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RESUME 
 

La télédétection spatiale est d’une importance primordiale pour la cartographie et la surveillance 

des problèmes environnementaux. Son intérêt réside dans la capacité des capteurs satellitaires 

spatiaux à fournir des informations globales et permanentes de la planète, aux échelles locale à 

globale. La télédétection radar a montré son grand potentiel ces dernières années dans la 

caractérisation des états de surface du sol. L’état de la surface du sol, et en particulier l’humidité 

et la rugosité, exerce une influence fondamentale sur la répartition de la pluie entre infiltration, 

rétention superficielle et ruissellement. Il a un rôle essentiel dans les processus hydrologiques de 

surface et ceux associés à l’érosion et aux processus d’évapotranspiration. La caractérisation et 

la prise en compte de ces conditions de surface constituent actuellement un enjeu important pour 

la modélisation à base physique des processus hydrologiques ou pour le couplage surface-

atmosphère. Dans ce cadre et depuis plusieurs années, plusieurs études scientifiques ont montré 

le potentiel des données micro-ondes actives dans l’estimation de l’état hydrique du sol et de sa 

rugosité de surface. 

Les nouveaux systèmes radar (SAR ʺSynthetic Aperture Radarʺ) ont permis d’ouvrir de 

nouvelles perspectives pour l’observation de la terre grâce à l’amélioration de la résolution 

spatiale (métrique sur TerraSAR-X et COSMO-SkyMed) et temporelle (TerraSAR-X, COSMO-

SkyMed, Sentinel-1). La disponibilité depuis peu des nouveaux capteurs radar bande C Sentinel-

1 (Sentinel-1A et Sentinel-1B) rend indispensable l’évaluation des données Sentinel-1 pour la 

caractérisation des états de surface du sol et en particulier la rugosité de surface. 

Le travail de thèse se structure en trois parties. La première partie consiste à évaluer les modèles 

de rétrodiffusion de radar les plus utilisés (IEM, Oh, Dubois and AIEM) en utilisant un large 

ensemble de données de SAR et des mesures expérimentales des paramètres du sol. Cette 

évaluation permet de trouver le modèle de rétrodiffusion le plus robuste qui simule le mieux le 

signal radar afin de l'utiliser par la suite dans la procédure d'inversion du signal radar pour 

estimer la rugosité du sol. Le deuxième axe de recherche de cette thèse consiste à proposer un 

modèle de rétrodiffusion radar semi-empirique pour les polarisations HH, HV et VV. Ce 

nouveau modèle sera construit à l'aide d'une grande base de données réelle. Ce nouveau modèle 

sera également utilisé dans la procédure d'inversion du signal radar pour estimer la rugosité du 

sol. Le dernier axe de cette thèse consiste à construire une méthode d’inversion du signal radar 

en utilisant les réseaux de neurones afin d’évaluer le potentiel des données Sentinel-1 pour 

l’estimation de la rugosité des sols en milieux agricoles. Ces réseaux de neurones seront 

entraînés à l'aide d'un ensemble de données synthétiques élaborées à partir des modèles de 

rétrodiffusion radar choisis (IEM calibré par Baghdadi et du nouveau modèle proposé) et validés 

en utilisant deux ensembles de données: un ensemble de données synthétiques et une base de 

données réelle (images Sentinel-1 et mesures in situ d’humidité et de rugosité du sol). La base 

de données réelle a été collectée en Tunisie (Kairouan) et en France (Versailles). 

 

Mots clés : Radar, Sentinel-1, surfaces agricoles, rugosité du sol, modèles de rétrodiffusion 

radar 
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ABSTRACT 
 

Spatial remote sensing is of paramount importance for mapping and monitoring environmental 

problems. Its interest lies in the ability of space satellite sensors in providing permanent 

information of the planet, at local, regional and global scales. Also, it provides spatial and 

repetitive territories visions and ecosystem views. Radar remote sensing has shown great 

potential in recent years for the characterization of soil surface conditions. The state of the soil 

surface, in particular moisture and roughness, has a fundamental influence on the distribution of 

rainfall between infiltration, surface retention and runoff. In addition, it plays an essential role in 

surface hydrological processes and those associated with erosion and evapotranspiration 

processes. Characterization and consideration of these surface conditions have been recently 

considered as an important issue for physically based modeling of hydrological processes or for 

surface-atmosphere coupling. In this context and for several years, several scientific studies 

have shown the potential of active microwave data for estimation of the soil moisture and the 

surface roughness. 

New SAR (Synthetic Aperture Radar) systems have opened new perspectives for earth 

observation through improved spatial resolution (metric on TerraSAR-X and COSMO-SkyMed) 

and temporal resolution (TerraSAR-X, COSMO-SkyMed, Sentinel-1) . The recent availability 

of new Sentinel-1 C-band radar sensors (free and open access) makes it essential to evaluate the 

potential of Sentinel-1 data for the characterization of soil surface conditions and in particular 

surface roughness. 

The work revolves around three parts. The first part consist of evaluation of the most used radar 

backscattering models (IEM, Oh, Dubois, and AIEM) using a wide dataset of SAR data and 

experimental soil measurements. This evaluation gives the ability to find the most robust 

backscattering model that simulates the radar signal with good agreement in order to use   later 

in the inversion procedure of the radar signal for estimating the soil roughness. The second 

research axe of this thesis consists of proposing an empirical radar backscattering model for HH, 

HV and VV polarizations. This new model will be developed using a large real dataset. This 

new model also will be used in the inversion procedure of the radar signal for estimating the soil 

roughness. The last axe of this thesis consists of producing a method to invert the radar signal 

using neural networks. The objective is to evaluate the potential of Sentinel-1 data for estimating 

surface roughness. These neural networks will be trained using wide synthetic dataset produced 

from the radar backscattering models chosen (IEM calibrated by Baghdadi and the new 

proposed model) and validated using two datasets: one synthetic dataset and one real (Sentinel 1 

images and in-situ measurements). The real datasets are collected from Tunisia (Kairouan) and 

France (Versailles).  

 

Keywords: Radar, Sentinel-1, agricultural areas, soil roughness, radar backscattering models 
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I.1 Context 

The soil is not just the surface we walk on, build on, nor the land we cultivate; it is the source 

of our life and a wealth that we must preserve. From the 1950s, the intensification of 

agricultural land accelerated the processes of soil degradation, thus affecting their 

biophysical-chemical properties. The first component directly affected by intensification is 

soil fertility in particular (organic matter and soil structural stability).  

Generally, several soil processes could be identified based on specific physical conditions and 

physical, chemical or biological activities. The soil processes are classified mainly into seven 

categories (Bockheim and Gennadiyev, 2000): (i) the translocation which is related to 

physical movements and always in the downward direction, (ii) the Organic Changes which 

occur mainly on the surface and follow a specific sequence, (iii) the Podzolization which 

happens in cool, humid climates where the bacterial activity is low, (iv) the gleying which 

takes place under water-logged and anaerobic conditions, (v) the salinization, (vi) the 

recarbonatation, (vii) eventually, the desilication that is common in hot-wet tropical and 

equatorial climates.  

The study and modeling of the continental surfaces functioning and their interactions with the 

atmosphere are essential research subjects to understand the climatic system of the earth. 

These surfaces constantly exchange the amount of movement, energy, water and chemical 

constituents, such as carbon, nitrogen, etc… As for continental hydrology, the processes 

involved in the water cycle and quantifying the exchanges of matter and energy shall be 

understood. Surface states essentially control the distribution of rainfall between soil storage, 

underground infiltration, runoff and evapotranspiration. Hydrodynamic characteristics, 

roughness and vegetation cover are major determinants of hydrological processes (soil water 

interception and return to the atmosphere), and those associated with erosion (Ambroise, 

1999; Auzet et al., 2005). 

Runoff and erosion in agricultural soils are major problem for territorial managers. For 

several years, several regions in Europe have been facing an increase in natural disasters: 

floods, loss of fertile land, soil degradation and water quality. The soil conditions (i.e. 

moisture and surface roughness) have an essential role in surface hydrological processes. 

Runoff occurs when the amount of rain exceeds the infiltration capacity of the soil (Le 

Bissonnais, 1990; Brun et al., 1990; François, 1988; Zobeck and Onstad, 1987). 
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Soils with silty texture are particularly sensitive to runoff because they are subjected to 

crusting phenomenon as a result of episodes (Le Bissonnais and Singer, 1992). The 

interactions between meteorological conditions, agricultural practices and soil texture cause 

significant and fast changes in the hydraulic properties of the soil surfaces. The deterioration 

of soil infiltrability and surface storage capacity is strongly influenced by the phenomena of 

crusting and degradation of roughness and the genesis conditions of runoff, causing erosive 

problems (Govers et al., 2000; King and Le Bissonnais, 1992). 

Soil moisture is a key parameter in the different processes involved in the hydrological cycle 

(water cycle). Knowledge of moisture is necessary to assess water resources and to carry out 

water balances. Information on the spatial distribution of soil moisture optimizes water 

reassignment during droughts and provides support for flood forecasting and management. 

From an agronomic point of view, soil moisture is a crucial variable for crop development. 

Thus, assessing it allows better monitoring and management of irrigation, leading to a more 

precise farming. 

Another characteristic of the soil to be considered is the surface roughness. It is a physical 

parameter that characterizes the surface state. For agricultural soils, roughness defines the 

microrelief of the soil surface on the clods scale and is due to small accidents in the field 

(natural, cultivation techniques or both). Knowing the state of surface roughness is necessary 

for understanding the different processes. It is a key parameter in the estimation of water 

storage capacity within the soil horizons as well as modeling runoff. This latter phenomenon 

has a great influence on the erosion processes (Roose, 1996) and determines the floods 

following a rainy event. 

The evolution in time and space of the physical, hydraulic and geometric properties of soil 

surfaces is an information that can be integrated into hydrological models for forecasting the 

water balance and the processes of runoff and erosion (Auzet et al., 2005; Baghdadi et al., 

2004; Boiffin, 1984; Casenave and Valentin, 1989; King et al., 2005; Ludwig et al., 1995; 

Quesney et al., 2000; Weisse et al., 2003). Moreover, soil and water resources’ management 

are key issues, not only from the environmental point of view, but also from a socioeconomic 

perspective (Condrea and Bostan, 2008).  

There are many in situ experimental methods to measure surface soil moisture (Gardner, 

1986; Topp et al., 1980). These methods allow precise soil moisture estimates only at the 
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local scale. Since several years, the scientific community has demonstrated the potential of 

spatial observation for estimating soil parameters. Spatial remote sensing allows repetitive 

measurements and provides access to spatial information at scales that can be very fine.  

In this context, remote sensing is of paramount importance for mapping and monitoring 

environmental problems. Its interest lies in the ability of space-based satellite sensors to 

provide global and permanent information about the planet.  

I.2 State of art 

I.2.1 Remote sensing data for soil characterization 

Active microwave remote sensing is specifically well suitable in agricultural fields concerning 

the characterization of soil surface conditions. Synthetic Aperture Radar (SAR) sensors allow 

all-weather measurements, independently of weather conditions (cloud cover, day/night…). 

They use microwave frequencies with wavelengths between 1 mm to 1 m. Theses microwave 

frequencies are very sensitive to the geometric and dielectric properties which are themselves 

dependent on surface parameters (roughness, soil moisture, soil composition and vegetation 

cover). SAR signal also depends on different instrumental parameters (polarization, incidence 

angle, and radar wavelength).  

Studies using radar remote sensing started at the end of the 70s with in-situ or airborne 

scatterometers (Ulaby et al., 1978). The developments of these studies became more 

important in the 1990s with satellite and airborne SAR (ERS-1/2, JERS, SIR-C, 

RADARSAT-1 …). Most studies were carried out in C-band (wavelength ~6 cm), L-band 

(wavelength ~22 cm), and more recently in X-band (wavelength ~3 cm). Firstly, the satellite 

SAR sensors that were accessible to the scientific community had an instrumental 

configuration of mono-polarization and a single incidence angle (ERS-1/2, JERS). The second 

generation of radar sensors with new instrumental configurations (RADARSAT, 

ASAR/ENVISAT, PALSAR/ALOS, TerraSAR-X, COSMO-SkyMed, Sentinel-1) allowed the 

scientific community to gather images in multi-polarization and sometimes polarimetric mode 

(scattering matrix).  These SAR second generation provide images in high spatial resolution 

(about 1 m for TerraSAR-X and COSMO-SkyMed) and high temporal resolution (up to one 

image by day). In addition, the launch of the Sentinel-1 C-band SAR, which is based on a 

constellation of two satellites (A and B units) makes it possible to obtain SAR data for global 

areas at high spatial and temporal resolutions (spatial resolution of 10 m and time revisit of 6 

days over Europe) with free and open access Sentinel satellites. These new SAR sensors with 
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C-band are suitable for hydrological and agronomic applications (Alexakis et al., 2017; 

Aubert et al., 2011; Baghdadi et al., 2002a, 2011a, 2012a; Hajnsek et al., 2009; Holah et al., 

2005; Paloscia et al., 2008; Srivastava et al., 2003, 2009; Zribi et al., 2005a). 

Some low resolution spatial sensors are also suitable for meteorological and climatic 

applications on a global scale such as, AMSR-E, AMSR2 (microwave radiometers), SMOS, 

SMAP (L-band microwave radiometers), and ASCAT/METOP (C-band scatterometer). They 

provide users of soil moisture products with a temporal frequency on few days with a spatial 

resolution  around 25-40 km (Champagne et al., 2016; Chan et al., 2016; Entekhabi et al., 

2010; Jackson et al., 2012; Mohanty et al., 2017; Wigneron et al., 2017). 

For bare agricultural soils or soils with little vegetation, the radar signal is dependent on the 

two parameters of the surface: the dielectric constant related to the soil moisture and the 

surface roughness. Several radar backscatter models have been developed in recent years with 

the aim to model the backscattering of natural surfaces and to reverse the radar response to 

find the different parameters of the soil surface. These models depend on the sensor 

characteristics (incidence, frequency, polarization...) and those of the target (soil moisture and 

surface roughness). From a perspective of anticipation or coherence of information on various 

natures, it is essential to rely on models capable for estimating soil parameters. Numerous 

radar backscattering models have been developed in order to estimate soil parameters (i.e. soil 

moisture and surface roughness) (Zribi and Dechambre, 2003, Baghdadi et al., 2004, 2006a, 

2011b, 2015, 2016a; Chen et al., 2003; Dubois et al., 1995; Fung et al., 1992; Oh, 2004; Oh et 

al., 1992, 1994, 2002). However, ground measurements of different soil parameters are 

necessary to calibrate these models in order to have accurate estimations.  

I.2.2 Potential of radar data for monitoring soil conditions 

Synthetic Aperture Radar (SAR) data have been used for a long time to estimate and map soil 

moisture. Several radar backscattering models were developed in order to estimate soil 

parameters (i.e. soil moisture and surface roughness). The availability of high spatial and 

temporal resolutions SAR Sentinel-1 data and these models make the intere st to estimate soil 

parameters accurately. In the case of bare soils (or soils with little vegetation), the estimation 

of soil moisture and surface roughness was performed by inverting the measured SAR 

backscatter through SAR backscattering models (both empirical and physical). Unlike 

physical models, empirical or semi-empirical models need to be calibrated each time the study 
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area changes by using site-specific in situ measurements and SAR observations. The most 

commonly semi-empirical models are the models of Oh (Oh, 2004; Oh et al., 1992, 1994, 

2002) , Dubois (Dubois et al., 1995) and Baghdadi (Baghdadi et al., 2016a); while, the most 

popular physical models are Integral Equation Model (IEM) (Fung et al., 1992), IEM 

calibrated by Baghdadi, called in this thesis “IEM_B” (Baghdadi et al., 2002b, 2004, 2006a, 

2011a, 2011b, 2015), and Advanced Integral Equation Model (AIEM) (Chen et al., 2003). 

Several studies have been carried out to evaluate and compare the robustness of the 

backscattering models such as, Oh, Dubois and IEM (original IEM, IEM_B and AIEM).  Zribi 

et al. (1997) evaluated the Oh model and IEM using L-, C- and X-bands SAR data and in situ 

measurements. Results showed that the IEM provides accurate simulations (RMSE about 2.0 

dB) only over smooth surfaces. In addition, for rough surfaces and medium incidence angle, 

Oh model simulations retrieve backscattering values very close to the measured ones, while 

showing poor correlation with measured backscattering coefficients over smooth areas. 

Baghdadi and Zribi (2006) evaluated the backscattering models IEM, Oh and Dubois by using 

large C-band SAR data and in situ measurements. Results showed that these models 

frequently tend to over-estimate or under-estimate the radar signal (in the order of 3.0 dB) and 

the errors on model simulation depend on height surface roughness, Hrms, soil moisture, mv, 

and/or incidence angle. Baghdadi et al. (2011b) evaluated the potential of IEM, Oh and 

Dubois models by using TerraSAR-X images acquired over France and Tunisia and 

experimental datasets of in situ measurements (mv ranged between 5 vol. % and 41 vol. % 

and Hrms between 0.42 cm and 4.55 cm). In this case, the semi-empirical Oh model correctly 

simulated the backscattering (showing over or under-estimation of the backscatter <1 dB, and 

RMSE <3 dB), while Dubois model showed a poor correlation between real data and 

simulations, with RMSE between 2.2 and 4.4 dB and over or under-estimation of the 

backscatter of about 3.4 dB. In addition, the IEM correctly simulates the backscattering at X-

band for Hrms < 1.5 cm by using the exponential correlation function and for Hrms > 1.5 cm 

by using the Gaussian correlation function. Panciera et al. (2014) compared the performances 

of the IEM, Dubois and Oh models by using fully polarized L-band airborne data (incidence 

angles between 24° and 38°) and in situ measurements (mv between 5 vol. % and 39 vol. % 

and Hrms between 1 cm and 7.6 cm) acquired over the study area in southeastern Australia. 

At HH polarization, the three models simulated the backscattering with almost similar 

accuracy, showing a mean error between the simulated and the observed backscattering 

coefficients of about 1.6 dB in absolute value (standard deviation “std” about ±2.5 dB). At 
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VV polarization, the Oh model resulted to be more accurate than IEM and Dubois models: the 

mean errors between the simulated and observed backscattering were equal to 4.5 dB (std = 

±2.0 dB), 1.7 dB (std = ±2.3 dB), and −0.4 dB (std = ±2.4 dB) for IEM, Dubois, and Oh 

model, respectively. Moreover, several studies confirmed that the use of the calibrated 

correlation length, as proposed by Baghdadi et al. (2002, 2004, 2006, 2011a, 2011b, 2015) is 

able to improve the performance of the IEM at both HH and VV polarizations (Dong et al., 

2013; McNairn et al., 2010; Panciera et al., 2014). Dong et al. (2013) used the calibrated 

correlation length in the AIEM to simulate SAR data in C-band. Results showing that the 

RMSE reduced from 3.1 to 1.7 dB at HH and VV polarizations and from 31.0 dB to 5.1 dB at 

HV polarization. Panciera et al. (2014) showed that the use of calibrated correlation length 

decreases the errors on IEM simulation with a bias equal to about −0.3 dB (standard deviation 

about ±1.1 dB) at both HH and VV polarizations.  

Several studies were done in order to investigate the SAR data for monitoring roughness 

states over bare agricultural soils. Baghdadi et al., (2002a) examined the potential of the first 

generation of SAR data (ERS-2 and RADARSAT-1) to estimate surface roughness over bare 

agricultural soils. Results showed that the use of high incidence angles about 45° are more 

appropriate to differentiate numerous roughness classes (smooth, medium and rough) over 

bare agricultural soils. Moreover, Baghdadi et al. (2012a) used neural networks 

(NNs)techniques to estimate soil moisture mv and surface roughness Hrms from C-band 

polarimetric RADARSAT-2 data. Results indicated that the accuracy on the soil roughness 

estimates was about 0.5 cm using polarimetric data. The estimation is better for Hrms-values 

lower than 2 cm than for Hrms-values higher than 2 cm. For higher Hrms, the neural networks 

under-estimate the surface roughness. 

I.3 Plan of the thesis 

The general objective of this work is to explore and evaluate the potential of the Sentinel-1 

radar sensor to estimate surface roughness over bare agricultural soil. The originality is that 

few studies have been done to estimate soil roughness from SAR data and never before have 

been estimated from Sentinel-1 data. The recent launch of Sentinel-1 C-band SAR providing 

full earth coverage at high spatial and temporal resolutions with free and open access satellite 

justifies this work.  



8 
 

Thus, the first part of this thesis is to analyze the quality of the most popular radar 

backscattering models in order to find the model that best fit the SAR measurements. Integral 

Equation Model “IEM”, Integral Equation Model calibrated by Baghdadi “IEM_B”, Oh, 

Dubois, and Advanced Integral Equation Model “AIEM” will be evaluated using a wide 

dataset of SAR data and experimental soil measurements. The results will show the 

performance of each model in order to identify the most robust backscattering model that will 

be used later in the inversion procedure for estimating the soil roughness. 

After evaluating the existing radar backscattering models (semi-empirical, empirical and 

physical) using a wide reference dataset of SAR (Synthetic Aperture Radar) data and 

experimental soil measurements, a new radar backscattering model will be proposed. The 

objective is to develop an empirical radar backscattering model. Never before a backscattering 

model has been built and validated on such a large dataset: wide range of incidence angles 

(18°-57°), dataset in L, C and X bands, dataset well distributed geographically for regions 

with different climate conditions (humid, semi-arid and arid sites) and involving many SAR 

sensors. 

The last research part of this thesis consists of proposing a method to invert the radar signal 

using neural networks technique. The objective is to evaluate the potential of Sentinel-1 data 

for estimating soil roughness. The best model found in the first part of this thesis and the new 

empirical model developed in the second part will be used to train and validate neural 

networks. Finally, the neural networks will be validated using a real dataset composed of 

Sentinel-1 images and in-situ measurements, collected in Tunisia and France. 

This thesis is composed of several chapters. This first chapter is a general introduction that 

describes the importance of soil parameters and the potential of remote sensing techniques for 

their monitoring. The second chapter introduces the concept of radar remote sensing 

technique and describes the interaction of electromagnetic waves with agricultural soils. The 

soil surface parameters (roughness and moisture content) as well as the different methods for 

estimating these parameters are described. Next, the most popular radar backscattering models 

(empirical, semi-empirical and analytical) will be described and evaluated in chapter 3. A new 

semi-empirical backscattered model will be proposed in chapter 4. Finally in chapter 5, neural 

networks trained on dataset simulated from radar backscattering models (the IEM modified by 

Baghdadi and the new proposed model) will be used to estimate the soil roughness from 

Sentinel-1 radar images. Conclusions and perspectives are presented in chapter 6.     
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II.1 Introduction 

This chapter is an introduction to radar remote sensing, its principle measurement and its 

instrumental characteristics. Some reminders are introduced in section 2 on electromagnetic 

waves and their interactions with surfaces in agricultural areas. Section 3 of this chapter 

describes the descriptive parameters of soil (moisture and roughness). Section 4 shows the 

sensitivity of radar signal to soil moisture and surface roughness. In this thesis, our study 

focuses on soils in bare agricultural areas. Thus, to conclude this chapter, the electromagnetic 

backscattering models are introduced, which simulate the radar signal by linking it to the 

geophysical parameters of the soil surface, mainly moisture and roughness. 

II.2 Radar remote sensing 

Radar is an active sensor for Earth observation, operates in the microwave frequencies of the 

electromagnetic spectrum (300 MHz to 30 GHz). The principle of radar, for the observation 

of surfaces, consists of emitting an electromagnetic wave in a selected configuration 

(frequency, polarization, incidence angle). This wave propagates in space to the observed 

surface and part of the emitted energy is returned in the direction of observation. It is then 

said that the energy is backscattered. It is a function of both the characteristics of the system 

and the nature of the surface (electrical properties and surface state) (Baghdadi and Zribi, 

2016). 

In the general introduction, we have already mentioned the advantages of the radar. It is used 

day and night and is almost insensitive to the weather conditions. For the observation of the 

Earth, most radars are synthetic aperture radars (SARs) which provide images with high and 

very high spatial resolution (from 1m for TerraSAR-X and CosmoSky-Med to 10 m for 

Sentinel-1 for example). These new SAR images have made it possible to retrieve surface soil 

parameters with a high spatial resolution. 

II.2.1 Instrumental Parameters 

The main instrumental parameters of radar remote sensing described in this subsection are 

frequency, polarization and incidence angle. 
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II.2.1.1  Radar frequency 

Radar systems operate on the microwave domain. The frequency of the transmitted signal is 

the number of waves passing through a given point during the interval of one second. It is 

measured in Hertz. The frequency ranges in the microwave domain (from 0.3 to 300GHz) 

Wavelength is a measure of the physical distance between peaks of a sine wave propagated in 

space. Most radar signals have wavelengths measured in centimeters or millimeters. 

Wavelength and frequency have inverse relationship = 𝑐/𝜆 : the higher the frequency, the 

shorter the wavelength. The wavelengths range in the microwave domain between 1m and 

1mm. 

For the Earth observation, the frequency bands particularly used in radar imagery are 

summarized in the table II.1. 

Band 

Frequency 

(GHz) 

Wavelength 

(cm) 

Space sensors 

P 
0.3-1 100-30 

Biomass (not 

launched) 

L 
1-2 30-15 

PALSAR/ALOS 

C 
4.20-5.75 7.1-5.2 

ERS, ASAR, 

RADARSAT, 

SENTINEL-1, 

… 

X 
5.75-10.9 5.2-2.7 

TerraSAR-X, 

Cosmo-SkyMed 

Table II.1. The main frequency band used in radar imagery and examples of space sensors 

(past, present or future). 

 

Using radar images in L, C, and X bands to perform studies for the characterization of the soil 

surface moisture in agricultural areas, in-situ measurements of soil moisture are taken at a 

depth between 0 and 10 cm. This measurement depth is related to the penetration depth of the 

radar wave (p) that is generally equal to few centimeters in C and X bands. In L-band, this 
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depth could reach a few dozen cm for very dry soils. Moreover, the penetration depth of the 

radar signal in C-band decreases from 5 to 1 cm for a clay soil when the soil moisture 

increases from 10 to 30 vol. % (HH polarization and 15º incidence angle) (Bruckler et al., 

1988).  Indeed, the thickness of this surface layer depends on the radar wavelength () (more 

penetration with greater wavelengths) and the dielectric constant of soil (water content and 

soil composition) (Ulaby et al., 1978): 

𝛿𝑝 ≅
λ√휀′

2𝜋√휀′′
 (2.1) 

Where ε' is the real part of the dielectric constant and ε" its imaginary part. 

The dielectric constant is a physical quantity also known as complex permittivity. The amount 

of water present in a soil affects its electrical properties and consequently the radar signal. 

The microwave dielectric constant of soil is related to soil moisture content and to a lesser 

extent soil texture (Ulaby et al., 1978). This constant is a complex number expressed in the 

form =-jʺ. The real part ε' affects the moisture content more, while the imaginary part ε" 

essentially depends on the electrical conductivity of the soil solution. 

II.2.1.2  Polarization 

The polarization is a property of the electromagnetic wave that describes the orientation of the 

electric field in the plane perpendicular to the direction of propagation. For radars existing in 

the Earth observation field, this is a linear polarization in two directions (horizontal and 

vertical). For example, Sentinel-1 has selectable single polarizations (VV or HH) for the 

Wave mode and selectable dual polarizations (two polarizations: VV+VH or HH+HV) for all 

other modes. 

II.2.1.3  Incidence angle 

The incidence angle (θ) is the angle between the incident propagation direction and the 

normal surface, in the plane of propagation. The first generation of satellite radar had a fixed 

sight (for ERS-1/2, θ is centered at 23°). Other sensors have been equipped with variable-

focus antennas that can acquire images with incidence angles ranging from 20° to 46° for 

Sentinel-1. 
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The launch of multi-incidence SAR satellites (ASAR, RADARSAT-1/2, TerraSAR-X, 

COSMO-SkyMed, Sentinel-1) have allowed to estimate under very limited conditions the soil 

moisture and surface roughness simultaneously, even though multi-incidence acquisitions 

actually represent two acquisitions on two different dates. However, it is assumed that the soil 

parameters have not changed between the two acquisition dates. For this configuration, the 

radar images are acquired at two different incidence angles, generally one image with a weak 

incidence (weak~20°) and another image with a strong incidence (strong~40°) (Baghdadi and 

Zribi, 2016). 

II.2.2  Radar backscattering coefficient 

The backscattering coefficient (σ°) is the usual radar term for the measurement of the 

backscattering of a target by the radar. It expresses the ratio between the power transmitted by 

the antenna to the ground and that returned by the target for a given configuration system 

(polarization, frequency, angle of incidence). It defines the ability of an illuminated surface to 

reflect incident energy towards the antenna. It is usually expressed in decibels (dB), on a 

logarithmic scale: 

σo
dB = 10 . log10 (σ°linear) (2.2) 

II.3 Description of soil parameters 

II.3.1  Soil moisture 

Soil moisture is defined as the water contained in the soil. Obtained from rainfall, snowmelt, 

irrigation, or from the tube of liquid of groundwater. Soil moisture content is an important 

variable of climatological, hydrological and environmental systems. 

The moisture content in the surface layers of the soil is an important parameter for many 

applications in hydrology, agriculture and meteorology. Soil moisture is one of the few 

directly observable hydrological variables that play an important role in the water and energy 

budgets necessary for climate studies. Estimation of soil properties as soil moisture is an 

important variable for many water management and agricultural applications (Verhoest et al., 

2008). Moreover soil moisture information could also be used to predict natural disasters such 

as flooding and for environment changing such as soil erosions (Lakhankar et al., 2006). 
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Soil moisture measurements in situ are expensive and take time. Also these measurements 

might have some problems during the sampling process that make all the measurement 

incorrect. There are several methods to measure soil moisture, such as the gravimetric method 

and Time-Domain Reflectrometry (TDR). 

II.3.2  In situ measurements 

II.3.2.1  The gravimetric method 

The gravimetric method consists in first measuring the moisture content of a soil sample taken 

from a cylinder. The wet content Wp (% or g.g-1) is calculated using the wet weight (Ph: soil 

weight after sampling) and the dry weight (Ps). The dry weight (Ps) is obtained by drying the 

sample from the sampled soil with a temperature of 105 °C for 24 h. 

This method determines the wet weight of a soil sample by comparing the wet mass to its dry 

mass, according to the following equation: 

𝑊𝑝(𝑣𝑜𝑙. %) = 100 ∗ [
𝑃h - Ps

𝑃h
] 

(2.3) 

With: 

      Ph: soil moisture mass 

      Ps: dry soil mass 

      Wp: water content in weight % 

The moisture volume mv (% or cm3/cm3) is deduced from the wet weight Wp (% or g.g-1) by 

multiplying it by the apparent density of the soil: 

𝑚𝑣(%) = Da .Wp  (%) 
(2.4) 

 

Da: apparent density = the dry soil mass / the cylinder volume 
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II.3.2.2 The TDR (Time Domain Reflectometry) 

This instrument measures the propagation speed of a microwave signal by waveguides 

pressed into the soil. This speed is a function of the soil dielectric permittivity, related to the 

soil water content. For surface measurements, this method is fast with equipment that allows 

extensive measurements of soil moisture. This instrument can be placed deeply in a horizontal 

position for automated measurements. It is better to precede a previous calibration of the 

device by doing a comparison with measurements obtained by the gravimetric method 

(calibration for each soil type). Moreover, the TDR measurements are not valid for frozen soil 

where an important drop in the moistures registered by the probe can be observed.  

The gravimetric method is considered the most accurate but it requires a lot of effort and time 

to collect the soil samples. For this reason, soil moisture content is usually measured using a 

calibrated TDR (Figure II.1). Figure II.1b shows the calibration line of TDR established by 

expressing TDR measurements as a function of the gravimetric measurements. 

(a) 

 

(b) 

Figure II.1. (a) The Thetaprobe instrument. (b) Thetaprobe calibration curve, black circles 

represent moisture measurements. 

 

II.3.3  Surface roughness 

Roughness is a parameter that describes the soil microtopography. When the transmitted radar 

signal interacts with a rough surface, the energy of the wave is reflected in all directions and 

in particular in the radar’s direction. The description of the surface roughness of bare 
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agricultural soils is based on three parameters: the standard deviation height  (Hrms), the 

correlation length (L) and the autocorrelation function (Ogilvy and Ogilvy, 1991; Ulaby et al., 

1986). 

There are several techniques that could be used for soil roughness measurement: pin 

profilometer (Figure II.2), laser profilometer (Figure II.3), and 3D photogrammetry. The pin 

profilometer 1D can be represented by a function f(x) = z, where x is on the horizontal axis 

and z is the profile height with respect to this axis. Moreover, the use of the laser or 3D 

photogrammetry allows for the most accurate rendering of soil roughness (high spatial 

resolution) with a precise estimation of the roughness parameters, Hrms and L (Davidson et 

al., 2000; Mattia and Le Toan, 1999).  

However, the pin profilometer is the very widely used due to cost reasons. Most pin 

profilometers are 1 or 2 m long with a sampling interval of 0.5, 1, or 2 cm. The measures are 

often taken in both directions, parallel and perpendicular to the row direction, in order to 

consider the directional effect of soil tilling (several profiles in each direction). The 

autocorrelation functions, calculated using different roughness profiles of a reference plot, are 

averaged, and the roughness parameters Hrms and L estimated (Baghdadi and Zribi, 2016). 

 

 

Figure II.2. Roughness profile made by a needle profile-meter in the parallel direction 

to the furrows (1D profile from a pin profilometer: 1 m long and a sampling interval of 2 cm) 

(Baghdadi and Zribi, 2016). 
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Figure II.3. Examples of roughness profile: 3D profile from a laser scanner (Baghdadi and 

Zribi, 2016). 

 

The standard deviation height (Hrms) expresses the vertical variation of the soil roughness. 

The Hrms values depend on the agricultural operations and the rain or snow ground effects. 

The parameter is defined as follows: 

𝐻𝑟𝑚𝑠2 = 〈(𝑧(𝑥) − 〈𝑧〉)2〉  (2.5) 

Where z (x) is the measured altitude on the x axis, and <z> is the mean height. 

The Hrms parameter is not sufficient to characterize the soil surface. It does not take into 

account the relation which may exist between different surface points. 

In order to take into account the relationship that may exist between the altitudes of two 

surface points separated by a distance u, we define the autocorrelation function (ρ(u)) of the 

surface and calculating the correlation length L: 
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𝜌(𝑢) = [
〈{𝑧(𝑥 + 𝑢) − 〈𝑧〉}. {𝑧(𝑥) − 〈𝑧〉}〉

𝐻𝑟𝑚𝑠2
] (2.6) 

When u = 0, the distance between the altitudes of two surface points is zero, the correlation 

between these two points is maximum and the autocorrelation function is one: ρ(u) = 1. When 

u increases, the points move away and become less correlated and the 

function ρ(u) decreases. 

Finally, there is a distance for which the points are considered to be uncorrelated. This 

distance is the correlation length (L). It is defined as the distance (from the origin profile) in 

which the autocorrelation function equals e-1 (Figure II.4). When the roughness is low and the 

ground is smooth, the autocorrelation function has an exponential shape. Conversely, for high 

roughness, the autocorrelation function has a Gaussian shape (Ulaby et al., 1982) (Equation 

2.7). Zribi (1998) introduced the fractal dimension to the description of the autocorrelation 

function’s shape for bare soils in agricultural fields. For one-dimensional roughness profiles, 

the autocorrelation functions are defined as follows:   

fractal:e²         

Gaussian:²

lexponentia:²)(

L

x
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(2.7) 

with  = -2D+4, where D is the fractal dimension. When the fractal dimension varies, the 

shape of the autocorrelation function changes: it goes from an exponential function from for 

D=1.5 to a Gaussian shape for D=1. The experimental measurements show a fractal 

dimension between 1.25 and 1.45, where an autocorrelation function power  between 1.1 

and 1.5. 
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Figure II.4. Example of a correlation function, L is the correlation length. 

 

The inversion of the radar signal to estimate all surface parameters of the soil (Hrms, L, D, 

and soil moisture) is impossible without simplifications in the description of the roughness 

(too many variables and too few observations). In this context, Zribi and Dechambre (2002) 

proposed a new roughness parameter Zs (which equal to Hrms2/L) combining Hrms and L. 

This parameter Zs takes into account the influence of both surface height variations (Hrms) 

and soil surface slope (Hrms/L). Low values of Zs correspond to low values of Hrms and/or 

large values of L, whereas large values of Zs correspond to large values of Hrms and/or low 

values of L. Smooth soil surfaces are described by a low Zs (<0.1 cm), whereas rough soils 

lead to a large value of Zs (>1 cm).  

 Moreover, Zribi et al. (2014a) proposed a new parameter Zg, which combines the standard 

deviation of heights Hrms, the correlation length L, and the shape of the autocorrelation 

function (described by the power ): 
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(2.8) 

For a fixed value of α, high values of Zg correspond to high values of Hrms or low values of 

L, and low values of Zg correspond to low values of Hrms and/or high values of L.  

In the case of a fixed correlation length L, high values of Zg correspond to high values of 

Hrms or low values of α, and low values of Zg correspond to low values of Hrms and/or high 

values of α. In general, a smooth soil surface is characterized by a low value of Hrms and a 

medium to large value of L, thus to a small value of Zg. Moreover, rough surface is generally 

associated with a high value of Hrms, a medium to large value of L, and a value of α about 1, 

and thus to a high value of Zg. In addition, rough surfaces, corresponding to eroded soils, are 

often characterized by a high value of Hrms, a medium to large value of L and a value of α 

about 2, thus to a medium value of Zg. 

Several studies (e.g. Lievens et al., 2009; Oh and Kay, 1998) showed that the precision of in-

situ measurements root mean surface height (Hrms) and correlation length (L) are very 

sensitive to the length and the horizontal resolution x of the roughness profiles (Lievens et 

al., 2009; Oh and Kay, 1998). An underestimation is observed of Hrms and L using small 

profiles. Moreover, the estimate correlation length (L) increase using roughness profiles with 

large sampling intervals. For agricultural soils, with about ten profiles measuring 1 m, Hrms 

can be measured with a precision of 10%, while the precision of the estimation of L is around 

15 to 20% (a more important error for strong L values). Measuring L and Hrms with an error 

better than 5%, the sampling interval x must be smaller than 0.2L and 0.5L respectively (Oh 

and Kay, 1998). The Hrms values are generally seen between 0.3 cm (very smooth fields that 

have just been sown) and 4 cm (fields that have just been plowed). The lengths of correlation 

L measured on the agricultural plots are predominantly between 3 and 25 cm. 

II.4 Radar signal sensitivity to soil parameters 

II.4.1 Sensitivity of radar signal to soil roughness 

Many studies (Aubert et al., 2011a; Baghdadi and Zribi, 2016; Baghdadi et al., 2008a; Gorrab 

et al., 2015a) showed that the backscattering radar signal for bare soil increases with the rms 

surface height (Hrms) according to the logarithmic or exponential law. Then after certain 

 
L

HrmsHrmsZg 



21 
 

thresholds, the backscattering radar signal becomes constant (Figure II.5). This threshold after 

which the signal becomes constant depends on the wavelength and the radar’s incidence 

angle. According to several studies, the radar signal rapidly saturates with the soils roughness 

(Hrms) when the wavelength and or the incidence angle are weak. This saturation of the radar 

signal occurs when kHrms is higher than  1 (where k is the radar wave number = 2π/λ) (Figure 

II.5). Moreover, this saturation corresponds to Hrms values of 4 cm in L-band, 1 cm in C-

band and around 0.5 cm in X-band (Baghdadi and Zribi, 2016). Figure II.5 also illustrates the 

dynamic weakness of the radar backscattering coefficient in two cases, first in the case of 

weak incidence angles (variation of  7 dB for 20º-25º, Figure II.5a), than in the case of strong 

incidence angles (variation of 10 dB for 45º-50º, Figure II.5b). 

 

(a) 

 

(b) 

Figure II.5. Sensitivity of the radar signal to soil roughness. SAR sensors in C and L bands 

were used. The signal is represented as a function of kHrms (Baghdadi and Zribi, 2016). 
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II.4.2  Sensitivity of the radar signal to soil moisture  

The radar signal approximately follows a logarithmic law with soil moisture. Moreover, this 

logarithmic function represented approximately as a linear function for soil moisture between 

10 and 35 vol. % (Figure II.6). When the soil moisture increases than about 35 vol. %, the 

radar signal stabilizes and starting to decrease with the increasing of the soil moisture. So that, 

the estimation of soil moisture is difficult after 35 vol. % (e.g. Baghdadi et al., 2007; Holah et 

al., 2005). 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure II.6. Sensitivity of the radar signal in C and X bands to soil moisture. The Hrms 

values vary between 0.5 and 1.5 cm. (a): C-HH(20°-24°), (b): C-HH(43°-45°) (c): X-HH(25°-

28°), (d): X-HH(50°-52° ) (Baghdadi and Zribi, 2016). 

Numerous studies (Aubert et al., 2011a; Baghdadi and Zribi, 2016; Baghdadi et al., 2007; 

Choker et al., 2017) show the radar signal’s sensitivity to soil moisture as a function of 

different radar parameters (incidence angle, polarization, wavelength). Over bare soil, the 

optimal radar signal configuration to get the better sensitivity to soil moisture consists of X-

band (in comparison to L and C bands), HH polarization and a low incidence angle (Anguela 

et al., 2010; Aubert et al., 2011; Baghdadi and Zribi, 2016; Beaudoin et al., 1990; Toan, 1982; 
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Ulaby et al., 1986; Weisse et al., 2003). These radar’s incidence angles are ranging from 15° 

to 35° (Beaudoin et al., 1990; Lievens et al., 2009; Ulaby et al., 1986). 

The sensitivity of radar signal to soil moisture, in C-band it is approximately between 0.15 

dB/vol.% and 0.3 dB/vol.% (Baghdadi et al., 2008; Le Hégarat-Mascle et al., 2002; Quesney 

et al., 2000; Srivastava et al., 2003). For the effect of wavelength, Aubert et al. (2011) showed 

that the sensitivity of the radar signal toward the soil moisture is twice high in X-band than in 

C-band (about 0.35 dB/vol. % in X-band and 0.15 dB/Vol. % in C-band). Narvekar et al. 

(2015) showed that the sensitivity to soil moisture in L-band is approximately the same as in 

C-band. Moreover, the sensitivity for all frequency decreases as the incidence angle increases 

(Baghdadi and Zribi, 2016; Baghdadi et al., 2008a) (Figure II.6).  

II.5 SAR data processing 

Before processing the SAR images, the data are radiometrically calibrated, which allows the 

backscattering coefficient (°) to be extracted from the signal intensity of each pixel. This 

calibration enables to carry out multi-temporal analysis of different images (using either the 

same, or different sensors, but the same radar frequency, incidence angle and polarization). 

The pixel-by-pixel interpretation of SAR images are extremely difficult because of the 

presence of speckle noise. It is due to the coherent interference of waves reflected from many 

elementary scatterers. Due to these reasons, soil surface characteristics are always estimated 

over homogeneous sectors including several pixels, or at the scale of single fields (which 

helps to reduce the speckle effect). The mean backscattering coefficients are calculated from 

calibrated SAR images, by averaging the linear intensity values of all pixels within the field 

(or sub-field). The reduction in speckle noise and the improvement in the quality of 

backscattering estimations are thus highly dependent on the size of homogeneous units used 

(Joughin et al., 1993; Lee et al., 1994). 

II.6  Radar backscattering modeling and evaluation 

The radar backscattered models have been the subject of many studies based on theoretical or 

experimental research. In general, there are several classes of models: empirical, semi-

empirical and physical models. These models will be briefly discussed in chapter three. 
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II.6.1 Case of bare soil   

II.6.1.1 Modeling of radar backscattering on bare soils 

The modeling of the radar backscattered signal was developed in order to link and analyze the 

radar signal’s sensitivity to the physical parameters of the soil surface (roughness and water 

content in particular) as a function of SAR configurations (mainly radar wavelength, 

incidence angle and polarization) (Baghdadi and Zribi, 2016; Baghdadi et al., 2004, 2006a, 

2011b, 2015, 2016a; Beckmann and Spizzichino, 1987; Fung et al., 1992; Rice, 1951; Ulaby 

et al., 1986).  

The empirical models require calibration using in situ measurements and SAR observations 

acquired (Baghdadi et al., 2004, 2006a, 2011b, 2015, 2016a; Dubois et al., 1995; Oh, 2004; 

Oh et al., 1992, 1994, 2002). In addition, the range of validity of the empirical models is 

limited to the range of variations in the data used for model calibration. 

In addition, the physical models are based on laws of the resolution of Maxwell's equations, 

with physical approximations limiting their areas of validity. The disadvantages of these 

models are the complexity of implementations and require many parameters in simulations. 

The development of these models have been the goal of several studies such as (Chen et al., 

2003; Fung, 1994; Fung et al., 1992; Ulaby et al., 1986). In the IEM model (Fung et al., 

1992), the discrepancy between SAR simulations and SAR measurements is mainly related to 

the description of surface roughness which is an important input to SAR backscattering 

models  (Baghdadi et al., 2011b; Mattia et al., 2003; Verhoest et al., 2008). The surface 

roughness is described by three parameters: the standard deviation of the height (Hrms), the 

correlation length (L) and the shape of the correlation function (Fung et al., 1992). The 

correlation length is usually measured with an uncertainty which introduces an error on 

simulated backscattering coefficients (Baghdadi et al., 2000; Davidson et al., 2000; Le Toan 

et al., 1999; Lievens et al., 2011). A few studies proposed a semi-empirical calibration of 

SAR backscattering models in order to reduce the uncertainty on SAR simulations (Baghdadi 

et al., 2002b, 2004, 2006a, 2011a, 2011b, 2015; Rahman et al., 2007) . In Baghdadi et al. 

(2002b, 2004, 2006, 2011a, 2011b, 2015) the method consisted of replacing the measured L 

by a fitting parameter, so-called Lopt, which was found to be related to Hrms (Lopt increases 

with Hrms). Lopt is a function of Hrms (linear, exponential, or power calibration) which 

depends on SAR parameters (incidence angle, polarization and frequency). This calibration 

reduces IEM’s input soil parameters (Hrms and mv instead of Hrms, L and mv). Rahman et al. 
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(2007) proposed a method for deriving L through the IEM. In this method, the radar signal is 

modeled as a function of only Hrms and L, and the contribution of soil moisture on 

backscattering coefficients is ignored (dry soil). Thus, L could be estimated by inverting the 

IEM. 

II.6.1.2 Estimation of soil parameters using radar backscattering on bare soils 

For bare soil, many studies have shown the potential of radar data to retrieve soil parameters 

(moisture and roughness) (Aubert et al., 2011; Baghdadi and Zribi, 2006; Baghdadi et al., 

2002a, 2007, 2008a, 2012a; Le Hégarat-Mascle et al., 2002; Zribi et al., 2005b). The SAR 

signal increases with increasing soil moisture for values between 0 and 35% (Aubert et al., 

2011a; Baghdadi et al., 2007; Gorrab et al., 2015a; Holah et al., 2005). Beyond this threshold, 

the backscattering coefficients tend to saturate and then decreases with increasing soil 

moisture (Holah et al., 2005).  Most bare soil moisture estimation studies have used SAR data 

in X and C bands and the results show a precision on the estimation of soil moisture between 

3 and 6 vol.% (Aubert et al., 2011; Baghdadi et al., 2012, 2016b; El Hajj et al., 2014; Paloscia 

et al., 2013; Srivastava et al., 2003, 2009; Zribi et al., 2011). Moreover, in C-band, the 

accuracy of the soil moisture estimates depends on the effect of surface roughness and of the 

sensor incidence angle. On the other hand, in X-band, the effect of roughness on the accuracy 

of the soil moisture estimation is negligible and the quality of estimates is slightly better with 

low incidence  angle (RMSE < 1 vol.%) (Aubert et al., 2011a, 2013; Galarneau et al., 2001; 

Hégarat-Mascle, 2000; Quesney et al., 2000). Thus, the accuracy of the moisture estimates in 

X-band is twice as well as that obtained in C-band data (3 vol.% in the X-band compared with 

6 vol.% in the C-band) (Baghdadi and Zribi, 2016).  

Baghdadi et al. (2002a) analyzed the potential of synthetic aperture radar (SAR) data for 

monitoring roughness states over bare agricultural fields using one ERS image (23°) and two 

RADARSAT images (39° and 47°). The relationships between the backscattering coefficient, 

incidence angle, soil surface roughness and row direction have been examined in order to 

determine the best SAR configuration for such monitoring. The result showed a strong 

dependence of incidence angle on the discrimination between radar return over areas of 

different surface roughness. The influence of soil roughness on radar return is more sensitive  

at a high incidence angle (47°), over the influence of other soil parameters, making it possible 

to differ and map various surface roughness classes (smooth, medium and rough) over 

agricultural fields. 
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In addition, Baghdadi et al. (2012a) developed an approach to estimate soil surface parameters 

from C-band polarimetric SAR data in the case of bare agricultural soils. An inversion 

technique based on multi-layer perceptron (MLP) neural networks was introduced. The neural 

networks were trained and validated on a noisy simulated dataset generated from the Integral 

Equation Model (IEM) on a wide range of surface roughness and soil moisture. The 

performances of neural networks in retrieving soil moisture and surface roughness over bare 

soils were tested using or not a priori knowledge on soil moisture. The inversion approach 

was then validated using RADARSAT-2 images in polarimetric mode. The polarimetric 

parameter α1 (alpha angle that corresponds to the first eigenvector of coherency matrix) was 

used to discriminate two soil moisture classes (very wet soils, and dry to wet soils) and the 

anisotropy parameter A to separate two soil roughness’s (smooth with kHrms<1.0 and rough 

with kHrms≥1.0). The inversion errors obtained with the RADARSAT-2 images on the mv 

estimates is about 6.5 vol.% with a priori information on mv compared with 9.8 vol.% without 

a priori information on mv. The use of polarimetric parameters slightly improves the soil 

moisture estimates in comparison to the case without a priori information on mv (8.3 vol.% as 

compared to 9.8 vol.%). This is due to the weak dynamics of the polarimetric parameters 

(alpha angle, entropy, anisotropy) with the soil parameters for the C-band. Results show also 

that the estimation of soil surface roughness (Hrms) is possible with accuracy around 0.5 cm 

(RMSE). The estimation is better for Hrms lower than 2 cm. For higher Hrms, the NNs 

underestimate the surface roughness.  

II.6.2 Case of soil with vegetation cover 

The presence of vegetation makes the inversion of the radar signal much more complicated 

because the vegetation not only attenuates the backscattered signal but also produces its own 

contribution. Thus, in the presence of vegetation, the total backscattered radar signal is the 

result of contributions from soil attenuated by the vegetation and the vegetation contribution. 

The possibility of estimating soil moisture in the presence of vegetation from SAR images has 

been widely studied using C-band radar data (De Roo et al., 2001; Gherboudj et al., 2011; He 

et al., 2014; Notarnicola et al., 2006; Prevot et al., 1993; Sikdar and Cumming, 2004; Wang et 

al., 2011; Yu and Zhao, 2011; Zribi et al., 2011). Conversely, very few studies have been 

conducted using X-band radar data (El Hajj et al., 2014; Kseneman et al., 2012; Kweon et al., 

2012) or L-band (Paloscia et al., 2012; Wigneron et al., 1995). 
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The most used models to estimate soil moisture in the presence of vegetation are the  

Michigan Microwave Canopy Scattering model ʺMIMICSʺ (Ulaby et al., 1990) and the Water 

Cloud  Model ʺWCMʺ (Attema and Ulaby, 1978). MIMICS is based on the theoretical 

principle of the first order radiative transfer model to simulate radar backscatter from soil and 

vegetation parameters. In MIMICS vegetation is described in detail (stem diameter and leaf 

slope, among others), which makes it possible to better quantify the contribution of vegetation 

to the total backscattered radar signal and thus a better estimation of soil moisture. However, 

MIMICS is complicated to use, and requires a large number of input parameters. For this 

reason, most studies have used the WC model because it is relatively simple and requires only 

few input variables (De Roo et al., 2001; Gherboudj et al., 2011; Kweon et al., 2012; Prevot et 

al., 1993; Sikdar and Cumming, 2004; Wang et al., 2011; Yang et al., 2012; Zribi et al., 

2011). 

In the WCM, the total backscattered radar signal is modeled as the sum of soil attenuated by 

vegetation and vegetation contribution. The contribution of vegetation (direct backscatter and 

attenuation) is calculated using mainly a single biophysical parameter (leaf area index, 

vegetation water content, NDVI, biomass, or vegetation height) representing the effect of 

vegetation. The soil contribution is calculated as a function of soil moisture and roughness 

using a radar backscattering model. Optical data are often required to reverse the radar signal 

using the WCM. Indeed, the optical data are complementary to the radar data, and their 

interest lies in their sensitivity to the physical vegetation parameters. In the WCM, the 

biophysical parameters allow to evaluate the vegetation contribution to the radar signal, and to 

then reverse the soil contribution in order to estimate soil moisture (Baghdadi et al., 2016b; El 

Hajj et al., 2014; Fieuzal et al., 2011; He et al., 2014; Hosseini and Saradjian, 2011; 

Notarnicola et al., 2006; Prakash et al., 2012). 

The Water Cloud model (WCM) defines the backscattered radar signal in a linear scale (σ0
tot) 

which is the sum of the contribution from the vegetation (σ0
veg), the soil (σ0

soil) attenuated by 

the vegetation (T2 σ0
soil), and multiple soil-vegetation scatterings that are often neglected: 

σ0
tot= σ0 veg + T2 σ0 soil (2.9) 

σ0
veg = A.V1.cos θ  (1- T2)  (2.10) 
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T2 = exp (-2.B.V2.sec θ)  (2.11) 

Where: 

 V1 and V2 are vegetation descriptors (NDVI: Normalized Differential 

Vegetation Index, BIO: biomass, VWC: vegetation water content, HVE: 

vegetation height, LAI: foliar index, FAPAR: fraction of solar radiation 

absorbed, and FCOVER:  canopy fraction) 

 θ is the incidence angle 

 A and B are WCM parameters dependent on vegetation parameters, and radar 

configurations 

 mv is the volumetric moisture content of the soil. 

 

The soil contribution σ0
soil that depends on the soil moisture and surface roughness with SAR 

instrumental parameters can be simulated using physical backscattering model (IEM) or 

empirical models (Oh, Dubois, Baghdadi) (Baghdadi et al., 2016b; Dubois et al., 1995; Oh, 

2004; Oh et al., 1992, 1994, 2002). 

Several studies have used the WCM to estimate soil moisture in presence of vegetation. The 

results showed a soil moisture precision between 2 and 8 vol.% (De Roo et al., 2001; El Hajj 

et al., 2014; Gherboudj et al., 2011; He et al., 2014; Notarnicola et al., 2006; Prevot et al., 

1993; Sikdar and Cumming, 2004; Wang et al., 2011; Yang et al., 2012; Yu and Zhao, 2011; 

Zribi et al., 2011). Prevot et al. (1993) combined radar data in C and X bands to estimate the 

soil moisture of wheat plots (LAI of wheat between 0.1 and 8 m2/m2). The accuracy on the 

soil moisture estimation was 6.5 vol. %. Similar precision was obtained by Zribi et al. (2011) 

using ASAR (C band) images acquired on wheat plots (LAI between 0.01 and 3.7 m2/m2). 

Kweon et al. (2012) estimated soil moisture from soybean plots using X-band SAR data with 

an accuracy of 3 vol. % (VWC "water content" and LAI "leaf index" at 1.8 kg/m2 and 4.5 

m2/m2, respectively). He et al. (2014) combined radar data (C-HH and C-VV) and optical data 

to estimate soil moisture. The results showed an accuracy of about 3 vol.%. Gherboudj et al. 

(2011) combined "WC" and "Oh" models to estimate soil moisture with vegetation (wheat, 

peas, lentils, fallows, pasture and canola) from C-band radar data. Soil moisture was estimated 

with an accuracy of 6 vol.% for vegetation heights between 11 and 97 cm. Finally, De Roo et 
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al. (2001) used the MIMICS model in conjunction with the "Oh model" to estimate soil 

moisture in soybean plots (with VWC between 0.02 and 0.97 kg/m2) from the C and L 

polarimetric data. Accuracy of soil moisture estimates was about 2 vol.%. 

II.7 Conclusion 

Through the diversity of the radar backscattering models over bare soils, my first work is to 

evaluate the most commonly backscatter models using a wide dataset of SAR data and in situ 

measurements acquired over numerous agricultural sites in France, Italy, Germany, Belgium, 

Luxembourg, Canada and Tunisia. Thus, this study could be of a great importance for 

scientific community since it helps understanding backscatter models performance for a wide 

range of soil surface conditions, acquired for several study areas through the world by 

numerous SAR sensors. Never before have all these backscatter models been evaluated 

together in the same literature with such a wide dataset. This step is very important to find the 

model that produces good agreement between the radar data and the simulations in order to be 

used in the inverse mode later in this thesis. 
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III. Chapter 3: Evaluation of radar backscattering models 
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III.1 Introduction 

The aim of this chapter is to evaluate the most popular backscattering SAR models (Oh, 

Dubois, IEM, IEM_B, and AIEM) by using a wide range of SAR data and in situ 

measurements. With the arrival of Sentinel-1A and -1B satellites that provide free high 

resolution SAR data with 6 days revisit time, several research teams work actually on 

developing methods for mapping soil moisture using these Sentinel-1 data. Most of methods 

for soil moisture mapping are based on backscatter models for soil moisture estimations. The 

objective of this part is to evaluate the most commonly backscatter models using a wide 

dataset of SAR data and in situ measurements acquired over numerous agricultural sites in 

France, Italy, Germany, Belgium, Luxembourg, Canada and Tunisia. Thus, this study could 

be of a great importance for scientific community since it help on understand backscatter 

models performance for wide range of soil surface conditions, acquired for several study areas 

through the world by numerous SAR sensors. Never before have been evaluated all these 

backscatter models together in the same literature with such a wide dataset. In addition, this 

study is the first that evaluates the backscatter models using L-, C- and X-bands together. A 

description of the study areas and different datasets used in this study is provided in Section 2. 

Section 3 the models are described. The results are shown in Section 4. Finally, Section 5 

presents the conclusion. 

III.2 Dataset 

III.2.1 Study Areas 

A wide range of datasets composed of AIRSAR, SIR-C, JERS-1, PALSAR-1, ESAR, ERS, 

RADARSAT, ASAR and TerraSAR-X acquisitions over numerous agricultural sites in 

France, Italy, Germany, Belgium, Luxembourg, Canada and Tunisia (Table III.1), have been 

used in this research work. In addition, in situ measurements of soil moisture and surface 

roughness were carried out simultaneously to SAR acquisitions over bare soil surfaces. 

III.2.2 Satellite Data 

A large number of L-, C- and X-band images (approximately 1.25 GHz, 5.3 GHz and 9.6 

GHz, respectively) were acquired between 1994 and 2014 with different incidence angles 

(between 18° and 57°) and in HH, VV and HV polarizations (Table III.1). The spatial 

resolution of SAR images is between 1 m and 30 m (Table III.1). Images were first 



33 
 

radiometrically calibrated to enable the extraction of the backscattering coefficients (
0 ). 

Then, the mean backscattering coefficients were computed from calibrated SAR images by 

linearly averaging the 
0  values of all pixels within the plot. 

III.2.3 Field Data 

Field measurements of soil moisture and surface roughness have been collected from bare 

plots selected over the study areas. Each plot is a homogeneous surface (similar soil type, 

moisture content and surface roughness) of around one hectare or more. In situ measurements 

of soil moisture (mv, in vol. %) were carried out for a soil layer of 5 cm or 10 cm in each 

reference plot by using both the gravimetric method or a calibrated TDR (time domain 

reflectometry) probe. For each bare soil reference field the average soil moisture (mv) of all 

samples was calculated. The soil moisture ranged between 2 vol. % and 47 vol. %. 

Roughness measurements were carried out by using laser or needle profilometers (mainly 1 m 

and 2 m long, and with 1 cm and 2 cm sampling intervals); while for some in situ 

measurement campaigns, a meshboard technique was used. Several roughness profiles along 

and across the direction of tillage were acquired in each reference field. The standard 

deviation of surface heights (Hrms) and the correlation length (L) were calculated by using 

the mean of all experimental correlation functions. In our dataset, Hrms ranged from 0.2 cm to 

9.6 cm and the L from 1.2 cm to 38.5 cm. The reference plots in the datasets were chosen with 

low density of stones. 

A total of 2442 experimental data of soil moisture content and surface roughness were 

available, together with the corresponding values of backscattering coefficient, of which 1262 

at HH polarization, 790 at VV polarization, and 390 at HV polarization (Table III.1). 
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Site SAR Sensor 
Spatial 

Resolution 
Freq Year Number of Data 

Orgeval (Fr)  

(Zribi et al., 1997) 
SIR-C 

30 m × 30 

m 
L 1994 

HH: 1262 

measurements 

66 in L-band 

766 in C-band 

430 in X-band 

VV: 790 

measurements 

159 in L-band 

411 in C-band 

220 in X-band 

HV: 390 

measurements 

13 in L-band 

313 in C-band 

64 in X-band 

Orgeval (Fr) 

 (Baghdadi et al., 

2008a, 2013; Zribi et 

al., 1997) 

SIR-C, ERS, 

ASAR 

30 m × 30 

m 
C 

1994; 1995; 2008;  

2009; 2010 

Orgeval (Fr) 

(Baghdadi et al., 

2008a) 

PALSAR-1 
30 m × 30 

m 
L 2009 

Orgeval (Fr) 

 (Baghdadi et al., 

2012b) 

TerraSAR-X 1 m × 1 m X 2008, 2009, 2010 

Pays de Caux (Fr)  

(Baghdadi et al., 

2002a, 2004) 

ERS; RADARSAT 
30 m × 30 

m 
C 1998; 1999 

Villamblain (Fr) 

 (Baghdadi et al., 

2006a; Holah et al., 

2005) 

Villamblain (Fr)  

(Baghdadi et al., 

2011c, 2013) 

ASAR 

TerraSAR-X 

30 m × 30 

m 

C 

 

 

X 

2003; 2004; 2006 

 

 

2008; 2009 

Thau (Fr)  

(Baghdadi et al., 2007) 

RADARSAT 

TerraSAR-X 

30 m × 30 

m 

1 m × 1 m 

C 

X 
2010; 2011 2010 

Touch (Fr)  

(Baghdadi et al., 2007; 

Holah et al., 2005) 

ERS-2; ASAR 
30 m × 30 

m 
C 2004; 2006; 2007 

Mauzac (Fr) 

 (Baghdadi et al., 

2011c) 

TerraSAR-X 1 m × 1 m X 2009 

Garons (Fr)  

(Baghdadi et al., 

2011c) 

TerraSAR-X 1 m × 1 m X 2009 

Kairouan (Tu)  

(Zribi et al., 2014b) 

Kairouan (Tu)  

(Baghdadi et al., 

2011c; Gorrab et al., 

2015b; Zribi et al., 

2014b) 

ASAR 

TerraSAR-X 

30 m × 30 

m 

   C 

 

 

X 

2012 

 

 

2010; 2012; 2013; 

2014 

Yzerons (Fr)  

(Aubert et al., 2013) 
TerraSAR-X 1 m × 1 m X 2009 

Versailles (Fr)  

(Baghdadi et al., 

2011c) 

TerraSAR-X 1 m × 1 m X 2010 

Seysses (Fr)  

(Baghdadi et al., 
TerraSAR-X 1 m × 1 m X 2010 
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Table III.1. Description of the dataset used in this study. “Fr”: France, “It”: Italy, “Ge”: 

Germany, “Be”: Belgium, “Lu”: Luxembourg, “Ca”: Canada, “Tu”: Tunisia. The radiometric 

accuracy of SAR data is about 1 dB. 

 

III.2.4  Soil texture 

Twenty one agricultural study sites were used. The texture compositions (Silt; Clay; Sand) are 

described below (Table III.2). 

2011c) 

Chateauguay (Ca)  

(Baghdadi et al., 2004) 
RADARSAT 

30 m × 30 

m 
C 1999 

Brochet (Ca)  

(Baghdadi et al., 2004) 
RADARSAT 

30 m × 30 

m 
C 1999 

Alpilles (Fr)  

(Baghdadi et al., 2004) 
ERS; RADARSAT 

30 m × 30 

m 
C 1996; 1997 

Sardaigne (It)  

(Dong et al., 2013) 

ASAR; 

RADARSAT 

30 m × 30 

m 
C 2008; 2009 

Matera (It)  

(Mattia et al., 1997) 
SIR-C 

30 m × 30 

m 
L 1994 

Alzette (Lu)  

(Lievens et al., 2011; 

Rahman et al., 2007) 

PALSAR-1 
30 m × 30 

m 
L 2008 

Dijle (Be)  

(Lievens et al., 2011) 
PALSAR-1 

30 m × 30 

m 
L 2008; 2009 

Zwalm (Be) 

(Lievens et al., 2011) 
PALSAR-1 

30 m × 30 

m 
L 2007 

Demmin (Ge)  

(Lievens et al., 2011) 
ESAR 2 m × 2 m L 2006 

Montespertoli (It)  

(Baronti et al., 1995; 

Panciera et al., 2014) 

Montespertoli (It)  

(Macelloni et al., 1999) 

Montespertoli (It)  

(Paloscia et al., 1999) 

AIRSAR 

SIR-C 

JERS-1 

30 m × 30 

m 

L 

 

 

L; C 

 

L 

1991 

 

 

1994 

 

1994 

Site Texture Composition (Silt; Clay; Sand) 

Orgeval (Fr)  

 
(78%; 17%; 5%) 

Pays de Caux (Fr) 

 
(70%, 13%, 17%) 

Villamblain (Fr) (60%,30%, 10% ) 

Thau (Fr) 

 
(53%, 35%, 12%) 

Touch (Fr) (55%, 21%, 24%) 
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Table III.2. Description of the Texture Composition dataset (Silt; Clay; Sand) used in this 

study. “Fr”: France, “It”: Italy, “Ge”: Germany, “Be”: Belgium, “Lu”: Luxembourg, “Ca”: 

Canada, “Tu”: Tunisia. 

 

III.3 Description of the Backscattering Models 

III.3.1 The Semi-Empirical Dubois Model 

Dubois et al. (1995) proposed a semi-empirical model for simulating the backscattering 

coefficients in HH and VV polarizations (
0

HH  and 
0

VV ) over bare soils. The expression of 

0

HH  and 
0

VV  depends on the incident angle (θ), the soil dielectric constant (ε, which is a 

function of the soil moisture content), the soil roughness defined by the standard deviation of 

 

Mauzac (Fr) 

 
(48%, 16%, 36%) 

Garons (Fr) 

 
(54%, 40%, 6% ) 

Kairouan (Tu) (11%, 32%, 57% ) 

Yzerons (Fr) 

 
(13%, 20%, 67% ) 

Versailles (Fr) 

 
(58%, 24%, 18%) 

Seysses (Fr) 

 
(50%, 16%, 34%) 

Chateauguay (Ca) 

 
(43%, 37%, 20%) 

Brochet (Ca) 

 
(43%, 37%, 20%) 

Alpilles (Fr) 

 
(54%, 40%, 6%) 

Sardaigne (It) 

 
(23%, 30%, 47%) 

Matera (It) 

 
(59%; 14%; 27%) 

Alzette (Lu) 

 
(50%; 30%; 20%) 

Dijle (Be) 

 
(84%; 12%; 4%) 

Zwalm (Be) 

 
(72%; 13%; 15%) 

Demmin (Ge) 

 
(25%; 7%; 68%) 

Montespertoli (It) 

 
(40%; 20%; 40%) 
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surface height (Hrms), and the radar wavelength (λ = 2π/k where k is the wave number). The 

model optimized for bare soils according to the validity domain defined by kHrms ≤ 2.5, mv ≤ 

35 vol. %, and θ ≥ 30° is expressed as: 

  7.01.1tan046.0

3

3
35.20 sin10

sin

cos
10 


















  HrmskVV

  7.04.1tan028.0

5

5.1
75.20 sin10

sin

cos
10 


















  HrmskHH

 

(3.1) 

where θ is expressed in radians and λ in cm, and 
0

HH  and 
0

VV  are expressed in linear units. 

III.3.2 The Semi-Empirical Oh Model 

Oh (2004) and Oh et al. (1992b, 1994, 2002) developed between 1992 and 2004 several 

versions of a semi empirical backscattering model. Basing on theoretical models, 

scatterometer measurements and airborne SAR observations, the Oh model is built over a 

wide variety of bare soil surfaces. The Oh model relates the co-polarized ratio p (=
0

HH /
0

VV
 ) 

and the cross-polarized ratio q (=
0

HV
 /

0

VV
 ) to incident angle (θ), wave number (k), standard 

deviation of surface height (Hrms), correlation length (L), and soil moisture (mv) or dielectric 

constant ( r ). 

The initial version of the Oh model (Oh et al., 1992) is defined as: 

0

2
1

0 3Γ

0
1 .

90
k HrmsHH

VV

p e
    
     

   
 

 (3.2) 

 
0

00
0.23 Γ 1 k HrmsHV

VV

q e


  


 (3.3) 

where: 
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2

0

1

1

r

r

 (3.4) 

Oh et al. (1994) proposed a new expression for q to incorporate the effect of the incidence 

angle: 

  0

0
1.4 1.6Γ0.9

00
0.25 Γ 0.1 sin θ 1

k HrmsHV

VV

q e
   


   


 (3.5) 

Oh et al. (2002) again modified the expressions for p and q, and the following expression for 

the cross-polarized backscatter coefficient was proposed: 

0.65

1.4

0.350
0.4( )

0

σ θ
1 .

σ 90

mv

k HrmsHH

VV

p e



 
   

 
 (3.6) 

 
0.8

1.20
0.9( )

0

σ
0.1 sin1.3θ 1

σ

k HrmsHV

VV

Hrms
q e

L

 
    

 
 (3.7) 

 
1.80 0.7 2.2 0.32( )σ 0.11 cos θ 1 k Hrms

HV mv e   (3.8) 

Oh and Kay (1998) demonstrated that the measurement of the correlation length is not 

accurate and that the ratio q is not sensitive to the roughness parameter (defined as Hrms/L). 

Thus, (Oh, 2004) proposed a new equation for q that ignores the correlation length (L): 

   
0.9

0
1.4 1.3( )

0

σ
0.095 0.13 sin1.5θ 1

σ

k HrmsHV

VV

q e     (3.9) 

The Oh model (Oh, 2004) is optimized for bare soils in the following validity domain: 0.13 ≤ 

kHrms ≤ 6.98, 4 ≤ mv (vol. %) ≤ 29.1, and 10° ≤ θ ≤ 70°. 
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The estimation of soil moisture and surface roughness from Oh model requires two 

backscattering coefficients at least, with one co-polarized coefficient (
0σHH  or 

0

VV
 ) and one 

cross-polarized coefficient (
0

HV
  or 

0

VH
 ). The availability of 

0

VV
  and 

0

VH
  allows using the 

ratio q and 
0

HV
  in the inversion process of SAR data, while the ratio p/q, as well as 

0

HV
 , is 

used in the case where SAR data are available in the both HH and HV polarizations. 

III.3.3 The Physical Integral Equation Model (IEM) 

The Integral Equation IEM is a physical model (Fung, 1994), where the soil is characterized 

by the dielectric constant (
r ), the standard deviation of surface height (Hrms), the form of 

the correlation function, and the correlation length (L). The IEM also takes into account the 

sensor parameters such as the incidence angle (θ), the polarization (pq with p,q = H or V), and 

the radar wave number (k = 2π/λ where λ is the wavelength). The IEM has a validity domain 

that covers the range of roughness values that are commonly encountered for agricultural 

surfaces:  

kHrms ≤ 3 

    2( cosθ) 0.46 exp 0.92 1 sinθ 0.25k Hrms k L k L    

(3.10) 

Over bare soils in agricultural areas, the backscattering coefficient of the surface contribution 

is expressed at HH and VV polarizations as: 

2 2 2

2 2 2

2 2 2

2 2 2
2

0 4 cos θ ( )

1

2 2 2
* 3 cos θ ( )

1

2 2 2
2

2 cos θ ( )

1

² (4 cos θ)
(2 sinθ,0)

2 !

² (4 cos θ)
Re( ) (2 sinθ,0)

2 !

² ( cos θ)
(2 sinθ,0)

8 !

n
k Hrms n

pp pp

n

n
k Hrms n

pp pp

n

n
k Hrms n

pp

n

k k Hrms
f e W k

n

k k Hrms
f F e W k

n

k k Hrms
F e W k

n






























 
(3.11) 

At cross polarization, the backscattering coefficient is as follows: 
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2 2 2
2 2 2

0 2 cos θ

1 1

2 * ( ) ( )

² ( cos θ)

16 ! !

( , ) ( , ) ( , ) ( sin θ, ) ( sin θ, )

n m
k Hrms

hv

n m

n m

hv hv hv

k k Hrms
e

n m

F u v F u v F u v W u k v W u k v du dv




 


 



     
 

 


 

(3.12) 

where: 

2

cosθ

h

hh

R
f


 ; 

2

cosθ

v

vv

R
f   (3.13) 

2

2

cosθ sin θ
: Fresnel coefficient at horizontal polarization

cosθ sin θ

r r r

h

r r r

R
  

  

 


 

 

(3.14) 

2

2

cosθ sin θ
: Fresnel coefficient at vertical polarization

cosθ sin θ

r r r

v

r r r

R
  

  

 


 
 (3.15) 

 
2

2sin θ 1
2 4 1 1

cosθ
hh h h

r

F R R


  
     

   
 

(3.16) 

   
22

2 2

2

cos θsin θ 1
2 1 1 1 1

cosθ sin θ

r

vv v v

rr r

F R R


 

    
         

    
 (3.17) 

2
2 2

2

2 2 2 2 2 2

(1 )
2 6 (1 )

8
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cosθ
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r

R
R R

uv R
F u v

k k u v k u v






 
     

  
    
 
 

 (3.18) 
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2

hv RR
R




 
(3.19) 

r : dielectric constant, obtained on the basis of volumetric water content (mv). In our 

study, Hallikainen empirical model is used (Hallikainen et al., 1985). 

r : relative permittivity. 

Re: real part of the complex number. 

*

ppf
: conjugate of the complex number ppf

. 

)(nW  is the Fourier transform of the nth power of the surface correlation ),( yx  

function: 

dydxeyxbaW byaxinn


 )()( ),(

2

1
),( 

  
(3.20) 

The distribution of ),( yx  is exponential for low surface roughness values and Gaussian 

for high surface roughness values. 

III.3.4 IEM Modified by Baghdadi (IEM_B) 

Several studies reported important discrepancies between backscattering coefficients 

simulated by IEM and those measured by SAR sensors (Baghdadi et al., 2002a; Boisvert et 

al., 1997; Gorrab et al., 2015b; Panciera et al., 2014; Rakotoarivony et al., 1996; Remond, 

1997; Zribi et al., 1997). Baghdadi et al. (2002b) showed that the discrepancy between the 

observed and IEM simulated backscattering coefficients is mainly due to the correlation 

length parameter which is difficult to measure with a good accuracy. To reduce such 

incongruities between simulated and measured backscattering values, Baghdadi et al. (2006, 

2011a, 2011c, 2015) proposed a semi-empirical calibration of the IEM backscattering, which 

consists of replacing the in situ measured correlation length by a fitting parameter (Lopt). Lopt 

depends on surface roughness conditions and SAR configurations (incidence angle, 
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polarization and radar wavelength). This calibration has been performed by using large 

experimental datasets and SAR configurations (incidence angles from 23° to 57°, and HH, 

HV, and VV polarizations), and it has been carried separately at X-band in (Baghdadi et al., 

2011c), C-band in (Baghdadi et al., 2006a, 2011b) and L-band in (Baghdadi et al., 2015). The 

proposed calibration reduces the IEM’s input soil parameters from three to two (Hrms and mv 

only, instead of Hrms, L and mv). 

Lopt is computed at L-, C-, and X-bands using a Gaussian correlation function and it is 

described as follows: 

In X-band:   {
𝐿𝑜𝑝𝑡(𝐻𝑟𝑚𝑠,θ, 𝐻𝐻) = 18.102𝑒−1.891θ 𝐻𝑟𝑚𝑠 0.7644𝑒0.2005 θ 

𝐿𝑜𝑝𝑡(𝐻𝑟𝑚𝑠,θ, 𝑉𝑉) = 18.075𝑒−2.1715θ 𝐻𝑟𝑚𝑠  1.2594𝑒−0.8308θ
  (3.21) 

In C-band:   {
𝐿𝑜𝑝𝑡(𝐻𝑟𝑚𝑠,θ, 𝐻𝐻) = 0.162 + 3.006 (sin 1.23θ)−1.494  𝐻𝑟𝑚𝑠

𝐿𝑜𝑝𝑡(𝐻𝑟𝑚𝑠,θ, 𝐻𝑉) = 0.9157 + 1.2289 (sin 0.1543 θ)−0.3139 𝐻𝑟𝑚𝑠

𝐿𝑜𝑝𝑡(𝐻𝑟𝑚𝑠,θ, 𝑉𝑉) = 1.281 + 0.134 (sin 0.19 θ)−1.59  𝐻𝑟𝑚𝑠

 (3.22) 

In L-band: {
𝐿𝑜𝑝 (𝐻𝑟𝑚𝑠,θ, 𝐻𝐻) = 2.6590 θ−1.4493 + 3.0484 𝐻𝑟𝑚𝑠 θ−0.8044

𝐿𝑜𝑝𝑡(𝐻𝑟𝑚𝑠,θ, 𝑉𝑉) = 5.8735 θ−1.0814 + 1.3015 𝐻𝑟𝑚𝑠 θ−1.4498 (3.23) 

where θ is in radians; Lopt and Hrms are in centimeters. Several studies showed that the use 

of the fitting parameter Lopt allows more correct estimations of the radar backscattering 

coefficient (Baghdadi et al., 2015; Dong et al., 2013; Gorrab et al., 2015a). 

III.3.5 The Advanced Integral Equation Model 

The Advanced Integral Equation Model (AIEM) (Chen et al., 2003) is the updated version of 

the Integral Equation Model (IEM) (Fung, 1994). In a comparison with the IEM, two 

improvements have been integrated into the AIEM: (1) the complete expressions for the 

Kirchhoff field coefficient and the complementary field coefficient based on the removal of 

the simplification assumption of the Green’s function have been included in the AIEM (Chen 

et al., 2003) and (2) a continuous Fresnel reflection coefficient is obtained using a transition 

model (Wu et al., 2001). This update allows a more precise calculation of the simple 

scattering for a surface with a wide range of dielectric constant (
r ), large standard deviation 
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of heights Hrms, and various remote sensing configurations. The AIEM simulates the radar 

backscattering coefficients basing on the same parameters as the IEM. 

III.4 Results and Discussion 

This section shows the evaluation results of the five radar backscattering models Dubois, Oh, 

IEM, IEM_B and AIEM using large datasets, characterized by various radar wavelength (L, C 

and X), wide range of incidence angles and large geographical distribution in regions with 

different climate conditions (humid, semi-arid and arid sites). The size of reference plots is at 

least of 2 ha. For each plot, SAR data was simulated through backscatter models using in situ 

measurements (mv, Hrms and L) averaged within that plot. Then, the simulated SAR signal 

were compared with the backscattering coefficients computed from calibrated SAR images by 

linearly averaging the 0  values of all pixels within the plot 

III.4.1 Evaluation of the Dubois Model 

The evaluation of Dubois model was carried out for different scenarios using all data, per 

radar wavelength, and by range of soil moisture, kHrms, and incidence angle. 

Using all data, the Dubois model slightly over-estimates the radar signal by about 1.0 dB in 

HH polarization and slightly under-estimates the radar signal by about 0.7 dB in VV 

polarization (Table III.3, Figures III.1 and III.2). RMSE is about 4.0 dB and 2.9 dB at HH and 

VV polarization, respectively (Table III.3). The analysis of the error according to each radar 

frequency band separately (L, C and X) shows an over-estimation in HH polarization, which 

is almost the same at L-, C- and X-bands (between 0.9 dB and 1.1 dB). In VV polarization, 

the Dubois model under-estimates the radar signal by about 1.8 dB and 0.4 dB for X and C 

bands, respectively. For L band, the Dubois model fits correctly the radar signal in VV 

because the difference between real data and simulations is about 0.2 dB. The RMSE in HH is 

the same as at X- and C-bands, and is about 4.1 dB and decreases to 3.0 dB at L-band. In VV 

polarization, the RMSE increases with the radar frequency (2.5 dB at L-band, 2.8 dB at C-

band and 3.1 dB at X-band). 
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Model Statistics 
All 

Data 
L-Band C-Band X-Band 

kHrms 

< 2.5 

kHrms > 

2.5 

mv < 20 

vol.% 

mv > 

20 vol. 

% 

θ < 30  
θ > 

30° 

Dubois 

for HH 
pol. 

Bias (dB) 
−1.

0 
−1.0 −1.1 −0.9 +0.4 −2.9 −2.6 +0.3 −4.2 

+0.

3 
RMSE 

(dB) 4.0 3.0 4.1 4.1 3.6 4.6 4.6 3.4 5.5 3.2 

Dubois 
for VV 

pol. 

Bias (dB) 
+0.

7 
−0.2 +0.4 +1.8 +1.2 −0.2 +0.5 +1.0 −0.6 

+1.

5 
RMSE 

(dB) 2.9 2.5 2.8 3.1 3.0 2.5 2.8 3.0 2.9 2.9 

Table III.3. Comparison between the Dubois model output and real data using the entire 

dataset, and by separating two intervals of kHrms, soil moisture (mv) and incidence angle (θ). 

Bias = real data − simulations. 

  

(a) (b) 

  

(c) (d) 

Figure III.1. Comparison between backscattering coefficient values obtained from SAR 

images and those estimated from the Dubois model at HH polarization. (a) Dubois model 

simulations vs. SAR data; (b) difference between SAR signal and the Dubois model vs. soil 

roughness (kHrms); (c) difference between SAR signal and the Dubois model vs. soil 

moisture (mv); (d) difference between SAR signal and Dubois model vs. incidence angle. 
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(a) (b) 

  

(c) (d) 

Figure III.2. Comparison between backscattering coefficient values obtained from SAR 

images and those estimated using the Dubois model at VV polarization. (a) Dubois model 

simulations vs. SAR data; (b) difference between SAR signal and the Dubois model vs. soil 

roughness (kHrms); (c) difference between SAR signal and the Dubois model vs. soil 

moisture (mv); (d) difference between SAR signal and Dubois model vs. incidence angle. 

 

The analysis of the error of the Dubois model according to the validity domain was studied by 

range of surface roughness (kHrms), soil moisture (mv) and incidence angle (Table III.3). The 

Dubois model underestimates the radar signal for kHrms < 2.5 (validity domain of the Dubois 

model) by about 0.4 dB and 1.2 dB in HH and VV polarizations, respectively. In the case of 

kHrms < 2.5, the RMSE is about 3.6 and 3.0 dB for HH and VV polarizations, respectively. In 

addition, the Dubois model overestimates the radar signal for kHrms > 2.5 by about 2.9 dB in 

HH polarization with RMSE about 4.6 dB. In VV polarization, the Dubois model fits 

correctly the radar signal in the case of kHrms > 2.5 with a difference between real and 

simulated data of about 0.2 dB and a RMSE of 2.5 dB (Table III.3). 
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Moreover, the evaluation of the Dubois model was carried out by range of soil moisture (mv). 

Results show an overestimation in HH pol. by about 2.6 dB and a slightly underestimation in 

VV by about 0.5 dB with mv-values lower than 20 vol.% (RMSE = 4.6 and 2.8 dB at HH and 

VV, respectively) (Table III.3). Besides, the Dubois model correctly simulates the 

backscattering coefficient in HH pol. with a difference between real data and simulations 

about 0.3 dB and underestimates the radar signal in VV by about 1.0 dB with mv-values 

greater than 20 vol. %. In the case of mv-values greater than 20 vol. %, the RMSE is about 3.4 

dB and 3.0 dB for HH and VV polarization respectively. Finally, the performance of Dubois 

model was studied according to ranges of incidence angle (Table III.3). For θ < 30° (outside 

the validity domain of the Dubois model), the Dubois model overestimates the radar signal by 

−4.2 dB in HH polarization (RMSE = 5.5 dB) and slightly underestimates the radar signal in 

VV polarization (real data − simulations = −0.6 dB) with a RMSE of 2.9 dB. At θ > 30°, the 

Dubois model correctly simulates the backscattering coefficient in HH pol. with a difference 

between real data and model of 0.3 dB at HH polarization and underestimates the 

backscattering at VV pol. by about 1.5 dB (RMSE = 3.2 dB and 2.9 dB for HH and VV 

polarizations, respectively). 

III.4.2 Evaluation of the Oh Model 

The Oh model versions developed in 1992, 1994, 2002 and 2004 were applied to our datasets. 

The evaluation of the different Oh model versions was carried out firstly using all data, 

successively for each radar wavelength (L, C and X bands), and finally by range of soil 

moisture, kHrms and incidence angle (Table III.4, Figures III.3–III.11). 

Using the entire dataset, results showed that the different versions of Oh model correctly 

simulate the backscattering at both HH and VV polarizations with difference between real 

data and simulations varying between −0.9 and +0.4 dB at HH pol. and between (−1.3 dB and 

+0.4 dB) in VV pol. The RMSE values are approximately the same for all models and in both 

HH and VV polarizations, i.e., between 2.4 dB and 2.8 dB. The Oh 1992 model simulates 

slightly better the backscattering than the other versions (Table III.4). For HV polarization, 

the Oh 2002 model simulates correctly the backscattering with a difference between real and 

simulated data of about +0.7 dB, with RMSE equal to 2.9 dB.  
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Model Pol. Statistics 
All 

Data 

L-

Band 

C-

Band 

X-

Band 

kHrms 

< 2.0 

kHrms 

> 2.0 

mv < 

29.1 vol. 

% 

mv > 

29.1 vol. 

% 

 

(Oh et 
al., 1992) 

HH 
Bias (dB) +0.4 +2.5 +0.1 0.0 +1.3 −0.5 −0.3 +1.9 

RMSE (dB) 2.6 3.7 2.4 2.5 2.9 2.3 2.3 3.1 

VV 
Bias (dB) +0.1 +2.1 +0.4 −1.2 +1.0 −0.7 −0.4 +1.5 

RMSE (dB) 2.4 3.4 2.3 2.1 2.7 2.0 2.3 2.7 

(Oh et 

al., 1994) 

HH 
Bias (dB) −0.9 +1.3 −1.2 −1.2 −0.05 −1.7 −1.6 +0.5 

RMSE (dB) 2.8 2.8 2.7 2.8 2.6 2.9 2.9 2.5 

VV 
Bias (dB) −1.3 +0.7 −1.3 −2.1 −0.5 −2.1 −1.7 −0.4 

RMSE (dB) 2.6 2.6 2.6 2.7 2.4 2.9 2.8 2.2 

(Oh et 

al., 2002) 

HH 
Bias (dB) −0.3 +2.1 −0.9 −1.0 +0.3 −0.9 −0.7 +0.4 

RMSE (dB) 2.7 3.2 2.7 2.8 2.7 2.6 2.7 2.5 

HV 
Bias (dB) +0.7 +1.5 +1.0 −0.9 +1.8 −0.7 +0.5 +0.8 

RMSE (dB) 2.9 3.1 2.7 3.8 3.2 2.5 3.0 2.6 

VV 
Bias (dB) −0.6 +1.8 −1.2 +0.4 −0.2 −1.0 −0.7 −0.5 

RMSE (dB) 2.5 2.9 2.7 2.0 2.5 2.6 2.6 2.5 

(Oh, 

2004) 

HH 
Bias (dB) −0.5 +2.1 −1.0 −0.6 0.6 +1.5 −0.9 +0.4 

RMSE (dB) 2.6 3.3 2.7 2.3 2.6 2.6 2.7 2.6 

VV 
Bias (dB) −1.1 +1.4 −1.5 −1.4 −0.2 −2.0 −1.3 −0.8 

RMSE (dB) 2.6 2.8 2.8 2.1 2.4 2.8 2.6 2.6 

Table III.4. Comparison between real data and Oh models for all data and different ranges of 

kHrms and soil moisture (mv). Bias = real data − simulations. 

 

In L-band, the different versions of the Oh model underestimate the backscattering at both HH 

and VV polarizations. This underestimation varies between 1.3 dB and 2.5 dB in HH 

polarization and between 0.7 dB and 2.1 dB in VV polarization (Table III.4). The RMSE is 

slightly higher in HH than in VV polarization (between 2.8 dB and 3.7 dB in HH and between 

2.6 dB and 3.4 dB in VV). The Oh 1994 version better simulates the backscattering than other 

versions of Oh model, with an underestimation of the backscattering between 1.3 dB and 0.7 

dB and RMSE of 2.8 and 2.6 dB for HH and VV polarizations, respectively. At HV 

polarization, the Oh model underestimates the backscattering by about 1.5 dB with RMSE 

equal to 3.1 dB. 

In C-band, the Oh 1992 model correctly simulates the backscattering in both HH and VV 

polarizations with differences between real and simulated data of 0.1 dB and 0.4 dB at HH 

and VV polarizations, respectively (Table III.4). Besides, the RMSE is of 2.4 dB at HH and 

2.3 dB at VV pol. Moreover, the other Oh versions overestimate the backscattering in both 

HH and VV polarizations (between 0.9 dB and 1.5 dB) with similar RMSE between 2.6 dB 

and 2.8 dB. At HV polarization, the Oh 2002 model slightly underestimates the backscattering 

by about 1.0 dB with a RMSE of 2.7 dB. 
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The analysis of results obtained in X-band shows that Oh model versions simulate the radar 

signal with difference between real data and simulations between 0.0 and −1.2 dB in HH and 

between +0.4 and −2.1 dB in VV (Table III.4, Figures III.3–III.11). The RMSE is between 2.3 

and 2.8 dB in HH and between 2.0 and 2.7 dB in VV polarization. For HV polarization, the 

Oh model over-estimates the backscattering by about 0.9 dB with RMSE of 3.8 dB. 

The analysis of the error was studied by selecting two ranges of surface roughness (kHrms < 

2.0 and kHrms > 2.0) (Table III.4). This range is different from the general validity domain of 

the Oh model (0.13 ≤ kHrms ≤ 6.98) because it covers the entire dataset except only a few 

points. For kHrms < 2.0, the 1994, 2002 and 2004 Oh models simulate correctly the 

backscattering at both HH and VV polarizations with differences between real data and 

simulations between −0.5 and +0.6 dB and RMSE between 2.4 dB and 2.7 dB. The Oh 1992 

model underestimates the backscattering by 1.3 dB and 1.0 dB at HH and VV polarizations, 

respectively (RMSE is 2.9 for HH pol. and 2.7 dB for VV pol.). For kHrms > 2.0, the 1992 

and 2002 Oh versions simulate correctly backscattering at both HH and VV polarizations with 

difference between real and simulated data between −0.5 dB and −1.0 dB with RMSE 

between 2.3 and 2.6 dB. The 1994 Oh model over-estimates the backscattering at both HH 

and VV polarizations by about 1.7 dB and 2.1 dB, respectively (RMSE = 2.9 dB). The last 

version of the Oh model (Oh, 2004) underestimates the backscattering in HH polarization by 

about 1.5 dB (RMSE = 2.6 dB) and over-estimates it in VV polarization by about 2.0 dB 

(RMSE= 2.8 dB). At HV polarization, for kHrms < 2, the Oh 2002 model underestimates the 

backscattering in HV by 1.8 dB (RMSE = 2.5 dB). In addition, Oh model correctly fits the 

backscattering for kHrms > 2.0, with a difference between the real and simulated data of about 

−0.7 dB and RMSE of 2.5 dB. 

Finally, the performance of the Oh model was studied according to its validity domain by 

selecting two intervals of soil moisture (mv < 29.1 and mv > 29.1 vol. %: validity domain of 

Oh model). For mv < 29.1 vol. %, the 1992 and 2002 Oh versions correctly simulate the 

backscattering coefficient at both HH and VV polarizations with a difference between real 

and simulated data varying between −0.3 dB and −0.7 dB. In addition, the 1994 and 2004 Oh 

models overestimate the backscattering at both HH and VV polarizations (Table III.4) with 

RMSE between 2.6 dB and 2.9 dB. In conclusion, for mv < 29.1 vol. %, the 1992 Oh model 

provides the best simulations. For mv > 29.1 vol. %, the 1994, 2002 and 2004 Oh models 

correctly simulate the backscattering with a difference between real and simulated data 

between −0.8 dB and +0.5 dB, while the 1992 Oh model underestimates the backscattering by 
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about 1.9 dB and 1.5 dB at HH and VV polarizations, respectively (RMSE = 3.1 dB for HH 

and 2.7 dB for VV). The RMSE values are approximately the same in the Oh 1994, 2002 and 

2004 versions, and range between 2.2 dB and 2.6 dB. At HV polarization, the Oh model 

correctly simulates the backscattering for both range of mv-values, with RMSE of 3.0 dB for 

mv < 29.1 vol. % and RMSE of 2.6 dB for mv > 29.1 vol. %. 

The validity domain of Oh model according to the incidence angle (10° ≤ θ ≤ 70°) covers the 

entire dataset. Moreover, our results showed that the performance of the Oh model is not 

dependent on the incidence angle. 

In conclusion, the Oh models simulate correctly the backscattering. Results showed that Oh 

1992 version is slightly better than other model versions. The performance of Oh model 

seems to be better in C- and X-bands than L-band. Moreover, most versions of the Oh model 

correctly simulate the backscattering in most cases although outside its mv validity domain. 
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(a) (b) 

  

(c) (d) 

Figure III.3. Comparison between backscattering coefficients derived from SAR images and 

those estimated from the Oh 1992 model at HH polarization, (a) Oh model simulations vs. 

SAR data; (b) difference between SAR signal and Oh model results vs. soil roughness 

(kHrms); (c) difference between SAR signal and Oh model results vs. soil moisture (mv); (d) 

difference between SAR signal and Oh model results vs. incidence angle. 
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(a) (b) 

  

(c) (d) 

Figure III.4. Comparison between backscattering coefficients derived from SAR images and 

those estimated from the Oh 1992 model at VV polarization, (a) Oh simulations vs. SAR data; 

(b) difference between SAR signal and the Oh model vs. soil roughness (kHrms); (c) 

difference between SAR signal and Oh model results vs. soil moisture (mv); (d) difference 

between SAR signal and Oh model results vs. incidence angle. 
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(a) (b) 

  

(c) (d) 

Figure III.5. Comparison between backscattering coefficients derived from SAR images and 

those estimated from the Oh 2002 model at HV polarization, (a) Oh simulations vs. SAR data; 

(b) difference between SAR signal and Oh model results vs. soil roughness (kHrms); (c) 

difference between SAR signal and Oh model results vs. soil moisture (mv); (d) difference 

between SAR signal and Oh model results vs. incidence angle. 
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(a) 

 

(b) 

 

(c)                                                            

 

(d) 

Figure III.6. Comparison between backscattering coefficients derived from SAR images and 

those estimated from the Oh 1994 model at HH polarization, (a) Oh model simulations vs. 

SAR data; (b) difference between SAR signal and Oh model results vs. soil roughness 

(kHrms); (c) difference between SAR signal and Oh model results vs. soil moisture (mv); (d) 

difference between SAR signal and Oh model results vs. incidence angle. 
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(a) 

 

(b) 

 

(c) 

 

                               (d)  

Figure III.7. Comparison between backscattering coefficients derived from SAR images and 

those estimated from the Oh 1994 model at VV polarization, (a) Oh simulations vs. SAR data; 

(b) difference between SAR signal and the Oh model vs. soil roughness (kHrms); (c) 

difference between SAR signal and Oh model results vs. soil moisture (mv); (d) difference 

between SAR signal and Oh model results vs. incidence angle. 
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(a) 

 

(b) 

 

(c)                                                            

 

(d) 

Figure III.8.  Comparison between backscattering coefficients derived from SAR images and 

those estimated from the Oh 2002 model at HH polarization, (a) Oh model simulations vs. 

SAR data; (b) difference between SAR signal and Oh model results vs. soil roughness 

(kHrms); (c) difference between SAR signal and Oh model results vs. soil moisture (mv); (d) 

difference between SAR signal and Oh model results vs. incidence angle. 
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(a) 

 

(b) 

 

 

(c) 

 

(d) 

Figure III.9. Comparison between backscattering coefficients derived from SAR images and 

those estimated from the Oh 2002 model at VV polarization, (a) Oh simulations vs. SAR data; 

(b) difference between SAR signal and the Oh model vs. soil roughness (kHrms); (c) 

difference between SAR signal and Oh model results vs. soil moisture (mv); (d) difference 

between SAR signal and Oh model results vs. incidence angle. 
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(a) 

 

(b) 

 

(c)                                                            

 

(d) 

Figure III.10. Comparison between backscattering coefficients derived from SAR images 

and those estimated from the Oh 2004 model at HH polarization, (a) Oh model simulations vs. 

SAR data; (b) difference between SAR signal and Oh model results vs. soil roughness 

(kHrms); (c) difference between SAR signal and Oh model results vs. soil moisture (mv); (d) 

difference between SAR signal and Oh model results vs. incidence angle. 
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(a) 

 

(b) 

 

(c) 

 

                               (d)  

Figure III.11. Comparison between backscattering coefficients derived from SAR images 

and those estimated from the Oh 2004 model at VV polarization, (a) Oh simulations vs. SAR 

data; (b) difference between SAR signal and the Oh model vs. soil roughness (kHrms); (c) 

difference between SAR signal and Oh model results vs. soil moisture (mv); (d) difference 

between SAR signal and Oh model results vs. incidence angle. 
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III.4.3 Evaluation of the IEM 

The IEM was tested on our dataset using both a Gaussian correlation function (GCF) and an 

exponential correlation function (ECF). The evaluation of the IEM was carried out firstly 

using the entire dataset, later on for each radar wavelength (L-, C- and X-bands) and finally 

according to the validity domain of the IEM (Equation 3.10). 

Using all data, the IEM simulates the backscattering in HH polarization with an RMSE of 

10.5 dB and 5.6 dB for GCF and ECF, respectively (Table III.5). At VV polarization, the 

RMSE is 9.2 dB for GCF and 6.5 dB for ECF. At HV polarization, the RMSE is higher than 

30.0 dB for both GCF and ECF. Some points show a large discrepancy between the real data 

and the IEM simulations performed using both ECF and GCF (Figures III.12–III.17). In case 

of the ECF (Figures III.15–III.17), these points are mainly outside the IEM validity domain 

(Equation 3.10). In case of GCF (Figures III.12–III.14), the huge error is due to the high 

sensitivity of the IEM to roughness parameters (Hrms and L). Using the GCF, the IEM 

underestimates the backscattering coefficients for data with low Hrms values (kHrms < 3), 

high L values (L > 4 cm) and with high incidence angle (θ > 35°). Using the ECF, the 

sensitivity of backscattering to the roughness parameters is much lower (Figures III.15–

III.17). (Altese et al., 1996), Zribi et al. (1997, 2005a) and (Callens et al., 2006) showed that 

in agricultural areas, the ECF usually provides better agreement to real data than the GCF. 

The results obtained in L-band show that the IEM simulates the backscattering in HH pol. 

using both GCF and ECF with differences between real data and model simulations ranges 

between −0.9 dB and +0.6 dB, with an RMSE of 3.6 dB for GCF and 2.9 dB for ECF (Table 

III.5). At VV polarization, the IEM overestimates the backscattering by about 2.5 dB and 1.3 

dB for GCF and ECF, respectively (RMSE of 5.0 dB for GCF and 3.5 dB for ECF). At HV 

polarization, the IEM simulates the backscattering using GCF with RMSE of 14.5 dB using 

GCF, and lower RMSE (6.8 dB) using ECF. 

According to the results observed in C-band, the IEM simulates the backscattering using GCF 

with RMSE of 11.2 dB and 8.6 dB for HH and VV polarizations, respectively (Table III.5). 

The RMSE is lower with ECF than GCF about 4.1 dB for HH and 4.9 dB for VV 

polarizations. At HV polarization, the RMSE is higher than 25.0 dB using both GCF and 

ECF. 
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The results obtained in X-band show that the IEM simulates the backscattering with higher 

RMSE than L- and C-bands, the RMSE in HH pol. being about 10.6 dB for GCF and 8.3 dB 

for ECF. At VV polarization, the RMSE is 11.3 dB for GCF and 9.4 dB for ECF. At HV 

polarization, the IEM simulates the backscattering with high RMSE which is larger than 54.0 

dB using both GCF and ECF. 

Model Pol. Statistics All Data 
L-

Band 
C-Band X-Band 

Inside the 

Validity Domain 

Outside the 

Validity Domain 

IEM using GCF 

HH 
Bias (dB) +0.8 −0.9 +0.7 +1.5 +2.6 −1.8 

RMSE (dB) 10.5 3.6 11.2 10.6 12.4 6.7 

HV 
Bias (dB) +17.2 +5.2 +11.8 +46.3 +18.0 +14.1 

RMSE (dB) 38.4 14.5 26.7 74.0 28.5 50.1 

VV 
Bias (dB) +0.4 −2.5 +0.7 +3.5 +1.2 −0.9 

RMSE (dB) 9.2 5.0 8.6 11.3 11.5 3.1 

IEM using ECF 

HH 
Bias (dB) +0.8 +0.6 −1.0 +4.2 −1.2 +3.8 

RMSE (dB) 5.6 2.9 4.1 8.3 3.2 7.8 

HV 
Bias (dB) −15.8 +1.2 −19.9 0.0 −15.8 −17.1 

RMSE (dB) 31.4 6.8 25.1 54.4 20.1 44.3 

VV 
Bias (dB) +2.2 −1.3 +0.5 +6.7 −0.9 +7.1 

RMSE (dB) 6.5 3.5 4.9 9.4 3.7 9.4 

IEM_B with 
Lopt using GCF 

HH 
Bias (dB) −0.3 −0.1 −0.6 +0.3 

 

RMSE (dB) 2.0 2.3 2.1 1.8 

HV 
Bias (dB) 

  

−1.3 

 RMSE (dB) 3.1 

VV 
Bias (dB) +0.1 +0.2 0 +0.3 

RMSE (dB) 1.9 2.3 1.9 1.8 

AIEM using 

GCF 

HH 
Bias (dB) +2.3 −3.2 +2.9 +3.1 

 

RMSE (dB) 12.2 5.4 13.4 11.7 

VV 
Bias (dB) 0.0 −4.1 +0.5 +0.5 

RMSE (dB) 10.8 5.9 11.4 11.0 

AIEM using 
ECF 

HH 
Bias (dB) −2.3 −3.0 −3.6 +0.2 

 

RMSE (dB) 4.4 4.4 4.6 4.2 

VV 
Bias (dB) −1.8 −2.4 −2.3 -0.7 

RMSE (dB) 3.8 4.4 3.8 3.7 

Table III.5. Comparison between real data and IEM versions (original IEM model, IEM_B 

and AIEM) using both GCF and ECF. (1) all data; (2) for different SAR wavelength; (3) 

according to the validity domain of IEM. Bias = real data − model simulations. 

The analysis of the error was also studied according to the validity domain of the IEM 

(Equation (3.10)). Inside the validity domain, the RMSE is larger than 11.5 dB for both HH 

and VV polarizations using GCF. Better results were obtained using ECF, where the IEM 

correctly simulates the backscattering at both HH and VV polarizations with differences 

between real and simulated data between −1.2 dB and −0.9 dB with RMSE of 3.2 dB at HH 

and 3.7 dB at VV polarizations, using data concerning the IEM validity domain. Outside the 

IEM validity domain, the IEM simulates the backscattering with RMSE of 6.7 dB for HH and 

3.1 dB for VV using GCF; whereas RMSE is 7.8 dB for HH and 9.4 dB for VV polarization 
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using ECF. At HV polarizations, model simulations show large differences from real data for 

both GCF and ECF for points inside or outside the validity domain of the IEM (in this case, 

RMSE is larger than 20 dB). Errors observed on IEM simulations were also studied as a 

function of the difference between Lopt and the measured correlation length (L). Results show 

that the IEM using GCF gives poor simulations mainly when the measured correlation length 

was over-estimated (L > Lopt). In this case, the IEM strongly under-estimates the SAR 

backscatter. In addition, the performance of the IEM was also analyzed using ECF according 

to the difference between Lopt and L. Results show the same performance of the IEM 

whatever the difference between Lopt and L. 

  

(a) (b) 

  

(c) (d) 

Figure III.12. Comparison between backscattering coefficients derived from SAR images 

and those estimated from IEM at HH polarization using GCF. (a) IEM simulations vs. SAR 

data; (b) difference between SAR signal and IEM vs. soil roughness (kHrms); (c) difference 

between SAR signal and IEM vs. soil moisture (mv); (d) difference between SAR signal and 

IEM vs. incidence angle. 
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(a) (b) 

  

(c) (d) 

Figure III.13. Comparison between backscattering coefficients derived from SAR images 

and those estimated from IEM at VV polarization using GCF. (a) IEM simulations vs. SAR 

data; (b) difference between SAR signal and IEM vs. soil roughness (kHrms); (c) difference 

between SAR signal and IEM vs. soil moisture (mv); (d) difference between SAR signal and 

IEM vs. incidence angle. 
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(a) (b) 

  

(c) (d) 

Figure III.14. Comparison between backscattering coefficients derived from SAR images 

and those estimated from IEM at HV polarization using GCF. (a) IEM simulations vs. SAR 

data; (b) difference between SAR signal and IEM vs. soil roughness (kHrms); (c) difference 

between SAR signal and IEM vs. soil moisture (mv); (d) difference between SAR signal and 

IEM vs. incidence angle. 
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(a) (b) 

  

(c) (d) 

Figure III.15. Comparison between backscattering coefficients derived from SAR images 

and those estimated from IEM at HH polarization using ECF. (a) IEM simulations vs. SAR 

data; (b) difference between SAR signal and IEM vs. soil roughness (kHrms); (c) difference 

between SAR signal and IEM vs. soil moisture (mv); (d) difference between SAR signal and 

IEM vs. incidence angle. 
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(a) (b) 

  

(c) (d) 

Figure III.16. Comparison between backscattering coefficients derived from SAR images 

and those estimated from IEM at VV polarization using ECF. (a) IEM simulations vs. SAR 

data; (b) difference between SAR signal and IEM vs. soil roughness (kHrms); (c) difference 

between SAR signal and IEM vs. soil moisture (mv); (d) difference between SAR signal and 

IEM vs. incidence angle. 
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(a) (b) 

  

(c) (d) 

Figure III.17. Comparison between backscattering coefficients derived from SAR images 

and those estimated from IEM at HV polarization using ECF. (a) IEM simulations vs. SAR 

data; (b) difference between SAR signal and IEM vs. soil roughness (kHrms); (c) difference 

between SAR signal and IEM vs. soil moisture (mv); (d) difference between SAR signal and 

IEM vs. incidence angle. 
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As a conclusion, we could say that the IEM better simulates the backscattering in L-band than 

in C- and X-bands. Moreover, the results show a better fitting with real data using ECF 

instead than GCF, which agrees with the validity domain of the IEM. 

III.4.4 Evaluation of IEM Modified by Baghdadi (IEM_B) 

The IEM_B was also tested on our dataset. This model version was run using GCF (Figures 

III.18–III.20). In comparison to the original IEM, results show that the RMSE was 

significantly lower. Using the entire dataset, the IEM_B correctly simulates the backscattering 

at both HH and VV polarizations showing low differences between real data and model 

simulations (−0.3 dB for HH and +0.1 dB for VV) with approximately similar RMSE of about 

2.0 dB (Table III.5). Moreover, the evaluation of the IEM_B was tested separately for each 

SAR band. Results show that the IEM_B correctly simulates the backscattering in comparison 

to the original model for all bands and in both HH and VV polarizations with a difference 

between real data and model simulations lower than 1.0 dB and with approximately similar 

RMSE between 1.8 and 2.3 dB (Table III.5). At HV polarization, the IEM_B slightly over-

estimates the backscattering by about 1.3 dB with RMSE of 3.1 dB, (the IEM_B was run only 

at C-band). Moreover, results show that the IEM_B simulations in both HH and VV pol., are 

slightly better in X- and C-bands than in L-band. The analysis of the difference between IEM_B 

simulations and SAR data versus the difference between Lopt and the measured correlation 

length (L) shows that IEM_B simulates well SAR data whatever the value of the difference 

between Lopt and L. 
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(a) (b) 

  

(c) (d) 

Figure III.18. Comparison between backscattering coefficients derived from SAR images 

and those estimated from IEM_B at HH polarization using GCF. (a) IEM_B simulations vs. 

SAR data; (b) difference between SAR signal and IEM_B vs. soil roughness (kHrms); (c) 

difference between SAR signal and IEM_B vs. soil moisture (mv); (d) difference between SAR 

signal and IEM_B vs. incidence angle. 
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(a) (b) 

  

(c) (d) 

Figure III.19. Comparison between backscattering coefficients derived from SAR images 

and those estimated from IEM_B at VV polarization using GCF. (a) IEM_B simulations vs. SAR 

data; (b) difference between SAR signal and IEM_B vs. soil roughness (kHrms); (c) difference 

between SAR signal and IEM_B vs. soil moisture (mv); (d) difference between SAR signal and 

IEM_B vs. incidence angle. 
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(a) (b) 

  

(c) (d) 

Figure III.20. Comparison between backscattering coefficients derived from SAR images 

and those estimated from IEM_B in C-band at HV polarization using GCF. (a) IEM_B 

simulations vs. SAR data; (b) difference between SAR signal and IEM_B vs. soil roughness 

(kHrms); (c) difference between SAR signal and IEM_B vs. soil moisture (mv); (d) difference 

between SAR signal and IEM_B vs. incidence angle. 

 

III.4.5 Evaluation of the Advanced Integral Equation Model (AIEM) 

The AIEM was tested on our dataset at HH and VV polarizations using both GCF and ECF. 

For all data, the AIEM simulates the backscattering at HH and VV polarizations using GCF 

with RMSE larger than 10 dB (Table III.5, Figures III.21 and III.22). Moreover, results show 

better agreements of the AIEM with real data using ECF (Figures III.23 and III.24). Indeed, 

the AIEM tends to overestimates the backscattering by about 2.3 dB at HH and 1.8 dB at VV 

(RMSE is 4.4 dB for HH and 3.8 dB for VV). Using the ECF, Figures III.23 and III.24 show 

high overestimations of the backscattering for low values of surface roughness (kHrms < 4) 
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and for incidence angles higher than 35°. Moreover, Figures III.23 and III.24 show high 

underestimation of the radar signal (using ECF) in both HH and VV polarizations for points 

with high surface roughness (kHrms > 6), low mv-values (mv < 5 vol. %, and with low 

incidence angles (θ < 20°). Figures III.21 and III.22 show that some points show high 

discrepancies between the real data and the AIEM simulations using GCF. Due to the high 

sensitivity to surface roughness of the AIEM using GCF, these points correspond mainly to 

surface with kHrms < 3, L > 4 cm and θ > 35°. 

The performance of the AIEM was also evaluated for each SAR wavelength. Results show 

that in L-band the AIEM simulates the backscattering with RMSE of about 5.0 dB at both HH 

and VV polarizations using the GCF. In C and X-bands, the AIEM using GCF simulates the 

backscattering with RMSE higher than in L-band (RMSE > 11 dB). Moreover, AIEM better 

simulates better the backscattering in using GCF than ECF for all wavelength (RMSE about 4 

dB). 

In conclusions, the AIEM is able to better simulate better the backscattering than the original 

IEM only using the ECF with better results in X-band than in C- and L-bands. 
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(a) (b) 

  

(c) (d) 

Figure III.21. Comparison between backscattering coefficients derived from SAR images 

and those estimated from AIEM at HH polarization using GCF. (a) AIEM simulations vs. 

SAR data; (b) difference between SAR signal and AIEM vs. soil roughness (kHrms); (c) 

difference between SAR signal and AIEM vs. soil moisture (mv); (d) difference between SAR 

signal and AIEM vs. incidence angle. 
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(a) (b) 

  

(c) (d) 

Figure III.22. Comparison between backscattering coefficients derived from SAR images 

and those estimated from AIEM at VV polarization using GCF. (a) AIEM simulations vs. 

SAR data; (b) difference between SAR signal and AIEM vs. soil roughness (kHrms); (c) 

difference between SAR signal and AIEM vs. soil moisture (mv); (d) difference between SAR 

signal and AIEM vs. incidence angle. 
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(a) (b) 

  

(c) (d) 

Figure III.23. Comparison between backscattering coefficients derived from SAR images 

and those estimated from AIEM at HH polarization using ECF. (a) AIEM simulations vs. 

SAR data; (b) difference between SAR signal and AIEM vs. soil roughness (kHrms); (c) 

difference between SAR signal and AIEM vs. soil moisture (mv); (d) difference between SAR 

signal and AIEM vs. incidence angle. 
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(c) (d) 

Figure III.24. Comparison between radar backscattering coefficients calculated from SAR 

images and those estimated from AIEM for VV polarization using ECF. (a) AIEM 

simulations vs. SAR data; (b) difference between SAR signal and AIEM vs. soil roughness 

(kHrms); (c) difference between SAR signal and AIEM vs. soil moisture (mv); (d) difference 

between SAR signal and AIEM vs. incidence angle. 
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(a) 

 
(b) 

 
Figure III.25. For each Model (IEM, Dubois, Oh, IEM_B and AIEM), result of the 

comparison (RMSE versus Bias). (a) for HH polarization; (b) for VV Polarization. 
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III.5 Conclusions 

Physical (IEM, IEM_B and AIEM) and semi-empirical (Oh and Dubois) backscattering 

models were tested using a wide dataset composed by large intervals of surface conditions 

(mv between 2 vol. % and 47 vol. %, Hrms between 0.2 cm and 9.6 cm and kHrms from 0.2 

and 13.4), the dataset was acquired over bare soils in various agricultural study sites (France, 

Italy, Germany, Belgium, Luxembourg, Canada and Tunisia) characterized by large variety of 

climatological conditions and using SAR sensors in L-, C- and X-bands with incidence angle 

between 18° and 57°. 

Results (Figure III.25) show that the IEM modified by Baghdadi (IEM_B used the empirical 

correlation length instead of measured correlation length) provides the most accurate SAR 

simulations (bias lower than 1.0 dB and RMSE lower than 2.0 dB) with slightly better 

performance in X-band (RMSE = 1.8 dB) than in L- and C-bands (RMSE between 1.9 and 2.3 

dB). At HV polarization, the IEM_B was only run at C-band. Results show that the RMSE 

strongly decreases from values higher than 25.1 dB, using the original IEM, to 3.1 dB, using 

IEM_B. In contrast, high RMSE were found using both IEM and AIEM using Gaussian 

correlation function (RMSE higher than 9.2 dB) for both HH and VV polarizations because of 

the high sensitivity of the Gaussian correlation function to roughness parameters, mainly for 

kHrms < 3 and L > 4 cm. Moreover, results show better simulations of measured 

backscattering coefficients for both IEM and AIEM using exponential correlation function 

(RMSE > 5.6 dB for IEM and RMSE > 3.8 dB for AIEM) at HH and VV polarizations. At 

HV polarization, IEM results show very high errors (RMSE larger than 30.0 dB using both 

Gaussian correlation function and exponential correlation function). The AIEM better 

simulates the backscattering than the original IEM only using the exponential correlation 

function with slightly better results in X-band than in C- and L-bands. In contrast, the IEM 

simulates better the backscattering in L- band than C- and X-bands (Table III.5). 

Using the empirical models, all the Oh model versions show good agreements (RMSE < 3.0 

dB) with measured backscattering with slightly better performance of the Oh 1992 version 

(bias less than 1.0 dB and RMSE less than 2.6 dB) at both HH and VV polarizations. The Oh 

model provides better results than Dubois model which simulates the backscattering in HH 

with RMSE of 4.0 dB, and slightly better simulations for VV with RMSE of 2.9 dB. At HV 

polarization, the Oh 2002 version correctly simulates the backscattering with difference 

between real and simulated data of about +0.7 dB and RMSE of 2.9 dB. The performance of 
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the Oh 1992 version in HH and VV polarizations is better in C- and X-bands (bias between 

−1.2 and +0.4 dB with RMSE < 2.5 dB) than in L-band (bias > +2.0 with RMSE > 3.0 dB). 

It should be mentioned that the use of different in situ sampling methods and SAR acquisition 

techniques may also contribute to the modelling errors. Indeed, the datasets comprises both 

airborne and space-borne acquisitions, which may cause scaling effects. In addition, in situ 

data have been collected using different techniques, both regarding soil moisture (gravimetric 

and TDR, sometimes at different sampling depths) and roughness (different profile length and 

sampling intervals, and post-processing methods). 

This study evaluated the robustness of the most used backscattering models by means of 

statistical indices (Bias and RMSE). These statistical indices should guide in choosing the 

appropriate model for backscattering coefficients simulation. As it has been shown in the 

present study, the IEM modified by Baghdadi (IEM_B) was the most accurate model among 

the others. Thus, it is preferred to use the IEM_B in the inversion procedure of SAR 

backscattering coefficient in order to more accurately estimate soil moisture and roughness 

parameters. 

 

 

 

 

 

 

 

 

 

 

 



79 
 

 

 

 

 

 

 

 

 

 

IV. Chapter 4: A New Empirical Model for Radar 
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IV.1 Introduction 

Soil moisture content plays an important role in meteorology, hydrology, agronomy, 

agriculture, and risk assessment. This soil parameter can be estimated using synthetic aperture 

radar (SAR). Today, it is possible to obtain SAR data for global areas at high spatial and 

temporal resolutions with free and open access Sentinel-1 satellites (6 days with the two 

Sentinel-1 satellites, at 10 m spatial resolution).  

The retrieval of soil moisture content and surface roughness requires the use of radar 

backscatter models capable of correctly modeling the radar signal for a wide range of soil 

parameter values. This estimation from imaging radar data implies the use of backscattering 

electromagnetic models, which can be physical, semi-empirical or empirical. 

This estimation from imaging radar data implicates the use of backscattering electromagnetic 

models (Physical, empirical or semi-empirical. The physical models such as Integral Equation 

Model (IEM), Small Perturbation Model (SPM), Geometrical Optic Model (GOM) and 

Physical Optic Model (POM) that based on physical approximations corresponding to a range 

of surface conditions (soil moisture and surface roughness) provide site-independent 

relationships but have limited validity depending upon the soil roughness. Moreover, the 

semi-empirical or empirical models are often valid only for specific soil conditions and needs 

calibration on other soil conditions. Users preferred the empirical models because of their 

facility in implementation and inversion (Chai et al., 2015; Gherboudj et al., 2011; Kirimi et 

al., 2016; Le Hégarat-Mascle et al., 2002; Rao et al., 2013; Zribi and Dechambre, 2003; Zribi 

et al., 2011). 

Popular semi-empirical models developed over bare soils as Oh model (Oh, 2004; Oh et al., 

1992, 1994, 2002) and Dubois model (Dubois et al., 1995). The Oh model uses the ratios of 

the measured backscatter coefficients HH/VV and HV/VV to estimate volumetric soil 

moisture (mv) and surface roughness (Hrms), while the Dubois model links the backscatter 

coefficients in HH and VV polarizations to the soil’s dielectric constant and surface 

roughness. Numerous studies evaluated several semi-empirical models, but these models 

showed conflict in the results obtained. Some studies show good agreement between 

measured backscatter coefficients and those predicted by the models, while others have found 

great discrepancies between them (Baghdadi and Zribi, 2006; Baghdadi et al., 2011c; Le 

Hégarat-Mascle et al., 2002; Wang et al., 2014, 1997; Zribi and Dechambre, 2003; Zribi et al., 
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2011). The discrepancy between simulations and measurements often reaches several 

decibels, making soil parameter estimates not useful. 

The goal of this chapter is to produce a new robust, empirical, radar backscattering model. 

The simple formulations of Dubois model that directly relates the radar signal to soil 

(dielectric constant and soil roughness) and SAR parameters (incidence angle, polarization 

and radar wavelength) lead us to select the formulations of Dubois model as basic of the new 

model. The formulations of Oh model was not used because only the co-polarized ratio p and 

cross-polarized ratio q are available. 

First, the performance of the Dubois model is analyzed using a large dataset acquired at 

several worldwide study sites by numerous SAR sensors. The dataset consists of SAR data 

(multi-angular and multi-frequency) and measurements of soil moisture and surface 

roughness over bare soils. Then, the different terms of Dubois equations that describe the 

dependence between the SAR signal and both sensor and soil parameters have been validated 

or modified to improve the modelling of the radar signal. Ultimately, a new semi-empirical 

backscattering model has been developed for radar scattering in the HH, VV, and HV 

polarization from bare soil surfaces.  

A description of the dataset is presented in section 2, section 3 describes and analyzes the 

potential and the limitations of the Dubois model in radar signal simulations over bare soils. 

In section 4, the new model is described and its performance is evaluated for different 

available SAR data (L-, C- and X-bands, incidence angles between 20° and 45°). Conclusions 

are presented in section 5. 

IV.2 Dataset description 

A wide experimental dataset was used, consisting of SAR images and ground measurements 

of soil moisture content and roughness collected over bare soils at several agricultural study 

sites (Chapter III, Table III.1). SAR images were acquired by various airborne and spaceborne 

sensors (AIRSAR, SIR-C, JERS-1, PALSAR-1, ESAR, ERS, RADARSAT, ASAR, 

TerraSAR-X). The radar data were available in L-, C- and X-bands (approximately 1.25 GHz, 

5.3 GHz and 9.6 GHz, respectively); with incidence angles between 18° and 57°; and in HH, 

VV and HV polarizations. For several reference plots, the mean backscatter coefficients have 

been obtained from radiometrically and geometrically calibrated SAR images by averaging 

backscatter coefficient values for each plot for all pixels within the plot. 
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A total of 1569 experimental data acquisitions with radar signal, soil moisture content and 

roughness were available for HH polarization, 930 for VV polarization, and 605 for HV 

polarization. This dataset is approximately the same as descripted in chapter III, section III.2. 

IV.3 Validation and analysis of the Dubois model 

IV.3.1 Description of Dubois model  

A complete description of Dubois model is done in chapter III, section III.3.1. 

IV.3.2 Comparison between simulated and real data 

The Dubois model overestimates the radar signal by 0.7 dB in HH polarization and 

underestimates the radar signal by 0.9 dB in VV polarization for all data combined (Table 

IV.1). The results show that the overestimation in HH is of the same order for L-, C- and X-

bands (between 0.6 dB and 0.8 dB). For the L-band, a slight overestimation of approximately 

0.2 dB of SAR data is observed in VV polarization. Also in VV polarization, Dubois model 

based simulations underestimate the SAR data in C- and X-bands by approximately 0.7 dB 

and 2.0 dB, respectively.  

The rms error (RMSE) is approximately 3.8 dB and 2.8 dB in HH and VV, respectively 

(Table IV.1). Analysis of the RMSE according to the radar frequency band (L, C and X 

separately) shows in HH an increase of the RMSE with the radar frequency (2.9 dB in L-

band, 3.7 dB in C-band, and 4.1 dB in X-band). In VV polarization, the quality of Dubois 

simulations (RMSE) is similar for L- and C-bands but is less accurate in X-band (2.3 dB in L-

band, 2.6 dB in C-band, and 3.2 dB in X-band). 

 

 Dubois for HH Dubois for VV 

Bias (dB) RMSE (dB) Bias (dB) RMSE (dB) 

For all data -0.7 3.8 +0.9 2.8 

L-band -0.8 2.9 -0.2 2.3 

C-band -0.6 3.7 +0.7 2.6 

X-band -0.7 4.1 +2.0 3.2 

kHrms < 2.5 +0.4 3.4 +1.3 2.9 

kHrms > 2.5 -2.7 4.5 -0.1 2.5 

mv < 20 vol.% -2.0 4.3 +0.9 2.8 

mv > 20 vol. % +0.5 3.2 +0.9 2.8 

 < 30° -4.1 5.4 -0.6 2.9 

 > 30° +0.6 3.0 +1.5 2.7 

Table IV.1. Comparison between the Dubois model and real data for all data and by range of 

kHrms, soil moisture (mv) and incidence angle (). Bias = real data – model. 
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In addition, the agreement between Dubois model simulations and SAR data is analyzed 

according to soil roughness, moisture content and incidence angle (Figures IV.1 and IV.2). The 

results indicate a slight underestimation of the radar signal by the Dubois model in the case of 

kHrms lower than 2.5 (Dubois validation domain) for both HH and VV polarizations (Figures 

IV.1b, IV.2b; Table IV.1). For surfaces with a roughness kHrms greater than 2.5, an 

overestimation of the radar signal is obtained with the Dubois model in HH while the model 

works correctly in VV (Figures IV.1b, IV.2b; Table IV.1). Higher under- and overestimations 

are observed in HH than they are in VV (reach approximately 10 dB in HH). 

Analysis of the error as a function of soil moisture (mv) shows that for both VV-polarized 

data, whatever the mv-values, and HH-polarized data with mv-values higher than 20 vol.%, 

the observed bias between real and simulated data is small (Figures IV.1c and IV.2c; Table 

IV.1). However, a strong overestimation of the radar signal is observed by the Dubois model 

in HH for mv-values lower than 20 vol.% (-2.0 dB, Table IV.1). 

Finally, the discrepancy between SAR and the model is larger in HH for incidence angles 

lower than 30° (outside of the Dubois validity domain) than for incidence angles higher than 

30° (Table IV.1). The Dubois model strongly overestimates the radar signal in HH for 

incidence angles lower than 30° but agrees closely with the measured data for incidence 

angles higher than 30° (Figures IV.1d, IV.2d; Table IV.1). In VV polarization, the Dubois 

model slightly overestimates the radar signal for incidence angles lower than 30° and 

underestimates the signal for incidence angles higher than 30° by +1.5 dB (Figures IV.1d and, 

IV.2d; Table IV.1). 

In conclusion, the Dubois model simulates VV better than it does HH (RMSE=2.8 and 3.8 

dB, respectively). The disagreements observed between the Dubois model and measured data 

are not limited to data that are outside the optimal application domain of the Dubois model. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure IV.1. For HH polarization, (a) comparison between radar backscattering coefficients 

calculated from SAR images and estimated from the Dubois model, (b) difference between 

the SAR signal and the Dubois model relative to soil roughness (kHrms), (c) difference 

between the SAR signal and the Dubois model relative to soil moisture (mv), (d) difference 

between the SAR signal and the Dubois model relative to incidence angle. The best regression 

model is ploted in gray. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure IV.2. For VV polarization, (a) comparison between radar backscattering coefficients 

calculated from SAR images and estimated from the Dubois model, (b) difference between 

the SAR signal and the Dubois model relative to soil roughness (kHrms), (c) difference 

between the SAR signal and the Dubois model relative to soil moisture (mv), (d) difference 

between the SAR signal and the Dubois model relative to incidence angle. The best regression 

model is ploted in gray. 
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formulations of Dubois model as basic of the new model. The formulations of Oh model was 

not used because only the co-polarized ratio p and cross-polarized ratio q are available. 

The new model is based on the Dubois model and uses the dependency observed between the 

SAR signal and soil parameters according to results obtained in various studies. For bare 

soils, the backscattering coefficient depends on soil parameters (roughness and moisture) and 

SAR instrumental parameters (incidence angle, polarization and wavelength). For bare soils, 

the radar signal in pq polarization (p and q = H or V, with HV=VH) can be expressed as the 

product of three components: 

𝜎𝑝𝑞
° = 𝑓𝑝𝑞(𝜃) 𝑔𝑝𝑞(𝑚𝑣, 𝜃) Γ𝑝𝑞(𝑘𝐻𝑟𝑚𝑠, 𝜃) (4.1) 

The radar backscatter coefficient is related to the incidence angle () by the relation 𝑓𝑝𝑞(𝜃) =

𝛼(𝑐𝑜𝑠 𝜃)𝛽 (Baghdadi et al., 2001; Beauchemin et al., 1995; Ulaby et al., 1982). This 

relationship describes the decrease of ° with the incidence angle (decrease higher for low 

angles than for high angles). 

The second term represents the relationship between the radar backscatter coefficient and soil 

moisture (mv). The results obtained in several investigations show that, for bare soils, the 

radar signal (°) in decibels linearly increases with soil moisture (mv) when mv is in the range 

between approximately 5 and 35 vol.% (Baghdadi et al., 2006b, 2008a; Le Hégarat-Mascle et 

al., 2002; Zribi et al., 2011). In linear scale 𝑔𝑝𝑞(𝑚𝑣, 𝜃) can be written as δ 10𝛾 𝑚𝑣 . The 

sensitivity of the radar signal to the soil moisture  depends on . Higher sensitivity is 

observed for low than for high incidence angles (Aubert et al., 2011a; Baghdadi et al., 2008b). 

To include this dependence on incidence angle, the soil moisture value is multiplied with the 

term 𝑐𝑜𝑡𝑎𝑛(𝜃). Thus, 𝑔𝑝𝑞(𝑚𝑣, 𝜃) can be written as δ 10𝛾 𝑐𝑜𝑡𝑎𝑛(𝜃) 𝑚𝑣. 

The last term Γ𝑝𝑞(𝑘𝐻𝑟𝑚𝑠, 𝜃) represents the behaviour of °  with soil roughness. An 

exponential or logarithmic function is often used to express the radar signal (in dB) in terms 

of surface roughness (Baghdadi et al., 2006b; Sahebi et al., 2002; Srivastava et al., 2003; Zribi 

and Dechambre, 2003). For a logarithmic behaviour of °(dB) with k Hrms, Γ𝑝𝑞 in linear 

scale can be written as 𝜇(𝑘𝐻𝑟𝑚𝑠)𝜉 . Baghdadi et al. (2002a) showed that at high incidence 

angles, radar return is highly sensitive to surface roughness and shows much larger dynamics 
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than at a low incidence angle. In addition, the term 𝑠𝑖𝑛(𝜃) is intended to include this 

dependence with the incidence angle: Γ𝑝𝑞=𝜇(𝑘𝐻𝑟𝑚𝑠)𝜉 𝑠𝑖𝑛 (𝜃). 

Finally, the relationship between the radar backscattering coefficient (°) and the soil 

parameters (soil moisture and surface roughness) for bare soil surfaces can be written by 

equation (4.2): 

𝜎𝑝𝑞
° = 𝛿(𝑐𝑜𝑠 𝜃)𝛽  10𝛾 𝑐𝑜𝑡𝑎𝑛(𝜃) 𝑚𝑣 (𝑘𝐻𝑟𝑚𝑠)𝜉 𝑠𝑖𝑛 (𝜃)  (4.2) 

The coefficients , , , and  are then estimated for each radar polarization using the method 

of least squares by minimizing the sum of squares of the differences between the measured 

and modelled radar signal. The error in the modelling of radar backscatter coefficients by the 

new backscattering model was assessed for each polarization using a 5-fold cross-validation 

to validate the predictive performance of the new model. To do the 5-fold cross-validation, 

the dataset was first randomly divided into 5 equal size subsets. Next, 4 of the subsets are 

used to train the new model and one was retained to validate its predictive performance. The 

cross-validation process was then repeated 5 times, with each of the 5 sub-datasets used 

exactly once as the validation data. The final validation result combines the 5 validation 

results. The advantage of this method over repeated random sub-sampling is that all 

observations are used for both training and validation, and each observation is used for 

validation exactly once.  

The fitting of various coefficients parameter in the equation (4.2) was done using all dataset 

(fitting errors are about 2 dB for all polarizations). This fitting allows writing ° as a function 

of the rms surface height (Hrms) and incidence angle (), by equations (4.3), (4.4) and (4.5): 

𝜎𝐻𝐻
° = 10−1.287(𝑐𝑜𝑠 𝜃)1.227  100.009 𝑐𝑜𝑡𝑎𝑛(𝜃) 𝑚𝑣 (𝑘𝐻𝑟𝑚𝑠)0.86 𝑠𝑖𝑛 (𝜃), (4.3) 

𝜎𝑉𝑉
° = 10−1.138(𝑐𝑜𝑠 𝜃)1.528  100.008 𝑐𝑜𝑡𝑎𝑛(𝜃) 𝑚𝑣 (𝑘𝐻𝑟𝑚𝑠)0.71 𝑠𝑖𝑛 (𝜃) (4.4) 

𝜎𝐻𝑉
° = 10−2.325(𝑐𝑜𝑠 𝜃)−0.01  100.011 𝑐𝑜𝑡𝑎𝑛(𝜃) 𝑚𝑣 (𝑘𝐻𝑟𝑚𝑠)0.44 𝑠𝑖𝑛 (𝜃), (4.5) 
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where  is expressed in radians and mv is in vol.%. Equations (4.3), (4.4), and (4.5) show that 

the sensitivity () of the radar signal to the soil moisture in decibel scale is 0.25 dB/vol.% in 

HH polarization, 0.22 dB/vol.% in VV polarization and 0.30 dB/vol.% in HV polarization for 

an incidence angle of 20°. This sensitivity decreases to 0.09 dB/vol.% in HH, 0.08 dB/vol.% 

in VV and 0.11 dB/vol.% for an incidence angle of 45°. As for the signal’s sensitivity to soil 

roughness, it is of the same order of magnitude in HH and VV and twice as large than that of 

the HV signal. The few data in HV polarization may explain the higher sensitivity observed in 

HV than in HH and VV. Indeed, several studies showed very near sensitivity of radar signal 

to soil moisture in HV, HH and VV polarizations.  

The availability of a backscatter model for the cross polarization component is required 

because most spaceborne SAR acquisitions are made with one co-polarization and one cross-

polarization in case of dual-polarization mode. 

IV.4.2  Comparison between Dubois model and new model 

In comparison between Dubois model (Equation 3.1) and the new model (Equation 4.2), 

several terms have been changed, simplified or removed: 

 In the new model, the first term that describes the relationship between the radar 

backscatter coefficient and the incidence angle () which describes the decrease of ° with 

the incidence angle was simplified using the function 𝑓𝑝𝑞(𝜃) = 𝛼(𝑐𝑜𝑠 𝜃)𝛽. In Dubois 

model, the relation between the radar backscatter signal and the incidence angle () is 

more complex (Equation 4.6). 

 The second term which describes the relationship between the radar backscatter 

coefficient and soil moisture (mv) was modified. First, the dielectric constant was changed 

into the volumetric soil moisture. Second, the dependence between the sensitivity of the 

radar signal to the incidence angle () described by tan() in Dubois model was corrected 

into cotan()  in the new model. Indeed, higher sensitivity is observed for low than for 

high incidence angles. To include this dependence on incidence angle, the soil moisture 

value is multiplied with the term 𝑐𝑜𝑡𝑎𝑛(𝜃). Thus, 𝑔𝑝𝑞(𝑚𝑣, 𝜃) can be written as 

δ 10𝛾 𝑐𝑜𝑡𝑎𝑛(𝜃) 𝑚𝑣.  

 In the new model, the term Γ𝑝𝑞(𝑘𝐻𝑟𝑚𝑠, 𝜃) represents the behaviour of °  with soil 

roughness. For a logarithmic behaviour of °(dB) with k Hrms, Γ𝑝𝑞 in linear scale can be 

written as 𝜇(𝑘𝐻𝑟𝑚𝑠)𝜉 . At high incidence angles, radar return is highly sensitive to 
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surface roughness and shows much larger dynamics than at a low incidence angle. Thus, 

the term 𝑠𝑖𝑛(𝜃) is intended to include this dependence with the incidence angle: 

Γ𝑝𝑞=𝜇(𝑘𝐻𝑟𝑚𝑠)𝜉 𝑠𝑖𝑛 (𝜃). 

 Finally the dependence of the radar signal on the radar wavelength described in Dubois 

model by ()𝑐 (Equation 4.6) does not seem validated using our in situ dataset. Thus, this 

term has been removed in the new model. 

IV.4.3 Results and discussion 

IV.4.3.1 Performance of the new model 

Results show that the new model provides more accurate results. The biases and the RMSE 

decrease for both HH and VV polarizations. The RMSE decreases from 3.8 dB to 2.0 dB for 

HH and from 2.8 dB to 1.9 dB for VV (Table IV.2). In addition, the high over- or 

underestimations of radar backscattering coefficients observed with the Dubois model 

according to soil moisture, surface roughness and radar incidence angle are clearly eliminated 

with the new model (Figures IV.3 and IV.4). 

 Dubois for HH and VV New model 

Bias (dB) RMSE (dB) Bias (dB) RMSE (dB) 

HH for all data -0.7 3.8 0.4 2.0 

VV for all data +0.9 2.8 0.0 1.9 

HV for all data - - 0.0 2.1 

HH, L-band -0.8 2.9 -0.1 2.3 

HH, C-band -0.6 3.7 +0.3 1.9 

HH, X-band -0.7 4.1 0.7 1.9 

VV, L-band -0.2 2.3 -0.1 2.7 

VV, C-band +0.7 2.6 +0.1 1.9 

VV, X-band +2.0 3.2 -0.4 1.8 

HV, L-band - - -1.3 1.6 

HV, C-band - - +0.2 2.2 

HV, X-band - - -1.3 1.9 

Table IV.2. Comparison between the results obtained with the Dubois model and those 

obtained with the new model. Bias = real – model. 

Analysis of the new model’s performance for each radar wavelength separately (L-, C- and X-

bands) shows that the most significant improvement is observed in X-band with an RMSE 

that decreases from 4.1 dB to 1.9 dB in HH and from 3.2 dB to 1.8 dB in VV. In L-band, the 

performance of the new model is not better than that of the Dubois model because the RMSE 

decreases slightly with the new model of 3.0 dB to 2.3 dB in HH and remains similar in VV 

(RMSE = 2.3 dB with the Dubois model and 2.7 dB with the new model). The improvement 
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is also important for the C-band with an RMSE that decreases from 3.7 dB to 1.9 dB in HH 

and from 2.6 dB to 1.9 dB in VV. With respect to bias, the results show that it decreases with 

the new model for all radar wavelengths. In addition, the new model does not show bias 

according the range of soil moisture, surface roughness, and radar incidence angle. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure IV.3. (a) Comparison between ° modelled in the new model and ° measured (for all 

SAR bands) for HH polarization, (b) difference between SAR and the new model as a 

function of surface roughness (kHrms), (c) difference between SAR and the new model as a 

function of soil moisture (mv), (d) difference between SAR and the new model as a function 

of incidence angle. The best regression model is ploted in gray. 

The comparison between the new model simulations in HV polarization (Equation 4.5) and 

the real data (SAR data) shows an RMSE of 2.1 dB (Table IV.2) (1.6 dB in L-band, 2.2 dB in 

C-band, and 1.9 dB in X-band). The bias (°SAR - model) is -1.3 dB in L-band, 0.2 dB in C-

band, and -1.3 dB in X-band. Figure IV.5 shows also that the new model correctly simulates 
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the radar backscatter coefficient in HV for all ranges of soil moisture, surface roughness and 

radar incidence angle. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure IV.4. (a) Comparison between ° in the new model and ° measured (for all SAR 

bands) for VV polarization, (b) difference between SAR and the new model as a function of 

surface roughness (kHrms), (c) difference between SAR and the new model as a function of 

soil moisture (mv), (d) difference between SAR and the new model as a function of incidence 

angle. The best regression model is ploted in gray. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure IV.5. (a) Comparison between ° in the new model and ° measured (for all SAR 

bands) for HV polarization, (b) difference between SAR and the new model as a function of 

kHrms, (c) difference between SAR and the new model as a function of mv, (d) difference 

between SAR and the new model as a function of incidence angle. The best regression model 

is ploted in gray. 
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IV.4.3.2 Behaviour of the new model 

The physical behaviour of the new radar backscatter model was studied in function of 

incidence angle (), soil moisture (mv) and surface roughness (kHrms). 

Figure IV.6 shows that the radar signal is strongly sensitive to surface roughness, especially 

for small values of kHrms. In addition, this sensitivity increases with the incidence angle. 

Concerning the influence of polarization, the new model shows, as do many theories and 

experimental studies, that a given soil roughness leads to slightly higher signal dynamics with 

the soil moisture in HH than in VV polarization (Figure IV.6). The radar signal ° increases 

with kHrms. This increase is higher for either low kHrms values or high -values than it is for 

either high kHrms values or low -values. For =45°, ° increases approximately 8 dB in HH 

and 6.5 dB in VV when kHrms increases from 0.1 to 2 compared with only 3 dB when kHrms 

increases from 2 to 6 (for both HH and VV). This dynamic of ° is only half for =25° in 

comparison to that for =45°. In HV, the dynamic of ° to kHrms is half that observed for HH 

and VV. 

The behaviour of ° according to soil moisture shows a larger increase of ° with mv for low 

incidence angles than for high incidence angles. Figure IV.6 shows that °HH and °VV 

increase approximately 6 dB for =25° compared with only 3 dB for =45° when mv 

increases from 5 to 35 vol.%. In HV, the signal increases approximately 7.5 dB for =25° and 

3.5 dB for =45° when mv increases from 5 to 35 vol.%. 

As mentioned in Dubois et al. (Dubois et al., 1995), the ratio 𝜎𝐻𝐻
°

𝜎𝑉𝑉
°⁄ should increase with 

kHrms and remain less than 1. The new model shows that this condition is satisfied when 

20°<  <45°, kHrms < 6 and mv < 35 vol.%. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure IV.6. Behavior of the new model as a function of incidence angle, surface roughness 

(k Hrms) and soil moisture (mv) in HH, VV and HV polarizations. 
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IV.5 Conclusion 

This investigations objective is to propose a new empirical model for radar backscatter from 

bare soil surfaces. The new model is based on the formulation made in the Dubois model 

where the radar signal in HH and VV polarizations is described according to radar 

wavelength, incidence angle, soil moisture and roughness. This new model is based on the 

formulation made in the Dubois model. A large dataset was used, composed of ground 

measurements and SAR images over bare agricultural soils. 

Results show that the new model provides improved results in comparison to the Dubois 

model (in the case of HH and VV). Biases and RMSE have decreased for both HH and VV 

polarizations. In addition, the high over- or under-estimations observed with the Dubois 

model for some ranges of soil moisture, surface roughness and radar incidence angle were 

clearly eliminated with the new model. Analysis of the new model’s performance for each 

radar wavelength separately (L, C and X) shows that in the L-band, the performance of the 

new model was similar to that of the Dubois model (may be due to the few data used in L-

band). The model shows significant improvement in C- and X-bands (RMSE approximately 

1.9 dB with the new model and between 2.6 and 4.1 dB with the Dubois model).  

Based on the same equation as that used for HH and VV, a radar signal in HV polarization 

was also proposed. Finally, the new empirical model proposed in the present study would 

allow more accurate soil moisture estimates using the new Sentinel-1A and -1B SAR data. 

 

 

 

 

 

 

 

 



96 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



97 
 

 

 

 

 

 

 

 

 

 

 

V. Chapter 5: Estimation of soil roughness using neural 

networks from sentinel-1 SAR data 
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V.1 Introduction 

Soil surface characteristics (mainly soil moisture and surface roughness) play a key role in 

different hydrological processes (floods, runoff, evapotranspiration, infiltration, soil erosion, 

and imbalances in the water and carbon cycles). Surface roughness has a role in trapping 

water at the surface and reducing flow velocity, which increases infiltration and in turn 

reduces downstream runoff. The roughness scales observed by a radar sensor have a strong 

dependence on the frequency and radar incidence (Ogilvy and Ogilvy, 1991). 

Radar data were used since a long time for estimating and mapping the surface soil 

parameters (mainly soil moisture and roughness) of bare soils. Soil moisture and surface 

roughness can be estimated from SAR images by using physical or statistical models 

(Baghdadi and Zribi, 2016; Baghdadi et al., 2002c, 2012a; Merzouki et al., 2011; Rahman et 

al., 2008). The best known physical model is the Integral Equation Model (IEM) (Fung, 1994; 

Fung et al., 1992). This model simulates the radar backscattering coefficients from SAR and 

soil parameters (radar wavelength, polarization, incidence angle, surface roughness and soil 

moisture ‘dielectric constant’). The validity domain of IEM in C-band covers the range of 

roughness values that are commonly encountered for bare agricultural surfaces (k Hrms ≤ 3, 

where Hrms is the root mean square surface height and k the radar wave number ≈ 1.12 cm−1 

for a frequency in C-band of 5.4 GHz as Sentinel-1 SAR). Most Hrms values of agricultural 

bare soils range from 0.5 to 4 cm (Baghdadi et al., 2012a). 

The discrepancies observed between the IEM and the SAR data had encouraged Baghdadi et 

al., (2004, 2006a, 2011a, 2015) to propose an empirical calibration of IEM model. Moreover, 

Baghdadi et al. (2016a) proposed an new empirical model based on Dubois model that make 

the estimation of soil moisture and surface roughness possible in an easy way. Actually, 

physical, empirical and semi-empirical models were developed to invert the radar signal in 

order to monitor the soil parameters (moisture and roughness). 

Baghdadi et al., (2002a) investigated the potential of the first generation of SAR data (ERS-2 

and RADARSAT-1) for monitoring roughness states over bare agricultural fields. Results 

indicate that high incidence angles (about 45°) are more suitable to discriminate various 

roughness classes (smooth, medium and rough) over bare agricultural fields. An algorithm 

based on an experimental exponential relationship between the radar backscattering 

coefficient and the surface roughness (root mean square surface height, Hrms) independently 
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of the soil moisture was used. Next, Baghdadi et al. (2012) developed an approach to estimate 

soil moisture and surface roughness from C-band polarimetric RADARSAT-2 data based on 

neural networks (NNs). Results showed that the accuracy on the soil roughness estimates was 

about 0.5 cm using polarimetric data. The estimation is better for Hrms-values lower than 2 

cm than for Hrms-values higher than 2 cm. For higher Hrms, the NNs under-estimate the 

surface roughness. Moreover, Zribi and Dechambre (2002) proposed an approach based on 

the use of two SAR images acquired at two different incidence angles, one image with a weak 

incidence (~20°) and one image with a strong incidence (~40°) for estimating both soil 

moisture and surface roughness. The surface roughness defined by Zs=Hrms/L (L is the 

correlation length) is estimated with an RMSE of 0.08 cm for Zs-values between 0.075 and 

0.75 cm. 

The aim of this part is to develop an approach to estimate the soil surface roughness from C-

band Sentinel-1 SAR data in the case of bare agricultural soils. This approach is an inversion 

technique based on Multi-Layer Perceptron (MLP) neural networks. The training of the neural 

networks is performed using synthetic dataset simulated by the Integral equation model 

calibrated by Baghdadi (Baghdadi et al., 2004, 2006a, 2011b, 2015) and the new proposed 

model by Baghdadi modified Dubois (Baghdadi et al., 2016a) on  a wide range of surface 

roughness and soil moisture. The inversion approach was then validated in using Sentinel-1 

datasets (one in France and one in Tunisia) composed on Sentinel 1 images and in-situ 

measurements. This work is done in order to evaluate the potential of Sentinel-1 SAR sensors 

for retrieving soil roughness. Section 2 presents a review of datasets. A presentation of the 

methodology developed in order to estimate the soil roughness is done is section 3. The 

results and discussions are presented in section 4, and finally, the main conclusion is 

presented in section 5. 

V.2 Dataset 

V.2.1  Synthetic dataset 

The Integral Equation Model calibrated by Baghdadi et al., (2004, 2006a, 2011a, 2015)  

‘IEM_B’ and the modified Dubois Model (Baghdadi et al., 2016a) are used to generate the 

reference datasets for the inversion of SAR data by the neural networks (NN) technique. The 

IEM modified by Baghdadi and the new semi-empirical modified Dubois model are able to 

reproduce the radar signal at VV, HH and VH from SAR parameters (incidence angle and 

radar wavelength) and soil surface characteristics (soil moisture and surface roughness). The 
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standard mode of Sentinel-1 corresponds only to acquisitions in both VV and VH 

polarizations. For this reason, only VV and VH polarizations will be used in this chapter. 

A synthetic dataset combining a wide range of soil parameters (soil roughness “Hrms” and 

soil moisture “mv”) and corresponding backscattering coefficients was generated from the 

calibrated IEM and the modified Dubois in order to evaluate the performance of the NN 

technique. 18 soil roughness values (Hrms between 0.35 and 3.8 cm with a step of 0.2 cm), 20 

soil moisture values (mv between 2 vol.%. and 40 vol.%.with a step of 2 vol.%), 25 radar 

incidence angles ( between 20°and 45° with a step of 1°) are considered. In order to make 

the IEM simulations more realistic, the SAR measurement error which includes both 

calibration errors and measurements precision errors is added to the simulated backscattering 

coefficients. Realistic values of measurements errors are 0.75 for VV and 1dB for VH 

(Schwerdt et al., 2017).To better simulate an experimental dataset, the synthetic dataset is 

then obtained by adding a zero mean Gaussian random noise with a standard deviation of 

0.75 and 1 dB to the simulated backscattering coefficients VV and VH (in dB scale), 

respectively. In order to obtain a statistically significant dataset, 250 noise samples are 

generated for each couple of mv and Hrms. A total of 1350000 elements (C-band VV and VH) 

are also obtained to produce the synthetic dataset. 

The noisy synthetic datasets are then divided into two equal datasets one of which is used for 

training the NNs, the remaining is being used for the validation of the NNs.  

V.2.2 Real dataset 

An experimental dataset is used in this study, consisting of Sentinel-1 images as well as 

ground measurements of soil moisture and surface roughness collected over two agricultural 

study sites: one in France and one in Tunisia (Figure V.1, Table V.1). Sentinel-1 images (C-

band, radar wavelength about 6 cm) were acquired with incidence angles between 37° and 

41°, and in VV and HV polarizations. 

V.2.2.1  Study sites 

The French study site is the Versailles plain. It is located west of Paris and covers about 221 

km² (48°46ʹ –48°56ʹ N; 1°50ʹ–2°07ʹ E, Figure V.1) (Vaudour et al., 2014). This agricultural 

peri-urban site is characterized by a semi-oceanic climate with an average rainfall of 570 

mm/year and an average annual temperature of 11.3°C (INRA meteorological station of 
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Thiverval-Grignon, 1986-2016). Rainfed annual crop systems cover 99 km² and develop over 

two embedded plateaus, the gentle slopes at their edges and the valleys at their bottom. The 

main crop rotations in the area involve winter wheat, winter rapeseed, winter and spring 

barley and maize on occasion (Vaudour et al., 2015). Conventional tillage practices are used: 

ploughing in November-December, followed by chisel in March then seedbed preparation for 

spring cereals (spring barley in March, maize in April). The main cultivated soils according to 

the FAO classification (World Reference Base (WRB) (Vaudour et al., 2014) are haplic or 

glossic luvisols deriving from loessic material over the plateaus, calcaric cambisols deriving 

from limestones and/or colluvic material and/or chalk along slopes and stagnic colluvic 

cambisols in the valley bottoms. The topsoil texture is dominated by silt loam (silt > 50%) 

with extreme textural classes varying from sandy loam to silty clay. Clay content is comprised 

between 14 and 32% (22% in median).  

The Tunisian site is situated in the Kairouan plain (9°23ʹ−10°17ʹE, 35°1ʹ−35°55ʹN) in central 

Tunisia (Figure V.1b). The climate in this region is semi-arid, with an average annual rainfall 

of approximately 300 mm/year, characterized by a rainy season lasting from October to May, 

with the two rainiest months being October and March (Gorrab et al., 2015a). As known, in 

the case of semi-arid areas, the rainfall patterns in this area are highly variable in time and 

space. The mean temperature in Kairouan City is 19.2 °C (minimum of 10.7 °C in January 

and maximum of 28.6 °C in August). The mean annual potential evapotranspiration (Penman) 

is close to 1600 mm. The landscape is mainly flat, and the vegetation is dominated by 

agricultural production (cereals, olive groves, fruit trees, market gardens and bare soils). Soil 

texture measurements showed a clay percentage between 2.4% and 53.1% and sand 

percentage between 4.4% and 84.3% (Gorrab et al., 2015a). The soil roughness was assumed 

isotropic. So, the row direction is not considered.  
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(a) 

 
(b) 

Figure V.1. Location of the two study sites, (a): location of Versailles in France. (b): location 

of Kairouan in Tunisia. 

 

V.2.2.2 . SAR Satellite images 

Four Sentinel-1 images were acquired in March and April 2017 (Table V.1) over the French 

study site. In addition, 7 Sentinel-1 images acquired over the Kairouan plain between 2015 

and 2017 are used in this study. All Sentinel-1 images acquired with a spatial resolution of 10 

m and in VV and VH polarizations are radiometrically calibrated in order to convert the 

digital number to radar backscattering coefficients.  

 

Site SAR 

sensor 

Incidence 

angle (°) 

Dates (dd/mm/yyyy) Number of data 

French site Sentinel-1 ~37° 15/03/2017  ;  27/03/2017 

02/04/2017  ;  08/04/2017 

24 measurements 

Tunisian 

site 

Sentinel-1 ~39° to 41° 18/12/2015  ;  04/02/2016 

03/04/2016  ;  04/04/2016 

23/12/2016  ;  05/01/2017 

09/02/2017 

85 measurements 

Table V.1. Description of the real dataset used in this study for validating the inversion 

approach. 
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V.2.2.3  In situ measurements 

Simultaneously with the Sentinel-1 acquisitions, in situ measurements of soil moisture and 

surface roughness were collected on several reference bare plots of a few hectares. Soil 

moisture was determined gravimetrically at each reference plot of the French site in using soil 

samples collected between 0 and 8 cm depth (one measure by plot). For the Tunisian site, 

between 20 and 30 volumetric soil moisture measurements (mv) were performed in the first 

top 5 cm using calibrated TDR (Time Domain Reflectometry) probes. The mean volumetric 

soil moisture was then calculated for each reference plot and each date. The soil moisture on 

the reference plots ranged between 11.5 et 25.1 vol.% for the French site and between 4.6 and 

41.7 vol.% for the Tunisia site.  

The soil roughness measurements made in Tunisia on the reference plots use 1 m long pin 

profiler with a resolution of 2 cm. Ten roughness profiles (five parallel and five perpendicular 

to the tillage row direction) were made in each reference field using a 1 m long needle-

profilometer and a sampling interval of 2 cm. From these roughness profiles, the root mean 

square surface height (Hrms) were then calculated for each reference plot using the mean of 

all autocorrelation functions acquired for each reference plot. All data bases are described in 

(Bousbih et al., 2017). For the French site, soil roughness was estimated with a fully 

automatic photogrammetric method (Gilliot et al., 2017). The rms surface height ranged 

between 0.56 cm and 4.55 cm for the reference plots in the Tunisian site and between 0.41 cm 

and 2.90 cm for the reference plots in the French site. 

Finally, each element of our real dataset corresponds to in situ measurements (mv and Hrms) 

and Sentinel-1 information (mean of radar backscattered coefficients in VV and VH, and 

radar incidence angle). The mean of radar backscattered coefficients was calculated by 

averaging for each reference plot the values of all pixels within the reference plot. 

V.3  Methodology for estimating soil moisture 

V.3.1 Neural Networks 

In this study, surface roughness was estimated by means of multi-layer perceptron (MLP) 

neural networks. The Levenberg-Marquardt optimization algorithm (Marquardt, 1963) was 

used to train the Neural Networks. The Neural Networks (NN) architecture is created from 

three layers: input, hidden, and output. The NNs have two dimensional input vectors when 

using one polarization (VV or VH) which are the backscattered signal and the incidence 
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angle. Using two polarizations (VV and VH), the NNs have three dimensional input vectors 

which are the two backscattered signals (VV and VH) and the incidence angle. In order to 

estimate only mv or Hrms, the output vector contains only the soil moisture (mv) or the soil 

surface roughness (Hrms). When the estimation concern both Hmrs and mv, the two 

dimensional output vector contains both soil moisture and surface roughness. The numbers of 

neurons associated with the hidden layer was determined by training the Neural Networks 

using different numbers of neurons. 20 hidden neurons provided accurate estimates of 

reference parameters (Baghdadi et al., 2012a; Chai et al., 2009). To develop a neural network, 

it is necessary to train the network with training synthetic dataset composed of input and 

output vectors. Training is accomplished to minimize the mean square error between the 

predicted Neural Networks outputs and the reference values. All transfer functions were tested 

in the Neural Networks which give different results. Best results are shown by the Purlin and 

Tansig transfer functions for the estimation of soil moisture and Logsig for the estimation of 

the surface roughness. 

V.3.2 Methodological overview 

An approach based on neural networks is chosen to estimate the soil roughness from Sentinel-

1 images (SAR data) over bare agricultural soils at very high spatial resolution ʺVHSRʺ (plot 

scale or on a finer scale). Two networks are applied one after the other, the first to estimate 

soil moisture and the second to estimate soil roughness. Three SAR configurations 

corresponding to the standard acquisition mode of Sentinel-1 with image acquisitions in both 

VV and VH polarizations are tested: VV alone, VH alone, VV and VH together. In order to 

improve the soil parameters estimates, a priori knowledge about soil moisture mv is 

introduced. Baghdadi et al. (2012a) showed that the use of a priori knowledge on the soil 

moisture (dry to slightly wet or very wet information) improves the soil moisture estimates. 

The priori information on mv is provided in using meteorological data (precipitations, 

temperature) and terrain knowledge. Indeed, it is easily to define from the weather forecasts 

(precipitation and temperature) if the soil is either dry to slightly wet (no precipitation for 

many days before SAR acquisition) or very wet (heavy rainfall preceding SAR acquisition). 

The integration of a priori information constrains the range of possible soil moisture 

parameter values estimated and thus leads to a better estimation of the soil moisture. 
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Three neural networks are developed for the estimation of mv, with and without a priori 

information on the soil moisture state: 

 Case 1: No a priori information is available on the soil moisture state. In this case mv 

will be estimated between 2 and 40 vol.%. 

 Case 2: A priori information is available on mv. The soil is supposed to be dry to 

slightly wet according to expertise based mainly on meteorological data 

(precipitations, temperature). Soil moisture values are assumed to range from 2 to 25 

vol.%. 

 Case 3: A priori information is available on mv. The soil is supposed to be very wet 

according to expertise based on meteorological data. mv-values are assumed to vary 

between 25 and 40 vol.%.  

The three NNs use the backscattering coefficient in each SAR configuration (VV polarization 

alone, VH polarization alone, VV and VH polarizations together) and the incidence angle as 

input. The output is only the soil moisture mv. An overlapping of 10 vol.% on mv was used on 

the training datasets of the two networks in the cases of a priori information on the soil 

moisture mv. So that, in the case of dry to slightly wet soils, the mv-values used for the 

training ranged from 2 to 30 vol.%. In the case of very wet soils, the mv-values used for the 

training ranged from 20 to 40 vol.%.  

Next, the soil roughness could be estimated at a fine spatial scale (plot or sub-plot scale) using 

the soil moisture estimated by the first network. The standard acquisition mode of Sentinel-1 

corresponds to acquisitions in both VV and VH polarizations. The Neural Networks used to 

estimate the soil roughness use the backscattering coefficient in VV alone, VH alone, VV and 

VH together and the incidence angle and the estimated soil moisture as input. The output is 

the soil surface roughness. The validation of these NNs will be made using the soil moisture 

estimated without and with a priori information on mv. 

V.4  Results and discussion 

The different neural networks are tested for the evaluation of the precision on soil roughness 

estimates using synthetic (built from IEM model and Baghdadi model) and real datasets.  
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V.4.1 Synthetic dataset 

In this first approach, the estimation of soil roughness (Hrms) requires the use of an estimate 

of the soil moisture (mv). First, we will discuss the performance of networks developed for the 

estimation of mv. Then, network built for estimating Hrms is analyzed. 

V.4.1.1  Estimation of mv 

V.4.1.1.1 Using the IEM model 

In order to estimate the soil moisture mv, three radar configurations will be tested: VV alone, 

VH alone, VV and VH together. 

V.4.1.1.1.1 Use of VV polarization alone  

First the results are discussed in using the synthetic dataset simulated from the Integral 

Equation Model (IEM).  In the case of VV polarization and mv between 2 and 40 vol.%, the 

RMSE on the mv estimates is of 4.89 vol.% for mv between 2 and 25 vol.% and 6.64 vol.% 

for mv between 25 and 40 vol.%. An overestimation of +2.40 vol.% on mv is observed for mv 

between 2 and 25 vol.%, and an underestimation of -3.84 vol.% is obtained for mv between 25 

and 40 vol.%. For the entire range of mv, between 2 and 40%, the RMSE on mv is of 5.66 

vol.% (Figure V.2a). 

In the case where the NNs were trained using a priori information on mv with dry to slightly 

wet soil conditions (training with mv between 2 and 30 vol.% and validation using mv 

between 2 and 25 vol.%), results show that the introduction of a priori information on mv 

improves the mv estimates. The RMSE on mv estimates decreases from 4.89 vol.% without a 

priori information on mv to 3.58 vol.% in the case of a priori information on mv. In addition, 

the difference between estimated and measured mv is also reduced from 2.40 vol.% to 1.06 

vol.% (Figure V.2b). 

In addition, the use of a priori information on mv in the case of very wet soil conditions also 

improves the mv estimates. The RMSE on mv estimates decreases from 6.64 vol.% without a 

priori information on mv to 5.04 vol.% in the case of a priori information on mv. In addition, 

the difference between estimated and measured mv is also reduced from -3.84 vol.% to -2.29 

vol.% (Figure V.2c). 
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(a) 

 
(b) 

  
(c) 

Figure V.2. Box plots of mv estimates retrieved from the synthetic dataset generated using 

IEM. Neural networks were trained and validated using VV polarization alone. (a): no a priori 

information on mv; (b): with a prior information on mv and dry to slightly wet soil conditions; 

(c): with a prior information on mv and very wet soil condition. 

 

First the performance of the inversion algorithm was analyzed according to Hrms and 

incidence angle "" (Figure V.3) in the case without a priori on mv is used. For VV, results 

show that the bias (estimated mv - measured mv) and the RMSE are strongly dependent on 

Hrms (Figures V.3a and V.3b).  The RMSE on mv in the case of inversion without a priori 

information on mv increases from 4.40 vol.% for Hrms=0.5 cm to 7.0 vol.% for Hrms = 3.8 

cm for mv between 2 and 25 vol.% (dry to slightly wet soils). In very wet soil conditions, the 

RMSE on mv decreases from 11.5 vol.% for Hrms=0.5 cm to 4.0 vol.% for Hrms = 3.8 cm. 

The high RMSE values of in the case of dry to slightly wet conditions and high Hrms-values 
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are due to an overestimation of mv (bias increases from -3.0 to +5.0 vol.% for Hrms between 

0.5 and 3.8 cm). Similarly, the high RMSE values in the case of very wet conditions and low 

Hrms-values are due to an underestimation of mv (bias decreases from -11.0 to -1.5 vol.% for 

Hrms between 0.5 and 3.8 cm). In addition, results show that the RMSE on mv slightly 

depends on  in the case of no a priori information on mv (Figures V.3c and V.3d). The 

RMSE on mv is between 4.2 vol.% (for =20°) and 5.0 vol.% (for  between 25° and 45°) for 

dry to slightly wet soil conditions and between 6.0 and 7.0 vol.% for very wet soils. The 

overestimation of mv in dry to slightly conditions is approximately +2.5 vol.% for  between 

20° and 45°. For very wet soil conditions, the underestimation of mv is approximately -4.0 

vol.% for  between 20° and 45°. 

In the case of a priori information on mv with dry to slightly wet soil conditions, the RMSE 

on mv estimates varies between 2.2 and 5.0 vol.% for all mv and Hrms values of the validation 

synthetic dataset (case of dry to slightly wet conditions). The bias reduction varies between -

3.0 vol. % (low Hrms) and +3.0 vol.% (high Hrms). In addition, RMSE and bias on mv 

estimates are slightly dependent on the incidence angle. 

In the case of a priori information on mv with very wet soil conditions, the RMSE on mv 

estimates varies between 4.3 and 7.0 vol.% for all mv and Hrms values of the validation 

synthetic dataset in the case of very wet conditions. The highest RMSE-values correspond to 

low Hrms-values. The bias is also well reduced mainly for low Hrms-values from -6.0 vol.% 

to –1.0 vol.% for Hrms-values of 3.8 cm. The analysis of the RMSE and the bias shows 

relatively close values according to the incidence angle. The RMSE is about 5.00 vol.%  for 

incidence angle between 20° and 45° and the bias is about -2.5 vol.% for incidence angle 

between 20° and 45° (Figures V.3c and V.3d). 
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(a) 

 
(b)  

 
(c) 

 
(d) 

Figure V.3. Accuracy on the mv estimates (RMSE and bias "=estimated – measured") 

retrieved from the synthetic dataset in VV polarization using IEM. Three NNs are tested: 

without a priori information on mv (case 1), with a priori information on mv with dry to 

slightly wet soil conditions (case 2), with a priori information on mv with very wet conditions 

(case 3). 

 

V.4.1.1.1.2  Use of VH polarization alone  

In the case of VH polarization and mv between 2 and 40 vol.%, the RMSE on the mv 

estimates is of 5.27 vol.% for mv between 2 and 25 vol.% and 8.27 vol.% for mv between 25 

and 40 vol.%. An overestimation of 2.94 vol.% on mv is observed for mv between 2 and 25 

vol.%, and an underestimation of -4.64 vol.% is obtained for mv between 25 and 40 vol.%. 

Moreover, the RMSE for all the range of mv between 2 and 40% is 6.63 vol.% (Figure V.4a). 
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The RMSE on mv estimates decreases from 5.27 vol.% without a priori information on mv to 

4.16 vol.% in the case of a priori information on mv for dry to slightly wet soil conditions. 

Also, the difference between estimated and measured mv is well reduced (approximately by a 

factor of 2) from 2.94 vol.% to 1.23 vol.% (Figure V.4b). 

 
(a) 

  
(b) 

 
(c) 

Figure V.4. Box plots of mv estimates retrieved from the synthetic dataset generated using 

IEM. Neural networks were trained and validated using VH polarization alone. (a): no a priori 

information on mv; (b): with a prior information on mv and dry to slightly wet soil conditions; 

(c): with a prior information on mv and very wet soil condition. 

 

Results also show that the use of a priori information on mv in the case of very wet soil 

conditions improves slightly the mv estimates. The RMSE on mv estimates decreases from 
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8.27 vol.% without a priori information on mv to 5.06 vol.% in the case of a priori information 

on mv. In addition, the difference between estimated and measured mv is also well reduced 

from -4.64 vol.% to -2.26 vol.% (Figure V.4c). 

First the performance of the inversion algorithm was analyzed according to Hrms and 

incidence angle "" in the case without a priori on mv is used. For VH polarization alone 

(Figure V.5), the performance analysis of the inversion algorithm shows that the bias 

(estimated mv - measured mv) and the RMSE on mv are strongly dependent on Hrms (Figures 

V.5a and V.5b). The RMSE on mv in the case of inversion without a priori information on mv 

increases from 6.60 vol.% for Hrms=0.5 cm to 7.0 vol.% for Hrms = 3.8 cm for mv between 2 

and 25 vol.% (dry to slightly wet soils). In very wet soil conditions, the RMSE on mv 

decreases from 19.0 vol.% for Hrms=0.5 cm to 4.0 vol.% for Hrms = 3.8 cm. The high RMSE 

values of in the case of very wet conditions and low Hrms-values are due to an 

underestimation of mv (bias increases from -19.0 to 0.0 vol.% for Hrms between 0.5 and 3.8 

cm). Similarly, the high RMSE values in the case of dry to slightly wet conditions and low 

Hrms-values are due to an overestimation of mv (bias increases from -6.0  to 6.0 vol.% for 

Hrms between 0.5 and 3.8 cm). Moreover, results show that the RMSE on mv slightly 

depends on  in the case of no a priori information on mv (Figures V.5c and V.5d). The 

RMSE slightly decreases from 5.70 vol.% for =20° to 4.8 vol.% for  = 45° in the case of 

dry to slightly wet soil conditions. It also slightly decreases from 8.5 vol.% for =20° to 7.5 

vol.%(for  = 45° for very wet soils. The overestimation of mv in dry to slightly conditions is 

approximately +3.0 vol.% for  between 20° and 45°. For very wet soil conditions, the 

underestimation of mv is approximately about 5.0 vol.% for  between  20° and 45°. 

In the case of a priori information on mv with dry to slightly wet soil conditions, the quality of 

the estimation is also well improved when the accuracy on mv estimates is analyzed according 

to Hrms and  (Figure V.5). The RMSE on mv estimates varies between 3.0 and 7.5 vol.% for 

all mv and Hrms values of the validation synthetic dataset (case of dry to slightly wet 

conditions). The bias reduction varies between -6.0 vol. % for low Hrms-values and +4.0 

vol.% for high Hrms-values. In addition, RMSE and bias on mv estimates are slightly 

dependent on the incidence angle. 

In the case of a priori information on mv with very wet soil conditions, the RMSE on mv 

estimates varies between 3.0 and 7.0 vol.% for all mv and Hrms values of the validation 
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synthetic dataset (case of very wet conditions). The highest RMSE-values correspond to low 

Hrms-values. The bias is also well reduced mainly for low Hrms-values from -6.0 vol.% for 

Hrms-values of 0.5 cm to –1.0 vol.% for Hrms-values of 3.8 cm. The analysis of the RMSE 

and the bias shows relatively close values according to the incidence angle. The RMSE is 

about 5.00 vol.%  for incidence angle between 20° and 45° and the bias is about -2.5 vol.% 

for incidence angle between 20° and 45° (Figures V.5c and V.5d). 

 
(a) 

 
(b)  

 
(c) 

 
(d) 

Figure V.5. Accuracy on the mv estimates (RMSE and Bias "=estimated – measured") 

retrieved from the synthetic dataset in VH polarization using IEM. Three NNs are tested: 

without a priori information on mv (case 1), with a priori information on mv with dry to 

slightly wet soil conditions (case 2), with a priori information on mv with very wet conditions 

(case 3). 
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V.4.1.1.1.3  Use of VV and VH polarizations together  

In the case of VV and VH polarizations together and  mv between 2 and 40 vol.%,  the RMSE 

on the mv estimates is of 4.33 vol.% for mv between 2 and 25 vol.% and 6.27 vol.% for mv 

between 25 and 40 vol.%. An overestimation of +2.vol.% on mv is observed for mv between 2 

and 25 vol.%, and an underestimation of -3.23 vol.% is obtained for mv between 25 and 40 

vol.%. For the entire range of mv, between 2 and 40%, the RMSE on mv is of 5.19 vol.% 

(Figure V.6a). 

 
(a) 

  
(b) 

 
(c) 

Figure V.6. Box plots of mv estimates retrieved from the synthetic dataset generated using 

IEM. Neural networks were trained and validated using VV and VH polarization together. (a): 

no a priori information on mv; (b): with a prior information on mv and dry to slightly wet soil 

conditions; (c): with a prior information on mv and very wet soil condition. 
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With a priori information on mv with dry to slightly soil conditions, the RMSE on mv 

estimates decreases from 4.33 vol.% without a priori information on mv to 3.26 vol.% in the 

case of a priori information on mv. In addition, the difference between estimated and 

measured mv is also reduced from +2.00 vol.% to +0.91 vol.% (Figure V.6b). 

The use of a priori information on mv in the case of very wet soil conditions improves the 

estimation of mv. The RMSE on mv estimates decreases from 6.27 vol.% without a priori 

information on mv to 4.85 vol.% in the case of a priori information on mv. Also, the difference 

between estimated and measured mv is reduced from -3.23 vol.% to -2.02 vol.% (Figure 

V.6c). 

First the performance of the inversion algorithm was analyzed according to Hrms and 

incidence angle "" in the case without a priori on mv is used (Figure V.7). Results show that 

the RMSE on mv in the case of inversion without a priori information on mv increases from 

4.80 vol.% for Hrms=0.5 cm to 7.0 vol.% for Hrms = 3.8 cm in dry to slightly wet soil 

conditions (mv between 2 and 25 vol.%) (Figures V.7a and V.7b). In very wet soil conditions, 

the RMSE on mv decreases from 12.50 vol.% for Hrms=0.5 cm to 4.0 vol.% for Hrms = 3.8 

cm. The high RMSE values in the case of very wet conditions and low Hrms-values are due to 

an underestimation of mv (bias increases from -5.0 to +5.0 vol.% for Hrms between 0.5 and 

3.8 cm). Similarly, the high RMSE values in the case of dry to slightly wet conditions and low 

Hrms-values are due to an overestimation of mv (bias increases from –12.0  to 0.0 vol.% for 

Hrms between 0.5 and 3.8 cm). Moreover, results show that the RMSE on mv slightly 

depends on  in the case of no a priori information on mv in the inversion process in the case 

of VV and VH polarizations together (Figures V.7c and V.7d). The RMSE is approximately 

about 6.0 vol.% for  between 20° and 45° for dry to slightly wet soil conditions and about 

4.50  vol.% for  between 20° and 45° for very wet soils. The overestimation of mv in dry to 

slightly conditions is approximately +2.0 vol.% for  between 20° and 45°. For very wet soil 

conditions, the underestimation of mv is approximately about -3.0 vol.% for  between  20° 

and 45°. 

With a priori information on mv with dry to slightly soil conditions, the estimation quality is 

also well improved when the accuracy on mv estimates is analyzed according to Hrms and  

(Figures V.7). The RMSE on mv estimates varies between 2.0 and 5.0 vol.% for all mv and 
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Hrms values of the validation synthetic dataset (case of dry to slightly wet conditions). The 

bias reduction varies between -4.0 vol. % (low Hrms) and +4.0 vol.% (high Hrms). Finally, 

RMSE and bias on mv estimates are slightly dependent on the incidence angle. The RMSE is 

about 3.00 vol. % for incidence angle between 20° and 45° and the bias is about  -2.50 vol. % 

for incidence angle between 20° and 45°. 

 
(a) 

  
(b) 

 
(c) 

 
(d) 

Figure V.7. Accuracy on the mv estimates (RMSE and Bias "=estimated – measured") 

retrieved from the synthetic dataset in VV and VH polarizations together using IEM. Three 

NNs are tested: without a priori information on mv (case 1), with a priori information on mv 

with dry to slightly wet soil conditions (case 2), with a priori information on mv with very wet 

conditions (case 3). 
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With a priori information on mv with very wet soil conditions, the RMSE on mv estimates 

varies between 3.0 and 7.0 vol.% for all mv and Hrms values of the validation synthetic 

dataset in the case of very wet conditions. The highest RMSE-values correspond 

approximately to low Hrms-values. The bias is also well reduced mainly for low Hrms-values 

from -6.0 vol.% for Hrms-values of 0.5 cm to +1.0 vol.% for Hrms-values of 3.8 cm. 

According to the incidence angle, the RMSE and the bias shows relatively close values. The 

RMSE is about 4.9 vol.% for incidence angle between 20° and 45° and the bias is about -2.0 

vol.% for incidence angle between 20° and 45° (Figures V.7c and V.7d). 

V.4.1.1.2 Using Baghdadi model 

Three radar configurations will be tested in order to analyze the accuracy on mv estimates: 

VV alone, VH alone, VV and VH together. 

V.4.1.1.2.1 Use of VV polarization alone  

In the case of no a priori information on mv, the RMSE on the mv estimates is of 7.03 vol.% 

for mv between 2 and 25 vol.% and 8.43 vol.% for mv between 25 and 40 vol.%. An 

overestimation of +3.39 vol.% on mv is observed for mv between 2 and 25 vol.%, and an 

underestimation of -5.09 vol.% is obtained for mv between 25 and 40 vol.%. For the entire 

range of mv, between 2 and 40%, the RMSE on mv is of 7.62 vol.% (Figure V.8a). 

Results show that the introducing of a priori information on mv improves the mv estimates. 

The RMSE on mv estimates decreases from 7.03 vol.% without a priori information on mv to 

5.88 vol.% in the case of a priori information on mv for dry to slightly wet soil conditions. In 

addition, the difference between estimated and measured mv is also reduced from +3.39 vol.% 

to +1.64 vol.% (Figure V.8b).The use of a priori information on mv in the case of very wet 

soil conditions improves the mv estimates. The RMSE on mv estimates decreases from 8.43 

vol.% without a priori information on mv to 4.79 vol.% in the case of a priori information on 

mv. In addition, the difference between estimated and measured mv is also well reduced from 

-5.09 vol.% to -1.52 vol.% (Figure V.8c). 
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(a) 

 

(b) 

  

(c) 

Figure V.8. Box plots of mv estimates retrieved from the synthetic dataset generated using 

Baghdadi model. Neural networks were trained and validated using VV polarization alone. 

(a): no a priori information on mv; (b): with a prior information on mv and dry to slightly wet 

soil conditions (mv between 2 and 25 vol.%); (c): with a prior information on mv and very wet 

soil condition (mv between 25 and 40 vol.%). 

 

The performance of the algorithm was also analyzed according to Hrms and the incidence 

angle "" (Figure V.9). Results show that the bias (estimated mv - measured mv) and the 

RMSE are strongly dependent on Hrms and . According to Hrms, the RMSE on mv in the 

case of inversion without a priori information on mv increases from 6.0 vol.% for Hrms=0.5 

cm to 10.0 vol.% for Hrms = 3.8 cm in the case of dry to slightly wet soils. In very wet soil 

conditions, the RMSE on mv decreases from 14.5 vol.% for Hrms=0.5 cm to 4.0 vol.% for 
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Hrms = 3.8 cm. The high RMSE values of in the case of dry to slightly wet conditions and 

high Hrms-values are due to an overestimation of mv (bias increases from -2.5 to +8.0 vol.% 

for Hrms between 0.5 and 3.8 cm). Similarly, the high RMSE values in the case of very wet 

conditions and low Hrms-values are due to an underestimation of mv (bias about -13.0 for 

Hrms=0.5cm). 

According to the incidence angle "", results show that the RMSE on mv is strongly 

dependent on  in the case of no a priori information on mv (Figures V.9c and V.9d). The 

RMSE increases from 4.0 vol.% (for =20°) to 9.0 vol.% (for = 45°) for dry to slightly wet 

soils and increases from 4.0 (for =20°) to 11.0 vol.% (for  =45°) for very wet soil 

conditions. In the case of dry to slightly wet conditions with high incidence angle values, the 

high RMSE values are due to an overestimation of mv (bias increases from +1.0 to +5.5 vol.% 

for  between 20° and 45°). Similarly, the high RMSE values in the case of very wet 

conditions and high incidence angle values are due to an underestimation of mv (bias 

decreases from -1.5 to -9.0 vol.% for  between 20° and 45°). 

The RMSE on mv estimates varies slightly with Hrms in the case of a priori information on 

mv for dry to slightly wet soils (between 6.0 and 7.1 vol.%) (Figure V.9).In addition, RMSE 

and bias on mv estimates are also dependent on the incidence angle "". The RMSE increases 

from 4.0 vol. % for =20° to 7.0 vol. % for =45°. The overestimation of mv increases from 

+1.0 to +2.5 vol.% for  between 20° and 45°. 

Figure V.9 shows that the RMSE on mv estimates is well reduced in the case of a priori 

information on mv for very wet soil conditions (it varies between 4.0 and 7.0 vol.%). The 

highest RMSE-values correspond to low Hrms-values. The underestimation of mv is well 

reduced mainly for low Hrms-values from -13.0 vol.% without a priori information on mv to -

6.0 vol.%  with a prior information on mv (case of very wet conditions). In addition, the 

analysis of the RMSE on mv estimates shows that the RMSE is well reduced mainly for high 

incidence angles (=45°) from 11.0 vol.% without a priori information on mv to 5.1 vol.% 

with a priori information on mv. Moreover, the underestimation on mv is well decreased from 

-9.0 vol.% .% without a priori information on mv to -2.5 vol.% with a priori information on 

mv (case of very wet conditions and =45°). 
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(a) 

 
(b)  

 
(c) 

 
(d) 

Figure V.9. Accuracy on the mv estimates (RMSE and bias "=estimated – measured") 

retrieved from the synthetic dataset in VV polarization using Baghdadi model. Three NNs are 

tested: without a priori information on mv (case 1), with a priori information on mv with dry 

to slightly wet soil conditions (case 2), with a priori information on mv with very wet 

conditions (case 3). 

 

V.4.1.1.2.2 Use of VH polarization alone  

In using VH alone, the RMSE on mv is of 6.05 vol.% in the case of no a priori information on 

mv (Figure V.10a). For mv between 2 and 25 vol.%, the RMSE on mv is of 5.91 vol.%. It is of  

6.25 vol.% for mv between 25 and 40 vol.%. An overestimation of +2.08 vol.% on mv is 

observed for mv between 2 and 25 vol.%, and an underestimation of -3.15 vol.% is obtained 

for mv between 25 and 40 vol.%.  
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Results show that the introduction of a priori information on mv improves the mv estimates. 

The RMSE on mv estimates decreases from 5.91 vol.% without a priori information on mv to 

5.15 vol.% in the case of a priori information on mv for dry to slightly wet soils. For very wet 

soils, the RMSE on mv estimates decreases from 6.27 vol.% without a priori information on 

mv to 4.34 vol.% in the case of a priori information on mv. In addition, the difference between 

estimated and measured mv is also reduced from +2.08 vol.% to +1.19 vol.% for dry to 

slightly soils (Figure V.10b) and from -3.15 vol.% to -1.62 vol.% for very wet soils (Figure 

V.10b).  

 
(a) 

 
(b) 

 
(c) 

 

Figure V.10. Box plots of mv estimates retrieved from the synthetic dataset generated using 

Baghdadi model. Neural networks were trained and validated using VH polarization alone. 

(a): no a priori information on mv; (b): with a prior information on mv and dry to slightly wet 

soil conditions (mv between 2 and 25 vol.%); (c): with a prior information on mv and very wet 

soil condition (mv between 25 and 40 vol.%). 
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The analysis of the accuracy on mv estimates shows that the bias (estimated mv - measured 

mv) and the RMSE are strongly dependent on both Hrms and incidence angle " (Figure 

V.11). According to Hrms, The RMSE on mv in the case of inversion without a priori 

information on mv increases from 5.50 vol.% for Hrms=0.5 cm to 7.50 vol.% for Hrms = 3.8 

cm for mv between 2 and 25 vol.% (dry to slightly wet soils). In very wet soil conditions, the 

RMSE on mv decreases from 10.0 vol.% for Hrms=0.5 cm to 4.5 vol.% for Hrms = 3.8 cm. 

The high RMSE values of in the case of dry to slightly wet conditions and high Hrms-values 

are due to an overestimation of mv (bias about +6.0 vol.% for Hrms=3.8 cm). Similarly, the 

high RMSE values in the case of very wet soils and low Hrms-values are due to an 

underestimation of mv (bias about -7.0 vol.% for Hrms=0.5 cm). 

In the case of a priori information on mv, the RMSE on mv estimates varies between 5.5 and 

6.0 vol.% for dry to slightly wet soil conditions and between 6.0 and 8.0 vol.% for very wet 

soils (FigureV.11).  

According to the incidence angle , results show that the RMSE on mv is strongly dependent 

on   (Figures V.11c and V.11d). In the case of no a priori information on mv, the RMSE 

increases from 3.5 vol.% for =20° to 7.9 vol.% for = 45° for dry to slightly wet soils and 

increases from 3.3 for =20° to 9.0 vol.% for = 45° for very wet soils. In the case of a priori 

information on mv, the RMSE increases from 3.25 vol. % for =20° to 6.5 vol. % for =45° 

for dry to slightly wet soils. For a priori information on mv and very wet soils, the RMSE on 

mv estimates is well reduced for high incidence angles (=45°) from 9.0 vol.% without a prior 

information on mv to 5.0 vol.% with a prior information on mv. In using a priori information 

on mv, the bias is slightly dependent on  (between +1.0 and +2.5 vol.% for  between 20° 

and 45° in the case of dry to slightly wet soils and between -1.0 and -2.5 vol.% for  between 

20° and 45° in the case of very wet soils). 
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(a) 

 
(b)  

 
(c) 

 
(d) 

 

Figure V.11. Accuracy on the mv estimates (RMSE and bias "=estimated – measured") 

retrieved from the synthetic dataset in VH polarization using Baghdadi model. Three NNs are 

tested: without a priori information on mv (case 1), with a priori information on mv with dry 

to slightly wet soil conditions (case 2), with a priori information on mv with very wet 

conditions (case 3). 

 

V.4.1.1.2.3 Use of VV and VH polarizations together  

In using VV and VH polarizations together without a priori information on mv, the RMSE on 

the mv estimates is of 5.68 vol.% for mv between 2 and 25 vol.% and 6.14 vol.% for mv 

between 25 and 40 vol.%. An overestimation of +1.98 vol.% on mv is observed for mv 

between 2 and 25 vol.%, and an underestimation of -2.94 vol.% is obtained for mv between 

25 and 40 vol.%. For mv between 2 and 40 vol.%, the RMSE on mv is of 5.87 vol.% (Figure 

V.12a). 
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The introduction of a priori information on mv in the case of dry to slightly wet soil conditions 

improves the mv estimates. The RMSE decreases from 5.68 vol.% without a priori 

information on mv to 4.97 vol.% in the case of a priori information on mv. In addition, the 

difference between estimated and measured mv is also reduced from +1.98 vol.% to +1.11 

vol.% (Figure V.12c). The RMSE on mv estimates in the case of very wet soil conditions 

decreases from 6.14 vol.% without a priori information on mv to 4.24 vol.% in the case of a 

priori information on mv. In addition, the difference between estimated and measured mv is 

also well reduced from -2.94 vol.% to -1.52 vol.% (Figure V.12c). 

 
(a) 

 
(b) 

 
(c) 

Figure V.12. Box plots of mv estimates retrieved from the synthetic dataset generated using 

Baghdadi model. Neural networks were trained and validated using VV and VH polarization 

together. (a): no a priori information on mv; (b): with a prior information on mv and dry to 

slightly wet soil conditions (mv between 2 and 25 vol.%); (c): with a prior information on mv 

and very wet soil condition (mv between 25 and 40 vol.%). 
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The analysis of the accuracy on mv estimates according to Hrms shows similar results than in 

the case of VV alone. The RMSE on mv in the case of inversion without a priori information 

on mv increases from 5.0 vol.% for Hrms=0.5 cm to 7.0 vol.% for Hrms = 3.8 cm for dry to 

slightly wet soils and decreases from 10.0 vol.% for Hrms=0.5 cm to 4.0 vol.% for Hrms = 

3.8 cm for very wet soil conditions (Figure V.13). 

 
(a) 

 
(b)  

 
(c) 

 
(d) 

 

Figure V.13. Accuracy on the mv estimates (RMSE and bias "=estimated – measured") 

retrieved from the synthetic dataset generated from Baghdadi model. VV and VH are used 

together. Three NNs are tested: without a priori information on mv (case 1), with a priori 

information on mv with dry to slightly wet soil conditions (case 2), with a priori information 

on mv with very wet conditions (case 3). 

Figure V.13b shows that the bias on mv estimates increases when Hrms increases. According 

to the incidence angle "", results show that the RMSE on mv is strongly dependent on  in 
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the case of no a priori information on mv (Figures V.13c and V.13d). The RMSE increases 

from 3.0 vol.% for =20° to 8.0 vol.% for = 45° for dry to slightly wet soil conditions and 

increases from 3.0 for =20° to 9.0 vol.% for = 45° for very wet soils.  

In the case of a priori information on mv, the RMSE on mv shows slight dependence with 

Hrms and the incidence angle (Figures V.13a and V.13c). 

 

V.4.1.1.3 Conclusion 

Using the two models (IEM and Baghdadi), the use of a priori information on mv strongly 

improves the estimation of mv. With IEM, better results are obtained with VV polarization. 

The use of VV and VH together provides similar performances than those obtained with VV 

alone. For the range of surface roughness the most encountered in agricultural environments 

with Hrms between 1 and 2 cm, results show that the RMSE on mv in VV polarization varies 

between 3.0 and 6.0 vol.%. The difference between estimated and real mv varies between -1.0 

and +1.0 vol.% in the case of dry to slightly wet soils. An underestimation of mv from -4.5 to 

-2.5 vol.% in the case of very wet soils is observed for Hrms between 1 and 2 cm.  

The use of Baghdadi model shows slightly better results when VV and VH are used together 

(RMSE about 5.9 vol.% with VV alone, 5.2 vol.% with VH alone and 4.9 vol.% with VV and 

VH together). For surface roughness between 1 and 2 cm, the RMSE on mv varies between 

3.9 and 5.5 vol.%. The difference between estimated and real mv varies between -0.5 and +2.0 

vol.% in the case of dry to slightly wet soils.  An underestimation of mv from -4.0 to -1.3 

vol.% is observed in the case of very wet soils are observed for Hrms between 1 and 2 cm.  

In a comparison between the two models with Hrms ranged between 1 and 2 cm, Baghdadi 

model shows slightly better results than IEM model mainly with VH polarization alone and 

with VV and VH polarizations together. Using the IEM model, results show slightly better 

results for Hrms between 1 and 2 cm with VV than with VH alone or with VV and VH 

polarizations together.  

V.4.1.2 Estimation of Hrms 

The estimation of the soil roughness (Hrms) is carried out after a first step which consisted to 

estimate mv. Indeed, the neural network (NN) which should estimate Hrms needs an estimate 

of mv. The two conditions on the soil moisture state are considered in input to the NN: no a 

priori information on mv, a priori information on mv (dry to slightly wet soil conditions or 
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very wet soils). As input to the network, these are the mv estimated by the previous networks 

built to estimate mv which are used. In addition to these cases corresponding to operational 

conditions for estimating soil roughness, the configuration where the input mv to the network 

corresponds to exact mv without estimation error (those that are in the validation dataset) is 

also tested. 

According to the results obtained on the estimation of the soil moisture mv, results showed 

that the IEM model shows better performance in using VV polarization in comparison to VH 

alone or to the use of VV and VH together. Baghdadi model provides better results in using 

VV and VH polarizations together in comparison to VV alone or to the use of VH alone. 

Therefore, in the case of surface roughness (Hrms) estimation, only the results obtained from 

the IEM model corresponding to VV alone and results obtained from Baghdadi model 

corresponding to VV and VH polarizations together are presented briefly. Other results 

corresponding to VH alone, VV and VH polarizations together for data generated from the 

IEM model and corresponding to the use of VV alone and VH alone for data generated from 

Baghdadi model are presented in Annex 1 and Annex 2, respectively. 

 

V.4.1.2.1 Using IEM model 

Figure 1V.8 shows the results for estimating the soil roughness using the synthetic dataset 

generated from the IEM model with VV polarization alone. Better estimates of Hrms are 

obtained when the mv used at the input of the NN corresponds to the exact mv (RMSE=0.72 

cm). The results obtained using the mv estimated without and with a priori information on mv 

are with a higher RMSE, respectively 1.01 cm and 0.94 cm. This shows that the use of mv 

estimates with an accuracy of about 5 vol.% is not sufficient to accurately estimate the soil 

roughness in C-band and VV polarization. In addition, figure V.14 shows an overestimation 

of Hrms for low Hrms-values and an underestimation of Hrms for Hrms higher than 2 cm. 
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(a) 

 
(b) 

 
(c) 

Figure V.14. Box plots of Hrms (cm) retrieved from the synthetic dataset generated from the 

IEM model in using VV polarization. (a) the input mv to the NN corresponds to exact mv 

(those that are in the validation dataset without estimation error), (b) the input mv to the NN 

corresponds to mv estimated by the NN built for estimating mv without a priori information on 

mv, (c) the input mv to the NN corresponds to mv estimated by the NN built for estimating mv 

with a priori information on mv. 

 

The performance of the neural network is also studied as a function of mv and the incidence 

angle () only when the mv in input to the NN corresponds to the exact mv (without 

estimation error) (Figure V.15). The RMSE on Hrms decreases from 0.84 cm for mv=2 vol.% 

to 0.70 cm for mv higher than 15  vol.%. In addition, the RMSE on Hrms decreases when the 

incidence angle increases (Figure V.15a). The RMSE on Hrms shows values between 0.92 cm 

for =20° and 0.65 cm for =45° (Figure V.15b). This is due to the sensitivity of radar signal 

to θ, much stronger for high values of Hrms than for low values of Hrms (Baghdadi et al., 
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2002a).The difference between estimated and exact Hrms very low dependence on reference 

mv and the incidence angle (Figure V.15c and V.15d). 

 

(a) 

 

 (b) 

 

(c) 

 

(d) 

Figure V.15. Accuracy on the Hrms estimates (RMSE and Bias) as a function of the soil 

moisture and the incidence angle for VV polarization using the synthetic data generated from 

the IEM model (mv in input corresponds to exact mv, without estimation error).  

 

V.4.1.2.2 Using Baghdadi model 

Results corresponding to the use of synthetic dataset generated from Baghdadi model in VV 

and VH polarizations together are shown in Figure V.16. Better estimations are observed for 

Hrms when the mv used at the input of the NN corresponds to the exact mv (RMSE=0.60 cm).  
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(a) 

 
(b) 

 
(c) 

Figure V.16. Box plots of Hrms retrieved from the synthetic dataset generated from Baghdadi 

model in using VV and VH polarizations together. (a) the input mv to the NN corresponds to 

real mv (those that are in the validation dataset), (b) the input mv to the NN corresponds to mv 

estimated by the NN built for estimating mv without a priori information on mv (with 

estimation error), (c) the input mv to the NN corresponds to mv estimated by the NN built for 

estimating mv with a priori information on mv (with estimation error). 

 

The results obtained using the mv estimated without or with a priori information on mv show 

higher RMSE with respectively 0.84 cm and 0.78 cm. This shows that the use of mv estimates 

with an accuracy of about 5 vol.% is not sufficient to accurately estimate the soil roughness in 

C-band and VV polarization. In addition, figure V.20 shows an overestimation of Hrms for 

low Hrms-values and an underestimation of Hrms for Hrms higher than 2 cm when the mv 

used in the NN is estimated without or with a priori information on mv (Figure V.16b and 

Figure V.16c). 
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The performance of the neural network is also studied as a function of mv and  only when 

the mv in input to the NN corresponds to the exact mv (without estimation error) (Figure 

V.17). The RMSE on Hrms is about 0.6 cm for all mv between 2 and 40 vol.%. In addition, 

the RMSE on Hrms decreases when the incidence angle increases. The RMSE on Hrms shows 

values between 0.78 cm for =20° and 0.50 cm for =45°.  In addition, The difference 

between estimated and exact Hrms very low dependence on reference mv and the incidence 

angle (Figure V.17c and V.17d). 

The comparison between Figure V.14 (using IEM) and Figure V.16 (using Baghdadi model) 

shows that the estimation of Hrms seems better in using the Baghdadi model. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure V.17. Accuracy on the Hrms estimates (RMSE and Bias) as a function of the soil 

moisture and the incidence angle for VV and VH polarizations together using the synthetic 

data generated from Baghdadi model (mv in input corresponds to exact mv, without estimation 

error). 
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V.4.2 Real dataset 

The NNs built for estimating mv and Hrms are then analyzed using the real Sentinel-1 dataset.  

 

V.4.2.1 Estimation of soil moisture (mv) 

V.4.2.1.1 Using the IEM model 

For VV polarization alone and using the IEM model, the results obtained for the estimation of 

mv are shown in Figure V.18. Results show that the introduction of a priori information on mv 

provides better accuracy on the mv estimates than the case without a priori information on mv 

(RMSE=6.00 vol.% with a priori information on mv and RMSE=7.25 vol.% without a priori 

on mv).  

 

(a) 

 

(b) 

Figure V.18. Retrieved mv versus in situ measurements in using the IEM model. (a): using 

VV without a priori information on mv; (b): using VV with a priori information on mv. Each 

point corresponds to one reference plot. 

 

For VH polarization alone, the results obtained for the estimation of mv are shown in Figure 

V.19. Better resulys are obtained when a priori information on mv is used (RMSE=5.63vol.% 

with a priori on mv and RMSE=7.52 vol.% without a priori on mv).  In the case of VV and 

VH polarizations together, the results obtained for the estimation of mv are shown in Figure 

V.20. The use of introduction of a priori information on mv provides better accuracy on the 

mv estimates than the case without a priori information on mv (RMSE=5.79 vol.% with a 

priori on mv and RMSE=7.46 vol.% without a priori on mv). 
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The analysis of the difference between the estimated and measured mv shows that the strong 

underestimates of the mv corresponds to low Hrms-values (Hrms<2 cm) and the strong 

overestimates corresponds to high Hrms-values (Hrms>2 cm).  

 

 
(a) 

 
(b) 

Figure V.19. Retrieved mv versus in situ measurements in using the IEM model. (a): using 

VH without a priori information on mv; (b): using VH with a priori information on mv. Each 

point corresponds to one reference plot. 

 

 
(a) 

 
(b) 

Figure V.20. Retrieved mv versus in situ measurements in using the IEM model. (a): using 

VV and VH together without a priori information on mv; (b): using VV and VH together with 

a priori information on mv. Each point corresponds to one reference plot. 
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V.4.2.1.2 Using Baghdadi model 

Using Baghdadi model for VV polarization alone, the results obtained for the estimation of 

mv are shown in Figure V.21. Results show that the introduction of a priori information on mv 

provides better accuracy on the mv estimates than the case without a priori information on mv 

(RMSE=5.58 vol.% with a priori on mv and RMSE=7.00 vol.% without a priori on mv). 

 
(a) 

 
(b) 

Figure V.21. Retrieved mv versus in situ measurements in using Baghdadi model. (a): using 

VV without a priori information on mv; (b): using VV with a priori information on mv. Each 

point corresponds to one reference plot. 

 

Figure V.22 shows the results obtained for the estimation of mv in the case of VH polarization 

alone. Better results are obtained when a priori information on mv is used (RMSE=6.45 vol.% 

with a priori on mv and RMSE=7.97 vol.% without a priori on mv). Figure V.23 shows the 

results obtained for the estimation of mv in the case of VV and VH polarizations together. An 

RMSE of 6.67 vol.% is obtained with the introduction of a priori information on mv and an 

RMSE of 8.25 vol.% in the case without a priori information on mv. 
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(a) 

 
(b) 

Figure V.22. Retrieved mv versus in situ measurements in using Baghdadi model. (a): using 

VH without a priori information on mv; (b): using VH with a priori information on mv. Each 

point corresponds to one reference plot. 

 

 

 
(a) 

 
(b) 

Figure V.23. Retrieved mv versus in situ measurements in using Baghdadi model. (a): using 

VV and VH together without a priori information on mv; (b): using VV and VH together with 

a priori information on mv. Each point corresponds to one reference plot. 

 

V.4.2.2 Estimation of surface roughness (Hrms) 

The results of the estimation of Hrms are done in using two inversion configurations: 

- At the input of the network for the estimation of Hrms, the mv used corresponds to mv 

estimated at plot scale (using the mean radar signal calculated by averaging for each 

reference plot the values of all pixels within the reference plot). 
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- At the input of the network for the estimation of Hrms, the mv used corresponds to mv 

estimated at the scale of the study site (using the mean radar signal calculated by 

averaging the values of all bare soil pixels within the study site). This second approach 

assumes that the soil moisture is of the same order for all bare agricultural plots 

located in the area under consideration (no irrigation activities and similar soil 

composition). The use of mv estimated at the scale of the study site in the estimation 

technique of Hrms could be relevant only when the study site is not irrigated. Indeed, 

if the SAR images are acquired during the dry season with irrigation activities on the 

study site, the use of an average soil moisture estimated at the scale of the study site 

(average mv calculated on all the bare soil agricultural plots) will lead to a strong 

overestimation of Hrms since the mv used for irrigated plots in the neural network for 

estimating Hrms will most probably be underestimated. 

For these two configurations a priori information on mv is used in the network for estimating 

mv. 

 

V.4.2.2.1 Using the IEM model 

In the case of VV polarization alone, results show that the accuracy on the estimates of Hrms 

is similar in using the mv estimated at the study site scale (a few tens of km²) and in using the 

mv estimated at the plot scale. The RMSE is of 0.98 cm when the mv used correspond to mv 

estimated at the scale of the study site and of 0.81 cm when the mv is estimated at the plot 

scale (Figure V.24). Figure V.25 shows the result using VH alone. The accuracy on the 

estimates of Hrms is mostly the same in using the mv estimated at the study site scale (RMSE 

= 0.82cm) and in using the mv estimated at the plot scale (RMSE=0.74 cm). In the case of VV 

and VH used together, results show that the accuracy on the estimates of Hrms is better in 

using the mv estimated at the plot scale (RMSE = 0.81 cm ) than in using the mv estimated at 

the study site scale (RMSE =1.31 cm) (Figure V.26).   
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(a) 

 
(b) 

Figure V.24. Retrieved Hrms versus measured measurements in VV polarization alone using 

the NN trained with synthetic data simulated from IEM model. (a): the mv used at the input of 

the network corresponds to mv estimated at plot scale; (b): the mv used at the input of the 

network corresponds to mv estimated at the scale of the study site. 

 

 
(a) 

 
(b) 

Figure V.25. Retrieved Hrms versus measured measurements in VH polarization alone using 

the NN trained with synthetic data simulated from IEM model. (a): the mv used at the input of 

the network corresponds to mv estimated at plot scale; (b): the mv used at the input of the 

network corresponds to mv estimated at the scale of the study site. 
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(a) 

 
(b) 

Figure V.26. Retrieved Hrms versus measured measurements in VV and VH polarizations 

together using the NN trained with synthetic data simulated from IEM model. (a): the mv used 

at the input of the network corresponds to mv estimated at plot scale; (b): the mv used at the 

input of the network corresponds to mv estimated at the scale of the study site. 

 

V.4.2.2.2 Using Baghdadi model 

With VV polarization alone, the accuracy on the estimates of Hrms is mostly the same in 

using the mv estimated at the study site scale and in using the mv estimated at the plot scale 

with RMSE of 1.04 cm and 0.95 cm, respectively (Figure V.27). Figure V.28 shows the result 

according to VH polarization alone. The precision on the estimates of Hrms is similar in using 

the mv estimated at the study site scale is approximately the same as in using the mv estimated 

at the plot scale (RMSE of 0.92 cm and of 0.84 cm, respectively). Figure V.29 shows that the 

estimation of Hrms using VV and VH together is carried out with a precision about 1.0 cm for 

the two inversion configurations.   
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(a) 

 
(b) 

Figure V.27. Retrieved Hrms versus measured measurements in VV polarization alone using 

the NN trained with synthetic data simulated from Baghdadi model. (a): the mv used at the 

input of the network corresponds to mv estimated at plot scale; (b): the mv used at the input of 

the network corresponds to mv estimated at the scale of the study site. 

 

 
(a) 

 
(b) 

Figure V.28. Retrieved Hrms versus measured measurements in VH polarization alone using 

the NN trained with synthetic data simulated from Baghdadi model. (a): the mv used at the 

input of the network corresponds to mv estimated at plot scale; (b): the mv used at the input of 

the network corresponds to mv estimated at the scale of the study site. 
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(a) 

 
(b) 

Figure V.29. Retrieved Hrms versus measured measurements in VV and VH polarizations 

together using the NN trained with synthetic data simulated from Baghdadi model. (a): the mv 

used at the input of the network corresponds to mv estimated at plot scale; (b): the mv used at 

the input of the network corresponds to mv estimated at the scale of the study site. 

 

V.4.2.2.3  Discussion 

Results obtained in using the NN built with a priori information on mv show estimates of 

Hrms with an RMSE higher than 0.7 cm. This accuracy on Hrms obtained shows that the use 

of mv estimates with an accuracy of about 6 vol.% is not sufficient to accurately estimate the 

soil roughness in C-band. From the real dataset, results show that the accuracy on Hrms 

estimates in using the mv estimated at the study site scale is similar to that in using the mv 

estimated at the plot scale. The use of mv estimated at the scale of the study site is possible 

only when the study site is not irrigated. In addition, results are similar using the neural 

networks trained with data simulated from IEM model and Baghdadi model. 

This first study on the potential of Sentinel-1 data for estimating the soil roughness shows that 

the development of an automatic and generalizable inversion procedure of the C-band radar 

signal does not allow a pertinent estimation of the soil roughness. The accuracy on soil 

roughness estimates obtained in this study cannot satisfy the requirements of operational users 

of soil roughness products (in particular to modelers) because the need is at least three 

roughness classes: smooth (sowing), medium (small plowing) and rough (large plowing). 

Only methods based on the use of experimental relationships, which are often difficult to 

apply to sites other than those for which they were developed and are generally valid only for 

specific soil conditions, allows the mapping of three roughness classes (Baghdadi et al., 

2002a). Indeed, different experimental studies have revealed that the sensitivity of the radar 



140 
 

signal to surface roughness (i.e. the slope of the regression lines) can be highly variable from 

one site to another. In addition, the experimental relationships between the radar signal and 

Hrms are established for a given incidence angle and a range of soil moisture. The soil 

composition could be also different from one site to another. All these reasons explain why 

the experimental relationships are not generalizable. 

 

V.4.3 Estimation of Hrms and mv both at very high spatial resolution ʺVHSRʺ 

In this second approach, soil roughness Hrms estimates are analyzed when the output of the 

neural network is both soil moisture and surface roughness at the same time. In this 

configuration, both VV and VH polarizations are used as input of the neural networks. The 

transfer function that are used in the Neural Networks for this configuration is Logsig. 

Three neural networks are analyzed corresponding to the three cases of soil moisture 

conditions with and without a priori information on the soil moisture state: 

 Case 1: No a priori information on the soil moisture state is available. In this case mv 

will be estimated between 2 and 40 vol.%. 

 Case 2: A priori information is available on mv. The soil is supposed to be dry to 

slightly wet according to expertise based mainly on meteorological data 

(precipitations, temperature). Soil moisture values are assumed to range from 2 to 25 

vol.%. 

 Case 3: A priori information is available on mv. The soil is supposed to be very wet 

according to expertise based on meteorological data. mv-values are assumed to vary 

between 25 and 40 vol.%.  

The three NNs use the backscattering coefficients in VV and VH polarizations and the 

incidence angle as input. The NN outputs are the soil moisture mv and the surface roughness 

Hrms. An overlapping of 10 vol.% on mv was used on the training datasets of the two 

networks in the case of a priori information on the soil moisture mv. So that, in the case of dry 

to slightly wet soils, the mv-values used for the training is ranged from 2 to 30 vol.%. In the 

case of very wet soils, the mv-values used for the training is ranged from 20 to 40 vol.%.  

The different neural networks are tested for the evaluation of the precision on soil roughness 

and moisture estimates using synthetic and real datasets.  
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V.4.3.1  Synthetic dataset 

First, we will discuss the performance of networks for the estimation of mv. Then, the 

performance of the same networks for estimating Hrms is analyzed. 

 

V.4.3.1.1 Estimation of mv 

V.4.3.1.1.1 Using the IEM model 

In the case of no a priori information on mv, the RMSE on the mv estimates is of 4.55 vol.% 

for mv between 2 and 25 vol.% and 6.37 vol.% for mv between 25 and 40 vol.%, with an 

overestimation of +2.14 vol.% and an underestimation of -3.22 vol.% on mv respectively for 

each mv range. For the entire range of mv, between 2 and 40%, the RMSE on mv is of 5.35 

vol.% (Figure V.30a). 

In the case where the NNs were trained using a priori information on mv with dry to slightly 

wet soil condition, the RMSE on mv estimates decreases from 4.55 vol.% without a priori 

information on mv to 3.40 vol.% in the case of a priori information on mv. In addition, the 

difference between estimated and measured mv is also reduced from +2.14 vol.% to +1.01 

vol.% (Figure V.30b). 

In addition, the use of a priori information on mv in the case of very wet soil conditions also 

improves the mv estimates. The RMSE on mv estimates decreases from 6.37 vol.% without a 

priori information on mv to 4.89 vol.% in the case of a priori information on mv. Also, the 

difference between estimated and measured mv is reduced from -3.23 vol.% to -1.96 vol.% 

(Figure V.30c). 

The performance of the inversion algorithm was analyzed according to Hrms and incidence 

angle "" (Figure V.31). Results show that the bias (estimated mv - measured mv) and the 

RMSE are strongly dependent on Hrms. The RMSE on mv in the case of inversion without a 

priori information on mv increases from 4.10 vol.% for Hrms=0.5 cm to 6.50 vol.% for Hrms 

= 3.8 cm for mv between 2 and 25 vol.% (bias increases from -8.8 to +1.2 vol.% for Hrms 

between 0.5 and 3.8 cm). In very wet soil conditions, the RMSE on mv decreases from 11.00 

vol.% for Hrms=0.5 cm to 4.1 vol.% for Hrms = 3.8 cm (bias increases from –1.2  to 5.1 

vol.% for Hrms between 0.5 and 3.8 cm). Moreover, results show that the RMSE on mv 

slightly depends on The RMSE on mv estimates is about 5 vol.% for  between 20° and 45° 

for dry to slightly wet soil conditions ( overestimation of mv of +2.0 vol.%) and about 6  
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vol.% for  between 20° and 45° for very wet soils in the case of no a priori information on 

mv ( underestimation of mv of about -3.0 vol.%) (Figures V.31c and V.31d).  

 

 
(a) 

 
(b) 

 
(c) 

Figure V.30. Box plots of mv estimates retrieved from the synthetic dataset generated using 

IEM. Neural networks were trained and validated using VV and VH polarizations. The NNs 

outputs are Hrms and mv together. (a): no a priori information on mv; (b): with a prior 

information on mv and dry to slightly wet soil condition; (c): with a prior information on mv 

and very wet soil condition. 

 

In the case of a priori information on mv, the RMSE on mv estimates varies between 4.0 and 

4.5 vol.% for all mv and Hrms values of the validation synthetic dataset for dry to slightly wet 

soil conditions (Figures V.31). With the use of a priori information on mv, the bias reduction 

varies between -1.0 vol. % (low Hrms) and +4.0 vol.% (high Hrms). In addition, RMSE and 

bias on mv estimates are slightly dependent on the incidence angle. The RMSE is about 3 vol. 
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% and the bias is about +1.2 vol. % for incidence angles between 20° and 45°. For very wet 

soil conditions, the RMSE on mv estimates varies in the case of a priori information on mv 

between 4.1 and 7.0 vol.% for all mv and Hrms values of the validation synthetic dataset. The 

highest RMSE-values correspond approximately to low Hrms-values. The bias is also well 

reduced mainly for low Hrms-values (-4.0 vol.% for Hrms-values of 0.5 cm).  

 
(a) 

  
(b) 

 
(c) 

 
(d) 

Figure V.31. Accuracy on the mv estimates (RMSE and bias "=estimated – measured") 

retrieved from the synthetic dataset generated from IEM. VV and VH are the  inputs of the 

NNs. The NNs outputs are Hrms and mv together. Three NNs are tested: without a priori 

information on mv, with a priori information on mv with dry to slightly wet soil conditions, 

with a priori information on mv with very wet conditions. 
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V.4.3.1.1.2  Using Baghdadi model 

The results show that the introducing of a priori information on mv in the case of dry to 

slightly wet soil conditions improves the mv estimates. The RMSE on mv estimates decreases 

from 5.67 vol.% without a priori information on mv to 4.97 vol.% in the case of a priori 

information on mv. In addition, the difference between estimated and measured mv is also 

reduced from +1.96 vol.% to +1.1 vol.% (Figure V.32). The RMSE on mv estimates in the 

case of very wet soil conditions decreases from 6.14 vol.% without a priori information on mv 

to 4.24 vol.% in the case of a priori information on mv. In addition, the difference between 

estimated and measured mv is also well reduced from -2.9 vol.% to -1.5 vol.% (Figure V.32). 

 
(a) 

 
(b) 

  
(c) 

Figure V.32. Box plots of mv estimates retrieved from the synthetic dataset generated using 

Baghdadi model. Neural networks were trained and validated using VV and VH polarizations. 

The NNs outputs are Hrms and mv together. (a): no a priori information on mv; (b): with a 

prior information on mv and dry to slightly wet soil conditions; (c): with a prior information 

on mv and very wet soil condition. 
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The analysis according to Hrms and incidence angle "" show that the bias (estimated mv - 

measured mv) and the RMSE are strongly dependent on Hrms and incidence angle "" (Figure 

V.33). In the case of a priori information on mv, the RMSE on mv estimates varies between 

5.1 and 6.0 vol.% for all mv and Hrms values considered in this study for dry to slightly wet 

soil conditions. In comparison to the case where no a prior information on mv is used, the use 

of a priori information shows that the bias reduction varies between -2.5 vol. % (low Hrms) 

and +4.0 vol.% (high Hrms). Finally, RMSE and bias on mv estimates are slightly dependent 

on the incidence angle "". The RMSE increases from 3.0 vol. % (for =20°) to 6.1 vol. % 

(for =45°). The bias on mv is approximately about +1.0 vol. % for "" between 20° and 45°. 

In addition, Figure V.33 shows that the RMSE on mv estimates is well reduced in the case of 

a priori information on mv for very wet soil conditions (between 4.0 and 6.0 vol.%). The 

highest RMSE values correspond to low Hrms-values. The underestimation of mv is well 

reduced mainly for low Hrms-values from -8.80 vol.% without a priori information on mv to -

4.5 vol.% with a prior information on mv for very wet soils. In addition, the analysis of the 

RMSE on mv estimates shows that the RMSE is well reduced mainly for high incidence 

angles (=45°) from 9.00 vol.% without a priori information on mv to 5.00 vol.% with a priori 

information on mv. 
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(a) 

  
(b) 

 
(c) 

 
(d) 

Figure V.33. Accuracy on the mv estimates (RMSE and bias "=estimated – measured") 

retrieved from the synthetic dataset generated from Baghdadi model. VV and VH are the 

inputs of the NNs. The NNs outputs are Hrms and mv together. Three NNs are tested: without 

a priori information on mv, with a priori information on mv with dry to slightly wet soil 

conditions, with a priori information on mv with very wet conditions. 

 

V.4.3.1.1.3 Discussion 

The comparison between results obtained with IEM and Baghdadi model shows similar 

performances in the estimation of soil moisture.  

Using IEM and Baghdadi model, the use of a priori information on mv strongly improves the 

estimation of mv. For Hrms between 1 and 2 cm (the range of surface roughness the most 
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encountered in agricultural environments) results show that the RMSE on mv varies between 

3.0 and 6.0 vol.% using the IEM model and between 3.9 and 5.5 vol.% using Baghdadi 

model. The difference between estimated and real mv in the case of dry to slightly wet soils 

varies between -1.0 and +1.0 vol.% using IEM model and between -0.5 and +2.0 vol.% using 

Baghdadi model. For very wet soils and Hrms between 1 and 2 cm, an underestimation of mv 

is observed using both IEM and Baghdadi model,  from -5.0 to -2.5 vol.% and from -4.0 to -

1.3 vol.%, respectively. 

 

V.4.3.1.2 Estimation of soil roughness ʺHrmsʺ 

V.4.3.1.2.1 Using the IEM model 

Figure V.34 shows the results for estimating the soil roughness using the synthetic dataset 

generated from the IEM model with VV and VH polarizations in input to neural networks. 

The RMSE is 0.96 cm in the case of no a priori information on mv. Similar RMSE is obtained 

for dry to slightly wet conditions about 0.98 cm when a priori information on mv is used. 

Lower RMSE is obtained with a priori information on mv in the case of very wet soils 

(RMSE=0.65 cm). 

In addition Figure V.34 shows an overestimation of Hrms for Hrms lower than 2 cm and an 

underestimation of Hrms for Hrms higher than 2 cm. 
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(a) 

 
(b) 

 
(c) 

Figure V.34. Box plots of Hrms (cm) retrieved from the synthetic dataset generated from the 

IEM model in using VV and VH polarizations together. (a): without a priori information on 

mv, (b): with a priori information on mv and dry to slightly wet soils, (c): with a priori 

information on mv and very wet soils. 

 

V.4.3.1.2.2 Using Baghdadi model 

Results show that the RMSE on Hrms estimates without a priori information on mv or with a 

priori information on mv for dry to slightly wet soils are similar (0.87 and 0.86 cm, 

respectively) (Figure V.35). In the case of very wet soil conditions, the RMSE obtained using 

a priori information on mv is about 0.74 cm (Figure V.35). 

In addition Figure V.35 shows an overestimation of Hrms for Hrms lower than 2 cm and an 

underestimation of Hrms for Hrms higher than 2 cm. 
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(a) 

 
(b) 

 
(c) 

Figure V.35. Box plots of Hrms (cm) retrieved from the synthetic dataset generated from 

Baghdadi model in using VV and VH polarizations together. (a): without a priori information 

on mv, (b): with a priori information on mv and dry to slightly wet soils, (c): with a priori 

information on mv and very wet soils. 

  

V.4.3.1.2.3 Discussion 

The comparison between results obtained with IEM and Baghdadi model shows slightly better 

estimation of soil roughness in using Baghdadi model. Both models show an overestimation 

of Hrms for Hrms lower than 2 cm and an underestimation of Hrms for Hrms higher than 2 

cm. Howewer, these over- and under-estimations are lower with Baghdadi model than with 

IEM model. 
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V.4.3.2  Real dataset 

The NNs built for estimating mv and Hrms are then analyzed using the real Sentinel-1 dataset. 

VV and VH are the inputs of NNs. 

 

V.4.3.2.1 Estimation of soil moisture (mv) 

V.4.3.2.1.1 Using the IEM model 

Using the IEM model, the results obtained for the estimation of mv are shown in Figure V.36. 

Results show that the introduction of a priori information on mv provides better accuracy on 

the mv estimates than the case without a priori information on mv (RMSE=5.83 vol.% with a 

priori information on mv and RMSE=7.25 vol.% without a priori on mv).  

The analysis of the difference between the estimated and measured mv shows that the strong 

underestimates of the mv corresponds to low Hrms-values (Hrms<2 cm) and the strong 

overestimates corresponds to high Hrms-values (Hrms>2 cm).  

 

 
(a) 

 
(b) 

Figure V.36. Retrieved mv versus in situ measurements in using the IEM model. VV and VH 

are used in input to neural networks. Hrms and mv are the outputs. (a): without a priori 

information on mv; (b): with a priori information on mv. Each point corresponds to one 

reference plot. 

 

V.4.3.2.1.2 Using Baghdadi model 

Figure V.37 shows the results obtained for the estimation of mv using Baghdadi model. An 

RMSE of 6.62 vol.% is obtained with the introduction of a priori information on mv and an 

RMSE of 8.30 vol.% in the case without a priori information on mv. 
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(a) 

 
(b) 

Figure V.37. Retrieved mv versus in situ measurements in using Baghdadi model. VV and 

VH are used in input to neural networks. Hrms and mv are the outputs. (a): without a priori 

information on mv; (b): with a priori information on mv. Each point corresponds to one 

reference plot. 

 

V.4.3.2.2 Estimation of surface roughness (Hrms) 

V.4.3.2.2.1 Using the IEM model 

Results show that the RMSE on Hrms estimates is 0.84 cm in the case of without a priori 

information on mv. In the case with a priori information on mv, the RMSE is of 0.75 cm 

(Figure V.38). 

 

 
(a) 

 
(b) 

Figure V.38. Retrieved Hrms versus measured measurements in using the NNs trained with 

synthetic data simulated from the IEM model. VV and VH are used in input to neural 

networks. Hrms and mv are the outputs. (a): without a priori information on mv; (b): with a 

priori information on mv. 
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V.4.3.2.2.2 Using Baghdadi model 

Using Baghdadi model, the precision on the estimates of Hrms is approximately the same in 

using or not a priori information on mv (Figure V.39). The RMSE is 1.01 cm with the case of 

no a priori information on mv and 0.97 cm in the case of a priori information on mv. 

 

 
(a) 

 
(b) 

Figure V.39. Retrieved Hrms versus measured measurements in using the NN trained with 

synthetic data simulated from Baghdadi model. VV and VH are used in input to neural 

networks. Hrms and mv are the outputs. (a): without a priori information on mv; (b): with a 

priori information on mv. 

 

V.5 Conclusions 

The objective of this study was to investigate the potential of Sentinel-1 C-band SAR in 

several polarizations (VV alone, VH alone, VV and VH together) for estimating the soil 

roughness over bare agricultural areas using the neural networks technique (NNs). Neural 

networks were trained with radar backscattering coefficients generated from two models: the 

Integral Equation Model ‘IEM’ and the new semi-empirical model developed recently by 

Baghdadi et al. (2016). An additional simulated dataset and a real dataset composed of 

Sentinel-1 images and in situ measurements were then used to analyze the performance of the 

inversion technique for estimating the surface roughness (Hrms). 

Two inversion configurations were proposed. The first based on estimation of soil roughness 

at very high spatial resolution ʺVHSRʺ (plot scale or on a finer scale). Two networks were 

applied one after the other, the first to estimate the soil moisture (mv) and the second using the 

soil moisture estimates for estimating the soil roughness. Three SAR configurations are 
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tested: VV alone, VH alone, VV and VH together. In order to improve the soil parameters 

estimates, a priori knowledge about soil moisture mv (dry to slightly wet or very wet soil 

conditions) is introduced. Three neural networks are developed for the estimation of mv, with 

and without a priori information on the soil moisture state. Next, the soil roughness is 

estimated at a fine spatial scale (plot or sub-plot scale) using the soil moisture estimated by 

the first network. The second inversion configuration concerns the estimation of both soil 

roughness (Hrms) and soil moisture (mv) at very high spatial resolution ʺVHSRʺ. Both VV 

and VH polarizations together are used as inputs of these neural networks. Three neural 

networks are developed, with and without a priori information on the soil moisture state. 

Using the first inversion configuration and using the two radar backscattering models, best 

results are obtained using the VV polarization alone for the IEM Model and the VV and VH 

polarizations together for Baghdadi model. The soil moisture could be estimated with an 

RMSE better than 6 vol.% when a priori information on mv is used in the neural network for 

the two models. The second neural network uses this estimation of mv in order to estimate the 

soil roughness at the plot scale. Results obtained show estimates of Hrms with an RMSE of 

0.94 cm using the IEM model (VV polarization alone) and 0.78 cm using Baghdadi model 

(VV and VH polarizations together). This accuracy on Hrms obtained in using the NN built 

with a priori information on mv shows that the use of mv estimates with an accuracy of about 

6 vol.% is not sufficient to accurately estimate the soil roughness in C-band. Results obtained 

from the real dataset show that the accuracy on Hrms estimates in using the mv estimated at 

the study site scale is better to that in using the mv estimated at the plot scale, with an RMSE 

on Hrms about 0.81 cm (RMSE=0.98 cm using mv estimated at plot scale) in using the IEM 

model (VV polarization alone) and an RMSE on Hrms about 1.03 cm (RMSE=1.05 cm using 

mv estimated at plot scale) in using Baghdadi  model (VV and VH polarizations together). 

For the second inversion configuration (VV and VH polarizations together), the use of 

simulated dataset from the Integral Equation Model ‘IEM’ or the new semi-empirical 

Baghdadi model show approximately similar results and close to the results obtained in the 

first inversion configuration. Using the real dataset, the soil moisture mv could be estimated 

with an RMSE better than 6.0 vol.% and 6.6 vol.% for the IEM and Baghdadi models, 

respectively when a priori information on mv is used in the neural networks. The RMSEs on 

Hrms are of 0.84 cm without a priori information on mv and 0.75 cm with a priori information 

on mv in using the IEM model. Using Baghdadi model, the RMSEs on Hrms are about 1.01 

cm without a priori information on mv and 0.97 cm with a priori information on mv. The use 
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of mv estimated at the scale of the study site is possible only when the study site is not 

irrigated.  

This first study on the potential of Sentinel-1 data for estimating the soil roughness shows that 

the development of an automatic and generalizable inversion procedure of the C-band radar 

signal does not allow a pertinent estimation of the soil roughness. The accuracy on soil 

roughness estimates obtained in this study cannot satisfy the requirements of operational users 

of soil roughness products (in particular to modelers) because the need is at least three 

roughness classes: smooth (sowing), medium (small plowing) and rough (large plowing). 

Only methods based on the use of experimental relationships, which are often difficult to 

apply to sites other than those for which they were developed and are generally valid only for 

specific soil conditions, allows the mapping of three roughness classes (Baghdadi et al., 

2002a). Indeed, different experimental studies have revealed that the sensitivity of the radar 

signal to surface roughness (i.e. the slope of the regression lines) can be highly variable from 

one site to another. In addition, the experimental relationships between the radar signal and 

Hrms are established for a given incidence angle and a range of soil moisture. The soil 

composition could be also different from one site to another. All these reasons explain why 

the experimental relationships are not generalizable. 
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VI. General conclusion and perspectives 
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VI.1 General conclusion 

The state of the soil surface and in particular through roughness and moisture exerts a 

fundamental influence on the distribution of rain between infiltration, surface retention and 

runoff. In addition, it has a key role in surface hydrological processes. The characterization 

and consideration of these surface conditions is currently an important issue for the physical-

based modeling of the processes of infiltration, runoff and erosion. The main objective of this 

thesis was to evaluate the potential of the new Sentinel-1 SAR for the mapping of surface 

roughness in bare agricultural areas.  

In order to achieve this objective, several steps were followed. The first step was to evaluate 

the potential of the five most popular radar backscattering models (Oh, Dubois, IEM, AIEM 

and IEM modified by Baghdadi "IEM_B") using a wide dataset composed of AIRSAR, SIR-

C, JERS-1, PALSAR-1, ESAR, ERS, RADARSAT, ASAR, TerraSAR-X, CosmoSky-Med, 

Sentinel-1 acquisitions over numerous agricultural sites in France, Italy, Germany, Belgium, 

Luxembourg, Canada and Tunisia. In addition, in situ measurements of soil moisture and 

surface roughness were carried out simultaneously to SAR acquisitions over bare soil surfaces 

(soil moisture "mv" ranged between 2 vol. % and 47 vol. %, surface roughness "Hrms" 

between 0.2 cm and 9.6 cm which corresponds to kHrms from 0.2 and 13.4). The SAR 

sensors used are in L-, C- and X-bands with incidence angle between 18° and 57°. Results 

showed that the IEM modified by Baghdadi "IEM_B" using a fitting parameter instead of 

measured correlation length provides the most accurate SAR simulations with bias (real data 

− model simulations) lower than 1.0 dB and Root Mean Square Error "RMSE" lower than 2.0 

dB. The IEM_B model showed slightly better performance in X-band (RMSE = 1.8 dB) than 

in L- and C-bands (RMSE between 1.9 and 2.3 dB). The IEM and AIEM models showed 

better simulations of measured backscattering coefficients using exponential correlation 

function (RMSE of 5.6 dB for HH and 6.5 dB for VV using the IEM model; RMSE of 4.4 dB 

for HH and 3.8 dB for VV using the AIEM model) than in using Gaussian correlation 

function (RMSE about 10 dB for both HH and VV and in using both IEM and AIEM models). 

The Oh models showed good results in simulations with slightly better performance of the Oh 

1992 version with bias less than 1.0 dB and RMSE of 2.6 dB and 2.4 dB respectively for HH 

and VV. The Oh model showed better agreement in simulations than Dubois model which 

simulates the backscattering in HH polarization with RMSE of 4.0 dB, and slightly better 

simulations for VV polarization with RMSE of 2.9 dB.  
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The second step was to produce a new semi-empirical backscattering model (Baghdadi 

model) for bare soils based on the formulation of Dubois model. The different terms of 

Dubois model equations that describe the dependence between the SAR signal and both 

sensor and soil parameters have been validated or modified to improve the modeling of the 

radar signal. The new radar backscattering model was developed for HH, VV and HV 

polarizations. Analysis of this new model showed very good performances in simulating the 

radar signal. Results showed that this new proposed model improved the performances of 

simulations (Biases and RMSEs were well decreased) in comparison to the Dubois model for 

both cases HH and VV polarizations. The radar signal in HV polarization which was not 

modeled in the Dubois model was added in the new model. The high over- and under-

estimations for some ranges of soil moisture, surface roughness and radar incidence angle 

observed with Dubois model were obviously eliminated with the new backscattering model. 

The performances of this new model in the L-band were similar to the Dubois model’s 

simulations. For HH and VV, better results were observed with this new model in C- and X-

bands (RMSE approximately about 1.9 dB), while the Dubois model simulated the radar 

backscattering signal with RMSE between 2.6 dB and 4.1 dB in C- and X-bands, respectively. 

Moreover, the difference between the new model simulations in HV polarization and the real 

SAR data show an RMSE of 2.1 dB. 

The last step was to develop an inversion procedure based on neural networks to estimate the 

soil surface roughness from C-band Sentinel-1 SAR data in the case of bare agricultural soils. 

The neural networks were trained using synthetic dataset simulated by the IEM model 

calibrated by Baghdadi "IEM_B" and the new semi-empirical model developed in the 

previous step (Baghdadi model). For this purpose, the inversion approach was then validated 

in using both synthetic and real dataset. The synthetic datasets consist of a wide range of 

surface roughness "Hrms" and soil moisture "mv" simulated from IEM-B and Baghdadi 

models. The real dataset used in the validation of the inversion approach consists of C-band 

Sentinel-1 images (one in France and one in Tunisia) and in-situ measurements. This work 

was done in order to evaluate the potential of Sentinel-1 SAR sensors for retrieving soil 

roughness in several polarizations (VV alone, VH alone, VV and VH together) using the 

neural networks technique (NNs).  

In order to achieve this last step and to estimate the soil roughness, two inversion 

configurations were proposed. The first configuration is composed of two consecutive neural 

networks (NNs) that are applied consecutively, the first to estimate the soil moisture (mv) and 
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the second using the soil moisture estimates for estimating the soil roughness (Hrms). Three 

cases were tested: VV alone, VH alone, VV and VH together. The second inversion 

configuration uses a single NN to estimate both soil roughness (Hrms) and soil moisture (mv). 

Both VV and VH polarizations are used as inputs of the neural network. A priori knowledge 

about soil moisture mv (dry to slightly wet or very wet soil conditions) was also introduced in 

the two inversion configurations in order to improve the soil parameters estimates (soil 

moisture and surface roughness).  

The use of the first inversion configuration showed better estimation of mv and Hrms in using 

VV alone and the synthetic dataset simulated from the IEM-B model.  When Baghdadi model 

was used to simulate the synthetic dataset, better results were obtained in using VV and VH 

together. Results showed that the soil moisture (mv) could be estimated at the plot scale with 

an RMSE better than 6 vol.% using a priori information on mv. Then, this estimated soil 

moisture "mv" was used in order to estimate the soil roughness at the plot scale. Results 

showed an estimation of Hrms with an RMSE of 0.94 cm using the IEM-B model with VV 

polarization alone and 0.78 cm using Baghdadi model with both VV and VH. This result is 

not sufficient to accurately estimate the soil roughness in C-band. Using the real dataset, 

results showed that the RMSE on Hrms is of 0.98 cm in using the IEM model (VV alone) and 

of 1.05 cm in using Baghdadi model (VV and VH together). 

The use of the second inversion configuration (VV and VH together for estimating both mv 

and Hrms by the same neural network) showed close performances in using synthetic datasets 

simulated from the two backscattering models. Moreover, the performances are similar with 

the two inversion configurations. Using the real dataset, the soil moisture mv could be 

estimated with an RMSE about 6.0 vol.% and 6.6 vol.% respectively for the IEM-B and 

Baghdadi models, when a priori information on mv is used in the neural networks. Using a 

priori information on mv and using the IEM_B model, the RMSEs on Hrms are of 0.84 cm 

without a priori information on mv and 0.75 cm with a priori information on mv. Using 

Baghdadi model, the RMSEs on Hrms are 1.01 cm without a priori information on mv and 

0.97 cm with a priori information on mv.  

In general, at least three roughness classes (smooth, medium and rough) are needed in order to 

fulfill the operational users of soil roughness products. This first study on the potential of 

Sentinel-1 data for estimating the soil roughness didn’t satisfy these requirements. Results 

show that the inversion procedure of the C-band radar signal does not permit an accurate 

estimation of the soil roughness. Thus, the three roughness classes are not achievable with an 
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incidence of about 40° (nominal incidence of Sentinel-1). Indeed, the incidence angles used in 

this study, between 37° and 41° using VV, VH or VV and VH together, are not optimal for 

the characterization of the soil roughness. Fung, (1994) has shown that HH polarization is 

more sensitive to soil roughness than VV for high incidence angles. Moreover, Baghdadi et 

al., (2002a) indicated that the high incidence angles (about 45°) are more suitable to 

discriminate various roughness classes (smooth, medium and rough) over bare agricultural 

fields. So that, the results obtained by the Sentinel-1 SAR sensor for the estimation of surface 

roughness are logical with such medium incidence angles. Moreover, the use of two 

polarizations does not improve the estimation of the soil roughness.  

 

VI.2 Perspectives  

In general, the work of this thesis focused on several research sectors (evaluation, modeling 

and estimation of soil parameters). This thesis showed the potential of radar images (i.e. 

Sentinel-1 radar sensor) to estimate soil surface parameters. The results obtained could be 

used as a guide to support research in several fields. 

Several research fields emerge from this work. These axes relate, on the one hand, to the 

potential of SAR sensors to estimate soil parameters (soil moisture and surface roughness) 

and, on the other hand, the best use the SAR’s instrumental parameters (i.e. wavelengths) and 

configurations (i.e. incidence angles) in order to attain better accurate estimations. 

The results obtained in this thesis lead to indicate that the C-band Sentinel-1 SAR data with 

incidence angle about 40° are not suitable to retrieve surface roughness. So, It is essential to 

further develop multi-sensor methods combining radar data acquired from two radar 

wavelengths (L and C bands, or C and X bands). Indeed, the three frequencies L, C and X 

have complementary capabilities for estimating soil moisture and surface roughness. As  the 

radar signal in X-band is more sensitive to soil moisture than the radar signal in C-band 

(accuracy on soil moisture estimates in X-band is twice greater than the once obtained in C-

band, Aubert et al. (2011)), it might be relevant to combine SAR data in C and X bands to 

estimate both soil parameters (i.e. soil moisture and surface roughness). The X-band data will 

be used to estimate soil moisture and the C-band data will be used to estimate the surface 

roughness. The use of the higher radar wavelengths (L-band) may also be relevant due to the 

high potential of higher wavelengths for the estimation of soil roughness. In this context, 

different spatial missions with L band SAR systems are in preparation, as NISAR (NASA and 
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ISRO mission). European Space Agency also discusses the possibility of adding a new L band 

SAR to the constellations of Sentinels. The arriving of these missions will open a serious 

opportunity to develop studies based on the combination of multi-sensor acquired data, 

particularly with Sentinel-1 & Sentinel-2 missions. The multi-sensor, and particularly multi-

frequency algorithms will be essential to reach the operational algorithms which are able to 

separate effects of different surface parameters on radar signals. This is particularly the case 

of covered vegetation surface, for which, retrieving of roughness is still very complicated with 

one frequency configuration. The final objective is to reach in next years the assimilation of 

roughness maps, as for soil moisture in different surface process models, as runoff and 

erosion models. 
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Annex 1: Results on soil roughness estimates using 

synthetic dataset generated from the IEM model  
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(a) 

 
(b) 

   
(c) 

Figure A1.1. Box plots of Hrms (cm) retrieved from the synthetic dataset generated from the 

IEM model in using VH polarization. (a) the input mv to the network corresponds to real mv, 

(b) the input mv to the network corresponds to mv estimated by the NN built for estimating mv 

without a priori information on mv, (c) the input mv to the network corresponds to mv 

estimated by the NN built for estimating mv with a priori information on mv. 
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(a) 

 
(b) 

 
(c) 

Figure A1.2. Box plots of Hrms (cm) retrieved from the synthetic dataset generated from 

IEM model in using VV and VH polarizations together. (a) the input mv to the network 

corresponds to real mv (those that are in the validation dataset), (b) the input mv to the 

network corresponds to mv estimated by the NN built for estimating mv without a priori 

information on mv, (c) the input mv to the network corresponds to mv estimated by the NN 

built for estimating mv with a priori information on mv. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure A1.3. Accuracy on Hrms estimates (RMSE and Bias) as a function of the soil moisture 

and the incidence angle for VH polarization alone. The mv in input to the NN corresponds to 

the exact mv (without estimation error).  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure A1.4. Accuracy on Hrms estimates (RMSE and Bias) as a function of the soil moisture 

and the incidence angle using VV and VH together. The mv in input to the NN corresponds to 

the exact mv (without estimation error).  
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Annex 2: Results on soil roughness estimates using 

synthetic dataset generated from Baghdadi model  
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(a) 

 
(b) 

 
(c) 

Figure A2.1. Box plots of Hrms (cm) retrieved from the synthetic dataset generated from 

Baghdadi model in using VV polarization alone. (a) the input mv to the network corresponds 

to real mv (those that are in the validation dataset), (b) the input mv to the network 

corresponds to mv estimated by the NN built for estimating mv without a priori information on 

mv, (c) the input mv to the network corresponds to mv estimated by the NN built for 

estimating mv with a priori information on mv. 
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(c) 

Figure A2.2. Box plots of Hrms (cm) retrieved from the synthetic dataset generated from 

Baghdadi model in using VH polarization alone. (a) the input mv to the network corresponds 

to real mv (those that are in the validation dataset), (b) the input mv to the network 

corresponds to mv estimated by the NN built for estimating mv without a priori information on 

mv, (c) the input mv to the network corresponds to mv estimated by the NN built for 

estimating mv with a priori information on mv. 
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(d) 

Figure A2.3. Accuracy on the Hrms estimates (RMSE and Bias) as a function of the soil 

moisture and the incidence angle for VV polarization alone. The mv in input to the NN 

corresponds to the exact mv (without estimation error). 
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(d) 

Figure A2.4. Accuracy on the Hrms estimates (RMSE and Bias) as a function of the soil 

moisture and the incidence angle for VH polarization alone and using the synthetic data 

generated from Baghdadi model. The mv in input to the NN corresponds to the exact mv 

(without estimation error).  
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Introduction 

Le sol n'est pas seulement la surface sur laquelle nous marchons, nous construisons, ni la terre 

que nous cultivons; c'est la source de notre vie et une richesse que nous devons préserver. À 

partir des années 1950, l'intensification des terres agricoles n'a fait qu'accélérer les processus 

de dégradation des sols, affectant ainsi leurs propriétés biophysico-chimiques. La fertilité des 

sols (matière organique et stabilité structurale du sol) est le premier élément directement 

affecté par l'intensification. 

Le sol se caractérise par son taux d’humidité et la rugosité de sa surface. L'humidité du sol est 

un paramètre clé dans les différents processus impliqués dans le cycle hydrologique (cycle de 

l'eau). La cartographie de la distribution spatio-temporelle de l'humidité du sol permet 

d’optimiser la réattribution de l'eau pendant les sécheresses et fournit un soutien pour la 

prévision et la gestion des inondations. D'un point de vue agronomique, l'humidité du sol est 

une variable cruciale pour le développement des cultures. Ainsi, la cartographie de l’humidité 

des sols permet un meilleur suivi et une meilleure gestion de l'irrigation, conduisant à un 

rendement optimal. 

Une autre caractéristique du sol à considérer est la rugosité de surface. C'est un paramètre 

physique qui caractérise l'état de la surface du sol. Pour les sols agricoles, la rugosité définit le 

microrelief de la surface du sol à l'échelle des mottes et est due à de petits accidents sur le 

terrain (naturels, techniques de culture ou les deux). Cartographier la rugosité de la surface est 

nécessaire pour comprendre les différents processus physiques. C'est un paramètre principal 

dans l'estimation de la capacité de stockage de l'eau dans les horizons pédologiques ainsi que 

dans le modèle de ruissellement. Ce dernier phénomène a une grande influence sur les 

processus d'érosion et détermine les crues suite à un événement pluvieux. 

La télédétection spatiale est d’une importance primordiale pour la cartographie et la 

surveillance des problèmes environnementaux. Son intérêt réside dans la capacité des capteurs 

satellitaires spatiaux à fournir des informations globales et permanentes de la planète, aux 

échelles locale à globale. La télédétection radar a montré son grand potentiel ces dernières 

années dans la caractérisation des états de la surface du sol. L’état de la surface du sol, et en 

particulier l’humidité et la rugosité, exerce une influence fondamentale sur la répartition de la 

pluie entre infiltration, rétention superficielle et ruissellement. Il a un rôle essentiel dans les 

processus hydrologiques de surface et ceux associés à l’érosion et aux processus 

d’évapotranspiration. La caractérisation et la prise en compte de ces conditions de surface 
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constituent actuellement un enjeu important pour la modélisation à base physique des 

processus hydrologiques et pour le couplage surface-atmosphère. Dans ce cadre et depuis 

plusieurs années, plusieurs études scientifiques ont montré le potentiel des données micro-

ondes actives dans l’estimation de l’état hydrique du sol et de la rugosité de sa surface. 

Les nouveaux systèmes radar (SAR ʺSynthetic Aperture Radarʺ) ont permis d’ouvrir de 

nouvelles perspectives pour l’observation de la terre grâce à l’amélioration de la résolution 

spatiale (métrique sur TerraSAR-X et COSMO-SkyMed) et temporelle (TerraSAR-X, 

COSMO-SkyMed, Sentinel-1). La disponibilité depuis peu des nouveaux capteurs radar en 

bande C Sentinel-1 (Sentinel-1A et Sentinel-1B) rend indispensable l’évaluation des données 

Sentinel-1 pour la caractérisation des états de surface du sol et en particulier la rugosité du sol. 

Les données radar à synthèse d'ouverture (SAR) sont utilisées depuis longtemps pour estimer 

et cartographier les paramètres du sol, en particulier l'humidité et la rugosité du sol. Plusieurs 

modèles de rétrodiffusion radar ont été développés pour estimer l'humidité et la rugosité du 

sol. La disponibilité des hautes résolutions spatiales et temporelles des données SAR Sentinel-

1 et l’utilisation des modèles de rétrodiffusion radar permettent d'estimer avec précision les 

paramètres du sol. Dans le cas des sols nus ou avec peu de végétation, l'estimation de 

l'humidité et de la rugosité du sol est effectuée en inversant la rétrodiffusion SAR mesurée au 

moyen de modèles de rétrodiffusion SAR (empiriques ou physiques). Contrairement aux 

modèles physiques, les modèles empiriques ou semi-empiriques doivent être étalonnés chaque 

fois que la zone d'étude change en utilisant des mesures in-situ spécifiques au site d’étude et 

des observations SAR. Les modèles semi-empiriques les plus couramment utilisés sont les 

modèles Oh et Dubois. Quant aux modèles physiques, les modèles les plus populaires sont le 

modèle d'équations intégrales (IEM), IEM calibré par Baghdadi, appelé dans cette thèse 

"IEM_B", et le modèle avancé d'équations intégrales (AIEM). 

 

 

 

L'objectif général de cette thèse est d'évaluer le potentiel du capteur radar Sentinel-1 pour 

estimer la rugosité du sol sur des parcelles nues (sans végétation ou avec peu de végétation) 

en milieux agricoles. Peu d'études ont été réalisées pour estimer la rugosité du sol à partir des 

données SAR. De plus, le potentiel des données Sentinel-1 pour l’estimation de la rugosité du 
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sol n’a jamais été évalué. L’arrivée de la constellation Sentinel-1 (SAR en bande C) récente, 

offrant des données libres et gratuites avec une couverture terrestre complète à des hautes 

résolutions spatiales et temporelles, justifie ce travail. 

Le travail de la présente thèse se structure en trois parties. La première partie consiste à 

évaluer la précision des modèles de rétrodiffusion radar les plus utilisés (Oh, Dubois, IEM, 

IEM_B, et AIEM) en utilisant une grande base de données SAR et des mesures 

expérimentales des paramètres du sol. Cette évaluation permet de trouver le modèle de 

rétrodiffusion le plus robuste qui simule le mieux le signal radar afin de l'utiliser par la suite 

dans les procédures d'inversion du signal radar pour estimer la rugosité du sol. Le deuxième 

axe de recherche de cette thèse consiste à proposer un modèle de rétrodiffusion radar semi-

empirique pour les polarisations HH, HV et VV. Ce nouveau modèle a été construit avec la 

même base de données utilisée précédemment (chapitre d’évaluation des modèles de 

rétrodiffusion radar). Ce nouveau modèle sera également utilisé dans la procédure d'inversion 

du signal radar pour estimer la rugosité du sol. Le dernier axe de cette thèse consiste à 

construire une méthode d’inversion du signal radar en utilisant la technique des réseaux de 

neurones. Ces réseaux de neurones ont été entraînés à l'aide d'une base de données 

synthétiques élaborée à partir des modèles de rétrodiffusion radar choisis (IEM-B et le 

nouveau modèle semi-empirique proposé dans cette thèse). Ensuite, la méthode d’inversion 

du signal radar a été appliquée en utilisant des données Sentinel-1. La base de données de 

validation a été collectée sur un site en Tunisie (Kairouan) et un autre France (Versailles). 

Cette thèse est composée de plusieurs chapitres. Le premier chapitre décrit l'importance des 

paramètres du sol et le potentiel des techniques de télédétection pour leur estimation. Le 

deuxième chapitre décrit la technique de télédétection radar et présente l'interaction des ondes 

électromagnétiques avec les sols agricoles nus, et aussi les paramètres de surface du sol 

(rugosité et l’humidité) ainsi que les différentes méthodes d'estimation de ces paramètres. 

Ensuite, les modèles de rétrodiffusion radar les plus populaires (semi-empiriques et 

physiques) ont été décrits et évalués dans le chapitre 3. Un nouveau modèle de rétrodiffusion 

radar semi-empirique est proposé dans le chapitre 4. Enfin au chapitre 5, les réseaux de 

neurones entraînés sur des données simulées à partir du modèle de rétrodiffusion radar 

IEM_B et du nouveau modèle semi-empirique proposé dans le chapitre 4 ont été utilisés pour 

estimer la rugosité du sol à partir d'images radar Sentinel-1. Les principaux résultats obtenus 

dans cette thèse ainsi que les travaux de recherche futurs sont présentés dans le chapitre 6. 
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Chapitre 2 

Dans le chapitre 2, une introduction à la télédétection radar est exposée. Des rappels sont 

présentés sur les propriétés des ondes électromagnétiques et leurs interactions avec la surface 

des zones agricoles. Les paramètres descriptifs du sol (humidité et rugosité) sont également 

présentés ainsi que la sensibilité du signal radar à l'humidité et à la rugosité du sol. Dans cette 

thèse, notre étude se concentre sur les sols nus en zones agricoles. De plus, les modèles de 

rétrodiffusion électromagnétiques, qui simulent le signal radar en fonction des paramètres 

géophysiques du sol, sont introduits. 

Chapitre 3 

Dans le chapitre 3, l’évaluation des modèles de rétrodiffusion SAR les plus populaires (Oh, 

Dubois, IEM, IEM_B et AIEM) en utilisant une grande base de données SAR et des mesures 

in situ est effectuée. La base de données utilisée a été acquise sur de nombreux sites agricoles 

en France, Italie, Allemagne, Belgique, Luxembourg, Canada et Tunisie. Ainsi, cette étude est 

d'une grande importance pour la communauté scientifique parce qu’elle aide à comprendre les 

performances des modèles de rétrodiffusion en utilisant une grande gamme de conditions de 

surface du sol, acquises sur plusieurs sites d'étude à travers le monde, et par de nombreux 

capteurs SAR (plusieurs incidences, polarisations et longueurs d’onde radar). Jamais 

auparavant tous ces modèles de rétrodiffusion radar n’ont été évalués ensemble avec une aussi 

importante base de données (humidité "mv" entre 2 et 47 vol.%, rugosité "Hrms" entre 0.2 cm 

et 9.6 cm, angle d'incidence entre 18 ° et 57°). De plus, cette étude est la première à évaluer 

les modèles de rétrodiffusion en utilisant ensemble les bandes L, C et X. 

 

 

Les résultats montrent que le modèle IEM modifié par Baghdadi (IEM_B), qui utilise un 

paramètre de calibration plutôt que la longueur de corrélation mesurée (fonction de 

corrélation gaussienne), fournit les simulations SAR les plus précises. En utilisant toutes les 

données ensemble (bandes L, C et X), le biais (différence entre simulations et mesures SAR) 

est inférieur à 1.0 dB et le RMSE sur l’estimation du signal radar est inférieur à 2.0 dB. Les 

performances du modèle IEM_B sont légèrement meilleures en bande X (RMSE = 1.8 dB) 

qu’en bandes L et C (RMSE entre 1.9 et 2.3 dB).  
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En utilisant les modèles IEM et AIEM avec la fonction de corrélation gaussienne, le RMSE 

sur l’estimation du signal radar est très élevé. En utilisant toutes les données (bandes L, C et 

X), le RMSE sur l’estimation du signal radar avec le modèle IEM est de 10.5 dB en 

polarisation HH et de 9.2 dB en polarisation VV. Avec le modèle AIEM, le RMSE est de 12.2 

dB en HH et de 10.8 dB en VV. Les mauvaises simulations du signal radar correspondent aux  

faibles valeurs de rugosité (écart type des hauteurs, Hrms), principalement pour des kHrms 

inférieurs à 3 (k est le nombre d’onde radar). L’utilisation de la fonction de corrélation 

exponentielle en entrée des modèles IEM et AIEM conduit à des meilleures simulations du 

coefficient de rétrodiffusion radar. Le RMSE sur l’estimation du signal radar est d’environ 5.6 

dB avec IEM et 4.4 dB avec AIEM en polarisation HH et d’environ 6.5 dB avec IEM et 3.8 

dB avec AIEM en polarisation VV. Les résultats montrent que le modèle AIEM simule mieux 

la rétrodiffusion radar que le modèle IEM (version originale) seulement avec la fonction de 

corrélation exponentielle. De plus,  les résultats sont légèrement meilleurs dans la bande X 

que dans les bandes C et L. En revanche, le modèle IEM simule mieux la rétrodiffusion radar 

dans la bande L que dans les bandes C et X. En polarisation HV, les résultats du modèle IEM 

montrent des erreurs très élevées avec un RMSE sur l’estimation du signal radar supérieur à 

30.0 dB en utilisant à la fois la fonction de corrélation gaussienne et la fonction de corrélation 

exponentielle en entrée du modèle. 

En utilisant les modèles de rétrodiffusion radar semi-empiriques, les résultats montrent que 

toutes les versions du modèle Oh fournissent des bonnes estimations du signal radar (RMSE 

inférieur à 3.0 dB) avec une performance légèrement meilleure de la version Oh 1992 aux 

polarisations HH et VV (biais inférieur à 1.0 dB et RMSE inférieur à 2.6 dB). De plus, nous 

observons que le modèle Oh fournit des meilleurs résultats que le modèle de Dubois qui 

simule la rétrodiffusion en HH avec un RMSE de 4.0 dB, et en  VV avec un RMSE de 2.9 dB. 

En polarisation HV, la version Oh 2002 simule correctement la rétrodiffusion radar avec une 

différence entre les données réelles et simulées d'environ +0.7 dB et RMSE de 2.9 dB. La 

performance de la version Oh 1992 avec les polarisations HH et VV est meilleure dans les 

bandes C et X (biais compris entre -1.2 et +0.4 dB avec un RMSE inférieur à 2.5 dB) que 

dans la bande L (biais supérieur à +2.0 avec un RMSE inférieur à 3.0 dB). 

En conclusion, le modèle IEM_B est le modèle qui fournit les meilleures simulations du 

signal radar. Ainsi, il est préférable de l'utiliser dans la procédure d'inversion du coefficient de 

rétrodiffusion SAR afin d'estimer les paramètres d'humidité et de rugosité du sol. 
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Chapitre 4 

Dans le chapitre 4, un modèle empirique de rétrodiffusion radar basé sur le modèle de Dubois 

a été proposé. Les différents termes des équations de Dubois qui décrivent la dépendance 

entre le signal SAR et les paramètres du capteur et du sol ont été analysés et certains modifiés 

pour améliorer la modélisation du signal radar. Au final, un nouveau modèle semi-empirique 

de rétrodiffusion radar pour des sols nus a été développé pour les polarisations HH, VV et 

HV. 

Les expérimentations montrent que le nouveau modèle fournit des résultats améliorés par 

rapport au modèle Dubois (cas de HH et VV). Les biais et RMSE ont diminué pour les 

polarisations HH et VV. De plus, les fortes sur-estimations et sous-estimations observées avec 

le modèle  Dubois pour certaines gammes d'humidité du sol, de rugosité et d'angle d'incidence 

radar ont clairement diminué avec le nouveau modèle. L'analyse des performances du 

nouveau modèle pour chaque longueur d'onde radar séparément (L, C et X) montre que dans 

la bande L, les performances du nouveau modèle sont similaires à celles du modèle Dubois. 

Le nouveau modèle semi-empririque montre une amélioration significative des simulations en 

bandes C et X (RMSE d'environ 1.9 dB  avec le nouveau modèle dans les bandes C et X, de 

2.6 dB dans la bande C et 4.1 dB dans la bande X avec le modèle de Dubois).                                                                                               

La même formulation utilisée en HH et VV a été adoptée pour modéliser le signal radar en 

polarisation HV. La comparaison entre les simulations du nouveau modèle en polarisation HV 

et les données réelles (données SAR) montrent une valeur de RMSE de 2.1 dB (1.6 dB dans la 

bande L, 2.2 dB dans la bande C et 1.9 dB dans la bande X). Le biais est de -1.3 dB dans la 

bande L, de 0.2 dB dans la bande C et de -1.3 dB dans la bande X. Enfin, le nouveau modèle 

empirique proposé dans cette partie de la thèse a été testé dans le chapitre 5 pour l’estimation 

de la rugosité du sol à partir des nouvelles données SAR Sentinel-1A/B. 

Chapitre 5 

Le but du chapitre 5 est de développer une approche pour estimer la rugosité de la surface du 

sol (écart type des hauteurs, Hrms) à partir des données SAR Sentinel-1 en bande C dans le 

cas des sols agricoles nus. Cette approche d'inversion est basée sur la technique  des réseaux 

de neurones multi-couches. L’entrainement des réseaux de neurones a été réalisé à l'aide de 

données synthétiques simulées par le modèle d'équation intégrale calibré par Baghdadi 

(IEM_B) et le nouveau modèle semi empirique (chapitre 4). L'approche d'inversion a ensuite 
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été validée en utilisant des données Sentinel-1 et des mesures in-situ (collectées en France et 

en Tunisie). 

Deux configurations d'inversion ont été proposées. La première configuration d’inversion est 

basée sur l'estimation de la rugosité du sol à très haute résolution spatiale "THSR" (échelle de 

la parcelle ou à plus petite échelle). Deux réseaux ont été appliqués l'un après l'autre, le 

premier pour estimer l'humidité du sol (mv) et le second pour estimer la rugosité de la surface 

du sol (Hrms) en utilisant en entrée l’humidité du sol estimée par le premier réseau. Deux 

tests ont été effectués, le premier est utilisé en entrée pour le second réseau de neurones (celui 

pour estimer Hrms) le mv estimé à très haute résolution spatiale "THSR" (l'échelle de la 

parcelle). Le second test utilise comme entrée dans le second réseau l'humidité moyenne du 

sol estimée par le premier réseau (celui pour estimer mv) à l'échelle du site d'étude (une zone 

de quelques km²) en utilisant le coefficient de rétrodiffusion moyenne de tous les pixels 

agricoles nus du site d’étude. Trois configurations SAR ont été testées: VV seul, HV seul, VV 

et VH ensemble. Afin d'améliorer les estimations des paramètres du sol, une connaissance a 

priori sur l'humidité du sol mv est introduite (sols secs à légèrement humides ou très humides). 

L'information a priori sur l’humidité du sol (mv) est fournie par un expert qui utilise les 

données météorologiques (précipitations, température). En effet, après une forte pluie le sol 

est supposé être humide. En l’absence de  pluie depuis quelques jours, le sol est supposé être 

sec ou légèrement humide. L’utilisation d’une  connaissance a priori sur l'humidité du sol (sec 

à légèrement humide ou très humide) améliore les estimations de l'humidité du sol. 

La deuxième configuration d'inversion concerne l'estimation en même temps de la rugosité du 

sol (Hrms) et de l'humidité du sol (mv). Les deux polarisations VV et VH sont utilisées 

ensemble en entrée du réseau. 

En utilisant la première configuration d'inversion du signal radar (estimation de la rugosité du 

sol à très haute résolution spatiale "THSR" utilisant VV seul, VH seul ou VV et VH 

ensemble) et en utilisant les deux modèles de rétrodiffusion radar (IEM_B et Baghdadi), les 

meilleurs résultats sont obtenus en utilisant la polarisation VV seule pour le modèle IEM_B et 

les polarisations VV et VH ensemble pour le modèle semi-empirique de Baghdadi. L'humidité 

du sol pourra être estimée avec un RMSE de l’ordre de 6 vol.% quand une information a 

priori sur l’humidité est utilisée dans les réseaux de neurones (construits à partir du modèle 

IEM_B ou du nouveau modèle semi-empirique). Le deuxième réseau de neurones utilise cette 

estimation de mv pour estimer la rugosité du sol (Hrms) à l'échelle de la parcelle. Les résultats 
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obtenus montrent des estimations de Hrms avec un RMSE de 0.94 cm en utilisant le modèle 

IEM_B (polarisation VV seule) et 0.78 cm en utilisant le modèle semi-empirique Baghdadi 

(polarisations VV et VH ensemble). Cette précision sur Hrms obtenue en utilisant le réseau de 

neurones construit avec des informations a priori sur mv montre que l'utilisation des 

estimations de mv avec une précision d'environ 6 vol.% n'est pas suffisante pour estimer avec 

une bonne précision la rugosité du sol avec des données SAR en  bande C.  

Les résultats obtenus à partir du jeu de données Sentinel-1 montrent que la précision sur les 

estimations de la rugosité Hrms en utilisant les humidités estimées à l'échelle du site d'étude 

est meilleure qu'en utilisant les humidités estimées à l'échelle de la parcelle. Le modèle 

IEM_B estime la rugosité de surface Hrms avec un RMSE de 0.81 cm quand l’humidité 

utilisée est estimée à l'échelle du site d'étude et en utilisant la polarisation VV seul (RMSE = 

0.98 cm en utilisant mv estimé à l'échelle de la parcelle). En utilisant le modèle semi-

empirique Baghdadi, le RMSE sur Hrms est de 1.03 cm quand l’humidité utilisée est estimée 

à l'échelle du site d'étude et en utilisant les polarisations VV et VH confondues (RMSE = 1.05 

cm en utilisant mv estimé à l'échelle de parcelle). 

Pour la seconde configuration d'inversion (polarisations VV et VH utilisées ensemble en 

entrée du réseau), l'utilisation d'une base de données simulées à partir du modèle IEM_B ou 

du nouveau modèle semi-empirique Baghdadi montre des résultats proches des résultats 

obtenus avec la première configuration d'inversion. En utilisant pour la validation de cette 

configuration d’inversion la base de données réelles de Sentinel-1, l'humidité du sol mv pourra 

être estimée avec un RMSE de l’ordre 6.0 vol.% et de 6.6 vol.% en utilisant respectivement 

les modèles IEM_B et Baghdadi avec une information a priori sur mv. Le RMSE sur 

l’estimation de Hrms en utilisant le modèle IEM_B dans l’entrainement du réseau de neurones 

est de 0.84 cm sans information a priori sur mv et 0.75 cm avec une information a priori sur 

mv. En utilisant le modèle Baghdadi, le RMSE sur Hrms est d'environ 1.01 cm sans 

information a priori sur mv et de 0.97 cm avec une information a priori sur mv.  

Cette première étude sur le potentiel des données Sentinel-1 (incidence de l’ordre de 40°) 

pour l'estimation de la rugosité du sol montre que le développement d'une procédure 

d'inversion automatique et généralisable du signal radar en bande C ne permet pas une 

estimation pertinente de la rugosité du sol. Les estimations de la rugosité du sol obtenues dans 

cette étude ne peuvent pas satisfaire les exigences des utilisateurs de la rugosité du sol (en 
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particulier pour les modélisateurs) car il faut au moins trois classes de rugosité: lisse (semis), 

moyen (petit labour) et rugueux (gros labour). 

Seules les méthodes basées sur l'utilisation de relations expérimentales, souvent difficiles à 

appliquer à des sites autres que ceux pour lesquels elles ont été développées et qui ne sont 

généralement valables que pour des conditions pédologiques spécifiques, permettent de 

cartographier trois classes de rugosité. En effet, différentes études expérimentales ont révélé 

que la sensibilité du signal radar à la rugosité du sol (c'est-à-dire la pente des droites de 

régression) peut être très variable d'un site à l'autre. En outre, les relations expérimentales 

entre le signal radar et Hrms sont établies pour un angle d'incidence donné et une gamme 

d'humidité du sol. La composition du sol pourrait également être différente d'un site à l'autre. 

Toutes ces raisons expliquent pourquoi les relations expérimentales ne sont pas 

généralisables. 

Chapitre 6 

Les travaux de cette thèse ont porté sur plusieurs secteurs de recherche (évaluation, 

modélisation et estimation des paramètres du sol). Cette thèse a montré le potentiel des 

images radar du capteur radar Sentinel-1 pour estimer les paramètres de la surface du sol. Les 

résultats obtenus pourraient servir de guide pour soutenir la recherche dans plusieurs 

domaines. 

Ces résultats permettent de conclure que les données SAR des capteurs Sentinel-1 (1A et 1B) 

en bande C avec un angle d'incidence d'environ 35 ° ne sont pas appropriées pour récupérer la 

rugosité de surface du sol. Il est donc essentiel de développer davantage des méthodes multi-

capteurs combinant des données radar acquises à partir de deux longueurs d'onde radar : 

bandes L et C, ou bandes C et X. En effet, les trois fréquences L, C et X ont des capacités 

complémentaires pour estimer l'humidité du sol et la rugosité de sa surface. Comme le signal 

radar dans la bande X est plus sensible à l'humidité du sol que le signal radar dans la bande C 

(estimations d'humidité du sol dans la bande X deux fois supérieure à celle obtenue en bande 

C), il pourrait être pertinent de combiner les données SAR dans les bandes C et X pour 

estimer les paramètres du sol (c.-à-d. l'humidité du sol et la rugosité de la surface). Les 

données de la bande X seront utilisées pour estimer l'humidité du sol et les données de la 

bande C seront utilisées pour estimer la rugosité de la surface. L'utilisation des grandes 

longueurs d'onde radar (bande L par exemple) peut également être pertinente en raison du fort 

potentiel des grandes longueurs d'onde pour l'estimation de la rugosité du sol. Dans ce 
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contexte, différentes missions spatiales avec des systèmes SAR en bande L sont en 

préparation, comme NISAR (mission de la NASA et de l'ISRO). L'Agence spatiale 

européenne discute également de la possibilité d'ajouter une nouvelle bande SAR aux 

constellations des Sentinelles. L'arrivée de ces missions offrira une opportunité prometteuse 

pour développer des études basées sur la combinaison de données acquises par plusieurs 

capteurs, en particulier avec les missions Sentinel-1 et Sentinel-2. Les algorithmes multi-

capteurs, et en particulier multi-fréquences seront essentiels pour atteindre les algorithmes 

opérationnels capables de séparer les effets de différents paramètres de surface sur les signaux 

radar. C'est notamment le cas de la surface de végétation couverte, pour laquelle la 

récupération de la rugosité est encore très compliquée avec une configuration de fréquence. 

L'objectif final est d'atteindre dans les prochaines années l'assimilation des cartes de rugosité, 

comme pour l'humidité du sol dans différents modèles de processus de surface, en tant que 

modèles d'écoulement et d'érosion. 

 


