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Introduction Introduction du modèle de boules aléatoires

Cette thèse a pour objectif d'étudier le comportement asymptotique de différents modèles de boules aléatoires, dont l'article fondateur est l'article de Kaj et al., [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF]. Dans l'espace euclidien R d , les boules sont engendrées par un centre x ∈ R d et un rayon r > 0. La boule de centre x et de rayon r est donc l'ensemble B(x, r) = y ∈ R d : y -x < r où • désigne la norme euclidienne de R d . Dans la suite, il est possible de remplacer les boules B(x, r) par les ensembles de la forme x + rC, appelés grains, où C est un sous ensemble de R d de volume 1 (ou juste de volume fini).

Le caractère aléatoire de ces boules vient du fait que les centres x et les rayons r sont tirés aléatoirement, selon différents processus ponctuels Φ sur R d ×R + (ou sur R d ×R + ×R si on ajoute un poids aux boules) que l'on décrira plus précisément dans la suite. Il y a deux façons analogues de considérer Φ :

-soit comme un processus ponctuel comme décrit ci-dessus, c'est-à-dire une collection localement finie de points (X i , R i ), -soit comme une mesure aléatoire, c'est-à-dire (X,R)∈Φ δ (X,R) , ce qui sera plus commode dans notre étude.

On gardera la notation Φ pour les deux points de vue.

Étant donnée une collection de boules aléatoires, différentes questions peuvent alors se poser. Par exemple, on peut commencer par regarder le nombre de boules qui recouvrent un point fixe y ∈ R d , donné par la quantité :

M (y) = (X,R)∈Φ 1 B(X,R) (y). (1) 
On peut aller plus loin en regardant la somme des volumes des intersections de chaque boule avec un ensemble borné fixe A ⊂ R d :

M (A) = (X,R)∈Φ |B(X, R) ∩ A| . ( 2 
)
Les quantités (1) et [START_REF] Bercu | Modélisation stochastique et simulation-Cours et applications[END_REF] sont données sous le point de vue processus ponctuel, on va maintenant les donner sous forme mesure aléatoire, forme que l'on utilisera exclusivement dans la suite de ce travail. L'expression (1) peut alors s'écrire :

M (y) = R d ×R +
1 B(x,r) (y)Φ(dx, dr) et l'expression [START_REF] Bercu | Modélisation stochastique et simulation-Cours et applications[END_REF] devient :

M (A) = R d ×R + |B(x, r) ∩ A| Φ(dx, dr).
Cette dernière expression se généralise naturellement en remplaçant la mesure | • ∩ A| par une mesure µ sur R d , et on étudie alors :

M (µ) = R d ×R +
µ(B(x, r))Φ(dx, dr).

(

) 3 
Lorsque l'on ajoute un poids au modèle, c'est-à-dire que l'on marque le couple centrerayon par une variable m donnant le poids de la boule, l'analogue de (1) et (2) est de sommer les poids des boules, et l'expression [START_REF] Biermé | Champs aléatoires: autosimilarité, anisotropie et étude directionnelle[END_REF] est modifiée comme suit :

M (µ) = R d ×R + ×R

mµ(B(x, r))Φ(dx, dr, dm). (4)

Plus généralement, Breton et Dombry ont étudié dans [START_REF] Breton | Functional macroscopic behavior of weighted random ball model[END_REF] la quantité

M (µ) = R d ×R + ×R
mµ [τ x,r h] Φ(dx, dr, dm).

avec τ x,r h(y) = h((y -x)/r) et µ [f ] = R d f (y)µ(dy), ce qui permet de généraliser le modèle précédent (que l'on retrouve en faisant h = 1 B(0,1) ). En effet, dans ce modèle, un point x a une influence sur tous les points de l'espace, alors que dans le modèle (4), le point x influe uniquement sur les points voisins.

Ces modèles de boules aléatoires peuvent trouver différentes applications. Si on se place en dimension 1, il est plus pertinent de voir les boules aléatoires comme des demiintervalles aléatoires, c'est-à-dire que le centre x ∈ R de la boule correspond au début de l'intervalle et le rayon r > 0 correspond à la longueur de cet intervalle (la «boule» est donc l'intervalle [x, x+r]). C'est un modèle de file d'attente M/G/+∞, qui est notamment étudié dans [START_REF] Gaigalas | Convergence of scaled renewal processes and a packet arrival model[END_REF][START_REF] Klüppelberg | Explosive Poisson shot noise processes with applications to risk reserves[END_REF][START_REF] Konstantopoulos | Macroscopic models for long-range dependent network traffic[END_REF][START_REF] Mikosch | Is network traffic approximated by stable Lévy motion of fractional Brownian motion ?[END_REF][START_REF] Resnick | Self-similar communication models and very heavy tails[END_REF][START_REF] Resnick | Activity periods of an infinite server queue and performance of certain heavy tailed fluid queues, t. 33[END_REF]. D'un point de vue modélisation, on peut alors interpréter ces demi-intervalles comme des connexions à un réseau (internet, électrique ...). Le début de l'intervalle donné par x ∈ R représente l'instant de connexion d'un foyer au réseau et la longueur r représente la durée de la connexion de ce foyer au réseau, alors que le poids m représente l'intensité de la connexion (bande passante utilisée par exemple). L'ensemble de ces intervalles aléatoires va donc modéliser l'ensemble des connexions des foyers à un réseau. La quantité donnée en (1) donne alors le nombre de connexions simultanées à un instant y ∈ R et la quantité (2) le flux de connexions pendant une fenêtre de temps donnée. Les articles [START_REF] Kaj | Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach[END_REF][START_REF] Kurtz | Limit theorems for workload input models[END_REF] sont particulièrement intéressants car ils utilisent la notation intégrale aléatoire plutôt que processus ponctuel, comme on le fait dans cette thèse.

Pour la dimension 2, on peut interpréter l'ensemble des disques aléatoires comme un réseau de télécommunications. En effet, le centre x ∈ R 2 peut se voir comme la position à laquelle est implantée une antenne relais de téléphonie, le rayon r > 0 étant la portée de cette antenne, et m la puissance du signal correspondant (voir [START_REF] Breton | Functional macroscopic behavior of weighted random ball model[END_REF][START_REF] Breton | Rescaled weighted random balls models and stable self-similar random fields[END_REF]). On pourrait donc étudier la couverture d'une zone donnée par ce modèle. Aussi, on peut trouver des applications médicales comme l'étude des images radiographiques. La superposition de boules va donner différents niveaux de gris, voir [START_REF] Biermé | Champs aléatoires: autosimilarité, anisotropie et étude directionnelle[END_REF] et [START_REF] Biermé | Poisson random balls: self similarity and X-ray images[END_REF].

En dimension 3, les modèles de boules ou grains aléatoires sont utilisés pour modéliser des milieux ou matériaux hétérogènes ou poreux comme cela est présenté dans [START_REF] Biermé | Poisson random balls: self similarity and X-ray images[END_REF][START_REF] Knackstedt | Structure-property correlations in model composite materials[END_REF][START_REF] Torquato | Random heterogeneous media: microstructure and improved bounds on effective properties[END_REF]. Cette modélisation permet aussi de simuler la présence d'agrégats présents au sein de certains nanocomposites lorsque les boules aléatoires sont engendrées par un processus de Cox, ce que l'on fait dans le Chapitre 3 (voir [START_REF] Jeulin | Caractérisation et modélisation probabiliste des milieux hétérogènes[END_REF][START_REF] Jeulin | Multi Scale Random Models of Complex Microstructures[END_REF][START_REF] Jeulin | Multi-scale random sets: from morphology to effective properties and to fracture statistics[END_REF]).

Notre travail consiste à étudier le comportement de la quantité M (µ) donnée en (3) ou [START_REF] Biermé | Poisson random balls: self similarity and X-ray images[END_REF], pour différents processus Φ, lorsque l'on fait un zoom ou un dézoom dans le modèle, ou plus précisément lorsqu'on applique un changement d'échelle. Mathématiquement, on effectue un changement d'échelle de la façon suivante : on multiplie le rayon des boules par un paramètre ρ > 0, et on compense cette modification de la taille des boules en introduisant un paramètre λ(ρ) qui va gouverner l'intensité du nombre de boules. Par exemple, dans le cas du dézoom, le paramètre ρ va tendre vers 0 donc le volume des boules va tendre vers 0. Pour compenser cet effet et voir quelque chose de significatif à la limite, on multiplie l'intensité du nombre de boules par λ(ρ) qui va tendre vers l'infini. Ce dernier paramètre dépend bien sûr de ρ, car la vitesse à laquelle il tend vers l'infini dépend de la vitesse à laquelle ρ tend vers 0. De manière analogue, faire un zoom correspond à faire tendre ρ vers l'infini et λ(ρ) vers 0.

Par l'introduction de ce paramètre ρ, la loi du processus ponctuel Φ change et c'est donc un processus noté Φ ρ qui va engendrer les boules aléatoires. La quantité d'intérêt est alors M ρ (µ) donnée par

M ρ (µ) = R d ×R + µ(B(x, r))Φ ρ (dx, dr) (5) 
ou par M ρ (µ) = R d ×R + ×R mµ(B(x, r))Φ ρ (dx, dr, dm) [START_REF] Biermé | Holder regularity for operator scaling stable random fields[END_REF] dans le cas d'un modèle à poids.

L'objectif global de cette thèse est d'étudier la convergence de cet objet par rapport à ρ en choisissant différents processus ponctuels Φ ρ pour engendrer nos boules de différentes manières. Nous travaillerons sur trois types de processus ponctuels : les processus de Poisson, les processus déterminantaux et les processus shot-noise, qui sont un cas particulier de processus de Cox.

Le manuscrit est structuré de la façon suivante : dans la suite de cette introduction, nous donnons quelques définitions et résultats concernant les mesures aléatoires de Poisson, les processus de Cox, les processus déterminantaux et les mesures stables, avant de présenter la littérature existante sur les modèles de boules aléatoires poissoniennes. On termine l'introduction en présentant les résultats obtenus au cours de cette thèse. Le Chapitre 1 est le premier article publié, portant sur l'étude macroscopique des boules aléatoires déterminantales.

Outils

Le Chapitre 2 est le deuxième article, donnant une généralisation du calcul de la transformée de Laplace d'une mesure aléatoire déterminantale pour des fonctions tests qui ne sont pas nécessairement à support compact. Ce résultat permet de simplifier les preuves des théorèmes limites se trouvant dans le Chapitre 1, puisqu'il n'est plus nécessaire de tronquer les fonctions, et il permet aussi d'ajouter un poids au modèle initial et de ne plus se restreindre aux mesures à support compact. Enfin, le Chapitre 3 est le dernier article de la thèse, qui fait une étude des modèles de boules aléatoires engendrées par un cas particulier de processus de Cox, les processus shot-noise.

Outils

Dans cette première partie, on donne quelques rappels concernant les mesures aléatoires de Poisson, les processus de Cox, les processus déterminantaux ainsi que les mesures aléatoires stables, qui apparaîtront tout au long de cette thèse.

On note (Ω, F, P) l'espace de probabilité et L 0 (Ω) l'ensemble des variables aléatoires définies sur cet espace.

Mesures aléatoires de Poisson

Soit (E, E) un espace mesurable et E * l'ensemble des mesures atomiques σ-finies sur E de la forme i∈I δ x i , où I est un ensemble dénombrable et les x i sont des points de E.

On munit E * de la tribu engendrée E * := σ(π A , A ∈ E), où π A (m) = m(A) pour m ∈ E * et A ∈ E. Les résultats de cette partie peuvent se retrouver dans [START_REF] Kingman | Poisson processes, t. 3, Oxford Studies in Probability[END_REF]. Définition 0.1.1 Soit µ une mesure positive, σ-finie, sur (E, E). Une mesure aléatoire de Poisson sur (E, E) d'intensité µ est une variable aléatoire M à valeurs dans (E * , E * ), telle que si (A k , k ≥ 1) est une suite de parties disjointes de E telles que µ(A k ) < +∞ pour tout k ≥ 1, on a :

1. les variables aléatoires M (A k ), k ≥ 1, sont indépendantes, et 2. pour tout k ≥ 1, M (A k ) ∼ P(µ(A k )).

La première question qui se pose est l'existence et l'unicité en loi d'une telle mesure M si l'on fixe une mesure µ. La proposition suivante répond à ces deux questions. 1. Transformée de Laplace : Pour toute fonction mesurable f : E -→ R + , on a

E exp - E f (x)M (dx)
= exp E (exp(-f (x)) -1) µ(dx) .

2. Fonction caractéristique : Pour toute fonction f : E -→ R telle que f ∈ L 1 (E, E, µ), on a

E exp i E f (x)M (dx) = exp E (exp(if (x)) -1) µ(dx) .
On obtient en particulier que

E E f (x)M (dx) = E f (x)µ(dx) pour f ∈ L 1 (E, E, µ).

Processus de Cox

Dans cette partie, on donne la définition d'un processus de Cox ainsi que sa fonction caractéristique. L'ensemble des résultats et des preuves se trouvent à l'Appendice 3.4 du Chapitre 3. Soit (E, E) un espace mesurable. Pour une mesure aléatoire C sur (E, E), on note Υ C sa 0.1. Outils fonction caractéristique définie par [START_REF] Biermé | Multi-operator Scaling Random Fields[END_REF] pour h : E -→ C telle que [START_REF] Biermé | Multi-operator Scaling Random Fields[END_REF] existe bien, voir [START_REF] Daley | Introduction to point processes[END_REF].

Υ C (h) = E exp i E h(x)C(dx)
On spécifie ici la quantité [START_REF] Biermé | Multi-operator Scaling Random Fields[END_REF] pour le cas de processus de Cox. On a vu dans la section précédente la notion de processus de Poisson, processus qui sont caractérisés par une intensité déterministe. Une extension naturelle est de regarder les processus que l'on obtient si l'on considère des processus de Poisson mais cette fois avec une intensité aléatoire. D'un point de vue modélisation, travailler avec une intensité aléatoire plutôt qu'avec une intensité déterministe permet de considérer des contraintes aléatoires pour la répartition des points dans l'espace. Ces processus sont appelés processus de Cox. On en donne une définition précise ci-dessous.

Définition 0.1.4 C est un processus de Cox dirigé par (l'intensité aléatoire) Λ si conditionnellement à Λ, C est un processus ponctuel de Poisson d'intensité Λ.

On garde la même notation C à la fois pour le processus ponctuel, au sens de la collection de points X ∈ C et pour la mesure aléatoire associée X∈C δ X .

On peut alors donner un résultat partiel sur la fonction caractéristique d'un processus de Cox.

Proposition 0.1.5 Soit C un processus de Cox sur E dirigé par Λ. Pour toute fontion h telle que la quantité ci-dessous est bien définie on a :

Υ C (h) = E exp - E
1 -e ih(x) Λ(dx) .

Proposition 0.1.6 Soit C un processus de Cox sur E dirigé par Λ. On a alors :

E exp i E h(x)C(dx) - E h(x)Λ(dx) = E exp E ψ(h(x))Λ(dx) où ψ(u) = e iu -1 -iu.
Ces expressions peuvent être calculées si l'on connait la transformée de Laplace de l'intensité du processus de Cox. Dans ce travail de thèse, on travaille avec un cas particulier de processus de Cox, les processus shot-noise, pour lesquels une expression explicite de la transformée de Laplace est disponible.

Processus déterminantaux

Dans cette partie, on rappelle la définition des processus déterminantaux. L'ensemble des résultats utiles dans notre travail sur ces processus sont situés dans la Section 1.4 du Chapitre 1.

On commence par donner la définition générale des fonctions de corrélation d'un processus ponctuel, qui ne concernent pas uniquement les processus déterminantaux. 

E k i=1 ξ(D i ) = k i=1 D i ρ k (x 1 , . . . , x k ) η(dx 1 ) . . . η(dx k ),
alors les ρ k sont appelées les fonctions de corrélation d'ordre k par rapport à η. De plus, on demande que ρ k (x 1 , . . . , x k ) = 0 dès lors que x i = x j pour i = j. Grosso modo, ρ k (x 1 , . . . , x k ) peut être vue comme la probabilité (infinitésimale) pour ξ d'avoir des particules en x 1 , . . . , x k . Pour les processus déterminantaux (DPP), les fonctions de corrélation sont données par un déterminant calculé à partir d'une fonction mesurable K : E 2 → R, appelée le noyau du processus, et qui le caractérise. Définition 0.1.8 Un processus ponctuel ξ sur E est dit déterminantal (on note DPP) de noyau K s'il est simple et si ses fonctions de corrélation ρ k s'écrivent pour tout k

≥ 1 et x 1 , . . . , x k ∈ E : ρ k (x 1 , . . . , x k ) = det K(x i , x j ) 1≤i,j≤k =: det[K](x 1 , . . . , x k ).
On remarque qu'un processus déterminantal induit de la répulsion entre ses points, et on peut le voir grâce à sa fonction de corrélation du second ordre. En effet, si K est continu et si on considère x 1 , x 2 ∈ E, plus ils seront proches l'un de l'autre, plus le déterminant de la matrice K(x i , x j ) 1≤i,j≤2 sera proche de 0. Ainsi, ρ 2 (x 1 , x 2 ) ≈ 0 lorsque x 1 ≈ x 2 . Ceci montre que si le processus a une particule en x 1 , la probabilité qu'il en ait une autre dans un proche voisinage de x 1 est très petite. 

Lois stables -Mesures stables

Dans cette section, entièrement fondée sur le livre de Samorodnitsky et Taqqu [START_REF] Samorodnitsky | Stable Non-Gaussian Random Processes[END_REF], on rappelle tout d'abord la définition de variable aléatoire stable (ou plutôt un choix de définition, il y en a au moins 4 équivalentes). Ensuite, nous introduisons de façon analogue aux mesures de Poisson la notion de mesure aléatoire stable, et nous en donnons les premières propriétés.

Variables aléatoires stables

On commence donc par donner deux définitions équivalentes pour les variables aléatoires stables. Définition 0.1.9 (Samorodnitsky, Taqqu [START_REF] Samorodnitsky | Stable Non-Gaussian Random Processes[END_REF]). Une variable aléatoire X est dite stable (ou a une distribution stable) si pour tout n ≥ 2, il existe

C n > 0 et D n ∈ R tels que X 1 + • • • + X n d = C n X + D n , (8) 
où X 1 , . . . , X n sont des copies indépendantes de X.

Nécessairement, si une variable X vérifie la relation [START_REF] Billingsley | Convergence of probability measures[END_REF], alors

C n = n 1/α avec 0 < α ≤ 2.
Voici une définition équivalente passant par sa fonction caractéristique :

Définition 0.1.10 (Samorodnitsky, Taqqu [START_REF] Samorodnitsky | Stable Non-Gaussian Random Processes[END_REF]). Une variable aléatoire X est dite stable (ou a une distribution stable) s'il existe des paramètres 0 < α ≤ 2, σ ≥ 0, -1 ≤ β ≤ 1, et µ ∈ R tels que la fonction caractéristique de X est de la forme :

E exp(iθX) =            exp -σ α |θ| α 1 -iβ (θ) tan πα 2 + iµθ si α = 1, exp -σ|θ| 1 + iβ 2 π (θ) ln |θ| + iµθ si α = 1, avec (θ) =          1 si θ > 0, 0 si θ = 0, -1 si θ < 0.
On note alors X ∼ S α (σ, β, µ).

Pour α = 2, on retrouve la fonction caractéristique des variables gaussiennes. Par convention, lorsque α = 2, on posera β = 0.

Proposition 0.1.11 (Samorodnitsky,Taqqu [55]). Soit X ∼ S α (σ, β, µ) avec 0 < α < 2.

On a alors :

E [|X| p ] < +∞ si 0 < p < α, E [|X| p ] = +∞ si p ≥ α.
Si α ≤ 1, il n'y a donc même pas d'espérance. Pour ne pas surcharger de résultats et rester dans le cadre de la thèse, dans toute la suite, on se place dans le cas où 1 < α ≤ 2.

Mesures aléatoires stables

Commençons par introduire la notation suivante, souvent utilisée dans le cadre des lois et mesures stables :

a <p> = (a)|a| p =    a p si a ≥ 0, -|a| p si a < 0.
Donnons maintenant la définition des mesures α-stables M afin de pouvoir ensuite donner un sens à l'intégrale E f (x)M (dx). On conserve les notations de [START_REF] Samorodnitsky | Stable Non-Gaussian Random Processes[END_REF]. Soient (E, E, m) un espace mesuré, β : E → [-1, 1] une fonction mesurable et notons E 0 = {A ∈ E : m(A) < +∞} le sous-ensemble de E contenant les ensembles de mesure m finie.

Définition 0.1.12 (Samorodnitsky, Taqqu [START_REF] Samorodnitsky | Stable Non-Gaussian Random Processes[END_REF]). Soit M : E 0 -→ L 0 (Ω) une fonction telle que :

1. si A 1 , . . . , A k ∈ E 0 sont disjoints, alors les variables aléatoires M (A 1 ), . . . , M (A k ) sont indépendantes, 2. si A 1 , A 2 , . . . ∈ E 0 sont disjoints et vérifient ∞ j=1 A j ∈ E 0 , alors M   ∞ j=1 A j   = ∞ j=1 M (A j ) p.s, 3. pour tout A ∈ E 0 tel que m(A) = 0, M (A) ∼ S α m(A) 1/α , 1 m(A) A β(x)m(dx), 0 .
Alors on dit que M est une mesure aléatoire α-stable sur (E, E) de mesure de contrôle m et de fonction (ou coefficient, paramètre) d'asymétrie β.

Outils

On peut maintenant définir les intégrales par rapport à une mesure aléatoire α-stable (on rappelle qu'on travaille uniquement avec 1 < α ≤ 2) c'est-à-dire donner un sens à :

I(f ) = E f (x)M (dx), (9) 
pour les fonctions f :

E → R telles que E |f (x)| α m(dx) < +∞.
Comme pour le cas des mesures aléatoires de Poisson, on fait déjà les calculs pour les fonctions étagées puis on étend en passant à la limite. On a alors la proposition suivante :

Proposition 0.1.13 (Samorodnitsky, Taqqu [START_REF] Samorodnitsky | Stable Non-Gaussian Random Processes[END_REF]). Si M est une mesure α-stable (1 < α ≤ 2) de mesure de contrôle m et de fonction d'asymétrie β, alors pour f ∈ L α (E, E, m) on a :

I(f ) ∼ S α (σ f , β f , 0) avec σ f = E |f (x)| α m(dx) 1/α et β f = E f (x) <α> β(x)m(dx) E |f (x)| α m(dx)
.

La fonction caractéristique de I(f ) est donc :

E exp(iθI(f )) = exp -|θ| α E |f (x)| α 1 -iβ(x) (θf (x)) tan πα 2 m(dx) .
Spécialisons la Proposition 0.1.13 au cas particulier α = 2, qui correspond aux mesures aléatoires gaussiennes. Si M est une mesure aléatoire gaussienne (centrée) de mesure de contrôle m, alors la fonction caractéristique de

I(f ) = E f (x)M (dx) est E exp(iθI(f )) = exp -|θ| 2 E |f (x)| 2 m(dx) .
Il faut donc retenir que pour les mesures aléatoires α-stables, on a besoin de connaître la mesure de contrôle et la fonction d'asymétrie, alors que pour les mesures aléatoires gaussiennes, il suffit de connaître la mesure de contrôle.

Exemple 0.1.14 Citons un cas particulier d'intégrale contre une mesure aléatoire αstable, pour 0 < α ≤ 2 : dans [START_REF] Biermé | Holder regularity for operator scaling stable random fields[END_REF][START_REF] Biermé | Multi-operator Scaling Random Fields[END_REF], les auteurs étudient des champs aléatoires appelés «harmonizable operator scaling stable random fields». Un tel champ aléatoire (X(x)) x∈R d est défini par

X(x) = Re R d e i x,ξ -1 ψ(ξ) -1-trace(E 0 )/α W α (dξ),
où W α est une mesure aléatoire α-stable isotropique de mesure de contrôle la mesure de Lebesgue, E 0 est une matrice réelle d × d dont les valeurs propres sont à partie réelle strictement plus grande que

1 et ψ : R d → [0, ∞) est une fonction continue satisfaisant ψ(c E 0 ξ) = cψ(ξ) pour tout c > 0 et ξ ∈ R d , et telle que ψ(ξ) = 0 pour ξ = 0.

Modèles de boules aléatoires poissoniennes

Dans cette section, on commence par présenter la littérature sur des modèles de boules aléatoires poissoniennes.

Le modèle poissonien sans poids

Le plus connu des processus ponctuels est le processus de Poisson, et c'est donc le premier qui a été étudié pour les modèles de boules aléatoires. Dans cette partie, faisant référence aux résultats de [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF], on travaille avec le modèle de grains aléatoires, qui bien sûr s'adapte sans difficulté au modèle de boules aléatoires.

La construction du processus ponctuel (ou de la mesure aléatoire) Φ, qui est analogue pour les autres mesures aléatoires dans la suite, est la suivante : on considère un processus ponctuel (ou mesure aléatoire) de Poisson homogène dans R d , noté φ, d'intensité dx, qui engendre les centres x ∈ R d des boules. La Figure 1 représente une réalisation d'un processus de Poisson homogène dans un carré de R 2 , c'est donc typiquement de cette manière que sont répartis les centres des boules aléatoires.

On marque ces centres x avec des rayons r > 0 tirés indépendamment les uns des autres et indépendamment des centres selon une loi F sur R * + . On suppose cette loi F à densité f sur R * + par rapport à la mesure de Lebesgue. Afin d'assurer la bonne définition de la quantité M (µ) donnée en [START_REF] Breton | Functional macroscopic behavior of weighted random ball model[END_REF], on suppose dans la suite que µ est à variation totale finie, c'est-à-dire

On obtient alors un processus ponctuel de Poisson

Φ sur R d × R + d'intensité dxf (r)dr
µ ∈ Z(R d ) := η mesure signée telle que |η|(R d ) < +∞ . Cette hypothèse permet notamment d'assurer que M (µ) est d'espérance finie pour µ ∈ Z(R d ).
L'objectif est de faire un changement d'échelle sur ce modèle. Comme expliqué cidessus, on introduit à cet effet un paramètre ρ > 0 destiné à tendre vers 0 lorsque l'on effectuera un dézoom, et vers l'infini pour un zoom. Dans la suite, sauf mention explicite du contraire, on se focalisera sur le dézoom, et on aura donc ρ → 0.

Précisons maintenant comment est modélisé mathématiquement ce changement d'échelle. Tout d'abord, on multiplie les rayons des boules par ce paramètre ρ : la loi des rayons sous changement d'échelle est alors notée F ρ et on a F ρ (dr) = f r ρ dr ρ .

Pour compenser cette diminution du volume des boules, on augmente simultanément leur nombre moyen en multipliant l'intensité du processus de Poisson φ qui engendre les centres par un paramètre λ(ρ) qui tend vers l'infini lorsque ρ tend vers 0.

On obtient alors un processus ponctuel de Poisson

Φ ρ sur R d ×R + d'intensité λ(ρ)dxf r ρ dr ρ et on s'intéresse aux fluctuations de M ρ (µ) donnée par M ρ (µ) = R d ×R + µ(x + rC)Φ ρ (dx, dr)
autour de sa moyenne. On veut donc étudier la convergence de

M ρ (µ) -E [M ρ (µ)] n(ρ) (11) 
lorsque ρ tend vers 0, avec un bon choix de normalisation n(ρ).

Remarque 0.2.1 On énoncera dans la suite des convergences fini-dimensionnelles, et on note alors

A -→ la convergence fini-dimensionnelle dans un sous-espace A de Z(R d ), i.e. M ρ A -→ M signifie ∀n ≥ 1, ∀µ 1 , . . . , µ n ∈ A, L(M ρ (µ 1 ), . . . , M ρ (µ n )) -→ ρ→0 L(M (µ 1 ), . . . , M (µ n )).
Remarque 0.2.2 Les convergences des lois fini-dimensionnelles s'obtiennent par la convergence en loi uni-dimensionnelle et on utilise ensuite le théorème de Cramèr-Wold (voir [START_REF] Billingsley | Convergence of probability measures[END_REF]), qui peut s'appliquer grâce à la linéarité des champs aléatoires qui apparaissent et par la structure linéaire des espaces dans lesquels on choisit µ. Remarque 0.2.3 À toute fonction µ ∈ L 1 (R d ), on peut lui associer de manière unique une mesure signée µ ∈ Z(R d ) définie par µ(dx) = µ(x)dx. Dans la suite, on identifiera ainsi L 1 (R d ) avec son image dans Z(R d ) par l'application µ -→ µ. On fait alors l'abus de notation L 1 (R d ) ⊂ Z(R d ). De la même manière, L α (R d ) est considéré comme un espace de mesures.

Pour obtenir une limite non triviale, il est nécessaire de restreindre l'espace Z(R d ) des mesures considérées jusqu'alors et de faire une hypothèse sur la densité f des rayons. La première des situations est lorsque f admet un moment d'ordre 2d, c'est-à-dire lorsque la variance du volume des boules est finie. On a alors R + r 2d F (dr) < +∞ et on obtient le premier résultat asymptotique : Théorème 0.2.1 (Kaj, Leskelä, Norros, Schmidt [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF]). On suppose que F admet un moment d'ordre 2d. On a alors la convergence suivante :

M ρ (•) -E [M ρ (•)] λ(ρ)ρ 2d L 1 (R d )∩L 2 (R d ) ---------→ W (•)
où W est la fonctionnelle linéaire gaussienne centrée sur L 2 et de covariance

E [W (µ)W (φ)] = c R d µ(x)φ(x)dx avec c = R + r 2d F (dr).
Dans toute la suite, on se place dans le cas où la variance du volume des boules est infinie. On fait alors l'hypothèse suivante sur le comportement de la densité f de la loi des rayons : pour d < β < 2d, Heuristiquement, c'est le nombre de «grosses» boules (ou grains), disons les boules avec un rayon supérieur à 1 et qui contiennent l'origine, qui vont donner le comportement de M ρ (µ) et un calcul donne :

f (r) ∼ r→+∞ C β r β+1 , r β+1 f (r) ≤ C 0 , (12) 
E # (x, r) ∈ Φ ρ : 0 ∈ x + rC, r > 1 ∼ ρ→0 C β β -d λ(ρ)ρ β , où #A désigne le cardinal d'un ensemble A.
Le nombre de grosses boules est donc de l'ordre de λ(ρ)ρ β lorsque ρ tend vers 0 et le comportement limite de cette quantité va gouverner les trois régimes asymptotiques suivants :

-si λ(ρ)ρ β -→ +∞ : c'est le régime dit «grand-rayon», c'est-à-dire que ce sont les grosses boules qui vont imposer leur comportement à la limite, -si λ(ρ)ρ β -→ a > 0 : c'est le régime dit «intermédiaire», on a un mélange de grosses et de petites boules, il y a une sorte de stabilité, -si λ(ρ)ρ β -→ 0 : c'est le régime dit «petit-rayon», les grosses boules disparaissent à la limite et ce sont les petites boules qui vont donner le comportement limite du modèle.

Pour pouvoir observer les champs limites, on doit imposer plus de régularité sur les mesures µ ∈ Z(R d ). Pour cela, on introduit les sous-espaces M α de Z(R d ) définis pour α ∈]0, 1[ par :

M α := µ ∈ Z(R d ) : R d ×R d |µ|(dx)|µ|(dy) |x -y| (1-α)d < +∞ .

On a alors les relations d'inclusion suivantes :

Proposition 0.2.4 (Kaj, Leskelä, Norros, Schmidt [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF]). Pour tous 0 < α 1 < α 2 < 1,

L 1 (R d ) ∩ L 2 (R d ) ⊂ M α 1 ⊂ M α 2 ⊂ Z(R d ).
Le Théorème 0.2.2 ci-dessous donne alors les trois régimes limites : Théorème 0.2.2 (Kaj, Leskelä, Norros, Schmidt [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF]). Soit C un compact de R d tel que

|C| = 1 et |∂C| = 0, et supposons que f vérifie les hypothèses (12) pour d < β < 2d. Soit α ∈]0, 2 -γ[, avec γ = β/d. 1. (Régime grand-rayon) On suppose λ(ρ)ρ β -→ ρ→0 +∞ et on pose n(ρ) = λ(ρ)ρ β 1/2
. On a alors la convergence suivante lorsque ρ → 0 :

M ρ (•) -E [M ρ (•)] n(ρ) M α -→ W (•) où W (µ) = R d ×R + µ(x+rC) M 2 (
dx, dr) avec M 2 mesure aléatoire gaussienne centrée sur M 2-γ de mesure de contrôle dxC β r -β-1 dr.

2. (Régime intermédiaire) On suppose λ(ρ)ρ β -→ ρ→0 a ∈]0, +∞[ et on pose n(ρ) = 1. On a alors la convergence suivante lorsque ρ → 0 :

M ρ (•) -E [M ρ (•)] M α -→ J a (•) où J a (µ) = R d ×R + µ(x+rC) Π(dx, dr) avec Π mesure aléatoire de Poisson compensée d'intensité aC β r -β-1 dxdr. 3. (Régime petit-rayon) On suppose λ(ρ)ρ β -→ ρ→0 0 et on pose n(ρ) = λ(ρ)ρ β 1 γ .
On a alors la convergence suivante lorsque ρ → 0 :

M ρ (•) -E [M ρ (•)] n(ρ) L 1 (R d )∩L 2 (R d ) ---------→ Λ(•) où Λ(µ) = R d ϕ(x)M γ (dx) pour µ(dx) = ϕ(x)dx, et M γ est une mesure aléatoire γ-stable de mesure de contrôle σ γ dx et de coefficient d'asymétrie 1 avec σ γ = C β d +∞ 0 1 -cos(r) r 1+γ dr .
Il est important de noter que la limite du point 3. du Théorème 0.2.2 est vraie pour des mesures µ ∈ L 1 (R d ) ∩ L 2 (R d ), ce qui est plus contraignant que l'espace M α requis pour les deux premiers régimes limites. En effet, pour le troisième régime, ce sont les petites boules qui vont compter : heuristiquement c'est comme si l'on ne voyait plus de boules à la limite, mais que des points. On a donc besoin de «meilleurs yeux» pour voir la limite, qui se traduit mathématiquement par plus de régularité sur la mesure µ qui doit admettre une densité par rapport à la mesure de Lebesgue.

Modèle de Poisson à poids et avec dépendance

Ce paragraphe est issu du papier de Gobard [START_REF] Gobard | Random balls model with dependence[END_REF]. Le modèle précédent a été généralisé tout d'abord par Breton et Dombry dans [START_REF] Breton | Rescaled weighted random balls models and stable self-similar random fields[END_REF] puis par Gobard dans [START_REF] Gobard | Random balls model with dependence[END_REF] de deux points de vue : comme évoqué au début de l'introduction, un poids a été ajouté aux boules, on est donc dans le cadre de l'étude du terme [START_REF] Biermé | Poisson random balls: self similarity and X-ray images[END_REF]. De plus, contrairement au cas poissonien de la partie précédente, les centres et les rayons sont maintenant dépendants.

Cette fois, le triplet (x, r, m) (interprété comme le centre, rayon et poids d'une boule) est donc engendré selon une mesure aléatoire de Poisson Φ(dx, dr, dm) sur R d × R + × R d'intensité f (x, r)dxdrG(dm), où f est une fonction positive définie sur R d × R + et G est une mesure de probabilité sur R tirant les poids des boules.

La mesure absolument continue f (x, r)dxdr = F x (dr)dx décrit la distribution des centres et des rayons. Dans la suite, on fait les hypothèses suivantes sur f , qui généralisent celles de [START_REF] Brix | Spatio-temporal Modelling of Weeds by Shot-noise G Cox processes[END_REF] :

r → f (•, r) ∞ est continue (13) et R + r d f (•, r) ∞ dr < +∞. (14) 
Nous avons également besoin de connaître le comportement de f pour de grands rayons. Pour cela, nous supposons que

f (x, r) ∼ r→+∞ g(x) r β(x)+1 (15) 
a lieu uniformément en x ∈ R d , où g et β sont des fonctions positives sur R d . On suppose en plus qu'il existe deux constantes β 1 et β 2 telles que

d < β 1 ≤ β(x) ≤ β 2 . ( 16 
)
Enfin, on suppose que la mesure de probabilité G appartient au domaine d'attraction de la distribution α-stable S α (σ, b, τ

) avec α ∈ (1, 2]. Remarque 0.2.5 Le choix f (x, r) = f (r) (et donc g = 1 et β une fonction constante)
recouvre le cas poissonien ( [START_REF] Biermé | Self-similar random fields and rescaled random balls models[END_REF][START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF]), et donc pour ce cas G = δ 1 .

On s'intéresse alors à la quantité donnée en (4) que l'on rappelle :

M (µ) = R d ×R + ×R

mµ(B(x, r))Φ(dx, dr, dm).

Cette intégrale stochastique est bien définie et a une espérance finie d'après la proposition suivante :

Proposition 0.2.6 (Gobard [START_REF] Gobard | Random balls model with dependence[END_REF]). Pour tout

µ ∈ Z(R d ), on a E[|M (µ)|] < +∞ et E[M (µ)] = R d ×R + ×R mµ(B(x, r))f (x, r)dxdrG(dm).

Mise en place du changement d'échelle

On introduit un paramètre ρ qui représente de taux de dézoom : il réduit le rayon moyen et simultanément on augmente le nombre de centres pour obtenir quelque chose de significatif à la limite. Les centres et les rayons étant cette fois liés, le changement d'échelle se traduit en considérant f ρ définie par

f ρ (x, r) ∼ r→+∞ λ(ρ) g(x) r β(x)+1 , ( 17 
)
uniformément en x et ρ. Ce λ(ρ) a le même rôle que dans le cas poissonien de base (cf Section 0.2.1), il augmente le nombre moyen de boules en même temps que le volume de ces dernières diminue. Pour des raisons techniques, on suppose également que pour tout ρ > 0, on a :

∀x ∈ R + , f ρ (•, r) ∞ ≤ λ(ρ) f (•, r) ∞ . ( 18 
)
Remarque 0.2.7 Avec ces notations, on retrouve les résultats de [START_REF] Biermé | Self-similar random fields and rescaled random balls models[END_REF][START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF] avec

f ρ (x, r) = λ(ρ)f (r).
Si on fait le même travail qu'auparavant, on peut encadrer le nombre moyen de grosses boules de la façon suivante. Posons B 1 = {x ∈ R d : β(x) = β 1 }. Sous la condition [START_REF] Daley | Introduction to point processes[END_REF], pour ρ assez petit on a :

λ(ρ)ρ β 1 {(x,r):0∈B(x,r),r>1} g(x)1 B 1 (x) r β 1 +1 dxdr ≤ E # (x, r) : 0 ∈ B(x, r), r > 1 ≤ λ(ρ)ρ β 1 {(x,r):0∈B(x,r),r>1} g(x) r β 1 +1 dxdr et comme {(x,r):0∈B(x,r),r>1}
g(x) r β 1 +1 dxdr < +∞, si l'ensemble B 1 est de mesure non-nulle, les trois mêmes régimes apparaissent quand ρ → 0 :

-régime «grand-rayon» : λ(ρ)ρ

β 1 → 0, -régime intermédiaire : λ(ρ)ρ β 1 → a > 0, -régime «petit-rayon» : λ(ρ)ρ β 1 → +∞.
Pour pouvoir mener les calculs à bien, on a besoin d'affiner l'espace M α donné précédemment et on introduit pour cela les espaces M α,β 1 ,β 2 . Définition 0.2.8 (Gobard [START_REF] Gobard | Random balls model with dependence[END_REF]). Soient

1 < α ≤ 2 et 0 < β 1 ≤ β 2 .
L'ensemble M α,β 1 ,β 2 est l'ensemble des mesures (signées) µ telles qu'il existe deux réels s et t avec 0 < s < β 1 ≤ β 2 < t et une constante positive C tels que

R d |µ(B(x, r))| α dx ≤ C(r s ∧ r t ), ( 19 
)
où a ∧ b = min(a, b).
La proposition suivante donne les premières propriétés des espaces M α,β 1 ,β 2 .

Proposition 0.2.9 (Gobard [START_REF] Gobard | Random balls model with dependence[END_REF]).

1. L'ensemble M α,β 1 ,β 2 est un espace vectoriel. De plus, si g ∈ L ∞ (R d ) et β est une fonction sur R d à valeurs réelles telle que pour tout x ∈ R d , β 1 ≤ β(x) ≤ β 2 , alors : ∀µ ∈ M α,β 1 ,β 2 , R d R + |µ(B(x, r))| α g(x)r -β(x)-1 dxdr < +∞. ( 20 
) 2. Si α ≤ α , alors M α,β 1 ,β 2 ⊂ M α ,β 1 ,β 2 . 3. Si β 1 ≤ β 1 ≤ β 2 ≤ β 2 , alors M α,β 1 ,β 2 ⊂ M α,β 1 ,β 2 . 4. Si α ≤ α et β 1 ≤ β 1 ≤ β 2 ≤ β 2 , alors M α,β 1 ,β 2 ⊂ M α ,β 1 ,β 2 .
5. Si β 1 > d, alors M α,β 1 ,β 2 est inclus dans le sous-espace des mesures diffuses.

Enfin, cette dernière propriété est utilisée dans le cas du régime petit-rayon, où l'on a besoin de plus de précision sur les mesures, l'espace M α,β 1 ,β 2 étant trop général encore. Proposition 0.2.10 (Gobard [START_REF] Gobard | Random balls model with dependence[END_REF]).

Si d < β 1 ≤ β 2 < αd, alors toute mesure µ ∈ L 1 (R d ) ∩ L α (R d ) appartient à M α,β 1 ,β 2 .

Régime grand-rayon

Dans cette section, on étudie les fluctuations de M ρ dans le régime grand-rayon, c'està-dire quand λ(ρ)ρ β 1 -→ ρ→0 +∞. La limite obtenue s'exprime comme une intégrale α-stable, cf Section 0.1.4. Théorème 0.2.3 (Gobard [START_REF] Gobard | Random balls model with dependence[END_REF]). On suppose que λ(ρ)ρ β 1 -→ ρ→0 +∞.

Soit n(ρ) = λ(ρ) 1/α ρ β 1 /α . On suppose que B 1 = {x ∈ R d : β(x) = β 1 } a une mesure de Lebesgue non nulle. Alors on a : B(x,r))M α (dx, dr) est une intégrale stable par rapport à la mesure α-stable M α de mesure de contrôle σ α g(x)1 B 1 (x)r -β 1 -1 dxdr et de fonction d'asymétrie b dépendant de G. Remarque 0.2.11 Si β est une fonction constante, et si g = 1, le champ W α coïncide avec le champ aléatoire stable Z α obtenu dans le Théorème 2.4 dans [START_REF] Breton | Rescaled weighted random balls models and stable self-similar random fields[END_REF].

n(ρ) -1 M ρ (•) M α,β 1 ,β 2 -----→ W α (•), où W α (µ) = R d ×R + µ(

Régime intermédiaire

Dans cette section, on s'intéresse au régime intermédiaire, c'est-à-dire le cas où λ(ρ)ρ β 1 a une limite finie non nulle a > 0 quand ρ → 0. Dans ce cas, le champ limite obtenu est une intégrale de Poisson compensée, cf Section 0.1.1. Théorème 0.2.4 (Gobard [START_REF] Gobard | Random balls model with dependence[END_REF]). On suppose que λ(ρ)ρ β 1 -→ ρ→0 a ∈]0, +∞[, et que l'ensemble B 1 = {x ∈ R d : β(x) = β 1 } a une mesure de Lebesgue non nulle. Alors on a :

M ρ (•) M α,β 1 ,β 2 -----→ J a (•), où J a (µ) = R d ×R + ×R mµ(B(x, r)) Π a (dx, dr, dm) et Π a est une mesure aléatoire de Poisson compensée sur R d × R + × R d'intensité ag(x)1 B 1 (x)dxr -β 1 -1 drG(dm).
Remarque 0.2.12 Le processus J a défini dans le Théorème 0.2.4 retrouve le processus J du Théorème 2.11 dans [START_REF] Breton | Rescaled weighted random balls models and stable self-similar random fields[END_REF] quand g = 1 et β est une fonction constante.

Régime petit-rayon

On termine avec le régime petit-rayon, c'est-à-dire quand λ(ρ)ρ β 1 -→ ρ→0 0. Dans ce cas, on obtient à la limite un champ stable, cf Section 0.1.4. Théorème 0.2.5 (Gobard [24]). Soient n(ρ) = (λ(ρ)

1/β 1 ρ) d et γ = β 1 /d ∈]1, α[. On suppose que λ(ρ)ρ β 1 -→ ρ→0 0, que B 1 = {x ∈ R d : β(x) = β 1 } a une mesure de Lebesgue non nulle, et que β 2 < αd. Alors n(ρ) -1 M ρ (•) L 1 (R d )∩L α (R d ) ---------→ Z(•), où, pour µ(dx) = φ(x)dx, Z(µ) = R d φ(x)M γ (dx) est une intégrale stable par rapport à la mesure γ-stable M γ de mesure de contrôle σ γ γ 1 B 1 (x)g(x)dx avec σ γ γ = v γ d d R + 1 -cos(r) r γ+1 dr R |m| γ G(dm)
où v d est la mesure de Lebesgue de la boule unité de R d , et avec coefficient d'asymétrie

b γ = -R (m)|m| γ G(dm) R |m| γ G(dm) . ( 21 
)
De la même manière que précédemment, ce résultat est une généralisation du Théorème 2.16 de [START_REF] Breton | Rescaled weighted random balls models and stable self-similar random fields[END_REF].

Pont poissonien

Le résultat suivant montre une propriété intéressante liant des trois régimes. Dans le cas intermédiaire, où λ(ρ)ρ β 1 -→ a lorsque ρ tend vers 0, on obtient à la limite un processus de Poisson J a . La proposition suivante montre que correctement renormalisé, J a converge vers W α lorsque a tend vers l'infini, et retrouve donc le régime grand-rayon, et lorsque a tend vers 0, J a converge vers Z, et retrouve donc le régime petit-rayon. Le régime intermédiaire s'interprète comme un passage à la limite partiel qu'on peut compléter pour aller vers l'un ou l'autre des autres régimes, Gaigalas étudie ceci en dimension 1 dans [START_REF] Gaigalas | A Poisson bridge between fractional Brownian motion and stable Lévy motion[END_REF]. On dit qu'il y a un pont poissonien. Théorème 0.2.6 Supposons que B 1 a une mesure de Lebesgue non nulle. Alors :

1. Quand a → +∞, J a (•) a 1/α M α,β 1 ,β 2 -----→ W α (•). 2. Quand a → 0, J a (•) a d/β 1 L 1 (R d )∩L α (R d ) ---------→ Z(•).

Cas du zoom

Pour finir avec la présentation des résultats qui ont été établis ces dernières années, mentionnons brièvement le cas du zoom, i.e. ρ → +∞. Les premiers résultats pour le régime grand-rayon et le régime intermédiaire ont été établi par Biermé, Estrade et Kaj dans [START_REF] Biermé | Self-similar random fields and rescaled random balls models[END_REF], puis étendus au modèle de boules aléatoires pondérées par Breton et Dombry dans [START_REF] Breton | Rescaled weighted random balls models and stable self-similar random fields[END_REF], et enfin généralisés dans [START_REF] Gobard | Random balls model with dependence[END_REF] pour le modèle intégrant de la dépendance entre les rayons et les centres. Pour le zoom (ρ → +∞) on remplace [START_REF] Deng | The Ginibre Point Process as a Model for Wireless Networks with Repulsion[END_REF] par :

f ρ (x, r) ∼ r→0 λ(ρ) g(x) r β(x)+1 .
On a alors les résultats jumeaux des Théorèmes 0.2.3 et 0.2.4 : Théorème 0.2.7 (Biermé, Estrade, Kaj [START_REF] Biermé | Self-similar random fields and rescaled random balls models[END_REF]). On suppose que λ(ρ)ρ

β 2 -→ ρ→+∞ +∞. Soit n(ρ) = λ(ρ) 1/α ρ β 2 /α . On suppose que B 2 = {x ∈ R d : β(x) = β 2 }
a une mesure de Lebesgue non nulle. Alors on a : B(x,r))M α (dx, dr) est une intégrale stable par rapport à la mesure α-stable M α de mesure de contrôle σ α g(x)1 B 2 (x)r -β 2 -1 dxdr et de fonction d'asymétrie b donnée par G. Théorème 0.2.8 (Biermé, Estrade, Kaj [START_REF] Biermé | Self-similar random fields and rescaled random balls models[END_REF]). On suppose que λ(ρ)ρ

n(ρ) -1 M ρ (•) M α,β 1 ,β 2 -----→ W α (•), où W α (µ) = R d ×R + µ(
β 2 -→ ρ→+∞ a ∈]0, +∞[, et que l'ensemble B 2 = {x ∈ R d : β(x) = β 2 } a une mesure de Lebesgue non nulle. Alors on a : M ρ (•) M α,β 1 ,β 2 -----→ J a (•), où J a (µ) = R d ×R + ×R mµ(B(x, r)) Π a (dx, dr, dm) et Π a est une mesure aléatoire de Poisson compensée sur R d × R + × R d'intensité ag(x)1 B 2 (x)dxr -β 2 -1 drG(dm).

Propriétés des champs limites

On donne dans cette partie des propriétés des champs limites, qui sont données dans les articles [START_REF] Biermé | Self-similar random fields and rescaled random balls models[END_REF][START_REF] Breton | Rescaled weighted random balls models and stable self-similar random fields[END_REF][START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF] et adaptées au modèle à poids par Gobard dans [START_REF] Gobard | Random balls model with dependence[END_REF]. Proposition 0.2. [START_REF] Chiu | Wiley Series in Probability and Statistics[END_REF] 1. Si g est radiale (i.e g(x) = g( x )) et B 1 est invariant par rotation, alors le champ W α est isométrique, i.e. : 

∀µ ∈ M α,β 1 ,β 2 , ∀Θ ∈ O(R d ), W α (Θµ) f dd = W α (µ). 2. On suppose qu'il existe une constante H ∈ R tel que pour tout c ∈ R + et tout x ∈ R d , g(cx) = c H g(x),
f dd = m i=1 J i (µ), où J i , 1 ≤ i ≤ m, sont des copies indépendantes de J et a m = m 1/(d-β 1 -H) .
Proposition 0.2.15 1. Si g est radiale et B 1 est stable par rotation, alors le champ Z est isotrope. Les résultats de cette section sont ceux des articles [START_REF] Breton | Macroscopic analysis of determinantal random balls[END_REF] et [START_REF] Clarenne | Rescaled weighted determinantal random balls[END_REF], détaillés dans les chapitres 1 et 2.

S'il existe

H ∈ R tel que pour tout c ∈ R + et tout x ∈ R d , g(cx) = c H g(x), et

Modèle

Dans le modèle poissonien, les centres des boules sont placés uniformément dans l'espace. Cette fois, on introduit de la répulsion entre les boules grâce aux processus déterminantaux. Pour cela, de manière analogue au modèle précédent, on considère tout d'abord un processus φ sur R d qui engendre les centres des boules, φ étant cette fois un processus déterminantal (DPP), caractérisé par son noyau K par rapport à la mesure de Lebesgue. Cette classe de processus induit de la répulsion entre les points, ce qui peut modéliser de nombreuses situations. La Figure 2 illustre la réalisation d'un processus déterminantal, on observe bien de la répulsion entre les points qui sont rarement très proches les uns des autres, ils occupent tout l'espace. La différence est notable avec la Figure 1 où l'on voit que les points sont placés au hasard, il n'est pas rare de trouver des points très proches les uns des autres ou au contraire très isolés.

Pour mener à bien les calculs, on considère l'opérateur

K donné pour f ∈ L 2 (R d , dx) et x ∈ R d par Kf (x) = R d K(x, y)f (y) dy ( 22 
)
et qui vérifie l'hypothèse suivante : 

Hypothèse 1 L'opérateur K donné par (22) est un opérateur intégral symétrique et borné de L 2 (R d , dx) dans L 2 (R d ,
K Λ de K sur L 2 (Λ, λ) est trace-classe.
On dit que T est un opérateur trace-classe si

T 1 := Tr |T | < +∞, avec |T | = √ T * T , où pour un opérateur positif T sur un espace de Hilbert séparable H muni d'un produit scalaire •, • on a Tr(T ) = +∞ n=1 T e n , e n ,
où (e n ) n≥1 est une base orthonormale complète de H. On suppose en plus que

x -→ K(x, x) ∈ L ∞ (R d ). (23) 
Il faut interpréter en quelque sorte le noyau K(x, y) x,y∈R d comme une «matrice» de covariance, ce sont les termes K(x, y) pour x = y qui vont contrôler les forces de répulsion entre les points.

Le modèle de boules aléatoires est alors construit de la façon suivante : à chaque centre x ∈ R d , on attache deux marques indépendantes positives r et m (interprétées comme le rayon et le poids de la boule) de lois respectives F et G et de densités respectives f et g.

On obtient alors un nouveau processus

Φ sur R d × R + × R + , qui est déterminantal, de noyau K (x, r, m), (y, s, m ) = g(m) f (r)K(x, y) f (s) g(m ),
par rapport à la mesure de Lebesgue.

La densité f des rayons vérifie toujours les hypothèses [START_REF] Brix | Spatio-temporal Modelling of Weeds by Shot-noise G Cox processes[END_REF] et comme dans le cas poissonien, on suppose que la mesure de probabilité G appartient au domaine d'attraction de la distribution α-stable S α (σ, b, τ

) avec α ∈ (1, 2].
Dans toute la suite, par confort de notation, Φ désignera tout aussi bien le processus ponctuel (i.e. la collection aléatoire localement finie de points

(X i , R i , M i )) ou bien sa mesure aléatoire associée (X,R,M )∈Φ δ (X,R,M ) . On s'intéresse alors àM (µ) = R d ×R + ×R + mµ B(x, r) Φ(dx, dr, dm) (24) pour µ ∈ Z(R d ). Proposition 0.3.1 Pour toute mesure µ ∈ Z(R d ), E [M (|µ|)] < +∞.
Ainsi, M (µ) donnée par (24) est presque-sûrement bien définie pour µ ∈ Z(R d ).

Asymptotique et résultats principaux

Pour modéliser le dézoom, on commence par multiplier les rayons par un paramètre ρ ∈]0, 1] qui va tendre vers 0. Pour compenser cette action, il faut changer simultanément l'intensité des centres. Pour cela, on introduit une famille de nouveaux noyaux K ρ , ρ ∈ ]0, 1], vérifiant l'Hypothèse 1 et tels que

K ρ (x, x) ∼ ρ→0 λ(ρ)K(x, x),
avec lim ρ→0 λ(ρ) = +∞. Il faut interpréter λ(ρ) comme l'intensité du nombre de centres. On note alors φ ρ les nouveaux DPP de noyau K ρ . On suppose enfin sup

x∈R d K ρ (x, x) ≤ λ(ρ) sup x∈R d K(x, x), ( 25 
)
et on peut faire la remarque clé suivante : grâce aux hypothèses ( 23) et (25), la Proposition 1.4.6 dans le Chapitre 1 suivant donne la borne suivante

sup x∈R d R d K ρ (x, y) 2 dy = ρ→0 O λ(ρ) . ( 26 
)
Cette borne est fondamentale car il faut voir le terme de gauche comme le maximum de la somme de toutes les interactions cumulées entre les boules. Ce résultat exprime alors que cette quantité est contrôlée uniquement par l'intensité du nombre de boules. Un exemple classique d'une telle famille de noyaux est le cas des processus de Ginibre : Si on se place dans R d , le processus de Ginibre φ G est un processus déterminantal de noyau

K G (x, y) = exp - 1 2 x -y 2 , x, y ∈ R d ,
par rapport à la mesure de Lebesgue.

Ces processus sont utilisés pour modéliser des réseaux de télécommunication sans fil (voir [START_REF] Deng | The Ginibre Point Process as a Model for Wireless Networks with Repulsion[END_REF], [START_REF] Miyoshi | A cellular model with Ginibre configured base stations[END_REF]).

Pour le changement d'échelle dans le cas Ginibre, on considère la famille de processus φ G ρ , ρ ∈]0, 1], dont les noyaux sont donnés par :

K G ρ (x, y) = λ(ρ) exp - λ(ρ) 2 x -y 2 , x, y ∈ R d ,
par rapport à la mesure de Lebesgue, où λ : R + → R + est une fonction décroissante avec lim ρ→0 λ(ρ) = +∞.

On obtient finalement une suite de nouveaux processus marqués Φ ρ sur R d × R + × R + , qui sont des DPP de noyau

K ρ (x, r, m), (y, s, m ) = g(m) f (r/ρ) ρ K ρ (x, y) f (s/ρ) ρ g(m ),
par rapport à la mesure de Lebesgue. La version changée d'échelle de M (µ) est donc

M ρ (µ) = R d ×R + ×R + mµ B(x, r) Φ ρ (dx, dr, dm)
et comme pour le cas poissonien, on s'intéresse aux fluctuations de M ρ autour de son espérance

E M ρ (µ) = R d ×R + ×R + mµ B(x, r) K ρ (x, x) f (r/ρ) ρ g(m)dxdrdm.
Pour alléger les notations, on note

M ρ (µ) = M ρ (µ) -E M ρ (µ) = R d ×R + ×R + mµ B(x, r) Φ ρ (dx, dr, dm), ( 27 
)
où Φ ρ est la mesure compensée de Φ ρ .

Pour étudier le comportement de M ρ , il est nécessaire de restreindre l'espace des mesures considérées, et la définition suivante introduit les bons espaces (voir aussi [START_REF] Breton | Macroscopic analysis of determinantal random balls[END_REF][START_REF] Breton | Rescaled weighted random balls models and stable self-similar random fields[END_REF]). Définition 0.3.2 (Breton, Dombry [START_REF] Breton | Rescaled weighted random balls models and stable self-similar random fields[END_REF]). On appelle M α,β l'ensemble des mesures si-

gnées µ ∈ Z(R d ) tel qu'il existe deux réels p et q avec 0 < p < β < q ≤ 2d et une constante C µ > 0 tels que R d |µ B(x, r) | α dx ≤ C µ r p ∧ r q , ( 28 
)
où a ∧ b = min(a, b).
Rappelons les propriétés de base de l'ensemble M α,β :

Proposition 0.3.3 (Breton, Dombry [START_REF] Breton | Rescaled weighted random balls models and stable self-similar random fields[END_REF]).

(i) M α,β est un sous-espace vectoriel de

Z(R d ) et, pour tout µ ∈ M α,β , R d ×R + |µ B(x, r) | α r -β-1 dxdr < +∞. (ii) Si d < β < αd, alors L 1 (R d ) ∩ L α (R d ) ⊂ M α,β et pour tout µ ∈ L 1 (R d ) ∩ L α (R d ) : R d |µ B(x, r) | α dx ≤ C µ r d ∧ r αd .
On note M + α,β l'ensemble des mesures positives de M α,β . On peut désormais énoncer le théorème donnant les trois résultats asymptotiques dans le cas déterminantal : Théorème 0.3.1 (Breton, Clarenne, Gobard [START_REF] Breton | Macroscopic analysis of determinantal random balls[END_REF]). On suppose que f vérifie (12) et que φ ρ est un DPP dont le noyau vérifie (23), ( 25) et l'Hypothèse 1 pour l'opérateur associé K ρ défini en [START_REF] Gaigalas | Convergence of scaled renewal processes and a packet arrival model[END_REF].

(i) Régime grand-rayon : On suppose λ(ρ)ρ β → +∞. Posons n(ρ) = λ(ρ)ρ β 1/α . Alors M ρ (•)/n(ρ) converge au sens des lois fini-dimensionnelles sur M + α,β vers W α (•) où W α (µ) = R d ×R + µ B(x, r) M α (dx, dr)
est une intégrale stable contre la mesure aléatoire α-stable M α de mesure de contrôle

σ α K(x, x)C β r -β-1 dxdr et de coefficient d'asymétrie b donné par le domaine d'at- traction de G. (ii) Régime intermédiaire : On suppose λ(ρ)ρ β → a d-β ∈]0, +∞[. Posons n(ρ) = 1. Alors M ρ (•)/n(ρ) converge au sens des lois fini-dimensionnelles sur M + α,β vers P •D a où P (µ) = R d ×R + ×R + mµ B(x, r) Π(dx, dr, dm) avec Π mesure aléatoire de Poisson compensée d'intensité K(x, x)C β r -β-1 dxdrG(dm) et D a est défini par (D a µ)(B) = µ(a -1 B). (iii) Régime petit-rayon : On suppose λ(ρ)ρ β → 0 pour d < β < αd. Posons n(ρ) = (λ(ρ)ρ β ) 1/γ avec γ = β/d ∈]1, α[. Alors n(ρ) -1 M ρ (•) converge vers Z γ (•)
au sens des lois fini-dimensionnelles sur l'ensemble des mesures positives à densité dans

L 1 (R d ) ∩ L 2 (R d ), où Z γ (µ) = R d φ(x) M γ (dx) pour µ(dx) = φ(x)dx avec φ ∈ L 1 (R d )∩L 2 (R d ), φ ≥ 0,
est une intégrale stable contre la mesure aléatoire γ-stable M γ de mesure de contrôle

σ γ K(x, x)dx où σ γ γ = C β v γ d d +∞ 0 1 -cos(r) r 1+γ dr +∞ 0 m γ G(dm), et de coefficient d'asymétrie 1.
La démonstration de ce résultat est, comme pour le modèle poissonien, basée sur l'étude de la transformée de Laplace de Mρ(µ) n(ρ) . Les résultats existants jusqu'alors permettent de calculer les transformées de Laplace de mesures aléatoires déterminantales pour des fonctions tests à support compact. La stratégie de preuve faite dans le Chapitre 1, preuve marchant uniquement pour le modèle sans poids, est donc basée sur l'étude de la convergence de la transformée de Laplace -elle permet de simplifier les preuves du premier chapitre, puisqu'il n'est plus nécessaire de faire une troncature du processus afin de se ramener à une fonction à support compact, -elle permet de généraliser les théorèmes au modèle à poids et pour des mesures non nécessairement à support compact.

du processus tronqué M R ρ (µ) = R d ×R + µ B(x, r) 1 r<R Φ ρ (dx,
Proposition 0.3.4 (Clarenne [START_REF] Clarenne | Rescaled weighted determinantal random balls[END_REF]). Soit Φ un processus déterminantal sur un espace Polonais localement compact E, de noyau K continu, dont l'opérateur intégral associé vérifie les Hypothèses 1. Soit h une fonction positive telle que le noyau

K 1 -e -h ∈ L 2 (E × E) et vérifiant E 1 -e -h(x) K(x, x)dx < +∞. ( 29 
)
Alors K 1 -e -h est un opérateur trace-classe avec

Tr K 1 -e -h = E 1 -e -h(x) K(x, x)dx et on a E exp - E h(x)Φ(dx) = exp - ∞ n=1 1 n Tr K 1 -e -h n , ( 30 
)
où K 1 -e -h est l'opérateur de noyau

K 1 -e -h (x, y) = 1 -e -h(x) K(x, y) 1 -e -h(y) .
La condition d'avoir une fonction à support compact est donc remplacée par la condition d'intégrabilité [START_REF] Jeulin | Caractérisation et modélisation probabiliste des milieux hétérogènes[END_REF], qui est bien plus souple à l'usage et qui sera vérifiée dans nos différentes situations.

On calcule donc la transformée de Laplace de n(ρ)

-1 M ρ (µ) pour µ ∈ M + α,β : pour θ ≥ 0, E exp -θn(ρ) -1 M ρ (µ) = exp θE[n(ρ) -1 M ρ (µ)] × E exp - R d ×R + ×R + θn(ρ) -1 mµ(B(x, r))Φ ρ (dx, dr, dm) .
On peut calculer ce dernier terme grâce à la Proposition 0.3.4 avec h(x, r, m) = mµ(B(x, r)). En effet, l'hypothèse [START_REF] Jeulin | Caractérisation et modélisation probabiliste des milieux hétérogènes[END_REF] est vérifiée car :

R d ×R + ×R + (1-e -mµ(B(x,r)) )K ρ (x, x)f (r/ρ)g(m)dx dr ρ dm ≤ λ(ρ)ρ d v d µ(R d ) sup x∈R d K(x, x) R + mg(m)dm R + r d f (r)dr < +∞, et on peut vérifier de même que la condition K 1 -e -h ∈ L 2 (E × E) est bien satisfaite (voir le Chapitre 2).
En appliquant la relation [START_REF] Jeulin | Multi Scale Random Models of Complex Microstructures[END_REF] on a donc

E exp - R d ×R + ×R + θn(ρ) -1 mµ(B(x, r))Φ ρ (dx, dr, dm) = exp - ∞ n=1 1 n Tr K 1 -e -θn(ρ) -1 h n et la transformée de Laplace de n(ρ) -1 M ρ (µ) se réécrit E exp -θn(ρ) -1 M ρ (µ) = exp R d ×R + ×R + ψ θn(ρ) -1 mµ(B(x, r)) λ(ρ)K(x, x) f (r/ρ) ρ g(m)dxdrdm × exp - n≥2 1 n Tr K ρ 1 -e -θn(ρ) -1 h n (31) avec ψ(u) = e -u -1 + u.
On remarque alors que le premier terme est la transformée de Laplace du modèle poissonien, dont on connait les limites en fonction des trois régimes qu'on étudie. Le second terme représente les termes d'interactions entre les boules, et on montre dans les Chapitres 1 et 2 que ce terme n'apporte aucune contribution à la limite, les interactions disparaissent. On retrouve donc bien les trois mêmes régimes limites que dans le cas poissonien.

Aussi, on évoque dans cette introduction le cas des processus déterminantaux plus généraux, les processus α-déterminantaux. On rappelle qu'un processus déterminantal est un cas particulier de processus α-déterminantal avec α = -1. Les résultats du Théorème 0.3.1 se généralisent aux cas des processus α-déterminantaux, pour α ∈ [-1, 1]. Les processus α-déterminantaux pour α ∈ [-1, 0] induisent de la répulsion entre les points, alors que pour α ∈ [0, 1], ils induisent de l'attraction. On appelle ces derniers des processus permanantaux.

Enfin, contrairement au cas poissonien où l'on peut faire un zoom pour les régimes «grand-rayon» et intermédiaire, il est impossible de faire un analogue pour les boules aléatoires déterminantales. On en trouvera une justification détaillée dans la partie «Zoomin asymptotics» du Chapitre 3. 

Modèle de Cox

Z(dx) = y∈Φ k(x, y)dx. ( 32 
)
Dans notre situation, Φ est un processus de Poisson sur

R d d'intensité la mesure de Lebesgue et k est une fonction positive sur R d × R d qui vérifie k ∞ = sup (x,y)∈(R d ) 2 k(x, y) < +∞ (33) et telle que pour tout x ∈ R d , R d k(x, y)dy = 1. (34) 
Avec cette écriture, le processus de Poisson Φ est le processus ponctuel de base qui engendre les centres c des clusters (ou amas) X c , et k(c, •) est l'intensité du processus X c .

Comme pour les autres processus considérés jusqu'alors, on marque indépendamment chaque centre x engendré par Z par deux variables indépendantes r (qui sera positif) et m, que l'on interprétera comme le rayon de la boule centrée en x pour r et comme la masse de cette boule centrée en x et de rayon r pour m. Comme pour le cas déterminantal, les rayons sont engendrés par une loi de densité f sur R + et les poids par une loi de probabilité G sur R.

Le processus marqué est un processus de Cox C sur

R d × R + × R dirigé par la mesure aléatoire Λ(dx, dr, dm) = Z(dx)f (r)drG(dm), (35) 
et on s'intéresse alors à M (µ) = R d ×R + ×R mµ(B(x, r))C(dx, dr, dm) (36) pour µ ∈ Z(R d ).
Les hypothèses sur la densité f et sur la loi G sont les mêmes que dans le cas déterminantal.

Remarque 0.3.5 La quantité [START_REF] Klüppelberg | Explosive Poisson shot noise processes with applications to risk reserves[END_REF] est bien définie car :

E [M (|µ|)] = E R d ×R + ×R m |µ(B(x, r))| C(dx, dr, dm) ≤ v d µ R |m|G(dm) R + r d f (r)dr < +∞ où v d est le volume de la boule (euclidienne) unité de R d .
Le changement d'échelle sur ce modèle se fait comme pour les autres modèles : on multiplie les rayons par un paramètre d'échelle ρ ∈]0, 1[ qui est destiné à tendre vers 0 et pour compenser cet effet, on adapte simultanément l'intensité des boules en augmentant cette dernière. On note Z ρ la mesure aléatoire engendrant les centres qui en résulte :

Z ρ (dx) = y∈Φρ k ρ (x, y)dx, où Φ ρ est un processus de Poisson sur R d d'intensité κ(ρ)dy et k ρ vérifie k ρ (x, y) ∼ ρ→0 λ(ρ)k(x, y) et k ρ (x, y) ≤ C 1 λ(ρ)k(x, y). ( 37 
)
Il y a une différence significative ici par rapport aux autres modèles : dans les cas poissoniens et déterminantaux, on n'a qu'un seul levier pour compenser la baisse du volume des boules, c'est d'augmenter leur nombre en multipliant l'intensité du processus qui engendre les centres par un paramètre qui tend vers l'infini lorsque ρ tend vers 0. Dans le cas Cox, on a une plus grande flexibilité. En effet, on remarque qu'il y a deux paramètres qui sont introduits dans l'intensité du processus qui engendre les centres, λ(ρ) et κ(ρ). On peut interpréter λ(ρ) comme le nombre moyen de boules au sein d'un cluster et κ(ρ) le nombre moyen de clusters. Dès lors, on comprend que pour augmenter le nombre de boules, on peut jouer sur ces deux paramètres de manière assez souple en choisissant par exemple d'augmenter le nombre moyen de boules au sein de chaque cluster sans toucher au nombre moyen de clusters.

Le processus

C sur R d × R + × R, dirigé par (35), changé d'échelle est noté C ρ et est dirigé par la mesure Λ ρ (dx, dr, dm) = Z ρ (dx)f r ρ dr ρ G(dm)
et on étudie alors la quantité

M ρ (µ) = R d ×R + ×R mµ(B(x, r))C ρ (dx, dr, dm). (38) 
L'autre différence significative est dans l'étude des fluctuations de M ρ . En effet, dans les cas poissoniens et déterminantaux, on étudie les fluctuations de M ρ par rapport à son espérance. Ici, il faut voir le processus de Cox comme un processus de Poisson avec une intensité qui est elle-même aléatoire. On n'étudie donc pas les fluctuations de M ρ par rapport à son espérance, mais par rapport à son espérance conditionnelle. Le centrage n'est plus déterministe mais aléatoire et on étudie alors la convergence lorsque ρ → 0 de

M ρ (µ) -E [M ρ (µ) | Λ ρ ] n(ρ) ( 39 
)
pour un choix adéquat de normalisation n(ρ).

Dans ce modèle, le nombre moyen de grosses boules, dans le même sens que précédemment, est de l'ordre de κ(ρ)λ(ρ)ρ β . Cette quantité s'obtient aussi de la façon suivante : κ(ρ) représente le nombre moyen de clusters, et λ(ρ)ρ β est le nombre moyen de grosses boules au sein de chaque cluster. Ceci amène à deux études asymptotiques différentes, à savoir jouer sur le nombre moyen de clusters ou sur le nombre moyen de boules par cluster, se démarquant donc des cas poissoniens et déterminantaux.

Résultats asymptotiques

La souplesse du processus de Cox permet de considérer deux scénarios de changement d'échelle, que l'on appelle dans la suite dézoom local et dézoom global.

Le premier que l'on étudie est le dézoom local. Nous appliquons un dézoom au sein de chaque cluster en faisant tendre λ(ρ) vers l'infini. La quantité clé qui gouverne les résultats est donc λ(ρ)ρ β , soit le nombre moyen de grosses boules dans chaque cluster.

Pour ce scénario, on fait donc un changement d'échelle sur les rayons (ρ → 0) et sur le nombre moyen de boules dans chaque cluster (i.e. λ(ρ) → +∞), mais on ne modifie pas le nombre moyen de clusters (i.e. κ(ρ) = 1) (voir la Section 0.3.2). Heuristiquement, on peut considérer qu'on a plusieurs modèles poissoniens «côte-à-côte» (ce «côte-à-côte» étant donné par le processus Φ) et qu'on effectue le dézoom usuel (c'est-à-dire comme dans [START_REF] Biermé | Self-similar random fields and rescaled random balls models[END_REF][START_REF] Breton | Rescaled weighted random balls models and stable self-similar random fields[END_REF][START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF]) au sein de chaque cluster. Les résultats de ces changements d'échelle sont bien connus, et le résultat final est un mélange de ces champs limites (voir le Théorème 0.3.2). Il est important de noter qu'à la limite, la structure en clusters est préservée.

Le second scénario est le dézoom global. Cette fois, on modifie non seulement le nombre moyen de boules dans chaque cluster, mais aussi le nombre de clusters. On suppose alors que κ(ρ) → +∞, c'est-à-dire que l'on augmente le nombre de clusters. Dans ce scénario, la quantité clé est le nombre moyen de grosses boules dans tout le modèle, à savoir κ(ρ)λ(ρ)ρ β . Une particularité de ce modèle est que cette fois, le paramètre λ(ρ) ne tend pas nécessairement vers l'infini, il peut même tendre vers 0, c'est-à-dire faire que le nombre de boules dans chaque cluster tend vers 0. Dans ce cas, il faut que κ(ρ) tende en conséquence vers l'infini suffisamment vite pour compenser cet effet. L'équilibre entre κ(ρ) et λ(ρ) est donné dans l'hypothèse κ(ρ)λ(ρ) -→ +∞ du Théorème 0.3.3. Selon le comportement de κ(ρ)λ(ρ)ρ β , on a donc trois asymptotiques, et cette fois, contrairement au dézoom local, la structure en clusters disparaît à la limite (voir Section 0.3.2).

Dézoom local

Le Théorème 0.3.2 ci-dessous donne les trois limites obtenues dans le cas local. On rappelle que dans ce cas, le nombre moyen de clusters ne bouge pas (κ(ρ) = 1). Le processus shot-noise engendrant les centres est donc dirigé par Théorème 0.3.2 (Clarenne [START_REF] Clarenne | Macroscopic analysis of shot-noise Cox random balls[END_REF]). On se place sous les hypothèses (12), ( 33), ( 34) et [START_REF] Knackstedt | Structure-property correlations in model composite materials[END_REF].

Z ρ (x) = y∈Φ k ρ (x,
1. On suppose λ(ρ)ρ β -→ ρ→0 +∞ et on pose n(ρ) = λ(ρ)ρ β 1/α
. On a alors la convergence suivante lorsque ρ → 0 :

M ρ (•) -E [M ρ (•) | Λ ρ ] n(ρ) M α,β -→ W α (•) (40) avec W α (µ) = R d ×R + µ(B(x, r))M α (dx, dr), et où conditionnellement à L α , M α est une mesure aléatoire α-stable de mesure de contrôle L α (dx, dr) = σ α Z(x)dxC β r -β-1 dr, et Z est donnée par (32)-(34), et de coefficient d'asymétrie b. 2. On suppose λ(ρ)ρ β -→ ρ→0 a ∈]0, +∞[ et on pose n(ρ) = 1. On a alors la convergence suivante lorsque ρ → 0 : M ρ (•) -E [M ρ (•) | Λ ρ ] M α,β -→ N (•) -E [N (•) | Λ ] où N (µ) = R d ×R + ×R mµ(B(x, r))C (dx, dr, dm), C est un processus de Cox sur R d × R + × R dirigé par Λ (dx, dr, dm) = Z(x)dxaC β r -β-1 drG(dm), avec Z donnée par (32)-(34). 3. On suppose λ(ρ)ρ β -→ ρ→0 0 et on pose n(ρ) = λ(ρ)ρ β 1/γ , où γ = β/d ∈]1, α[. On a alors la convergence suivante lorsque ρ → 0 : M ρ (•) -E [M ρ (•) | Λ ρ ] n(ρ) L 1 (R d )∩L α (R d ) -→ Z(•), où, pour µ(dx) = φ(x)dx, Z(µ) = R d φ(x)M γ (dx) et conditionnellement à S, M γ est une mesure aléatoire γ-stable de mesure de contrôle S(dx) = σ γ Z(x)dx où σ γ = C β v γ d d +∞ 0 1 -cos(r) r 1+γ dr R |m| γ G(dm) , de coefficient d'asymétrie b γ = -R (m)|m| γ G(dm) R |m| γ G(dm)
et Z est donnée par (32)- [START_REF] Kallenberg | Foundations of modern probability[END_REF].

Comme mentionné précédemment, il est important de voir que les résultats limites sont des versions aléatoires des résultats limites des cas poissoniens ou déterminantaux. En effet, les limites sont soit gaussiennes avec une mesure de contrôle aléatoire, soit Cox qui est donc un processus de Poisson avec une intensité aléatoire, ou bien enfin une loi stable avec de même une mesure de contrôle aléatoire. C'est donc une juxtaposition des résultats déterministes du cas poissonien, cette juxtaposition aléatoire étant donnée par la position des clusters.

Dézoom global

On effectue dans ce second scénario un dézoom global comme évoqué plus haut. Cette fois, on suppose alors que κ(ρ) -→ +∞ mais on ne demande pas que λ(ρ) -→ +∞. Le théorème suivant présente alors les trois régimes qui apparaissent : Théorème 0.3.3 (Clarenne [START_REF] Clarenne | Macroscopic analysis of shot-noise Cox random balls[END_REF]). On se place sous les hypothèses (12), ( 33), ( 34) et [START_REF] Knackstedt | Structure-property correlations in model composite materials[END_REF].

1. On suppose κ(ρ)λ(ρ)ρ β -→ ρ→0 +∞ et on pose n(ρ) = κ(ρ)λ(ρ)ρ β 1/α .
On a alors la convergence suivante lorsque ρ → 0 :

M ρ (•) -E [M ρ (•) | Λ ρ ] n(ρ) M α,β -→ W α (•) (41) avec W α (µ) = R d ×R + µ(B(x, r))M α (dx, dr) où M α est une mesure aléatoire α-stable de mesure de contrôle σ α dxC β r -β-1 dr et de coefficient d'asymétrie b. 2. On suppose κ(ρ)λ(ρ)ρ β -→ ρ→0 a ∈]0, +∞[ et on pose n(ρ) = 1.
On a alors la convergence suivante lorsque ρ → 0 :

M ρ (•) -E [M ρ (•) | Λ ρ ] M α,β -→ J a (•) avec J a (µ) = R d ×R + ×R mµ(B(x, r)) Π(dx, dr, dm), où Π est une mesure aléatoire de Poisson compensée d'intensité aC β r -β-1 dxdrG(dm). 3. On suppose κ(ρ)λ(ρ)ρ β -→ ρ→0 0 et κ(ρ)λ(ρ) -→ +∞. On pose n(ρ) = κ(ρ)λ(ρ)ρ β 1 γ avec γ = β/d ∈]1, α[.
On a alors la convergence suivante lorsque ρ → 0 :

M ρ (•) -E [M ρ (•) | Λ ρ ] n(ρ) L 1 (R d )∩L α (R d ) -→ Z(•) avec Z(µ) = R d ϕ(x)M γ (dx) pour µ(dx) = ϕ(x)
dx, où M γ est une mesure aléatoire γ-stable de mesure de contrôle σ γ dx et de coefficient d'asymétrie b γ donné dans le Théorème 0.3.2.

Les deux premiers résultats sont très proches des résultats du cas poissonien. Par contre, il y a dans le troisième régime une subtilité qui apparaît : étant donné qu'on n'impose pas nécessairement λ(ρ) -→ +∞, on doit en revanche imposer κ(ρ)λ(ρ) -→ +∞ qui nous permet de nous assurer qu'on augmente suffisamment le nombre de clusters dans le cas où le nombre moyen de boules dans chaque cluster ne tend pas vers l'infini. Bien sûr, si λ(ρ) -→ +∞, cette condition est automatiquement vérifiée.

Chapitre 1

Modèle de boules aléatoires déterminantales

Ce chapitre est l'article [START_REF] Breton | Macroscopic analysis of determinantal random balls[END_REF] écrit en collaboration avec Jean-Christophe Breton et Renan Gobard, publié dans la revue Bernoulli en 2019.

Résumé : Nous considérons une collection de boules aléatoires de R d engendrées par un processus ponctuel déterminantal qui induit de la répulsion entre les boules. Nous étudions ce modèle d'un point de vue macroscopique en effectuant un changement d'échelle (qui peut être vu comme un dézoom) et on obtient à la limite trois régimes différents : le Gaussien, le poissonien et le stable, comme dans le modèle où les boules sont engendrées par un processus ponctuel de Poisson. Ceci montre que le changement d'échelle efface la répulsion entre les boules induite par le processus déterminantal. This chapter is the article [START_REF] Breton | Macroscopic analysis of determinantal random balls[END_REF] written in collaboration with Jean-Christophe Breton and Renan Gobard, published in Bernoulli in 2019.

Abstract : We consider a collection of Euclidean random balls in R d generated by a determinantal point process inducing inhibitory interaction into the balls. We study this model at a macroscopic level obtained by a zooming-out and three different regimes -Gaussian, Poissonian and stable-are exhibited as in the Poissonian model without interaction. This shows that the macroscopic behaviour erases the interactions induced by the determinantal point process.

Introduction

A random balls model is a collection B of random Euclidean balls B(x, r) = {y ∈ R d : y -x ≤ r} whose centers x ∈ R d and radii r ∈ R + are generated by a stationary point process Φ in R d × R + . Such models are used to represent a variety of situations. Let us mention a few of them. In dimension one, B can represent the traffic in a communication network. In this case, the (half-)balls are intervals [x, x + r] and represent sessions of connection to the network, x being the date of connection and r the duration of connection. Such a model is investigated in [START_REF] Mikosch | Is network traffic approximated by stable Lévy motion of fractional Brownian motion ?[END_REF] in a Poissonian setting, see also [START_REF] Kaj | Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach[END_REF]. In dimension two, B can represent a wireless network with x being the location of a base station emitting a signal with a range r so that B(x, r) represents the covering area of the station x and the collection B gives the overall covering of the network, cf. [START_REF] Yang | Co-Channel interference modeling in a Poisson field of interferers in wireless communications[END_REF]. The two-dimensional model is used also in imagery to represent Black and White pictures. In dimension three, such models are again used to represent porous media, for instance bones can be modeled in this way and an analysis of the model allows in this case to investigate anomalies such as osteoporosis, see [START_REF] Biermé | Poisson random balls: self similarity and X-ray images[END_REF]. Such random balls model is also known as germ-grain model with spherical grains in stochastic geometry, see the reference book [START_REF] Chiu | Wiley Series in Probability and Statistics[END_REF].

In general in these models, one can think of at least two kinds of question. First, we can describe the geometrical -or morphological-aspect of the collection B of balls and the corresponding continuum percolation problem can be investigated ; we refer to [START_REF] Meester | Continuum percolation, t. 119, Cambridge Tracts in Mathematics[END_REF] for this line of work. The second question deals with scaling limits of aggregative functionals of the model and is the subject of this paper. Such aggregative functionals, that we shall call contributions in the sequel, can be for instance the number of balls covering a site y ∈ R d :

# B(x, r) ∈ B : y ∈ B(x, r) = B∈B δ y (B) = R d ×R + δ y B(x, r) Φ(dx, dr) (1.1)
where, for any set A, δ y (A) = 1 A (y) defines a Dirac measure. Typically in the imagery setting (d = 2), such a quantity gives the level of grey of pixel y ∈ R 2 , see [START_REF] Biermé | Poisson random balls: self similarity and X-ray images[END_REF]. Another example of contribution is given by the sum of the volumes of the balls in restriction to some window W

R d ×R + B(x, r) W Φ(dx, dr), (1.2)
where |•| W stands for the Lebesgue measure restricted to W ∈ B(R d ). Typically in dimension d = 1, such a quantity represents the cumulative workload of some communication network, see [START_REF] Kaj | Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach[END_REF], [START_REF] Mikosch | Is network traffic approximated by stable Lévy motion of fractional Brownian motion ?[END_REF] when Φ is a Poisson point process. More generally, replacing δ y or |•| W in the above integrals (1.1), (1.2) by a finite measure µ gives the so-called contribution of the model B into µ. This shot-noise type functional writes

M (µ) = R d ×R + µ B(x, r) Φ(dx, dr), (1.3)
and will be the basic object of interest of this paper.

So far, these models have been investigated with a Poissonian generating mechanism, i.e. Φ is a (homogeneous) Poisson point process (PPP) with moreover center and radii behaviours being independent. In addition to the above references, let mention also [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF] and [START_REF] Biermé | Self-similar random fields and rescaled random balls models[END_REF] where the d-dimensional model is investigated, and [START_REF] Breton | Rescaled weighted random balls models and stable self-similar random fields[END_REF] where weights are attached to the balls. A slight generalization is introduced in [START_REF] Gobard | Random balls model with dependence[END_REF] where, still in a Poissonian paradigm, but non-homogeneous, the behaviours of the centers and of the radii are no more independent. Let us also mention [START_REF] Heinrich | Normal convergence of multidimensional shot noise and rates of this convergence[END_REF], [START_REF] Klüppelberg | Explosive Poisson shot noise processes with applications to risk reserves[END_REF] and [START_REF] Lane | The central limit theorem for the Poisson shot-noise process[END_REF] for asymptotics in related model for shot-noise processes.

In the present paper, we go beyond the Poissonian setting and consider random balls generated by a stationary determinantal point process. As far as we know, except for the preliminary study [START_REF] Gobard | Fluctuations dans les modèles de boules aléatoires[END_REF] where Ginibre point process (a special case of determinantal point process) is considered to generate the collection B and which is the very origin of this paper, this article presents the first study of a random balls model generated by a determinantal point process, the so-called determinantal random balls. From a wireless network point of view, such a random mechanism is legitimate since it makes sense to install the stations not too close from one another. The repulsiveness of determinantal point processes justly realizes such a characteristic. From a modeling point of view, this choice has been recently explored in [START_REF] Deng | The Ginibre Point Process as a Model for Wireless Networks with Repulsion[END_REF], [START_REF] Miyoshi | A cellular model with Ginibre configured base stations[END_REF] or [START_REF] Li | Statistical modeling and probabilistic analysis of cellular networks model with determinantal point processes[END_REF]. In particular it is shown in [START_REF] Deng | The Ginibre Point Process as a Model for Wireless Networks with Repulsion[END_REF] that a thinned Ginibre point process is capable of modeling many of the actual cellular networks. See also [START_REF] Miyoshi | Tail asymptotics of signal-to-interference ratio distribution in spatial cellular network models[END_REF] for general determinantal point process used in this context.

Let us now be more specific about the macroscopic analysis provided in the sequel : we are interested in the behaviour of M (µ) in (1.3) when a zoom-out is performed in the model. This zooming-out scheme offers at the limit a distant view of the model, erasing the local specificities to make emerge only global characteristics. The scaling performed consists in r → ρr (with rate ρ > 0) changing the ball B(x, r) into B(x, ρr) and the zooming-out is performed with ρ → 0. Obviously, for the model not to vanish under such a scaling, the intensity, say λ, of the point process Φ generating the balls has to be tuned accordingly into λ(ρ) → +∞. In the sequel, this is done by considering a family of point processes Φ ρ , ρ ∈]0, 1], interpreted as a balls model with ρ-scaled radii and λ(ρ)-boosted centers, see details in Section 1.2. A first-level description of the resulting contribution M ρ (µ) in µ is then given by its mean value

E M ρ (µ) = R d ×R + µ B(x, r) n ρ (dx, dr)
where n ρ is the intensity measure of Φ ρ . A finer analysis is given by the fluctuations of M ρ (µ) with respect to its mean value, i.e. the limit of

M ρ (µ) -E M ρ (µ) n(ρ) (1.4)
for a proper normalization n(ρ) when ρ → 0. The limit above is investigated in distribution for each (suitable) measure µ, or, equivalently, because of the linear structure of (1.3) and thanks to the Cramér-Wold device, in the finite-dimensional distributions (fdd) sense. The relative behaviours of the scaling rate ρ and of the balls intensity λ(ρ) will be responsible of the different possible macroscopic regimes. A similar study has been done for the Poissonian random balls model, in which three different regimes -Gaussian, Poissonian and stable-appear at the limit, see [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF][START_REF] Biermé | Self-similar random fields and rescaled random balls models[END_REF]. Our study will justify that these regimes prevail for the determinantal random balls model, exhibiting thus a kind of robustness of these regimes. Actually, since Poisson point processes are the universal limits of stationary and ergodic point processes undergoing standard operations (independent thinning, dilatation), it is not surprising to recover similar asymptotics as the ones for the Poissonian model. We can even expect for these limits to be, in some way, universal.

The article is organized as follows. Section 1.1 gives a detailed presentation of the model investigated. The main results with the macroscopic behaviours (Theorems 1.2.7, 1.2.12, 1.2.15) are stated and proved in Section 1.2. Several final comments are gathered in Section 1.3 on zoom-in asymptotics, α-determinantal/permanental processes and nonstationary random balls model. Finally, Appendix 1.4 provides a very brief account on determinantal point processes with the required results for our analysis.

Determinantal random balls model

The model considered is a collection B of random (Euclidean) balls B(x, r) = y ∈ R d : y -x ≤ r whose centers x ∈ R d and radii r ∈ R + are generated by a marked stationary 1.1. Determinantal random balls model determinantal point process (DPP) Φ on R d × R + . In this section, we describe thoroughly the model and we refer to the Appendix 1.4 for more details on DPPs, in particular see its definition in Def. 1.4.2. First, consider a stationary DPP φ with a continuous kernel K with respect to the Lebesgue measure | • | satisfying K(x, y) = K(x -y) (for simplicity, we use the same letter K for two different functions), moreover we assume that the map

K given for all f ∈ L 2 (R d , dx) and x ∈ R d by Kf (x) = R d K(x, y)f (y) dy (1.5)
satisfies the following hypothesis

Hypothesis 1 The map K in (1.5) is a bounded symmetric integral operator K from L 2 (R d , dx) into L 2 (R d , dx
), with a continuous kernel, and with spectrum included in [0, 1[. Moreover, K is locally trace-class, i.e. for all compact Λ ⊂ E, the restriction

K Λ of K on L 2 (Λ, λ) is of trace-class.
This point process φ generates the centers of the balls and as a DPP exhibits repulsiveness between its particles. To obtain balls, we attach to each center x a (positive) mark interpreted as a radius r, this is done independently and these radii are identically distributed according to a distribution F , assumed to admit a probability density f . The collection of these marks and of the DPP φ forms a marked DPP Φ. According to Proposition 1.4.7, Φ is still a DPP but on R d × R + and with kernel

K (x, r), (y, s) = f (r)K(x, y) f (s),
with respect to the Lebesgue measure. In the sequel, we shall use the notation Φ both for the marked DPP (i.e. the random locally finite collection of points (X i , R i )) and for the associated random measure (X,R)∈Φ δ (X,R) . We consider the contribution of the model in any suitable (signed) measure µ on R d given by the following measure-indexed random field :

M (µ) = R d ×R + µ B(x, r) Φ(dx, dr). (1.6)
Note that from a mathematical point of view, it is not required for the measure µ to be positive and signed measures can be considered. However, in order to ensure that M (µ) in (1.6) is well defined, we restrain to measures µ with finite total variation (see below Proposition 1.1.1). In the sequel, Z(R d ) stands the set of signed (Borelian) measures µ on R d with finite total variation µ var (R d ) < +∞. Moreover as in [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF], assume the following assumption on the radius behaviour, for d < β < 2d,

f (r) ∼ r→+∞ C β r β+1 , r β+1 f (r) ≤ C 0 . (1.7)
Since β > d, condition (1.7) implies that the mean volume of the random ball is finite :

v d +∞ 0 r d f (r) dr < +∞, (1.8) 
where

v d = B(0, 1) = π d/2 /Γ(d/2 + 1)
is the Lebesgue measure of the unit ball of R d . On the contrary, β < 2d implies that F does not admit a moment of order 2d and the volume of the balls has an infinite variance. This is responsible of some kind of long-range dependence in the model, see [32, p. 530] and is in line with communication network models which exhibit interference. The asymptotics condition in (1.7) is of constant use in the following.

Proposition 1.1.1 Assume (1.7) is in force. For all µ ∈ Z(R d ), E [|M (µ)|] < +∞. As a consequence, M (µ) in (1.6
) is almost surely well defined for all µ ∈ Z(R d ).

Proof: Using properties of functionals of random measures (see Section 9.5 in [START_REF] Daley | Introduction to point processes[END_REF]), we have :

E |M (µ)| = R d ×R + µ B(x, r) K (x, r), (x, r) dxdr. Since K (x, r), (x, r) = K(0)f (r), writing µ B(x, r) = R d 1 B(y,r) (x) µ(dy), we have E |M (µ)| ≤ R d ×R + R d 1 B(y,r) (x) |µ|(dy) K(0)f (r) dxdr ≤ K(0) R d +∞ 0 R d 1 B(y,r) (x) dx f (r) dr |µ|(dy) ≤ K(0) B(0, 1) +∞ 0 r d f (r) dr R d |µ|(dy) ≤ v d µ var K(0) +∞ 0 r d f (r) dr .
This concludes the proof thanks to condition (1.8), due to (1.7).

Example 1.1.2 Typical examples of DPPs are given by Bessel point processes and Ginibre point processes.

1. Bessel process. In our real framework, the Bessel-type process is a DPP φ B with kernel

K B (x, y) = Γ(d/2 + 1)
π d/4 J d/2 2 √ πΓ(d/2 + 1) 1/d x -y x -y d/2 , x, y ∈ R d , ( 1.9) 
with respect to the Lebesgue measure, where J d/2 stands for the Bessel function of the first kind. For instance, for d = 1 we have :

K B (x, y) = sin π x -y π x -y .
2. Ginibre process. In our real framework, the Ginibre-type point process φ G is a DPP with kernel

K G (x, y) = exp - 1 2 x -y 2 , x, y ∈ R d ,
with respect to the Lebesgue measure. Such processes have been used recently to model wireless networks of communication, see [START_REF] Deng | The Ginibre Point Process as a Model for Wireless Networks with Repulsion[END_REF], [START_REF] Miyoshi | A cellular model with Ginibre configured base stations[END_REF].

Asymptotics

We now detail our zooming-out procedure. This procedure acts accordingly both on the centers and on the radii (equivalently on the volume of the balls). First, a scaling S ρ : r → ρr of rate ρ ≤ 1 changes balls B(x, r) into B(x, ρr) ; this scaling changes the distribution F of the radius into

F ρ = F • S -1 ρ .
Second, the intensity of the centers is simultaneously adapted ; to do this, we introduce actually a family of new continuous kernels K ρ , ρ ∈]0, 1], that we shall refer to as scaled kernels, such that K ρ (x, y) = K ρ (x-y) and we denote by φ ρ the DPP with kernel K ρ (with respect to the Lebesgue measure). In order to be in line with the scaling procedure investigated in the previous balls models (see [START_REF] Biermé | Self-similar random fields and rescaled random balls models[END_REF], [START_REF] Breton | Rescaled weighted random balls models and stable self-similar random fields[END_REF], [START_REF] Gobard | Random balls model with dependence[END_REF], [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF]), we introduce λ(ρ) given by

K ρ (0) = λ(ρ)K(0) (1.10)
with lim ρ→0 λ(ρ) = +∞. Using (1.42) in Prop. 1.4.6, we have for any ρ > 0,

R d |K ρ (x)| 2 dx = ρ→0 O λ(ρ) . (1.11) Remark 1.2.1
The quantity λ(ρ) introduced in (1.10) can be interpreted as the intensity of (centers of) the balls. Then λ(ρ) → +∞ indicates that there are more and more balls while the volumes of the balls are shrinked (ρ → 0), so that the zooming-out procedure consists of two competitive effects. The property (1.11) gives a control of K ρ (x) for x = 0 and, roughly speaking, means that the correlation of the centers of the balls is suitably controlled by the intensity of the centers.

In summary, the zoom-out procedure consists in considering a new marked DPP Φ ρ on

R d × R + with kernel : K ρ (x, r), (y, s) = f (r/ρ) ρ K ρ (x, y) f (s/ρ) ρ ,
with respect to the Lebesgue measure. The so-called scaled version of M (µ) is then the field

M ρ (µ) = R d ×R + µ B(x, r) Φ ρ (dx, dr).
In the sequel, we are interested in the fluctuations of M ρ (µ) with respect to its expectation

E M ρ (µ) = R d ×R + µ B(x, r) K ρ (0) f (r/ρ) ρ dxdr
and we introduce

M ρ (µ) = M ρ (µ) -E M ρ (µ) = R d ×R + µ B(x, r) Φ ρ (dx, dr), ( 1.12) 
where Φ ρ stands for the compensated random measure associated to Φ ρ .

Example 1.2.2 Continuing Example 1.1.2, we introduce the following family :

1. In the Bessel case, we consider the family of Bessel point processes φ B ρ , ρ ∈]0, 1],

with kernels :

K B ρ (x, y) = λ(ρ)Γ(d/2 + 1)
π d/4 J d/2 2 √ πΓ(d/2 + 1) 1/d λ(ρ) 1/d x -y x -y d/2 (1.13)
with respect to the Lebesgue measure, where λ : R + → R + is a decreasing function with lim ρ→0 λ(ρ) = +∞. In this context, the property (1.11) easily follows from the following asymptotics of the Bessel functions of the first kind (see [START_REF] Arfken | Mathematical Methods for Physicists[END_REF]) :

J α (r) ∼ r→0 1 Γ(α + 1) r 2 α , J α (r) ∼ r→+∞ 2 πr cos r - απ 2 - π 4 .
2. In the Ginibre case, we consider the family of Ginibre point processes φ G ρ , ρ ∈]0, 1], with kernels :

K G ρ (x, y) = λ(ρ) exp - λ(ρ) 2 x -y 2 , x, y ∈ R d , (1.14) 
with respect to the Lebesgue measure, where λ : R + → R + is a decreasing function with lim ρ→0 λ(ρ) = +∞, so that (1.11) is satisfied.

3. We can also consider the thinned and re-scaled Ginibre point process φ G,α (or α-Ginibre point process, see [START_REF] Miyoshi | A cellular model with Ginibre configured base stations[END_REF]) with kernel :

K G,α (x, y) = exp - x -y 2 2α ,
where 0 < α ≤ 1. Such a process is obtained by retaining independently each point of the Ginibre point process with probability α and then applying a scaling to conserve the density (mean number of points by volume unit) of the initial Ginibre point process. This so-called α-Ginibre point process bridges smoothly between the Ginibre point process (α = 1) and the Poisson point process (α → 0). For the scaled version, replace (1.14) by

K G,α ρ (x, y) = λ(ρ) exp - λ(ρ) 2α x -y 2 .

Heuristics

The asymptotic behaviour of M ρ (µ) when ρ → 0 depends on how the scaling rate ρ and the intensity λ(ρ) are tuned. Roughly speaking, three regimes appear according to ρ → 0 faster, slower or well-balanced with respect to λ(ρ) → +∞. Heuristically, the key quantity ruling these regimes is the mean number of large balls, say balls of radii larger than 1 and, say, containing 0 :

E # (x, r) ∈ Φ ρ : 0 ∈ B(x, r), r > 1 = {(x,r) : 0∈B(x,r),r>1} K ρ (x, r), (x, r) dxdr = +∞ 1 B(0,r) K ρ (x, x) f (r/ρ) ρ dxdr = +∞ 1/ρ B(0,ρu) λ(ρ)K(0) dx f (u) du ∼ C β v d K(0)λ(ρ)ρ d +∞ 1/ρ u -1-β+d du ∼ C β v d K(0) β -d λ(ρ)ρ β
using both (1.10), (1.7). Thus the balance between ρ → 0 and λ(ρ) → +∞ is ruled by λ(ρ)ρ β and the three scaling regimes are the following when ρ → 0 :

-Large-balls scaling : λ(ρ)ρ β → +∞. Roughly speaking, large balls prevail at the limit and they shape the limit according to some kind of central limit theorem (CLT). Moreover, since the large balls overlap, this regime yields dependence at the limit. In other words, the limit λ(ρ)ρ β → +∞ acts as if λ(ρ) → +∞ first and ρ → 0 next ; the first limit (λ(ρ) → +∞) corresponds to the superposition of a large number of (overlapping) balls, which in line with a CLT argument, produces a Gaussian limit (with dependence), the second limit (ρ → 0) only shapes the covariance of the Gaussian field. In this context, the proper normalization will be n(ρ) = λ(ρ)ρ β . See Section 1.2.1. -Intermediate scaling : λ(ρ)ρ β → a ∈]0, +∞[. Roughly speaking, there is a proper balance between large and small balls and somehow the limit is incompletely taken and it only consists in an alteration of the generating point process with a dissolving of the interaction resulting in a Poisson point process. In this context, the proper normalization will just be a constant. See Section 1.2.2. -Small-balls scaling : λ(ρ)ρ β → 0. Roughly speaking, small balls prevail. In other words the limit λ(ρ)ρ β → 0 acts as if ρ → 0 first and λ(ρ) → +∞ next. The first limit ρ → 0 is a scaling killing the overlapping and thus producing independence at the limit. Next, with the second limit (λ(ρ) → +∞) the heavy-tails of F enter the picture : the contribution of the non-overlapping balls are in the domain of attraction of a stable distribution producing a stable regime. Moreover, the index of stability γ can be heuristically derived as follows : for a smooth measure µ, we have µ B(x, r) cr d with (β/d)-regular tails under (1.7) and this is responsible for the index of stability γ = β/d. See Section 1.2.3.

General strategy

For the three regimes, the proofs will follow the same idea in Sections 1.2.1, 1.2.2, and 1.2.3 below, and the general strategy is presented. The main tool to study the socalled determinantal integrals (1.6) or (1.12) (integrals with respect to a determinantal random measure) is the Laplace transform given in Theorem 1.4.4. However, this result applies for compactly supported integrands which is not the case in our setting with (x, r) → µ B(x, r) (since when r → +∞, µ B(x, r) → µ(R d )). As a consequence, we consider the following auxiliary truncated process :

M R ρ (µ) = R d ×R + µ B(x, r) 1 {r≤R} Φ ρ (dx, dr), (1.15) 
and the associated compensated determinantal integral M R ρ (µ). Then, for a positive compactly supported measure µ, the application (x, r) → µ B(x, r) 1 {r≤R} is indeed a compactly supported function. In the following, we thus restrain Z(R d ) to Z + c (R d ) the set of positive compactly supported Borelian measures on R d with finite total variation. The relevance in introducing this auxiliary process appears in the following result : Proposition 1.2.3 Assume (1.7) and (1.10). For all µ ∈ Z + c (R d ) and for all ρ > 0, M R ρ (µ) converges in L 1 when R → +∞ to M ρ (µ). Moreover, in the intermediate and the small-balls scalings, there exists a constant ρ 1 > 0, independent of R, such that this convergence is uniform in ρ for ρ ∈]0, ρ 1 [.

Proof: Let µ ∈ Z + c (R d ). By the monotone convergence theorem M R ρ (µ) M ρ (µ) when R → +∞ and by the dominated convergence theorem M R ρ (µ) → M ρ (µ) in L 1 . Next, we have M ρ (µ) -M R ρ (µ) = R d ×R + µ B(x, r) 1 {r>R} Φ ρ (dx, dr),
and thus

E M ρ (µ) -M R ρ (µ) = E R d ×R + µ B(x, r) 1 {r>R} Φ ρ (dx, dr) = R d ×R + µ B(x, r) 1 {r>R} K ρ (x, r), (x, r) dxdr = R d +∞ R µ B(x, r) K ρ (x, x) f (r/ρ) ρ dxdr = λ(ρ)K(0) R d +∞ R µ B(x, r) f (r/ρ) ρ dxdr.
But with Fubini theorem and a change of variables

R d +∞ R R d 1 B(x,r) (y) f (r/ρ) ρ µ(dy)dxdr = R d +∞ R v d r d f (r/ρ) ρ drµ(dy) = v d µ(R d )ρ d +∞ R/ρ u d f (u) du.
From (1.7), we have f (u) ≤ C 0 /u β+1 and when ρ < 1,

ρ d +∞ R/ρ u d f (u) du ≤ ρ d +∞ R/ρ u d C 0 u 1+β du = C 0 β -d R d-β ρ β so that E M ρ (µ) -M R ρ (µ) ≤ C 0 β -d R d-β λ(ρ)ρ β K(0)v d µ(R d ).
Under the intermediate and small scalings, since λ(ρ)ρ β -→ ρ→0 a ∈ [0, +∞[, there exists

ρ 1 > 0 such that λ(ρ)ρ β ≤ 2a for ρ ∈]0, ρ 1 [. Thus, for ρ ∈]0, ρ 1 [ we have E M ρ (µ) -M R ρ (µ) ≤ C 0 β -d R d-β 2aK(0)v d µ(R d ),
which goes to 0 when R → +∞ uniformly in ρ ∈]0, ρ 1 [. This uniform convergence is crucial in order to interchange the limit in ρ and the limit in R whenever lim ρ→0 M R ρ (µ) exists :

lim ρ→0 L M ρ (µ) = lim ρ→0 lim R→+∞ L M R ρ (µ) = lim R→+∞ lim ρ→0 L M R ρ (µ) . (1.16)
The strategy is now clear to obtain lim ρ→0 M ρ (µ) : (i) first, take lim ρ→0 M R ρ (µ) and (ii) next take the limit in R → +∞. In order to realize (i), we use the Laplace transform of a DPP (1.40) and the expansion (1.38) of the corresponding Fredholm determinant. In this expansion, the first term (for n = 1) is identified as a Poissonian term for which the asymptotics of the Poissonian model applies and the remaining terms (n ≥ 2) are shown to be asymptotically negligible. Next, (ii) properly shapes the limit with R → +∞.

However in order to realize (i), it is required to investigate the convergence of M R ρ (µ) when ρ → 0 on a restricted class of measures µ that we introduce now. Definition 1.2. [START_REF] Biermé | Poisson random balls: self similarity and X-ray images[END_REF] The set M + β consists of positive measures µ ∈ Z + c (R d ) such that there exist two real numbers p and q with 0 < p < β < q ≤ 2d and a positive constant C µ such that

R d µ B(x, r) 2 dx ≤ C µ r p ∧ r q , (1.17)
where a ∧ b = min(a, b).

The controls in (1.17) by both r p and r q are required to ensure that our quantities are well defined (see Proposition 1.2.5-(i)) ; however in the sequel, only the control by r q will be used. This definition is reminiscent of M 2,β in [START_REF] Breton | Rescaled weighted random balls models and stable self-similar random fields[END_REF]. It is immediate that Dirac measures do not belong to M + β . However absolutely continuous measures with respect to the Lebesgue measure, with density ϕ ∈ L 2 (R d ) with compact support, do belong to M + β and will play an important role in the small-balls scaling. In this case, we shall abusively write µ ∈ L 2 c (R d ) (here, the index c stands for compact support) . Recall the following properties on M + β from Propositions 2.2 and 2.3 from [START_REF] Breton | Rescaled weighted random balls models and stable self-similar random fields[END_REF] :

Proposition 1.2.5 (i) The set M + β is a linear subspace of Z + c (R d ) and, for all µ ∈ M + β , R d ×R + µ B(x, r) 2 r -β-1 dxdr < +∞. (ii) If d < β < 2d, then L 2 c (R d ) ⊂ M + β and for all µ ∈ L 2 c (R d ) : R d µ B(x, r) 2 dx ≤ C µ r d ∧ r 2d .
Moreover, M + β is closed under translations, rotations and dilatations and is included in the subspace of diffuse measures, see Proposition 2.3 and Proposition 2.4 in [START_REF] Breton | Rescaled weighted random balls models and stable self-similar random fields[END_REF] for details. See also [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF]Section 2.2] for a sufficient condition to belong to M + β in terms of the Riesz energy of a measure.

Large-balls scaling

In this section, we first investigate the behaviour of M R ρ (µ) in (1.15) under the largeballs scaling λ(ρ)ρ β → +∞ when ρ → 0. In this section, set n(ρ) = λ(ρ)ρ β 1/2 . As explained previously, the superposition due to λ(ρ) → +∞ acts firstly producing a Gaussian field W R with a CLT type argument. Next, let R → +∞ to obtain the asymptotic behaviour of M ρ (µ) according to (1.16). The field obtained is given by a Gaussian integral similar to that of Theorem 1.2.6 (see also Theorem 2 (i) in [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF]).

Theorem 1.2.7 (Large-balls scaling asymptotics) Assume (1.7) and the kernels K ρ satisfy (1.10) and Hypothesis 1 for their associated operators K ρ in (1.5). Suppose λ(ρ)ρ β → +∞ when ρ → 0, then the field n(ρ) -1 M ρ (•) converges in finitedimensional distributions sense to W (•) in the space M + β where

W (µ) = R d ×R + µ B(x, r) M 2 (dx, dr),
with a centered Gaussian random measure M 2 with control measure K(0)C β r -β-1 dxdr.

Following our strategy, we start with the asymptotics of M R ρ (µ) :

Proposition 1.2.8 Suppose λ(ρ)ρ β → +∞ when ρ → 0. Then, for all fixed R > 0 and

for all µ ∈ M + β , n(ρ) -1 M R ρ (µ) converges in distribution when ρ → 0 to W R (µ) = R d ×R + µ B(x, r) 1 {r≤R} M 2 (dx, dr),
uniformly in R, where M 2 is the same centered Gaussian random measure as in Theorem 1.2.7.

Proof:

The convergence in distribution of M R ρ (µ) for µ ∈ M + β is shown by the convergence of its Laplace transform : for θ ≥ 0

E exp -θn(ρ) -1 M R ρ (µ) = exp θE[n(ρ) -1 M R ρ (µ)] E exp -θn(ρ) -1 M R ρ (µ) . (1.18) Since M R ρ given in (1.15
) is a determinantal integral with a compactly supported (say in Λ R µ ) integrand g R µ (x, r) := µ B(x, r) 1 {r≤R} , and the kernel K ρ satisfying Hypothesis 1, its Laplace transform is given by Theorem 1.4.4 :

E exp -θn(ρ) -1 M R ρ (µ) = Det I -K ρ 1 -e -θn(ρ) -1 g R µ = exp - n≥1 1 n Tr K ρ 1 -e -θn(ρ) -1 g R µ n
, (1.19) where

K ρ 1 -e -θn(ρ) -1 g R µ is the bounded operator of L 2 (R d × R + ) given in (1.41).
We compute the first trace in the sum in (1. [START_REF] Dvorák | Two-step estimation procedures for inhomogeneous shot-noise Cox processes[END_REF]) with Proposition 1.4.5 applied with the DPP Φ ρ with kernel K ρ on R d × R + restricted on the compact Λ R µ and the function 1 -e -θn(ρ) -1 g R µ (see Proposition 1.4.5) :

Tr K ρ 1 -e -θn(ρ) -1 g R µ = E R d ×R + (1 -e -θn(ρ) -1 g R µ ) Φ ρ (dx, dr) = R d ×R + 1 -e -θn(ρ) -1 µ(B(x,r))1 {r≤R} K ρ (x, x) f (r/ρ) ρ dxdr.
With (1.10), this term for n = 1 combines with the factor exp θE[n(ρ

) -1 M R ρ (µ)] of (1.18) into exp R d ×R + ψ θn(ρ) -1 g R µ λ(ρ)K(0) f (r/ρ) ρ dxdr , with ψ(u) = e -u -1 + u. The Laplace transform of n(ρ) -1 M R ρ (µ) in (1.18) thus rewrites E exp -θn(ρ) -1 M R ρ (µ) = exp R d ×R + ψ θn(ρ) -1 g R µ λ(ρ)K(0) f (r/ρ) ρ dxdr × exp - n≥2 1 n Tr K ρ 1 -e -θn(ρ) -1 g R µ n
. (1.20) First, we deal with the first exponential term in (1.20) : the key point is that this is the Laplace transform of n(ρ)

-1 P R ρ (µ) with P R ρ (µ) = R d ×R + µ B(x, r) 1 {r≤R} Π ρ (dx, dr), (1.21)
where Π ρ is a compensated Poisson random measure on R d × R + with intensity

λ(ρ)K(0) f (r/ρ) ρ dxdr.
From (i) in Theorem 1.2.6 (Theorem 2-(i) in [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF]), (1.21) converges in distribution when ρ → 0 to the Gaussian integral W R (µ). We show now that this convergence is actually uniform in R, to that way, consider the difference of the log-Laplace transform of n(ρ) -1 P R ρ (µ) and of W R (µ) :

log E exp n(ρ) -1 P R ρ (µ) -log E exp W R (µ) ≤ R d ×R + ψ n(ρ) -1 µ B(x, r) 1 {r≤R} λ(ρ)K(0) f (r/ρ) ρ - µ B(x, r) 2 2 1 {r≤R} C β K(0) r β+1 dxdr ≤ R d ×R + ψ n(ρ) -1 µ B(x, r) 1 {r≤R} λ(ρ)K(0) f (r/ρ) ρ - µ B(x, r) 2 2 1 {r≤R} C β K(0) r β+1 dxdr. (1.22)
Since ψ(u) ∼ u 2 2 when u → 0 and since n(ρ) = λ(ρ)ρ β 1/2 → +∞ when ρ → 0, using the tails behaviour (1.7), we have :

ψ n(ρ) -1 µ B(x, r) λ(ρ)K(0) f (r/ρ) ρ ∼ ρ→0 µ B(x, r) 2 2n(ρ) 2 λ(ρ)K(0) C β ρ β r β+1 = µ B(x, r) 2 2 K(0) C β r β+1 ,
proving that the integrand in (1.22) converges to 0. Moreover, using (1.7) and ψ(x) ≤ x 2 /2 for x ≥ 0, for all r and for all ρ > 0, we have :

ψ n(ρ) -1 µ B(x, r) λ(ρ)K(0) f (r/ρ) ρ - µ B(x, r) 2 2 C β K(0) r β+1 ≤ µ B(x, r) 2 2n(ρ) 2 λ(ρ)K(0) f (r/ρ) ρ + µ B(x, r) 2 2 C β K(0) r β+1 ≤ K(0)(C 0 + C β ) µ B(x, r) 2 2r β+1 ,
which is integrable over R d × R + according to Proposition 1.2.5. Then, the dominated convergence theorem ensures that (1.22) converges to 0 when ρ → 0. Moreover, since it does not depend on R, the convergence of n(ρ)

-1 P R ρ (µ) to W R (µ) is uniform in R.
for the second integral in (1.25), we have

R d ×R d 1 -e -θn(ρ) -1 g R µ (x,r) 1 -e -θn(ρ) -1 g R µ (z,t) |K ρ (x, z)| 2 dxdz ≤ C K θ 2 λ(ρ) n(ρ) 2 1 {r≤R} 1 {t≤R} C µ r q/2 t q/2 .
As a consequence, the bound (1.24) continues as follows

Tr K ρ 1 -e -θn(ρ) -1 g R µ 2 ≤ C K θ 2 λ(ρ) n(ρ) 2 (R + ) 2 1 {r≤R} 1 {t≤R} C µ r q/2 t q/2 f (r/ρ) ρ f (t/ρ) ρ drdt = C K C µ θ 2 λ(ρ) n(ρ) 2 R 0 r q/2 f (r/ρ) ρ dr 2 = C K C µ θ 2 λ(ρ)ρ q n(ρ) 2 R/ρ 0 r q/2 f (r)dr 2 .
But since f is integrable and q ≤ 2d (Definition 1.2.4) the finite volume condition (1.8) entails

R/ρ 0 r q/2 f (r) dr ≤ C f := +∞ 0 r q/2 f (r) dr < +∞.
We continue following the strategy exposed page 57. Since the convergence in ρ in Proposition 1.2.8 is uniform in R, the interchange (1.16) applies and we obtain :

lim ρ→0 L n(ρ) -1 M ρ (µ) = lim ρ→0 lim R→+∞ L n(ρ) -1 M R ρ (µ) = lim R→+∞ L W R (µ) .
It remains now to identify lim R→+∞ W R (µ), this is done in the following proposition :

Proposition 1.2.11 For all µ ∈ M + β , W R (µ) converges in probability when R → +∞ to W (µ) = R d ×R + µ B(x, r) M 2 (dx, dr),
where M 2 is the same centered Gaussian random measure as in Theorem 1.2.7.

Proof: Since W R (µ) and W (µ) are both integral with respect to the same Gaussian measure M 2 , we have :

W (µ) -W R (µ) = R d ×R + µ B(x, r) 1 {r>R} M 2 (dx, dr),
Roughly speaking, as in the Poissonian case (see (ii) in Theorem 1.2.6, or Theorem 2-(ii) in [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF]), the limit corresponds to take the limit in the intensity of the underlying random measure. The result states as follows :

Proposition 1.2.13 Suppose λ(ρ)ρ β → a ∈]0, +∞[ when ρ → 0. Then, for all µ ∈ M + β and R > 0, M R ρ (µ) converges in distribution to

P R • D a (µ) = R d ×R + (D a µ) B(x, r) 1 {r≤R} Π(dx, dr),
where Π is the same compensated Poisson random measure as in Theorem 1.2.12.

Proof: The proof follows the same scheme as for Proposition 1.2.8. Recall that in this context, n(ρ) = 1 is set. The Laplace transform of M R ρ (µ) is given by (1.20), i.e.

E exp -θ M R ρ (µ) = exp R d ×R + ψ θµ B(x, r) 1 {r≤R} K ρ (x, x) f (r/ρ) ρ dxdr × exp - n≥2 1 n Tr K ρ 1 -e -θg R µ n . (1.28)
The first exponential in (1.28) is the Laplace transform of

P R ρ (µ) = R d ×R + µ B(x, r) 1 {r≤R} Π ρ (dx, dr),
where Π ρ is a compensated Poisson random measure on R d × R + with intensity measure λ(ρ)K(0) f (r/ρ) ρ dxdr. From (ii) in Theorem 1.2.6 (see also Theorem 2-(i) in [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF]), under Condition (1.7), when lim ρ→0 λ(ρ)ρ β = a d-β ∈]0, +∞[, this process converges to

P R • D a (µ) = R d ×R + (D a µ) B(x, r) 1 {r≤R} Π(dx, dr),
where Π is a compensated Poisson random measure on R d × R + with intensity measure K(0)r -β-1 dxdr. In particular, we have :

lim ρ→0 exp R d ×R + ψ θµ B(x, r) 1 {r≤R} K ρ (x, x) f (r/ρ) ρ dxdr = E exp -θ P R •D a (µ) .
The proof is completed by showing that the second exponential term in (1.28) converges to 1. Proceeding as in the proof of Proposition 1.2.8, with n(ρ) = 1, Lemma 1.2.10 entails

Tr K ρ 1 -e -θg R µ 2 ≤ C K C µ C f θ 2 λ(ρ)ρ q
which goes to 0 since lim ρ→0 λ(ρ)ρ q = 0 for q > β. As a consequence

lim ρ→0 Tr K ρ 1 -e -θg R µ 2 = 0.
Then, with Lemma 1.2.9, we still have for every n ≥ 2

Tr K ρ 1 -e -θg R µ n ≤ Tr K ρ 1 -e -θg R µ 2 n/2
, and the second exponential term in (1.28) converges to 1, as in the proof of Proposition 1.2.8, page 65, this concludes the proof of Proposition 1.2.13.

Combining Proposition 1.2.13 with the interchange (1.16), we have :

lim ρ→0 L M ρ (µ) = lim R→+∞ lim ρ→0 L M R ρ (µ) = lim R→+∞ L P R (µ) .
It remains now to identify lim R→+∞ P R (µ), this is done in the following proposition :

Proposition 1.2.14 For all µ ∈ M + β , P R (µ) converges in L 1 when R → +∞ to

P (µ) = R d ×R + µ B(x, r) Π(dx, dr),
where Π is the same compensated Poisson random measure as in Theorem 1.2.12.

Proof: Since P R (µ) and P (µ) are poissonian integrals with respect to the same measure Π, we have :

P R (µ) -P (µ) = R d ×R + µ B(x, r) 1 {r>R} Π(dx, dr) ,
and

E P R (µ) -P (µ) ≤ 2 R d ×R + µ B(x, r) 1 {r>R} K(0)r -β-1 dxdr ≤ 2v d µ(R d )K(0) +∞ R r d-β-1 dr = 2v d µ(R d )K(0) (β -d)R β-d -→ 0, R → +∞.
So far, all the intermediate results are obtained to prove Theorem 1.2.12 :

Proof:[Th. 1.2.12] The one-dimensional convergence is obtained by the combination of (1.16) with Proposition 1.2.3, Proposition 1.2.13 and Proposition 1.2.14. Since the fields M ρ and P are both linear on M + β , using the Cramér-Wold device and the linear structure of M β , we have immediately the convergence of the finite-dimensional distributions from the one-dimensional convergence.

Small-balls scaling

This section investigates the asymptotics of M R ρ (µ) under the small-balls scaling, i.e. when lim ρ→0 λ(ρ)ρ β = 0. In this section, set n(ρ) = λ(ρ)ρ β 1/γ with γ := β/d ∈]1, 2[. We deal first with the limit in ρ of the truncated field M R ρ (µ). In this case, the obtained limit does not depend on R, roughly speaking this is due to the fast decreasing of the rescaled radii ρr since ρ → 0 very fast in this regime. The limiting field thus obtained is a stable integral similar to the one obtained for the Poissonian model in (iii) of Theorem 1.2.6 (cf. also Theorem 2-(iii) in [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF] and cf. [START_REF] Samorodnitsky | Stable Non-Gaussian Random Processes[END_REF] for notations on stable integrals). In this case, the limit is driven by small balls and this requires to consider smooth measure µ(dx) = ϕ(x)dx. Roughly speaking, if the measure µ were, for instance, atomic, there will be a possibility for the small balls driving the asymptotics to not charge µ and M (µ) would vanish.

Theorem 1.2.15 Assume (1.7) and the kernels K ρ satisfy (1.10) and Hypothesis 1 for their associated operators K ρ in (1.5). Suppose λ(ρ)ρ β → 0 when ρ → 0. Then, the field

n(ρ) -1 M ρ (•) converges in the finite-dimensional distributions sense when ρ → 0 to Z(•) in L 2 c (R d )
where

Z(µ) = R d ϕ(x)M γ (dx), for µ(dx) = ϕ(x)dx,
with M γ a γ-stable measure with control measure σ γ dx where

σ γ = K(0)C β v γ d d +∞ 0 1 -cos(r) r 1+γ dr,
and constant unit skewness.

First, we have : Proposition 1.2.16 Suppose λ(ρ)ρ β → 0 when ρ → 0 and set n(ρ) = λ(ρ)ρ β 1/γ . Then, for all R > 0 and for all µ

∈ L 1 (R d ) ∩ L 2 (R d ), writing µ(dx) = ϕ(x)dx, n(ρ) -1 M R ρ (µ) converges in the finite-dimensional distributions sense when ρ → 0 to Z(µ) = R d ϕ(x)M γ (dx),
where M γ is the same γ-stable measure as in Theorem 1.2.15.

Proof: Recall the Laplace transform of M R ρ (µ) is given in (1.20) : E exp -θn(ρ) -1 M R ρ (µ) = exp R d ×R + ψ θn(ρ) -1 g R µ K ρ (x, x) f (r/ρ) ρ dxdr × exp - n≥2 1 n Tr K ρ 1 -e -θn(ρ) -1 g R µ n .
The first exponential term is still the Laplace transform of n(ρ) -1 P ρ (µ) where P ρ (µ) is the compensated Poissonian integral (1.21). With the change of variable r = n(ρ) 1/d s, this log-Laplace transform becomes :

R d ×R + ψ θn(ρ) -1 µ B x, n(ρ) 1/d s 1 {s<n(ρ) -1/d R} λ(ρ)K(0)n(ρ) 1/d f sn(ρ) 1/d /ρ ρ dxds.
(1.29) For µ(dx) = ϕ(x)dx with ϕ ∈ L 2 c (R d ), then the following Lemma from [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF] entails

lim ρ→0 θn(ρ) -1 µ B x, n(ρ) 1/d s 1 {s<n(ρ) -1/d R} = θϕ(x)v d s d ,
dx-almost everywhere and

x → sup r>0 µ B(x, r) v d r d ∈ L 2 (R d ).
Lemma 1.2.17 (Lemma 4 in [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF]) Let C be a bounded Borelian set in R d with Lebesgue measure |C| = 1.

(i) If ϕ ∈ L 1 , then lim v→0 v -1 x+v 1/d C ϕ(y) dy = ϕ(x) for dx-almost all x. (ii) If ϕ ∈ L 1 , then ϕ * (x) := sup v>0 v -1 x+v 1/d C |ϕ(y)| dy < +∞ for dx-almost all x.
(iii) Moreover if ϕ ∈ L p for some p > 1 then ϕ * ∈ L p .

Comments

Then, using the very argument of the proof of Theorem 2 in [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF] (see also the proof of Theorem 2.16 in [START_REF] Breton | Rescaled weighted random balls models and stable self-similar random fields[END_REF])

R d ×R + ψ θn(ρ) -1 µ B(x, n(ρ) 1/d r) 1 {r<n(ρ) -1/d R} λ(ρ)K(0)n(ρ) 1/d f (rn(ρ) 1/d /ρ) ρ dxdr ∼ ρ→0 λ(ρ)K(0) R d ×R + ψ θϕ(x)v d r d n(ρ) 1/d f (rn(ρ) 1/d /ρ) ρ dxdr.
(1.30)

Using now the proof of Theorem 2 in [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF] under the small-ball scaling, the right-hand side in (1.29) converges to the Laplace transform of Z(µ). This implies that the random variable n(ρ) -1 P ρ (µ) converges in distribution to Z(µ).

The proof is completed by showing that the second exponential term in (1.29) converges to 1. Using the same conclusion as in the proof of Proposition 1.2.8 page 65 with Lemma 1.2.9, it is enough to show that for this regime we still have

lim ρ→0 Tr K ρ 1 -e -θn(ρ) -1 g R µ 2 = 0.
Since we consider µ ∈ L 2 c (R d ), we have also µ ∈ L 1 (R d ) and Proposition 1.2.5-(ii) ensures that we can take here q = 2d and then Lemma 1.2.10 writes with n(ρ) = (λ(ρ)ρ β ) 1/γ :

Tr K ρ 1 -e -θn(ρ) -1 g R µ 2 ≤ C K C µ C f θ 2 λ(ρ)ρ 2d n(ρ) 2 = C K C µ C f θ 2 λ(ρ) (β-2d)/β ,
which goes to 0 when ρ → 0 since β < 2d.

So far, all the intermediate results are obtained to finish the proof of Theorem 1.2.15 as for Theorem 1.2.7 and Theorem 1.2.12.

Comments 1.3.1 Zoom-in asymptotics

For the Poisson random balls model, the study of the microscopic fluctuations obtained in [START_REF] Biermé | Poisson random balls: self similarity and X-ray images[END_REF] by zooming-in instead of zooming-out, leads to very similar results to those obtained in the macroscopic behaviour in [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF] under the large-ball scaling and the intermediate scaling. This similarity is the origin of the unified approach for both types of scaling in [START_REF] Biermé | Self-similar random fields and rescaled random balls models[END_REF], used also in the weighted model in [START_REF] Breton | Rescaled weighted random balls models and stable self-similar random fields[END_REF]. In the microscopic point of view, this is the behaviour of small balls which matters and this is encapsulated in [START_REF] Biermé | Self-similar random fields and rescaled random balls models[END_REF] in the following condition on small radii : f (r) ∼ r→0 1 r β+1 . In this case, f cannot be a probability density nor be integrable. Consequently, we cannot study a determinantal random balls model under a zoom-in procedure. Indeed, even if we were to consider a marked DPP on R d × R + with kernel

K (x, r), (y, s) = f (r)K(x, y) f (s), (1.31)
where K is a determinantal kernel on R d and f is a function on R + satisfying condition (1.7), this DPP would have no chance to satisfy Hypothesis 1 when f is not integrable.

α-determinantal and α-permanental processes

The DPPs actually belong to a larger class of point processes, the so-called α-determinantal/permanental processes. When α > 0, such processes exhibit attraction between their particles, and when α < 0, they exhibit repulsiveness. When α = -1, the (usual) DPPs are recovered while the case α = 1 corresponds to permanental processes. The definitions of α-determinantal/permanental processes follow the same lines as in Def. 1.4.2 but with the determinant replaced by an α-determinant. Recall that for a matrix A = (a i,j ) 1≤i,j≤n and α ∈ R, its α-determinant is defined by

det α A = σ∈Sn α n-ν(σ) n i=1 a i,σ(i) , (1.32)
where S n is the symmetric group of permutation of {1, . . . , n} and ν(σ) is the number of cycles in σ ∈ S n . When α = -1 (resp. α = 1), (1.32) defines the (standard) determinant (resp. permanent) of A :

det -1 A = det A, det 1 A = perm A.
The following result from [START_REF] Shirai | Random point fields associated with certain Fredholm determinants I: fermion, Poisson and boson point processes[END_REF] extends Theorem 1.4.4 and proves the existence of such processes for some α's and it gives their Laplace transform :

Theorem 1.3.1 (Th. 1.2 in [START_REF] Shirai | Random point fields associated with certain Fredholm determinants I: fermion, Poisson and boson point processes[END_REF]) Let E be a Polish space equipped with a diffuse Radon measure λ and K be a bounded symmetric integral operator on L 2 (E, λ) satisfying Hypothesis 1. Then for α ∈ {2/m : m ∈ N} ∪ {-1/m : m ∈ N}, there exists a unique

1.3. Comments point process φ such that E exp -f (x) φ(dx) = Det I + αK 1 -e -f -1/α , (1.33)
for each compactly supported measurable f : E → R + where K[1 -e -f ] still stands for the kernel (1.41). Moreover, φ is a simple point process whose joint intensities are given by

ρ n,α,K (x 1 , x 2 , . . . , x n ) = det α K(x i , x j ) 1≤i,j≤n
.

Like for (1.39) below in the Appendix (for α = -1), for a trace-class operator T with αT < 1, the Fredholm determinant of I -αT expands in terms of α-determinant

Det I -αT -1/α = +∞ n=0 1 n! E n det α (T (x i , x j )) 1≤i,j≤n λ ⊗n (dx 1 , . . . , dx n ).
Using the expansion (1.38) of the Fredholm determinant of the Laplace transform (1.33), our arguments can be carried out similarly for α-determinantal/permanental processes. Indeed, since |α| ≤ 1, the terms for n ≥ 2 can be similarly bounded and are still asymptotically negligible while the term n = 1 is obviously the same Poissonian term. As a consequence, Theorems 1.2.7, 1.2.12, 1.2.15 have natural generalizations to α-determinantal or α-permanental processes.

Non-stationary determinantal random balls model

With slight modifications, our main results remain true for non-stationary determinantal random balls models. Consider a determinantal process φ with kernel K(x, y) still satisfying Hypothesis 1 but also

x -→ K(x, x) ∈ L ∞ (R d ).
(1.34)

The zoom-out procedure consists now in introducing the family of DPPs φ ρ , ρ ∈]0, 1], with kernels K ρ with respect to the Lebesgue measure satisfying

K ρ (x, x) ∼ ρ→0 λ(ρ)K(x, x), (1.35)
with lim ρ→0 λ(ρ) = +∞. We also replace (1.10) by 

sup x∈R d K ρ (x, x) ≤ λ(ρ) sup x∈R d K(x, x), ( 1 
(ρ) = λ(ρ)ρ β 1/2
. Then, M ρ (•)/n(ρ) converges in the fdd sense on M + β to W where

W (µ) = R d ×R + µ B(x, r) M 2 (dx, dr),
and M 2 is a centered Gaussian random measure with control measure K(x, x)C β r -β-1 dxdr.

(ii) Intermediate scaling : Assume λ(ρ)ρ β → a d-β ∈]0, +∞[ and set n(ρ) = 1. Then, M ρ (•)/n(ρ) converges in the fdd sense on M + β to P • D a where

P (µ) = R d ×R + µ B(x, r) Π(dx, dr),
with Π a (compensated) PPP with compensator measure K(x, x)C β r -β-1 dxdr and D a is the dilatation defined by

(D a µ)(B) = µ(a -1 B).
(iii) Small-balls scaling : Suppose λ(ρ)ρ β → 0 when ρ → 0 and set n(ρ) = (λ(ρ)ρ β ) 1/γ with γ = β/d. Then, the field n(ρ

) -1 M ρ (•) converges in the finite-dimensional dis- tributions sense when ρ → 0 to Z(•) in L 2 c (R d )
where

Z(µ) = R d ϕ(x)M γ (dx), for µ(dx) = ϕ(x)dx,
with M γ a γ-stable measure with control measure σ γ K(x, x)dx where

σ γ = C β v γ d d +∞ 0 1 -cos(r) r 1+γ dr,
and constant unit skewness.

In this non-stationary case, the proof follows the same general strategy as in page 57 but with technical details requiring (1.34), (1.36), (1.37). Roughly speaking, the limits are driven by the term n = 1 in (1.19) while the other terms (n ≥ 2) are still negligible. Note that, in this non-stationary setting, the Poissonian limits for n = 1 come now from [START_REF] Gobard | Random balls model with dependence[END_REF] (with G = δ 1 therein) instead of [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF]. Details are left to the interested readers.

Appendix : (Marked) Determinantal Point Processes

In this section, we give a short presentation of determinantal point processes (DPPs). For a general reference on point processes, we refer to the two volumes book [START_REF] Daley | Introduction to point processes[END_REF] and for a specific reference on DPPs, we refer to [START_REF] Hough | Zeros of Gaussian Analytic Functions and Determinantal Point Processes[END_REF]. DPPs form a special class of point processes that exhibit repulsiveness between their points. Recall that, by definition, a point process ξ is a random locally finite collection of points. As it is customary done, we identify such random collection ξ with the corresponding random counting measure x∈ξ δ x . Below, we consider a point process ξ in, say, some Polish space E. In the sequel, to avoid any ambiguity, the points of the process are called particles. In the following, simple point processes, for which almost surely its particles are all distinct, are considered. Considering a reference Borel measure µ on E, the distribution law of ξ is, in general, characterized by its joint intensities. 

E k i=1 ξ(D i ) = k i=1 D i ρ k (x 1 , . . . , x k ) µ(dx 1 ) . . . µ(dx k ),
we call them joint intensities with respect to µ. Moreover, we require ρ k (x 1 , . . . , x k ) = 0 whenever x i = x j for some i = j.

Roughly speaking, ρ k (x 1 , . . . , x k ) can be interpreted as the (infinitesimal) probability for ξ to have particles in each x 1 , . . . , x k . For example, for a homogeneous Poisson point process (PPP), the joint intensities are constant while for a general (but diffuse) PPP with intensity function λ, we have ρ k (x 1 , . . . , x k ) = λ(x 1 ) . . . λ(x k ). For a DPP, the joint intensities are given by a certain determinant of a measurable function K : E 2 → R, called its kernel and characterizing the process, hence its name. Definition 1.4.2 A point process ξ on E is said to be a determinantal point process with kernel K if it is simple and its joint intensities write for all k ≥ 1 and all x 1 , . . . , x k ∈ E :

ρ k (x 1 , . . . , x k ) = det K(x i , x j ) 1≤i,j≤k := det[K](x 1 , . . . , x k ).
See Theorem 1.4.4 below for conditions ensuring the existence of such processes. Observe that the repulsiveness exhibited by a DPP can be read on its joint intensity of second order. Indeed, if K is continuous and x 1 , x 2 ∈ E, the more they will be close to each other, the more the determinant of K(x i , x j ) 1≤i,j≤2 will be close to 0. Thus, ρ 2 (x 1 , x 2 ) ≈ 0 whenever x 1 ≈ x 2 . This implies that, if there is a particle of the process in x 1 , the probability that there is another particle in the close vicinity of x 1 is small. For a homogeneous PPP, the constant intensities show that the particles are independently drawn.

An important class of DPPs is the class of those whose kernel satisfies special properties (see Hypothesis 2 below). Note that Hypothesis 1 -the basic hypothesis of our settingis a specialization of Hypothesis 2 in our setting (E = R d , µ = dx). For that purpose, recall that, for a non-negative operator T on a separable Hilbert space H equipped with the scalar product •, • , its trace is given by

Tr(T ) = +∞ n=1 T e n , e n ,
where (e n ) n≥1 is (any) complete orthonormal (CONB in shorts) system of H. In particular, T is said to be a trace-class operator if

T 1 := Tr |T | < +∞,
where |T | = √ T * T . The hypothesis on the kernel K writes (see Assumption 4.2.3 in [START_REF] Hough | Zeros of Gaussian Analytic Functions and Determinantal Point Processes[END_REF] or Condition A in [START_REF] Shirai | Random point fields associated with certain Fredholm determinants I: fermion, Poisson and boson point processes[END_REF]) :

Hypothesis 2 The Polish space E is equipped with a Radon σ-finite measure λ. The map K is an operator from L 2 (E, λ) into L 2 (E, λ) satisfying the following conditions :

(i) K is a bounded symmetric integral operator on L 2 (E, λ) with a continuous kernel K, i.e., for any x ∈ E and any f ∈ L 2 (E, λ),

Kf (x) = E K(x, y)f (y) λ(dy). (ii) The spectrum of K is included in [0, 1[. (iii)
The map K is locally trace-class, i.e. for all compact Λ ⊂ E, the restriction

K Λ of K on L 2 (Λ, λ) is of trace-class. Remark 1.4.3 If K is the kernel of a map K satisfying Hypothesis 2, then x → K(x, x)
is nonnegative.

In our argument, the limit in distribution of quantities (1.4) 

Det I + T = +∞ n=0 1 n! E n det (T (x i , x j )) 1≤i,j≤n λ ⊗n (dx 1 , . . . , dx n ).
(1.39) Theorem 1.4.4 (Th. 1.2 in [START_REF] Shirai | Random point fields associated with certain Fredholm determinants I: fermion, Poisson and boson point processes[END_REF]) Let E be a Polish space equipped with a diffuse Radon measure λ and K be a bounded symmetric integral operator on L 2 (E, λ) satisfying Hypothesis 2. Then there exists a unique DPP φ as in Definition 1.4.2 and its Laplace transform is given for each compactly supported measurable f :

E → R + by E exp -f (x) φ(dx) = Det I -K 1 -e -f , (1.40)
where K[1 -e -f ] is the operator with kernel

K 1 -e -f (x, y) = 1 -exp(-f (x)) K(x, y) 1 -exp(-f (y)). (1.41)
The following result is obtained by differentiation of the Laplace transform :

Proposition 1.4.5 Let φ be a DPP on a Polish space E with kernel K satisfying Hypothesis 2 with respect to a measure λ on E. For any compact set Λ of E and any non-negative function f defined on E, we have

E Λ f dφ = Λ f (x)K(x, x) λ(dx) = Tr K Λ [f ] .
The following control of the kernel K has some importance in our setting (see (1.11) above). For the shake of completeness, we provide its proof (see also Lemma 3.2 in [START_REF] Miyoshi | Tail asymptotics of signal-to-interference ratio distribution in spatial cellular network models[END_REF]).

Proposition 1.4.6 Let φ be a DPP with kernel K satisfying Hypothesis 2. Then, for all

x ∈ E, E |K(x, y)| 2 λ(dy) ≤ K(x, x).
(1.42)

Proof: Let x ∈ E be fixed and C a compact set containing x. The restriction of K C of K on C has the following spectral expansion :

K C (y, z) = +∞ i=1 κ C,i ϕ C,i (y) ϕ C,i (z), y, z ∈ E,
where κ C,i ∈ [0, 1[ and ϕ C,i , i ≥ 1, are the non-zero eigenvalues and corresponding orthonormal eigenfunctions of the trace-class operator K C (Hyp. 2). Then, we have

C |K(x, y)| 2 λ(dy) = +∞ i=1 κ 2 C,i ϕ C,i (x) 2 ≤ +∞ i=1 κ C,i ϕ C,i (x) 2 = K C (x, x) = K(x, x), using both κ C,i ∈ [0, 1[ and x ∈ C. The conclusion (1.42) follows by convergence monotone when C ↑ E.
In Section 1.1, marked determinantal point processes are considered and, for that purpose some useful results on marked DPPs are given in the rest of this section. First, the following classical result on PPPs (see for instance Lemma 6.4.VI in [START_REF] Daley | Introduction to point processes[END_REF]) is easily extended : If ξ = {X i } i≥1 is a PPP on a Polish space E with intensity λ ∈ R + and (R i ) i≥1 is a family of iid random variables with distribution F on a Polish space E (independent of ξ), then ξ = (X i , R i ) i≥1 is a PPP on E × E with intensity λ ⊗ F . In the determinantal case, we have :

Proposition 1.4.7 Let φ = (X i ) i≥1 be a determinantal point process on a Polish space E with kernel K, with respect to a Radon measure λ, and let (R i ) i≥1 be a family of iid random variables on R + , independent of (X i ) i≥1 , with probability density

f . Let Φ = (X i , R i ) i≥1 . Then, Φ is a determinantal point process on E × R + with kernel K (x, r), (y, s) = f (r)K(x, y) f (s), (1.43) 
with respect to the measure λ(dx)dr.

The result still holds true for marks with values in a Polish space but in the sequel, only positive marks are used (i.e. R i ∈ R + ).

Proof: To prove that Φ is a DPP with kernel K, the joint intensities are shown to write

ρn (x 1 , r 1 ), . . . , (x n , r n ) = det K (x i , r i ), (x j , r j ) 1≤i,j≤n
.

For all n ≥ 1 and all set A, the symbol = a 1 ,...,an∈A will stand for the sum over all n-tuples (a 1 , . . . , a n ) ∈ A with pairwise distinct a i (a i = a j for i = j in {1, . . . , n}). Let n ≥ 1 and h a Borel function from (E × R + ) n to R + . We have :

E = (x 1 ,r 1 ),...,(xn,rn)∈Φ h (x 1 , r 1 ), . . . , (x n , r n ) = E = x 1 ,...,xn∈φ h (x 1 , R 1 ), . . . , (x n , R n ) = E   E = x 1 ,...,xn∈φ h (x 1 , R 1 ), . . . , (x in , R in ) φ   = E   (R + ) n = x 1 ,...,xn∈φ h (x 1 , r 1 ), . . . , (x n , r n ) 1≤i≤n f (r i )dr i   = E   = x 1 ,...,xn∈φ (R + ) n h (x 1 , r 1 ), . . . , (x n , r n ) 1≤i≤n f (r i )dr i   = (E×R + ) n h (x 1 , r 1 ), . . . , (x n , r n ) 1≤i≤n f (r i )ρ n (x 1 , . . . , x n )λ(dx 1 )dr 1 . . . λ(dx n )dr n , where ρ n (x 1 , . . . , x n ) = Det[K](x 1 , . . . , x n ) is the joint intensity of order n of the DPP φ. Now, note that 1≤i≤n f (r i ) Det[K](x 1 , . . . , x n ) = Det K (x 1 , r 1 ), . . . , (x n , r n ) ,
where K is given in (1.43). Then

E = (x 1 ,r 1 ),...,(xn,rn)∈Φ h (x 1 , r 1 ), . . . , (x n , r n ) = (E×R + ) n h (x 1 , r 1 ), . . . , (x n , r n ) Det K (x 1 , r 1 ), . . . , (x n , r n ) 1≤i≤n λ(dx i )dr i ,
and, according to Definition 1.4.1 and Definition 1.4.2, Φ is a DPP on E × R + with kernel K with respect to the measure λ(dx)dr.

Next, in the case where K satisfies Hypothesis 2, the operator K associated to K defined in (1.43) above inherits these properties : Proposition 1.4.8 Let K be an operator on L 2 (E, λ) satisfying Hypothesis 2 and K be the integral operator with kernel (1.43) with probability density f . Then, K satisfies Hypothesis 2.

Proof: We show that each point of Hypothesis 2 is satisfied.

(i) K is obviously a symmetric integral operator and it is bounded since it is an Hilbert-Schmidt operator.

(ii) Let γ be in the spectrum of K and g γ an associated eigenfunction. Then,

γg γ (x, r) = Kg γ (x, r) = E×R + f (r)K(x, y) f (s) g γ (y, s) λ(dy)ds = f (r) E K(x, y) R + f (s)g γ (y, s) dsλ(dy) = f (r)K R + f (s)g γ (•, s)ds (x).
Thus, since f is a probability density,

γ R + f (r)g γ (x, r)dr = R + f (r)K R + f (s)g γ (•, s)ds (x) dr = R + f (r)dr K R + f (s)g γ (•, s)ds (x) = K R + f (s)g γ (•, s)ds (x),
proving that γ is in the spectrum of K (associated to the eigenfunction

x → R + f (r)g γ (x, r)dr) and obviously γ ∈ [0, 1[. (iii) First, let Λ = Λ E × Λ R + be a compact of E × R + and K Λ be the restriction of K on Λ.
In order to compute the trace of K Λ , consider a complete orthonormal basis (CONB) of [START_REF] Reed | Methods of modern and mathematical Physics I. Functional Analysis[END_REF]) and

L 2 Λ, λ(dx)dr . Let (e n ) n≥1 , resp. (b n ) n≥1 , be a CONB of L 2 (Λ E , λ), resp. of L 2 (Λ R + , dr). Then (h n,k ) n,k≥1 ,with h n,k (x, r) = e n (x)b k (r) is a CONB of L 2 Λ, λ(dx)dr (see
Tr K Λ = n,k≥1 K Λ h n,k , h n,k L 2 (Λ,λ(dx)dr) ,
with for n, k ≥ 1 :

K Λ h n,k , h n,k L 2 (Λ,λ(dx)dr) = Λ 2 h n,k (x, r) K Λ h n,k (x, r) λ(dx)dr = Λ 2 e n (x)b k (r) f (r)K(x, y) f (s)e n (y)b k (s) λ(dy)dsλ(dx)dr = Λ R + f (r)b k (r)dr 2 Λ 2 E e n (x)K(x, y)e n (y) λ(dx)λ(dy) ≤ f , b k 2 L 2 (R + ) Ke n , e n L 2 (Λ E ) ,
with the Fubini theorem. As a consequence, with the Bessel inequalitywe have :

Tr K Λ ≤ f 2 L 2 (R + ) Tr K Λ E < +∞,
and K Λ is locally trace-class. Note that it is still true for subset Λ of the form

Λ E × R + .

Introduction

In this work, we give a generalization of the existing results concerning the asymptotics study of random balls model. The first results are obtained in 2007 by Kaj, Leskela, Norros and Schmidt in [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF]. In their model, the balls are generated by an homogeneous Poisson point process on R d × R + (see [START_REF] Daley | Introduction to point processes[END_REF] for a general reference on point processes). In 2009, Breton and Dombry generalize this model adding in [START_REF] Breton | Rescaled weighted random balls models and stable self-similar random fields[END_REF] a mark m on the balls of the previous model and they obtain limit theorems on the so-called rescaled weighted random balls model. In 2010, Biermé, Estrade and Kaj obtain in [START_REF] Biermé | Self-similar random fields and rescaled random balls models[END_REF] results performing for the first time a zoom-in scaling. In 2014, Gobard in his paper [START_REF] Gobard | Random balls model with dependence[END_REF] extends the results of [START_REF] Breton | Rescaled weighted random balls models and stable self-similar random fields[END_REF] considering inhomogeneous weighted random balls, and adding a dependence between the centers and the radii. The next step is to consider repulsion between the balls. In [START_REF] Breton | Macroscopic analysis of determinantal random balls[END_REF], Breton, Clarenne and Gobard give results on determinantal random balls model, but no weight are considered in their model. In this note, we consider weighted random balls generated by a non-stationary determinantal point process. To that purpose, we give an extension of the Laplace transform of determinantal processes allowing to compute Laplace transform with not necessarily compactly supported function, but with instead a condition of integrability. The main contributions of this note thus are a simplication of the proof of [START_REF] Breton | Macroscopic analysis of determinantal random balls[END_REF] and the introduction of weights in the non-stationary determinantal random balls model. This paper is organized as follows. In Section 2.1 and Section 2.2, we give a description of the model and state our main results under the three different regimes. In Section 2.3, we give the Laplace transform of a determinantal point process for not compactly supported test functions and prove our results. Finally some technical results are gathered in the Appendix.

Model

We consider a model of random balls in R d constructed in the following way. The centers of the balls are generated by a determinantal point process (DPP) φ on R d characterized by its kernel K with respect to the Lebesgue measure. The motivation for considering such processes is that it introduces repulsion between the centers in agreement with various real model of balls. We assume that the map K given for all f ∈ L 2 (R d , dx) and

x ∈ R d by Kf (x) = R d K(x, y)f (y) dy (2.1)
satisfies the following hypothesis :

Hypothesis 3 The map K given in (2.1) is a bounded symmetric integral operator K from L 2 (R d , dx) into L 2 (R d , dx
), with a continuous kernel K with spectrum included in [0, 1[. Moreover, K is locally trace-class, i.e. for all compact Λ ⊂ E, the restriction

K Λ of K on L 2 (Λ, λ) is of trace-class.
Moreover, we also assume

x -→ K(x, x) ∈ L ∞ (R d ). (2.2) 
These assumptions imply that K(x, x) ≥ 0.

At each center x ∈ R d , we attach two positive marks r and m independently. The first mark is interpreted as the radius and the second mark is the weight of the ball B(x, r).

The radii (resp. the weight) are independently and identically distributed according to F (resp. according to G), assumed to admit a probability density f (resp. a probability density g). We have a new point process Φ on R d × R + × R + and according to Proposition A.7 in [START_REF] Breton | Macroscopic analysis of determinantal random balls[END_REF], Φ is a DPP on

R d × R + × R + with kernel K (x, r, m), (y, s, m ) = g(m) f (r)K(x, y) f (s) g(m ),
with respect to the Lebesgue measure. Moreover, we suppose that the probability measure G belongs to the normal domain of attraction of the α-stable distribution S α (σ, b, τ

) with α ∈ (1, 2]. Because α > 1, we can note that R + mG(dm) = R + mg(m)dm < +∞. (2.3) 
In the sequel, we shall use the notation Φ both for the marked DPP (i.e. the random locally finite collection of points (X i , R i , M i )) and for the associated random measure (X,R,M )∈Φ δ (X,R,M ) . We consider the contribution of the model in any suitable measure µ on R d given by the following measure-indexed random field :

M (µ) = R d ×R + ×R + mµ B(x, r) Φ(dx, dr, dm).
(2.4) However, in order to ensure that M (µ) in (2.4) is well defined, we restrain to measures µ with finite total variation (see below Proposition 2.1.1). In the sequel, Z(R d ) stands the set of signed (Borelian) measures µ on R d with finite total variation µ var (R d ) < +∞. Moreover as in [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF], we assume the following assumption on the radius behaviour, for d < β < 2d,

f (r) ∼ r→+∞ C β r β+1 , r β+1 f (r) ≤ C 0 . ( 2.5) 
Since β > d, condition (2.5) implies that the mean volume of the random ball is finite :

v d +∞ 0 r d f (r) dr < +∞, (2.6) 
where v d is the Lebesgue measure of the unit ball of R d . On the contrary, β < 2d implies that F does not admit a moment of order 2d and the volume of the balls has an infinite variance. The asymptotics condition in (2.5) is of constant use in the following.

Proposition 2.1.1 Assume (2.5) is in force. For all µ ∈ Z(R d ), E [M (|µ|)] < +∞. As a consequence, M (µ) in (2.4
) is almost surely well defined for all µ ∈ Z(R d ).

Proof: The proof follows the same lines as that of Proposition 1.1 in [START_REF] Breton | Macroscopic analysis of determinantal random balls[END_REF], replacing K(0) by K(x, x) and controlling it thanks to Hypothesis (2.2).

Asymptotics and main results

The zooming-out procedure acts accordingly both on the centers and on the radii. First, a scaling S ρ : r → ρr of rate ρ ∈ (0, 1] changes balls B(x, r) into B(x, ρr) ; this scaling changes the distribution F of the radius into F ρ = F • S -1 ρ . Second, the intensity of the centers is simultaneously adapted ; to do this, we introduce actually a family of new kernels K ρ , ρ ∈]0, 1], that we shall refer to as scaled kernels, and we denote by φ ρ the DPP with kernel K ρ (with respect to the Lebesgue measure).The zoom-out procedure consists now in introducing the family of DPPs φ ρ , ρ ∈]0, 1], with kernels K ρ with respect to the Lebesgue measure satisfying

K ρ (x, x) ∼ ρ→0 λ(ρ)K(x, x), ( 2.7) 
with lim ρ→0 λ(ρ) = +∞. We also suppose

sup x∈R d K ρ (x, x) ≤ λ(ρ) sup x∈R d K(x, x), (2.8) 
and observe that with (2.2) and (2.8), Proposition A.6 in [START_REF] Breton | Macroscopic analysis of determinantal random balls[END_REF] gives the following uniform bound sup

x∈R d R d K ρ (x, y) 2 dy = ρ→0 O λ(ρ) .
(2.9)

The zoom-out procedure consists in considering a new marked DPP Φ ρ on R d × R + × R + with kernel :

K ρ (x, r, m), (y, s, m ) = g(m) f (r/ρ) ρ K ρ (x, y) f (s/ρ) ρ g(m ),
with respect to the Lebesgue measure. The so-called scaled version of M (µ) is then the field

M ρ (µ) = R d ×R + ×R + mµ B(x, r) Φ ρ (dx, dr, dm).
In the sequel, we are interested in the fluctuations of M ρ (µ) with respect to its expectation

E M ρ (µ) = R d ×R + ×R + mµ B(x, r) K ρ (x, x) f (r/ρ) ρ g(m)dxdrdm
and we introduce

M ρ (µ) = M ρ (µ) -E M ρ (µ) = R d ×R + ×R + mµ B(x, r) Φ ρ (dx, dr, dm), (2.10) 
where Φ ρ stands for the compensated random measure associated to Φ ρ .

We introduce a subspace M α,β ⊂ Z on which we will investigate the convergence of the random field M ρ (µ). The next definition comes from [START_REF] Breton | Rescaled weighted random balls models and stable self-similar random fields[END_REF]. Definition 2.2.1 For 1 < α ≤ 2 and β > 0, we denote by M α,β the subset of measures µ ∈ Z(R d ) satisfying for some finite constant C µ and some 0 < p < β < q :

R d |µ(B(x, r))| α dx ≤ C µ (r p ∧ r q )
where a ∧ b = min(a, b).

We denote by M + α,β the space of positive measures µ ∈ M α,β . Now, we can state the main result of this note. The proof consists in a combination of the arguments of [START_REF] Breton | Macroscopic analysis of determinantal random balls[END_REF] and [START_REF] Gobard | Random balls model with dependence[END_REF]. It is given in Section 2.3 where for some required technical points, it is referred to [START_REF] Breton | Macroscopic analysis of determinantal random balls[END_REF] and [START_REF] Breton | Rescaled weighted random balls models and stable self-similar random fields[END_REF].

Theorem 2.2.2 Assume (2.5) and φ ρ is a DPP with kernel satisfying (2.2), (2.7), (2.8) and Hypothesis 3 for its associated operator K ρ in (2.1).

(i) Large-balls scaling : Assume λ(ρ)ρ β → +∞ and set n(ρ) = λ(ρ)ρ β 1/α

. Then, M ρ (•)/n(ρ) converges in the fdd sense on M + α,β to W α (•) where

W α (µ) = R d ×R + µ B(x, r) M α (dx, dr)
is a stable integral with respect to the α-stable random measure M α with control measure σ α K(x, x)C β r -β-1 dxdr and constant skewness function b given in the domain of attraction of G.

(ii) Intermediate scaling : Assume λ(ρ)ρ β → a d-β ∈]0, +∞[ and set n(ρ) = 1. Then, M ρ (•)/n(ρ) converges in the fdd sense on M + α,β to P • D a where

P (µ) = R d ×R + ×R + mµ B(x, r) Π(dx, dr, dm)
with Π a (compensated) PPP with compensator measure K(x, x)C β r -β-1 dxdrG(dm) and D a is the dilatation defined by (D a µ)(B) = µ(a -1 B).

(iii) Small-balls scaling : Suppose λ(ρ)ρ β → 0 when ρ → 0 for d < β < αd and set

n(ρ) = (λ(ρ)ρ β ) 1/γ with γ = β/d ∈]1, α[. Then, the field n(ρ) -1 M ρ (•) converges when ρ → 0 in the finite-dimensional distributions sense in L 1 (R d ) ∩ L 2 (R d ) ∩ {µ ≥ 0} to Z γ (•)
where

Z γ (µ) = R d φ(x) M γ (dx) for µ(dx) = φ(x)dx with φ ∈ L 1 (R d )∩L 2 (R d ), φ ≥ 0,
is a stable integral with respect to the γ-stable random measure M γ with control measure σ γ K(x, x)dx where

σ γ γ = C β v γ d d +∞ 0 1 -cos(r) r 1+γ dr +∞ 0 m γ G(dm),
and constant unit skewness.

Here, and in the sequel, we follow the notations of the standard reference [START_REF] Samorodnitsky | Stable Non-Gaussian Random Processes[END_REF] for stable random variables and integrals.

Proof

Proof

To investigate the behaviour of M ρ (µ) in the determinantal case, we use the Laplace transform of determinantal measures. An explicit expression is well known when the test functions are compactly supported, see Theorem A.4 in [START_REF] Breton | Macroscopic analysis of determinantal random balls[END_REF]. However, in our situation, the test functions (x, r, m) -→ mµ(B(x, r)) are not compactly supported on R d ×R + ×R + for µ ∈ M + α,β . In order to overpass this issue we use Proposition 2.3.1 below for the Laplace transform of determinantal measures with non-compactly supported test functions, but with a condition of integration with respect to the kernel of the determinantal process (see (2.11)). In addition to generalizing the model studied in [START_REF] Breton | Macroscopic analysis of determinantal random balls[END_REF] by adding a weight, the following proposition has the further consequence of simplifying the proofs of the results in [START_REF] Breton | Macroscopic analysis of determinantal random balls[END_REF], since there is no more need to study the truncated model and obtain uniform convergence to exchange the limit in R, the truncation parameter and the limit in ρ, the scaling parameter.

Proposition 2.3.1 Let Φ a determinantal point process on a locally compact Polish space E with a continuous kernel K such that the associated operator K satisfies Hypothesis 3. Let h be a nonnegative function such that the kernel K 1 -e -h ∈ L 2 (E × E) and also satisfying E 1 -e -h(x) K(x, x)dx < +∞.

(2.11)

Then K 1 -e -h is a trace-class operator with

Tr K 1 -e -h = E 1 -e -h(x) K(x, x)dx
and we have

E exp - E h(x)Φ(dx) = exp - ∞ n=1 1 n Tr K 1 -e -h n , ( 2.12) 
where K 1 -e -h is the operator with kernel K 1 -e -h (x, y) = 1 -e -h(x) K(x, y) 1 -e -h(y) .

Proof: Expression (2.12) is known to be true when h has a compact support (see Theorem A.4 and equation [START_REF] Knackstedt | Structure-property correlations in model composite materials[END_REF] in [START_REF] Breton | Macroscopic analysis of determinantal random balls[END_REF]), but it is not the case here. Let (h p ) p∈N a non-decreasing sequel of positive functions with compact support defined by

h p (x) = h(x)1 B(0,p) (x).
Thanks to Theorem A.4 in [START_REF] Breton | Macroscopic analysis of determinantal random balls[END_REF], we have for all p ∈ N :

E exp - E h p (x)Φ(dx) = exp - ∞ n=1 1 n Tr K 1 -e -hp n . ( 2 

.13)

First step : To begin, we prove that

lim p→+∞ E exp - E h p (x)Φ(dx) = E exp - E h(x)Φ(dx) .
If we denote by M p (E) the space of all point measures defined on E, we have

E exp - E h p (x)Φ(dx) = Mp(E) exp - E h p (x)m(dx) P Φ (dm).
Because p -→ h p is increasing, by monotone convergence we have

lim p→+∞ E h p (x)m(dx) = E h(x)m(dx).
To finish we apply the dominated convergence theorem :

-

lim p→+∞ exp - E h p (x)m(dx) = exp - E h(x)m(dx) , -exp - E h p (x)m(dx) ≤ 1 because h p ≥ 0
, and 1 is integrable on M p (E) with respect to P Φ .

Second step : We prove that K 1 -e -h is a trace-class operator.

Let (e n ) n∈N be an orthonormal basis of L 2 (E). We apply the dominated convergence theorem :

K 1 -e -h is trace-class if +∞ n=0 K 1 -e -h (e n ),
-Computation of the limit when p → +∞ : lim p→+∞ 1 -e -hp(x) K(x, y) 1 -e -hp(y) e n (x)e n (y) = 1 -e -h(x) K(x, y) 1 -e -h(y) e n (x)e n (y) -Domination :

1 -e -hp(x) K(x, y) 1 -e -hp(y) e n (x)e n (y)

≤ 1 -e -h(x) |K(x, y)| 1 -e -h(y) |e n (x)| |e n (y)| which is integrable on E × E because : E×E 1 -e -h(x) |K(x, y)| 1 -e -h(y) |e n (x)| |e n (y)| dxdy ≤ E×E (1 -e -h(x) ) |K(x, y)| 2 (1 -e -h(y) )dxdy × E×E |e n (x)| 2 |e n (y)| 2 dxdy ≤ E (1 -e -h(x) )K(x, x)dx < +∞ because |K(x, y)| 2 ≤ K(x, x)K(y, y) and E |e n (x)| 2 dx = 1.
Thus we have : where (a) is allowed by the Fatou lemma because K 1 -e -hp (e n ), e n ≥ 0. We have

Tr K 1 -e -hp = E 1 -e -hp(x) K(x, x)dx.
We apply the dominated convergence theorem :

1. lim p→+∞ 1 -e -hp(x) K(x, x) = 1 -e -h(x) K(x, x),
2. For all p ≥ 0 we have :

1 -e -hp(x) K(x, x) ≤ 1 -e -h(x) K(x, x)
which is integrable on E by hypothesis (2.11).

Thus

lim p→+∞ E 1 -e -hp(x) K(x, x)dx = E 1 -e -h(x) K(x, x)dx. So +∞ n=0 K 1 -e -h (e n ), e n ≤ E
1 -e -h(x) K(x, x)dx < +∞ which proves that K 1 -e -h is trace-class.

Third step : We prove that Tr K 1 -e -h = E 1 -e -h(x) K(x, x)dx.

Because K 1 -e -h is trace-class and K 1 -e -h ∈ L 2 (E × E), Lemma 4.2.2 in [START_REF] Hough | Zeros of Gaussian Analytic Functions and Determinantal Point Processes[END_REF] ensures that

1 -e -h(x) K(x, y) 1 -e -h(y) = +∞ i=1 λ i ϕ i (x)ϕ i (y) (2.14) 
where (ϕ i ) is an orthonormal basis of L 2 (E). Thus, thanks to (2.14) we have : 

K 1 -e -h (e n ), e n = E×E 1 -e -h(x) K(x, y) 1 -e -h(
= +∞ i=1 λ i E |ϕ i (x)| |e n (x)| dx 2 ≤ (1) +∞ i=1 λ i E |ϕ i (x)| 2 dx E |e n (x)| 2 dx = (2) +∞ i=1 λ i E |ϕ i (x)| 2 dx = (3) E +∞ i=1 λ i |ϕ i (x)| 2 dx = (4) E (1 -e -h(x) )K(x, x)dx < +∞.
The inequality ( 1) is the Cauchy-Schwarz inequality, the equality ( 2) is because

E |e n (x)| 2 dx = e n 2 2 = 1,
the inversion of the sum and the integral in ( 3) is allowed because all the terms are nonnegative and the equality (4) stands because K is continuous. So we can invert the integral and the sum in 

λ i ϕ i 2 2 = +∞ i=1 λ i E |ϕ i (x)| 2 dx = (a) E +∞ i=1 λ i |ϕ i (x)| 2 dx = E (1 -e -h(x) )K(x, x)dx < +∞,
where the two equalities (a) are allowed because the terms are non-negative. Then, K 1 -e -h is a trace-class operator with

Tr K 1 -e -h = E 1 -e -h(x) K(x, x)dx.
The computations above gives in particular

lim p→+∞ Tr K 1 -e -hp = Tr K 1 -e -h .
Fourth step : Now, we have to take the limit in the right term of equation (2.13).

First, we prove that we can exchange the limit and the infinite sum. To do that, we show that the sum normally converges. For all n, p ≥ 0 :

Tr K 1 -e -hp n ≤ K 1 -e -hp n-1 Tr K 1 -e -hp ≤ K 1 -e -h n-1 Tr K 1 -e -h ,
where the second inequality stands thanks to Lemma 2.4.1 in Appendix 2.4 and because K(x, x) ≥ 0,

Tr K 1 -e -hp = E 1 -e -hp(x) K(x, x)dx ≤ E 1 -e -h(x) K(x, x)dx = Tr K 1 -e -h , (2.16) 
which is finite as proved above.

Proof

Let now prove that K 1 -e -h < 1.

K 1 -e -h = sup

g 2 =1 K 1 -e -h (g), g = sup g 2 =1 lim p→+∞ K 1 -e -hp (g), g ≤ lim p→+∞ sup g 2 =1 K 1 -e -hp (g), g = lim p→+∞ sup g 2 =1 K
1 -e -hp g , 1 -e -hp g .

Because √

1 -e -hp g has a compact support,

K 1 -e -hp g , 1 -e -hp g = K |B(0,p)
1 -e -hp g , 1 -e -hp g , where K |B(0,p) is the restriction of K on L 2 (B(0, p)). Since K |B(0,p) is trace-class, we have

K |B(0,p) 1 -e -hp g , 1 -e -hp g ≤ λ max p 1 -e -hp g 2 ≤ λ max p ≤ λ max ,
where λ max p (resp. λ max ) is the greatest eigenvalue of K |B(0,p) (resp K). Then sup

g 2 =1 K 1 -e -hp g , 1 -e -hp g ≤ λ max
and lim p→+∞ sup

g 2 =1 K 1 -e -hp g , 1 -e -hp g ≤ λ max . Thus, K 1 -e -h ≤ λ max < 1
which proves the result.

So we have an upper bound of 1 n

Tr K 1 -e -hp n independent of p which is summable so we can exchange the limit and the sum.

In order to prove the convergence in distribution of n(ρ) -1 M ρ (µ), for µ ∈ M + α,β , we study the convergence of its Laplace transform : for θ ≥ 0,

E exp -θn(ρ) -1 M ρ (µ) = exp θE[n(ρ) -1 M ρ (µ)] E exp -θn(ρ) -1 M ρ (µ) = exp θE[n(ρ) -1 M ρ (µ)] E exp - R d ×R + ×R + θn(ρ) -1 mµ(B(x, r))Φ ρ (dx, dr, dm) .
To compute this last term, we use Proposition 2.3.1. The hypothesis (2.11) in this proposition is satisfied because in our context of weighted balls model, we have h(x, r, m) = mµ(B(x, r)) and therefore :

R d ×R + ×R + (1-e -mµ(B(x,r)) )K ρ (x, x)f (r/ρ)g(m)dx dr ρ dm ≤ λ(ρ) sup x∈R d K(x, x) R d ×R + ×R + mµ(B(x, r))f (r/ρ)g(m)dx dr ρ dm ≤ λ(ρ)ρ d v d µ(R d ) sup x∈R d K(x, x) R + mg(m)dm R + r d f (r)dr < +∞.
Moreover, we have to check that

K ρ 1 -e -h ∈ L 2 (R d × R + × R + )
, if we denote by h the function given by h(x, r, m) = mµ(B(x, r)) defined on

R d × R + × R + . (R d ×R + ×R + ) 2 K ρ 1 -e -h 2 ((x, r, m), (y, s, m ))dxdrdmdydsdm = (R d ×R + ×R + ) 2 1 -e -mµ(B(x,r)) g(m) f (r/ρ) ρ K 2 ρ (x, y) × f (s/ρ) ρ g(m ) 1 -e -m µ(B(y,s)) dxdrdmdydsdm ≤ (a) λ(ρ) 2 sup x∈R d K(x, x) 2 R d ×R + ×R + 1 -e -mµ(B(x,r)) g(m) f (r/ρ) ρ dxdrdm 2 ≤ λ(ρ) 2 sup x∈R d K(x, x) 2 ρ d v d µ(R d ) R + mg(m)dm R + r d f (r)dr 2 < +∞,
where inequality (a) stands because

K 2 ρ (x, y) ≤ K ρ (x, x)K ρ (y, y) ≤ λ(ρ) 2 sup x∈R d K(x, x)
2 thanks to (2.8).

Lemma 2.4.1 If f, g are two real functions on E such that 0 ≤ f ≤ g, then we have

K [f ] ≤ K [g]
where K [f ] is the operator with kernel K [f ] (x, y) = f (x)K(x, y) f (y) for x, y ∈ E.

Proof: Recall that :

K [f ] = sup h∈L 2 (E) K [f ] (h), h h 2 2 . Let h ∈ L 2 (E). K [f ] (h), h = E K [f ] (h)(x)h(x)dx = E E f (x)K(x, y) f (y)h(y)h(x)dydx = E E f (x) g(x) g(x)K(x, y) g(y) f (y) g(y) h(y)h(x)dydx = K [g] (lh) , lh
where l = f /g ≤ 1. So we have :

K [f ] (h), h ≤ K [g] lh 2 2 ≤ K [g] h 2 2
and the result follows.

We recall the following result from Proposition 280 in [25] :

Lemma 2.4.2 A trace-class operator K on a Hilbert space H is a compact operator.

Chapitre 3

Modèle de Cox

Ce chapitre est un article publié dans la revue Journal of Mathematical Analysis and Applications en 2019.

Résumé : Dans cet article, on considère un modèle de boules aléatoires euclidiennes engendrées par un processus shot-noise, qui est un cas particulier de processus de Cox qui permet de modéliser des agrégats de points, aussi appelés clusters. Comme dans les études précédentes, on fait un changement d'échelle en diminuant la taille des rayons et en augmentant le nombre moyen de boules. La différence clé ici est qu'il y a deux façons d'augmenter le nombre moyen de boules : soit l'on ne touche pas au nombre de clusters et donc on augmente juste le nombre moyen de boules au sein de chaque cluster, c'est ce qu'on appelle le scénario local, soit l'on augmente le nombre de clusters, c'est le scénario global. A la limite, et selon les scénarios, on peut conserver la structure en clusters ou la faire disparaître. This chapter is an article published in Journal of Mathematical Analysis and Applications in 2019.

Abstract : In this paper, we consider a cluster model of weighted Euclidean random balls generated by a shot-noise Cox process. It is an example of cluster point process. We perform a scaling on the model by shrinking the radii of the balls and compensate this effect by increasing the (mean) number of balls in each cluster, or/and increasing the (mean) number of clusters. We consider two different scenarios, say a local and a global scenarios. Heuristically, in the first scenario, we focus on the mean number of large balls in a cluster while in the second one, we focus on the global mean number of large balls in the model. According to the different scenarios, the cluster structure can persist at the limit or disappear.

Introduction

We consider a model of weighted Euclidean random balls in R d generated by a shotnoise Cox process as follows. The centers of the balls are generated by a shot-noise Cox process Z and this point process is marked twice, first by random variables r with a probability density function f , seen as the radii of the balls, and second by a mark seen as the weights of the balls generated by a probability measure G. The marks are all independent and independent also of Z. The resulting marked point process is still a Cox process C but on

R d × R + × R.
It is an example of cluster Poisson process where the centers of the clusters are drawn by a Poisson point process Φ on R d . Since a Cox process can be seen as a Poisson point process with a random intensity, the model under study is actually a randomized version of the Poissonian random balls model. When the intensity is deterministic, we recover the usual Poissonian model which has been studied in several papers since its introduction in [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF], see also [START_REF] Biermé | Self-similar random fields and rescaled random balls models[END_REF][START_REF] Breton | Rescaled weighted random balls models and stable self-similar random fields[END_REF] for generalizations of [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF] with weights and/or zoom-in and zoom-out. See also [START_REF] Breton | Macroscopic analysis of determinantal random balls[END_REF] for a determinantal random ball model beyond the Poissonian setting. The class of Cox point process is one of the most used among the cluster models, because it can represent random constraint of a field, for example a random heterogeneity (see [START_REF] Moller | Shot-noise Cox processes[END_REF][START_REF] Moller | Generalised shot-noise Cox processes[END_REF] for more details on shot-noise Cox processes). In dimension 1, a random balls model can be interpreted as a model for the study of communication network (see [START_REF] Mikosch | Is network traffic approximated by stable Lévy motion of fractional Brownian motion ?[END_REF]) or power consumption for example. In this situation, the centers x of the balls are interpreted as the date of the connection and the radius r the duration of the connection. In the Poissonian case, the dates of connections are placed uniformly in time. In the determinantal case, the connection dates are not too close to each other. Here, in the shot-noise Cox model, we represent the situation where there are peaks of connections, for example in the morning or in the evening when people are at home. We are typically in a cluster situation. In dimension 2, we can interpret the model as a wireless network, where x is the location of a transmitter and r is its range of transmission. In the Poissonian case, the transmitters are uniformly distributed in the space. In the shot-noise Cox model, the cluster structure implies that the antennas are highly concentrated in some places and sparse at others which is indeed the case in some real situation (think about a city with no antennas on lakes, river or some special infrastructure like schools). If we interpret the random balls model as a wireless network, the weights are to be seen as the intensity of the signal for example. Another concrete motivation to study Cox processes is to model the microstructure and the viscoelastic behaviour of materials. Jeulin and al. in [START_REF] Jeulin | Caractérisation et modélisation probabiliste des milieux hétérogènes[END_REF][START_REF] Jeulin | Multi Scale Random Models of Complex Microstructures[END_REF][START_REF] Jeulin | Multi-scale random sets: from morphology to effective properties and to fracture statistics[END_REF][START_REF] Figliuzzi | Modelling the microstructure and the viscoelastic behaviour of carbon black lled rubber materials from 3D simulations[END_REF] explain that many nanocomposite materials have some heterogeneity at different scales that influence the effective properties of such composites (like the dielectric permittivity or the elastic moduli), and it is necessary to know the spatial distribution of the composite, which is modeled by generating a Cox point process which simulate the heterogeneous distribution of aggregates.

In the following, our macroscopic analysis is driven as follows. We perform a scaling in this model by first shrinking the radii ; to compensate this effect, we rescale the shot-noise Cox process Z that generated the centers of the balls. In contrast with the Poissonian (see [START_REF] Biermé | Self-similar random fields and rescaled random balls models[END_REF]) or the determinantal case (see [START_REF] Breton | Macroscopic analysis of determinantal random balls[END_REF]), where there is just one level of randomness, the global location of the balls, here we have two levels of randomness with the collection of cluster and within each cluster. As a consequence, this additional level of randomness makes it possible to study many more different asymptotics behaviours in this model. In practice, we dispose of two levels of scaling with the (mean) number of clusters and the (mean) number of balls in each cluster. For example, these scalings can be used to predict the macroscopic behaviour of a material from its microscopic composition. In the Poissonian or determinantal cases, a key quantity appearing to drive the fluctuations is the mean number of large balls. In the setting of Cox process, two different scenarios, say a local and a global one, are possible because two distinct quantities can drive the fluctuations. The first one is the mean number of large balls in each cluster, and we will refer to it as the local scaling. In this scenario, we do not rescale the mean number of clusters. Roughly speaking, each cluster is a Poissonian ball model whose asymptotics are well known from [START_REF] Biermé | Self-similar random fields and rescaled random balls models[END_REF][START_REF] Breton | Rescaled weighted random balls models and stable self-similar random fields[END_REF] and the whole limit of the Cox model is then a mixture of the limit random fields obtained, and so we obtain a randomized version of the Poissonian results from [START_REF] Biermé | Self-similar random fields and rescaled random balls models[END_REF][START_REF] Breton | Rescaled weighted random balls models and stable self-similar random fields[END_REF]. The second scenario will be referred to as the global scaling : in contrast to the first one where we only focus on the mean number of balls in each cluster, in this scenario we focus on the global mean number of large balls in the model. This situation is analogous to the Poissonian case, and we recover the same three regimes as therein, with a disappearance of the cluster structure.

Like in the previous studies of random ball model [START_REF] Biermé | Self-similar random fields and rescaled random balls models[END_REF][START_REF] Breton | Rescaled weighted random balls models and stable self-similar random fields[END_REF][START_REF] Breton | Macroscopic analysis of determinantal random balls[END_REF], we focus on the following measure-indexed random field given for a measure µ on R d by Moreover, like in previous studies of random ball models [START_REF] Biermé | Self-similar random fields and rescaled random balls models[END_REF][START_REF] Breton | Rescaled weighted random balls models and stable self-similar random fields[END_REF][START_REF] Breton | Macroscopic analysis of determinantal random balls[END_REF], we assume also the following power-law hypothesis on the radius behaviour : for d < β < αd,

M (µ) = R d ×R + ×R mµ(B(x, r))C(dx, dr, dm). ( 3 
f (r) ∼ r→+∞ C β r β+1 , f (r) ≤ C 0 r β+1 , ( 3.7) 
for finite positive constants C 0 and C β . We recall that f (r) ∼ 

For this Cox process, we show now that the quantity (3.5) is indeed well defined for µ ∈ Z(R d ) : using Fubini-Tonelli theorem, we have 

E [M (|µ|)] = E R d ×R + ×R m |µ(B(x, r))| C(dx, dr, dm) = E E R d ×R + ×R m |µ(B(x, r))| C(dx, dr, dm) Λ = E R d ×R + ×R m |µ(B(x, r))| Λ(dx, dr, dm) ≤ E R d R d ×R + ×R |m||µ(B(x, r))|k(x, y)dxf (r)drG(dm)Φ(dy) = R d R d ×R + ×R |m||µ(B(x, r))|k(x, y)dxf (r)drG(dm)dy = R |m|G(dm) R d ×R + |µ(B(x, r))|dxf (r)dr ≤ v d µ R |m|G(dm) R + r d f (

Rescaled model

Our asymptotics are obtained by zooming-out in the model. This is obtained by performing a scaling in the model. To that purpose, we introduce a zooming-out rate ρ ∈]0, 1[ to shrink the radii of the balls. In order to compensate the shrinking of the balls, the random intensity measure Z(dx) in (3.1) is changed into Z ρ (dx) with

Z ρ (dx) = y∈Φρ k ρ (x, y)dx,
where Φ ρ is a Poisson point process on R d with intensity measure κ(ρ)dy and k ρ is a density kernel satisfying :

k ρ (x, y) ∼ ρ→0 λ(ρ)k(x, y) and k ρ (x, y) ≤ C 1 λ(ρ)k(x, y).
(3.9)

The parameters κ(ρ) and λ(ρ) will compensate the zooming-out effect (i.e. the balls become smaller when ρ goes to 0). Heuristically, λ(ρ) gives the order of the mean number of balls in a cluster and κ(ρ) gives that of the clusters. Let C ρ be the resulting scaled version of the Cox process C on R d × R + × R given in (3.4) i.e. C ρ is directed by the scaled intensity measure

Λ ρ (dx, dr, dm) = Z ρ (dx)f r ρ dr ρ G(dm)
(it is an analogous scaling as in [START_REF] Biermé | Self-similar random fields and rescaled random balls models[END_REF][START_REF] Breton | Macroscopic analysis of determinantal random balls[END_REF][START_REF] Gobard | Fluctuations dans les modèles de boules aléatoires[END_REF]) and we are interested in the corresponding rescaled quantity as in (3.5) :

M ρ (µ) = R d ×R + ×R mµ(B(x, r))C ρ (dx, dr, dm). (3.10)
In the Poissonian case, the fluctuations of M ρ (µ) with respect to its mean value are investigated. Despite the fact that Cox processes are a generalization of Poisson point process, we can not center with the mean value of M ρ (µ) as we can naturally think. Since Cox processes can be seen as Poisson processes but with random intensity measure, it is relevant in the present Cox setting to study the fluctuations of M ρ (µ) in (3.10) with respect to its conditional mean. In this situation, the centering is thus not deterministic and we investigate the limit in law when ρ → 0 of

M ρ (µ) -E [M ρ (µ) | Λ ρ ] n(ρ) (3.11)
for a proper normalization n(ρ).

The fluctuations of M ρ (µ) given in (3.11) are ruled by the mean number of large balls in the model. By large balls, we mean balls, say, with radius larger than one and containing the origin 0. Let us compute this key quantity. Setting #A for the cardinality of A,

E # (x, r, m) ∈ C ρ 0 ∈ B(x, r), r > 1 = E R d ×R + ×R 1 {0∈B(x,r), r>1} C ρ (dx, dr, dm) = E E R d ×R + ×R 1 {0∈B(x,r), r>1} C ρ (dx, dr, dm) Λ ρ = E R d ×R + ×R 1 {0∈B(x,r), r>1} Λ ρ (dx, dr, dm) = E R d ×R + ×R 1 {0∈B(x,r), r>1} Z ρ (dx)f r ρ dr ρ G(dm) = E R d R d ×R + ×R 1 {0∈B(x,r), r>1} k ρ (x, y)dxf r ρ dr ρ G(dm)Φ ρ (dy) = R d R d ×R + ×R 1 {0∈B(x,r), r>1} k ρ (x, y)dxf r ρ dr ρ G(dm)κ(ρ)dy = κ(ρ) R d R d +∞ 1 1 {x∈B(0,r)} k ρ (x, y)f r ρ dr ρ dxdy.
The dominated convergence theorem gives the behaviour of this last integral :

-

lim ρ→0 1 λ(ρ)ρ β × 1 {x∈B(0,r)} k ρ (x, y)f r ρ 1 ρ = 1 {x∈B(0,r)} k(x, y)C β r -β-1 - 1 λ(ρ)ρ β × 1 {x∈B(0,r)} k ρ (x, y)f r ρ 1 ρ ≤ 1 {x∈B(0,r)} C 1 k(x, y)C 0 r -β-1
which is independent of the parameter ρ and integrable on

R d × R d ×]1, +∞[ since : R d R d +∞ 1 1 {x∈B(0,r)} C 1 k(x, y)C 0 r -β-1 dxdydr = C 0 C 1 R d +∞ 1 1 {x∈B(0,r)} r -β-1 dxdr = C 0 C 1 v d +∞ 1 r d-β-1 dxdr = C 0 C 1 v d β -d < +∞.
Thus we have :

lim ρ→0 R d R d +∞ 1 1 λ(ρ)ρ β × 1 {x∈B(0,r)} k ρ (x, y)f r ρ 1 ρ dxdydr = C β v d β -d ,
which finally gives :

E # (x, r, m) ∈ C ρ 0 ∈ B(x, r), r > 1 ∼ ρ→0 C β v d β -d κ(ρ)λ(ρ)ρ β . ( 3.12) 
This computation shows that the mean number of large balls in the model is of order κ(ρ)λ(ρ)ρ β . We can also interpret this result as follows : κ(ρ) represents the mean number of clusters in the model, so the mean number of large balls in each cluster is of order λ(ρ)ρ β . These two interpretations will give two different studies of the model, as explained at the beginning of Section 3.3.

The limit in law of (3.11) when ρ goes to 0 will be identified by the asymptotics of its characteristic function for which we dispose of the expression (3.29) for the shot-noise Cox process given in the Appendix. Applying Proposition 3.4.5 and Fubini-Tonelli theorem :

E exp iθ M ρ (µ) -E [M ρ (µ) | Λ ρ ] n(ρ) = E exp R d ×R + ×R ψ θmµ(B(x, r)) n(ρ) Λ ρ (dx, dr, dm) = E exp R d ×R + ψ G θµ(B(x, r)) n(ρ) Z ρ (x)dxf r ρ dr ρ = E exp R d ×R + R d ψ G θµ(B(x, r)) n(ρ) k ρ (x, y)Φ ρ (dy)dxf r ρ dr ρ = E exp R d R d ×R + ψ G θµ(B(x, r)) n(ρ) k ρ (x, y)dxf r ρ dr ρ Φ ρ (dy) ,
where ψ G (u) = R ψ(mu)G(dm) and ψ(x) = e ix -1 -ix. In order to apply Proposition 3.4.2, we check that (3.28) holds true, with :

g(y) = -i R d ×R + ψ G θµ(B(x, r)) n(ρ) k ρ (x, y)dxf r ρ dr ρ . Im( g) = R d ×R + ×R 1 -cos θmµ(B(x, r)) n(ρ) k ρ (x, y)dxf r ρ dr ρ G(dm) ≥ 0.
As a consequence Proposition 3. 

E exp iθ M ρ (µ) -E [M ρ (µ) | Λ ρ ] n(ρ) = exp - R d 1 -exp R d ×R + ψ G θµ(B(x, r)) n(ρ) k ρ (x, y)dxf r ρ dr ρ κ(ρ)dy . (3.13)
In order to investigate the behaviour of (3.11) when ρ → 0, i.e. the limit of (3.13), it is necessary to consider a restrained class of measures µ that we introduce now (see also [START_REF] Breton | Rescaled weighted random balls models and stable self-similar random fields[END_REF][START_REF] Breton | Macroscopic analysis of determinantal random balls[END_REF]). Definition 3.2.2 The set M α,β consists of signed measures µ ∈ Z(R d ) such that there exists two real numbers p and q with 0 < p < β < q ≤ 2d and a positive constant C µ such that

R d |µ B(x, r) | α dx ≤ C µ r p ∧ r q , ( 3.14) 

3.3.5).

Next we consider a global scenario where the scaling is now balanced by adjusting the model parameter of the global cluster structure of the Cox model κ(ρ) → +∞. In this context, the key quantity driving the different regimes is the global mean number of large balls κ(ρ)λ(ρ)ρ β (see (3.12)). In this case, we will assume that κ(ρ) → +∞ but we will not suppose necessarily that λ(ρ) → +∞. According to the behaviour of κ(ρ)λ(ρ)ρ β , three different regimes appear, and the cluster structure is erased at the limit ρ → 0 (see Section 3.3.2).

A natural first step for these different scenarios is to specify the behaviour of the inner integral in (3.13) :

R d ×R + ψ G θµ(B(x, r)) n(ρ) k ρ (x, y)dxf r ρ dr ρ . ( 3.15) 
We study (3.15) in the three different normalization settings considered :

(

) : n(ρ) → +∞, (2) : n(ρ) = 1, (3) : n(ρ) → 0. 1 
Note that in the third point of the following Proposition 3.3.2, we consider smooth mea-

sures µ ∈ L 1 (R d ) ∩ L α (R d ).
Heuristically, in the third point, large balls will disappear at the limit and there will just remain small balls, that can be seen as points on the space.

To identify the limit, we need more precision on the measure, and so we consider measures with intensity in L

1 (R d ) ∩ L α (R d ).
In the sequel, we shall use the technical result from [START_REF] Breton | Rescaled weighted random balls models and stable self-similar random fields[END_REF] (Lemma 3.1 therein) :

Lemma 3.3.1 Suppose X is in the domain of attraction of an α-stable law S α (σ, b, 0) for some α > 1. Then E [ψ(θX)] ∼ θ→0 -σ α |θ| α 1 -i (θ) tan(πα/2)b , where (θ) = 1 if θ > 0, (θ) = -1 if θ < 0 and (0) = 0.
Furthermore, there is some K > 0 such that for any θ ∈ R, 1. If n(ρ) → +∞, then for µ ∈ M α,β , we have :

E [ψ(θX)] ≤ K|θ| α .
R d ×R + ψ G θµ(B(x, r)) n(ρ) k ρ (x, y)dxf r ρ dr ρ ∼ ρ→0 -σ α |θ| α λ(ρ)ρ β n(ρ) α R d ×R + |µ(B(x, r))| α 1 -i (θµ(B(x, r)) tan(πα/2)b × k(x, y)dxC β r -β-1 dr.
2. If n(ρ) = 1, then for µ ∈ M α,β , we have :

R d ×R + ψ G θµ(B(x, r)) k ρ (x, y)dxf r ρ dr ρ ∼ ρ→0 λ(ρ)ρ β R d ×R + ψ G θµ(B(x, r)) k(x, y)dxC β r -β-1 dr. 3. If n(ρ) → 0 and ρ d = o(n(ρ)), then for µ ∈ L 1 (R d ) ∩ L α (R d ),
we have :

R d ×R + ψ G θµ(B(x, r)) n(ρ) k ρ (x, y)dxf r ρ dr ρ ∼ ρ→0 λ(ρ)ρ β n(ρ) γ R d ×R + ψ G θϕ(x)r d k(x, y)dxv γ d C β r -β-1 dr,
where µ(dx) = ϕ(x)dx and γ = β/d ∈]1, α[.

Proof: These results are proved with the dominated convergence theorem. In the sequel, we consider a fixed y in R d .

1.

Let n(ρ) → +∞ and µ ∈ M α,β . To prove the first equivalence, we show that : 

lim ρ→0 n(ρ) α λ(ρ)ρ β R d ×R + ψ G θµ(B(x, r)) n(ρ) k ρ (x, y)dxf r ρ dr ρ = -σ α |θ| α R d ×R + |µ(B(x, r))| α 1 -i (θµ(B(x, r)) tan(πα/2)b k(x, y)dxC β r -β-1 dr. ( 3 
lim ρ→0 n(ρ) α λ(ρ)ρ β ψ G θµ(B(x, r)) n(ρ) k ρ (x, y)f r ρ 1 ρ = -σ α |θ| α |µ(B(x, r))| α 1 -i (θµ(B(x, r)) tan(πα/2)b k(x, y)C β r -β-1 .
(ii) Domination : Using Lemma 3.3.1 and (3.7), (3.9) we have :

n(ρ) α λ(ρ)ρ β ψ G θµ(B(x, r)) n(ρ) k ρ (x, y)f r ρ 1 ρ ≤ K|θ| α |µ(B(x, r))| α C 1 k(x, y)C 0 r -β-1 ≤ K|θ| α |µ(B(x, r))| α C 1 k ∞ C 0 r -β-1 (3.17)
which is independent of the parameter ρ and integrable on R d × R + when µ ∈ M α,β thanks to Proposition 3.2.3.

The dominated convergence theorem then applies and (3.16) is obtained.

2.

Let n(ρ) = 1 and µ ∈ M α,β . To prove the second equivalence, we show that :

lim ρ→0 1 λ(ρ)ρ β R d ×R + ψ G θµ(B(x, r)) k ρ (x, y)dxf r ρ dr ρ = R d ×R + ψ G θµ(B(x, r)) k(x, y)dxC β r -β-1 dr. ( 3.18) 
(i) Convergence : With (3.7) and (3.9), we have :

lim ρ→0 1 λ(ρ)ρ β ψ G θµ(B(x, r)) k ρ (x, y)f r ρ 1 ρ = ψ G θµ(B(x, r)) k(x, y)C β r -β-1 .
(ii) Domination : Using Lemma 3.3.1 and (3.7), (3.9), we have :

1 λ(ρ)ρ β ψ G (θµ(B(x, r))) k ρ (x, y)f r ρ 1 ρ ≤ K|θ| α |µ(B(x, r))| α C 1 k(x, y)C 0 r -β-1 ≤ K|θ| α |µ(B(x, r))| α C 1 k ∞ C 0 r -β-1 (3.19)
which is independent of the parameter ρ and integrable on R d × R + when µ ∈ M α,β thanks to Proposition 3.2.3.

The dominated convergence theorem applies again and we obtain (3.18).

Let n(ρ) → 0 and ρ

d = o(n(ρ)). Let µ ∈ L 1 (R d ) ∩ L α (R d ) with µ(dx) = ϕ(x)dx.
To prove the last equivalence, we show that :

lim ρ→0 n(ρ) γ λ(ρ)ρ β R d ×R + ψ G θµ(B(x, r)) n(ρ) k ρ (x, y)dxf r ρ dr ρ = R d ×R + ψ G θϕ(x)r d k(x, y)dxv γ d C β r -β-1 dr. (3.20)
First, the change of variable r = n(ρ) 1/d s gives :

n(ρ) γ λ(ρ)ρ β R d ×R + ψ G θµ(B(x, r)) n(ρ) k ρ (x, y)dxf r ρ dr ρ = n(ρ) γ λ(ρ)ρ β R d ×R + ψ G θµ(B(x, n(ρ) 1/d s)) n(ρ) k ρ (x, y)dxf n(ρ) 1/d s ρ n(ρ) 1/d ρ ds,
and we study the limit of this latter expression like in 1 and 2 :

(i) Convergence : First, since ϕ ∈ L 1 (R d ), Lemma 4 in [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF] applies and for all y ∈ R d we have :

lim ρ→0 n(ρ) γ λ(ρ)ρ β ψ G θµ(B(x, n(ρ) 1/d s)) n(ρ) k ρ (x, y)f n(ρ) 1/d s ρ n(ρ) 1/d ρ = ψ G θϕ(x)v d s d k(x, y)C β s -β-1 ,
where v d is the Lebesgue measure of the unit ball of R d .

(ii) Domination : Like in [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF], set ϕ *

(x) = sup v>0 µ(B(x, v)) v d .
We have |ψ(u)| ≤ 2|u| (see Lemma 1 in [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF] for details) which gives the following control for ψ G : Since ϕ ∈ L 1 (R d ) ∩ L α (R d ), ϕ ∈ L q (R d ) for all 1 ≤ q ≤ α so that Lemma 4 in [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF] ensures ϕ * ∈ L q (R d ) for all 1 < q < α which entails ϕ * ∈ L γ-ε (R d ) ∩ L γ+ε (R d ).

|ψ G (u)| ≤ 2 R |m|G(dm) |u|. ( 3 
Thanks to (3.2), (3.7), (3.9) and (3.23), for ρ > 0 and θ ∈ R we have the following domination :

n(ρ) γ λ(ρ)ρ β ψ G θµ(B(x, n(ρ) 

γ+ε    × C 1 λ(ρ) k ∞ C 0 ρ β n(ρ) γ s -β-1 ≤ M C 1 C 0 k ∞ θϕ * (x)s d γ-ε ∧ θϕ * (x)s d γ+ε s -β-1 ≤ M |θ| γ-ε + |θ| γ+ε C 1 C 0 k ∞ |ϕ * (x)| γ-ε + |ϕ * (x)| γ+ε s -εd-1 ∧ s εd-1 (3.24)
which is independent of the parameter ρ > 0 and integrable on R d × R + .

Finally, the dominated convergence theorem applies one more time and we obtain : In the sequel, we establish convergences of finite-dimensional distributions by proving onedimensional convergences of the distributions and using the Cramér-Wold device combined with the linear structure of M α,β .

Local scaling

In this section, we investigate the so called local scenario where the radii together with the mean number of large balls in each cluster are rescaled. However, here, the mean number of clusters remains constant, i.e. κ(ρ) = 1, and in this case the intensity of the shot-noise Cox process specifies as

Z ρ (x) = y∈Φ k ρ (x, y),
where Φ is a Poisson point process on R d with intensity measure dy. We assume that lim ρ→0 λ(ρ) = +∞ i.e. while we zoom-out (ρ → 0), the clusters are bigger and bigger (λ(ρ) → +∞) but the mean number of clusters does not change. Proof: We apply the dominated convergence theorem to take the limit when ρ → 0 in As a consequence, under the condition of Theorem 3.3.3 the limit in (3.13) writes :

lim ρ→0 E exp iθ M ρ (µ) -E [M ρ (µ) | Λ ρ ] n(ρ) = exp - R d 1 -exp -σ α |θ| α R d ×R + |µ(B(x, r))| α
× (1 -i (θµ(B(x, r)) tan(πα/2)b)k(x, y)dxC β r -β-1 dr dy .

We identify the obtained limit as the characteristic function of where M α is as described in Theorem 3.3.3 (we refer [START_REF] Samorodnitsky | Stable Non-Gaussian Random Processes[END_REF] for basics on stable measure and stable random variable). Indeed, for θ ∈ R and µ ∈ M α,β , we have : Using the very same domination (3.19) as in the proof of (2) in Proposition 3.3.2, we have indeed |u| ≤ A when 0 < ρ < ρ 1 . Thereby, for all 0 < ρ < ρ 1 :

E exp iθ
1 -exp , where γ = β/d ∈]1, α[. Then the following limit holds when ρ → 0 : Like for (3.24), the bound is finite, and independent of the parameter ρ > 0 and integrable on R d with respect to the Lebesgue measure thanks to Fubini theorem and condition (3.3). The dominated convergence theorem applies and the limit in (3.13) writes :

R d ×R +
M ρ (µ) -E [M ρ (µ) | Λ ρ ] n(ρ) L 1 (R d )∩L α (R d ) ---------→ R d ϕ(x)M γ (dx),
lim ρ→0 E exp -θ M ρ (µ) -E [M ρ (µ) | Λ ρ ] n(ρ) = exp - R d 1 -exp R d ×R +
ψ G θϕ(x)r d k(x, y)dxv γ d C β r -β-1 dr dy .

We identify the obtained limit as the characteristic function of Then we have :

E exp i E g(x)N (dx) = exp - E 1 -e ig(x) λ(dx)
for all g : E -→ C such that Im(g) ≥ 0.

(3.28)

The distribution of a Poisson point process is characterized by its deterministic intensity measure as appears from Proposition 3.4.2. A natural extension of a Poisson process is to consider a random intensity measure. From a modelling point of view, considering random intensity measure rather than deterministic one allows to consider random constraints for the repartition of the points in the space. This forms the class of so-called Cox processes more specifically defined as follows.

Definition 3.4.3 A point process C is a Cox process directed by the random intensity measure Λ if, conditionally to Λ = λ, C is a Poisson process with intensity measure λ.

In the sequel, we shall use the notation C both for the locally finite collection of points X ∈ C and for the associated random measure X∈C δ X . Like for the Poisson point process, the characteristic function appears to be a suitable tool to investigate Cox process. In several particular cases, for instance in the shot-noise model, explicit expression of the characteristic function is available. Now, we specify the characteristic function of a Cox process. Finally, we have : 

E exp i E g(x)C(dx) -E E g(x)C(dx) Λ = E E exp i E g(x

Abstract :

In this thesis, we study the asymptotic behavior of random balls models generated by different point processes, after performing a zoom-out on the model. Limit theorems already exist for poissonian random balls and we generalize the existing results first by studying determinantal random balls models, which induce repulsion between the centers of the balls. It models many phenomena, for example the distribution of trees in a forest. We are then interested in a particular case of Cox processes, the shot-noise Cox processes, which exhibit clusters, modeling the presence of corpuscles in nanocomposites.
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 1 La loi d'une mesure aléatoire de Poisson d'intensité µ sur (E, E) est déterminée de façon unique par les deux points de la Définition 0.1.1. 2. Pour toute mesure µ positive σ-finie sur (E, E), il existe une mesure aléatoire de Poisson d'intensité µ. De façon standard, on peut alors définir les intégrales contre les mesures aléatoires de Poisson E f (x)M (dx) pour des fonctions mesurables f : E -→ R + ou des fonctions f ∈ L 1 (E, E, µ) en considérant d'abord les fonctions étagées, puis en passant à la limite par un argument de convergence monotone. On peut alors calculer la fonction caractéristique et la transformée de Laplace d'une mesure aléatoire de Poisson, et le résultat est donné par la proposition suivante : Proposition 0.1.3 Soit M une mesure aléatoire de Poisson d'intensité µ sur (E, E).

Définition 0. 1 . 7

 17 Soit ξ un processus ponctuel sur R d muni d'une mesure η. S'il existe des fonctions ρ k : R d → [0, +∞[, k ≥ 1, telles que pour toute famille de boréliens de R d deux à deux disjoints D 1 , . . . , D k on ait :

Figure 1 -

 1 Figure 1 -Processus ponctuel de Poisson homogène [27].

où C β et C 0

 0 sont deux constantes strictement positives. Puisque β > d, cette condition implique que les boules ont un volume moyen fini : v d +∞ 0 r d f (r) dr < +∞, où v d est le volume de la boule (euclidienne) unité de R d . Comme β < 2d, F n'admet pas de moment d'ordre 2d et donc le volume moyen des boules a une variance infinie.

Figure 2 -

 2 Figure 2 -Processus déterminantal [27].

  portement à l'échelle microscopique. Par exemple, certains nanocomposites sont constitués d'agrégats (ou cluster), qui vont influer sur les propriétés du matériau. Pour prendre en compte cette hétérogénéité, on va engendrer des grains (ou boules) aléatoires selon un processus de Cox.

Figure 3 -

 3 Figure 3 -Processus de Cox -shot-noise [19].

  y), où Φ est un processus de Poisson sur R d d'intensité la mesure de Lebesgue dy sur R d . On suppose que lim ρ→0 λ(ρ) = +∞ c'est-à-dire que les clusters contiennent de plus en plus de boules.
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 141 Let ξ be a point process on a Polish space E equipped with a measure µ. If there are functions ρ k : E → [0, +∞[, k ≥ 1, such that for any family of mutually disjoint Borelian subsets D 1 , . . . , D k of E :

K 1

 1 e n < +∞ and in this case we haveTr K 1 -e -h = +∞ n=0 -e -h (e n ), e n .
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2. 3 .

 3 ProofWe begin by proving that for all n ∈ N,lim p→+∞ K 1 -e -hp (e n ), e n = K 1 -e -h (e n ), e n . K 1 -e -hp (e n ), e n = E×E1 -e -hp(x) K(x, y) 1 -e -hp(y) e n (x)e n (y)dxdy

+∞ n=0 K 1 K 1

 n=011 -e -h (e n ), e n = +∞ n=0 lim inf p→+∞ K 1 -e -hp (e n ), e n ≤ -e -hp (e n ), e n = lim inf p→+∞ Tr K 1 -e -hp

2 =i=1 λ i ϕ i , e n 2 and the result is proved because +∞ n=0 K 1 -+∞ i=1 λ i ϕ i , e n 2 =

 22n=012 (2.15) to obtainK 1 -e -h (e n ), e n = +∞ i=1 E×E λ i ϕ i (x)ϕ i (y)e n (x)e n (y)dxdy = +∞ i=1 λ i E ϕ i (x)e n (x)dx +∞ e -h (e n ), e n = +∞ n=0

. 5 )

 5 To ensure that the quantity (3.5) is indeed well defined, we actually restrain the study of M to finite signed measures µ, i.e. µ ∈ Z(R d ) := µ : |µ|(R d ) < +∞ and we denote µ = |µ|(R d ) for the total variation of µ. We also assume that the distribution G of the marks belongs to the normal domain of attraction of the α-stable distribution S α (σ, b, 0) with α ∈[START_REF] Arfken | Mathematical Methods for Physicists[END_REF][START_REF] Bercu | Modélisation stochastique et simulation-Cours et applications[END_REF]. Here, following the terminology of[START_REF] Samorodnitsky | Stable Non-Gaussian Random Processes[END_REF], σ is a scale parameter and b is a skewness parameter while the translation parameter is zero. Since α > 1, we have R |m|G(dm) < +∞.(3.6)

r

  β+1 means that lim r→+∞ r β+1 f (r) = C β . Observe in particular that since β > d, the mean volume of the ball is finite : R d r d f (r)dr < +∞.

  r)dr < +∞ thanks to (3.6) and (3.8), where v d stands for the volume of the unit Euclidean ball of R d .

4 . 2

 42 applies and gives the characteristic function of (3.11) : Proposition 3.2.1 Assume (3.3), (3.7) and (3.9) and let µ ∈ Z(R d ). Then the characteristic function of (3.11) is given by

  With our previous notations, we have ψ G (θ) = E [ψ(θX)]. The behaviour of (3.15) is given in the following proposition. Proposition 3.3.2 Assume (3.2), (3.7) and (3.9) hold true.

. 21 )

 21 Thanks to Lemma 3.3.1, we have |ψ G (u)| ≤ K|u| α and combining with (3.21), we have |ψ G (u)| ≤ M (|u| ∧ |u| α ) (3.22)for some constant M > 0.Let ε > 0 such that 1 < γ -ε < γ + ε < α. Thanks to(3.22), we have|ψ G (u)| ≤ M |u| γ-ε ∧ |u| γ+ε . (3.23) 

  + ψ G θϕ(x)v d s d k(x, y)dxC β s -β-1 ds which gives (3.20), up to the change of variable r = v 1/d d s.

Theorem 3 . 3 . 3

 333 Assume (3.2), (3.3), (3.7) and (3.9) hold true. Suppose λ(ρ)ρ β -→ ρ→0 +∞ and set n(ρ) = λ(ρ)ρ β 1/α. Then the following limit holds when ρ → 0 :M ρ (µ) -E [M ρ (µ) | Λ ρ ] n(ρ) M α,β -→ R d ×R + µ(B(x, r))M α (dx, dr) (3.25)where conditionally to L α , M α is a α-stable random measure with control measure L α (dx, dr) = σ α Z(x)dxC β r -β-1 dr, where Z is given in (3.1)-(3.3), and constant skewness function b.

( 3 .= 1 -

 31 [START_REF] Chiu | Wiley Series in Probability and Statistics[END_REF]. From (1) in Proposition 3.3.2, we have : exp -σ α |θ| αR d ×R + |µ(B(x, r))| α 1 -i (θµ(B(x, r)) tan(πα/2)b × k(x, y)dxC β r -β-1 dr .In order to prove the domination, let h(u) = 1 -e u , u ∈ C. By the mean value theorem, we have |h(u)| = |e u -1| ≤ e A |u| for all |u| ≤ A, where A is a fixed positive constant. In our context we take :K k ∞ C 0 C 1 |θ| α R d ×R + |µ(B(x, r))| α r -β-1 dxdr < +∞.Using the same domination as (3.17) in the proof of (1) in Proposition 3.3.2, we have indeed |u| ≤ A and consequently :1 -exp R d ×R + ψ G θµ(B(x, r)) n(ρ) k ρ (x, y)dxf r ρ dr ρ ≤ e A R d ×R + ψ G θµ(B(x, r)) n(ρ) k ρ (x, y)dxf r ρ dr ρ ≤ e A KC 0 C 1 |θ| α R d ×R + |µ(B(x, r))| α k(x, y)r -β-1 dxdragain with Lemma 3.3.1. Since the bound is independent of the parameter ρ and is integrable on R d with respect to the Lebesgue measure thanks to Fubini theorem, condition (3.3) and Proposition 3.2.3, the dominated convergence theorem applies.

R

  d ×R + µ(B(x, r))M α (dx, dr)

R 1 -= 1

 11 d ×R + µ(B(x, r))M α (dx, dr) = E E exp iθ R d ×R + µ(B(x, r))M α (dx, dr) L α = E exp -σ α |θ| α R d ×R + |µ(B(x, r))| α (1 -i (θµ(B(x, r)) tan(πα/2)b) × Z(x)dxC β r -β-1 dr = E exp R d R d ×R + -σ α |θ| α |µ(B(x, r))| α (1 -i (θµ(B(x, r)) tan(πα/2)b) × k(x, y)dxC β r -β-1 dr Φ(dy) = exp -R d exp -σ α |θ| α R d ×R + |µ(B(x, r))| α × (1 -i (θµ(B(x, r)) tan(πα/2)b)k(x, y)dxC β r -β-1 dr dy by Proposition 3.4.2 since Φ is a Poisson point process on R d with intensity measure dy. Finally, we have :lim ρ→0 E exp iθ M ρ (µ) -E [M ρ (µ) | Λ ρ ] n(ρ) = E exp iθ R d ×R + µ(B(x, r))M α (dx,dr) which proves (3.25). Theorem 3.3.4 Assume (3.2), (3.3), (3.7) and (3.9) hold true.Suppose λ(ρ)ρ β -→ ρ→0 a ∈]0, +∞[ and set n(ρ) = 1. Then the following limit holds when ρ → 0 :M ρ (µ) -E [M ρ (µ) | Λ ρ ] M α,β -→ N (µ) -E [N (µ) | Λ ]where N (µ) = R d ×R + ×R mµ(B(x, r))C (dx, dr, dm), C is a Cox process on R d × R + × R directed by Λ (dx, dr, dm) = Z(x)dxaC β r -β-1 drG(dm), and Z is given in (3.1)-(3.3).Proof: Using (2) in Proposition 3.3.2, for all y ∈ R d , we have :lim ρ→0 1-exp R d ×R + ψ G θµ(B(x, r)) k ρ (x, y)dxf r ρ dr ρ exp R d ×R + ψ G θµ(B(x, r)) k(x, y)dxaC β r -β-1 dr .Consider like in the proof of Theorem 3.3.3 h(u) = 1 -e u , u ∈ C. Let ρ 1 > 0 such that λ(ρ)ρ β ≤ 2a for all 0 < ρ < ρ 1 .In our context, take :u = R d ×R +ψ G θµ(B(x, r)) k ρ (x, y)dxf r ρ dr ρ and set A := aK k ∞ C 0 C 1 |θ| α R d ×R + |µ(B(x, r))| α r -β-1 dxdr < +∞.

ψE

  G (θµ(B(x, r))) k ρ (x, y)dxf r ρ dr ρ≤ e A R d ×R + ψ G (θµ(B(x, r))) k ρ (x, y)dxf r ρ dr ρ ≤ e A aKC 0 C 1 |θ| α R d ×R + |µ(B(x, r))| α k(x, y)r -β-1 dxdr.Using again Lemma 3.3.1, since the bound is independent of the parameter ρ ∈]0, ρ 1 [ and is integrable on R d with respect to the Lebesgue measure thanks to Fubini, (3.3) and Proposition 3.2.3, the dominated convergence theorem applies and the limit in (3.13) writeslim ρ→0 exp iθ (M ρ (µ) -E [M ρ (µ) | Λ ρ ]) = exp -R d 1 -exp R d ×R + ψ G (θµ(B(x, r))) k(x, y)dxaC β r -β-1 dr dy which is the characteristic function of N ρ (µ) -E N ρ (µ) | Λ ρ (see Proposition 3.4.5). This proves Theorem 3.3.4. Theorem 3.3.5 Assume (3.2), (3.3), (3.7) and (3.9) hold true. Suppose λ(ρ)ρ β -→ ρ→0 0 and set n(ρ) = λ(ρ)ρ β 1/γ

= C β v γ d d +∞ 0 1 -= 1 1 × 1 ×

 1111 for µ(dx) = ϕ(x)dx, where conditionally to S, M γ is a γ-stable measure with control measure S(dx) = σ γ Z(x)dx forσ γ cos(r) r 1+γ dr R |m| γ G(dm)with constant skewness function equals tob γ = -R (m)|m| γ G(dm) R |m| γ G(dm)and Z given in (3.1)-(3.3).Proof: We apply the dominated convergence theorem. Using (3) in Proposition 3.3.2, for all y ∈ R d , we have : -expR d ×R + ψ G θϕ(x)r d k(x, y)dxv γ d C β r -β-1 dr .In order to derive the domination, let ε > 0 be such that 1 < γ -ε < γ + ε < α. Consider 123 again h(u) = 1 -e u , u ∈ C and, in our context, takeA = M |θ| γ-ε + |θ| γ+ε k ∞ C 0 C R d ×R + ϕ * (x) γ-ε + ϕ * (x) γ+ε r -εd-1 ∧ r εd-1 dxdr < +∞,Using the very same domination (3.24) as in the proof of (3) in Proposition 3.3.2, we have |u| ≤ A and for all ρ > 0 :1 -exp R d ×R + ψ G θµ(B(x, r)) n(ρ) k ρ (x, y)dxf r ρ dr ρ ≤ e A R d ×R + ψ θµ(B(x, r)) n(ρ) k ρ (x, y)dxf r ρ dr ρ ≤ M e A |θ| γ-ε + |θ| γ+ε C 0 C R d ×R +ϕ * (x) γ-ε + ϕ * (x) γ+ε k(x, y) r -εd-1 ∧ r εd-1 dxdr.

R

  )M γ (dx) where M γ is described in Theorem 3.3.5. Indeed, for θ ∈ R and µ ∈ L 1 (R d ) ∩ L α (R d ), we have :E exp iθ R d ϕ(x)M γ (dx) = E E exp iθ R d ϕ(x)M γ (dx) S = E exp R d ×R + ψ G θϕ(x)r d Z(x)dxv γ d C β r -β-1 dr ∼ ρ→0 -σ α |θ| α λ(ρ)ρ β n(ρ) α R d ×R + |µ(B(x, r))| α 1 -i (θµ(B(x, r)) tan(πα/2)b × k(x, y)dxC β r -β-1 dr = -σ α |θ| α 1 κ(ρ) R d ×R + |µ(B(x, r))| α 1 -i (θµ(B(x, r)) tan(πα/2)b × k(x, y)dxC β r -β-1 dr.Since lim ρ→0 κ(ρ) = +∞, (3.26) gives with (3.7) and (3.9) :lim ρ→0 1 -exp R d ×R + ψ G θµ(B(x, r)) n(ρ) k ρ (x, y)dxf r ρ dr ρ κ(ρ) = σ α |θ| α R d ×R + |µ(B(x, r))| α 1 -i (θµ(B(x, r)) tan(πα/2)b × k(x, y)dxC β r -β-1 dr.2. From (2) in Proposition 3.3.2, for µ ∈ M α,β , we have :R d ×R + ψ G θµ(B(x, r)) k ρ (x, ρ β R d ×R + ψ G θµ(B(x,r)) k(x, y)dxC β r -β-1 dr. Because κ(ρ)λ(ρ)ρ β -→ ρ→0 a ∈]0, +∞[ and κ(ρ) -→ +∞, necessarily we have λ(ρ)ρ β -→ 0. Hence, from (3.26), and using (3.7), (3.9), we have : lim ρ→0 1 -exp R d ×R + ψ G θµ(B(x, r)) k ρ (x, d ×R + ψ G θµ(B(x, r)) k(x, y)dxaC β r -β-1 dr.
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 344 Let C be a Cox process on E directed by Λ. For all g such that the quantity below is well defined we have :Υ C (g) = E exp -E 1 -e ig(x) Λ(dx) .

Proof:E 1 -

 1 Since conditionally to Λ, C is a Poisson point process with intensity measure Λ, Proposition 3.4.2 ensures :E exp i E g(x)C(dx) Λ = exp -E 1 -e ig(x) Λ(dx) and Υ C (g) = E exp i E g(x)C(dx) = E E exp i E g(x)C(dx) Λ = E exp -E 1 -e ig(x) Λ(dx) .Proposition 3.4.5 Let C be a Cox process on E directed by Λ. Then we have :E exp i E g(x)C(dx) -E E g(x)C(dx) Λ = E exp E ψ(g(x))Λ(dx)(3.29) where ψ(u) = e iu -1 -iu, for all g : E -→ C such that (3.29) is well defined.Proof: Since conditionally to Λ, C is a Poisson point process with intensity Λ we have :E exp i E g(x)C(dx) -E E g(x)C(dx) Λ Λ = exp -i E g(x)Λ(dx) E exp i E g(x)C(dx) Λ = exp -i E g(x)Λ(dx)expe ig(x) Λ(dx)= exp E ψ(g(x))Λ(dx) .

  et supposons de plus que B 1 est invariant par dilatation(i.e. {x ∈ R d , cx ∈ B 1 } = B 1 ). Alors le champ aléatoire W α est auto-similaire sur M α,β 1 ,β 2 d'indice (H + d -β 1 )/α. Si g est telle qu'il existe une constante H > 0 vérifiant pour tout c ∈ R + et tout x ∈ R d , g(cx) = c H g(x), et si B 1 est invariant par dilatation, alors J a est égale en lois fini-dimensionnelles à J (µ a ), où a = a 1/(d+H+β 1 ) , et pour tout µ ∈ M α,β 1 ,β 2 :

	Proposition 0.2.14	1. Si g est radiale et B 1 est invariant par rotation, alors J a est
	isotrope.		
	2. J (µ) =	R d ×R + ×R	mµ(B(x, r)) Π(dx, dr, dm),
	où Π est un processus de Poisson compensé d'intensité g(x)1 B 1 (x)dxr -β 1 -1 drG(dm).
	Dans ce cas particulier, J a la propriété d'agrégé-similarité, i.e. pour tout µ ∈
	M α,β 1 ,β 2 , pour tout m ≥ 1,	
			J (µ am )

  si B 1 est stable par dilatation, alors Z est auto-similaire d'indice (H + d -β 1 )/γ.

	0.3 Présentation des résultats de la thèse
	0.3.1 Le cas déterminantal

  dx), de noyau continu, et son spectre est inclus dans [0, 1[. De plus, K est localement trace-classe, i.e. pour tout compact Λ ⊂ R d , la restriction

  dr), pour des mesures µ à support compact. Le problème principal est que cette méthode de troncature ne peut pas être appliquée lorsqu'on travaille avec le modèle à poids. Il a donc fallu étendre le calcul de la transformée de Laplace à des fonctions qui ne sont pas nécessairement à support compact, et c'est l'objet du second article de la thèse qui est le Chapitre 2 de ce manuscrit. La proposition suivante est le résultat clé du Chapitre 2, puisqu'elle améliore les théorèmes du premier article publié à deux niveaux :

  i |ϕ i (x)| |ϕ i (y)| |e n (x)| |e n (y)| dxdy

						2.3. Proof
	+∞					+∞
	i=1 E×E	|λ i ϕ i (x)ϕ i (y)e n (x)e n (y)| dxdy =	i=1 E×E
						y) e n (x)e n (y)dxdy
					+∞
		=	E×E	i=1	λ i ϕ i (x)ϕ i (y)e n (x)e n (y)dxdy.	(2.15)
	We can invert the sum and the integral if
		+∞			
		i=1 E×E	|λ 94

i ϕ i (x)ϕ i (y)e n (x)e n (y)| dxdy < +∞.

λ

  For all A ∈ E such that λ(A) < +∞, N (A) is a Poisson random variable with parameter λ(A).2. For all n ≥ 1 and all A 1 , . . . , A n ∈ E with no intersection, N (A 1 ), . . . , N (A n ) are mutually independent.Then (3.27) specializes as follows for a Poisson point process.Proposition 3.4.2 Let N be a Poisson point process on E with intensity measure λ.

	1.					
	3. Point (3) in Proposition 3.3.2 writes		
	R d ×R +	ψ G	θµ(B(x, r)) n(ρ)	k(x, y)dxf	r ρ	dr ρ

  )C(dx) -E Asymptotiques dans des modèles de boules aléatoires poissoniennes et non-poissoniennes Mot clés : Processus de Poisson ; processus déterminantaux ; processus de Cox ; champs aléatoires ; théorèmes limites ; processus ponctuels ; champs stables.Résumé : Dans cette thèse, on étudie le comportement asymptotique de modèles de boules aléatoires engendrées selon différents processus ponctuels, après leur avoir appliqué un changement d'échelle qui peut être vu comme un dézoom. Des théorèmes limites existent pour des processus de Poisson et on généralise ces résultats en considérant tout d'abord des boules engendrées par des processus déterminantaux, qui in-duisent de la répulsion entre les points. Cela permet de modéliser de nombreux phénomènes, comme par exemple la répartition des arbres dans une forêt. On s'intéresse ensuite à un cas particulier des processus de Cox, les processus shot-noise, qui présentent des amas de points, modélisant notamment la présence de corpuscules dans des nanocomposites.

	Title : Asymptotics in poissonian and non-poissonian
	random balls models	
		g(x)C(dx) Λ	Λ
		E
	= E exp	ψ(g(x))Λ(dx) .
	E	

Titre :

Keywords : Poisson processes ; determinantal point processes ; Cox processes ; generalized random fields ; limit theorems ; point processes ; stable fields.

Les résultats de cette partie sont ceux de l'article[START_REF] Clarenne | Macroscopic analysis of shot-noise Cox random balls[END_REF], détaillés dans le Chapitre 3. On étudie une autre façon de répartir les boules. On rappelle que dans le cadre poissonien, les centres des boules sont répartis uniformément dans l'espace, et dans le cadre déterminantal, on introduit de la répulsion entre les centres des boules. Cette fois, on utilise une classe de processus qui crée des amas de boules, ce sont les processus de Cox, et plus particulièrement le modèle «shot-noise». Ces processus sont particulièrement intéressants car ils permettent de modéliser des situations concrètes. Par exemple, en dimension 1, les centres des amas peuvent représenter des instants avec des pics de connexions à un réseau (électrique, gaz ...) et les points dans un amas donnent le nombre de connexions à cet instant. En dimension 2, on peut imaginer la carte d'un pays la nuit où l'on verrait l'éclairage public vu du ciel, on observerait des amas de lumière centrés en les grandes agglomérations, typique d'une réalisation de processus shot-noise. Aussi, Jeulin et al. dans[START_REF] Figliuzzi | Modelling the microstructure and the viscoelastic behaviour of carbon black lled rubber materials from 3D simulations[END_REF][START_REF] Jeulin | Caractérisation et modélisation probabiliste des milieux hétérogènes[END_REF][START_REF] Jeulin | Multi Scale Random Models of Complex Microstructures[END_REF][START_REF] Jeulin | Multi-scale random sets: from morphology to effective properties and to fracture statistics[END_REF] travaillent sur la modélisation probabiliste des milieux hétérogènes. Pour étudier des propriétés intrinsèques des matériaux (leur conductivité par exemple), on a besoin de connaître leur structure car des informations sur le comportement macroscopique d'un matériau peuvent être obtenues à partir de son com-

1.4. Appendix : (Marked) Determinantal Point Processes
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Poissonian asymptotics

Since our strategy consists in identifying, in our functional, Poissonian terms to which well known asymptotics are applied, we recall these Poissonian asymptotics from [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF] but with our current notations, see also [START_REF] Biermé | Self-similar random fields and rescaled random balls models[END_REF][START_REF] Breton | Rescaled weighted random balls models and stable self-similar random fields[END_REF].

Theorem 1.2.6 (Poissonian asymptotics, [START_REF] Biermé | Self-similar random fields and rescaled random balls models[END_REF], [START_REF] Breton | Rescaled weighted random balls models and stable self-similar random fields[END_REF] or [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF]) Let Φ be a marked PPP in (1.6) and (1.12) with compensator K(0)dxF (dr) with F having density f satisfying (1.7) for d < β < 2d.

(i) Large-balls scaling : Assume λ(ρ)ρ β → +∞. Then, for n(ρ) = λ(ρ)ρ β 1/2

, M ρ (•)/n(ρ) converges in the fdd sense on M + β to W where

and M 2 is a centered Gaussian random measure with control measure K(0)C β r -β-1 dxdr.

(ii) Intermediate scaling : Assume λ(ρ)ρ β → a d-β ∈]0, +∞[. Then, for n(ρ) = 1, M ρ (•)/n(ρ) converges in the fdd sense on M + β to P • D a where

with Π a (compensated) PPP with compensator measure K(0)C β r -β-1 dxdr and D a is the dilatation defined by (D a µ)(B) = µ(a -1 B).

(iii) Small-balls scaling : Assume λ(ρ)ρ β → 0. Then, for n(ρ) = λ(ρ)ρ β 1/γ with γ = β/d ∈]1, 2[, M ρ (•)/n(ρ) converges in the fdd sense in L 1 

with M γ a γ-stable measure with control measure σ γ dx where

1 -cos(r) r 1+γ dr, and with unit skewness.

Here, and in the sequel, we follow the notations of the standard reference [START_REF] Samorodnitsky | Stable Non-Gaussian Random Processes[END_REF] for stable random variables and integrals.

Next, we deal with the other second exponential terms in (1.20) and show that for all n ≥ 2,

More precisely, the convergence to 1 of the second exponential in (1.20) will derive from the following lemmas. Recall g R µ (x, r) = µ B(x, r) 1 {r≤R} and µ ∈ M + β ; in particular g R µ is bounded with compact support. Since K ρ satisfies Hypothesis 1, Proposition 1.4.8 first ensures K ρ satisfies also Hypothesis 1 and Proposition 1.4.10 next ensures that K ρ 1 -e -θn(ρ) -1 g R µ is the kernel of an Hilbert-Schmidt operator in (1.5).

Lemma 1.2.9 For all n ≥ 2, we have

As a consequence of both Lemmas 1.2.9 and 1.2.10, we have

.

(1.23)

Next, since (1.8) holds true under (1.7), Lemma 1.2.10 applies and the bound (1.23) goes to 0 when ρ → 0 since λ(ρ)ρ q /n(ρ) 2 = ρ q-β with q > β. As a consequence,

and the limit in (1.20) writes

achieving the proof of Proposition 1.2.8.

It remains to prove Lemma 1.2.9 and Lemma 1.2.10.

Proof: (Lemma 1.2.9)

Recall that for a Hilbert-Schmidt operator T with operator norm T and Hilbert-Schmidt norm T 2 , we have T ≤ T 2 (see for instance Theorem 1-(ii) in [START_REF] Dragomir | Some trace inequalities for operator in Hilbert space[END_REF] or [START_REF] Reed | Methods of modern and mathematical Physics I. Functional Analysis[END_REF] for details). Then, we have :

.

Moreover we have :

1 -e -θn(ρ) -1 g R µ (x,r) K ρ (x, r), (y, s)

, and thus, we obtain, for every n ≥ 2 :

is an integral operator with kernel :

Its trace is thus given by :

(x, r), (x, r) dxdr

Since µ has a compact support, the function g R µ has also a compact support and g R µ (x, r) = 0 for, say, x ≥ M . Thus the integrand in (1.24) is a positive function with compact support (for θ or ρ small enough). Dealing first with the integral over R d × R d , since 1 -e -θn(ρ) -1 g R µ (x,r) ≤ θn(ρ) -1 µ B(x, r) 1 {r≤R} , we have

, (1.25) using the Cauchy-Schwarz inequality. But, with the Fubini theorem, we have

since µ ∈ M + β and using condition (1.11). Plugging into (1.25), (1.26) and a similar bound whose log-Laplace transform is

The integrand in (1.27) converges to 0 when R → +∞ and is bounded by

which, thanks to Proposition 1.2.5, is integrable for µ ∈ M + β . The dominated convergence theorem thus ensures that (1.27) 

So far, all the intermediate results are obtained to prove Theorem 1.2.7 :

Proof:[Th. 1.2.7] The one-dimensional convergence is obtained by the combination of (1.16) with Proposition 1.2.3, Proposition 1.2.8 and Proposition 1.2.11. Now, remark that the fields M ρ and W are both linear on M + β . Thus, using the Cramér-Wold device and the linear structure of M β , we have immediately the convergence of the finite-dimensional distributions from the one-dimensional convergence.

Intermediate scaling

This section investigates the asymptotic behaviour of M ρ in (1.12) under the intermediate scaling, when lim ρ→+∞ λ(ρ)ρ β = a ∈]0, +∞[. In this section, set n(ρ) = 1.

Theorem 1.2.12 (Intermediate scaling asymptotics) Assume (1.7) and the kernels K ρ satisfy (1.10) and Hypothesis 1 for their associated operators

where

with Π a compensated Poisson random measure on R d × R + with intensity measure K(0)C β r -β-1 dxdr and D a standing for the dilatation defined by

Following the same strategy as previously (see page 57), first investigate the asymptotic behaviour of M R ρ (µ) in (1.15) when ρ → 0 and next let R → +∞ in the obtained limit.

Next, for a general compact set Λ of E ×R + , we have

we have an orthonormal basis of L 2 Λ E × Λ R + , λ(dx)dr and by the first part :

Since all the summands are positive, we have Tr K Λ < +∞.

Remark 1.4.9 Straightforwardly, Proposition 1.4.8 is still true for f ∈ L 1 (R + ) but with condition (ii) replaced by : (ii') The spectrum of K is included in 0, f -1 1 .

Proposition 1.4.10 Let K be a kernel satisfying Hypothesis 2 and g :

is the kernel of an Hilbert-Schmidt operator.

Proof: The Hilbert-Schmidt property is shown by proving

Let B be the compact support of g, using

which is finite since K is locally trace-class (Hypothesis 2).

Secondly, we prove that lim p→+∞ Tr K 1 -e -hp n = Tr K 1 -e -h n . For all n ≥ 0 :

Moreover we have the following inequalities

the last inequality taking place according to (2.4.1). We finally have the following inequality

Thus,

We can now apply Proposition 2.3.1 to obtain :

The Laplace transform of n(ρ) -1 M ρ (µ) thus rewrites

The convergence of (2.18) derives from the following lemmas. The complete proofs of these lemmas are given in [START_REF] Breton | Macroscopic analysis of determinantal random balls[END_REF].

Lemma 2.3.2 For all n ≥ 2, we have

Proof: The key point is that K ρ 1 -e -θn(ρ) -1 h is trace-class, and as a consequence a

Hilbert-Schmidt operator thanks to Lemma 2.4.2 so the proof of Lemma 2.9 in [START_REF] Breton | Macroscopic analysis of determinantal random balls[END_REF] applies in the same way.

Lemma 2.3.3 Assume Conditions (2.2), (2.6) and (2.8), and consider µ ∈ M + α,β . Then there is a constant M ∈]0, +∞[ such that,

Proof: The computations are analogous to that in [START_REF] Breton | Macroscopic analysis of determinantal random balls[END_REF] for the model without weight. It is important to observe that the key point, namely inequality (25) in [START_REF] Breton | Macroscopic analysis of determinantal random balls[END_REF], remains true because µ ∈ M + α,β so thanks Proposition 2.2 (iii) in [START_REF] Breton | Rescaled weighted random balls models and stable self-similar random fields[END_REF], µ ∈ M + 2,β = M + β using the notations of [START_REF] Breton | Macroscopic analysis of determinantal random balls[END_REF]. To be complete, the constant M is equal to

with the notations of Lemma 2.10 in [START_REF] Breton | Macroscopic analysis of determinantal random balls[END_REF].

Proof: We give a short proof of Theorem 2.2.2. In this non-stationary case, the proof follows the same general strategy as in [START_REF] Breton | Macroscopic analysis of determinantal random balls[END_REF]. Roughly speaking, the limits are driven by the term n = 1 in (2.17) while the other terms (n ≥ 2) are still negligible. Note that, in this non-stationary setting, the Poissonian limits for n = 1 come from Theorem 1, Theorem 2 and Theorem 3 in [START_REF] Gobard | Random balls model with dependence[END_REF] taking f (x, r) = K(x, x)f (r) in our situation.

As in [START_REF] Breton | Macroscopic analysis of determinantal random balls[END_REF], it is now enough to show now that

in the three regimes. As a consequence of Lemma 2.3.3, it remains to show that λ(ρ)ρ q n(ρ) 2 -→ ρ→0 0.

(i) Large-balls scaling. Since lim ρ→0 λ(ρ)ρ β = +∞, for ρ small enough we have λ(ρ)ρ β ≥ 1

. Thus since q > β we have :

(ii) Intermediate scaling. In this case, n(ρ) = 1 and since q > β we have :

(iii) Small-balls scaling. Since we consider µ

)) ensures that we can take q = 2d and then with n(ρ) = (λ(ρ)ρ β ) 1/γ since β < αd ≤ 2d we have :

Appendix : Lemmas for the Laplace transform of DPP

In this appendix, we state and prove three different lemmas used in section 2.3 to prove Proposition 2.3.1.

The document is organized as follows. In Section 3.1, we give a detailed description of the model under study. In Section 3.2, we introduce the rescaled model and the object of interest in the paper. In Section 3.3, we give the main results in two subsections dealing with the two scenarios described above. Finally, some general results about Cox processes are given in Appendix 3.4. In particular, we refer to this Appendix for any reader unfamiliar with Cox processes, see Definition 3.4.3.

Shot-noise Cox random ball model

We now describe mathematically the model under study. We consider a collection of Euclidean balls B(x, r) = y ∈ R d : y -x ≤ r whose centers x and radii r are generated by a Cox process on R d × R + . To generate the balls, we first consider a shot-noise Cox process D on R d directed by a random measure

that generates the centers of the balls. Here, Φ is a Poisson point process on R d with intensity measure equal to the Lebesgue measure on R d and k a positive function on

and for all x ∈ R d ,

This is an example of a Poisson cluster process, where Φ is the base point process drawing the centers c of the clusters X c , and k(c, •) is the intensity function of the Poisson process X c .

To each center x, we attach two marks r (positive) and m, interpreted respectively as the radius of the ball and as the weight of the ball. These radii and weights are each identically distributed according respectively to a density f on R + and a probability distribution G on R. We obtain a Cox process C on R d × R + × R directed by the random measure

where a ∧ b = min(a, b).

The control in (3.14) by both r p and r q is required to ensure that the integral in Proposition 3.2.3-(i) below is indeed well defined. This integral is actually of constant use in our argument, so the introduction of the space M α,β is crucial. This definition is reminiscent of M 2,β in [START_REF] Breton | Rescaled weighted random balls models and stable self-similar random fields[END_REF]. In particular, absolutely continuous measures with respect to the Lebesgue measure, with density ϕ

do belong to M α,β for d < β < αd and will play an important role in the small-balls scaling. Recall the following properties on M α,β from Propositions 2.2 and 2.3 from [START_REF] Breton | Rescaled weighted random balls models and stable self-similar random fields[END_REF] :

In the sequel, we investigate the behaviour of (3.11) when ρ → 0 in various situations.

Asymptotic results

In order to investigate the limit of (3.13) when ρ → 0, we consider two main scaling scenarios : the so called local and global scenarios.

In the local scenario, the scaling is properly balanced by adjusting the model parameter in the local structure of the model, i.e. in each cluster λ(ρ) → +∞. In this context, the key quantity driving the different regimes appears to be the mean number λ(ρ)ρ β of large balls in each cluster (see (3.12)).

In this local scaling, we scale both the radii (ρ → 0) and the number of balls in each cluster (i.e. λ(ρ) → +∞), but not scale the mean number of clusters (i.e. κ(ρ) = 1) (see Section 3.3.1). Heuristically, each cluster X c is a Poissonian ball model as in [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF] and the asymptotics are obtained as in Theorem 2 in [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF] in each such model. The whole limit of the Cox model is then a mixture of the limit random fields obtained in each Poissonian cluster X c hence the randomized Poissonian limit obtained (see Theorems 3.3.3,3.3.4 and

dr dy since Φ is a Poisson point process on R d with intensity measure dy. Finally, we have :

proving Theorem 3.3.5.

Remark 3.3.6 In this section, the results obtained are somehow a randomization of the corresponding results in the Poissonian case. Actually, the results are the same but with random intensity. This is due to the considered shot-noise model that exhibits a clusters structure, and with this scenario of scaling, we do not scale the mean number of cluster. We perform a zoom-out in each cluster, and the result is heuristically the mixture of the different limits obtained, where the location of the limits are, here, random.

Global scaling

In this section, we perform a global scaling on the model. Heuristically, as in the Poissonian model, we focus on the mean number of large balls in the whole model. In the Poissonian or determinantal case, this key quantity is λ(ρ)ρ β . In the shot-noise Cox model described below, a similar computation shows that the mean number of large balls is of order κ(ρ)λ(ρ)ρ β (see (3.12)). The behaviour of this quantity drives the fluctuations of our Cox model. In this context, we assume that κ(ρ) -→ +∞ but do not impose that λ(ρ) -→ +∞.

In the sequel, we use the following elementary observation : if 

where M α is an α-stable random measure with control measure σ α dxC β r -β-1 dr and constant skewness function b.

Suppose κ(ρ)λ(ρ)ρ β -→ ρ→0

a ∈]0, +∞[ and set n(ρ) = 1. Then the following limit holds when ρ → 0 :

where Π is a centered Poisson random measure with control measure aC β r -β-1 dxdrG(dm).

Suppose κ(ρ)λ(ρ)ρ

for µ(dx) = ϕ(x)dx, where M γ is an γ-stable measure with control measure σ γ dx and constant unit skewness b γ given in Theorem 3.3.5.

Remark 3.3.8 Results 1. and 2. are very closed to the Poissonian case in [START_REF] Biermé | Self-similar random fields and rescaled random balls models[END_REF]. It is important to note that for the third result, given that we do not necessarily have λ(ρ) -→ +∞, we must impose the constraint κ(ρ)λ(ρ) -→ +∞ that allows us to adjust the speed of increase of the cluster number according to the speed at which the number of balls in a cluster varies. Of course, if λ(ρ) -→ +∞, this condition is necessarily verified, but if the number of balls in a cluster remains constant or goes to 0, this condition tells us how fast the number of clusters should increase to have a non trivial limit.

Proof: In this proof, we skip the major part of the details. The proofs of the previous theorems contain all the elements to justify the following results. Here we just give the limit when ρ → 0 in (3.15) in the different cases. 

Appendix : Generalities about Cox process

Let (E, E) a measurable space. For a random measure C on (E, E), we set Υ C for its characteristic function given by

for g : E -→ C such that the quantity in (3.27) exists, see [START_REF] Daley | Introduction to point processes[END_REF].

In this appendix, we specify (3.27) whose use is crucial in our argument, for Cox point process. First, we recall (3.27) for the classical case of Poisson point process on (E, E) : Definition 3.4.1 Let λ be a σ-finite measure on (E, E) and N be a point process on E.

We say that N is a Poisson point process on E with intensity measure λ if :