el 0 e 0 -
> 3 %
a a Baa B e
e« -5 th -5 4 é&AM N &
5 5 %
-10 - y =-0.02x + 1.38 -10 - y =0.09x - 2.23
R2=10.01 R2=0.09
'15 T T T T T T T T T 1 '15 T T T T T T T T 1
0 5 10 15 20 25 30 35 40 45 50 15 20 25 30 35 40 45 50 55 60
Soil moisture (vol. %) Incidence angle (°)
(c) (d)

Figure 1V.2. For VV polarization, (a) comparison between radar backscattering coefficients
calculated from SAR images and estimated from the Dubois model, (b) difference between
the SAR signal and the Dubois model relative to soil roughness (kHrms), (c) difference
between the SAR signal and the Dubois model relative to soil moisture (mv), (d) difference
between the SAR signal and the Dubois model relative to incidence angle. The best regression
model is ploted in gray.

IV.4 New empirical model
IV.4.1 Methodology

The disagreement observed between measured radar signal and simulated data by empirical
model (Dubois and Oh) encouraged us to develop a new empirical backscattering model using
SAR observations and soil in situ measurements. The simple formulations of Dubois model
that directly relates the radar signal to soil (dielectric constant and soil roughness) and SAR

parameters (incidence angle, polarization and radar wavelength) lead us to select the
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formulations of Dubois model as basic of the new model. The formulations of Oh model was

not used because only the co-polarized ratio p and cross-polarized ratio q are available.

The new model is based on the Dubois model and uses the dependency observed between the
SAR signal and soil parameters according to results obtained in various studies. For bare
soils, the backscattering coefficient depends on soil parameters (roughness and moisture) and
SAR instrumental parameters (incidence angle, polarization and wavelength). For bare soils,
the radar signal in pq polarization (p and q = H or V, with HV=VH) can be expressed as the

product of three components:

Opg = frq(0) Gpq(mv,0) T, (kHrms, 6) (4.1)

The radar backscatter coefficient is related to the incidence angle (0) by the relation f,,,(6) =
a(cos 8)F (Baghdadi et al., 2001; Beauchemin et al., 1995; Ulaby et al., 1982). This
relationship describes the decrease of c° with the incidence angle (decrease higher for low

angles than for high angles).

The second term represents the relationship between the radar backscatter coefficient and soil
moisture (mv). The results obtained in several investigations show that, for bare soils, the
radar signal (c°) in decibels linearly increases with soil moisture (mv) when mv is in the range
between approximately 5 and 35 vol.% (Baghdadi et al., 2006b, 2008a; Le Hégarat-Mascle et
al., 2002; Zribi et al., 2011). In linear scale g,,(mv,8) can be written as 6 10" ™. The
sensitivity of the radar signal to the soil moisture y depends on 6. Higher sensitivity is
observed for low than for high incidence angles (Aubert et al., 2011a; Baghdadi et al., 2008b).
To include this dependence on incidence angle, the soil moisture value is multiplied with the

term cotan(6). Thus, g,,(mv, 8) can be written as 6 10¥ cotan(f) mv_

The last term T,,(kHrms,8) represents the behaviour of o° with soil roughness. An

exponential or logarithmic function is often used to express the radar signal (in dB) in terms
of surface roughness (Baghdadi et al., 2006b; Sahebi et al., 2002; Srivastava et al., 2003; Zribi

and Dechambre, 2003). For a logarithmic behaviour of ¢°(dB) with k Hrms, I, in linear

scale can be written as pu(kHrms)$. Baghdadi et al. (2002a) showed that at high incidence

angles, radar return is highly sensitive to surface roughness and shows much larger dynamics
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than at a low incidence angle. In addition, the term sin(@) is intended to include this

dependence with the incidence angle: T, - pu(kHrms)* sm®),

Finally, the relationship between the radar backscattering coefficient (o°) and the soil
parameters (soil moisture and surface roughness) for bare soil surfaces can be written by

equation (4.2):

0pq = 8(cos 0)F 107 cotan(®Imv (ffymg)s sin®) (4.2)

The coefficients 8, B, v, and & are then estimated for each radar polarization using the method
of least squares by minimizing the sum of squares of the differences between the measured
and modelled radar signal. The error in the modelling of radar backscatter coefficients by the
new backscattering model was assessed for each polarization using a 5-fold cross-validation
to validate the predictive performance of the new model. To do the 5-fold cross-validation,
the dataset was first randomly divided into 5 equal size subsets. Next, 4 of the subsets are
used to train the new model and one was retained to validate its predictive performance. The
cross-validation process was then repeated 5 times, with each of the 5 sub-datasets used
exactly once as the validation data. The final validation result combines the 5 validation
results. The advantage of this method over repeated random sub-sampling is that all
observations are used for both training and validation, and each observation is used for

validation exactly once.

The fitting of various coefficients parameter in the equation (4.2) was done using all dataset
(fitting errors are about 2 dB for all polarizations). This fitting allows writing ¢° as a function

of the rms surface height (Hrms) and incidence angle (6), by equations (4.3), (4.4) and (4.5):

O_;IH — 10—1.287(COS 9)1.227 100.009 cotan(6) mv (kHT‘mS)O'86 sin(9), (43)
O-I;V — 10—1.138(COS 9)1.528 1(0-008 cotan(8) mv (kHrms)°'71 sin(6) (4_4)
O-;IV — 10—2.325(COS 9)—0.01 100.011 cotan(6) mv (kHrms)0'44 sin(9), (4_5)
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where 0 is expressed in radians and mv is in vol.%. Equations (4.3), (4.4), and (4.5) show that
the sensitivity (y) of the radar signal to the soil moisture in decibel scale is 0.25 dB/vol.% in
HH polarization, 0.22 dB/vol.% in VV polarization and 0.30 dB/vol.% in HV polarization for
an incidence angle of 20°. This sensitivity decreases to 0.09 dB/vol.% in HH, 0.08 dB/vol.%
in VV and 0.11 dB/vol.% for an incidence angle of 45°. As for the signal’s sensitivity to soil
roughness, it is of the same order of magnitude in HH and VV and twice as large than that of
the HV signal. The few data in HV polarization may explain the higher sensitivity observed in
HV than in HH and VV. Indeed, several studies showed very near sensitivity of radar signal

to soil moisture in HV, HH and V'V polarizations.

The availability of a backscatter model for the cross polarization component is required
because most spaceborne SAR acquisitions are made with one co-polarization and one cross-

polarization in case of dual-polarization mode.

IV.4.2 Comparison between Dubois model and new model

In comparison between Dubois model (Equation 3.1) and the new model (Equation 4.2),

several terms have been changed, simplified or removed:

e In the new model, the first term that describes the relationship between the radar
backscatter coefficient and the incidence angle (6) which describes the decrease of o° with
the incidence angle was simplified using the function f,,(8) = a(cos 6)%. In Dubois
model, the relation between the radar backscatter signal and the incidence angle (6) is
more complex (Equation 4.6).

e The second term which describes the relationship between the radar backscatter
coefficient and soil moisture (mv) was modified. First, the dielectric constant was changed
into the volumetric soil moisture. Second, the dependence between the sensitivity of the
radar signal to the incidence angle (0) described by tan(6) in Dubois model was corrected
into cotan(é) in the new model. Indeed, higher sensitivity is observed for low than for
high incidence angles. To include this dependence on incidence angle, the soil moisture
value is multiplied with the term cotan(@). Thus, g,,(mv,68)can be written as
§ 10 cotan(6) mv_

e In the new model, the term T,,(kHrms, 8) represents the behaviour of ° with soil
roughness. For a logarithmic behaviour of c°(dB) with k Hrms, I, in linear scale can be

written as u(kHrms)$. At high incidence angles, radar return is highly sensitive to
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surface roughness and shows much larger dynamics than at a low incidence angle. Thus,
the term sin(8)is intended to include this dependence with the incidence angle:
[pg=p(kHrms)* sin®),

e Finally the dependence of the radar signal on the radar wavelength described in Dubois
model by (1)¢ (Equation 4.6) does not seem validated using our in situ dataset. Thus, this

term has been removed in the new model.

1VV.4.3 Results and discussion

IV.4.3.1 Performance of the new model

Results show that the new model provides more accurate results. The biases and the RMSE
decrease for both HH and VV polarizations. The RMSE decreases from 3.8 dB to 2.0 dB for
HH and from 2.8 dB to 1.9 dB for VV (Table IV.2). In addition, the high over- or
underestimations of radar backscattering coefficients observed with the Dubois model
according to soil moisture, surface roughness and radar incidence angle are clearly eliminated
with the new model (Figures IV.3 and IV.4).

Dubois for HH and VV New model
Bias (dB) RMSE (dB) Bias (dB) RMSE (dB)
HH for all data -0.7 3.8 0.4 2.0
VYV for all data +0.9 2.8 0.0 1.9
HYV for all data - - 0.0 2.1
HH, L-band -0.8 2.9 -0.1 2.3
HH, C-band -0.6 3.7 +0.3 1.9
HH, X-band -0.7 4.1 0.7 1.9
VV, L-band -0.2 2.3 -0.1 2.7
VV, C-band +0.7 2.6 +0.1 1.9
VV, X-band +2.0 3.2 -0.4 1.8
HV, L-band - - -1.3 1.6
HV, C-band - - +0.2 2.2
HV, X-band - -1.3 1.9

Table 1V.2. Comparison between the results obtained with the Dubois model and those
obtained with the new model. Bias = real — model.

Analysis of the new model’s performance for each radar wavelength separately (L-, C- and X-
bands) shows that the most significant improvement is observed in X-band with an RMSE
that decreases from 4.1 dB to 1.9 dB in HH and from 3.2 dB to 1.8 dB in VVV. In L-band, the
performance of the new model is not better than that of the Dubois model because the RMSE
decreases slightly with the new model of 3.0 dB to 2.3 dB in HH and remains similar in VV
(RMSE = 2.3 dB with the Dubois model and 2.7 dB with the new model). The improvement
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is also important for the C-band with an RMSE that decreases from 3.7 dB to 1.9 dB in HH
and from 2.6 dB to 1.9 dB in VVV. With respect to bias, the results show that it decreases with
the new model for all radar wavelengths. In addition, the new model does not show bias

according the range of soil moisture, surface roughness, and radar incidence angle.
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Figure 1V.3. (a) Comparison between ¢° modelled in the new model and ¢° measured (for all
SAR bands) for HH polarization, (b) difference between SAR and the new model as a
function of surface roughness (kHrms), (c) difference between SAR and the new model as a
function of soil moisture (mv), (d) difference between SAR and the new model as a function
of incidence angle. The best regression model is ploted in gray.

The comparison between the new model simulations in HV polarization (Equation 4.5) and
the real data (SAR data) shows an RMSE of 2.1 dB (Table 1V.2) (1.6 dB in L-band, 2.2 dB in
C-band, and 1.9 dB in X-band). The bias (c°SAR - model) is -1.3 dB in L-band, 0.2 dB in C-

band, and -1.3 dB in X-band. Figure 1V.5 shows also that the new model correctly simulates
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the radar backscatter coefficient in HV for all ranges of soil moisture, surface roughness and

radar incidence angle.
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Figure 1V.4. (a) Comparison between &° in the new model and o° measured (for all SAR
bands) for VV polarization, (b) difference between SAR and the new model as a function of
surface roughness (kHrms), (c) difference between SAR and the new model as a function of
soil moisture (mv), (d) difference between SAR and the new model as a function of incidence
angle. The best regression model is ploted in gray.
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Figure 1V.5. (a) Comparison between &° in the new model and o° measured (for all SAR
bands) for HV polarization, (b) difference between SAR and the new model as a function of
kHrms, (c) difference between SAR and the new model as a function of mv, (d) difference
between SAR and the new model as a function of incidence angle. The best regression model
is ploted in gray.
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IV.4.3.2 Behaviour of the new model

The physical behaviour of the new radar backscatter model was studied in function of

incidence angle (6), soil moisture (mv) and surface roughness (kHrms).

Figure 1V.6 shows that the radar signal is strongly sensitive to surface roughness, especially
for small values of kHrms. In addition, this sensitivity increases with the incidence angle.
Concerning the influence of polarization, the new model shows, as do many theories and
experimental studies, that a given soil roughness leads to slightly higher signal dynamics with
the soil moisture in HH than in VV polarization (Figure 1V.6). The radar signal ¢° increases
with kHrms. This increase is higher for either low kHrms values or high 6-values than it is for
either high kHrms values or low 0-values. For 6=45°, ¢° increases approximately 8 dB in HH
and 6.5 dB in VV when kHrms increases from 0.1 to 2 compared with only 3 dB when kHrms
increases from 2 to 6 (for both HH and VV). This dynamic of ¢° is only half for 6=25° in
comparison to that for 6=45°. In HV, the dynamic of ¢° to kHrms is half that observed for HH
and VV.

The behaviour of ¢° according to soil moisture shows a larger increase of ¢° with mv for low
incidence angles than for high incidence angles. Figure 1V.6 shows that ¢°nn and o°vv
increase approximately 6 dB for 6=25° compared with only 3 dB for 6=45° when mv
increases from 5 to 35 vol.%. In HV, the signal increases approximately 7.5 dB for 6=25° and

3.5 dB for 6=45° when mv increases from 5 to 35 vol.%.

As mentioned in Dubois et al. (Dubois et al., 1995), the ratio ”QH/UO should increase with

kHrms and remain less than 1. The new model shows that this condition is satisfied when
20°< 0 <45°, kHrms < 6 and mv < 35 vol.%.
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Figure 1V.6. Behavior of the new model as a function of incidence angle, surface roughness
(k Hrms) and soil moisture (mv) in HH, VV and HV polarizations.
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IV.5 Conclusion

This investigations objective is to propose a new empirical model for radar backscatter from
bare soil surfaces. The new model is based on the formulation made in the Dubois model
where the radar signal in HH and VV polarizations is described according to radar
wavelength, incidence angle, soil moisture and roughness. This new model is based on the
formulation made in the Dubois model. A large dataset was used, composed of ground

measurements and SAR images over bare agricultural soils.

Results show that the new model provides improved results in comparison to the Dubois
model (in the case of HH and VV). Biases and RMSE have decreased for both HH and VV
polarizations. In addition, the high over- or under-estimations observed with the Dubois
model for some ranges of soil moisture, surface roughness and radar incidence angle were
clearly eliminated with the new model. Analysis of the new model’s performance for each
radar wavelength separately (L, C and X) shows that in the L-band, the performance of the
new model was similar to that of the Dubois model (may be due to the few data used in L-
band). The model shows significant improvement in C- and X-bands (RMSE approximately
1.9 dB with the new model and between 2.6 and 4.1 dB with the Dubois model).

Based on the same equation as that used for HH and V'V, a radar signal in HV polarization
was also proposed. Finally, the new empirical model proposed in the present study would

allow more accurate soil moisture estimates using the new Sentinel-1A and -1B SAR data.

95



96



V. Chapter 5: Estimation of soil roughness using neural
networks from sentinel-1 SAR data
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V.1 Introduction

Soil surface characteristics (mainly soil moisture and surface roughness) play a key role in
different hydrological processes (floods, runoff, evapotranspiration, infiltration, soil erosion,
and imbalances in the water and carbon cycles). Surface roughness has a role in trapping
water at the surface and reducing flow velocity, which increases infiltration and in turn
reduces downstream runoff. The roughness scales observed by a radar sensor have a strong

dependence on the frequency and radar incidence (Ogilvy and Ogilvy, 1991).

Radar data were used since a long time for estimating and mapping the surface soil
parameters (mainly soil moisture and roughness) of bare soils. Soil moisture and surface
roughness can be estimated from SAR images by using physical or statistical models
(Baghdadi and Zribi, 2016; Baghdadi et al., 2002c, 2012a; Merzouki et al., 2011; Rahman et
al., 2008). The best known physical model is the Integral Equation Model (IEM) (Fung, 1994;
Fung et al., 1992). This model simulates the radar backscattering coefficients from SAR and
soil parameters (radar wavelength, polarization, incidence angle, surface roughness and soil
moisture ‘dielectric constant’). The validity domain of IEM in C-band covers the range of
roughness values that are commonly encountered for bare agricultural surfaces (k Hrms < 3,
where Hrms is the root mean square surface height and k the radar wave number = 1.12 cm—1
for a frequency in C-band of 5.4 GHz as Sentinel-1 SAR). Most Hrms values of agricultural

bare soils range from 0.5 to 4 cm (Baghdadi et al., 2012a).

The discrepancies observed between the IEM and the SAR data had encouraged Baghdadi et
al., (2004, 2006a, 2011a, 2015) to propose an empirical calibration of IEM model. Moreover,
Baghdadi et al. (2016a) proposed an new empirical model based on Dubois model that make
the estimation of soil moisture and surface roughness possible in an easy way. Actually,
physical, empirical and semi-empirical models were developed to invert the radar signal in

order to monitor the soil parameters (moisture and roughness).

Baghdadi et al., (2002a) investigated the potential of the first generation of SAR data (ERS-2
and RADARSAT-1) for monitoring roughness states over bare agricultural fields. Results
indicate that high incidence angles (about 45°) are more suitable to discriminate various
roughness classes (smooth, medium and rough) over bare agricultural fields. An algorithm
based on an experimental exponential relationship between the radar backscattering
coefficient and the surface roughness (root mean square surface height, Hrms) independently
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of the soil moisture was used. Next, Baghdadi et al. (2012) developed an approach to estimate
soil moisture and surface roughness from C-band polarimetric RADARSAT-2 data based on
neural networks (NNs). Results showed that the accuracy on the soil roughness estimates was
about 0.5 cm using polarimetric data. The estimation is better for Hrms-values lower than 2
cm than for Hrms-values higher than 2 cm. For higher Hrms, the NNs under-estimate the
surface roughness. Moreover, Zribi and Dechambre (2002) proposed an approach based on
the use of two SAR images acquired at two different incidence angles, one image with a weak
incidence (~20°) and one image with a strong incidence (~40°) for estimating both soil
moisture and surface roughness. The surface roughness defined by Zs=Hrms/L (L is the
correlation length) is estimated with an RMSE of 0.08 cm for Zs-values between 0.075 and
0.75 cm.

The aim of this part is to develop an approach to estimate the soil surface roughness from C-
band Sentinel-1 SAR data in the case of bare agricultural soils. This approach is an inversion
technique based on Multi-Layer Perceptron (MLP) neural networks. The training of the neural
networks is performed using synthetic dataset simulated by the Integral equation model
calibrated by Baghdadi (Baghdadi et al., 2004, 2006a, 2011b, 2015) and the new proposed
model by Baghdadi modified Dubois (Baghdadi et al., 2016a) on a wide range of surface
roughness and soil moisture. The inversion approach was then validated in using Sentinel-1
datasets (one in France and one in Tunisia) composed on Sentinel 1 images and in-situ
measurements. This work is done in order to evaluate the potential of Sentinel-1 SAR sensors
for retrieving soil roughness. Section 2 presents a review of datasets. A presentation of the
methodology developed in order to estimate the soil roughness is done is section 3. The
results and discussions are presented in section 4, and finally, the main conclusion is

presented in section 5.

V.2 Dataset

V.2.1 Synthetic dataset

The Integral Equation Model calibrated by Baghdadi et al., (2004, 2006a, 2011a, 2015)
‘IEM_B’ and the modified Dubois Model (Baghdadi et al., 2016a) are used to generate the
reference datasets for the inversion of SAR data by the neural networks (NN) technique. The
IEM modified by Baghdadi and the new semi-empirical modified Dubois model are able to
reproduce the radar signal at VV, HH and VH from SAR parameters (incidence angle and

radar wavelength) and soil surface characteristics (soil moisture and surface roughness). The
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standard mode of Sentinel-1 corresponds only to acquisitions in both VV and VH

polarizations. For this reason, only VVV and VH polarizations will be used in this chapter.

A synthetic dataset combining a wide range of soil parameters (soil roughness “Hrms” and
soil moisture “mv”’) and corresponding backscattering coefficients was generated from the
calibrated IEM and the modified Dubois in order to evaluate the performance of the NN
technique. 18 soil roughness values (Hrms between 0.35 and 3.8 cm with a step of 0.2 cm), 20
soil moisture values (mv between 2 vol.%. and 40 vol.%.with a step of 2 vol.%), 25 radar
incidence angles (6 between 20°and 45° with a step of 1°) are considered. In order to make
the IEM simulations more realistic, the SAR measurement error which includes both
calibration errors and measurements precision errors is added to the simulated backscattering
coefficients. Realistic values of measurements errors are 0.75 for VV and 1dB for VH
(Schwerdt et al., 2017).To better simulate an experimental dataset, the synthetic dataset is
then obtained by adding a zero mean Gaussian random noise with a standard deviation of
+0.75 and +1 dB to the simulated backscattering coefficients VV and VH (in dB scale),
respectively. In order to obtain a statistically significant dataset, 250 noise samples are
generated for each couple of mv and Hrms. A total of 1350000 elements (C-band VV and VH)
are also obtained to produce the synthetic dataset.

The noisy synthetic datasets are then divided into two equal datasets one of which is used for

training the NNs, the remaining is being used for the validation of the NNs.
V.2.2 Real dataset

An experimental dataset is used in this study, consisting of Sentinel-1 images as well as
ground measurements of soil moisture and surface roughness collected over two agricultural
study sites: one in France and one in Tunisia (Figure V.1, Table V.1). Sentinel-1 images (C-
band, radar wavelength about 6 cm) were acquired with incidence angles between 37° and
41°, and in VV and HV polarizations.

V.2.2.1 Study sites

The French study site is the Versailles plain. It is located west of Paris and covers about 221
km?2 (48°46’ —48°56' N; 1°50'-2°07" E, Figure V.1) (Vaudour et al., 2014). This agricultural
peri-urban site is characterized by a semi-oceanic climate with an average rainfall of 570

mm/year and an average annual temperature of 11.3°C (INRA meteorological station of

100



Thiverval-Grignon, 1986-2016). Rainfed annual crop systems cover 99 km2 and develop over
two embedded plateaus, the gentle slopes at their edges and the valleys at their bottom. The
main crop rotations in the area involve winter wheat, winter rapeseed, winter and spring
barley and maize on occasion (Vaudour et al., 2015). Conventional tillage practices are used:
ploughing in November-December, followed by chisel in March then seedbed preparation for
spring cereals (spring barley in March, maize in April). The main cultivated soils according to
the FAO classification (World Reference Base (WRB) (Vaudour et al., 2014) are haplic or
glossic luvisols deriving from loessic material over the plateaus, calcaric cambisols deriving
from limestones and/or colluvic material and/or chalk along slopes and stagnic colluvic
cambisols in the valley bottoms. The topsoil texture is dominated by silt loam (silt > 50%)
with extreme textural classes varying from sandy loam to silty clay. Clay content is comprised
between 14 and 32% (22% in median).

The Tunisian site is situated in the Kairouan plain (9°23'—10°17'E, 35°1'=35°55'N) in central
Tunisia (Figure V.1b). The climate in this region is semi-arid, with an average annual rainfall
of approximately 300 mm/year, characterized by a rainy season lasting from October to May,
with the two rainiest months being October and March (Gorrab et al., 2015a). As known, in
the case of semi-arid areas, the rainfall patterns in this area are highly variable in time and
space. The mean temperature in Kairouan City is 19.2 °C (minimum of 10.7 °C in January
and maximum of 28.6 °C in August). The mean annual potential evapotranspiration (Penman)
is close to 1600 mm. The landscape is mainly flat, and the vegetation is dominated by
agricultural production (cereals, olive groves, fruit trees, market gardens and bare soils). Soil
texture measurements showed a clay percentage between 2.4% and 53.1% and sand
percentage between 4.4% and 84.3% (Gorrab et al., 2015a). The soil roughness was assumed

isotropic. So, the row direction is not considered.
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Figure V.1. Location of the two study sites, (a): location of Versailles in France. (b): location

of Kairouan in Tunisia.

V.2.2.2. SAR Satellite images

Four Sentinel-1 images were acquired in March and April 2017 (Table V.1) over the French

study site. In addition, 7 Sentinel-1 images acquired over the Kairouan plain between 2015

and 2017 are used in this study. All Sentinel-1 images acquired with a spatial resolution of 10

m and in VV and VH polarizations are radiometrically calibrated in order to convert the

digital number to radar backscattering coefficients.

Site SAR Incidence Dates (dd/mm/yyyy) Number of data
sensor angle (°)

French site | Sentinel-1 ~37° 15/03/2017 ; 27/03/2017 | 24 measurements
02/04/2017 ; 08/04/2017

Tunisian Sentinel-1 | ~39°to 41° | 18/12/2015 ; 04/02/2016 | 85 measurements
site 03/04/2016 ; 04/04/2016
23/12/2016 ; 05/01/2017

09/02/2017

Table V.1. Description of the real dataset used in this study for validating the inversion

approach.
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V.2.2.3 In situ measurements

Simultaneously with the Sentinel-1 acquisitions, in situ measurements of soil moisture and
surface roughness were collected on several reference bare plots of a few hectares. Soil
moisture was determined gravimetrically at each reference plot of the French site in using soil
samples collected between 0 and 8 cm depth (one measure by plot). For the Tunisian site,
between 20 and 30 volumetric soil moisture measurements (mv) were performed in the first
top 5 cm using calibrated TDR (Time Domain Reflectometry) probes. The mean volumetric
soil moisture was then calculated for each reference plot and each date. The soil moisture on
the reference plots ranged between 11.5 et 25.1 vol.% for the French site and between 4.6 and
41.7 vol.% for the Tunisia site.

The soil roughness measurements made in Tunisia on the reference plots use 1 m long pin
profiler with a resolution of 2 cm. Ten roughness profiles (five parallel and five perpendicular
to the tillage row direction) were made in each reference field using a 1 m long needle-
profilometer and a sampling interval of 2 cm. From these roughness profiles, the root mean
square surface height (Hrms) were then calculated for each reference plot using the mean of
all autocorrelation functions acquired for each reference plot. All data bases are described in
(Bousbih et al., 2017). For the French site, soil roughness was estimated with a fully
automatic photogrammetric method (Gilliot et al., 2017). The rms surface height ranged
between 0.56 cm and 4.55 cm for the reference plots in the Tunisian site and between 0.41 cm

and 2.90 cm for the reference plots in the French site.

Finally, each element of our real dataset corresponds to in situ measurements (mv and Hrms)
and Sentinel-1 information (mean of radar backscattered coefficients in VV and VH, and
radar incidence angle). The mean of radar backscattered coefficients was calculated by

averaging for each reference plot the values of all pixels within the reference plot.

V.3 Methodology for estimating soil moisture
V.3.1 Neural Networks

In this study, surface roughness was estimated by means of multi-layer perceptron (MLP)
neural networks. The Levenberg-Marquardt optimization algorithm (Marquardt, 1963) was
used to train the Neural Networks. The Neural Networks (NN) architecture is created from
three layers: input, hidden, and output. The NNs have two dimensional input vectors when

using one polarization (VV or VH) which are the backscattered signal and the incidence
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angle. Using two polarizations (VV and VH), the NNs have three dimensional input vectors
which are the two backscattered signals (VV and VH) and the incidence angle. In order to
estimate only mv or Hrms, the output vector contains only the soil moisture (mv) or the soil
surface roughness (Hrms). When the estimation concern both Hmrs and mv, the two
dimensional output vector contains both soil moisture and surface roughness. The numbers of
neurons associated with the hidden layer was determined by training the Neural Networks
using different numbers of neurons. 20 hidden neurons provided accurate estimates of
reference parameters (Baghdadi et al., 2012a; Chai et al., 2009). To develop a neural network,
it is necessary to train the network with training synthetic dataset composed of input and
output vectors. Training is accomplished to minimize the mean square error between the
predicted Neural Networks outputs and the reference values. All transfer functions were tested
in the Neural Networks which give different results. Best results are shown by the Purlin and
Tansig transfer functions for the estimation of soil moisture and Logsig for the estimation of

the surface roughness.
V.3.2 Methodological overview

An approach based on neural networks is chosen to estimate the soil roughness from Sentinel-
1 images (SAR data) over bare agricultural soils at very high spatial resolution "VHSR" (plot
scale or on a finer scale). Two networks are applied one after the other, the first to estimate
soil moisture and the second to estimate soil roughness. Three SAR configurations
corresponding to the standard acquisition mode of Sentinel-1 with image acquisitions in both
VV and VH polarizations are tested: VV alone, VH alone, VV and VH together. In order to
improve the soil parameters estimates, a priori knowledge about soil moisture mv is
introduced. Baghdadi et al. (2012a) showed that the use of a priori knowledge on the soil
moisture (dry to slightly wet or very wet information) improves the soil moisture estimates.
The priori information on mv is provided in using meteorological data (precipitations,
temperature) and terrain knowledge. Indeed, it is easily to define from the weather forecasts
(precipitation and temperature) if the soil is either dry to slightly wet (no precipitation for
many days before SAR acquisition) or very wet (heavy rainfall preceding SAR acquisition).
The integration of a priori information constrains the range of possible soil moisture

parameter values estimated and thus leads to a better estimation of the soil moisture.
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Three neural networks are developed for the estimation of mv, with and without a priori

information on the soil moisture state:

e Case 1: No a priori information is available on the soil moisture state. In this case mv

will be estimated between 2 and 40 vol.%.

e Case 2: A priori information is available on mv. The soil is supposed to be dry to
slightly wet according to expertise based mainly on meteorological data
(precipitations, temperature). Soil moisture values are assumed to range from 2 to 25

vol.%.

e Case 3: A priori information is available on mv. The soil is supposed to be very wet
according to expertise based on meteorological data. mv-values are assumed to vary
between 25 and 40 vol.%.

The three NNs use the backscattering coefficient in each SAR configuration (VV polarization
alone, VH polarization alone, VV and VH polarizations together) and the incidence angle as
input. The output is only the soil moisture mv. An overlapping of 10 vol.% on mv was used on
the training datasets of the two networks in the cases of a priori information on the soil
moisture mv. So that, in the case of dry to slightly wet soils, the mv-values used for the
training ranged from 2 to 30 vol.%. In the case of very wet soils, the mv-values used for the

training ranged from 20 to 40 vol.%.

Next, the soil roughness could be estimated at a fine spatial scale (plot or sub-plot scale) using
the soil moisture estimated by the first network. The standard acquisition mode of Sentinel-1
corresponds to acquisitions in both VV and VH polarizations. The Neural Networks used to
estimate the soil roughness use the backscattering coefficient in VV alone, VH alone, VV and
VH together and the incidence angle and the estimated soil moisture as input. The output is
the soil surface roughness. The validation of these NNs will be made using the soil moisture

estimated without and with a priori information on mv.
V.4 Results and discussion

The different neural networks are tested for the evaluation of the precision on soil roughness
estimates using synthetic (built from IEM model and Baghdadi model) and real datasets.
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V.4.1 Synthetic dataset

In this first approach, the estimation of soil roughness (Hrms) requires the use of an estimate
of the soil moisture (mv). First, we will discuss the performance of networks developed for the

estimation of mv. Then, network built for estimating Hrms is analyzed.

V.4.1.1 Estimation of mv
V.4.1.1.1 Using the IEM model

In order to estimate the soil moisture mv, three radar configurations will be tested: VV alone,
VH alone, VV and VH together.

V.4.1.1.1.1 Use of VV polarization alone

First the results are discussed in using the synthetic dataset simulated from the Integral
Equation Model (IEM). In the case of VV polarization and mv between 2 and 40 vol.%, the
RMSE on the mv estimates is of 4.89 vol.% for mv between 2 and 25 vol.% and 6.64 vol.%
for mv between 25 and 40 vol.%. An overestimation of +2.40 vol.% on mv is observed for mv
between 2 and 25 vol.%, and an underestimation of -3.84 vol.% is obtained for mv between 25
and 40 vol.%. For the entire range of mv, between 2 and 40%, the RMSE on mv is of 5.66
vol.% (Figure V.2a).

In the case where the NNs were trained using a priori information on mv with dry to slightly
wet soil conditions (training with mv between 2 and 30 vol.% and validation using mv
between 2 and 25 vol.%), results show that the introduction of a priori information on mv
improves the mv estimates. The RMSE on mv estimates decreases from 4.89 vol.% without a
priori information on mv to 3.58 vol.% in the case of a priori information on mv. In addition,
the difference between estimated and measured mv is also reduced from 2.40 vol.% to 1.06
vol.% (Figure V.2b).

In addition, the use of a priori information on mv in the case of very wet soil conditions also
improves the mv estimates. The RMSE on mv estimates decreases from 6.64 vol.% without a
priori information on mv to 5.04 vol.% in the case of a priori information on mv. In addition,
the difference between estimated and measured mv is also reduced from -3.84 vol.% to -2.29
vol.% (Figure V.2c).
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Figure V.2. Box plots of mv estimates retrieved from the synthetic dataset generated using
IEM. Neural networks were trained and validated using V'V polarization alone. (a): no a priori
information on mv; (b): with a prior information on mv and dry to slightly wet soil conditions;
(c): with a prior information on mv and very wet soil condition.

First the performance of the inversion algorithm was analyzed according to Hrms and
incidence angle "0" (Figure V.3) in the case without a priori on mv is used. For VV, results
show that the bias (estimated mv - measured mv) and the RMSE are strongly dependent on
Hrms (Figures V.3a and V.3b). The RMSE on mv in the case of inversion without a priori
information on mv increases from 4.40 vol.% for Hrms=0.5 cm to 7.0 vol.% for Hrms = 3.8
cm for mv between 2 and 25 vol.% (dry to slightly wet soils). In very wet soil conditions, the
RMSE on mv decreases from 11.5 vol.% for Hrms=0.5 cm to 4.0 vol.% for Hrms = 3.8 cm.

The high RMSE values of in the case of dry to slightly wet conditions and high Hrms-values
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are due to an overestimation of mv (bias increases from -3.0 to +5.0 vol.% for Hrms between
0.5 and 3.8 cm). Similarly, the high RMSE values in the case of very wet conditions and low
Hrms-values are due to an underestimation of mv (bias decreases from -11.0 to -1.5 vol.% for
Hrms between 0.5 and 3.8 cm). In addition, results show that the RMSE on mv slightly
depends on 6 in the case of no a priori information on mv (Figures V.3c and V.3d). The
RMSE on mv is between 4.2 vol.% (for 6=20°) and 5.0 vol.% (for 6 between 25° and 45°) for
dry to slightly wet soil conditions and between 6.0 and 7.0 vol.% for very wet soils. The
overestimation of mv in dry to slightly conditions is approximately +2.5 vol.% for 6 between
20° and 45°. For very wet soil conditions, the underestimation of mv is approximately -4.0
vol.% for 6 between 20° and 45°.

In the case of a priori information on mv with dry to slightly wet soil conditions, the RMSE
on mv estimates varies between 2.2 and 5.0 vol.% for all mv and Hrms values of the validation
synthetic dataset (case of dry to slightly wet conditions). The bias reduction varies between -
3.0 vol. % (low Hrms) and +3.0 vol.% (high Hrms). In addition, RMSE and bias on mv

estimates are slightly dependent on the incidence angle.

In the case of a priori information on mv with very wet soil conditions, the RMSE on mv
estimates varies between 4.3 and 7.0 vol.% for all mv and Hrms values of the validation
synthetic dataset in the case of very wet conditions. The highest RMSE-values correspond to
low Hrms-values. The bias is also well reduced mainly for low Hrms-values from -6.0 vol.%
to —1.0 vol.% for Hrms-values of 3.8 cm. The analysis of the RMSE and the bias shows
relatively close values according to the incidence angle. The RMSE is about 5.00 vol.% for
incidence angle between 20° and 45° and the bias is about -2.5 vol.% for incidence angle
between 20° and 45° (Figures V.3c and V.3d).
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Figure V.3. Accuracy on the mv estimates (RMSE and bias "=estimated — measured")
retrieved from the synthetic dataset in VV polarization using IEM. Three NNs are tested:
without a priori information on mv (case 1), with a priori information on mv with dry to
slightly wet soil conditions (case 2), with a priori information on mv with very wet conditions
(case 3).

V.4.1.1.1.2 Use of VH polarization alone

In the case of VH polarization and mv between 2 and 40 vol.%, the RMSE on the mv
estimates is of 5.27 vol.% for mv between 2 and 25 vol.% and 8.27 vol.% for mv between 25
and 40 vol.%. An overestimation of 2.94 vol.% on mv is observed for mv between 2 and 25
vol.%, and an underestimation of -4.64 vol.% is obtained for mv between 25 and 40 vol.%.
Moreover, the RMSE for all the range of mv between 2 and 40% is 6.63 vol.% (Figure V.4a).
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The RMSE on mv estimates decreases from 5.27 vol.% without a priori information on mv to
4.16 vol.% in the case of a priori information on mv for dry to slightly wet soil conditions.
Also, the difference between estimated and measured mv is well reduced (approximately by a
factor of 2) from 2.94 vol.% to 1.23 vol.% (Figure V.4b).
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Figure V.4. Box plots of mv estimates retrieved from the synthetic dataset generated using
IEM. Neural networks were trained and validated using VH polarization alone. (a): no a priori
information on mv; (b): with a prior information on mv and dry to slightly wet soil conditions;
(c): with a prior information on mv and very wet soil condition.

Results also show that the use of a priori information on mv in the case of very wet soil

conditions improves slightly the mv estimates. The RMSE on mv estimates decreases from
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8.27 vol.% without a priori information on mv to 5.06 vol.% in the case of a priori information
on mv. In addition, the difference between estimated and measured mv is also well reduced
from -4.64 vol.% to -2.26 vol.% (Figure V.4c).

First the performance of the inversion algorithm was analyzed according to Hrms and
incidence angle "0" in the case without a priori on mv is used. For VH polarization alone
(Figure V.5), the performance analysis of the inversion algorithm shows that the bias
(estimated mv - measured mv) and the RMSE on mv are strongly dependent on Hrms (Figures
V.5a and V.5b). The RMSE on mv in the case of inversion without a priori information on mv
increases from 6.60 vol.% for Hrms=0.5 cm to 7.0 vol.% for Hrms = 3.8 cm for mv between 2
and 25 vol.% (dry to slightly wet soils). In very wet soil conditions, the RMSE on mv
decreases from 19.0 vol.% for Hrms=0.5 cm to 4.0 vol.% for Hrms = 3.8 cm. The high RMSE
values of in the case of very wet conditions and low Hrms-values are due to an
underestimation of mv (bias increases from -19.0 to 0.0 vol.% for Hrms between 0.5 and 3.8
cm). Similarly, the high RMSE values in the case of dry to slightly wet conditions and low
Hrms-values are due to an overestimation of mv (bias increases from -6.0 to 6.0 vol.% for
Hrms between 0.5 and 3.8 cm). Moreover, results show that the RMSE on mv slightly
depends on O in the case of no a priori information on mv (Figures V.5c and V.5d). The
RMSE slightly decreases from 5.70 vol.% for 6=20° to 4.8 vol.% for 6 = 45° in the case of
dry to slightly wet soil conditions. It also slightly decreases from 8.5 vol.% for 6=20° to 7.5
vol.%(for 6 = 45° for very wet soils. The overestimation of mv in dry to slightly conditions is
approximately +3.0 vol.% for 6 between 20° and 45°. For very wet soil conditions, the

underestimation of mv is approximately about 5.0 vol.% for 6 between 20° and 45°.

In the case of a priori information on mv with dry to slightly wet soil conditions, the quality of
the estimation is also well improved when the accuracy on mv estimates is analyzed according
to Hrms and 6 (Figure V.5). The RMSE on mv estimates varies between 3.0 and 7.5 vol.% for
all mv and Hrms values of the validation synthetic dataset (case of dry to slightly wet
conditions). The bias reduction varies between -6.0 vol. % for low Hrms-values and +4.0
vol.% for high Hrms-values. In addition, RMSE and bias on mv estimates are slightly

dependent on the incidence angle.

In the case of a priori information on mv with very wet soil conditions, the RMSE on mv

estimates varies between 3.0 and 7.0 vol.% for all mv and Hrms values of the validation
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synthetic dataset (case of very wet conditions). The highest RMSE-values correspond to low
Hrms-values. The bias is also well reduced mainly for low Hrms-values from -6.0 vol.% for
Hrms-values of 0.5 cm to —1.0 vol.% for Hrms-values of 3.8 cm. The analysis of the RMSE
and the bias shows relatively close values according to the incidence angle. The RMSE is
about 5.00 vol.% for incidence angle between 20° and 45° and the bias is about -2.5 vol.%
for incidence angle between 20° and 45° (Figures V.5c¢ and V.5d).
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Figure V.5. Accuracy on the mv estimates (RMSE and Bias "=estimated — measured")
retrieved from the synthetic dataset in VH polarization using IEM. Three NNs are tested:
without a priori information on mv (case 1), with a priori information on mv with dry to
slightly wet soil conditions (case 2), with a priori information on mv with very wet conditions
(case 3).
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V.4.1.1.1.3 Use of VV and VH polarizations together

In the case of VV and VH polarizations together and mv between 2 and 40 vol.%, the RMSE
on the mv estimates is of 4.33 vol.% for mv between 2 and 25 vol.% and 6.27 vol.% for mv
between 25 and 40 vol.%. An overestimation of +2.vol.% on mv is observed for mv between 2
and 25 vol.%, and an underestimation of -3.23 vol.% is obtained for mv between 25 and 40

vol.%. For the entire range of mv, between 2 and 40%, the RMSE on mv is of 5.19 vol.%
(Figure V.6a).
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Figure V.6. Box plots of mv estimates retrieved from the synthetic dataset generated using
IEM. Neural networks were trained and validated using VV and VH polarization together. (a):
no a priori information on mv; (b): with a prior information on mv and dry to slightly wet soil
conditions; (c): with a prior information on mv and very wet soil condition.
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With a priori information on mv with dry to slightly soil conditions, the RMSE on mv
estimates decreases from 4.33 vol.% without a priori information on mv to 3.26 vol.% in the
case of a priori information on mv. In addition, the difference between estimated and

measured mv is also reduced from +2.00 vol.% to +0.91 vol.% (Figure V.6Db).

The use of a priori information on mv in the case of very wet soil conditions improves the
estimation of mv. The RMSE on mv estimates decreases from 6.27 vol.% without a priori
information on mv to 4.85 vol.% in the case of a priori information on mv. Also, the difference
between estimated and measured mv is reduced from -3.23 vol.% to -2.02 vol.% (Figure
V.6c).

First the performance of the inversion algorithm was analyzed according to Hrms and
incidence angle "0" in the case without a priori on mv is used (Figure V.7). Results show that
the RMSE on mv in the case of inversion without a priori information on mv increases from
4.80 vol.% for Hrms=0.5 cm to 7.0 vol.% for Hrms = 3.8 cm in dry to slightly wet soil
conditions (mv between 2 and 25 vol.%) (Figures V.7a and V.7b). In very wet soil conditions,
the RMSE on mv decreases from 12.50 vol.% for Hrms=0.5 cm to 4.0 vol.% for Hrms = 3.8
cm. The high RMSE values in the case of very wet conditions and low Hrms-values are due to
an underestimation of mv (bias increases from -5.0 to +5.0 vol.% for Hrms between 0.5 and
3.8 cm). Similarly, the high RMSE values in the case of dry to slightly wet conditions and low
Hrms-values are due to an overestimation of mv (bias increases from —12.0 to 0.0 vol.% for
Hrms between 0.5 and 3.8 cm). Moreover, results show that the RMSE on mv slightly
depends on 6 in the case of no a priori information on mv in the inversion process in the case
of VV and VH polarizations together (Figures V.7c and V.7d). The RMSE is approximately
about 6.0 vol.% for 6 between 20° and 45° for dry to slightly wet soil conditions and about
4.50 vol.% for 6 between 20° and 45° for very wet soils. The overestimation of mv in dry to
slightly conditions is approximately +2.0 vol.% for 6 between 20° and 45°. For very wet soil
conditions, the underestimation of mv is approximately about -3.0 vol.% for 6 between 20°
and 45°.

With a priori information on mv with dry to slightly soil conditions, the estimation quality is
also well improved when the accuracy on mv estimates is analyzed according to Hrms and ©

(Figures V.7). The RMSE on mv estimates varies between 2.0 and 5.0 vol.% for all mv and
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Hrms values of the validation synthetic dataset (case of dry to slightly wet conditions). The

bias reduction varies between -4.0 vol. % (low Hrms) and +4.0 vol.% (high Hrms). Finally,

RMSE and bias on mv estimates are slightly dependent on the incidence angle. The RMSE is

about 3.00 vol. % for incidence angle between 20° and 45° and the bias is about -2.50 vol. %

for incidence angle between 20° and 45°.
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retrieved from the synthetic dataset in VV and VH polarizations together using IEM. Three
NNs are tested: without a priori information on mv (case 1), with a priori information on mv
with dry to slightly wet soil conditions (case 2), with a priori information on mv with very wet
conditions (case 3).
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With a priori information on mv with very wet soil conditions, the RMSE on mv estimates
varies between 3.0 and 7.0 vol.% for all mv and Hrms values of the validation synthetic
dataset in the case of very wet conditions. The highest RMSE-values correspond
approximately to low Hrms-values. The bias is also well reduced mainly for low Hrms-values
from -6.0 vol.% for Hrms-values of 0.5 cm to +1.0 vol.% for Hrms-values of 3.8 cm.
According to the incidence angle, the RMSE and the bias shows relatively close values. The
RMSE is about 4.9 vol.% for incidence angle between 20° and 45° and the bias is about -2.0
vol.% for incidence angle between 20° and 45° (Figures V.7c and V.7d).

V.4.1.1.2 Using Baghdadi model

Three radar configurations will be tested in order to analyze the accuracy on mv estimates:
VV alone, VH alone, VV and VH together.

V.4.1.1.2.1 Use of VV polarization alone

In the case of no a priori information on mv, the RMSE on the mv estimates is of 7.03 vol.%
for mv between 2 and 25 vol.% and 8.43 vol.% for mv between 25 and 40 vol.%. An
overestimation of +3.39 vol.% on mv is observed for mv between 2 and 25 vol.%, and an
underestimation of -5.09 vol.% is obtained for mv between 25 and 40 vol.%. For the entire
range of mv, between 2 and 40%, the RMSE on mv is of 7.62 vol.% (Figure V.8a).

Results show that the introducing of a priori information on mv improves the mv estimates.
The RMSE on mv estimates decreases from 7.03 vol.% without a priori information on mv to
5.88 vol.% in the case of a priori information on mv for dry to slightly wet soil conditions. In
addition, the difference between estimated and measured mv is also reduced from +3.39 vol.%
to +1.64 vol.% (Figure V.8b).The use of a priori information on mv in the case of very wet
soil conditions improves the mv estimates. The RMSE on mv estimates decreases from 8.43
vol.% without a priori information on mv to 4.79 vol.% in the case of a priori information on
mv. In addition, the difference between estimated and measured mv is also well reduced from
-5.09 vol.% to -1.52 vol.% (Figure V.8c).
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Figure V.8. Box plots of mv estimates retrieved from the synthetic dataset generated using
Baghdadi model. Neural networks were trained and validated using VV polarization alone.
(a): no a priori information on mv; (b): with a prior information on mv and dry to slightly wet

soil conditions (mv between 2 and 25 vol.%); (c): with a prior information on mv and very wet
soil condition (mv between 25 and 40 vol.%).

The performance of the algorithm was also analyzed according to Hrms and the incidence
angle "0" (Figure V.9). Results show that the bias (estimated mv - measured mv) and the
RMSE are strongly dependent on Hrms and 6. According to Hrms, the RMSE on mv in the
case of inversion without a priori information on mv increases from 6.0 vol.% for Hrms=0.5
cm to 10.0 vol.% for Hrms = 3.8 cm in the case of dry to slightly wet soils. In very wet soil

conditions, the RMSE on mv decreases from 14.5 vol.% for Hrms=0.5 cm to 4.0 vol.% for
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Hrms = 3.8 cm. The high RMSE values of in the case of dry to slightly wet conditions and
high Hrms-values are due to an overestimation of mv (bias increases from -2.5 to +8.0 vol.%
for Hrms between 0.5 and 3.8 cm). Similarly, the high RMSE values in the case of very wet
conditions and low Hrms-values are due to an underestimation of mv (bias about -13.0 for

Hrms=0.5cm).

According to the incidence angle "6", results show that the RMSE on mv is strongly
dependent on 0 in the case of no a priori information on mv (Figures V.9c and V.9d). The
RMSE increases from 4.0 vol.% (for 6=20°) to 9.0 vol.% (for 6= 45°) for dry to slightly wet
soils and increases from 4.0 (for 6=20°) to 11.0 vol.% (for 6=45°) for very wet soil
conditions. In the case of dry to slightly wet conditions with high incidence angle values, the
high RMSE values are due to an overestimation of mv (bias increases from +1.0 to +5.5 vol.%
for 6 between 20° and 45°). Similarly, the high RMSE values in the case of very wet
conditions and high incidence angle values are due to an underestimation of mv (bias

decreases from -1.5 to -9.0 vol.% for 6 between 20° and 45°).

The RMSE on mv estimates varies slightly with Hrms in the case of a priori information on
mv for dry to slightly wet soils (between 6.0 and 7.1 vol.%) (Figure V.9).In addition, RMSE
and bias on mv estimates are also dependent on the incidence angle "6". The RMSE increases
from 4.0 vol. % for 6=20° to 7.0 vol. % for 6=45°. The overestimation of mv increases from
+1.0 to +2.5 vol.% for 6 between 20° and 45°.

Figure V.9 shows that the RMSE on mv estimates is well reduced in the case of a priori
information on mv for very wet soil conditions (it varies between 4.0 and 7.0 vol.%). The
highest RMSE-values correspond to low Hrms-values. The underestimation of mv is well
reduced mainly for low Hrms-values from -13.0 vol.% without a priori information on mv to -
6.0 vol.% with a prior information on mv (case of very wet conditions). In addition, the
analysis of the RMSE on mv estimates shows that the RMSE is well reduced mainly for high
incidence angles (6=45°) from 11.0 vol.% without a priori information on mv to 5.1 vol.%
with a priori information on mv. Moreover, the underestimation on mv is well decreased from
-9.0 vol.% .% without a priori information on mv to -2.5 vol.% with a priori information on

mv (case of very wet conditions and 6=45°).
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Figure V.9. Accuracy on the mv estimates (RMSE and bias "=estimated — measured")
retrieved from the synthetic dataset in VVV polarization using Baghdadi model. Three NNs are
tested: without a priori information on mv (case 1), with a priori information on mv with dry
to slightly wet soil conditions (case 2), with a priori information on mv with very wet
conditions (case 3).

V.4.1.1.2.2 Use of VH polarization alone

In using VH alone, the RMSE on mv is of 6.05 vol.% in the case of no a priori information on
mv (Figure V.10a). For mv between 2 and 25 vol.%, the RMSE on mv is of 5.91 vol.%. It is of
6.25 vol.% for mv between 25 and 40 vol.%. An overestimation of +2.08 vol.% on mv is
observed for mv between 2 and 25 vol.%, and an underestimation of -3.15 vol.% is obtained
for mv between 25 and 40 vol.%.
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Results show that the introduction of a priori information on mv improves the mv estimates.
The RMSE on mv estimates decreases from 5.91 vol.% without a priori information on mv to
5.15 vol.% in the case of a priori information on mv for dry to slightly wet soils. For very wet
soils, the RMSE on mv estimates decreases from 6.27 vol.% without a priori information on
mv to 4.34 vol.% in the case of a priori information on mv. In addition, the difference between
estimated and measured mv is also reduced from +2.08 vol.% to +1.19 vol.% for dry to

slightly soils (Figure V.10b) and from -3.15 vol.% to -1.62 vol.% for very wet soils (Figure
V.10D).
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Figure V.10. Box plots of mv estimates retrieved from the synthetic dataset generated using
Baghdadi model. Neural networks were trained and validated using VH polarization alone.
(a): no a priori information on mv; (b): with a prior information on mv and dry to slightly wet

soil conditions (mv between 2 and 25 vol.%); (c): with a prior information on mv and very wet
soil condition (mv between 25 and 40 vol.%).
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The analysis of the accuracy on mv estimates shows that the bias (estimated mv - measured
mv) and the RMSE are strongly dependent on both Hrms and incidence angle 6" (Figure
V.11). According to Hrms, The RMSE on mv in the case of inversion without a priori
information on mv increases from 5.50 vol.% for Hrms=0.5 cm to 7.50 vol.% for Hrms = 3.8
cm for mv between 2 and 25 vol.% (dry to slightly wet soils). In very wet soil conditions, the
RMSE on mv decreases from 10.0 vol.% for Hrms=0.5 cm to 4.5 vol.% for Hrms = 3.8 cm.
The high RMSE values of in the case of dry to slightly wet conditions and high Hrms-values
are due to an overestimation of mv (bias about +6.0 vol.% for Hrms=3.8 cm). Similarly, the
high RMSE values in the case of very wet soils and low Hrms-values are due to an

underestimation of mv (bias about -7.0 vol.% for Hrms=0.5 cm).

In the case of a priori information on mv, the RMSE on mv estimates varies between 5.5 and
6.0 vol.% for dry to slightly wet soil conditions and between 6.0 and 8.0 vol.% for very wet
soils (FigureV.11).

According to the incidence angle 6, results show that the RMSE on mv is strongly dependent
on 6 (Figures V.11c and V.11d). In the case of no a priori information on mv, the RMSE
increases from 3.5 vol.% for 6=20° to 7.9 vol.% for 6= 45° for dry to slightly wet soils and
increases from 3.3 for 6=20° to 9.0 vol.% for 6= 45° for very wet soils. In the case of a priori
information on mv, the RMSE increases from 3.25 vol. % for 6=20° to 6.5 vol. % for 6=45°
for dry to slightly wet soils. For a priori information on mv and very wet soils, the RMSE on
mv estimates is well reduced for high incidence angles (6=45°) from 9.0 vol.% without a prior
information on mv to 5.0 vol.% with a prior information on mv. In using a priori information
on mv, the bias is slightly dependent on 6 (between +1.0 and +2.5 vol.% for 6 between 20°
and 45° in the case of dry to slightly wet soils and between -1.0 and -2.5 vol.% for 6 between

20° and 45° in the case of very wet soils).
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Figure V.11. Accuracy on the mv estimates (RMSE and bias "=estimated — measured")
retrieved from the synthetic dataset in VH polarization using Baghdadi model. Three NNs are
tested: without a priori information on mv (case 1), with a priori information on mv with dry
to slightly wet soil conditions (case 2), with a priori information on mv with very wet
conditions (case 3).

V.4.1.1.2.3 Use of VV and VH polarizations together

In using VV and VH polarizations together without a priori information on mv, the RMSE on
the mv estimates is of 5.68 vol.% for mv between 2 and 25 vol.% and 6.14 vol.% for mv
between 25 and 40 vol.%. An overestimation of +1.98 vol.% on mv is observed for mv
between 2 and 25 vol.%, and an underestimation of -2.94 vol.% is obtained for mv between
25 and 40 vol.%. For mv between 2 and 40 vol.%, the RMSE on mv is of 5.87 vol.% (Figure
V.123).
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The introduction of a priori information on mv in the case of dry to slightly wet soil conditions
improves the mv estimates. The RMSE decreases from 5.68 vol.% without a priori
information on mv to 4.97 vol.% in the case of a priori information on mv. In addition, the
difference between estimated and measured mv is also reduced from +1.98 vol.% to +1.11
vol.% (Figure V.12c). The RMSE on mv estimates in the case of very wet soil conditions
decreases from 6.14 vol.% without a priori information on mv to 4.24 vol.% in the case of a
priori information on mv. In addition, the difference between estimated and measured mv is
also well reduced from -2.94 vol.% to -1.52 vol.% (Figure V.12c).
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Figure V.12. Box plots of mv estimates retrieved from the synthetic dataset generated using
Baghdadi model. Neural networks were trained and validated using VV and VH polarization
together. (a): no a priori information on mv; (b): with a prior information on mv and dry to
slightly wet soil conditions (mv between 2 and 25 vol.%); (c): with a prior information on mv
and very wet soil condition (mv between 25 and 40 vol.%).
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The analysis of the accuracy on mv estimates according to Hrms shows similar results than in
the case of VV alone. The RMSE on mv in the case of inversion without a priori information
on mv increases from 5.0 vol.% for Hrms=0.5 cm to 7.0 vol.% for Hrms = 3.8 cm for dry to
slightly wet soils and decreases from 10.0 vol.% for Hrms=0.5 cm to 4.0 vol.% for Hrms =

3.8 cm for very wet soil conditions (Figure V.13).
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Figure V.13. Accuracy on the mv estimates (RMSE and bias "=estimated — measured™)
retrieved from the synthetic dataset generated from Baghdadi model. VV and VH are used
together. Three NNs are tested: without a priori information on mv (case 1), with a priori
information on mv with dry to slightly wet soil conditions (case 2), with a priori information
on mv with very wet conditions (case 3).

Figure V.13b shows that the bias on mv estimates increases when Hrms increases. According

to the incidence angle "6", results show that the RMSE on mv is strongly dependent on 6 in
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the case of no a priori information on mv (Figures V.13c and V.13d). The RMSE increases
from 3.0 vol.% for 6=20° to 8.0 vol.% for 6= 45° for dry to slightly wet soil conditions and

increases from 3.0 for 6=20° to 9.0 vol.% for 6= 45° for very wet soils.

In the case of a priori information on mv, the RMSE on mv shows slight dependence with
Hrms and the incidence angle (Figures V.13a and V.13c).

V.4.1.1.3 Conclusion

Using the two models (IEM and Baghdadi), the use of a priori information on mv strongly
improves the estimation of mv. With IEM, better results are obtained with VVV polarization.
The use of VV and VH together provides similar performances than those obtained with VV
alone. For the range of surface roughness the most encountered in agricultural environments
with Hrms between 1 and 2 cm, results show that the RMSE on mv in VV polarization varies
between 3.0 and 6.0 vol.%. The difference between estimated and real mv varies between -1.0
and +1.0 vol.% in the case of dry to slightly wet soils. An underestimation of mv from -4.5 to

-2.5 vol.% in the case of very wet soils is observed for Hrms between 1 and 2 cm.

The use of Baghdadi model shows slightly better results when VV and VH are used together
(RMSE about 5.9 vol.% with VV alone, 5.2 vol.% with VH alone and 4.9 vol.% with VV and
VH together). For surface roughness between 1 and 2 cm, the RMSE on mv varies between
3.9 and 5.5 vol.%. The difference between estimated and real mv varies between -0.5 and +2.0
vol.% in the case of dry to slightly wet soils. An underestimation of mv from -4.0 to -1.3

vol.% is observed in the case of very wet soils are observed for Hrms between 1 and 2 cm.

In a comparison between the two models with Hrms ranged between 1 and 2 cm, Baghdadi
model shows slightly better results than IEM model mainly with VH polarization alone and
with VV and VH polarizations together. Using the IEM model, results show slightly better
results for Hrms between 1 and 2 cm with VV than with VH alone or with VV and VH

polarizations together.

V.4.1.2 Estimation of Hrms

The estimation of the soil roughness (Hrms) is carried out after a first step which consisted to
estimate mv. Indeed, the neural network (NN) which should estimate Hrms needs an estimate
of mv. The two conditions on the soil moisture state are considered in input to the NN: no a

priori information on mv, a priori information on mv (dry to slightly wet soil conditions or
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very wet soils). As input to the network, these are the mv estimated by the previous networks
built to estimate mv which are used. In addition to these cases corresponding to operational
conditions for estimating soil roughness, the configuration where the input mv to the network
corresponds to exact mv without estimation error (those that are in the validation dataset) is

also tested.

According to the results obtained on the estimation of the soil moisture mv, results showed
that the IEM model shows better performance in using VV polarization in comparison to VH
alone or to the use of VV and VH together. Baghdadi model provides better results in using
VV and VH polarizations together in comparison to VV alone or to the use of VH alone.
Therefore, in the case of surface roughness (Hrms) estimation, only the results obtained from
the IEM model corresponding to VV alone and results obtained from Baghdadi model
corresponding to VV and VH polarizations together are presented briefly. Other results
corresponding to VH alone, VV and VH polarizations together for data generated from the
IEM model and corresponding to the use of VV alone and VH alone for data generated from
Baghdadi model are presented in Annex 1 and Annex 2, respectively.

V.4.1.21 Using IEM model

Figure 1V.8 shows the results for estimating the soil roughness using the synthetic dataset
generated from the IEM model with VV polarization alone. Better estimates of Hrms are
obtained when the mv used at the input of the NN corresponds to the exact mv (RMSE=0.72
cm). The results obtained using the mv estimated without and with a priori information on mv
are with a higher RMSE, respectively 1.01 cm and 0.94 cm. This shows that the use of mv
estimates with an accuracy of about 5 vol.% is not sufficient to accurately estimate the soil
roughness in C-band and VV polarization. In addition, figure V.14 shows an overestimation

of Hrms for low Hrms-values and an underestimation of Hrms for Hrms higher than 2 cm.
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Figure V.14. Box plots of Hrms (cm) retrieved from the synthetic dataset generated from the
IEM model in using VV polarization. (a) the input mv to the NN corresponds to exact mv
(those that are in the validation dataset without estimation error), (b) the input mv to the NN
corresponds to mv estimated by the NN built for estimating mv without a priori information on
mv, (c) the input mv to the NN corresponds to mv estimated by the NN built for estimating mv
with a priori information on mv.

The performance of the neural network is also studied as a function of mv and the incidence
angle (6) only when the mv in input to the NN corresponds to the exact mv (without
estimation error) (Figure V.15). The RMSE on Hrms decreases from 0.84 cm for mv=2 vol.%
to 0.70 cm for mv higher than 15 vol.%. In addition, the RMSE on Hrms decreases when the
incidence angle increases (Figure V.15a). The RMSE on Hrms shows values between 0.92 cm
for 6=20° and 0.65 cm for 6=45° (Figure V.15b). This is due to the sensitivity of radar signal

to 6, much stronger for high values of Hrms than for low values of Hrms (Baghdadi et al.,
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2002a).The difference between estimated and exact Hrms very low dependence on reference
mv and the incidence angle (Figure V.15c and V.15d).
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Figure V.15. Accuracy on the Hrms estimates (RMSE and Bias) as a function of the soil
moisture and the incidence angle for VV polarization using the synthetic data generated from
the IEM model (mv in input corresponds to exact mv, without estimation error).

V.4.1.2.2 Using Baghdadi model
Results corresponding to the use of synthetic dataset generated from Baghdadi model in VV
and VH polarizations together are shown in Figure V.16. Better estimations are observed for

Hrms when the mv used at the input of the NN corresponds to the exact mv (RMSE=0.60 cm).
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Figure V.16. Box plots of Hrms retrieved from the synthetic dataset generated from Baghdadi
model in using VV and VH polarizations together. (a) the input mv to the NN corresponds to
real mv (those that are in the validation dataset), (b) the input mv to the NN corresponds to mv
estimated by the NN built for estimating mv without a priori information on mv (with
estimation error), (c) the input mv to the NN corresponds to mv estimated by the NN built for
estimating mv with a priori information on mv (with estimation error).

The results obtained using the mv estimated without or with a priori information on mv show
higher RMSE with respectively 0.84 cm and 0.78 cm. This shows that the use of mv estimates
with an accuracy of about 5 vol.% is not sufficient to accurately estimate the soil roughness in
C-band and VV polarization. In addition, figure V.20 shows an overestimation of Hrms for
low Hrms-values and an underestimation of Hrms for Hrms higher than 2 cm when the mv
used in the NN is estimated without or with a priori information on mv (Figure V.16b and
Figure V.16c¢).
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The performance of the neural network is also studied as a function of mv and 6 only when
the mv in input to the NN corresponds to the exact mv (without estimation error) (Figure
V.17). The RMSE on Hrms is about 0.6 cm for all mv between 2 and 40 vol.%. In addition,
the RMSE on Hrms decreases when the incidence angle increases. The RMSE on Hrms shows
values between 0.78 cm for 6=20° and 0.50 cm for 6=45°. In addition, The difference
between estimated and exact Hrms very low dependence on reference mv and the incidence
angle (Figure V.17c and V.17d).

The comparison between Figure V.14 (using IEM) and Figure V.16 (using Baghdadi model)
shows that the estimation of Hrms seems better in using the Baghdadi model.
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Figure V.17. Accuracy on the Hrms estimates (RMSE and Bias) as a function of the soil
moisture and the incidence angle for VV and VH polarizations together using the synthetic
data generated from Baghdadi model (mv in input corresponds to exact mv, without estimation
error).
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V.4.2 Real dataset

The NNs built for estimating mv and Hrms are then analyzed using the real Sentinel-1 dataset.

V.4.2.1 Estimation of soil moisture (mv)

V.4.2.1.1 Using the IEM model

For VV polarization alone and using the IEM model, the results obtained for the estimation of
mv are shown in Figure V.18. Results show that the introduction of a priori information on mv
provides better accuracy on the mv estimates than the case without a priori information on mv

(RMSE=6.00 vol.% with a priori information on mv and RMSE=7.25 vol.% without a priori

Bias =-2.82vol.% Bias =-1.89vol.%
RMSE = 7.25vol.% RMSE = 6.00vol.%

on mv).
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Figure V.18. Retrieved mv versus in situ measurements in using the IEM model. (a): using
VV without a priori information on mv; (b): using VV with a priori information on mv. Each
point corresponds to one reference plot.

For VH polarization alone, the results obtained for the estimation of mv are shown in Figure
V.19. Better resulys are obtained when a priori information on mv is used (RMSE=5.63vol.%
with a priori on mv and RMSE=7.52 vol.% without a priori on mv). In the case of VV and
VH polarizations together, the results obtained for the estimation of mv are shown in Figure
V.20. The use of introduction of a priori information on mv provides better accuracy on the
mv estimates than the case without a priori information on mv (RMSE=5.79 vol.% with a

priori on mv and RMSE=7.46 vol.% without a priori on mv).
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The analysis of the difference between the estimated and measured mv shows that the strong

underestimates of the mv corresponds to low Hrms-values (Hrms<2 cm) and the strong

overestimates corresponds to high Hrms-values (Hrms>2 cm).
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Figure V.19. Retrieved mv versus in situ measurements in using the IEM model. (a): using
VH without a priori information on mv; (b): using VH with a priori information on mv. Each

point corresponds to one reference plot.
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Figure V.20. Retrieved mv versus in situ measurements in using the IEM model. (a): using
VV and VH together without a priori information on mv; (b): using VV and VH together with
a priori information on mv. Each point corresponds to one reference plot.
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V.4.2.1.2 Using Baghdadi model

Using Baghdadi model for VVV polarization alone, the results obtained for the estimation of
mv are shown in Figure V.21. Results show that the introduction of a priori information on mv
provides better accuracy on the mv estimates than the case without a priori information on mv
(RMSE=5.58 vol.% with a priori on mv and RMSE=7.00 vol.% without a priori on mv).
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Figure V.21. Retrieved mv versus in situ measurements in using Baghdadi model. (a): using
VV without a priori information on mv; (b): using VV with a priori information on mv. Each
point corresponds to one reference plot.

Figure V.22 shows the results obtained for the estimation of mv in the case of VH polarization
alone. Better results are obtained when a priori information on mv is used (RMSE=6.45 vol.%
with a priori on mv and RMSE=7.97 vol.% without a priori on mv). Figure V.23 shows the
results obtained for the estimation of mv in the case of VV and VH polarizations together. An
RMSE of 6.67 vol.% is obtained with the introduction of a priori information on mv and an

RMSE of 8.25 vol.% in the case without a priori information on mv.
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Figure V.22. Retrieved mv versus in situ measurements in using Baghdadi model. (a): using
VH without a priori information on mv; (b): using VH with a priori information on mv. Each
point corresponds to one reference plot.
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Figure V.23. Retrieved mv versus in situ measurements in using Baghdadi model. (a): using
VV and VH together without a priori information on mv; (b): using VV and VH together with
a priori information on mv. Each point corresponds to one reference plot.

(b)

V.4.2.2 Estimation of surface roughness (Hrms)
The results of the estimation of Hrms are done in using two inversion configurations:

- At the input of the network for the estimation of Hrms, the mv used corresponds to mv
estimated at plot scale (using the mean radar signal calculated by averaging for each

reference plot the values of all pixels within the reference plot).
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- At the input of the network for the estimation of Hrms, the mv used corresponds to mv
estimated at the scale of the study site (using the mean radar signal calculated by
averaging the values of all bare soil pixels within the study site). This second approach
assumes that the soil moisture is of the same order for all bare agricultural plots
located in the area under consideration (no irrigation activities and similar soil
composition). The use of mv estimated at the scale of the study site in the estimation
technique of Hrms could be relevant only when the study site is not irrigated. Indeed,
if the SAR images are acquired during the dry season with irrigation activities on the
study site, the use of an average soil moisture estimated at the scale of the study site
(average mv calculated on all the bare soil agricultural plots) will lead to a strong
overestimation of Hrms since the mv used for irrigated plots in the neural network for

estimating Hrms will most probably be underestimated.

For these two configurations a priori information on mv is used in the network for estimating

mv.

V.4.2.2.1 Using the IEM model

In the case of VV polarization alone, results show that the accuracy on the estimates of Hrms
is similar in using the mv estimated at the study site scale (a few tens of km?2) and in using the
mv estimated at the plot scale. The RMSE is of 0.98 cm when the mv used correspond to mv
estimated at the scale of the study site and of 0.81 cm when the mv is estimated at the plot
scale (Figure V.24). Figure V.25 shows the result using VH alone. The accuracy on the
estimates of Hrms is mostly the same in using the mv estimated at the study site scale (RMSE
=0.82cm) and in using the mv estimated at the plot scale (RMSE=0.74 cm). In the case of VV
and VH used together, results show that the accuracy on the estimates of Hrms is better in
using the mv estimated at the plot scale (RMSE = 0.81 cm ) than in using the mv estimated at
the study site scale (RMSE =1.31 cm) (Figure V.26).
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Figure V.24. Retrieved Hrms versus measured measurements in V'V polarization alone using
the NN trained with synthetic data simulated from IEM model. (a): the mv used at the input of
the network corresponds to mv estimated at plot scale; (b): the mv used at the input of the
network corresponds to mv estimated at the scale of the study site.
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Figure V.25. Retrieved Hrms versus measured measurements in VVH polarization alone using
the NN trained with synthetic data simulated from IEM model. (a): the mv used at the input of
the network corresponds to mv estimated at plot scale; (b): the mv used at the input of the
network corresponds to mv estimated at the scale of the study site.
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Figure V.26. Retrieved Hrms versus measured measurements in VV and VH polarizations
together using the NN trained with synthetic data simulated from IEM model. (a): the mv used
at the input of the network corresponds to mv estimated at plot scale; (b): the mv used at the
input of the network corresponds to mv estimated at the scale of the study site.

V.4.2.2.2 Using Baghdadi model

With VV polarization alone, the accuracy on the estimates of Hrms is mostly the same in
using the mv estimated at the study site scale and in using the mv estimated at the plot scale
with RMSE of 1.04 cm and 0.95 cm, respectively (Figure V.27). Figure V.28 shows the result
according to VH polarization alone. The precision on the estimates of Hrms is similar in using
the mv estimated at the study site scale is approximately the same as in using the mv estimated
at the plot scale (RMSE of 0.92 cm and of 0.84 cm, respectively). Figure V.29 shows that the
estimation of Hrms using VV and VH together is carried out with a precision about 1.0 cm for

the two inversion configurations.
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Figure V.27. Retrieved Hrms versus measured measurements in V'V polarization alone using
the NN trained with synthetic data simulated from Baghdadi model. (a): the mv used at the
input of the network corresponds to mv estimated at plot scale; (b): the mv used at the input of
the network corresponds to mv estimated at the scale of the study site.
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Figure V.28. Retrieved Hrms versus measured measurements in VVH polarization alone using
the NN trained with synthetic data simulated from Baghdadi model. (a): the mv used at the
input of the network corresponds to mv estimated at plot scale; (b): the mv used at the input of
the network corresponds to mv estimated at the scale of the study site.
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Figure V.29. Retrieved Hrms versus measured measurements in VV and VH polarizations
together using the NN trained with synthetic data simulated from Baghdadi model. (a): the mv
used at the input of the network corresponds to mv estimated at plot scale; (b): the mv used at
the input of the network corresponds to mv estimated at the scale of the study site.

V.4.2.2.3 Discussion

Results obtained in using the NN built with a priori information on mv show estimates of
Hrms with an RMSE higher than 0.7 cm. This accuracy on Hrms obtained shows that the use
of mv estimates with an accuracy of about 6 vol.% is not sufficient to accurately estimate the
soil roughness in C-band. From the real dataset, results show that the accuracy on Hrms
estimates in using the mv estimated at the study site scale is similar to that in using the mv
estimated at the plot scale. The use of mv estimated at the scale of the study site is possible
only when the study site is not irrigated. In addition, results are similar using the neural
networks trained with data simulated from IEM model and Baghdadi model.

This first study on the potential of Sentinel-1 data for estimating the soil roughness shows that
the development of an automatic and generalizable inversion procedure of the C-band radar
signal does not allow a pertinent estimation of the soil roughness. The accuracy on soil
roughness estimates obtained in this study cannot satisfy the requirements of operational users
of soil roughness products (in particular to modelers) because the need is at least three

roughness classes: smooth (sowing), medium (small plowing) and rough (large plowing).

Only methods based on the use of experimental relationships, which are often difficult to
apply to sites other than those for which they were developed and are generally valid only for
specific soil conditions, allows the mapping of three roughness classes (Baghdadi et al.,

2002a). Indeed, different experimental studies have revealed that the sensitivity of the radar
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signal to surface roughness (i.e. the slope of the regression lines) can be highly variable from
one site to another. In addition, the experimental relationships between the radar signal and
Hrms are established for a given incidence angle and a range of soil moisture. The soil
composition could be also different from one site to another. All these reasons explain why

the experimental relationships are not generalizable.

V.4.3 Estimation of Hrms and mv both at very high spatial resolution "VHSR"”

In this second approach, soil roughness Hrms estimates are analyzed when the output of the
neural network is both soil moisture and surface roughness at the same time. In this
configuration, both VV and VH polarizations are used as input of the neural networks. The

transfer function that are used in the Neural Networks for this configuration is Logsig.

Three neural networks are analyzed corresponding to the three cases of soil moisture

conditions with and without a priori information on the soil moisture state:

e Case 1: No a priori information on the soil moisture state is available. In this case mv

will be estimated between 2 and 40 vol.%.

e Case 2: A priori information is available on mv. The soil is supposed to be dry to
slightly wet according to expertise based mainly on meteorological data
(precipitations, temperature). Soil moisture values are assumed to range from 2 to 25

vol.%.

e Case 3: A priori information is available on mv. The soil is supposed to be very wet
according to expertise based on meteorological data. mv-values are assumed to vary
between 25 and 40 vol.%.

The three NNs use the backscattering coefficients in VV and VH polarizations and the
incidence angle as input. The NN outputs are the soil moisture mv and the surface roughness
Hrms. An overlapping of 10 vol.% on mv was used on the training datasets of the two
networks in the case of a priori information on the soil moisture mv. So that, in the case of dry
to slightly wet soils, the mv-values used for the training is ranged from 2 to 30 vol.%. In the

case of very wet soils, the mv-values used for the training is ranged from 20 to 40 vol.%.

The different neural networks are tested for the evaluation of the precision on soil roughness

and moisture estimates using synthetic and real datasets.
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V.4.3.1 Synthetic dataset

First, we will discuss the performance of networks for the estimation of mv. Then, the

performance of the same networks for estimating Hrms is analyzed.

V.4.3.1.1 Estimation of mv
V.4.3.1.1.1  Using the IEM model

In the case of no a priori information on mv, the RMSE on the mv estimates is of 4.55 vol.%
for mv between 2 and 25 vol.% and 6.37 vol.% for mv between 25 and 40 vol.%, with an
overestimation of +2.14 vol.% and an underestimation of -3.22 vol.% on mv respectively for
each mv range. For the entire range of mv, between 2 and 40%, the RMSE on mv is of 5.35
vol.% (Figure V.30a).

In the case where the NNs were trained using a priori information on mv with dry to slightly
wet soil condition, the RMSE on mv estimates decreases from 4.55 vol.% without a priori
information on mv to 3.40 vol.% in the case of a priori information on mv. In addition, the
difference between estimated and measured mv is also reduced from +2.14 vol.% to +1.01
vol.% (Figure V.30b).

In addition, the use of a priori information on mv in the case of very wet soil conditions also
improves the mv estimates. The RMSE on mv estimates decreases from 6.37 vol.% without a
priori information on mv to 4.89 vol.% in the case of a priori information on mv. Also, the
difference between estimated and measured mv is reduced from -3.23 vol.% to -1.96 vol.%
(Figure V.30c).

The performance of the inversion algorithm was analyzed according to Hrms and incidence
angle "0" (Figure V.31). Results show that the bias (estimated mv - measured mv) and the
RMSE are strongly dependent on Hrms. The RMSE on mv in the case of inversion without a
priori information on mv increases from 4.10 vol.% for Hrms=0.5 cm to 6.50 vol.% for Hrms
= 3.8 cm for mv between 2 and 25 vol.% (bias increases from -8.8 to +1.2 vol.% for Hrms
between 0.5 and 3.8 cm). In very wet soil conditions, the RMSE on mv decreases from 11.00
vol.% for Hrms=0.5 cm to 4.1 vol.% for Hrms = 3.8 cm (bias increases from —1.2 to 5.1
vol.% for Hrms between 0.5 and 3.8 cm). Moreover, results show that the RMSE on mv
slightly depends on 6The RMSE on mv estimates is about 5 vol.% for 6 between 20° and 45°

for dry to slightly wet soil conditions ( overestimation of mv of +2.0 vol.%) and about 6
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vol.% for O between 20° and 45° for very wet soils in the case of no a priori information on

mv ( underestimation of mv of about -3.0 vol.%) (Figures V.31c and V.31d).
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Figure V.30. Box plots of mv estimates retrieved from the synthetic dataset generated using
IEM. Neural networks were trained and validated using VV and VH polarizations. The NNs
outputs are Hrms and mv together. (a): no a priori information on mv; (b): with a prior
information on mv and dry to slightly wet soil condition; (c): with a prior information on mv
and very wet soil condition.

In the case of a priori information on mv, the RMSE on mv estimates varies between 4.0 and
4.5 vol.% for all mv and Hrms values of the validation synthetic dataset for dry to slightly wet
soil conditions (Figures V.31). With the use of a priori information on mv, the bias reduction
varies between -1.0 vol. % (low Hrms) and +4.0 vol.% (high Hrms). In addition, RMSE and
bias on mv estimates are slightly dependent on the incidence angle. The RMSE is about 3 vol.
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% and the bias is about +1.2 vol. % for incidence angles between 20° and 45°. For very wet
soil conditions, the RMSE on mv estimates varies in the case of a priori information on mv
between 4.1 and 7.0 vol.% for all mv and Hrms values of the validation synthetic dataset. The
highest RMSE-values correspond approximately to low Hrms-values. The bias is also well

reduced mainly for low Hrms-values (-4.0 vol.% for Hrms-values of 0.5 cm).
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Figure V.31. Accuracy on the mv estimates (RMSE and bias "=estimated — measured™)
retrieved from the synthetic dataset generated from IEM. VV and VH are the inputs of the
NNs. The NNs outputs are Hrms and mv together. Three NNs are tested: without a priori
information on mv, with a priori information on mv with dry to slightly wet soil conditions,
with a priori information on mv with very wet conditions.
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V.4.3.1.1.2 Using Baghdadi model

The results show that the introducing of a priori information on mv in the case of dry to
slightly wet soil conditions improves the mv estimates. The RMSE on mv estimates decreases
from 5.67 vol.% without a priori information on mv to 4.97 vol.% in the case of a priori
information on mv. In addition, the difference between estimated and measured mv is also
reduced from +1.96 vol.% to +1.1 vol.% (Figure V.32). The RMSE on mv estimates in the
case of very wet soil conditions decreases from 6.14 vol.% without a priori information on mv
to 4.24 vol.% in the case of a priori information on mv. In addition, the difference between

estimated and measured mv is also well reduced from -2.9 vol.% to -1.5 vol.% (Figure V.32).
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Figure V.32. Box plots of mv estimates retrieved from the synthetic dataset generated using
Baghdadi model. Neural networks were trained and validated using VV and VH polarizations.
The NNs outputs are Hrms and mv together. (a): no a priori information on mv; (b): with a

prior information on mv and dry to slightly wet soil conditions; (c): with a prior information
on mv and very wet soil condition.
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The analysis according to Hrms and incidence angle "6" show that the bias (estimated mv -
measured mv) and the RMSE are strongly dependent on Hrms and incidence angle "6" (Figure
V.33). In the case of a priori information on mv, the RMSE on mv estimates varies between
5.1 and 6.0 vol.% for all mv and Hrms values considered in this study for dry to slightly wet
soil conditions. In comparison to the case where no a prior information on mv is used, the use
of a priori information shows that the bias reduction varies between -2.5 vol. % (low Hrms)
and +4.0 vol.% (high Hrms). Finally, RMSE and bias on mv estimates are slightly dependent
on the incidence angle "6". The RMSE increases from 3.0 vol. % (for 6=20°) to 6.1 vol. %
(for 6=45°). The bias on mv is approximately about +1.0 vol. % for 6" between 20° and 45°.
In addition, Figure V.33 shows that the RMSE on mv estimates is well reduced in the case of
a priori information on mv for very wet soil conditions (between 4.0 and 6.0 vol.%). The
highest RMSE values correspond to low Hrms-values. The underestimation of mv is well
reduced mainly for low Hrms-values from -8.80 vol.% without a priori information on mv to -
4.5 vol.% with a prior information on mv for very wet soils. In addition, the analysis of the
RMSE on mv estimates shows that the RMSE is well reduced mainly for high incidence
angles (6=45°) from 9.00 vol.% without a priori information on mv to 5.00 vol.% with a priori

information on mv.
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Figure V.33. Accuracy on the mv estimates (RMSE and bias "=estimated — measured")
retrieved from the synthetic dataset generated from Baghdadi model. VV and VH are the
inputs of the NNs. The NNs outputs are Hrms and mv together. Three NNs are tested: without
a priori information on mv, with a priori information on mv with dry to slightly wet soil
conditions, with a priori information on mv with very wet conditions.

V.4.3.1.1.3 Discussion

The comparison between results obtained with IEM and Baghdadi model shows similar

performances in the estimation of soil moisture.

Using IEM and Baghdadi model, the use of a priori information on mv strongly improves the

estimation of mv. For Hrms between 1 and 2 cm (the range of surface roughness the most
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encountered in agricultural environments) results show that the RMSE on mv varies between
3.0 and 6.0 vol.% using the IEM model and between 3.9 and 5.5 vol.% using Baghdadi
model. The difference between estimated and real mv in the case of dry to slightly wet soils
varies between -1.0 and +1.0 vol.% using IEM model and between -0.5 and +2.0 vol.% using
Baghdadi model. For very wet soils and Hrms between 1 and 2 cm, an underestimation of mv
is observed using both IEM and Baghdadi model, from -5.0 to -2.5 vol.% and from -4.0 to -
1.3 vol.%, respectively.

V.4.3.1.2 Estimation of soil roughness "Hrms"
V.4.3.1.2.1 Using the IEM model

Figure V.34 shows the results for estimating the soil roughness using the synthetic dataset
generated from the IEM model with VV and VH polarizations in input to neural networks.
The RMSE is 0.96 cm in the case of no a priori information on mv. Similar RMSE is obtained
for dry to slightly wet conditions about 0.98 cm when a priori information on mv is used.
Lower RMSE is obtained with a priori information on mv in the case of very wet soils
(RMSE=0.65 cm).

In addition Figure V.34 shows an overestimation of Hrms for Hrms lower than 2 cm and an

underestimation of Hrms for Hrms higher than 2 cm.
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Figure V.34. Box plots of Hrms (cm) retrieved from the synthetic dataset generated from the
IEM model in using VV and VH polarizations together. (a): without a priori information on
mv, (b): with a priori information on mv and dry to slightly wet soils, (c): with a priori
information on mv and very wet soils.

V.4.3.1.2.2 Using Baghdadi model

Results show that the RMSE on Hrms estimates without a priori information on mv or with a
priori information on mv for dry to slightly wet soils are similar (0.87 and 0.86 cm,
respectively) (Figure V.35). In the case of very wet soil conditions, the RMSE obtained using

a priori information on mv is about 0.74 cm (Figure V.35).

In addition Figure V.35 shows an overestimation of Hrms for Hrms lower than 2 cm and an

underestimation of Hrms for Hrms higher than 2 cm.
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Figure V.35. Box plots of Hrms (cm) retrieved from the synthetic dataset generated from
Baghdadi model in using VV and VH polarizations together. (a): without a priori information
on mv, (b): with a priori information on mv and dry to slightly wet soils, (c): with a priori
information on mv and very wet soils.

V.4.3.1.2.3 Discussion

The comparison between results obtained with IEM and Baghdadi model shows slightly better
estimation of soil roughness in using Baghdadi model. Both models show an overestimation
of Hrms for Hrms lower than 2 cm and an underestimation of Hrms for Hrms higher than 2
cm. Howewer, these over- and under-estimations are lower with Baghdadi model than with
IEM model.
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V.4.3.2 Real dataset

The NNs built for estimating mv and Hrms are then analyzed using the real Sentinel-1 dataset.
VV and VH are the inputs of NNs.

V.4.3.2.1 Estimation of soil moisture (mv)

V.4.3.2.1.1 Using the IEM model

Using the IEM model, the results obtained for the estimation of mv are shown in Figure V.36.
Results show that the introduction of a priori information on mv provides better accuracy on
the mv estimates than the case without a priori information on mv (RMSE=5.83 vol.% with a

priori information on mv and RMSE=7.25 vol.% without a priori on mv).

The analysis of the difference between the estimated and measured mv shows that the strong
underestimates of the mv corresponds to low Hrms-values (Hrms<2 cm) and the strong

overestimates corresponds to high Hrms-values (Hrms>2 cm).
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Figure V.36. Retrieved mv versus in situ measurements in using the IEM model. VV and VH
are used in input to neural networks. Hrms and mv are the outputs. (a): without a priori
information on mv; (b): with a priori information on mv. Each point corresponds to one
reference plot.

V.4.3.2.1.2 Using Baghdadi model

Figure V.37 shows the results obtained for the estimation of mv using Baghdadi model. An
RMSE of 6.62 vol.% is obtained with the introduction of a priori information on mv and an
RMSE of 8.30 vol.% in the case without a priori information on mv.

150



o
(=]
1
[0
o
1

s | Bias = 2.42vol.% a5 - Bias =1.84vol.%
— RMSE = 8.30vol.% —_ RMSE = 6.62 vol.%
s 40 S 40 -
9?35 o o 35 [ o
S % S o
= 30 - < 30 -
= [ ] > [ _
€ 35 ® o 9 [ o® £ 5
2 20 - d (] o 20 - o9 o0
- 9 =
o ‘ o®® © “
E1s | © 4 £ 15
= 10 .q o .~
w 7 Y 4 10
5 - ® o 5 - ® o
T T T T T T T T T 1 0 T T T T T T T T T 1
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
In situ mv (vol. %) In situ mv (vol. %)
(a) (b)

Figure V.37. Retrieved mv versus in situ measurements in using Baghdadi model. VV and
VH are used in input to neural networks. Hrms and mv are the outputs. (a): without a priori
information on mv; (b): with a priori information on mv. Each point corresponds to one
reference plot.

V.4.3.2.2 Estimation of surface roughness (Hrms)
V.4.3.2.2.1 Using the IEM model

Results show that the RMSE on Hrms estimates is 0.84 cm in the case of without a priori
information on mv. In the case with a priori information on mv, the RMSE is of 0.75 cm
(Figure V.38).
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Figure V.38. Retrieved Hrms versus measured measurements in using the NNs trained with
synthetic data simulated from the IEM model. VV and VH are used in input to neural
networks. Hrms and mv are the outputs. (a): without a priori information on mv; (b): with a
priori information on mv.
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V.4.3.2.2.2 Using Baghdadi model

Using Baghdadi model, the precision on the estimates of Hrms is approximately the same in
using or not a priori information on mv (Figure V.39). The RMSE is 1.01 cm with the case of

no a priori information on mv and 0.97 cm in the case of a priori information on mv.
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Figure V.39. Retrieved Hrms versus measured measurements in using the NN trained with
synthetic data simulated from Baghdadi model. VV and VH are used in input to neural
networks. Hrms and mv are the outputs. (a): without a priori information on mv; (b): with a
priori information on mv.

V.5 Conclusions

The objective of this study was to investigate the potential of Sentinel-1 C-band SAR in
several polarizations (VV alone, VH alone, VV and VH together) for estimating the soil
roughness over bare agricultural areas using the neural networks technique (NNs). Neural
networks were trained with radar backscattering coefficients generated from two models: the
Integral Equation Model ‘IEM’ and the new semi-empirical model developed recently by
Baghdadi et al. (2016). An additional simulated dataset and a real dataset composed of
Sentinel-1 images and in situ measurements were then used to analyze the performance of the

inversion technique for estimating the surface roughness (Hrms).

Two inversion configurations were proposed. The first based on estimation of soil roughness
at very high spatial resolution "VHSR" (plot scale or on a finer scale). Two networks were
applied one after the other, the first to estimate the soil moisture (mv) and the second using the

soil moisture estimates for estimating the soil roughness. Three SAR configurations are
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tested: VV alone, VH alone, VV and VH together. In order to improve the soil parameters
estimates, a priori knowledge about soil moisture mv (dry to slightly wet or very wet soil
conditions) is introduced. Three neural networks are developed for the estimation of mv, with
and without a priori information on the soil moisture state. Next, the soil roughness is
estimated at a fine spatial scale (plot or sub-plot scale) using the soil moisture estimated by
the first network. The second inversion configuration concerns the estimation of both soil
roughness (Hrms) and soil moisture (mv) at very high spatial resolution "VHSR". Both VV
and VH polarizations together are used as inputs of these neural networks. Three neural

networks are developed, with and without a priori information on the soil moisture state.

Using the first inversion configuration and using the two radar backscattering models, best
results are obtained using the VVV polarization alone for the IEM Model and the VV and VH
polarizations together for Baghdadi model. The soil moisture could be estimated with an
RMSE better than 6 vol.% when a priori information on mv is used in the neural network for
the two models. The second neural network uses this estimation of mv in order to estimate the
soil roughness at the plot scale. Results obtained show estimates of Hrms with an RMSE of
0.94 cm using the IEM model (VV polarization alone) and 0.78 cm using Baghdadi model
(VV and VH polarizations together). This accuracy on Hrms obtained in using the NN built
with a priori information on mv shows that the use of mv estimates with an accuracy of about
6 vol.% is not sufficient to accurately estimate the soil roughness in C-band. Results obtained
from the real dataset show that the accuracy on Hrms estimates in using the mv estimated at
the study site scale is better to that in using the mv estimated at the plot scale, with an RMSE
on Hrms about 0.81 cm (RMSE=0.98 cm using mv estimated at plot scale) in using the IEM
model (VV polarization alone) and an RMSE on Hrms about 1.03 cm (RMSE=1.05 cm using
mv estimated at plot scale) in using Baghdadi model (VV and VH polarizations together).

For the second inversion configuration (VV and VH polarizations together), the use of
simulated dataset from the Integral Equation Model ‘IEM’ or the new semi-empirical
Baghdadi model show approximately similar results and close to the results obtained in the
first inversion configuration. Using the real dataset, the soil moisture mv could be estimated
with an RMSE better than 6.0 vol.% and 6.6 vol.% for the IEM and Baghdadi models,
respectively when a priori information on mv is used in the neural networks. The RMSEs on
Hrms are of 0.84 cm without a priori information on mv and 0.75 cm with a priori information
on mv in using the IEM model. Using Baghdadi model, the RMSEs on Hrms are about 1.01

cm without a priori information on mv and 0.97 cm with a priori information on mv. The use
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of mv estimated at the scale of the study site is possible only when the study site is not

irrigated.

This first study on the potential of Sentinel-1 data for estimating the soil roughness shows that
the development of an automatic and generalizable inversion procedure of the C-band radar
signal does not allow a pertinent estimation of the soil roughness. The accuracy on soil
roughness estimates obtained in this study cannot satisfy the requirements of operational users
of soil roughness products (in particular to modelers) because the need is at least three

roughness classes: smooth (sowing), medium (small plowing) and rough (large plowing).

Only methods based on the use of experimental relationships, which are often difficult to
apply to sites other than those for which they were developed and are generally valid only for
specific soil conditions, allows the mapping of three roughness classes (Baghdadi et al.,
2002a). Indeed, different experimental studies have revealed that the sensitivity of the radar
signal to surface roughness (i.e. the slope of the regression lines) can be highly variable from
one site to another. In addition, the experimental relationships between the radar signal and
Hrms are established for a given incidence angle and a range of soil moisture. The soil
composition could be also different from one site to another. All these reasons explain why

the experimental relationships are not generalizable.
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VI. General conclusion and perspectives
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V1.1 General conclusion

The state of the soil surface and in particular through roughness and moisture exerts a
fundamental influence on the distribution of rain between infiltration, surface retention and
runoff. In addition, it has a key role in surface hydrological processes. The characterization
and consideration of these surface conditions is currently an important issue for the physical-
based modeling of the processes of infiltration, runoff and erosion. The main objective of this
thesis was to evaluate the potential of the new Sentinel-1 SAR for the mapping of surface

roughness in bare agricultural areas.

In order to achieve this objective, several steps were followed. The first step was to evaluate
the potential of the five most popular radar backscattering models (Oh, Dubois, IEM, AIEM
and IEM modified by Baghdadi "IEM_B") using a wide dataset composed of AIRSAR, SIR-
C, JERS-1, PALSAR-1, ESAR, ERS, RADARSAT, ASAR, TerraSAR-X, CosmoSky-Med,
Sentinel-1 acquisitions over numerous agricultural sites in France, Italy, Germany, Belgium,
Luxembourg, Canada and Tunisia. In addition, in situ measurements of soil moisture and
surface roughness were carried out simultaneously to SAR acquisitions over bare soil surfaces
(soil moisture "mv" ranged between 2 vol. % and 47 vol. %, surface roughness "Hrms"
between 0.2 cm and 9.6 cm which corresponds to kHrms from 0.2 and 13.4). The SAR
sensors used are in L-, C- and X-bands with incidence angle between 18° and 57°. Results
showed that the IEM modified by Baghdadi "IEM_B" using a fitting parameter instead of
measured correlation length provides the most accurate SAR simulations with bias (real data
— model simulations) lower than 1.0 dB and Root Mean Square Error "RMSE" lower than 2.0
dB. The IEM_B model showed slightly better performance in X-band (RMSE = 1.8 dB) than
in L- and C-bands (RMSE between 1.9 and 2.3 dB