
HAL Id: tel-02294449
https://theses.hal.science/tel-02294449

Submitted on 23 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reengineering Object Oriented Software Systems for a
better Maintainability

Soumia Zellagui

To cite this version:
Soumia Zellagui. Reengineering Object Oriented Software Systems for a better Maintainability. Other
[cs.OH]. Université Montpellier, 2019. English. �NNT : 2019MONTS010�. �tel-02294449�

https://theses.hal.science/tel-02294449
https://hal.archives-ouvertes.fr

Awarded by University of Montpellier

Prepared at I2S∗ Graduate School,
LIRMM Research Unit, MAREL Team.

Speciality: Software Engineering

Defended by Zellagui Soumia
zellagui@lirmm.fr

Reengineering Object Oriented

Software Systems for a better

Maintainability

Defended on 05 July 2019 in front of a jury composed of:

Mireille Blay-Fornarino, PU, University of Nice Reviewer

Antoine Beugnard, P, Mines-Telecom Atlantique Institute Reviewer

Bernard Coulette, PU, University of Toulouse-Jean Jaurès President & Examiner

Chouki Tibermacine, MdC HDR, University of Montpellier Director

Christophe Dony, PU, University of Montpellier Co-director

Hinde Lilia Bouziane, MdC, University of Montpellier Co-director

∗
I2S: Information, Structures and Systèmes.

2

Dedication

“ This thesis is dedicated to the memory of my father ”

i

ii

Acknowledgment

My advisor, Chouki Tibermacine, has had the most profound influence on me
as a researcher. When I started my thesis I was a blank page. I learned a lot from
him and I have found working with him very rewarding. He was always on my side
with his ideas, advices and encouragements and I will never forget his kindness and
comprehensiveness. I felt blessed and lucky to have him as one of my supervisors.
I thank also my two other supervisors, Hinde Bouziane and Christophe Dony who
was always kind to me and comprehensive.

During last six months, I established a great working relationship with Ghizlane
El-Boussaidi who gave me the opportunity to work with her in École de Technologie
Supérieure de Montréal. She has always been ready to engage in long and rich
research discussions and to provide her unique insight. I hope this relationship
continues in future.

I would like to express my deepest gratitude to Mireille Blay-Fornarino, Bernard
Coulette and Antoine Beugnard for making me the honor of accepting to evaluate
my thesis.

I would like to thank everybody in my research team MAREL. They made me
feel like home during these three years.

It should be noticed that this thesis would have not been possible without the
funding from the Algerian Ministry of Higher Education and Scientific Research,
which allowed me to stay completely focused on my research.

I owe my deepest gratitude to my Mother who has always been my friend and
guide. I thank her for believing in me and encouraging me to follow my dreams. I
thank my sisters for their incredible support, I could have never achieved so much
without them. I also thank all my friends for the pleasant moments we had together.

iii

iv

Résumé

Les systèmes logiciels existants représentent souvent des investissements impor-
tants pour les entreprises qui les développent avec l’intention de les utiliser pendant
une longue période de temps. La qualité de ces systèmes peut se degrader au fil du
temps en raison des modifications complexes qui leur sont incorporées. Pour faire
face à une telle dégradation lorsqu’elle dépasse un seuil critique, plusieurs stratégies
peuvent être utilisées. Ces stratégies peuvent consister à: 1) remplacer le système
par un autre développé à partir de zéro, 2) poursuivre la maintenance (massive) du
système malgré son coût, ou 3) conduire une réingénierie du système. Le remplace-
ment et la maintenance massive ne sont pas des solutions adaptées lorsque le coût et
le temps doivent être pris en compte, car elles nécessitent un effort considérable et
du personnel pour assurer la mise en oeuvre du système dans un délai raisonnable.
Dans cette thèse, nous nous intéressons à la solution de réingénierie. En général,
la réingénierie d’un système logiciel inclut toutes les activités après la livraison à
l’utilisateur pour améliorer sa qualité. Cette dernière est souvent caractérisée par
un ensemble d’attributs de qualité. Parmi ces attributs, nous nous intéressons à la
maintenabilité. Cette dernière est caractérisée par un ensemble de caractéristiques
telles que la modifiabilité, la compréhensibilité et la modularité. Afin d’améliorer la
modifiabilité, nous proposons, dans la première contribution, de migrer les systèmes
logiciels orientés objets vers des systèmes orientés composants. Contrairement aux
approches existantes qui considèrent un descripteur de composant comme un cluster
de classes, chaque classe du système existant sera migrée vers un descripteur de com-
posant. Afin d’améliorer la compréhensibilité, qui a un impact sur la maintenabilité,
nous proposons, dans la seconde contribution, une approche pour la reconstruction
de modèles d’architecture d’exécution (graphes d’objets) des systèmes orientés objets
et la gestion de la complexité des modèles résultants. Les modèles (graphes) générés
avec notre approche ont les caractéristiques suivantes: les nœuds sont étiquetés avec
des durées de vie et des probabilités d’existence permettant 1) une visualisation des
modèles avec un niveau de détail, et 2) de cacher/montrer la structure interne des
noeuds. Afin d’améliorer la modularité, et donc la maintenabilité, des systèmes logi-
ciels orientés objets, nous proposons, dans la troisième contribution, une approche
d’identification des modules et des services dans le code source de ces systèmes. Dans
cette approche, nous soutenons l’idée considérant la structure composite comme la
structure principale du système. Celle-ci doit être conservée lors du processus de
modularisation, le composant et ses composites doivent être dans le même module.

v

vi

Les travaux de modularisation existants qui ont cette même vision, supposent que
les relations de composition entre les éléments du code source sont déjà disponibles,
ce qui n’est pas toujours vrai. Dans notre approche, l’identification des modules
commence par une étape de reconstruction de modèles d’architecture d’exécution
du système étudié. Ces modèles sont exploités pour identifier des relations de com-
position entre les éléments du code source du système étudié. Une fois ces relations
ont été identifiées, un algorithme génétique conservatif aux relations de composition
est appliqué sur le système pour identifier des modules. En dernier, les services four-
nis par les modules sont identifiés à l’aide des modèles de l’architecture d’exécution
du système logiciel analysé. Quelques expérimentations et études de cas ont été
réalisées pour montrer la faisabilité et le gain en modifiabilité, compréhensibilité et
modularité sur de vrais logiciels analysés avec nos propositions.

Abstract

Legacy software systems often represent significant investments for the companies
that develop them with the intention of using them for a long period of time. The
quality of these systems can be degraded over time due to the complex changes incor-
porated to them. In order to deal with these systems when their quality degradation
exceeds a critical threshold, a number of strategies can be used. These strategies
can be summarized in: 1) discarding the system and developing another one from
scratch, 2) carrying on the (massive) maintenance of the system despite its cost, or
3) reengineering the system. Replacement and massive maintenance are not suitable
solutions when the cost and time are to be taken into account, since they require
a considerable effort and staff to ensure the system conclusion in a moderate time.
In this thesis, we are interested in the reengineering solution. In general, software
reengineering includes all activities following the delivery to the user to improve
the software system quality. This latter is often characterized with a set of quality
attributes. Among those, we are particularly interested in maintainability. In turn,
maintainability is characterized with a set of characteristics such as modifiability,
understandability and modularity. In order to improve modifiability, we propose to
migrate object-oriented legacy software systems into equivalent component based
ones. Contrary to exiting approaches that consider a component descriptor as a
cluster of classes, each class in the legacy system will be migrated into a component
descriptor. In order to improve understandability, which has a direct impact on
maintainability, we propose an approach for recovering runtime architecture mod-
els of object-oriented legacy systems and managing the complexity of the resulted
models. The models recovered by our approach have the following distinguishing
features: Nodes are labeled with lifespans and empirical probabilities of existence
that enable 1) a visualization with a level of detail. 2) the collapsing/expanding of
objects to hide/show their internal structure. In order to improve modularity, and
thus maintainability, of object-oriented software systems, we propose an approach
for identifying modules and services in the source code. In this approach, we believe
that the composite structure is the main structure of the system that must be re-
tained during the modularization process, the component and its composites must
be in the same module. Existing modularization works that has this same vision
assumes that the composition relationships between the elements of the source code
are already available, which is not always obvious. In our approach, module identifi-
cation begins with a step of runtime architecture models recovery. These models are

vii

viii

exploited for the identification of composition relationships between the elements
of the source code. Once these relationships have been identified, a composition
conservative genetic algorithm is applied on the system to identify modules. Lastly,
the services provided by the modules are identified using the runtime architecture
models of the software system. Some experimentations and case studies have been
performed to show the feasibility and the gain in modifiability, understandability
and modularity of the software systems studied with our proposals.

Contents

1 Introduction 1
1.1 Context . 2
1.2 Problem Statement . 5
1.3 Thesis Contributions . 9

1.3.1 Migrating Object-Oriented Software Systems into Component-
based equivalent ones . 9

1.3.2 Recovering the Runtime Architecture of Object-Oriented Soft-
ware Systems and Managing its Complexity 9

1.3.3 Identifying Modules and Services from the Source Code of
Object-Oriented Software Systems 10

1.4 Thesis Organization . 10
1.5 Publications . 10

1.5.1 International Journals . 10
1.5.2 International Conferences . 11
1.5.3 French-Speaking Conferences 11

2 State of the art 13
2.1 Introduction . 13
2.2 Migrating to a New Paradigm . 14

2.2.1 Migrating to Component Based Paradigm 14
2.2.2 Migrating to Service Based Paradigm 17
2.2.3 Migrating to Microservice Based Paradigm 21
2.2.4 Migrating to Aspect Oriented Paradigm 23

2.3 Remaining in the Object Oriented Paradigm 25
2.4 Architecture Recovery . 26

2.4.1 Implementation-level architecture recovery 27
2.4.2 Design-level architectures recovery 29

2.5 Discussion . 30

3 Migrating Object-Oriented Software Systems into Component-based
equivalent ones 35
3.1 Introduction and Problem Statement 35
3.2 Foundations of the Proposed Approach 36

ix

x CONTENTS

3.2.1 Decoupling and Non Anticipated Instantiations Violation . . . 36
3.2.2 Refactoring Operations . 37

3.3 Experimental Results and Evaluation 45
3.3.1 Data Collection . 46
3.3.2 Used Measures . 46
3.3.3 Results . 47
3.3.4 Threats to Validity . 50

3.4 Conclusion . 50

4 Recovering the Runtime Architecture of Object-Oriented Software
Systems and Managing its Complexity 51
4.1 Introduction and Problem statement 52
4.2 Foundations of the proposed Approach 53

4.2.1 The Process in a Nutshell. 53
4.2.2 Source code static analysis . 54
4.2.3 Source Code Instrumentation & Instrumented Code Execution 61
4.2.4 Object graph refinement . 65
4.2.5 Managing the Complexity of the Refined Object Graph 66
4.2.6 Visualization with a level of detail 69

4.3 Experimental Results and Evaluation 69
4.3.1 Research questions . 69
4.3.2 Experiment Setup . 70
4.3.3 Results and discussion . 71
4.3.4 Threats to Validity . 80

4.4 Conclusion . 81

5 Identifying Modules and Services from the Source Code of Object-
Oriented Software Systems 83
5.1 Introduction and Problem Statement 84
5.2 Foundations of the proposed Approach 85

5.2.1 Runtime Models Recovery . 86
5.2.2 Composition Relationships Identification 87
5.2.3 Composition Refinement . 90
5.2.4 Module and Service Identification 93

5.3 Evaluation & Experimental Results 102
5.3.1 Data Collection . 102
5.3.2 Research question . 103
5.3.3 Experiments setup . 103
5.3.4 Results and discussion . 103
5.3.5 Threats to validity . 108

5.4 Conclusion . 109

CONTENTS xi

6 Conclusions And Perspectives 111
6.1 Summary of Contributions . 111
6.2 Future Directions . 113

6.2.1 Enrich the recovered OG with other kinds of information . . . 113
6.2.2 Consider semantic relationships between classes to improve

modularity . 113
6.2.3 Adapt the proposed approaches to other programming languages113
6.2.4 Identification of modules and services as a machine learning

problem . 114
6.2.5 Develop a framework that groups the proposed approaches . . 114

Bibliography 115

xii CONTENTS

Figures list

1.1 Legacy system decisional matrix [Lucia 2001]. 3
1.2 Chikofsky and Cross [Chikofsky 1990] conceptual model of software

reengineering. 5
1.3 Component Based development principle. 7

2.1 Service-oriented architecture (SOA) main elements 18
2.2 SOA and MSA granularity . 21
2.3 Weaving Principle in Aspect Oriented Programming (AOP) 24

3.1 Using LCOM metric to apportion methods on interfaces 39
3.2 Dependency Injection Mechanism . 41

4.1 Process for the creation of a refined hierarchical object graph 53
4.2 The OFG of the MovieCatalog class 60
4.3 The OG of the MovieCatalog class . 60
4.4 Trace metamodel . 61
4.5 Refined OG of the MovieCatalog application 67
4.6 Refined and Hierarchical OG of the MovieCatalog application 68
4.7 Jext partial flat object graph. 72
4.8 JHotDraw flat object graph. 73
4.9 Jext refined and hierarchical object graph with only composite struc-

ture exploited. 74
4.10 Jext refined and hierarchical object graph with composite structure,

lifespans and probability exploited. 75
4.11 JHotDraw refined and hierarchical object graph with only composite

structure exploited. 76

5.1 Modules and services identification Process 85
5.2 An OG example . 89
5.3 Composition relationships between classes 89
5.4 Composition refinement step example 92
5.5 Genetic algorithms basic steps . 96
5.6 An example of a candidate solution 97
5.7 Composition relationships taken into account in the initial population 97

xiii

xiv FIGURES LIST

5.8 An example of single-point crossover result 98
5.9 An example of KMeans based mutation 99

Tables list

1.1 Software reengineering state of the art definitions. 4
1.2 List of publications and their distribution over thesis contributions. . 12

3.1 Refactoring Operations . 38
3.2 Data collection . 46
3.3 Detected smells (In each row, M = results of Manual analysis; A =

results of Automatic analysis). 48
3.4 MI values before and after applying the method 48
3.5 MI values of Log4j versions. 49

4.1 Scopes and outputs . 59
4.2 Data collection . 70
4.3 Hierarchical Reduction (HR) results 71
4.4 Principal software understanding activities 77
4.5 Understanding tasks . 77
4.6 Correctness (measured in points given to correct answers) and Time

Spent (in minutes) results . 78
4.7 Poltergeist detection results (TP for true positives, FP for false pos-

itives and FN for false negatives . 80

5.1 Objects creators of the MovieCatalog class example 87
5.2 Closure and parent sets for the OG in Figure 5.2 90
5.3 Boundary sets of the nodes of the OG in Figure 5.2 91
5.4 Weight values for the eight structural relationships. 95
5.5 Eclipse and Jitsi services . 100
5.6 QMoJoP lus(A,B) results . 105
5.7 M, O and F values of the authoritative architectures 106
5.8 Cohesion and Coupling measures of the different architectures 107
5.9 Module organization measures . 107
5.10 Fitness function measures . 108

xv

xvi TABLES LIST

Chapter

1

Introduction

Contents

1.1 Context . 2

1.2 Problem Statement . 5

1.3 Thesis Contributions . 9

1.3.1 Migrating Object-Oriented Software Systems into Component-
based equivalent ones . 9

1.3.2 Recovering the Runtime Architecture of Object-Oriented
Software Systems and Managing its Complexity 9

1.3.3 Identifying Modules and Services from the Source Code of
Object-Oriented Software Systems 10

1.4 Thesis Organization . 10

1.5 Publications . 10

1.5.1 International Journals . 10

1.5.2 International Conferences 11

1.5.3 French-Speaking Conferences 11

1

2 CHAPTER 1. INTRODUCTION

1.1 Context

A software system is defined by Sommerville [Sommerville 2011] as: "a number
of separate programs, configuration files, which are used to set up these programs,
system documentation, which describes the structure of the system, and user docu-
mentation, which explains how to use the system". Therefore, a software system is
not only a computer program but also all associated configuration and documen-
tation data needed to use this system correctly. For many years, software systems
increasingly influenced almost all areas of society and have become fundamental in
performing a wide variety of tasks.
Companies develop software systems with the intention of using them for a long
period of time in order to get a return on the costs spent on their development.
The average lifetime of software systems is more than 10 years with a minimum of
two years and a maximum of thirty as stated by Tamai et al [Tamai 1992]. Old
systems are called “legacy systems”. Legacy systems characteristics are summarized
by Crotty et al [Crotty 2017] in: business critical, long time lived, developed using
outdated technologies, with poor documentation if available, degraded structure,
and needs a lot of time for maintenance tasks even small ones.
The increasing dependence on computers and software systems at all levels of the
society requires a continuous integration of new functionalities, that are sometimes
complex, to legacy systems. Due to the complex incorporated functionalities in
these systems over time, including new functionalities in the future will be more
and more difficult for developers who spend a large amount of their time reading
the code and the accompanying system documentations and models, in order to
understand the system’s structure and organization. Therefore, progressive changes
of software systems lead to their quality degradation since they become more com-
plex [Lehman 1997].
Software quality plays a crucial role for the competitiveness and survival of com-
panies because it has a significant impact on the costs arising during develop-
ment, maintenance and use of software. Several quality models have been pro-
posed in the literature [Boehm 1976], [McCall 1977], [Grady 1992], [Dromey 1995],
[ISO.25010 2008] in order to define specific requirements for quality. In these models,
quality is categorized into a set of characteristics which in turn are broken down into
sub-characteristics. These characteristics are known as “quality attributes”. General
software quality attributes include maintainability, modifiability, understandability,
modularity, reusability, interoperability, performance, reliability, security, etc.
A number of solutions have been proposed to deal with legacy software systems
when their quality degradation exceeds a critical threshold. These solutions can be
summarized in: 1) replacing the system by another one developed from scratch, 2)
carrying on the (massive) maintenance of the system despite its cost, or 3) resorting
to the system reengineering [Bennett 1999]. Several decisional models have been

1.1. CONTEXT 3

Figure 1.1: Legacy system decisional matrix [Lucia 2001].

proposed [Lucia 2001,Ransom 1998,Alkazemi 2013] in order to reach a decision about
the best solution, from the aforementioned ones, to consider. They are based on both
business and technical values. Business values concern user satisfaction. Technical
values are measures calculated on the system (e.g, size, complexity, etc). The output
of these models is plotted on a decisional matrix that indicates a recommended
solution as depicted in Figure 1.1.
The first two solutions, replacement and massive maintenance, are not suitable
solutions when the cost and time are to be taken into account, since they require
a considerable effort and staff to ensure the system conclusion in a moderate time.
Therefore, in this thesis, we are interested in the reengineering solution (depicted in
red in Figure 1.1).
Software reengineering is the process of generating evolvable systems [Seacord 2003]
and therefore extending the life time of a legacy software system. Several defini-
tions have been proposed to describe the software reengineering process. The most
commonly used ones are presented in Table 1.1.
These definitions share the fact that software reengineering consists of taking a
legacy system whose quality is degraded and extracting knowledge on its internal
structure or business process and reconstituting it in a new form using new technolo-
gies. In general, software reengineering includes all activities following the delivery to
the customer to improve the software system quality attributes. We use in this the-
sis the definition and the conceptual model of Chikofsky and Cross [Chikofsky 1990]
since numerous publications use the author’s reengineering taxonomy.

4 CHAPTER 1. INTRODUCTION

Table 1.1: Software reengineering state of the art definitions.

[Chikofsky 1990]
“...the examination and alteration of a subject system to reconstitute
it in a new form and the subsequent implementation of the new form.”

[Arnold 1993]

“ any activity that: (1) improves one’s understanding of software,
or (2) prepares or improves the software itself, usually for in-
creased maintainability, reusability, or evolvability. In this definition,
the term software includes, in addition to source code,
documentation, graphical pictures and analyses.”

[Tilley 1995]

“ Reengineering is the systematic transformation of an existing system
into a new form to realize quality improvements in operation, system
capability, functionality, performance, or evolvability at a lower cost,
schedule or risk to the consumer. ”

[McClure 1992]

“ Reengineering is the process of examining an existing system
(program) and/or modifying it with the aid of automated tools to:
improve its future maintainability, upgrade its technology, extend its life
expectancy, capture its components in a repository where CASE tools
can support it, and increase maintenance productivity.”

In this definition, software reengineering process encompasses a combination of three
subprocesses: examination or understanding subprocess in which knowledge about
the system is acquired, alteration subprocess which consists of changing the system,
and the reconstitution subprocess in which the modifications are realized. These
subprocesses correspond respectively to reverse engineering, restructuring and for-
ward engineering. These three subprocesses are depicted in Figure 1.2 and defined
below:

1. Reverse engineering (examination): is the process of analyzing low level ab-
stractions, e.g., source code, of the subject system in order to extract high level
abstractions, e.g., design. Several synonyms exist for the reverse engineering
process in the literature such as: recovery [Solms 2015, Lutellier 2015], re-
construction [Schmidt 2018,Ahn 2018], identification [Shahmohammadi 2010,
Athanasopoulos 2017], mining [Shatnawi 2015] and extraction [Mazlami 2017].

2. Restructuring (alteration): also known by the name “refactoring”. Refac-
toring is defined by Martin Fowler [Fowler 1999] as “the process of changing a
software system in such a way that it does not alter the external behavior of the
code yet improves its internal structure”. Refactoring always takes place within
one level of abstraction, e.g., code-to-code, in order to fix this abstraction’s
bad smells. Bad smells are symptoms of poor quality [Fowler 1999] that may
hinder code maintainability [Kruchten 2012]. Whenever they appear, they in-
dicate that the code or/and the design should be reexamined. An example of
bad smell is Long Method which is a method unduly long in terms of lines of
code and with lots of parameters and local variables. This method should be
decomposed for ease of maintainability.

1.2. PROBLEM STATEMENT 5

Figure 1.2: Chikofsky and Cross [Chikofsky 1990] conceptual model of software reengineer-
ing.

3. Forward engineering (reconstitution): is the classical software development
process. It consists of moving from a high level of abstraction (e.g., require-
ments) to a lower level (e.g., source code) [Van Vliet 1993].

1.2 Problem Statement

Several studies have presented evidence that the major expense in the life cycle of a
software system is maintenance [Schneidewind 1987,Benaroch 2013,Galorath 2006],
that at least 50% of the total life cycle is devoted to maintenance, depending on the
references. Two real life examples on maintenance cost are given in [Anjos 2017]:

• Example 01: In 1997, the Associated Press today reports that Robin Guenier,
head of the UK’s TaskForce 2000, estimates that Y2K reprogramming efforts
will cost Britain $50 billion dollars, three times the guesstimates of business
consultants and computer service companies. Guenier suggested that 300,000
people may be required to tackle the problem. Coincidentally, that number is
roughly equivalent to the number of full-time computer professionals in the UK.

6 CHAPTER 1. INTRODUCTION

• Example 02: In 2000, the city of Toronto lost out on nearly $700,000 in
pet fees because nearly half of Toronto’s dog and cat owners were never billed
due an outdated computerized billing system. The staff who knew how to run
the computerized billing system was laid off. [...] Only one city employee ever
understood the system well enough to debug it when problems arose, and that
employee was also laid off in 2000 due to downsizing, leaving no one to get
things going again when the system ran into trouble and collapsed.

Maintainability is the term used to describe the quality attribute concerned with
software maintenance. It represents “ the ease with which a software system or com-
ponent can be modified to correct faults, improve performance or adapt it to a changed
environment” [ISO.25010 2008]. Since a system with a high degree of maintainabil-
ity leads to low maintenance costs, maintainability is the most targeted quality
attribute by reengineering processes [Abdellatif 2018]. Maintainability is character-
ized in several quality models by a set of characteristics. From these characteristics,
we are particularly interested in modifiability, understandability and modularity.
Modifiability refers to “ the degree to which a product or system can be effectively and
efficiently modified without introducing defects or degrading existing product quality
” [ISO.25010 2008]. Since maintenance costs decrease when a system is developed
in a way that future changes will be relatively easy to implement, we believe that
modifiability has a direct impact on maintainability.
Understandability has a direct impact on maintainability. That is, if a software
is sufficiently understood, it can be properly maintained [Cornelissen 2009a]. As
stated by Biggerstaff et al [Biggerstaff 1993], “a person understands a program when
he or she is able to explain the program, its structure, its behavior, its effects on
its operation context, and the relationships to its application domain in terms that
are qualitatively different from the tokens used to construct the source code of the
program”. Therefore, understanding is related to the ease of reading and correctly
interpreting the informations contained in the software system.
Another quality attribute that has a direct impact on maintainability, and even
understandability, is modularity. It is defined as “the degree to which a system or
computer program is composed of discrete components such that a change to one
component has minimal impact on other components” [ISO.25010 2008]. High co-
hesion and low coupling are drivers for good modularity. Cohesion refers to the
intra-component dependencies and coupling refers to the inter-component depen-
dencies. It is a known fact that modularity facilitates maintainability [Davis 1990]
since modules are independent from each other. This independence allows maintain-
ing different parts of the system in parallel by distinct maintainers and restricting
change propagation.

1.2. PROBLEM STATEMENT 7

Figure 1.3: Component Based development principle.

The Component Based (CB) development paradigm [Bertolino 2005] has been
recognized as one of the paradigms that promote modifiability and thus maintain-
ability. The idea behind this paradigm is a metaphor of the LEGO game. The
principle is illustrated in Figure 1.3: on the left of the figure, there are software
components which correspond, according to Szyperski’s definition [Szyperski 1999],
to “ a unit of composition with contractually specified interfaces and explicit context
dependencies only. A software component can be deployed independently and is sub-
ject to composition by third-parties”. As stated in this definition, components can
be composed in order to create new systems. By analogy, with some LEGO pieces,
it is possible to create pieces as complex as a car, a house, etc.
Several approaches have been proposed for migrating legacy object oriented software
systems into equivalent component based ones in order to benefit from the advan-
tages of the CB paradigm. These approaches consider the component descriptor as
a cluster of classes. Some of these approaches generate clusters/components with
shared classes/interfaces. When these components are reused/composed to create
new systems, duplicated code can occur in these new systems. Duplicated code will
make the maintainability task difficult especially when bugs are detected in this
code. Moreover, in the approaches where no classes/interfaces are duplicated in
several components, if a user wants to develop a new system using an independent
class or subset of classes in a cluster, it is required to use the entire cluster. This
implies that the new developed system contains unnecessary code. The maintenance
of this latter is a waste of time, this led us to ask the following research question:

Research Question 1. Does considering each class in the object oriented
legacy system as a component descriptor contribute in improving modi-
fiability?

This is the first research problem/question that is studied in this work (RQ1).

Furthermore, several reverse engineering approaches have also been proposed in
order to improve understandability, and thus maintainability. This improvement
is achieved by recovering a high level view, an architecture model, of the system’s
structure and behavior. These architecture models are used to acquire a global un-
derstanding of the system instead of wasting time looking at source code artifacts.

8 CHAPTER 1. INTRODUCTION

Most of these approaches target the recovery of class-based models of the system
under study. In our context, we are interested in recovering the runtime archi-
tecture, which is composed of the system’s concrete running entities (objects) and
dependencies between them. The importance of having the runtime architecture
in order to improve understandability was stressed in several experimental stud-
ies such as the one of Lee et al [Lee 2008]. In this study, one participant stated:
“draw how objects connect to each other at runtime when I want to understand code
that is unknown; an object diagram is more interesting than a class diagram, as it
expresses more how it functions”. While the structure and relationships between
objects are implicit in static views, they are explicit in the runtime architecture.
This facilitates handling comprehension tasks that require knowledge about object
interactions [Ammar 2012, Lee 2008]. Only few approaches target the recovery of
runtime architectures. They produce valuable models for understanding the struc-
ture of the system during its execution. However, they fail most of the time to
provide models of a reasonable size which can be visualized by humans/develop-
ers, and this is particularly true for large (legacy) software systems. This led us to
consider the following research question:

Research Question 2. How to recover the runtime architecture of legacy
object oriented systems and how to manage the complexity of the recov-
ered architecture?

This is the second research question that is investigated in this work (RQ2).

Moreover, the improvement of legacy system modularity has been widely stud-
ied in the literature. Most of the time, remodularization approaches are based on
clustering techniques in order to identify highly cohesive and lowly coupled mod-
ule candidates. In general, cohesion and coupling are measured based on struc-
tural relationships between source code artifacts. To the best of our knowledge,
most of existing remodularization approaches consider that the different types of
structural relationships (e.g., field typing, method parameter typing, method in-
vocation) between source code artifacts are equivalent, which is not always true
and not accurate enough. We argue that structural relationships types should be
differentiated. Moreover, we believe that source code artifacts with composition re-
lationships should logically be clustered together in the same module. To the best
of our knowledge, remodularization approaches that have this same point of view,
classes/interfaces with a composition relationship should be clustered in the same
module, suppose that composition relationships are already available in the form of
class-based models, which is not always obvious. This led us to ask the following
question:

Research Question 3. Does differentiating structural relationships and
grouping artifacts with composition relationships in the same module
produce modular solutions?

1.3. THESIS CONTRIBUTIONS 9

This was the third and last problem tackled in this work (RQ3).

1.3 Thesis Contributions

The ultimate goal of this thesis is the improvement of maintainability of legacy soft-
ware systems. To that end, we propose three approaches that are briefly discussed
below.

1.3.1 Migrating Object-Oriented Software Systems into Component-

based equivalent ones

To answer RQ1, we proposed a source code restructuring approach to improve ob-
ject oriented software systems modifiability. In particular, this approach enhances
decoupling by considering that some dependencies between classes should be set
through abstract types (interfaces) like in component based systems. In addition,
some anticipated instantiations of these classes buried in the source code are ex-
tracted and replaced by declarative statements (like connectors in CB applications)
which are processed by a dependency injection mechanism. For doing so, a set of
modifiability defects has been defined. These defects are first detected in the source
code. Then, some refactoring operations are applied for their elimination. At the
end of the process, each class in the object oriented system conforms to a component
descriptor. This approach is discussed in detail in Chapter 3.

1.3.2 Recovering the Runtime Architecture of Object-Oriented

Software Systems and Managing its Complexity

To answer RQ2, we developed an approach to build runtime architecture models
of object oriented systems. The approach combines static and dynamic analysis to
build an object graph that includes information regarding probabilities of allocation
site execution and lifespans of objects. This information is used to manage the com-
plexity of the recovered object graphs by making it possible for the designer to focus
for example on the most likely and durable objects. In addition, composition/own-
ership relations between objects are exploited to embed composite structures into
the object graph nodes. This enables to support a hierarchical visualization of the
recovered architecture. Understandability improvement brought by the approach is
discussed in Chapter 4.

10 CHAPTER 1. INTRODUCTION

1.3.3 Identifying Modules and Services from the Source Code

of Object-Oriented Software Systems

To answer RQ3, we proposed an approach for improving the modular structure of
object-oriented software systems by identifying modules and services in the source
code. In contrast to existing works in the literature, the process starts by a step of
runtime models recovery. These models represent the concrete interacting objects
that compose the running system and their inter-dependencies. These mod- els
are exploited in order to identify composition relationships objects. Once these
composition relationships have been identified, a composition conservative genetic
algorithm is applied on the software system in order to identify modules. At last,
services that allow modules to communicate are identified, based on the runtime
models, in order to further improve decoupling. Modularity improvement brought
by the approach is discussed in Chapter 5.

1.4 Thesis Organization

The rest of this thesis is organized into five chapters:

• Chapter 02: discusses the state of the art related to the problem of improving
quality attributes of object oriented legacy systems.

• Chapter 03: presents the first contribution on modifiability improvement
which deals with RQ1.

• Chapter 04: presents the second contribution on understandability improve-
ment which deals with RQ2.

• Chapter 05: presents the third contribution on modularity improvement
which deals with RQ3.

• Chapter 06: discusses conclusions and future directions.

1.5 Publications

The following accepted or submitted papers are partial outputs of this thesis. Ta-
ble 1.2 organizes them according to the thesis contributions.

1.5.1 International Journals

1. Soumia Zellagui, Chouki Tibermacine, Hinde Bouziane and Christophe Dony.
“Identification of Modules and Services in the Runtime Architectures of Object-
oriented Software Systems”. Submitted to Information & Software Technology
journal.

1.5. PUBLICATIONS 11

2. Soumia Zellagui, Chouki Tibermacine, Hinde Bouziane and Christophe Dony.
“A Method for the Automatic Recovery and Complexity Management of Run-
time Architectures of Medium and Large Sized OO Software Systems”. Under
review (revision) for the Automated Software Engineering journal.

1.5.2 International Conferences

3. Soumia Zellagui, Chouki Tibermacine, Ghizlane El-Boussaidi, Hinde Bouziane,
Abdelhak-Djamel Seriai and Christophe Dony. “Recovering Runtime Architec-
ture Models and Managing their Complexity using Dynamic Information and
Composite Structures”. In proceedings of 33rd ACM/SIGAPP Symposium
On Applied Computing (SAC 2018), PAU, France, April 9 - 13, 2018 (Accep-
tance rate: 25%)

4. Soumia Zellagui, Chouki Tibermacine, Hinde Bouziane, Abdelhak-Djamel Se-
riai and Christophe Dony. “Refactoring Object-Oriented Applications towards
a better Decoupling and Instantiation Unanticipation”. In proceedings of 29th
International Conference on Software Engineering and Knowledge Engineer-
ing (SEKE 2017), Wyndham Pittsburgh University Center, Pittsburgh, USA,
July 5 - July 7, 2017 (Acceptance rate: 35%)

1.5.3 French-Speaking Conferences

5. Soumia Zellagui, Chouki Tibermacine, Hinde Bouziane, Abdelhak-Djamel Se-
riai and Christophe Dony. “Recovering Runtime Architecture of Object Ori-
ented Software”. Doctiss (2018), Montpellier, France, 14 June, 2018

6. Soumia Zellagui, Chouki Tibermacine, Hinde Bouziane, Abdelhak-Djamel Se-
riai and Christophe Dony. “Refining the Reconstructed Runtime Architecture
of Object Oriented Software”. Journée RIMEL (2016), Nantes, France, 08 Dec,
2016

7. Soumia Zellagui and Joffray Braga. “Refactoring des applications à objets
pour un meilleur découplage et une non-anticipation des instanciations”. In
5ième Conférence en IngénieriE de Logiciel (CIEL 2016), Besançon, France, 7
Jun 2016.

12 CHAPTER 1. INTRODUCTION

Table 1.2: List of publications and their distribution over thesis contributions.

Contribution 1 Contribution 2 Contribution 3
International

Journals
(2) (1)

International
Conferences

(4) (3)

French-Speaking
Conferences

(7) (5), (6)

Chapter

2

State of the art

Contents

2.1 Introduction . 13

2.2 Migrating to a New Paradigm 14

2.2.1 Migrating to Component Based Paradigm 14

2.2.2 Migrating to Service Based Paradigm 17

2.2.3 Migrating to Microservice Based Paradigm 21

2.2.4 Migrating to Aspect Oriented Paradigm 23

2.3 Remaining in the Object Oriented Paradigm 25

2.4 Architecture Recovery . 26

2.4.1 Implementation-level architecture recovery 27

2.4.2 Design-level architectures recovery 29

2.5 Discussion . 30

2.1 Introduction

This chapter discusses the state of the art related to maintainability improvement.
The goal of this chapter is to present the main ideas and concepts of the research
field, to show some similarities and differences between solutions and to reveal some
shortcomings in existing works from the literature.

13

14

There are numerous works on improving maintainability of legacy systems. The de-
scribed works are grouped into three categories. The first category groups works that
attempt to improve maintainability by migrating the legacy system into a new pro-
gramming paradigm (presented in Section 2.2). The second category groups works
that improve maintainability by remaining in the object-oriented one (presented in
Section 2.3. The third category groups works that improve maintainability, particu-
larly the understandability and modularity, by recovering the implementation-level
and design-level architecture of the legacy system (presented in Section 2.4). A
summary discussion of the presented works is made at the end of the chapter in
Section 2.5.

2.2 Improving Maintainability by Migrating to a

New Paradigm

By new paradigms we mean here new ways of developing software. We focus on those
that promote the maintainability quality attribute, and which are: the component-
based, service-based, microservice-based and aspect-based ones.

2.2.1 Migrating to Component Based Paradigm

Component-Based (CB) paradigm has been recognized as an approach that empha-
sizes software maintainability. Thereby, several works have been proposed to migrate
object oriented software systems into component-based ones. The migration process
consists of two steps: the first step is the component based architecture recovery
where components and their dependencies are identified. The second step is code
transformation in which the object oriented code is transformed into an equivalent
component based one. We have selected below a set of the most important (mostly
cited) migration works.

• Jain et al [Jain 2001] proposed a semi-automatic approach for component iden-
tification from object oriented legacy systems. The input of the approach is
two types of models of the legacy system: the UML class diagram and use
case diagram. These models are used in order to calculate the strength of
structural relationships between classes of the legacy system1. A hierarchical
agglomerative clustering algorithm is then applied in order to identify initial
components. This algorithm groups initially classes having the highest struc-
tural relationship strengths in the same component and later clusters them
until an end point is reached. This point corresponds to a threshold limit
of the relationship strengths. The identified components can then be refined
using both manual and/or automatic heuristics. An example of heuristics is

1The strength is calculated based on weights given by the user to the structural relationships

2.2. MIGRATING TO A NEW PARADIGM 15

moving a particular class from its component if the user feels that it is more
appropriate to place it in another component. The authors reported a case
study of the approach. This case study showed that maintainability is slightly
improved. However, details on how its values were measured are lacking.

• In [Lee 2003], component identification, which is done manually, includes two
steps. The first step consists of grouping together classes/interfaces with com-
position and inheritance relationships to form base components. The second
step of the process consists of grouping similar base components or assign-
ing classes, which where not assigned before to a base component, to a new
component. This grouping is based on quality metrics such as cohesion which
are considered as similarity measures for clustering. For each identified com-
ponent, a pair of required and provided interfaces is created. The required
interface is the set of all methods in other components that are called in a
component. The provided interface is the set of public methods of the com-
ponent called by other components. The application of the approach on an
example system showed an improvement in the modularity.

• The manual identification of components in [Kim 2004] is based on the degree
of dependency between use cases of a use case diagram which is supposed to
be available. The dependency between two use cases is calculated taking into
account several criteria such as: use cases invoked by the same actor or manip-
ulating the same set of data. Once the dependencies are computed for every
pair of use case, related use cases are allocated in the same cluster. Then, the
dynamic behavior of each use case is represented by a sequence diagram, sup-
posed to be available, which specifies the set of participating objects/classes.
The participating classes in each sequence diagram are assigned to the cluster
of the corresponding use case. The class diagram is then used to refine the
resulted clusters by exploiting several types of relationships between classes.
Unfortunately, the authors do not test the applicability of the approach on
real world systems. Therefore, it is not clear if the approach contributes really
in improving maintainability.

• Washizaki et al [Washizaki 2005] presented an automatic approach to extract
JavaBeans components from Java systems. The input of the approach is the
source code of the system and an extraction criterion that represents a func-
tionality to be reused. A component groups the class that implements the
functionality to be reused and all classes that are reachable from this class.
Reachability is determined using a class-based graph, in which nodes repre-
sent classes/interfaces and edges represents structural relationships such as
reference and inheritance. A class B is said reachable from class A if there
is a path from A to B in the class-based graph. The approach was applied
on nine systems. For these systems, the number of the extracted components

16

and their reusability are reported. Another semi-automatic similar approach
is that of [Constantinou 2015] where the extraction task starts with the selec-
tion of an origin class. This approach focuses on the reduction of candidate
component sizes.

• Allier et al [Allier 2011] proposed an approach to automate the process of
migration from Object-Oriented systems to Component Based ones. The used
data to identify the components are execution traces. An execution trace is a
tree in which each node is the execution of a method and each edge is a method
call. Once the components have been identified, the component interfaces are
made operational by the use of two design patterns: Adapter and Façade.
The approach was illustrated on a real system implemented in Java which is
migrated into an OSGi equivalent system. However, no measurement of the
improvement in maintainability was done.

• Alshara et al [Alshara 2015,Alshara 2016] proposed an approach to automati-
cally transform Java systems into OSGi systems. This approach takes as input
the source code of the system and the description of the corresponding com-
ponent based architecture (obtained using ROMANTIC (Re-engineering of
Object-oriented systeMs by Architecture extractioN and migraTIon to Com-
ponent based ones) [Kebir 2012]). In this architecture, a component is a set
of object oriented classes/interfaces. This architecture is obtained by a clus-
tering based on a fitness function which measures the quality of a component.
This latter is defined according to the component characteristics, namely au-
tonomy, specificity and composability. These characteristics are refined into
sub-characteristics which are in turn refined into component properties (e.g.
required interfaces). Then, these properties are mapped to the properties of
the group of classes from which the component is identified (e.g. group of
classes coupling). At the end, these properties are refined into object oriented
metrics (e.g. coupling metric) calculated based on structural relationships be-
tween source code artifacts. Once the component based architecture has been
recovered, dependencies between classes belonging to different components are
transformed into interactions via interfaces. For this, the authors were inter-
ested in two types of relations between classes. The first type is a “use” relation
identifying the case when a class in a component creates an instance of an-
other class in another component. This relation must be transformed in order
to respect the component interaction principle which states that each com-
ponent must hide its internal structure and behavior and provide its services
without exposing the classes that implement them [Szyperski 2002]. The sec-
ond type is the “inherit” relation when the parent class and child class are
not in the same component. According to the point of view of the authors,
this relation needs to be transformed into delegation since several component
models do not support inheritance relationship between components. The ap-

2.2. MIGRATING TO A NEW PARADIGM 17

plicability of the approach was tested on nine systems. The results reported
the number of components in each system and the number of relations that
have been transformed. No discussion or measurement of the improvement in
maintainability was done.

• Shatnawi et al [Shatnawi 2016] proposed an approach that aims at recovering
software components from Object-Oriented APIs. In this approach, groups of
API classes that are able to form components are identified. This identification
is based on the probability of classes to be reused together by clients, and
the structural and behavioral relationships between classes/interfaces. The
approach was applied on four APIs that are used by 100 clients. The authors
stated that the improvement in the understandability is related to the percent
of the number of identified components on the number of classes composing
the API. That is, if this percent is small, this means that the effort spent to
understand API entities is reduced since the API size is reduced.

• Starting from the component based architecture and the software execution
data, which record method calls, Liu et al [Liu 2018] propose an approach
to identify a set of interfaces for each component. Moreover, in order to
understand how each interface actually works, a behavioral model for each
identified interface is discovered. A component is defined as a set of classes.
The component interfaces are identified based on the component execution
data which represents all method calls in the software execution data referring
to instances of the component classes. From these methods, a subset which
represent methods called by methods of another component is selected. The
methods in this subset are grouped according to their caller, methods called by
the same method are grouped in the same interface, to form the component in-
terfaces. In order to eliminate duplication, similar interfaces are merged based
on a similarity measure proposed by the authors. Interfaces whose similarity
value is superior to a threshold are merged. Once the interfaces have been
identified, their contracts which defines in which order the methods should be
invoked are discovered and represented by a behavioral model. The authors
evaluated the approach on three systems. Since the authors are interested only
in component interfaces identification, the evaluation focused on the quality
of the identified interfaces.

2.2.2 Migrating to Service Based Paradigm

Service-oriented architecture (SOA) has received much popularity in the previous
decade and has been adopted by many companies. The main elements that com-
pose a service oriented architecture are highly cohesive and loosely coupled services.
These services are published in a service repository by a service provider and used
by service consumers as depicted in Figure 2.1.

18

Figure 2.1: Service-oriented architecture (SOA) main elements

The modernization of legacy software towards SOA is promising since it enables
sharing services between several systems which leads to a reduction of the develop-
ment and maintenance costs [Griffiths 2010].
Several approaches have been reported in the literature to migrate legacy systems
to SOA based ones. Most of these approaches (e.g., [Alahmari 2010,Khadka 2011,
Khadka 2013]) propose only general recommendations and best practices that should
be taken into consideration. They are given based on practices that have been
repeatedly applied and proven to be successful. Next, we present works that provide
structured approaches. Moreover, only the service identification step is discussed.
The deployment of an identified service is not discussed since this step is rarely
handled in related works.

• [Li 2006] developed an automatic approach made of four steps: Architecture
Recovery, Service Identification, Component Generation and System Transfor-
mation.

– Architecture recovery aims at reconstructing a view of the implementation-
level architecture. The output of this step is two architectural models:
Class/Interface Relationship Graph (CIRG) which is a direct graph that
represents classes/interfaces and their different relationships (inheritance,
composition, etc) and Class/Interface Dependency Graph (CIDG) which
is an undirected CIRG. Unfortunately, it is not clear how the CIRG is
exploited in the following steps of the approach.

2.2. MIGRATING TO A NEW PARADIGM 19

– Service identification step consists of identifying top-level and low-level
services. Top-level services are not used by another service but can con-
tain low-level services. Low-level services are underneath a top level ser-
vice. Top-level services are identified by decomposing the CIDG into a
set of connected components with a unique root such that each compo-
nent is an independent subgraph of the CIDG. These rooted components
are called modularized CIDG (MCIDG). The root of each MCIDG is
considered as a top-level service candidate and the other nodes as the
low-level service candidates underneath the top-level service candidate.

– Component generation consists of identifying components that realize
top-level and low-level services. This is done by identifying the com-
ponent elements defined by the authors, such as: the component facade
and constituting set of classes.

– System transformation step consists simply of applying refactoring opera-
tions to transform the object oriented system into a concrete service-based
version of it.

The approach was evaluated on a case study. The goal of this evaluation is to
measure the reusability of the resulted top-level services. For that, the authors
used the reusability model proposed by Washizaki et al [Washizaki 2003]. In
this model, reusability is decomposed into three quality attributes: under-
standability, adaptability and portability. These quality attributes are hierar-
chically subdivided into metrics from the literature. The authors concluded
that services extracted by their approach have a reasonable level of under-
standability, adaptability and portability.

• [Canfora 2008] proposed a wrapper-based semi-automatic approach for mi-
grating form-based legacy systems, a class of interactive systems, to service
oriented architectures. The process is decomposed into three steps: selection
of the candidate services (use cases), wrapping of the selected use cases and
the deployment and validation of the wrapped use cases.

– Candidate services selection consists of determining which legacy system
use cases can be exposed as services in a SOA based on state of the art
approaches that are interested in resolving this decision problem.

– Selected use cases wrapping step consists of i) identifying simple and/or
composite services that correspond to use cases. ii) a reverse engineering
step to generate a finite state automaton (FSA), screen template and the
interface of the wrapped service. iii) wrapper design in order to generate
the FSA description document. The FSA specifies user-system interac-
tions. In this automaton, states correspond to the different displayed
screens and transitions correspond to actions performed by the user on
screens. In addition to the finite state automaton, the structure of the

20

UI forms is needed. This structure is specified by a model called screen
template. The screen template is characterized by text fields and their
positions in the screen. The FSA and the screen template represent the
main requirements for the wrapper.

– The deployment and validation step consists of importing and publishing
the identified services.

• [Fuhr 2011] proposed a semi-automatic approach to identify services using
clustering techniques. The inputs of the approach are business processes mod-
eled as activity diagrams and the source code of the system in question. The
first step consists of instrumenting the source code of the system given as in-
put. After that, for each activity selected by the user, this latter simulates
the selected activity on the instrumented legacy system to generate code exe-
cution log. Service identification is based on a clustering technique where the
similarity measure is based on how often legacy classes are used together in
each activity of the business processes. The authors compared the authori-
tative service-based architecture, provided by the original developer, and the
service-based architecture resulted when applying their approach on a subject
system. The comparison was done by calculating precision and recall between
clusters of the two architectures. The results of this comparison showed that
the approach correctly clustered a large proportion of the studied system.

• [Adjoyan 2014] proposed an automatic service identification approach for
legacy to SOA migration. The service identification is based on three qual-
ity characteristics of services namely: functionality, composability and self-
containment. These characteristics are refined into metrics calculated based
on the structural relationships between classes/interfaces. The approach takes
as input the object-oriented source code of the legacy system and produces a
set of services, clusters of classes. For this purpose, the authors propose a hi-
erarchical agglomerative clustering algorithm. This algorithm groups together
the classes with the maximized value of a fitness function defined in function
of the aforementioned quality characteristics. This approach was tested on
two systems. The values of functionality, composability and self-containment
for the identified services were reported. Moreover, the identified services were
mapped to well known architecture models of the studied systems. The results
showed that a high percent of the extracted services were successfully mapped
in the architecture models.

• [Kerdoudi 2016] proposed a semi-automatic approach for migrating Web ap-
plications toward Web service-oriented systems. The input of this approach
is the source code and an XML file that describes the navigation between in-
terfaces of the Web application. As output, the approach produces a set of
Web services. The overall process is decomposed into several steps. First, an
identification of a set of operations from each element of the Web application

2.2. MIGRATING TO A NEW PARADIGM 21

is done. Then, the input and output messages related to each identified oper-
ation in the Web services are identified. After that, the developer eliminates
each operation that should not be published and the remaining operations
are grouped in the same Web service. Finally, the dependencies between the
different selected operations in the Web services are identified.

2.2.3 Migrating to Microservice Based Paradigm

Microservice-based Architectures (MSA) are originating from SOA. However, MSA
can be distinct from SOA by some key characteristics, such as service granularity
where microservices are relatively small with respect to services in SOA as depicted
in Figure 2.2.

Figure 2.2: SOA and MSA granularity

However, The term “small” was not precisely defined in the works that dealt with
the topic of microservices [Newman 2015] and most definitions of microservices do
not provide any insight into the level of granularity required for the functionality to
be branded as a microservice. There exist several factors that can define how small
is small such as the number of members of the team managing the microservice
and the number of functions that a microservice is designed to perform. In the
following, some works that target the migration to the microservice based paradigm
are presented:

• [Escobar 2016] proposed an automated approach to partition Java EE systems
into microservices and visualize the resulted microservice-based architecture.
The first step of the approach consists of representing the input system in
a graph format where nodes represent classes/interfaces and edges represent
structural relationships between these classes/interfaces. An algorithm is then
applied on the graph to obtain clusters and links between them. This algo-
rithm groups in the same cluster all classes/interfaces that participate in an
invocation sequence (e.g., if there exists two nodes A and B, all classes/inter-
faces that exists between invocations that starts in A and finishes in B are

22

grouped, with A and B, in the same cluster). There may be classes/interfaces
that belong to two or more clusters. The obtained clusters are linked via edges
labeled with the number of elements that result from the intersection between
the set of classes/interfaces of the two clusters. Once the clusters and the
links between them have been identified, each cluster and the set of clusters
with which this cluster is related by a link, whose label value is greater than
a user-defined threshold, are grouped in a microservice. The approach was
applied on a case study which basically reported measures on the number of
identified microservices and the number of classes/interfaces in each identified
microservice. Moreover, the authors discussed that the understanding is im-
proved through the proposed approach because it provides visualizations of
the identified microservices.

• [Gysel 2016] proposed an automatic approach for service decomposition based
on a catalog which assembles 16 coupling measures. The input of the approach
consists of nine user representations of the system to be decomposed into a
set of microservices. The approach extracts from these representations the
coupling measures and nano-entities. Each nano-entity serves as the building
block of microservices, it can be a field, a method or a class. The extracted
nano-entities and coupling criteria are transformed into an undirected and
weighted graph where nodes represent nano-entities and the weights of edges
indicate how coupled two nano-entities are. A clustering algorithm is then
applied on the graph to find candidate microservices. The approach was as-
sessed on two systems. For these systems, the authors decided to classify
the identified microservices into four categories: excellent, good, acceptable or
bad. This classification was based on the authors experience in microservice
design. The identified microservices of the two systems were judged good and
acceptable.

• Levcovitz et al [Levcovitz 2016] proposed an approach that identifies manu-
ally microservices from monolithic systems represented by a tuple (Façade,
business functions, database tables). Façade represents the entry points of the
system that use business functions. Business functions are methods that de-
pend on database tables. The approach supposes that the input system is
structured into subsystems. The first step of the process maps each subsystem
to the database on which it depends. Then, a dependency graph is created.
Nodes in this graph are the monolithic system elements (Façade, business func-
tions and database tables). Edges can be of three types: (i) calls from facades
to business functions; (ii) calls between business functions; and (iii) accesses
from business functions to database tables. Using the created graph, a set of
pairs of the form (Façade, database table) are identified where a path from
Façade to database table exists in the dependency graph. After that, for each
subsystem, a set of the pairs identified in the previous step is selected where
the database table parts in these pairs are the same mapped to the subsystem.

2.2. MIGRATING TO A NEW PARADIGM 23

For each selected pair, a microservice candidate for the subsystem is identi-
fied. The approach was applied on a large system. For this system, discussions
were made on the number of the identified microservices. No discussions were
made about the benefit brought by the approach in terms of improvement in
maintainability.

• [Mazlami 2017] proposed an automatic approach for extracting microservices
from monolithic software systems. The input of the approach is the source
code of the monolithic object oriented software system from which a graph
representation is recovered. The nodes of the graph are classes and each edge
has a weight defined by a weight function which determines how strong is
the coupling between classes according to the used coupling strategy. Three
coupling strategies are proposed: logical coupling, semantic coupling and con-
tributor coupling. The final step of the process consists of partitioning the
graph representation into connected components to obtain candidates for mi-
croservices. The approach was applied on 21 systems. For each system, the
quality of the extracted microservices is measured. A microservice based solu-
tion is said of high quality if the team size across all microservices is reduced
compared to the team size of the original monolithic system.

• [Selmadji 2018] proposed an automatic approach for microservice identifica-
tion from object oriented applications. The identification is based on a quality
function defined by an analysis of microservice characteristics namely granu-
larity, cohesion and autonomy. This function is based on metrics that measure
these characteristics. These metrics are calculated based on the structural
relationships between source code artifacts. The input of the approach is
the source code of the legacy system and produces a set of microservices as
output. A microservice is defined by the authors as a set of classes, where
each class is allocated to exactly one microservice (no shared classes between
microservices). Classes are allocated to clusters using a hierarchical agglom-
erative clustering algorithm. This algorithm groups together the classes with
the maximized value of the aforementioned fitness function. The approach
was tested on three systems. The resulted microservices were compared to
microservices extracted manually by the authors. The comparison showed
that there is a great matching between the extracted services by the proposed
approach and by those extracted manually.

2.2.4 Migrating to Aspect Oriented Paradigm

The aspect oriented programming (AOP) is a paradigm that aims to separate the
crosscutting functionalities, which are of non-functional nature (authentication and
encryption, for example) or technical (access to a database, for example), from the
core, business, functionalities in order to improve maintainability, understandabil-

24

ity and modularity. These crosscutting functionalities are known by the name of
“Aspects”. Therefore, an aspect oriented program is decomposed into two parts:
i) classes that represent the core functionalities and ii) aspects that represent the
crosscutting functionalities.
Aspects are not called by classes that represent the core functionalities. They are
applied on the program through an aspect weaver. Aspect weaving is the operation
that takes classes and aspects as input and produces a system that integrates the
features of both classes and aspects. AOP core principle is depicted in Figure 2.3.
In this figure, the main concepts of AOP namely pointcut, jointpoint, advice and
weaving are presented. Joinpoint is a point in the program in which one or more
aspects can be applied. It can be, for example, a method being called or a variable
being modified. Pointcut defines at what joinpoints, the associated Advice should
be applied. An advice corresponds to the code executed before, after or around a
joinpoint.

Figure 2.3: Weaving Principle in Aspect Oriented Programming (AOP)

In order to benefit from the advantages of aspect oriented programming, several
approaches have been proposed in the literature to migrate existing object oriented
systems to aspect oriented ones. The migration passes through two phases: aspect
mining that consists of the identification of code representing the existing crosscut-
ting concerns, and aspect extraction (including object-to-aspect refactoring). The
first step has been well studied in the literature [Breu 2004,Marin 2004,Tonella 2004,
Tourwé 2004,Bernardi 2016]. Some migration approaches are presented bellow:

• Binkly et al [Binkley 2006] proposed an automatic refactoring approach for
migrating existing Java applications into AspectJ ones. They assume that
aspects are already identified. The parts of code supposed to be refactored
are method calls. For this, six refactorings were introduced according to the
position of the call (before/after a method call, beginning/end of a method,

2.3. REMAINING IN THE OBJECT ORIENTED PARADIGM 25

etc.). The proposed refactorings were applied on four case studies. For these
case studies, the authors discussed the impact of the refactoring on perfor-
mance, in terms of execution time, and size of the system. Overall, the results
showed that no performance degradation was noticed for the refactored code.
Moreover, the authors described that while the base code size is only slightly
reduced, the base code structure is substantially simplified.

• In the same context, Ceccato et al [Ceccato 2007, Ceccato 2008] proposed
an automatic approach for aspect identification. Once the candidate aspects
are located, six refactoring operations can be applied to support migration
(namely: Extract Beginning/End of Method/Handler, Extract Before/After
Call, Extract Conditional, Pre Return, Extract Wrapper and Extract Ex-
ception Handling). In the case when none of these refactorings apply to an
annotated code, additional transformations to code can be applied to make
one or more of the six refactorings applicable. In order to assess if the ap-
proach is beneficial to understandability, maintainability and modularity, the
authors asked software developers to perform some maintenance tasks either
on the base system or on its refactored version. Details of the experiment are
not given in the papers describing the approach (neither in [Ceccato 2007]
nor [Ceccato 2008]). However, the authors summarize their finding by stat-
ing that the proposed approach improved modularity, understandability and
maintainability.

2.3 Improving Maintainability by Remaining in the

Object Oriented Paradigm

In addition to the aforementioned works that improve maintainability by moderniz-
ing the legacy system to a new paradigm, a large body of works has been proposed
to improve maintainability by remaining in the same paradigm used in developing
the legacy system. An interest in eliminating bad structures has been growing in
the community of software engineering in order to improve maintainability. The
elimination of bad structures is done by applying refactoring operations.
In this context, Fowler [Fowler 1999] defined 22 refactorings for Java programs and
initially introduced the concept of bad smells in code as an indicator when (and
where) to apply refactorings. Many development environments and plug-ins such as
Eclipse2, IntelliJ IDEA3, JDeodorant4 and RefactorIT5 provide automated support
of several Fowler’s refactorings.

2https://www.eclipse.org/
3http://www.jetbrains.com/idea/
4http://www.jdeodorant.com
5http://sourceforge.net/projects/refactorit/

26

Tourwé et al [Tourwé 2003] proposed a semi-automatic approach that identifies au-
tomatically two types of bad smells, obsolete parameter and inappropriate interface,
using logic meta programming. Once instances of these bad smells have been iden-
tified, the user can choose refactoring operations from the five proposed (remove
parameter, add class, add method, rename variable and pull up variable) and apply
it manually to eliminate the bad smell.
For decoupling classes using interfaces, Steimann et al [Steimann 2006] proposed a
fully automated refactoring approach for the introduction of new interfaces. This
refactoring calculates from variable declarations, the minimal types (interfaces),
containing all the method declarations needed from the chosen reference and all
other references it gets possibly assigned to.
Shah et al [Shah 2013] proposed an algorithm that uses various refactoring tech-
niques to automatically remove unwanted dependencies in Java programs. This
algorithm is designed to eliminate maintainability defects represented by four types
of anti-patterns: circular dependencies between packages, subtypes knowledge (when
a subtype is used either directly or indirectly by its super type), abstraction with-
out decoupling and degenerated inheritance. They classified dependencies between
classes in four categories and for each category they specified a refactoring operation.
Ouni et al [Ouni 2013] proposed an approach for automatically detecting and cor-
recting several maintainability defects in source code. Authors focused on three
types of maintainability defects, namely Blob, Spaghetti Code and Functional De-
composition. Quality metrics are used in order to generate rules for the detection
of each type of maintainability defect. An example of a rule is: a class having more
than 10 attributes and 20 methods is considered as a blob. In this rule, the number
of attributes and the number of methods of a class correspond to two quality met-
rics that are used to detect a blob defect. In the correction step, Fowler’s catalog of
refactoring is used to recommend the suitable refactoring for each maintainability
defect.

2.4 Improving Understandability and Modularity by

Architecture Recovery

As described earlier, migration processes into new paradigms, whether to compo-
nents, services or micorservices, passes through a step of architecture recovery. How-
ever, many other works do not propose architecture recovery approaches for the mi-
gration purpose but for the understanding purpose or for restructuring the system
by following an obtained modular architecture.
The most significant works of this category are presented below. We present first
approaches that target the recovery of the implementation-level architecture and
after that the approaches whose goal is recovering the design-level architecture.
Design-level architectures describe the different high-level parts of a legacy system.
Implementation-level architectures describe the program artifacts.

2.4. ARCHITECTURE RECOVERY 27

2.4.1 Implementation-level architecture recovery

Several approaches and tools (e.g., Understand6, Structure1017, Lattix 8) have been
developed to recover class-based models of object oriented software systems. In
the following, works that recover object-based models are discussed. These works
rely either on static, dynamic or hybrid analysis. Static analysis refers to source
code examination without executing the legacy system. Dynamic analysis consists
of observing the system during its execution. While static information presents a
complete picture of what could happen at runtime, it does not show what actually
happens. On the other hand, dynamic information is precise but it is challenged by
the coverage problem. The combination of static and dynamic analyses is known as
hybrid analysis.

• Both Spiegel et al [Spiegel 2002] and Abi-Antoun et al [Abi-Antoun 2009] pro-
posed static analysis techniques, named Pangaea and SCHOLIA respectively,
in order to recover object graphs of Java systems. Nodes of the graphs re-
covered in the two works represent the objects that exist at runtime whereas
edges between two nodes can be of three kinds: creation, reference and usage
according to Spiegel et al [Spiegel 2002], and represent references acquired by
a field according to Abi-Antoun et al [Abi-Antoun 2009]. In order to mitigate
the complexity of the recovered model, in SCHOLIA, architectural extractors
(developers) use ownership domain annotations to annotate the Java code
manually, then they use static analysis to extract a hierarchical Ownership
Object Graph (OOG). This aspect of mitigating the complexity of the recov-
ered graphs is not taken into account in Pangaea

• Each of the works of de Brito et al [de Brito 2013], Flangan et al [Flana-
gan 2006] and Briand et al [Briand 2006] recovers object graphs dynamically.
Nodes of these graphs represent objects. The edges between nodes have differ-
ent meanings in each approach. According to de Brito et al [de Brito 2013], an
edge between two objects (o1 and o2) indicates that o1 has obtained a refer-
ence to o2 at some point in its lifespan. This reference could be acquired by an
object’s field, a local variable or by a method’s formal parameter. In Flangan
et al [Flanagan 2006], an edge between two nodes o1 and o2 means that a field
of o1 points to o2. Since the approach of Briand et al [Briand 2006] recovers a
special type of object graphs which is a scenario diagram (a simplified version
of a sequence diagram that depicts a specific scenario), edges between nodes
are method invocations. To promote the scalability of OGs, while de Brito

6https://scitools.com/
7http://structure101.com/
8http://lattix.com/lattix-architect

28

et al [de Brito 2013] use the summarization by domain, a group of nodes ex-
plicitly defined by developers, and Flangan et al [Flanagan 2006] apply some
abstractions such as: defining ownership and containement relations between
objects, this aspect is not discussed in the work of Briand et al [Briand 2006].

• In order to recover object graphs, Wang et al [Wang 2008] and Labiche et
al [Labiche 2013] proposed reverse engineering techniques based on a hybrid
analysis. In the work of Wang et al [Wang 2008], static analysis is used to
build the object graph (nodes represent objects and each edge represents a
specific relation between two objects: creation, invocation, read or write).
This graph is then enhanced with dynamic profiling information such as al-
location frequency on nodes and interaction count on edges. Thereafter, this
information is used to reduce the object graph to a tractable size. Labiche
et al [Labiche 2013] presented a technique that also combines both static
and dynamic analyses in order to recover scenario diagrams. In this tech-
nique, instead of instrumenting the control-flow structures, as in their previ-
ous work [Briand 2006], the static analysis is used to reverse engineer control
flow graphs. Like in their previous work, Labiche et al [Labiche 2013] do not
discuss the aspect of mitigating the complexity of recovered graphs.

The visualization of legacy systems source code artifacts has been widely addressed
in the literature. In particular, attention was drew to the visualization of classes/in-
terfaces characteristics such as: the number of lines of code, number of methods,
number of fields, etc. Some of these visualization works are presented bellow:

• Langelier et al [Langelier 2005] proposed a semi-automatic approach for large-
scale software visualization in order to understand software properties. In
this visualization, a class is represented by a 3D box. Some class character-
istics are captured throughout well known metrics. Box color, twist, and size
are matched to those characteristics. The authors defined two class layouts:
Treemap and Sunburst in order to allow a separation of the classes into areas.
In addition, some filters were implemented in order to focus on useful elements
and reduce the visual importance of useless elements. As a filter example, for
a given class, the expert can view only classes that are related to it by a
particular type of link (association, aggregation, etc.).

• Wettel et al [Wettel 2011] developed the CodeCity tool that uses the city
metaphor to visualize software systems as cities. In these cities, buildings
represent classes and districts represent packages. The number of methods,
attributes and lines of code are mapped to height, base size and colors of the
buildings respectively. This visualization allowed the assessment of the de-
sign quality by detecting some anti-patterns as the God Class one. Balogh
et al [Balogh 2013,Balogh 2015] developed the CodeMetropolis tool to visu-
alize software systems elements. Their visualization is also based on the city
metaphor.

2.4. ARCHITECTURE RECOVERY 29

• Cornelissen et al [Cornelissen 2009b] developed EXTRAVIS tool for executing
trace visualization. EXTRAVIS provides two views: the massive sequence
view which represents a UML sequence diagram and the circular bundled view
which displays the system artifacts on a circle and shows their relations in a
bundled way.

• Fittkau et al [Fittkau 2017] developed the ExplorViz 3-D trace visualization
tool. ExplorViz provides two types of visualization: the Landscape-level vi-
sualization and the Application-level visualization. In the Application-level
visualization, packages are displayed as green boxes, classes as purple boxes
and links between classes as orange lines. In the Landscape-level visualization,
a landscape, displayed as a gray box, is a group of systems which represents a
logical union of multiple applications, purple boxes, and servers(node groups),
green boxes. The communication between applications is visualized by orange
lines.

2.4.2 Design-level architectures recovery

Mitchell et al [Mitchell 2006] proposed the Bunch clustering tool which uses hill-
climbing and genetic algorithms to group classes/interfaces into clusters. The input
of the tool is a class-based graph in which nodes represent classes/interfaces and
edges represent dependencies between these classes/interfaces. These classes/in-
terfaces are clustered based on a modularization quality function. This function
measures the quality of the input graph clustering solutions quantitatively as the
trade-off between inter-connectivity (i.e., dependencies between the classes/inter-
faces of different clusters) and intra-connectivity (i.e., dependencies between the
classes/interfaces of the same cluster).
Tzerpos and Holt [Tzerpos 2000] proposed the ACDC (Algorithm for Comprehension-
Driven Clustering) clustering algorithm. This algorithm is pattern-driven. In a first
stage, the algorithm clusters a large proportion of the system artifacts based on
patterns that are commonly observed in decompositions of large software systems.
These patterns allow grouping in the same cluster: 1) procedures/functions, as well
as variable declarations that reside in the same source file 2) source files that exist in
the same directory, 3) source files that are leaves in a system’s graph, 4) source files
that are accessed by the majority of clusters, 5) source files that depend on a large
number of other resources and 6) source files that belong to a subgraph obtained
through dominance analysis. The second stage concerns source files that are still
not assigned to a cluster, since they did not fit any of the used patterns. For that,
the technique of orphan adoption [Tzerpos 1997] is used. This technique attempts
to place each orphan source file in the cluster that seems more appropriate.

30

ARC (Architectural Recovery using Concerns) is a clustering algorithm developed
in [Garcia 2011]. This algorithm uses the identifiers and comments in source code
to detect the concerns the system addresses. These concerns, combined with struc-
tural informations, are used in order to group the system artifacts in clusters based
on similarity measures. In this algorithm, similarity measures between concerns
are computed using a statistical language model called Latent Dirichlet Allocation
(LDA) [Blei 2003].

2.5 Discussion

Based on works presented in Sections 2.2 and 2.3, maintainability can take many
forms in terms of first class programming entities such as: components, services, mi-
croservices, aspects and well structured classes. For several approaches ([Jain 2001,
Lee 2003, Kim 2004, Washizaki 2005, Constantinou 2015, Li 2006, Fuhr 2011, Esco-
bar 2016,Mazlami 2017]) that aim to improve maintainability by migrating to the
component, service, or microservice-based paradigm by considering that the unit
of maintainability is a cluster of classes/interfaces, and that classes/interfaces can
be shared between several units/clusters. Therefore, if we build a new system with
multiple components obtained with these approaches, then we may have duplicated
code. This will complicate maintainability tasks especially in the case when bugs
exist in the duplicated code [Chatterji 2013] (DRY principle in not respected).
Moreover, in the works where no classes/interfaces are duplicated in several clus-
ters [Alshara 2015, Adjoyan 2014, Selmadji 2018, Allier 2011], if a user wants to
develop a new system using an independent class or subset of classes in a cluster,
it is required to use the entire cluster. This implies that the new developed system
contains unnecessary code. The maintenance of this latter is a waste of development
time and resources [Eder 2012].
In order to tackle the problems of duplicated and unused code, we argue that refac-
toring classes individually, resembling thus to component descriptors, makes them
more maintainable.
The maintainability covered by the works that target the migration to aspect ori-
ented programming [Binkley 2006,Ceccato 2007,Ceccato 2008] does not involve the
same program elements. Indeed, in these works, the refactoring aims to separate
the crosscutting functionalities, which are of a non-functional or technical nature
(authentication or access to a database, for example), from the core functionalities.
We argue that isolating parts of the code that represents architecture description
(instantiations, connections, provided/required interfaces declarations...) form parts
of code that represents the core functionalities makes the OO systems more main-
tainable. The two categories of work are perfectly complementary.

2.5. DISCUSSION 31

Moreover, approaches that propose refactoring operations by remaining in the same
paradigm [Fowler 1999,Tourwé 2003,Steimann 2006,Shah 2013,Ouni 2013] have the
same goal, which is improving maintainability. In the case of refactoring classes
individually, we argue that the same goal is targeted likewise but with a one other
requirement which is having at the end of the process a class conform to a component
descriptor.
As discussed in Section 2.4.1, several approaches have been proposed for the recov-
ery of traditional design representations such as class-based graphs. Since software
architectures are increasingly dynamic, with components being assembled at run-
time, recovering the runtime architecture is becoming more significant. The runtime
architecture of a given system represents a model of the system’s concrete running
entities (objects) and dependencies between them. We believe that a runtime ar-
chitecture, an object-based model, communicates different information from a class
based model. This is because an object-based model shows only the set of objects
that really exist at runtime and their relationships. Moreover, a class-based model
shows in a generic way all associations to which a class can participate. However, it is
when this class will be instantiated, it will be clear which instances really participate
in these associations. We believe this has a great impact on comprehension.
The importance of having the runtime architecture to handle comprehension tasks
was stressed in several experimental studies such as the ones from [Lee 2008] and
[Ammar 2012]. [Lee 2008] conducted an interview-based experimental study to in-
vestigate which kind of information is desired by maintainers/developers during
comprehension tasks. 19 maintainers were involved in this study. Each maintainer
was provided with source code and a simple tool that models the relationships of the
code elements. The intent of this tool is to get information about what maintain-
ers think that a diagram should contain. The participants described many kinds
of information that should be in a diagram including objects interactions. Many
participants stressed the importance of having a diagram that models objects and
their interactions. One of these participants described “draw how objects connect
to each other at runtime when I want to understand code that is unknown; an ob-
ject diagram is more interesting than a class diagram, as it expresses more how it
functions”. Moreover, [Ammar 2012] evaluated whether a runtime architecture is
more helpful in handling comprehension tasks than class diagram. The results of
their study confirmed their research hypothesis which was: for comprehension tasks
that require knowledge about the runtime structure, maintainers that use a runtime
architecture requires less effort and spend less time than developers who use only
class diagrams.
Most of the automatic and semi-automatic approaches for runtime architecture re-
covery build flat models (e.g. [Spiegel 2002]). These flat models can have a small
size in case of small-sized software systems. However, in the case of medium and
large sized systems, these models become unreadable, with thousands to millions of
modeling elements.

32

Other approaches that take into account this aspect of complexity management
(such as [Wang 2008, Abi-Antoun 2009, de Brito 2013, Flanagan 2006] group sets
of objects in several summarizing objects and/or add labels that corresponds to
properties, on runtime architecture nodes and/or edges. Thereafter, these labels are
used in order to reduce the runtime architecture model size by definitely discarding,
from the final graph, nodes and/or edges that do not fit to some criteria. This can
be beneficial depending on the goal of the approach, however, in some situations of
comprehension, it would be more interesting to have an interactive way that allows
to hide and display nodes and edges as needed, having thus a visualization steered
by the user.
It is argued that the lifespan of running objects in a system is an important in-
formation that is often required to reason about the performance of a software
system [Peiris 2016]. Moreover, the probability of existence of objects at runtime
could be used to eliminate dead code, which involves objects which never really exist
at runtime, during comprehension tasks since the comprehension of dead code is a
waste of development time and resources.
Despite the importance of these types of information, to the best of our knowledge,
an approach that exploit them in order to manage the complexity of the recovered
runtime architecture has never been approached in the literature.

Approaches that target the recovery of the design-level architecture for the re-
modularization [Mitchell 2006, Tzerpos 2000, Garcia 2011] and/or migration9 pur-
poses [Jain 2001,Lee 2003,Washizaki 2005,Constantinou 2015,Allier 2011,Alshara 2015,
Adjoyan 2014,Escobar 2016,Gysel 2016, Selmadji 2018] consider, in general, struc-
tural relationships between source code artifacts for measuring coupling and cohesion
of the different decompositions of the legacy system. These approaches do not make
a difference between the different types of structural relationships (e.g., field typing,
method invocation, etc) that can exist between classes/interfaces. These structural
relationships are considered equivalent which is not always true and not accurate
enough. We believe that the different types of relationships should be differentiated.
Moreover, we believe that a composite class/interface and its components should log-
ically be clustered in the same module and their separation across different modules
results in a high coupling between these modules. To the best of our knowledge, only
the approaches of Lee et al [Lee 2003], Kim et al [Kim 2004] and Li et al [Li 2006]
consider composition relationships represented in a UML class diagram. In Kim et
al’s [Kim 2004] approach, the class diagram is supposed to be available beforehand
which is not always obvious. The approach of Lee et al [Lee 2003] is composition
and inheritance conservative. That is, classes/interfaces with composition and in-
heritance relationships are always grouped in the same module. However, these
relationships have been identified manually and no details were given on how they

9The ultimate goal of these approaches is the migration into a new paradigm, however, they
produce intermediate design-level architectures which are beneficial for understanding and remod-
ularization.

2.5. DISCUSSION 33

was identified in source code10. For the approach of Li et al [Li 2006], no details were
given on how the composition relationships were identified automatically in source
code. Moreover, these relationships are not exploited in the following steps of their
recovery process. Thus, a composition conservative remodularization approach that
differentiates between types of structural relationships is needed.

The following part of the thesis aims at presenting our contributions answering
all the shortcomings mentioned above.

10We speak in particular of the identification of the composition relationships. Inheritance
relationships identification is straightforward.

34

Chapter

3
Migrating Object-Oriented Soft-

ware Systems into Component-

based equivalent ones

Contents

3.1 Introduction and Problem Statement 35

3.2 Foundations of the Proposed Approach 36

3.2.1 Decoupling and Non Anticipated Instantiations Violation 36

3.2.2 Refactoring Operations 37

3.3 Experimental Results and Evaluation 45

3.3.1 Data Collection . 46

3.3.2 Used Measures . 46

3.3.3 Results . 47

3.3.4 Threats to Validity . 50

3.4 Conclusion . 50

3.1 Introduction and Problem Statement

Maintainability in Object-Oriented (OO) systems has been a major concern since the
early years of OO programming languages. Component-Based (CB) paradigm has
been recognized as an approach that emphasizes software maintainability. However,
many existing (especially, business) software systems are built using the Object-
Oriented (OO) development paradigm. Many of these systems have complex and

35

36 CHAPTER 3.

numerous dependencies which make them hard to modify and maintain. Therefore,
it would be interesting to migrate OO systems into CB ones. This migration enables
to benefit from CB development paradigm characteristics. Existing works that pro-
pose migration solutions consider that the component is a group of classes, called
a cluster. To the best of our knowledge, no solution proposes refactoring classes
individually to make them component descriptors although doing so helps reducing
maintainability effort.
This chapter focuses on the first contribution of this thesis. We propose a migration
solution that considers each class in an OO application as a component descriptor
in a target CB application. The proposed process is decomposed into two steps.
The aim of the first step is to detect modifiability/maintainability bad smells, i.e.
decoupling and unanticipated instantiation violation (presented in Section 3.2.1).
The second step allows the elimination of these defects by automatically applying
a composition of code refactoring operations (Section 3.2.2). Section 3.3 discusses
the results of an experimentation of this solution conducted on a set of open source
Java projects. Section 3.3.4 discusses the threats to validity of the approach and
Section 3.4 concludes the chapter and presents future works.

3.2 Foundations of the Proposed Approach

3.2.1 Decoupling and Non Anticipated Instantiations Viola-

tion

While code decoupling and non anticipated instantiations principles are fundamen-
tal [Fabresse 2008], they are not necessarily always respected in existing OO systems.
Therefore, it is necessary to identify the symptoms of their violation in an existing
OO code to enable their detection and elimination.

3.2.1.1 Decoupling Violation

In CB programming, code decoupling means that components are assumed to com-
municate only through their interfaces/ports. Therefore, a component has not a
direct access to a component with which it interacts. To have this decoupling in OO
applications, assuming that each class will correspond to a component descriptor,
each class must, for example, expose all its public methods in abstract types (pro-
vided interfaces). Then, other classes that use these methods should declare their
dependence on these abstract types, which become their required interfaces.

3.2. FOUNDATIONS OF THE PROPOSED APPROACH 37

However, most existing OO systems have multiple dependencies between their dif-
ferent classes (direct concrete types) for a cooperative business processing. In partic-
ular, it is possible for a field or a parameter to be typed with a concrete class of the
application. These situations lead to code decoupling violation. To deal with decou-
pling violation, we consider the two symptoms of the modifiability/maintainability
defect: “Absence or Incompleteness of Provided Interfaces(AIPI)” and “Absence of
Required Interfaces (ARI)”.
AIPI symptoms are identified when:

1. a class defines a public non-static method not declared in the interfaces im-
plemented by this class (or no interface is implemented by this class),

2. a class declares public fields or fields with no explicit visibility modifier, and

3. a class declares global constants.

Since it is recognized that program variables should be typed with abstract types
rather than concrete classes [Steimann 2006,Gamma 1995,Fowler 1999], ARI symp-
toms are identified when a class declares fields with a concrete class type.

3.2.1.2 Non Anticipated Instantiations Violation

In CB systems, non anticipated instantiations principle means that a component
requiring a service can be connected to any other component providing such a service.
That is, the implementation of a component should not include a connection to
another particular component. This connection should be established only by a third
party, who is the developer of the system/component that uses the two components
to be connected. To comply with this connection fashion in OO systems, constructor
calls should not be used. Instead, declarative annotations should be defined; these
are processed by a (dependency injection) mechanism that manages instances at
runtime.
To deal with non anticipated instantiations violation, we consider the symptoms
of the modifiability/maintainability defect of type EAI “Existence of Anticipated
Instantiations”. EAI symptoms are identified when a reference to a created object
is stored in a field/local variable, is a returned value of a method, or is an argument
of a method invocation. In the present work, we consider that these instantiations
are not surrounded by a control flow statement.

3.2.2 Refactoring Operations

In this section, the strategy used to work out how to eliminate the modifiability
defects from source code is discussed. Table 3.1 gives a summary view of the symp-
toms detected in the source code and the technique used for the removal of each
symptom.

1Protected visibility is out of the scope of our approach

38 CHAPTER 3.

Table 3.1: Refactoring Operations

Symptom Operation
Public fields or fields with no explicit visibility modifier1

(package visibility) Change visibilities
Global constants Move declarations

Public non-static methods not exposed in interfaces Expose methods
Fields typed with concrete classes Create required interfaces

Anticipated instantiations Use dependency injection

3.2.2.1 The “Change Visibility” Refactoring

This operation considers the AIPI symptom when a class field is public or has
no explicit visibility modifier, i.e., has the package default visibility for Java, for
example. In this case, the field visibility is simply changed to private, and a pair
of setter/getter methods is inserted to access this field (only a getter method in the
case of a public final field). The resulted methods will be exposed via interfaces as
explained through the next refactoring operation.

3.2.2.2 The “Expose Methods” Refactoring

This type of refactoring deals with the AIPI symptom when a class A defines a
public non-static method m and its declaration does not exist in any interface from
those implemented by A. The idea here is to add this declaration to an interface I1.
This (changed) interface should not be implemented by any other class. Otherwise,
i.e., when all the interfaces implemented by A are also implemented by other classes,
a new interface I2 is created and m’s signature is added to it.
Another case which is taken into account is when the class A implements two in-
terfaces or more, and all these interfaces are not implemented by other classes. In
this case, it is necessary to distribute the methods on interfaces in a manner that
each signature added to an interface should be cohesive with other already existing
methods in this interface. To do this, the Chidamber and Kemerer [Chidamber 1994]
LCOM (Lack of Cohesion of Methods) metric is calculated in order to evaluate the
cohesion of each signature added to an interface and the other existing methods in
this interface.
LCOM is selected because it is widely used and it has been validated by several
approaches, such as [Basili 1996]. The theoretical basis of LCOM uses the notion
of degree of similarity of methods. This degree of similarity between n methods can
be defined to be the intersection of the sets (F1,...,Fn) of a class fields that are used
by the methods (M1 ,...,Mn). LCOM is the number of empty intersections P minus
the number of non empty intersections Q if P > Q or 0 otherwise. In our case,
the LCOM metric is calculated between all methods of a given interface, among

3.2. FOUNDATIONS OF THE PROPOSED APPROACH 39

Figure 3.1: Using LCOM metric to apportion methods on interfaces

the interfaces that are not implemented by any other class, plus the method that
must be exposed in an interface. In this way, methods that use the same fields will
be exposed in the same interfaces. To better understand this idea, an illustrative
example, extracted from the Log4j2 open source project, is given in Figure 3.1.
In this example, we have a class Hierarchy that declares two fields (throwableRen-
derer and rendererMap) and five public methods (getThrowableRenderer(), set-
ThrowableRenderer(), getRendererMap(), setRendererMap() and addRenderer()).
This class implements two interfaces RendererSupport and ThrowableRendererSup-
port. The methods getThrowableRenderer() and setThrowableRenderer() are ex-
posed in the interface ThrowableRendererSupport and the methods getRendererMap()
and setRendererMap() are exposed in the interface RendrerSupport. The method
addRenderer() is not exposed in the interfaces implemented by the class Hierarchy.
The two interfaces are not implemented by other classes so the declaration of ad-
dRenderer() can be added to one of them. To decide to which interface it should
be added, the LCOM metric is calculated to measure the cohesion between Ren-
dererSupport methods with addRenderer() and between ThrowableRendererSupport
methods with addRenderer(). In Figure 3.1, F sets in the blue boxes correspond
to the fields used by each method. For example, if we take the blue box on the
right, F1 set contains the field throwableRenderer which is the field used by the
method getThrowableRenderer(), F2 set contains the field throwableRenderer which
is the field used by the method setThrowableRenderer() and F3 set contains the field
rendererMap which is the field used by the method addRenderer().
According to LCOM values, we can deduce that the addRenedrer() method is more
cohesive with the methods exposed in RendererSupport (0 < 1), therefore, the decla-
ration of the addRenderer() method will be added to the interface RendererSupport.

2https://logging.apache.org/log4j/1.2/download.html

40 CHAPTER 3.

Someone can find that the use of Default Methods in Java 8 can be useful to elimi-
nate this type of modifiability/maintainability defect. But the idea here consists in
exposing only the declarations of methods not their implementations.

3.2.2.3 The “Move Declaration” Refactoring

The use of global constants is very common and even essential. The proper way
to define a constant in Java is to define a public static final field. The fact that
it is public and static allows access from anywhere and the modifier final prohibits
its modification, which is generally sought for a constant. To deal with a global
constant declaration (AIPI symptom type), we thought the movement of the field
declaration from its class to one of the interfaces implemented by this class.

3.2.2.4 The “Create Required Interface” Refactoring

This refactoring is used when a field is typed with a concrete class A. It consists
of the following steps: search all invocations to external methods whose receiver is
saved in the considered field, collect the signatures of these methods, create a new
interface (considered as the required interface), add the signatures of the invoked
methods on the field3 to this interface and replace the type of the field by the
newly created interface. The last step consists of adding inheritance links between
the required interface and the provided interfaces implemented by A (the provided
interface extends the required interface). The class’ required interfaces will be as
many as the number of concrete classes used as types for its fields. However a single
required interface is created for two fields with the same type.
A case that must be taken into consideration is when the field typed with a concrete
class is assigned to other references directly or indirectly (e.g, local variable). In
this case, the program can be type incorrect when additional methods, methods
that were not invoked on the field, are invoked on these references. For this reason,
further changes to the program may therefore be necessary. Changes include the
possible change of the declared type of these references.
To better understand this refactoring, suppose that there are two declarations A
a and B b and the assignment b = a. A and B can refer to the same type or
A extends/implements B. Suppose also that RI is the interface that contains the
methods needed from the reference a. Methods needed by b and that do not exist
in RI are added to RI and the declaration B b is changed to become RI b.

By applying this type of refactoring and the former ones, the required and pro-
vided interfaces are henceforth defined explicitly in the source code.

3In this way, the interface segregation principle is respected.

3.2. FOUNDATIONS OF THE PROPOSED APPROACH 41

Figure 3.2: Dependency Injection Mechanism

3.2.2.5 The “Use Dependency Injection” Refactoring

Dependency injection (DI) is a powerful technique for decoupling classes. In this
technique, the client class does not depend on a specific implementation class. The
implementation class is injected at runtime by a container. To better understand the
technique, suppose we have a class B that uses an object of the class A (Figure 3.2).
This class A is an implementation of an interface IA. Dependency injection removes
the dependence of class B on class A by adding an injector (container) and making
it responsible of the dependency look up. This injector is often externally configured
by an XML file. The advantage of using DI technique is: allowing class B to work
with any implementation of the IA interface without any changes in source code,
only the XML file will be changed in the case of XML-based configuration, so there
is no recompilation of the source code.
Many dependency injection containers can be used to inject dependencies at run-
time such as Spring DI4, PicoContainer5, Google Guice6 and Dagger (1 and 2)7.
They provide almost exactly the same functionality. Each needs slightly different
configuration.
In the following, the general structures that indicate the use of dependency injection
are given. All these structures will be illustrated by examples extracted from the
Jasml8 and FreeCS9 open source projects.

1. Instances stored in fields

4https://spring.io/
5http://picocontainer.com/
6https://github.com/google/guice
7http://google.github.io/dagger/
8http://jasml.sourceforge.net/
9http://freecs.sourceforge.net/

42 CHAPTER 3.

An instantiation, constructor call, statement in a method/constructor where
this statement’s left-hand-side corresponds to a field. The called constructor
does not take method/constructor parameters as arguments or it takes attain-
able ones (arguments whose values can be calculated by a static analysis). In
this case, the refactoring is typically done through the following steps:

(a) save the arguments of the constructor call if any,

(b) replace the instantiation statement by an annotation used by the used DI
framework. For example, the @Autowired annotation is used on fields in
Spring DI (the field must be non final).

An example of this case is illustrated in listings 3.1. The annotation @Au-
towired enables the automatic dependency injection based on the type.

Listing 3.1: Instances stored in fields

1 // Before dependency injection use

public class SourceCodeBuilder{

3

private SourceCodeBuilderConfig config;

5

public SourceCodeBuilder (){

7 config = new SourceCodeBuilderConfig ();

...

9 }

}

11

// After dependency injection use

13 public class SourceCodeBuilder{

15 @Autowired

private SourceCodeBuilderConfig config;

17

public SourceCodeBuilder (){

19 ...

}

21 }

23 // Architecture description in Spring

<bean id="sourceCodeBuilder"

25 class="SourceCodeBuilder">

</bean >

27 <bean id="sourceCodeBuilderConfig"

class="SourceCodeBuilderConfig">

29 </bean >

2. Instances stored in local variables

The second case is when an instantiation statement is made inside a method-
/constructor and the obtained reference is stored in a local variable. As in the
previous case, we suppose that the constructor call does not take any argument
or take attainable ones. This local variable will be removed from the method-
/constructor body and turned into a private field of the class(this refactoring,
transforming a local variable to a field, is failure-safe as it has been experi-
mented in the literature [Gligoric 2013]). This field will be treated following

3.2. FOUNDATIONS OF THE PROPOSED APPROACH 43

the previous case. Renaming this local variable, before moving it, could be
another additional refactoring. In contrast to the previous case, since what is
transformed is a local variable and not a field, we use here a lazy initialized
DI so that the created field is injected when it is first requested (during the
execution of the method/constructor where it was originally declared as a local
variable), rather than at startup.

An example of this case is given in Listing 3.2. The attribute lazy-init of a
bean is added to allow creating a bean instance when it is first requested,
rather than at startup since info was initially a local variable and it has been
turned into a field.

Listing 3.2: Instances stored in local variables

1 // Before dependency injection use

public class OpcodeLoader{

3 ...

public void processOpcode(Node node){

5 OpcodeInfo info = new OpcodeInfo ();

...

7 }

}

9

// After dependency injection use

11 public class OpcodeLoader{

...

13 @Autowired

private OpcodeInfo info;

15

public void processOpcode(Node node){

17 ...

}

19 }

21 // Architecture description in Spring

<bean id="opcodeLoader" class="OpcodeLoader">

23 </bean >

<bean id="opcodeInfo" class="OpcodeInfo"

25 lazy -init="true">

</bean >

To the best of our knowledge, PicoContainer, Dagger and Guice do not pro-
pose a technique to inject dependencies in local variables. Conversely, Spring
propose the lookup method injection that can be used in such case. In few
words, it consists of a dynamic subclassing and the ability of the container
to override methods on container managed beans. The use of this type of
injection is explained in Listing 3.3.

Listing 3.3: Instances stored in local variables with Spring’s lookup-method

// Before dependency injection use

2 public class OpcodeLoader{

...

4 public void processOpcode(Node node){

OpcodeInfo info = new OpcodeInfo ();

6 ...

}

8 }

44 CHAPTER 3.

10 // After dependency injection use

public class OpcodeLoader{

12 ...

public void processOpcode(Node node){

14 OpcodeInfo info = createOpcodeInfo ();

}

16

public OpcodeInfo createOpcodeInfo (){

18 return null;

}

20 }

22 // Architecture description in Spring

<bean id="opcodeInfo" class="OpcodeInfo"

24 lazy -init="true" ></bean >

<bean id="opcodeLoader" class="OpcodeLoader">

26 <lookup -method name="createOpCodeInfo"

bean="opCodeInfo"/></bean >

In this case, the Spring container will create a subclass of OpcodeLoader class
and override the createOpcodeInfo() method to return an instance of Opcode-
Info class, based on the architecture description.

Someone can ask if Spring already offers a way to do this, what is the interest
to use another way? We propose our new technique for two reasons. The
first is avoiding to be dependent on a particular DI framework. The second
reason is about the key limitation of method lookup if we have a static method.
To better understand the problem, suppose that processOpcode() is a static
method. In this case, createOpcodeInfo() must be static so it can not be
overridden.

In fact, even if we use our technique when the method is static, the local
variable info must be turned into a private static field and static fields can not
be autowired, since beans can have a singleton scope. To solve this problem,
we propose to add a non static setter for the field and use setter injection.
This case is explained in Listing 3.4.

Listing 3.4: Instances stored in local variables inside static methods

// Before dependency injection use

2 public class OpcodeLoader{

...

4 public static void processOpcode(Node node){

OpcodeInfo info = new OpcodeInfo ();

6 ...

}

8 }

10 // After dependency injection use

public class OpcodeLoader{

12 ...

private static OpcodeInfo info;

14

@Autowired

16 public void setInfo(OpcodeInfo info){

this.info = info;

18 }

3.3. EXPERIMENTAL RESULTS AND EVALUATION 45

20 public static void processOpcode(Node node){

...

22 }

}

24

// Architecture description in Spring

26 <bean id="opcodeLoader" class="OpcodeLoader">

</bean >

28 <bean id="opcodeInfo" class="OpcodeInfo"

lazy -init="true">

30 </bean >

3. Instances stored in fields/local variables; these instances take con-
structor/method parameters as arguments

The last case is where instances’ references are stored in fields/local-variables
while using non-literal values as arguments in their instantiation. To deal with
this case, first, a new “default” constructor is created in the instantiated class,
and the initial constructor call, in the instantiation, is replaced by this new
constructor call. Then, a new method that contains exactly what the initial
constructor contains is added to the instantiated class. Finally, the instan-
tiation statement is treated following one of the two previous cases, and an
invocation statement of the new method is added to the instantiating class.
Anonymous object instantiations, i.e., instantiations which play the role of ar-
guments in method invocations or returned values, for instance, are considered
the same as instantiations made as right-hand-side expressions of assignments
to local variables. They are processed following the same procedure than the
two previous cases.

3.3 Experimental Results and Evaluation

We have implemented a prototype of the described method using Spoon [Pawlak 2015b]
which is a library for source code analysis and transformation. We conducted some
experiments to evaluate the truthfulness of the stated hypothesis of migrating OO
systems into CB ones in order to improve their modifiability and thus maintainabil-
ity. These experiments were conducted to answer the following research questions:

• RQ1: What is the efficiency (precision) of the detection phase?

• RQ2: To what extent does the proposed approach improve software modifia-
bility and thus maintainability?

46 CHAPTER 3.

3.3.1 Data Collection

For our study, four open source Java projects were used. In order to gather these
projects, Qualitas Corpus 10 which is a large curated collection of open source Java
projects was used. Table 3.2 provides a brief description of these projects. They are
of different sizes, varying from 5732 to 23012 LoC, 50 to 214 concrete classes and
1 to 36 abstract types, and developed by different teams to avoid the influence of
characteristics related to team habits on results.

Table 3.2: Data collection

System Description LOC #Classes
#Interfaces
+ Abstract

classes
Jasml Java classes visualization tool 5732 50 1 + 0

CoCoME Commercial application 5779 99 21 + 0
FreeCS Chat server 23012 139 17 + 6
Log4j A Logging Framework 20129 214 20 + 16

3.3.2 Used Measures

The first research question deals with measuring the efficiency of the detection al-
gorithms. To answer this question, we measured precision, well-known metric in
the information retrieval domain. Precision assesses the ratio of true modifiability/-
maintainability defects identified among the detected ones (true positives + false
positives). To do this, we analyzed the four projects manually to consider identified
defects as true positives:

precision =
True Positives

True Positives+ False Positives
(3.1)

To answer the second research question, we use the Maintainability Index (MI)
metric that measures the maintainability of a software system [Welker 2001], and
which was considered in many recent works, such as [Börstler 2016,Koteska 2018].
It allows to determine how easy it will be to modify and maintain a system. High
MI values indicate that the system is easier to maintain for future changes. There
are different versions in calculating MI. These are presented below:

MI1 = 171−5.2ln(V)−0.23∗C−16.2ln(LOC)+(50∗sin(sqrt(2.46∗NOLComments))
(3.2)

10http://qualitascorpus.com/

3.3. EXPERIMENTAL RESULTS AND EVALUATION 47

V is the Halstead’s volume which is calculated based on the number of operands and
operators in methods, more details on this metric can be found in [Al Qutaish 2005];
C is the cyclomatic complexity value; LOC is the number of lines of code and
NOLComments is the number of lines of comments. In the case of systems which
do not have considerable comments, the above formula can be simplified to omit the
involvement of NOLComments as bellow:

MI2 = 171− 5.2ln(V)− 0.23 ∗ C− 16.2ln(LOC) (3.3)

For our study, the tool used to calculate the MI value is JHawk 11 which calculates
a wide number of Java code metrics. It provides the two previous versions of the
Maintainability Index.

3.3.3 Results

We asked four master and one PhD student, who were not involved in this work
before, to analyze the systems source code manually. We gave the Jasml and Co-
CoME systems to two master students, we asked the two other master students to
divide the FreeCS system and each of them analyzes half of the packages, and the
PhD student was assigned to analyze the Log4j system.
The five students used as reference a detailed description of the modifiability/main-
tainability defects we wrote. All the students visualized the source code of each
class separately using Eclipse and produced Excel files12 containing the number of
occurrences of each modifiability/maintainability defect for each class and the total
number of defects in the entire project. Some defects have been missed by mistake
due to the nature of the task.
We report the results of the detection phase in table 3.3. It provides for the four
systems the number of existing smells, the result of manual analysis (M) in the first
line of each row, the smells detected by our implementation (A for automatic) in
the second line, and the precision in the third line. For the four systems, all the
defects detected manually are also detected automatically. Table 3.3 shows that a
large percentage of the results obtained with our approach are validated manually
(from 87% in average for FreeCS to 94% for Jasml)
We have calculated MI values to compare systems before and after applying our
approach on the four projects. Since comments will not be added with the created
elements (interfaces, methods and fields), we used the MI2 formula in our study.
This formula is calculated at the class level since we have used a trial copy of the
JHawk tool. In this copy, the developers have mentioned that a number of Java files
can be selected for parsing but only the results of a few classes will be displayed.
Table 3.4 shows the MI scores before and after applying the method on the four
projects. MI represents the average of the classes’ MI value.

11http://www.virtualmachinery.com/index.htm
12https://www.dropbox.com/sh/whjczwv6qvbglq2/AADh7jU6p23SVjdNAWR4IQ-da?dl=0

48 CHAPTER 3.

Table 3.3: Detected smells (In each row, M = results of Manual analysis; A = results of
Automatic analysis).

System
Public &
package
fields

Public
non-static
methods not
exposed

Fields of
concrete
class type

Instantiations
that can be
injected

Avg

Jasml-0.10
M 420 48 26 41
A 447 49 27 46

Prec 93.96% 97.96% 96.29% 89.13% 94%

CoCoME
M 32 221 25 82
A 34 223 29 85

Prec 94.11% 99.1% 86.20% 96.47% 93%

FreeCS-1.3
M 380 571 83 79
A 402 837 88 86

Prec 94.52% 68.22% 94.31% 91.86% 87%

Log4j-1.2.17
M 365 750 150 105
A 370 753 167 133

Prec 98.65% 99.6% 89.82% 78.95% 91%

Table 3.4: MI values before and after applying the method

System MI before MI after Improvement factor
Jasml-0.10 125.49 147.95 1.17
CoCoME 125.12 161.64 1.29

FreeCS-1.3 110.21 120.89 1.09
Log4j-1.2.17 114.52 122.68 1.07

From the results of Table 3.4, it is clear that the maintainability index is better, with
an improvement factor that ranges from 1.09 to 1.29, when applying our approach
on the listed systems. The improvement in maintainability, according to this metric,
is not an insignificant score, regarding the size of these systems.
The improvement in MI scores is mainly due to the use of new interfaces. These
interfaces have a high MI score comparing to concrete classes. The main reason is
that an interface has a low value of LOC, comparing to classes. When the average
of MI on the classes and interfaces is calculated, the MI value tends to have a better
score. Another reason of the improvement in MI scores, is the low Halstead Volume
(V) value of added setters and getters to classes. When the average of V on the
methods of a class is calculated, the V value tends to have a lower value.

3.3. EXPERIMENTAL RESULTS AND EVALUATION 49

Better MI scores of interfaces are justified. This is because interfaces define methods
that accomplish specific functionalities without stating how such functionalities will
actually work. The real implementation is provided by the class implementing the
interface. Therefore, during maintenance tasks, new maintenance requirements can
be defined in separate classes that are used by the system in the same way as other
already existing classes. The add of new classes makes the maintenance task easier.
Then, in order to check if during the evolution of a single system, the proposed
refactorings keep stable this improvement in modifiability/maintainability, we eval-
uated MI for six versions of Log4j API, which where developed over a period of 17
years.
The MI values for the six versions before and after applying the proposed refactorings
are depicted in Table 3.5. From this table, we can see that there is an increase in
MI values of Log4j, before applying our approach, in all the analyzed versions. This
is justified by the fact that from a version to another, new functionalities are added
to the system or bugs are corrected, but developers of this system pay attention
to its maintainability. As an example of modifications that have been performed
in version 1.0.4 and contributed to improve the maintainability of version 1.1.3:
FileAppender class from org.apache.log4j package has been splitted into three classes
(ConsoleAppender, WriterAppender and FileAppender) and the MI value for this
class passed from 120.47 to 122.75 (the average MI for the three new classes).

Table 3.5: MI values of Log4j versions.

Version # Classes MI before MI after Imp. factor
1.0.4 146 111.31 121.59 1.09
1.1.3 162 112.25 122.47 1.09
1.2.1 179 114.81 120.66 1.05
2.0 87 116.08 119.64 1.03
2.4 112 117.66 121.56 1.03
2.8 172 118 121.16 1.02

As we can observe, in all the versions, the maintainability is improved. However,
the improvement is greater in the first versions. This is explained by the fact that
starting from the (major) version 2.0, the structure of Log4j has completely changed,
and its maintainability was substantially improved. In the following versions, the
system keeps a good MI score, even if this is slightly improved by our refactorings.
This shows that our refactorings give better results on old versions of legacy systems,
compared to new, potentially refactored, ones.

50 CHAPTER 3.

3.3.4 Threats to Validity

3.3.4.1 Internal Validity

On threat concerns the fact of injecting only instances that are not surrounded by
a control flow statement. In order to investigate the applicability percentage of the
“use dependency injection” refactoring, we checked the number of instances that
can not be injected. For the four systems, instances that can not be injected range
from 19% in the case of CoCoME to 71% in the case of FreeCS. These are high
percentages that require to be taken into account in the future.
The obtained results in the detection phase depend on the specification of modifia-
bility/maintainability defects and on the profile of students. We tried to be the most
accurate possible in the description of defects and we have chosen students who have
some experience in Java programming. Another aspect can bias the results is related
to the number of persons involved in the experiments: one student was assigned to
one system or to a part of a system. Several persons should be assigned per system
to have more accurate results. In our study, we gave these students large periods of
time (2 weeks in average) to carefully check the defects.

3.3.4.2 External Validity

We tried to collect systems of different sizes and developed by different teams to
diversify the data. It is sure that with a larger set of systems we may obtain more
precise results. However, since the results were all positive with the four studied
systems, which vary in size, our intuition, on the interest of transforming OO code
into CB one using the proposed refactoring operations, is strengthened.

3.4 Conclusion

We presented in this chapter an approach for improving the modifiability/main-
tainability of object-oriented source code, by focusing on what component-based
development brought to programming, i.e. decoupling and non anticipated instan-
tiations. Our approach was experimented on a set of Java projects to evaluate its
efficiency in the detection of modifiability/maintainability defects, and the improve-
ment it brings to maintainability. The results of this experimentation helped to
answer of the first research question 1 in Chapter 1 and showed that there is a
potential in using the proposed process in migrating existing legacy OO systems.
Perspectives of this work include the experimentation of this approach on a larger
set of projects with larger sizes. From a tool-support point of view, our prototype
solution could be improved and integrated to the Eclipse IDE as a monolithic refac-
toring solution with Eclipse already existing refactorings in order to experiment its
usability by maintainers in their real-life maintenance tasks.

Chapter

4

Recovering the Runtime Archi-

tecture of Object-Oriented Soft-

ware Systems and Managing its

Complexity

Contents

4.1 Introduction and Problem statement 52

4.2 Foundations of the proposed Approach 53

4.2.1 The Process in a Nutshell. 53

4.2.2 Source code static analysis 54

4.2.3 Source Code Instrumentation & Instrumented Code Exe-
cution . 61

4.2.4 Object graph refinement 65

4.2.5 Managing the Complexity of the Refined Object Graph . 66

4.2.6 Visualization with a level of detail 69

4.3 Experimental Results and Evaluation 69

4.3.1 Research questions . 69

4.3.2 Experiment Setup . 70

4.3.3 Results and discussion . 71

4.3.4 Threats to Validity . 80

4.4 Conclusion . 81

51

52 CHAPTER 4.

4.1 Introduction and Problem statement

We presented in the previous chapter an approach which focuses on the improvement
of the maintainability quality attribute of legacy systems. Experiments showed that
this approach performed well on the studied systems. However, more experiments
on a larger set of systems (with larger sizes) is needed and envisaged in the future.
Another important quality attribute that has a direct impact on maintainability is
understandability. In order to improve this latter, a high level view, an architecture
model, of the system’s structure and behavior is needed. The evolution of software
systems over time often leads to an erosion of its architecture. In this case, an archi-
tecture recovery process should be carried out in order to build the as-implemented
architecture of the system to be evolved.
This chapter focuses on the second contribution developed in this thesis. We propose
an approach for recovering runtime architectures and managing the complexity of
the recovered architectures. To this end, static and dynamic analyses are combined.
Static analysis is used to build object graphs (OG); i.e., graphs where the nodes
represent objects and the edges represent objects’ field assignments. For large soft-
ware systems, such graphs often contain hundreds or thousands of nodes and edges,
hence directly viewing such a graph is of no help. Thus, these graphs are refined
using information obtained through the analysis of execution traces. The informa-
tion added to these graphs includes the lifespan of each object and its “empirical”
probability of existence at runtime. This added information is used to reduce the
complexity of the resulting refined graph according to the developer preferences. In
fact, developers can use this information to set thresholds and reduce the size of the
graph focusing, for instance, on the most likely or durable objects. Furthermore,
composite (internal) structures of objects are identified in the graph. This organizes
the refined OG into a hierarchy of composite structures/nodes that can be collapsed
or expanded to hide or show their internal structure. We experimented the approach
through examples conducted on Java open-source projects. These examples showed
that our approach recovers the runtime view of the analyzed system and effectively
manages the complexity of this view in order to handle some understanding tasks.
In this chapter, Section 4.2 presents a general overview of the approach which is
defined as a multi-step process. Sections 4.2.2 to 4.2.6 detail each step of the process.
We present the experimentation of this process and discuss our observations in
Section 4.3. We conclude in Section 4.4.

4.2. FOUNDATIONS OF THE PROPOSED APPROACH 53

4.2 Foundations of the proposed Approach

4.2.1 The Process in a Nutshell.

The proposed process is depicted in the activity diagram in Figure 4.1. This figure
presents the six main steps (activities) of the OG recovery process. The first step
is a static analysis of the source code (a1) from which an initial OG, similar to
the one introduced in [Tonella 2005], is recovered. The second step (a2) consists of
automatically instrumenting source code, inserting statements at specific locations,
to create logs about object creation and destruction. This instrumented code is then
executed in the third step of the process (a3) using a set of test cases or passed to
users for a period of time. The output of this step is a set of execution traces. The
steps a1 and a2+a3 can be executed in parallel. The generated traces are analyzed
to extract information to refine the preliminary OG (a4). The fifth step (a5) of the
process consists in managing the complexity of the refined OG using two techniques:
i) exploiting the lifespans and probabilities of existence, and ii) identifying the so-
called composite structures, which make the graph hierarchical and thus reduce
its complexity. Indeed, the identification of composition relations between objects
enables us to build the composite structures of objects in the form of hierarchical
nodes in the graph, which embed their inner objects (inner nodes) and their inter-
relationships (inner edges). In order to understand the runtime architecture of a
given software system, developers can customize their visualization (a6) by focusing
on the most durable objects and/or the most likely to exist at runtime. Developers
can also focus on particular objects by unfolding hierarchical nodes to analyze their
composite structure, or to visualize a high level view of the architecture (the graph
hiding the internal composite structures). Sections 4.2.2 to 4.2.6 discuss in detail
the different steps of the process for recovering this refined hierarchical graph.

Figure 4.1: Process for the creation of a refined hierarchical object graph

54 CHAPTER 4.

4.2.2 Source code static analysis

This first step of the process aims at building a preliminary OG of the system under
study. This is achieved by a static analysis of the source code which consists of
reasoning about the behavior of a program without actually running it.
An OG (NodesOG, EdgesOG) is a directed labeled graph that represents the struc-
ture of a given software system in terms of objects. In this graph, NodesOG denote
objects. A directed edge(o1, o2) ∈ EdgesOG indicates that o1 has obtained a ref-
erence to o2 at some point during its execution, and this reference was assigned to
one of o1’s fields. Edges are labeled with field names. The focus on field assign-
ments is motivated by the fact that fields store and affect the state of the object
while local variables and method parameters are simply short-lived variables for ex-
ecuting a method. Moreover, fields reflect the design of the application, since they
characterize the structure of objects.
Since objects are not necessarily directly assigned to fields, the recovery of this pre-
liminary OG relies on another graph named the Object Flow Graph (OFG). This
OFG allows tracking objects created during system execution from their creation
until the storage of their references in fields or their usage in method invocations. An
OFG is a directed graph in which nodes can be of two types: i) Objects and ii) Pro-
gram variables (fields, local variables, methods’ parameters or methods’ arguments).
Edges of the graph represent assignments between these variables.
To build the OFG, we are interested in three kinds of statements:

• Allocation sites (x = new constr([a1, a2, ..., an]);),

• Assignment sites (x = y;) and

• Invocation sites ([x =]1 y.meth([a1, a2, ..., an]);)

For variables x, y, a1, a2 and an we are only interested by those which are typed by
user-defined classes/interfaces or collections of user-defined classes/interfaces. We
ignore types from libraries in order to limit the developer focus on the system code
only.
Objects in the OFG are collected from allocation sites and the flow/track of each
object is inferred by analyzing the statements in which the reference of this object
is used.

4.2.2.1 Object Flow Graph Recovery

Algorithms 1 and 2 present how the object flow graph is recovered based on an
object sensitive analysis. Object sensitivity means that the program variables are
distinguished by the objects they belong to instead of their classes.
In Algorithm 1, callChains refers to the call chain of the system starting from the
entry point main method.

1Optionally because we can find in source code x = y.meth(...) or simply y.meth(...)

4.2. FOUNDATIONS OF THE PROPOSED APPROACH 55

Algorithm 1 OFG Edges Construction

Input: SS : source code of the studied system
Output: OFG edges Eofg

callChains← LinkedList
Eofg ← ∅
main← getEntryPointMethod(SS)
Eofg ← Eofg ∪ analyseBlock(main.getBody(), callChains)
while ¬callChains.isEmpty() do
element = callChains.removeF irst()
Eofg ← Eofg ∪ analyseBlock(element.getDeclaration().getBody()
, callChains)

end while
return Eofg

Eofg refers to the object flow graph edges. The getBody function returns the block of
statements enclosed in curly brackets of the current receiver. The variable element
can be either a constructor call or a method invocation. getDeclaration function
establishes a link between the element and its definition.
The analyseBlock function in Algorithm 2 returns a subset of the object flow graph
edges local to the analyzed method/constructor. getStatements function returns the
set of statements2 contained in the analyzed block. getUserDefinedTypedVariables
returns the set of variables whose types are user-defined. For example, let a =
new A(b, 8, " ") where b is of type B. A and B are user defined classes. In this
case, getUserDefinedTypedVariables returns a, b and the formal parameter in the A
constructor that corresponds to b.
For the three kinds of statements we are interested in, the addEdge function adds
the following edges to the set of the OFG edges3:

• (i) For x = new constr([a1, a2, ..., an])

1. An edge between the created object constr’.this and the object scoped
variable x’.

2. Edges between the object scoped arguments a’1, a’2, ..., a’n and the cor-
responding constr object scoped formal parameters f’1, f’2, ..., f’n.

Example: Suppose that we have the allocation sites c = new C(); a = new
A(c); inside a class B such that a is of type A and c is of type C. A, B and
C are user defined classes. When the class B is instantiated, Edges {B1.c =
C1.C.this, B1.a = A1.A.this, A1.A.c4 = B1.c} are added to the set of edges.

2Allocation, assignment and invocation sites
3a1, a2, ..., an correspond to class scoped variables and a’1, a’2, ..., a’n correspond to object

scoped variables.
4This refers to the formal parameter c in the constructor A of the object A1

56 CHAPTER 4.

Algorithm 2 analyseBlock function

Input: The block of an element and callChains
Output: Local egdes in the block
1: localCallChains← LinkedList
2: localEdges← ∅
3: scopes← ∅
4: statements← getStatements(block)
5: for s : statements do
6: UDTV← getUserDefinedTypedV ariables(s)
7: for v : UDTV do
8: scopes← scopes ∪ scope(v)
9: end for

10: localEdges← localEdges ∪ addEdges(s, scopes)
11: if s.containsConstructorCalls() ∨ s.containsInvocations() then
12: constructorCalls← getConstructorCalls(s)
13: methodCalls← getMethodCalls(s)
14: for c : constructorCalls do
15: localCallChains.add(c)
16: end for
17: for mc : methodCalls do
18: localCallChains.add(mc)
19: end for
20: end if
21: end for
22: while ¬localCallChains.isEmpty() do
23: e = localCallChains.removeLast()
24: callChains.addF irst(e)
25: end while
26: return localEdges

4.2. FOUNDATIONS OF THE PROPOSED APPROACH 57

• (ii) For x = y,

1. An edge between the object scoped variable x’ and the object scoped
variable y’;

Example: Suppose that we have the statements c = new C(); C sc = c;
inside a class B such that c is of type C. B and C are user defined classes.
When the class B is instantiated, Edges {B1.c = C1.C.this, B1.sc = B1.c}
are added to the set of edges.

• (iii) For [x =] y.meth([a1, a2, ..., an])

1. Edges between the object scoped arguments a’1, a’2, ..., a’n and the cor-
responding meth object scoped formal parameters f’1, f’2, ..., f’n.

2. An edge between the target object this of the object scoped invoked
method meth’.this and the object scoped variable y’.

3. An edge between the object scoped return value of the invoked method
meth’.return and the object scoped variable x’.

Example: Suppose that we have the statements d = new D(); a = new A();
c = a.createC(d); inside a class B such that a is of type A, c is of type C and
d is of type D. A, B, C and D are user defined classes. When the class B is
instantiated, Edges {B1.d = D1.D.this, B1.a = A1.A.this, A1.createC.this =
B1.a, B1.c = A1.createC.return, A1.createC.d = B1.d} are added to the set
of edges.

Object scoped variables a’1, a’2, ..., a’n, f’1, f’2, ..., f’n, y’ and x’ are represented
by a form of fully qualified names of the variables a1, a2, ..., an, f1, f2, ..., fn, y and
x. However, the class name is replaced by the object identifier since our analysis is
object sensitive (for example, B1.a instead of B.a). This object identifier is called
“scope”.
Scopes of the different variables can be obtained, by the scope function, as follows:

• In (i), scope(f’1), scope(f’2), ..., scope(f’n) and scope(constr’) is the object
identifier of the allocation site (i).

• In (i), (ii) and (iii) two cases must be taken into account:

1. If x, y, a1, a2, ..., an are local variables, current method parameters
or current object fields, scope(x’), scope(y’), scope(a’1), scope(a’2), ...,
scope(a’n) is the object identifier scoping the current method.

2. If x, y, a1, a2, ..., an are accesses to fields of an object other than the cur-
rent one, of the kind v.field, scope(x’), scope(y’), scope(a’1), scope(a’2),
..., scope(a’n) is the output of v. The output of a variable means the
object stored in this variable. For example, if somewhere in the code we
have v = new constr(), output(v) is the object identifier of this allocation
site.

58 CHAPTER 4.

• In (iii), two cases must be taken into account:

1. If y.meth is an invocation performed on the current object, scope(meth),
scope(f’1), scope(f’2), ..., scope(f’n) is the object identifier scoping the
current method.

2. If y.meth is an invocation performed on an object other than the current
one, scope(meth), scope(f’1), scope(f’2), ..., scope(f’n) is output(y).

Listing 4.1: MovieCatalog class example

public class MovieCatalog extends WmvcApp {

2

private MainView mainView;

4 private MovieListView listView;

private MovieItemView itemView;

6

public MovieCatalog(String name) {

8 MovieModel movieM = new MovieModel ();

setModel(movieM);

10 mainView = new MainView ();

listView = new MovieListView ();

12 itemView = new MovieItemView ();

}

14

public static void main(String [] args) {

16 MovieCatalog movieCat=new MovieCatalog("");

movieCat.showApp ();

18 }

// The following elements are extended form WmvcApp

20 // we put them here to facilitate understanding

private static MovieModel theModel;

22 public static void setModel(MovieModel m){

theModel = m;

24 }

}

To have a more clear insight on how OFG graphs are recovered, consider the example
in listing 4.1, of the MovieCatalog class [Wampler 2002]. This a class that belongs to
a small-sized application, 19 classes, which is based on the Model-View-Controller
(MVC) pattern. This application allows a user to lookup, create, edit and delete
movies.
Starting from the main method, the call chain is:
new MovieCatalog("") > new MovieModel() > setModel(movieM) > new Main-
View() > new MovieListView() > new MovieItemView() > movieCat.showApp()

4.2. FOUNDATIONS OF THE PROPOSED APPROACH 59

Scopes and outputs of the different variables are presented in Table 4.1 and the set
of the OFG edges are depicted in Listing 4.2 (objects are highlighted in crimson).
Edges are presented as assignments between nodes. The assignment’s right and left
hand sides represent the edge’s source and target nodes respectively.

Table 4.1: Scopes and outputs

Variables movieCat movieM m theModel
Scope MovieCatalog5 MovieCatalog1 MovieCatalog1 MovieCatalog1
Output MovieCatalog1 MovieModel1 MovieModel1 MovieModel1

Variables mainView listView itemView
Scope MovieCatalog1 MovieCatalog1 MovieCatalog1
Output MainView1 MovieListView1 MovieItemView1

Listing 4.2: OFG edges

1 MovieCatalog.main.movieCat = MovieCatalog1.MovieCatalog.this

MovieCatalog1.MovieCatalog.movieM = MovieModel1.MovieModel.this

3 MovieCatalog1.setModel.m = MovieCatalog1.MovieCatalog.movieM

MovieCatalog1.theModel = MovieCatalog1.setModel.m

5 MovieCatalog1.mainView = MainView1.MainView.this

MovieCatalog1.listView = MovieListView1.MovieListView.this

7 MovieCatalog1.itemView = MovieItemView1.MovieItemView.this

MovieCatalog1.showApp.this = MovieCatalog.main.movieCat

The corresponding OFG is presented in Figure 4.2. It traces the flow of five objects
(the solid-line red circles) from their creation by allocation sites until their assign-
ment to class fields (dashed-line green circles), or their usage in method invocations
(dotted-line blank circles). Fields are represented by ObjectIdentifier.fieldName. Ob-
jectIdentifier represents the class name followed by an integer which is incremented
each time an instantiation of this class is found. Method local variables and pa-
rameters are represented by ObjectIdentifier.MethodName.VarName/ParamName.
ObjectIdentifier is replaced by the class name in case of static members.
For example, the object MovieCatalog1 is stored in the local variable movieCat. Af-
ter that, movieCat is used to invoke the showApp method, so movieCat is assigned
to the target object this of showApp, which is represented by the edge between
MovieCatalog.main.movieCat and MovieCatalog1.showApp.this in the OFG in Fig-
ure 4.2, and so on for the other objects.

4.2.2.2 Preliminary Object Graph Recovery

Once the OFG is obtained, the OG can be recovered by analyzing the output sets
of the OFG nodes that correspond to fields, dashed-line green circles.

5It is the root node of the graph

60 CHAPTER 4.

Figure 4.2: The OFG of the MovieCatalog class

The output sets are presented in Listing 4.3 and the preliminary object graph is
depicted in Figure 4.3.

Listing 4.3: Output sets

Output[MovieCatalog1.theModel] = {MovieModel1}

2 Output[MovieCatalog1.mainView] = {MainView1}

Output[MovieCatalog1.listView] = {MovieListView1}

4 Output[MovieCatalog1.itemView] = {MovieItemView1}

For example, the output of the MovieCatalog1.theModel field is MovieModel1. This
is depicted in Figure 4.3 by the link labeled theModel between MovieCatalog1 and
MovieModel1.

Figure 4.3: The OG of the MovieCatalog class

4.2. FOUNDATIONS OF THE PROPOSED APPROACH 61

Figure 4.4: Trace metamodel

4.2.3 Source Code Instrumentation & Instrumented Code

Execution

4.2.3.1 Source Code Instrumentation

In order to produce execution traces, an instrumentation strategy has been worked
out. The instrumentation consists in automatically adding statements in specific
places of the source code. When executing the instrumented code, the added state-
ments produce in a Log file (execution trace) a text representing the runtime infor-
mation.
The trace metamodel is depicted in Figure 4.4. From this metamodel, runtime
information reported in each trace can be summarized in the following:

• System start (executionST) and end (executionET) timestamps,

• Object creation: creation timestamp, object identifier, the position (class name
+ line number) of the allocation site responsible for creating the object and
the object hashcode, and

• Object destruction: destruction timestamp and the hashcode of the destroyed
object.

In order to get this runtime information, a field (objectID) and two methods (objec-
tIDgenerator(), to generate object identifiers, and hashCodeGenerator(), to generate
object hashcodes) are added to the code of each class of the system in question. A
class Logger is also added to the set of classes of the system under study. This class
contains methods that enable writing the log file.

62 CHAPTER 4.

Since some languages, like Java, do not have explicit destructors, the instrumen-
tation of object destruction may not be straightforward. In this case, one option
consists of tracking all the references of an object. If the last reference of this object
is reassigned to another object or to null, this reassignment statement is considered
the destruction site of the object. The destruction timestamp can be then deter-
mined by instrumenting this statement. Another simpler option, in Java, consists
of overriding the finalize() method if it does not exist and changing its body to log
destruction timestamps and the hashcode of the destructed object. In the current
work, the second option is used.
The code of the automatically added elements, the Logger class, the instrumented
code of the MovieCatalog class and the code of an execution trace generated when
running the instrumented MovieCatalog class are presented in listings 4.4, 4.5, 4.6
and 4.7 respectively.

Listing 4.4: Added elements in the instrumentation phase

public static int ObjectID = 0;

2

public static int objectIDgenerator () {

4 return ObjectID ++; }

6 public int hashCodeGenerator () {

return System.identityHashCode(this); }

8

protected void finalize () throws Throwable {

10 super.finalize ();

loggerClass.log("Destruction:"+

12 System.identityHashCode(this));}

Listing 4.5: The Logger class

public class Logger {

2

public static PrintWriter writer;

4

public static void log(String msg) {

6 if(writer == null){

try{

8 writer = new PrintWriter("TraceName.log",

"UTF -8");

10 } catch(java.lang.Exception e) {}

}

12 writer.println("TimeStamp= "+ Long.toString(

System.nanoTime ()) + ", " + msg);

14 writer.flush ();

4.2. FOUNDATIONS OF THE PROPOSED APPROACH 63

}

16

public static <T> T logNewInstance(T instance ,

18 String objectID , String position , Long hashCode) {

Logger.log("new: "+objectID+", "+ position+",

20 "+hashCode);

return instance;

22 }

24 }

Listing 4.6: The instrumented code of the MovieCatalog

public class MovieCatalog extends WmvcApp {

2 private MainView mainView;

4 private MovieListView listView;

6 private MovieItemView itemView;

8 public MovieCatalog(String name) {

super(name , true , true);

10

MovieModel movieM = Logger.logNewInstance(

12 new MovieModel (),

"ObjectID = MovieModel"

14 +MovieModel.objectIDgenerator (),

"Position = MovieCatalog: 9",

16 "Hashcode = "+movieM.hashCodeGenerator ()

);

18 setModel(movieM);

20 mainView = Logger.logNewInstance(

new MainView(),

22 "ObjectID = MainView"

+MainView.objectIDgenerator (),

24 "Position = MovieCatalog: 11",

"Hashcode = "+mainView.hashCodeGenerator ()

26);

28 listView = Logger.logNewInstance(

new MovieCatalogue.MovieListView (),

30 "ObjectID = MovieListView"

+MovieListView.objectIDgenerator (),

64 CHAPTER 4.

32 "Position = MovieCatalog: 12",

"Hashcode = "+listView.hashCodeGenerator ()

34);

36 itemView = Logger.logNewInstance(

new MovieItemView (),

38 "ObjectID = MovieItemView"

+MovieItemView.objectIDgenerator (),

40 "Position = MovieCatalog: 13",

"Hashcode = "+itemView.hashCodeGenerator ()

42);

}

44

public static void main(String [] args) {

46 MovieCatalog movieCat = Logger.logNewInstance(

new MovieCatalog(""),

48 "ObjectID = MovieCatalog"

+MovieCatalog.objectIDgenerator (),

50 "Position = MovieCatalog: 20",

"Hashcode = "+movieCat.hashCodeGenerator ()

52);

movieCat.showApp ();

54 }

56 public static int ObjectID = 0;

58 public int hashCodeGenerator () {

return System.identityHashCode(this);

60 }

62 public static int objectIDgenerator () {

return ObjectID ++;

64 }

66 @Override

protected void finalize () throws Throwable {

68 super.finalize ();

Logger.log("Destruction: "

70 +System.identityHashCode(this));

}

72 }

Listing 4.7: A trace example

4.2. FOUNDATIONS OF THE PROPOSED APPROACH 65

Start time: 1493642333528

2 TimeStamp= 1493642333681 , new:ObjectID = MovieModel1 ,

Position = MovieCatalog: 6, HashCode = 186370029

4 TimeStamp= 1493642333861 , new:ObjectID = MainView1 ,

Position = MovieCatalog: 8, HashCode = 1915503092

6 TimeStamp= 1493642333862 , new:ObjectID = MovieListView1 ,

Position = MovieCatalog: 9, HashCode = 1567581361

8 TimeStamp= 1493642333866 , new:ObjectID = MovieItemView1 ,

Position = MovieCatalog: 10, HashCode = 1688376486

10 TimeStamp= 1493642333889 , new:ObjectID = MovieCatalog1 ,

Position = MovieCatalog: 13, HashCode = 1793329556

12 End time: 1493642837688

4.2.3.2 Instrumented Code Execution

The next step consists of executing the instrumented system using test cases or pass
it to users to be used for a period of time in order to generate execution traces.
In order to guarantee coverage of the generated traces, the measure of “function
coverage” proposed by Hu et al [Hu 2014] is used. The “function coverage” of a
given trace i is calculated using the following formula:

FCi =
Mdcg

Mscg

∗ 100

where, Mdcg is the set of methods in a dynamic call graph (execution trace i) and
Mscg is the similar set of the corresponding methods in a static call graph.
The dynamic call graph is built from execution traces, where method invocations/-
calls are reported. Methods of the static call graph are collected by a static analysis
of method calls starting from the main method of the system under study. High
percentage of “function coverage” means that a high percentage of code has been
traversed by the use scenario. Therefore, traces that have a high percentage of
“function coverage” are used in the next step of the process.

4.2.4 Object graph refinement

The refinement consists of adding two kinds of labels on nodes of the preliminary
OG: “empirical” probabilities and lifespans.
The probability of each object represents the ratio of the number of occurrences of
this object in execution traces to the total number of execution traces.
Lifespans are measured using the creation and destruction timestamps, which are
read from execution traces. The lifespan of a node n is a range, having as a min-
imal value the scaled creation timestamp (stsc) and as a maximal value the scaled
destruction timestamp (stsd). This scaling enables to see the timestamps as per-

66 CHAPTER 4.

centages to the lifespan of the application. stsc and stsd are calculated using the
following simple formulas:

stsc(n) =
1

m
∗

m
∑

i=0

(ctsi(n)− stsysi)

lengthsysi

∗ 100

stsd(n) =
1

m
∗

m
∑

i=0

(dtsi(n)− stsysi)

lengthsysi

∗ 100

where ctsi(n) and dtsi(n) are creation and destruction timestamps of the node n
in the execution trace i, stsysi is the system’s start time during trace i, m is the
number of execution traces, and lengthsysi is the difference between the system’s
start time and end time in trace i. As mentioned above, this scaling enables to see
the timestamps as percentages to the lifespan of the application.
The objects created through the same allocation site (in the case of loops) have
many occurrences in the same execution trace, with different object identifiers, but
they are represented by only one node in the OG. These objects are identified by
object identifiers and position in the source code. In this case, to label the node that
represents a set of objects in an execution trace by the lifespan, we use the same
formulas as previous ones, but we replace ctsi(n) and dtsi(n) by AVG(ctsi(n)) and
AVG(dtsi(n)) which represent the ratio of the sum of creation/destruction times-
tamps of the objects that have the same position as n in the initial OG, to the total
number of creations/destructions in the trace. An additional label that represents
the frequency of the creation is also added to the node.
As an example, we give the recovered OG of MovieCatalog application. In order to
generate traces, 10 test cases have been executed. The average execution time of
the application is 642 seconds. The refined OG is shown in Figure 4.5.
Labels added on nodes are of the form {probability, lifeSpan}, calculated using
the two previous formulas. All the nodes in Figure 4.5 have a probability of exis-
tence equal to 1 except Movie2 which has a probability equal to 0.9. Indeed, this
node appears when the user chooses to open an existing catalog of movies and ad-
d/delete/edit movies. The only trace from the generated ones that does not contain
this node corresponds to the scenario when the user runs the application for the first
time, so a movie catalog must be created. Concerning lifespans, almost all nodes are
created at the start of the application and destroyed at the end of it, except Movie1
and Movie2 that were created and destroyed before the end of the application’s
execution.

4.2.5 Managing the Complexity of the Refined Object Graph

To manage the complexity of the refined OG, we combine two techniques. The first
technique exploits the information available in our refined graph, namely the object
lifespan and probability of existence. The second technique aims at identifying the
composite structures of objects in the previously recovered graph.

4.2. FOUNDATIONS OF THE PROPOSED APPROACH 67

Figure 4.5: Refined OG of the MovieCatalog application

Having an OG that includes the lifespan of each object and its probability of ex-
istence at runtime, we provide assistance to manage the complexity of the OG by
visualizing only relevant parts of the graph according to the developer’s needs. In
fact, developers can set thresholds for the values of the information added to the
graph in order to focus, for instance, on objects that are the most durable or the
most likely to exist at runtime. In general, we expect the objects that constitute
the GUI to be the most durable; i.e., they are created when the software system
is launched. Conversely, depending on the complexity of the application domain of
the system, some domain-specific (business) objects may be more or less durable de-
pending on the importance of the object in the domain. Due to the size and scope of
the MovieCatalog example, most objects are durable; i.e., the number of use cases is
limited and there is only one unique view in the GUI. In practice, the more business
processes supported by the system, the greater is the number of business objects,
and the probability of existence of a business object depends on the frequency of
executing the business processes that act on it. Thus, filtering out business objects
that have the lesser probability enables the developer to focus on the main business
objects.

68 CHAPTER 4.

Figure 4.6: Refined and Hierarchical OG of the MovieCatalog application

The second technique identifies composite structures in the refined OG based on the
notion of dominator. An object cannot be exposed outside of the boundary of its
dominator. In other words, all access paths to the dominated object should pass
through its dominator. In general, the dominator set for a graph nodes is calculated
using the following equation:

dom(n) = {n} ∪ (∩(m∈predec(n)}dom(m))

where predec(n) = the set of all predecessors of the node n
Many algorithms have been proposed for finding dominators in graphs [Allen 1970,
Allen 1972, Cooper 2001, Aho 1972]. The algorithm used in our work is that of
Lengauer-Tarjan (more details on this algorithm can be found in [Lengauer 1979])
because it is the most widely used fast dominance algorithm [Cooper 2001].
When we apply this algorithm on the MovieCatalog system, we obtain the refined
and hierarchical object graph, which is depicted in Figure 4.6, with MovieCatalog1,
WmvcMenuItemCtl2, WmvcMenuItemCtl3, WmvcMenuItemCtl4 and WmvcMenu-
ItemCtl6 nodes collapsed. Although the recovered graph is of a manageable size,
the application of the Lengauer-Tarjan algorithm showed that the number of the
final visualized objects can be reduced by 50%, from 24 to 12. In Figure 4.6, blue
nodes represent composite nodes whose internal structure is hidden and red nodes
represent simple nodes.

4.3. EXPERIMENTAL RESULTS AND EVALUATION 69

4.2.6 Visualization with a level of detail

As mentioned earlier, our visualization is a user-oriented one, where the user is able
to steer the displayed view when she/he is interested in identifying focal objects
depending on a particular goal. In order to do this, an interface is displayed to the
user. Through this interface, she/he can: i) set thresholds for lifetime interval, using
a slider, and the probability value, and ii) choose to identify subsystems (composite
structures) of the system under study or not. Once the settings were defined, the
user can launch filtering. Filtering enables the selection of a subset of the nodes to
be displayed in the view. Filtering removes uninteresting nodes from the view not
fulfilling the criteria of the filters set by the user (lifetime interval and probability
value). This technique of visualization reduces the cognitive effort spent to solve
a particular task, required from the user to focus on a subset of the nodes when
all nodes are visible [Huang 2009]. Thereby this contributes ultimately to improve
understandability.
Some visualizations with a level of detail will be illustrated in the case study in the
following section.

4.3 Experimental Results and Evaluation

In order to evaluate our approach, we conducted an experiment on a set of open
source Java projects. In the remainder of this section, we present first the research
questions that we want to answer, then the setup of the experiment, and at last the
results and the threats to validity.

4.3.1 Research questions

The experiment was conducted to answer the following general research question: To
what extent does the output of the proposed approach contribute to understanding?
In order to proceed with the experiment, we need to refine this general research
question. We thereby decomposed it into three sub-questions:

• RQ1: To what extent does the refined and the hierarchical OG contribute in
reducing complexity?

• RQ2: To what extent does the refined and the hierarchical OG, compared
to a class diagram6, contribute to reducing the time spent for completing
typical program understanding tasks and in increasing correctness of answers
to questions given during those tasks?

• RQ3: To what extent does the refined and the hierarchical OG contribute to
identifying refactoring opportunities?

6which is one of the most widely used diagrams to understand code structure [Ammar 2012]

70 CHAPTER 4.

4.3.2 Experiment Setup

A prototype of the method was implemented using Spoon [Pawlak 2015a], which is
a source code manipulation tool. The generated graphs are defined in JSON format,
which enabled us to build a Web page for their visualization.
We applied our approach on two software systems, namely Jext7 and JHotDraw8.
Table 4.2 provides some information on these systems. These systems were used
instead of the systems used in Chapter 3 because test cases and scenarios are easier
to obtain.

Table 4.2: Data collection

System Description #LOC #Types
Jext A text editor 46306 211
JHotDraw A framework for graphics drawing 19959 269

As it was explained in the process in Section 4.2, the first step consists of recovering
an initial object graph by static analysis. Then, we refine this graph with lifespans
and probabilities using execution traces. To do so, in the case of Jext, we defined
15 scenarios according to the main functionalities described in the documentation.
For example, we created scenarios for opening different documents (Java source files,
HTML files, Zip files, etc.), performing edition activities (copy, cut, paste, comment,
uncomment, etc.), searching and replacing a String, e-mailing the opened files, etc.
Values of the function coverage [Hu 2014] metric for the generated traces range
from 79% to 82% which are quite high values. For JHotDraw, five scenarios were
selected. The function coverage values of the five generated traces vary from 69.82%
to 73.69%. We wanted also to test our approach on an additional system which
is LogoPuzzle which comes with MiniDraw [Christensen 2011]. However, for this
system, only one scenario exists. This is because LogoPuzzle is an academic board
game which is a puzzle on a university logo so, the only trace that can be generated
is the one where puzzle pieces are moved to form the logo and there is no complex
logic behind that. Moreover, the value of function coverage of this trace is 47%. For
these reasons, this system was eliminated from the experiment.

7https://sourceforge.net/projects/jext/
8http://jhotdraw.org/

4.3. EXPERIMENTAL RESULTS AND EVALUATION 71

4.3.3 Results and discussion

4.3.3.1 RQ1

To provide a quantitative evaluation for this question, we used the "Hierarchical
Reduction (HR)" metric [Vanciu 2013] which represents the ratio of the number
of objects of two graphs. This measure estimates the effectiveness of the complex-
ity management techniques compared to a flat object graph. Effective complexity
management techniques would reduce the number of objects in the refined and hi-
erarchical graph by an important number.

Table 4.3: Hierarchical Reduction (HR) results

System L
Exploiting composite structures

probability = 1

lifespan length> 5%
#Rev Obj HR #Rev Obj HR

Jext

0 13 6 9 5.89
1 65 2.14 44 2.24
2 88 1.15 63 1.2
3 26 1.05 23 1.02
4 10 1 3 1
5 2 1 2 1

JHotDraw

0 43 3.4 43 3.4
1 103 1.6 101 1.58
2 87 1.09 83 1.08
3 21 1.03 20 1
4 5 1 4 1
5 4 1 4 1

Table 4.3 presents the number of revealed objects when expanding composite nodes
in each level of the object graphs in two cases: when exploiting only composite
structures and when fixing the probability to 1 and selecting objects which have a
lifespan length greater than 5%. A partial flat object graph of Jext and the flat
object graph of JHotDraw are represented respectively in Figures 4.7 and 4.8. In
the case of Jext, the displayed graphs in the two cases, of Table 4.3, are depicted in
Figures 4.9 and 4.10 respectively. For JHotDraw, only the first case, when exploiting
the composite structure, is depicted in Figure 4.11 since the graph in level 0 is the
same in the two cases of Table 4.3.
As indicated in Table 4.3, the depth of the two graphs is 6. For Jext, the number of
revealed nodes in each level, in the first case, ranges from 2 in level 5 to 88 in level
2. In the second case, the number of revealed nodes ranges from 2 in level 5 to 63 in
level 2. For JHotDraw, in the first case, the number of revealed nodes in each level
ranges from 4 in level 5 to 103 in level 1. In the second case, the number of revealed
nodes ranges from 4 in levels 4 and 5 to 101 in level 1.

72 CHAPTER 4.

Figure 4.7: Jext partial flat object graph.

The number of objects in the initial object graph of Jext and JHotDraw is 204 and
263 respectively, which represents the sum of nodes of all the levels. Someone can
wonder why the number of objects in the initial OG is less than the total number of
types in the system, 211 and 269; this is explained by the facts that: i) some classes
are instantiated but their instances are not stored in fields, and ii) the presence of
“Dead Code” which represents in our case classes that are never instantiated or used.
For Jext, the number of nodes of level 0 (i.e., 13) represents the final graph displayed
to the user, if she/he does not fix thresholds for lifespans and probabilities. The
value of HR between the flat graph and the final one displayed to the user is 15.69
which means that the number of objects in the refined and hierarchical object graph
is almost 16 times smaller than the number of objects in the initial object graph.
The third column, of the first case, in Table 4.3 represents the values of HR between
a graph of a given level and the graph of the level above. These values range from 1
to 6. For example, HR between the top levels (5 to 4 and 4 to 3) is equal to 1, which
means that there is no benefit through the hierarchical representation of objects.
However, HR between level 1 and level 0 is equal to 6. It is also important to note
that the exploitation of the probabilities and lifespans contributes in reducing the
number of nodes displayed in each level. For example, if the user chooses to display
only the objects that have a probability of one and a lifespan greater than 5%, this
allows a reduction of nodes in level 0 by 4 nodes, nodes in level 1 by 21 nodes, nodes
in level 2 by 25, nodes in level 3 by 3 nodes and nodes in level 4 by 7 nodes. For
JHotDraw, the value of HR between the flat graph and the final one displayed to the

4.3. EXPERIMENTAL RESULTS AND EVALUATION 73

Figure 4.8: JHotDraw flat object graph.

user is 6.11 which means that the number of objects in the refined and hierarchical
object graph is almost 6 times smaller than the number of objects in the initial
object graph. HR values between other levels are calculated in the same way as in
Jext.
It is argued that handling understanding tasks becomes particularly difficult and
time-consuming when the number of nodes and edges increases [Huang 2009]. There-
fore, a filtered version of the graph is visually less complex with only relevant in-
formation, from the user viewpoint, being displayed. Since our complexity manage-
ment techniques allow controlling the size, and thus the complexity, of the visualized
graphs by hiding and showing nodes as needed, we believe that our approach con-
tributes in handling comprehension tasks more efficiently than using a flat object
graph.

74 CHAPTER 4.

Figure 4.9: Jext refined and hierarchical object graph with only composite structure ex-
ploited.

4.3.3.2 RQ2

This research question deals with the measurement of the spent time and correct-
ness which are typically used in the context of program understanding [Rajlich 1997].
To this end we follow the experimental design used by Cornelissen et al [Cornelis-
sen 2009b], Fittkau et al [Fittkau 2015] and Alimadadi et al [Alimadadi 2018]. Un-
fortunately, it is difficult to motivate people to offer some hours from their precious
time to participate in experiments. For this reason, the RQ2 will be answered only
in the case of Jext.

1. Understanding Tasks:

The authors in [Cornelissen 2009b], [Fittkau 2015] and [Alimadadi 2018] stuck
to the framework proposed by Pacione et al [Pacione 2004], which describes
categories of program understanding tasks, in order to create representative
tasks that highlight the aspects of the subject systems. The authors clas-
sified the tasks from literature studies according to nine principal software
understanding activities that developers need to perform for understanding
software, regardless of the language and the platform used. These activities
are presented in Table 4.4.

4.3. EXPERIMENTAL RESULTS AND EVALUATION 75

Figure 4.10: Jext refined and hierarchical object graph with composite structure, lifespans
and probability exploited.

We adapted the tasks used by these authors to the context (“business domain”)
of Jext. Table 4.5 provides a description of the three understanding tasks
(T1, T2 and T3) chosen in our study and shows their corresponding activities
in [Pacione 2004]. Each of our tasks covers one or more activities, all activities
are covered in our tasks except the activity A8 which will be covered in the
third research question.

2. Participant Selection:

The persons involved in this experiment are seven Ph.D. students, who were
not involved in this work before. These students were assigned to two groups
(3 in each group) randomly. The role of the seventh participant is to evaluate
tasks based on a response model. The first group (SrcCode+CD) used Jext
source code and a class diagram recovered using the ObjectAid9 tool to ac-
complish the understanding tasks. However, the second group (SrcCode+OG)
used Jext source code and the object graph resulting from applying our ap-
proach on Jext. In order to ensure the equivalence between the two groups
in terms of experience in OO programming, we asked the students to carry

9http://www.objectaid.com/

76 CHAPTER 4.

Figure 4.11: JHotDraw refined and hierarchical object graph with only composite structure
exploited.

out a self-assessment on 5 points ranging from 1 (beginner) to 5 (advanced).
The average experience in the SrcCode+CD group is 3 versus 3.33 in the Src-
Code+OG group. Therefore, we conclude that the random assignment resulted
in an almost equivalent experience between the two groups.

3. Experimental Design:

The experiment was divided into two sessions: the SrcCode+CD group session
and the SrcCode+OG group session. In the two sessions, the students were
given a questionnaire containing the tasks described in Table 4.5. In addition,
the subjects of SrcCode+CD group were given a pre-generated class diagram
using the ObjectAid tool and were asked to use the tool, ObjectAid, for 15
minutes to be familiar with it. The subjects involved in the SrcCode+OG
group session were given the OG and benefited from an explanation of 15
minutes of this graph. This familiarization time, 15 minutes for each group,
is not considered in the total spent time in handling understanding tasks. In
order to simulate real understanding and maintenance tasks, the students were
not instructed to adhere to a limited timing.

4. Correctness and Time Results

4.3. EXPERIMENTAL RESULTS AND EVALUATION 77

Table 4.4: Principal software understanding activities

A1 : Investigating the functionality of (a part of) the
system
A2 : Adding to or changing the system’s functionality
A3 : Investigating the internal structure of an artifact
A4 : Investigating dependencies between artifacts
A5 : Investigating the runtime interactions in the system
A6 : Investigating how much an artifact is used
A7 : Investigating patterns in the system
A8 : Assessing the quality of the system’s design
A9 : Understanding the domain of the system

Table 4.5: Understanding tasks

ID Activities Description

T1 A1, A7 and A9
What are the main stages in a typical Jext scenario?
(formulate your answer from a high level perspective)

T2 A3 and A4

Name five text treatments/actions supported by Jext:
which classes are responsible for these treatments?
when were they created? who created them?

T3 A1, A2, A5 and A6

In general terms describe the life cycle of the
org.jext.Mode class: when is it created? who created
it? how many languages are supported in Jext?

Table 4.6 provides the results related to measurements of the time spent on
tasks and of correctness of answers. From this table, we can note that the Src-
Code+OG group required 36% less time. The SrcCode+CD group participants
did not use the class diagram in answering the understanding tasks because
of the noise caused by edges overlap in the class diagram. One participant
described: “it is difficult to follow the links between classes, if only the tool
proposes a technique to focus on a subset of classes only, the task of following
links will be easier”. On the other side, the use of object graph contributes to
reduce this time since some parts of some tasks can be directly identified from
the graph. Therefore, the difference in time between the two groups is due
to the fact that the SrcCode+CD group lost time in scrolling between source
code files.

Concerning the results of correctness, we note that the answers given when
using the object graph are more accurate averaging 5.2 out of 8.5 points com-
pared to 4.8 points for the SrcCode+CD group which is rather good. This
difference in correctness values between the two groups is due mainly to the
third understanding task, more precisely to its last part: “how many languages

78 CHAPTER 4.

Group
Time
Spent

Correctness

Min Max AVG Diff Min Max AVG Diff
SrcCode+CD 66 148 98.7 - 4.25 6 4.8 -

SrcCode
+OG

41 78 62.7 -36% 4.5 5.75 5.2 + 8%

Table 4.6: Correctness (measured in points given to correct answers) and Time Spent (in
minutes) results

are supported in Jext”. The SrcCode+CD group participants looked at the
answer in the org.jext.Mode whereas the answer lies in a properties file refer-
enced in the initModes method of the org.Jext class. Whereas, the OG gives
direct indications on the frequency of nodes.

4.3.3.3 RQ3

Antipatterns [Koenig 1998] are poor designs that can badly affect the system’s qual-
ity, especially understandability. Because of their harmful effects, they should be
detected in the code that must be refactored. To answer this question, we studied
the impact of the availability of the refined and the hierarchical object graph on the
detection of the “Poltergeist” antipattern [Brown 1998].
Poltergeists are classes with limited responsibilities and roles to play in the system;
therefore, their effective life cycle is quite brief [Brown 1998]. This antipattern is also
known by the name of “Gypsy Wagons” [Akroyd 1996] which are controller classes
that exist only to recall methods of other classes.
This antipattern is selected because its identification is based on the lifetime property
of the objects which is added, in our approach, as a label in the OG.
For Jext, the number of objects whose lifespan length (difference between the end
timestamp and the start timestamp) is less than or equal to 20% in the recovered
OG, equal to 37 objects. These objects are instances of 24 different classes. In the
case of JHotDraw, the number of objects whose lifespan length is less than or equal
to 20% is 16. These objects are instances of 10 different classes. These classes are
candidates for the Poltergeists antipattern.
To validate this result, we consider an identification based on this antipattern symp-
toms reported in the literature. To the best of our knowledge, there exist only three
works that focus on the detection and/or specification of the Poltergeist antipattern.
Al-Rubaye [Al-Rubaye 2017] identified two symptoms of this antipattern namely
cyclic association and short methods. A class is considered as a Poltergeist if it
participates in a cyclic association and have low average line of code (LOC) value
for its methods. The appropriate average length of methods can be identified based
on the work of Lanza et al [Lanza 2007]. The authors of this work fixed the length
to 7 for code written in Java.

4.3. EXPERIMENTAL RESULTS AND EVALUATION 79

Stoianov et al [Stoianov 2010] developed a tool (not publicly available) that detects
a set of patterns and antipatterns among them the Poltergeist one. The authors
defined rules in form of Prolog queries to describe the Poltergeist symptoms. Unfor-
tunately, there is no explanation for these rules which makes the symptoms unclear.
Llano et al [Llano 2009] give a UML specification of this antipattern in five forms
introduced in [Riel 1996]. These forms are:

1. Irrelevant classes: these classes contain only accessor and/or print meth-
ods. They are characterized to be with no meaningful behavior in the design.

2. Agent classes: are classes that do not have instance variables and contain
only agent methods. An agent method is a method that performs only one
action, one call, which is passing a message from one class to another.

3. Out of scope classes: are classes that send messages to other classes but
they never receive any message back, which means that the out of scope class
methods are never called by other methods in the system.

4. Operation classes: an operation class contains only one method and all its
instances are transient objects, the allocation site is preceded by the transient
keyword in Java.

5. Object classes: are subclasses that do not add data or behavior different
from the one of their super class.

Since the Poltergeist symptoms are not clear in the work of Stoianov et al [Stoianov 2010],
our identification is based only on the works of Al-Rubaye [Al-Rubaye 2017] and
Llano et al [Llano 2009].
In order to identify Poltergeists instances as specified by Al-Rubaye [Al-Rubaye 2017],
we used FindBugs10 tool in order to identify cyclic associations. Short methods are
identified by counting the number of lines of code of the method of each class par-
ticipating in a cyclic association. Poltergeists as defined by Llano et al [Llano 2009]
are identified by a manual inspection of the source code.
Table 4.7 presents the results of precision and recall measures for the Poltergeist
candidate identification. The first column reports precision and recall values when
using only the Llano et al [Llano 2009] technique, the second column when using
only Al-Rubaye [Al-Rubaye 2017] technique and the third column when using the
two techniques, by making a union of the set of Poltergeseit candidates identified
by the two techniques.
For Jext, precision values range from 0.46 using Llano et al [Llano 2009] to 0.71 by
making the union of the two techniques. Recall values range from 0.46 by making
the union of the two techniques to 0.65 by using Llano et al [Llano 2009] technique.
In the case of JHotDraw, eight of these candidates were validated manually, using

10http://findbugs.sourceforge.net/

80 CHAPTER 4.

Table 4.7: Poltergeist detection results (TP for true positives, FP for false positives and
FN for false negatives

System Detection Method [Llano 2009] [Al-Rubaye 2017] Union

Jext

TP
FP
FN
Precision
Recall

11
13
6

0.46
0.65

15
9
14

0.62
0.52

17
7
20

0.71
0.46

JHotDraw

TP
FP
FN
Precision
Recall

8
2
11
0.8
0.42

2
8
1

0.2
0.67

8
2
11
0.8
0.42

[Llano 2009] and [Al-Rubaye 2017] techniques, which gave a precision equal to 0.8.
By using only the technique from [Al-Rubaye 2017], the recall value is equal to 0.67.
However, by using only the technique from Llano et al [Llano 2009] or by combining
the two techniques, the recall value becomes 0.42. For the two systems, precision
and recall values are generally acceptable. We believe that this is due to the fact that
some classes detected manually, using one technique or the two together, are never
instantiated. That is why they are not automatically detected, using the recovered
object graph.
We believe that our approach reduces the search space on Poltergeists by keeping
only objects that verify the short-lived property. After that, the user can check
which instances really represent Poltergeists.

4.3.4 Threats to Validity

4.3.4.1 Internal & construct validity

A potential threat concerns the extent to which the execution scenarios or test
cases used to generate execution traces are representative of those actually used in
practice. This threat could be mitigated if we experiment with more test cases by for
example, giving the instrumented system to a number of students and ask them to
use it for a period of time, and then collect the generated traces. We argue however
that the selected scenarios used in the experiment reflect the main functionalities of
the used systems.
Another threat concerns the use of the metric of “function coverage” to measure the
coverage of the generated traces. With this metric, several traces can be generated
randomly and only the ones that have a high value are used. However, it would be
more practical to directly generate representative test cases. For that, we recently

4.4. CONCLUSION 81

started the research on more systematic ways to get representative test cases/sce-
narios. As a result, the approach used in the work of Delucia et al [Lucia 2018]
seems to be adequate for our case. This approach is based on genetic algorithms in
order to generate test cases for monitoring an instrumented code
An additional threat concerns the programming language’s dynamic features, like
reflection. Code that uses reflection is out of the bounds of our method. This code
can reduce the accuracy of the static analysis phase. However, a large number of
legacy systems do not use reflection. To determine the frequency of use of that
mechanism (reflection), we implemented a parser which seeks for invocations to
newInstance and invoke methods of the Java reflection API. We tested this parser
on two randomly selected systems JHotdraw 11 and Jitsi 12. We found that these
method invocations represent only 0.2% for JHotDraw (13 out of 6375 allocation and
invocation sites) and 0.24% for Jitsi (242 out of 99830). The small percentages for
these two systems strengthen our intuition about the applicability of the described
method.
Another threat is related to RQ2 where time spent and correctness results of under-
standing tasks are compared using an OG and a class diagram. The use of a class
diagram makes the experiment somewhat unfair. A better comparison can be made
using an object graph recovered using a state-of-the art publicly available method.
However, class diagrams represent the most widely used diagrams to understand
code structure, according to many practitioners and authors, like [Ammar 2012].
Another threat is related to the fact that the choice of tasks may have been biased
to the advantage of the recovered OG. We alleviated this threat by reusing exist-
ing tasks proposed in the literature [Cornelissen 2009b], and adapting them to our
particular system (Jext).

4.3.4.2 External validity

One threat concerns the use of one object system in this study. We believe that
future experiments on a larger set of systems with larger sizes will yield more obser-
vations. However, since the results were positive with the studied (medium-sized)
system; our intuition, on the interest of the refined and hierarchical OGs in assisting
understanding, is strengthened.

4.4 Conclusion

The goal of this contribution is to support program understanding during software
maintenance by recovering the as-implemented architecture. To this end, we pro-
posed a six-step process to recover refined and hierarchical object graphs of object-
oriented software systems. Compared to existing approaches for object graph recov-

11http://jhotdraw.org/
12https://jitsi.org/

82 CHAPTER 4.

ery, the graphs recovered by our approach have the following distinguishing features:
i) nodes are labeled with lifespans and empirical probabilities of existence that en-
able a visualization with a level of detail; ii) they support the collapsing/expanding
of objects to hide/show their internal structure. We reported an experiment where
this process was applied to recover OGs for Java software systems and the results
were in tune with our initial intuition.

Chapter

5
Identifying Modules and Services

from the Source Code of Object-

Oriented Software Systems

Contents

5.1 Introduction and Problem Statement 84

5.2 Foundations of the proposed Approach 85

5.2.1 Runtime Models Recovery 86

5.2.2 Composition Relationships Identification 87

5.2.3 Composition Refinement 90

5.2.4 Module and Service Identification 93

5.3 Evaluation & Experimental Results 102

5.3.1 Data Collection . 102

5.3.2 Research question . 103

5.3.3 Experiments setup . 103

5.3.4 Results and discussion . 103

5.3.5 Threats to validity . 108

5.4 Conclusion . 109

83

84 CHAPTER 5.

5.1 Introduction and Problem Statement

We proposed in the previous chapter an approach that improves the understandabil-
ity quality attribute of object oriented legacy systems by recovering object graphs.
The results of the experiment showed that the recovered OG contributes in reduc-
ing the complexity of the runtime architecture and in handling some comprehension
tasks.
Another quality attribute in which we are interested is modularity. Improving modu-
larity in object oriented class-based software systems is a challenging question. This
improvement can be ensured by grouping source code artifacts into highly cohesive
modules and reduce the coupling between these modules. Identifying highly cohe-
sive modules in existing object oriented softwares is a challenging activity within
the remodularization process. This consists in locating the coarse-grained software
entities (groups of connected classes) that compose the system and which are related
to performing a single task.
This chapter focuses on the third contribution of this thesis. We propose a process
for identifying modules and services in an OO (class-based) software system based
on the runtime architecture. We start our process by building an object graph,
equivalent to the one presented in the previous chapter, in which nodes are objects
and edges represent field-assigned references between objects. Then, we build the
tree of instantiations, in which nodes are objects and an edge between two nodes
means that the source node is the creator of the target node. In parallel to this,
we identify the composition relationships between objects. Sometimes the creator
of an object and its composite (owner, according to the definition from the previous
chapter), if any, are not the same. Thus, the idea here consists in refining the
extracted composition relationships by transforming the tree of instantiations in
a way that each composite becomes the creator of its components. We do this,
because we consider in our work that the composite structures reflect the design
and the main structure of the software system. The goal of the refinement step is to
increase cohesion between the composite and its components, since the composite of
an object will be the one which creates it. An intermediate output of the composition
refinement step is a set of tree edit operations on the tree of instantiations. This set
of edit operations is then manually translated into refactoring operations applied on
the classes, from which originated the modeled objects. We believe that source code
artifacts with composition relationships should be clustered together in the same
module since the separation of these artifacts into different modules will result in
high coupling between modules. For that, the next step of our approach consists
of applying a composition conservative genetic algorithm on the refactored code in
order to identify modules. Once the modules have been identified and in order to

5.2. FOUNDATIONS OF THE PROPOSED APPROACH 85

Figure 5.1: Modules and services identification Process

allow further decoupling, the last step of the process consists of identifying each
module services, functionalities that are provided by a module to other modules.
In order to reach this goal, two additional graphs are built: the graph of object
destructions and the graph of method calls.
The rest of this chapter is organized as follows. Sections 5.2.1 to 5.2.4 detail each
step in this process. Section 5.3 exposes an experimentation of the process which
was conducted on real-world Java projects. The goal of this experimentation is to
measure the gain in modularity brought by the process. Conclusion and perspectives
are presented in Section 5.4.

5.2 Foundations of the proposed Approach

The overall process is depicted in Figure 5.1. The input of this process is the source
code of an OO software system. This process produces many intermediate models
(graphs and trees) to produce at the end a set of modules with their identified
provided services. These modules can then be deployed and easily reused because
they embed all their dependent classes, at the software system structure level. This
process is composed of the following steps:

1. Runtime Models Recovery (a1): the goal of this step is to build five kinds
of graphs based on a static analysis of the source code of the software system
given as input. These graphs are: the object flow graph (OFG), which tracks
objects from their creation until their (reference) storage in fields or usage in
method invocations, the tree of instantiations (ToI), which models the objects
of the system (o1, o2, ...) and their relationships of kind “oi creates oj”, the
object graph (OG), which represents objects and their relationships of kind

86 CHAPTER 5.

“oi stores in one of its slots/fields a reference to oj”, the graph of destructions
(GoD) which represents objects and their relationships of kind “oi destructs
oj” and the graph of method calls (GoMC) which represents objects and their
relationships of kind “oi invokes methods of oj”

2. Composition Relationships Identification (a2): in this step, the object
graph OG is used in order to infer the composition relationships between
classes. This is done using the approach proposed by Milanova et al [Liu 2007,
Milanova 2007].

3. Composition Refinement (a3): in this step the identified composition
relationships are refined. This means that the creators and composites of
objects are compared in order to identify a set of tree edit operations. These
edit operations are necessary to make the composite of an object the one who
creates it. The identified tree edit operations are translated into refactoring
operations depending on how instantiations are made in the source code.

4. Modules and services identification (a4): in this step, classes are
grouped into modules using a genetic-algorithm based clustering. Moreover,
services that represent a way of communication between these modules are
identified.

In the following, each step of this process is detailed.

5.2.1 Runtime Models Recovery

The purpose of this first step is to build the aforementioned types of graphs.
The OG is recovered using the same method described in Section 4.2.2 of Chapter 4.
In the same way, the ToI is generated by analyzing the creators of OFG’s objects.
The creator of an object is the object identifier/class name of the first program
variable, in the OFG, to which this object was assigned, directly after its creation.
For example, objects creators for the example in Listing 5.1 (objects are highlighted
in crimson) are presented in Table 5.1.

Listing 5.1: OFG edges

MovieCatalog.main.movieCat=MovieCatalog1.MovieCatalog.this

2 MovieCatalog1.MovieCatalog.movieM=MovieModel1.MovieModel.this

MovieCatalog1.setModel.m=MovieCatalog1.MovieCatalog.movieM

4 MovieCatalog1.theModel=MovieCatalog1.setModel.m

MovieCatalog1.mainView=MainView1.MainView.this

6 MovieCatalog1.listView=MovieListView1.MovieListView.this

MovieCatalog1.itemView=MovieItemView1.MovieItemView.this

8 MovieCatalog1.showApp.this=MovieCatalog.main.movieCat

The other types of graphs are explained in Section 5.2.4.2.

5.2. FOUNDATIONS OF THE PROPOSED APPROACH 87

Table 5.1: Objects creators of the MovieCatalog class example

Object MovieCatalog1 MovieModel1 MainView1 MovieListView1
Creator MovieCatalog MovieCatalog1 MovieCatalog1 MovieCatalog1
Object MovieItemView1
Creator MovieCatalog1

5.2.2 Composition Relationships Identification

This second step enables to recover the “UML-like” composition relationships be-
tween classes using the OG. To that end, the approach proposed in [Milanova 2007]
is used. This approach is based on the owners-as-dominators ownership model. Our
choice for this approach is motivated by the fact that it is precise and enables infer-
ring a high percentage of composition relationships since the used ownership model,
owners-as-dominators, captures well the notion of composition [Milanova 2007].
The steps of the approach in [Milanova 2007] can be summarized in: the ownership
analysis and the composition inference.
Ownership analysis step consists of calculating the boundary of each object in the
OG. The boundary set of an object o consists of a subgraph rooted at o and which
contains all objects that are dominated by o. The ownership analysis is applied
using Algorithms 3 and 4 and can be summarized as follows:

1. For each node o in the OG, the set of all the reachable edges from this node
is calculated.

2. For each reachable edge, two sets are calculated: the closure set and the parent
set of the closure. The goal of the parent set is to ensure that the access to a
given node oj reachable from o is within the boundary of o.

3. Closures are classified into valid or non-valid. Non-valid closures refers to the
situation when a given object oj reachable from o is accessed from outside
without passing through o.

4. Valid closures whose parent set is empty are added into the boundary set of
the node o.

Once the boundary set of each object has been identified, a composition relationship
is inferred for each edge in the boundary set of o whose source node is o. This
composition relationships is identified between the class of o and the class of the
target node in the edge.
In order to have clear insights on the composition relationships identification ap-
proach, Algorithm 4 is applied on the example shown in Figure 5.2. The closure
and parent sets and the classification, to valid or not valid, of closures are given in
Table 5.2. As an example, consider the node E1. For this node, there are four valid
closures: Closure(E1→ F1)={E1→ F1}, Closure(E1→ H1)={E1→ H1}, Closure(E1

88 CHAPTER 5.

Algorithm 3 Closure and parent sets calculation algorithm

Input: An edge oi → oj reachable from o
Output: Cl ← Closure(oi → oj) and Parent(Cl)
1: W ← ∅, Cl ← ∅, Parent(Cl) ← ∅
2: mark oi → oj, add oi → oj to W and to Cl
3: while W not empty do
4: remove oi → oj from W
5: for ok → oj such that ok → oi and ok is reachable from o do
6: if ok → oj is unmarked then
7: mark ok → oj, add it to W and Cl
8: add ok → oi to parent(Cl)
9: end if

10: end for
11: for ok → oj such that oi → ok do
12: if ok → oj is unmarked then
13: mark ok → oj, add it to W and Cl
14: add oi → ok to parent(Cl)
15: end if
16: end for
17: end while

Algorithm 4 Boundary sets calculation algorithm

Input: A node o in the OG
Output: Boundary(o)
1: for unmarked edge oi → oj reachable from o do
2: Calculate closure set of oi → oj using Algorithm 3
3: end for
4: for edge o → oj such that ∃ ok such that ok → o and ok → oj do
5: Mark the closure set of o → oj as non valid
6: end for
7: while empty Parent(Closure(oi → oj)) and valid Closure(oi → oj) do
8: add Closure(oi → oj) to Boundary(o)
9: for e ∈ Closure(oi → oj) do

10: remove e from each Parent set
11: end for
12: end while

5.2. FOUNDATIONS OF THE PROPOSED APPROACH 89

Figure 5.2: An OG example

→ I1)={E1 → I1, H1 → I1} and Closure(I1 → J1)={I1 → J1}. Parent sets for these
closures are respectively: { }, { }, {E1 → H1} and { }. The algorithm 4 adds the
edge E1 → F1 to the boundary of the node E1. After that, it adds the edge E1 →
H1 to the boundary of E1 and deletes it from the third parent set. The third parent
set becomes empty and edges E1 → I1 and H1 → I1 are added to the boundary of
E1. Finally, the edge I1 → J1 is added to the boundary. The boundary sets for each
node in the object graph in Figure 5.2 are given in Table 5.3.
Using results from Table 5.3, the extracted composition relationships between classes
are shown in Figure 5.3.

Figure 5.3: Composition relationships between classes

Once the composition relationships between classes have been identified, they will
be refined in the following step.

90 CHAPTER 5.

Table 5.2: Closure and parent sets for the OG in Figure 5.2

OG nodes Reachable edges Closure sets Parent sets
Non valid

closure

A1 → B1 {A1 → B1} {}
A1 A1 → D1 {A1 → D1} {}
B1 - - - -

C1 C1 → G2 {C1 → G2} {} X

D1 - - - -
E1 → F1 {E1 → F1} {}
E1 → H1 {E1 → H1} {}
E1 → I1 {E1 → I1, H1 → I1} {E1 → H1}
E1 → G1 {E1 → G1, I1 → G1, J1 → G1} {E1 → I1, I1 → J1} X

E1 → G2 {E1 → G2, I1 → G2, J1 → G2} {E1 → I1, I1 → J1} X

H1 → I1 Already marked - -
I1 → J1 {I1 → J1} {}
I1 → G1 Already marked - -
I1 → G2 Already marked - -
J1 → G1 Already marked - -

E1

J1 → G2 Already marked - -
F1 - - - -
G1 - - - -
G2 - - - -

H1 → I1 {H1 → I1, E1 → I1} {E1 → H1} X

I1 → J1 {I1 → J1} {}
I1 → G1 {I1 → G1} {} X

I1 → G2 {I1 → G2} {} X

J1 → G1 {J1 → G1} {} X

H1

J1 → G2 {J1 → G2} {} X

I1 → J1 {I1 → J1 } {}
I1 → G1 {I1 → G1 } {} X

I1 → G2 {I1 → G2} {} X

J1 → G1 {J1 → G1 } {} X

I1

J1 → G2 {J1 → G2} {} X

J1 → G1 {J1 → G1} {} X
J1 J1 → G2 {J1 → G2} {} X

5.2.3 Composition Refinement

We consider in our work the composite structure as the main structure of the soft-
ware system (a model of objects and their fields) and its runtime architecture. For
this reason, we believe that a composite class and its component classes should be
grouped in the same module.
We believe that a composition relationship presented in the OG by, for example,
A1 → B1 requires that the class A creates the object B1 as stated in [Seemann 1998].
What we have noticed by analyzing many OO systems, is that the composite is not
always the creator of its components. We believe that editing the ToI in a way that
each composite becomes the creator of its components contributes in increasing
cohesion between composite and its component classes and, thus, decouples it from
other classes. This is justified by the fact that an additional type of structural
relationships, creation relationship, will be added between the composite and the
component classes.

5.2. FOUNDATIONS OF THE PROPOSED APPROACH 91

Table 5.3: Boundary sets of the nodes of the OG in Figure 5.2

OG nodes Boundary Sets

A1 {A1 → B1, A1 → D1}

B1 -

C1 -

D1 -

E1 {E1 → F1, E1 → H1, E1 → I1, H1 → I1, I1 → J1}

F1 -

G1 -

G2 -

H1 -
I1 I1 → J1

J1 -

Tree edit operations are generated by comparing the ToI with regards to the ex-
tracted composition relationships in the previous step. A tree edit operation cor-
responds to replacing the parent of a node in the ToI, by its composite, if any,
extracted in the previous step. At the source code level, these tree edit operations
are translated into refactoring operations. These refactoring operations consist in
moving allocation sites from a source class to a target one.
An example of this refinement step is given in Figure 5.4. The corresponding source
code of the ToI (a) in Figure 5.4 is given in Listing 5.2. In the composition iden-
tification step, a composition relationship was extracted between ToolButton1 and
ZoomTool1 (ToolButton1 → ZoomTool1).
As it is shown in the ToI (a) in Figure 5.4, the creator of ZoomTool1, JavaDrawApp1,
is not its composite ToolButton1. Therefore, a tree edit operation should be applied
on the ToI. This edit operation consists of removing the link between JavaDrawApp1

and ZoomTool1 and replace it by a link between ToolButton1 and ZoomTool1 (as
done in (b)). At the source code level, this corresponds to removing the allocation
site of the object whose identifier is ZoomTool1 from the class JavaDrawApp and put
it in the class ToolButton as shown in Listing 5.3. In this way, JavaDrawApp and
ZoomTool have been decoupled and ToolButton and ZoomTool have been coupled
further.

Listing 5.2: Source code before applying composition refinement

public class JavaDrawApp {

2

protected void createTools (...) {

4 ...

ToolButton tb = createToolButton (..., new ZoomTool ());

6 ...

}

8

protected ToolButton createToolButton (..., Tool tool) {

10

ToolButton toolButton = new ToolButton (..., tool);;

12 return toolButton;

}

14

}

92 CHAPTER 5.

16

public class ToolButton {

18

Tool myTool;

20

public ToolButton (..., Tool tool)

22 { ...

setTool(tool);

24 ...

}

26

private void setTool(Tool newTool) {

28 myTool = newTool;

}

30 }

Figure 5.4: Composition refinement step example

Listing 5.3: Source code after applying composition refinement

public class JavaDrawApp {

2

protected void createTools (...) {

4 ...

ToolButton tb = createToolButton (...,

6 ToolButton.createZoomTool ());

...

8 }

10 protected ToolButton createToolButton (..., Tool tool) {

12 ToolButton toolButton = new ToolButton (..., tool);;

return toolButton;

14 }

16 }

18 public class ToolButton {

20 Tool myTool;

22 public ToolButton (..., Tool tool)

{ ...

24 setTool(tool);

...

26 }

28 private void setTool(Tool newTool) {

5.2. FOUNDATIONS OF THE PROPOSED APPROACH 93

myTool = newTool;

30 }

32 public static ZoomTool createZoomTool () {

return new ZoomTool ();

34 }

}

Once the composition relationships have been refined, the following step consists of
identifying modules based on these identified and refined relationships.

5.2.4 Module and Service Identification

5.2.4.1 Module Identification

We define a module as a group of classes/interfaces. These classes/interfaces are
highly cohesive with each other and lowly coupled with classes/interfaces of other
modules. In our case, module identification is formulated as a search-based opti-
mization problem. That is, an optimized partition of classes/interfaces on modules
is searched using a genetic algorithm based on a clustering criteria (fitness function).
Genetic algorithms have been found to be an effective clustering technique of large
scale object oriented software systems [Islam 2018]. In the remaining of this section,
the used fitness function and the genetic algorithm are described.

1. The Used Fitness Function:

The determination of a fitness function/grouping criteria is a critical issue since
it has a direct impact on the obtained solution (clustering result). To evaluate
a clustering solution, an aggregated fitness function is used. This function is
based on the maximization of both the modularity and the organization of
modules values. This fitness function is defined as follows:

F = Mα ∗Oβ (5.1)

Where F corresponds to the fitness function, M to the modularity value and
O to the module organization value of a given clustering solution. α and β
are user-defined parameters ∈ [0, 1] that define the importance of M and O
according to the user viewpoint. In this work, we do not prefer M over O or
the inverse. We only discuss the case where α = β = 1. Product is chosen for
the aggregated fitness function, instead of addition, to avoid the case when a
clustering solution has a high total fitness value but low scores for M or O.
For example, if a clustering solution has an M value equal to 0.8 and an O
value equal to 0.1. If the addition is used in the aggregated fitness function,
the value of F is equal to 0.9 (0.8 + 0.1) which is a high score. However, the
module organization (O) is quite poor. In another solution, M is equal to 0.5
and O is equal to 0.4 so the F value is equal to 0.9. In this case, there is no

94 CHAPTER 5.

difference between the first and the second solution. However, if the product
is used in the aggregated fitness function, the second solution is preferred over
the first one (0.2 > 0.08). Therefore, using the product is a way of penalizing
clustering solutions that have low scores of M or O.

As described earlier, low coupling and high cohesion are indicators of good
modularity. For this reason, M value is calculated in terms of coupling and
cohesion using the following formula as in [Allier 2011]:

M =
SumCoh

SumCoh+ SumCoup
(5.2)

Where SumCoh is the cohesion sum of all modules cohesion values in a given
clustering solution and SumCoup is the coupling sum of all modules. M values
are ∈ [0, 1]. The higher the value of M is, the more modular the system is. The
cohesion and the coupling of a given module m composed of n classes/interfaces
are calculated using the following formulas:

Cohesionm =
n

∑

i=1

∑

j∈m

SCSWTFIDF (ci, cj)

Couplingm =
n

∑

i=1

∑

j /∈m

SCSWTFIDF (ci, cj)

(5.3)

Cohesion and coupling calculation is based on a a structural coupling measure
SCSWTFIDF , proposed by Prajapati et al [Prajapati 2017]. This coupling
measure is defined in terms of eight types of structural coupling relationships
that can exist between two classes: Extends(EX), Has parameter(HP), Ref-
erences(RE), Calls(CA), Implements(IM), Is of Type(IT), Returns(RT) and
Throws(TH). Weights of these relationships were defined, in [Prajapati 2017],
using Apache Solr1 and Apache Tomcat2 systems which are considered in the
literature to be of good quality [Prajapati 2017]. Table 5.4 shows the weight
values for each relationship. In our case, since we do not make a difference
between the cases when a class creates an instance of another class to reference
its fields, RE, or to call its methods, CA, the used weight values are those of
Apache Tomcat.

In fact, the authors proposed eight different Structural Coupling Schemes
(SCS). The one used in our study is the Weighted Term Frequency Inverse
Document Frequency (WTFIDF) coupling scheme which is calculated using
the following formula:

1http://lucene.apache.org/solr/
2http://tomcat.apache.org/

5.2. FOUNDATIONS OF THE PROPOSED APPROACH 95

Table 5.4: Weight values for the eight structural relationships.

EX HP RE CA IM IT RT TH
Apache Solr 9 4 3 2 2 2 1 1

Apache Tomcat 8 3 3 3 2 2 1 1

SCSWTFIDF (ci, cj) =

∑

r∈R wr ∗ nr(ci, cj)
∑|C|

k=1

∑

r∈R wr ∗ nr(ck, cj)
log(

|C|

ncj

)

+

∑

r∈R wr ∗ nr(cj, ci)
∑|C|

k=1

∑

r∈R wr ∗ nr(ck, ci)
log(

|C|

nci

)

(5.4)

Where: ci and cj are two given classes, R denotes the set of relationship types
that exist between ci and cj, wr the weight of the relationship r, nr(ci, cj)
denotes the number of instances of r-type relationship from class ci to class
cj, |C| is the number of classes in the system and nci is the number of classes
that are related to class ci.

Our choice for this coupling scheme is motivated by the fact that it outperforms
all the other schemes [Prajapati 2017], defined by the same authors, since
it integrates various additional aspects such as weights, the total number of
classes structurally connected to a class, and the total number of classes present
in the system.

Formula 5.1 is based on two measures M and O. Up to now, M value calcu-
lation was explained above. Explanations on O value calculation are given in
the following.

Module organization (O) is taken into account in the fitness function in order
to tackle the problem when no system partitioning is produced. That is, when
only modularity value, M, is taken into account, the best solution is the one
where all classes/interfaces reside in just one module. This is clearly not the
goal of clustering techniques, as no system partitioning is done.

Module organization (O) is evaluated using the metric proposed by [Bouw-
ers 2011], and which has been considered in several recent works such as
the ones from Ramirez et al. [Ramírez 2016] and Ernst et al. [Ernst 2017].
In [Bouwers 2011], O is the product of two other metrics, namely System
Breakdown (SB) which is based on the number of system modules and Com-
ponent Size Uniformity (CSU) which is based on the Gini coefficient, i.e. a
statistical measure of dispersion, of modules volumes, i.e. the size of its classes.
O values are between 0 and 1. Higher values represent a better module or-
ganization. SB, CSU and O values are calculated using the formulas 5.5, 5.6
and 5.7 respectively.

96 CHAPTER 5.

SB(|M |)











|M |−1
x−1

if |M | ≤ x

1− |M |−x
y−x

if x < |M | < y

0 if |M | > y

(5.5)

CSU(M) = 1−Gini(volume(m) : m ∈M) (5.6)

O = SB(|M |) ∗ CSU(M) (5.7)

Where m is a module from a given solution and volume(m) is the number
of types in the module m. |M | is the number of modules in a clustering
solution. x and y correspond to the minimal and maximal numbers of modules
given by the user. In our case, x and y are fixed to 8 and 16 respectively as
in [Bouwers 2011]3.

2. The Used Genetic Clustering Algorithm:

The general functioning of a genetic algorithm is presented in Figure 5.5. For
every iteration of the algorithm, a new population is generated by applying
selection, crossover and mutation operators on the current population. When
the termination criteria is reached (e.g., given maximal number of iterations
is reached), the best solution found is returned.

Figure 5.5: Genetic algorithms basic steps

Existing genetic algorithms are differentiated at four aspects: 1) solution repre-
sentation, 2) population initialization, 3) genetic operators (selection, crossover
and mutation), and 4) the fitness function used to evaluate solutions. The
fourth aspect, the used fitness function, was already explained. The remain-
ing aspects of the used genetic algorithm are explained in the following:

3in this work, x and y values were fixed based on the most common number of modules in a
benchmark of 172 software systems.

5.2. FOUNDATIONS OF THE PROPOSED APPROACH 97

• Solution representation

A clustering solution is represented by an array of a length equal to the
number of classes/interfaces of the system to be remodularized. The
array cells contain numbers which correspond to module identifiers. An
example of a candidate solution is shown in Figure 5.6.

Figure 5.6: An example of a candidate solution

In Figure 5.6, the number of classes/interfaces of the input system is 8
and the number of modules in the solution is 3. The 1st, 5th and 6th
classes/interfaces (from left to right) belong to module 1. Similarly, the
2nd and 4th classes/interfaces are in module 2, and 3rd, 7th and 8th are
in module 3.

• Initial Population

In general, genetic algorithms start by an initial set of solutions. This
set is called initial population. Most of the time, initial population is
generated randomly. In our case, composition relationships identified in
the second step of the process (Section 5.2.2) are taken into account in the
initial population. That is, if a composition relationship exists between
two classes, they must be grouped in the same module and the genetic
algorithm operators (presented in the following) must not separate these
classes.

As an example, consider a software system composed of 14 classes/inter-
faces for which the OG in Figure 5.2 is recovered. An individual from the
initial population of this system is depicted in Figure 5.7. In this indi-
vidual, classes A, B and D are grouped in the same module (0) because
there is a composition relationship between the class A and the classes
B and D as shown in Figure 5.3. Also, classes E, F, H, I, and J are
grouped in the same module (1). Modules of the remaining classes (C,
G, K, L, M and N) are generated randomly.

Figure 5.7: Composition relationships taken into account in the initial population

• Selection Operator

98 CHAPTER 5.

Selection consists of choosing solutions from a population as parents that
will create an offspring for the next population. An offspring is an in-
dividual created by combining information from two individuals. There
exists several selection operators [Mitchell 1998] such as: Tournament,
Rank and Roulette-Wheel selection.

In this work, the Roulette-Wheel selection operator is used because of
its simplicity. The principle is simple: each solution of the population
is assigned a portion of a circular roulette wheel according to its fitness
value. Then, a random selection is done similar to how the roulette wheel
is rotated.

• Crossover Operator

Crossover consists of producing new offspring solutions by combining
two parent solutions. There exists different types of crossover opera-
tors [Mitchell 1998] such as: single-point crossover and heuristic crossover.
In this work, the single-point crossover is used because of its simplicity. It
consists of selecting randomly a crossover point. Cells to the right of that
point are exchanged between the two parent solutions. This results in
two offspring solutions. A simple example is shown in Figure 5.8. In this
Figure, point between the 7th and the 8th classes/interfaces is selected
to be the crossover point.

Figure 5.8: An example of single-point crossover result

• Mutation Operator

5.2. FOUNDATIONS OF THE PROPOSED APPROACH 99

Mutation is the process of alternating classes/interfaces between modules
within one solution to obtain a new solution. That is, module numbers of
some classes/interfaces of a selected solution is changed to new module
numbers. Generally, mutation process is done randomly. In our case,
the used mutation operator is based on the KMeans algorithm since it
has improved the clustering in many existing works [Cheng 2006]. The
KMeans algorithm is based on the SCSWTFIDF values between each pair
of classes/interfaces as a distance measure. Classes with composition
relationships between each others are not considered by the mutation.
That is, they are not moved from their initial modules. An example
of mutation operator is given in Figure 5.9. In this example, the 3rd
class/interface was in module 1 and it is moved by the mutation operator
to module 0, the 7th class/interface is moved to module 1, 11th class/in-
terface is moved to module 2, 12th class/interface is moved to module 1,
13th class/interface is moved to module 2 and 14th class to module 0.

Figure 5.9: An example of KMeans based mutation

At the end of this step, modules of the OO software system are identified. The
identified modules are characterized to be composition relationships conservative.
In order to further decouple the identified modules, provided services of each module
are identified in the following step.

5.2.4.2 Service Identification

Service identification is a crucial phase in the process of legacy to SOA migration.
This identification is based on the service definition. In the literature, many def-
initions have been proposed for defining services [Brown 2002,Nakamura 2009,Er-
radi 2006]. Most of these definitions describe a service based on different properties
(e.g. granularity and self-containment). In our work, we define a service as an ob-
ject (class instance) that is registered in a service registry by a provider and can
be looked up by one or several clients, as described by other authors like [Gru-
ber 2005, Tavares 2008]. In general, services should be favored over inter-module
class dependencies [McAffer 2010].

100 CHAPTER 5.

In order to identify service characteristics, we analyzed manually the source code
of two object oriented software systems: Eclipse4 and Jitsi5. These are well known
service-oriented applications, adopters of OSGi Java framework in which a service
corresponds to a standard Java object. Table 5.5 provides a brief description of
these projects which are of different sizes, varying from 3218 to 12360 types (classes
and interfaces). This table shows also the number of the registered services in each
project. Roughly speaking, service registries and service references are collected
based on an analysis of the call sites that correspond to the registerService and
getServiceReference(s) OSGi method invocations respectively.

Table 5.5: Eclipse and Jitsi services

System #Types #Bundles #Registered services
Eclipse 3.1 12360 171 10

Jitsi 3218 183 228

We summarize below the most important observations/properties made during the
analysis of these systems and which we consider in our service identification process:

1. Property 01: bundles/modules register/create and unregister/destroy services.
The bundle/module which registered a given service is the one to unregister
it.

2. Property 02: every registered service has a unique ServiceRegistration object,
for the private use of the service inside its bundle/module, and has one or more
ServiceReference objects that refer to it to be used outside its bundle/module.

Based on these properties, we defined the following conditions that a given object
must verify in order to be considered as a service:

1. Condition 01 (using property 01): the creator/registrant and destructor/un-
registrant of this object belongs to its module.

2. Condition 02 (using property 02): the object has at least one client, an
object that uses it, outside its module.

Service identification requires other types of information that does not exist yet in
the recovered graphs. For this reason, we need two additional types of graphs: graph
of destructions (GoD) and graph of method calls (GoMC).
GoD is represented by a pair (O, EGoD) where O represents the set of the system
running objects. These objects are the same which exist in OG. Each edge e ∈ EGoD

between o1 and o2 means that o1 is the destructor of o2. The destruction relationship
is captured using Algorithm 5. The input of this algorithm is the object flow graph
edges and its output is the EGoD set.

4We analyzed version 3.1 available in: http://archive.eclipse.org/eclipse/downloads/. It repre-
sents the first version of Eclipse that adopts the notions of modules (bundles) and services.

5https://github.com/jitsi

5.2. FOUNDATIONS OF THE PROPOSED APPROACH 101

Algorithm 5 Destruction relationship identification

Input: OFG edges
Output: EGoD

1: EGoD ← ∅
2: for o ∈ OGoD do
3: Refo ← o.getReferences()
4: Scopes ← ∅
5: i ← 0
6: for r ∈ Refo do
7: assignr ← r.getAssignment()
8: if assignr.getRightHandSide() = null ∨ assignr.getRightHandSide() /∈ Refo

then
9: Scopes ← Scopes ∪ assignr.getScope()

10: i ← i + 1
11: end if
12: end for
13: if i = Refo.size() then
14: EGoD ← EGoD ∪ (Scopes.getLast(), o)
15: else
16: EGoD ← EGoD ∪ (o.getCreator(), o)
17: end if
18: end for

Destruction relationship identification is not a trivial task since an object can have
several references, which is known by the aliasing problem in the literature [Clarke 2013].
In this case, an object is destroyed if null or a reference to a new object are assigned
to all variables that reference it.
In order to identify destruction relationships, Algorithm 56 collects all the references
to each object running in the system (Line 3). Then, for each reference r, the
algorithm gets the first assignment in which r is in the left hand side (Line 7). If the
right hand side of this assignment is equal to null or to another reference different
from the ones of the current object, the algorithm adds the scope of the assignment
to the set of scopes (Line 9). We mean here by scope the object of the class where the
assignment statement exists. After that, the algorithm tests if all the references were
reassigned (Line 12). In this case, the scope of the assignment of the last reference
represents the destructor of the current object (Line 13), otherwise, we consider that
the creator and the destructor of the current object are the same (Line 15).

6It is a kind of the marking step of the garbage collector which allows classifying objects into
usable or unusable

102 CHAPTER 5.

GoMC is represented by a pair (O, EGoMC). O represents the set of objects running
in the system. Each edge e ∈ EGoMC between o1 and o2 means that o1 calls methods
of o2. Several algorithms have been proposed in order to recover call graphs of object
oriented software systems. Examples of these algorithms are:

• Reachability Analysis (RA): is the first proposed algorithm for call graphs
recovery. This algorithm starts the analysis from the main method and for
each call site in a visited method, an edge is added, to the set of the call graph
edges, between the visited method and each method having the same name
as the one in the call site. Taking only the method names into account, no
parameters and/or return types, makes the algorithm not precise since some
edges between methods are not really used.

• Class Hierarchy Analysis (CHA) [Dean 1995]: is an extended version
of the RA algorithm. However, the results are more precise than RA since
it takes class hierarchy information into account. CHA looks at the declared
type the receiver object used to call the method. This reduces call edges to
the declared type implementation methods and the methods declared in the
subtype hierarchy of the declared type of the receiver object.

• Rapid Type Analysis (RTA) [Bacon 1996]: in order to make CHA more
efficient, the instantiation information of the whole system is considered by the
RTA algorithm to have a better estimate of the runtime type of the receiver
object used in a call site. In this case, the edges of the call graph are restricted
to methods of classes, from the type hierarchy, which were instantiated in the
system. Two versions exist for this algorithm: pessimistic and optimistic. The
pessimistic version looks at all instantiations in the whole program. In the
optimistic version, the call graph is iteratively created and only instantiations
in methods already in the call graph are considered.

Our analysis for the GoMC recovery is a form of RTA algorithm optimistic version
which uses information about instantiated classes to reduce the size of the call graph.
At the end of this step, provided services of each module are identified.

5.3 Evaluation & Experimental Results

5.3.1 Data Collection

In order to evaluate the proposed approach, we conducted an experimentation on
three open source Java projects namely Jext and JHotDraw used previously in
the previous Chapter (Section 4.3). In addition to these systems, we applied our
approach on MiniDraw [Christensen 2011] which is a pedagogical object-oriented

5.3. EVALUATION & EXPERIMENTAL RESULTS 103

framework that is a scaled-down version of JHotDraw. It comes with several appli-
cations. The one chosen for our study is LogoPuzzle board game which is a puzzle
on a University Logo. MiniDraw comprises 41 types, classes/interfaces containing
a total of 1265 LOC.
In the remaining of this section, we present first the research question that we wanted
to answer, then the setup of the experiments, and at last the results.

5.3.2 Research question

Since the proposed approach targets to identify modular clusters from an object-
oriented system, the evaluation criteria needs to address modularity improvement.
The experiments was conducted to answer the third research question presented
in Chapter 1. As a reminder, the aim of the research question is to evaluate the
output of the proposed approach and to compare it with the output of existing
remodularization/clustering techniques.

5.3.3 Experiments setup

A prototype tool of the approach named CACAO (a Composition conservAtive ge-
netiC Algorithm for the remOdularization of OO software system) was implemented.
The tool is broken down into three parts: a part for the recovery of the object graph,
implemented using Spoon [Pawlak 2015a], a part for the identification of the compo-
sition relationships and a part for the calculation of the solution based on a genetic
algorithm. The solution is visualized using JxBrowser7 which is an API that enables
displaying HTML, CSS and JavaScript content in a Java application.
In order to test if the three systems, JHotDraw, MiniDraw and Jext, behave the
same before and after applying the third step of the approach, the versions before
and after refactoring were given to three Ph.D students, who where not involved in
this work before, and who were asked to reproduce the same scenarios on the two
versions of each system. The participants reported that the three systems behave
correctly after refactoring.

5.3.4 Results and discussion

The research question is answered by assessing the accuracy of the remodularization
solutions produced by three state-of -the-art techniques on the studied systems and
comparing it to the output of our approach (CACAO). The techniques in question
are listed below:

7https://www.teamdev.com/jxbrowser

104 CHAPTER 5.

1. Bunch: our choice for Bunch is motivated by the fact that it represents
a well-known state-of-the-art architecture recovery tool and it was the sub-
ject of many recent comparison studies of software architecture recovery tech-
niques [Lutellier 2015, Lutellier 2018,Paixão 2018]. We consider in this work
two variations of Bunch’s hill-climbing algorithm: next ascent hill climbing
(NAHC) and steep ascent hill climbing (SAHC).

2. ACDC (Algorithm for Comprehension-Driven Clustering): the accu-
racy of this technique has been evaluated and confirmed in several comparative
studies such as the ones of [Garcia 2013a] and [Stavropoulou 2017]

3. ARC (Architectural Recovery using Concerns): it was proven to be
accurate and it was used as subject of comparison in several studies such as
the ones of [Garcia 2013a] and [Langhammer 2016].

We obtained ACDC and Bunch implementations from their authors websites. For
ARC, thanks to the ARCADE [Le 2015] workbench developers who welcomed our
request and accepted to send us their implementation of ARC.
The first part to answer the research question consists of doing a comparative study
based on the extent to which the clusters produced by the clustering approaches
resembles clusters produced by the system’s architect. For that, the authoritative,
ground-truth, partition of a system must be obtained to compare the difference
between the authoritative partition and the partition computed by the clustering
approach. However, obtaining authoritative partition is a difficult task that requires
heavy efforts [Kobayashi 2012,Garcia 2013c] since it is difficult for researchers to find
original system developers. Therefore, we used the technique proposed by [Wu 2005]
and used in several recent works such as [Corazza 2016] [Kobayashi 2012] and [Pra-
japati 2017]. This technique is summarized as follows:

• Each cluster corresponds to a package

• A cluster with a size less than to five types is merged into its parent cluster

In this first part of the research question, the MoJoPlus metric [Tzerpos 1999,Strou-
lia 2003] is used. MoJoPlus is a variation of the MoJo metric proposed by [Tzer-
pos 1999]. The input of this metric is two architectures of a given system. The metric
calculates the minimal number of move and join operations, needed to transform
one architecture into another. The move operation moves an entity from one cluster
to another. The join operation merges two clusters into one cluster.
More precisely, given two architectures A and B, MoJo is calculated as follows:

MoJo(A,B) = min(mno(A,B),mno(B,A)) (5.8)

Where mno(A,B) represents the number of join and move operations to go from A
to B. In MoJoPlus, an additional type of operation is added: multi-move operation.
This operation can be used to move a group of types from one module/cluster to
another as a single operation that costs only 1. In order to evaluate the accuracy of
the clustering techniques, we used the equation 5.9 [Tzerpos 1999]:

5.3. EVALUATION & EXPERIMENTAL RESULTS 105

QMoJoP lus(A,B) = (1−
MoJoP lus(A,B)

n
) ∗ 100 (5.9)

QMoJoP lus(A,B) values ranges between 0% and 100%. High values indicate high cor-
respondence between A and B.
Table 5.6 shows the QMoJoP lus(A,B) scores for each of the studied clustering ap-
proaches and our approach. In our case, A varies to represent all the studied clus-
tering approaches and B always represents the ground-truth architecture.
Since genetic algorithms are not deterministic (this is due to several factors such as
the initial population and the selection operator), our proposed approach was run
ten times on each of the three systems. Moreover, Due to the non-determinism of
the clustering algorithm used by Bunch, we ran the clustering sixty times, thirty
for each of its variations, SAHC and NAHC, and reported only the best results of
QMoJoP lus(A,B). In addition, ARC can vary in the number of concerns, so in its case
we also ran the clustering twenty times with different numbers of concerns and we
selected the best values of QMoJoP lus(A,B).
In total, in generating Table 5.6, we computed QMoJoP lus(A,B) values for 273 architec-
tures (243 generated by the state-of-the-art clustering approaches and 30 generated
by our approach).

Table 5.6: QMoJoP lus(A,B) results

System ACDC ARC SAHC NAHC CACAO
MiniDraw 88% 85% 85% 85% 59%
JHotDraw 89% 72% 87% 86% 92%
Jext 90% 72% 90% 91% 91%

In the case of MiniDraw, ACDC produces the most similar architecture to the
chosen ground-truth architecture where the QMoJoP lus(A,B) value is 88%. Followed
by Bunch-SAHC, Bunch-NAHC and ARC with a QMoJoP lus(A,B) value of 85%. Our
approach is ranked last with a QMoJoP lus(A,B) value of 59%.
In the case of JHotDraw, our approach outperforms all the architectures produced
by the four state-of-the-art clustering approaches. It produces the most similar
architecture to the chosen ground-truth architecture where the QMoJoP lus(A,B) value
is 92%. ACDC, Bunch-NAHC and Bunch-SAHC approaches produce architectures
with so close, to our approach, QMoJoP lus(A,B) values.
For Jext, our approach and Bunch-NAHC produce architectures with a QMoJoP lus(A,B)

value equal to 91%. ACDC and Bunch-SAHC also produce so close results. How-
ever, ARC is ranked last with a QMoJoP lus(A,B) value equal to 72%.
For the three systems, ACDC’s QMoJoP lus(A,B) values range from 88% to 90%, ARC
values from 40% to 85%, Bunch-SAHC from 72% to 90% and Bunch-NAHC from
68% to 91%. From the 243 selected architectures, our approach outperforms, from
QMoJoP lus(A,B) value viewpoint, 161 architectures (66% of the selected architectures).

106 CHAPTER 5.

For the chosen ground-truth architecture, QMoJoP lus(A,B) values in Table 5.6 denote
that all the clustering approaches can be of help to recover modular OO system
architectures since they appear to be able to correctly cluster a large portion of the
software system at hand. Moreover, the QMoJoP lus(A,B) values can provide valuable
intuition into which clustering approach is better suited for a particular software
system. For example, ACDC appear to perform best on MiniDraw, our approach
performs best on JHotDraw, while Bunch-NAHC and our approach do better with
Jext. However, the QMoJoP lus(A,B) value is not the only factor one needs to consider
when choosing a clustering approach. Another factor that should be taken into
account is the quality, in terms of modularity, of the solution produced by the
clustering approach since the goal of this latter is to improve modularity. For this
reason, modularity of the solutions produced by the different clustering approaches
are compared in the following.
First, M, O and F values of the authoritative architectures of the three systems are
calculated using the Formulas 5.2, 5.7 and 5.1 respectively and depicted in Table 5.7.

Table 5.7: M, O and F values of the authoritative architectures

System M O F
MiniDraw 0.52 0.4 0.21
JHotDraw 0.52 0.45 0.23
Jext 0.59 0 0

The results of cohesion, coupling and modularity measures after applying our ap-
proach (CACAO) and all the chosen clustering approaches on MiniDraw, JHotDraw
and Jext are depicted in Table 5.8. In this table, the best and the second best mod-
ularity values for each system, each modularity row, are highlighted in dark gray
and light gray respectively.
From the results of Table 5.7 and 5.8, modularity values are improved by most
approaches. The improvement ranges from from 12% (ARC) to 52% (Bunch-NAHC)
for MiniDraw, from 21% (Bunch-SAHC) to 44% (ACDC and Bunch-NAHC) for
JHotDraw and from 27% (our approach) to 45.8 (ACDC, Bunch-NAHC and Bunch-
SAHC). The ARC technique produced a solution which is less modular than the
ground truth architecture with a decrease of 38% in the modularity value in the
case of JHotDraw and a decrease of 42.3% in the case of Jext. This result is justified
by the fact that module identification in ARC is based on semantic relationships
between classes and not on structural relationships (on which our fitness function is
based).
Once the modularity values have been calculated, we pass now to the calculation of
Module organization (O) measures. As stated before, in this study, x and y are fixed
to 8 and 16 respectively as in [Bouwers 2011]. SB, CSU and O values are shown in
Table 5.9. Also, the best and the second best module organization (O) values for

5.3. EVALUATION & EXPERIMENTAL RESULTS 107

Table 5.8: Cohesion and Coupling measures of the different architectures

System ACDC ARC NAHC SAHC CACAO

MiniDraw

Cohesion
Coupling
#Modules
Modularity

25.73
23.87

4
0.52

28.59
20.98

8
0.58

39.33
10.28

4
0.79

38.15
11.27

4
0.77

34.05
14.4
8

0.71

JHotDraw

Cohesion
Coupling
#Modules
Modularity

322.37
105.38

9
0.75

166.42
358.5
62

0.32

360.30
122.47

12
0.75

345.23
200.49

12
0.63

357.9
166.8

8
0.69

Jext

Cohesion
Coupling
#Modules
Modularity

507.09
81
20

0.86

228
434
137
0.34

498.48
90.49
10
0.85

499.41
89.56

9
0.85

503.72
163.91

9
0.75

each system, each O row, are highlighted in dark gray and light gray respectively.
In some cases, the O value is equal to 0 (for ARC on JHotDraw and ACDC & ARC
on Jext). This is principally due to the high number of modules in the generated
architecture.

Table 5.9: Module organization measures

System ACDC ARC NAHC SAHC CACAO

MiniDraw
SB
CSU
O

0.43
0.7
0.3

1
0.29
0.29

0.43
0.7
0.3

0.43
0.7
0.3

1
0.58
0.58

JHotDraw
SB
CSU
O

0.88
0.6
0.53

0
0.28
0

0.5
0.56
0.28

0.5
0.6
0.3

1
0.24
0.24

Jext
SB
CSU
O

0
0.36
0

0
0.21
0

0.75
0.34
0.26

0.88
0.52
0.46

0.88
0.4
0.35

The last part of the experimentation consists of the calculation of the fitness func-
tion, based on Formula 5.1, for the three systems. Results are depicted in Table 5.10.
In this study, α and β are fixed to 1 which means that the user is not interested in
a measure (modularity and module/cluster organization) over the other.
Table 5.10 provides some insight into the performance of the used clustering ap-
proach on each used system. It indicates that our approach performs well on
MiniDraw as compared to other approaches. In the case of JHotDraw, ACDC
performs significantly better than other approaches. For Jext, Bunch-SAHC out-
performs all the other approaches and our approach produces the next best re-
modularization solution. Overall, our approach produces the best and next best

108 CHAPTER 5.

Table 5.10: Fitness function measures

System ACDC ARC NAHC SAHC CACAO
MiniDraw 0.16 0.17 0.24 0.23 0.41
JHotDraw 0.4 0 0.21 0.19 0.17

Jext 0 0 0.22 0.39 0.26

remodularization solutions in two, out of three, cases, Bunch-NAHC produces the
second best solution in two cases and ACDC and Bunch-SAHC produce the best
solution in one case. These results show that our approach is competitive to the
state-of-the-art most used clustering approaches and that there is a potential to use
it in remodularizing OO software systems.

5.3.5 Threats to validity

5.3.5.1 Internal validity

As in the work presented in the previous chapter, a potential threat concerns the
programming language’s dynamic features, like reflection. As mentioned previously,
code that uses reflection is out of the bounds of our method. This code can reduce
the accuracy of the static analysis phase (as discussed in Section 4.3.4.1).
An additional threat concerns the fact of using only one ground-truth architecture
in order to answer the research questions. It is well known that for a single system,
there are several architectures that can be deemed correct by the system’s archi-
tects [Bowman 1999, Garcia 2013b]. This means that there can be other ground-
truth architectures for the studied systems, that will obviously change the analysis
results. Therefore, the use of this specific architecture may have been biased to
the advantage of our approach. In order to narrow this threat, three metrics are
used and two of them, module organization (O) and modularity, do not rely on the
ground-truth architecture.
Another threat concerns the use of only four clustering approaches in our analysis
study from a large body of works in the literature. It is sure that including additional
approaches can strengthen our study results. However, this threat was mitigated by
using techniques that take as input different types of information and use different
clustering mechanisms. Moreover, these techniques were deemed accurate in several
comparative studies.

5.3.5.2 External validity

One threat concerns the use of three object systems in this study. We believe
that future experiments on a larger set of systems with larger sizes will yield more
observations. However, since the results were positive with the studied systems;
our intuition, on the interest of the proposed appraoch in improving modularity, is
strengthened.

5.4. CONCLUSION 109

5.4 Conclusion

We presented in this chapter a remodularization approach that groups source code
artifacts into highly cohesive modules and reduces the coupling between modules.
In our work module identification is performed on runtime architecture models, in
which we find the concrete interacting objects and the runtime coupled entities. To
assess the validity of our proposal, we have conducted an empirical assessment of
three open source software systems written in Java. This assessment was particularly
conducted to compare the output of our approach with the one of the state-of-
theart approaches in terms of improvement in modularity. Results showed that our
approach is competitive to these state-of-the-art approaches.

110 CHAPTER 5.

Chapter

6

Conclusions And Perspectives

The goal of the work presented in thesis is the improvement of object-oriented legacy
systems maintainability, in order to theoretically lengthen these systems lifetimes.
To reach this goal, three approaches were proposed. In the remaining of this chapter,
a summary of the proposed approaches and future directions that we are planning
to do are presented.

6.1 Summary of Contributions

Our first contribution is an approach for migrating object-oriented legacy software
systems, written in Java, into equivalent component-based equivalent ones. In con-
trast to exiting approaches that consider a component descriptor as a cluster of
classes, each class in the legacy system is migrated into a component descriptor in
our approach. The process is decomposed into two steps, the first step focuses on
identifying symptoms of violation of two maintainability principles namely decou-
pling and unanticipated instantiations. After that, these symptoms are eliminated
from the source code by applying a set of refactoring operations.
We believe in this thesis that there exist two ways to reason about maintainability.
The first way consists of quantifying it using metrics that are known as predictive
of maintainability. For this reason, the maintainability of the resulted refactored
code in our first contribution is assessed using the Maintainability Index (MI) met-
ric which is widely used in the literature. The results of MI have been improved

111

112 CHAPTER 6. CONCLUSIONS AND PERSPECTIVES

after applying the refactoring operations which strengthen our hypothesis about the
usefulness of the proposed approach. The second way of reasoning about maintain-
ability is to link it to other software quality attributes. In this thesis, maintainability
is linked to two quality attributes namely understandability and modularity.
In order to improve understandability, we proposed an approach that enables to re-
cover runtime architecture models of object-oriented legacy systems, written in Java,
and manage the complexity of the resulted model. The runtime architecture recov-
ery starts with a static analysis of the source code in order to build an object flow
graph (OFG), which traces the objects from their creation until their storage in fields
or use in method invocations, from which an object graph is extracted. Nodes in the
object graph represent concrete interacting entities in the system. Edges between
nodes represent field references between objects. Using a dynamic analysis, the ob-
ject graph is refined by adding labels on its nodes. To manage the complexity of
the resulted object graph, the composite structures are identified and the visualized
graph is filtered based on this composite structure and by identifying thresholds on
the values of the labels added on nodes. The gain in understandability is measured
by answering three research questions concerning the complexity of the resulted
runtime architecture, the time spent and the correctness in handling comprehension
tasks using the graph and the possibility to identify refactoring opportunities.
In order to improve modularity, we proposed an approach for enhancing the struc-
ture of object-oriented software systems by identifying modules and services in the
source code. In contrast to existing works in the literature, the process starts by a
step of runtime models recovery. These models represent the concrete interacting
objects that compose the running system and their inter-dependencies. These mod-
els are exploited in order to identify composition relationships between source code
artifacts. Once these composition relationships have been identified, a composition
conservative genetic algorithm is applied on the software system in order to identify
modules. At last, services that allow modules to communicate are identified, based
on the runtime models, in order to further improve decoupling. An experimentation
of this process has been conducted in order to evaluate the gain in modularity.
From a practical (tooling) point of view, the contributions of this thesis are the
following:

1. A prototype tool implementing the refactoring operations proposed in the first
contribution;

2. The DIALOG (refineD and hIerArchicaL Object Graph) prototype tool for the
recovery and visualization of runtime architecture models;

3. The CACAO (Composition conservAtive genetiC Algorithm for the remOdu-
larization of OO software system) prototype tool;

4. A dataset of 273 architecture descriptions, in RSF format, that can be used
by other researchers in their experiments.

6.2. FUTURE DIRECTIONS 113

6.2 Future Directions

The presented work makes emerge some limitations which have been judged as
deserving a deeper study. In the threats to validity section of each contribution,
some limitations that are the subject of short-term perspectives have been presented.
In the following, mid-term and long-term perspectives are presented.

6.2.1 Enrich the recovered OG with other kinds of informa-

tion

In order to further improve understandability, we can study the extraction of other
kinds of information that can be used in the visualization with a level of detail, like
the number of dependencies between visualized objects. This can help in detecting
anti-patterns whose identification is based on the properties of objects. Besides this,
we can enrich the recovered graphs with variability aspects, like in feature models
of software product lines. The idea is to include, in these OGs, variability points
and their associated constraints (or, xor, ...), and exploit them in the visualization
with a level of detail.

6.2.2 Consider semantic relationships between classes to im-

prove modularity

In order to further improve coupling/cohesion estimation, semantic/lexical relation-
ships between classes should be taken into account in the proposed fitness function
in the third contribution. Semantic relationships are derived based on similarity be-
tween comments and identifiers of the source code artifacts of the studied systems.
Similarity measures between source code tokens can be calculated by resorting to
text mining techniques.

6.2.3 Adapt the proposed approaches to other programming

languages

As you have probably noticed, all the subject systems in the experimentation sec-
tions of the proposed approaches are implemented in Java. An improvement that can
be applied to the proposed approaches consists of adapting them to support other
object-oriented programing languages, supporting other object-oriented constructs,
like Prototypes in JavaScript and Embeddings in Go (golang).

114 CHAPTER 6. CONCLUSIONS AND PERSPECTIVES

6.2.4 Identification of modules and services as a machine

learning problem

Besides this and in the emerging research field of the application of machine/deep
learning to software engineering, we can develop a new approach that considers
the identification of modules and services from object-oriented legacy systems as
a machine learning problem. A training data needs to be collected based on the
module and service characteristics and the ways existing systems have been migrated
to these paradigms (JDK9 and modern Java applications to the module system, for
example). A classifier can then be built using the training data in order to assist
module or service identification.

6.2.5 Develop a framework that groups the proposed ap-

proaches

As another perspective to this work, we can build a framework that combines all our
proposed approaches. The framework can also be enriched by other state-of-the-art
approaches and a set of metrics for assessing the improvement of maintainability
and comparing the different approaches. The framework can be integrated within a
software development setting (an IDE for instance) in order to acquire real-life case
studies on the value brought to maintainers.

Bibliography

[Abdellatif 2018] Manel Abdellatif, Geoffrey Hecht, Hafedh Mili, Ghizlane El-
Boussaidi, Naouel Moha, Anas Shatnawi, Jean Privat and Yann-Gaël
Guéhéneuc. State of the Practice in Service Identification for SOA Migration
in Industry. In Service-Oriented Computing - 16th International Conference,
ICSOC 2018, Hangzhou, China, November 12-15, 2018, Proceedings, pages
634–650, 2018. (Cité à la page 6.)

[Abi-Antoun 2009] Marwan Abi-Antoun and Jonathan Aldrich. Static extraction
and conformance analysis of hierarchical runtime architectural structure us-
ing annotations. In Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA), 2009. (Cité aux pages 27 and 32.)

[Adjoyan 2014] Seza Adjoyan, Abdelhak-Djamel Seriai and Anas Shatnawi. Ser-
vice Identification Based on Quality Metrics Object-Oriented Legacy System
Migration Towards SOA. In SEKE: Software Engineering and Knowledge En-
gineering, pages 1–6. Knowledge Systems Institute Graduate School, 2014.
(Cité aux pages 20, 30, and 32.)

[Ahn 2018] Hwi Ahn, Sungwon Kang and Seonah Lee. Reconstruction of execution
architecture view using dependency relationships and execution traces. In
Proceedings of the 33rd Annual ACM Symposium on Applied Computing,
SAC 2018, Pau, France, April 09-13, 2018, pages 1417–1424, 2018. (Cité à
la page 4.)

115

116 BIBLIOGRAPHY

[Aho 1972] Alfred V Aho and Jeffrey D Ullman. The theory of parsing, translation,
and compiling, volume 1. Prentice-Hall Englewood Cliffs, NJ, 1972. (Cité à
la page 68.)

[Akroyd 1996] Michael Akroyd. Anti patterns session notes. Object World, 1996.
(Cité à la page 78.)

[Al Qutaish 2005] Rafa E Al Qutaish and Alain Abran. An analysis of the design
and definitions of Halstead metrics. In IWSM, 2005. (Cité à la page 47.)

[Al-Rubaye 2017] Samer Raad Azzawi Al-Rubaye and Yunus Emre Selcuk. An in-
vestigation of code cycles and Poltergeist anti-pattern. In Software Engineer-
ing and Service Science (ICSESS), 2017 8th IEEE International Conference
on, pages 139–140. IEEE, 2017. (Cité aux pages 78, 79, and 80.)

[Alahmari 2010] Saad Alahmari, Ed Zaluska and David De Roure. A service identi-
fication framework for legacy system migration into SOA. In Services Com-
puting (SCC), 2010 IEEE International Conference on, pages 614–617. IEEE,
2010. (Cité à la page 18.)

[Alimadadi 2018] Saba Alimadadi, Ali Mesbah and Karthik Pattabiraman. Infer-
ring hierarchical motifs from execution traces. In Proceedings of the 40th
International Conference on Software Engineering, ICSE 2018, Gothenburg,
Sweden, May 27 - June 03, 2018, pages 776–787, 2018. (Cité à la page 74.)

[Alkazemi 2013] Basem Y. Alkazemi, Mohammed K. Nour and Abdulqader Qada
Meelud. Towards a Framework to Assess Legacy Systems. In IEEE Inter-
national Conference on Systems, Man, and Cybernetics, Manchester, SMC
2013, United Kingdom, October 13-16, 2013, pages 924–928, 2013. (Cité à
la page 3.)

[Allen 1970] Frances E Allen. Control flow analysis. In ACM Sigplan Notices,
volume 5, pages 1–19. ACM, 1970. (Cité à la page 68.)

[Allen 1972] Frances E Allen and John Cocke. Graph-theoretic constructs for pro-
gram control flow analysis. IBM Thomas J. Watson Research Center, 1972.
(Cité à la page 68.)

[Allier 2011] Simon Allier, Salah Sadou, Houari Sahraouiet al. From object-oriented
applications to component-oriented applications via component-oriented ar-
chitecture. In Working IEEE/IFIP Conference on Software Architecture
(WICSA), 2011. (Cité aux pages 16, 30, 32, and 94.)

[Alshara 2015] Zakarea Alsharaet al. Migrating large object-oriented Applications
into component-based ones: instantiation and inheritance transformation. In
GPCE, 2015. (Cité aux pages 16, 30, and 32.)

BIBLIOGRAPHY 117

[Alshara 2016] Zakarea Alshara, Abdelhak-Djamel Seriai, Chouki Tibermacine,
Hinde-Lilia Bouziane, Christophe Dony and Anas Shatnawi. Materializ-
ing Architecture Recovered from Object-Oriented Source Code in Component-
Based Languages. In - 10th European Conference on Software Architecture
ECSA 2016, Copenhagen, Denmark, November 28 - December 2, 2016, Pro-
ceedings, pages 309–325, 2016. (Cité à la page 16.)

[Ammar 2012] Nariman Ammar and Marwan Abi-Antoun. Empirical evaluation of
diagrams of the run-time structure for coding tasks. In Working Conference
on Reverse Engineering (WCRE), 2012. (Cité aux pages 8, 31, 69, and 81.)

[Anjos 2017] Eudisley Gomes dos Anjos. Assessing Maintainability in Software Ar-
chitectures. PhD thesis, Universidade de Coimbra, 2017. (Cité à la page 5.)

[Arnold 1993] Robert S Arnold. Software reengineering. IEEE Computer Society
Press, 1993. (Cité à la page 4.)

[Athanasopoulos 2017] Dionysis Athanasopoulos. Usage-Aware Service Identifica-
tion for Architecture Migration of Object-Oriented Systems to SoA. In Inter-
national Conference on Database and Expert Systems Applications, pages
54–64. Springer, 2017. (Cité à la page 4.)

[Bacon 1996] David F Bacon and Peter F Sweeney. Fast static analysis of C++
virtual function calls. ACM Sigplan Notices, vol. 31, no. 10, pages 324–341,
1996. (Cité à la page 102.)

[Balogh 2013] Gergo Balogh and Árpád Beszédes. CodeMetropolis - code visuali-
sation in MineCraft. In 13th IEEE International Working Conference on
Source Code Analysis and Manipulation, SCAM 2013, Eindhoven, Nether-
lands, September 22-23, 2013, pages 136–141, 2013. (Cité à la page 28.)

[Balogh 2015] Gergo Balogh, Attila Szabolics and Árpád Beszédes. CodeMetropolis:
Eclipse over the city of source code. In 15th IEEE International Working Con-
ference on Source Code Analysis and Manipulation, SCAM 2015, Bremen,
Germany, September 27-28, 2015, pages 271–276, 2015. (Cité à la page 28.)

[Basili 1996] Victor R Basili, Lionel C. Briand and Walcélio L Melo. A validation
of object-oriented design metrics as quality indicators. IEEE Transactions
on software engineering, vol. 22, no. 10, pages 751–761, 1996. (Cité à la
page 38.)

[Benaroch 2013] Michel Benaroch. Primary drivers of software maintenance cost
studied using longitudinal data. 2013. (Cité à la page 5.)

[Bennett 1999] Keith H Bennett, Magnus Ramage and Malcolm Munro. Decision
model for legacy systems. IEE Proceedings-Software, vol. 146, no. 3, pages
153–159, 1999. (Cité à la page 2.)

118 BIBLIOGRAPHY

[Bernardi 2016] Mario Luca Bernardi, Marta Cimitile and Giuseppe A. Di Lucca.
Mining static and dynamic crosscutting concerns: a role-based approach.
Journal of Software: Evolution and Process, vol. 28, no. 5, pages 306–339,
2016. (Cité à la page 24.)

[Bertolino 2005] Antonia Bertolinoet al. An architecture-centric approach for pro-
ducing quality systems. In Quality of Software Architectures and Software
Quality. Springer, 2005. (Cité à la page 7.)

[Biggerstaff 1993] Ted J Biggerstaff, Bharat G Mitbander and Dallas Webster. The
concept assignment problem in program understanding. In Proceedings of the
15th international conference on Software Engineering, pages 482–498. IEEE
Computer Society Press, 1993. (Cité à la page 6.)

[Binkley 2006] David W. Binkley, Mariano Ceccato, Mark Harman, Filippo Ricca
and Paolo Tonella. Tool-Supported Refactoring of Existing Object-Oriented
Code into Aspects. IEEE Trans. Software Eng., vol. 32, no. 9, pages 698–717,
2006. (Cité aux pages 24 and 30.)

[Blei 2003] David M Blei, Andrew Y Ng and Michael I Jordan. Latent dirichlet
allocation. Journal of machine Learning research, vol. 3, no. Jan, pages 993–
1022, 2003. (Cité à la page 30.)

[Boehm 1976] Barry W. Boehm, John R. Brown and M. Lipow. Quantitative Eval-
uation of Software Quality. In Proceedings of the 2nd International Con-
ference on Software Engineering, San Francisco, California, USA, October
13-15, 1976., pages 592–605, 1976. (Cité à la page 2.)

[Börstler 2016] Jürgen Börstler, Michael E Caspersen and Marie Nordström. Beauty
and the Beast: on the readability of object-oriented example programs. Soft-
ware quality journal, vol. 24, no. 2, pages 231–246, 2016. (Cité à la page 46.)

[Bouwers 2011] Eric Bouwers, José Pedro Correia, Arie van Deursen and Joost
Visser. Quantifying the analyzability of software architectures. In Work-
ing IEEE/IFIP Conference on Software Architecture (WICSA), 2011. (Cité
aux pages 95, 96, and 106.)

[Bowman 1999] Ivan T Bowman, Richard C Holt and Neil V Brewster. Linux as
a case study: Its extracted software architecture. In Proceedings of the 21st
international conference on Software engineering, pages 555–563. ACM, 1999.
(Cité à la page 108.)

[Breu 2004] Silvia Breu and Jens Krinke. Aspect Mining Using Event Traces. In 19th
IEEE International Conference on Automated Software Engineering (ASE
2004), 20-25 September 2004, Linz, Austria, pages 310–315, 2004. (Cité à la
page 24.)

BIBLIOGRAPHY 119

[Briand 2006] Lionel C Briand, Yvan Labiche and Johanne Leduc. Toward the re-
verse engineering of UML sequence diagrams for distributed Java software.
IIEEE Trans on Soft Eng, 2006. (Cité aux pages 27 and 28.)

[Brown 1998] William J Brownet al. Refactoring Software, Architectures, and
Projects in Crisis, 1998. (Cité à la page 78.)

[Brown 2002] Alan Brown, Simon Johnston and Kevin Kelly. Using service-oriented
architecture and component-based development to build web service applica-
tions. Rational Software Corporation, vol. 6, pages 1–16, 2002. (Cité à la
page 99.)

[Canfora 2008] Gerardo Canfora, Anna Rita Fasolino, Gianni Frattolillo and Porfirio
Tramontana. A wrapping approach for migrating legacy system interactive
functionalities to Service Oriented Architectures. Journal of Systems and
Software, vol. 81, no. 4, pages 463–480, 2008. (Cité à la page 19.)

[Ceccato 2007] Mariano Ceccato. Migrating Object Oriented code to Aspect Oriented
Programming. In 23rd IEEE International Conference on Software Mainte-
nance (ICSM 2007), October 2-5, 2007, Paris, France, pages 497–498, 2007.
(Cité aux pages 25 and 30.)

[Ceccato 2008] Mariano Ceccato. Automatic Support for the Migration Towards As-
pects. In 12th European Conference on Software Maintenance and Reengi-
neering, CSMR 2008, April 1-4, 2008, Athens, Greece, pages 298–301, 2008.
(Cité aux pages 25 and 30.)

[Chatterji 2013] Debarshi Chatterji, Jeffrey C. Carver, Nicholas A. Kraft and Jan
Harder. Effects of cloned code on software maintainability: A replicated
developer study. In 20th Working Conference on Reverse Engineering, WCRE
2013, Koblenz, Germany, October 14-17, 2013, pages 112–121, 2013. (Cité à
la page 30.)

[Cheng 2006] Shih-Sian Cheng, Yi-Hsiang Chao, Hsin-Min Wang and Hsin-Chia Fu.
A Prototypes-Embedded Genetic K-means Algorithm. In 18th International
Conference on Pattern Recognition (ICPR 2006), 20-24 August 2006, Hong
Kong, China, pages 724–727, 2006. (Cité à la page 99.)

[Chidamber 1994] Shyam R Chidamber and Chris F Kemerer. A metrics suite for
object oriented design. IEEE Transactions on software engineering, vol. 20,
no. 6, pages 476–493, 1994. (Cité à la page 38.)

[Chikofsky 1990] Elliot J. Chikofsky and James H Cross. Reverse engineering and
design recovery: A taxonomy. IEEE software, vol. 7, no. 1, pages 13–17,
1990. (Cité aux pages xiii, 3, 4, and 5.)

120 BIBLIOGRAPHY

[Christensen 2011] Henrik B Christensen. Flexible, reliable software: using patterns
and agile development. CRC Press, 2011. (Cité aux pages 70 and 102.)

[Clarke 2013] Dave Clarke, James Noble and Tobias Wrigstad, editeurs. Aliasing in
object-oriented programming. types, analysis and verification, volume 7850
of Lecture Notes in Computer Science. Springer, 2013. (Cité à la page 101.)

[Constantinou 2015] Eleni Constantinou, Athanasios Naskos, George
Kakarontzaset al. Extracting reusable components: A semi-automated
approach for complex structures. Information Processing Letters, 2015. (Cité
aux pages 16, 30, and 32.)

[Cooper 2001] Keith D Cooper, Timothy J Harvey and Ken Kennedy. A simple,
fast dominance algorithm. Soft Prac & Exper, 2001. (Cité à la page 68.)

[Corazza 2016] Anna Corazza, Sergio Di Martino, Valerio Maggio and Giuseppe
Scanniello. Weighing lexical information for software clustering in the context
of architecture recovery. Empirical Software Engineering, vol. 21, no. 1, pages
72–103, 2016. (Cité à la page 104.)

[Cornelissen 2009a] Bas Cornelissen, Andy Zaidman, Arie Van Deursen, Leon Moo-
nen and Rainer Koschke. A systematic survey of program comprehension
through dynamic analysis. IEEE Transactions on Software Engineering,
vol. 35, no. 5, pages 684–702, 2009. (Cité à la page 6.)

[Cornelissen 2009b] Bas Cornelissen, Andy Zaidman, Arie Van Deursen and Bart
Van Rompaey. Trace visualization for program comprehension: A controlled
experiment. In International Conference on Program Comprehension (ICPC),
2009. (Cité aux pages 29, 74, and 81.)

[Crotty 2017] James Crotty and Ivan Horrocks. Managing legacy system costs: A
case study of a meta-assessment model to identify solutions in a large finan-
cial services company. Applied computing and informatics, vol. 13, no. 2,
pages 175–183, 2017. (Cité à la page 2.)

[Davis 1990] J. Steve Davis. Effect of Modularity on Maintainability of Rule-Based
Systems. International Journal of Man-Machine Studies, vol. 32, no. 4, pages
439–447, 1990. (Cité à la page 6.)

[de Brito 2013] Hugo de Brito, Humberto Torres Marques-Netoet al. On-the-fly
extraction of hierarchical object graphs. Journal of the Brazilian Computer
Society (JBCS), 2013. (Cité aux pages 27, 28, and 32.)

[Dean 1995] Jeffrey Dean, David Grove and Craig Chambers. Optimization of
object-oriented programs using static class hierarchy analysis. In European
Conference on Object-Oriented Programming, pages 77–101. Springer, 1995.
(Cité à la page 102.)

BIBLIOGRAPHY 121

[Dromey 1995] R. Geoff Dromey. A Model for Software Product Quality. IEEE
Trans. Software Eng., vol. 21, no. 2, pages 146–162, 1995. (Cité à la page 2.)

[Eder 2012] Sebastian Eder, Maximilian Junker, Elmar Jürgens, Benedikt Haupt-
mann, Rudolf Vaas and Karl-Heinz Prommer. How much does unused code
matter for maintenance? In 34th International Conference on Software En-
gineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland, pages 1102–1111,
2012. (Cité à la page 30.)

[Ernst 2017] Neil A Ernst, Stephany Bellomo, Ipek Ozkaya and Robert L Nord.
What to Fix? Distinguishing between design and non-design rules in auto-
mated tools. In International Conference on Software Architecture(ICSA),
2017. (Cité à la page 95.)

[Erradi 2006] Abdelkarim Erradi, Sriram Anand and Naveen Kulkarni. SOAF: An
architectural framework for service definition and realization. In Services
Computing, 2006. SCC’06. IEEE International Conference on, pages 151–
158. IEEE, 2006. (Cité à la page 99.)

[Escobar 2016] Daniel Escobar, Diana Cárdenas, Rolando Amarillo, Eddie Castro,
Kelly Garcés, Carlos Parra and Rubby Casallas. Towards the understanding
and evolution of monolithic applications as microservices. In Computing
Conference (CLEI), 2016 XLII Latin American, pages 1–11. IEEE, 2016.
(Cité aux pages 21, 30, and 32.)

[Fabresse 2008] Luc Fabresseet al. Foundations of a simple and unified component-
oriented language. Computer Languages, Systems & Structures, vol. 34,
no. 2, pages 130–149, 2008. (Cité à la page 36.)

[Fittkau 2015] Florian Fittkau, Santje Finke, Wilhelm Hasselbringet al. Compar-
ing trace visualizations for program comprehension through controlled exper-
iments. In International Conference on Program Comprehension (ICPC),
2015. (Cité à la page 74.)

[Fittkau 2017] Florian Fittkau, Alexander Krause and Wilhelm Hasselbring. Soft-
ware landscape and application visualization for system comprehension with
ExplorViz. Information & Software Technology, vol. 87, pages 259–277, 2017.
(Cité à la page 29.)

[Flanagan 2006] Cormac Flanagan and Stephen N Freund. Dynamic architecture
extraction. In FATES/RV. Springer, 2006. (Cité aux pages 27, 28, and 32.)

[Fowler 1999] Martin Fowler, Kent Beck, John Brant, William Opdyke and Don
Roberts. Refactoring: improving the design of existing code. Addison-Wesley
Professional, 1999. (Cité aux pages 4, 25, 31, and 37.)

122 BIBLIOGRAPHY

[Fuhr 2011] Andreas Fuhr, Tassilo Horn and Volker Riediger. Using Dynamic Analy-
sis and Clustering for Implementing Services by Reusing Legacy Code. In 18th
Working Conference on Reverse Engineering, WCRE 2011, Limerick, Ireland,
October 17-20, 2011, pages 275–279, 2011. (Cité aux pages 20 and 30.)

[Galorath 2006] Daniel D Galorath and Michael W Evans. Software sizing, esti-
mation, and risk management: when performance is measured performance
improves. Auerbach Publications, 2006. (Cité à la page 5.)

[Gamma 1995] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides.
Design patterns: Elements of reusable software architecture. Reading:
Addison-Wesley, 1995. (Cité à la page 37.)

[Garcia 2011] Joshua Garcia, Daniel Popescu, Chris Mattmann, Nenad Medvidovic
and Yuanfang Cai. Enhancing architectural recovery using concerns. In Pro-
ceedings of the 2011 26th IEEE/ACM International Conference on Auto-
mated Software Engineering, pages 552–555. IEEE Computer Society, 2011.
(Cité aux pages 30 and 32.)

[Garcia 2013a] Joshua Garcia, Igor Ivkovic and Nenad Medvidovic. A comparative
analysis of software architecture recovery techniques. In Automated Software
Engineering (ASE), 2013. (Cité à la page 104.)

[Garcia 2013b] Joshua Garcia, Ivo Krka, Chris Mattmannet al. Obtaining ground-
truth software architectures. In International Conference on Software Engi-
neering (ICSE), 2013. (Cité à la page 108.)

[Garcia 2013c] Joshua Garcia, Ivo Krka, Chris Mattmann and Nenad Medvidovic.
Obtaining ground-truth software architectures. In 35th International Con-
ference on Software Engineering, ICSE ’13, San Francisco, CA, USA, May
18-26, 2013, pages 901–910, 2013. (Cité à la page 104.)

[Gligoric 2013] Milos Gligoric, Farnaz Behrang, Yilong Li, Jeffrey Overbey, Mu-
nawar Hafiz and Darko Marinov. Systematic testing of refactoring engines
on real software projects. In European Conference on Object-Oriented Pro-
gramming, pages 629–653. Springer, 2013. (Cité à la page 42.)

[Grady 1992] Robert B Grady. Practical software metrics for project management
and process improvement. Prentice-Hall, Inc., 1992. (Cité à la page 2.)

[Griffiths 2010] Nathan Griffiths and Kuo-Ming Chao. Agent-based service-oriented
computing. Springer, 2010. (Cité à la page 18.)

[Gruber 2005] Olivier Gruber, B. J. Hargrave, Jeff McAffer, Pascal Rapicault and
Thomas Watson. The Eclipse 3.0 platform: Adopting OSGi technology. IBM
Systems Journal, vol. 44, no. 2, pages 289–300, 2005. (Cité à la page 99.)

BIBLIOGRAPHY 123

[Gysel 2016] Michael Gysel, Lukas Kölbener, Wolfgang Giersche and Olaf Zimmer-
mann. Service cutter: A systematic approach to service decomposition. In
European Conference on Service-Oriented and Cloud Computing, pages 185–
200, 2016. (Cité aux pages 22 and 32.)

[Hu 2014] Tao Hu and Tu Peng. Multi-angle Evaluations of Test Cases Based on
Dynamic Analysis. In International Conference on Advanced Data Mining
and Applications (ADMA), 2014. (Cité aux pages 65 and 70.)

[Huang 2009] Weidong Huang, Peter Eades and Seok-Hee Hong. Measuring effec-
tiveness of graph visualizations: A cognitive load perspective. Information
Visualization, 2009. (Cité aux pages 69 and 73.)

[Islam 2018] Md Zahidul Islam, Vladimir Estivill-Castro, Md Anisur Rahman and
Terry Bossomaier. Combining K-Means and a genetic algorithm through a
novel arrangement of genetic operators for high quality clustering. Expert
Syst. Appl., vol. 91, pages 402–417, 2018. (Cité à la page 93.)

[ISO.25010 2008] ISO.25010. Systems and software Quality Requirements and Eval-
uation (SQuaRE). Rapport technique, 2008. (Cité aux pages 2 and 6.)

[Jain 2001] Hemant K. Jain, Naresh Chalimeda, Navin Ivaturi and Balarama Reddy.
Business Component Identification - A Formal Approach. In 5th Interna-
tional Enterprise Distributed Object Computing Conference (EDOC 2001),
4-7 September 2001, Seattle, WA, USA, Proceedings, pages 183–187, 2001.
(Cité aux pages 14, 30, and 32.)

[Kebir 2012] Selim Kebir, Abdelhak-Djamel Seriai, Sylvain Chardigny and Al-
laoua Chaoui. Quality-centric approach for software component identifica-
tion from object-oriented code. In European Conference on Software Archi-
tecture(ECSA), 2012. (Cité à la page 16.)

[Kerdoudi 2016] Mohamed Lamine Kerdoudi, Chouki Tibermacine and Salah
Sadou. Opening web applications for third-party development: a service-
oriented solution. Service Oriented Computing and Applications, vol. 10,
no. 4, pages 437–463, 2016. (Cité à la page 20.)

[Khadka 2011] Ravi Khadka, Gijs Reijnders, Amir Saeidi, Slinger Jansen and Jurri-
aan Hage. A method engineering based legacy to SOA migration method. In
IEEE 27th International Conference on Software Maintenance, ICSM, pages
163–172, 2011. (Cité à la page 18.)

[Khadka 2013] Ravi Khadka, Amir Saeidi, Slinger Jansen and Jurriaan Hage. A
structured legacy to SOA migration process and its evaluation in practice.
In 7th IEEE International Symposium on the Maintenance and Evolution
of Service-Oriented and Cloud-Based Systems, MESOCA 2013, Eindhoven,
The Netherlands, September 23, 2013, pages 2–11, 2013. (Cité à la page 18.)

124 BIBLIOGRAPHY

[Kim 2004] Soo Dong Kim and Soo Ho Chang. A Systematic Method to Identify
Software Components. In 11th Asia-Pacific Software Engineering Conference
(APSEC 2004), 30 November - 3 December 2004, Busan, Korea, pages 538–
545, 2004. (Cité aux pages 15, 30, and 32.)

[Kobayashi 2012] Kenichi Kobayashi, Manabu Kamimura, Koki Kato, Keisuke Yano
and Akihiko Matsuo. Feature-gathering dependency-based software clustering
using Dedication and Modularity. In 28th IEEE International Conference on
Software Maintenance, ICSM 2012, Trento, Italy, September 23-28, 2012,
pages 462–471, 2012. (Cité à la page 104.)

[Koenig 1998] Andrew Koenig. Patterns and antipatterns. The patterns handbook:
techniques, strategies, and applications, vol. 13, page 383, 1998. (Cité à la
page 78.)

[Koteska 2018] Bojana Koteska, Anastas Mishev and Ljupco Pejov. Quantitative
Measurement of Scientific Software Quality: Definition of a Novel Quality
Model. International Journal of Software Engineering and Knowledge Engi-
neering, vol. 28, no. 3, page 407, 2018. (Cité à la page 46.)

[Kruchten 2012] Philippe Kruchten, Robert L Nord and Ipek Ozkaya. Technical
debt: From metaphor to theory and practice. Ieee software, vol. 29, no. 6,
pages 18–21, 2012. (Cité à la page 4.)

[Labiche 2013] Yvan Labiche, Bojana Kolbah and Hossein Mehrfard. Combining
static and dynamic analyses to reverse-engineer scenario diagrams. In In-
ternational Conference on Software Maintenance (ICSM), 2013. (Cité à la
page 28.)

[Langelier 2005] Guillaume Langelier, Houari A. Sahraoui and Pierre Poulin.
Visualization-based analysis of quality for large-scale software systems. In
Automated Software Engineering (ASE), 2005. (Cité à la page 28.)

[Langhammer 2016] Michael Langhammer, Arman Shahbazian, Nenad Medvidovic
and Ralf H Reussner. Automated extraction of rich software models from
limited system information. In Software Architecture (WICSA), 2016 13th
Working IEEE/IFIP Conference on, pages 99–108. IEEE, 2016. (Cité à la
page 104.)

[Lanza 2007] Michele Lanza and Radu Marinescu. Object-oriented metrics in prac-
tice: using software metrics to characterize, evaluate, and improve the design
of object-oriented systems. Springer Science & Business Media, 2007. (Cité
à la page 78.)

BIBLIOGRAPHY 125

[Le 2015] Duc Minh Le, Pooyan Behnamghader, Joshua Garcia, Daniel Link, Ar-
man Shahbazian and Nenad Medvidovic. An empirical study of architec-
tural change in open-source software systems. In Mining Software Reposito-
ries (MSR), 2015 IEEE/ACM 12th Working Conference on, pages 235–245.
IEEE, 2015. (Cité à la page 104.)

[Lee 2003] Eunjoo Lee, Byungjeong Lee, Woochang Shin and Chisu Wu. A reengi-
neering process for migrating from an object-oriented legacy system to a
component-based system. In International Computer Software and Appli-
cations Conference (COMPSAC), pages 336–341. IEEE, 2003. (Cité aux
pages 15, 30, and 32.)

[Lee 2008] Seonah Lee, Gail C. Murphy, Thomas Fritz and Meghan Allen. How can
diagramming tools help support programming activities? In VL/HCC, 2008.
(Cité aux pages 8 and 31.)

[Lehman 1997] Meir M Lehman, Juan F Ramil, Paul D Wernick, Dewayne E Perry
and Wladyslaw M Turski. Metrics and laws of software evolution-the nineties
view. In Software metrics symposium, 1997. proceedings., fourth interna-
tional, pages 20–32, 1997. (Cité à la page 2.)

[Lengauer 1979] Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for
finding dominators in a flowgraph. Programming Languages and Systems
(TOPLAS), 1979. (Cité à la page 68.)

[Levcovitz 2016] Alessandra Levcovitz, Ricardo Terra and Marco Tulio Valente. To-
wards a Technique for Extracting Microservices from Monolithic Enterprise
Systems. CoRR, vol. abs/1605.03175, 2016. (Cité à la page 22.)

[Li 2006] Shimin Li and Ladan Tahvildari. A Service-Oriented Componentization
Framework for Java Software Systems. In 13th Working Conference on
Reverse Engineering (WCRE 2006), 23-27 October 2006, Benevento, Italy,
pages 115–124, 2006. (Cité aux pages 18, 30, 32, and 33.)

[Liu 2007] Yin Liu and Ana Milanova. Ownership and Immutability Inference for
UML-Based Object Access Control. In 29th International Conference on Soft-
ware Engineering (ICSE 2007), Minneapolis, MN, USA, May 20-26, 2007,
pages 323–332, 2007. (Cité à la page 86.)

[Liu 2018] Cong Liu, Boudewijn F. van Dongen, Nour Assy and Wil M. P. van der
Aalst. Component interface identification and behavioral model discovery
from software execution data. In Proceedings of the 26th Conference on Pro-
gram Comprehension, ICPC 2018, Gothenburg, Sweden, May 27-28, 2018,
pages 97–107, 2018. (Cité à la page 17.)

126 BIBLIOGRAPHY

[Llano 2009] Maria Teresa Llano and Rob Pooley. UML Specification and Correction
of Object-Oriented Antipatterns. In International Conference on Software
Engineering Advances (ICSEA), 2009. (Cité aux pages 79 and 80.)

[Lucia 2001] Andrea De Lucia, Anna Rita Fasolino and Eugenio Pompella. A De-
cisional Framework for Legacy System Management. In 2001 International
Conference on Software Maintenance, ICSM 2001, Florence, Italy, November
6-10, 2001, page 642, 2001. (Cité aux pages xiii and 3.)

[Lucia 2018] Andrea De Lucia, Vincenzo Deufemia, Carmine Gravino and Michele
Risi. Detecting the Behavior of Design Patterns through Model Checking and
Dynamic Analysis. ACM Trans. Softw. Eng. Methodol., vol. 26, no. 4, pages
13:1–13:41, 2018. (Cité à la page 81.)

[Lutellier 2015] Thibaud Lutellier, Devin Chollak, Joshua Garcia, Lin Tan, Derek
Rayside, Nenad Medvidovic and Robert Kroeger. Comparing Software
Architecture Recovery Techniques Using Accurate Dependencies. In 37th
IEEE/ACM International Conference on Software Engineering, ICSE 2015,
Florence, Italy, May 16-24, 2015, Volume 2, pages 69–78, 2015. (Cité aux
pages 4 and 104.)

[Lutellier 2018] Thibaud Lutellier, Devin Chollak, Joshua Garcia, Lin Tan, Derek
Rayside, Nenad Medvidovic and Robert Kroeger. Measuring the Impact
of Code Dependencies on Software Architecture Recovery Techniques. IEEE
Trans. Software Eng., vol. 44, no. 2, pages 159–181, 2018. (Cité à la page 104.)

[Marin 2004] Marius Marin, Arie van Deursen and Leon Moonen. Identifying As-
pects Using Fan-In Analysis. In 11th Working Conference on Reverse Engi-
neering, WCRE 2004, Delft, The Netherlands, November 8-12, 2004, pages
132–141, 2004. (Cité à la page 24.)

[Mazlami 2017] Genc Mazlami, Jürgen Cito and Philipp Leitner. Extraction of Mi-
croservices from Monolithic Software Architectures. In 2017 IEEE Interna-
tional Conference on Web Services, ICWS 2017, Honolulu, HI, USA, June
25-30, 2017, pages 524–531, 2017. (Cité aux pages 4, 23, and 30.)

[McAffer 2010] Jeff McAffer, Paul VanderLei and Simon Archer. Osgi and equinox:
Creating highly modular java systems. Addison-Wesley Professional, 2010.
(Cité à la page 99.)

[McCall 1977] Jim A McCall, Paul K Richards and Gene F Walters. Factors in soft-
ware quality. volume i. concepts and definitions of software quality. Rapport
technique, GENERAL ELECTRIC CO SUNNYVALE CA, 1977. (Cité à la
page 2.)

BIBLIOGRAPHY 127

[McClure 1992] Carma McClure. The three rs of software automation: re-
engineering, repository, reusability. Prentice Hall Englewood Cliffs, NJ, 1992.
(Cité à la page 4.)

[Milanova 2007] Ana Milanova. Composition inference for UML class diagrams.
Autom. Softw. Eng., vol. 14, no. 2, pages 179–213, 2007. (Cité aux pages 86
and 87.)

[Mitchell 1998] Melanie Mitchell. An introduction to genetic algorithms. MIT press,
1998. (Cité à la page 98.)

[Mitchell 2006] Brian S Mitchell and Spiros Mancoridis. On the automatic modu-
larization of software systems using the bunch tool. IEEE Transactions on
Software Engineering, vol. 32, no. 3, pages 193–208, 2006. (Cité aux pages 29
and 32.)

[Nakamura 2009] Masahide Nakamura, Hiroshi Igaki, Takahiro Kimura and Ken-ichi
Matsumoto. Extracting service candidates from procedural programs based
on process dependency analysis. In Services Computing Conference, 2009.
APSCC 2009. IEEE Asia-Pacific, pages 484–491. IEEE, 2009. (Cité à la
page 99.)

[Newman 2015] Sam Newman. Building microservices: designing fine-grained sys-
tems. " O’Reilly Media, Inc.", 2015. (Cité à la page 21.)

[Ouni 2013] Ali Ouni, Marouane Kessentini, Houari A. Sahraoui and Mounir
Boukadoum. Maintainability defects detection and correction: a multi-
objective approach. Autom. Softw. Eng., vol. 20, no. 1, pages 47–79, 2013.
(Cité aux pages 26 and 31.)

[Pacione 2004] Michael John Pacione, Marc Roper and Murray Wood. A novel
software visualisation model to support software comprehension. In Work-
ing Conference on Reverse Engineering (WCRE), 2004. (Cité aux pages 74
and 75.)

[Paixão 2018] Matheus Paixão, Mark Harman, Yuanyuan Zhang and Yijun Yu. An
Empirical Study of Cohesion and Coupling: Balancing Optimization and Dis-
ruption. IEEE Trans. Evolutionary Computation, vol. 22, no. 3, pages 394–
414, 2018. (Cité à la page 104.)

[Pawlak 2015a] Renaud Pawlak, Martin Monperrus, Nicolas Petitprezet al. Spoon:
A Library for Implementing Analyses and Transformations of Java Source
Code. Software: Practice and Experience, 2015. (Cité aux pages 70 and 103.)

128 BIBLIOGRAPHY

[Pawlak 2015b] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos
Noguera and Lionel Seinturier. Spoon: A Library for Implementing Analyses
and Transformations of Java Source Code. Software: Practice and Experi-
ence, vol. 46, pages 1155–1179, 2015. (Cité à la page 45.)

[Peiris 2016] Manjula Peiris and James H. Hill. Automatically Detecting "Excessive
Dynamic Memory Allocations" Software Performance Anti-Pattern. In Pro-
ceedings of the 7th ACM/SPEC International Conference on Performance
Engineering, ICPE 2016, Delft, The Netherlands, March 12-16, 2016, pages
237–248, 2016. (Cité à la page 32.)

[Prajapati 2017] Amarjeet Prajapati and Jitender Kumar Chhabra. Improving mod-
ular structure of software system using structural and lexical dependency. In-
formation and Software Technology, 2017. (Cité aux pages 94, 95, and 104.)

[Rajlich 1997] Vaclav Rajlich and George S Cowan. Towards standard for exper-
iments in program comprehension. In International Workshop on Program
Comprehension (IWPC), 1997. (Cité à la page 74.)

[Ramírez 2016] Aurora Ramírez, José Raúl Romero and Sebastián Ventura. A com-
parative study of many-objective evolutionary algorithms for the discovery
of software architectures. Empirical Software Engineering, 2016. (Cité à la
page 95.)

[Ransom 1998] Jane Ransom, Ian Sommerville and Ian Warren. A Method for As-
sessing Legacy Systems for Evolution. In 2nd Euromicro Conference on Soft-
ware Maintenance and Reengineering (CSMR ’98), 8-11 March 1998, Flo-
rence, Italy, pages 128–134, 1998. (Cité à la page 3.)

[Riel 1996] Arthur J Riel. Object-oriented design heuristics. Addison-Wesley Long-
man Publishing Co., Inc., 1996. (Cité à la page 79.)

[Schmidt 2018] Frédéric Schmidt, Stephen G. MacDonell and Andy M. Connor.
Multi-Objective Reconstruction of Software Architecture. International Jour-
nal of Software Engineering and Knowledge Engineering, vol. 28, no. 6, page
869, 2018. (Cité à la page 4.)

[Schneidewind 1987] Norman F. Schneidewind. The state of software maintenance.
IEEE Transactions on Software Engineering, no. 3, pages 303–310, 1987.
(Cité à la page 5.)

[Seacord 2003] Robert C Seacord, Daniel Plakosh and Grace A Lewis. Modernizing
legacy systems: software technologies, engineering processes, and business
practices. Addison-Wesley Professional, 2003. (Cité à la page 3.)

BIBLIOGRAPHY 129

[Seemann 1998] Jochen Seemann and Jürgen Wolff von Gudenberg. Pattern-based
design recovery of Java software. In ACM SIGSOFT Software Engineering
Notes, volume 23, pages 10–16. ACM, 1998. (Cité à la page 90.)

[Selmadji 2018] Anfel Selmadji, Abdelhak-Djamel Seriai, Hinde-Lilia Bouziane,
Christophe Dony and Rahina Oumarou Mahamane. Re-architecting OO Soft-
ware into Microservices - A Quality-Centred Approach. In Service-Oriented
and Cloud Computing - 7th IFIP WG 2.14 European Conference, ESOCC
2018, Como, Italy, September 12-14, 2018, Proceedings, pages 65–73, 2018.
(Cité aux pages 23, 30, and 32.)

[Shah 2013] Syed Muhammad Ali Shah, Jens Dietrich and Catherine McCartin.
On the automation of dependency-breaking refactorings in java. In Software
Maintenance (ICSM), 2013 29th IEEE International Conference on, pages
160–169. IEEE, 2013. (Cité aux pages 26 and 31.)

[Shahmohammadi 2010] Gholamreza Shahmohammadi, Saeed Jalili and Seyed Mo-
hammad Hossein Hasheminejad. Identification of System Software Compo-
nents Using Clustering Approach. Journal of Object Technology, vol. 9, no. 6,
pages 77–98, 2010. (Cité à la page 4.)

[Shatnawi 2015] Anas Shatnawi, Abdelhak Seriai, Houari A. Sahraoui and Zakarea
Alshara. Mining Software Components from Object-Oriented APIs. In Soft-
ware Reuse for Dynamic Systems in the Cloud and Beyond - 14th Interna-
tional Conference on Software Reuse, ICSR 2015, Miami, FL, USA, January
4-6, 2015. Proceedings, pages 330–347, 2015. (Cité à la page 4.)

[Shatnawi 2016] Anas Shatnawi, Abdelhak-Djamel Seriai, Houari Sahraoui and
Zakarea Alshara. Reverse engineering reusable software components from
object-oriented APIs. Journal of Software and Systems(JSS), 2016. (Cité à
la page 17.)

[Solms 2015] Fritz Solms. A Systematic Method for Architecture Recovery. In
ENASE 2015 - Proceedings of the 10th International Conference on Evalua-
tion of Novel Approaches to Software Engineering, Barcelona, Spain, 29-30
April, 2015., pages 215–222, 2015. (Cité à la page 4.)

[Sommerville 2011] Ian Sommervilleet al. Software engineering. Boston: Pearson„
2011. (Cité à la page 2.)

[Spiegel 2002] André Spiegel. Automatic distribution of object oriented programs.
PhD thesis, Free University of Berlin, Dahlem, Germany, 2002. (Cité aux
pages 27 and 31.)

130 BIBLIOGRAPHY

[Stavropoulou 2017] Ioanna Stavropoulou, Marios Grigoriou and Kostas Kontogian-
nis. Case study on which relations to use for clustering-based software ar-
chitecture recovery. Empirical Software Engineering, vol. 22, no. 4, pages
1717–1762, 2017. (Cité à la page 104.)

[Steimann 2006] Friedrich Steimannet al. Decoupling classes with inferred inter-
faces. In SAC, 2006. (Cité aux pages 26, 31, and 37.)

[Stoianov 2010] Alecsandar Stoianov and Ioana Şora. Detecting patterns and an-
tipatterns in software using Prolog rules. In Computational Cybernetics and
Technical Informatics (ICCC-CONTI), 2010 International Joint Conference
on, pages 253–258. IEEE, 2010. (Cité à la page 79.)

[Stroulia 2003] Eleni Stroulia, Mohammad El-Ramly, Paul Iglinski and Paul Soren-
son. User interface reverse engineering in support of interface migration to
the web. Automated Software Engineering, vol. 10, no. 3, pages 271–301,
2003. (Cité à la page 104.)

[Szyperski 1999] Clemens Szyperski, Jan Bosch and Wolfgang Weck. Component-
oriented programming. Lecture Notes in Computer Science, 1999. (Cité à la
page 7.)

[Szyperski 2002] Clemens A. Szyperski, Dominik Gruntz and Stephan Murer.
Component software - beyond object-oriented programming, 2nd edition.
Addison-Wesley component software series. Addison-Wesley, 2002. (Cité à la
page 16.)

[Tamai 1992] Tetsuo Tamai and Yohsuke Torimitsu. Software lifetime and its evolu-
tion process over generations. In Software Maintenance, 1992. Proceerdings.,
Conference on, pages 63–69. IEEE, 1992. (Cité à la page 2.)

[Tavares 2008] André Luiz Camargos Tavares and Marco Tulio de Oliveira Valente.
A gentle introduction to OSGi. ACM SIGSOFT Software Engineering Notes,
vol. 33, no. 5, 2008. (Cité à la page 99.)

[Tilley 1995] Scott R Tilley and Dennis Smith. Perspectives on legacy system reengi-
neering. 1995. (Cité à la page 4.)

[Tonella 2004] Paolo Tonella and Mariano Ceccato. Aspect Mining through the For-
mal Concept Analysis of Execution Traces. In 11th Working Conference on
Reverse Engineering, WCRE 2004, Delft, The Netherlands, November 8-12,
2004, pages 112–121, 2004. (Cité à la page 24.)

[Tonella 2005] Paolo Tonella. Reverse engineering of object oriented code. In In-
ternational Conference on Software Engineering (ICSE), 2005. (Cité à la
page 53.)

BIBLIOGRAPHY 131

[Tourwé 2003] Tom Tourwé and Tom Mens. Identifying Refactoring Opportuni-
ties Using Logic Meta Programmin. In 7th European Conference on Soft-
ware Maintenance and Reengineering (CSMR 2003), 26-28 March 2003, Ben-
evento, Italy, Proceedings, pages 91–100, 2003. (Cité aux pages 26 and 31.)

[Tourwé 2004] Tom Tourwé and Kim Mens. Mining Aspectual Views using Formal
Concept Analysis. In 4th IEEE International Workshop on Source Code
Analysis and Manipulation (SCAM 2004), 15-16 September 2004, Chicago,
IL, USA, pages 97–106, 2004. (Cité à la page 24.)

[Tzerpos 1997] Vassilios Tzerpos and Richard C Holt. The orphan adoption problem
in architecture maintenance. In Reverse Engineering, 1997. Proceedings of
the Fourth Working Conference on, pages 76–82. IEEE, 1997. (Cité à la
page 29.)

[Tzerpos 1999] Vassilios Tzerpos and Richard C Holt. MoJo: A distance metric
for software clusterings. In Reverse Engineering, 1999. Proceedings. Sixth
Working Conference on, pages 187–193. IEEE, 1999. (Cité à la page 104.)

[Tzerpos 2000] Vassilios Tzerpos and Richard C Holt. Acdc: An algorithm for
comprehension-driven clustering. In wcre, 2000. (Cité aux pages 29 and 32.)

[Van Vliet 1993] Hans Van Vliet, Hans Van Vliet and JC Van Vliet. Software engi-
neering: principles and practice, volume 3. Wiley New York, 1993. (Cité à
la page 5.)

[Vanciu 2013] Radu Vanciu and Marwan Abi-Antoun. Object graphs with ownership
domains: An empirical study. In Aliasing in Object-Oriented Programming.
Types, Analysis and Verification. Springer, 2013. (Cité à la page 71.)

[Wampler 2002] Bruce E Wampler. The essence of object-oriented programming
with java and uml. Addison-Wesley, 2002. (Cité à la page 58.)

[Wang 2008] Lei Wang and Michael Franz. Automatic partitioning of object-oriented
programs for resource-constrained mobile devices with multiple distribution
objectives. In International Conference on Parallel and Distributed Systems
(ICPADS), 2008. (Cité aux pages 28 and 32.)

[Washizaki 2003] Hironori Washizaki, Hirokazu Yamamoto and Yoshiaki Fukazawa.
A Metrics Suite for Measuring Reusability of Software Components. In
9th IEEE International Software Metrics Symposium (METRICS 2003), 3-5
September 2003, Sydney, Australia, page 211, 2003. (Cité à la page 19.)

[Washizaki 2005] Hironori Washizaki and Yoshiaki Fukazawa. A technique for au-
tomatic component extraction from object-oriented programs by refactoring.
Science of Computer programming, 2005. (Cité aux pages 15, 30, and 32.)

132 BIBLIOGRAPHY

[Welker 2001] Kurt D Welker. The software maintainability index revisited.
CrossTalk, vol. 14, pages 18–21, 2001. (Cité à la page 46.)

[Wettel 2011] Richard Wettel, Michele Lanza and Romain Robbes. Software systems
as cities: a controlled experiment. In International Conference on Software
Engineering (ICSE), 2011. (Cité à la page 28.)

[Wu 2005] Jingwei Wu, Ahmed E. Hassan and Richard C. Holt. Comparison of Clus-
tering Algorithms in the Context of Software Evolution. In 21st IEEE Inter-
national Conference on Software Maintenance (ICSM 2005), 25-30 September
2005, Budapest, Hungary, pages 525–535, 2005. (Cité à la page 104.)

