N

N

Reengineering Object Oriented Software Systems for a
better Maintainability

Soumia Zellagui

» To cite this version:

Soumia Zellagui. Reengineering Object Oriented Software Systems for a better Maintainability. Other
[cs.OH]. Université Montpellier, 2019. English. NNT: 2019MONTS010 . tel-02294449

HAL Id: tel-02294449
https://theses.hal.science/tel-02294449

Submitted on 23 Sep 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-02294449
https://hal.archives-ouvertes.fr

THESIS

To obtain the dregree of
PHD - Doctor

Awarded by University of Montpellier

Prepared at I12S* Graduate School,

N
C o I I e g e LIRMM Research Unit, MAREL Team.

Doctoral

Languedoc-Roussillon

zellagui@lirmm. fr

Speciality: Software Engineering

Defended by Zellagui Soumia

Maintainability

Reengineering Object Oriented

Software Systems for a better

Defended on 05 July 2019 in front of a jury composed of:

Mireille Blay-Fornarino, PU, University of Nice

Antoine Beugnard, P, Mines-Telecom Atlantique Institute

Bernard Coulette, PU, University of Toulouse-Jean Jaurés
Chouki Tibermacine, MdAC HDR, University of Montpellier
Christophe Dony, PU, University of Montpellier

Hinde Lilia Bouziane, MdC, University of Montpellier

* 12S: INFORMATION, STRUCTURES AND SYSTEMES.

Reviewer

Reviewer

President & Examiner
Director

Co-director

Co-director

Dedication

“ This thesis is dedicated to the memory of my father ”

il

Acknowledgment

My advisor, Chouki Tibermacine, has had the most profound influence on me
as a researcher. When I started my thesis I was a blank page. I learned a lot from
him and I have found working with him very rewarding. He was always on my side
with his ideas, advices and encouragements and I will never forget his kindness and
comprehensiveness. 1 felt blessed and lucky to have him as one of my supervisors.
I thank also my two other supervisors, Hinde Bouziane and Christophe Dony who
was always kind to me and comprehensive.

During last six months, I established a great working relationship with Ghizlane
El-Boussaidi who gave me the opportunity to work with her in Ecole de Technologie
Supérieure de Montréal. She has always been ready to engage in long and rich
research discussions and to provide her unique insight. I hope this relationship
continues in future.

I would like to express my deepest gratitude to Mireille Blay-Fornarino, Bernard
Coulette and Antoine Beugnard for making me the honor of accepting to evaluate
my thesis.

I would like to thank everybody in my research team MAREL. They made me
feel like home during these three years.

It should be noticed that this thesis would have not been possible without the
funding from the Algerian Ministry of Higher Education and Scientific Research,
which allowed me to stay completely focused on my research.

I owe my deepest gratitude to my Mother who has always been my friend and
guide. I thank her for believing in me and encouraging me to follow my dreams. I
thank my sisters for their incredible support, I could have never achieved so much
without them. I also thank all my friends for the pleasant moments we had together.

il

v

Résumé

Les systemes logiciels existants représentent souvent des investissements impor-
tants pour les entreprises qui les développent avec l'intention de les utiliser pendant
une longue période de temps. La qualité de ces systémes peut se degrader au fil du
temps en raison des modifications complexes qui leur sont incorporées. Pour faire
face a une telle dégradation lorsqu’elle dépasse un seuil critique, plusieurs stratégies
peuvent étre utilisées. Ces stratégies peuvent consister a: 1) remplacer le systéme
par un autre développé a partir de zéro, 2) poursuivre la maintenance (massive) du
systéme malgré son coiit, ou 3) conduire une réingénierie du systéme. Le remplace-
ment et la maintenance massive ne sont pas des solutions adaptées lorsque le cotit et
le temps doivent étre pris en compte, car elles nécessitent un effort considérable et
du personnel pour assurer la mise en oeuvre du systéme dans un délai raisonnable.
Dans cette thése, nous nous intéressons a la solution de réingénierie. En général,
la réingénierie d'un systéme logiciel inclut toutes les activités apres la livraison a
I'utilisateur pour améliorer sa qualité. Cette derniére est souvent caractérisée par
un ensemble d’attributs de qualité. Parmi ces attributs, nous nous intéressons a la
maintenabilité. Cette derniére est caractérisée par un ensemble de caractéristiques
telles que la modifiabilité, la compréhensibilité et la modularité. Afin d’améliorer la
modifiabilité, nous proposons, dans la premiére contribution, de migrer les systémes
logiciels orientés objets vers des systémes orientés composants. Contrairement aux
approches existantes qui considérent un descripteur de composant comme un cluster
de classes, chaque classe du systéme existant sera migrée vers un descripteur de com-
posant. Afin d’améliorer la compréhensibilité, qui a un impact sur la maintenabilité,
nous proposons, dans la seconde contribution, une approche pour la reconstruction
de modeles d’architecture d’exécution (graphes d’objets) des systémes orientés objets
et la gestion de la complexité des modéles résultants. Les modéles (graphes) générés
avec notre approche ont les caractéristiques suivantes: les noeuds sont étiquetés avec
des durées de vie et des probabilités d’existence permettant 1) une visualisation des
modeles avec un niveau de détail, et 2) de cacher/montrer la structure interne des
noeuds. Afin d’améliorer la modularité, et donc la maintenabilité, des systémes logi-
ciels orientés objets, nous proposons, dans la troisiéme contribution, une approche
d’identification des modules et des services dans le code source de ces systémes. Dans
cette approche, nous soutenons l'idée considérant la structure composite comme la
structure principale du systéme. Celle-ci doit étre conservée lors du processus de
modularisation, le composant et ses composites doivent étre dans le méme module.

vi

Les travaux de modularisation existants qui ont cette méme vision, supposent que
les relations de composition entre les éléments du code source sont déja disponibles,
ce qui n’est pas toujours vrai. Dans notre approche, I'identification des modules
commence par une étape de reconstruction de modéles d’architecture d’exécution
du systéme étudié. Ces modéles sont exploités pour identifier des relations de com-
position entre les éléments du code source du systéme étudié. Une fois ces relations
ont été identifiées, un algorithme génétique conservatif aux relations de composition
est appliqué sur le systéme pour identifier des modules. En dernier, les services four-
nis par les modules sont identifiés a ’aide des modéles de I’architecture d’exécution
du systéme logiciel analysé. Quelques expérimentations et études de cas ont été
réalisées pour montrer la faisabilité et le gain en modifiabilité, compréhensibilité et
modularité sur de vrais logiciels analysés avec nos propositions.

Abstract

Legacy software systems often represent significant investments for the companies
that develop them with the intention of using them for a long period of time. The
quality of these systems can be degraded over time due to the complex changes incor-
porated to them. In order to deal with these systems when their quality degradation
exceeds a critical threshold, a number of strategies can be used. These strategies
can be summarized in: 1) discarding the system and developing another one from
scratch, 2) carrying on the (massive) maintenance of the system despite its cost, or
3) reengineering the system. Replacement and massive maintenance are not suitable
solutions when the cost and time are to be taken into account, since they require
a considerable effort and staff to ensure the system conclusion in a moderate time.
In this thesis, we are interested in the reengineering solution. In general, software
reengineering includes all activities following the delivery to the user to improve
the software system quality. This latter is often characterized with a set of quality
attributes. Among those, we are particularly interested in maintainability. In turn,
maintainability is characterized with a set of characteristics such as modifiability,
understandability and modularity. In order to improve modifiability, we propose to
migrate object-oriented legacy software systems into equivalent component based
ones. Contrary to exiting approaches that consider a component descriptor as a
cluster of classes, each class in the legacy system will be migrated into a component
descriptor. In order to improve understandability, which has a direct impact on
maintainability, we propose an approach for recovering runtime architecture mod-
els of object-oriented legacy systems and managing the complexity of the resulted
models. The models recovered by our approach have the following distinguishing
features: Nodes are labeled with lifespans and empirical probabilities of existence
that enable 1) a visualization with a level of detail. 2) the collapsing/expanding of
objects to hide/show their internal structure. In order to improve modularity, and
thus maintainability, of object-oriented software systems, we propose an approach
for identifying modules and services in the source code. In this approach, we believe
that the composite structure is the main structure of the system that must be re-
tained during the modularization process, the component and its composites must
be in the same module. Existing modularization works that has this same vision
assumes that the composition relationships between the elements of the source code
are already available, which is not always obvious. In our approach, module identifi-
cation begins with a step of runtime architecture models recovery. These models are

vil

viii

exploited for the identification of composition relationships between the elements
of the source code. Once these relationships have been identified, a composition
conservative genetic algorithm is applied on the system to identify modules. Lastly,
the services provided by the modules are identified using the runtime architecture
models of the software system. Some experimentations and case studies have been
performed to show the feasibility and the gain in modifiability, understandability
and modularity of the software systems studied with our proposals.

Contents

1 Introduction 1
1.1 Context e 2
1.2 Problem Statement oL 5
1.3 Thesis Contributions oL oL 9

1.3.1 Migrating Object-Oriented Software Systems into Component-
based equivalent ones L. 9

1.3.2 Recovering the Runtime Architecture of Object-Oriented Soft-
ware Systems and Managing its Complexity 9

1.3.3 Identifying Modules and Services from the Source Code of
Object-Oriented Software Systems 10
1.4 Thesis Organization 10
1.5 Publicationso 10
1.5.1 International Journals 10
1.5.2 International Conferences 11
1.5.3 French-Speaking Conferences 11

2 State of the art 13
2.1 Imtroduction L 13
2.2 Migrating to a New Paradigm 14

2.2.1 Migrating to Component Based Paradigm 14
2.2.2 Migrating to Service Based Paradigm 17
2.2.3 Migrating to Microservice Based Paradigm 21
2.2.4 Migrating to Aspect Oriented Paradigm 23
2.3 Remaining in the Object Oriented Paradigm 25
2.4 Architecture Recovery 26
2.4.1 Implementation-level architecture recovery 27
2.4.2 Design-level architectures recovery 29
2.5 Discussiono 30

3 Migrating Object-Oriented Software Systems into Component-based

equivalent ones 35
3.1 Introduction and Problem Statement 35
3.2 Foundations of the Proposed Approach 36

X

CONTENTS

3.2.1 Decoupling and Non Anticipated Instantiations Violation . . . 36
3.2.2 Refactoring Operations 37
3.3 Experimental Results and Evaluation 45
3.3.1 Data Collection 46
3.3.2 Used Measures 46
333 Results. 47
3.3.4 Threats to Validity, 20
3.4 Conclusion L 20
Recovering the Runtime Architecture of Object-Oriented Software
Systems and Managing its Complexity 51
4.1 Introduction and Problem statement 52
4.2 Foundations of the proposed Approach 53
4.2.1 The Process in a Nutshell. 53
4.2.2 Source code static analysis 54
4.2.3 Source Code Instrumentation & Instrumented Code Execution 61
4.2.4 Object graph refinement 65
4.2.5 Managing the Complexity of the Refined Object Graph 66
4.2.6 Visualization with a level of detail 69
4.3 Experimental Results and Evaluation 69
4.3.1 Research questions 69
4.3.2 Experiment Setup 70
4.3.3 Results and discussion 71
4.3.4 'Threats to Validity 80
4.4 Conclusion e 81
Identifying Modules and Services from the Source Code of Object-
Oriented Software Systems 83
5.1 Introduction and Problem Statement 84
5.2 Foundations of the proposed Approach 85
5.2.1 Runtime Models Recovery 86
5.2.2 Composition Relationships Identification 87
5.2.3 Composition Refinement 90
5.2.4 Module and Service Identification 93
5.3 Evaluation & Experimental Results 102
5.3.1 Data Collection 102
5.3.2 Research question 0L 103
5.3.3 Experiments setup oL 103
5.3.4 Results and discussion 103
5.3.5 Threats to validity 108

5.4 Conclusion 109

CONTENTS xi
6 Conclusions And Perspectives 111
6.1 Summary of Contributions 0. 111
6.2 Future Directions 113
6.2.1 Enrich the recovered OG with other kinds of information . . . 113

6.2.2 Consider semantic relationships between classes to improve
modularity 113
6.2.3 Adapt the proposed approaches to other programming languages113

6.2.4 Identification of modules and services as a machine learning
problem 114
6.2.5 Develop a framework that groups the proposed approaches . . 114

Bibliography

115

xii

CONTENTS

Figures list

1.1
1.2

1.3

2.1
2.2
2.3

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

4.10

4.11

5.1
2.2
2.3
5.4
2.5
5.6
5.7

Legacy system decisional matrix [Lucia 2001]. 3
Chikofsky and Cross [Chikofsky 1990] conceptual model of software

Teengineering.o e D
Component Based development principle. 7
Service-oriented architecture (SOA) main elements 18
SOA and MSA granularity 21
Weaving Principle in Aspect Oriented Programming (AOP) 24
Using LCOM metric to apportion methods on interfaces 39
Dependency Injection Mechanism 41
Process for the creation of a refined hierarchical object graph 53
The OFG of the MovieCatalog class 60
The OG of the MovieCatalog class. 60
Trace metamodelo oL 61
Refined OG of the MovieCatalog application 67
Refined and Hierarchical OG of the MovieCatalog application 68
Jext partial flat object graph. o000 72
JHotDraw flat object graph. L. 73
Jext refined and hierarchical object graph with only composite struc-

ture exploited.o L 74
Jext refined and hierarchical object graph with composite structure,

lifespans and probability exploited. 75
JHotDraw refined and hierarchical object graph with only composite

structure exploited.o oo 76
Modules and services identification Process 85
AnOGexample 89
Composition relationships between classes 89
Composition refinement step example 92
Genetic algorithms basic steps L. 96
An example of a candidate solution 97

Composition relationships taken into account in the initial population 97

xiii

Xiv

FIGURES LIST

5.8 An example of single-point crossover result L. 98

5.9 An example of KMeans based mutation

Tables list

1.1
1.2

3.1
3.2
3.3

3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6

4.7

5.1
5.2
5.3
5.4
2.5
2.6
5.7
5.8
2.9

Software reengineering state of the art definitions.
List of publications and their distribution over thesis contributions.

Refactoring Operations
Data collection
Detected smells (In each row, M = results of Manual analysis; A =

results of Automatic analysis). Lo
MI values before and after applying the method
MI values of Log4j versions.

Scopes and outputs
Data collection
Hierarchical Reduction (HR) results
Principal software understanding activities
Understanding tasks oo
Correctness (measured in points given to correct answers) and Time

Spent (in minutes) results o oL
Poltergeist detection results (TP for true positives, FP for false pos-

itives and FN for false negatives

Objects creators of the MovieCatalog class example
Closure and parent sets for the OG in Figure 5.2.
Boundary sets of the nodes of the OG in Figure 5.2
Weight values for the eight structural relationships.
Eclipse and Jitsi services Lo oL
QMoJoPlus(A,B) results
M, O and F values of the authoritative architectures.
Cohesion and Coupling measures of the different architectures

Module organization measures

5.10 Fitness function measureso

XV

xvi TABLES LIST

CHAPTER

1

Introduction

Contents
1.1 Comntext e
1.2 Problem Statement
1.3 Thesis Contributions

1.4
1.5

1.3.1 Migrating Object-Oriented Software Systems into Component-
based equivalent ones 9

1.3.2 Recovering the Runtime Architecture of Object-Oriented

Software Systems and Managing its Complexity 9

1.3.3 Identifying Modules and Services from the Source Code of
Object-Oriented Software Systems 10
Thesis Organization 10
Publications o 0000 o oo s 10
1.5.1 International Journals 10
1.5.2 International Conferences 11
1.5.3 French-Speaking Conferences 11

2 CHAPTER 1. INTRODUCTION

1.1 Context

A software system is defined by Sommerville [Sommerville 2011] as: "a number
of separate programs, configuration files, which are used to set up these programs,
system documentation, which describes the structure of the system, and user docu-
mentation, which explains how to use the system”. Therefore, a software system is
not only a computer program but also all associated configuration and documen-
tation data needed to use this system correctly. For many years, software systems
increasingly influenced almost all areas of society and have become fundamental in
performing a wide variety of tasks.

Companies develop software systems with the intention of using them for a long
period of time in order to get a return on the costs spent on their development.
The average lifetime of software systems is more than 10 years with a minimum of
two years and a maximum of thirty as stated by Tamai et al [Tamai 1992|. Old
systems are called “legacy systems”. Legacy systems characteristics are summarized
by Crotty et al [Crotty 2017] in: business critical, long time lived, developed using
outdated technologies, with poor documentation if available, degraded structure,
and needs a lot of time for maintenance tasks even small ones.

The increasing dependence on computers and software systems at all levels of the
society requires a continuous integration of new functionalities, that are sometimes
complex, to legacy systems. Due to the complex incorporated functionalities in
these systems over time, including new functionalities in the future will be more
and more difficult for developers who spend a large amount of their time reading
the code and the accompanying system documentations and models, in order to
understand the system’s structure and organization. Therefore, progressive changes
of software systems lead to their quality degradation since they become more com-
plex [Lehman 1997].

Software quality plays a crucial role for the competitiveness and survival of com-
panies because it has a significant impact on the costs arising during develop-
ment, maintenance and use of software. Several quality models have been pro-
posed in the literature [Boehm 1976], [McCall 1977], |[Grady 1992|, [Dromey 1995],
[ISO.25010 2008] in order to define specific requirements for quality. In these models,
quality is categorized into a set of characteristics which in turn are broken down into
sub-characteristics. These characteristics are known as “quality attributes”. General
software quality attributes include maintainability, modifiability, understandability,
modularity, reusability, interoperability, performance, reliability, security, etc.

A number of solutions have been proposed to deal with legacy software systems
when their quality degradation exceeds a critical threshold. These solutions can be
summarized in: 1) replacing the system by another one developed from scratch, 2)
carrying on the (massive) maintenance of the system despite its cost, or 3) resorting
to the system reengineering [Bennett 1999|. Several decisional models have been

1.1. CONTEXT 3

] . Continue ordinary
Reengineering maintenance

Business value

Technical quality

Replacement Massive maintenance

Figure 1.1: Legacy system decisional matrix [Lucia 2001].

proposed |Lucia 2001,Ransom 1998, Alkazemi 2013] in order to reach a decision about
the best solution, from the aforementioned ones, to consider. They are based on both
business and technical values. Business values concern user satisfaction. Technical
values are measures calculated on the system (e.g, size, complexity, etc). The output
of these models is plotted on a decisional matrix that indicates a recommended
solution as depicted in Figure 1.1.

The first two solutions, replacement and massive maintenance, are not suitable
solutions when the cost and time are to be taken into account, since they require
a considerable effort and staff to ensure the system conclusion in a moderate time.
Therefore, in this thesis, we are interested in the reengineering solution (depicted in
red in Figure 1.1).

Software reengineering is the process of generating evolvable systems [Seacord 2003|
and therefore extending the life time of a legacy software system. Several defini-
tions have been proposed to describe the software reengineering process. The most
commonly used ones are presented in Table 1.1.

These definitions share the fact that software reengineering consists of taking a
legacy system whose quality is degraded and extracting knowledge on its internal
structure or business process and reconstituting it in a new form using new technolo-
gies. In general, software reengineering includes all activities following the delivery to
the customer to improve the software system quality attributes. We use in this the-
sis the definition and the conceptual model of Chikofsky and Cross [Chikofsky 1990]
since numerous publications use the author’s reengineering taxonomy.

CHAPTER 1. INTRODUCTION

Table 1.1: Software reengineering state of the art definitions.

[Chikofsky 1990]

“...the examination and alteration of a subject system to reconstitute
it in a new form and the subsequent implementation of the new form.”

[Arnold 1993] creased maintainability, reusability, or evolvability. In this definition,

“ any activity that: (1) improves one’s understanding of software,
or (2) prepares or improves the software itself, usually for in-

the term software includes, in addition to source code,
documentation, graphical pictures and analyses.”

[Tilley 1995]

“ Reengineering is the systematic transformation of an existing system
into a new form to realize quality improvements in operation, system
capability, functionality, performance, or evolvability at a lower cost,
schedule or risk to the consumer. ”

[McClure 1992] improve its future maintainability, upgrade its technology, extend its life

“ Reengineering is the process of examining an existing system
(program) and/or modifying it with the aid of automated tools to:

expectancy, capture its components in a repository where CASE tools
can support it, and increase maintenance productivity.”

In this definition, software reengineering process encompasses a combination of three
subprocesses: examination or understanding subprocess in which knowledge about
the system is acquired, alteration subprocess which consists of changing the system,
and the reconstitution subprocess in which the modifications are realized. These
subprocesses correspond respectively to reverse engineering, restructuring and for-
ward engineering. These three subprocesses are depicted in Figure 1.2 and defined
below:

1. Reverse engineering (examination): is the process of analyzing low level ab-

stractions, e.g., source code, of the subject system in order to extract high level
abstractions, e.g., design. Several synonyms exist for the reverse engineering
process in the literature such as: recovery [Solms 2015, Lutellier 2015], re-
construction [Schmidt 2018, Ahn 2018], identification [Shahmohammadi 2010,
Athanasopoulos 2017], mining [Shatnawi 2015] and extraction [Mazlami 2017].

. Restructuring (alteration): also known by the name “refactoring”. Refac-
toring is defined by Martin Fowler [Fowler 1999| as “the process of changing a
software system in such a way that it does not alter the external behavior of the
code yet improves its internal structure”. Refactoring always takes place within
one level of abstraction, e.g., code-to-code, in order to fix this abstraction’s
bad smells. Bad smells are symptoms of poor quality [Fowler 1999| that may
hinder code maintainability [Kruchten 2012|. Whenever they appear, they in-
dicate that the code or/and the design should be reexamined. An example of
bad smell is Long Method which is a method unduly long in terms of lines of
code and with lots of parameters and local variables. This method should be
decomposed for ease of maintainability.

1.2. PROBLEM STATEMENT 5

Requirements Implementation

(constraints,
objectives,
business rules)

Forward
Engineering
¢ Reverse

Reengineering

N N

Restructuring Restructuring Restructuring

Figure 1.2: Chikofsky and Cross [Chikofsky 1990] conceptual model of software reengineer-
ing.

3. Forward engineering (reconstitution): is the classical software development
process. It consists of moving from a high level of abstraction (e.g., require-
ments) to a lower level (e.g., source code) [Van Vliet 1993].

1.2 Problem Statement

Several studies have presented evidence that the major expense in the life cycle of a
software system is maintenance [Schneidewind 1987, Benaroch 2013, Galorath 2006,
that at least 50% of the total life cycle is devoted to maintenance, depending on the
references. Two real life examples on maintenance cost are given in [Anjos 2017]:

e Example 01: In 1997, the Associated Press today reports that Robin Guenier,
head of the UK’s TaskForce 2000, estimates that Y2K reprogramming efforts
will cost Britain $50 billion dollars, three times the guesstimates of business
consultants and computer service companies. Guenier suggested that 300,000
people may be required to tackle the problem. Coincidentally, that number is
roughly equivalent to the number of full-time computer professionals in the UK.

6 CHAPTER 1. INTRODUCTION

e Example 02: In 2000, the city of Toronto lost out on nearly $700,000 in
pet fees because nearly half of Toronto’s dog and cat owners were never billed
due an outdated computerized billing system. The staff who knew how to run
the computerized billing system was laid off. [...] Only one city employee ever
understood the system well enough to debug it when problems arose, and that
employee was also laid off in 2000 due to downsizing, leaving no one to get
things going again when the system ran into trouble and collapsed.

Maintainability is the term used to describe the quality attribute concerned with
software maintenance. It represents “ the ease with which a software system or com-
ponent can be modified to correct faults, improve performance or adapt it to a changed
environment” [[SO.25010 2008]. Since a system with a high degree of maintainabil-
ity leads to low maintenance costs, maintainability is the most targeted quality
attribute by reengineering processes [Abdellatif 2018]. Maintainability is character-
ized in several quality models by a set of characteristics. From these characteristics,
we are particularly interested in modifiability, understandability and modularity.
Modifiability refers to “ the degree to which a product or system can be effectively and
efficiently modified without introducing defects or degrading existing product quality
7 [1SO.25010 2008]. Since maintenance costs decrease when a system is developed
in a way that future changes will be relatively easy to implement, we believe that
modifiability has a direct impact on maintainability.

Understandability has a direct impact on maintainability. That is, if a software
is sufficiently understood, it can be properly maintained [Cornelissen 2009al. As
stated by Biggerstaff et al |Biggerstaff 1993|, “a person understands a program when
he or she is able to explain the program, its structure, its behavior, its effects on
its operation context, and the relationships to its application domain in terms that
are qualitatively different from the tokens used to construct the source code of the
program”. Therefore, understanding is related to the ease of reading and correctly
interpreting the informations contained in the software system.

Another quality attribute that has a direct impact on maintainability, and even
understandability, is modularity. It is defined as “the degree to which a system or
computer program is composed of discrete components such that a change to one
component has minimal impact on other components” [ISO.25010 2008|. High co-
hesion and low coupling are drivers for good modularity. Cohesion refers to the
intra-component dependencies and coupling refers to the inter-component depen-
dencies. It is a known fact that modularity facilitates maintainability [Davis 1990]
since modules are independent from each other. This independence allows maintain-
ing different parts of the system in parallel by distinct maintainers and restricting
change propagation.

1.2. PROBLEM STATEMENT 7

s LE
;

Components Component based systems

Figure 1.3: Component Based development principle.

The Component Based (CB) development paradigm [Bertolino 2005] has been

recognized as one of the paradigms that promote modifiability and thus maintain-
ability. The idea behind this paradigm is a metaphor of the LEGO game. The
principle is illustrated in Figure 1.3: on the left of the figure, there are software
components which correspond, according to Szyperski’s definition [Szyperski 1999],
to “ a unit of composition with contractually specified interfaces and explicit context
dependencies only. A software component can be deployed independently and is sub-
ject to composition by third-parties”. As stated in this definition, components can
be composed in order to create new systems. By analogy, with some LEGO pieces,
it is possible to create pieces as complex as a car, a house, etc.
Several approaches have been proposed for migrating legacy object oriented software
systems into equivalent component based ones in order to benefit from the advan-
tages of the CB paradigm. These approaches consider the component descriptor as
a cluster of classes. Some of these approaches generate clusters/components with
shared classes/interfaces. When these components are reused/composed to create
new systems, duplicated code can occur in these new systems. Duplicated code will
make the maintainability task difficult especially when bugs are detected in this
code. Moreover, in the approaches where no classes/interfaces are duplicated in
several components, if a user wants to develop a new system using an independent
class or subset of classes in a cluster, it is required to use the entire cluster. This
implies that the new developed system contains unnecessary code. The maintenance
of this latter is a waste of time, this led us to ask the following research question:

Research Question 1. Does considering each class in the object oriented
legacy system as a component descriptor contribute in improving modi-
fiability?

This is the first research problem/question that is studied in this work (RQ1).

Furthermore, several reverse engineering approaches have also been proposed in
order to improve understandability, and thus maintainability. This improvement
is achieved by recovering a high level view, an architecture model, of the system’s
structure and behavior. These architecture models are used to acquire a global un-
derstanding of the system instead of wasting time looking at source code artifacts.

8 CHAPTER 1. INTRODUCTION

Most of these approaches target the recovery of class-based models of the system
under study. In our context, we are interested in recovering the runtime archi-
tecture, which is composed of the system’s concrete running entities (objects) and
dependencies between them. The importance of having the runtime architecture
in order to improve understandability was stressed in several experimental stud-
ies such as the one of Lee et al |Lee 2008]. In this study, one participant stated:
“draw how objects connect to each other at runtime when I want to understand code
that is unknown; an object diagram is more interesting than a class diagram, as it
expresses more how it functions”. While the structure and relationships between
objects are implicit in static views, they are explicit in the runtime architecture.
This facilitates handling comprehension tasks that require knowledge about object
interactions [Ammar 2012, Lee 2008]. Only few approaches target the recovery of
runtime architectures. They produce valuable models for understanding the struc-
ture of the system during its execution. However, they fail most of the time to
provide models of a reasonable size which can be visualized by humans/develop-
ers, and this is particularly true for large (legacy) software systems. This led us to
consider the following research question:

Research Question 2. How to recover the runtime architecture of legacy
object oriented systems and how to manage the complexity of the recov-
ered architecture?

This is the second research question that is investigated in this work (RQ2).

Moreover, the improvement of legacy system modularity has been widely stud-
ied in the literature. Most of the time, remodularization approaches are based on
clustering techniques in order to identify highly cohesive and lowly coupled mod-
ule candidates. In general, cohesion and coupling are measured based on struc-
tural relationships between source code artifacts. To the best of our knowledge,
most of existing remodularization approaches consider that the different types of
structural relationships (e.g., field typing, method parameter typing, method in-
vocation) between source code artifacts are equivalent, which is not always true
and not accurate enough. We argue that structural relationships types should be
differentiated. Moreover, we believe that source code artifacts with composition re-
lationships should logically be clustered together in the same module. To the best
of our knowledge, remodularization approaches that have this same point of view,
classes/interfaces with a composition relationship should be clustered in the same
module, suppose that composition relationships are already available in the form of
class-based models, which is not always obvious. This led us to ask the following
question:

Research Question 3. Does differentiating structural relationships and
grouping artifacts with composition relationships in the same module
produce modular solutions?

1.3. THESIS CONTRIBUTIONS 9

This was the third and last problem tackled in this work (RQ3).

1.3 Thesis Contributions

The ultimate goal of this thesis is the improvement of maintainability of legacy soft-
ware systems. To that end, we propose three approaches that are briefly discussed
below.

1.3.1 Migrating Object-Oriented Software Systems into Component-
based equivalent ones

To answer RQ1, we proposed a source code restructuring approach to improve ob-
ject oriented software systems modifiability. In particular, this approach enhances
decoupling by considering that some dependencies between classes should be set
through abstract types (interfaces) like in component based systems. In addition,
some anticipated instantiations of these classes buried in the source code are ex-
tracted and replaced by declarative statements (like connectors in CB applications)
which are processed by a dependency injection mechanism. For doing so, a set of
modifiability defects has been defined. These defects are first detected in the source
code. Then, some refactoring operations are applied for their elimination. At the
end of the process, each class in the object oriented system conforms to a component
descriptor. This approach is discussed in detail in Chapter 3.

1.3.2 Recovering the Runtime Architecture of Object-Oriented
Software Systems and Managing its Complexity

To answer RQ2, we developed an approach to build runtime architecture models
of object oriented systems. The approach combines static and dynamic analysis to
build an object graph that includes information regarding probabilities of allocation
site execution and lifespans of objects. This information is used to manage the com-
plexity of the recovered object graphs by making it possible for the designer to focus
for example on the most likely and durable objects. In addition, composition/own-
ership relations between objects are exploited to embed composite structures into
the object graph nodes. This enables to support a hierarchical visualization of the
recovered architecture. Understandability improvement brought by the approach is
discussed in Chapter 4.

10 CHAPTER 1. INTRODUCTION

1.3.3 Identifying Modules and Services from the Source Code
of Object-Oriented Software Systems

To answer RQ3, we proposed an approach for improving the modular structure of
object-oriented software systems by identifying modules and services in the source
code. In contrast to existing works in the literature, the process starts by a step of
runtime models recovery. These models represent the concrete interacting objects
that compose the running system and their inter-dependencies. These mod- els
are exploited in order to identify composition relationships objects. Once these
composition relationships have been identified, a composition conservative genetic
algorithm is applied on the software system in order to identify modules. At last,
services that allow modules to communicate are identified, based on the runtime
models, in order to further improve decoupling. Modularity improvement brought
by the approach is discussed in Chapter 5.

1.4 Thesis Organization
The rest of this thesis is organized into five chapters:

e Chapter 02: discusses the state of the art related to the problem of improving
quality attributes of object oriented legacy systems.

e Chapter 03: presents the first contribution on modifiability improvement
which deals with RQ1.

e Chapter 04: presents the second contribution on understandability improve-
ment which deals with RQ2.

e Chapter 05: presents the third contribution on modularity improvement
which deals with RQ3.

e Chapter 06: discusses conclusions and future directions.

1.5 Publications

The following accepted or submitted papers are partial outputs of this thesis. Ta-
ble 1.2 organizes them according to the thesis contributions.

1.5.1 International Journals

1. Soumia Zellagui, Chouki Tibermacine, Hinde Bouziane and Christophe Dony.
“Identification of Modules and Services in the Runtime Architectures of Object-
oriented Software Systems”. Submitted to Information & Software Technology
journal.

1.5. PUBLICATIONS 11

2. Soumia Zellagui, Chouki Tibermacine, Hinde Bouziane and Christophe Dony.
“A Method for the Automatic Recovery and Complexity Management of Run-
time Architectures of Medium and Large Sized OO Software Systems”. Under
review (revision) for the Automated Software Engineering journal.

1.5.2 International Conferences

3. Soumia Zellagui, Chouki Tibermacine, Ghizlane El-Boussaidi, Hinde Bouziane,
Abdelhak-Djamel Seriai and Christophe Dony. “Recovering Runtime Architec-
ture Models and Managing their Complexity using Dynamic Information and
Composite Structures”. In proceedings of 33rd ACM/SIGAPP Symposium
On Applied Computing (SAC 2018), PAU, France, April 9 - 13, 2018 (Accep-
tance rate: 25%)

4. Soumia Zellagui, Chouki Tibermacine, Hinde Bouziane, Abdelhak-Djamel Se-
riai and Christophe Dony. “Refactoring Object-Oriented Applications towards
a better Decoupling and Instantiation Unanticipation”. In proceedings of 29th
International Conference on Software Engineering and Knowledge Engineer-
ing (SEKE 2017), Wyndham Pittsburgh University Center, Pittsburgh, USA,
July 5 - July 7, 2017 (Acceptance rate: 35%)

1.5.3 French-Speaking Conferences

5. Soumia Zellagui, Chouki Tibermacine, Hinde Bouziane, Abdelhak-Djamel Se-
riai and Christophe Dony. “Recovering Runtime Architecture of Object Ori-
ented Software”. Doctiss (2018), Montpellier, France, 14 June, 2018

6. Soumia Zellagui, Chouki Tibermacine, Hinde Bouziane, Abdelhak-Djamel Se-
riai and Christophe Dony. “Refining the Reconstructed Runtime Architecture
of Object Oriented Software”. Journée RIMEL (2016), Nantes, France, 08 Dec,
2016

7. Soumia Zellagui and Joffray Braga. “Refactoring des applications a objets
pour un meilleur découplage et une non-anticipation des instanciations”. In
bieme Conférence en IngénieriEl de Logiciel (CIEL 2016), Besangon, France, 7
Jun 2016.

12

CHAPTER 1. INTRODUCTION

Table 1.2: List of publications and their distribution over thesis contributions.

Contribution 1

Contribution 2

Contribution 3

International
Journals

(2)

(1)

International
Conferences

(4)

French-Speaking
Conferences

CHAPTER

2

State of the art

Contents
2.1 Introduction 000000, 13
2.2 Migrating to a New Paradigm 14
2.2.1 Migrating to Component Based Paradigm 14
2.2.2 Migrating to Service Based Paradigm 17
2.2.3 Migrating to Microservice Based Paradigm 21
2.2.4 Migrating to Aspect Oriented Paradigm 23
2.3 Remaining in the Object Oriented Paradigm 25
2.4 Architecture Recovery 26
2.4.1 Implementation-level architecture recovery 27
2.4.2 Design-level architectures recovery 29
25 Discussion i i s e e e e 30

2.1 Introduction

This chapter discusses the state of the art related to maintainability improvement.
The goal of this chapter is to present the main ideas and concepts of the research
field, to show some similarities and differences between solutions and to reveal some
shortcomings in existing works from the literature.

13

14

There are numerous works on improving maintainability of legacy systems. The de-
scribed works are grouped into three categories. The first category groups works that
attempt to improve maintainability by migrating the legacy system into a new pro-
gramming paradigm (presented in Section 2.2). The second category groups works
that improve maintainability by remaining in the object-oriented one (presented in
Section 2.3. The third category groups works that improve maintainability, particu-
larly the understandability and modularity, by recovering the implementation-level
and design-level architecture of the legacy system (presented in Section 2.4). A
summary discussion of the presented works is made at the end of the chapter in
Section 2.5.

2.2 Improving Maintainability by Migrating to a
New Paradigm

By new paradigms we mean here new ways of developing software. We focus on those
that promote the maintainability quality attribute, and which are: the component-
based, service-based, microservice-based and aspect-based ones.

2.2.1 Migrating to Component Based Paradigm

Component-Based (CB) paradigm has been recognized as an approach that empha-
sizes software maintainability. Thereby, several works have been proposed to migrate
object oriented software systems into component-based ones. The migration process
consists of two steps: the first step is the component based architecture recovery
where components and their dependencies are identified. The second step is code
transformation in which the object oriented code is transformed into an equivalent
component based one. We have selected below a set of the most important (mostly
cited) migration works.

e Jain et al [Jain 2001] proposed a semi-automatic approach for component iden-
tification from object oriented legacy systems. The input of the approach is
two types of models of the legacy system: the UML class diagram and use
case diagram. These models are used in order to calculate the strength of
structural relationships between classes of the legacy system'. A hierarchical
agglomerative clustering algorithm is then applied in order to identify initial
components. This algorithm groups initially classes having the highest struc-
tural relationship strengths in the same component and later clusters them
until an end point is reached. This point corresponds to a threshold limit
of the relationship strengths. The identified components can then be refined
using both manual and/or automatic heuristics. An example of heuristics is

IThe strength is calculated based on weights given by the user to the structural relationships

2.2. MIGRATING TO A NEW PARADIGM 15

moving a particular class from its component if the user feels that it is more
appropriate to place it in another component. The authors reported a case
study of the approach. This case study showed that maintainability is slightly
improved. However, details on how its values were measured are lacking.

e In [Lee 2003], component identification, which is done manually, includes two
steps. The first step consists of grouping together classes/interfaces with com-
position and inheritance relationships to form base components. The second
step of the process consists of grouping similar base components or assign-
ing classes, which where not assigned before to a base component, to a new
component. This grouping is based on quality metrics such as cohesion which
are considered as similarity measures for clustering. For each identified com-
ponent, a pair of required and provided interfaces is created. The required
interface is the set of all methods in other components that are called in a
component. The provided interface is the set of public methods of the com-
ponent called by other components. The application of the approach on an
example system showed an improvement in the modularity.

e The manual identification of components in [Kim 2004] is based on the degree
of dependency between use cases of a use case diagram which is supposed to
be available. The dependency between two use cases is calculated taking into
account several criteria such as: use cases invoked by the same actor or manip-
ulating the same set of data. Once the dependencies are computed for every
pair of use case, related use cases are allocated in the same cluster. Then, the
dynamic behavior of each use case is represented by a sequence diagram, sup-
posed to be available, which specifies the set of participating objects/classes.
The participating classes in each sequence diagram are assigned to the cluster
of the corresponding use case. The class diagram is then used to refine the
resulted clusters by exploiting several types of relationships between classes.
Unfortunately, the authors do not test the applicability of the approach on
real world systems. Therefore, it is not clear if the approach contributes really
in improving maintainability.

e Washizaki et al [Washizaki 2005] presented an automatic approach to extract
JavaBeans components from Java systems. The input of the approach is the
source code of the system and an extraction criterion that represents a func-
tionality to be reused. A component groups the class that implements the
functionality to be reused and all classes that are reachable from this class.
Reachability is determined using a class-based graph, in which nodes repre-
sent classes/interfaces and edges represents structural relationships such as
reference and inheritance. A class B is said reachable from class A if there
is a path from A to B in the class-based graph. The approach was applied
on nine systems. For these systems, the number of the extracted components

16

and their reusability are reported. Another semi-automatic similar approach
is that of [Constantinou 2015] where the extraction task starts with the selec-
tion of an origin class. This approach focuses on the reduction of candidate
component sizes.

Allier et al [Allier 2011] proposed an approach to automate the process of
migration from Object-Oriented systems to Component Based ones. The used
data to identify the components are execution traces. An execution trace is a
tree in which each node is the execution of a method and each edge is a method
call. Once the components have been identified, the component interfaces are
made operational by the use of two design patterns: Adapter and Facade.
The approach was illustrated on a real system implemented in Java which is
migrated into an OSGi equivalent system. However, no measurement of the
improvement in maintainability was done.

Alshara et al [Alshara 2015, Alshara 2016] proposed an approach to automati-
cally transform Java systems into OSGi systems. This approach takes as input
the source code of the system and the description of the corresponding com-
ponent based architecture (obtained using ROMANTIC (Re-engineering of
Object-oriented systeMs by Architecture extractioN and migraTlon to Com-
ponent based ones) [Kebir 2012]). In this architecture, a component is a set
of object oriented classes/interfaces. This architecture is obtained by a clus-
tering based on a fitness function which measures the quality of a component.
This latter is defined according to the component characteristics, namely au-
tonomy, specificity and composability. These characteristics are refined into
sub-characteristics which are in turn refined into component properties (e.g.
required interfaces). Then, these properties are mapped to the properties of
the group of classes from which the component is identified (e.g. group of
classes coupling). At the end, these properties are refined into object oriented
metrics (e.g. coupling metric) calculated based on structural relationships be-
tween source code artifacts. Once the component based architecture has been
recovered, dependencies between classes belonging to different components are
transformed into interactions via interfaces. For this, the authors were inter-
ested in two types of relations between classes. The first type is a “use” relation
identifying the case when a class in a component creates an instance of an-
other class in another component. This relation must be transformed in order
to respect the component interaction principle which states that each com-
ponent must hide its internal structure and behavior and provide its services
without exposing the classes that implement them [Szyperski 2002|. The sec-
ond type is the “inherit” relation when the parent class and child class are
not in the same component. According to the point of view of the authors,
this relation needs to be transformed into delegation since several component
models do not support inheritance relationship between components. The ap-

2.2. MIGRATING TO A NEW PARADIGM 17

plicability of the approach was tested on nine systems. The results reported
the number of components in each system and the number of relations that
have been transformed. No discussion or measurement of the improvement in
maintainability was done.

e Shatnawi et al [Shatnawi 2016| proposed an approach that aims at recovering
software components from Object-Oriented APIs. In this approach, groups of
API classes that are able to form components are identified. This identification
is based on the probability of classes to be reused together by clients, and
the structural and behavioral relationships between classes/interfaces. The
approach was applied on four APIs that are used by 100 clients. The authors
stated that the improvement in the understandability is related to the percent
of the number of identified components on the number of classes composing
the API. That is, if this percent is small, this means that the effort spent to
understand API entities is reduced since the API size is reduced.

e Starting from the component based architecture and the software execution
data, which record method calls, Liu et al [Liu 2018| propose an approach
to identify a set of interfaces for each component. Moreover, in order to
understand how each interface actually works, a behavioral model for each
identified interface is discovered. A component is defined as a set of classes.
The component interfaces are identified based on the component execution
data which represents all method calls in the software execution data referring
to instances of the component classes. From these methods, a subset which
represent methods called by methods of another component is selected. The
methods in this subset are grouped according to their caller, methods called by
the same method are grouped in the same interface, to form the component in-
terfaces. In order to eliminate duplication, similar interfaces are merged based
on a similarity measure proposed by the authors. Interfaces whose similarity
value is superior to a threshold are merged. Once the interfaces have been
identified, their contracts which defines in which order the methods should be
invoked are discovered and represented by a behavioral model. The authors
evaluated the approach on three systems. Since the authors are interested only
in component interfaces identification, the evaluation focused on the quality
of the identified interfaces.

2.2.2 Migrating to Service Based Paradigm

Service-oriented architecture (SOA) has received much popularity in the previous
decade and has been adopted by many companies. The main elements that com-
pose a service oriented architecture are highly cohesive and loosely coupled services.
These services are published in a service repository by a service provider and used
by service consumers as depicted in Figure 2.1.

18

Service
registry

Register Find

l’i interact x%

Provider Consumer

Figure 2.1: Service-oriented architecture (SOA) main elements

The modernization of legacy software towards SOA is promising since it enables
sharing services between several systems which leads to a reduction of the develop-
ment and maintenance costs [Griffiths 2010].

Several approaches have been reported in the literature to migrate legacy systems
to SOA based ones. Most of these approaches (e.g., [Alahmari 2010, Khadka 2011,
Khadka 2013|) propose only general recommendations and best practices that should
be taken into consideration. They are given based on practices that have been
repeatedly applied and proven to be successful. Next, we present works that provide
structured approaches. Moreover, only the service identification step is discussed.
The deployment of an identified service is not discussed since this step is rarely
handled in related works.

e |Li 2006] developed an automatic approach made of four steps: Architecture
Recovery, Service Identification, Component Generation and System Transfor-
mation.

— Architecture recovery aims at reconstructing a view of the implementation-
level architecture. The output of this step is two architectural models:
Class/Interface Relationship Graph (CIRG) which is a direct graph that
represents classes/interfaces and their different relationships (inheritance,
composition, etc) and Class/Interface Dependency Graph (CIDG) which
is an undirected CIRG. Unfortunately, it is not clear how the CIRG is
exploited in the following steps of the approach.

2.2. MIGRATING TO A NEW PARADIGM 19

— Service identification step consists of identifying top-level and low-level
services. Top-level services are not used by another service but can con-
tain low-level services. Low-level services are underneath a top level ser-
vice. Top-level services are identified by decomposing the CIDG into a
set of connected components with a unique root such that each compo-
nent is an independent subgraph of the CIDG. These rooted components
are called modularized CIDG (MCIDG). The root of each MCIDG is
considered as a top-level service candidate and the other nodes as the
low-level service candidates underneath the top-level service candidate.

— Component generation consists of identifying components that realize
top-level and low-level services. This is done by identifying the com-
ponent elements defined by the authors, such as: the component facade
and constituting set of classes.

— System transformation step consists simply of applying refactoring opera-
tions to transform the object oriented system into a concrete service-based
version of it.

The approach was evaluated on a case study. The goal of this evaluation is to
measure the reusability of the resulted top-level services. For that, the authors
used the reusability model proposed by Washizaki et al [Washizaki 2003|. In
this model, reusability is decomposed into three quality attributes: under-
standability, adaptability and portability. These quality attributes are hierar-
chically subdivided into metrics from the literature. The authors concluded
that services extracted by their approach have a reasonable level of under-
standability, adaptability and portability.

e [Canfora 2008| proposed a wrapper-based semi-automatic approach for mi-
grating form-based legacy systems, a class of interactive systems, to service
oriented architectures. The process is decomposed into three steps: selection
of the candidate services (use cases), wrapping of the selected use cases and
the deployment and validation of the wrapped use cases.

— Candidate services selection consists of determining which legacy system
use cases can be exposed as services in a SOA based on state of the art
approaches that are interested in resolving this decision problem.

— Selected use cases wrapping step consists of i) identifying simple and/or
composite services that correspond to use cases. ii) a reverse engineering
step to generate a finite state automaton (FSA), screen template and the
interface of the wrapped service. iii) wrapper design in order to generate
the FSA description document. The FSA specifies user-system interac-
tions. In this automaton, states correspond to the different displayed
screens and transitions correspond to actions performed by the user on
screens. In addition to the finite state automaton, the structure of the

20

UI forms is needed. This structure is specified by a model called screen
template. The screen template is characterized by text fields and their
positions in the screen. The FSA and the screen template represent the
main requirements for the wrapper.

— The deployment and validation step consists of importing and publishing
the identified services.

[Fuhr 2011]| proposed a semi-automatic approach to identify services using
clustering techniques. The inputs of the approach are business processes mod-
eled as activity diagrams and the source code of the system in question. The
first step consists of instrumenting the source code of the system given as in-
put. After that, for each activity selected by the user, this latter simulates
the selected activity on the instrumented legacy system to generate code exe-
cution log. Service identification is based on a clustering technique where the
similarity measure is based on how often legacy classes are used together in
each activity of the business processes. The authors compared the authori-
tative service-based architecture, provided by the original developer, and the
service-based architecture resulted when applying their approach on a subject
system. The comparison was done by calculating precision and recall between
clusters of the two architectures. The results of this comparison showed that
the approach correctly clustered a large proportion of the studied system.

[Adjoyan 2014] proposed an automatic service identification approach for
legacy to SOA migration. The service identification is based on three qual-
ity characteristics of services namely: functionality, composability and self-
containment. These characteristics are refined into metrics calculated based
on the structural relationships between classes/interfaces. The approach takes
as input the object-oriented source code of the legacy system and produces a
set of services, clusters of classes. For this purpose, the authors propose a hi-
erarchical agglomerative clustering algorithm. This algorithm groups together
the classes with the maximized value of a fitness function defined in function
of the aforementioned quality characteristics. This approach was tested on
two systems. The values of functionality, composability and self-containment
for the identified services were reported. Moreover, the identified services were
mapped to well known architecture models of the studied systems. The results
showed that a high percent of the extracted services were successfully mapped
in the architecture models.

[Kerdoudi 2016] proposed a semi-automatic approach for migrating Web ap-
plications toward Web service-oriented systems. The input of this approach
is the source code and an XML file that describes the navigation between in-
terfaces of the Web application. As output, the approach produces a set of
Web services. The overall process is decomposed into several steps. First, an
identification of a set of operations from each element of the Web application

2.2. MIGRATING TO A NEW PARADIGM 21

is done. Then, the input and output messages related to each identified oper-
ation in the Web services are identified. After that, the developer eliminates
each operation that should not be published and the remaining operations
are grouped in the same Web service. Finally, the dependencies between the
different selected operations in the Web services are identified.

2.2.3 Migrating to Microservice Based Paradigm

Microservice-based Architectures (MSA) are originating from SOA. However, MSA
can be distinct from SOA by some key characteristics, such as service granularity
where microservices are relatively small with respect to services in SOA as depicted
in Figure 2.2.

Legacy System Coarse-grained Fine-grained

Monolithic

Figure 2.2: SOA and MSA granularity

However, The term “small” was not precisely defined in the works that dealt with
the topic of microservices [Newman 2015] and most definitions of microservices do
not provide any insight into the level of granularity required for the functionality to
be branded as a microservice. There exist several factors that can define how small
is small such as the number of members of the team managing the microservice
and the number of functions that a microservice is designed to perform. In the
following, some works that target the migration to the microservice based paradigm
are presented:

e |Escobar 2016] proposed an automated approach to partition Java EE systems
into microservices and visualize the resulted microservice-based architecture.
The first step of the approach consists of representing the input system in
a graph format where nodes represent classes/interfaces and edges represent
structural relationships between these classes/interfaces. An algorithm is then
applied on the graph to obtain clusters and links between them. This algo-
rithm groups in the same cluster all classes/interfaces that participate in an
invocation sequence (e.g., if there exists two nodes A and B, all classes/inter-
faces that exists between invocations that starts in A and finishes in B are

22

grouped, with A and B, in the same cluster). There may be classes/interfaces
that belong to two or more clusters. The obtained clusters are linked via edges
labeled with the number of elements that result from the intersection between
the set of classes/interfaces of the two clusters. Once the clusters and the
links between them have been identified, each cluster and the set of clusters
with which this cluster is related by a link, whose label value is greater than
a user-defined threshold, are grouped in a microservice. The approach was
applied on a case study which basically reported measures on the number of
identified microservices and the number of classes/interfaces in each identified
microservice. Moreover, the authors discussed that the understanding is im-
proved through the proposed approach because it provides visualizations of
the identified microservices.

|Gysel 2016| proposed an automatic approach for service decomposition based

on a catalog which assembles 16 coupling measures. The input of the approach
consists of nine user representations of the system to be decomposed into a
set of microservices. The approach extracts from these representations the
coupling measures and nano-entities. Each nano-entity serves as the building
block of microservices, it can be a field, a method or a class. The extracted
nano-entities and coupling criteria are transformed into an undirected and
weighted graph where nodes represent nano-entities and the weights of edges
indicate how coupled two nano-entities are. A clustering algorithm is then
applied on the graph to find candidate microservices. The approach was as-
sessed on two systems. For these systems, the authors decided to classify
the identified microservices into four categories: excellent, good, acceptable or
bad. This classification was based on the authors experience in microservice
design. The identified microservices of the two systems were judged good and
acceptable.

Levcovitz et al |Levcovitz 2016] proposed an approach that identifies manu-
ally microservices from monolithic systems represented by a tuple (Fagade,
business functions, database tables). Fagade represents the entry points of the
system that use business functions. Business functions are methods that de-
pend on database tables. The approach supposes that the input system is
structured into subsystems. The first step of the process maps each subsystem
to the database on which it depends. Then, a dependency graph is created.
Nodes in this graph are the monolithic system elements (Fagade, business func-
tions and database tables). Edges can be of three types: (i) calls from facades
to business functions; (ii) calls between business functions; and (iii) accesses
from business functions to database tables. Using the created graph, a set of
pairs of the form (Fagade, database table) are identified where a path from
Facade to database table exists in the dependency graph. After that, for each
subsystem, a set of the pairs identified in the previous step is selected where
the database table parts in these pairs are the same mapped to the subsystem.

2.2. MIGRATING TO A NEW PARADIGM 23

For each selected pair, a microservice candidate for the subsystem is identi-
fied. The approach was applied on a large system. For this system, discussions
were made on the number of the identified microservices. No discussions were
made about the benefit brought by the approach in terms of improvement in
maintainability.

e [Mazlami 2017] proposed an automatic approach for extracting microservices
from monolithic software systems. The input of the approach is the source
code of the monolithic object oriented software system from which a graph
representation is recovered. The nodes of the graph are classes and each edge
has a weight defined by a weight function which determines how strong is
the coupling between classes according to the used coupling strategy. Three
coupling strategies are proposed: logical coupling, semantic coupling and con-
tributor coupling. The final step of the process consists of partitioning the
graph representation into connected components to obtain candidates for mi-
croservices. The approach was applied on 21 systems. For each system, the
quality of the extracted microservices is measured. A microservice based solu-
tion is said of high quality if the team size across all microservices is reduced
compared to the team size of the original monolithic system.

e [Selmadji 2018| proposed an automatic approach for microservice identifica-
tion from object oriented applications. The identification is based on a quality
function defined by an analysis of microservice characteristics namely granu-
larity, cohesion and autonomy. This function is based on metrics that measure
these characteristics. These metrics are calculated based on the structural
relationships between source code artifacts. The input of the approach is
the source code of the legacy system and produces a set of microservices as
output. A microservice is defined by the authors as a set of classes, where
each class is allocated to exactly one microservice (no shared classes between
microservices). Classes are allocated to clusters using a hierarchical agglom-
erative clustering algorithm. This algorithm groups together the classes with
the maximized value of the aforementioned fitness function. The approach
was tested on three systems. The resulted microservices were compared to
microservices extracted manually by the authors. The comparison showed
that there is a great matching between the extracted services by the proposed
approach and by those extracted manually.

2.2.4 Migrating to Aspect Oriented Paradigm

The aspect oriented programming (AOP) is a paradigm that aims to separate the
crosscutting functionalities, which are of non-functional nature (authentication and
encryption, for example) or technical (access to a database, for example), from the
core, business, functionalities in order to improve maintainability, understandabil-

24

ity and modularity. These crosscutting functionalities are known by the name of
“Aspects”. Therefore, an aspect oriented program is decomposed into two parts:
i) classes that represent the core functionalities and ii) aspects that represent the
crosscutting functionalities.

Aspects are not called by classes that represent the core functionalities. They are
applied on the program through an aspect weaver. Aspect weaving is the operation
that takes classes and aspects as input and produces a system that integrates the
features of both classes and aspects. AOP core principle is depicted in Figure 2.3.

In this figure, the main concepts of AOP namely pointcut, jointpoint, advice and
weaving are presented. Joinpoint is a point in the program in which one or more
aspects can be applied. It can be, for example, a method being called or a variable
being modified. Pointcut defines at what joinpoints, the associated Advice should
be applied. An advice corresponds to the code executed before, after or around a
joinpoint.

Classes

Joinpoint “A

Pointcut - - - » Qﬁ

Weaving

Advice -- System code

Aspecis

Figure 2.3: Weaving Principle in Aspect Oriented Programming (AOP)

In order to benefit from the advantages of aspect oriented programming, several
approaches have been proposed in the literature to migrate existing object oriented
systems to aspect oriented ones. The migration passes through two phases: aspect
mining that consists of the identification of code representing the existing crosscut-
ting concerns, and aspect extraction (including object-to-aspect refactoring). The
first step has been well studied in the literature [Breu 2004, Marin 2004, Tonella 2004,
Tourwé 2004, Bernardi 2016]. Some migration approaches are presented bellow:

e Binkly et al [Binkley 2006] proposed an automatic refactoring approach for
migrating existing Java applications into AspectJ ones. They assume that
aspects are already identified. The parts of code supposed to be refactored
are method calls. For this, six refactorings were introduced according to the
position of the call (before/after a method call, beginning/end of a method,

2.3. REMAINING IN THE OBJECT ORIENTED PARADIGM 25

etc.). The proposed refactorings were applied on four case studies. For these
case studies, the authors discussed the impact of the refactoring on perfor-
mance, in terms of execution time, and size of the system. Overall, the results
showed that no performance degradation was noticed for the refactored code.
Moreover, the authors described that while the base code size is only slightly
reduced, the base code structure is substantially simplified.

e In the same context, Ceccato et al [Ceccato 2007, Ceccato 2008] proposed
an automatic approach for aspect identification. Once the candidate aspects
are located, six refactoring operations can be applied to support migration
(namely: Extract Beginning/End of Method/Handler, Extract Before/After
Call, Extract Conditional, Pre Return, Extract Wrapper and Extract Ex-
ception Handling). In the case when none of these refactorings apply to an
annotated code, additional transformations to code can be applied to make
one or more of the six refactorings applicable. In order to assess if the ap-
proach is beneficial to understandability, maintainability and modularity, the
authors asked software developers to perform some maintenance tasks either
on the base system or on its refactored version. Details of the experiment are
not given in the papers describing the approach (neither in [Ceccato 2007|
nor [Ceccato 2008]). However, the authors summarize their finding by stat-
ing that the proposed approach improved modularity, understandability and
maintainability.

2.3 Improving Maintainability by Remaining in the
Object Oriented Paradigm

In addition to the aforementioned works that improve maintainability by moderniz-
ing the legacy system to a new paradigm, a large body of works has been proposed
to improve maintainability by remaining in the same paradigm used in developing
the legacy system. An interest in eliminating bad structures has been growing in
the community of software engineering in order to improve maintainability. The
elimination of bad structures is done by applying refactoring operations.

In this context, Fowler [Fowler 1999] defined 22 refactorings for Java programs and
initially introduced the concept of bad smells in code as an indicator when (and
where) to apply refactorings. Many development environments and plug-ins such as
Eclipse?, IntelliJ IDEA?, JDeodorant* and RefactorIT® provide automated support
of several Fowler’s refactorings.

Zhttps://www.eclipse.org/
3http://www.jetbrains.com /idea/

4http:/ /www.jdeodorant.com

Shttp:/ /sourceforge.net /projects/refactorit /

26

Tourwé et al [Tourwé 2003] proposed a semi-automatic approach that identifies au-
tomatically two types of bad smells, obsolete parameter and inappropriate interface,
using logic meta programming. Once instances of these bad smells have been iden-
tified, the user can choose refactoring operations from the five proposed (remove
parameter, add class, add method, rename variable and pull up variable) and apply
it manually to eliminate the bad smell.

For decoupling classes using interfaces, Steimann et al [Steimann 2006] proposed a
fully automated refactoring approach for the introduction of new interfaces. This
refactoring calculates from variable declarations, the minimal types (interfaces),
containing all the method declarations needed from the chosen reference and all
other references it gets possibly assigned to.

Shah et al [Shah 2013] proposed an algorithm that uses various refactoring tech-
niques to automatically remove unwanted dependencies in Java programs. This
algorithm is designed to eliminate maintainability defects represented by four types
of anti-patterns: circular dependencies between packages, subtypes knowledge (when
a subtype is used either directly or indirectly by its super type), abstraction with-
out decoupling and degenerated inheritance. They classified dependencies between
classes in four categories and for each category they specified a refactoring operation.
Ouni et al [Ouni 2013] proposed an approach for automatically detecting and cor-
recting several maintainability defects in source code. Authors focused on three
types of maintainability defects, namely Blob, Spaghetti Code and Functional De-
composition. Quality metrics are used in order to generate rules for the detection
of each type of maintainability defect. An example of a rule is: a class having more
than 10 attributes and 20 methods is considered as a blob. In this rule, the number
of attributes and the number of methods of a class correspond to two quality met-
rics that are used to detect a blob defect. In the correction step, Fowler’s catalog of
refactoring is used to recommend the suitable refactoring for each maintainability
defect.

2.4 Improving Understandability and Modularity by
Architecture Recovery

As described earlier, migration processes into new paradigms, whether to compo-
nents, services or micorservices, passes through a step of architecture recovery. How-
ever, many other works do not propose architecture recovery approaches for the mi-
gration purpose but for the understanding purpose or for restructuring the system
by following an obtained modular architecture.

The most significant works of this category are presented below. We present first
approaches that target the recovery of the implementation-level architecture and
after that the approaches whose goal is recovering the design-level architecture.
Design-level architectures describe the different high-level parts of a legacy system.
Implementation-level architectures describe the program artifacts.

2.4. ARCHITECTURE RECOVERY 27

2.4.1 Implementation-level architecture recovery

Several approaches and tools (e.g., Understand®, Structure1017, Lattix ®) have been
developed to recover class-based models of object oriented software systems. In
the following, works that recover object-based models are discussed. These works
rely either on static, dynamic or hybrid analysis. Static analysis refers to source
code examination without executing the legacy system. Dynamic analysis consists
of observing the system during its execution. While static information presents a
complete picture of what could happen at runtime, it does not show what actually
happens. On the other hand, dynamic information is precise but it is challenged by
the coverage problem. The combination of static and dynamic analyses is known as
hybrid analysis.

e Both Spiegel et al [Spiegel 2002] and Abi-Antoun et al [Abi-Antoun 2009] pro-
posed static analysis techniques, named Pangaea and SCHOLIA respectively,
in order to recover object graphs of Java systems. Nodes of the graphs re-
covered in the two works represent the objects that exist at runtime whereas
edges between two nodes can be of three kinds: creation, reference and usage
according to Spiegel et al [Spiegel 2002], and represent references acquired by
a field according to Abi-Antoun et al [Abi-Antoun 2009]. In order to mitigate
the complexity of the recovered model, in SCHOLIA, architectural extractors
(developers) use ownership domain annotations to annotate the Java code
manually, then they use static analysis to extract a hierarchical Ownership
Object Graph (OOG). This aspect of mitigating the complexity of the recov-
ered graphs is not taken into account in Pangaea

e Each of the works of de Brito et al [de Brito 2013|, Flangan et al |[Flana-
gan 2006] and Briand et al [Briand 2006| recovers object graphs dynamically.
Nodes of these graphs represent objects. The edges between nodes have differ-
ent meanings in each approach. According to de Brito et al [de Brito 2013], an
edge between two objects (ol and 02) indicates that ol has obtained a refer-
ence to 02 at some point in its lifespan. This reference could be acquired by an
object’s field, a local variable or by a method’s formal parameter. In Flangan
et al [Flanagan 2006], an edge between two nodes ol and 02 means that a field
of ol points to 02. Since the approach of Briand et al [Briand 2006| recovers a
special type of object graphs which is a scenario diagram (a simplified version
of a sequence diagram that depicts a specific scenario), edges between nodes
are method invocations. To promote the scalability of OGs, while de Brito

Shttps://scitools.com /
Thttp://structure101.com/
8http://lattix.com/lattix-architect

28

et al [de Brito 2013] use the summarization by domain, a group of nodes ex-
plicitly defined by developers, and Flangan et al [Flanagan 2006] apply some
abstractions such as: defining ownership and containement relations between
objects, this aspect is not discussed in the work of Briand et al [Briand 2006].

e In order to recover object graphs, Wang et al [Wang 2008| and Labiche et
al [Labiche 2013| proposed reverse engineering techniques based on a hybrid
analysis. In the work of Wang et al [Wang 2008|, static analysis is used to
build the object graph (nodes represent objects and each edge represents a
specific relation between two objects: creation, invocation, read or write).
This graph is then enhanced with dynamic profiling information such as al-
location frequency on nodes and interaction count on edges. Thereafter, this
information is used to reduce the object graph to a tractable size. Labiche
et al |Labiche 2013] presented a technique that also combines both static
and dynamic analyses in order to recover scenario diagrams. In this tech-
nique, instead of instrumenting the control-flow structures, as in their previ-
ous work [Briand 2006|, the static analysis is used to reverse engineer control
flow graphs. Like in their previous work, Labiche et al [Labiche 2013] do not
discuss the aspect of mitigating the complexity of recovered graphs.

The visualization of legacy systems source code artifacts has been widely addressed
in the literature. In particular, attention was drew to the visualization of classes/in-
terfaces characteristics such as: the number of lines of code, number of methods,
number of fields, etc. Some of these visualization works are presented bellow:

e Langelier et al [Langelier 2005] proposed a semi-automatic approach for large-
scale software visualization in order to understand software properties. In
this visualization, a class is represented by a 3D box. Some class character-
istics are captured throughout well known metrics. Box color, twist, and size
are matched to those characteristics. The authors defined two class layouts:
Treemap and Sunburst in order to allow a separation of the classes into areas.
In addition, some filters were implemented in order to focus on useful elements
and reduce the visual importance of useless elements. As a filter example, for
a given class, the expert can view only classes that are related to it by a
particular type of link (association, aggregation, etc.).

o Wettel et al [Wettel 2011] developed the CodeCity tool that uses the city
metaphor to visualize software systems as cities. In these cities, buildings
represent classes and districts represent packages. The number of methods,
attributes and lines of code are mapped to height, base size and colors of the
buildings respectively. This visualization allowed the assessment of the de-
sign quality by detecting some anti-patterns as the God Class one. Balogh
et al |Balogh 2013, Balogh 2015] developed the CodeMetropolis tool to visu-
alize software systems elements. Their visualization is also based on the city
metaphor.

24. ARCHITECTURE RECOVERY 29

e Cornelissen et al [Cornelissen 2009b]| developed EXTRAVIS tool for executing
trace visualization. EXTRAVIS provides two views: the massive sequence
wew which represents a UML sequence diagram and the circular bundled view
which displays the system artifacts on a circle and shows their relations in a
bundled way.

e Fittkau et al [Fittkau 2017| developed the ExplorViz 3-D trace visualization
tool. ExplorViz provides two types of visualization: the Landscape-level vi-
sualization and the Application-level visualization. In the Application-level
visualization, packages are displayed as green boxes, classes as purple boxes
and links between classes as orange lines. In the Landscape-level visualization,
a landscape, displayed as a gray box, is a group of systems which represents a
logical union of multiple applications, purple boxes, and servers(node groups),
green boxes. The communication between applications is visualized by orange
lines.

2.4.2 Design-level architectures recovery

Mitchell et al [Mitchell 2006] proposed the Bunch clustering tool which uses hill-
climbing and genetic algorithms to group classes/interfaces into clusters. The input
of the tool is a class-based graph in which nodes represent classes/interfaces and
edges represent dependencies between these classes/interfaces. These classes/in-
terfaces are clustered based on a modularization quality function. This function
measures the quality of the input graph clustering solutions quantitatively as the
trade-off between inter-connectivity (i.e., dependencies between the classes/inter-
faces of different clusters) and intra-connectivity (i.e., dependencies between the
classes/interfaces of the same cluster).

Tzerpos and Holt [Tzerpos 2000] proposed the ACDC (Algorithm for Comprehension-
Driven Clustering) clustering algorithm. This algorithm is pattern-driven. In a first
stage, the algorithm clusters a large proportion of the system artifacts based on
patterns that are commonly observed in decompositions of large software systems.
These patterns allow grouping in the same cluster: 1) procedures/functions, as well
as variable declarations that reside in the same source file 2) source files that exist in
the same directory, 3) source files that are leaves in a system’s graph, 4) source files
that are accessed by the majority of clusters, 5) source files that depend on a large
number of other resources and 6) source files that belong to a subgraph obtained
through dominance analysis. The second stage concerns source files that are still
not assigned to a cluster, since they did not fit any of the used patterns. For that,
the technique of orphan adoption [Tzerpos 1997] is used. This technique attempts
to place each orphan source file in the cluster that seems more appropriate.

30

ARC (Architectural Recovery using Concerns) is a clustering algorithm developed
in |Garcia 2011]. This algorithm uses the identifiers and comments in source code
to detect the concerns the system addresses. These concerns, combined with struc-
tural informations, are used in order to group the system artifacts in clusters based
on similarity measures. In this algorithm, similarity measures between concerns
are computed using a statistical language model called Latent Dirichlet Allocation
(LDA) [Blei 2003].

2.5 Discussion

Based on works presented in Sections 2.2 and 2.3, maintainability can take many
forms in terms of first class programming entities such as: components, services, mi-
croservices, aspects and well structured classes. For several approaches ([Jain 2001,
Lee 2003, Kim 2004, Washizaki 2005, Constantinou 2015, Li 2006, Fuhr 2011, Esco-
bar 2016, Mazlami 2017]) that aim to improve maintainability by migrating to the
component, service, or microservice-based paradigm by considering that the unit
of maintainability is a cluster of classes/interfaces, and that classes/interfaces can
be shared between several units/clusters. Therefore, if we build a new system with
multiple components obtained with these approaches, then we may have duplicated
code. This will complicate maintainability tasks especially in the case when bugs
exist in the duplicated code [Chatterji 2013] (DRY principle in not respected).
Moreover, in the works where no classes/interfaces are duplicated in several clus-
ters [Alshara 2015, Adjoyan 2014, Selmadji 2018, Allier 2011], if a user wants to
develop a new system using an independent class or subset of classes in a cluster,
it is required to use the entire cluster. This implies that the new developed system
contains unnecessary code. The maintenance of this latter is a waste of development
time and resources [Eder 2012].

In order to tackle the problems of duplicated and unused code, we argue that refac-
toring classes individually, resembling thus to component descriptors, makes them
more maintainable.

The maintainability covered by the works that target the migration to aspect ori-
ented programming |Binkley 2006, Ceccato 2007, Ceccato 2008| does not involve the
same program elements. Indeed, in these works, the refactoring aims to separate
the crosscutting functionalities, which are of a non-functional or technical nature
(authentication or access to a database, for example), from the core functionalities.
We argue that isolating parts of the code that represents architecture description
(instantiations, connections, provided /required interfaces declarations...) form parts
of code that represents the core functionalities makes the OO systems more main-
tainable. The two categories of work are perfectly complementary.

2.5. DISCUSSION 31

Moreover, approaches that propose refactoring operations by remaining in the same
paradigm [Fowler 1999, Tourwé 2003, Steimann 2006, Shah 2013,Ouni 2013] have the
same goal, which is improving maintainability. In the case of refactoring classes
individually, we argue that the same goal is targeted likewise but with a one other
requirement which is having at the end of the process a class conform to a component
descriptor.

As discussed in Section 2.4.1, several approaches have been proposed for the recov-
ery of traditional design representations such as class-based graphs. Since software
architectures are increasingly dynamic, with components being assembled at run-
time, recovering the runtime architecture is becoming more significant. The runtime
architecture of a given system represents a model of the system’s concrete running
entities (objects) and dependencies between them. We believe that a runtime ar-
chitecture, an object-based model, communicates different information from a class
based model. This is because an object-based model shows only the set of objects
that really exist at runtime and their relationships. Moreover, a class-based model
shows in a generic way all associations to which a class can participate. However, it is
when this class will be instantiated, it will be clear which instances really participate
in these associations. We believe this has a great impact on comprehension.

The importance of having the runtime architecture to handle comprehension tasks
was stressed in several experimental studies such as the ones from [Lee 2008| and
[Ammar 2012|. [Lee 2008] conducted an interview-based experimental study to in-
vestigate which kind of information is desired by maintainers/developers during
comprehension tasks. 19 maintainers were involved in this study. Each maintainer
was provided with source code and a simple tool that models the relationships of the
code elements. The intent of this tool is to get information about what maintain-
ers think that a diagram should contain. The participants described many kinds
of information that should be in a diagram including objects interactions. Many
participants stressed the importance of having a diagram that models objects and
their interactions. One of these participants described “draw how objects connect
to each other at runtime when I want to understand code that is unknown; an ob-
ject diagram is more interesting than a class diagram, as it expresses more how it
functions”. Moreover, [Ammar 2012| evaluated whether a runtime architecture is
more helpful in handling comprehension tasks than class diagram. The results of
their study confirmed their research hypothesis which was: for comprehension tasks
that require knowledge about the runtime structure, maintainers that use a runtime
architecture requires less effort and spend less time than developers who use only
class diagrams.

Most of the automatic and semi-automatic approaches for runtime architecture re-
covery build flat models (e.g. [Spiegel 2002|). These flat models can have a small
size in case of small-sized software systems. However, in the case of medium and
large sized systems, these models become unreadable, with thousands to millions of
modeling elements.

32

Other approaches that take into account this aspect of complexity management
(such as [Wang 2008, Abi-Antoun 2009, de Brito 2013, Flanagan 2006] group sets
of objects in several summarizing objects and/or add labels that corresponds to
properties, on runtime architecture nodes and/or edges. Thereafter, these labels are
used in order to reduce the runtime architecture model size by definitely discarding,
from the final graph, nodes and/or edges that do not fit to some criteria. This can
be beneficial depending on the goal of the approach, however, in some situations of
comprehension, it would be more interesting to have an interactive way that allows
to hide and display nodes and edges as needed, having thus a visualization steered
by the user.

It is argued that the lifespan of running objects in a system is an important in-
formation that is often required to reason about the performance of a software
system [Peiris 2016]. Moreover, the probability of existence of objects at runtime
could be used to eliminate dead code, which involves objects which never really exist
at runtime, during comprehension tasks since the comprehension of dead code is a
waste of development time and resources.

Despite the importance of these types of information, to the best of our knowledge,
an approach that exploit them in order to manage the complexity of the recovered
runtime architecture has never been approached in the literature.

Approaches that target the recovery of the design-level architecture for the re-
modularization [Mitchell 2006, Tzerpos 2000, Garcia 2011] and/or migration’ pur-
poses [Jain 2001,Lee 2003, Washizaki 2005,Constantinou 2015, Allier 2011, Alshara 2015,
Adjoyan 2014, Escobar 2016, Gysel 2016, Selmadji 2018] consider, in general, struc-
tural relationships between source code artifacts for measuring coupling and cohesion
of the different decompositions of the legacy system. These approaches do not make
a difference between the different types of structural relationships (e.g., field typing,
method invocation, etc) that can exist between classes/interfaces. These structural
relationships are considered equivalent which is not always true and not accurate
enough. We believe that the different types of relationships should be differentiated.
Moreover, we believe that a composite class/interface and its components should log-
ically be clustered in the same module and their separation across different modules
results in a high coupling between these modules. To the best of our knowledge, only
the approaches of Lee et al [Lee 2003|, Kim et al [Kim 2004| and Li et al [Li 2006]
consider composition relationships represented in a UML class diagram. In Kim et
al’s [Kim 2004| approach, the class diagram is supposed to be available beforehand
which is not always obvious. The approach of Lee et al [Lee 2003| is composition
and inheritance conservative. That is, classes/interfaces with composition and in-
heritance relationships are always grouped in the same module. However, these
relationships have been identified manually and no details were given on how they

9The ultimate goal of these approaches is the migration into a new paradigm, however, they
produce intermediate design-level architectures which are beneficial for understanding and remod-
ularization.

2.5. DISCUSSION 33

was identified in source code'’. For the approach of Li et al [Li 2006], no details were
given on how the composition relationships were identified automatically in source
code. Moreover, these relationships are not exploited in the following steps of their
recovery process. Thus, a composition conservative remodularization approach that
differentiates between types of structural relationships is needed.

The following part of the thesis aims at presenting our contributions answering
all the shortcomings mentioned above.

10We speak in particular of the identification of the composition relationships. Inheritance
relationships identification is straightforward.

34

CHA:;TER Migrating Object-Oriented Soft-
ware Systems into Component-
based equivalent ones

Contents
3.1 Introduction and Problem Statement 35
3.2 Foundations of the Proposed Approach 36
3.2.1 Decoupling and Non Anticipated Instantiations Violation 36
3.2.2 Refactoring Operations 37
3.3 Experimental Results and Evaluation 45
3.3.1 Data Collection 46
3.3.2 Used Measures 46
333 Results 47
3.3.4 Threats to Validity 50
3.4 Conclusion. 0 i s e 50

3.1 Introduction and Problem Statement

Maintainability in Object-Oriented (OO) systems has been a major concern since the
early years of OO programming languages. Component-Based (CB) paradigm has
been recognized as an approach that emphasizes software maintainability. However,
many existing (especially, business) software systems are built using the Object-
Oriented (OO) development paradigm. Many of these systems have complex and

35

36 CHAPTER 3.

numerous dependencies which make them hard to modify and maintain. Therefore,
it would be interesting to migrate OO systems into CB ones. This migration enables
to benefit from CB development paradigm characteristics. Existing works that pro-
pose migration solutions consider that the component is a group of classes, called
a cluster. To the best of our knowledge, no solution proposes refactoring classes
individually to make them component descriptors although doing so helps reducing
maintainability effort.

This chapter focuses on the first contribution of this thesis. We propose a migration
solution that considers each class in an OO application as a component descriptor
in a target CB application. The proposed process is decomposed into two steps.
The aim of the first step is to detect modifiability /maintainability bad smells, i.e.
decoupling and unanticipated instantiation violation (presented in Section 3.2.1).
The second step allows the elimination of these defects by automatically applying
a composition of code refactoring operations (Section 3.2.2). Section 3.3 discusses
the results of an experimentation of this solution conducted on a set of open source
Java projects. Section 3.3.4 discusses the threats to validity of the approach and
Section 3.4 concludes the chapter and presents future works.

3.2 Foundations of the Proposed Approach

3.2.1 Decoupling and Non Anticipated Instantiations Viola-
tion

While code decoupling and non anticipated instantiations principles are fundamen-
tal [Fabresse 2008|, they are not necessarily always respected in existing OO systems.
Therefore, it is necessary to identify the symptoms of their violation in an existing
OO code to enable their detection and elimination.

3.2.1.1 Decoupling Violation

In CB programming, code decoupling means that components are assumed to com-
municate only through their interfaces/ports. Therefore, a component has not a
direct access to a component with which it interacts. To have this decoupling in OO
applications, assuming that each class will correspond to a component descriptor,
each class must, for example, expose all its public methods in abstract types (pro-
vided interfaces). Then, other classes that use these methods should declare their
dependence on these abstract types, which become their required interfaces.

3.2. FOUNDATIONS OF THE PROPOSED APPROACH 37

However, most existing OO systems have multiple dependencies between their dif-
ferent classes (direct concrete types) for a cooperative business processing. In partic-
ular, it is possible for a field or a parameter to be typed with a concrete class of the
application. These situations lead to code decoupling violation. To deal with decou-
pling violation, we consider the two symptoms of the modifiability /maintainability
defect: “Absence or Incompleteness of Provided Interfaces(AIPI)” and “Absence of
Required Interfaces (ARI)”.

AIPI symptoms are identified when:

1. a class defines a public non-static method not declared in the interfaces im-
plemented by this class (or no interface is implemented by this class),

2. a class declares public fields or fields with no explicit visibility modifier, and
3. a class declares global constants.

Since it is recognized that program variables should be typed with abstract types
rather than concrete classes [Steimann 2006, Gamma 1995, Fowler 1999], ARI symp-
toms are identified when a class declares fields with a concrete class type.

3.2.1.2 Non Anticipated Instantiations Violation

In CB systems, non anticipated instantiations principle means that a component
requiring a service can be connected to any other component providing such a service.
That is, the implementation of a component should not include a connection to
another particular component. This connection should be established only by a third
party, who is the developer of the system/component that uses the two components
to be connected. To comply with this connection fashion in OO systems, constructor
calls should not be used. Instead, declarative annotations should be defined; these
are processed by a (dependency injection) mechanism that manages instances at
runtime.

To deal with non anticipated instantiations violation, we consider the symptoms
of the modifiability /maintainability defect of type FAI “Ezistence of Anticipated
Instantiations”. FAI symptoms are identified when a reference to a created object
is stored in a field /local variable, is a returned value of a method, or is an argument
of a method invocation. In the present work, we consider that these instantiations
are not surrounded by a control flow statement.

3.2.2 Refactoring Operations

In this section, the strategy used to work out how to eliminate the modifiability
defects from source code is discussed. Table 3.1 gives a summary view of the symp-
toms detected in the source code and the technique used for the removal of each
Symptom.

IProtected visibility is out of the scope of our approach

38 CHAPTER 3.

Table 3.1: Refactoring Operations

Symptom Operation
Public fields or fields with no explicit visibility modifier
(package visibility) Change visibilities
Global constants Move declarations
Public non-static methods not exposed in interfaces Expose methods
Fields typed with concrete classes Create required interfaces
Anticipated instantiations Use dependency injection

3.2.2.1 The “Change Visibility” Refactoring

This operation considers the AIPI symptom when a class field is public or has
no explicit visibility modifier, i.e., has the package default visibility for Java, for
example. In this case, the field visibility is simply changed to private, and a pair
of setter/getter methods is inserted to access this field (only a getter method in the
case of a public final field). The resulted methods will be exposed via interfaces as
explained through the next refactoring operation.

3.2.2.2 The “Expose Methods” Refactoring

This type of refactoring deals with the AIPI symptom when a class A defines a
public non-static method m and its declaration does not exist in any interface from
those implemented by A. The idea here is to add this declaration to an interface Ij.
This (changed) interface should not be implemented by any other class. Otherwise,
i.e., when all the interfaces implemented by A are also implemented by other classes,
a new interface I, is created and m’s signature is added to it.

Another case which is taken into account is when the class A implements two in-
terfaces or more, and all these interfaces are not implemented by other classes. In
this case, it is necessary to distribute the methods on interfaces in a manner that
each signature added to an interface should be cohesive with other already existing
methods in this interface. To do this, the Chidamber and Kemerer [Chidamber 1994]
LCOM (Lack of Cohesion of Methods) metric is calculated in order to evaluate the
cohesion of each signature added to an interface and the other existing methods in
this interface.

LCOM is selected because it is widely used and it has been validated by several
approaches, such as [Basili 1996]. The theoretical basis of LCOM uses the notion
of degree of similarity of methods. This degree of similarity between n methods can
be defined to be the intersection of the sets (Fy,....F,) of a class fields that are used
by the methods (M ,...,M,). LCOM is the number of empty intersections P minus
the number of non empty intersections Q if P > Q or 0 otherwise. In our case,
the LCOM metric is calculated between all methods of a given interface, among

3.2. FOUNDATIONS OF THE PROPOSED APPROACH 39

F1 = {rendererMap}
F2 = {rendererMap}
F3 = {rendererMap}

F1 = {throwableRenderer}
- rendererMap F2 = {throwableRenderer}
- throwableRenderer F3 = {rendererMap} :

F1.n F2 = {rendererMap}
3 = hMap)

F1 n F2 = (throwableRenderer}.

+ getRendererMap()

+ setRendererMap()

+ getThrowableRenderer()
+ setThrowableRenderer()
+ addRenderer()

<<Interfaces>
ThrowableRendererSupport

Figure 3.1: Using LCOM metric to apportion methods on interfaces

the interfaces that are not implemented by any other class, plus the method that
must be exposed in an interface. In this way, methods that use the same fields will
be exposed in the same interfaces. To better understand this idea, an illustrative
example, extracted from the Log4j* open source project, is given in Figure 3.1.

In this example, we have a class Hierarchy that declares two fields (throwableRen-
derer and rendererMap) and five public methods (getThrowableRenderer(), set-
ThrowableRenderer(), getRendererMap(), setRendererMap() and addRenderer()).
This class implements two interfaces RendererSupport and ThrowableRendererSup-
port. The methods getThrowableRenderer() and setThrowableRenderer() are ex-
posed in the interface ThrowableRendererSupport and the methods getRendererMap()
and setRendererMap() are exposed in the interface RendrerSupport. The method
addRenderer() is not exposed in the interfaces implemented by the class Hierarchy.
The two interfaces are not implemented by other classes so the declaration of ad-
dRenderer() can be added to one of them. To decide to which interface it should
be added, the LCOM metric is calculated to measure the cohesion between Ren-
dererSupport methods with addRenderer() and between Throwable RendererSupport
methods with addRenderer(). In Figure 3.1, F sets in the blue boxes correspond
to the fields used by each method. For example, if we take the blue box on the
right, F; set contains the field throwableRenderer which is the field used by the
method getThrowableRenderer(), Fy set contains the field throwableRenderer which
is the field used by the method setThrowable Renderer() and Fj5 set contains the field
rendererMap which is the field used by the method addRenderer().

According to LCOM values, we can deduce that the addRenedrer() method is more
cohesive with the methods exposed in RendererSupport (0 < 1), therefore, the decla-
ration of the addRenderer() method will be added to the interface RendererSupport.

Zhttps://logging.apache.org/log4j/1.2/download.html

40 CHAPTER 3.

Someone can find that the use of Default Methods in Java 8 can be useful to elimi-
nate this type of modifiability /maintainability defect. But the idea here consists in
exposing only the declarations of methods not their implementations.

3.2.2.3 The “Move Declaration” Refactoring

The use of global constants is very common and even essential. The proper way
to define a constant in Java is to define a public static final field. The fact that
it is public and static allows access from anywhere and the modifier final prohibits
its modification, which is generally sought for a constant. To deal with a global
constant declaration (AIPI symptom type), we thought the movement of the field
declaration from its class to one of the interfaces implemented by this class.

3.2.2.4 The “Create Required Interface” Refactoring

This refactoring is used when a field is typed with a concrete class A. It consists
of the following steps: search all invocations to external methods whose receiver is
saved in the considered field, collect the signatures of these methods, create a new
interface (considered as the required interface), add the signatures of the invoked
methods on the field® to this interface and replace the type of the field by the
newly created interface. The last step consists of adding inheritance links between
the required interface and the provided interfaces implemented by A (the provided
interface extends the required interface). The class’ required interfaces will be as
many as the number of concrete classes used as types for its fields. However a single
required interface is created for two fields with the same type.

A case that must be taken into consideration is when the field typed with a concrete
class is assigned to other references directly or indirectly (e.g, local variable). In
this case, the program can be type incorrect when additional methods, methods
that were not invoked on the field, are invoked on these references. For this reason,
further changes to the program may therefore be necessary. Changes include the
possible change of the declared type of these references.

To better understand this refactoring, suppose that there are two declarations A
a and B b and the assignment b = a. A and B can refer to the same type or
A extends/implements B. Suppose also that RI is the interface that contains the
methods needed from the reference a. Methods needed by b and that do not exist
in RI are added to RI and the declaration B b is changed to become RI b.

By applying this type of refactoring and the former ones, the required and pro-
vided interfaces are henceforth defined explicitly in the source code.

3In this way, the interface segregation principle is respected.

3.2. FOUNDATIONS OF THE PROPOSED APPROACH 41

LA o

i\

o
LY

<<¢interface>>
1A

uses

a- without dependency injection b- using dependency injection

Figure 3.2: Dependency Injection Mechanism

3.2.2.5 The “Use Dependency Injection” Refactoring

Dependency injection (DI) is a powerful technique for decoupling classes. In this
technique, the client class does not depend on a specific implementation class. The
implementation class is injected at runtime by a container. To better understand the
technique, suppose we have a class B that uses an object of the class A (Figure 3.2).
This class A is an implementation of an interface IA. Dependency injection removes
the dependence of class B on class A by adding an injector (container) and making
it responsible of the dependency look up. This injector is often externally configured
by an XML file. The advantage of using DI technique is: allowing class B to work
with any implementation of the IA interface without any changes in source code,
only the XML file will be changed in the case of XML-based configuration, so there
is no recompilation of the source code.

Many dependency injection containers can be used to inject dependencies at run-
time such as Spring DI*, PicoContainer’, Google Guice® and Dagger (1 and 2).
They provide almost exactly the same functionality. Each needs slightly different
configuration.

In the following, the general structures that indicate the use of dependency injection
are given. All these structures will be illustrated by examples extracted from the
Jasml® and FreeCS” open source projects.

1. Instances stored in fields

4https://spring.io/
°http://picocontainer.com/
Shttps://github.com /google/guice
Thttp://google.github.io/dagger/
8http://jasml.sourceforge.net/
9http://freecs.sourceforge.net/

42

11

13

15

17

19

21

23

25

27

29

CHAPTER 3.

An instantiation, constructor call, statement in a method/constructor where
this statement’s left-hand-side corresponds to a field. The called constructor
does not take method /constructor parameters as arguments or it takes attain-
able ones (arguments whose values can be calculated by a static analysis). In
this case, the refactoring is typically done through the following steps:

(a) save the arguments of the constructor call if any,

(b) replace the instantiation statement by an annotation used by the used DI
framework. For example, the @Autowired annotation is used on fields in
Spring DI (the field must be non final).

An example of this case is illustrated in listings 3.1. The annotation @Au-
towired enables the automatic dependency injection based on the type.

Listing 3.1: Instances stored in fields

Instances stored in local variables

The second case is when an instantiation statement is made inside a method-
/constructor and the obtained reference is stored in a local variable. As in the
previous case, we suppose that the constructor call does not take any argument
or take attainable ones. This local variable will be removed from the method-
/constructor body and turned into a private field of the class(this refactoring,
transforming a local variable to a field, is failure-safe as it has been experi-
mented in the literature [Gligoric 2013|). This field will be treated following

3.2. FOUNDATIONS OF THE PROPOSED APPROACH 43

the previous case. Renaming this local variable, before moving it, could be
another additional refactoring. In contrast to the previous case, since what is
transformed is a local variable and not a field, we use here a lazy initialized
DI so that the created field is injected when it is first requested (during the
execution of the method/constructor where it was originally declared as a local
variable), rather than at startup.

An example of this case is given in Listing 3.2. The attribute lazy-init of a
bean is added to allow creating a bean instance when it is first requested,
rather than at startup since info was initially a local variable and it has been
turned into a field.

Listing 3.2: Instances stored in local variables

To the best of our knowledge, PicoContainer, Dagger and Guice do not pro-
pose a technique to inject dependencies in local variables. Conversely, Spring
propose the lookup method injection that can be used in such case. In few
words, it consists of a dynamic subclassing and the ability of the container
to override methods on container managed beans. The use of this type of
injection is explained in Listing 3.3.

Listing 3.3: Instances stored in local variables with Spring’s lookup-method

44

10

12

14

16

18

20

22

24

26

10

12

14

16

18

CHAPTER 3.

In this case, the Spring container will create a subclass of OpcodeLoader class
and override the createOpcodelnfo() method to return an instance of Opcode-
Info class, based on the architecture description.

Someone can ask if Spring already offers a way to do this, what is the interest
to use another way? We propose our new technique for two reasons. The
first is avoiding to be dependent on a particular DI framework. The second
reason is about the key limitation of method lookup if we have a static method.
To better understand the problem, suppose that processOpcode() is a static
method. In this case, createOpcodelnfo() must be static so it can not be
overridden.

In fact, even if we use our technique when the method is static, the local
variable info must be turned into a private static field and static fields can not
be autowired, since beans can have a singleton scope. To solve this problem,
we propose to add a non static setter for the field and use setter injection.
This case is explained in Listing 3.4.

Listing 3.4: Instances stored in local variables inside static methods

3.3. EXPERIMENTAL RESULTS AND EVALUATION 45

20 public static void processOpcode(Node node){

22 ¥
}

24
// Architecture description in Spring

26 | <bean id="opcodeLoader" class="OpcodeLoader">
</bean>

28 | <bean id="opcodeInfo" class="OpcodeInfo"
lazy-init="true">

30 | </bean>

3. Instances stored in fields/local variables; these instances take con-
structor/method parameters as arguments

The last case is where instances’ references are stored in fields/local-variables
while using non-literal values as arguments in their instantiation. To deal with
this case, first, a new “default” constructor is created in the instantiated class,
and the initial constructor call, in the instantiation, is replaced by this new
constructor call. Then, a new method that contains exactly what the initial
constructor contains is added to the instantiated class. Finally, the instan-
tiation statement is treated following one of the two previous cases, and an
invocation statement of the new method is added to the instantiating class.
Anonymous object instantiations, i.e., instantiations which play the role of ar-
guments in method invocations or returned values, for instance, are considered
the same as instantiations made as right-hand-side expressions of assignments
to local variables. They are processed following the same procedure than the
two previous cases.

3.3 Experimental Results and Evaluation

We have implemented a prototype of the described method using Spoon [Pawlak 2015b]
which is a library for source code analysis and transformation. We conducted some
experiments to evaluate the truthfulness of the stated hypothesis of migrating OO
systems into CB ones in order to improve their modifiability and thus maintainabil-
ity. These experiments were conducted to answer the following research questions:

e RQ1: What is the efficiency (precision) of the detection phase?

e RQ2: To what extent does the proposed approach improve software modifia-
bility and thus maintainability?

46 CHAPTER 3.

3.3.1 Data Collection

For our study, four open source Java projects were used. In order to gather these
projects, Qualitas Corpus 'Y which is a large curated collection of open source Java
projects was used. Table 3.2 provides a brief description of these projects. They are
of different sizes, varying from 5732 to 23012 LoC, 50 to 214 concrete classes and
1 to 36 abstract types, and developed by different teams to avoid the influence of
characteristics related to team habits on results.

Table 3.2: Data collection

#Interfaces
System Description LOC | #Classes | + Abstract
classes
Jasml Java classes visualization tool | 5732 50 1+0
CoCoME Commercial application 5779 99 21 +0
FreeCS Chat server 23012 139 17+ 6
Log4j A Logging Framework 20129 214 20 + 16

3.3.2 Used Measures

The first research question deals with measuring the efficiency of the detection al-
gorithms. To answer this question, we measured precision, well-known metric in
the information retrieval domain. Precision assesses the ratio of true modifiability /-
maintainability defects identified among the detected ones (true positives -+ false
positives). To do this, we analyzed the four projects manually to consider identified
defects as true positives:

True Positives

precision = (3.1)

True Positives + False Positives

To answer the second research question, we use the Maintainability Index (MI)
metric that measures the maintainability of a software system [Welker 2001], and
which was considered in many recent works, such as [Borstler 2016, Koteska 2018].
It allows to determine how easy it will be to modify and maintain a system. High
MI values indicate that the system is easier to maintain for future changes. There
are different versions in calculating MI. These are presented below:

MI1 =171-5.2In(V)—0.23%x C—16.2In(LOC)+(50xsin(sqrt(2.46x« NOLComments))
(3.2)

Ohttp://qualitascorpus.com/

3.3. EXPERIMENTAL RESULTS AND EVALUATION 47

V is the Halstead’s volume which is calculated based on the number of operands and
operators in methods, more details on this metric can be found in [Al Qutaish 2005];
C' is the cyclomatic complexity value; LOC is the number of lines of code and
NOLComments is the number of lines of comments. In the case of systems which
do not have considerable comments, the above formula can be simplified to omit the
involvement of NOLComments as bellow:

MI2 =171 — 52In(V) — 0.23 % C — 16.2In(LOC) (3.3)

For our study, the tool used to calculate the MI value is JHawk!'" which calculates
a wide number of Java code metrics. It provides the two previous versions of the
Maintainability Index.

3.3.3 Results

We asked four master and one PhD student, who were not involved in this work
before, to analyze the systems source code manually. We gave the Jasml and Co-
CoME systems to two master students, we asked the two other master students to
divide the FreeCS system and each of them analyzes half of the packages, and the
PhD student was assigned to analyze the Log4j system.

The five students used as reference a detailed description of the modifiability /main-
tainability defects we wrote. All the students visualized the source code of each
class separately using Eclipse and produced Excel files'? containing the number of
occurrences of each modifiability /maintainability defect for each class and the total
number of defects in the entire project. Some defects have been missed by mistake
due to the nature of the task.

We report the results of the detection phase in table 3.3. It provides for the four
systems the number of existing smells, the result of manual analysis (M) in the first
line of each row, the smells detected by our implementation (A for automatic) in
the second line, and the precision in the third line. For the four systems, all the
defects detected manually are also detected automatically. Table 3.3 shows that a
large percentage of the results obtained with our approach are validated manually
(from 87% in average for FreeCS to 94% for Jasml)

We have calculated MI values to compare systems before and after applying our
approach on the four projects. Since comments will not be added with the created
elements (interfaces, methods and fields), we used the MI2 formula in our study.
This formula is calculated at the class level since we have used a trial copy of the
JHawk tool. In this copy, the developers have mentioned that a number of Java files
can be selected for parsing but only the results of a few classes will be displayed.
Table 3.4 shows the MI scores before and after applying the method on the four
projects. MI represents the average of the classes” MI value.

Uhttp: / /www.virtualmachinery.com/index.htm
2https:/ /www.dropbox.com /sh /whjczwv6qvbglq2/AADh7jU6p23SVidNAWR4IQ-da?d]1=0

48

CHAPTER 3.

Table 3.3: Detected smells (In each row, M = results of Manual analysis; A = results of
Automatic analysis).

Public & Public : Fields of | Instantiations
non-static
System package concrete | that can be Avg
methods not ..
fields class type | injected
exposed
M | 420 48 26 41
Jasml-0.10 A | 447 49 27 46
Prec | 93.96% 97.96% 96.29% 89.13% 94%
M | 32 221 25 82
CoCoME A | 34 223 29 85
Prec | 94.11% 99.1% 86.20% 96.47% 93%
M | 380 571 83 79
FreeCS-1.3 A | 402 837 88 86
Prec | 94.52% 68.22% 94.31% 91.86% 87%
M | 365 750 150 105
Log4j-1.2.17 | A | 370 753 167 133
Prec | 98.65% 99.6% 89.82% 78.95% 91%

Table 3.4: MI values before and after applying the method

System MI before | MI after | Improvement factor
Jasml-0.10 125.49 147.95 1.17
CoCoME 125.12 161.64 1.29
FreeCS-1.3 110.21 120.89 1.09

Log4j-1.2.17 114.52 122.68 1.07

From the results of Table 3.4, it is clear that the maintainability index is better, with
an improvement factor that ranges from 1.09 to 1.29, when applying our approach
on the listed systems. The improvement in maintainability, according to this metric,
is not an insignificant score, regarding the size of these systems.
The improvement in MI scores is mainly due to the use of new interfaces. These
interfaces have a high MI score comparing to concrete classes. The main reason is
that an interface has a low value of LOC, comparing to classes. When the average
of MI on the classes and interfaces is calculated, the MI value tends to have a better
score. Another reason of the improvement in MI scores, is the low Halstead Volume
(V) value of added setters and getters to classes. When the average of V on the
methods of a class is calculated, the V value tends to have a lower value.

3.3. EXPERIMENTAL RESULTS AND EVALUATION 49

Better MI scores of interfaces are justified. This is because interfaces define methods
that accomplish specific functionalities without stating how such functionalities will
actually work. The real implementation is provided by the class implementing the
interface. Therefore, during maintenance tasks, new maintenance requirements can
be defined in separate classes that are used by the system in the same way as other
already existing classes. The add of new classes makes the maintenance task easier.
Then, in order to check if during the evolution of a single system, the proposed
refactorings keep stable this improvement in modifiability /maintainability, we eval-
uated MI for six versions of Log4j API, which where developed over a period of 17
years.

The MI values for the six versions before and after applying the proposed refactorings
are depicted in Table 3.5. From this table, we can see that there is an increase in
MI values of Log4j, before applying our approach, in all the analyzed versions. This
is justified by the fact that from a version to another, new functionalities are added
to the system or bugs are corrected, but developers of this system pay attention
to its maintainability. As an example of modifications that have been performed
in version 1.0.4 and contributed to improve the maintainability of version 1.1.3:
FileAppender class from org.apache.logj package has been splitted into three classes
(ConsoleAppender, WriterAppender and FileAppender) and the MI value for this
class passed from 120.47 to 122.75 (the average MI for the three new classes).

Table 3.5: MI values of Log4j versions.

Version | # Classes | MI before | MI after | Imp. factor
1.0.4 146 111.31 121.59 | 1.09
1.1.3 162 112.25 122.47 | 1.09
1.2.1 179 114.81 120.66 | 1.05
2.0 87 116.08 119.64 | 1.03
2.4 112 117.66 121.56 | 1.03
2.8 172 118 121.16 | 1.02

As we can observe, in all the versions, the maintainability is improved. However,
the improvement is greater in the first versions. This is explained by the fact that
starting from the (major) version 2.0, the structure of Log4j has completely changed,
and its maintainability was substantially improved. In the following versions, the
system keeps a good MI score, even if this is slightly improved by our refactorings.
This shows that our refactorings give better results on old versions of legacy systems,
compared to new, potentially refactored, ones.

50 CHAPTER 3.

3.3.4 Threats to Validity
3.3.4.1 Internal Validity

On threat concerns the fact of injecting only instances that are not surrounded by
a control flow statement. In order to investigate the applicability percentage of the
“use dependency injection” refactoring, we checked the number of instances that
can not be injected. For the four systems, instances that can not be injected range
from 19% in the case of CoCoME to 71% in the case of FreeCS. These are high
percentages that require to be taken into account in the future.

The obtained results in the detection phase depend on the specification of modifia-
bility /maintainability defects and on the profile of students. We tried to be the most
accurate possible in the description of defects and we have chosen students who have
some experience in Java programming. Another aspect can bias the results is related
to the number of persons involved in the experiments: one student was assigned to
one system or to a part of a system. Several persons should be assigned per system
to have more accurate results. In our study, we gave these students large periods of
time (2 weeks in average) to carefully check the defects.

3.3.4.2 External Validity

We tried to collect systems of different sizes and developed by different teams to
diversify the data. It is sure that with a larger set of systems we may obtain more
precise results. However, since the results were all positive with the four studied
systems, which vary in size, our intuition, on the interest of transforming OO code
into CB one using the proposed refactoring operations, is strengthened.

3.4 Conclusion

We presented in this chapter an approach for improving the modifiability /main-
tainability of object-oriented source code, by focusing on what component-based
development brought to programming, i.e. decoupling and non anticipated instan-
tiations. Our approach was experimented on a set of Java projects to evaluate its
efficiency in the detection of modifiability /maintainability defects, and the improve-
ment it brings to maintainability. The results of this experimentation helped to
answer of the first research question 1 in Chapter 1 and showed that there is a
potential in using the proposed process in migrating existing legacy OO systems.
Perspectives of this work include the experimentation of this approach on a larger
set of projects with larger sizes. From a tool-support point of view, our prototype
solution could be improved and integrated to the Eclipse IDE as a monolithic refac-
toring solution with Eclipse already existing refactorings in order to experiment its
usability by maintainers in their real-life maintenance tasks.

Recovering the Runtime Archi-
“rrtecture of Object-Oriented Soft-
4 . .

ware Systems and Managing its
Complexity

Contents
4.1 Introduction and Problem statement 52
4.2 Foundations of the proposed Approach 53
4.2.1 The Process in a Nutshell. 53
4.2.2 Source code static analysis 54

4.2.3 Source Code Instrumentation & Instrumented Code Exe-

cution 61

4.2.4 Object graph refinement 65
4.2.5 Managing the Complexity of the Refined Object Graph . 66
4.2.6 Visualization with a level of detail 69

4.3 Experimental Results and Evaluation 69
4.3.1 Research questions 69
4.3.2 Experiment Setup 70
4.3.3 Results and discussion oL 71
4.3.4 Threats to Validity 80

44 Conclusion. 000 Ll s 81

o1

52 CHAPTER 4.

4.1 Introduction and Problem statement

We presented in the previous chapter an approach which focuses on the improvement
of the maintainability quality attribute of legacy systems. Experiments showed that
this approach performed well on the studied systems. However, more experiments
on a larger set of systems (with larger sizes) is needed and envisaged in the future.
Another important quality attribute that has a direct impact on maintainability is
understandability. In order to improve this latter, a high level view, an architecture
model, of the system’s structure and behavior is needed. The evolution of software
systems over time often leads to an erosion of its architecture. In this case, an archi-
tecture recovery process should be carried out in order to build the as-implemented
architecture of the system to be evolved.

This chapter focuses on the second contribution developed in this thesis. We propose
an approach for recovering runtime architectures and managing the complexity of
the recovered architectures. To this end, static and dynamic analyses are combined.
Static analysis is used to build object graphs (OG); i.e., graphs where the nodes
represent objects and the edges represent objects’ field assignments. For large soft-
ware systems, such graphs often contain hundreds or thousands of nodes and edges,
hence directly viewing such a graph is of no help. Thus, these graphs are refined
using information obtained through the analysis of execution traces. The informa-
tion added to these graphs includes the lifespan of each object and its “empirical”
probability of existence at runtime. This added information is used to reduce the
complexity of the resulting refined graph according to the developer preferences. In
fact, developers can use this information to set thresholds and reduce the size of the
graph focusing, for instance, on the most likely or durable objects. Furthermore,
composite (internal) structures of objects are identified in the graph. This organizes
the refined OG into a hierarchy of composite structures/nodes that can be collapsed
or expanded to hide or show their internal structure. We experimented the approach
through examples conducted on Java open-source projects. These examples showed
that our approach recovers the runtime view of the analyzed system and effectively
manages the complexity of this view in order to handle some understanding tasks.

In this chapter, Section 4.2 presents a general overview of the approach which is
defined as a multi-step process. Sections 4.2.2 to 4.2.6 detail each step of the process.
We present the experimentation of this process and discuss our observations in
Section 4.3. We conclude in Section 4.4.

4.2. FOUNDATIONS OF THE PROPOSED APPROACH 53

4.2 Foundations of the proposed Approach

4.2.1 The Process in a Nutshell.

The proposed process is depicted in the activity diagram in Figure 4.1. This figure
presents the six main steps (activities) of the OG recovery process. The first step
is a static analysis of the source code (al) from which an initial OG, similar to
the one introduced in [Tonella 2005], is recovered. The second step (a2) consists of
automatically instrumenting source code, inserting statements at specific locations,
to create logs about object creation and destruction. This instrumented code is then
executed in the third step of the process (a3) using a set of test cases or passed to
users for a period of time. The output of this step is a set of execution traces. The
steps al and a2+a3d can be executed in parallel. The generated traces are analyzed
to extract information to refine the preliminary OG (a4). The fifth step (a5) of the
process consists in managing the complexity of the refined OG using two techniques:
i) exploiting the lifespans and probabilities of existence, and ii) identifying the so-
called composite structures, which make the graph hierarchical and thus reduce
its complexity. Indeed, the identification of composition relations between objects
enables us to build the composite structures of objects in the form of hierarchical
nodes in the graph, which embed their inner objects (inner nodes) and their inter-
relationships (inner edges). In order to understand the runtime architecture of a
given software system, developers can customize their visualization (a6) by focusing
on the most durable objects and/or the most likely to exist at runtime. Developers
can also focus on particular objects by unfolding hierarchical nodes to analyze their
composite structure, or to visualize a high level view of the architecture (the graph
hiding the internal composite structures). Sections 4.2.2 to 4.2.6 discuss in detail
the different steps of the process for recovering this refined hierarchical graph.

<<dataStore>>
Test cases

IJ;I a6: Visuallzation with
a Level of Detall
<<dataStore>> | * a3: Instrumented code l
Insirumented source code execution 4
<<datasStore>>
<<dataStore>> <«dataStore>>
Executlon traces Refined object graph

Refined and hierarchical

object graph
—_J
<<dataStore>> Haa: Object graph refinement [-]
Preliminary object graph lectgrap >

a2: Source code
Instrumentation

<¢dataStore>>
Source code

a5: Managing the Complexity
of the Refined Object Graph

Figure 4.1: Process for the creation of a refined hierarchical object graph

54 CHAPTER 4.

4.2.2 Source code static analysis

This first step of the process aims at building a preliminary OG of the system under
study. This is achieved by a static analysis of the source code which consists of
reasoning about the behavior of a program without actually running it.

An OG (Nodesog, Edgesoc) is a directed labeled graph that represents the struc-
ture of a given software system in terms of objects. In this graph, Nodesos denote
objects. A directed edge(o1, 03) € Edgesog indicates that o, has obtained a ref-
erence to oy at some point during its execution, and this reference was assigned to
one of oy’s fields. Edges are labeled with field names. The focus on field assign-
ments is motivated by the fact that fields store and affect the state of the object
while local variables and method parameters are simply short-lived variables for ex-
ecuting a method. Moreover, fields reflect the design of the application, since they
characterize the structure of objects.

Since objects are not necessarily directly assigned to fields, the recovery of this pre-
liminary OG relies on another graph named the Object Flow Graph (OFG). This
OFG allows tracking objects created during system execution from their creation
until the storage of their references in fields or their usage in method invocations. An
OFG is a directed graph in which nodes can be of two types: i) Objects and ii) Pro-
gram variables (fields, local variables, methods’ parameters or methods’ arguments).
Edges of the graph represent assignments between these variables.

To build the OFG, we are interested in three kinds of statements:

e Allocation sites (x = new constr(|ay, ag, ..., a,|);),
e Assignment sites (x = y;) and
e Invocation sites ([x =|' y.meth([ay, ag, ..., a,]);)

For variables x, y, a;, ay and a,, we are only interested by those which are typed by
user-defined classes/interfaces or collections of user-defined classes/interfaces. We
ignore types from libraries in order to limit the developer focus on the system code
only.

Objects in the OFG are collected from allocation sites and the flow/track of each
object is inferred by analyzing the statements in which the reference of this object
is used.

4.2.2.1 Object Flow Graph Recovery

Algorithms 1 and 2 present how the object flow graph is recovered based on an
object sensitive analysis. Object sensitivity means that the program variables are
distinguished by the objects they belong to instead of their classes.

In Algorithm 1, callChains refers to the call chain of the system starting from the
entry point main method.

!Optionally because we can find in source code x = y.meth(...) or simply y.meth(...)

4.2. FOUNDATIONS OF THE PROPOSED APPROACH 55

Algorithm 1 OFG Edges Construction

Input: SS: source code of the studied system
Output: OFG edges E,y,
callChains < LinkedList
Eofg < (Z)
main < get EntryPoint Method(SS)
Eofq < Eopqg UanalyseBlock(main.get Body(), callChains)
while —callChains.isEmpty() do
element = callChains.remove First()
Eopg < Eopqg U analyseBlock(element.get Declaration().get Body()
, callChains)
end while
return F,¢,

E, g refers to the object flow graph edges. The getBody function returns the block of
statements enclosed in curly brackets of the current receiver. The variable element
can be either a constructor call or a method invocation. getDeclaration function
establishes a link between the element and its definition.

The analyseBlock function in Algorithm 2 returns a subset of the object flow graph
edges local to the analyzed method/constructor. getStatements function returns the
set of statements® contained in the analyzed block. getUserDefined Typed Variables
returns the set of variables whose types are user-defined. For example, let a =
new A(b, 8, " ") where b is of type B. A and B are user defined classes. In this
case, getUserDefined TypedVariables returns a, b and the formal parameter in the A
constructor that corresponds to b.

For the three kinds of statements we are interested in, the addEdge function adds
the following edges to the set of the OFG edges®:

e (i) For x = new constr(|as, ag, ..., a,|)

1. An edge between the created object constr’.this and the object scoped

variable x’.
2. Edges between the object scoped arguments a’y, a’s, ..., a’, and the cor-
responding constr object scoped formal parameters f’y, f’y, ..., {’,,.

Example: Suppose that we have the allocation sites ¢ = new C(); a = new
A(c); inside a class B such that a is of type A and ¢ is of type C. A, B and
C are user defined classes. When the class B is instantiated, Edges {BI.c =
C1.C.this, Bl.a = Al.A.this, A1.A.c* = Bl.c} are added to the set of edges.

2 Allocation, assignment and invocation sites

3a1, ag, ..., a, correspond to class scoped variables and a’y, a’s, ..., a’,, correspond to object
scoped variables.

4This refers to the formal parameter ¢ in the constructor A of the object A1

56 CHAPTER 4.

Algorithm 2 analyseBlock function

Input: The block of an element and callChains
Output: Local egdes in the block

1: localCallChains <— LinkedList

2: local Edges < ()

3: scopes <)

4: statements < getStatements(block)

5: for s : statements do

6: UDTV <« getUserDefinedTypedV ariables(s)
7. forv:UDTV do

8: scopes < scopes U scope(v)

9: end for

10: local Edges < local Edges U addEdges(s, scopes)
11: if s.containsConstructorCalls() V s.containsInvocations() then
12: constructorCalls < getConstructorCalls(s)
13: methodCalls < getMethodCalls(s)

14: for c: constructorCalls do

15: localCallChains.add(c)

16: end for

17: for mc : methodCalls do

18: localCallChains.add(mc)

19: end for
20: end if
21: end for
22: while —localCallChains.isEmpty() do
23: e = localCallChains.remove Last()
24: callChains.addFirst(e)
25: end while
26: return local Edges

4.2. FOUNDATIONS OF THE PROPOSED APPROACH o7

e (ii) For x =y,

1. An edge between the object scoped variable x’ and the object scoped
variable y’;

Example: Suppose that we have the statements ¢ = new C(); C sc = ¢;
inside a class B such that c is of type C. B and C' are user defined classes.
When the class B is instantiated, Edges {BIl.c = C1.C.this, Bl.sc = Bl.c}
are added to the set of edges.

e (iii) For [x =] y.meth(|ay, as, ..., a,])
1. Edges between the object scoped arguments a’y, a’s, ..., a’, and the cor-
responding meth object scoped formal parameters f’y, f’s, ..., {',,.

2. An edge between the target object this of the object scoped invoked
method meth’.this and the object scoped variable y’.

3. An edge between the object scoped return value of the invoked method
meth’.return and the object scoped variable z’.

Example: Suppose that we have the statements d = new D(); a = new A();
¢ = a.createC(d); inside a class B such that a is of type A, ¢ is of type C and
d is of type D. A, B, C' and D are user defined classes. When the class B is
instantiated, Edges {B1.d = D1.D.this, Bl.a = A1.A.this, Al.createC.this =
Bl.a, Bl.c = Al.createC.return, Al.createC.d = B1.d} are added to the set

of edges.
Object scoped variables a’y, a’y, ..., a’y, f'y, f’9, ..., f',, ¥ and x’ are represented
by a form of fully qualified names of the variables aq, ao, ..., a,, fi, f2, ..., f,, y and

x. However, the class name is replaced by the object identifier since our analysis is
object sensitive (for example, BI.a instead of B.a). This object identifier is called
“scope”.

Scopes of the different variables can be obtained, by the scope function, as follows:

e In (i), scope(f’y), scope(f’s), ..., scope(f’,) and scope(constr’) is the object
identifier of the allocation site (i).

e In (i), (ii) and (iil) two cases must be taken into account:

1. If x, y, a;, ag, ..., a, are local variables, current method parameters
or current object fields, scope(x’), scope(y’), scope(a’), scope(a’s), ...,
scope(a’y,) is the object identifier scoping the current method.

2. Ifx,y, a, as, ..., a, are accesses to fields of an object other than the cur-
rent one, of the kind w.field, scope(x’), scope(y’), scope(a’y), scope(a’s),
..., scope(a’,) is the output of v. The output of a variable means the
object stored in this variable. For example, if somewhere in the code we
have v = new constr(), output(v) is the object identifier of this allocation
site.

10

12

14

16

18

20

22

24

58 CHAPTER 4.

e In (iii), two cases must be taken into account:

1. If y.meth is an invocation performed on the current object, scope(meth),
scope(f’y), scope(f’y), ..., scope(f’,) is the object identifier scoping the
current method.

2. If y.meth is an invocation performed on an object other than the current
one, scope(meth), scope(f’;), scope(f’s), ..., scope(f’,,) is output(y).

Listing 4.1: MovieCatalog class example

To have a more clear insight on how OFG graphs are recovered, consider the example
in listing 4.1, of the MowvieCatalog class [Wampler 2002]. This a class that belongs to
a small-sized application, 19 classes, which is based on the Model-View-Controller
(MVC) pattern. This application allows a user to lookup, create, edit and delete
movies.

Starting from the main method, the call chain is:
new MovieCatalog("") > new MovieModel() > setModel(movieM) > new Main-
View() > new MovieListView() > new MovieltemView() > movieCat.showApp()

1

3

5

7

4.2. FOUNDATIONS OF THE PROPOSED APPROACH 99

Scopes and outputs of the different variables are presented in Table 4.1 and the set
of the OFG edges are depicted in Listing 4.2 (objects are highlighted in crimson).
Edges are presented as assignments between nodes. The assignment’s right and left
hand sides represent the edge’s source and target nodes respectively.

Table 4.1: Scopes and outputs

Variables movieCat movieM m theModel
Scope MovieCatalog® | MovieCatalogl | MovieCatalogl | MovieCatalogl
Output | MovieCatalogl | MovieModell | MovieModell | MovieModell

Variables mainView listView itemView
Scope MovieCatalogl | MovieCatalogl | MovieCatalogl
Output | MainViewl MovieListViewl | MovieltemViewl

Listing 4.2: OFG edges

MovieCatalogl.setModel.m = MovieCatalogl.MovieCatalog.moviel
MovieCatalogl.theModel = MovieCatalogl.setModel.m

‘MovieCatalogl.showApp.this = MovieCatalog.main.movieCat

The corresponding OFG is presented in Figure 4.2. It traces the flow of five objects
(the solid-line red circles) from their creation by allocation sites until their assign-
ment to class fields (dashed-line green circles), or their usage in method invocations
(dotted-line blank circles). Fields are represented by Objectldentifier.fieldName. Ob-
jectldentifier represents the class name followed by an integer which is incremented
each time an instantiation of this class is found. Method local variables and pa-
rameters are represented by Objectldentifier. MethodName. VarName/ParamName.
Objectldentifier is replaced by the class name in case of static members.

For example, the object MovieCatalog! is stored in the local variable movieCat. Af-
ter that, movieCat is used to invoke the showApp method, so movieCat is assigned
to the target object this of showApp, which is represented by the edge between
MovieCatalog.main.movieCat and MovieCatalogl.showApp.this in the OFG in Fig-
ure 4.2, and so on for the other objects.

4.2.2.2 Preliminary Object Graph Recovery

Once the OFG is obtained, the OG can be recovered by analyzing the output sets
of the OFG nodes that correspond to fields, dashed-line green circles.

°Tt is the root node of the graph

60

CHAPTER 4.

MovieCatalogi MovieModell MainView1 MovieListViewi
HovleCalalogI MovleCatalog1 ? Hw“mhg‘I MovleCatalog1
.main i MovieCatalog %, ¢ .mainView listView
.movleCat .movieM

3 MovieltemView1
MovleCatalogi b MovieCatalogt
showApp.this "= .setModel.m k-
MovieCatalog1 MovlieCatalog1
theModel JtemView
LEGEND Object Field Local variables or
[. ‘ " method parameters

Figure 4.2: The OFG of the MovieCatalog class

The output sets are presented in Listing 4.3 and the preliminary object graph is

depicted in Figure 4.3.

Listing 4.3: Output sets

Output [MovieCatalogl
Output [MovieCatalogl
Output [MovieCatalogl
Output [MovieCatalogl

.theModel] = {MovieModell}
.mainView] = {MainViewl}
.listView] = {MovieListViewl}
.itemView] = {MovieItemViewl}

For example, the output of the MovieCatalogl.theModel field is MovieModell. This
is depicted in Figure 4.3 by the link labeled theModel between MovieCatalogl and

MowvieModell.

MovieltemViewl

1A A ,.

M

MovieCatalog MainView1
B. _mainView h.
LS
MovieModell

g
2
-
M

MovieListViewl @

Figure 4.3: The OG of the MovieCatalog class

4.2. FOUNDATIONS OF THE PROPOSED APPROACH 61

+ identifier: String
+executionST: Long
+executionET: Long

'

Entry

+ timeStamp: Long
+ hashCode: Long

| I
Creation Destruction

+ object]D: String
+ position: String

Figure 4.4: Trace metamodel

4.2.3 Source Code Instrumentation & Instrumented Code
Execution

4.2.3.1 Source Code Instrumentation

In order to produce execution traces, an instrumentation strategy has been worked
out. The instrumentation consists in automatically adding statements in specific
places of the source code. When executing the instrumented code, the added state-
ments produce in a Log file (execution trace) a text representing the runtime infor-
mation.

The trace metamodel is depicted in Figure 4.4. From this metamodel, runtime
information reported in each trace can be summarized in the following:

e System start (ezecutionST) and end (executionET) timestamps,

e Object creation: creation timestamp, object identifier, the position (class name
+ line number) of the allocation site responsible for creating the object and
the object hashcode, and

e Object destruction: destruction timestamp and the hashcode of the destroyed
object.

In order to get this runtime information, a field (objectID) and two methods (objec-
tIDgenerator(), to generate object identifiers, and hashCodeGenerator(), to generate
object hashcodes) are added to the code of each class of the system in question. A
class Logger is also added to the set of classes of the system under study. This class
contains methods that enable writing the log file.

10

12

10

12

14

62 CHAPTER 4.

Since some languages, like Java, do not have explicit destructors, the instrumen-
tation of object destruction may not be straightforward. In this case, one option
consists of tracking all the references of an object. If the last reference of this object
is reassigned to another object or to null, this reassignment statement is considered
the destruction site of the object. The destruction timestamp can be then deter-
mined by instrumenting this statement. Another simpler option, in Java, consists
of overriding the finalize() method if it does not exist and changing its body to log
destruction timestamps and the hashcode of the destructed object. In the current
work, the second option is used.

The code of the automatically added elements, the Logger class, the instrumented
code of the MovieCatalog class and the code of an execution trace generated when
running the instrumented MowvieCatalog class are presented in listings 4.4, 4.5, 4.6
and 4.7 respectively.

Listing 4.4: Added elements in the instrumentation phase

Listing 4.5: The Logger class

4.2. FOUNDATIONS OF THE PROPOSED APPROACH

Listing 4.6: The instrumented code of the MovieCatalog

CHAPTER 4.

Listing 4.7: A trace example

10

12

4.2. FOUNDATIONS OF THE PROPOSED APPROACH 65

Start time: 1493642333528

TimeStamp= 1493642333681, new:0bjectID = MovieModell,
Position = MovieCatalog: 6, HashCode 186370029
TimeStamp= 1493642333861, new:0bjectID = MainViewl,
Position = MovieCatalog: 8, HashCode 1915503092
TimeStamp= 1493642333862, new:0bjectID = MovielListViewl,
Position = MovieCatalog: 9, HashCode 1567581361
TimeStamp= 1493642333866, new:0bjectID = MovieltemViewl,
Position = MovieCatalog: 10, HashCode = 1688376486
TimeStamp= 1493642333889, new:0bjectID = MovieCatalogl,
Position = MovieCatalog: 13, Ha