
HAL Id: tel-02294749
https://theses.hal.science/tel-02294749v1

Submitted on 23 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reconfiguration and combinatorial games
Marc Heinrich

To cite this version:
Marc Heinrich. Reconfiguration and combinatorial games. Computer Science and Game Theory
[cs.GT]. Université de Lyon, 2019. English. �NNT : 2019LYSE1102�. �tel-02294749�

https://theses.hal.science/tel-02294749v1
https://hal.archives-ouvertes.fr

N◦ d’ordre NNT : 2019LYSE1102

THÈSE DE DOCTORAT DE L’UNIVERSITÉ DE LYON
opérée au sein de

l’Université Claude Bernard Lyon 1

École Doctorale N◦ 512, InfoMaths

Spécialité de doctorat : Informatique

Soutenue publiquement le 09/07/2019 par :

Marc Heinrich

Reconfiguration and Combinatorial Games

Devant le jury composé de :

Isabelle Guerin-Lassous, Professeure, Université Lyon 1 Présidente

Celina De Figueiredo, Professeure, Université Fédérale de Rio de Janeiro Rapportrice
Claire Mathieu, Directrice de Recherche – CNRS, Université Paris 7 Rapportrice
Isabelle Guerin-Lassous, Professeure, Université Lyon 1 Examinatrice

Jan Van den Heuvel, Professeur, École d’économie et de science politique de Londres Examinateur

Éric Duchêne, Mâıtre de conférences, Université Lyon 1 Directeur de thèse

Sylvain Gravier, Directeur de Recherche – CNRS, Université Grenoble Alpes Co-directeur de thèse
Nicolas Bousquet, Chargé de Recherche – CNRS, Université Grenoble Alpes Co-encadrant

Contents

1 Introduction 9

1.1 General Organisation . 11

1.2 Computational Complexity . 12

1.3 Graph Theory . 14

1.4 Markov Chains . 19

I Reconfiguration Problems 23

2 Introduction to Reconfiguration Problems 24

2.1 Definitions and notations . 24

2.2 Applications and motivations . 26

2.3 Colouring reconfiguration . 27

2.4 Hardness of reconfiguration problems . 33

3 Colouring Reconfiguration 35

3.1 Hardness of Kempe recolouring . 36

3.2 Shortest transformation on stars . 44

3.3 Single vertex recolouring . 49

4 Perfect Matching Reconfiguration 56

4.1 Introduction . 56

4.2 PSPACE-completeness . 59

4.3 Cographs . 64

II Algorithmic Applications of Reconfiguration Aspects 73

5 Random Edge-Colourings with Glauber Dynamics 74

5.1 Introduction . 75

5.2 Result and Proof Overview . 83

5.3 Preliminaries . 84

5.4 Comparison of Markov chains . 86

5.5 Glauber dynamics for list-colourings of a clique 90

5.6 Glauber dynamics on edge-colourings of trees 98

6 Online Colouring with Kempe Chains 104

6.1 Introduction . 104

6.2 Chordal graphs . 108

6.3 Planar graphs . 109

6.4 Graphs of bounded genus . 114

6.5 Bad graphs for online algorithms with Kempe exchanges 118

2

6.6 Conclusion . 119

III Adding a Second Player 121

7 Combinatorial Game Theory 122
7.1 Introduction . 123
7.2 Game Values . 130
7.3 Subtraction Games . 133
7.4 Compounds of games . 134

8 Composition of Combinatorial Games: the Push-Compound 136
8.1 The switch compound: push-the-button . 137
8.2 Zeruclid . 139
8.3 Other push compounds . 142
8.4 Push-sums and push-canonical forms . 147
8.5 Conclusion . 159

9 Rules Decomposition: Partizan Subtraction Games 160
9.1 Introduction . 160
9.2 Complexity . 162
9.3 When SL is fixed . 164
9.4 When one set has size 1 . 168
9.5 When both sets have size 2 . 171
9.6 Conclusion . 176

Appendix A Missing proofs from Chapter 5 203
A.1 Proof of Proposition 35 . 203
A.2 Proof of Proposition 42 . 204

3

Remerciements

Tout d’abord, je souhaite remercier mes rapporteurs, Claire Mathieu et Celina de Figueiredo pour
leur lecture attentive de ma thèse, ainsi que les autres membres du jury, Isabelle Guerin Lassous
et Jan van den Heuvel, pour avoir fait le déplacement et assisté à ma soutenance.

Je souhaite également remercier mes encadrants de thèse, Eric, Sylvain, et Nicolas, qui m’ont
permis de travailler sur plein de problèmes vraiment intéressants. Vous m’avez donné le goût de
me casser la tête sur des maths pendant 3 ans, et j’espère pouvoir continuer à le faire pendant
encore longtemps. Merci aussi pour les parties de truco, les jeux de société en tout genre, et les
pique-niques à la Tête d’or.

Merci aussi aux autres permanents et doctorants de l’équipe GOAL, notamment Aline, Valentin,
Gabrielle, Antoine, et Alice, pour leurs contributions à ces activités, et qui ont permis de faire
de cette thèse une expérience agréable et plaisante. Je remercie aussi les autres doctorants du
laboratoire, sans qui les midis ne seraient juste pas pareils.

Je pense aussi à mes amis de prépa, et notamment à ceux qui ont fait le déplacement juste pour
pouvoir me supporter pendant 1h, Sylvain et Jonathan (retape toi bien). Je pense aussi à tout
ceux que j’ai oublié de mentionner ici (me connaissant, il y en a forcément).

Mes pensées vont enfin à toute ma famille, qui a réussi à me supporter jusque là, et sur qui je
peux toujours compter dès qu’il est question de gâteaux, de séances de ciné, ou de me rappeler que
ça fait longtemps que je ne me suis pas coupé les cheveux.

Finalement merci à Alice (l’autre) qui me trâıne dehors tous les week-ends, et me raconte ses
journées tous les soirs jusqu’à pas-d’heure.

À tous ces gens: Merci.

4

Résumé (French)

Cette thèse explore des problématiques liées aux jeux. Le terme ‘jeu’ est assez vague et englobe
beaucoup de concepts différents. Par exemple, cela peut désigner les jeux de société, qui possèdent
une grande variété de règles, et qui sont souvent joués à plusieurs ; les jeux vidéos, qui ont souvent
un aspect temporel important et requièrent des réflexes et de la précision ; les jeux économiques,
pour lesquels il y a une notion de gains et de revenus ; ou encore les jeux sportifs qui demandent
plutôt de la technique et de la force. Dans cet ouvrage, nous sommes intéressés par les jeux pour
lesquels toute l’information est connue dès le début de la partie. En d’autres termes, il n’y a pas
d’information cachée : tous les joueurs ont accès à toute l’information relative au jeu ; il n’y a pas
non plus d’aléa, et tout est déterministe. Parmi les jeux mentionnés plus haut, seuls certains jeux
de société (comme les échecs ou le go) satisfont ces propriétés et sont représentatifs des jeux que
nous considérons ici. Dans la suite, nous utiliserons le terme de ‘jeu’ uniquement pour désigner
ces jeux à information parfaite. La notion de stratégie est au centre de l’étude de ces jeux. En
termes simples, une stratégie est une façon de jouer qui permet de s’assurer un certain résultat.
La question centrale, à la fois quand on joue à un jeu et quand on l’étudie, consiste à trouver la
‘meilleure’ stratégie, qui assure la victoire du joueur qui l’applique.

Dans cette thèse, nous allons considérer à la fois des jeux à un joueur, appelés puzzles com-
binatoires, et des jeux à deux joueurs. Le Rubik’s cube, Rush-Hour, le Sokoban, ou le taquin
sont des exemples biens connus de puzzles combinatoires. D’un point de vue historique, les jeux
à un et deux joueurs faisaient partie de ce qui était appelé les ‘mathématiques récréatives’, et peu
de motivations étaient données pour étudier ces jeux, à part une curiosité naturelle pour essayer
de comprendre, à l’aide des mathématiques, leur structure et leur complexité. Cependant, plus
récemment un certain nombre de jeux – des jeux à un joueur notamment – ont connu un regain
d’intérêt en tant qu’objets d’étude dans un domaine plus grand appelé reconfiguration. Les puzzles
que l’on vient de mentionner peuvent tous être décrits de la façon suivante : il y a un ensemble de
configurations, qui représente tous les états possibles du jeu ; et le joueur est autorisé à transformer
une configuration en une autre via un certain nombre de règles. Le but est d’atteindre une certaine
configuration cible à partir d’une configuration initiale. Dans le cas du Rubik’s cube par exemple,
le but est d’atteindre la configuration où tous les carrés d’une même face ont la même couleur.
Le domaine de la reconfiguration étend cette définition à des problèmes de recherche : l’ensemble
des configurations devient l’ensemble des solutions à une instance d’un problème donné, et l’on se
demande si l’on peut transformer une solution donnée en une autre en utilisant uniquement un
ensemble de règles de transformation précises.

Ainsi, en plus des puzzles combinatoires, les problèmes de reconfiguration incluent aussi un cer-
tain nombre de ‘jeux’ qui ne sont plus des jeux joués par le grand public, mais plutôt des problèmes
mathématiques partageant un certain nombre de similarités avec les puzzles combinatoires. La

5

recherche sur ce type de problèmes a été guidée par plusieurs motivations. Ces motivations con-
cernent par exemple des applications algorithmiques : ce processus peut être vu comme un moyen
d’adapter une solution déjà en place pour former une nouvelle solution à l’aide de changements
locaux. Il y a également des connexions avec d’autres problèmes comme la génération aléatoire,
des problèmes liés au comptage du nombre de solutions à un problème, ainsi que des problèmes
provenant de physique statistique. Finalement, ces problèmes de reconfiguration peuvent être un
outil pour comprendre les performances d’un certain nombre d’algorithmes heuristiques qui se
basent sur des modifications locales des solutions (les algorithmes de recherche locale en sont un
exemple).

Les jeux à deux joueurs, qui sont aussi appelés jeux combinatoires, ont été étudiés depuis
le début du vingtième siècle avec les travaux de Bouton. Ces travaux ont été continués avec le
développement par Berlekamp, Conway et Guy d’une théorie assez élégante unifiant un certain
nombre de jeux classiques. S’il y a quelques jeux combinatoires qui sont joués de façon active, la
majeure partie des recherches sur ces jeux-là concernent le domaine de l’intelligence artificielle. Il
y a eu des progrès importants dans les dernières années dans le domaine de l’intelligence artificielle
pour créer des machines performantes pour jouer à ces jeux, mais ce n’est cependant pas ce qui va
nous intéresser ici. Ce travail se focalise sur des joueurs parfaits, c’est-à-dire qui choisissent toujours
le coup optimal. Notre but est de caractériser lequel des deux joueurs possède une stratégie qui
lui assure la victoire, quels que soient les coups de son adversaire. Cette approche est au cœur de
ce qui est appelé la Théorie des Jeux Combinatoires. Très peu de jeux joués par le grand public
sont étudiés dans ce domaine, il y a plusieurs raisons à cela. Tout d’abord, beaucoup de ces jeux
ont des règles compliquées, ce qui rend leur analyse difficile. De plus, il a déjà été montré pour un
certain nombre d’entre eux qu’ils sont difficiles d’un point de vue computationnel, c’est-à-dire que
trouver une stratégie optimale est difficile, même pour un ordinateur. Ainsi, une grande partie de
la recherche est focalisée sur ce que l’on peut appeler des ‘jeux mathématiques’, qui sont des jeux
inventés par des mathématiciens, souvent avec des règles très simples, et rarement connus en dehors
de la recherche. Il y a plusieurs motivations pour étudier ces jeux. Tout d’abord, ces jeux produisent
souvent des problèmes avec des définitions très simples et qui sont également difficiles d’un point
de vue computationnel, c’est-à-dire qu’il n’existe pas d’algorithme efficace pour les résoudre. Ces
problèmes sont important pour classer et comparer différents problèmes en fonction de l’efficacité
des algorithmes pour les résoudre. Une deuxième motivation, et probablement la plus importante,
est dûe aux liens parfois surprenants entre ces jeux et d’autres domaines des mathématiques comme
entre autre la théorie des nombres, les automates, ou les systèmes dynamiques.

Notre outil principal pour étudier ces jeux est la notion de graphe. En termes simples, un graphe
est un ensemble de points, avec des liens reliant ces points. Les points sont appelés des sommets,
et les liens entre ces points sont appelés des arêtes. Les graphes sont un outil très puissant pour
représenter des données, et ont été utilisés pour modéliser une très grande variété de structures.
Par exemple, ils ont été utilisés pour représenter différents réseaux, comme des réseaux routiers,
électriques, ou Internet. Ils ont été également utilisés pour décrire des réseaux sociaux, et plus
généralement toute structure qui contient un grand nombre d’acteurs en interaction. Les graphes
peuvent également décrire d’autres objets comme des programmes informatiques, des systèmes
biologiques et physiques, ou des structures de données pour stocker des informations. Étant donné
leur large éventail d’applications, il n’est pas étonnant que les graphes soient aussi reliés aux jeux.

Le premier lien évident entre les jeux et les graphes est le fait que certains jeux soient joués
directement sur un graphe. Cela concerne en particulier un nombre important de problèmes de

6

reconfiguration étudiés dans les dernières années. En effet, un grand nombre de problèmes de
reconfiguration consistent à étudier des transformations appliquées à des solutions de problèmes de
graphes bien connus. C’est le cas en particulier des problèmes de reconfigurations que nous étudions
dans la première partie de cette thèse. L’autre lien entre jeux et graphes est le fait qu’un jeu peut
être aussi représenté comme un graphe (même si le jeu lui-même n’est pas joué sur un graphe).
Plus précisément, un jeu, que ce soit un jeu à un ou deux joueurs, définit de façon implicite un
graphe dont les sommets représentent toutes les configurations possibles du jeu, et les arêtes sont
les coups possibles qui permettent de passer d’une configuration à une autre. Ainsi, un nombre
important de questions intéressantes sur les jeux peuvent être reformulées en termes de propriétés
du graphe sous-jacent. Cependant, comme le nombre de positions possibles pour un jeu est souvent
extrêmement grand, on ne souhaite pas en général calculer le graphe sous-jacent explicitement (cela
prendrait beaucoup trop de temps), mais plutôt utiliser la représentation implicite pour répondre
directement aux questions.

Finalement, si les jeux sont les objets que nous étudions, et les graphes sont un des principaux
outils que nous utilisons, les questions que nous considérons sont souvent en lien avec des problèmes
de complexité. La complexité d’un problème revient à estimer le temps qu’il faudrait à un ordinateur
pour résoudre le problème. Plus précisément, nous essayons de déterminer combien de temps il
faudrait au meilleur algorithme afin de résoudre une instance d’un problème donné, et comment ce
temps évolue en fonction de la taille de l’instance en entrée. Une partie importante de la recherche
est dédiée à séparer les problèmes ‘faciles’, c’est-à-dire pour lesquels il existe un algorithme efficace
(i.e., qui termine après un nombre d’étapes polynômial en fonction de la taille de l’entrée), des
problèmes ‘difficiles’ pour lesquels de tels algorithmes n’existent pas. Il y a deux aspects principaux
dans l’étude de la complexité d’un problème : trouver des algorithmes efficaces pour résoudre le
problème, et prouver des réductions qui montrent que ce problème est au moins aussi difficile qu’un
autre.

Organisation Générale

Nous allons maintenant décrire l’organisation générale de la thèse. Dans la première partie de cette
thèse, nous focalisons notre attention sur les problèmes de reconfiguration. Nous donnons à la fois
des résultats de complexité, et des résultats structurels liés à ces problèmes. Cette première partie
est organisée en trois chapitres. Le premier de ces chapitres donne un introduction aux problèmes
de reconfiguration. Nous y définissons certaines notations communes à tous les problèmes de
reconfiguration et donnons également des motivations pour étudier ce type de problèmes. En
particulier, ce chapitre met en avant des liens entre les problèmes de reconfiguration et d’autres
domaines de l’informatique. Nous y détaillons aussi avec précision les résultats existants sur la
reconfiguration d’un problème particulier : la coloration de graphes. Dans le chapitre suivant,
nous étudions la reconfiguration de colorations de graphes. Ce chapitre donne plusieurs résultats,
à la fois d’un point de vue complexité, et d’un point de vue structurel. Sur les aspects liés à la
complexité, nous décrivons des preuves de difficulté pour deux problèmes liés à la reconfiguration
de colorations. Les résultats structurels consistent à étudier le nombre d’étapes nécessaires pour
transformer une solution en une autre, dans des cas où l’on est certain que ces transformations
existent. Enfin, dans le dernier chapitre de cette partie, nous nous intéressons à la reconfiguration
d’un autre objet combinatoire : les couplages parfaits. Nos résultats incluent à la fois des preuves
montrant que ce problème est difficile en général, et des algorithmes terminant en temps polynômial

7

lorsque le graphe donné en entrée appartient à certaines classes de graphes.

Comme nous l’avons mentionné plus haut, une des motivations pour étudier les problèmes
de reconfiguration provient des liens existant avec d’autres domaines de l’informatique. Dans la
deuxième partie de cette thèse, nous nous intéresserons à deux de ces problèmes. Le premier
chapitre de cette partie est dédié au problème de génération de colorations aléatoires en utilisant
une méthode particulière appelée dynamique de Glauber. Ce chapitre commence par une vue
d’ensemble sur les résultats existants sur cette méthode, et nous y détaillons des liens avec un
certain nombre de problèmes provenant de physique statistique. Nos travaux consistent à étudier les
performances de la dynamique de Glauber sous certaines hypothèses sur le graphe donné en entrée.
S’il est conjecturé dans la littérature que cette méthode est efficace, sous certaines hypothèses assez
faibles, ces performances ont été prouvées de façon théorique uniquement pour des contraintes plus
fortes, ou pour des classes de graphes particulières. Nos résultats continuent dans la direction
de prouver cette conjecture sur des classes de graphes particulières, en regardant notamment la
variante du problème pour la coloration d’arêtes.

Dans le deuxième chapitre de cette partie, nous tentons d’utiliser les modifications locales
provenant des problèmes de reconfiguration pour des problèmes de coloration online, c’est-à-dire
lorsque les sommets du graphe en entrée sont donnés un par un. Les algorithmes classiques pour ce
problème font généralement l’hypothèse que changer la couleur d’un sommet n’est plus possible une
fois cette couleur attribuée. Il a été montré que cette restriction conduit à des performances assez
mauvaises de ce type d’algorithme, même pour des graphes très simples. Nous considérons une
extension du problème où l’algorithme est autorisé à recolorer en partie les sommets déjà colorés à
des étapes précédentes de l’algorithme, et nous construisons des algorithmes pour ce problème pour
plusieurs classes de graphes. Les algorithmes online peuvent aussi être vus comme une sorte de jeu à
deux joueurs. L’un des joueurs (l’algorithme), essaye de trouver une solution efficace à un problème,
tandis qu’un adversaire tente de l’en empêcher en choisissant un ordre des sommets mauvais pour
la stratégie appliquée par l’algorithme. Ce lien nous amène naturellement à la troisième partie de
cette thèse : les jeux à deux joueurs.

Dans la dernière partie, nous quittons le monde des jeux à un joueur pour nous intéresser aux
jeux à deux joueurs. Le premier chapitre de cette partie donne une introduction à la théorie des
jeux combinatoires, avec des définitions de certains concepts clés du domaine. Ce chapitre donne
également un aperçu global des résultats connus pour une famille de jeux en particulier, ainsi que
des précisions sur certains opérateurs étudiés dans la littérature qui créent de nouveaux jeux à partir
de jeux existants. Les deux chapitres suivants étudient deux constructions particulières. Dans le
premier de ces deux chapitres, nous nous intéressons à une construction qui autorise les joueurs à
changer les règles du jeu en cours de partie. Nous commençons par étudier cette construction pour
des exemples spécifiques obtenus en combinant des jeux classiques, bien connus du domaine. Nous
donnons également des propriétés générales de cette construction, et étudions comment certains
concepts définis dans le chapitre précédent peuvent être modifiés pour s’adapter à ces nouveaux jeux.
Finalement, dans le dernier chapitre nous étudions une autre construction qui consiste à donner
des règles différentes à chacun des deux joueurs. Cette construction est étudiée pour le cas d’une
famille de jeux particulière appelée jeux de soustraction. Les jeux résultant de cette construction
ont déjà été étudiés dans la littérature, et il existe des résultats permettant de classifier certains de
ces jeux en fonction de leur comportement sur des positions très grandes. Notre étude étend ces
résultats existant en affinant la classification, et en prouvant le comportement d’une large classe
d’exemples.

8

Chapter 1

Introduction

This thesis explores problems related to games. The term ‘game’ is very broad and encompasses
many different things. For example, it can refer to board games, which can have a very large
variety of rules and are often played with several players; video games, many of which have a time
component and require reflexes and precise timing; economical games, for which there are notions
of gains and pay-off; or also sports games which rely more on skills, precision, and strength. In this
study, we are interested in games for which everything is known from the very beginning. In other
words, there is no hidden information: all the players have access to all the information related
to the game; there is also no randomness and everything is deterministic. Among the games we
mentioned above, only a few well-known board games (such as chess or go) fall in this category and
are representative of the kinds of games that we consider here. In the following, we will use the
term ‘game’ to denote only this type of perfect information games. Central to the study of these
games is the notion of strategy, which roughly speaking, is a way of playing which ensures a certain
objective. The main question of interest, when both playing and studying a game, is the problem
of finding the ‘best’ strategy, which secures the victory for the player following it.

In this thesis, we will consider both one-player games, also called combinatorial puzzles, and
two-player games. Examples of combinatorial puzzles include Rubik’s cube, Rush-Hour, Sokoban,
the 15 puzzle, or peg solitaire. Historically, both one- and two-players games were part of what was
called ‘recreational mathematics’, and little motivation was given for studying these problems apart
from the natural curiosity of using mathematics to understand their structure and their complexity.
More recently however, some types of one-player games in particular have received a strong regain
of interest as part of the larger area of reconfiguration problems. The puzzles we described above
can all be described in the following way: there is a set of configurations, which represents all the
possible states of the game; and the player is allowed to transform a configuration using a prescribed
set of moves. Starting from an initial configuration, the goal is to reach a target configuration by a
succession of valid moves. For example, the goal in Rubik’s cube is to reach the target configuration
with all the faces monochromatic. Reconfiguration extends this definition to any search problem:
the set of configuration becomes the set of solutions to an instance of a given problem, and we ask
whether we can transform one given solution to another using only a prescribed set of moves.

Hence, in addition to the combinatorial puzzles, reconfiguration problems also include many
‘games’ which are not played by humans anymore but are instead mathematical problems sharing
a lot of similarities with combinatorial puzzles. The study of reconfiguration problems has been
driven by many different motivations. It has algorithmic applications: it can be seen as a way to

9

adapt a current solution already in place to reach a new one by only making small local changes. It
is also connected to other problems such as random sampling, approximate counting or problems
coming from statistical physics. It can also be used as a tool for understanding the performance of
some heuristic algorithms based on local modifications of solutions such as local search.

Two-player games, which are also called combinatorial games, have been studied since the
beginning of the twentieth century, with the works of Bouton which were continued with the
development of a nice theory by Berlekamp, Conway, and Guy, unifying a certain number of classical
games. If there is a small number of combinatorial games which are actively played, the greater part
of the research on these games is in the field of artificial intelligence and the design of competitive
computer programs for playing these games. If artificial intelligence has made great progress at
creating very good players for various games, this is not what we will be interested in here. Instead,
we will focus on perfect strategies (i.e., players always choosing the best possible move), and try to
characterize who wins under perfect play for various games. This approach is at the heart of what is
called Combinatorial Game Theory. Few games played in real life are studied in this area. There are
several reasons for this: many of these games have complicated rules, which makes their analysis
complicated, and some of them were already shown to be computationally difficult, i.e., finding
the optimal strategy is provably hard, even for a computer. Instead, most of the research in this
area is focused on ‘math games’ which are games invented by mathematicians, often with simple
rules and almost never played by humans. There are several motivations for studying these games.
First, they often give simple definitions of problems which are computationally hard, i.e., for which
no efficient algorithm exists. These hard problems are important for classifying and comparing
problems based on how efficient the algorithms solving them are. However the main motivation
comes from the nice, and sometimes unexpected connections these games have with other areas of
mathematics, such as for example number theory, automatons, or dynamical systems.

Our main tool for studying all these games is the notion of graph. In simple terms, a graph
is a set of points with links joining the points, as shown for example in Figure 1.1. The points
are called vertices, and the links are called edges. Graphs are a very versatile way to represent
data, and has been used to model a large variety of different structures. For example, they have
been used to describe various networks such as roads, electrical networks, or the internet. They are
also used to describe social media and more generally any structure which contain many actors in
interactions with each other. Graphs can also describe other objects such as computer programs,
biological/physical systems, or data structures for storing information. Given their wide range of
applications, it is not surprising to see that graphs are also connected to games.

The first immediate connection between games and graphs is the fact that some games are
played directly on a graph. This concerns in particular many of the reconfiguration problems
which have been studied recently. Indeed, an important part of reconfiguration problems concerns
the transformation of solutions to some well-known problems on graphs. This is the case of the
reconfiguration problems considered in Part I of this thesis. The other connection between games
and graphs is that a game can also be represented as a graph. More precisely, a game (both
one-player and two-player) defines implicitly a graph, whose vertices represent all the possible
configurations of the game, and whose edges are the possible moves between these configurations.
Hence, many questions we would like to answer on games can be reformulated as finding properties
of the underlying graph. However, since the number of possible positions for a game is usually
very large, we do not wish to compute the underlying graph explicitly (it would take too much
time), but instead use the implicit representation to answer the questions. For example, in the

10

case of reconfiguration problems, a strategy for solving a given instance corresponds to finding
a path between the initial configuration and the target configuration in the underlying graph.
Hence the main property of interest in this case is the connectivity of the underlying graph. Our
problems often involve finding sufficient conditions for the underlying graph to be connected, or to
characterize its connected components. For two player games, the structure which interests us is
some partition of the underlying graph depending on which player has a winning strategy. This
partition is sometimes called a kernel. If it is sometimes possible to give a simple characterisation
to find a strategy for a game, there are cases where we must rely on algorithms to construct this
strategy.

Finally, if games are the objects we study, and graphs are one of our major tools, the questions we
consider are often related to complexity. Complexity theory consists in trying to classify problems
depending on their hardness. By hardness we mean to quantify how much time it would take for
a computer to solve the problem. More precisely, we are interested in studying how long the best
algorithm would take to solve a given problem, and how this time increases as a function of the
size of the input. An important amount of effort is dedicated to separating ‘easy’ problems for
which there exists an ‘efficient’ algorithm (i.e., running in time polynomial in the size of the input),
from problems which are ‘hard’ i.e., for which no efficient algorithm exists. There are two sides to
complexity: finding efficient algorithms to solve problems, and devising reduction showing that one
problem is at least as hard as another which serves as an evidence that the existence of an efficient
algorithm is unlikely.

1.1 General Organisation

We now describe the general outline of this thesis. The rest of this chapter gives preliminaries for
the other chapters in the form of definitions of basic results from graph theory, complexity and
Markov chain theory which will be used throughout the thesis. The definitions and notations we
use are quite standard, and the reader already familiar with these fields is free to skip them. Note
that the introduction to Markov chain theory in Section 1.4 is a prerequisite only for Chapter 5,
and is not necessary to understand the other parts. An index of all the symbols and definitions can
can be found at the end of the thesis.

In the first part of this thesis, we focus our attention on reconfiguration problems. We give
both complexity results as well as structural aspects related to these problems. This fist part is
organized in three chapters. Chapter 2 gives an introduction to reconfiguration problems. We define
in this chapter some notations common to all reconfiguration problems, and give motivations for
studying them. We also describe connections between reconfiguration and other areas of discrete
mathematics and computer science, and provide a more detailed survey on existing results for the
reconfiguration of one particular problem: graph colouring. We then study the reconfiguration of
graph colourings in Chapter 3. In this chapter, the problem is studied both from the point of view
of complexity and the analysis of the structure of the reconfiguration graph. On the complexity
aspects, we show the hardness of two problems related to colouring reconfiguration. Our structural
result consists in studying upper bounds on the number of steps required to transform one solution
into another, in a setting where this transformation is already known to exist. In Chapter 4,
we consider the reconfiguration of another type of combinatorial object: perfect matchings. Our
results include both hardness results for this reconfiguration problem in general, and polynomial

11

time algorithms when the graph is restricted to a specific class.

As we mentioned above, one motivation for studying reconfiguration problems is their con-
nections with other areas from computer science. In Part II, we investigate two of these related
problems. In Chapter 5, we consider the problem of generating random colourings using a specific
method called Glauber dynamics. This chapter starts with an overview of the existing results on
Glauber dynamics for colouring, as well as some details on the connections with other problems
from statistical physics. Our study aims at analysing the performance of Glauber dynamics under
some assumptions on the graph considered. If this algorithm is conjectured to have good per-
formance under some mild assumptions on its input, these performance have only been verified
theoretically under either stronger assumptions, or with some additional constraints on the graph.
Our results continue in the direction of proving the conjecture for special cases by considering the
edge colouring variant of the problem.

The second application we consider, in Chapter 6, is an attempt to use local transformations
to colour graphs in an online fashion, i.e., when the input is given one vertex at a time. Standard
online algorithms are usually considered in a setting where recolouring previously coloured vertices
is not permitted. However, this restriction was shown to lead to poor performances even for simple
graphs. We consider an extension where some amount of recolouring is allowed, and analyse several
algorithms for different classes of graphs. Online algorithm can be seen as some kind of two player
game, where one player (the algorithm) attempts to solve efficiently a problem, while an opponent
tries to prevent this by choosing a bad ordering of the vertices. This leads us to our last part:
games with two players.

In Part III, we move from one player games to two player games. We start this part with a
light introduction to Combinatorial Game Theory in Chapter 7, and with definitions of some key
concepts from the domain. This chapter also gives an overview of some existing results for one
particular family of games, as well as operators studied in the literature to create new games from
exiting ones. This chapter is followed by the study of two particular constructions in the last two
chapters. In Chapter 8, we investigate a construction which allows the players to change the rules
during the game. Our investigation starts with the study of specific examples which are obtained by
combining several standard games. We also give some general properties of the construction, and
end the chapter with by studying how some of the concepts that were introduced in Chapter 7 can
be adapted to this construction. Finally, we consider in Chapter 9 another construction which gives
different rules to the two players. We investigate the effects of this construction for one particular
class of games called subtraction games. The games resulting from this construction have already
been studied in the literature where some work has been done to classify these games based on
their behaviour for very large positions. Our study continues on the existing results by refining and
extending this classification for a larger class of examples.

1.2 Computational Complexity

We now give a short introduction to some aspects of computational complexity. Complexity theory
aims at quantifying how difficult solving a problem is, and classifying problems depending on
their complexity. In particular, it defines complexity classes, which gathers problems with similar
complexities. In this section, and in the rest of this thesis, we will only discuss the complexity of
decision problems, i.e., problems whose answer is either yes or no. However it should be noted

12

that some of the concepts can be extended to other types of problems such as function problems
(i.e., algorithms which compute a particular function). There are many parameters that can be of
interest to quantify the cost of an algorithm, but two of them are the most widely used: the time
it takes for the algorithm to run, and how much memory it uses. We only aim at giving a light
introduction to complexity, and as such our definition will not be very formal. The reader can refer
to complexity textbooks such as [AB09] for more precisions.

In order to classify problems, we must be able to compare two problems and we need a tool
to decide whether one is harder than the other. This is done via polynomial-time reductions . A polynomial-

time reductionsdecision problem B is polynomial-time reducible to another problem A if there is a polynomial
time algorithm which solves B given an oracle for A (i.e., a black box solving instances of A). This
means that the existence of a polynomial time algorithm for A implies the existence of a polynomial
time algorithm for B, and hence A is at least as hard as B. Given a class of problems X, a problem
is said to be X-hard if it is at least as hard as any problem in X. When a problem is both in X
and X-hard , it is called X-complete. X-hard

X-completeThe two most studied complexity classes are P which is the class of problems which can be
Psolved in polynomial time, and NP which consists in problems which can be solved by a non-
NP

deterministic polynomial-time algorithm. Non-determinism means that the algorithm is allowed to
make (non-deterministic) choices, and answer yes if at least one of the choices leads to answering
yes. This can be reformulated as saying that yes instances to the problem have polynomial-size
certificates. A certificate is in some sense a ‘proof’ that a given instance is a yes instance. Hence, an
instance of the problem is a yes instance if and only if a certificate exists, and checking the validity
of a given certificate can be done in polynomial time. Many traditional problems are problems in
NP. Indeed, many of them are search problem, and essentially ask “Is there a substructure in the
instance which satisfies some properties?”. In these cases, the description of the substructure gives
a certificate for the instance.

We know that P ⊆ NP, but deciding whether this inclusion is strict is one of the main open
problems in computer science. It is however widely believed that P �= NP, and many results
were derived based on the assumption that this conjecture holds. Many standard problems from
computer science are in the class NP(some example of problems are given in the next section), and
an important amount of research has been devoted to deciding whether these problems were in P
or are NP-hard.

If NP contains most of the standard problems from computer science, many of the problems
we consider in this thesis are in fact not in NP, but are harder than these problems. They belong
to another complexity class called PSPACE , which is the class of problems which can be solved PSPACE

using polynomial space. It is known that NP ⊆ PSPACE, but again, it is still open whether
this inclusion is strict or not. In a similar way as above, we can consider problems which can be
solved by a non-deterministic algorithm which uses only polynomial space. This class is called
NPSPACE . It was proved by Savitch that for this class non determinism does not help. In other NPSPACE

words, PSPACE = NPSPACE.

Showing that a problem is hard for a complexity class is usually done by a reduction from
another problem whose hardness was shown using other ways. For example, boolean satisfiability,
SAT, is a well-known NP-complete problem, and most NP-hardness proofs are done directly or
indirectly through a reduction from SAT. The typical problem which is complete for PSPACE is
called QBF. It is an extension of SAT with the addition of universal and existential quantifiers. QBF

More precisely, we are given as input a formula of the from Q1x1, . . . Qnxn, φ(x1, . . . xn), where φ is

13

(a) (b) (c) (d)

(e) (f)

Figure 1.1: Examples of graphs. (a) The clique K8, (b) the complete bipartite graph K5,6, (c) the
star with seven leaves, or equivalently K1,7, (d) a complete regular tree with depth 2, (e) the cycle
on 8 vertices C8, (f) the path on four vertices P4.

a boolean formula on n variables, and Qi ∈ {∃, ∀} is either a universal or an existential quantifier.
The problem consists in deciding whether this formula is true or false. The class NP corresponds
to the case where all the quantifiers are existential. In a similar fashion, there is another class
called coNP which corresponds to universal quantifiers only. There are also intermediate classes
between NP and PSPACE which are defined by fixing the number of alternations between the
two types of quantifiers in the formula. These classes form the polynomial hierarchy (see [AB09]polynomial hi-

erarchy for more details).

An important number of problems studied in the literature from a complexity point of view
are problems on graphs; and many of the problems that we consider in this thesis are related to
graphs. We will give a few examples of such problems in the section below.

1.3 Graph Theory

We give in this section some basic notations and definitions from graph theory. The interested
reader can refer to [BM76] or any other textbook from graph theory for more details. A graphgraph

G is defined by a set of vertices denoted by V (G), and a set of edges E(G) which is a subsetset of vertices

set of edges of V (G) × V (G). In the rest of this thesis, unless mentioned otherwise, all the graphs will be
undirected: if (x, y) ∈ E(G), then (y, x) ∈ E(G); with a finite number of vertices; and simple: they
do not have multiple edges or loops. For clarity, we will simplify the notations and write xy the
edge (x, y).

Given a graph G, a graph H is a subgraph of G if it can be obtained from G by removing verticessubgraph

and edges from G. It is an induced subgraph if it can be obtained only by removing vertices (andinduced
subgraph the edges incident to these vertices). Given S ⊆ V (G) a subset of vertices, we will denote by G[S]

the subgraph induced by the vertices of S. In other words, the vertex set of G[S] is S, and its set
of edges is E(G) ∩ (S × S).

If u and v are two vertices of G, then they will be called neighbours (or equivalently, theyneighbours

are adjacent) if vu ∈ E(G). We will denote by NG(v) the set of neighbours of v (also called theadjacent

14

neighbourhood of v), formally defined by NG(v) = {u ∈ V (G), uv ∈ E(G)}. When the graph G neighbourhood

in this definition is clear from the context, we will drop the subscript and simply write N(v) the
neighbours of v. A graph G is regular if all the vertices have the same number of neighbours, i.e., regular graph

|NG(v)| is the same for all vertices v.
Finally, given a graph G and two vertices u and v, a path between u and v is a sequence of path

distinct vertices w0 = u,w1, . . . , wk = v such that for all 0 ≤ i < k, wi and wi+1 are adjacent
in G. The length of this path is k, the number of vertices on the path. Hence, if the two vertices length of a path

u and v are adjacent, then they form a path of length 2. A graph G is said to be connected if connected
graphthere is a path (of arbitrary length) between any two vertices in G. If G is not connected, then we

can find subsets S1, . . . , Sk such that the subgraphs G[Si] are all connected, and there is no path
between any two vertices in different subsets. In this case, the induced subgraphs G[Si] are called
the connected components of G. connected com-

ponentsFinally, the line graph G� of G is the graph with vertex set E(G) where two edges are adjacent
line graph

in G� if and only if they are incident in G (i.e., they have a common endpoint). Note that many
graph problems are defined in terms of vertices of G, but most of these problems admits an edge
variant by considering line graphs.

1.3.1 Graph parameters

It is often convenient to look at some parameters of a graph G. These parameters allow to quantify
some properties of the graph. We give here a few examples of standard parameters studied in the
literature, but there are many others.

• The maximum degree of a graph G is the size of the largest neighbourhood: Δ(G) = maximum de-
gree, Δ(G)max{|NG(v)|, v ∈ V (G)}. Often, the graph G will be clear from the context, in which

case we simply write Δ the maximum degree.

• The distance between two vertices u and v is the number of edges in a shortest path between distance be-
tween verticesu and v. The diameter of G is the maximum distance between any two vertices u, v ∈ V (G).
diameter

If G is not connected, then the diameter is infinite.

• The degeneracy of a graph G, denoted col(G), is the smallest k such that there exists an degeneracy,
col(G)ordering v1, . . . , vn of the vertices of G, such that every vertex vi has at most k neighbours vj

with a smaller index (i.e., j < i). It is easy to see that col(G) ≤ Δ(G). Moreover, this
inequality is an equality if and only if G is regular1.

• A clique is a graph where all the vertices are pairwise adjacent. We denote by Kn the clique clique, Kn

on n vertices (an example for K8 is given in Figure 1.1a). The clique number of a graph G, clique number,
ω(G)denoted ω(G) is the size of the largest clique in G.

There are also other parameters that we will consider. Some of these come from particular
graph problems that we introduce below such as the chromatic number χ(G), or the independence
number α(G). Others are connected to particular classes of graphs such as the treewidth tw(G).

For some very common graphs, we will use special notations. We have seen the case of the
clique Kn above. We will denote by Pn a path on n vertices, and Cn a cycle on n vertices as shown path graph Pn

cycle graph,
Cn

in Figures 1.1e and 1.1f.

1Assuming G is connected.

15

1.3.2 Graph problems

Since graphs can be used to represent a large variety of different kinds of data, many different graph
problems have been considered in the literature. We define here two of these problems that will be
considered in the following chapters.

Independent set and matchings. Given a graph G, an independent set is a subset of verticesindependent
set S ⊆ V (G) such that no two vertices in S are adjacent. The size of the largest independent set

in G is the independence number and is denoted by α(G). Deciding whether a graph contains anindependence
number, α(G) independent set of a given size is a well-known NP-complete problem. Even approximating α(G)

up to a factor n1−ε for a constant ε is difficult. Note that finding an independent set in G is
equivalent to finding a maximum clique in G, the complement of G (obtained from G by adding all
the edges not in G, and removing all the edges in G). Hence computing ω(G) or α(G) is equally
hard in general graphs.

Other objects related to independent sets are matchings. A matching is a collection of edgesmatching

such that no two edges in the matching share a common endpoint. A matching in G correspond
exactly to an independent set in G�, the linegraph of G. If a matching is incident to all the vertices
of the graph, then it is called a perfect matching . Contrarily to the independent set problem, bothperfect match-

ing computing a matching of maximum size, or deciding whether a graph contains a perfect matching
are problems with polynomial time algorithm on general graphs.

Colouring. Given an integer k ≥ 0, we will denote by [k] the set of integers {1, . . . , k}. A k-
colouring α is a function α : V (G) �→ [k] which assigns to each vertex v a colour. A k-colouringk-colouring

is proper if two adjacent vertices are assigned different colours. Unless specified otherwise, all theproper colour-
ing colourings we consider are proper, and we will omit to specify it. Colourings and independent

sets are related. Indeed, if we consider the set of vertices with a given colour c, then this set is
an independent set. Hence, a colouring can be thought as a partition of the graph into several
independent sets. It is not difficult to see that given a graph G, we can always find a colouring of G
provided we have sufficiently many colours (for example, assign a different colour to each vertex).
The smallest k such that a graph G admits at a k-colouring is called the chromatic number of G,chromatic

number, χ(G) and is denoted by χ(G). As was the case for the independence number, computing the chromatic
number of a graph is NP-complete, and is also hard to approximate. Even deciding whether a
graph is 3-colourable is NP-complete. However, there exist bounds on the chromatic number in
terms of other graph parameters.

By colouring the vertices of the graph one by one, it can be easily seen that we can always find a
colouring using at most Δ(G)+1 colours. In fact we have the following inequality: χ(G) ≤ col(G)+
1 ≤ Δ(G) + 1. Note that a clique on n vertices has chromatic number n. From this observation, it
follows that the chromatic number is at least the size of the largest clique: χ(G) ≥ ω(G). Graphs
for which this inequality is an equality for all their induced subgraphs are known as perfect graphs .perfect graphs

On standard question is to look at how much larger the chromatic number is, compared to the size
of the maximum clique. In general, there is no direct relation between the two parameters (there
are triangle-free graphs with arbitrarily large chromatic number), however, classes of graphs for
which the chromatic number is upper bounded by a function of ω(G) are called χ-bounded .χ-bounded

Given a graph G and a colouring α, a Kempe chain of G is a connected 2-coloured subgraph of GKempe chain

which is maximal inclusion-wise. Stated differently, if we consider two colours a and b, and consider
the subgraph Ga,b induced by the vertices coloured a or b, then a Kempe chain is a connected

16

1

2

3

4

1

2

3

2

1

2

1

3

4

2

1

3

1

1

Figure 1.2: Example of a Kempe chain (vertices in red), with the corresponding Kempe exchange.

component of Ga,b. A Kempe-exchange consists in swapping the two colours in a Kempe chain. Kempe-
exchangeAn example of a Kempe chain with the corresponding Kempe exchange is shown on Figure 1.2.

Note that performing a Kempe exchange never creates monochromatic edges. Consequently, an
initially proper colouring remains proper after applying some Kempe exchange. In some cases, a
Kempe chain can be reduced to a single vertex. In this case, the corresponding Kempe exchange
simply consists in changing the colour of that vertex. Given an initial colouring α, a colour c and
a vertex v, we will denote by 〈v, c〉 the Kempe exchange which recolours v from α(v) to c. Note
that a vertex w is recoloured by this exchange if and only if there is a path from v to w using only
the colours α(v) and c.

A very classic extension of colouring is called list colouring . A list assignment for the graph G list colouring

list assignmentis a function L : V → 2[k] which assigns to each vertex of the graph a list of possible colours. An
L-colouring of G is a k-colouring μ ∈ ΩV satisfying μ(v) ∈ L(v) for all v ∈ V . Since k-colouring is
a special case of list colouring when all the lists are equal to [k], the problem of deciding whether
a graph admits an L-colouring for a given list assignment L is at least as hard as the k-colouring
problem.

If the problems we just mentioned are hard in general, there are a certain number of cases where
polynomial time algorithms still exists if we add some assumptions on the graph we consider. In
particular, a popular approach to these problems consists in finding for which family of graph (also
called graph classes) there problems are hard. We present in the next section some classical graph
classes.

1.3.3 Graph classes

A class of graph is a family of graphs satisfying some property. Note that for all the classes below, class of graph

there are polynomial time algorithms to decide whether an arbitrary graph is an element of the
class. An exhaustive list of graph classes and their inclusion can be found in [dR+].

Trees are graphs which contain no cycle. An example is given in Figure 1.1d. The leaves of tree

leavesa tree are the vertices with degree 1, and the internal vertices of the tree are the vertices which
internal
verticesare not leaves. Sometimes, it is convenient to consider rooted trees, where one vertex of the tree is

special and is called the root of the tree. If a tree is rooted, then the parent of a vertex v denotes root
parentthe unique neighbour of v on a shortest path between v and the root of the tree. The children
childrenof v denotes the other neighbours of v. A tree is a complete tree if all the internal vertices different
complete tree

from the root have the same degree d (the root has degree d− 1), and the paths from the root to a
leaf all have the same length. If a tree contains a single internal vertex, then it is called a star (see star

Figure 1.1c). Trees have been used for example in biology to represent the evolution of different

17

species, or for syntactic analysis.

Bipartite graphs are graphs whose vertex set can be partitioned into two sets A and B suchbipartite graph

that every edge in the graph contains one vertex in A and one vertex in B. Equivalently, these
are the graphs which admit a 2-colouring. They can also be defined as graphs which have no cycle
of odd length. Note that in particular, trees are bipartite graphs. A complete bipartite graph iscomplete bi-

partite graph,
Ka,b

a bipartite graph where all the edges are present between the two parts. We denote by Ka,b the
complete bipartite graph with |A| = a and |B| = b. An example is given in Figure 1.1b for K5,6.

Interval graphs are intersection graphs of segments in a line. In other words, an intervalinterval graph

graph can be represented as a collection of segments in a line. Each segment represents a vertex
of a graph, and there is an edge between two vertices if their corresponding segments intersect. A
particular subclass of interval graph is called unit interval , when the intervals in the representationunit interval

graph have all the same length. Interval graphs are a particular subclass of the following. Interval graphs
appear frequently for problems related to scheduling.

Chordal graphs are a generalisation of interval graphs and trees. There are several equivalentchordal graph

ways to define them. They can be defined as intersection graphs of subtrees of a tree. Equiva-
lently, they are the graphs which admits a perfect elimination ordering : an ordering of the verticesperfect elimi-

nation ordering v1, . . . , vn such that for every i, N(vi) ∩ {v1, . . . vi} is a clique [Dir61]. This means that we can
obtain the empty graph by removing iteratively a vertex whose neighbourhood is a clique. Chordal
graphs are a subclass of perfect graphs. A special case of chordal graphs are split graphs which aresplit graph

the graphs G which can be partitioned into two sets A and B such that G[A] is a clique, and G[B]
is an independent set.

Chordal graph are also related to another graph parameter called the treewidth [BB73]. The
treewidth of a graph G is the smallest k such that G is a subgraph of a chordal graph with maximumtreewidth,

tw(G) clique at most k+1. The treewidth is a measure of how much a graph looks like a tree. In particular,
trees have treewidth equal to 1. Many problems are known to be polynomial on graphs of bounded
treewidth.

Planar graphs are graphs which can be drawn on the plane such that no two edges intersect.planar graph

It is known that if such a drawing exists, then there exists a drawing using only straight line
segments [Fár48]. A planar drawing of a planar graph defines faces which are the cells delimited
by the edges of the drawing. If F (G) denotes the faces of the drawing, then Euler’s formulaEuler’s formula

relates the number of vertices, edges and faces of a planar graph with the following relation:
|V (G)| − |E(G)| + |F (G)| = 2. Using Euler’s formula, it is possible to show that every planar
graph has degeneracy at most 5. If this means that every planar graph can be coloured with at
most 6 colours, a major result known as the four-colour theorem showed that they are in fact 4-
colourable [AH89]. When all the vertices of the planar graph are incident to the same face, then the
graph is called outer-planar . Outer-planar graphs have degeneracy 2, and consequently are alwaysouter-planar

3-colourable. Planar graphs are relevant when studying physical networks such as road networks.

Cographs are graphs with no induced path of length 4. They were introduced in [CLSB81] andcograph

can be recognized in linear time [CPS85]. Many problems which are NP-hard on general graphs ad-
mit polynomial-time – often even linear-time – algorithms for cographs. For example, the treewidth
and the chromatic number of a cograph can be determined in linear time [CHMW87]. Alternatively,
cograph can be defined as the class of graph defined by a the recursive characterization:

• A graph consisting of a single vertex is a cograph.

18

• If G and H are cographs, then their disjoint union is a cograph, that is, the graph with the
vertex set V (G) ∪ V (H) and the edge set E(G) ∪ E(H) is a cograph.

• If G and H are cographs, then their complete join is a cograph, that is, the graph with the
vertex set V (G) ∪ V (H) and the edge set E(G) ∪ E(H) ∪ {vw | v ∈ V (G), w ∈ V (H)} is a
cograph.

From this characterization of cographs, we can naturally represent a cograph G by a binary (i.e.,
internal nodes have 2 children) tree, called a cotree of G. A cotree T of a cograph G is a binary cotree

tree such that each leaf of T is labelled with a single vertex in G, and each internal node of T has
exactly two children and is labelled with either “union” or “join” labels. The cotree is such that union node

join nodetwo vertices of the cograph are joined by an edge if and only if their first common ancestor in T
is a join-node. The cotree of a given cograph G can be constructed in linear time [CPS85]. The
cotree of G is not necessarily unique but some properties do not depend on the choice of a cotree
T . For example, a cograph is connected if and only if the root of T is a join-node.

1.4 Markov Chains

The goal of this section is to give the reader unfamiliar with Markov Chain theory a very simple
introduction to some of the concepts. These notions will be used essentially in Chapter 5, and
are not prerequisites for the other chapters. Note that many of the definitions given here can be
generalized. However, we try to keep things as simple as possible. The reader can refer to [LP17]
for a very nice and detailed introduction on the subject.

A Markov chain is a random walk on a graph, given by a sequence of random variables (Xt)t≥0. Markov chain

The variable Xt represents the state of the Markov Chain after t steps. The graph associated to
the Markov Chain is directed, can have loops, and has positive weights on its edges. The weights
represent the probabilities of moving from one vertex to another. Since weights represent transition
probabilities, we must have that at any vertex, the weights of all the out-going edges sum to one.
Given a position at time t (i.e., a vertex of the graph), the position at time t + 1 is obtained by
picking one of the outgoing edges at random using their weights as the probability distribution,
and moving to the vertex pointed by this edge. A simple example is given in Figure 1.3.

The state space of a Markov Chain is the set of vertices of the underlying graph, and will be state space

denoted Ω. In all the following, we will always assume that Ω is finite, i.e., there is only a finite
number of possible positions. Markov Chains can also be defined with an infinite state space, but
some of the results we mention no longer hold in this setting.

A Markov Chain is often represented by a transition matrix P , which corresponds to the transition ma-
trix(weighted) adjacency matrix of the underlying graph. The transition matrix is indexed by the

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1

1

Figure 1.3: Example of a simple Markov chain. At each step, there is a 1
2 probability to move

either to the left, or to the right (except at the border). This chain is irreducible since the graph is
strongly connected, but it is not aperiodic: after an even number of steps, we must be at an even
distance from the starting position.

19

possible states i.e., the elements of Ω. Given x, y ∈ Ω, P [x→ y] represents the probability to be in
position y at step t+ 1 conditioned on the fact that Xt = x, in other words:

Pr(Xt+1 = y|Xt = x) = P [x→ y] .

The matrix P is such that every row sums to 1. Given an initial distribution ν0, we will denote
by νt the distribution after t steps of the Markov Chain. We will also write νtx the distribution
after t steps when the chain starts at position x, or in other words ν0x(y) = δx,y, where δx,yis the
Kronecker symbol, equal to 1 if x = y, and 0 otherwise. Starting from an initial distribution ν0,
the distribution after one step is obtained by the matrix multiplication of ν0 (seen as a vector) by
the transition matrix P . More generally, we have νt = ν0P t.

A distribution π is said to be stationary if it is a fixpoint of the transition matrix, i.e., π = πP .stationary dis-
tribution Informally, this means that if you are initially distributed according to the stationary distribution,

then you are still distributed according to the same distribution after one step of the Markov Chain.
Stationary distributions play a very important role in the study of Markov Chains. Any (finite)
Markov Chain always has at least one stationary distribution.

We will say that a Markov chain is reversible if it satisfies the following equation for everyreversibility

x, y ∈ Ω:

π(x)P [x→ y] = π(y)P [y → x] .

These equations are often called the detailed balance equations. It is easy to check that any dis-detailed bal-
ance equations tribution which satisfy the detailed balance equation of a transition matrix P must be a stationary

distribution of P . A particular case of reversibility is when the transition matrix is symmetric, i.e.,
P [x→ y] = P [y → x]. In this case, the uniform distribution on Ω is a stationary distribution.

In order to study the stationary distributions of a Markov Chain, the two following properties
are usually considered. A Markov Chain is irreducible if for every x, y ∈ Ω, there exists a t > 0irreducibility

such that P t[x → y] > 0. In terms of the underlying graph of the chain, this only means that
the graph is strongly connected. A Markov Chain is aperiodic if for every x ∈ Ω, there exists aaperiodicity

t0 ≥ 0 such that for all t ≥ t0, we have P t[x→ x] > 0. The notion of aperiodicity is more difficult
to interpret. This condition is useful to prevent periodic behaviours which can occur such as the
example in Figure 1.3. Note that in many cases, the aperiodicity of a chain is very easy to verify.
For example, if for every x ∈ Ω, P [x→ x] > 0, i.e., if there is a non-zero probability to stay in the
same position, then the chain is aperiodic.

We will say that a chain is ergodic if it is both irreducible and aperiodic. In this case, theergodicity

stationary distributions of the chain satisfy the following (see e.g. [LP17], Section 1.3):

Theorem 1. If a Markov Chain with transition matrix P is ergodic, then:

• it has a unique stationary distribution π, and π(x) > 0 for any x ∈ Ω ;

• for any initial distribution X0, the distribution after t steps converges to the stationary dis-
tribution, i.e.:

lim
t→+∞X0P

t = π

Note that if a chain is ergodic, this theorem does not give an estimation of how fast the
convergence to the stationary distribution is.

20

1.4.1 Mixing Time

An important question on finite Markov Chains is to estimate how fast the chain converges to its
stationary distribution. There are several measures which can be used to estimate this time. In
order to estimate the speed of convergence, we first need a measure to quantify how far apart two
distributions are. The measure usually used is the total variation distance. Given two probability total variation

distancedistributions ν, μ on Ω, it is defined as

dTV(ν, μ) =
1

2

∑
x∈Ω

|ν(x)− μ(x)| .

The most commonly used indicator for the time it takes for a Markov Chain to converge to its
stationary distribution is the mixing time defined for any ε > 0 as mixing time

tmix(ε) = inf

{
t : max

x∈Ω
dTV(ν

t
x, π) < ε

}
.

Note that often, this mixing time is only considered for ε = 1
4 , since it is known that below this

threshold, the convergence to the stationary distribution is exponentially fast. Indeed, for all ε < 1
4 ,

we have:

tmix(ε) ≤ tmix(1/4) · log
(
1

ε

)
.

We will simply write tmix as a shorthand for tmix(1/4). If the mixing time is often used due to its
simple interpretation, there are cases where other quantities for estimating the convergence speed
are easier to manipulate. If the Markov Chain is reversible, then we can define its spectral gap spectral gap

Gap(P) as the smallest non-zero eigenvalue (in absolute value) of P − I. The relaxation time is relaxation time

defined as

τ(P) =
1

Gap(P)
.

The relaxation time can be related to the mixing time by the following inequalities (see, e.g.
Theorems 12.3 and 12.4 in [LP17]):

(τ − 1) · log(2) ≤ tmix ≤ τ · log
(

1

πmin

)
, (1.1)

where πmin is defined as πmin := minx∈Ω π(x). Note that the mixing time and the relaxation time
are not the only measures of the speed of convergence. Other measures include the bottleneck ratio
and the log-Sobolev constant (see [LP17] for more details).

1.4.2 Continuous-time Markov Chains

We consider in this subsection a continuous-time version of Markov Chains. Informally, a continuous
time Markov Chain can also be represented as a random walk on a directed graph with positive continuous

time Markov
Chain

weights on the edges, but the update mechanism is slightly different. Instead of choosing the next
position after exactly one unit of time, the time of departure from the current position is chosen
according to a random variable with an exponential distribution2 with parameter 1. As for the

2A variable X is distributed according to an exponential distribution with parameter λ if for all t ≥ 0, Pr(X ≥
t) = e−λt.

21

discrete-time version, at each transition, the next position is chosen at random with probabilities
given by the outgoing edges.

A continuous time Markov Chain is usually described by its transition matrix L. The non-
diagonal values of this transition matrix correspond to the transition rates on each of the edges.
The diagonal terms are chosen such that each row sums to zero. If ν(t) describes the probability
distribution at time t, its evolution with time is given by the following differential equation:

dν

dt
(t) = ν(t)L .

Solving this differential equation gives ν(t) = ν0e
tL. All the notions we described before for

discrete time Markov chains also work for their continuous-time counterparts with only few caveats.
The continuous time version of Theorem 1 does not need the aperiodicity condition anymore.
Indeed, since the departure time are chosen at random, the notion of aperiodicity does not make
sense in the continuous-time setting. another point is that in the definition of spectral gap, we
must replace P − I by L.

Given a discrete time Markov Chain with transition matrix P , we can define its continuous-time
version using exactly the same transitions. In other words, we can consider the continuous time
Markov Chain with transition matrix L such that L[x → y] = P [x → y] for any x �= y (note that
the diagonal terms of L and P are different).

It is not difficult to see from this definition that a discrete time Markov Chain, and its
continuous-time variant have exactly the same relaxation time. Moreover, their mixing time differs
only by a constant factor.

22

Part I

Reconfiguration Problems

23

Chapter 2

Introduction to Reconfiguration
Problems

This chapter is an introduction to reconfiguration problems. It gives notations and formal definitions
used in the two next chapters, and motivates the study of these problems.

The chapter is organized as follows. In Section 2.1 formal definitions and notations on recon-
figuration problems are provided. Section 2.2 gives some motivations and applications to reconfig-
uration. An overview of existing results for graph colouring reconfiguration is given in Section 2.3.
Finally, Section 2.4 introduces Non-deterministic Constraint Logic, a tool frequently used in proving
hardness results for reconfiguration problems.

2.1 Definitions and notations

Let Π be a problem and I be an instance of Π. The reconfiguration graph GΠ(I) is the graph whosereconfiguration
graph, GΠ(I) vertices correspond to solutions of I and where there is an edge between two vertices if one can

transform the first solution into the other in one step. The definition of “one step transformations”
depends on the problem. Often, it consists in applying local modifications to the solution. In many
cases, there is a very natural choice for the possible transitions. For example, for the reconfiguration
of independent sets, it might consists in adding or removing a vertex; for reconfiguration of boolean
formulas, it could be flipping the value of a single variable. One example is given in Figure 2.1 for
colourings where the single step transformation consists in changing the colour of one vertex.

Recently, particular interest has been directed at the study of reconfiguration of graph problems
including colourings, independent sets, vertex covers, matchings... Other problems have also been
considered in the literature such as reconfiguration of boolean formulas [GKMP09] and word recon-
figuration [Wro14b] just to name a few. The reader can refer to the following surveys [Heu13, Nis18]
for a detailed overview of the results in the area.

Research on reconfiguration problems follows two main directions. The first direction is to study
structural properties of the reconfiguration graph. The problem of finding sufficient conditions for
the reconfiguration graph to be connected is one of the main questions of the area. An other widely
studied property is the diameter of the components of GΠ(I). Other properties of the reconfiguration
graph have been studied as well such as Hamiltonicity (also known as Gray codes) [CM11, Wil89],
chromatic number [FMFPH+12] or girth [AEH+18].

24

A second research direction is focused on computational complexity. In particular, the following
three problems have been widely considered:

• Π-Reachability: given an instance I of Π, and two solutions α and β of I, decide whether Π-
Reachabilitythere is a transformation from α to β. In other words, decide whether α and β are in the

same component of GΠ(I).

• Π-Bound: given an instance I of Π, and two solutions of I, find the shortest transformation Π-Bound

sequence between the two solutions.

• Π-Connectivity: given an instance I of Π, decide whether the the reconfiguration graph Π-
Connectivityfor I is connected or not (i.e., is there is a transformation sequence from any solution to any

other?).

Efforts have been directed at classifying the three problems above in terms of their complexity.
At first glance, it might seem that reconfiguration problems are in NP since they can be formulated
using only existential quantifiers as follows: “Is there a valid transformation sequence from α to
β?”. However, the length of the transformation might not be polynomial, and because of this,
reconfiguration problems can possibly be much harder. In fact, most reconfiguration problems are
actually in PSPACE. Indeed, consider the following non-deterministic algorithm: starting from an
initial configuration, guess the next step of the transformation among all the configuration adjacent
to the current one until the target configuration is reached. By running this algorithm for 2n steps
(if configurations are represented with n bits) we are guaranteed to find a transformation if it
exists. This shows that reachability is in NPSPACE, and consequently in PSPACE by Savitch’s
theorem. There are many examples of reconfiguration problems which are PSPACE-complete.
We will mention some of them in the following sections.

Note that there are connections between the structural properties of GΠ(I) and the complexity
of the reconfiguration problems. For example, if GΠ(I) is connected for any instance I, then Π-
Reachability becomes trivial. In this case, the algorithm can simply always answer yes as a
transformation always exists. If the connected components of GΠ(I) have polynomial diameter (in
the size of I), then Π-Reachability is immediately in NP. Indeed, given two solutions α and β,
a transformation from α to β is a polynomial size certificate that the input is a yes instance for
Π-Reachability.

Although for many problems there is only one natural choice for the possible single step trans-
formations, in some cases, there might also be several possible choice of transitions. For colouring
reconfiguration, two types of transitions have been studied in the literature. More details on this
are given in Section 2.3. Another example is the case of problems whose solutions can be repre-
sented by placing tokens on the vertices of a graph (for example independent set, or vertex cover).
For these problems the following transitions have been considered:

• Token Sliding (TS): moving a token to an adjacent vertex,

• Token Jumping (TJ): moving a token to any other vertex,

• Token Addition and Removal (TAR): adding or removing one token.

In the first two cases, the size of the solution (i.e., the number of tokens) does not change. In
the last case however, the size of the solution can change, and some bounds on the size of the
solutions are often added to prevent the existence of a trivial transformation sequence. For example,

25

1
2

3
1

2

1
2

3
1

3

1
2

3
2

3

1
2

1
2

3

1
3

1
2

3

Figure 2.1: Example of reconfiguration sequence for the colouring problem. The vertices recoloured
at each step appear in bold red.

consider independent set reconfiguration under TAR rule without any other constraints. A trivial
transformation always exists by first removing all the tokens from the first solution, and then
adding back the tokens of the second solution. Note that reconfiguration of independent sets has
been considered on a variety of graph classes, and was shown to be PSPACE-hard under any of the
three rules, even restricted to planar graphs [KMM12] or graphs of bounded bandwidth [Wro14b].
On the contrary, the edge variant of the problem, i.e., matching reconfiguration, was shown to
be polynomial with any of the three rules on any graph [BKW14]. In Chapter 4 we consider the
reconfiguration of perfect matching using a different kind of transformation.

Parametrized complexity has also been considered in the literature, using for example the
length of the transformation as a parameter, and approximation results have been considered
for the shortest transformation variant of the problem. A more detailed analysis of the existing
results, both from a structural and from a complexity point of view can be found in the two
surveys [Heu13, Nis18], as well as in the introduction of [Mou15]. We will give a detailed overview
of the existing results for the colouring problem in Section 2.3.

2.2 Applications and motivations

Although the formalisation of the reconfiguration framework and its terminology is recent [IDH+11],
the type of questions studied in this area has been considered for a long time. Many one player
games (a.k.a. combinatorial puzzles) such as Rubik’s cube, Rush-hour, or the 15-puzzle1 fit in the
reconfiguration setting. Indeed, in this case, the vertices of the reconfiguration graph are simply the
set of possible configurations of the game, and edges are valid moves. The 15-puzzle for example has
been studied since 1879 by Johnson and Story [JS79] who gave a characterization of the reachable
configurations. It was then generalized as a game with tokens on arbitrary graphs, and a complete
answer to the generalized version was given by Wilson [Wil74] in 1974.

Apart from the natural interest of understanding one-player games, there are many other mo-
tivations for studying these problems. Reconfiguration has a natural interpretation in terms of
modifying a solution already in place in a dynamic setting. For example, colouring can be used as
an abstract model for the frequency assignment problem: assigning frequencies to antennas while
preventing antennas close to each other from interfering. In this case, due to evolving constraints
we might want to change the existing assignment for an other more desirable one. For practical
reasons such as maintaining the service running, or minimizing the costs of changing the solution,
modifying the current solution in one go might not be feasible, but instead only local updates can
be made. This corresponds exactly to the reconfiguration setting and was studied in [BLR06].
This type of model has also been considered for other problems such as monitoring nodes in a
network [Mou15].

1“Jeu de takin” in French.

26

Reconfiguration problems are also strongly connected to Markov chains and random processes.
These have applications to sampling random solutions, approximating the size of the state space
(i.e., counting the number of solutions), and is linked to problems from statistical physics. The
running time of some algorithms used for solving these problems is connected to some properties
of the reconfiguration graph. More details on these connections are provided in Chapter 5.

All reconfiguration problems have in common that they are dealing with finding a path (i.e., a
reconfiguration sequence) between two given vertices in the reconfiguration graph. The reconfigura-
tion graph is not given as input to the problem, but instead is presented implicitly, via the instance
I of the problem Π and the choice of transitions. Due to the large size of this graph, an exhaustive
search is often not possible. Instead, finding a transformation sequence, or deciding that no such
sequence exists must be done using the structural properties of the reconfiguration graph. This
question of finding paths in very large graphs is also present in the robot motion planning problem.
In this latter example, the state space is the set of all feasible positions of the robot which satisfy
some constraints such as avoiding collisions with the environment. Several one player games such
as Sokoban [CUL99] or token sliding problems on graphs can be viewed as simple abstract models
for robot motions.

Another motivation for studying the properties of the reconfiguration graph comes from the
need to analyse the performance of some heuristic algorithms, such as local search, which rely on
local transformations for finding good solutions to a problem. By having a better understanding
of the structure of the reconfiguration graph, it might be possible to better control or improve the
performance of these algorithms. This is one of the reasons which motivated the firsts results on
the reconfiguration of graph colouring [LVM81].

2.3 Colouring reconfiguration

For k-colouring reconfiguration, we are given as input a graph and two colourings of this graph, k-colouring re-
configurationlook whether a transformation sequence exists. In particular, the number of colours k is usually a

constant and not part of the input. For this problem, two types of transitions have been studied
in the literature. There is the single vertex transition that we mentioned above, for which only
one vertex is recoloured at each step; and the more general Kempe exchange recolouring, for which
we allow to transform a colouring by swapping the colours of an arbitrary Kempe chain. Recall
from Chapter 1 that a Kempe chain is an inclusion-wise maximal 2-coloured subgraph, and a
Kempe exchange consists in swapping the two colours in some Kempe chain. Kempe chains can be
reduced to a single vertex, and for example, recolouring a single vertex is a valid Kempe exchange.
Hence, every transition for single vertex recolouring are valid transformations for Kempe exchange
recolouring.

To distinguish between the two types of transitions, we will specify explicitly when Kempe
exchanges are allowed. In particular, G(k,G) denotes the reconfiguration graph for k-colourings of G(k,G)

G under the single vertex update rule, while is the reconfiguration graph using Kempe-exchanges. GKem(k,G)

Similarly, k-colouring-Reachability denotes the decision problem under single vertex transitions,
while k-colouring-Kempe-Reachability allows for Kempe-exchanges.

Before reviewing existing results for both types of transitions, it can be interesting to remark
that the connectedness of the reconfiguration graph and its diameter are not necessarily monotone
properties as a function of the number of colours. For example, there might be graphs such that
the reconfiguration graph is connected with k colours, but not with k + 1 colours. An example of

27

1 1

2 3

2 3

2 3

1 1

2 2

3 3

4 4

Figure 2.2: A complete bipartite graph Km,m minus a matching in the case m = 4. With three
colours, one of the side can always be recoloured with one of the three colours as the example on
the left. On the right, a frozen colouring with 4 colours.

such a graph is the complete bipartite graph Km,m minus a perfect matching shown in Figure 2.2.
If m > 3, the reconfiguration graph with 3 colours is connected. With m colours however, there
can be frozen colourings (i.e., colourings with no possible transitions).

2.3.1 Kempe recolouring

Surprisingly, the Kempe chain transition was the first to receive attention from a reconfiguration
point of view, starting with the works of Fisk [Fis77] and Meyniel [Mey78]. They showed that the
reconfiguration graph GKem(k,G) is connected for respectively Eulerian planar triangulations with
k ≥ 4, and planar graphs with k ≥ 5. These works were extended in [LVM81] in which it was
proved that for k ≤ 5, and all Kk-minor-free graphs G, GKem(k,G) is connected.

An important part of the work on transforming colourings with Kempe exchange was studied
before the reconfiguration terminology was fixed. The focus has been mostly on finding sufficient
conditions for the reconfiguration graph to be connected. A summary of the existing results is
given in Table 2.3. An important result concerns a conjecture of Mohar [Moh06] that GKem(Δ, G)
is connected. This conjecture was proved recently in [FJP15, BBFJ19] for all graphs except the
prism (two triangles with a perfect matching between them) for which there are two connected
components in the reconfiguration graph.

Class of graphs number of colours Reference

Bipartite graphs k ≥ 2 folklore, e.g. [FS99, Moh06]

General graphs k ≥ col(G) + 1 [LVM81]

K5-minor-free graphs k ≥ 5 [LVM81]

3-colourable planar graphs k ≥ 4 [Moh06]

Δ-regular graphs different from a prism k ≥ Δ [FJP15, BBFJ19]

Perfectly contractile graphs2 k = ω(G) [Ber90]

Table 2.3: Summary of the known sufficient conditions which ensure that the Kempe reconfigura-
tion graph is connected.

2Perfectly contractile graphs are a subclass of perfect graphs which can be contracted to a clique of size ω(G) by
merging two vertices with no induced odd paths between them.

28

The case of edge-colouring has also been considered by Mohar in [Moh06]. Using similar tech-
niques as the proof of Vizing’s theorem, it was showed that the reconfiguration graph for the
edge-colourings of G is connected if k ≥ χ′(G) + 2, where χ′(G) is the chromatic index (equiva-
lently the chromatic number of G�). Moreover, if G is bipartite, then the reconfiguration graph
is already connected if k ≥ Δ + 1. The proof is constructive and provides a transformation of
polynomial length. This result was improved in [MMS12] for subcubic graphs, for which it was
shown that k ≥ 4 colours was enough, and for subquadratic graphs for which k ≥ 6 suffices to prove
the connectedness of the Kempe-reconfiguration graph. Note that [MMS12] also provides examples
of graphs with Δ > 3 for which Δ + 1 colours are not enough for the reconfiguration graph on
edge-colourings to be connected. It is still open to decide whether Δ+ 2 colours are enough for all
graphs or if Δ + 3 is necessary for some graphs.

Open Problem 1. Either provide a graph for which Δ+3 colours are needed for the reconfiguration
graph on edge-colourings to be connected, or show that Δ + 2 are enough for all graphs.

Note that if there exists an example G for which Δ+3 colours are necessary, then by the result
of Mohar mentioned above [Moh06] we must have χ′(G) = Δ + 1. Other results on the number
of connected components of the reconfiguration graph on edge-colourings with Kempe-exchanges
were investigated in [BH14].

Apart from the results of [Moh06] on edge-colourings and bipartite graphs for which there is
a simple O(n) upper bound on the diameter of the GKem(k,G), none of the results in Table 2.3
provide any sub-exponential upper bound on the diameter of the reconfiguration graph. Upper
bounds on the diameter obtained for single vertex recolouring directly give upper bounds for Kempe
recolouring since recolouring one vertex is a valid Kempe move. Thus finding upper bounds on
the diameter of the reconfiguration graph might be particularly interesting in cases where the
reconfiguration graph is connected for Kempe recolouring, but not for single vertex recolouring.

Open Problem 2. Investigate the diameter of the reconfiguration graph for the cases in Table 2.3.

The case of d-degenerate graphs might be of particular interest, as similar work already exists
for the single vertex reconfiguration. In particular, there is a conjecture on the diameter of the
reconfiguration graph for d-degenerate graphs for single vertex recolouring (see Conjecture 1 below).
One way to attack the conjecture could be to first try to first prove it for Kempe-chain recolouring.

Similar to the diameter, computational complexity aspects of the decision problems have not
received a lot of attention. Our works in [BHI+19b, BHI+19a] (see Chapter 3) are first steps in
considering both the diameter of the reconfiguration graph, and the computational complexity of the
decision problems for the Kempe-chain variant. We show that 3-colouring-Kempe-Reachability is
PSPACE-hard even restricted to bounded degree planar graphs with bounded bandwidth. We also
show upper bounds on the diameter of the reconfiguration graph for chordal graphs and cographs.
Finally, we show that the shortest transformation variant, k-colouring-Bound, is NP-hard, even
on stars.

2.3.2 Single vertex recolouring

Complexity aspects

The research on k-colouring reconfiguration under the single vertex update rule was started much
later. It was initiated with the works of Cereceda, van den Heuvel and Johnson [CHJ09, CHJ11,

29

BC09]. The computational complexity aspects of the problem have received a lot of attention. In
particular, k-colouring-Reachability was proved to be PSPACE-hard if the number of colours
is at least 4 and at most Δ [BC09, FJP14]. The problem remains PSPACE-complete even on
planar graphs for 4 ≤ k ≤ 6 and on bipartite planar graphs with k = 4 [BC09]. In both cases, the
reconfiguration graph is connected if we have more colours, and consequently the problem becomes
trivial.

The case of 3-colouring stands out compared to other reconfiguration problems. Despite the fact
that the 3-colouring problem is NP-hard, its reconfiguration version, 3-colouring-Reachability,
can be solved in polynomial time. Moreover, if a transformation exists, it has length O(n2) [CHJ11].
Additionally, 3-colouring-Connectivity is ‘only’ coNP-complete [CHJ09]. The hardness holds
even for bipartite graphs but the problem becomes polynomial on planar bipartite graphs. In
[CHJ08] the authors prove an alternative characterization of graphs G for which G(3, G) is con-
nected.

For k = Δ+1 colours, the reconfiguration graph has a simple structure. It was shown in [FJP14]
that G(Δ + 1, G) is composed of one single connected component with diameter O(n2), plus some
isolated vertices. Additionally, the number of isolated vertices is small compared to the size of the
large connected component [BBP18].

Note that although the complexity of k-colouring-Connectivity is known for 3 colours, it is
surprisingly still open for k ≥ 4. Given that Reachability is PSPACE-hard in this case, it would
seems natural to think that Connectivity should also be difficult, but no hardness proof for the
problem is known, and it can still be possible (although really surprising) that some structure of
the reconfiguration graph makes the problem easy.

Open Problem 3. Prove that k-colouring-Connectivity is PSPACE-hard for k ≥ 4.

In [HIZ17] the complexity of k-colouring-Reachability is studied for several graph classes.
The problem is shown to be PSPACE-hard on chordal graphs, even with a constant number of
colours. If the number of colours k is constant, the graphs constructed in the reduction also have
bounded bandwidth. The problem is polynomial time solvable for 2-degenerate graphs, and has
a linear time algorithm for split-graphs and trivially perfect graphs [Wro14b]. The problem is
also hard on graphs of bounded bandwidth [Wro14b]. Note that for chordal graphs, k-colouring-
Connectivity is easy. Indeed, it is enough to look at the size of the largest clique in the graph.
If k = ω(G), then the vertices of the largest clique are frozen, and the reconfiguration graph is not
connected. On the other hand, if k > ω(G), then the reconfiguration graph is connected since we
must have k ≥ ω(G)+1 = col(G)+2 (see Table 2.4). The complexity of k-colouring-Reachability

is still open for interval graphs, and it is not clear what the exact complexity should be. A first
step on this problem could be to consider unit interval graphs.

Open Problem 4. Study the complexity of k-colouring-Reachability on interval graphs.

Structural properties

The problem of finding properties which ensure the connectivity of the reconfiguration graph, and
finding bounds on its diameter has been intensively studied. Results is this direction are summarized
in Table 2.4. One interesting case is the case of d-degenerate graphs. It was proved in [DFFV06]

3The exponent in the polynomial depends on ε.

30

Class of graphs number of colours Diameter Reference

d-degenerate graphs

k ≥ d+ 2 O(nd+1) Chapter 3, [BH19]

k ≥ (1 + ε)(d+ 1) O(n
1
ε) Chapter 3, [BH19]

k ≥ 3
2(d+ 1) O(n2) Chapter 3, [BH19]

k ≥ 2d+ 2 O(kn) [BP16]

General graphs

k ≥ Δ+ 2 O(Δn) [Cer07]

k ≥ mad(G) + 1 + ε poly(n)3 [BP16, Feg19b]

k ≥ tw(G) + 2 O(n2) [BB18, Feg19a]

k ≥ χg(G) + 1 O(nχg(G)) [BB18]

Chordal-bipartite graphs k = 3 O(n2) [BJL+14]

Planar bipartite graphs k ≥ 5 O(n2) Chapter 3, [BH19]

Cographs k ≥ χ(G) + 1 O(n2) [BB14a]

Distance-hereditary graphs k ≥ χ(G) + 1 O(n) [BB14a]

Table 2.4: Summary of the known sufficient conditions which ensure that the reconfiguration
graph is connected under the single vertex recolouring, and the bounds on the diameter of the
reconfiguration graph. χg is the grundy chromatic number: the worst number of colours used by a
greedy algorithm to colour G.

that if k ≥ d + 2, then the reconfiguration graph is connected. A conjecture by Cereceda asserts
that in this case the diameter of the reconfiguration graph is at most quadratic:

Conjecture 1 ([Cer07]). For any G, and any k ≥ col(G) + 2, G(k,G) has diameter O(n2).

The quadratic bound on the diameter is best possible. Indeed, there are graphs, for example
some chordal graphs, for which the reconfiguration graph has quadratic diameter with k = col(G)+2
colours [BJL+14]. Note that the best known upper bound is exponential in the size of the graph,
and even getting a polynomial upper bound on the diameter is still open. Several weaker versions of
the conjecture were proved. Cereceda proved that the quadratic diameter holds under the stronger
assumption that k ≥ 2d + 1. In [BJL+14] Cereceda’s conjecture is proved for chordal graphs.
This result was then generalized to graphs of bounded treewidth and k ≥ tw(G) + 2 colours
in [BB18, Feg19a]. A polynomial upper bound on the diameter was shown in [BP16, Feg19b] if the
number of colours is at least k ≥ mad(G)+1+ε for a fixed ε, and where mad(G) is the maximum of
the average degree of H over all possible subgraphs H of G. This implies in particular a polynomial
upper bound on the diameter for planar graphs and k ≥ 8 colours. A quadratic diameter on planar
graphs for 10 colours was shown in [Feg19c]. In [BH19] (see Chapter 3) we improve some of these
results by showing that the reconfiguration graph has polynomial diameter on d-degenerate graphs
if k ≥ d+ 2, and d is constant. Additionally, the upper bound becomes quadratic if k ≥ 3

2(d+ 1).
For planar graphs, this implies an O(n6) bound on the reconfiguration graph with 7 colours, and a
quadratic bound if k ≥ 9.

31

On d-degenerate graphs, an other interesting question would be to investigate how many colours
(as a function of d) are needed for the reconfiguration graph to have a linear diameter. It is known
form [BP16] that 2d + 2 are enough, but it is not clear if this number of colours is necessary, in
particular for large values of d. Hence the following question:

Open Problem 5. Are there constants α < 2 and β ∈ N such that for every d-degenerate graph
G we have diam(G(k,G)) ≤ Cd · n for some constant Cd whenever k ≥ α col(G) + β?

Variants of the colouring problem

Reconfiguration problems have also been considered for variants of the colouring problem. The case
of edge-colouring (colouring of the linegraph) for example is interesting. From a complexity point of
view, it was shown in [OSIZ18] that k-edge-colouring-Reachability is PSPACE-complete even
on planar graphs for any k ≥ 5, while the case of 4 colours is still open.

Open Problem 6. Find the complexity of 4-edge-colouring-Reachability.

From a structural point of view, in the edge-colouring variant it is not clear how many colours
are needed to make the reconfiguration graph connected. If a graph G has maximum degree
Δ, its linegraph has maximum degree at most 2Δ − 2. Consequently, using the known results on
vertex colouring reconfiguration, 2Δ colours are enough to make the reconfiguration graph on edge-
colourings connected. On the other hand, the complete tripartite graph Km,m,m (see Figure 2.5)
is an example which requires at least 3

2Δ colours. Indeed, we can consider the colouring with
3m colours such that each colour forms a perfect matching between two of the three parts. This
colouring is frozen, and the maximum degree of this graph is Δ = 2m. Investigating how many
colours are needed to make the k-edge-colouring reconfiguration graph connected seem to be an
interesting problem.

Open Problem 7. What is the smallest k = k(Δ) such that the k-edge-colouring reconfiguration
graph of any graph G is connected?

Other variants of the colouring problem have been considered in the literature. For example,
list colouring has been considered from a complexity point of view. Since list colouring is more
general than colouring, all the hardness results for k-colouring-Reachability also hold for the list-
colouring variant. In general, there seems to be only very few cases for which the problem admits
a polynomial time algorithm. List-colouring-Reachability was shown to be PSPACE-hard on

Figure 2.5: A complete tripartite graph on 4 vertices. Each of the parts are drawn in grey.

32

u v

Figure 2.6: On the left, an example of an NCL machine with a valid orientation. Double edges
in blue are weight 2 edges, the red ones are weight 1 edges. On the right an example of an and

node u, and an or node v.

complete split graphs and graphs of pathwidth 2 [HIZ15]. On the other hand, it can be solved in
polynomial time on graphs of pathwidth 1, i.e., caterpillars [HIZ15]. The complexity of the problem
is still open on trees.

Open Problem 8. Find the complexity of List-colouring-Reachability on trees.

The problem k-colouring-Reachability and its list colouring variant have also been studied
from a parametrized complexity point of view. If � is the length of the transformation, the problem
is W[1]-hard and in XP when parametrized by � [BMNR14], and FPT when parametrized by k +
� [JKK+16]. Finally, other variations of the problem have been considered such as, reconfiguration
of circular colouring [BN15, BMMN16], or homomorphism reconfiguration [BN15, Wro14a], or also
reconfiguration of colourings in a distributed model of computation [BOR+18].

2.4 Hardness of reconfiguration problems

Computational complexity is often considered for reconfiguration problems. The general trend on
reconfiguration is that decision problems which are NP-hard tend to be PSPACE-hard in their
reconfiguration variant. There are exceptions to this trend, as we have seen for 3-colouring, however,
this seem to hold for a wide variety of problems. Finding a general argument to justify this pattern
is still an interesting open question. For decision problems which can be solved in polynomial time,
there is no clear pattern on the complexity of their reconfiguration version. Some, like matching,
are still polynomial in their reconfiguration variant [BKW14], and others like shortest path are
PSPACE-hard [Bon13]. Due to the overall hardness of reconfiguration of graph problems, an
important direction of research has been directed to restricting the graph to certain classes of
graphs, trying to get dividing lines between hardness and polynomial time algorithms.

One of the most important tool for proving PSPACE-hardness of reconfiguration problems is
called Non-deterministic Constraint Logic, or NCL for short. It is a reconfiguration problem which Non-

deterministic
Constraint
Logic (NCL)

was created by Hearn and Demaine in [HD05] to prove the hardness of certain types of puzzles.
Many hardness proofs of reconfiguration problems are done by reduction from NCL. We will use it
in Chapters 4 and 3 in the case of reconfiguration of perfect matchings and colourings respectively.

An NCL machine (also called a constraint graph) is an undirected 3-regular graph together NCL machine

with an assignment of weights from the set {1, 2} to each edge of the graph. We will call node node

the vertices of an NCL machine. Each node must be incident to an even number of edges with
weight 1. An NCL configuration of this machine is an orientation of the edges such that the sum NCL configura-

tionof weights of incoming arcs at each node is at least two. An illustration of an NCL machine and

33

a valid configuration is given in Figure 2.6. With these definitions, we can see that there are two
types of nodes:

• nodes incident to three edges of weight 2 are called or nodes, because they behave like ‘OR’
gates from boolean circuits: at least one of the three edges must be directed inwards.

• nodes incident to one edge of weight 2, and two edges of weight 1 are called and nodes for
similar reasons. The edge with weight 2 is called the output edge of the AND node, theoutput edge

two others are the input edge. The output edge can be directed outwards only if the otherinput edge

two input edges are pointing inwards. Note that the output edge is not necessarily directed
outwards even when both input edges are directed inwards.

The two types of vertices are illustrated in Figure 2.6. A reconfiguration step for NCL consists
in swapping the orientation of a single edge. NCL-Reachability was proved PSPACE-complete
by Hearn and Demaine in [HD05], even if the constraint graph is planar. This result was later in
improved in [Zan15] in which the following is proved:

Theorem 2 ([Zan15]). NCL-Reachability is PSPACE-complete, even if the NCL machine is
restricted to planar graphs of bounded bandwidth.

This result holds even if we allow edges with a neutral orientation [OSIZ18]. These edges are
considered inwards for none of their two endpoints. The neutral orientation is useful for reductions,
in particular if the gadget used in the reduction to represent edges of the NCL machines needs
several steps to be reversed.

34

Chapter 3

Colouring Reconfiguration

This chapter presents several results on the reconfiguration of graph colouring. It considers both
complexity aspects and structural properties of the reconfiguration graph. The results mentioned
here appear in three articles [BHI+19b, BHI+19a, BH19].

As we have seen in Chapter 2, when considering reconfiguration of graph colourings there are
two natural choices for the permitted transformations: single vertex recolourings, where it is allowed
to recolour one vertex at a time; and Kempe recolourings for which we can swap the colours in a
whole Kempe component. We consider both types of transitions in this chapter. We refer the reader
to Section 2.3 for a detailed overview of the existing results on colouring reconfiguration. Since we
consider two kinds of transitions, we will make explicit the cases where Kempe moves are allowed.
Hence, Kempe-Reachability denotes the reachability problem for k-colouring using Kempe chain,
while Colouring-Reachability is the same problem for the single vertex recolouring variant.
Recall that G(k,G) denotes the k-colouring reconfiguration graph for single vertex recolouring,
while GKem(k,G) denotes the reconfiguration graph under Kempe exchanges.

In the first part of this chapter (in Sections 3.1 and 3.2), we investigate recolouring with
Kempe exchanges from a complexity point of view. We show in Section 3.1 that both Kempe-
Reachability and Kempe-Connectivity are PSPACE-complete, even on bounded degree pla-
nar graphs and with just 3 colours. This contrasts with Colouring-Reachability which is
known to be polynomial with 3 colours (and PSPACE-complete for k ≥ 4) [BC09]. The results
of Section 3.1 appears in [BHI+19a], in which we also provide upper bounds on the diameter of
GKem(k,G) for several classes of graphs, such as cographs, chordal graphs and graphs of bounded
treewidth, for various numbers of colours.

In Section 3.2, we consider the shortest transformation variant of the problem. We show that
Kempe-Bound is already NP-complete, even on very simple graphs such as stars. In [BHI+19b],
in addition to the hardness result on stars, we show that the problem is FPT (on stars) when
parametrized by the number of colours, and give an approximation algorithm for the problem. We
also show that Kempe-Bound is NP-complete on bipartite graphs, even with only 3 colours. In
this case, it is also W [2]-hard when parametrized by the length of the transformation. Finally, we
give an algorithm to find the shortest reconfiguration sequence on paths.

In the second part of the chapter, we study the single vertex recolouring variant of the problem
from a structural point of view. We are particularly interested in the diameter of the reconfiguration
graph. Motivated by Cereceda’s conjecture, which states that G(k,G) has quadratic diameter if

35

k ≥ col(G) + 2, we investigate the diameter of the reconfiguration graph for d-degenerate graphs.
We show that this diameter is polynomial for k ≥ d+2 if d is a constant. If we allow more colours,
the diameter becomes quadratic if d ≥ 3

2(d+1), and remains polynomial whenever d ≥ (1+ε)(d+1)
for any constant ε > 0. These results appear in [BH19], where it is also proved that Cereceda’s
conjecture holds for planar bipartite graphs, and k ≥ 5 colours.

3.1 Hardness of Kempe recolouring

In this section, we consider the complexity of colouring reconfiguration using Kempe exchanges.
In contrast to the single vertex recolouring variant, the complexity Kempe recolouring has not
received much attention up to now. We prove the following result.

Theorem 3. Kempe-Reachability is PSPACE-complete, even with only three colours on planar
graphs with maximum degree 6.

The proof of the theorem is based on a reduction from Nondeterministic Constraint Logic
(NCL for short, see definition in Section 2.4) and proceeds in two steps. First, we consider a list
recolouring version of the problem and prove the hardness for this variant. The reduction from
NCL is based on a construction of gadgets to simulate the different elements of an NCL machine. In
the list colouring variant, the transitions between colourings are the same, but all the intermediate
colourings must be proper list colourings of the graph. In particular, a Kempe exchange swapping
two colours is permitted if and only if all the vertices in the chain have both colours in their lists.

A second step in the proof consists in modifying the construction made in the first step to
remove the list constraints. This is done by adding some gadgets to the construction to ensure
that transformations which would not be allowed in the list-colouring variant of the problem have
no effect overall on the colouring of the graph. More precisely, these gadgets ensure that when
attempting to perform one of these moves, it results in essentially swapping two colour classes.

3.1.1 List colouring reconfiguration

Our first step is to prove the following result which shows the hardness of recolouring with Kempe
exchanges for the list colouring variant.

Lemma 4. Both Kempe-Reachability and Kempe-Connectivityare PSPACE-complete for
list colouring, even restricted to three colours, on planar graphs with maximum degree 4.

Note that the hardness result holds even if we only use two kinds of lists, i.e., vertices either
can use all three colours, or can only use coluors 1 and 2. The rest of this subsection is dedicated
to describing the reduction, and proving its correctness. In the following, M is an NCL machine,
and G is a graph built from M using the gadgets described in Figure 3.1. The graph G is built
using one gadget for each of the nodes and each of the edges of the machine M . These gadgets are
glued together using the connector vertices (vertices in the grey areas on Figure 3.1). Hence, if oneconnector ver-

tices node u is incident to an edge e in the machine M , then the vertices in one of the connectors of the
gadget for e are identified with the vertices in the corresponding connector of the gadget for u. A
connector pair is a pair of vertices in the same connector, and we say that it is monochromatic ifconnector pair

monochromatic
connector

the two vertices have the same colour. The vertices which are not connectors will be called internal
vertices.

internal vertex

36

(a)

u1

u2

u3

(b)

w

v2v1

(c)

Figure 3.1: Gadgets used for the reduction. Vertices with double borders cannot take colour ⊥.
The grey areas are the connector. The different gadgets are assembled by identifying the connector
nodes of one edge gadget and one node gadget. (a) Edge gadget (b) or node gadget (c) and node
gadget. The bottom connector for this gadget corresponds the to the weight 2 edge.

There will be three colours. One, denoted ⊥ will be a special colour, and plays a different role
from the others. The other two, denoted 1 and 2, have symmetric roles. On Figure 3.1, the vertices
represented with two concentric circles cannot be coloured ⊥ (i.e., their lists of colours contains
only the colours 1 and 2). The other vertices can take all three colours.

The gate vertices for a node gadget are the three vertices u1, u2 and u3 for an or node, and gate

v1, v2 and w for an and node as shown in Figure 3.1. The two internal vertices of an edge gadget
are also gates. Each connector is associated to the two gates it is adjacent to: one gate in a node associated ver-

ticesgadget, and one in an edge gadget. These gates play an important role in the proof. Indeed, by
colouring them with the colour ⊥, we can ‘cut’ the (1, 2)-bicoloured components in the graph G,
ensuring in this way that the changes we make remain local and do not propagate throughout the
graph.

The relation between a colouring of G and a valid orientation of the NCL machine M is done by
looking at whether the connector pairs are monochromatic or not, as in Figure 3.2. If the connector
pair on one end of the edge gadget is monochromatic, then the edge is oriented outwards for the
corresponding node (i.e., inwards for the edge gadget). If they have different colours, then they are
oriented inwards for the node (i.e., outwards for the edge gadget). Note that both extremities of
the edge can be oriented inwards for the edge, in which case the edge will be said to be neutral . neutral edge

However, both extremities cannot be both oriented outwards. Indeed, if it was the case, this would
force the two gates to be coloured ⊥, which is not possible since they are adjacent. It is known
that NCL reconfiguration remains PSPACE-complete even if we allow orientations with neutral
edges [OSIZ18].

In the rest of this section, to remain coherent with the rest of the manuscript, α, β, γ will denote
colourings, while σ and η denote orientations of an NCL machine. Given a colouring α of G, we
denote by σα the corresponding orientation for the NCL machine M . Conversely, we denote by
Ωσ the set of colourings which correspond to the orientation σ. That is to say, Ωσ is the set of
colourings α such that σα = σ). Note that σα only depends on the colours of the connectors in G.

We start with the two following observations:

Observation 5. Given any colouring α of G, the internal vertices of G can be recoloured one at a
time such that:

37

1 1

2

⊥
1 1

1 1

⊥
2

1 1

1 1

⊥
1

2 2

1 1

2

⊥
2 2

2 2

⊥
2

1 1

2 2

1

⊥
1 1

1 2

⊥
2

1 1

1 2

⊥
1

2 2

2 2

1

⊥
1 2

1 1

2

⊥
1 2

neutral edgeedge towards v edge towards u

u

v

u

v

u

v

Figure 3.2: Reconfiguration graph for an edge gadget, and the corresponding orientation of the
edge. Some symmetric cases were removed for clarity.

• on each edge gadget, one of the two gates is coloured ⊥,
• on each or gadget, two of the three gates are coloured ⊥,
• on each and gadget with gates v1, v2 and w as in Figure 3.1c, either w is coloured ⊥ or v1

and v2 are.

Proof. On an edge gadget, if none of the two gates are coloured ⊥, we can directly recolour one of
the gates with ⊥ since the connector vertices cannot be coloured with ⊥.

On an or gadget, the only neighbours of some gate which can be coloured ⊥ are the vertices
in the central triangle. Since only one of the vertices in this triangle can be coloured ⊥, the two
gates which are not adjacent to this vertex have no ⊥ neighbour and can be directly recoloured ⊥.

Finally, on an and gadget, if w is not already coloured ⊥ then the two other gates v1 and v2
do not have ⊥ in their neighbourhood and can be recoloured ⊥.

Observation 6. Let α be a colouring of G. Assume that there is a (1, 2)-bichromatic chain inter-
secting a connector pair on a single vertex. Then the two gates adjacent to this connector must be
coloured ⊥, and the chain contains a single vertex.

Proof. We prove the contrapositive, i.e., assuming that one of the gates is not coloured ⊥, we
will show that the two vertices in the connector pair are in the same (1, 2)-Kempe component.
Given two vertices in a connector pair, there are two paths on each side of the connector which
connects the two vertices in the connector pair. On each of these two paths, only the gate vertex
can take a colour different than ⊥. Hence, if one of the two gates is not coloured ⊥, then there is
a path coloured with only 1 and 2 between the two vertices, and the two vertices are in the same
(1, 2)-Kempe component.

The following lemma asserts that this relation between colourings of G and orientations of M
preserves the constraint of the NCL machine M .

38

Lemma 7. For any colouring α of G, σα is a valid orientation of M . Conversely, for any valid
orientation σ, the set Ωσ is not empty.

Proof. Let α be a proper colouring of G. We need to show that the orientation σα satisfies the
constraints of the NCL machine. Assume by contradiction that this is not the case, and let u be
the node of G which does not satisfy its NCL constraints.

• If u is an or node, then this means that all the edges incident to u are directed outwards at u
and consequently, all the connectors of the node are monochromatic. Let u1, u2 and u3 be the
three gates in the or gadget. Since each connector is monochromatic, ui must be coloured ⊥
for all i ≤ 3. However, in this case the triangle in the center of the gadget must be coloured
with only the colours 1 and 2 which is not possible.

• If u is an and node, then the output edge (i.e., the edge with weight 2) must point outwards.
This implies that the connector of the output edge is monochromatic. Let v1, v2 and w be
the central vertices of the and gadget as in Figure 3.1c. Then w can only be coloured ⊥,
and consequently u1 and u2 are both coloured with either 1 or 2. As in the previous case,
this implies that the connector pairs of the input edges are not monochromatic, and the
corresponding input edges point towards the node u, a contradiction of the assumption that
the node u violated the constraints.

Conversely, let σ be an orientation of M . We want to show that there exists a proper colouring
of G in Ωσ. We build a colouring α ∈ Ωσ by first choosing the colour of the connectors according
to the orientation σ. For example, if an edge e = uv is oriented towards the node u, then the two
vertices in the connector pair between e and u are coloured with 1 and 2 respectively, and the other
connector pair of the edge gadget is monochromatic.

Then, for each edge gadget, we can complete the colouring by assigning a colour to the internal
vertices. Indeed, for each edge gadget if the corresponding edge is oriented towards some node u,
the gate of u can be coloured ⊥, and the other gate still has one colour available since the other
connector must be monochromatic.

Finally, we complete the colouring for each node gadget. In the case of an or node, let u1, u2
and u3 be the three gates. Then, since the orientation σ is valid, at least one edge is pointing
outwards. This means that the corresponding connector is not monochromatic, and the vertex ui
incident to this connector can be coloured with either 1 or 2. The other uj for j �= i can be coloured
with ⊥. Finally the central triangle can also be coloured since 2-list-colouring a triangle is always
possible unless all the lists are the same which is not the case here.

In the case of an and node, let v1, v2 and w be the gates of the corresponding and gadget. If
the output edge points inwards, we can colour v1 and v2 with ⊥, and w with either 1 or 2. If the
output edge points outwards, w can be coloured with ⊥, and since the two other edges must point
inwards, v1 and v2 can both be coloured with either 1 or 2 depending on the colour used for their
respective connectors.

In our construction, the orientation of the NCL machine corresponding to some colouring α
only depends on the colours given by α on the connectors. The following lemma states that for
the purpose of recolouring α into some other colouring, it is enough to only consider the colours of
the connectors. In other words, there is always a transformation sequence between two colourings
which correspond to the same orientation of M .

39

Lemma 8. Let α and β be two colourings corresponding to the same orientation of the NCL
machine. Then there is a transformation from α to β.

Proof. Let α and β be two colourings in Ωσ for some orientation σ of the NCL machine. Without
loss of generality, we can assume that all three conditions of Observation 5 hold for both α and β.
First, we will show that we can transform α and β such that both colourings agree on the connector
nodes. Note that if they disagree on a connector, then this just means that the colours 1 and 2 in
this connector are swapped between the two colourings. Given a connector where the two colourings
disagree, we just apply one (or two) (1, 2)-Kempe exchange to make the two colourings agree on
the connector. Since the conditions of Observation 5 hold, the gate vertices coloured ⊥ isolate the
connectors from one another: no (1, 2)-Kempe chain contains vertices from two different connectors.
Hence, we are sure that the transformations on each connector can be performed independently.
Note that after this operation, the three conditions of Observation 5 still hold for α and β.

Once the colourings agree on the connectors, we can transform them to agree on the edge
gadgets. The only case where the two colourings might disagree is for neutral edges. In this
case the transformation is given in Figure 3.2. Note that in some cases (for example, for the two
colourings of the neutral edge at the top of Figure 3.2), we might need to temporarily recolour one
connector. When doing this, the change does not propagate since the connectors of a given node
gadget are isolated from each other by the ⊥-coloured gates using Observation 5.

Finally, we can finish the transformation from α to β by making the two colourings agree on
the node gadgets, without changing the colouring in the rest of the graph:

• For an and gadget, let v1, v2 and w be the gates of the gadget. If the two colourings disagree
on w, then the output edge must be inwards (since otherwise w has only the colour ⊥ avail-
able). This implies that the connector associated with the output edge is not monochromatic.
W.l.o.g. we can assume that the connector vertex adjacent to w is coloured 1 in both α and β.
Thus, w must be coloured 2 in one of the two colourings (say, α), and ⊥ in the other (say β).
Since the conditions of Observation 5 hold, both v1 and v2 are coloured ⊥ in α. Additionally,
since w is coloured ⊥ in β, v1 and v2 must be coloured 1 or 2 in β, which implies that the
two corresponding connectors are not monochromatic. Hence, the two vertices adjacent to v1
and different from w are either both coloured 1 or both coloured 2. If they are both coloured
2, then in α we can recolour v1 from ⊥ to 1. The same holds for v2. Finally, after these
operations, in α the (⊥, 2)-Kempe chain containing w might only contains the vertices v1, v2
and w. By swapping the colours in this chain, the two colourings agree on w.

If the two colourings agree on w, then they can be made to agree on v1 and v2 by recolouring
these two vertices individually.

• For an or gadget, let u1, u2 and u3 be the three gates. By Observation 5, in both α and β
there are two gates coloured ⊥, hence there is at least one gate, say u3, which is coloured ⊥
in both α and β. Let us first assume that the other gate coloured with ⊥ is different in the
two colourings. We can assume without loss of generality that u1 is coloured ⊥ in α but not
in β, and conversely, u2 is coloured ⊥ in β but not in α.

If β(u1) = α(u2) = x ∈ {1, 2}, then after possibly applying a (1, 2)-Kempe exchange on the
two vertices in the central triangle coloured 1 and 2 in α, we can assume that u1 and u2 are
in the same (⊥, x) component in the colouring α. By swapping this Kempe chain, the two
colourings agree on the the gate vertices, and the connector vertices are not modified by the
operation.

40

If β(u1) �= α(u2), then we can assume that β(u1) = 1 and α(u2) = 2, the other case being
symmetrical. Up to swapping the component composed of the two vertices coloured 1 and
2 in the central triangle, we can assume that the neighbours of u1 are not coloured 1 in α.
Indeed, the neighbours of u1 are either vertices with constraints, which have the same colour
in both colourings, and consequently must be different from β(u1) = 1, or the vertex in the
central triangle. If this vertex is coloured 1 in α, then the neighbour of u3 in the central
triangle must be coloured 2, and these two vertices form a Kempe component. By swapping
the colours in this component, no neighbour of u1 is coloured 1 in α. Hence, we can first
recolour u1 with 1 = β(u1), and then swap the (1,⊥)-Kempe component containing u2. After
this operation, the two colourings agree on the gate vertices.

If the gates coloured ⊥ are the same in both colourings, then the third gate must also have
the same colour since at least one of 1 or 2 is used by the connector (remember that the
two colouring agree on the connector vertices), and the three gates cannot be all coloured ⊥.
Finally, if the two colourings agree on the gates, then the vertex coloured ⊥ in the central
triangle is the same for both colourings since two of the gates are coloured ⊥. The two
colourings can be made to agree on the central triangle just by swapping the component
composed of the two vertices coloured 1 and 2 in the central triangle.

This shows that we can transform α into β and concludes the proof.

Proof of Lemma 4. To prove the lemma, we only need to verify that the two following properties
hold:

1. If there is a transition between two colourings, then there is transformation between their
corresponding orientations for the machine M .

2. If there is a transition between two orientations of the machine, then there is a recolouring
sequence between their corresponding colourings.

Point 1. Let α and β be two colourings of G which differ only by a Kempe exchange. If σα = σβ ,
then there is nothing to prove, so we can assume that this is not the case. This implies that α and
β differ by swapping the colours in a (1, 2)-Kempe chain, since no Kempe chain using the colour ⊥
can recolour the connectors vertices. Since σα �= σβ , there is at least one connector which changed
state during the transition (i.e., was monochromatic before the change and is not after, or the
contrary). This implies that the Kempe chains must contain only one of the two vertices of this
connector. By Observation 6, the two gates associated to this connector are coloured ⊥, and the
chain is reduced to a single vertex. Consequently, σα and σβ only differ at the edge e, and there is
a transition between the two.

Point 2. Let σ and η be two orientations of the NCL machine M which only differ on an edge e.
Without loss of generality, we may assume that e is neutral in σ, and points towards some node u
in η. By Lemma 8, we only need to show that there exists α ∈ Ωσ and β ∈ Ωη such that α and
β only differ by a Kempe exchange. Let S be the connector linking the edge e and the node u.
We take c to be a colouring of Ωσ such that the two gates corresponding to the connector S are
coloured ⊥. We first show that such a colouring exists by building it in several steps. First, we can
choose the colours of the connectors according to the orientation σ. We then extend this partial

41

colouring to the whole graph in such a way that the gates corresponding to S are coloured ⊥. The
proof is very similar to what we did for Lemma 8. We can extend the colouring for every gadget
of an edge e′ �= e and every gadget of a node u′ �= u using exactly the same procedure as we did
in the proof of Lemma 8. In the gadget corresponding to e, since e is neutral in σ, the connector
different from S is monochromatic. We can assume w.l.o.g. that it is coloured 1. Then, the gate
incident to S can be coloured ⊥, and the other gate can be coloured 2.

Finally, if u is an or node, then since σ is a valid orientation of M , there is an edge (different
from e) incident to u oriented inwards for u. The corresponding connector is not monochromatic,
and we can colour the corresponding gate with either 1 or 2. The other two gates can be coloured
with ⊥, and the colouring of the central triangle can be completed using the same argument as
before.

If u is an and node, and e is the output edge of u, then since σ is a valid orientation of M , the
two other edges of e must be oriented inwards for u. Consequently, the connectors corresponding
to these two edges are not monochromatic, and we can colour each of the corresponding gates with
either 1 or 2. Finally, the gate for S can be coloured ⊥.

If u is an and node, and e is not the output edge of u, then since σ is a valid orientation of
M , the output edge of u must be oriented inwards for u. This means the corresponding connector
is not monochromatic, and we can colour its gate with either 1 or 2. The two other gates can be
coloured ⊥.

This concludes the existence of the colouring α ∈ Ωσ such that both gates of S are coloured ⊥.
Let β be the colouring obtained from c by applying a (1, 2)-Kempe exchange on one of the vertices
of the connector S. Since the two gates are coloured ⊥, the other vertex in the connector does not
change colour, and the other connectors are left unmodified by the transformation. Hence β ∈ Ωη,
which concludes the proof.

3.1.2 Removing the constraints — Proof of Theorem 3

We now describe how to adapt the proof to remove the list constraints on the vertices in the gadgets.
Remember that in the construction from previous section, every vertex can be either coloured with
all three colours, or is constrained to a colour in the set {1, 2}. First observe that all the vertices
with constraints in the construction (i.e., which cannot take colour ⊥) have degree 2. The graph
obtained from the construction in the previous section is modified by first replacing each of the
constrained vertices by a gadget as in Figure 3.3.

u

u1

u2

Figure 3.3: Transformation of the constrained vertices using the gadget above. The vertices in
grey are here to enforce the ⊥ constraint.

42

Note that in any 3-colouring, the vertices u1 and u2 in Figure 3.3 have the same colour. Thus,
u1 is changed by a Kempe chain, if and only if u2 is. The vertices in grey on the figure represents
our ⊥ constraints, and will initially be coloured with colour ⊥. We must ensure that at any time
during a transformation, these vertices have the same colour across all gadgets. One way to ensure
this would be simply to merge all the grey vertices together, into one single vertex. However, this
operation does not preserve the planarity of the graph. Instead, we will use a chain of diamonds as
shown in Figure 3.4a. Note that the extremities and the cut-vertices of the chain always have the
same colour in any 3-colouring. Using these chains, we can form trees, and link all the grey vertices
together as shown for example in Figure 3.4b in the case of the edge gadget. The other gadgets are
treated in a similar way. Remark that this operation can be done while preserving the planarity
of the graph. Additionally, the maximum degree is 6 and occurs only when three diamonds meet
at a single vertex when connecting the chains together. We denote by G′ the graph obtained by
replacing each constrained vertex in G using the gadget from Figure 3.3, and connecting all the
grey vertices together using chains of diamonds. This completes the construction, and we can now
give the proof of Theorem 3.

Proof of Theorem 3. The proof is done by a reduction from the list variant of the problem that
we proved to be PSPACE-hard in the previous subsection. Let G be the graph obtained by the
construction from previous subsection with the list assignment L, and G′ the graph obtained from
G by applying the transformation above. Given a constrained vertex u in G, the two vertices u1
and u2 in G′ obtained by the construction in Figure 3.3 will be called vertices resulting from u. resulting

verticesLet α′ be a colouring of G′. We will assume in the following that, up to renaming the colours
in α′ that all the grey vertices in G′ are coloured ⊥. Given an L-colouring α of G, we will say that
α′ is an extension of α if the two colourings agree on the vertices in G, and for every constrained
vertex u in G which was replaced by a gadget, the vertices resulting from u are both coloured α(u)
in G′.

To prove the result, we only need to show that for any two L-colourings α and β of G, and
any two extensions α′ and β′ of α and β respectively, then α and β are in the same component of
GKem(L,G) if and only if α′ and β′ are in the same component of GKem(3, G′). This follows from
the following two observations:

• given a colouring α of G, all its possible extensions α′ to G′ are in the same connected
component of GKem(3, G′);

• for any proper colouring of G′, all the vertices which result from some constrained vertex in
G and are coloured 1 are in the same (1,⊥)-Kempe chain. The same holds for these vertices
which are coloured 2.

Let α and β two L-colourings of G, and α′ and β′ two extensions. First, assume that α and β differ
by swapping the colours in a Kempe-chain. Then, by construction there is an equivalent Kempe
chain in G′. By swapping the colours in this Kempe component for the colouring α′, we obtain a
colouring β′′ which is an extension of β. By the first point above, β′′ and β′ are in the same Kempe
component, and consequently, so is α′.

Reciprocally, assume that there is Kempe exchange which transforms α′ into β′. If this Kempe
exchange does not use the colour ⊥ or does not recolour a vertex which results from a constraint
vertex in G, then there is an equivalent Kempe exchange in G which transforms α into β (possibly,
these two colourings are in fact equal). Otherwise, this Kempe exchange recolours at least one

43

(a) (b)

Figure 3.4: (a) A chain of diamonds used to connect together all the grey vertices. (b) Example in
the case of an edge gadget. The area with double circles in grey represents the former vertices with
constraints (here the connectors) that were replaced. The diamonds on either side can be replaced
by longer chains to connect together the chains obtained from different gadgets.

vertex resulting from a constrained vertex from some colour x to ⊥. By the second observation
above, all the vertices resulting from a a constraint vertex in G which are coloured x in α′ are
recoloured with ⊥. After the exchange the grey vertices in G′ are coloured x. Hence, by renaming
in β′ the colour x in ⊥, and ⊥ in x, we can observe that β′ is the extension of a colouring β
which agrees with α on the constrained vertices. Since the two colourings agree on the constrained
vertices, in particular they agree on the connector pairs, and consequently they correspond to the
same orientation of the NCL machine. By Lemma 8, this implies that α and β are in the same
connected component of GKem(L,G).

Hence, α and β are in the same component of GKem(L,G) if and only if α′ and β′ are in the same
connected component of GKem(3, G′). This ends the reduction, and by Theorem 17, it shows that
deciding whether there is a transformation between two given 3-colourings is PSPACE-hard.

3.2 Shortest transformation on stars

In this section, we consider the shortest transformation version of the problem, i.e., the problem of
finding a shortest reconfiguration sequence between two given colourings using Kempe exchanges.
Unlike the problem we considered in the previous section, the number of colours is no longer
constant, but is part of the input instead. We call Kempe-Bound this problem, formally defined
as follows:

Kempe-BoundKempe-Bound

Input: Two integers t and k, a graph G and two k-colourings α and β of G.
Output: Whether there is a transformation from α to β using at most t Kempe exchanges.

We show in this section that this problem is NP-complete, even on very simple graphs such as
stars.

44

Theorem 9. Kempe-Bound is NP-complete, even when restricted to stars.

Note that the fact that the problem belongs in NP follows immediately from the existence of a
transformation sequence of linear length between any two colourings of a star. Hence we only need
to show the hardness part. Note that in [BHI+19b], we also considers the parametrized complexity
aspects of the problem: we prove that Kempe-Bound on stars is FPT when parametrized by the
number of colours. We also give an approximation algorithm for the problem when the number of
colours is not bounded.

The main element to the proof of NP-hardness is the notion of a sorted transformation that we
present in the next subsection. More precisely, in the next subsection we show that, for the purpose
of finding a transformation of shortest length, we can assume that the transformation occurs in a
particular order. Using the order of the transformation, the problem of finding a shortest transfor-
mation is equivalent to finding a special intermediate colouring. Given this intermediate colouring,
computing the length of the transformation sequence can be done easily, and will follow from two
lemmas below (Lemmas 12 and 13). The hardness proof consists in showing that finding this special
intermediate colouring is difficult, by a reduction from the Hamiltonian Cycle problem.

3.2.1 Sorted Transformations

We start by observing that on a star, given an initial colouring α, there are two types of possible
Kempe exchanges:

• Kempe exchanges which recolour the root, we will call these root recolourings , root recolour-
ings

• Kempe exchanges which do not recolour the root. These will be called leaf recolourings . leaf recolour-
ings

Let S be a star, and r be its root vertex. Note that leaf recolourings only change the colour of a
single vertex. Given an initial colouring α, a sequence of bichromatic exchanges is a sequence of
root recolourings (resp. leaf recolourings) if at each step of the transformation the root is recoloured
(resp. is not recoloured). We will say that a sequence of Kempe exchanges is sorted if it is composed sorted trans-

formation
sequence

of first a sequence of leaf recolourings, and then a sequence of root recolourings. In other words,
a sequence of bichromatic exchanges is sorted if no Kempe-exchange that alters the colour of the
root precedes a Kempe-exchange that does not alter the colour of the root.

It is not difficult to see that there is a sequence of leaf recolourings from α to β if and only
if α(r) = β(r). Similarly, there is a sequence of root recolourings from α to β if and only if the
two colourings differ by a permutation of colours. In this case, we will say that α and β are
equivalent , and we will denote παβ the permutation of colours such that for every vertex v ∈ S, equivalent

colouringsβ(v) = παβ(α(v)).
The first step in the proof consists in showing that for the purpose of finding a shortest trans-

formation, we may restrict our attention to sorted sequences of bichromatic exchanges. Observe
that for a sorted transformation between α and β, there is an intermediate colouring γ, such that
the colour of the root does not change in the transformation from α to γ and it changes at each
step in the transformation from γ to β. We then provide tight bounds for shortest transformations
from α to γ and γ to β, respectively.

Recall that for a colouring α of the star S, and a suitable Kempe-exchange t (given by a vertex
and a target colour), we denote by t(α) the colouring obtained by applying t to α. In the following, α
and β denote two k-colourings of a star S. We start by showing that we can swap in some sense
the order of a root recolouring and a leaf recolouring.

45

Lemma 10. Let α be a colouring of a star S with root r. Furthermore, let t be a root recolouring
when applied to α and let s be a leaf recolouring when applied to t(α). Starting from α, there is a
leaf recolouring s′, such that s(t(α)) = t(s′(α)).

Proof. Let t = 〈r, x〉 be a Kempe-exchange recolouring the root with colour x. Furthermore, let
s = 〈u, y〉 be a Kempe-exchange on a leaf vertex u of S that does not alter the colour of r in t(α).
We only need to consider Kempe-exchanges that actually alter the colouring α, so we may assume
that x �= α(r). Since s does not alter the colour of r, we may also assume that y �= x. Therefore
two cases remain to be considered.

First, let us assume that y �= α(r). In this case, we can just take s′ = s. Indeed, by applying s
on α, the root is not recoloured by assumption on s. This transformation recolours u to y. When
applying t on s(α), u is not further recoloured since x �= y.

Consider now the case y = α(r). In this case, we consider s′ = 〈u, x〉. Applying s′ on α does not
recolour r since we know that x �= y = α(r). By applying s′ and then t on α, u is first recoloured
to x, and then recoloured to α(r) = y. Hence s(t(α)) = t(s′(α)), and the result follows.

The lemma above implies that for any transformation between two colourings of a star, there
is a sorted transformation of at most the same length.

Corollary 11. For any two colouring α and β of a star S, if there is a transformation of length t
from α to β, then there is sorted transformation sequence of length at most t between the two.

Proof. Given a non sorted transformation sequence of length t, we can use Lemma 10 to move all
the leaf recolourings at the beginning of the transformation sequence. After this operation, the
transformation sequence is sorted, and its length is still t.

For any sorted transformation from α to β there is an intermediate colouring γ, such that
the colour of the center vertex does not change in the transformation from α to γ and it changes
in each step in the transformation from γ to β. This implies that γ is such that γ(v) = α(v),
and γ is equivalent to β. The rest of this subsection is dedicated to finding bounds on the shortest
transformation sequence from α to γ, and from γ to β respectively. These bounds are such that the
total length of the shortest sequence from α to β can be expressed as a function of the intermediate
colouring γ. In particular, this means that finding a shortest sequence is equivalent to fining
the right intermediate colouring γ. Since γ and β are equivalent, this is the same as finding a
permutation on the colours such that the colouring γ which results from this permutation defines
a shortest transformation. Our reduction will then proceed by showing that finding this good
permutation is difficult.

Lemma 12. Let α and γ be two colourings with α(r) = γ(r). The shortest leaf transformation
sequence from α to γ has length:

|{v ∈ S \ {r}, α(v) �= γ(v)}|

Proof. As we remarked before, a Kempe exchange which does not recolour the root vertex of the
star recolours only one vertex. Hence, the length of the shortest leaf transformation sequence from
α to γ is equal to the number of leaves which have different colours in α and in γ.

46

Lemma 13. Let γ and β be two equivalent colourings of S such that β−1(c) �= ∅ for any colour v.
The length of the shortest root transformation sequence from γ to β is:

k − |Fix(πγβ)|+ |Cyc(πγβ)| − 2 · {γ(r) �=β(r)} ,

where {γ(r) �=β(r)} is equal to 1 if γ(r) �= β(r), and zero otherwise.

Note that the condition β−1(c) �= ∅ means that every colour is used at least once. This condition
is only present to ensure that the permutation πγβ is uniquely defined.

Proof. Denote by L(γ, β) the quantity in the statement of the lemma. To prove the result, we only
need to check that the following two points holds:

1. If γ �= β, then there exists a root recolouring which decreases L(γ, β) by at least 1.

2. No root recolouring can decrease L(γ, β) by more than 1.

In the rest of the proof, we write cr the colour of the root in γ. Let γ′ be the colouring obtained
from γ by performing a root recolouring from cr to some colour x. First observe that the permuta-
tion πγ′β can be obtained from πγβ by composing it with the transposition (cr x) which exchanges
the colours cr and x. In other words, we have: πγ′β = πγβ ◦ (cr x).

First point. We consider several cases:

• If β(r) = γ(r), then let x be any colour which is not a fixpoint in πγβ (this colour exists since
by assumption, β �= γ). We consider the Kempe exchange which recolour the root with x.
After the transformation, cr is no longer a fixpoint of πγ′β , and x is still not a fixpoint of this
permutation. Additionally, the number of cycles did not change by the operation, and finally,
γ′(r) = x �= β(r). Hence, L(γ′, β) = L(γ, β)− 1.

• If β(r) �= γ(r), and the decomposition of πγβ contains several disjoint cycles, then let x be a
colour which is not in the same cycle as cr. After recolouring the root with r, the number
of cycles in the decomposition of πγ′β decreased by 1, as the operation merges the two cycles
containing cr and x respectively. Additionally, the number of fixpoints does not change.
Hence, since we still have γ′(r) �= β(r), this implies that L(γ′, β) decreased by 1.

• Finally, if β(r) �= γ(r), and the decomposition of πγβ contains one unique cycle, let x =
π−1
γβ (cr) be the antecedent of cr by the permutation πγβ . Then, either the cycle had length

at least 3, in which case the permutation πγ′β also contains one unique cycle. The length of
this cycle decreased by 1, and γ′(r) �= β(r). Or, the cycle had length 2, and we have γ′ = β.
In this case, the number of fixpoints increased by 2, and the number of cycles decreased by
1. In both cases, we have L(γ′, β) = L(γ, β)− 1.

Second point. We want to show that for any choice of the colour x, L(γ′, β) cannot decrease
by more than 1. Note that the number of fixpoints can increase by at most 2, and the number of
cycles can decrease by at most 1. We consider the two following cases:

• First assume that β(r) = γ(r). After the transformation, the colour cr is no longer a fixpoint
of the permutation, and the number of cycles cannot decrease. This implies that L(γ′, β) can
decrease by at most 1 since the last term of the expression L(γ′, β) can decrease by at most 2.

47

• Now, we can assume that β(r) �= γ(r). If the number of cycles decreases by 1, this means
that one of the cycles in the decomposition of πγβ was just the transposition (cr x). After
the transformation, we have β(r) = γ′(r), and hence L(γ′, β) has decreased by at most 1. If
the number of cycles does not decrease, then the number of fixpoint decreases by at most 1,
and again, L(γ′, β) ≥ L(γ, β)− 1.

Hence, the two properties are verified, and the lemma holds.

3.2.2 Hardness of - on Stars

Let us now show that Kempe-Bound on stars is NP-hard. The proof is by reduction from the
Hamiltonian Cycle problem. The Hamiltonian Cycle problem asks whether a given graph
contains a simple cycle visiting each vertex exactly once. It was shown by Garey, Johnson, and
Tarjan that Hamiltonian Cycle remains NP-complete even on planar cubic graphs [GJT76]. We
now describe the construction used in the reduction to prove the NP-hardness of Kempe-Bound

on stars.
Let G be a graph with n vertices, and K be a constant, with K > n + 1. We construct the

star S, with two colourings α and β as follows. The number of colours will be n + 1. The root of
the star will coloured n + 1 in both α and β. For each edge ij ∈ G, we add K leaves to S, with
colour i in α and colour j in β. Note that we consider each edge in both direction (i.e., once in the
direction ij, and once in the direction ji). In particular, S has a total of 2K|E(G)| leaves. The
proof of Theorem 9 follows immediately from the following result:

Lemma 14. There is a transformation sequence of length at most K(2|E(G)| − n) + n+1 from α
to β in S if and only if G has an Hamiltonian cycle.

Proof. First assume that G contains an Hamiltonian cycle, and consider an arbitrary orientation
of this cycle. We consider the permutation π on [n+ 1] such that π(n+ 1) = n+ 1, and π(i) = j,
where j is the vertex following i on the Hamiltonian cycle of G. The permutation π contains one
fixpoint, and one cycle of length n. Consider the colouring γ obtained from β by applying the
permutation π on the colours. By definition of π, we have γ(r) = α(r) = n + 1, and γ and β are
equivalent. Additionally, since we can assume that G contains no isolated vertices, this implies that
β−1(c) �= ∅ for any colour c.

By Lemma 12, there exists a transformation from α to γ of length at most:

|{v ∈ S \ {r}, γ(v) �= α(v)}|
Let v ∈ S be a vertex which was added when considering the edge ij of G in this direction. By
construction, we have α(v) = i and β(v) = j. Then α(v) = γ(v) if and only if i = π−1(β(v)) =
π−1(j). In other words, we have α(v) = γ(v) if and only if the edge ij appears with this orientation
in the Hamiltonian cycle. Since there are exactly n edges in the Hamiltonian cycle of G, this implies
that the there exists a transformation from α to γ of length at most K(2|E(G)| − n).

Consider now a transformation from γ to β. Since γ and β are equivalent, and π−1 = πγβ ,
Lemma 13 gives a transformation from γ to β of length n + 1 (recall that the number of colours
here is n+ 1). Putting together these two transformation gives a (sorted) recolouring sequence of
the required length.

Reciprocally, assume that there exists a transformation sequence from α to β of length at most
L = K(2|E(G)| − n) + n + 1. By Corollary 11, we can assume that this transformation is sorted.

48

Let γ be the intermediate colouring such that the sorted transformation from α to β defines a leaf
transformation sequence from α to γ, and a root transformation sequence from γ to β. Consider
the permutation πγβ . This permutation is such that πγβ(n+ 1) = n+ 1. We start by showing the
following claim.

Claim 15. For all i ∈ [n], iπ(i) is an edge of G.

Proof. Consider the shortest leaf transformation sequence from α to γ. By Lemma 12, this sequence
has length

|{v ∈ S \ {r}, γ(v) �= α(v)}|

As we have seen just before, for a vertex v ∈ S which was added when considering the edge ij of
G in this direction, we have α(v) = γ(v) if and only if i = π−1

γβ (β(v)) = π−1
γβ (j). Hence the number

of vertices for which α(v) = γ(v) is equal to K|{i ∈ [n], iπγβ(i) ∈ G}|. If there exists at least
one index i such that iπγβ(i) �∈ G, then this quantity is at most K(n− 1), which implies that the
transformation sequence from α to γ has length at least K(2|E(G)| −n+1) > L, since K > n+1.
This contradicts the assumption that the transformation sequence from α to β has length at most
L. Thus, for every i ∈ [n], iπγβ(i) is an edge of G.

Consider the subgraph H of G containing all the edges iπ(i) for i ∈ [n]. H is composed of cycles
and isolated edges, and covers all the vertices of the graph. Each component in H corresponds to
a cycle the decomposition of πγβ into disjoint cycles. Since the leaf transformation sequence from
α to γ has length K(2|E(G)| − n), this implies that the root transformation sequence from γ to β
must have length at most L − K(2|E(G)| − n) = n + 1. By Lemma 13, the root transformation
sequence from γ to β has length:

n+ 1− Fix(πγβ) + Cyc(πγβ) = n+Cyc(πγβ) ,

where the equality comes from the fact that n+1 is the only fixpoint of πγβ , since for every i ∈ [n],
iπγβ(i) ∈ G, and in particular i �= πγβ(i). This quantity must be at most n+1, which implies that
Cyc(πγβ) ≤ 1. Hence this inequality must be an equality, and H contains one single component
which implies that H is an Hamiltonian cycle of G. This completes the proof of the reduction.

3.3 Single vertex recolouring

In this section, we consider single vertex recolouring. The complexity of reconfiguration with these
transitions has already been considered in the literature [BC09, FJP14]. We will concentrate here
on the structural aspect of the problem, and study the diameter of the reconfiguration graph. We
consider this problem on the case of d-degenerate graphs. It is not very difficult to prove that G(k,G)
is connected if G is d-degenerate, and k ≥ d+2 (see for example [DFFV06]). However, this simple
proof does not provide any non-trivial upper bound on the diameter of the reconfiguration graph.
Additionally, although Cereceda conjectured that this diameter should be at most quadratic [Cer07],
even finding a polynomial upper bound is currently still open. The reader can refer to Section 2.3.2
for more details on the existing results on the problem.

The main result in this section is to prove a polynomial upper bound on the diameter of G(k,G)
when G is d-degenerate, k ≥ d+ 2, and d is a constant. More precisely, we prove the following:

49

Theorem 16. Let d, k ∈ N and G be a d-degenerate graph. Then G(k,G) has diameter at most:

• Cn2 if k ≥ 3
2(d+ 1),

• Cεn
	1/ε
 if k ≥ (1 + ε)(d+ 2) and 0 < ε < 1,

• (Cn)d+1 for any d and k ≥ d+ 2,

where C and Cε are constants independent of k and d.

In particular, it implies that the 7-recolouring diameter of planar graphs is polynomial (of order
O(n6)), answering a question of [BP16, Feg19b], and is quadratic if k ≥ 9 (improving the recent
result of Feghali giving k ≥ 10 [Feg19c]). For general graphs, our result guarantees moreover that
the diameter becomes a polynomial independent of d as long as k ≥ (1 + ε)(d+2). We also obtain
a quadratic diameter when the number of colours is at least 3

2 · (d + 1), improving the result of
Cereceda [Cer07] who obtained a similar result for k ≥ 2d + 1. Note moreover that Theorem 16
ensures that the diameter is polynomial as long as d is a fixed constant, which was open even for
d = 2 (we get a diameter of order O(n3) for d = 2).

In order to show Theorem 16, we need to prove a more general result which also holds for
list-colourings. Indeed, we often need to consider induced subgraphs of our initial graph where the
colours of some vertices are“frozen” (i.e. do not change). By considering the list colouring version,
we can delete these vertices and remove their colours from the list of all their neighbours. The
proofs of Theorem 16 consists in showing that, given two colourings α and β of G, there exists
a transformation from α to β of the corresponding length. Since our proof is algorithmic, it also
provides a polynomial time algorithm that, given two colourings α and β, outputs a transformation
from α to β of length at most the bound we find on the diameter of the reconfiguration graph.

Let G be a d-degenerate graph and let v1, . . . , vn be a degeneracy ordering. We denote by d+(v)
the out-neighbours of v (i.e., neighbours of v which appear later in the ordering). Recall that a
graph is d-degenerate if there is a degeneracy ordering such that d+(v) ≤ d for every vertex v of
the graph.

Let us first briefly discuss the main ideas of the proof before stating formally all the results.
The main idea is to proceed recursively on the degeneracy. More precisely, we want to delete a
subset of vertices in order to decrease by one both the degeneracy and the number of colours. In
order to do this, observe that if at some point there is one colour c such that every vertex of the
graph is either coloured c or has an out-neighbour coloured c, then by removing all the vertices
coloured c, we decrease the number of available colours by 1, but we also decrease the degeneracy
of the graph by 1. If H is the resulting graph, by applying induction, we can recolour H however
we want, and for example, we can remove completely one colour which we can then use to make
the two colourings agree on a subset of vertices. If the colour c satisfies the condition above, we
will say that the colour c is full . Our main objective will consist in finding a transformation fromfull colour

any colouring α of G to some colouring α′ of G which has a full colour (Note that any graph can
have such a colouring, for example by applying the First-Fit algorithm in the reverse order of
the elimination ordering). We will build the colouring α′ (and the transformation) incrementally.
However in order to do this, we will need to generalise the problem to list colouring.

Recall that a list assignment L is a function which associates a list of colours to every vertex v,
and an L-colouring is a (proper) colouring α of G such that for every vertex v, α(v) ∈ L(v). The
total number of colours used by the assignment is k = |⋃v∈G L(v)|. A list assignment L is a-feasiblea-feasible list

assignment

50

if |L(v)| ≥ |d+(v)| + a + 1 for every vertex v ∈ G. We just say that it is feasible if it is 1-feasible.
feasible list as-
signment We denote by G(L,G) the reconfiguration graph of the L-colourings of G. (One can easily prove

by induction, that if a list assignment is a-feasible for a ≥ 1, then G(L,G) is connected). We will
prove a generalisation of Theorem 16 in the case of list colourings. Namely, we will prove that:

Theorem 17. Let G be a graph and a ∈ N. Let L be an a-feasible list assignment and k be the
total number of colours. Then G(L,G) has diameter at most:

• kn if k ≤ 2a.

• Cn2 if k ≤ 3a (C a constant independent of k, a),

• Cεn
	1/ε
 if k ≤ (1 + 1

ε)a where ε is a constant and Cε is independent of k, a,

• (Cn)k−1 , if a ≥ 1.

The proof of Theorem 16 follows easily from this result. The only point that is not immediate
is the fact that the last point of Theorem 17 implies the last point of Theorem 16. In this case,
we need a small trick to guarantee that the diameter does not increase if the number of colours
increases. Note that the first point of Theorem 17 implies in terms of classical colouring that the
k-recolouring diameter is linear when k ≥ 2d+ 2, which is an already known result [BP16].

Proof of Theorem 16. Note that given a d-degenerate graphs and k colours, we can consider the
list assignment L where L(v) = [k] for every vertex v. This list assignment is a-feasible with
a = k − d− 1.

We start with the second point of Theorem 16. If k ≥ (1 + ε)(d+ 1) then:

k

a
=

k

k − d− 1
= 1 +

d+ 1

k − d− 1
≤ 1 +

1

ε
.

By applying the third case of Theorem 17, the result follows.
The first point follows immediately from the result above by taking ε = 1

2 .
Finally, in order to prove the last point, we need to prove that we can “replace” k by d. Let

G be a d-degenerate graph and let γ be a (d + 1)-colouring of it. Let us prove that, if k > d + 2,
any colouring α can be transformed into γ within O(nd+1) steps (and not O(nk−1) as suggested by
Theorem 17). Indeed, we simply simply “forget” the vertices coloured with colour d+3, . . . , k in α.
Let H be the graph without these vertices. The graph H is d-degenerate and by Theorem 17, we
can transform α|H into γ|H within O(nd+1) steps using colours in 1, . . . , d+ 2. We finally recolour
the vertices of G \H one by one with their colours in γ to obtain the colouring γ.

The rest of this section is devoted to prove Theorem 17. In order to do it, we need to generalise
the notion of full colour to the list-colouring setting. We also need to generalise it to sets of colours,
to handle the case where a > 1. Given a colouring α of G, the set of colour S is full if for every
vertex v and every colour c ∈ S one of the following holds:

(i) α(v) ∈ S,

(ii) v has at least one out-neighbour coloured c,

(iii) or c �∈ L(v).

51

We have a property similar as previously: starting from an a-feasible list assignment with a colour-
ing α, if S is full then by removing all the vertices v with a colour α(v) ∈ S from the graph,
and removing all the colours from S from all the lists, the resulting assignment is still a-feasible.
Additionally, the total number of colours has decreased by |S| (but the degeneracy of the graph
might not have decreased as much if we had k much larger than d+ 2).

In the following, we will denote by fa(n, k) the maximum diameter of G(L,G) over all graphs G
with n vertices, and all a-feasible assignments L with total number of colours k.

The proof of Theorem 17 is by induction on the total number of colours k. The base case, which
is the first point of Theorem 17, is the following lemma. This lemma ensures that if the number of
excess colours is sufficient (at least half the number of colours), then the diameter is linear1.

Lemma 18. Assume that k ≤ 2a, then fa(n, k) ≤ kn.

Proof. We show by induction on n that if k ≤ 2a+ 1, then for any a-feasible list assignment L on
a graph on n vertices, and any two L-colourings α, β, there is a transformation from α to β such
that every vertex is recoloured at most k times.

The result is clearly true when n = 1, since in this case the unique vertex can be recoloured only
once. Assume that the result holds for n − 1. Let G be a graph on n vertices with a degeneracy
ordering v1, . . . , vn, and an a-feasible list assignment L using a total of k colours. Let α and β
be two L-colourings, H be the subgraph obtained after removing vn, and define d = |d+(v1)| the
number of neighbours of v1.

Using induction on H, there is a transformation S from α|H to β|H such that every vertex is
recoloured at most k times. Note that by assumption, the number of colours available to v1 is at
least d+ a+ 1, hence the total number of colours k satisfies, d+ a+ 1 ≤ k ≤ 2a, and in particular
a ≥ d + 1, and k ≥ d + a + 1 ≥ 2d + 2. Every time one of the neighbours of v1 is recoloured in
the sequence S, we may have to recolour v1 beforehand so that the colouring remains proper. This
happens if the neighbour wants to be recoloured with the current colour of v1.

Every time we have to recolour v1, we have the choice among a set S of a ≥ d + 1 colours for
the new colour of v1. We can look ahead in S to know which are the next d + 1 modifications of
colours of neighbours of v1 in S. One colour c of C does not appear in these modifications since
|C| ≥ d+ 1 and the first modified colour is not in C (since we need to recolour v1 at the first step,
and then the target colour is the current colour of v1 which is not in C). We recolour v1 with c.
This way, we only need to recolour v1 once out of every d+ 1 times its neighbours are recoloured.
Finally, we may need to recolour v1 one last time after the end of S to colour v1 with its target
colour. Since by induction, the neighbours of v1 are recoloured at most k times, the total number
of times v1 is recoloured is at most:⌈

dk

d+ 1

⌉
+ 1 ≤ d

d+ 1
k + 2 ≤ k ,

where in the last inequality, we have used the fact that 2 ≤ k
d+1 since k ≥ 2d+2. This concludes

the induction step and proves the result.

In the induction step of our proof, we will build a set of full colours. For a colouring α and a
set X of vertices, we denote by α(X) =

⋃
x∈X α(x). Before stating the main lemmas, let us make

the following remark:

1The proof is similar to the linear diameter obtained in [BP16] for colourings but adapted to list colourings.

52

Remark 1. Let G be a graph, L be a list assignment and α be a L-list colouring. Let H be an
induced subgraph of G with list assignment L′(v) = L(v) \ α(N(v) \ V (H)). Then any recolouring
sequence S from α|H to some colouring β|H also is a (valid) recolouring sequence from α to β where
β(v) = β|H(v) if v ∈ H and α(v) otherwise.

By abuse of notation and when no confusion is possible, we will then call S both the recolouring
sequence in H and in G.

The following lemma states that, if we already have a set of full colours, then changing it to an
other given set can be done without too many additional recolouring steps.

Lemma 19. Let α be a colouring of G, and S a set of full colours for α with |S| = a. For any S′

with |S′| = a, there exists a colouring α′ such that S′ is full for α′, and there is a transformation
from α to α′ of length at most fa(n, k − a) + (2a+ 2)n.

Proof. Let S be a set of colours with |S| = a which is full for some L-colouring α. Let S′ be any
set of colours of size a. The main part of the proof consists in transforming α into a colouring that
does not use at all any colour of S′ (such a colouring exists since the list assignment is a-feasible).

Let H be the subgraph induced by the vertices not coloured S in α, and let LH be the list
assignment for H obtained from L by removing S from all the lists. Since S is full in α, LH is
a-feasible for H.

Consider the following preference ordering on the colours: an arbitrary ordering of [k]\ (S∪S′),
followed by an ordering of S′ \S, and finally the colours from S last. Let γ be the L-colouring of G
obtained by colouring G greedily from vn to v1 with this preference ordering. Since L is a-feasible,
and |S| = a, no vertex is coloured with a colour in S in γ. Indeed |L(v)| ≥ |d+(v)|+ a+1 and only
|d+(v)| neighbours of v have been coloured when v is coloured. Since in γ no vertex has a colour
in S, γ|H is an LH -colouring of H. By induction hypothesis, there is a recolouring sequence that
transforms the colouring α|H of H into γ|H within at most fa(n, k − a) steps. By Remark 1, this
recolouring sequence also is a recolouring sequence in G. We can then recolour the vertices of G\H
to their target colour in γ in an additional n steps. No conflict can happen at this step since γ is
a proper colouring of G.

One can easily check that, in γ, the set of colours [k] \ (S ∪ S′) is full. Let K be the subgraph
of G induced by all the vertices coloured S′ in γ, and let LK be a list assignment of these vertices
where all the colours not in S ∪ S′ were removed. Then since [k] \ (S ∪ S′) is full, LK is a-feasible.
We will recolour K such that no vertex is coloured S′ (such a colouring exists because LK is a-
feasible, and |S′| = a). Since the total number of colours used in LK is |S ∪ S′| ≤ |S|+ |S′| = 2a,
this recolouring can be done in at most fa(n, 2a) = 2an steps by Lemma 18. By Remark 1, this
recolouring sequence also is a recolouring sequence in G. The colouring γ′ of G that we obtain
is such that no vertex is coloured with c ∈ S′. We can finally recolour the vertices of G one by
one, starting from vn, choosing a colour of S′ if it is available, or leaving it with its current colour
otherwise.

Let α′ be the resulting colouring. By construction α′ is full for S′. The total number of steps
to reach α′ is at most fa(n, k − a) + n+ 2an+ n = fa(n, k − a) + (2a+ 2)n.

Using Lemma 19, we show that we can incrementally construct a set of full colours.

Lemma 20. Assume that k ≥ 2a. For any colouring α, there exists a colouring β containing a
set of full colours S with |S| = a, and there is a transformation from α to β of length at most
n
afa(n, k − a) + 4n2.

53

Proof. Let v1, . . . , vn be a degeneracy ordering of G. A colouring is full up to step i for a set of
colour S if |S| = a, and all the vertices vj with j ≤ i satisfy the conditions (i), (ii), (iii) for the
set S. If a colouring γ is full up to step n for the set S, then the set S is full.

Note that for any colouring α, any set of colours containing α(v1), . . . , α(va) is full up to step a.
So we only need to show that given a colouring α which is full up to step i for some set S, we
can reach a colouring α′ full up to step i + a for some (potentially different) set S′ in at most
fa(n, k−a)+4an steps. Suppose now that α is full up to step i but not i+1 for some set S. Let S′

be the colours of the vertices vi+1, . . . , vi+a. Up to adding arbitrary colours to S′, we can assume
that |S′| = a. We will then recolour the graph in order to obtain a colouring where S′ is full up to
step i+ a.

Let H be the graph induced by the vertices v1, . . . , vi, and LH be the list assignment of the ver-
tices of H obtained from L by fixing the colours of the vertices outside H. In other words, for every
vertex v ∈ V (H), we remove from L(v) the colours of all the vertices of N(v)∩{vi+1, . . . , vn}. Note
that LH is an a-feasible assignment of H since L was an a-feasible assignment of G. Additionally,
S is a set of full colours for the colouring α|H .

By Lemma 19, there is an LH -colouring α′
H of H which is full for S′ such that we can transform

α|H into α|′H in at most fa(n, k− a)+ (2a+2)n steps. Let α′ be the colouring which agrees with α
on the vertices with index larger than i, and agrees with α|′H on H. By Remark 1, α′ can be
obtained from α into at most fa(n, k−a)+ (2a+2)n steps. By construction, S′ is full up to step i,
and since the vertices vi+1, . . . vi+a are coloured with colours in S′, it is full up to step i+ a.

Finally, this procedure needs to be repeated at most
⌈
n
a

⌉− 1 ≤ n
a times (the minus one coming

from the fact that at the beginning we had for free a set of colours full for v1, . . . , va). After this
many steps, we obtain a colouring full up to step n for some set S with |S| = a, which concludes
the proof.

Finally, we can use the two previous lemma to get the following recursive inequality.

Lemma 21. Let k ≥ 2a, then fa(n, k) ≤ (2na + 3)fa(n, k − a) + 10 · n2.

Proof. Let L be an a-feasible list assignment of G, and α and β be two L-colourings of G. By
Lemma 20, there exists a colouring α′ and a set of colours Sα with |Sα| = a which is full for α′

such that the colouring α′ can be reached from α in at most n
afa(n, k − a) + 4n2 steps. Similarly,

there exists a colouring β′ and a set of colours Sβ with |Sβ | = a such that Sβ is full for β′ such that
the colouring β′ can be reached from β in at most n

afa(n, k − a) + 4n2 steps. By Lemma 19, using
an additional fa(n, k − a) + 4n steps, we can get a colouring β′′ from β′ such that the set of full
colours in β′′ and α′ is the same (namely Sα).

Let S be some set of colours disjoint from Sα with |S| = a. Let γ be a colouring of G that does
not use any colour of Sα (such a colouring exists since the list assignment of G is a-feasible).

Let Gα be the graph G where the vertices coloured with colours in Sα have been deleted and
the colours in Sα removed from the list assignment. Since Sα is full for α′, the list assignment of
Gα is a-feasible. Note that γ|Gα is a proper colouring of Gα. So by induction, it is possible to
recolour α′|Gα into γ|Gα in at most fa(n, k−a) steps. Since the vertices of W := V (G) \V (Gα) are
coloured with colours in Sα, and since γ does not use any of these colours, one can finally recolour
the vertices of W one by one from their colours in Sα to their target colours in γ.

Let Gβ′′ be the graph where the vertices coloured with Sβ′′ = Sα in β′′ have been deleted.
One can similarly recolour β′′|Gβ′′ into γ|Gβ′′ in at most fa(n, k − a) steps. Since vertices of

54

W ′ := V (G) \ V (Gβ′′) are coloured with colours in Sα, we can also can recolour the vertices of W ′

one by one from their colours in Sα to their target colours in γ.
The total number of steps to transform α into β is at most

f(n, k) ≤ 2
(n
a
fa(n, k − a) + 4n2

)
+ (fa(n, k − a) + 4n) + 2fa(n, k − a) + 2n

≤
(
2n

a
+ 3

)
fa(n, k − a) + 10n2

Lemma 22. For all k ≥ 1 and a ≥ 1, we have fa(n, k) ≤ Ckn
(
2n
a + 3

)� k
a�−2

for some constant
C > 0.

Proof. We prove it by induction on the total number of colours k. The base case is when k ≤ 2a
and simply is a consequence of Lemma 18 (note that

⌈
k
a

⌉
= 2 since k > a). The induction step is

obtained using Lemma 21.

We now have all the ingredients to prove Theorem 17, which completes the proof of Theorem 16.

Proof of Theorem 17. The first point is the result from Lemma 18. The second and last points are
consequences of Lemma 22 with the corresponding values of a. Let us prove the third point. Since
k ≤ (1 + 1

ε)a, we have
⌈
k
a

⌉ − 2 ≤ �1 + 1
ε� − 2 ≤ �1ε� − 1. Consequently, the function given by

Lemma 22 is O(n	1/ε
). Note that for the second and third point, the constant does not depend on
k or a since k/a is a constant (but it depends on ε in the third point).

55

Chapter 4

Perfect Matching Reconfiguration

This chapter studies the complexity of the reconfiguration of perfect matching. The results presented
here are the outcome of a collaboration started during the first DATCoRe workshop in Lyon in July
2018. They also appear in [BBH+19].

In this chapter, we consider the reconfiguration of perfect matchings, where two perfect match-
ings are considered adjacent if their symmetric difference is a cycle of length 4. In Section 4.1 below,
we introduce the problem and present existing results on matching reconfiguration in general. In
Section 4.2 we prove that Perfect-Matching-Reachability is PSPACE-complete, even when re-
stricted to (i) bipartite graphs of bounded bandwidth, and (ii) split graphs. Finally, in Section 4.3,
we show that this problem is solvable in polynomial time on cographs. When a transformation
exists, the algorithm also finds one of linear length. Note that in the original paper [BBH+19],
polynomial time algorithms are given for two additional classes of graphs: strongly orderable graphs
(and in particular interval graphs), and outerplanar graphs.

4.1 Introduction

Recall from Chapter 1 that a matching of a graph is perfect if it covers each vertex. Reconfiguration
of (not perfect) matchings has already been considered in the literature under Token Sliding (TS)
and Token Jumping (TJ) rules. Numerous algorithms and hardness results are available for finding
transformations between matchings — and more generally, independent sets — using these two
operations.

However, these two operations are not suitable for the reconfiguration of perfect matchings.

M
0

M
1

M
2

M
3

M
4

Figure 4.1: A transformation between perfect matchings M0 and M4 under the flip operation. For
1 ≤ i ≤ 4, the matching Mi can be obtained from Mi−1 by applying the flip operation to the cycle
induced by the four painted (red) vertices in Mi.

56

Indeed, for both TS and TJ rules, there is no feasible transition if the starting position is a perfect
matching. Since the symmetric difference of any two perfect matchings of a graph consists of
even-length vertex disjoint cycles, it is natural to consider a different adjacency relation for perfect
matchings. We say that two perfect matchings differ by a flip if their symmetric difference induces flip

a cycle of length four. Two perfect matchings are adjacent if they differ by a flip. Intuitively, for
two adjacent perfect matchings M and M ′, we think of a flip as an operation that exchanges edges
in M \M ′ for edges in M ′\M . A flip is in some sense a minimal modification of a perfect matching.

An example of a transformation between two perfect matchings of a graph is given in Figure 4.1.
Using the notations from previous chapter, the problem we consider here is formally defined as
follows.

PM-Reachability

Input: Graph G, perfect matchings Ms and Mt of G.
Question: Is there a sequence of flips that transforms Ms into Mt?

Note that if we do not restrict the length of a cycle in the definition of a flip, the problem
becomes trivial. Indeed, given two matchingsMs andMt, let us denote byMs�Mt their symmetric
difference, i.e., the set of edges which are in one of the two matchings but not in both. If the two
matchings are perfect, then their symmetric difference is a disjoint union of cycles, and there
is a transformation from one to the other by performing a flip on each cycle in the symmetric
difference Ms�Mt. If this method always produces a reconfiguration sequence, this sequence is
not necessarily the shortest. Figure 4.2 gives an example of two perfect matchings for which the
symmetric difference contains 3 cycles, but there is a transformation of length 2. The problem
of finding the shortest reconfiguration sequence when flips of arbitrary size are allowed can be of
independent interest, and prompts the following open problem.

Open Problem 9. Investigate the complexity of Perfect-Matching-Bound with flips of arbitrary
size.

4.1.1 Related work

Reconfiguration of perfect matchings using flips has been considered in the literature, in the context
of random sampling. The use of flips for sampling random perfect matchings was first started
in [DGH01] where it is seen as a generalisation of transpositions for permutations. Their work
was later improved and generalized in [DJM17] and [DM17]. The focus of these two articles is to
investigate the problem of sampling random perfect matchings using a Markov Chain called the

Figure 4.2: Example of transformation using flips of larger size. The symmetric difference be-
tween the matching on the left and the one on the right contains 3 cycles, however, there is a
transformation of length only 2.

57

switch chain. Starting from an arbitrary perfect matching, the chain proceeds by applying at each
step a random flip (called switch in these papers). Some of their results can be reformulated in the
reconfiguration terminology. In [DJM17], it is proved that the largest hereditary class of bipartite
graphs for which the reconfiguration graph of perfect matchings with flips is connected is the class of
chordal bipartite graphs. This result is generalized in [DM17] where they characterize the hereditary
class of general (non-bipartite) graphs for which the reconfiguration graph is connected. They call
this class Switchable. Note that it is not clear whether graphs in this class can be recognized
in polynomial time. The question of the complexity of PM-Reachability is also mentioned in
[DM17].

The problem of sampling or enumerating perfect matchings in a graph received a considerable
attention (see e.g. [SVW18]). Determining the reachability, the connectivity and the diameter of
the solution space formed by perfect matchings under the flip operation provide some information
on the ergodicity or the mixing time of the underlying Markov chain.

As we discussed at the beginning of this chapter, transformations between matchings and in-
dependent sets have been studied in various settings, and in particular using the TS and TJ
operations. Furthermore, the flip operation has been used for other problems such as reconfigura-
tion of Hamiltonian cycles [Tak18], as well as some geometric matching problems related to finding
transformations between triangulations.

Reconfiguration of Matchings and Independent Sets. Recall that matchings of a graph
correspond to independent sets of its line graph. Although reconfiguration of independent sets
received a considerable attention in the last decade (e.g., [BKW14, BMP17, DDF+14, HD05, IKO14,
KMM12, Wro14b]), all the known results for reconfiguration of independent sets are based on the
TJ or TS operations as adjacency relations. Thus, none of these results results carry over to the
reconfiguration of perfect matchings.

A related problem can be found in a more general setting: The problem of determining, enu-
merating or randomly generating graphs with a fixed degree sequence has received a considerable
attention since the fifties (see e.g. [Sen51, Hak63, Wil99]). Given two graphs with a fixed degree
sequence, one might want to know if it is possible to transform one into the other via a sequence of
flip operations and if yes, how many steps are needed for such a transformation; note that the host
graph (i.e., the graph G in our problem) is a clique in this setting. Hakimi [Hak63] proved that
such a transformation always exists. Will [Wil99] proved that the problem of finding a shortest
transformation is NP-complete, and Bereg and Ito [BI17] provide a 3

2 -approximation algorithm for
this problem.

Flips of Triangulations. A flip of a triangulation is similar to flipping an alternating cycle in
the sense that we switch between two states of a quadrilateral. In the context of triangulations,
a flip operation switches the diagonal of a quadrilateral. Transformations between triangulations
of point sets and polygons using flips have been studied mostly in the plane. It is known that the
flip graph of triangulations of point sets and polygons in the plane is connected and has diameter
O(n2), where n is the number of points [HNU99, Law77]. Recently, NP-completeness has been
proved for deciding the flip-distance between triangulations of a point set in the plane [LP15] and
triangulations of a simple polygon [AMP15].

Houle et al. have considered triangulations of point sets in the plane that admit a perfect
matching [HHNRC05]. They show that any two such triangulations are connected under the flip

58

operation. For this purpose they consider the graph of non-crossing perfect matchings, where two
matchings are adjacent if they differ by a single non-crossing cycle (of arbitrary length). They
show that the graph of non-crossing perfect matchings is connected and conclude from this that
any two triangulations that admit a perfect matching must be connected. In contrast to their
setting, we remove all geometric requirements, but restrict the length of the cycles allowed for the
flip operation.

4.2 PSPACE-completeness

In this section, we prove that PM-Reachability is PSPACE-complete. Interestingly, the prob-
lem remains intractable even for bipartite graphs, even though matchings in bipartite graphs satisfy
several nice properties.

Theorem 23. PM-Reachability is PSPACE-complete for bipartite graphs whose maximum
degree is five and whose bandwidth is bounded by a fixed constant.

As we observed in Chapter 2, it is not difficult to design a non-deterministic algorithm for
the problem using only polynomial space. This shows that the problem is in NPSPACE, and
hence in PSPACE by Savitch’s theorem [Sav70]. Thus, we only need to prove the hardness of the
problem. The proof proceeds by giving a polynomial-time reduction from the Nondeterministic

Constraint Logic problem (NCL for short) [HD05]. It is very similar in flavour to the proof in
Section 3.1 showing the hardness of reconfiguration of graph colourings.

Recall from Section 2.4 that an instance of NCL is given by an NCL machine: a 3-regular graph
with or nodes and and nodes. A configuration of the machine is an orientation of the edges which
satisfies the constraints of all the nodes. The reduction is done by embedding NCL-Reachability

into PM-Reachability using some gadgets to represent each part of the NCL machine. The
gadgets are described in the following subsection.

4.2.1 Gadgets

Suppose that we are given an instance of NCL, that is, an NCL machine and two configurations of
the machine. We will replace each NCL edge and each NCL and/or node with its corresponding
gadget. If an NCL edge e is incident to an NCL node v, then we connect the corresponding gadgets
for e and v by a pair of vertices, called connectors (between v and e) or (v, e)-connectors, as (v, e)-

connectorsillustrated in Figure 4.3(a) and (b). Thus, each edge gadget has two pairs of connectors, and each
and/or gadget has three pairs of connectors. Our gadgets are all edge-disjoint, and share only
connector vertices. Moreover, there is always an edge between the two vertices of a connector pair,
and this edge belongs to the corresponding node gadget.

In the following we will restrict our attention to perfect matchings where the two vertices in
any connector are matched in the same gadget. In other words, consider the edges of the perfect
matching incident to the two vertices of a connector pair. Then either these edges are all part
of the edge gadget, or they are all part of the node gadget. We can remark that any flip always
preserves this property if it holds initially.

The correspondence between orientations of an NCL machine and perfect matchings of the
corresponding graph, is defined depending on which gadget contains the edges matching the con-
nector vertices. The orientation of an NCL edge e = vw is considered inwards for v if the two

59

(a) (b)

v w Gadget

for v

Gadget

for w

Gadget for vw

Figure 4.3: (a) An NCL edge vw, and (b) its corresponding gadgets, where the connectors are
depicted by (red) circles.

(v, e)-connectors are both covered by (edges in) the and/or gadget for v. In other words, the
edges covering the (v, e)-connectors are edges of the node gadget for v. On the other hand, the
orientation of e = vw is considered outwards for w if the two (w, e)-connectors are both covered by
the edge gadget for e. Figure 4.4 shows our three types of gadgets which correspond to NCL edges
and NCL and/or vertices. We explain below the behaviour of each gadget.

Edge gadget. Recall that, in a given NCL machine, two NCL vertices v and w can be joined
by a single NCL edge e = vw. Let us explain which property is desirable for an edge gadget, and
then show that the gadget in Figure 4.4a satisfy these properties. The edge gadget must satisfy
the two following properties: (i) it must be consistent with its orientation with the NCL machine,
and forbid the configuration where both its extremities are both directed inwards for v and w; (ii)
it must be “internally connected” [OSIZ18], i.e., any configuration corresponding to an orientation
σ of the NCL machine must be reachable from any other configuration corresponding σ without
changing the orientation corresponding to the NCL edge; and (iii) it must respect the “external
adjacency” of the NCL edge [OSIZ18], i.e., for any two adjacent orientations there must exist two
adjacent perfect matchings which correspond to these orientations.

The first property is immediate: if all the connectors of e are covered by their respective node

(v, e)-connectors

(w, e)-connectors

(a) Edge gadget for an NCL-edge
(v, w)

ea

e2e1

(b) and gadget

ea

eceb

(c) or gadget

Figure 4.4: Illustrations of the three gadgets. In the edge gadget, note that there is an edge between
the two vertices in a connector pair (dashed), but this edge belongs to the corresponding node
gadget. In the and/or gadget, the three light blue parts represent the edge gadgets corresponding
to the edges incident to the NCL node; e1 and e2 in the and gadget correspond to weight-1 edges.

60

(a)

v w v w v w

neutralinward for v inward for w

(b) e
v

e
w

e
v

e
w

e
v

e
w

e
v

e
w

e
v

e
w

e
v

e
w

Figure 4.5: (a) A reversal of the orientation of an NCL edge vw via its neutral orientation, and
(b) all configurations of the edge gadget. Note that two edges ev and ew joining connectors do not
belong to the edge gadget, but to the and/or gadgets for v and w, respectively. The inside of each
connector is painted in red if it is covered by the and/or gadget for v or w.

gadgets, then four vertices remain to be matched in the gadgets, to of which (the top and bottom
vertices in Figure 4.4a) have no available edge. Hence, no perfect matching corresponds to an
orientation where both extremities of the edge are oriented inwards for their respective nodes.

The second and third points are illustrated in Figure 4.5b which represents all the valid config-
urations of an edge gadget for e = vw together with two edges ev and ew belonging to the and/or
gadgets for v and w, respectively. Each (non-dotted) box represents a valid configuration. Two
boxes are joined by an edge if their configurations are adjacent, that is, can be obtained by flip-
ping a single cycle of length four. Furthermore, each large dotted box surrounds all configurations
corresponding to the same orientation of an NCL edge e = vw. Then, the set of configurations
(non-dotted boxes) in each large dotted box induces a connected component. This means that any
configuration in the set can be transformed into any other without changing the orientation of the
corresponding NCL edge, and the gadget is “internally connected”. In addition, if we contract the
configurations in the same large dotted box into a single vertex (and merge parallel edges into a
single edge if necessary), then the resulting graph is exactly the graph depicted in Figure 4.5 (a),
and the gadget satisfies the “external adjacency” condition. Therefore, we can conclude that our
edge gadget correctly simulates the behaviour of an NCL edge.

and gadgets. Figure 4.4b illustrates our and gadget for each NCL and node v, where
e1 and e2 are two weight-1 NCL edges and ea is the weight-2 NCL edge. Figure 4.6a illustrates all
valid orientations of the three edges incident to v, and Figure 4.6b illustrates valid configurations of
the and gadget together with (images of) three edge gadgets for e1, e2 and ea. Then, as illustrated
in Figure 4.6, our and gadget satisfies both “internal connectedness” and “external adjacency”,

61

(a)

1 1

2

1 1

2

1 1

2

1 1

2

1 1

2

()

(b)
e

1

e
a

e
2

e
1

e
a

e
2

e
1

e
a

e
2

e
1

e
a

e
2

e
1

e
a

e
2

e
1

e
a

e
2

e
1

e
a

e
2

e
1

e
a

e
2

e
1

e
a

e
2

e
1

e
a

e
2

e
1

e
a

e
2

Figure 4.6: (a) All valid orientations of three edges incident to an NCL and node v, and (b) all
configurations of the and gadget together with three incident edge gadgets, where the inside of
each connector is painted (by red) if it is matched by the and gadget.

and hence it correctly simulates an NCL and node.

Figure 4.4c illustrates our or gadget for each NCL or node v, where ea, eb and ec correspond
to three NCL edges incident to v. For an NCL or node, we need to forbid only one type of
orientations of the three NCL edges: all NCL edges ea, eb and ec are directed outward for v at
the same time, that is, all six connectors are covered by the edge gadgets for ea, eb and ec. Our
or gadget forbids such a case, because otherwise we cannot cover the two (white) small vertices
in the center. In addition, this or gadget satisfies both “internal connectedness” and “external
adjacency”, and correctly simulates an NCL or node.

Reduction. As illustrated in Figure 4.3, we replace each of NCL edges and NCL and/or vertices
with its corresponding gadget. Let G be the resulting graph. Notice that each of our three gadgets
is of maximum degree three, and connectors in the edge gadget are of degree two; thus, G is
of maximum degree five. In addition, each of our three gadgets is bipartite and such that two
connectors in the same pair belong to different sides of the bipartition; therefore, G is bipartite.
Furthermore, since NCL remains PSPACE-complete even if the input NCL machine has bounded
bandwidth [Zan15], the resulting graph G also has bounded bandwidth, since each gadget consists
only of a constant number of edges.

We next construct two perfect matchings ofG which correspond to two given NCL configurations

62

Cs and Ct of the NCL machine. Note that there are (in general, exponentially) many perfect
matchings which correspond to the same NCL configuration. However, by the construction of the
three gadgets, no two distinct NCL configurations correspond to the same perfect matching of G.
We arbitrarily choose two perfect matchings Ms and Mt of G which correspond to Cs and Ct,
respectively.

This completes the construction of our corresponding instance of perfect matching recon-

figuration. The construction can be done in polynomial time. Furthermore, the following lemma
gives the correctness of our reduction.

Lemma 24. There exists a reconfiguration sequence between two NCL configurations Cs and Ct if
and only if there exists a reconfiguration sequence between Ms and Mt.

Proof. We first prove the only-if direction. Suppose that there exists a reconfiguration sequence
between Cs and Ct, and consider any two adjacent NCL configurations Ci−1 and Ci in the sequence.
Then, only one NCL edge vw changes its orientation between Ci−1 and Ci. Notice that, since both
Ci−1 and Ci are valid NCL configurations, the NCL and/or vertices v and w have enough in-
coming arcs even without vw. Therefore, we can simulate this reversal by the reconfiguration
sequence of perfect matchings in Figure 4.5 (b) which passes through the neutral orientation of vw
as illustrated in Figure 4.5 (a). Recall that both and and or gadgets are internally connected,
and preserve the external adjacency. Therefore, any reversal of an NCL edge can be simulated
by a reconfiguration sequence of perfect matchings of G, and hence there exists a reconfiguration
sequence between Ms and Mt.

We now prove the if direction. It is important to notice that any cycle of length four in G belongs
to exactly one gadget (including the edge between two connectors). Therefore, even in the whole
graph G, a flip of edges along a cycle of length four can happen only inside one of the gadgets.
Suppose that there exists a reconfiguration sequence M0, . . . ,M� from M0 = Ms to M� = Mt.
Notice that, by the construction of gadgets, any perfect matching of G corresponds to a valid NCL
configuration, with possibly some NCL edges with a neutral orientation. In addition, Ms and Mt

correspond to valid NCL configurations without any neutral orientation. Pick the first index i in
the reconfiguration sequence M0, . . . ,M� which corresponds to changing the direction of an NCL
edge vw to the neutral orientation. Then, since the neutral orientation contributes to neither v nor
w, we can simply ignore the change of the NCL edge vw and keep the direction of vw as the same
as the previous direction. By repeating this process and deleting redundant orientations if needed,
we can obtain a sequence of valid adjacent orientations between Cs and Ct such that no NCL edge
takes the neutral orientation.

This completes the proof of Theorem 23. We conclude this section by proving that the problem
remains intractable even for split graphs. Recall from Section 1.3.3 that a graph is split if its vertex
set can be partitioned into a clique and an independent set.

Corollary 25. PM-Reachability is PSPACE-complete for split graphs.

Proof. By Theorem 23 the problem remains PSPACE-complete for bipartite graphs. Consider
the graph obtained by adding new edges so that one side of the bipartition forms a clique. The
resulting graph is a split graph. These new edges can never be part of any perfect matching of the
graph. Indeed, since the original graph was bipartite, there must be the same number of vertices
on each side of the bipartition. In a perfect matching of the split graph, all the vertices from the
independent set must be matched with vertices from the clique, and no vertex from the clique
remains to be matched together. Thus, the corollary follows.

63

4.3 Cographs

We now consider the complexity of PM-Reachability when the input graph is a cograph. Recall
from Section 1.3.3 that cograph are graphs without P4 as an induced subgraph.

As examples concerning reconfiguration on this class of graphs, it is known that the problems
independent set-Reachability and Steiner tree-Reachability can be decided efficiently on
cographs [BB14b, Bon16, MIZ17], while they are PSPACE-complete for general graphs [IDH+11,
MIZ17]. Theorem 23 together with the following result show that the situation is similar for PM-
Reachability.

Theorem 26. PM-Reachability on cographs can be decided in polynomial time. Moreover, for
a yes-instance, a reconfiguration sequence of linear length can be output in polynomial time.

The proof of the theorem relies on the recursive construction of cographs, and the cotrees
describing this construction (see Section 1.3.3). The main idea of the theorem is to decompose
the graph, and apply the algorithm recursively on each of the components. In order to get a
transformation of linear length using this method, we need to extend our problem to non-perfect
matchings. Since the set of vertices matched by a matching does not change when performing a
flip, we need to add some other operation. We will consider in this section that two matchings are
adjacent if their symmetric difference is either a cycle of length four, or a path of length 3. Note
that this second type of transition we added corresponds to the token sliding model: we are allowed
to replace an edge of the matching by any other incident edge. We will call this operation a sliding
move. We consider reconfiguration in this more general setting.sliding move

GM-Reachability

Input: Graph G, two matchings Ms and Mt of G.
Question: Is there a sequence of flips and sliding moves that transforms Ms into Mt?

Note that the answer to the problem is clearly no when the two matchings do not have the
same size. We can also remark that when the two input matchings are perfect, sliding moves
become useless (since sliding requires at least one non-matched vertex), and we get back the original
problem. In particular, Theorem 26 is a special case of the following more general result.

Theorem 27. GM-Reachability on cographs can be decided in polynomial time. Moreover, for
a yes-instance, a reconfiguration sequence of linear length can be output in polynomial time.

We start by considering certain base cases for which a transformation of linear length always
exists and can be computed efficiently. Let Ms and Mt be two matchings of a cograph G, and
let T be a cotree of G. For the purpose of transforming Ms to Mt, we may assume that G is
connected, so the root of T is a join-node (otherwise we can simply apply the algorithm to each
connected component of G). We will call root partition the partition of the vertices of G into Aroot partition

and B corresponding to all the leaves in respectively the left and right subtrees of the root of T .
All along this section, unless otherwise specified, A and B will denote the root partition of G,
and k denotes the size of the matchings we are considering, i.e., k = |Ms| = |Mt|. Note that A is
complete to B, because the root of T is a join-node. Without loss of generality we may assume
that |A| ≥ |B|. For a vertex subset X of G and an edge e of G, we say that G[X] contains e if
both endpoints of e are in X.

Given a connected cograph G with root partition A,B, we will consider the two following
conditions:

64

(C1) There exists a matching M of G of size k such that G[B] contains an edge of M .

(C2) There exists a matching M of G of size k such that at least one vertex of B is not matched
in M .

When one of these two conditions holds, then we will be able to show directly that the reconfigu-
ration graph on matchings of size k is connected, and has linear diameter. On the other hand, if
none of the two condition holds, we will apply induction on G[A] in order to conclude. The case
where condition (C1) holds is treated in Lemma 29 and condition (C2) is handled in Lemma 31.
The case where none of the two properties hold is treated in Lemma 32.

Note that it is possible to check in polynomial time whether one of the two conditions holds
since computing a maximum matching in a graph can be done in polynomial time. Indeed, a
simple algorithm to check condition (C1) consists in trying all possible edges in G[B], removing
both endpoints from the graph, and search for a matching of size k − 1 in the remaining graph.
Similarly, for condition (C2), we can try to remove every possible vertex from B, and search for a
matching of size k in the remaining graph.

Remark that the connected components of Ms�Mt can be of three types: single edges, paths
of length at least 3, and even cycles. If Ms and Mt are perfect matchings, then only even cycles
can occur in the symmetric difference. We start with the following observation that finding a
reconfiguration sequence is easy if the symmetric difference contains no cycle.

Lemma 28. Let G be a cograph, and Ms and Mt be two matchings of size k such that Ms�Mt

contains no cycle. Then there is a transformation of length at most 2|Ms�Mt| from Ms to Mt.

Proof. The result is proved by induction on the size of the symmetric difference Ms�Mt. If the
symmetric difference is zero, then Ms = Mt and the result trivially holds. Otherwise, we only need
to show that we can reduce the symmetric difference by 2 in at most 4 steps. First assume that
Ms�Mt contains a path of length t ≥ 3. Let x1, . . . xt be the vertices of this path, and assume
without loss of generality that x1x2 is an edge in Ms and x2x3 an edge in Mt. By definition, x1
is not matched in Mt. Consequently, starting from Mt we can slide the edge x2x3 to x1x2, and
reduce the symmetric difference by 2 in one step.

Now assume that the symmetric difference does not contain any path of length at least 3. Since
by assumption it does not contain any cycles either, then it must be a disjoint union of edges. Let
es = usvs be an edge in Ms \Mt, and et = utvt an edge in Mt \Ms (none of these sets is empty
since Mt and Ms have the same size). First assume that there is an edge incident to both es and et.
Without loss of generality, we can assume that this edge is usut. In this case, we can simply slide
usvs to usut and then to utvt, giving a transformation of length at most 2. Otherwise, since G is a
cograph, the two edges must be at distance at most 2. Hence, we can assume that there is a vertex
w adjacent to both us and ut. We consider the two following cases:

• w is not matched in Ms. In this case, starting from Ms, we can simply slide usvs to usw and
then to wut and finally to utvt;

• w is matched to w′ in Ms. In this case, we start by sliding ww′ to wut and then to utvt.
Then, we can slide usvs to usw and finally ww′.

In any case, we can reduce the symmetric difference by 2 in at most 4 steps, which proves the
result.

65

B

A

u

v w x

(a)

B

A

u

v

w

x

(b)

B

A

u

v w

x

y z

(c)

Figure 4.7: Representation of some of the cases of Claim 30. Note that all edges between A and
B are present in the graph, but were removed for clarity. The edges drawn are the edges in the
symmetric difference M �Ms. (a) corresponds to Assumption 3, (b) is Assumption 4, and (c) is
Assumption 5. For the last case, the red wavy edges are edges in M , the other ones are edges
in Ms.

The following lemma provides a way to construct a transformation sequence of linear length
when condition (C1) holds. Note that the proof is constructive and can be easily turned into a
polynomial time algorithm computing this sequence.

Lemma 29. Let G be a connected cograph with n vertices, and k ≥ 0 such that condition (C1)
holds. Then, there is a reconfiguration sequence of length O(n) between any two matchings of size
k in G.

Proof. Assume that G has a perfect matching M such that G[B] contains at least on edge M , and
let e be such an edge. To prove the lemma, we only need to show that for any matching Ms of
size k, there is a transformation sequence of linear length from Ms to M .

We first claim the following: we can assume without loss of generality that e is the only edge
of M contained in B. To see this, assume that there is another edge e′ = ab with a, b ∈ B. Since
|A| ≥ |B|, either M also contain an edge e′′ = cd with both endpoints in A, or there is at least one
vertex x in A not matched in M . In the first case, the edge e′ can be removed from the matching
by flipping ab and cd with ac and bd. In the second case, we can slide e′ = ab into ax.

We now prove that for every matching Ms of G of size k, there is a reconfiguration sequence of
length O(|M �Ms|) from M to Ms. We start by proving the following claim. See Figure 4.7 for
an illustration of some of the cases.

Claim 30. After a transformation of at most O(|M �Ms|) steps in M and Ms, we can assume1

that M still contains an edge in G[B] and M and Ms also satisfy the following statements:

1. no edge of Ms is contained in B.

2. M �Ms contains no cycle on A.

3. M �Ms contains no three edges uv, vw, wx, such that u ∈ B and v, w, x ∈ A.

4. M �Ms contains no three edges uv, vw, wx, each between A and B.

1The resulting matchings are still denoted by M and Ms for simplicity.

66

5. M �Ms contains no five edges uv, vw, wx, xy and yz, with uv ∈ M , and v, w, y, z ∈ A and
u, x ∈ B.

Proof of Claim 30. We prove all the points in the increasing order. Let e be the edge ofM contained
in G[B], and let xe and ye be its two endpoints.

Assumption 1. Let ab be an edge of Ms contained in B. Since |A| ≥ |B|, there is either an edge
cd of Ms with both endpoints in A or a vertex x in A not matched by Ms. In the first case, starting
from Ms, we flip ab and cd with bc and ad. In the second case, we make a sliding move from ab
to ax. Since every edge in Ms contained in B is in the symmetric difference Ms�M (except if
ab = e), this operation will be repeated at most |Ms�M | + 1 times. Each time, the symmetric
difference increases by at most 1 (by 2 in the case e = ab).

Assumption 2. Let C be a cycle in M �Ms, such that V (C) ⊆ A. We show that we can
transform M ∩E(C) to Ms ∩E(C). The other edges of M are not modified. Let u1, u2, . . . , u2� be
the vertices of C, all in A. We assume without loss of generality that u2u3, u4u5, . . . , u2�u1 ∈M . We
first flip xeye and u2�u1 to create xeu1 and yeu2�. Then we flip xeu1 and u2u3 for u1u2 and xeu3. We
proceed with u4u5 and uu3 and so on (reducing the length of the cycle in the symmetric difference),
until xeu2�−1 and yeu2� remains. After flipping these two edges for xeye and u2�−1u2�, the resulting
matching still contains the edge xeye with both endpoints in B and we have reconfigured M ∩E(C)
to Ms ∩E(C), i.e., the size of the symmetric difference has decreased. The other edges in M were
not modified; in particular Assumption 1 still holds.

Note that number of flips performed in this sequence is at most |E(C)| and the symmetric
difference decreased by |E(C)|.

Assumption 3. We can assume without loss of generality that uv and wx are in M and vw is
in Ms. Then, we can flip uv and wx for vw and ux and reduce the size of the symmetric difference
by 2. Moreover, Assumption 1 still holds in the resulting perfect matching.

Assumption 4. We can assume without loss of generality that uv and wx are in M and vw is
in Ms. Then, in M we can flip uv and wx for vw and ux and reduce the size of the symmetric
difference. Note moreover that Assumption 1 still holds in the resulting perfect matching.

Assumption 5. By assumption, uv, wx and yz are edges of M . Note that xe and ye are distinct
from {u, v, w, x, y, z} since u and x are incident to edges of M between A and B (and the other
vertices are in A). We will perform a sequence of flips decreasing the symmetric difference, and
preserving e at the end of the transformation (see Figure 4.8). Now, in the matching M , flip xeye
and yz for xey and yez. Then flip xw and xey for xy and xew. Note that at this point, the size of the
symmetric difference with Ms decreased by one. Then we flip yez and uv for yev and uz. Finally,
we flip xew and yev for xeye and vw. By these operations, the size of the symmetric difference
with Ms has decreased by at least two since we only flip edges of the symmetric difference and the
resulting matching have edges vw and xy which are in Ms. Moreover, the resulting matching still
contains the edge e with both endpoint in B.

67

B

A

u

v w

x

y z

xe ye
e

=⇒
B

A

u

v w

x

y z

xe ye

=⇒
B

A

u

v w

x

y z

xe ye

=⇒
B

A

u

v w

x

y z

xe ye

=⇒
B

A

u

v w

x

y z

xe ye

Figure 4.8: Reconfiguration sequence to reduce the symmetric difference in the case of Assump-
tion 5. All the edges between A and B are present in the graph but were removed for clarity. The
edges drawn are the edges in M . At each step, the two edges in red are the ones which are flipped
to obtain the next transition.

Number of flips. In order to get Assumption 1, we may need |M �Ms|+ 1 steps and increase
the symmetric difference by |M �Ms|+2. In all the other points, if we perform δ flips, we decrease
the symmetric difference by at least cδ (where c is some constant), and we never have to apply
Assumption 1 again. So the claim holds after O(|M �Ms|) steps and the size of the symmetric
difference is still at most O(|M �Ms|).

After applying Claim 30, let us still denote by M and Ms the resulting matchings. The number
of steps needed to reach this point is at most O(|M �Ms|). Recall that e is the edge of M contained
in B. We will show that the only cycle that can be in the symmetric difference is a cycle of length
4 containing the edge e. Assume by contradiction that this is not the case, and let C be a cycle in
the symmetric difference M �Ms.

Suppose first that C does not contain e. By Assumption 2, there exists a vertex u ∈ C ∩ B.
Let v, w and x the vertices following u on the cycle C and such that uv ∈ M . We must also have
wx ∈M and vw ∈Ms. Since C does not contain e, we know that v ∈ A. By Assumptions 3 and 4
and the fact that e �∈ C, we have w ∈ A, and x ∈ B. Since both u and x are on the side B, and
using Assumption 1, we have xu �∈ C. In particular |C| > 4, and since C has even length this
implies |C| ≥ 6. Let y and z be the two vertices following x on the cycle C. By Assumption 1, and
since wx ∈ M , we have y ∈ A. Moreover, by Assumption 4, we have z ∈ A. However, in this case
the configuration of the vertices u, v, w, x, y, z contradicts Assumption 5.

Consequently, there is only one cycle C in the symmetric difference, and C must contain e.
Assume by contradiction that |C| ≥ 6. Let x1, x2, x3, u, v, w be consecutive vertices on the cycle C
such that x1 is incident to e, and x2 is not. Then x1x2 ∈ Ms, which implies that x2 ∈ A. Using
the Assumptions 1, 3, and 4, we also have x3, v, w ∈ A, and u ∈ B. In particular, w is not incident
to e. Let x0 be the other endpoint of e. Since the cycle C must have even length, w and x0 are not
consecutive in C. Let x be the vertex consecutive to w in C. Then, by Assumption 3 we must have
x ∈ B. Since Ms does not contain any edge in B, this implies that x and x0 are not consecutive in

68

C. Let y be the vertex consecutive to x in C, and z consecutive to y. Since C has even length, we
known that z �= x0. By Assumption 1 we must have y ∈ A, and by Assumption 4, we have z ∈ A.
However, in this case the configuration of the vertices u, v, w, x, y, z contradicts Assumption 5.

Hence, the only possible cycle in the symmetric difference is a cycle of length 4 containing e.
After flipping this cycle, the symmetric difference contains only paths and isolated edges. By
Lemma 28, we can finish transforming Ms into M using an additional O(MΔMs) steps.

We now handle the case where condition (C2) holds. As for the previous case, when this
condition holds a transformation sequence can be easily found between any two matchings.

Lemma 31. Let G be a cograph, and k ≥ 0 such that condition (C2) holds. Then, there is a
transformation sequence of length O(n) between any two matchings of size k.

Proof. Without loss of generality, we can assume that condition (C1) does not hold since otherwise
we can conclude directly using Lemma 29. Consequently, no matching of size k of G uses any of the
edges in G[B]. Hence, these edges can be removed without changing in any way the reconfiguration
graph, and we can assume that G[B] is an independent set.

Let M be a matching of G of size k such that there exists a vertex v in B not matched in M .
Let Ms be any matching of G of size k. We will show that there is a transformation from M to Ms

of length at most O(|M �Ms|). If the symmetric difference is zero, then the result is trivial. If the
symmetric difference contains no cycle, then the result follows from Lemma 28.

Let C be a cycle in the symmetric difference M �Ms. Since G[B] is an independent set, C must
contain at least one vertex in A. Let x1, . . . , x2t be the vertices in C, with x1 ∈ A, and x1x2 ∈M .
We consider the following transformation starting from the matching M :

• slide x1x2 to x1v,

• for i from 2 to t− 1 slide x2i+1x2i+2 to x2ix2i+1,

• finally, slide x1v to x2tx1.

This operation progressively reconfigure M such that M and Ms agree on C. Note that the
edges of M outside of C are not modified by the transformation. Moreover, if M2 is the matching
obtained after the transformation, then the symmetric difference withMs has decreased by |C| = 2t.
Additionally, the vertex v is still not matched in M2. Since the number of steps performed by this
transformation is t+ 1 ≤ |C|, the result follows by applying induction with M2 and Ms.

In case none of the two conditions (C1) and (C2) holds, the following lemma states that we
only need to consider what happens on the subgraph induced by A. Given a matching M , we will
note MA the matching of G[A] induced by the edges of M . Remark that even if M is a perfect
matching of G, MA might not be a perfect matching of G[A] since some of the vertices in A can
be matched to vertices in B by M . This is the main reason we had to extend the problem to
non-perfect matchings. We have the following.

Lemma 32. Let G be a connected cograph with root partition A,B with |A| ≥ |B|, and k ≥ 0
such that conditions (C1) and (C2) do not hold. Let Ms and Mt be two matchings of G of size k.
Then:

• there is a transformation sequence from Ms to Mt in G if and only if there is a transformation
sequence from MA

s to MA
t in G[A];

69

• if there is a transformation of length t from MA
s to MA

t in G[A], then there is a transformation
from Ms to Mt of length at most t+O(|B|).

Proof. Let Ms and Mt be two matchings of size k of G. First assume that there is a transformation
sequence S from MA

s to MA
t in G[A]. We will build a transformation sequence from Ms to Mt in

G. First, observe that any flip in S on the subgraph G[A] is also a valid flip on the whole graph G.
For sliding moves, there are two possibilities. Let u, v, w be three vertices in A, and consider the
sliding move in G[A] which replaces uv by vw. Either w is not matched to a vertex in B, and in this
case this move is also a valid sliding move on the whole graph. Or w is matched to a vertex x ∈ B.
In this case, consider the operation of flipping uv and wx for vw and xu. Then this transformation
acts exactly as the original sliding move on A.

Hence, by eventually replacing some of the sliding moves by flips as explained above, we obtain
a transformation sequence S′ which transforms Ms into a matching M such that MA and MA

t are
equal. To finalize the transformation, from M to Mt, we only need the two following observation.

• We can make M and Mt agree on the vertices a ∈ A which are matched to vertices in B.
Indeed, if there is a vertex a ∈ A which is matched to b ∈ B in M but not in Mt, then there
must be a vertex a′ ∈ A which is matched in Mt but not in M (since |M | = |Mt|). Then, we
can simply slide ab to a′b.

• Let A′ the set of vertices in A which are matched to vertices in B in Ms (and by the point
above, also in Mt), and G′ the complete bipartite graph between A and B. Note that G′ is a
subgraph of G. The edges in Ms (and Mt) in G′ form a perfect matching of G′. These perfect
matchings can be seen as a permutation on the vertices of B. A flip in this graph consists in
applying a transposition to the permutation. Hence, transforming M into Mt is equivalent
to transforming one permutation into an other using transposition. It is well known that this
is always possible using at most |B| transpositions.

Hence, if there is a transformation of length t from MA
s to MA

t , then there is a transformation
of length t+O(|B|) from Ms to Mt.

Conversely, assume that there is a transformation sequence from Ms to Mt. We want to show
that there is a transformation sequence from MA

s to MA
t . For this, we only need to show that if

there is a one step transformation between Ms and Mt, there is a one step transformation between
MA

s and MA
t . We consider the symmetric difference D = MsΔMt. If D contains no edge in G[A],

then MA
s and MA

t are equal, and there is nothing to prove. Similarly, if D ⊂ G[A], then MA
s and

MA
t are adjacent by definition. Thus, we can assume in the following that none of these two cases

happen.

If D is a path of length 3 (i.e., the transformation is a sliding move). By the remarks above,
we can assume that D contains one edge in G[A], but not the other. Let u, v, w be the vertices of
D, with u, v ∈ A and w ∈ B. Then w is not matched in one of Ms or Mt. This contradicts the
assumption that G does not satisfy condition (C2).

If D is a cycle of length 4. There are two possible sub-cases:

• D contains exactly on edge in G[A]. In this case D must also contain one edge in G[B], and
this implies that one of Gs or Gt contains an edge in G[B], a contradiction of the assumption
that G does not satisfy the condition (C1).

70

• D contains exactly two edges in G[A]. These two edges must be incident since otherwise
D ⊂ G[A]. Then, this means that MA

s ΔMA
t is a path of length 3 and the two matchings are

adjacent in the reconfiguration graph.

If D has three edges in G[A], then we must have D ⊆ G[A], and this case was already handled
above.

Hence, in any case, if there is a transformation from Ms to Mt, there is also a transformation
from MA

s to MA
t . This shows the reverse implication and ends the proof of the lemma.

Proof of Theorem 27. Given a cograph G and two matchings Ms and Mt of G, the algorithm
proceeds as follows:

1. If |Ms| �= |Mt|, then return no, otherwise let k = |Ms| = |Mt|
2. If G is not connected, call recursively the algorithm on each connected component. Otherwise

let A,B be the root partition of G, with |A| ≥ |B|.
3. If G satisfies one of the conditions (C1) and (C2), output yes, and produce a transformation

sequence using either Lemma 29 or Lemma 31.

4. If G does not satisfy any of these conditions, call recursively the algorithm on A, and decide
the instance (and produce a transformation if it exists) using Lemma 32.

Let us show that this algorithm is correct, runs in polynomial time and produces a transforma-
tion sequence of linear length.

Correctness. Whenever the algorithm answers yes, it also provides a certificate (i.e., a transfor-
mation sequence). Hence, the only case where the algorithm might be incorrect is when it answers
no. Let us show by induction on G that if the algorithm returns no on a cograph G given two
matchings Ms and Mt as input, then no transformation exists between the two matchings. If the
algorithm returns no in step 1, then there is clearly no transformation. If one of the recursive calls
returns no in step 2, then there is trivially no transformation either. Finally, if one of the recursive
calls returns no in step 4, then there is also no transformation sequence by Lemma 32.

Running-time. At each recursive call, the algorithm only performs a polynomial number of
steps. Indeed, checking whether G is connected, and comparing the size of Ms and Mt can be
done in polynomial time. Additionally, computing cotree of a cograph can be done in polynomial
time, and as we mentioned before, the two conditions (C1) and (C2) can be verified in polynomial
time. Finally, all the recursive calls are made on vertex disjoint subgraphs. Consequently, it follows
immediately that the algorithm runs in polynomial time.

Length of transformation. Let G be a cograph, and Ms and Mt two matchings of G such
that there is a transformation from Ms to Mt. Let us show by induction on G that the algorithm
produces a transformation of length at most Cn for some constant C.

If the algorithm returns at step 2, then by induction it produces a transformation of length at
most Cni on each component Gi of G, with ni = |Gi|. By combining the transformations on each
component, we obtain a transformation for the whole graph of length at most C(

∑
ni) = Cn.

71

If the algorithm returns yes during step 3, then the induction step directly follows from Lem-
mas 29 and 31, provided C is chosen large enough.

Finally, if the algorithm outputs yes at step 4, then using the induction hypothesis on A, it
produces a transformation of length at most C|A| from Ms ∩ G[A] to Mt ∩ G[A]. By Lemma 32,
the total sequence produced by the algorithm has length at most C|A| + C ′|B| ≤ Cn where C ′ is
the constant in the big-Oh notation of Lemma 32 and assuming C ≥ C ′.

72

Part II

Algorithmic Applications of
Reconfiguration Aspects

73

Chapter 5

Random Edge-Colourings with
Glauber Dynamics

This chapter covers the results obtained with Michelle Delcourt and Guillem Perrarnau started
during a research visit in Birmingham. It presents results on the generation of random colourings
using the Markov Chain Monte Carlo method, and Glauber dynamics. These results were published
in [DHP18].

We have seen in the previous part some questions related to the computational complexity
of reconfiguration problems (transforming one solution into an other) and properties of the re-
configuration graph. These properties have many applications to other problems such as local
search [AEOP02] and reoptimisation [STT12]. This chapter and the next one focus on two possible
ways to use the transformations between solutions and the properties of the reconfiguration graph
for solving specific problem. In the next chapter, we leverage these transformations to design online
algorithms for the colouring problem. The idea, which is very standard, is to adapt a partial solu-
tion to the problem into a solution for the whole input. A direct extension of a partial solution is
not always possible, but the transformations can be used to modify the current solution and make
the extension easier.

In this chapter, we are interested in sampling colourings uniformly at random. Throughout this
chapter, we will use the notions from Markov Chain theory, which were introduced in Section 1.4.
A simple and general method for approximately sampling objects according to some distribution
is the Markov Chain Monte Carlo (MCMC) method. It consists in designing a Markov chain (i.e.,
a random walk) whose states are the objects we wish to sample, and its stationary distribution
is equal to the target distribution we wish to draw the objects from. Starting from an arbitrary
initial state, simulating this Markov chain for a long enough number of steps provides (under some
assumptions) a random solution with a distribution which can be made arbitrarily close to the
target distribution. The transformations studied in the reconfiguration setting can often be used
to design very simple and natural Markov Chains for the MCMC method.

There are two conditions for this method to work. First, the Markov Chain must be ergodic,
i.e., it must have a unique stationary distribution, and the chain must converge to this distribution
independently of the chosen starting position. This condition is usually satisfied if the reconfig-
uration graph is connected. The second condition (and usually the hardest to prove) is that the
convergence rate of the Markov Chain is ’fast’, i.e., the time it takes for the distribution to be-

74

come close enough to the stationary distribution is polynomial. In other words, we must show
that the mixing time of the Markov Chain is polynomial. This second condition ensures that the
MCMC method is efficient: we only need to simulate the Markov Chain for a polynomial number
of steps before getting a good approximation of the stationary distribution. Thus, finding good
upper bounds on the mixing time of Markov chains is a crucial problem for this method to work,
and it is the main question we are considering here.

We investigate the MCMC method in the case of graph colouring, and obtain a polynomial
upper bound on the mixing time for edge-colouring of trees with (Δ + 1) colours. This chapter
is organized as follows. In Section 5.1, we present further motivations for studying this problem.
We also give an overview of existing results, and explain some connections with problems from
statistical physics. Then, in Section 5.2 we present the results obtained with Michelle Delcourt and
Guillem Perarnau, together with a high level description of the proof. After some preliminaries and
formal definitions in Section 5.3, the main tools used in the proofs are introduced in Section 5.4.
These results are standard methods (or simple generalisation of those), used to bound the mixing
time of Markov chains. Finally, we prove some bounds on the mixing time of the Glauber dynamics
on list vertex colourings of the clique in Section 5.5 before using these results for the proof of our
main theorem in Section 5.6.

5.1 Introduction

The problem of sampling random objects is interesting for various reasons. First, a polynomial-time
sampler can be used to observe experimentally typical properties of the objects. These experiments
are important, as we will see below, in the field of statistical physics where the objects we try to
sample are states of a dynamical system, and properties have physical interpretations. Sampling
is also related to counting the number of solutions to a problem. In fact, for many problems,
including colouring, randomized approximate counting and approximate sampling are polynomially
equivalent: a polynomial time algorithm for one of the two problems can be adapted to produce an
algorithm for the other [JVV86, SJ89]. Due to this equivalence, finding a Markov chain with fast
mixing also gives a good approximation algorithm for counting the number of solutions. From a
computational point of view, these counting problems are often difficult, i.e., �P-complete. In the
case of colouring, counting the number of colourings of a graph is �P-complete, even with 3 colours
and maximum degree 3 [BDGJ99].

We will focus here on the case of sampling colourings, but the MCMC method has been anal-
ysed for many other problems. See [JS96, Ran06] for more applications of the MCMC method,
and [FV07] for more details in the case of graph colouring. The method has been considered
for sampling other combinatorial objects such asindependent sets [DG00] and matchings [BB00].
Two notable applications of the methods are the problems of estimating the permanent of a ma-
trix [JS89], and computing the volume of convex bodies [DFK91, BDJ98].

For graph colouring, we have seen in the previous chapter two possible choices to transform
colourings in one step: the single vertex recolouring, where two colourings are adjacent if they differ
on a single vertex, and the Kempe chain recolouring where two colourings are adjacent if they differ
by swapping the colours of a maximal 2-coloured connected subgraph. Both types of transitions can
be used to construct a Markov chain, but we will focus here on the chain obtained from the single
vertex recolouring. In this case, the MCMC algorithm derived from the reconfiguration graph can
be formulated by repeating the following a certain number of times:

75

1. Choose a vertex v uniformly at random.

2. Recolour v with a colour c chosen uniformly at random among the colours not used by its
neighbours.

For reasons that will be explained in Section 5.1.1, we will call this process the Glauber dynamics
on the (vertex) colourings of G. It is sometimes also called heat-bath Glauber dynamics or single-
site Glauber dynamics in the literature. Sometimes Glauber dynamics is also used to denote the
’Metropolis’ version of the chain where the colour c is chosen uniformly among all possible colours,
and kept only if the colouring remains proper. For most purposes, the two chains behave similarly,
and in particular they always have the same mixing time, up to a factor of k. We start with the
following simple observation.

Lemma 33. Let G be a graph, k ≥ 0, and suppose that G(k,G) is connected. Then the Glauber
dynamics is ergodic, reversible and its stationary distribution is uniform.

Proof. If the reconfiguration graph is connected, this means that the Glauber dynamics is irre-
ducible since there is a transformation sequence from any colouring to any other. It is also aperiodic
since at any step, there is a non-zero probability to recolour the selected vertex with its current
colour, and thus leave the colouring unmodified. Consequently, Glauber dynamics is ergodic, and
by Theorem 1 it has a unique stationary distribution. To conclude the proof, we only need to check
that the transition matrix P is symmetric. Indeed, if σ and τ are two colourings which differ only
at vertex v, then:

P [σ → τ] =
1

npv
,

where pv is the number of colours available at v. In other words, pv is equal to k minus the number
of colours present in N(v). In particular, this quantity does not depend on the colour of v itself,
and P [σ → τ] = P [τ → σ].

If this lemma ensures that the Glauber dynamics is ergodic, it does not give any practical upper
bound on the mixing time. Proving upper bounds on the mixing time is the central question we are
interested in here. Note that this question is strongly related to the diameter of the reconfiguration
graph G(k,G) studied in Chapter 3. Indeed, the diameter gives a lower bound on mixing time: after
diam(G(k,G))

2 steps, there are some initial starting points from which less than half of the possible

colourings can be reached. For these starting points, simulating the Markov chain for diam(G(k,G))
2

steps is not enough to get a distribution close to uniform.

5.1.1 Statistical Physics

This kind of mechanisms, with vertices updated one at a times, are called Glauber dynamics in the
statistical physics community. Due to its simplicity, it has been used to simulate many different
particle interaction systems. One of these, called the Potts model, a generalisation of the Ising
model, is strongly related to the colouring problem. It consists in a network G, where each vertex
represents a particle, and edges are potential interactions between them. Each particle has one
state from the set {1, . . . , q}. Its state is chosen with probabilities depending on the state of its

76

(a) (b) (c)

Figure 5.1: Example of lattices on which Glauber dynamics have been considered, with (a) the
square lattice, (b) the triangular lattice, (c) the Kagome lattice.

neighbours. More precisely, a configuration σ (i.e., a not necessarily proper colouring) is assigned
an energy as follows:

E(σ) = −J
∑

(x,y)∈G
δσ(x),σ(y) ,

where J is a constant, and δa,b is the Kronecker symbol, equal to 1 if a = b and 0 otherwise. A

configuration σ will occur with a probability proportional to e
−E(σ)

T , where T is the temperature of
the system. When J > 0, this corresponds to the ferromagnetic case where neighbouring particles
tend to choose similar states. On the contrary, for J < 0, this is the anti-ferromagnetic case. In
the anti-ferromagnetic case, when the temperature T tends to 0, only proper colourings are feasible
configurations. This corresponds to the process we described above. Some questions about these
physical systems are related to the chromatic polynomial and the positions of its zeros and more
details on this connection can be found in [BEMPS10].

Due to this interpretation as particle systems, problems related to Glauber dynamics have been
mainly studied, in the statistical physics community, on infinite graphs, and in particular regular
lattices such as the square lattice [AMMVB04, AMMVB05], the triangular lattice [GMP05, Jal12]
or the Kagome lattice [MS10a, Jal09] (see Figure 5.1). The approach to the problem is also
quite different, with a focus on the properties of a stationary distribution instead of the dynamical
process itself1. The main intention is to study the macroscopic properties of the system, distinguish
whether the system is in an ‘ordered’ or ‘disordered’ phase, and characterize the phase transitions
(i.e., abrupt variations of some of these properties) which can occur when some of the parameters
vary, like the temperature or the number of colours. This is usually done by studying the two
following questions, which are presented here in the case of the colouring problems, but can be
stated in a much more general setting:

• Uniqueness of the Gibbs distribution. On an infinite graph L, there might be more
than one distribution on the set of all possible colourings of L which extend the uniform
distribution on finite subgraphs of L. Stated differently, the stationary distribution of the
Glauber dynamics on the infinite graph might not be unique. Distinguishing whether there is
one or several such distributions is an important question. The presence of several stationary

1The dynamics we described above, with one vertex updated at each step do not make much sense for infinite
graphs, however, it is possible to adapt them for infinite graphs, for example using their continuous-time version.

77

distributions is often interpreted as the system being in an ordered phase, and is related to
the second question:

• Long range correlations. This notion is often called ‘spatial mixing’, and asks how fast do
correlations between particles decrease as a function of the distance between them. Informally,
an infinite graph L has ‘strong spatial mixing’ if for any finite subgraph of L, the distribution
of colours for the vertices far from the boundary is almost independent from the boundary
conditions, i.e., the choice of colours for the vertices on the boundary. In other words, the
choice of the boundary conditions has a limited impact on the distribution of colours of the
vertices far from it.

Giving a formal definition of the notions above is well outside the scope of this chapter, but the in-
terested reader can refer to [Wei05] for a nice introduction on these concepts. These three problems,
uniqueness, spatial mixing, and temporal mixing are very correlated. It is known (for some precise
definitions of the notions) that fast temporal mixing and strong spatial mixing are equivalent on
the integer lattice Z

d [DSVW04], while in general bounded degree graphs, fast temporal mixing
implies some form of strong spatial mixing [BKMP05]. Additionally, some results used to prove the
uniqueness of the Gibbs distribution, called Dobrushin type conditions, imply both spatial mixing
and temporal mixing [Hay06]. The flavour of these conditions, based on coupling arguments, re-
minds of the coupling arguments often used for bounding the mixing time. More details on the
relations between these notions can be found in [WS04].

The case of the square grid (see Figure 5.1a) has attracted particular attention. Despite this,
some interesting questions remain open to this date. It was shown in [GMP04] that the Glauber
dynamics on the square lattice with 3 colours has polynomial mixing time, while fast mixing, both
in time and space was shown when the number of colours is at least 6 [AMMVB04, GJMP06]. The
case of 4 and 5 colours is surprisingly still open, while numerical experiments seem to suggests that
spatial mixing occurs as soon as k ≥ 4 [FS99]. In three dimensions, fast mixing was shown for
q ≥ 10 colours [GMP05]. On the other hand, exponential lower bounds on the mixing time are
known [GR07, GKRS15] for the d-dimensional case with 3 colours, for some large enough constant d.

An other interesting result is [GMP05] which shows spatial mixing for triangle-free lattices and
k > 1.763Δ colours. This can be compared to the results of [DFHV04] which shows fast temporal
mixing for the same number of colours, but with the stronger assumption that the girth of the
graph is at least 5. Whether the results of [GMP05] can be adapted to prove a polynomial mixing
time for triangle-free graphs and k > 1.763Δ does not seem obvious and is an interesting question.

5.1.2 Mixing time of the Glauber Dynamics

The problem of finding tight bounds on the mixing time of the Glauber dynamics on colourings has
also attracted a lot of attention from the computer science community. The problem only makes
sense if the reconfiguration graph is connected since otherwise the stationary distribution depends
on the initial position. We know from Chapter 3 that this condition is satisfied if the number of
colours k is at least Δ + 2. Moreover it has been conjectured that this condition is enough to get
a polynomial mixing time.

Conjecture 2. The Glauber dynamics on the vertex colouring of G with k ≥ Δ(G) + 2 colours
has mixing time O(n log n).

78

This conjecture was proved in the particular case of 3-regular graphs with 5 colours but remains
open in many other cases, even if the O(n log n) upper bound is relaxed to just polynomial. A weaker
version of the conjecture was proved by Jerrum [Jer95], and independently using a completely
different method by Salas and Skolal [SS97]. Both showed that if k > 2Δ, then the mixing
time is O(n log n). This result was later improved by Vigoda [Vig00], weakening the condition
to k ≥ 11

6 Δ, and very recently improved to k ≥ (116 − η)Δ for some fixed η ≈ 1
10000 by both

[CM18] and [DPP18] independently. Other improvements on the number of colours were found
with additional restrictions on the graph. A summary of the best results in this direction are given
in Table 5.2.

There are a few observations we can make from the results in Table 5.2. First, an O(n log n)
upper bound on the mixing time appears for many of the cases. This bound is usually believed
to be optimal, and the justification for this is to invoke a coupon collector argument. The coupon
collector problem consists in repeatedly choosing an item uniformly at random from a set of n
elements (the chosen item is not removed from the set). The question is how many steps it takes
on average to select all the items at least once. It is known that it takes on average n log n steps to
pick all the elements at least once. Hence, it seems that n log n steps should be a lower bound on
the mixing time of Glauber dynamics since with less steps there are good probabilities that some
vertices were never chosen and still have their initial colour. This intuition is unfortunately not
necessarily correct as was shown in [HS05], and it is not obvious whether it can be turned into a
formal argument. In [HS05], the authors give an example of a dynamical system on a graph for
which the mixing time of the Glauber dynamics is only O(n), and formally prove the Ω(n log n)
lower bound for the case of colouring in bounded degree graphs. The case of large-degree graphs is
still open which suggests the following:

Open Problem 10. Show that the Ω(n log n) lower bound on the mixing time of Glauber dynamics
on colouring also holds for any graph or provide a counter example.

A second thing which can be observed by looking at the results in Table 5.2 is that a very
large amount of research has been directed at studying the dynamics on graphs with sparse
neighbourhoods, and in particular graphs with conditions on the girth and/or the maximum de-
gree [DF03, HV03, Hay03, Mol04, HV07, DFHV04]. On the other hand, quite surprisingly, the
case of more dense graphs has attracted very little attention, even though there is no hard evidence
suggesting these graphs could be more difficult to analyse. For example, a very simple coupling ar-
gument can show that the mixing time on a clique is at most O(n log n) with n+1 colours. Graphs
which are not sparse, but with a very simple structure, such as split graphs, interval graphs, or
chordal graphs could be interesting candidates to test the conjecture. The case of powers of paths,
or powers of grids would be also be very interesting, with a natural interpretation from statistical
physics as particles interacting up to a fixed distance (instead of just with their neighbours). The
results we obtained with Michelle Delcourt and Guillem Perarnau on edge-colourings of trees are
a first step in the direction of studying graphs with dense neighbourhood. Note that prior to this
work, the only known result specific to edge-colouring is [Poo16] which shows a polynomial mixing
time for edge-colouring of regular trees and k ≥ 2Δ.

The case of sampling random edge-colouring (or equivalently vertex colourings of the line-graph),
is closely related to some fundamental questions in combinatorics. For instance, 2n-edge-colourings

2Locally sparse graphs are such that N(v) contains few edges for every vertex v. The reader may refer to [FV06]
for a formal definition.

79

Class of graph Number of colours Mixing time Reference

General graphs k > (2− η)Δ O(n log n) [DGM02]

General graphs k > (116 − η)Δ O(n2) [CM18, DPP18]

Locally sparse2 graphs, Δ = Ω(log n) k > (1.763 + ε)Δ O(n log n) [FV06]

girth(G) ≥ 5, Δ = Ω(1) k > (1.763 + ε)Δ O(n log n) [DFHV04]

girth(G) ≥ 5, Δ = Ω(log3 n) k > (1.645 + ε)Δ O(n log n) [LM06]

girth(G) ≥ 6,Δ = Ω(log n) k > (1.489 + ε)Δ O(n log n) [Hay03]

girth(G) ≥ 7, Δ = Ω(1) k > (1.489 + ε)Δ O(n log n) [DFHV04]

girth(G) ≥ 11,Δ = Ω(log n) k > (1 + ε)Δ O(n log n) [HV03]

General graphs k > Δ+ ρ
1+ε O(n log n) [Hay06]

Cut-width at most O(lognlog k) k ≥ Δ+ 2 poly(n) [BKMP05]

ρ ≤ Δ1−ε

2 , Δ = Ω(log1+ε n) k = Ω(Δ
logΔ) O(n log n) [HVV15]

Planar graphs k = Ω(Δ
logΔ) O(n3 log9 n) [HVV15]

Trees k ≥ 3 n
O(1+ Δ

k logΔ
)

[LMP09]

Δ = 3 k = 5 O(n log n) [BDGJ99]

Triangle-free graphs, Δ = 4 k = 7 O(n log n) [BDGJ99]

Line-graph of trees k ≥ Δ+ 1 poly(n) this chapter, [DHP18]

Table 5.2: Overview of the best upper bounds on the mixing time of the Glauber dynamics for
different classes of graphs. In the table, η is a fixed, small enough constant, ε is a constant which
can be taken arbitrarily small, and ρ is the principal eigenvalue of the adjacency matrix.

of the complete graph K2n correspond to 1-factorisations, and n-edge-colourings of the complete
bipartite graph Kn,n are in bijection with Latin squares. Markov Chain Monte Carlo methods have
been introduced to sample such combinatorial objects (see e.g. [DL17, JM96]), but it is not known
if they rapidly mix. Even, if more colours are allowed, no result is known for these two graphs
apart from the results on general graphs [Vig00].

Open Problem 11. Study the mixing time of the Glauber dynamics on colouring for graphs with
dense neighbourhoods such as:

• split/interval/chordal graphs,

• powers of paths/grids,

• line-graphs of cliques/complete bipartite graphs.

Some of the results presented in Table 5.2 are tight. This is the case for example for vertex

colouring of trees. An upper bound of n
O(1+ Δ

k logΔ
)
on the mixing time was shown in [LMP09],

80

improving on the work of [GJK10] in the case of regular trees. This result is tight due to a

matching lower bound of n
Ω(1+ Δ

k logΔ
)
proved in [GJK10].

On planar graphs, the polynomial mixing time has been shown in [HVV15] with a number of
colours of order Δ

logΔ , well below the maximum degree of the graph. On the other hand, if the

number of colours is o(Δ
logΔ), the mixing time is super-polynomial even for a star. This lower bound

comes from the fact that the only way to recolour the central vertex of the star is if the leaves are
coloured with only k − 2 colours. By recolouring the vertices at random, if the number of colours
is too small, it takes a very long time to reach such a colouring. Hence, after only a polynomial
number of steps, there is still a good chance that the root was never recoloured, and the colouring
is far from being uniformly distributed. The case of planar graphs is of particular interest in view
of the following conjecture.

Conjecture 3 ([Wel93]). For any constant k ≥ 4, there is no Fully Polynomial Randomized
Approximation Scheme (FPRAS) for approximately sampling k-colourings of planar graphs.

In particular, if this conjecture holds, it implies that for any Markov Chain on the k-colourings
of planar graphs for some constant k, there are graphs G for which the mixing time is super-
polynomial. This holds in the case of the Glauber dynamics as mentioned above. An other natural
chain to consider is the flip chain, where transitions can be arbitrary Kempe chains. However, an
exponential lower bound on some planar graph was shown for this chain as well in [�LV05]. If these
results and the conjecture above seem to suggest little hope for finding an algorithm for sampling
random colourings of planar graphs with any constant number of colours, an interesting case would
be to consider the additional condition that the graph has bounded degree. The counter examples
above say nothing in this case, and the results already known on trees for which the mixing time
is polynomial with the bounded degree condition even if k = 3, suggests that it might be possible
to get an upper bound of the form nf(Δ) on the mixing time of the Glauber dynamics on planar
graphs with bounded degree. This research direction would be a special case of the following more
general consideration.

We have seen in previous chapters that the reconfiguration graph for single vertex recolouring
is connected as soon as k ≥ col(G)+2. In general, this condition is not enough to get a polynomial
mixing time as shown above with the example of the star. A natural restriction would be to consider
the case where the maximum degree is not much larger than the degeneracy. This suggests the
following open problem:

Open Problem 12. LetG be a graph with maximum degree at most C ·col(G) for some constant C.
Does the Glauber dynamics on G with k ≥ (col(G) + 2) colours have polynomial mixing time?

5.1.3 Methods

Apart from the methods coming from statistical physics, such as spatial mixing, there are essentially
two main techniques used to prove upper bounds on the mixing time for the Glauber dynamics on
colourings: coupling, and comparison methods. Our results only use the comparison techniques,
but both methods have been widely used in the literature. We give here a short description of the
two methods.

Coupling [Ald82] has been widely used in part due to its simplicity, even though the upper
bounds on the mixing time it provides are sometimes not tight [Gur16]. The idea is to look at two

81

(not-independent) Markov Chains such that each chain taken independently behaves as the process
we want to study, in our case the Glauber dynamic on colouring of some graph G. Looking at the
average time it takes for the two chains to reach the same state gives an upper bound on the mixing
time. By carefully choosing the joint evolution of the two chains, i.e., defining a coupling between
the two chains, this method allows to get good upper bounds on the mixing time.

This technique gained popularity with the path coupling theorem [BD97] which simplifies the
the construction of the coupling, and provides simple conditions to prove fast mixing. It is the
main ingredient to some of the best current results including the proof from Vigoda [Vig00] and
its following improvements [DPP18, CM18]. Some of the most recent results combine this method
with local uniformity properties: properties satisfied with good probabilities by random colourings
(e.g. [DF03, Mol04, Hay03]). This method is also well suited for machine assisted proof as was
done in [BDGJ99] in the case of colouring or in [HLZ16] for other problems. The general idea of
this approach is to define the coupling using some parameters, and use a computer for fine-tuning
the choice of the parameters and prove that the conditions of the path coupling theorem holds.

Comparison methods consists in, as the name implies, comparing two Markov chains: an
‘unknown’ chain whose mixing time we are trying to bound, and a ‘known’ chain whose mixing
time is easier to compute. Informally, this method can be described as simulating the ‘known’ chain
using the transitions from the ‘unknown’ chain. If this simulation satisfies some property, namely
that no transition of the ‘unknown’ chain is used too often, then we can upper bound the mixing
time of the ‘unknown’ chain in terms of the mixing time of the ‘known’ chain.

The special case where the ‘known’ chain is just, at each step, choosing a new colouring of
the whole graph uniformly at random appears in the literature (sometimes with variations in the
exact statement) under the name ‘canonical paths method’, or ‘weighted/fractional paths method’
or also ‘multi-commodity flow method’. Our proofs rely heavily on this technique, and a formal
description of it is given in Section 5.4.1. This kind of approach was first introduced in [DSC93].
One main benefit of this method is that it allows to compare the mixing time of different dynamics.
Consequently, one way to bound the mixing time for the Glauber dynamics is to compare it to
other dynamics which might be easier to study such as the block dynamic that we use here and is
also used in [LMP09], or a chain with the addition of Kempe moves as is done in [Vig00].

5.1.4 Related Results

Thanks to the comparison method mentioned above, studying the mixing time of variants of the
initial chain might help in bounding the mixing time for the Glauber dynamics. Variants with
different transitions have been considered in the literature. An example is the block dynamics, where
several vertices can be updated in one single step. An other example are dynamics using Kempe
chains, sometimes called flip dynamics or the Swendsen–Wang–Kotecký (WSK) algorithm [MS10a].
The case of systematic scan, updating the vertices in a specified order instead of choosing them at
random, has also attracted some interest due to the simplicity of its implementation for simulating
dynamical systems [Ped08, DGJ06]. Dynamics with a different state space have been also been
considered, such as the single flaw dynamics from [Var17] which allows for a small number of
monochromatic edges.

Variants of the colouring problem for which the Glauber dynamics has been studied include
list colouring [GK07], radio frequency assignment [FNPS05] and hypergraph colouring [BDK05].
Several results were proved for the Glauber dynamics on random graphs [DF10, MS10b]. Finally,

82

some interesting result were found for the related problems of exact sampling. The MCMC method
allows for approximate sampling: by running the chain long enough we can get arbitrarily close
to the wanted distribution. Using additional tools, this method can sometimes be turned into
algorithms for sampling exactly according to the wanted distribution [Hub98].

5.2 Result and Proof Overview

Our main result is a polynomial bound on the mixing time for the Glauber dynamics on edge-
colourings of a tree.

Theorem 34. Let T be a tree on n vertices and maximum degree Δ ≥ 3. For k ≥ Δ + 1 the
Glauber dynamics for k-edge-colourings on T mixes in time nO(1).

Note that the constant in the exponent is independent from Δ. Also, the number of colours in
the statement of the theorem is optimal since the process is not ergodic with fewer colours. Indeed,
the linegraph of a tree with maximum degree Δ contains a clique with Δ vertices. With only Δ
colours, all the colourings of this clique are frozen, and the Markov Chain is not ergodic. We now
give a brief overview of the strategy used to prove Theorem 34.

For technical reasons, instead of bounding the mixing time of the chain directly, we consider the
relaxation time of a continuous-time version of the chain. As we have seen in Section 1.4, for the
purpose of getting a polynomial upper bound on the mixing time, this change makes no difference.

The first step of the proof consists in showing that it suffices to bound the relaxation time
for d-regular trees where d = k − 1, which notably simplifies the proof. To this end, we prove a
monotonicity result on the relaxation time of the Glauber dynamics (see Section 5.4.3). This result
can be of independent interest since it provides a way to compare two Markov Chain with simi-
lar transitions but a different state space, while standard comparison techniques usually consider
Markov Chains with the same state space but different transitions.

The main idea of the proof of the theorem is to recursively decompose the tree into subtrees,
and study the process restricted to each subtree. The approach by decomposition has already been
used in the literature to bound the relaxation time of the Glauber dynamics for vertex-colourings of
trees [BKMP05, LMP09]. To analyse the decomposition procedure we need to study the associated
block dynamics, which can be informally described as follows: given a partition of the tree into
subtrees, at each step we select one subtree and recolour it entirely by choosing uniformly at
random a colouring which is compatible with the boundary condition. We then use a result of
Martinelli [Mar99] on block dynamics to upper bound the relaxation time of the whole process
in terms of the relaxation time on each block independently, and the relaxation time of the block
dynamics. Our decomposition procedure will satisfy two properties,

i) the Glauber dynamics on each subtree is ergodic for every possible boundary condition;

ii) the number of recursive decompositions is small (i.e., logarithmic in the size of the tree).

Condition i) is necessary to apply Martinelli’s result on block dynamics. Moreover, if ii) holds,
the upper bound we obtain on the relaxation time is polynomial in n, with an exponent that is
independent from Δ and k.

The splitting strategy is described precisely in Section 5.6.2. Informally speaking, to ensure
that ii) holds, at every step the tree is split into subtrees of at most half the size of the original

83

tree. To ensure that i) holds, we make sure that every subtree has at most two edges incident to
the boundary, and that these two edges are non-adjacent. The latter condition is not necessary for
k ≥ Δ+ 2 — in this case the Markov Chain remains ergodic even if this condition is not satisfied
— but it is crucial for the case k = Δ + 1. The strategy is implemented by splitting the tree so
that all the subtrees are pending from a vertex, or an edge.

The second ingredient of the proof is a bound on the relaxation time of the block dynamics,
where each block corresponds to a subtree hanging from a root vertex. This dynamic is very similar
to the Glauber dynamics on the star spanned by the edges incident to the root, constrained to a
boundary condition. In Section 5.6.1 we reduce the block dynamics to an analogous problem:
bounding the relaxation time of list-vertex-colourings of a clique (the line-graph of a star), where
the lists are given by the boundary constraints and each vertex is updated at a different rate.
In Section 5.5, we use the weighted canonical paths method of Lucier and Molloy [LMP09] and a
multi-commodity flow argument to bound the relaxation time of the list-colourings of the clique.
These results are enough to prove the theorem for k ≥ Δ+ 2.

To conclude the proof in the case k = Δ+1, we need to obtain a bound on the relaxation time
of the block dynamics where the blocks correspond to trees hanging from a root edge instead of a
vertex. In this case, it suffices to study the list-vertex-colouring dynamics on the graph formed by
two cliques intersecting at a vertex, which we do in Section 5.5.3.

Our main technical results in Section 5.5 involves studying the relaxation time of the Glauber
dynamics on list-colourings of a clique where some vertices are updated more often than others.
Our results needs some properties on the list assignment to ensure that the process remains ergodic.
Although these properties are enough to ensure ergodicity of the chain, they are not necessary. This
prompts the following question.

Open Problem 13. Does the Glauber dynamics on list-colourings of a clique have polynomial
mixing time as soon as it is ergodic?

Additionally, the results in Section 5.5 handle the case where the updates are not uniform:
some vertices are updated more often than others. An interesting research direction would be to
evaluate the impact of these non-uniformities on the mixing time of the Markov chain. Note that
the non-uniformities can be of two types: updating the vertices at different rates, or choosing the
colours with different probabilities. In this second case, the stationary distribution is no longer
uniform.

5.3 Preliminaries

Let G = (V,E) be a finite graph. Let ΩV denote the set of k-vertex-colourings of G. The set of k-
edge-colourings (i.e., k-vertex-colourings of the line-graph G�) will be denoted by ΩE . Throughout
the chapter, we use similar notation to distinguish the vertex and the edge-version of each set or
parameter.

Recall from Chapter 1 that for μ ∈ ΩV and U ⊆ V , μ|U stands for the restriction of μ to U .
We denote by μ(U) the set of colours used by all the vertices in U . We write Ωμ

U to denote the set
of colourings σ ∈ ΩV which agree with μ on V \ U , i.e., such that σ|V \U = μ|V \U . Informally, we
think of Ωμ

U as colourings of U which are compatible with μ in the boundary of U .

If L is a list assignment on the vertices of G, we denote by ΩL
V the set of all L-colourings

of G. Note that if U ⊆ V and H is the subgraph of G induced by U , then any μ ∈ ΩV yields a

84

list assignment for U where Lμ(u) = [k] \ μ(N(u) \ U). This corresponds to fixing the colours of
the vertices outside of U , and removing the colours used by these vertices from the lists of their
neighbours in U . It gives a natural bijection between Ωμ

U and ΩLμ

U .
In this chapter we will focus on k-edge-colourings of a tree G on n vertices with maximum

degree at most Δ. Note that G� is a union of cliques of size at most Δ such that two cliques
intersect in at most one vertex and every cycle is contained in some clique.

The vertices of G with degree 1 are called leaves and the vertices with degree at least 2, internal leaves

vertices. If T is a subtree of G, we define the exterior and interior (edge) boundary of T respectively internal
vertices

exterior and
interior (edge)
boundary of T

as

∂GT = {e ∈ E \ E(T) : N(e) ∩ E(T) �= ∅} ,
∂GT = {e ∈ E(T) : N(e) ∩ ∂GT �= ∅} ,

where N(e) is the set of edges in G incident to e. If G is clear from the context, we will denote
them by ∂T and ∂T . A subtree T has a fringe boundary if all edges in ∂T have an endpoint that fringe bound-

aryis a leaf of T . We will use t to denote the size of ∂T .
In this chapter, we will always consider t to be a constant with respect to n,Δ, k. In this sense,

for functions f and g we use f = Ot(g) if there exists c = c(t) such that lim sup f/g ≤ c(t). We
also use f = Θt(g) if f = Ot(g) and g = Ot(f).

5.3.1 Glauber dynamics

For a graph G = (V,E) with V = {v1, . . . , vn} and a positive integer k, the Glauber dynamics for
k-vertex-colourings of G is a discrete-time Markov chain Xt on ΩV , where Xt+1 is obtained from
Xt by choosing a v ∈ V and c ∈ [k] uniformly at random, and updating v with c if this colour does
not appear in N(v). Note that this definition differs slightly from the one given in the introduction
where the colour c is chosen uniformly among the colours not used by the neighbours of v. However,
it is known that the two chains have the same mixing time up to a factor of k.

In all the rest of this chapter, we will work with the continuous-time version of this chain. The
continuous-time Glauber dynamics for k-vertex-colourings of G with parameters (p1, . . . , pn) is a
continuous-time Markov chain on ΩV with generator matrix given by

LV [σ → η] =

{
pi if σ, η differ at vi,

0 otherwise.

We call LV uniform if pi = 1/k for every i ∈ [n]. As LV is symmetric for any set of parameters (i.e.
LV [σ → η] = LV [η → σ]), if LV is ergodic then its (unique) stationary distribution π is uniform
on ΩV .

Note that the continuous version updates vertices faster than the discrete one. Indeed, in the
continuous version, at time 1, an average of n updates have already been made. In particular, we
have LV = n(P − I), where P is the transition matrix of Xt and I is the identity matrix. It follows
from standard Markov chain comparison results (see e.g. [RT00]) that

tmix(Xt) = O(n tmix(LV)) . (5.1)

If G = (V,E) is a tree with maximum degree Δ its line graph G� is (Δ − 1)-degenerate (i.e.
every subgraph has a vertex of degree at most Δ− 1). It is known [DFFV06] that in this case the
Glauber dynamics LE for k-edge-colourings of G is ergodic provided k ≥ Δ+ 1.

85

For U ⊆ V and μ ∈ ΩV , denote by Lμ
U the dynamics defined by LV restricted to the set Ωμ

U .
Similarly, for a list assignment L of U , let LL

U be the dynamics defined on the state space ΩL
U . All

these chains are symmetric but their ergodicity will depend on the size of the boundary of μ in
U , and the size of the lists L(u) for u ∈ U . If ergodic, then their stationary distribution will be
uniform in the corresponding state space.

5.4 Comparison of Markov chains

This section introduces methods for the analysis of the relaxation time of reversible Markov chains
that we will use later in the proofs. The first result is a unified framework of two well-known
Markov chain comparison techniques. We then define the (reduced) block dynamics and present
known results on how this can be used to bound the original chain. Finally, we provide a result on
the monotonicity of the Glauber dynamics that will allow us to notably simplify the proof.

5.4.1 The weighted multi-commodity flow method

In this subsection we present a unified framework for two similar techniques used to compare
the relaxation time of two different Markov chains L and L′ on the same state space. These
two techniques are (1) the fractional paths (or multi-commodity flows) method [Sin92] and (2) the
weighted canonical paths method [LMP09]. Both methods are generalisations of the canonical paths
method (see e.g. [DSC93]). The main idea of this method is to simulate the transitions of L′ using
transitions of L in such a way that no transition of L is used too often, to obtain an upper bound
on the ratio between τ(L) and τ(L′).

Consider two continuous-time ergodic reversible Markov chains L and L′ on Ω with stationary
distributions π and π′, respectively. In the following, we denote by ω : Ω×Ω→ R a weight function
on the transitions of L.

To each α, β ∈ Ω with (α, β) ∈ L′, we associate a set of paths Γα,β where every γ ∈ Γα,β is a
sequence α = ξ0, . . . , ξm = β, for some m ≥ 1 with (ξi−1, ξi) ∈ L for every i ∈ [m]. We define a
flow to be a function g : Γα,β → [0, 1] such that

∑
γ∈Γα,β

g(γ) = 1. The weight of γ with respect to
ω is defined as

|γ|ω :=
m∑
i=1

ω(ξi−1, ξi) .

If the weight function ω is a constant equal to 1, then the weight of γ is simply denoted by |γ|, and
corresponds to the length of the transformation sequence. Define for every transition (σ, η) ∈ L:

b := max
α∈Ω

π(α)

π′(α)
,

ρσ,η :=
1

π(σ)L[σ → η]ω(σ, η)

∑
(α,β)∈L′

∑
γ∈Γα,β
γ�(σ,η)

g(γ)π′(α)L′[α→ β] · |γ|ω .

The quantity ρσ,η corresponds to the congestion on the transition (σ, η). Let ρmax = max{ρσ,η :
(σ, η) ∈ L} be the maximum congestion over all transitions of L. We are now ready to state the
main lemma.

Proposition 35 (Weighted multi-commodity flows method). We have τ(L) ≤ b2ρmax · τ(L′) .

86

The proof of this result is based on the same ideas as the proofs of both the weighted canonical
paths method and the fractional paths method, providing a common framework for them. It is
included in the Appendix for sake of completeness, and follows from standard computations using
the variational characterisation of Gap(L) that involves the variance and the Dirichlet form (see
Appendix A.1). We will not need this result in full generality in our proofs, but we believe it is
interesting in its own right and will use it in two particular cases.

The first case is when the stationary distribution of the two chains is uniform over Ω, and for
every pair (α, β) ∈ L′ the set of paths Γα,β consists of a single path γα,β , with g(γα,β) = 1. In this
case, Proposition 35 implies the result in [LMP09].

Proposition 36 (Weighted canonical paths method). If π and π′ are uniform, then

τ(L) ≤ τ(L′) · max
(σ,η)∈L

⎛
⎜⎜⎝ 1

L[σ → η]ω(σ, η)

∑
(α,β)∈L′

γα,β�(σ,η)

L′[α→ β] · |γα,β |ω

⎞
⎟⎟⎠ .

In the second case, all transitions have weight ω(σ, η) = 1, and again both chains have uniform
stationary distributions. In this case, we obtain the following.

Proposition 37 (Fractional paths method). If π and π′ are uniform, then

τ(L) ≤ τ(L′) · max
(σ,η)∈L

⎛
⎜⎜⎝ 1

L[σ → η]

∑
(α,β)∈L′

∑
γ∈Γα,β
γ�(σ,η)

g(γ)L′[α→ β] · |γ|

⎞
⎟⎟⎠ .

Finally, we state a very simple corollary of Proposition 35.

Corollary 38. Suppose there exists a constant c > 1 such that for every α, β ∈ Ω it holds that

- 1
cπ

′(α) ≤ π(α) ≤ cπ′(α);

- 1
cL′[α→ β] ≤ L[α→ β] ≤ cL′[α→ β] .

Then, there is a constant K = c4 such that

1

K
τ(L′) ≤ τ(L) ≤ Kτ(L′) .

This result simply states that if two Markov chains have the same transitions with similar
transition rates, and similar stationary distributions, then their relaxation time is also the same up
to a constant factor.

5.4.2 Weighted and Reduced Block Dynamics

This subsection describes block dynamics and its reduced version. Informally speaking, block
dynamics is a generalisation of Glauber dynamics where one splits the set of vertices into “blocks”
(usually with few intersections/interactions between them), and updates each block at a time,
according to some probabilities (see [Mar99]). In this chapter we will only consider disjoint blocks

87

partitioning the vertex set. Note that if all blocks are singletons, we recover Glauber dynamics.
The method is presented for vertex-colourings, but it works the same for edge-colourings by taking
an edge partition instead. We will present some known results for bounding the relaxation time of
Glauber dynamics in terms of the relaxation time of its (reduced) block dynamics.

Let G = (VG, EG) be a graph, T = (V,E) be an induced subgraph and let V = {V1, . . . , Vr} be
a partition of V . Let μ ∈ ΩVG

. Suppose Lσ
s is ergodic for every i ∈ [r] and every σ ∈ Ωμ

V and let
πσ
Vi

denote its stationary distribution, which is also the uniform distribution on Ωσ
Vi
. The weighted

block dynamics on V with boundary condition μ is a continuous-time Markov chain with state space
Ωμ
V and generator matrix Bμ

V given for any σ �= η by

Bμ
V [σ → η] =

{
giπ

σ
Vi
(η) if there exists i ∈ [r] such that η ∈ Ωσ

Vi
,

0 otherwise,

where gi = minσ∈Ωμ
V
Gap(Lσ

Vi
) is the minimum gap for the Glauber dynamics on the block Vi, where

the minimum is taken over all possible boundary conditions. Note that Bμ
V can be understood as the

dynamics where each block Vi updates its entire colouring at times given by an independent Poisson
clock of rate gi. The new colouring of Vi is chosen uniformly among all the possible colourings which
are compatible with the current boundary conditions. It is clear that the block dynamics is ergodic
if the Glauber dynamics is, since each transition of the Glauber dynamics is a valid transition of
the block dynamics. Moreover, both dynamics have the same stationary distribution.

An unweighted version of the block dynamics, corresponding to gi = 1, was used by Martinelli
in [Mar99]. Lucier and Molloy generalised this result for weighted block dynamics:

Proposition 39 (Proposition 3.2 in [LMP09]). For every μ ∈ ΩVG
and partition V of V , we have

τ(Lμ
V) ≤ τ(Bμ

V) .

Given a block partition V, let H = (U,F) be the subgraph of T composed of the vertices
adjacent to vertices in other blocks. Let ΩR be the set of colourings of U induced by the colourings
in Ωμ

V ; we will use σ̂, η̂, . . . to denote the elements of ΩR. It is convenient to see ΩR as a set of
colouring classes of Ωμ

V where two colourings are equivalent if and only if they coincide on U . More
precisely, for σ̂ ∈ ΩR, let Ωσ̂∗ be the set of colourings σ ∈ Ωμ

V with σ|U = σ̂. In a slight abuse of
notation, we write Ωσ̂

Vi
to denote the set {η ∈ Ωσ

Vi
: σ ∈ Ωσ̂∗}, and we write πσ̂

Vi
for πσ

Vi
where σ is an

arbitrary colouring in Ωσ̂∗ . Note that the projection of πσ̂
Vi

onto U is well-defined and independent

of the choice of σ ∈ Ωσ̂∗ .
The reduced version of Bμ

V , is a dynamics with state space ΩR and generator matrix Rμ
V given

for any σ̂ �= η̂ by

Rμ
V [σ̂ → η̂] =

{
giπ

i,σ̂
proj(η) if there exists i ∈ [r] such that η̂ = η|U for some η ∈ Ωσ̂

Vi
,

0 otherwise.
(5.2)

where πi,σ̂
proj is the projection of πσ̂

Vi
onto U ; that is, for an arbitrary σ ∈ Ωσ̂∗ , the probability

distribution on the colourings of U defined for any η̂ ∈ ΩR by

πi,σ̂
proj(η̂) = πσ

Vi
({η ∈ Ωσ

Vi
, η|U = η̂}) . (5.3)

88

In the particular case where each block contains only one vertex in H, only one vertex of H
changes colour during a transition of Rμ

V . In this case, the reduced block dynamic is very similar
to the Glauber dynamics on H with some parameters pi determined by the Glauber dynamics on
Vi, only with slightly different transition rates.

We will use another result of Lucier and Molloy that shows that the weighted block dynamics
and the reduced block dynamics have the same relaxation time.

Proposition 40 (Proposition 3.3 in [LMP09]). For every μ ∈ ΩVG
and partition V of V , we have

τ(Bμ
V) = τ(Rμ

V) .

Finally, we will use the following property. If the reduced block dynamics is ergodic, then the
projection of πμ

V onto U is its stationary distribution.

Lemma 41. The reduced block dynamics Rμ
V is reversible for the projection of πμ

V onto U .

Proof. Recall that H = (U,F) is the subgraph of T induced by the vertices adjacent to vertices
in other blocks. Let πproj be projection of πμ

V onto U ; that is, the probability distribution on the
colourings of U defined for any σ̂ ∈ ΩR by

πproj(σ̂) = πμ
V ({σ ∈ Ωμ

V , σ|U = σ̂}) . (5.4)

First observe that, since H consists of all the vertices in each block which are adjacent to vertices
of other blocks, for any σ̂ ∈ ΩR, any extension of σ̂ to V is obtained by computing an extension on
each of the blocks separately. As πμ

V is uniform, we have

πproj(σ̂) =
|{σ ∈ Ωμ

V , σ|U = σ̂}|
|Ωμ

V |
=

∏r
j=1 |{σ ∈ Ωσ̂

Vj
, σ|U = σ̂}|

|Ωμ
V |

.

Thus, it follows that, for any two colourings σ̂, η̂ ∈ ΩR which differ only on the block Vi, we have

πproj(σ̂)Rμ
V [σ̂ → η̂] =

∏r
j=1 |{σ ∈ Ωσ̂

Vj
, σ|U = σ̂}|

|Ωμ
V |

· gi
|{η ∈ Ωσ̂

Vi
, η|U = η̂}|
|Ωσ̂

Vi
|

=
gi · |{σ ∈ Ωσ̂

Vi
, σ|U = σ̂}| · |{η ∈ Ωσ̂

Vi
, η|U = η̂}|

|Ωμ
V ||Ωσ̂

Vi
| ·

∏
j �=i

|{σ ∈ Ωσ̂
Vj
, σ|U = σ̂}| .

This quantity is symmetric in σ̂ and η̂. Indeed, since σ̂ and η̂ only differ on Vi, we have Ωσ̂
Vi

= Ωη̂
Vi
.

Moreover, for every j �= i, σ̂ and η̂ agree on Vj ∩ U . As a consequence, we have

|{σ ∈ Ωσ̂
Vj
, σ|U = σ̂}| = |{η ∈ Ωη̂

Vj
, η|U = η̂}| .

Thus, it follows that πproj(σ̂)Rμ
V [σ̂ → η̂] = πproj(η̂)Rμ

V [η̂ → σ̂], and Rμ
V is reversible for πproj.

5.4.3 Monotonicity of Glauber dynamics

Finally, we introduce a monotonicity statement that will allow us to simplify some of our proofs.
The previous subsections gave tools to compare the relaxation time of two Markov chains with the
same state space but different transitions. Here we are interested in comparing Markov chains with

89

similar transitions but different state spaces. A natural example is comparing the relaxation time
of the Glauber dynamics on G and H, where H is a subgraph of G. In general, it is not clear which
of the two relaxation times should be smaller, however, if H and G have a particular structure, we
will be able to derive a monotonicity bound.

Proposition 42. Let G = (V,E) be a graph on n vertices, and k be a positive integer. Let v ∈ V
such that N(v) induces a clique of size at most k − 2. For any choice of parameters (p1, . . . , pn),
the Glauber dynamics LV and LV \{v} for k-colourings of V and V \ {v} respectively and defined
with the same parameters satisfy,

τ
(LV \{v}

) ≤ τ(LV) .

The proof follows from standard computations and is included in Appendix A.2.

5.5 Glauber dynamics for list-colourings of a clique

In this section we analyse the relaxation time of the Glauber dynamics for list-vertex-colourings of
a clique. This will be used later in the proof of our main result for edge-colourings of trees.

Consider the clique with vertex set U = {u1, . . . , ud} with d ≥ 1. Throughout this section we
fix the number of colours to k = d+ 1. Recall that given a list assignment of U , we can define ΩL

U

and the dynamics LL
U , governed by the parameters (p1, . . . , pd), where pi is the rate at which vertex

ui changes to c ∈ [k].
For a positive integer t, a list assignment L is t-feasible if it satisfies

- |L(ui)| ≥ t+ 1 for every i ∈ [t];

- |L(ui)| = d+ 1 for every i ∈ [d] \ [t].
We say u ∈ U is free if |L(u)| = d + 1, and constrained otherwise. We should stress here that all
the lists are subsets of [d + 1], although the results in this section can be generalised to arbitrary
lists of size k ≥ d+ 1 using a variant of Proposition 42 for list colouring. If L is t-feasible, we have(

t∏
i=1

|L(ui)| − i+ 1

)
(d+ 1− t)! ≤ |ΩL

U | ≤
(

t∏
i=1

|L(ui)|
)
(d+ 1− t)! . (5.5)

The chain LL
U is symmetric and it will follow from the results below that, if L is t-feasible, for

some t, then the chain is also ergodic. So its stationary distribution is uniform on ΩL
U . The main

goal of this section is to prove the following bound on its relaxation time.

Lemma 43. If L is t-feasible and k = d+ 1, then we have

τ(LL
U) = Ot

(
t∑

i=1

d

pi
+

d∑
i=t+1

1

pi

)
.

In order to prove the lemma we will use the comparison techniques introduced in Section 5.4.1.
Consider the dynamics LL

unif on ΩL
U with generator matrix given for any σ �= η by

LL
unif[σ → η] =

1

|ΩL
U |

. (5.6)

90

Clearly τ(LL
unif) = 1. The main idea will be to compare τ(LL

U) with τ(LL
unif). For technical

reasons, it will be easier to introduce an intermediate chain and compare both to it. Define LL
int to

be the dynamics on ΩL
U with generator matrix given for any σ �= η by

LL
int[σ → η] =

{
1

|ΩL
U | if (σ, η) is a good pair,

0 otherwise.
(5.7)

Speaking informally, the dynamics LL
int can be seen as LL

unif where only moves between “good” pairs
of colourings are allowed. We defer the formal definition of a good pair to later in the section.

Lemma 43 follows from the combining these two lemmas (proved in the next two subsections)
with the fact that τ(LL

unif) = 1.

Lemma 44. If k = d+ 1, then we have

τ(LL
U)

τ(LL
int)

= Ot

(
t∑

i=1

d

pi
+

d∑
i=t+1

1

pi

)
.

Lemma 45. If L is t-feasible and k = d+ 1, then we have

τ(LL
int)

τ(LL
unif)

= Ot(1) .

5.5.1 Comparing LL
U with LL

int: the proof of Lemma 44

Let w be an additional vertex with L(w) = [k], so w is free. Consider an order on U ∪ {w} where
w is the smallest vertex. We can extend α ∈ ΩL

U to U ∪ {w}, by letting α(w) be the unique colour
not in α(U). To every pair α, β ∈ ΩL

U , we can assign a permutation f = f(α, β) on U ∪ {w} such
that f(x) = y if and only if α(x) = β(y). In particular, if α = β then f is the identity permutation.
One can see the permutation f as a blocking permutation: if v = f(u) ∈ U for some u ∈ U , then u
blocks v from being directly recoloured from α(v) to β(v). However, if v = f(w) ∈ U , then v can
be directly changed to β(v) in the colouring α.

It is useful to think about f using its representation as a union of directed cycles. Throughout
this section, by cycle in the permutation we mean a cycle of order at least 2. If a cycle in f
contains w, we will be able to recolour every vertex in the cycle by successively recolouring the
vertices whose preimage is w. The main difficulty will arise from handling the other cycles that
do not contain w, which correspond to circular blockings of vertices in U (e.g. u, v ∈ U , u blocks
v and v blocks u). In this case, we will need to insert w into this cycle, and then process it. The
merging operation corresponds to recolouring a vertex in α with the only available colour, which
must be in its list. This motivates the following classification: a cycle in f is a 1-cycle if it contains
w, a 2-cycle if it does not contain w but has at least one free vertex and a 3-cycle if it does not
contain w and all its vertices are constrained.

Recolouring a 3-cycle C might be hard because the only colours available in L(C) might al-
ready be taken by other vertices in the clique. This motivates the definition of good pairs which
governs LL

int.

Definition 1. A pair of colourings (α, β) is good if f(α, β) contains no 3-cycles.

91

Let (α, β) be a good pair and f = f(α, β). A v-swap is an operation on f that gives the
permutation f̂ obtained from f by reassigning f̂(w) = f(v) and f̂(v) = f(w). These operations are
in bijection with the valid transitions of LL

U .

One can define recolouring sequences between α and β using swaps. The order on U ∪ {w}
gives a canonical way to deal with the cycles in f(α, β), processing the cycle with the smallest free
vertex, at a time. Precisely, while there is a free vertex in a cycle of length at least 2 of f , let v be
the smallest one and

- if v is in a 1-cycle, then v = w. While f(w) �= w, update f by performing an f(w)-swap.

- if v is in a 2-cycle, then v ∈ U . Update f by performing a v-swap. Then, while f(w) �= w,
update f by performing an f(w)-swap.

As there are no 3-cycles, after termination the procedure produces the identity permutation. As
swaps correspond to valid recolouring moves, it gives a recolouring path γα,β from α to β that uses
transitions from LL

U . Note that any vertex in U is recoloured at most twice. In fact, a vertex is
only recoloured twice if it is the smallest free vertex in a 2-cycle.

For every transition (σ, η) ∈ LL
U , define

Λσ,η = {(α, β) ∈ LL
int : (σ, η) ∈ γα,β} .

Our goal is to prove Lemma 44 using the weighted canonical paths method from Section 5.4.1.
To this end, the two following lemmas will help us analyse the congestion resulting from this
construction.

Lemma 46. Given a transition (σ, η) ∈ LL
U and a permutation f , there are at most two good pairs

(α, β) such that f = f(α, β) and (α, β) ∈ Λσ,η.

Proof. Let v be the vertex at which σ and η differ. The order in which we recolour the vertices
is fixed by the permutation f . Let v1, . . . , v� be the vertices in the order they are recoloured with
repetitions, where vi is the vertex recoloured at the i-th step. Given this sequence, at every step
the only valid transition is to perform a vi-swap. If the recolouring done by the transition (σ, η)
corresponds to the i∗-th step in the sequence, then α and β are fully determined. Indeed, β can
be recovered from η by sequentially performing vi-swaps for every i > i∗. Symmetrically, α can be
recovered from σ by performing vi-swaps for every i < i∗ (recall that the u-swap operation is an
involution).

Since every vertex is recoloured at most twice in a recolouring path, v appears at most twice
in the sequence v1, . . . , v�. So there are at most 2 choices for i∗ ∈ [�] with vi∗ = v, and by the
argument above, there are at most two pairs (α, β), with f(α, β) = f , and (α, β) ∈ Λσ,η.

Using the previous lemma, we can bound the size of Λσ,η

Lemma 47. Suppose that σ and η differ at v ∈ U . If v is free, then |Λσ,η| = Ot

(|ΩL
U |
)
. If v is

constrained, then |Λσ,η| = Ot(d|ΩL
U |).

Proof. By Lemma 46, it suffices to bound the number of permutations f which are compatible
with (σ, η). The key idea is the following claim that not all candidates for f are compatible, as
constrained vertices can only block and be blocked by vertices with colours in their lists.

92

Claim 48. Let (α, β) ∈ Λσ,η with f(α, β) = f . For every constrained vertex u ∈ U with u �= v,
one of the following holds:

i) η(f(u)) = β(f(u));

ii) σ(f−1(u)) = α(f−1(u));

Moreover, i) holds if and only if u is recoloured in γα,β before the transition (σ, η).

Proof. By construction of the recolouring paths, constrained vertices are only recoloured once. Let
C be the cycle containing u. If v �∈ V (C), then the vertices in C are recoloured either all before
v, or all after v. In particular we have σ|V (C) = η|V (C), and it is equal to β|V (C) if u is recoloured
before (σ, η) and to α|V (C) otherwise. Since f(u), f−1(u) ∈ V (C), either i) or ii) holds.

If v ∈ V (C), then

- If f(u) is not the smallest free vertex in C, then assume that i) does not hold. Since f(u) is
recoloured only once, this means that η(f(u)) = α(f(u)). Consequently, f(u) is recoloured
after the transition (σ, η), and since u �= v, this is also the case for u. This means that f−1(u)
is recoloured either during or after the transition (σ, η), and in both cases ii) holds.

- Symmetrically, if f−1(u) is not the smallest free vertex in C, then assuming that ii) does not
hold we conclude that u has been coloured before the transition (σ, η) and that i) holds.

- Finally, if f(u) = f−1(u) is the smallest free vertex in C, then v = f(u). In this case, either
this is the first time v is recoloured, so u is recoloured after (σ, η) and σ(v) = α(v), and ii)
holds, or it is the second time v is recoloured, so u is recoloured before (σ, η) and η(v) = β(v)
and i) holds.

Suppose that v is free. As there are at most t constrained vertices, there are at most 2t choices
to decide which of items i) or ii) holds for them. For s ∈ [t], let x1, . . . , xs be the constraint vertices
that satisfy i) and y1, . . . , yt−s be the ones that satisfy ii). For every i ∈ [s], by definition of f we
have η(f(xi)) = β(f(xi)) = α(xi) ∈ L(xi) and there are at most |L(xi))| choices z ∈ U ∪ {w} for
f(xi) = z, namely the ones with η(z) ∈ L(xi). Analogously, for i ∈ [t − s], by definition of f we
have σ(f−1(yi)) = α(f−1(yi)) = β(yi) ∈ L(yi) and there are at most |L(yi)| choices z ∈ U ∪ {w}
for f(z) = yi. Thus, there are at most

∏s
i=1 |L(xi)|

∏t−s
i=1 |L(yi)| =

∏t
i=1 |L(ui)| choices for the

images of xi and the preimages of yi. Note that f(xi) �= yj for every i, j as i) holds if and only
if u is recoloured before (σ, η) and v is a free vertex. So these choices fix exactly t images in f .
Finally, there are at most (d+1− t)! ways to complete f by choosing successively the image of the
remaining elements. Using Lemma 46 and (5.5), we have

|Λσ,η| ≤ 2 · 2t(d+ 1− t)!
t∏

i=1

(|L(ui)|) ≤ 2t+1

(
t∏

i=1

|L(ui)|
|L(ui)| − i+ 1

)
|ΩL

U | = Ot(|ΩL
U |) .

Assume now that v is constrained. There are at most 2t−1 ways to choose a configuration of i)
and ii) for the remaining constrained vertices. In comparison to the case where v is free, as neither

93

i) nor ii) holds for u = v, there is an extra factor |L(v)| ≤ d+ 1 to choose either the image or the
preimage of v in f . Similarly as before, it follows that

|Λσ,η| = Ot(d|ΩL
U |) .

We are now in a good situation to prove Lemma 44.

Proof of Lemma 44. In order to apply the weighted canonical paths theorem to LL
U and LL

int, we
need to choose a weight function ω for all (σ, η) ∈ LL

U . Let v be the vertex where σ and η differ.
We define ω as follows

ω(σ, η) :=

{
d/pi if v = ui for i ∈ [t],

1/pi if v = ui for i ∈ [d] \ [t]. (5.8)

As for every recolouring path γ, each element of U is recoloured at most twice, it follows that

|γ|ω ≤ 2

(
t∑

i=1

d

pi
+

d∑
i=t+1

1

pi

)
. (5.9)

Both stationary distributions of LL
U and LL

int are uniform on ΩL
U . Also recall that LL

int[α → β] =
1/|ΩL

U | for any good pair (α, β).

Using Lemma 47, regardless of whether the vertex where σ and η differ is free or constrained,
we can bound the congestion of the transition (σ, η) as follows

ρσ,η =
1

LL
U [σ → η]ω(σ, η)

∑
(α,β)∈Λσ,η

|γα,β |ω
|ΩL

U |

≤ |Λσ,η|
LL
U [σ → η]ω(σ, η)|ΩL

U |
·max

α,β
|γα,β |ω

= Ot(max
α,β

|γα,β |ω) = Ot

(
t∑

i=1

d

pi
+

d∑
i=t+1

1

pi

)
.

The desired result follows from Proposition 36.

5.5.2 Comparing LL
int with LL

unif: the proof of Lemma 45

The proof of this lemma uses the fractional paths method with uniform weights. To define the
paths, we first split the set of constrained vertices into two subsets. Let A be the set of constrained
vertices u satisfying |L(u)| ≤ 2(3t + 2), and let B be the remaining ones. Before we define the
paths, we will need the following result.

Lemma 49. Let α, β ∈ ΩL
U and let ξA be an L-colouring of the vertices in A. Assume that α|A

and ξA differ on at most one vertex, and similarly for ξA and β|A. There exists a constant c(t) > 0
such that there are at least c(t)|ΩL

U | colourings ξ ∈ ΩL
U satisfying that ξ|A = ξA, and both (α, ξ) and

(ξ, β) are good pairs.

94

Proof. Assume that A = {u1, . . . , ua}, so |B| = t−a. Construct the colouring ξ by setting ξ|A = ξA
and then choosing the colours in U \A one by one, starting from the vertices in B, as follows:

- for each v ∈ B, choose ξ(v) /∈ ξ(A) ∪ α(A ∪B) ∪ β(A ∪B) that has not been used already;

- for each free vertex, choose a colour not used by the vertices already coloured in ξ.

When we choose the colour for v ∈ B, there are at most 3t+2 forbidden colours. Indeed, there are
at most a+ 2(t− a) + 2 colours in ξ(A) ∪ α(A ∪B) ∪ β(A ∪B), and at most t− a colours used by
the previous vertices in B that have already been coloured by ξ. Thus, for v ∈ B there are at least
|L(v)| − (3t+ 2) ≥ |L(v)|/2 choices for ξ(v). Using (5.5), the total number of colourings extending
ξA is at least

∏
v∈B

(|L(v)| − (3t+ 2)) · (d+ 1− t)! ≥ (d+ 1− t)!

2t−a

∏
v∈B

|L(v)|

≥ (d+ 1− t)!

2t(3t+ 2)a

t∏
i=1

|L(ui)|

≥ |ΩL
U |

(2(3t+ 2))t
.

It suffices to show that for any such extension ξ of ξA, (α, ξ) and (ξ, β) are good pairs. We only
prove it for (α, ξ) as the other case is symmetric. Assume by contradiction that f(α, ξ) contains a
3-cycle, and let C be this cycle. Then V (C) ∩ B = ∅. Indeed, if v ∈ V (C) ∩ B, then there exists
a vertex u ∈ A ∪ B with α(u) = ξ(v), but this contradicts the fact that ξ(v) /∈ α(A ∪ B). Thus,
V (C) ⊆ A, but this is not possible since α|A and ξ|A differ by at most one vertex.

We can now compare the relaxation times of LL
int and LL

unif.

Proof of Lemma 45. We use the fractional paths method. Note that both LL
int and LL

unif are ergodic,
reversible and symmetric and that their stationary distributions are uniform on ΩL

U .
It suffices to define a collection of fractional paths Γα,β between any two colourings α and β

in ΩL
U . Since there are at most t constrained vertices and their lists have size at least t+1, we can

find a sequence of L-colourings of A, α|A = ξ0A, ξ
1
A, . . . , ξ

m
A = β|A, such that any two consecutive

colourings differ by one vertex. Let M be an upper bound on the length of these paths for every
α, β, which only depends on t.

For m ∈ [M], let Γm
α,β be the collection of all the paths of the form α = ξ0, ξ1, . . . , ξm = β where

ξi|A = ξiA, and (ξi−1, ξi) is a good pair for i ∈ [m]. By Lemma 49, for each i ∈ [m− 1] there are at
least c(t)|ΩL

U | choices for ξi, independently of the choices of the other ξj for j �= i. Thus, |Γm
α,β | ≥

(c(t)|ΩL
U |)m−1, and if g is the uniform flow, then each γ ∈ Γm

α,β satisfies g(γ) ≤ (c(t)|ΩL
U |)−(m−1).

Let Γm = {Γm
α,β : α, β ∈ ΩL

U} and Γ = ∪M
m=1Γ

m.
We need to bound the congestion of any good pair (σ, η). We fix m ∈ [M] and will bound

the contribution of Γm to it. Let γ = ξ0, ξ1, . . . , ξm ∈ Γm containing (σ, η). There are at most m
choices for i ∈ [m] such that σ = ξi−1 and η = ξi. Then, there are at most |ΩL

U |m−1 choices for ξj

with j /∈ {i− 1, i}. Each such path satisfies g(γ) ≤ (c(t)|ΩL
U |)−(m−1). Thus,∑

γ∈Γm

γ�(σ,η)

g(γ)|γ| ≤ mc(t)−(m−1) .

95

Hence,

ρσ,η ≤
M∑

m=1

mc(t)−(m−1) = Ot(1) ,

and, by Proposition 37, we obtain the desired result.

5.5.3 Dynamics of two cliques intersecting at a vertex

In this section we study a similar dynamics, that we will also use in the main proof. Let z be a
vertex. For d ≥ 1, let X = {z, x1, . . . , xd−1} and Y = {z, y1, . . . , yd−1} two sets of vertices and
consider the graph with vertex set Z = X ∪ Y where each set X and Y induces a clique. As
before, we fix the number of colours k = d + 1. For a list assignment L of Z, recall the definition
of ΩL

Z and the dynamics LL
Z , where we denote by pz, p1, . . . , pd−1, q1, . . . , qd−1 the parameters for

z, x1, . . . , xd−1, y1, . . . , yd−1, respectively.

Let t, tX , tY be non-negative integers with t ≥ tX + tY and 1 ≤ tX , tY ≤ d − 1. Without loss
of generality, we will assume that d is sufficiently large with respect to t. If this is not the case,
then |ΩL

Z | is a constant depending on t, and the relaxation time is Ot(1). A list assignment L is
(t, tX , tY)-feasible if

- |L(z)| = d+ 1;

- |L(xi)|, |L(yj)| ≥ t for every i ∈ [tX] and j ∈ [tY];

- |L(xi)|, |L(yj)| = d+ 1 for every i ∈ [d− 1] \ [tX] and j ∈ [d− 1] \ [tY];
We define free and constrained vertices as before, with the exception of z which is considered a
constrained vertex. If L is (t, tX , tY)-feasible, then

|ΩL
Z | ≥

(tX∏
i=1

|L(xi)| − i+ 1
)(tY∏

j=1

|L(yj)| − j + 1
)
· (d+ 1− t)(d− tX)!(d− tY)! (5.10)

|ΩL
Z | ≤

(tX∏
i=1

|L(xi)|
)(tY∏

j=1

|L(yj)|
)
· d(d− tX)!(d− tY)! . (5.11)

As before, the chain is symmetric and, if L is (t, tX , tY)-feasible for some t, tX , tY satisfying the
conditions stated above, it follows from results below that it is ergodic, so its stationary distribution
is uniform.

We will prove a bound analogous to the one in Lemma 43 on the relaxation time of LL
Z .

Lemma 50. If L is (t, tX , tY)-feasible and k = d+ 1, then we have

τ(LL
Z) = Ot

⎛
⎝d2

pz
+

tX∑
i=1

d

pi
+

d−1∑
i=tX+1

1

pi
+

tY∑
j=1

d

qj
+

d−1∑
j=tY +1

1

qj

⎞
⎠ .

The proof follows the same lines as the proof of Lemma 43, so we will only sketch it, stressing
the parts where the two differ. For α ∈ ΩL

Z , denote by αX and αY the restrictions of α onto X
and Y , respectively. As we did for the clique, we extend α by adding two artificial vertices: wX

96

in X and wY in Y , and by assigning to them the only available colour in each set. Define the
permutations fX and fY as before.

We say that (α, β) is good if and only if both (αX , βX) and (αY , βY) are good (i.e., there is
no 3-cycle in the permutations fX and fY). Remember that z is a constrained vertex, and as a
consequence if (α, β) are good, every cycle in the permutations contains a free vertex different from
z. Redefine the dynamics LL

unif on ΩL
Z as in (5.6), and, using the new definition of good pairs,

redefine LL
int on ΩL

Z as in (5.7). We proceed in two steps by bounding the ratios of the relaxation
times of LL

Z and LL
int and of LL

int and LL
unif .

Lemma 51. If k = d+ 1, then we have

τ(LL
Z)

τ(LL
unif)

= Ot

⎛
⎝d2

pz
+

tX∑
i=0

d

pi
+

d−1∑
i=tX+1

1

pi
+

tY∑
j=0

d

qj
+

d−1∑
j=tY +1

1

qj

⎞
⎠ .

Sketch of the proof. We reuse the recolouring paths defined in Lemma 44 for the clique. Given two
colourings α and β, denote by γXαX ,βX

and γYαY ,βY
the recolouring paths constructed for each of

the two sets X and Y independently. Observe that for each path in these sets, each constrained
vertex is recoloured at most once. In particular, z changes its colour at most once. Construct the
recolouring path γα,β in the following way:

- apply the recolourings in γXαX ,βX
until z needs to be recoloured;

- apply the recolourings in γYαY ,βY
;

- apply the remaining recolourings in γXαX ,βX
.

Note that in the second step, z can be safely recoloured with β(z) because its target colour is
available in X, since the next move according to γXαX ,βX

would be to recolour z with colour β(z).
We need to bound the congestion of each transition for this collection of paths.

For a transition (σ, η), let Λσ,η be the set of good pairs α, β such that γα,β contains (σ, η). The
analogues of Lemmas 46 and 47 hold in this setting. In particular, for every (σ, η) differing at a
vertex v, if v is free then |Λσ,η| = Ot

(|ΩL
Z |
)
, if v �= z is constrained then |Λσ,η| = Ot(d|ΩL

Z |), and if
v = z then |Λσ,η| = Ot(d

2|ΩL
Z |) as we get an extra factor d for each permutation. This allows us to

bound the congestion of a transition as in the previous section, and so Lemma 51 follows.

Lemma 52. If L is (t, tX , tY)-feasible and k = d+ 1, then we have

τ(LL
int)

τ(LL
unif)

= Ot(1) .

Sketch of the proof. The lemma can be proved using the same steps as in the proof of Lemma 45.
Let AX and AY be the set of constrained vertices with lists of size at most 2(3t+ 2) in X and Y ,
respectively. Let A = AX ∪AY and let B be the set of constrained vertices that are not in A. As z
is a constrained vertex with |L(z)| = d+1 > 2(3t+2), we have z ∈ B. The analogous of Lemma 49
still holds in this setting.

For any α, β ∈ ΩL
Z , we would like to find a sequence α|A = ξ0A, . . . , ξ

m
A = β|A of colourings of A

such that each consecutive pair differs only at one vertex. As z �∈ A and as all constrained vertices
in A have a list of size at least t+ 1, this sequence can be found by independently recolouring AX

97

and AY . Arguing as in the proof of Lemma 45, we can construct many recolouring paths between
α and β with transitions that correspond to good pairs. Then, Proposition 37 implies the desired
result.

5.6 Glauber dynamics on edge-colourings of trees

In this section we prove our main theorem. We follow a similar approach to the one of Lucier,
Molloy and Peres in [LMP09] for vertex-colourings, by recursively splitting the tree into smaller
subtrees using block dynamics. However, there are several points where our strategies differ.

5.6.1 Relaxation time of block dynamics

In all this section, we will assume that G = (VG, EG) is a d-regular tree, that is every internal
vertex has degree exactly d. We also assume that k = d+ 1.

Definition 2. A subtree T of G is splitting if one of the following holds.

- T is a single edge,

- T has fringe interior boundary |∂T | ≤ 2. If ∂T = {e, f}, then e and f are not incident.

Fix μ ∈ ΩEG
, and fix T = (V,E) a splitting subtree of G. Note that since T has fringe

boundary, it is also d-regular. The central point of our proof is to study Lμ
E by decomposing it into

the dynamics of its subtrees using the block dynamics defined in Section 5.4.2. We will assume
that T is rooted in one of the two following ways.

Vertex-rooted trees: The root of T is r ∈ V , an internal vertex of T . Let e1, . . . , ed be the
edges incident to r. For each i ∈ [d], we consider the block formed by the edges of the subtree
hanging from ei.

Edge-rooted trees: The root of T is an edge e = xy where x and y are internal vertices of T
(so, e /∈ ∂T). Let e1, . . . , e2d−2 be the edges incident to e. We let {e} be a block, and for every
i ∈ [2d− 2], we consider the block formed by the edges of the subtree hanging from ei.

In both cases, we denote by E = {E1, . . . , Er} the block partition described above. Note that
each block in E contains at most one edge incident to edges in other blocks. Let H = (U,F) be the
subgraph induced by these edges. Note that in the case of a vertex rooted tree, H is a star, and in
the case of an edge rooted tree, H is a bi-star: two stars joined by an edge. For each i ∈ [r], let Ti

be the subtree with edge set Ei.

Throughout this section we will make the following two assumptions on E .

(A1) Ti is splitting for every i ∈ [r];

(A2) Lσ
Ei

is ergodic for every i ∈ [r] and every σ ∈ Ωμ
E .

Thus, we can define the reduced block dynamics on E with boundary condition μ. Recall
from Section 5.4.2 that its state space is ΩR, the restriction to H of the colourings in Ωμ

E . Moreover,

98

its transition matrix is given for any σ̂ �= η̂:

Rμ
E [σ̂ → η̂] =

{
giπ

i,σ̂
proj(η̂) if there exists i ∈ [r] such that η̂ = η|U for some η ∈ Ωσ̂

Ei
,

0 otherwise.
(5.12)

where πi,σ̂
proj is the projection of πσ̂

Ei
onto F (see (5.3)). To bound the relaxation time on T , we will

proceed in two steps. First we compare the original dynamics Lμ
E to the reduced block dynamics

on E using Propositions 39 and 40 from Section 5.4.2. Then, we bound the relaxation time for
the reduced block dynamics using the results from Section 5.5. The three following lemmas will
help us for the second step. They show that the transitions rates and the stationary distribution
of the reduced block dynamics are close to uniform. We will first prove bounds on the stationary
distribution for the reduced block dynamics, and then proceed to bound the relaxation time for the
reduced block dynamics.

Lemma 53. Assuming (A1)–(A2), the reduced block dynamics Rμ
E is ergodic and reversible, and

its stationary distribution πR is the projection of πμ
E onto F .

Proof. Let H� be the line graph with vertex set F , the set of edges of H. Consider the Glauber
dynamics LL

F with the following list constraints on e ∈ F

• L(e) = [k] \ μ(N(e) ∩ ∂T) if e ∈ ∂T ,

• L(e) = [k] for every other edge.

Then, since each block Ei contains only one edge in H, the reduced block dynamics Rμ
E has exactly

the same transitions as LL
F , but with possibly different probability transitions. Thus, Rμ

E is ergodic
if and only if LL

F is.
If T is vertex-rooted, then H is a star, and H� is a clique. Additionally, since T is splitting,

the two edges in ∂T are not adjacent, and in particular only one is in H. This edge, if it exists,
is assigned a list of length 2, so L is 1-feasible. The ergodicity of LL

F follows from Lemma 43 with
t ≤ 1.

If T is edge-rooted, then H is a bi-star, and H� is composed of two cliques intersecting at one
vertex. Moreover, the two edges in ∂T cannot be in the same side of the bi-clique, and each has
a list of length at least 2. So L is (2, 1, 1)-feasible. The ergodicity of LL

F follows from Lemma 50
with tX , tY ≤ 1 and t ≤ 2.

Lemma 41 implies that the reduced block dynamics is reversible for the projection of πμ
E onto

F , concluding the proof.

Before giving a bound on the relaxation time of the reduced block dynamics, we will prove some
bounds on its stationary distribution πR to show that it deviates from a uniform distribution by at
most a constant factor. To this end, the following lemma is a technical tool that we will reuse later.
It shows that, given a boundary configuration, under the uniform distribution the probability that
an edge ei is assigned an available colour is close to uniform.

Lemma 54. For any subtrees Ti with edge-set Ei, any ei ∈ ∂Ti and any σ ∈ Ωμ
E, let C =

σ(N(ei) ∩ ∂Ti). Assuming (A1)–(A2), for every c ∈ [k] \ C, we have

πσ
Ei
({ξ ∈ Ωσ

Ei
: ξ(ei) = c}) = 1

2
(1 +O(1/d)) .

99

Moreover, if |∂Ti| = 1, then

πσ
Ei
({ξ ∈ Ωσ

Ei
: ξ(ei) = c}) = 1/2 .

Proof. First assume that ∂Ti = {ei, fi}. As G is d-regular, and Ti is splitting, in particular its
boundary is fringe. Since k = d+ 1, this implies that there are exactly two colours available for ei
and two colours for fi.

We will bound |Ωσ
Ei
| and |Ωσ

Ei
(c)|, the number of colourings in Ωσ

Ei
that assign c to ei. Let

P = (VP , EP) be the unique path in Ti that connects ei and fi and let s = |VP |. As T is splitting
and |∂Ti| = 2, we have s ≥ 4. If we fix a colouring ξP of EP , observe that the number of colourings
of ξ ∈ Ωσ

Ei
, such that ξ|P = ξP is independent of ξP . Indeed, if we remove EP , we obtain a collection

of rooted subtrees T ′
1, . . . , T

′
s with root vi ∈ VP . Given ξP , there are exactly (d− 1)! ways to colour

the edges of T ′
i incident to vi, and for each internal vertex, there are exactly d! ways to choose a

colouring of the edges hanging from it.

Therefore, in order to bound the ratio |Ωσ
Ei
(c)|/|Ωσ

Ei
|, we only need to compute |Ωσ

EP
|, and

|Ωσ
EP

(c)|, respectively the number of colourings of P compatible with σ, and the number of these
colourings ξP for which ξP (ei) = c. We can obtain a colouring of P by first colouring ei and fi, and
then choosing the colour of the other edges in P in the order they appear on the path from ei to
fi. As s ≥ 4, there is at least one edge in EP \ {ei, fi}. For each of these edges except for the last
one, there are d choices of colours. For the last edge there are either d or d− 1 choices. It follows
that

4ds−1(d− 1) ≤ |Ωσ
EP
| ≤ 4ds ,

2ds−1(d− 1) ≤ |Ωσ
EP

(c)| ≤ 2ds .

We conclude that

πσ
Ei
({ξ ∈ Ωσ

Ei
: ξ(e) = c}) = |Ωσ

Ei
(c)|

|Ωσ
Ei
| =

|Ωσ
EP

(c)|
|Ωσ

EP
| =

1

2
(1 +O(1/d)) .

The second statement follows by a simple symmetry argument.

Lemma 55. Assuming (A1)–(A2), for every σ̂ ∈ ΩR, we have

πR(σ̂) =
1 +O(1/d)

|ΩR| .

Proof. Recall that H = (U,F) and that ei ∈ F ∩Ei is unique edge of Ei in H. Let σ̂ ∈ ΩR, we will
compute πR(σ̂) by using Lemma 53 and by bounding the number of σ ∈ Ωμ

E such that σ|F = σ̂. If
ti = 1, then ei is the only boundary edge and, by symmetry, the number of extensions of σ̂ in Ei

does not depend on σ̂(ei). If ti = 2, then there exists f ∈ Ei with f �= ei such that f ∈ ∂Ti. As
in the proof of Lemma 54, in this case the number of extensions is the same, up to a 1 + O(1/d)
multiplicative factor. Since Ti is splitting, there are at most two values of i ∈ [r] with ti = 2. It
follows that, up to a 1 + O(1/d) multiplicative factor, each σ̂ has the same number of extensions.
This concludes the proof.

We will also need the following simple bound on the gap of the dynamics of a single edge.

100

Lemma 56. Let e ∈ EG be an edge of G. Then,

min
μ∈ΩEG

Gap(Lμ
{e}) ≥

2

d+ 1
.

Proof. Observe that Ωμ
{e} is the set of colourings of a single edge with k0 ≥ 1 colours, where each

transition happens at rate 1/(d+1). If k0 = 1, then the relaxation time is 1. If k0 ≥ 2, all positive
eigenvalues of −Lμ

{e} are equal to k0/(d+ 1), so Gap(Lμ
{e}) ≥ 2/(d+ 1).

We can finally obtain a bound on the relaxation time of Lμ
E .

Lemma 57. Assuming (A1)–(A2), the following holds,

τ(Lμ
E) = O

(
d3 +

r∑
i=1

τi

)
,

where τi := maxσ∈Ωμ
E
τ(Lσ

Ei
).

Proof. Using Propositions 39 and 40, we know that the relaxation time of Lμ
E satisfies

τ(Lμ
E) ≤ τ(Rμ

E) . (5.13)

Thus, to get the result, we only need to bound the relaxation time of the reduced block dynamics
with partition E . We define an alternative dynamics. Let Rconst be the continuous-time Markov
chain with state space ΩR and generator matrix given for any σ̂ �= η̂ by

Rconst[σ̂ → η̂] =

{
gi if σ̂ and η̂ differ only at ei,

0 otherwise,

where gi = 1/τi. Observe that Rμ
E and Rconst have the same state space and transitions (but differ-

ent transition probabilities). For every σ̂, η̂ ∈ ΩR, Lemma 54 implies that πσ̂,i
proj(η̂) = πσ

Ei
({ξ ∈ Ωσ

Ei
:

ξ(ei) = η̂(ei)}) = Θ(1), where σ is an arbitrary colouring in Ωσ̂∗ . So Rμ
E [σ̂ → η̂] = Θ(Rconst[σ̂ → η̂]).

Moreover, the stationary distribution πconst of Rconst is uniform on ΩR, and by Lemma 55 we have
πR(σ̂) = Θ(πconst(σ̂)) for every σ̂ ∈ ΩR. Thus, it follows from Corollary 38 that

τ(Rμ
E) = Θ(τ(Rconst)) (5.14)

We will bound the relaxation time of Rconst using the results in Section 5.5, and conclude
using (5.13) and (5.14).

Suppose first that T is vertex-rooted. This implies that H induces a star with edges e1, . . . , ed.
Consider the clique with vertex-set U = {u1, . . . , ud}, where ui is identified with the edge ei, and
the list assignment L of U defined by L(ui) = [k]\μ(N(ei)∩∂T). Up to relabelling of the edges, as
k = d+1, the list assignment L is 1-feasible. Consider the dynamics LL

U with probabilities pi := gi.
We can identify ΩR and Rconst with ΩL

U and LL
U . By applying Lemma 43 with t ≤ 1 we have,

τ(Rconst) = τ(LL
U) = O

(
t∑

i=1

d

gi
+

d∑
i=t+1

1

gi

)
= O

(
d2 +

d∑
i=1

1

gi

)
,

where we used Lemma 56 in the last equality.
If T is edge rooted, then H is a bi-star. We can do the same proof replacing Lemma 43 by

Lemma 50 obtaining a similar bound with an additive factor of order d3.

101

5.6.2 Proof of Theorem 34

Let k ≥ Δ + 1 and G = (VG, EG) be a tree on n vertices with maximum degree at most Δ.
From (1.1) and (5.1) to prove Theorem 34 it suffices to bound τ(LEG

), the relaxation time of the
continuous-time Glauber dynamics.

Let d := k − 1 ≥ Δ. Construct the d-regularisation Gd = (V d
G, E

d
G) of G by adding d − |N(u)|

leaves adjacent to each internal vertex u ∈ VG. Note that Gd is d-regular as a tree and it has at
most dn vertices. By Proposition 42, we have τ(LEG

) ≤ τ(LEd
G
). So, to prove Theorem 34 it suffices

to bound the relaxation time of d-regular trees with at most dn vertices, and in the following we
assume that G is d-regular.

We will prove the following result by induction on the size of the subtree T :

Claim 58. There is a constant C such that, for every splitting subtree T = (V,E) of G with m
edges, and every edge-colouring μ ∈ ΩEG

, the Glauber dynamics Lμ
E with parameters pi = 1/k is

ergodic and

τ(Lμ
E) ≤ d3mC .

From this claim, the theorem is obtained immediately by taking T = G. If T is composed of a
single edge, the Claim 58 follows from Lemma 56. Let m be the number of edges in T and assume
m > 1. Let v ∈ V be the vertex such that each subtree Ti hanging from T rooted at v has at
most �m2 � edges; this vertex always exists and it is internal. Let ei be the edge from Ti incident
to v. We are going to split T into several subtrees by applying Lemma 57, possibly several times.
Note that in order to apply this lemma, we must ensure that each of the subtrees is splitting. This
gives constraints on how we can split T . Precisely, while splitting the tree into subtrees, none of
the subtrees can have an internal boundary of size at least 3, and for the subtrees with an internal
boundary of size 2, the two edges in the boundary must be non-incident.

The splitting procedure is done according to different cases:

1. If all the Ti are splitting, then simply root T at v, and apply Lemma 57. In the following we
will assume that not all the Ti are splitting.

2. If |∂T | = 1, then there is exactly one subtree, say T1, which is not splitting. All other subtrees
Ti for i �= 1 are splitting and have fringe boundary of size 1. Root T at e1. Now, all subtrees
pending from e1 are splitting and have at most �m2 � edges, and we can apply Lemma 57.

3. If |∂T | = 2, with e and f the two edges on the internal boundary, and v is on the path between
e and f . Without loss of generality, assume that T1 and T2 contain e and f respectively.

- If exactly one of T1 or T2 is not splitting, w.l.o.g. we can assume that it is T1. By rooting
T at e1, all subtrees pending from e1 are splitting and contain at most �m2 � edges, and
we can apply Lemma 57.

- If both T1 and T2 are not splitting, write e1 = (v1, v). Since T1 is not splitting, v1 must
be incident to e. Moreover, since T2 is not splitting, e1 and f are not incident, and all
the subtrees pending at v1 are splitting. We apply Lemma 57 a first time by rooting T
at v1. Let T ′ be the subtree hanging from v1 that contains v and root T ′ at e2. Then,
all subtrees pending from e2 are splitting, and we can apply Lemma 57 a second time.
The resulting subtrees all have at most �m2 � edges.

102

4. Finally, if v is not on the path between e and f , let v′ be the vertex on this path which
is closest to v. We can first split at v′ by applying the procedure from the case 3. After
this splitting, all the resulting subtrees have at most �m2 � edges except maybe the subtree T ′

containing v. However T ′ has a fringe boundary of size 1, and by splitting one more time
according to either case 1 or case 2, all resulting subtrees are splitting, and have at most �m2 �
edges. In the worst case, we needed to use Lemma 57 three times in this case.

Let T ′
1, . . . , T

′
s be the subtrees into which T is split by applying the procedure above, and let E′

i be
the set of edges of T ′

i . Since T ′
i is splitting, by the induction hypothesis, Lσ

E′
i
is ergodic for every

σ ∈ Ωμ
E , so Lμ

E is also ergodic. Recall that τi := maxσ∈Ωμ
E
τ(Lσ

E′
i
). Lemma 57 shows that there exists

K such that if T is split at a vertex/edge into r subtrees T ′
1, . . . , T

′
r, then τ(Lμ

E) ≤ K(d3+
∑r

i=1 τi).
As we use Lemma 57 at most three times in each step of the splitting procedure described above,
we have

τ(Lμ
E) ≤ K3

(
3d3 +

s∑
i=1

τi

)
,

Using the induction hypothesis on T ′
i , if we denote by mi ≤ �m2 � the number of edges in T ′

i , we
have:

τ(Lμ
E) ≤ K3

(
3d3 +

s∑
i=1

d3mC
i

)
≤ K3

(
3d3 + d3

⌈m
2

⌉C−1
s∑

i=1

mi

)

≤ K3d3
(
3 +

mC

2C−2

)
≤ d3mC · K3

2C−3
.

So letting C ≥ 3(1 + logK) gives the desired inequality, and we conclude the proof of Claim 58.

103

Chapter 6

Online Colouring with Kempe Chains

In this chapter, we are interested in using local reconfiguration to colour graphs in an online setting.
These results were obtained with Sylvain Gravier and appear in [GH18].

Usual reconfiguration problems study the question of transforming one solution into an other.
However there are settings which are not directly captured by these questions. For example, the
target solution might not be known in advance, but instead we want to reach any solution which
satisfies some properties. This case appears naturally if we try to use the transformations from the
reconfiguration setting to adapt a partial solution to the rest of the input. In the case of graph
colouring for example, we might want to adapt a partial solution to colour one additional vertex.
Hence, the goal is to modify the current colouring to remove one colour from the neighbourhood
of the new vertex we wish to colour. An other notion not directly captured in the reconfiguration
setting is locality: in some cases, we might want to find a transformation that changes only a small
part of the solution. These two restrictions are interesting in particular in the context of online
algorithms.

6.1 Introduction

Online algorithms are a class of algorithms reading their input sequentially. In the case of graphonline algo-
rithm problems, this usually means that the vertices of the graph arrive one by one. As the formal

definition of greedy, online, and sequential algorithms is not completely fixed, we start by fixing
the convention we use here. In an online algorithm, for each new vertex, the algorithm must adapt
a partial solution of the problem on the graph without the new vertex into a solution for the whole
graph. For the graph colouring problem, this means that, if G is the graph and v the newly added
vertex, the algorithm must transform a colouring of G−v into a colouring of G. The study of online
algorithms is motivated by situations where the whole input is not available to the algorithm, for
example if the input is too large to fit into the main memory of the computer.

In the online setting, recolouring the whole graph at each step is too expensive. Instead, we
wish to keep the changes local to the new vertex which was just added to the graph. A special case
of such algorithms is if we allow no change at all on the current solution. In the case of colouring,
this means that changing the colour of previously coloured vertices is not allowed. Such algorithms
are called greedy colouring algorithms. Each time a new vertex is read from the input, a new colour
different from its neighbours must be immediately assigned to it, and vertices coloured at an earlier

104

step cannot be recoloured. The most common greedy algorithm for graph colouring is First-Fit, First-Fit

which consists in taking the smallest colour not already present in the neighbourhood of the new
vertex. These online algorithms are usually studied in a setting where the order on the vertices of
the graph is arbitrary. The performance of online colouring algorithms is measured in terms of the
number of colours used for the worst case ordering.

A similar type of algorithms are sequential algorithms. These algorithms first decide on an
ordering of the vertices, and then, apply an online algorithm to colour the graph according to this
ordering. In this case the ordering is chosen by the algorithm.

The greedy graph colouring problem is a widely studied subject. For general graphs, a ran-
domized greedy algorithm finding an O(n

logn) approximation was devised in [Hal97] while there
is a lower bound of Ω(n

log2 n
) on the approximation ratio of any greedy algorithm [HS92]. This

lower bound holds even if the algorithm knows in advance the graph being coloured, but not the
sequence of vertices in which it is given [Hal00]. An important effort has been directed at study-
ing the performance on usual graph classes. A greedy algorithm with an approximation ratio of
O(log n) was shown for trees [GL88], bipartite graphs [LST89], planar and chordal graphs [Ira94].
On the other hand, this approximation ratio was shown to be optimal for these graph classes
[Bea76, AS17, LST89]. The lower bounds even hold for randomized algorithms, algorithms us-
ing a small reordering buffer, or algorithm allowed to look at a few future inputs before making a
choice [AS17]. Online algorithms with constant approximation ratio exists for other classes of graphs
such as interval graphs [KT81, LV98, Smi10, NB08], co-interval graphs [GL88, KQ95, ZZ07, ZZC09]
and disk intersection graphs [CFKP07, EF02, AS17].

Online algorithms are closely related to an other model of computation: the dynamic graph
model. In this setting, the input is an online sequence of updates to the graph (usually addi-
tion/deletion of edges), and for each of these updates, the algorithm must maintain a feasible
solution to the problem. This is very similar to the online setting where only addition (of edges or
vertices) are permitted, while deletions can also be performed in the dynamic graph model. Several
problems have been considered in this setting, see [DEGI09, DFI04] for a survey on the existing
results on the problem. The case of colouring in the dynamic graph model has been considered only
recently. In [BCK+17], two algorithms are presented for dynamic graph colouring with different
trade-off between two parameters: the number of colours used by the algorithm, and the number
of vertices which are updated at each step. These results were subsequently improved in [SW18]
for some range of the parameters. The problem has also been considered in [BCG19] for various
models of computation.

Since the approximation ratio of greedy algorithms is quite large even for some simple classes of
graphs such as trees, it is natural to look at more general algorithms. In this chapter, we consider
online algorithms which are allowed to change the colour of previous vertices only by making local
Kempe exchanges. Recall from Chapter 1 that a Kempe exchange consists in swapping the colours
of the vertices of a maximal connected 2-coloured sub-graph of G (called Kempe chain). Applying
this transformation creates a new proper colouring of the graph. We call these algorithms online
algorithms with Kempe exchanges. For each new vertex v, the algorithm can perform Kempe
exchanges to remove one colour from the neighbours of v, and then use this colour for v.

The choice of Kempe exchanges as an operation to recolour the graph is quite natural. It was
first considered in Kempe’s failed attempt at proving the four colour theorem, and was used later
to prove Vizing’s theorem [Viz64]. More recently, sequential algorithm using Kempe exchange were
considered in [MP99] to colour a special subclass of perfect graphs, and in [HG96, HGM98, HM97,

105

Tuc87] using more complex recolouring operations. In this context, Kempe exchanges are used to
locally modify an existing colouring in order to colour a new vertex.

We have also seen in previous chapters that Kempe exchanges can be used in the context
of reconfiguration, and sampling random colourings. In the reconfiguration setting, the problem
considered is global: the transformations can be usually applied anywhere in the graph. On the
contrary, we consider here local transformations. This means that, as in sequential algorithms, the
Kempe exchanges are restricted to the neighbourhood of the newly added vertex.

Overview. The chapter is organized as follows. In the next section, we give a formal definitions
of online algorithm with Kempe exchanges. Then, we describe such algorithms for several classes
of graph: bipartite graphs in Section 6.1.2, chordal graphs in Section 6.2, outer-planar and planar
graphs in Section 6.3. An extension of the algorithm on planar graphs to the case of graphs with
bounded genus is presented in Section 6.4. Apart from the cases of planar graph and graphs with
bounded genus, these algorithm are optimal and robust: they either find an optimal colouring or
exhibit a forbidden substructure for this class of graphs. In the case of planar graph, the algorithm
only provides a O(log(Δ))-colouring. The question of whether we can achieve a constant number
of colours is still open. Finally, in Section 6.5 we give an example of 3-colourable graphs for which
any online algorithm using Kempe exchanges (with some additional restrictions) performs badly.

6.1.1 Definitions and notations

We recall some of the notations defined in Chapter 1. A Kempe exchange consists in swapping
the two colours in a maximal 2-coloured connected subgraph of G. We will write 〈v, i〉 the Kempe
exchange that, given a colouring c produces a colouring c′ = 〈v, i〉(c) obtained by swapping the
(i, c(v))-Kempe chain containing v. A vertex u is changed by the Kempe exchange 〈v, i〉 if and only
if there is a path between u and v coloured using only the colours i and c(v). Such a path will be
called a bicoloured (i, c(v))-path.

The algorithms that we consider are a special case of online algorithms where the algorithm is
allowed to recolour previously coloured vertices only by performing Kempe exchanges. Allowing
the algorithm to perform any Kempe exchange would be too powerful as it would allow, in many
cases, to recolour the whole graph. To prevent this, the algorithm is only allowed to perform Kempe
exchanges which are local to the newly added vertex in the following sense:

Definition 3. Let G be a graph, c a colouring of G, and v, x two vertices of G. The Kempe
exchange 〈i, x〉 is local to v if x ∈ N(v).local Kempe

exchange

We will always consider Kempe exchanges which are local to v, the (not yet coloured) vertex that
was just added to the graph. Consequently, we will omit to specify v, and just write that the Kempe
exchanges are local as a shorthand for local to v. Note that vertices outside the neighbourhood of
v might still be recoloured by a local Kempe exchange. Indeed, we only require that the starting
point of a local Kempe exchange is in the neighbourhood of v, but this transformation can still
recolour a large part of the graph. We can now give a formal definition of online algorithms with
Kempe exchanges.

Definition 4. An online colouring algorithm with Kempe exchanges is an online algorithms suchonline colour-
ing algorithm
with Kempe
exchanges

that, for each new vertex v:

• it applies a sequence of local Kempe exchanges,

106

• and then selects a colour for v not used by any vertex in its neighbourhood.

This definition is quite general, however the algorithms considered here are more simple: they
only perform Kempe exchanges when necessary. If a colour is already available to the new vertex
without any recolouring, then the algorithm immediately selects that colour. Additionally, the
algorithms we describe in the following sections always choose the smallest colour available, and
make no assumption on eventual properties of the existing colouring. In other words, with these
restrictions an algorithm with Kempe exchanges is given by a procedure taking as input a graph
G with a vertex v and any colouring c of G − v. The algorithm must find a sequence of Kempe
exchanges such that applying these transformations removes one colour from the neighbourhood
of v.

In terms of graph colouring reconfiguration, the question this type of algorithms try to answer
can be formulated in the following way. Given a graph G, a vertex v, and a k-colouring c of G− v,
is there a transformation of c using local Kempe exchanges into a colouring c′ for which N(v) is
(k − 1)-coloured. Thus, the problem is similar to a colouring reconfiguration problem with two
main variations:

• the Kempe exchanges must be local,

• the target colouring is not given, but can be any colouring with the desired properties.

An other important parameter for this kind of algorithm is the length of the reconfiguration path:
the number of Kempe exchanges which are applied for each new vertex in the worst case. Since we
are interested in only making local changes to the colouring, we want this number to be polynomial
in Δ.

The question we are interested in is to determine for which classes of graphs does such an
algorithm exist and how many colours it requires. In the following we will present several algorithms
for different classes of graphs.

6.1.2 Bipartite graphs

The first simple class of graph that we consider are bipartite graphs. For these graphs, we prove
the following result:

Theorem 59. There is an online colouring algorithm with Kempe exchange finding a 2-colouring
of bipartite graphs using at most Δ operations at each step.

Proof. Let G be a bipartite graph, v a vertex of G, and c the colouring of G− v obtained from the
previous steps of the algorithm. We now describe how to recolour G using local Kempe exchanges in
order to make N(v) monochromatic. If one of the two colours is not present in the neighbourhood
of v, then this colour can be used to colour v. Otherwise, the recolouring procedure is the following:
while there is a vertex u ∈ N(v) coloured 2, apply the Kempe exchange 〈u, 1〉. None of the vertices
in N(v) coloured 1 can change colour back to 2. Indeed, assume by contradiction that at some
step a vertex w ∈ N(v) changes colour from 1 to 2 during the Kempe exchange 〈u, 1〉. This implies
that there is a path p of odd length from u to w in G− v. Consequently, p∪ {v} is an odd cycle, a
contradiction of the assumption that G is bipartite.

When the procedure ends, after at most Δ Kempe exchanges, all the vertices in N(v) are
coloured 1, and v can be coloured 2.

107

In particular, this algorithm colours optimally any tree, while the best greedy online algorithm
needs Ω(log n) colours in the worst case.

6.2 Chordal graphs

In this section, we will exhibit an online algorithm with Kempe exchanges that can colour optimally
any chordal graph. A chordal graph is a graph with no induced cycles of length larger than 3. These
graphs satisfy the following property:

Theorem 60 (Dirac, 1961). A graph G is chordal if and only if there is an ordering u1, . . . , un of
its vertices such that for all i ≥ 1, N(ui)∩ {u1, . . . , ui−1} is a clique. Such an ordering is called an
simplicial ordering.

The ordering in the characterisation above can be computed in polynomial time by iteratively
removing simplicial vertices from the graph (i.e., vertices whose neighbourhood forms a clique).
Chordal graphs are an important subclass of perfect graphs for which the chromatic number is
equal to the largest clique in the graph. The idea of the online algorithm is the following. Let v
be the new vertex that was added to the graph. The algorithm will recolour N(v) using one less
colour. Since the subgraph induced by N(v) is also chordal, we can find an simplicial ordering of
the vertices in N(v) and recolour these vertices one by one according to this ordering, using local
Kempe exchanges. The property that the whole graph is chordal will ensure that the colours of
previously recoloured vertices do not change during the successive operations. This property will
be proved using the following Lemma.

Lemma 61. Let G be a graph, v a vertex of G, and c a colouring of G− v. Assume that there are
two vertices u1, u2 ∈ N(v), such that there is a bi-coloured (i, j)-path between u1 and u2 in G− v.
If p is the shortest such path, then p ⊆ N(v).

Proof. Let u1 and u2 be two neighbours of v such that there is a bi-coloured (i, j)-path between u1
and u2 in G− v. Take p to be the shortest bi-coloured (i, j)-path from u1 to u2 for some colours i
and j. We will show that p ⊆ N(v). Assume by contradiction that this is not the case, and there
is at least one vertex on the path p which is not a neighbour of v. We can find a subpath p′ of p
such that p′ has length at least 2, and the only vertices of p′ in N(v) are its two endpoints.

Since p is the shortest bi-coloured (i, j)-path from u1 to u2, the graph induced by p′ is a path,
and consequently, G[v ∪ p′] is a cycle of length at least 4. This is a contradiction of the assumption
that G is chordal.

Theorem 62. There is an online colouring algorithm with Kempe exchanges that colours optimally
every chordal graph. The algorithm performs at most Δ Kempe exchanges for each new vertex.

Proof. Given a graph H, we denote by ω(H) the size of the largest clique in H. Let G be a graph,
v a vertex of G, and c a colouring of G− v using ω(G− v) colours. If ω(G) = ω(G− v)+1, then we
can directly colour v using the new additional colour. Otherwise, let ω = ω(G). We will describe
an algorithm finding a sequence of Kempe exchanges such that the resulting colouring uses at most
ω − 1 colours on N(v). The transformation is made using at most Δ Kempe exchanges.

Since G is chordal, the induced subgraph G[N(v)] is also chordal. Let k = |N(v)| be the number
of neighbours of v, and let v1, . . . , vk be an simplicial ordering of the vertices of N(v). We write Gi

108

0

1

2

3

4
5

6

7

8

Figure 6.1: Example of outer-planar graph. The vertex 3 appears twice on the outer face of the
graph.

the subgraph induced by the vertices v1, . . . , vi. The recolouring procedure is, for each i from 1 to k,
if vi is coloured ω, we apply the Kempe exchange 〈vi, xi〉 where xi is the smallest colour not present
in NGi(vi). There is always such a colour xi. Indeed, by definition of the order of the vertices,
NGi(vi) is a clique, and NGi(vi) ∪ {vi, v} is also a clique of G. Consequently, |NGi(vi)| ≤ ω − 2.

During step i, none of the vertices vj with j < i is recoloured. Indeed, suppose by contradiction
that this is not the case, and let i be the first step at which a vertex vj , with j < i is recoloured.
Before the exchange, we have c(vj) �= ω. After the exchange, the colour of vj changes to ω.
Consequently, there is bi-coloured (ω, xi)-path from vi to vj in G− v. By Lemma 61, this implies
that there is a bi-coloured (ω, xi)-path p ⊆ N(v) from vi to vj .

Let vk be the vertex of the path p with the largest index k. By choice of the colour xi, we know
that vk �= vi, since the (only) neighbour of vi in p has an index larger than i. Consequently, since
j < i, the vertex vk has two neighbours va and vb in p. Since p is 2-coloured, both va and vb have
the same colour. Additionally, by choice of k, both a and b are smaller than k. Since the ordering
of the vertices is an simplicial ordering, the neighbours of vk in Gk+1 form a clique. In particular,
there is an edge between va and vb, and this edge is monochromatic, a contradiction.

After the recolouring is done, none of the vertices of N(v) is coloured ω, and the colour ω can
be assigned to v.

6.3 Planar graphs

The goal of this section is to show two online algorithm with Kempe exchanges. The first one
allows to colour outer-planar graphs using at most 3 colours. The second one can colour any planar
graph, but only computes a O(logΔ)-colouring. We start by the algorithm on outer-planar graphs.

6.3.1 Outer-planar graphs

An outerplanar graph is a graph which admits a planar drawing such that there is a face adjacent
to all the vertices of the graph. Such a drawing of an outerplanar graph can be computed in
linear time [Bre77]. The face containing all the vertices of the graph is the outer-face. Given an
outerplanar graph G, and an outer-planar drawing of G, we can consider the sequence of vertices
in the order they appear on the outer face. Note that the same vertex can appear several times in
this sequence as in the example in Figure 6.1. We will prove the following Theorem:

Theorem 63. There is an online colouring algorithm with Kempe exchange that colours optimally
any outer-planar graph. The algorithm performs at most Δ Kempe exchanges at each round.

109

Proof. Let G be an outer-planar graph, v a vertex of G, and c an optimal colouring of G − v. If
G is bipartite, then we can use the procedure from Theorem 59 to remove one colour from N(v),
and obtain a 2-colouring of G. Otherwise, we can assume that the colours 1, 2 and 3 are present in
N(v).

We will describe a procedure recolouring N(v) with only two colours using at most Δ local
Kempe exchanges.

Let k = |N(v)|, and let v0 = v, v1, . . . , vk be an ordering of the vertices of N(v)∪ v, in the order
they appear on the outer face in an outerplanar drawing of G. Note that there is no ambiguity in
the choice of this ordering. Indeed, suppose that there is a vertex, say vi, that appears several times
on the outer-face. Then none of the vertices that appear between the first and last occurrence of vi
on the outer face can be neighbours of v, since it would contradict the fact that G is outer-planar.
We will recolour the vertices v1, . . . , vk successively using the colours 1 and 2.

The algorithm recolours the vertices v1, . . . , vk in this order by doing the following. For i from
1 to k, if c(vi) = 3, let x ∈ {1, 2} \ {c(vi−1)} (if i = 1, x can be either 1 or 2). We apply the Kempe
exchange 〈vi, x〉.

During step i, none of the vertices v1, . . . , vi−1 are recoloured. Indeed, since G is outer-planar,
any path in G− v from vi to some vertex vj with j < i necessarily goes through vi−1. Additionally,
the colour of vi−1 is different from x and 3 by choice of x. Consequently, vi−1 is not contained in
any bi-coloured (x, 3)-path, and there is no bi-coloured (x, 3)-path between vi and vj . At the end
of this procedure, N(v) is coloured with colours 1 and 2, and v can be coloured 3.

Note that the algorithm we described above needs to compute the outer-planar embedding of
the graph to work. It could be interesting to see if it is possible to devise an algorithm without it.

6.3.2 General planar graphs

The case of general planar graph is more complicated, and we will only prove the following weaker
theorem.

Theorem 64. There is an online algorithm with Kempe exchanges colouring any planar graph with
O(log(Δ)) colours. The algorithm performs at most Δ2

2 Kempe exchanges for each new vertex.

The question of whether there exists an algorithm using only a constant number of colours is still
open. The algorithm is quite simple but the analysis is more complex than previous cases. The idea
is to repeatedly apply a greedy procedure trying to remove one colour from the the neighbourhood
of the new vertex v. We will show that when this greedy procedure cannot be applied any more,
N(v) is coloured using at most O(logΔ) colours.

We start by a few definitions. Let G be a graph, v a vertex of G, and c a colouring of G − v.
Given a colour i, the size of i in the colouring c is the number of neighbours of v coloured i:size of a colour

sizec(i) = |N(v) ∩ ci|. Let 〈u, j〉 be a local Kempe exchange, and let c′ = 〈u, j〉(c) and i = c(u).
Suppose that sizec(i) ≤ sizec(j). The Kempe exchange 〈u, j〉 is said to increase inequalities in
c if we have sizec′(i) < sizec(i) and sizec′(j) > size(j). Intuitively, a Kempe exchange increases
inequalities if it decreases the size of colours with smaller sizes, and increases the size of colour with
larger sizes. The greedy recolouring procedure that we apply is the following.

Procedure (GreedyRecolor). While there is a local Kempe exchange 〈u, i〉 that increases in-
equalities, apply 〈u, i〉 to the current colouring.

110

To prove the theorem, we only need to prove two things: (i) the procedure GreedyRecolor
ends in a polynomial in Δ number of rounds, and (ii) if c is a colouring such that there is no local
Kempe exchange increasing inequalities, then N(v) is coloured with at most O(logΔ) colours. The
first point is proved in the following Lemma 65. The second point will be proved in Lemma 67 in
the next subsection.

Lemma 65. The procedure GreedyRecolor ends after at most Δ2

2 rounds.

Proof. To show this result, we will exhibit a potential function Ψ such that:

• Ψ increases at every iteration of GreedyRecolor,

• Ψ is upper bounded.

Let k ≤ Δ+ 1 be the number of colours, and c be a k-colouring, we define the potential Ψ(c) by:

Ψ(c) =
∑
i∈[k]

(sizec(i))
2.

We will show that Ψ increases by at least 2 at each iteration of GreedyRecolor. Let 〈u, j〉
be a local Kempe exchange increasing inequalities in c, and let i = c(u) and c′ = 〈u, j〉(c). By
assumption on 〈u, j〉, we know that sizec(i) ≤ sizec(j). Moreover, there is an integer x such that:

• sizec′(i) = sizec(i)− x

• sizec′(j) = sizec(j) + x

Since 〈u, j〉 increases inequalities, we have x ≥ 1. Additionally, the following holds:

Ψ(c′)−Ψ(c) = (sizec′(i))
2 + (sizec′(j))

2 − (sizec(i))
2 − (sizec(j))

2

= (sizec(i)− x)2 + (sizec(j) + x)2 − (sizec(i))
2 − (sizec(j))

2

= 2x2 + 2x(sizec(j)− sizec(i)) ≥ 2

Moreover Ψ(c) is upper bounded by Δ2 for any colouring c. Indeed, since we know that for any
colouring c,

∑
i sizec(i) = Δ, Ψ(c) is maximum when sizec(i) is zero for all but one colour. The po-

tential Ψ is positive, upper bounded by Δ2, and increases by 2 at each iteration of GreedyRecolor.
Consequently, the procedure GreedyRecolor must end after at most Δ2

2 rounds.

6.3.3 Grundy colouring of circular graphs

To prove the correctness of the algorithm described in previous subsection, we only need to show
that if a colouring has no local Kempe exchange that increases inequalities then N(v) is coloured
using at most O(logΔ) colours. To prove this property, we will use a result on a particular drawing
of a graph which could be of independent interest. We will first describe this construction, and
prove that any colouring satisfying some properties related to this drawing uses a small number of
colours. This will then allow us to complete the proof of Theorem 64.

Let G be a graph, with G not necessarily planar. A drawing of G is a function f that associates
to each vertex v of the graph a point f(v) in the plane, and to each edge (u, v) of the graph a path
from f(u) to f(v). We call a circular drawing of G a drawing of G such that all the vertices are
represented by points on a circle, and the paths representing the edges are straight line segments.
We are interested in colourings which satisfy the following property.

111

Definition 5. Let G = (V,E) be a graph, with a drawing of G. A proper colouring c of G is
intersection compatible if for any two crossing edges (u1, v1) and (u2, v2), the two sets {c(u1), c(v1)}
and {c(u2), c(v2)} intersect.

3

3
1

1

3

2
3

2

Figure 6.2: Example of circular drawing of a graph with an intersection compatible colouring.

An example of a circular drawing of a graph with an intersection compatible colouring is given
in Figure 6.2. Note that not all graphs G have a drawing which admits an intersection compatible
colouring. Determining which graphs have one could be an interesting question on its own. For
example, there is no intersection compatible colouring of K5, the clique on 5 vertices, for any of
its drawing on a plane. Indeed, since K5 is not planar, there is at least two edges crossing in any
drawing of K5 on the plane. The endpoints of these two edges have all different colours. On the
contrary, for any 3-colourable graph, there is a drawing on the plane which has an intersection
compatible colouring. In fact any 3-colouring of a 3-colourable graph is intersection compatible for
any drawing of the graph, since in this case any two edges share at least one colour.

The idea behind this notion, is that, given an initial planar graph G with a colouring c, we can
build an auxiliary graph G′ whose edges represents Kempe chains. More precisely, if two vertices
with different colours are adjacent in G′, then there exists a Kempe chain containing both vertices.
By a considering a drawing of G′ such that if two edges of G′ intersect, then the corresponding
Kempe chain also intersect, then c is a colouring of G′ which must be intersection compatible since
the initial graph G is planar.

The upper bound on the number of colours in N(v) after applying the procedure GreedyRe-
color will be obtained in two step. First, we show that when the procedure ends, the colouring of
N(v) satisfies some property. Then, we show that a colouring of G′ which satisfy this property and
is intersection compatible cannot have too many colours. We start by proving this second point.

Given a graph G with a colouring c, the coloured graph (G, c) will be called circular if there is acircular graph

circular drawing of G that makes the colouring c intersection compatible. A k-colouring c of a graph
is a Grundy k-colouring if for every vertex u, and for every colour j < c(u), there is a neighbourGrundy

k-colouring w ∈ N(u) such that c(w) = j, and at least one vertex is coloured k. In other words, every vertex
is assigned the smallest colour that is not present in its neighbourhood. The Grundy chromatic
number of a graph G is the largest number of colours k such that G has a Grundy k-colouring.
To put it differently, a colouring is a Grundy colouring if it can be obtained from the algorithm
First-Fit, with a certain ordering of the vertices. The Grundy chromatic number is the largest
number of colours that the algorithm First-Fit might need for the worst case ordering. We will
prove the following result.

Lemma 66. There is a constant K0, such that for any circular (intersection compatible) coloured
graph (G, c) with n vertices, if c is a Grundy k-colouring of G, then k ≤ K0 log n.

112

v0
v1

v2

v3

G1

G2

Figure 6.3: Any edge crossing the edge (v0, v2) must have either c(v0) or c(v2) as the colour of
one of its endpoints. Since G′ contains no vertex with colour c(v0) or c(v2), G

′ is split into two
connected components, one on each side of the edge (v0, v2).

Note that the lemma does not prove that the Grundy chromatic number of a circular graph
is at most O(log n). Indeed, a circular graph could have a Grundy colouring using more colours.
However, the lemma states that in this case, this colouring is not intersection compatible.

Proof. We denote by T (k) the smallest number of vertices of a circular graph G having an inter-
section compatible Grundy k-colouring c. To prove the lemma, it is enough to show that there is
a constant α > 1 such that T (k) ≥ αk−1 for any k ≥ 1. We take α = 2

1
4 , and show this inequality

by induction on k. If k ≤ 4, we know that T (k) ≥ k ≥ αk−1.

Let us assume that k > 4, and let (G, c) be a coloured circular graph with T (k) vertices such
that c is a Grundy k-colouring. Let u0 be a vertex coloured k. Since c is a Grundy colouring, there
are three vertices u1, u2, and u3 adjacent to u0 such that for each i ∈ {1, 2, 3}, ui is coloured k− i.
Let v0 = u0, v1, v2, v3 be the vertices {u0, u1, u2, u3} in the order they appear on the circle in the
corresponding circular drawing of G. We denote by G′ the subgraph induced by the vertices with
a colour at most k− 4. We will show that G′ is composed of at least 2 connected components, each
of which contains all the colours from 1 to k − 4. By applying the induction hypothesis on each of
these components, this gives as needed:

T (k) = |G| ≥ |G′| ≥ 2 · T (k − 4) ≥ 2 · αk−5 = αk−1.

Thus, we only need to show that G′ contains at least two connected components, each of which
contains all the colours from 1 to k − 4. Since c is a Grundy colouring and c(v1) > k − 4, there
is a vertex w1 adjacent to v1 with c(w1) = k − 4. Similarly, there is a vertex w2 adjacent to v3
with colour c(w2) = k − 4. See Figure 6.3 for an illustration. Let G1 and G2 be the connected
components of G′ containing w1 and w2 respectively. Then G1 �= G2. Indeed, if w1 and w2 were
in the same connected component of G′, then there would be a path from w1 to w2 using only
colours less than or equal to k− 4. By adding the two edges (v1, w1) and (v3, w2), we would obtain
a path from u1 to u3 which does not use the colours k = c(v0) and c(v2). However, this path
must necessarily cross the edge (v0, v2), a contradiction of the assumption that the colouring c is
intersection compatible.

Consequently we have T (k) ≥ αk−1 which can be rewritten as k ≤ 1 + log(T (k))
log(α) ≤ K0 log(n)

with K0 = 1 + 1
log(α) .

We can now see how to use the previous result to complete the proof of the algorithm on planar
graphs. The following lemma is the only remaining missing part to prove Theorem 64.

113

Lemma 67. Let G be a planar graph, v a vertex of G, and c a colouring of G− v. If there is no
local Kempe exchange that increases inequalities, N(v) is coloured using at most K0 logΔ colours
for some constant K0.

Proof. Consider a graph G′ whose vertex set is N(v), the neighbours of v. For every pair of vertices
u1, u2 ∈ N(v) such that c(u1) �= c(u2), we add the edge (u1, u2) in G′ if there is a bi-coloured path
from u1 to u2 in G. We consider a circular drawing of G′ where the vertices appear on the circle in
the order they appear around the vertex v in a planar drawing of G.

The colouring c of G induces a colouring c′ of G′ such that:

• The colouring c′ is proper. Indeed, we only added edges in G′ between vertices with different
colours.

• The colouring c′ is intersection compatible. Let (u1, u3) and (u2, u4) be two crossing edges
in G′. Then, the vertices ui appear with the order u1, u2, u3, u4 around the vertex v in the
planar drawing of G. Additionally, there is a bi-coloured (c(u1), c(u3))-path p1 in G from u1
to u3, and a bi-coloured (c(u2), c(u4))-path p2 from u2 to u4. Since G is planar, p1 and p2
must cross at some vertex w. This implies that c(w) ∈ {c(u1), c(u3)} ∩ {c(u2), c(u4)}, and
consequently, this intersection is not empty.

• Finally, assume that the colours are ordered 1, . . . , k such that sizec(1) ≥ sizec(2) ≥ . . . ≥
sizec(k). Then c is a Grundy colouring of G′ for this ordering of the colours. To prove this,
assume by contradiction that there is a vertex u and a colour i < c′(u) such that u has no
neighbour coloured i. We consider the local Kempe exchange 〈u, i〉 in the graph G. This
Kempe exchange does not change the colour of any neighbour of v coloured i. Additionally,
since i < c(u), this implies size(i) ≥ size(u). Performing the Kempe exchange 〈u, i〉 would
increase the size of i, and decrease the size of c(u). Thus 〈u, i〉 increases inequalities, a
contradiction of the assumption that c did not contain any local Kempe exchange increasing
inequalities.

By applying Lemma 66 on the graph G′ with the colouring c′, we obtain that there is a constant
K0 such that c′ uses at most K0 logΔ different colours. Consequently, the colouring c uses at most
K0 logΔ colours on N(v).

We now have all the ingredients to prove the theorem.

Proof of Theorem 64. Let K0 be the constant in Lemma 67. The algorithm uses K0 logΔ + 1
colours. For each new vertex v, the procedure GreedyRecolor is applied on N(v). By Lemma 65,

the procedure performs at most Δ2

2 of Kempe exchanges. After the procedure has ended, we obtain
a colouring c′ such that there is no local Kempe exchange increasing inequalities. By Lemma 67,
this implies that c′ colours N(v) using at most K0 logΔ colours. The vertex v can then be coloured
using one additional colour and consequently the algorithm colours any planar graph with at most
K0 logΔ + 1 colours.

6.4 Graphs of bounded genus

The algorithm described in previous section can be adapted to the more general case of graphs with
bounded genus, by only paying a small (depending on the genus) number of additional colours. We

114

will assume that the reader is familiar with basic notions of topology and surfaces with boundaries.
An introduction to these notions can be found for example in chapter 4 from [Ada04]. We start by
defining some notation.

Given a triangulation T of a surface S, we denote by V (T), E(T) and F (T) the set of vertices,
edges and faces respectively of the triangulation T . Let S be a surface with a triangulation T . The
Euler characteristic of S is the quantity |V (T)| − |E(T)|+ |F (T)|. This quantity is an invariant of
the surface S that is preserved by homeomorphism, and is independent of the chosen triangulation.
The Euler characteristic can be negative, and is at most 2 for a connected closed surface, and at
most 1 for a connected surface with boundary. For a closed orientable surface S, the genus g of S
is related to its Euler characteristic h by the formula h = 2− 2g.

A drawing of a graph G on a surface S is a mapping f that associates to every vertex v of G,
a point f(v) on S, and to every edge (u, v) of G, a path on S from f(u) to f(v). An embedding
of a graph G on S is a drawing f of G on the surface S such that for any two edges e1 and e2,
the paths f(e1) and f(e2) do not intersect. In the following, the Euler characteristic (resp. genus)
of a graph G will denote the largest number h (resp. smallest number g) such that there exists
an embedding of G on a connected surface S with Euler characteristic h (resp. genus g). Planar
graphs have Euler characteristic 2 and genus 0. The goal of this section is to show the following
theorem:

Theorem 68. There is an online algorithm with Kempe exchanges colouring any graph with Euler
characteristic h using 5− 2h+O(logΔ) colours.

The algorithm is exactly the same as for the planar case. To remove one colour from the
neighbourhood of a vertex v, we just apply the procedure GreedyRecolor. We already know
from Lemma 65 that the procedure ends after at most Δ2

2 steps. Thus, to prove the correctness
of the algorithm, we only need to show that, when there is no more Kempe exchanges increasing
inequalities, the neighbourhood of the v is coloured using at most 4− 2h+O(logΔ) colours.

To prove this result, we generalize the definition of circular graph from previous section to
handle graphs drawn on surfaces with higher genus. Let S be a surface with boundary, and G be
a graph. A boundary drawing of G on S is a drawing f of G on the surface S such that for every
vertex v, f(v) is on the boundary of S. In a boundary drawing, paths corresponding to different
edges are allowed to intersect. In particular, if S is a disk, a boundary drawing of a graph G on S
is a circular drawing of G.

The definition of intersection compatible colouring extends to boundary drawings in a natural
way. If G is a graph with a boundary drawing f on a surface S, a colouring c of G is intersection
compatible if for every pair of edges e = (u, v) and e′ = (u′, v′), if the paths f(e) and f(e′) intersect,
then the two edges have at least one colour in common, i.e., {c(u), c(v)} ∩ {c(u′), c(v′)} �= ∅. We
will need the following simple result describing how the Euler characteristic of a surface changes
when we cut this surface along a path.

Lemma 69. Let S be a surface with a boundary, and p be a simple path on S between two boundary
points. Cutting the surface S along the path p yields a surface with Euler characteristic increased
by 1.

Proof. Let S be a surface with boundary, and h the Euler characteristic of S. Let p be a path
between two boundary points of S, and S′ be the surface obtained by cutting S along the path p.
Let T be a triangulation of S. Without loss of generality, we can assume that the path p is along

115

Figure 6.4: Cutting a surface (here a torus with a boundary) along a path. The bold grey line is
the boundary of the surface.

the edges of the triangulation T . Consider the triangulation T ′ where each edge and each vertex of
the path p were duplicated as in Figure 6.4. Let n be the number of vertices in the path p. Then,
T ′ is a triangulation for S′, and the Euler characteristic of S′ is:

|V (T ′)| − |E(T ′)|+ |F (T ′)| = (|V (T)|+ n)− (|E(T)|+ n− 1) + |F (T)| = h+ 1

Note that in some cases, cutting a surface along a path can disconnect the surface, or increase
the number of boundary components as in Figure 6.4. To prove the theorem, the key ingredient is
to prove an extension of Lemma 66 for graphs with a boundary drawing on an arbitrary surface.
This is done in the following lemma.

Lemma 70. There exists a constant K0 such that, if G is a graph with n vertices with a boundary
drawing on a surface S with Euler characteristic h, and c is a Grundy k-colouring of G which is
also intersection compatible, then k ≤ K0 log n+ 2(1− h).

Proof. We show the result by induction on h, the Euler characteristic of the surface S. If h = 1,
then the surface S is a disk, and the result follows from Lemma 66. Suppose that h < 1, and let
G be a graph with a boundary drawing f on a surface S with Euler characteristic h. Let c be a
Grundy colouring of G that is intersection compatible for this drawing. We distinguish two cases:

Case 1. There is an edge e of G such that cutting the surface S along the path f(e) leaves the
surface connected. Let a and b be the two colours of the endpoints of this edge. We consider S′, the
surface obtained by cutting S along f(e), and G′ the graph induced by the vertices with a colour
different from a or b. Then, the boundary drawing of G on S induces a boundary drawing of G′

on S′. Indeed, if (u, v) is an edge of G′, then the path corresponding to (u, v) cannot cross f(e)
since otherwise one of the endpoints u or v would be coloured either a or b since the colouring is
intersection compatible.

Moreover, by Lemma 69, the surface S′ has Euler characteristic h + 1. Using the induction
hypothesis on G′, with the colouring induced by c on G′, we know that c colours G′ with at most
K0 log n + 2(1 − (h + 1)) colours. Since the vertices we removed were the ones coloured a or b,
this implies that the colouring c of G uses at most K0 log n + 2(1 − h) colours, which proves the
induction step.

Case 2. For any edge e, cutting S along the path f(e) disconnects the surface. In this case, we
claim that the graph G has a boundary drawing on a disk such that c is intersection compatible for
this drawing. To prove this, we first remark that we can assume that there is only one boundary

116

component on the surface S. Indeed, suppose that this is not the case. Consider the boundary
that contains a vertex v with colour k, the largest colour used by c. Let G′ be the graph induced
by all the vertices on this boundary. Then all the colours are present in G′. Indeed, G′ contains
the vertex v with colour k. Since c is a Grundy colouring, there are vertices v1, . . . , vk−1 adjacent
to v, with colours 1, . . . , k − 1 respectively. For all i, the vertex vi is on the same boundary as v
since otherwise cutting along the path corresponding to the edge (v, vi) would leave the surface
connected. Let c′ be the colouring induced by c on G′. If the result holds for G′ with colouring c′, it
also holds for G with colouring c since c and c′ use the same number of colours. So we now assume
that S has one unique boundary.

Let u1, . . . , un be the vertices of G in the order they appear on the boundary of S, and consider
the circular drawing of G using the same ordering u1, . . . , un around the circle. To prove the result,
we only need to show that c is also intersection compatible for this new drawing. Indeed, if this is
the case, then the result immediately follows from Lemma 66. Let e1 and e2 be two edges of G that
intersect in the circular drawing of G. Without loss of generality, we can assume that e1 = (u1, ui),
and e2 = (uj , ul), with 1 < j < i, and i < l ≤ n. Let p1 and p2 be the paths on S corresponding to
these two edges. Assume by contradiction that in the drawing of G on S, the two paths p1 and p2
do not intersect, we will show that cutting along p1 does not disconnect the surface S. For this, it
is enough to show that there is a path not intersecting p1 going from one side of p1 to the other
side. We will construct a path from ui−1 to ui+1 that does not intersect p1. The path is as follows.
Go from ui−1 to uj by following the border of S, then follow the path p2 from uj to ul, and finally
go from ul to ui+1 by following again the border of S. This path does not intersect p1. Hence
cutting along p1 leaves the surface S connected, a contradiction.

Thus, we know that for every pair of edges e1 and e2, if the segments corresponding to e1
and e2 in the circular drawing of G intersect, then the paths corresponding to these two edges on
the drawing of G on S also intersect. Consequently, c is intersection compatible for this circular
drawing of G, and the result follows from Lemma 66.

We now have everything we need to prove the theorem.

(proof of Theorem 68). The proof follows the same argument as the proof of Theorem 64. Let G
be a graph with Euler characteristic h, v a vertex of G, and c a colouring of G − v. We want to
show that after applying procedure GreedyRecolor, the neighbourhood of v is coloured using at
most K0 logΔ + 2(2 − h) colours. Let S be a closed surface with Euler characteristic h such that
there is an embedding of G on S. Let G′ be the graph whose vertices are the neighbours of v, and
such that there is an edge between u1 and u2 if and only if c(u1) �= c(u2) and there is a bi-coloured
path from u1 to u2. Without loss of generality, we can assume that the colours are ordered by
decreasing size: sizec(1) ≥ sizec(2) ≥ Then, as before, c is a Grundy colouring of G′. Indeed, if
there is a vertex v and a colour i < c(v) such that v has no neighbour coloured i, then the Kempe
exchange 〈v, i〉 increases inequality.

Moreover, if S′ is the surface S where a small disk around vertex v was removed, then from the
embedding of G on S, we can construct a boundary drawing of G′ on S′. The colouring c induces
an intersection compatible drawing of G′ for this drawing. Since the Euler characteristic of S′ is
h− 1, by Lemma 70, at most K0 logΔ + 2(2− h) are used by c on G′. Consequently, at least one
colour is not present in the neighbourhood of v.

117

6.5 Bad graphs for online algorithms with Kempe exchanges

The goal of this section is to exhibit concrete example of graphs with small chromatic number that
need a large number of colours to be coloured by an online algorithm using Kempe exchanges.
Unfortunately, this example does not work for general algorithms with Kempe exchanges, but only
to more special cases with the following restrictions on the algorithm:

• The algorithm is specified as input the number k of colours it is allowed to use to colour the
graph.

• If one of the k colours is available, the algorithm must select it, without performing any
Kempe exchange.

• The algorithm always chooses the smallest colour available.

These assumptions might seem a bit restrictive, but all the algorithms we described above
satisfy these constraints. Getting a counter example that would work in the general case is more
complicated as it is difficult to quantify how much the graph can be recoloured by Kempe exchanges
performed by the algorithm. We show the following theorem:

Theorem 71. There is a sequence of graph (Gk)k≥0 such that for all k ≥ 4, Gk is 3 colourable,
and no online algorithm with Kempe exchanges with the restrictions above can colour Gk with k
colours or less.

Note that the graphs built in the proof of the theorem are similar in flavour to the Fibonacci
trees used to lower bound the performance of greedy colouring algorithms.

Proof. Let A be an online algorithm with Kempe exchanges with the restrictions above. First
observe that as long as one colour is available, the algorithm A behaves exactly as First-Fit: it
assigns the smallest colour available without changing the colour of previously coloured vertices.
We denote by Tk the fibonacci tree with the following definition. The tree T1 is a single vertex,
and for k > 0, Tk is composed of a root vertex u, to which we attach the trees T1, . . . , Tk−1.

It was proved in [Bea76], that if the vertices of Tk are presented starting from the leaves, and
going up to the root, then First-Fit needs k colours to colour Tk, and the root of Tk is coloured
with colour k. We build the graph Hk in the following way:

• for each 1 ≤ i ≤ k, we add a copy of Ti, with vertex ui as the root,

• for each i < j, and each i′ �= i and j′ �= j with i′ �= j′, we add one copy of Ti′ and one copy
of Tj′ with roots w1

i,j,i′,j′ and w2
i,j,i′,j′ respectively,

• we add all the following edges: (ui, w
1
i,j,i′,j′), (uj , w

2
i,j,i′,j′), and (w1

i,j,i′,j′ , w
2
i,j,i′,j′),

• finally, a vertex u is added, with u adjacent to all the ui.

The graph Hk is presented starting from the leaves of all the copies of Ti, and going up to
the roots. The vertex u is presented last. Since Hk is 2-degenerate, it is 3 colourable. We prove
that the algorithm A can’t colour Hk if it is given exactly k colours. Indeed, since the algorithm
always colour immediately a vertex if one colour is available, it will be able to colour all the vertices
except for u, by applying the rules of First-Fit. When it tries to colour u, all the colours are

118

already present in the neighbourhood of u, so the algorithm might try to remove one colour using
local Kempe exchanges. However, we will show that at this point, no local Kempe exchange can
remove one colour from the neighbourhood of u. More precisely, we will show that any local Kempe
exchange will preserve the following invariants:

1. The vertices ui all have different colours.

2. For every indices i and j, with i �= j, and every pair of colours a �= b with a �= c(ui), and
b �= c(uj), there is a path on four vertices (ui, w

1, w2, uj) such that c(w1) = a and c(w2) = b.

By construction, these invariants are satisfied before any Kempe exchange is made. Suppose
now that there is a colouring c that satisfies these invariants. Consider the Kempe exchange 〈ui, x〉,
and let j �= i such that x = c(uj). We will show that the colouring c′ = 〈ui, x〉(c) still satisfy the
two invariants above.

Using the fact that c satisfies the second invariant, we know that there is a Kempe path from
ui to uj . Consequently, applying the Kempe exchange 〈ui, x〉, swaps the colours of the vertices ui
and uj . Consequently, c′ still satisfies the invariant 1. We only need to show that c′ also satisfies
the second invariant. Consider two indices i′ and j′, and two colours a �= c′(i′) and b �= c′(j′). We
consider the following three cases:

• If i′ �= i and j′ �= j, then c′(ui′) = c(ui′) and c′(uj′) = c(uj′). Since c satisfies the second
property, there are two vertices w1 and w2 such that c(w1) = a and c(w2) = b such that
(ui′ , w

1, w2, uj′) is a path on four vertices. Since the colours of w1 and w2 also do not change
during the Kempe exchange, we also have c′(w1) = a and c′(w2) = b.

• If i′ = i and j′ �= j, then c′(ui) = c(uj), and c′(uj′) = c(uj′). If a �= c(uj), then in the
colouring c there was a path on four vertices with successive colours (c(ui), a, b, c(uj′)). This
path now has colours (c(uj), a, b, c(uj′)). If a = c(ui) and b �= c(uj), then with the colouring
c there was a path from ui to uj′ with colours (c(ui), c(uj), b, c(uj′)). This path is now
coloured (c(uj), a = c(ui), b, c(uj′)). Finally, if a = c(ui) and b = c(uj), the path with colours
(c(ui), c(uj), c(ui), c(uj′)) now has the necessary colours.

The argument is symmetrical if i′ �= i and j = j′.

• If i′ = i and j′ = j, the same argument as above can be used to prove that there is still a path
between ui and uj with colours (c′(ui), a, b, c′(uj)). The idea is that colours different than
c(ui) and c(uj) are unchanged, and vertices coloured c(ui) or c(uj) gets their colour swapped.

Consequently, the invariant is preserved when we perform any local Kempe exchange. Con-
sequently, the algorithm A won’t be able to colour Hk if it is given exactly k colours. However,
the argument relies on the fact that the algorithm does not perform Kempe exchanges before con-
sidering the vertex u. Consequently, the algorithm might still manage to colour Hk if it is given
less than k colours. This issue can be solved by considering Gk =

⋃
i≤k Hi. For any k′ ≤ k, the

algorithm A will fail to colour H ′
k, and consequently Gk, and the theorem holds.

6.6 Conclusion

We studied a variation of online algorithms where the algorithm is allowed to recolour some of the
previously coloured vertices and constructed algorithms for several classes of graphs. In the case
of planar graphs, it remains open whether the O(logΔ) bound can be improved or not.

119

Open Problem 14. Is there an online algorithm with Kempe exchanges which colours any planar
graph with a constant number of colours?

Our algorithm on planar graph relies on the notion of intersection compatible colourings, which
is an interesting combination of graph drawing with colouring constraints. It could be worth
investigating this notion on its own. For example, one could try to characterize the graphs which
have a drawing on a given surface S with an intersection compatible colouring. An other approach
could be to find the smallest genus of S such that G admits an intersection compatible colouring
for some drawing on S. The particular case where S is a disk is also interesting. Indeed, in this
case we know that any 3-colouring is intersection compatible for any boundary drawing of G on
S. However, we were not able to find examples of graphs with larger chromatic numbers. This
prompts the following question:

Open Problem 15. Is there a graph G with χ(G) = 4 such that G admits a boundary drawing
on a disk with an intersection compatible colouring?

Finally, this work has also some similarities with the reconfiguration problems we studied in
Part I. More precisely, the work we did here consisted in studying a recolouring problem with some
locality constraints on the permitted transformations. It could be interesting to consider standard
reconfiguration questions with the addition of these constraints. An example of such problem could
be deciding if a given colouring can be transformed into an other using only local Kempe exchanges,
or given two vertices u and v, deciding if there is a sequence of Kempe exchanges local to u changing
the colour of v.

120

Part III

Adding a Second Player

121

Chapter 7

Combinatorial Game Theory

This chapter serves as a light introduction to Combinatorial Game Theory (CGT), a field dedicated
to the study two players perfect information games. In this chapter, we give basic definitions of
CGT terminology, and illustrate these definitions with examples. The notions defined here will be
used in the last two chapters.

In the previous chapter, we considered online algorithms for graph colouring. Online algorithms
are strongly related to two player games. For example, finding the smallest number of colours for
which an online colouring algorithm exists can be seen as a game between two players: one of the
players decides which vertex will be coloured next, while the other (the algorithm) decides how to
colour the vertex selected by his opponent. The first player tries to force the algorithm to use many
different colours. In the case of an online algorithm, the algorithm has no knowledge of the whole
graph, but can only see the vertices selected up to now. On the contrary, in this part we consider
games with perfect information: the two players know all the information related to the game, and
there is no random event. Additionally, the players play alternately.

The games we consider in this part are a subclass of perfect information games called combi-
natorial games. In these games, the winner is determined by the player who makes the last move.
In particular, these games are often studied with the convention that the player making the last
move wins. With these conditions, for any game at least one of the two players has a winning
strategy, i.e., a way of playing which ensures that this player wins no matter what his opponent
plays. Indeed, saying that one player has no winning strategy means that no matter what strategy
this player chooses, his opponent has a way to counter it and win. In other words, his opponent
has a winning strategy. Although a winning strategy always exists for one of the players, deciding
which of the players has a winning strategy can be difficult. Additionally, even if the winner is
known, describing the winning strategy might not be easy. For example, there are games (such as
Chomp [Gal74] or Hex [Maa05]) for which the player with the winning strategy is known, but the
first move of this winning strategy is still open.

Apart from the interest in understanding traditional games such as Chess or Go, combinatorial
games have been considered partly because of surprising connections with other areas of mathemat-
ics such as algebras [Con00], automatons [Niv05, Lar13, CLN17] and dynamical systems [MFL11].
Interested readers can refer to the following books [Sie13, ANW07, BCG04] for a more complete
introduction and presentation of combinatorial game theory.

Combinatorial games are strongly related to reconfiguration problems which were studied in

122

Part I. Many one-player games, also known as combinatorial puzzles, are in fact reconfiguration
problems, and there are similarities between reconfiguration problems and two player games. As in
reconfiguration problems, any combinatorial game defines an underlying graph, the game graph1, game graph

which is the equivalent of the reconfiguration graph. The game graphs represents all the possible
positions of the game, together with the valid moves the players can make between them. In both
reconfiguration and games, we are dealing with a graph which is too large to be computed entirely,
but for which we try to find some properties. In the case of reconfiguration, the focus is made
on problems related to the connectivity of the reconfiguration graph, and finding transformation
sequences between solutions. For games, we are concerned with the existence of winning strategies,
which correspond in terms of graphs to the notion of kernel (see [Fra97]). In both cases, we have
to rely on structural properties of this graph in order to solve the problems.

Note that combinatorial games and reconfiguration problems also share similarities in terms
of complexity. For combinatorial games, the problem of deciding which of the two players has a
winning strategy is often PSPACE-hard. Hence, both reconfiguration problems and combinatorial
games are a natural source of computationally hard problems. Although there are many interesting
questions related to the complexity and algorithmic aspects of combinatorial games, we will focus
more on algebraic and structural properties of combinatorial games.

The rest of the section is organized as follows. In Section 7.1, we give a basic definitions
of combinatorial games, and illustrate these with examples. In Section 7.2 we introduce basic
terminology related to game values and disjunctive sums. In Section 7.3, we consider a particular
class of games, called subtraction games, and give an short overview of known results and problems
related to these games. Finally, Section 7.4 presents some existing results on composition of games,
a notion which is related to the construction we study in the next chapter.

7.1 Introduction

The definition of combinatorial games is not completely fixed, and the exact limit of which games
are combinatorial games, and which are not is blurry. We adopt here a very conservative approach
for our definitions [Sie13, ANW07, BCG04], but it should be noted that in the literature they are
sometimes extended to cover games with different winning conditions or outcomes such as games
with draws or scoring games, games with more than two players, or games with an infinite number
of positions.

In the following, a combinatorial game is a two player games with no randomness, no hidden combinatorial
gameinformation, where the two players play alternately. The winner is determined depending on which

of the players makes the last move. The two players will be denoted by Left and Right. A game is
described by a ruleset , and a position. The ruleset gives the permitted moves, while the position ruleset

game positiondescribes the current state of the game. More formally, we will denote by Ω the set of all the
possible positions of a game. A ruleset R0 on Ω gives for each player p and for each position g in
Ω the set of possible positions which can result from this player making a move on position g. In
the following, we will denote by (g)R0 the game with ruleset R0 and starting at position g ∈ Ω,
and use upper case letters G,H, . . . to denote games, and lower case g, h . . . to denote positions.
We use R0,R1, . . . to denote rulesets, and specific instances of rulesets will be written using small
capitals. The Left-options (resp. Right-options) of a game (g)R0 are all the games of the form Left-options

Right-options
1Note that the game graph is a directed graph.

123

Figure 7.1: Example of a domineering board with already placed dominoes. The dashed transparent
domino is an example of a valid move for Right.

Figure 7.2: Representation of a game of Domineering as a tree. Red edges corresponds to moves
made by Right. Blue edges are moves made by Left.

(g′)R0 , where g′ can be reached from g after one move of Left (resp. Right). Before continuing
with the definitions, we start by giving an example.

The game Domineering is played on a rectangular board. Left places vertical 1× 2 dominoes
on the board, while Right places horizontal 2 × 1 dominoes. The dominoes cannot overlap. The
first player with no move available loses. Note that the board may have any shape. An example
of a position is given in Figure 7.1. On this example, the move shown in dashed is a winning move
for Right. Indeed, after making this move, Left can play only one more domino, while Right has
secured three additional moves. If Left was playing the next move instead of Right, then the reader
can check that playing in the top right corner would have been a winning move to Left.

It is often convenient to represent a game as a tree as in Figure 7.2. The root of the tree
corresponds to the current position of the game, and its children are its Left- and Right-options.
Any path down the tree corresponds to a sequence of moves by the players. The leaves corresponds
to positions for which there is no move available for any of the two players. The edges are coloured
blue and red in Figure 7.2 to distinguish the moves made by Left (in blue) and those made by
Right(in red). In all the rest of this part, we will only consider games which have finite game trees
(i.e., the game ends after a finite constant number of moves, and there is always a finite number of
options). Note that the same position can appear several times in this tree if there are more than
one sequence of moves resulting in this position. Also note that in the tree, sequences of moves
where the same player plays twice in a row can appear (such as the left-most branch of Figure 7.2).

124

If this might seem strange at first glance to include these moves, the reason for this will become
clear in Section 7.2 when considering combinations of games.

A play of a game is a sequence of alternating moves from both players until one player has no play of a game

available moves left. The winner of a game is given by looking at which player made the last move.
Note that the information of which player has to play next is not encoded in the position. Hence,
there are two possible ways to play a game: Left make the first move, or Right is the first player.

There are two main conventions which were studied in the literature: normal-play , where the normal-play

player making the last move wins, and misère-play where the player making the last move loses. misère-play

Although it would seem at first that there is not much difference between the two conventions, it
turns out that the theory for misère play is much more complicated than normal play. Understand-
ing difficulties which arise from misère play is a topic of ongoing research (see [MO07] for example).
Unless specified otherwise, we will always consider games under the normal-play convention. Note
however that the definitions below can be made similarly for the misère-play convention.

In the rest of the part, we will assume that the two players play optimally. Hence, we will say
that one of the player wins if he has a winning strategy for the game. Conversely, this player loses
if his opponent has a winning strategy. The outcome of a game G, denoted o(G) is the result of outcome

the game if the two players play optimally. There are four possible types of outcomes:

• the outcome is L if Left wins regardless of who the first player is,

• the outcome is R if Right wins regardless of who the first player is,

• the outcome is N (for N ext player wins) if the starting player always wins,

• the outcome is P (for Previous player wins) if the starting player never wins (i.e., the second
to play always wins).

Note that the outcome can be easily computed from the game tree. Indeed, given a game G,
Right wins playing first on G if and only if there exists one Right-option of G such that Right wins
playing second on it. Similarly, Right wins playing second on G if and only if Right wins playing
first on every Left-option of G. Once we have determined who wins when either Right or Left plays
first, the outcome can be computed according to Table 7.3. Hence, the outcome of a game can be
computed from the outcome of its options. For example, the position of Domineering at the root
of the tree in Figure 7.2 has outcome N since both players have a winning strategy if they start.
Given a ruleset R0 on Ω, we will say that a position g ∈ Ω is a P-position if (g)R0 has outcome P. P-position

We use the same notation for the other outcomes.

Characterizing the outcome of the positions of a given game, or finding an efficient algorithm
computing this outcome, is the major problem considered in combinatorial game theory. As we
just saw, this outcome can be computed in time linear in the size of the game tree. However, the
game tree is usually too large to make this computation efficient, and we must rely on properties
of the specific games we consider in order to answer this question.

7.1.1 Impartial games

We will say that a ruleset is impartial if both player always have the same available moves on any impartial game

position. If a ruleset is not impartial, we will say that it is partizan. For example, Domineering partizan game

is partizan since the two players place different types of dominoes. On the contrary, if we consider

125

����������

Left
plays first

Right plays
first Right wins Right loses

Left wins N L

Left loses R P

Table 7.3: Table showing the four different possible outcomes depending on which player wins if
they play first or second.

the version of Domineering where both player can place both types of dominoes, then this ruleset
(called Cram) is impartial. Note that impartial and partizan are properties of the ruleset, and not
of the game, so the starting position of a game has no influence on this property. Since the two
players play symmetric roles in impartial rulesets, not all outcomes are possible. Indeed, if Right
wins playing first on G, then Left also wins playing first on G, and similarly if Right plays second.
Hence, from Table 7.3 we can see that only the outcomes N and P can occur for these games. If
a ruleset R0 is impartial, we can view it as a function Ω → 2Ω, which describes which moves are
possible from any given position. In particular, for g ∈ Ω we can write R0(g) the positions which
can be reached from g. Since both players have symmetric roles, given a game G = (g)R0 , its
options denotes the games which can be reached from G after making one move. In other words,
it corresponds to the set {(g′)R0 , g′ ∈ R0(g)}.

Additionally, when considering the game tree for an impartial ruleset, we no longer need colours
to distinguish moves available for Left or Right since the two players always have the same available
moves. We will denote by G the set of all possible impartial games (in other words, the set of all
rooted trees). Note that sometimes, it is convenient to also represent an impartial game by a
(directed) graph. This graph is obtained from the game tree by identifying (i.e., merging together)
the vertices of the game tree which corresponds to the same position. Note that the graph obtained
in this way is directed and contains no oriented cycles.

Sometimes, instead of trying to give the outcome of particular games, it is easier to describe
the set of all the positions with outcome P. This set is called the set of P-positions. The followingset of P-

positions lemma is a standard result which gives sufficient conditions for a subset P ⊂ Ω of position to be
the set of P-positions of R0. The first condition states that there is no move from a position in P
to another position in P . The second condition asserts that for every position not in P , there is a
move to a position in P . This result will be used to characterize the P-positions of several games.

Lemma 72. Let R0 be a ruleset over a set of positions Ω, and let P ⊂ Ω. P is the subset of
P-positions if and only if:

• there are no two positions s, s′ ∈ P , with s′ ∈ R0(s),

• for every position s ∈ Ω \ P , we have R0(s) ∩ P �= ∅

Proof. Let P be a set satisfying the two conditions above, and let p be a position in Ω. We will
show by induction on the size of the game tree of (p)R0 that oR0(p) = P if and only if p ∈ P . If
(p)R0 has no option, then oR0(p) = P, and p ∈ P by the second property of P .

126

1 2 3

0 2 3 1 1 3 1 0 3 1 2 2 1 2 1 1 2 0

Figure 7.4: Example of a Nim position with its available options.

Assume now that there is at least one option on p, and the induction hypothesis holds for all
the options of p. If p ∈ P , then for all p′ ∈ R0(p), we have p′ �∈ P by the first condition, and
consequently, oR0(p

′) = N using the induction hypothesis. This implies that p is a P-position. If
p �∈ P , then by the second condition there is a move from p to p′, with p′ ∈ P . Using the induction
hypothesis, we have oR0(p

′) = P, and consequently p is a N -position.

This concludes the induction step and proves the result.

7.1.2 Examples of games

In this section, we give several examples of games which are well known in the CGT commu-
nity. We already mentioned Domineering which is played on a board, with Left placing ver- Domineering

tical dominoes, and Right horizontal ones. Domineering was introduced by Göran Anderson
around 1973 [BCG82, p.119]. An important interest has been focused on solving the game on small
boards, as well as finding positions with interesting properties [Ber88, BUH00, Bul02, Uit16]. The
game has also been studied on special boards called ‘snakes’, in relation to some periodic behaviour
of the game [Wol93]. In [LMR02], polynomial time algorithms for computing a winning strategy
was found for rectangular boards of size k × n, with k ≤ 11.

The impartial version of Domineering, where both player can place the two types of dominoes,
is called Cram. The outcome of Cram on 1×n strips is known. On this particular type of board, Cram

the game is equivalent to an octal game denoted 0.07, and is also called Dawson’s Kayles. The
sequence of outcomes of Cram on strips of size 1 × n for n = 1, 2, 3 . . . is known to be ultimately
periodic with a period of length 34 and a preperiod of length 52. On strips of even size, the first
player has a simple winning strategy by placing a first domino in the center of the strip, and then
play the move symmetrical to his opponent. Using similar argument, it is possible to describe
winning strategies for Cram on rectangular boards of size 2× n for any n ≥ 0, and more generally
for any board with at least one even dimension. The outcome was also computed on small square
boards [LV12] up to 7 × 7. The complexity of determining the winner on an arbitrary position
is still open for both Domineering and Cram, even for generalisations of the games played on
arbitrary graphs.

Another type of game which has been intensively studied are heap games, i.e., games played on
(one or several) heaps of tokens. The most famous of these games is Nim where the players can Nim

remove any number of tokens from one single heap. The player taking the last token is the winner.
An example of a position for Nim, together with its valid options is shown in Figure 7.4. Played
on a single heap, this game is not very interesting since the first player always has a winning move
by removing all the tokens at once (assuming the heap is not empty). In the case of multiples
heaps, the game was solved by Bouton in 1901 [Bou01] who gave the following characterization of
the P-positions.

127

...
...

...
... . .

.

· · ·
· · ·
· · ·
· · ·

(a)

...
...

...
... . .

.

· · ·
· · ·
· · ·
· · ·

(b)

Figure 7.5: Alternative definition for the games Nim (on the Left) and Wythoff (on the right)
as a game of moving a piece on a semi-infinite board. The possible moves are shown in orange.
The games end when the piece reaches the bottom left corner.

Theorem 73 ([Bou01]). The game of Nim played on heaps of size n1, . . . , nk has outcome P if
and only if n1 ⊕ · · · ⊕ nk = 0, where ⊕ is the bitwise XOR.

The game of Nim plays a special role in combinatorial game theory. In fact the theorem above
is a particular case of a more general result related to sums of games and game values. Due to this,
there is a special notation for Nim positions: we will denote by ∗n the game of Nim played on a
single heap of size n.

On two heaps, there is another way to describe Nim. Consider a semi-infinite grid with a rook
placed on this grid. The game where the two players can move the rook vertically or horizontally,
only towards the bottom left corner is exactly Nim on two heaps (see Figure 7.5a). Indeed, there is
a bijection between the coordinates of the rook and the number of tokens on each heap. Removing k
tokens from one of the two heaps corresponds to moving the rook by k squares in the corresponding
direction. On two heaps, the P-positions are the positions on the diagonal. Nim is also related to
other kinds of games called Subtraction games that we consider in more detail in Section 7.3.

A variant of Nim, called Wythoff consists in moving a queen instead of a rook in the gameWythoff

described above. In other words, in addition to moving the piece vertically or horizontally, the
players can also move it diagonally as in Figure 7.5b. With the formulation with heaps of tokens,
this means that the players are also allowed to remove the same number of tokens from both heaps.
The P-positions of Wythoff were characterized in [Wyt07] where the following result is proved:

Theorem 74. The P-positions for Wythoff are the positions of the form (�Φn�, �Φ2n�) and
their symmetric, for n ≥ 0, and where Φ is the golden ratio.

Many variations of the game Wythoff have been considered in the literature [Con59, FB73,
DR08, Lar11]. In many cases, the P-positions of these games are related to Beatty sequences:
sequences of integer of the form (�αn�)n≥0, where α is irrational. Note also that due to the
properties of the golden ratio we have �Φ2n� = �Φn�+ n.

Finally, the last game we would like to introduce is a game called Euclid. As the name implies,
Euclid is related to the euclidian division. It is played on two non-empty heaps of tokens. At their
turn, the players can remove from the largest heap a number of tokens which is a multiple of the
smallest heap. The game ends when the two heaps have the same size. If it has probably attracted

128

less attention than Wythoff and Nim, this ruleset has the particularity that the moves available
depends on the current position of the game. This property of the ruleset is sometimes called non-
invariant (or just ‘variant’) [DR10], self-referential [Mul16], pilesize dynamic [HRR03, HRR04] or non-invariant

gamealso time and size dependent game [Fla82]. The P-positions for Euclid were given in [CD69]:

Theorem 75 ([CD69]). The position (a, b), with b ≥ a is a P-position for Euclid if and only if
b
a < Φ, where Φ is the golden ratio.

The outcomes for Euclid under misère-play convention were considered in [Gur07], and a
partizan version of the game was also considered in [MN13].

7.1.3 Complexity

Although the results in this part are less focused on algorithmic complexity compared to our results
on reconfiguration in Part I, we would like to mention a couple of results concerning the complexity
of combinatorial games, in comparison with reconfiguration problems. For combinatorial games,
the problem often considered from a complexity point of view is the following. For a fixed ruleset
R0, given as input a position g, compute the outcome of (g)R0 . When we mention the complexity
of a combinatorial game, this is the problem we consider.

As it was the case for reconfiguration problems, two player games tend to be much harder than
traditional problems: many are PSPACE-hard, and some like some generalisation of Chess are
even EXPTIME-hard [FL81]. Although this seems to imply some similarities between the two
problems, there are also important differences. Indeed, the two types of problems are usually hard
for different reasons. As we saw in Part I, reconfiguration problems are hard because of the existence
of configurations for which the shortest transformation has exponential length. On the contrary,
combinatorial games usually end after only a polynomial number of rounds (nobody wants to play a
game that takes exponential time to even finish). The high complexity comes from the alternation
between players, which acts as an alternation between existential and universal quantifiers. Indeed,
saying that the first player has a winning strategy can be reformulated as this player having a
move, such that for every move of his opponent he can reply another move, such that . . . such that
the the first player wins. Remark that when the game ends in a polynomial number of moves, this
formulation effectively expresses the problem as an instance of QBF (Quantified Boolean Formula,
see Section 1.2), which implies immediately that deciding the outcome of the game is in PSPACE.
Note however that there are games may take an exponential time to play. All the heap games that
we described in the previous section are example of these. Indeed, if we consider Nim for example,
a position on two heaps of size n1 and n2 can be represented using only log(n1) + log(n2) bits, but
playing the game can take a number of rounds linear in n1+n2. More details and discussions about
these aspects can be found in [Fra04].

The complexity landscape of reconfiguration is pretty well known: many problems have a known
complexity, and the interesting questions are more related to what happens on restricted inputs.
The situation is different for combinatorial games. The complexity of many games is not settled,
even though many of them are believed to be hard. Even for those games for which hardness
reduction were proved, few results are known when there are restrictions on the input (for example
on specific classes of graphs for games played on graphs).

There are several reasons for this disparity. First, reconfiguration problems tend to be much
more resilient to perturbations than combinatorial games: adding or removing one single edge to the
reconfiguration graph is usually not going to change much about to the complexity of the problem.

129

= + +

Figure 7.6: Decomposition of a position for Domineering into a disjunctive sum of several
components.

On the contrary, for combinatorial games, the slightest modification of the configuration space
can have dramatic effects and completely change the overall behaviour. Due to this sensitivity,
combinatorial games often have very chaotic behaviours which can be very difficult to characterize.

7.2 Game Values

The notion of value of a game emerges from the need to understand compound games, i.e., games
containing several sub-games as components. Many different types of compound games have been
considered in the literature, but one, called disjunctive sum received most of the attention, both duedisjunctive

sum to the simplicity of the theory it creates, and its natural occurrence in many games. The disjunctive
sum of two games G1 and G2, denoted G1 +G2, can be informally described as putting G1 and G2

side by side. At each turn, one player can choose to play in either component (but not on both).
Remark that this implies that a player might be able to make two consecutive moves in the same
component, if his opponent plays in the other component. This explains why in the representation
of the game as a tree in Section 7.1, we allowed consecutive moves. If these consecutive moves do
not occur when then game is played in isolation, they can be played when we consider compounds
of games.

More formally, the set of options of G1+G2 for player Left are: (i) games of the form GL
1 +G2,

where GL
1 is a Left-option of G1; (ii) games of the form G1 + GL

2 , where GL
2 is a Left-option of

G2. The options for right can be defined symmetrically. The disjunctive sum provides G with a
structure of monoid. The neutral element is 0, the game with no option available for either Left or
Right.

The disjunctive sum appears naturally, and can be seen in the examples we gave in Section 7.1.2.
For example, the case of Nim played on several heaps of tokens is a disjunctive sum, where each
component of the sum is Nim played on one single heap. Indeed, at each round, players have to
choose one of the heap, and make a Nim move on this heap. This decomposition of heap games
on several heaps as a sum on games on one heap holds in general for any game played on heaps
provided that: (i) each move of the players affects one single heap, (ii) the moves available on one
heap do not depend on the number of tokens in the other heaps.

Similarly, for positional games such as Domineering or Cram, if at some point during the
game the grid is separated into several connected components, then the game can be decomposed
into the disjunctive sum on each of the connected components as in Figure 7.6. This decomposition
into disjunctive sums of games is particularly interesting for computing the outcome of end-game
position for various games as these positions often tend to decompose into several components.

The main idea behind game values is to try to answer the following question: “Can we compute
the outcome of a game compound, only by knowing the outcomes of its individual components?”.

130

In other words, we would like to be able to decide which of the player has a winning strategy on a
compound game, only by considering each of the component independently. When the compound
operation is the disjunctive sum, in general, it is not possible to give the outcome of a disjunctive
sum, knowing only the outcome of the components. For example, the outcome of Nim played on
one heap of size 1 or 2 is N , but the outcome on two heaps (the disjoint sum of each individual
heap) is N on (1, 2), but P on (1, 1). There are some cases however, where the outcome of a
disjunctive sum can be decided from the outcome of its components.

Lemma 76. Let G1 and G2 be two games, with o(G1) = P, then o(G1 +G2) = o(G2).

Proof. Assume that one of the player has a winning strategy on G2 playing first (the case where
he plays second is similar). Then, this player can start by playing according to his strategy on G2.
Then, whenever his opponent plays on G2, he continues with his strategy on G2. If his opponent
plays on G1, then he can answer by applying the second player’s strategy on G1. In any cases, this
player always has an available move, and his opponent will eventually lose the game. The argument
when the player has a winning strategy playing second is similar.

If this lemma allows us to get the outcome of the compound in a special case, this is not always
possible in general. The notion of game value is a refinement of the outcome, and attempts to solve
this problem. The main idea behind game values is that sometimes, some components in a sum
can be replaced by more simple games. More precisely, given two games G1 and G2, they are said
to be equivalent , and we write G1 ≡ G2 if: equivalent

∀X ∈ G, o(G1 +X) = o(G2 +X) .

In other words, two games are equivalent if we can replace one by the other in any disjunctive
sum without changing the outcome. This relation is an equivalence relation (i.e., it is symmetric,
reflexive, and transitive). The equivalence classes of this relation are the game values . Note that, game value

although the quantification is over all possible games G, which is infinite, it was shown in [BCG82],
that given a game G, it is possible to compute a canonical representative for the equivalence class
containing G. Moreover, this can be done in time which is polynomial in the size of the game tree
of G. In the following, the canonical form of G will denote this particular representative of the
equivalence class containing G. A lot more could be said about canonical forms, and their algebraic
properties. The reader can refer to [Sie13] for example for an extensive overview of these results.
We will focus here on the case of impartial games.

7.2.1 Values of impartial games

In the case of impartial games, the canonical forms are in fact quite simple. More precisely, the
following theorem was proved by Sprague and Grundy independently [Spr35, Gru39]:

Theorem 77 (Sprague-Grundy Theorem). For any impartial game G, there exists a unique n ≥ 0
such that G ≡ ∗n.

Recall that ∗n denotes the game of Nim played on a single heap of size n. We already know
from the solution for Nim (see Theorem 73) that ∗i and ∗j are not equivalent if i �= j. The theorem
above states that any impartial game is equivalent to a Nim heap of a certain size. The size of the
heap G is equivalent to is called the Sprague-Grundy value of G, or SG-value for short, and will
be denoted SG(G). When G = (g)R for some position g and ruleset R, we will denote SGR(g) the
Grundy value of (g)R. The SG-value satisfies the following properties:

131

Theorem 78. For any impartial games G,G1 and G2, we have

• o(G) = P if and only if SG(G) = 0,

• SG(G1 +G2) = SG(G1)⊕ SG(G2),

• SG(G) = mex({SG(G′), G′ option of G}),

where in the last item, mex(S) denotes the smallest non-negative integer which is not an element
of S.

The first item only states that the SG-value is a refinement of the outcome of a game. The second
item states that SG-values indeed solve the problem they were built for: studying a disjunctive
sum by only looking at the components independently. Finally, the third item describes explicitly
how the SG-value of a game can be computed if we know the SG-values of the options of the
game. In particular, the third item implies that the SG-value of a game can be computed in time
which is linear in the size of its game tree. As an example, the SG-values of several games are
shown in Figure 7.7. The SG-values for Nim and Euclid are completely characterized. On the
contrary, the SG-values for Wythoff appear to be very chaotic, and no characterization is known.
A polynomial time algorithm for computing the positions of value 1 was devised in [BF90]. This
algorithm was improved in [Niv05] for finding values with position g for some constant g. However,
both algorithms rely on some (unproved) conjectures on these positions.

Remark 2. As we have said in the introduction, all this theory works for the normal conven-
tion when the last to make a move wins. In the misère convention, things are significantly more
difficult: there are many more different canonical forms and fewer games are equivalent, even in
the impartial setting. Thus, using values for misère games has proved more complicated than in
the normal convention, and a certain number of techniques have been devised to get around these
difficulties [Pla05, Pla06, PS08, Sie15].

(a) (b) (c)

Figure 7.7: SG-values for two different ruleset. The point at position x, y on the picture represents
the SG-value on position (x, y). Higher SG-values are shown in red, and smaller ones are shown in
blue. The two rulesets are: (a) Nim played on two heaps, (b) Wythoff, and (c) Euclid.

132

7.3 Subtraction Games

We now give more details to a certain class of games called Subtraction games. Subtraction Subtraction

gamesgames are played with one heap of tokens. The ruleset for a subtraction game is parametrized
by a (possibly infinite) set S which provides the available moves. At their respective turns, the
players must remove a number x of tokens from the heap, with x ∈ S. The game ends when the
number of tokens is strictly smaller than min(S). We denote by Subtraction(S) the ruleset for
the subtraction game with set S. For example, Nim played on a single heap is exactly equivalent to
Subtraction(N+). In the following, we will assume that S is finite, unless mentioned otherwise.

Subtraction games are interesting in part because they form some of the simplest possible games.
Despite this simplicity, there are only few results known about them. Given a subtraction ruleset
R0, the sequence (SGR0(n))n≥0 is called the SG-sequence of the game. For subtraction games, this SG-sequence
sequence is known to be ultimately periodic. Since SG-values are a refinement of outcomes, this
implies that the sequence of outcomes is ultimately periodic.

Theorem 79. Let S be a finite set. The SG-sequence of Subtraction(S) is ultimately periodic
with period and preperiod at most (1 + |S|)max(S).

Proof. Let S be a finite set of positive integers. The proof of periodicity follows from two facts.
First, the SG-values of positions for Subtraction(S) are upper bounded by |S|. This follows
immediately from the characterisation of SG-values using the mex (the third item of Theorem 78)
and the fact that mex(X) ≤ |X| for any subset X. The second point is the simple observation
that the SG-value of a position n only depends on the SG-values of all the positions n − x for
0 < x ≤ max(S).

Hence it follows that if there are n0 ≥ 0 and p > 0 such that n0 + x and n0 + p+ x have all the
same SG-value for 0 ≤ x < max(S), then for all n ≥ n0, n and n+ p also have the same SG-values,
and the sequence is periodic with period at most p, and perperiod at most n0. Additionally, there
are at most (1+|S|)max(S) sequences of length max(S) of non-negative integers smaller or equal than
|S|. Hence, if we look at the sub-sequences of SG-values for the positions n0, . . . n0 +max(S)− 1,
for all possible choices of n0 ≤ (1 + |S|)max(S), then two of these sub-sequences are equal, and the
result follows.

Note that it is very unclear how far from the truth the upper bound on the length of the period
and preperiod is. The upper bound in the theorem above can be slightly improved using more
complicated arguments [San10]. It was shown in [ANW07] that the grundy sequence is purely
periodic with a period of linear length if |S| = 2. Moreover, it was conjectured by Guy [GN96] that

a tighter upper bound on the period length could be O(max(S)(
|S|
2)), in particular, polynomial in

max(S) if the subtraction set contains a bounded number of elements. Examples of subtraction
games with |S| = 3 and quadratic period (in terms of max(S)) were discovered in [ANW07, p.
529], and with |S| = 4 and period of cubic length in [AB95]. Subtraction games with |S| = 3 were
studied in [Ho12a], and some conjecture on the length of their period were made in [War16].

Open Problem 16. Investigate the length of the period and preperiod of subtraction games.

A version of subtraction games played on graphs was introduced in [BCD+18], and studied for
simple graphs such as subdivided stars. Subtraction games are in fact a particular case of a more
general family of rulesets called octal games. In octal games, in addition to removing a certain

133

number of tokens, the players are allowed to split the remaining tokens from the heap into two
heaps. The exact rules depend on a parameter represented by a string of numbers between 0 and
7 (hence the name octal game). A famous question on these games is whether all octal games
have an ultimately periodic SG-sequence. If this periodicity was shown for some octal games, the
behaviour of the SG-sequence of others remain elusive, despite a very large number of computed
values (see a list of such results in [Fla00]).

Finally, this subtraction games can be considered from a complexity point of view. Due to
Theorem 79, if the subtraction set is fixed, deciding the outcome of a given position can be done in
linear time. Indeed, since the SG-sequence, and consequently the outcome-sequence, is ultimately
periodic, this period can be hard-coded into the algorithm, and used to determine the outcome of
an arbitrary position.

However, when the subtraction set is not fixed, but part of the input as well, things are very
different. Consider the problem where we are given as input a subtraction set S, together with
a starting position n, and ask which of the player has a winning strategy for Subtraction(S)
starting on n. No hardness result is known for the problem. Moreover, it is not even clear that
the problem is in PSPACE. Indeed, since at each round, the players might only remove a small
number of tokens, the total number of rounds in a play might not be polynomial. Due to this, the
only upper bound on the complexity we can give is that the problem is in EXPTIME.

Open Problem 17. Study the complexity of deciding the outcome of a position for subtraction
games when the subtraction set is part of the input.

7.4 Compounds of games

The notion of compounds of games follows from a natural approach of studying games by splitting
them into smaller, more manageable, components and analysing each component individually. Two
kinds of compounds have appeared in the literature: compounds which combine individual games,
such as the disjunctive sum we saw above; and compounds which combine rulesets. Concerning
compounds combining games, the disjunctive sum is by far the most studied kind of compound,
but other operations have been considered in the literature. One such example is the ordinal sumordinal sum

operator [CNS18], which behaves like a disjunctive sum, with the additional constraint that any
move in G annihilates the game H. Another example is the sequential compound . Given two gamessequential com-

pound two games G and H, their sequential compound G→ H consists in starting by playing G, and when
it is finished continue with H. It was studied in [SU93] where it was shown to be related to misère
play. This construction was considered in conjunction to the disjunctive sums, and properties of
games of the form (∗n + ∗m) → H have been investigated in [ACM10a, ACM14]. The sequential
compound is also related to the game Euclid [Len03].

There are many result which can be viewed as studying a variation on the disjunctive sum.
Six different compounds were considered in [Con00] (twelve if we account for the choice of normal-
or misère-play convention), including the disjunctive sums. For some of these constructions, the
outcome of the compound, for impartial games, can be decided by only looking at the outcome
of the components. For others, quantities called remoteness and suspense were defined and play
a similar role as the SG-values for the disjunctive sum. These different compounds were studied
for the game Node-Kayles in [GS09]. Several games (including Node-Kayles) were studied
on subdivided stars [FT04, BCD+18, FH18]. These games can be described as almost disjunctive
sums of each of the branches of the star, where only moves close to the center might affect several

134

branches at the same time. In [BCD+18] in particular, the game is solved by assigning values to
each branch of the star, and computing tables describing how these values combine.

More recently, operators have been considered to combine several rulesets to build new ones.
For example, conjoined rulesets, which have some similarities with the sequential compound, were
introduced in [HN19]. As for the sequential compound, the players start the game according to
a first set of rules, and when the game has ended, continue with a second set of rules. The main
difference with the sequential compound is that the ending position of the first part of the game
is used as a starting position for the second part. In [HN19] this construction was used to create
the games Go-Cut and Sno-Go which are compounds of the rulesets NoGo, Cut-Throat and
Snort. Other games such as Building Nim [DDHL16], Three Men’s Morris, Picaria [LR17]
(first place then slide to neighbours) and Nine men’s morris are similar to these conjoined rulesets
since they are played in several phases, with the ending position of the previous phase used as a
starting position for the next one.

Note that sometimes, considering combinations, or variations or rulesets also leads to natural
variations of usual operators on games such as the disjunctive sum. One such example is the
case of games with a pass, where players can pass once during the game (but not if there are
already no other moves available). In this setting, it is natural to consider almost disjunctive
sums where the pass move is common to all the components (in other words, the pass move can
be played only once, even if there are several components). Games with a pass were considered
in [MFL11, CLLW18, HN03] for various games including Octal games and Nim. Note that the
the P-positions of Nim with a pass on three heaps are very different from classical Nim. Finding
a characterization of these positions is still an open problem. The push-button compound that
we consider in the next chapter follows this line of research of studying compounds which almost
behave like a disjunctive sum.

135

Chapter 8

Composition of Combinatorial Games:
the Push-Compound

In this chapter, we study operators that combine rulesets of combinatorial games. We introduce a
construction called the ‘push-compound’, and study the composition of several standard rulesets. We
also give some general properties of this construction, and consider almost disjoint sums of games
related to this compound. Some of the results presented in this chapter were published in [DHLP18].

As we saw in the previous chapter, an important part of Combinatorial Game Theory (CGT)
focuses on the study of combinations of individual games. The most famous example is the dis-
junctive game sum operator, and several variations of this compound were defined by Conway in
his reference book [Con76], and Berlekamp, Conway, and Guy in [BCG82].

More recently, the so-called sequential compound operator was introduced [SU93]. It consists in
playing successively the ordered pair of games (G,H), where H starts only when G is exhausted.
These constructions are in a sense static: the starting position of the second game is fixed until the
first game is exhausted. In this chapter, we study dynamic compounds, where the starting position
of the second game depends on the moves that were made in the first game. As a consequence, our
construction requires the full rulesets of the two games to build the compound.

In order to define such compounds, we will say that two rulesets R1 and R2 are compatiblecompatible
rulesets if they have the same set of positions. Note that the construction also works with the weaker

condition that, for any position of R1 there is a description of how to move in R2. This is the case
for example if there is a function that maps any position of R1 into a position of R2. In our case,
the two rulesets R1 and R2 will always be defined on the same set of positions. Given a compatible
pair of rulesets (R1,R2) and a specially designed switch procedure ‘⇒’ (it can be a game in itself or
anything else that declares a shift of rules), players start the game R1 ⇒ R2 with the rules R1. At
their turn, a player can choose, instead of playing according to R1, to play in the switch procedure,
and when this procedure has terminated, the rules are switched to R2 (using the current game
configuration). Thus, we call this class of operators switch operators (or switch procedures). Note
that the games we mentioned in Section 7.4, such as Go-Cut and Sno-Go can also be described
with this kind of construction, where the switch procedure can be started only when the first game
has ended.

In the current chapter, the switch procedure is called the push-the-button operator (for short
push operator). It consists in a button that must be pushed once and only once, by either player.push operator

136

Pushing the button counts as a move, hence after a player pushes the button, his opponent makes
the next move. The button can be pushed any time, even before playing any move in R1, or when
there is no move left in either game. In particular, if there is no move left in R1 and the button has
not been pushed, then it has to be pushed before playing in R2 (the only way to invoke R2 is via
the push-the-button move). In all cases, the game always ends according to the rules of R2. We
will concentrate our attention to the combination of impartial rulesets, but the construction could
be considered for partizan games as well. In the rest of the chapter, we will assume implicitly that
all rulesets are impartial.

We first give in Section 8.1 a formal definition of the push operator. In Section 8.2, we motivate
this operator by the resolution of a particular game called Zeruclid, which is proved to be a
push compound of the classical games of two-heaps Nim [Bou01] and Euclid [CD69]. Moreover
we show that the second player’s winning positions are similar to those of another classical ruleset,
Wythoff [Wyt07]. Then, in Section 8.3 we continue by studying various push compounds of these
three classical rulesets, as well as a variation of the game Domineering built using this compound.
Finally, in Section 8.4 we consider a sum of games which is compatible with the push-compound,
i.e., pushing the button affects all the components of the sum at the same time. We describe how
to compute canonical forms for this operation, and study sums of a push-variant of subtraction
games.

8.1 The switch compound: push-the-button

Let R1 and R2 be two rulsets over the same set of positions Ω. We consider combining R1 and R2

to form a new compound ruleset. In the compound, players start the game according to R1, and
at their turn, a player can decide, instead of playing according to R1, to push a single allocated
button, which switches the rules to the second ruleset R2. The button must be pushed exactly
once, at some point during play, by either player. It can be pushed before any move has been made,
at some intermediate stage, or even if there is no other move available. We call this operator, the
push operator, denoted by ‘�’. By pushing the button, the current position, which is a position of
the first ruleset, becomes the starting position for the second ruleset.

Definition 6 (The push operator). Let R1 and R2 be two rulesets over the same set of positions Ω.
The push-the-button ruleset (for short push ruleset) R1 �R2 is defined over {1, 2} × Ω by:

(R1 �R2) :
(1, g) �−→ {(1, g′), g′ ∈ R1(g)} ∪ (2, g)
(2, g) �−→ {(2, g′), g′ ∈ R2(g)}.

Once the button is pressed, the game is played according to the rules R2. In other words, we
have (2, g)R1�R2 = (g)R2 . Consequently, when the ruleset is of the form R1 �R2, the interesting
positions are those of the form (1, g) for g ∈ Ω. Thus, to simplify notation, we write (g)R1�R2

instead of (1, g)R1�R2 .
In the following, we will say that a game G is a push-game if its ruleset is a push-compound. push-game

Since pushing the button is a ‘special’ move, it makes sense to differentiate it from its other possible
moves. Hence, we will denote by push(G) the game obtained after pushing the button. In other
words, if G = (g)R1�R2 for some compatible rulesets R1 and R2, then push(G) = (2, g)R1�R2 =
(g)R2 . The normal options of G denotes the games which can be obtained by playing according normal options

of a gameto R1. Hence, the normal options of G contain all the options of G, except the move which consists
in pushing the button.

137

∗1

∗0 ∗2

∗1 ∗2 ∗1 ∗0

Figure 8.1: Example of the tree representation of a push-game. After the button is pushed, the
game continues with the rules of Nim, with a number of tokens which depends on the position
before pushing the button. The first player has a winning move by playing on the right branch.

We have seen in Chapter 7 that impartial games can be represented as a tree. In the same
manner, we will adapt this tree representation for push-games. Since pushing the button plays
a special role, it makes sense to distinguish it from the other moves. Hence, we will represent a
push-game by a labelled rooted tree. Each node of the tree represents a position of the game, and
its children corresponds to the normal moves from this position. Each node is labelled by the game
which will follow if we push the button from this position. An example of a tree representation
of a push-game is given in Figure 8.1, where after pushing the button the rules are those of Nim.
We denote by G� the set of all push-games (equivalently, trees with nodes labelled by impartial
games).

8.1.1 General properties of the push compound

Before studying concrete examples of push-compounds, we state some general properties of the
push operator. If G = (g)R1�R2 is a push game, the possible options of G are either pushing the
button, or playing according to the rules R1. Hence, it follows that the outcome of G is P if and
only if pushing the button is a losing move, i.e., oR1(g) = N , and or every option g′ ∈ R1(g),
oR1�R2(g

′) = N . In particular, with this observation we can reformulate Lemma 72 to characterize
the P-positions for push-rulesets.

Lemma 80. Let R1 �R2 be a push ruleset over Ω. A subset P ⊂ Ω is the set of P-positions of
R1 �R2 if and only if:

(i) ∀g ∈ P, oR2(g) = N ,

(ii) ∀g ∈ P , R1(g) ⊂ Ω \ P ,

(iii) ∀g ∈ Ω \ P , either oR2(g) = P or R1(g) ∩ P �= ∅.

Proof. Obvious, according to Proposition 72 and the definition of push-ruleset.

In some cases, the P-positions ofR1�R2 can be determined directly from the P-positions ofR1.
Indeed, adding the possibility to change the rules can be seen as a way to disrupt the game R1

using an additional move (pushing the button). The following results give sufficient conditions for
which such a disruption preserves the P-positions of R1.

138

Proposition 81. Let R1 and R2 be two rulesets over Ω and let g in Ω be a game position. We
denote by P1, P2 and P−

1 the set of P-positions for respectively R1 and R2 under normal-play
convention, and R1 under misère-play convention.

The ruleset R1 �R2 satisfies the following properties:

(i) If oR2(g) = P, then oR1�R2(g) = N .

(ii) If P1 ∩ P2 = ∅, then oR1�R2(g) = P ⇐⇒ g ∈ P1.

(iii) If P−
1 ∩ P2 = ∅ and R1(g) = ∅ implies g ∈ P2, then oR1�R2(g) = P ⇐⇒ g ∈ P−

1 .

Proof. (i) Pushing the button is a winning move.

(ii) We check that P1 satisfies the three conditions (i), (ii) and (iii) of Lemma 80. The condi-
tion (i): for all g ∈ P1, oR2(g) = N , corresponds to the assumption we made that P1∩P2 = ∅.
Since P1 is the set of P-positions for the ruleset R1, there is no move, according to R1, from
a position in P1 to another one, hence (ii) holds. Moreover for any position not in P1, there
is a move, according to R1, to a position in P1 and (iii) holds.

(iii) The argument is essentially the same as above. If a position g has no move for R1, then
by hypothesis, pushing the button is a winning move. Otherwise, g has at least one option.
If g ∈ P−

1 , then all moves, according to R1, are out of P−
1 , and by hypothesis, pushing the

button is a losing move. If g �∈ P−
1 , then there exists at least one move, according to R1,

landing in g′ ∈ P−
1 .

This result gives sufficient conditions for which the P-positions of R1 remain unchanged by
adding the possibility to switch the rules to R2. For some of the games we study in Section 8.3,
we will use this property to characterize their set of P-positions.

8.2

We now present the ruleset which is the source of the push compound, and motivated the initial
research on this construction. It is called Zeruclid (a.k.a. Ruthlein), and is a variant of the
ruleset Susen [Mul16]. Both are part of a larger family of non-invariant rulesets [DR10].

Definition 7 (Zeruclid). The game Zeruclid is played on several heaps of tokens. At each
turn, a player can remove from any heap a number of tokens which is a positive multiple of the
smallest non-zero heap. The heap sizes must remain non-negative.

Zeruclid on two heaps is very similar to the well-known game Euclid. Recall from Sec-
tion 7.1.2 that in Euclid, the players can remove a positive multiple of the smallest heap from the
largest heap. On two heaps, Zeruclid has only two differences with Euclid:

• In Zeruclid, the game ends when both heaps are zero, whereas in Euclid it ends when they
are equal.

• In Zeruclid, it is possible to remove the smallest heap in a single move.

139

One can easily check that these two differences do not modify the P-positions. Indeed, in the 2-
heap case, removing the smallest heap is always a losing move in Zeruclid. Hence the P-positions
of 2-heap Zeruclid with non-zero coordinates, and the P-positions of Euclid are the same. Using
the known results on Euclid, these are the positions (a, b) such that 1

Φ < b
a < Φ, where Φ is the

golden ratio (see Theorem 75).
Played on three heaps, our game is similar to the game 3-Euclid introduced in [CL08], and to

some of its variations studied in [Ho12b]. The main difference with the game Zeruclid is that 3-
Euclid requires the heap sizes to remain positive. In particular, the number of heaps in 3-Euclid
does not vary during the game. In our version, it is allowed to completely remove the smallest
heap, and thus to decrease the total number of heaps. An example is given in Figure 8.2 describing
the possible move from the position (2, 3, 5).

(2, 3, 5)

(0, 3, 5)

(2,1, 5) (2, 3,3)

(2, 3,1)

Figure 8.2: Example of the possible moves for Zeruclid on position (2, 3, 5).

8.2.1 (1, a, b)

We call Zeruclid(1, a, b) the game Zeruclid played on three heaps of tokens where the smallest
heap has size 1. The link between this game and the push-the-button operator is given in the
following proposition:

Proposition 82. The game Zeruclid played on position (1, a, b) has the same outcome as the
push ruleset Nim� Euclid on position (a, b).

First, remark that Euclid and Nim are not played exactly on the same set of positions: the
position (0, i) is not a valid position for Euclid, while it is a valid position for Nim. Consequently,
what we call Euclid here, and in all the rest of Section 8.2, is the variant where there is a single
move from (0, i) to (0, 0) if i > 0. In particular, the position (0, i) is an N -position.

Proof. Before the heap with 1 token is taken, it is possible to remove any number of tokens from
any of the two other heaps, hence the rules are those of Nim on two heaps. Once the heap with size
one is removed, the rules are essentially those of Euclid, up to some minor differences, which, as
mentioned before, do not modify the set of P-positions. Removing the heap of size one in Zeruclid

is equivalent to pushing the button in Nim� Euclid.

The rest of this section will be dedicated to finding characterizations of the P-positions of
Nim � Euclid. By the previous proposition, this also gives a characterization of the P-positions
for Zeruclid(1, a, b).

Surprisingly, the P-positions of Nim�Euclid are very similar to the P-positions of Wythoff’s
game. In the following, we denote an = �Φn� and bn = �Φn� + n. Recall from Theorem 74 that
the P-positions for Wythoff are exactly the (an, bn) and (bn, an) for n ≥ 0. The pairs (an, bn) for
n ≥ 0 are generally called Wythoff pairs.Wythoff

pairs

140

The characterization of the P-positions of Nim � Euclid is based on the Wythoff pairs, as
well as a sequence related to the Fibonacci numbers and defined as follows.

Definition 8. Denote by (Fn)n≥0 the Fibonacci sequence starting with F0 = 0 and F1 = 1. The
sequence (un)n≥0 is defined by un = Fn+1 − 1.

Before showing the theorem which gives a characterization of the P-positions of Nim�Euclid

in terms of the sequences an, bn and un, we need the following result.

Proposition 83. For all n ≥ 0, the pair (u2n, u2n+1) is a Wythoff pair.

This is a well-known result. Since we will reuse the proof afterwards, we put the details of it
below.

Proof. Let Φ denote the golden ratio. Using the closed form formula for the Fibonacci numbers,
we can write that:

Fn+1 − ΦFn =
Φn+1 − (−Φ)−n−1

2Φ− 1
− Φ

Φn − (−Φ)−n

2Φ− 1

=
1

(−Φ)n
(Φ− 1

Φ)

2Φ− 1
=

1

(−Φ)n(2Φ− 1)
.

This gives F2n+1 − 1
Φ2n(2Φ−1)

= ΦF2n, and by taking the integer part on both sides of the equality,

we obtain u2n = �ΦF2n�. Additionally we have

u2n+1 = F2n+2 − 1 = F2n+1 − 1 + F2n = �ΦF2n�+ F2n = �Φ2F2n�.

Consequently, the equality (u2n, u2n+1) = (�ΦF2n�, �Φ2F2n�) proves that it is a Wythoff pair.

We now have all the ingredients we need to characterize the set of P-positions of Nim�Euclid.
As we can see in the theorem below, this set coincides with the P-positions of Wythoff, except for
a very small fraction of the positions. The first P-positions of the two games are given in Table 8.3.

Theorem 84. The set of P-positions of Nim� Euclid is given by:

P = {(an, bn), n ≥ 0} \ {(u2n, u2n+1), n ≥ 0}
⋃
{(u2n+1, u2n+2), n ≥ 0}.

Proof. Denote by (a′n, b′n) the positions of the set P above, with b′n ≥ a′n, reordered by increasing
a′n. Denote by A and B the two sets defined by A = {a′n, n ≥ 0} and B = {b′n, n ≥ 0}. We
know from [Wyt07] that the sets {an, n ≥ 0} and {bn, n ≥ 0} are complementary. Additionally,
using Proposition 83 and the fact that the ui for i ≥ 1 are all distinct, we can deduce that A and
B are complementary. This implies that there is no move, according to Nim from a position of P
to another position of P . Indeed, if there were a move between two position in P , then these two
positions have one coordinate in common. Since a′n is strictly increasing, this implies that one of
the position is of the form (a′n, b′n), while the other is (b′m, a′m), and in particular, this contradicts
the assumption that A and B are disjoint.

In order to apply Lemma 80, we only need to show that: (i) pushing the button on a position
(a′n, b′n) is a losing move, and (ii) from any position (a, b) �∈ P , there is either a move, according to
Nim, to a position in P , or pushing the button is a winning move.

141

Wythoff (0,0) (1,2) (3,5) (4,7) (6,10) (8,13) (9,15) (11,18) (12,20) (14,23) (16,26) (17,28)

Nim� Euclid (0,1) (2,4) (3,5) (6,10) (7,12) (8,13) (9,15) (11,18) (14,23) (16,26) (17,28)

Table 8.3: Sequence of the first P-positions for the games Wythoff and Nim � Euclid. Some
blanks were inserted to highlight the similarities between the two sequences.

We start by showing that, for n ≥ 1, the position (a′n, b′n) satisfies the equality b′n = �Φa′n�.
If (a′n, b′n) is a Wythoff pair, this relation is a well-known result (this is proved for example in
Lemma 5 from [Fra07] or in [Sil76]). Consequently, we only need to prove it in the case (a′n, b′n) =
(u2n+1, u2n+2). Reusing the computations from the proof of Proposition 83, we know that:

u2n+2 − Φu2n+1 = F2n+3 − 1− ΦF2n+2 +Φ

=
1

Φ2n+2(2Φ− 1)
− 1 + Φ.

This shows that u2n+2 − Φu2n+1 ≤ Φ− 1 + 1
Φ2(2Φ−1)

< 1 and additionally, u2n+2 − Φu2n+1 > 0,

which proves that u2n+2 = �Φu2n+1�.
We have (a′0, b′0) = (0, 1), and pushing the button from this position is a losing move. If n ≥ 1,

then b′n
a′n

> Φ, and consequently, by Theorem 75 pushing the button is also a losing move.

Now suppose that we have (a, b) �∈ P . We want to show that either there is a move, according
to Nim, to a position in P , or pushing the button is a winning move. If a = 0, then either b = 0 and
pushing the button is a winning move, or b > 0, and there is a move to (0, 1) ∈ P . Consequently,
we can assume a > 0. Suppose a = b′n for some n. Thus we have b ≥ a = b′n > a′n, and there is a
move, according to Nim, to the position (b′n, a′n). Otherwise, since A and B are complementary, we
have a = a′n for some n. If b > b′n, then again, there exists a move, according to Nim, to (a′n, b′n).
Otherwise, we have b < b′n. Since b′n = �Φa′n�, we must have b

a < Φ, which implies by Theorem 75
that pushing the button is a winning move.

In [DHLP18], we also give alternative characterizations of the P-positions for Zeruclid. These
other results rely on similar characterizations for the P-positions of Wythoff, using for example
another numeration system based on Fibonacci numbers. Although the P-positions of Zeruclid
with the smallest heap of size 1 are well characterized, the SG-values seem to have a much more
complicated structure as shown in Figure 8.4. Note that the patterns which can be seen on the
figure seem to have the same shape as those obtained in [ACM10b] about variations of the game
Nim. This general shape seems to be

In [DHLP18], we also look at properties of the P-positions when the first heap is larger than 1.
However, we do not have a characterization in the general case.

8.3 Other push compounds

In this section we investigate the push operator on several other well-known impartial rulesets.
We start by considering rulesets played on two heaps of tokens, and study all the other possible
compounds of the rulesets Nim, Euclid, and Wythoff. We give characterizations of the P-
positions of the resulting games. Then in Section 8.3.2 we consider push-compounds for positional
games, and study a variant of the ruleset Cram.

142

Figure 8.4: SG-values for positions (1, a, b) of 3-heaps Zeruclidfor different values of a and b.
colour blue corresponds to small values while yellow and red correspond to high values. The P-
positions can be seen along the line y = Φx and its symmetric. Other small positive SG-values
seem to be close to the diagonal y = x.

8.3.1 Push compounds of Nim, Wythoff and Euclid

The set of positions of these three games can be represented as the integer lattice N
2, where each

coordinates corresponds to the number of tokens in one of the two heaps. Recall that the case
Nim � Euclid has already been considered in the previous section and corresponds to 3-heap
Zeruclid with the smallest heap of size 1. The three results below cover the other compounds of
Nim with Euclid and Wythoff.

Proposition 85. The P-positions of Nim�Wythoff is the set PN�W defined as:

PN�W = {(0, 1); (1, 0); (k, k), k ≥ 2}.
Proof. The set PN�W is known as the set of P-positions of Nim under misère convention [Bou01].
Using Proposition 81 (iii), one only needs to show that:

• If g is a position with no option for Nim, then it is a P-position for Wythoff. This is
immediate because the only position with no option for Nim is (0, 0).

• All the positions of PN�W are winning for Wythoff. This also holds since the P-positions
of Wythoff are of the form (�Φn�, �Φn�+n) (see Theorem 74), and none of these positions
is in PN�W .

Proposition 86. A position (a, b) with a ≤ b is a P-positions of Euclid�Nim if and only if one
of the following assumptions holds:

• b
a < Φ and b

a �= F2i+2

F2i+1
for any i,

143

• b
a = F2i+1

F2i
for some i,

where the Fi are the Fibonacci numbers.

Proof. If we note P the set of positions defined by the union of the two above conditions, then P is
the set of P-positions of Euclid in misere convention [Gur07]. To show that this also corresponds
to the set of P-positions of Euclid �Nim, using Property 81, we only need to show that for any
position in P , this position is winning for Nim, and that all the terminal positions of Euclid are
P-positions of Nim. This is straightforward since the P-positions of Nim are of the form (a, a),
and a/a = 1 = F2

F1
, thus (a, a) �∈ P . In addition, the terminal positions of Euclid are exactly these

positions.

Proposition 87. The P-positions of Wythoff�Nim is the set PW�N defined as follows:

PW�N = {(an − 1, bn − 1) n ≥ 1}.

where (an, bn) are the P-positions of Wythoff.

This is an example where the P-positions of the compound ruleset differs from the P-positions
of the original ruleset (both in normal or misere convention). Therefore, Proposition 81 cannot be
applied.

Proof. According to Proposition 74, the sets A = {an − 1}n≥1 and B = {bn − 1}n≥1 are comple-
mentary sets and (an− 1)− (bn− 1) = an− bn = n. As a consequence, there is no move, according
to Wythoff, from one position in PW�N to another. Moreover, since an − bn = n > 0 for any
n ≥ 1, none of these elements are P-positions of Nim. Hence, to prove that this set is the set
of P-positions of Wythoff � Nim, it only remains to show that for any position not in PW�N ,
either pushing the button is a winning move, or there is a move according to Wythoff ruleset to
a position in PW�N . The proof is essentially the same as for the classical Wythoff.

Take a position (a, b) �∈ PW�N with 0 ≤ a ≤ b. If a = b, changing the rules to Nim (by
pushing the button) is a winning move. Hence, we can assume that a < b. Since A and B are
complementary, there are two possibilities:

• a = bn − 1 for some n ≥ 1, then b > a = bn − 1 ≥ an − 1. In this case there is a move from
(a, b) to (bn − 1, an − 1) by playing on the second heap.

• a = an−1 for some n ≥ 1. If b > bn−1, then there is a move to (an−1, bn−1) by playing on
the second heap. Otherwise b < bn− 1, and let m = b− a. We have m < bn− 1− an− 1 = n.
Consequently, by choosing k = am − an, the move to (a − k, b − k) = (am − 1, bm − 1) is a
winning move.

8.3.2 Push compounds of placement games: the ruleset

In previous examples, we studied several games played with heaps of tokens. We now move to a
different kind of game: placement games. We look in particular at the game Domineering and its
impartial variant Cram, and study a push compound of this game. We here study a variation of
Cram where the players first play only vertical dominoes, then, when the button is pushed, switch

144

1

12 2

33

4 4

Figure 8.5: Case (iii). The blue dotted vertical line is the symmetry axis. All the rows go by pair
except one (in red with a dashed border) which has even size. Since 0.07 played on a row of even
size has a non-zero SG-value, pushing the button is a losing move on these symmetric positions.

to horizontal ones. Since the two rulesets are defined on the same game board they are compatible.
We call Push Cram this new game, and present a solution for some of its non trivial sub-cases.

Note that Push Cram is a special case of a more general construction which consists in building
a push-ruleset from a partizan game. More precisely, given an arbitrary partizan game, we can
consider a push-variant of the game where the players start with the rules for Left and then,
after pressing the button continue with the rules for Right. In a similar way, the push compound
of Subtraction games that we will consider in Section 8.4.3 can be obtained by applying this
construction to the Partizan Subtraction games we study in Chapter 9.

In this subsection, the notation m × n will denote the grid with m rows and n columns. The
game of Cram played on a 1 × n row has the same rules as the octal game 0.07. Its SG-values
are periodic, with period 34 and pre-period 52 [BCG04]. In particular, if we have SG0.07(n) = 0,
then n is odd (i.e.: positions 1 × (2k) have outcome N , see Section 7.1.2). In Push Cram on an
m×n board, when the button is pushed the game decomposes into a disjunctive sum of m distinct
0.07 positions. Indeed, after the button is pushed the players can only place horizontal dominoes,
and each domino placed on a row does not affect the other rows. In this case, the outcome can be
computed easily using the properties of the SG-values (see Theorem 78) and the periodicity of the
SG-values of 0.07.
Proposition 88. Let k and n be two non-negative integers. We have the following outcomes for
Push Cram:

(i) (2k)× n is an N -position,

(ii) (2k + 1)× n is an N -position if SG0.07(n) = 0,

(iii) 3× (2k) is a P-position,
(iv) n× 3 is a P-position if and only if SG0.07(n) = 0,

(v) (2k + 1)× 4 is a P-position.
Proof. For each of these cases, we describe a winning strategy for one of the players.

(i) The first player directly wins by pushing the button. Indeed, once the button is pushed, the
game decomposes into a disjunctive sum of 2k games, each game corresponding to a row. Since all
rows have the same length, the value (obtained by the XOR of the values of each game) is zero.

(ii) Again, the first player can push the button and win since once the button is pushed, the games
corresponding to each row have SG-value 0.

(iii) We give a strategy for the second player: play the move symmetrically to the first player
relatively to the vertical line cutting the grid in half. Since such a move is always possible, we

145

(a) (b) (c) (d) (e)

Figure 8.6: Subcases (a)− (d) consist in playing symmetric moves on the first two columns. (e) is
the case where the player plays on the last column. Grey tiles correspond to previous moves. The
green tile is the last move played by the opponent, and the dotted one is the move that the player
wants to play by applying the strategy.

only have to show that for the first player pushing the button is always a losing move. Each
move of the players cuts the horizontal rows. Looking at the connected horizontal pieces of rows,
they go in pairs with their symmetric except for three of them in the center which are their own
symmetric. Among these three, two of them have the same length and can be paired together, and
the remaining one has even length (see Figure 8.5). Moreover, since 0.07 played on a row of even
length has a value different from zero, pushing the button on this kind of symmetric position is a
losing move for the first player.

(iv) The second player can play his optimal strategy for 0.07 on the last column and play symmet-
rically on the two other ones. At some point, the opponent will run out of moves and will be forced
to push the button, giving a winning position to the second player (see Figure 8.6). At any point
during the game, when it’s the first player’s turn, there is an odd number of rows with 2 or 3 empty
cells. Indeed, if the first player plays on one of the two first columns, by playing symmetrically, two
rows with either 2 or 3 empty cells are transformed into rows with 0 or 1 empty cells. Additionally,
playing into the last column changes the number of free cells of the two rows from 3 to 2 or from
1 to 0. After pushing the button, the value of the game is the number modulo 2 of rows with 2 or
3 empty cells. Consequently, for the first player, pushing the button is a losing move.

(v) Group the columns in two consecutive pairs as in Figure 8.7. Either the second player can
push the button and win, or, by playing the symmetric in the paired column, the value of the game
for 0.07 does not change. If he plays on a side column (case (a) in Figure 8.7), his move removes
two rows of size 1, and does not change the value for 0.07 on these rows. If he plays on a middle
column (case (b) in Figure 8.7), then he changes rows of length 1 to 0, and rows of length 3 to 2.
Since SG0.07(1) = SG0.07(0) and SG0.07(3) = SG0.07(2), the value for 0.07 is not affected either by
the move.

With the current tools, it seems difficult to completely characterize the outcome for Push Cram

on any board size. However, using numeric computations, we were able to formulate the following
conjecture. A game is a bluff game [BDKK17] if it is a first player win, and any first move is a
winning move.

146

(a) (b)

Figure 8.7: The second player can play symmetrically to the other player on each pair of column.

Conjecture 4. For all k ≥ 0, the grid of size 3×(2k+1) is anN -position for the game Push-Cram.
In addition, it is a bluff game.

This conjecture was verified up to grids of size 3× 25 for the outcome, and 3× 13 for the bluff
property. The remaining unsolved case for Push Cram on rectangular grids is when there is an
odd number of rows, and a number of columns m such that SG0.07(m) �= 0. The complexity of
computing the outcome of an arbitrary position (with already placed dominoes) is also unknown.

For Cram, when the board is not connected, we can split the game into the disjunctive sum
of each connected component, and consider each component independently. By computing the
SG-values of each component, we can deduce the outcome for the whole game. In the push-variant
of the game, we would like to apply a similar argument. However, for this variant, when the board
is not connected the game is not a disjunctive sum. Indeed, if one player pushes the button, the
rules change for all components at the same time, and not just for one of the components. Hence,
in the next section we consider an alternative version of the disjunctive sum for push-games.

8.4 Push-sums and push-canonical forms

Given two push-games G and H, we define the push-sum of these two games, denoted G H, push-sum

as the game where the players can either play in G or in H, but pushing the button changes
the rules for both components at the same time. More formally, the sum G H is such that
push(G H) = push(G) + push(H) (i.e., after pushing the button, we get a disjunctive sum), and
the normal options of G H are exactly the games of the form:

• G′ H, where G′ is a normal option of G,

• G H ′, where H ′ is a normal option of H.

As we did in Section 7.2 when we introduced values for the disjunctive sum, we wish to de-
fine values of games such that the value of a push-sum can be computed from the values of the
individual components. Hence, we define an equivalence relation between push-games, called the

push-equivalence and denoted
�≡, where for any two push-games G and H we have: push-

equivalence

G
�≡ H ⇐⇒ ∀X ∈ G�, o(G X) = o(H X) .

We call push-values the equivalence classes for this relation. If the push-values theoretically push-values

solve the problem, this definition is not necessarily practical from a computational point of view.

147

∗0

∗0 ∗0 ∗0

∗0 ∗0 ∗0

∗0

Figure 8.8: Tree representation of the push-game �3.

Indeed, it does not provide an algorithm to compute the push-value of a game since the definition
relies on quantifying over the (infinite) set of all possible push-games. The rest of this section
is dedicated to proving properties of the push-equivalence which allows us to compute canonical
representative for the equivalence class of an arbitrary push-game.

To simplify some statements, we will adopt special notations for some of the games. Given an
impartial game G, we denote by G the push-game where the only possible move is to push the

button to create the game G. In other words, the game tree of G contains a single node labelled
by G. For example, if Empty denotes the ruleset where the players have no move on any position,
then ∗n corresponds to Empty�Nim on a heap of size n. For this game, the only possible move
is pushing the button. After this, the players continue with the rules of Nim on a heap of size n.
In particular, 0 is a neutral element for the push-sum: ∀X ∈ G�, X 0 = X. Indeed, there
is no move in the game 0 both before and after pushing the button. We also denote by �n the
game with rules Nim � Empty played on a heap of size n. This game is played by starting with
the rules of Nim, and at any time the players can push the button and win. The game tree of �3
is illustrated in Figure 8.8.

8.4.1 Push-values

Note that when considering the push-value of a game G, the exact shape of push(G), the game
obtained after pushing the button on G, does not matter, but only its SG-value is important.
As such, we will assume in the rest of this section that for every push-game G that we consider,
push(G) is in canonical form, i.e., push(G) = ∗i for some i ≥ 0.

Before showing how push-canonical forms can be computed, we need a few technical lemmas.
The first of these lemmas, shown below gives some criterion to decide which games are push-
equivalent to 0 .

Lemma 89. Let G be a push-game, then G
�≡ 0 if and only if:

• o(push(G)) = P, i.e., pushing the button on G is a winning move,

• and for every normal option G′ of G, there exists a normal option G′′ of G′ such that G′′ �≡ 0 .

Proof. Let G be a push-game which satisfies the two conditions above. We want to show that G is
push-equivalent to 0 . Let X be a push-game. We will show by induction on the size of the trees
of G and X that o(G X) = o(X). If G = 0 , then the result follows the fact that 0 is a neutral
element for . Hence we can assume that G has at least one normal option. Let us first consider
the case o(X) = N . There are two possible cases:

148

• pushing the button on X is a winning move. Then pushing the button on G X is also
a winning move. Indeed, we have o(push(G X)) = o(push(G) + push(X)) = o(push(X))
where the last equality comes from the fact that o(push(G)) = P and using Lemma 76. Since
pushing the button on X is a winning move, it follows that o(push(X)) = P.

• There is a normal option X ′ of X such that o(X ′) = P. Then, playing from G X to G X ′

is a winning move since by the induction hypothesis on G and X ′ , we have o(G X ′) =
o(X ′) = P.

Consider now the case o(X) = P. We wish to show that the second player has a winning
strategy on G X. Since by assumption pushing the button on X is a losing move, it is also a
losing move on G X for the same reasons as above. If the first player plays to G X ′ for some
normal option X ′ of X, then using the induction hypothesis we have o(G X ′) = o(X ′) = N .
Finally, if the first player moves to G′ X for some normal option G′ of G, then by assumption

on G, there exists a normal option G′′ of G such that G′′ �≡ 0 . Consequently, playing to G′′ X
is a winning move for the second player since o(G′′ X) = o(X) = P.

Let us prove now the reverse implication. Let G be a push-game such that G
�≡ 0. For the

first point, assume by contradiction that pushing the button on G is not a winning move. Let n
be the SG-value of push(G). By assumption, we have n �= 0. Hence, we must have o(G ∗n) =

o(∗n) = P. However, the first player has a winning move on G ∗n by pushing the button,

since push(G ∗n) = push(G) + ∗n ≡ 0, a contradiction. This implies that G satisfies the first
condition.

Consider now the second point, and again assume by contradiction that there exists a normal

option G′ of G such that there is no normal option of G′′ of G′ such that G′′ �≡ 0 . We will
build a push-game X such that o(X) = P, but o(G X) = N . Let G′′

1, . . . , G
′′
k be the normal

options of G′′ for k ≥ 0. By assumption, for each 1 ≤ i ≤ k, there exists a push-game Xi such
that o(G′′

i + Xi) �= o(Xi). Up to replacing Xi by Gi + Xi, we can assume that o(Xi) = N , and
o(Gi+Xi) = P. Consider the push-game X as follows: push(X) = ∗m for some sufficiently large m,
and the normal options of X are all the Xi, for 1 ≤ i ≤ k.

Then, by construction, we have o(X) = P since pushing the button or playing to one of the Xi

is a losing move. However, the first player has a winning strategy on G X by playing to G′ X.
Indeed, on G′ X

• pushing the button is a losing move since push(G′) + ∗m has outcome N , if we take m large
enough,

• and for any move to either G′ Xi or G′′
i X the first player can answer to G′′

i Xi which
has outcome P.

This shows that o(G +X) �= o(X), which is the necessary contradiction. Hence, the game G also
satisfies the second property and the equivalence holds.

Lemma 90. For all push-game G ∈ G�, we have G G
�≡ 0 .

Proof. Let G be a push-game. We prove by induction on G that G G satisfies all the conditions
of Lemma 89. If G = 0 , the result is trivial. Assume by induction that G has at least one normal
option, and the result holds for all the normal options of G. The first condition is straightforward as

149

push(G G) = push(G) + push(G) ≡ 0. The second point follows immediately from the induction
hypothesis using symmetric moves: any normal option of G G is of the form G G′ for some
normal option G′ of G, and from this game, there is a normal option to G′ G′ which is push-
equivalent to 0 by the induction hypothesis.

Using the two results above,

Corollary 91. For any two push-games G and H, G
�≡ H if and only if G H

�≡ 0 .

Proof. The proof follows from the following claim:

Claim 92. Let G,H and X be three push-games, then G
�≡ H implies G X

�≡ H X.

Proof. Assume that G
�≡ H, and let X be a push-game. The proof follows from the associa-

tivity of the operator ’ ’. For every Y ∈ G�, we have: o((G X) Y) = o(G (X Y)) =
o(H (X Y)) = o((H X) Y). Since this holds for any push-game Y , this implies as wanted

G X
�≡ H X.

Let G and H be two push-games. First assume that G
�≡ H, then by the claim above, we have

G H
�≡ H H

�≡ 0 , where the second equivalence comes from Lemma 90.

Now, assume that G H
�≡ 0 , then using again the claim above, we have G H H

�≡ H.

Since H H
�≡ 0 by Lemma 90 we have G

�≡ G H H
�≡ H, which completes the proof.

From the results above, we can see that the operator defines a structure of group on G�

(more precisely on the quotient of G� by the equivalence relation
�≡), in a similar fashion as the

disjunctive sum defines a group on the set of SG-values of traditional impartial games. The group
defined by preserves some of the nice properties of the SG-values, but is also at the same time
more complicated. For example, every push-game is its own inverse, as was the case with the
SG-values, but there are also now several equivalence classes which correspond to the outcome P.

Note that the two conditions in Lemma 89 can be checked in polynomial time according to the
size of the game tree. Hence, with the corollary above, it is possible to check whether two push-
games are push-equivalent in time which is polynomial in the size of the game tree. In addition
to being able to decide push-equivalence, we can also compute canonical representatives for all
the equivalence classes. The method for computing these representative is detailed in the next
subsection.

8.4.2 Computing push canonical forms

The operations to compute the representative are inspired from the case of disjunctive canonical
forms (see [Sie13] for example). The canonical representative is computed by iteratively simplifying
the game tree of a push game. This simplification must preserve the value of the game. We first
describe how the simplification is done, and then prove in Lemma 93 that it indeed computes
canonical representative for the equivalence classes of the push-equivalence relation. As was the
case for the canonical forms of the disjunctive sum, there are two kinds of simplification:

150

• Let G be a push-game, and G′ and G′′ be two normal options of G. We say that G′ is push-
dominated1 by G′′ if G′ �≡ G′′. In this case, we can consider the simplified game H obtainedpush-

dominated
option

from G by removing the move to G′.

• If G′ is an option of G, and G′′ an option of G′, we say that G′ is push-reversible through push-reversible
option

G′′ if G′′ �≡ G. If G has an option which is push-reversible through G′′, we can construct the
game H by removing the option to G′ and adding all the options of G′′.

A push-game is said to be in push-canonical form if all its normal options are in push-canonical push-canonical
formforms, and it contains no push-dominated nor push-reversible options. Let us denote by Can(G) the

game obtained from G by replacing each of its normal options by its canonical form, and simplifying
all the push-reversible and push-dominated options as we described above. The following result
shows that Can(G) gives a canonical representative of the equivalence class of a game. The first
point in the following lemma states that a game and its simplified version remain push-equivalent.
The second point means that there is only one push-canonical form for each push-equivalence class.

Lemma 93. Let G and H be two push-games. Then:

• G
�≡ Can(G),

• H
�≡ G if and only if Can(G) = Can(H).

Proof. For the first point, we only need to show that if G is a push-game, and H was obtained by

one step of the simplification, then G
�≡ H. Assume that H was obtained from G by removing an

option G′ which was push-dominated by another option G′′. To prove the result, we only need to

show that G H
�≡ 0 . By construction of H, pushing the button on G H is a winning move.

Moreover, consider a normal option of G H. This option can be of three possible types.

• It can be an option of the form G H2 for some normal option H2 of H. Since the normal
options of H are included in the normal options of G, H2 is also a normal option of G. Hence

there is a move from G H2 to H2 H2
�≡ 0 .

• It can be an option of the form G2 H for some normal option G2 of G different from G′.
By construction of H, G2 is also a normal option of H. Hence there is a move from G2 H

to G2 G2
�≡ 0

• Finally, it can be the option G′ H. In this case, G′′ is an normal option of H, hence there is

a move from G′ H to G′ G′′ �≡ 0 using the assumption that G′ �≡ G′′ and by Corollary 91.

Hence, pushing the button on G H is a winning move, and for every normal option of G H,

there exists a move to a game push-equivalent to 0 . By Lemma 89, this implies G H
�≡ 0, and

by Corollary 91, we have G
�≡ H.

Assume now that H was obtained from G by simplifying a normal option G′ which is push-

reversible through G′′. Since by assumption G
�≡ G′′, to prove that G

�≡ H, it is enough to show

1Note that even though the term ‘push dominated’ suggests an asymmetry between the two games we compare,
the relation is symmetric. The choice for this term comes from a simplification rule for the normal disjunctive sum
which is very similar to this one (see [Sie13, p.64]).

151

that G′′ H
�≡ 0 . Clearly, pushing the button on G′′ H is a winning move since push(G′′ H) =

push(G′′) + H ≡ push(G′′) + push(G) ≡ 0. Additionally, the normal options of G′′ H can be:

• either of the form G′′
2 H or G′′ G′′

2, where G′′
2 is a normal option of G′′. In this case, there

is a move from this option to G′′
2 G′′

2 which is push-equivalent to 0 by Lemma 90;

• or of the form G′′ G2, where G2 is a normal option of G different from G′. However, using

the fact that G G′′ �≡ 0, and the fact that G2 G′′ is also a normal option of G G′′, by
Lemma 89 there exists a normal option X of G′′ G2 such that X

�≡ 0 .

This shows that from every normal option of G′′ H there is a move to a game push-equivalent

to 0, and shows by Lemmas 89 and 91 that H
�≡ G′′ �≡ G. This ends the proof for the first point of

the lemma.

Consider now the second point, and first assume that Can(G) = Can(H), then using the first

point we have G
�≡ Can(G) = Can(H)

�≡ H. Hence, we only need to prove the direct implication.

Let G and H be two push-games in canonical form such that G
�≡ H. We want to show that

G and H are equal. This is shown by induction on the size of the game trees of G and H. First,

since G
�≡ H, pushing the button on G H is a winning move. Consequently, since both push(G)

and push(H) are in canonical form, it follows that push(G) = push(H). Let us show that for every
normal option G′ of G there exists a normal option H ′ of H such that G′ = H ′.

Let G′ be a normal option of G. Then G′ H is a normal option of G H. Since G H
�≡ 0 ,

this implies that there exists a normal option X of G′ H such that X
�≡ 0 . If X is of the form

X = G′′ H for some normal option G′′ of G′, then this implies G′′ �≡ H
�≡ G. This contradicts the

assumption that G has no reversible options. Hence, X must be of the form X = G′ H ′ for some

normal option H ′ of H, and consequently G′ �≡ H ′. Using the induction hypothesis, this implies
that G′ = H ′.

Symmetrically, for every option H ′ of H, there exists an option G′ of G such that H ′ = G′.
Since there is no two normal options of G (or H) which are push-equivalent, this implies that there
is a bijection between the normal options of G and H, and consequently G = H.

We have shown how to compute the push canonical forms for an arbitrary push game. If this
method is very general, there are some games for which the canonical form is quite simple, and can
be easily computed. The following theorem is an example of such games.

Theorem 94. Let G be a push-game such that all the nodes of the game tree of G are labelled with

the same game H. Then there exists i ≥ 0, such that G
�≡ �i H .

Proof. If all the nodes in the game tree of G are labelled with H, then all the nodes in the game

tree of G H are labelled with 0. Hence, to prove the result, we only need to show that games of
the form �i are the only games in push-canonical form for which all the nodes in the game tree are
labelled with 0. Let G be a game in push-canonical form, where all the nodes in the game tree of G

are labelled with 0. We prove that G
�≡ �i for some i by induction on the size of the game-tree of

G. If the game tree of G contains a single node, then G = 0 = �0, and there is nothing to prove.
Assume now that the induction hypothesis holds, and consider the game G such that all the nodes
in the game tree of G are labelled with 0. Since G is in push-canonical form, using the induction

152

hypothesis, all the normal options of G are of the form �i for some i ≥ 0. Consider the set A of all
integers i such that �i is a normal option of G. Let j = mex(A), the smallest non-negative integer

not in A. We will show that G �j
�≡ 0 , which implies G

�≡ �j by Corollary 91.

Clearly, pushing the button on G �j is a wining move since both components are equal to 0
after pushing the button. Additionally, consider a normal option of G �j. This option can be
either:

• G �j′ for some j′ < j. By definition of j, �j′ is also a normal option of G, and there is a

move from G �j′ to �j′ �j′
�≡ 0 ;

• or �i �j, where i ∈ A. Then by definition of j, we have i �= j. Hence, either i < j and
there is a move from this game to �i �i, or i > j, and there is a move to �j �j. In any
case, there is a move to a game which is push-equivalent to 0 by Lemma 90.

Using Lemma 89, this implies that G �j
�≡ 0 , as required.

Before trying to apply these canonical forms to several games, we highlight the similarities and
the differences between the SG-values and the push-canonical forms of games. The push-canonical

forms are their own inverse, i.e., X X
�≡ 0 , as it was the case for the SG-values. Additionally,

the push-canonical form can be computed by applying a simplification procedure on the tree of a
game. This simplification procedure is very similar to what is done for the SG-values of impartial
games. However, unlike the SG-values, the number of push-canonical games seem to grow much
faster (as a function of the depth of the tree) than the number of SG-values. This will be visible
in particular in the examples in the next section. Finally, for any x ∈ {N ,P}, the number of
push-canonical games with outcome x is infinite, which is another difference with the SG-values for
which there is only one canonical form with outcome P.

We now attempt to apply these results to push-compounds of Subtraction games. Even
though Subtraction rulesets produce some of the most simple games we can consider, even in
this case it seems that the canonical forms for push-compounds of Subtraction games become
complicated very quickly.

8.4.3 games

We now consider the push operator applied to Subtraction rulesets. Recall from Section 7.3 that
the ruleset Sub(S) is played with one heap of tokens. At his turn a player can remove v ∈ S tokens
from the heap, provided there are at least v tokens in the heap. Before looking at push-values
and push-canonical forms of subtraction games, we consider the outcomes of these games on a
single heap. It is known that the sequences of SG-values (and consequently also the sequences of
outcomes) for usual subtraction games are periodic (see Theorem 79). We show in the following
theorem that the periodicity of outcomes still holds if Subtraction rulesets are composed using
the push-the-button construction. In the following, we call Push-Subtraction the rulesets of the
form R1 �R2, where R1 and R2 are both Subtraction games.

Theorem 95. Suppose that R2 is a ruleset over N with purely periodic P-positions of period k,
and R1 = Sub(S) for a finite set S. The ruleset R1 �R2 has ultimately periodic P-positions. The
lengths of the period and pre-period are at most k · 2max(S).

153

Proof. Let R = R1 �R2. The proof follows essentially the same lines as the proof of Theorem 79.
We denote M = max(S) the largest element in the subtraction set S. Remark that the function
n �→ oR(n) is such that its value on an integer n only depends on two things:

• the value of oR2(n), which only depends on the congruence class of n modulo k,

• and the value of oR(n− i) for 1 ≤ i ≤M .

As a consequence, we can write:

oR(n) = f(oR(n− 1), . . . , oR(n−M), n mod k)

for some function f : {P,N}M × Zk −→ {P ,N}. If we note X the set {P,N}M × Zk, we can
define the function g : X → X as:

g(a1, . . . aM , n) = (f(a1, . . . aM , n), a1, . . . aM−1, n+ 1 mod k).

We denote by F0 the initial vector (oR(M − 1), . . . oR(0),M), and g(m) the function g composed m
times. We can see that the first element of the tuple g(m)(F0) is oR(M +m− 1). Now, since |X| =
k2M , there exists n0 and p smaller than |X| such that g(n0+p)(F0) = g(n0)(F0), and consequently,
for all m ≥ n0, oR(m+ p) = oR(m).

Note that the theorem above assumes that the P-positions of R2 are purely periodic (i.e., there
is no preperiod). However, the result can be easily adapted if the P-positions of R2 are only
ultimately periodic by just ‘forgetting’ the first positions which corresponds to the preperiod.

In particular, since the SG-sequence of Subtraction games is ultimately periodic, the result
above implies that the outcome sequence of Push-Subtraction games is also ultimately periodic.
As a consequence deciding the outcome of a push-subtraction game on a single heap can be done in
polynomial time. On the other hand, this does not prove anything in the case of multiple heaps. For
usual subtraction games, the periodicity of the SG-values (see Theorem 79) implies that computing
the outcome on multiple heaps can be done in polynomial time as well. For this, we only need to
compute the SG-value of each of the heaps individually, and combine them using the XOR-rule.
Ideally, we would want this type of argument to work for Push-Subtraction games as well. In
other words, ideally, we would want the push-canonical forms of Push-Subtraction games to be
periodic as well. However the few examples below suggest that this is usually not the case, even for
very simple subtraction sets. As a consequence, it seems unclear whether the canonical forms of
Push-Subtraction games are simple enough to allow computing the outcomes on multiple heaps
in polynomial time.

Note that for usual heap games, the periodicity of the P-positions, and the periodicity of the
SG-values often occur together. The Push-Subtraction games are an example where this does
not hold. Note that this is also true for the Partizan Subtraction games that we will study in
the next chapter.

Theorem 96. The sequence of canonical forms for the ruleset R = Sub({1, 2})�Sub({1}) contains
infinitely many values.

Proof. We will show by induction on i that for all j ≤ i, the games (j)R are already in canonical
form, and in particular they are pair-wise non-equivalent. The result clearly holds if i = 1. Assume
now that i ≥ 2, and consider the game (i)R. Using the induction hypothesis, we know that all the
options of (i)R are already in canonical form. To prove that (i)R is in canonical form, we only need
to show that it has no push-reversible nor push-dominated options.

154

• To prove that (i)R has no push-reversible options, it is enough to show that (i)R is not push-
equivalent to (j)R for j ∈ {i−2, i−3, i−4}. Clearly (i)R and (i−3)R are not push-equivalent
since i and i− 3 do not have the same parity, and consequently, push((i)R) �≡ push((i− 3)R).
Moreover, (i)R (i − 2)R is not push-equivalent to 0 . Indeed one of its normal options is
(i−2)R (i−2)R which is push-equivalent to 0 by Lemma 90. This normal option will never
be removed by any further simplification (it cannot be push-reversible since it has no option),
and will remain in the push-canonical form of (i)R (i − 2)R which consequently won’t be
push-equivalent to 0 . Finally, consider the game (i)R (i − 4)R. This game has a normal
option to (i − 1)R (i − 4)R, for which (using the induction hypothesis) there is no normal
option which is push-equivalent to 0 .

This concludes the proof showing that (i)R is not push-equivalent to (j)R for j ∈ {i− 2, i−
3, i− 4}, and consequently, (i)R has no push-reversible option.

• The fact that (i)R has no push-dominated option follows immediately from the fact that
(i− 1)R and (i− 2)R are not push equivalent using the induction hypothesis.

Hence, none of the two simplification cases apply, and consequently (i)R is already in canonical
form, and consequently not push-equivalent to (j)R for any j < i.

This result implies that using the push-canonical forms to compute the outcome of Sub({1, 2})�
Sub({1}) on multiple heaps is not practical (at least not directly, but we could still have a behaviour
similar to Nim with the bit-wise XOR). However, we will see in the next subsection that for this par-
ticular game, the push-canonical forms can be simplified further if we do not care about computing
push-sums of this game with other games, but only consider push-sums of several positions of this
game. In particular, we will be able to compute in polynomial time the outcome on several heaps
using simplified canonical forms. The result above showed that push-canonical forms can become
complicated, even if the second ruleset in the compound is very simple (here it is just Sub({1})).
The next theorem completes this result by showing that the values can also be complicated if the
first ruleset is only Sub({1}). Unlike the other example above, we do not have a general method
for computing the outcome on several heaps for these games.

Theorem 97. Let S be a finite subset of positive integers, with 2 ∈ S. The sequence of push-
canonical forms for Sub({1})� Sub(S) contains infinitely many values.

Proof. Consider the ruleset R = Sub({1}) � Sub(S). We will show by induction on i that the
game (i)R (i.e., the game with rules R played on a heap of size i) is already in canonical form. This
clearly holds if i = 0, since the game cannot be simplified further. Assume by induction that (i)R
is in canonical form, and consider the game (i + 1)R. The only normal option of (i + 1)R is (i)R.
To prove that (i + 1)R is already in canonical form, we only need to prove that this option is not
reversible. This follows immediately from the fact that (i)R and (i− 2)R are not push-equivalent.
Indeed, since 2 ∈ S, the two games (i)

Sub(S) and (i−2)
Sub(S) do not have the same SG-values since

one is an option of the other.

Even though using the push-canonical forms is not practical for the rulesets considered above,
there are cases, where we can use other ad-hoc methods to characterize the P-positions on multiple
heaps. However, we do not know any general method that would allow computing the outcome of
Push-Subtraction games on multiple heaps in polynomial time.

155

Open Problem 18. Find a polynomial-time algorithm to compute the outcome of Push Sub-

traction games on several heaps.

The theorem below is a simple example where we can give an explicit characterization of the
P-positions on multiple heaps. From the statement of the theorem, we can see that if we fix the size
of the smallest heap, then deciding whether a position is a P-position or not is easy: it only depends
on the parity of certain quantities related to the position. Investigating whether this property holds
for Push-Subtraction games in general, or is only specific to this particular game could be a
first step to solve general Push-Subtraction game.

Theorem 98. Consider the ruleset R = Sub({1}) � Sub({1, 2}). A position s is a P-position if
and only if one of the following holds:

• s has an odd number of heaps and there is an even number of heaps with size (2 mod 3) and
an odd number of heaps with size (1 mod 3);

• s has an even number of heaps and satisfies the criterion above after removing the smallest
heap and subtracting it from all the other heaps.

Proof. Note that the SG-value for a heap of size i for Sub({1, 2}) is equal to (i mod 3). Denote
by B be the set of positions which satisfy one of the two conditions above. In the following, give a
position s and i ∈ {0, 1, 2}, we write Γi(s) the set of heaps of s which have size:

• (i mod 3) if s has an odd number of heaps,

• (min(s) + i mod 3) if s has an even number of heaps.

We also write γi(s) the parity of |Γi(s)|. With this notation, we have s ∈ B ⇐⇒ (γ1(s), γ2(s)) =
(odd, even). To prove that B is the set of P-positions for Sub({1}) � Sub({1, 2}), we will prove
that it satisfies the two conditions from Lemma 80.

First, we check that for every position s not in B, there is either a winning move by pushing
the button, or a move to s′ ∈ B by removing one token from a heap. The different possible cases
are considered in the table below.

γ1(s) γ2(s)

even even Pushing the button is a winning move.

even odd Removing 1 in a heap of Γ2(s) does not change the number of heaps, and leads
to s′ with (γ1(s

′), γ2(s′)) = (odd, even).

odd odd If the number of heaps is odd, then γ0(s) is odd, and in particular Γ0(s) is not
empty. Removing one token from a heap in Γ0(s) leads to a position s′ with the
same number of heaps, and s′ ∈ B. If the number of heaps is even, removing
one token in the smallest heap leads to s′, with (γ1(s

′), γ2(s′)) = (odd, even) if
the smallest heap had size at least 2. If the smallest heap had size 1, then this
move leads to a position s′ with an odd number of heaps, and (γ1(s

′), γ2(s′)) =
(odd, even).

156

Then we check that for all s ∈ B, pushing the button is a losing move, and all options s′ of s
are not in B.

Let s be a position with γ1(s) = odd and γ2(s) = even. We start by showing that pushing
the button on s is a losing move. First, observe that the SG-value of (s)

Sub({1,2}) is zero if and
only if there is an even number of heaps with size (1 mod 3) and (2 mod 3). If there is an odd
number of heaps in s, then the number of heaps with size (1 mod 3) is equal to |Γ1(s)| which is odd
by assumption. Hence, the SG-value after pushing the button is odd, and in particular non-zero.
Consequently pushing the button is a losing move.

If the number of heaps is even, then we must have γ0(s) = odd. Let n1 and n2 denote the
number of heaps of size (1 mod 3) and (2 mod 3) respectively. We cannot have both n1 and n2

even, since only one of γ0(s), γ1(s), γ2(s) is even. Again, the SG-value after pushing the button is
non-zero, and pushing the button is a losing move.

Hence, we only need to prove that for all the options of s′ of s, we have s′ �∈ B. If s and s′ have
the same number of heaps, then the move to s′ changes either γ1(s) or γ2(s), and consequently
s′ �∈ B. Assume that the move from s to s′ decreases the number of heaps by 1, and consequently
the smallest heap of s has size 1. If the number of heaps in s was even, then |Γ1(s

′)| = |Γ0(s)| − 1
which is even, consequently s′ �∈ B. If the number of heaps in s is odd, then in s′ the number of
heaps of size i modulo 3 for i ∈ {0, 1, 2} is even, as a consequence, γ1(s

′) and γ2(s
′) are both even,

and s′ �∈ B.

8.4.4 The (0,1)-universe

As we have seen in the examples above, in general the push-canonical forms seem to be complicated,
even for very simple games. There are however some cases where these values can be simplified
further if we do not wish to compute push-sum with any games, but restrict the kind of games
we can do sums with. This is similar to the ‘misère quotient’ approach taken in [Pla05, PS08,
MR13, DRSS15] for the disjunctive sum under misère-play convention. The main idea is, instead of
considering sums of arbitrary games, to only consider sums of games from a particular ‘universe’.
This universe is a proper subset of all the possible games. For example, if we wish only to study
one particular ruleset R, then the universe could be restricted only to games of the form (p)R for
some position p. By doing so, we can define an equivalence in this restricted universe, and this
equivalence might contain only ‘few’ equivalence classes, which would simplify the study of the sums
of these games. Of course, these values do not give any information if we want to sum these games
with other games outside the universe. The main issue with this method it that the equivalence
in the restricted universe might not satisfy anymore the simple properties of the general case. In
particular, there is no guarantee that in the restricted universe there is a simple method to decide
whether two games are equivalent.

In this subsection, we restrict the push-games we consider to only certain games which satisfy
some properties. We show that in this restricted universe, the values become more simple, and
canonical representative for these values can still be computed efficiently.

We consider the subset G�
0,1, which is the subset of push-games such that pushing the button

can only produce games with SG-values 0 or 1. In other words, this means that we can assume that
the labels of the nodes in the game tree of G ∈ G�

0,1 are all either ∗0 or ∗1. We call (0, 1)-push-
games these games. In this case, we modify the definition of equivalence we used at the beginning
of this section, by quantifying only over all games in G�

0,1, instead of considering all the possible

157

push-games. We denote by
�≡0,1 this new equivalence, which is formally defined by:

G
�≡0,1 H ⇔ ∀X ∈ G�

0,1, o(G+X) = o(H +X) .

Note that the only difference with the push-equivalence is the set of games we quantify over.

In particular, the push-equivalence
�≡ is refinement of the (0, 1)-equivalence

�≡0,1. This means that

if G
�≡ H, then G

�≡0,1 H. If we restrict our attention to (0, 1)-push-games, the values (i.e., the
equivalence classes) for the (0, 1)-equivalence become more simple due to the following observation.

Observation 99. Let G be a (0, 1)-push-game, and G′ be a normal option of G. If push(G) �≡
push(G′), then we can assume that the player with a winning strategy never plays the move from
G to G′, even if G is a component in a push-sum.

Proof. Let G be the (0, 1)-push-game with a normal option G′ as in the observation, and X be
an arbitrary (0, 1)-push-game. Assume that in the game G X, playing in G to G′ is a winning
move. Hence o(G′ X) = P, and in particular, push(G′ X) has a SG-value different from 0. This
implies that push(G′) and push(X) have different SG-values. Since there are only two possible
cases for the SG-value after pushing the button, and we assumed that push(G) �≡ push(G′), then
this means that push(G) ≡ push(X). In particular the player also has a winning move on G X
by pushing the button, and can win by playing this instead of playing in G.

The observation above means that we can simplify the game tree of a (0, 1)-push-game, by just
removing all the nodes which are labelled with games which are not equivalent to the label of the
root. After this simplification, we can apply Theorem 94, and we immediately obtain the following
result.

Theorem 100. Any game G ∈ G�
0,1 is (0, 1)-equivalent to �i ∗j , for some integers i ∈ N and

j ∈ {0, 1}.
Note that the value of i and j in the statement above can be easily computed. Indeed, the value

for j is 0 if pushing the button is a winning move, and 1 otherwise. The value of i can be obtained
from the SG-values of an auxiliary game G′ which is obtained from G by removing all the nodes in
the game tree which have a label different from the root, and removing the push-move (i.e., pushing
the button is no longer permitted). This implies in particular the following result for some very
simple Push-Subtraction games. Note that in particular for the ruleset Sub({1, 2})�Sub({1}),
we showed in Theorem 96 that the sequence of push-canonical forms contained infinitely many
different values. If we consider only the (0, 1)-push-values of this game, then this sequence is
ultimately periodic, and in particular takes only a finite number of different values. This result is
a special case of the following theorem.

Theorem 101. Let S1 and S2 be two finite set of positive integers, such that SG
Sub(S2)(n) ∈ {0, 1}

for every position n ≥ 0. Then the sequence of (0, 1)-push-canonical forms for Sub(S1)� Sub(S2)
are periodic.

Proof. We can first remark that there is only a finite number of different push-values . This can be
seen easily from the way we compute the canonical forms as described just above. The periodicity
follows immediately using a similar argument as in the proofs of Theorems 79 and 95, and the fact
that the (0, 1)-canonical form of a game can be computed from the (0, 1)-canonical forms of its
normal options.

158

8.5 Conclusion

We have seen in this chapter a construction which allows us to combine several rulesets, and an
almost disjunctive sum for these new games. We proved how to compute canonical forms for
these games, and how these canonical forms shared some similarities with SG-values, but also had
significant differences. In particular, the number of push-canonical games seem to grow very quickly,
and there are cases where computing the push-canonical forms does not seem to help. We also saw
that these push-canonical forms became very simple if we restrict greatly the universe of games we
consider. It could be interesting to see if it is possible to find an intermediate universe, for which
the values retain a simple structure, and which captures a larger class of games. This could lead
to a method to find a polynomial time algorithm to compute the outcome of Push-Subtraction
games on multiple heaps.

Finally, note that all our analysis was done for impartial games only. Another direction of
research could be to investigate if (and how) these results can be generalised to partisan games.

159

Chapter 9

Rules Decomposition: Partizan
Subtraction Games

In this chapter, we consider Partizan Subtraction games, a generalisation of standard Sub-

traction games. We investigate the asymptotic behaviours of the outcome sequences for this
family of games. In addition to the notion of dominance introduced in [FK87], we define three
other behaviours and investigate the problem of computing this behaviour for different instances.
The results presented here were published in [DHNP19].

This chapter is organized as follows. In Section 9.1 we formally describe Partizan Subtrac-

tion games, and define the properties of these games that will be studied in the other sections. In
Section 9.2 we consider the problem from a complexity point of view. We show that two problems
related to computing the outcome of a given position are NP-hard. In Sections 9.3 and 9.4, we
investigate properties of the outcome sequence when one of the subtraction set is respectively fixed
or contains only one element. Finally, in Section 9.5 we consider the case of subtraction sets of
size 2, and characterize some cases for which a dominance property holds.

9.1 Introduction

Partizan Subtraction games were introduced by Fraenkel and Kotzig in 1987 [FK87]. They arePartizan

Subtraction

games
a generalisation of (impartial) Subtraction games. Recall from Section 7.3 that Subtraction

games are parametrized by a finite set S of positive integers. At his turn, a player can remove x
tokens from a single heap, provided x ∈ S. In the partizan version, each player is assigned a finite
set of integers, respectively denoted SL (for the Left player), and SR (for the Right player). A
move consists in removing a number m of tokens from the heap, provided m belongs to the set of
the player. We consider the game with the normal play convention: the first player unable to move
loses. When SL = SR, the game is impartial and is known as the standard Subtraction game.

Partizan Subtraction games are a special case of a more general construction which consists
in building a new partizan ruleset from two impartial rulesets R0 and R1. Given these two rulesets,
we can build a partizan ruleset where Left plays according to the rules of R0, and Right plays
according to R1. For this construction to work, the two rulesets must be compatible in the sense
defined in Chapter 8 (i.e., they must use the same set of positions). Partizan Subtraction

games corresponds to the case where R0 and R1 are both Subtraction rulesets. In Chapter 8 we

160

studied a construction which builds an impartial ruleset from a partizan one. On the contrary, the
operation we consider here is the reverse: it builds partizan rulesets from impartial ones.

In the rest of the section, it will always be clear from the context which ruleset we are considering.
Hence we will omit to write it in the notations and just write o(n) for the outcome of the Partizan
Subtraction rulseset currently under consideration on a single heap of size n. We also use
simplified notations and just write (SL, SR) the Partizan Subtraction ruleset with subtraction
sets SL and SR. Although Partizan Subtraction games can be played on multiple heaps, we
will concentrate here on the single heap version of the game. As such, a game position will be
simply denoted by an integer n corresponding to the size of the heap.

The outcome sequence of a Partizan Subtraction ruleset (SL, SR) is the sequence of the
outcomes for n = 0, 1, 2, 3, . . ., i.e., o(0), o(1), o(2), A well-known result ensures that the outcome
sequence of any impartial subtraction game is ultimately periodic (see Theorem 79). Note that in
that case, the outcomes can only take the values P or N since the game is impartial. In [FK87],
this result is extended to partizan subtraction games.

Theorem 102 (Fraenkel and Kotzig [FK87]). The outcome sequence of any partizan subtraction
game is ultimately periodic.

Example 1. Consider the partizan subtraction ruleset ({1, 2}, {1, 3}). Its outcome sequence is

P N L N L L L L . . .

In this particular case, the periodicity of the sequence can be easily proved by showing by induction
that the outcome is L for n ≥ 4.

A behaviour as in Example 1 where the outcome sequence has period 1 seem rather frequent
for partizan subtraction games. In this case, the period is either only L or only R. In their paper,
Fraenkel and Kotzig called this property dominance. More precisely, we say that SL � SR – or
that SL dominates SR – if there exists an integer n0 such that the outcome of the game (SL, SR)
is always L for all n ≥ n0. By symmetry, a game satisfying SL ≺ SR is always R for all sufficiently
large heap sizes. When a game satisfies neither SL � SR nor SL ≺ SR, the sets SL and SR are said
incomparable, which is denoted by SL‖SR. In [FK87], several instances have been proved to satisfy
the dominance property such as the rulesets ({1, 2m}, {1, 2n + 1}) and ({1, 2m}, {1, 2n}). Others
were shown to be incomparable such as {a} and {b}. It is also shown that the dominance relation is
not transitive. Note that unlike their impartial variants, the canonical forms of partizan subtraction
games can be quite complicated, and are not necessarily periodic. In [Pla95], the canonical forms
have been computed for partizan subtraction games with SL = {1, 2}, and SR = {1, k}.

In the literature, partizan taking and breaking games have not been so much considered. A
more general version, where it is also allowed to split the heap into two heaps, was introduced
by Fraenkel and Kotzig in [FK87], and is known as partizan octal games. A particular case of
such games, called partizan splittles, was considered in [MI05], where in addition, SL are SR are
allowed to be infinite sets. Another variation with infinite sets is when SL and SR make a partition
of N [LMNS18]. In such cases, the ultimate periodicity of the outcome sequence is not necessarily
preserved.

In the current chapter, we propose a refinement of the structure of the outcome sequence for
partizan subtraction games. More precisely, when the sets SL and SR are incomparable, different
kinds of periodicity can occur. The following definitions presents a classification for them.

161

Definition 9. We characterize the ruleset (SL, SR) depending on the outcome values which appear
in the periodic part of outcome sequences. More precisely, we say that (SL, SR) is:

• SD (Strongly Dominating) for Left (resp. Right), and we write SL � SR (resp. SL ≺ SR) ifstrongly domi-
nating, SD any position n large enough has outcome L (resp. R). In other words, the period is reduced

to L (resp. R).

• WD (Weakly Dominating) for Left (resp. Right), and we write SL �w SR if the periodweakly domi-
nating, WD contains at least one L and no R (or resp. one R and no L).

• F (Fair) if the period contains both L and R.fair, F

• UI (Ultimately Impartial) if the period contains no L and no R.ultimately im-
partial, UI

Remark 3. Note that inside a period, not all the combinations of P, N , L and R are possible.
For example, a period that includes P must also include N . Indeed, assume on the contrary that
there is (SL, SR) such that the period of the outcome sequence contains P but not N . Let n be a
position of outcome P in the period, and p the length of the period. Let a ∈ SL. Now the position
n+ a is in the period, and o(n+ a) = L since Left can win by playing a as a first player, and using
the assumption that o(n) �= N . For the same reason, we also have o(n + 2a) = L. By repeating
this argument, o(n + ka) = L for all k. In particular, n + pa is a L-position. However, since n is
in the period, we must have o(n+ pa) = o(n) = P, a contradiction.

The literature detailed above mentions examples of SD and UI games (for example, impartial
subtraction games are UI). We will see later in this chapter examples of WD games (e.g., in
Lemma 110) and fair games (e.g., in Example 2). In the following section, we will say that Left
dominates in (SL, SR) to mean the ruleset (SL, SR) is strongly dominating (i.e., SD) for Left.
Before considering the dominance property of specific Partizan Subtraction games, we start by
studying these games from a complexity point of view. In the following, if A is a set of integers,
and x an integer, then A+ x denotes the set obtained by shifting the elements of A by x, in other
words, A + x = {y + x, y ∈ A}. Additionally, if B is a set of integers, then we also will also
write A+B as the set A+B = {x+ y, x ∈ A, y ∈ B}.

9.2 Complexity

Computing the outcome of a game position is a natural question when studying combinatorial
games. For partizan subtraction games, we know that the outcome sequence is eventually periodic.
This implies that, if SL and SR are fixed then computing the outcome of a given position n can
be done in polynomial time1. However, if the subtraction sets are part of the input, then the
algorithmic complexity of the problem is not so clear. This problem can be expressed as follows:

PSG Outcome

Input: two sets of integers SL and SR, a game position n
Output: the outcome of n for the game (SL, SR)

In the next result, we show that this problem is in fact NP-hard. Note that it is not clear
whether the problem is in NP or not, and the complexity of the problem could be higher. Recall

1Note that this only works if we consider the game on a single heap. On multiple heaps, the complexity is still
open, even if the subtraction sets are fixed.

162

from Section 7.3 that in the case of impartial subtraction games (i.e. if SL = SR), there is no
known result about the complexity of this problem. This is surprising as these games have been
thoroughly investigated in the literature.

Theorem 103. PSG Outcome is NP-hard, even in the case where the set of one of the players
is reduced to one element.

Proof. We use a reduction from Unbounded Knapsack Problem defined below. This problem
was shown to be NP-complete in [Lue75].

Unbounded Knapsack Problem

Input: a set S and an integer n
Output: can n be written as a sum of non-negative multiples of S?

Let S, n be an instance of unbounded knapsack problem, where S is a finite set of integers,
and n is a positive integer. Without loss of generality, we can assume that 1 �∈ S since otherwise
the problem is trivial. We consider the partizan subtraction game where Left can only play 1,
and Right can play any number x such that x + 1 ∈ S. In other words, we have SL = {1} and
SR = S − 1. We claim that for this game, Right has a winning strategy playing second if and only
if n can be written as a sum of non-negative multiples of elements of S.

Observe that during one round (i.e. one move of Left followed by one move of Right), if x is the
number of tokens that were removed, then x ∈ S. Suppose that Right has a winning strategy, and
consider any play where Right plays according to this strategy. Then Right makes the last move,
and after this move no token remains. Indeed, if there was at least one token remaining, then Left
could still remove this token and continue the game. At each round an element of S was removed,
and at the end, no tokens remains. This implies that n is a sum of non-negative multiples of S.

In the other direction, if n is a sum of non-negative multiples of S, we can write n =
∑

x∈S nxx.
A winning strategy for Right is simply to play nx times the number (x− 1) for each x ∈ S.

The second question that emerged from partizan subtraction games is the behaviour of the
outcome sequence, according to Definition 9. It can also be formulated as a decision problem.

PSG Sequence

Input: two sets of integers SL and SR
Output: is the game (SL, SR) SD, WD (and not SD), F or UI?

Unlike PSG Outcome, the algorithmic complexity is open for PSG Sequence. The next
sections will consider this problem for some particular cases. In particular, we will investigate some
conditions on the subtraction sets which ensure one type of outcome sequence. In addition, one can
wonder whether the knowledge of the behaviour of the outcome sequence could help to compute
the outcome of a game position. The answer is no, even if the game is SD:
Proposition 104. Let SL = {a1, . . . , an} be such that gcd(a1+1, . . . , an+1) = 1, and let SR = {1}.
The game (SL, SR) is SD for Left but computing the length of the preperiod is NP-hard.

The proof will be based on the well-known Coin Problem (also called Frobenius problem).

Coin Problem

Input: a set of n positive integers a1, . . . , an such that gcd(a1, . . . , an) = 1
Output: the largest integer that cannot be expressed as a positive linear combination of a1, . . . , an.

163

This value is called the Frobenius number. For n = 2, the Frobenius number equals a1a2−a1−a2
[S+84]2. No explicit formula is known for larger values of n. Moreover, computing the Frobenius
number was proved to be NP-hard in the general case [RA96].

Proof. Under the assumptions of the proposition, we will show that the length of the preperiod
is exactly the Frobenius number of {a1 + 1, . . . , an + 1}. Indeed, let N be the Frobenius number
of {a1 + 1, . . . , an + 1}. Then N + 1, N + 2 . . . can be written as a linear combinations of {a1 +
1, . . . , an + 1}. Note that in the game (SL, SR), any round (sequence of two moves) can be seen
as a linear combination of {a1 + 1, . . . , an + 1}, as Left plays an ai and Right plays 1. Hence if
Right starts from N + 1, Left follows the linear combination for N + 1 to choose her moves, so as
to play an even number of moves until the heap is empty. For the same reasons, if Right starts
from N + 2, Left has a winning strategy as a second player. Since Right’s first move is necessarily
1, it means that Left has a winning strategy as a first player from N + 1. Thus the position N + 1
has outcome L. Using the same arguments, this remains true for all positions greater than N + 1.
In other words, it proves that the game is SD for Left. Now, we consider the position N and show
that o(N) �= L. Indeed, assume that Right starts and Left has a winning strategy. It means that
an even number of moves will be played. According to the previous remark, the sequence of moves
that is winning for Left is necessarily a linear combination of {a1+1, . . . , an+1}. This contradicts
the Frobenius property of N .

This correlation between partizan subtraction games and the coin problem will be reused later
in the chapter. We now continue with the study of Partizan Subtraction games for specific
subtraction sets.

9.3 When SL is fixed

In this section, we consider the case where SL is fixed and study the behaviour of the sequence when
SR varies. In particular, we look for sets SR that make the game (SL, SR) favourable for Right.
This can be seen as a prelude to the game where players would choose their sets before playing:
if Left has chosen her set SL, can Right force the game to be asymptotically more favourable for
him?

9.3.1 The case |SR| > |SL|
If SR can be larger than SL, then it is always possible to obtain a game favourable for Right, as it
is proved in the following theorem.

Theorem 105. Let SL be any finite set of integers. Let p be the period of the impartial subtraction
game played with SL and let SR = SL ∪ {p}. Then Right strongly dominates the game (SL, SR),
i.e., the game (SL, SR) is ultimately R.

Proof. Let n0 be the preperiod of the impartial subtraction game played on SL and m be the
maximal value of SL. We prove that Right wins if he starts on any heap of size n > n0 + p, which
implies that the outcome on (SL, SR) is R for any heap of size n > n0 + p+m.

2Although not germane to this chapter, Sylvester’s solution is central to the strategy stealing argument that proves
that naming a prime 5 or greater is a winning move in sylver coinage[BCG04, pages 610-631].

164

If n is a N -position for the impartial subtraction game on SL, then Right follows the strategy
for the first player and never use the value p. Then the game is impartial and Right wins.

If n is a P-position, Right takes p tokens and which leaves Left with a heap of size n− p > n0

which is, using periodicity, also a P-position in the impartial game. After Left’s move, we are in
the case of the previous paragraph and Right wins.

Note that in the previous theorem, SR contains the set SL, and thus has a large common
intersection. We prove in the next theorem that if SR cannot contain any value in SL, then it is
still possible to have a game that is at least fair for Right (i.e., it contains an infinite number of R-
positions). Note that we do not know if for any set SL, there is always a set SR with |SR| = |SL|+1
and SR ∩ SL = ∅ that is (weakly or strongly) dominating for Right.

Theorem 106. For any set SL, there exists a set SR with SL ∩ SR = ∅ and |SR| = |SL|+ 1 such
that the resulting game contains an infinite number of R-position.

Proof. Let n be any integer such that the set A = {n−m,m ∈ SL} is a set of positive integers that
is disjoint from SL. Putting SR = A ∪ {n} gives a set which satisfies the condition of the theorem
and in the game (SL, SR) all the multiples of n are R-positions.

Indeed, if Left starts on a position kn with k ∈ N
∗ by removing m tokens, then Right can

answer by taking n−m tokens and leaves (k− 1)n tokens, and by induction, Right wins. If Right
starts, he takes n tokens and again, Left has a multiple of n and loses.

Consequently, if Right has a small advantage on the size of the set, he can ensure that the
sequence of outcome contains an infinite number of R-positions. So having a larger subtraction
set seems to be an important advantage. However, having a larger set is not always enough to
guarantee dominance. Indeed, we have the following result:

Theorem 107. Let SL and SR be two sets of positive integers. Assume that |SL| ≥ 2 and that
Left dominates in (SL, SR), with a preperiod at most p. Let x1, x2 ∈ SL, with x1 < x2, and let d
be an integer with d > p +max(SR ∪ {x2 − x1}), then Left also dominates in (SL, SR ∪ {d}) and
the preperiod is at most (d+ x2)� d+x2

x2−x1
�.

Proof. Let SL, SR, d, x1 and x2 be as in the statement of the theorem. We start by proving the
following claim:

Claim 108. Consider the ruleset (SL, SR ∪ {d}). If Left has a winning strategy on n ∈ N as first
(resp. second) player, then Left also has a winning strategy on n + (d + x) as first (resp. second
player), for any x ∈ SL.

Proof. We will show this result by induction on n ≥ 0. First, assume that Left has a winning
strategy on n as second player. We will show that there is a strategy for Left playing second on
n+ d+ x. Starting from the position n+ d+ x, there are three possible cases:

• Right plays y ∈ SR, with y ≤ n. By the assumption on n, Left wins as first player on n− y,
and using the induction hypothesis, he also wins as first player on n− y + d+ x. Therefore,
Left wins as second player on n+ d+ x.

165

• Right plays y ∈ SR, with y > n. Now Left answers by playing x. This leads to the position
(n− y)+ d, with is such that (n− y)+ d > p by assumption on d. Additionally, n− y+ d < d
by assumption on y. Since n − y + d < d, Right can no longer play his move d, and the
position n− y+ d has the same outcome in (SL, SR ∪ {d}) and (SL, SR). Since n− y+ d > p
Left wins playing second on this position in both rulesets.

• Right plays d, then Left answers by playing x, leading to the position n on which Left wins
as second player by assumption.

Suppose now that Left wins playing first on n, and let y ∈ SL be a winning move for Left. Then
Left wins playing second on n− y, and using the induction hypothesis, she wins playing second on
n− y + d+ x. Consequently, y is a winning move for Left on n+ d+ x.

For i ≥ 0, denote by Xi the set of integers k < d+ x2 such that the position i(d+ x2) + k is an
L-position for ruleset (SL, SR ∪ {d}). To prove the theorem, it is enough to show that if i is large
enough, then Xi = [0, x2 + d[. From the claim above, we know that Xi ⊆ Xi+1.

Additionally, using the hypothesis on d, we have that [p+ 1, d− 1] ⊆ X0. Finally, we have the
following property: for any x ≥ 0, if x ∈ Xi then x − (x2 − x1) mod (d + x2) ∈ Xi+1. Indeed, if
x ∈ Xi, then i(d+x2)+x is an L-position, and using the claim above, so is i(d+x2)+x+d+x1 =
(i+ 1)(d+ x2) + x− (x2 − x1).

Let 0 ≤ x < d + x2, and write (d − x) mod (d + x2) = α(x2 − x1) + β the euclidian division
of (d − x) mod (d + x2) by (x2 − x1). We have 0 < β ≤ x2 − x1, and α ≤ � d+x2

x2−x1
�. This can be

rewritten as:

x = (d− β)− α(x2 − x1) mod (d+ x2)

Since we know that d − β ≥ p by assumption on d, we have that (d − β) ∈ X0, and using the
observation above, this implies that x ∈ Xα ⊆ X	 d+x2

x2−x1

.

Consequently, Left dominates in (SL, SR ∪ {d}) with a preperiod at most (d+ x2)� d+x2
x2−x1

�.
By applying iteratively Theorem 107 with a game that is initially SD for Left (like the one

from Example 1), we obtain the following corollary.

Corollary 109. There are sets SL and SR with |SL| = 2 and |SR| arbitrarily large such that
(SL, SR) is SD for Left.

The condition that d > p+max(SR ∪ {x2− x1}) in Theorem 107 is optimal. Indeed, if we take
SL = {c, c+1} and SR = {1}, as seen in the proof of Proposition 104 the game (SL, SR) is SD for
Left, with preperiod the Froebenius number of {c+1, c+2}, which is p = (c+1)(c+2)− (c+1)−
(c+ 2) = c(c+ 1)− 1.

Thus, by Theorem 107, the game ({c, c+ 1}, {1, d}) with d > c(c+ 1) is also SD for Left. But,
the example below shows that this is not true for d = c(c+ 1) since this game is F .
Example 2. Let SL = {c, c + 1} and SR = {1, d} with d = c(c + 1) and c > 1. Then the game
(SL, SR) is F .
Proof. Let us start by showing by induction on n that o(n) = o(n+ d+ c) for all n ≥ 0. If n = 0,
then we only need to prove that o(d + c) = P. On this position, Right playing first can either

166

remove d tokens, in which case Left can remove the c remaining ones and win, or remove one token
in which case Left can answer c+1. In this second case, after the two moves the position becomes
d− 2 = (c− 1)(c+2). From this position, Right can only play 1, and Left can always remove c+1
tokens removing c+ 2 tokens in two rounds. Since (c+ 2) is a divisor of d− 2 = (c− 1)(c+ 2), the
game ends after an even number of rounds with no tokens remaining, and Left wins the game.

If Left plays first, then she can play either c, in which case Right answers with d and win, or she
can play c+1 to the position c(c+1)−1. Since c(c+1)−1 is the Frobenius number of {c+1, c+2},
using the same argument as in the proof of Proposition 104 it follows that Left playing second on
c(c+ 1)− 1 loses.

Let us now assume that n > 0, suppose that the property holds for every integer smaller than
n. If Left (resp. Right) wins playing first on n by removing x tokens, then she can win as the first
player on the position n+ d+ c by playing x to reach the position (n−x)+ d+ c. Since Left (resp.
Right) has a winning strategy playing second on (n − x), using the induction hypothesis she also
has a winning strategy playing second on (n− x) + d+ c.

If Left wins playing second on n, then starting from the position n+ d+ c, either Right plays
d, and Left can answer with c and win by assumption on n. Or, Right plays 1 to the position
n − 1 + d + c. Since Left wins playing second on n, she must win playing first on n − 1. Using
the induction hypothesis, she also wins playing first on n− 1 + c+ d, and consequently Left wins
playing second on n+ c+ d.

Finally, assume that Right has a winning strategy on n playing second. On position n+ c+ d,
Left start by playing c, then Right can answer with d and win. If Left plays c+ 1, we distinguish
two sub-cases:

• n ≥ c+ 1, in which case Right wins playing first on n− c− 1 by assumption on n, and using
the induction hypothesis she also wins playing first on n−+d− 1.

• n < c+1, in which case Right can answer by playing d to the position n−1. On this position
Left has no move available since n− 1 < c.

In both cases, Right wins as the second player on n + c + d. This ends the induction step, and
shows that for every n ≥ 0, we have o(n) = o(n + c + d). The result of the lemma immediately
follows from the observation that o(1) = R since c > 1, and o(c+ 2) = L.

9.3.2 The case |SR| ≤ |SL|
We first consider the case SL = {1, . . . , k} and prove that the game is always favourable to Left
who strongly dominates in all but a few cases.

Lemma 110. Let SL = {1, . . . , k}, and |SR| = k, then:

1. If SR = {c + 1, c + 2, . . . c + k} for some integer c, then Left weakly dominates if c > 0 and
the game is impartial if c = 0,

2. otherwise, Left strongly dominates.

Proof. 1. In this case, the game is purely periodic, with period PLcN k. This can be proved by
induction on the size of the heap n. If 0 < n ≤ c, only Left can play and the game is trivially
L. Otherwise, let x = n mod (c+ k + 1). If x = 0, then if the first player removes i tokens,
the second player answers by removing c+k+1− i tokens, leading to the position n−c−k−1

167

which is P by induction, and so is n. If 0 < x < c+ 1, when Left starts she takes one token,
leading to a L or a P-position, and wins. If she is second, she plays as before to n− c− k− 1
which is a L-position. Finally, if x ≥ c+1, both players win playing first by playing x− c for
Left and x for Right.

2. We show that if we assume that there is a position n > 0 such that Right wins playing
second on n, then SR contains k consecutive integers. Let n0 be the smallest positive integer
for which Right wins playing second on n0. We know that n0 > k since otherwise Left can
win playing first by playing to zero. Since Right has a winning strategy playing second then
Right has a winning first move on all the position n − i for 1 ≤ i ≤ k. This means that
for each of these positions, Right has a winning move to some position mi such that Right
wins playing second on mi. By minimality of n0, this implies that mi = 0, and consequently
n − i ∈ SR for all 1 ≤ i ≤ k. Consequently, if SR does not contain k consecutive integers,
there is no position n > 0 such that Right wins playing second. In particular, there is no
R nor P-positions in the period. By Remark 3, this implies that the period only contains
L-positions, meaning that the game is strongly dominating for Left.

The set SL = {1, . . . , k} is somehow optimal for Left, since the exceptions of strongly domination
for Left in the previous lemma appear for any set of k elements:

Lemma 111. For any set SL, there is a set SR with |SR| = |SL| and SR ∩ SL = ∅ such that Left
does not strongly dominate.

Proof. Let SR = n0−SL for an integer n0 larger than all the values of SL and such that SR∩SL = ∅.
Then Right wins playing second in all the multiples of n0.

9.4 When one set has size 1

We now consider the case where one of the set, say SR has size 1. As seen in Section 9.2, the study
of the game is closely related to Unbounded Knapsack Problem and to the coin problem.
Indeed, Right does not have any choice and thus the result is only depending on the possibility or
not for n to be decomposed as a combination of the values in SL + SR. Our aim in this section is
to exhibit the precise periods.

9.4.1 Case |SL| = |SR| = 1

In this really particular case, the game is always WD for the player that have the smallest integer.

Lemma 112. Let SL = {a} and SR = {b} with a < b. The outcome sequence of (SL, SR) is purely
periodic, the period length is a+ b and the period is PaLb−aN a. In particular, the game is weakly
dominating for Left.
Proof. We prove that for all n ≥ 0, if one of the player has a winning move playing first (resp.
second) on n, then he also has one playing first (resp. second) on n + a + b. Indeed, suppose for
example that Left has a winning move on position n playing first (the other cases are treated in
the same way). If Left plays first on position n+ a+ b, then after two moves, it’s again Left’s turn
to play, and the position is now n, and Left wins the game.

168

Heap sizes Left move range Right move range Outcome

[0, a− 1] no moves no moves P
[a, b− 1] [0, a− 1] no moves L

[b, b+ a− 1] [b− a, b− 1] [0, a− 1] N
[b+ a, b+ 2a− 1] [b, b+ a− 1] [a, 2a− 1] P
[b+ 2a, 2b+ 2a− 1] [b+ a, 2b+ a− 1] [2a, b+ 2a− 1] L

Table 9.1: Outcomes with SL = {a} and SR = {b} for first values

The result then follows from computing the outcome of the positions n ≤ a+b. These outcomes
are tabulated in Table 9.1.

9.4.2 Case |SL| = 2 and |SR| = 1

In these cases, we are able to give the complete periods.

Theorem 113. Let a, b and c be three positive integers, and let g = gcd(a + c, b + c). The game
({a, b}, {c}) is:
• strongly dominated by Left if g ≤ c,

• weakly dominated by Left with period (Pg−cL2c−gN g−c) if c < g < 2c,

• ultimately impartial with period (PcN c) if g = 2c ,

• weakly dominated by Right with period (PcRg−2cN c) if g > 2c .

Proof. Throughout this proof we write n = qg + r, with 0 ≤ r < c.
We start by proving the following claim which holds in all four cases.

Claim 114. If (n mod g) < c and n is large enough then Left has a winning move on n playing
second.

Proof. After both players play once, the number of tokens decreased by either a + c or b + c
depending on which move Left played. By the results on the coin problem, we know that if q is
large enough, then qg can be written as α(a+c)+β(b+c), with α and β two non-negative integers.
If Left is playing second, a strategy can be to play a α times, and b β times. After these moves, it
is Right’s turn to play, and the position is r < c. Consequently Right has no move left and loses
the game.

We will now use this claim to prove the result in the four different cases.
For the first case, we have g ≤ c. For any integer n, we have (n mod g) < g ≤ c. Consequently,

by the claim above, there is an integer n0 such that for any n ≥ n0, Left wins playing second on n.
This also implies that for any n ≥ n0 + a, Left also wins as first player by playing a. Indeed, Left
plays to the position n − a on which Left has a winning strategy as second player by the claim
above. Thus the outcome is L for any position n large enough.

For the three remaining cases, we will show that the following four properties hold when n is
large enough. The result of the theorem immediately follows from these four properties.

169

1. if r < c, then Left wins playing second,

2. if r ≥ g − c, then Left wins playing first,

3. if r ≥ c, then Right wins playing first,

4. if r < g − c, then Right wins playing second.

We now prove these four points:

1. This point is exactly the claim above.

2. If r ≥ g − c, and n is large enough, then Left can play a. The position after the move is
such that n − a = r − a = r + c mod g. Moreover, since g − c ≤ r < g, we know that
g ≤ r+c < g+c. From the first item, we know that Left wins playing second on this position
if n− a is large enough, so Left has a winning strategy as a first player if r ≥ g − c.

3. If r ≥ c, and Right plays first, then whatever Left plays, after an even number of moves,
Right still has a move available. Indeed, let n′ be the position reached after an even number
of moves. The number of tokens removed, n − n′ is a multiple of g. Consequently, we have
n′ = (n mod g). Since (n mod g) ≥ c, this implies that n′ ≥ c, and Right can play c. This
proves that Right will never be blocked, and Left will eventually lose the game.

4. Finally, if r < g− c, then Left playing first can move to a position n′ equal to either n− a or
n−b. Since a = b = −c mod g, in both cases, we have n′ = r+c mod g. Since c ≤ r+c < g,
by the argument above, we know that Right playing first on n′ wins. Consequently, Left
playing first on n looses.

When c > b and b ≥ 2a, which is included in the first case, we know the whole outcome sequence.
This will be useful in next Section.

Theorem 115. The outcome sequence of the game ({a, b}, {c}), with c > b and b ≥ 2a is the
following:

PaLc−aN aL∞

Proof. We show the result by induction on n, the position of the game.

• If n < a, then none of the player has a move, and thus o(n) = P.
• If a ≤ n < c, then only Left has a valid move, and thus o(n) = L.
• If c ≤ n < a+ c, then Right has a winning move to a position n− c < a which has outcome
P, and Left has a winning move to a position with outcome either P or L. Consequently, we
have o(n) = L.

• Finally, if n ≥ a+ c, then as the first player Right has no winning move, and Left has at least
one winning move. Indeed, since k ≥ a, we can’t have at the same time n− a and n− a− k
in the interval [c, a+ c[. So at least one of n− a and n− a− k is not in this interval, and is
either a P-position or a L-position by induction.

170

a = 4 and b = 11 a = 7 and b = 9

Figure 9.2: Properties of the outcome sequences for ({a, b}, {c, d}). The parameters a and b are
fixed, and the pictures are obtained by varying the parameters c and d. The point at coordinate
(c, d) is blue if Left dominates, red if Right dominates, and green if there is a mixed period.

9.5 When both sets have size 2

The goal of this section is to investigate the sequence of outcomes for (SL, SR) with SL = {a, b}
and SR = {c, d}. In particular, if we suppose that a and b are fixed, we would like to characterize
for which choice of c and d we can ensure that Left dominates. The pictures on Figure 9.2 give an
insight of what is happening. On the figure on the left, we have an example with b ≥ 2a. In this
case, Left almost always dominates, except when the point (c, d) is close to the diagonal or to one
of the axis. When (c, d) is close to the diagonal (i.e., when |d − c| is close to zero), the behaviour
seems more complicated, and we don’t have a characterization for this case.

When b < 2a, the behaviour is more complex, but shares some similarities with the previous
case. From the picture on the right in Figure 9.2 we can see that there are some lines such that if
the point (c, d) is far enough from these lines, then the game is eventually L. Again, when the point
is close to these lines, again the behaviour is more complicated, and we won’t try to characterize it
here. In all cases, we can see that if a and b are fixed, for almost all of the choices of c and d, Left
dominates.

In the rest of this section, we will assume that we have d > c > b. We start by the case b ≥ 2a
which is easier to analyse.

9.5.1 Case b ≥ 2a

We start by the case where b ≥ 2a, and show that in this case Left dominates if (c, d) is far enough
from the diagonal and from the coordinates axes.

Theorem 116. Assume b ≥ 2a, and d > c+ b, then Left dominates. More precisely, the outcome
sequence is:

PaLc−aN aLd−c−aN aL∞.

Proof. We will show the result of the lemma by induction on n, the starting position of the game.
If n < d, then the outcome of n is the same for rules ({a, a + k}, {c}) or ({a, a + k}, {c}) since d

171

cannot be played. Consequently we can just apply Theorem 115, and get the desired result. If
n ≥ d there are two possible cases:

• If d ≤ n < d + a, then Right has a winning move to the position n − d < a, and Left
has a winning move by playing his strategy for n with rules ({a, b}, {c}). Indeed, this leads
to a position n − x < d for some x ∈ {a, b}. This position has outcome P or L for the
rules ({a, b}, {c}), and consequently also for the rules ({a, b}, {c, d}), since d cannot be played
anymore at this point.

• If n ≥ d+a, denote by I1 and I2 the two intervals containing theN -position, i.e., I1 = [c, c+a[,
and I2 = [d, d+ a[. Since b ≥ 2a, we can’t have that n− a and n− b are both in I1, or both
in I2. Additionally, since d > c+ b, we can have both n− b ∈ I1 and n− a ∈ I2 at the same
time. Consequently, one of n − a and n − a − k has outcome either L or P, and Left has a
winning move on n.

9.5.2 General case

In the general case, we will again prove that if we fix a and b, for most choices of c and d the
outcome is ultimately L. The exceptional cases are slightly more complicated to characterize. The
characterization is related to the following definition:

Definition 10. Given an integer a, and a real number α ≥ 1, we denote by Ta,α the set of points
defined by:

Ta,α =

{
(c, d), gcd(a+ c, a+ d) ≥ max(c, d)

α

}
.

Note that by definition, Ta,α can be obtained from T0,α by a translation of (−a,−a). We can
also remark that, for any α and β, with β ≥ α, we have T0,α ⊆ T0,β . We now prove some properties
of the sets Ta,α which will be usefull for the proofs later on.

Lemma 117. Assume that there are some positive integers x, y, u and v such that xu − yv = 0
with (u, v) �= (0, 0), then (x, y) ∈ T0,max(u,v).

Proof. Up to dividing u and v by gcd(u, v), we can assume that u and v are coprimes. The
equation can be written xu = yv. Consequently, u is a divisor of yv, and since u and v are
coprimes, this means that u is a divisor of v. We can write y = gu, and consequently we have
xu = yv = vgu. This means that x = vg, and g = gcd(x, y). Consequently, max(x,y)

gcd(x,y) = max(u, v),

and (x, y) ∈ T0,max(u,v).

Given two points p = (x, y) and p′ = (x′, y′), we denote by d(p, p′) the distance between these
two points according to the 1-norm: d(p, p′) = |x− x′|+ |y − y′|. If D is a subset of N2, we denote
by d(p,D) = min{d(p, p′′), p′′ ∈ D} the distance of the point p to the set D.

Lemma 118. Assume that there are some positive integers x, y, u, v and a such that |xu−yv| ≤ a,
then d((x, y), T0,max(u,v)) ≤ a(u+ v).

172

Proof. Let r = xu− yv, with |r| ≤ a, and g = gcd(u, v). By definition, r is a multiple of g, and we
can write r = qg for some integer q. Additionally, by Bézout’s identity, we know that there exists
two integers u′ and v′ such that uu′+vv′ = g, and |u′| ≤ u and |v′| ≤ v. Consider the point (x′, y′),
with x′ = x− qu′, and y′ = y + qv′. We have the following:

x′u− y′v = xu+ yv − q(uu′ + vv′) = r − qg = 0

By Lemma 117, we know that (x′, y′) ∈ T0,max(u,v). Additionally, d((x, y), (x
′, y′)) = |qu′|+ |qv′| ≤

|r|(u+ v) ≤ a(u+ v). This proves the Lemma.

The two lemmas above relate the set Ta,α to lines of equation xu− yv = 0 for some fixed u and
v. Using these results we show in the lemma below that Ta,α can be written as a union of such
lines.

Lemma 119. For any a and α, the set Ta,α is the union of a finite set of lines.

Proof. Since Ta,α can be obtained from T0,α by a translation, we only need to prove the result in
the case a = 0. Let D be the union of the lines with equation xu− yv = 0, for all u, v ≤ α. The set
D is the union of a finite number of lines. By Lemma 117, we know that D ⊆ T0,α. Reciprocally,
let (x, y) be a point in T0,α, and let g = gcd(x, y). Since (x, y) ∈ T0,α, it follows that y ≥ g

α . We
can also write x = x′g, and y = y′g for some integers x′ and y′. We have the following:

xy′ − yx′ = x′y′g − y′gx = 0

Additionally, we have x′ = x
g ≤ x α

max(x,y) ≤ α, and similarly for y′. Consequently, by Lemma 117

it follows that (x, y) ∈ D, and T0,α = D.
The goal in the remaining of this section is to prove the following theorem:

Theorem 120. Let a, b, c and d be positive integers, let A = � a
b−a�+1. Assume that d((c, d), Ta,A) ≥

2A(a+ 2b), then Left dominates for the partizan subtraction game ({a, b}, {c, d}).
The proof of this theorem will be done by giving a characterization of the sets of P-, N -, and

L-positions for this ruleset. This characterisation is done using the following definition. Given two
integers i and j, we define the following intervals:

• IPi,j = [αi,j , αi,j + a− (i+ j)(b− a)[

• INi,j = [βi,j , βi,j + a− (i+ j − 1)(b− a)[

where

• αi,j = i(d+ b) + j(c+ b),

• and βi,j = αi,j − b.

Denote by IP the set ∪i,jI
P
i,j , and similarly, IN = ∪i,jI

N
i,j . Note that IPi,j is empty if i + j ≥ �ak�,

and INi,j is empty if i+ j ≥ �ak�+1. Our goal is to show that, under the conditions in the statement

of the theorem, the set IN is the set of N -positions, IP the set of P-positions, and all the other
positions have outcome L. In particular, since both IP and IN are finite, this will imply that the
outcome sequence is eventually L. Before proving this result, we show that under the conditions of
the theorem the intervals IPi,j and INi,j satisfy the following properties.

173

Lemma 121. Fix the parameters a and b, and let A = � a
b−a� + 1. Assume that c and d are such

that d((c, d), Tb,A) ≥ 2A(a+ 2b), then the intervals INi,j and IPi,j satisfy the following properties:

(i) they are pairwise disjoint,

(ii) there is no interval IPi′,j′ or INi′,j′ intersecting any of the b positions preceding INi,j,

(iii) IPi,j + c = INi,j+1,

(iv) IPi,j + d = INi+1,j,

(v) (INi,j + a) ∩ (INi,j + b) = IPi,j.

Proof. The points (iii), (iv) and (v) are just consequences of the definitions of IPi,j and INi,j . Conse-
quently, we only need to prove the two other points.

We know that INi,j and IPi,j are empty when i+ j ≥ � a
b−a�+1 = A, consequently, we will assume

in all the following that the indices i, j, i′ and j′ are all upper bounded by A. We first show the
following claim. The rest of the proof will simply consists in applying this claim several times.

Claim 122. Assume that there is an integers B, and indices i, j, i′, j′ ≤ A, such that one of the
following holds:

• |αi,j − αi′,j′ | ≤ B

• |βi,j − βi′,j′ | ≤ B

• |αi,j − βi′,j′ | ≤ B

Then in all three cases we have d((c, d), Tb,A) ≤ 2A(B + b).

Proof. The first two cases are equivalent to the inequality |(i− i′)(d+ b)+ (j− j′)(c+ b)| ≤ B, and
the result follows by applying Lemma 118. The third case is equivalent to |(i − i′)(d + b) + (j −
j′)(c+b)+b| ≤ B. Using the triangle inequality, this implies |(i− i′)(d+b)+(j−j′)(c+b)| ≤ B+b,
and the result follows from Lemma 118.

We will prove the points (i) and (ii) by proving their contrapositives. In other words, assuming
that one of these two conditions does not hold, we want to show that d((c, d), Tb,α) ≤ 2α(a+ b).

We first consider the point (i). First, assume that there are two intervals IPi,j and IPi′,j′ such that
the two intervals intersect. Then, the left endpoint of one of these two intervals is contained in the
other interval. Without loss of generality, we can assume that αi,j ∈ IPi′,j′ . This implies:

αi′,j′ ≤ αi,j ≤ αi′,j′ + a− (b− a)(i′ + j′)
0 ≤ αi,j − αi′,j′ ≤ a− (b− a)(i′ + j′) ≤ a

By Claim 122, this implies d((c, d), Tb,A) ≤ 2A(a+ b).

Similarly, if we assume that INi,j and INi′,j′ intersect, then this implies without loss of generality

that βi,j ∈ INi′,j′ , and consequently, 0 ≤ βi,j − βi′,j′ ≤ a− (i+ j − 1)k ≤ a. Again, using Claim 122,
this implies d((c, d), Tb,A) ≤ 2(a+ b)A.

174

Finally, if INi′,j′ and IPi,j intersect, then either 0 ≤ αi,j−βi′,j′ ≤ a if αi,j ∈ INi′,j′ or 0 ≤ βi′,j′−αi,j ≤
a if βi′,j′ ∈ IPi,j . In both cases, the Claim 122 gives the desired result.

The proof for the point (ii) is essentially the same as above. If INi′,j′ intersects one of the b

positions preceding INi,j , then we have the two inequalities:

βi′,j′ + a− (i′ + j′ − 1)k ≥ βi,j − b βi′,j′ ≤ βi,j

From these inequalities we can immediately deduce −a − b ≤ βi′,j′ − βi,j ≤ 0. The inequality
d((c, d), Ta+k,A) ≤ 2A(3a+ 2k) follows immediately from Claim 122. Similarly, if the interval IPi′,j′
intersects one of the b positions preceding INi,j , then we have the two inequalities:

αi′,j′ + a− (i′ + j′)(b− a) ≥ βi,j − b αi′,j′ ≤ βi,j

This implies −(a+ b) ≤ αi′,j′ − βi,j ≤ 0, and again the result holds by Claim 122.

We now have all the tools needed to prove the theorem.

Proof of Theorem 120. Let a, b, c, d be integers, and let A = � a
b−a�. Let us assume that we have

d((c, d), Tb,A) ≥ 2A(a + 2b). We know that the four properties of Lemma 121 hold. We will show
by induction on n that for any position n ≥ 0, if n ∈ IP , then n is a P-position, if n ∈ IN , then it
is a N -position, and otherwise it is an L-position. The inductive case is treated in the same way
as the base case.

First, assume that n ∈ INi,j for some indices i and j such that i + j ≥ 1. Left has a winning

move by playing a. Indeed, the interval INi,j has length at most a, and using the condition (ii)
from Lemma 121 and the induction hypothesis, n− a is a L-position. If i > 0, then Right playing
c leads to the position n − c ∈ IPi−1,j by condition (iii). This position is a P-position using the
induction hypothesis. If j > 0, then similarly, Right can play d, and put the game in the position
n− d ∈ IPi,j−1 by condition (iv). This position is a P-position using the induction hypothesis.

Suppose now that n ∈ IPi,j . If i and j are both zero, then none of the players have any move,

and n is a P-position. Otherwise, if Left plays either a or b, this leads to a position n′ ∈ INi,j by
condition (v). Using the induction hypothesis, n′ is an N -position, and Left has no winning move.
Right’s only possible winning move would be to a P-position n′. Using the induction hypothesis
this means n′ ∈ IP . However, this would mean by conditions (iii) and (iv) that n ∈ IN , which is a
contradiction of the property (i) that IN and IP are disjoint. Consequently, Right has no winning
move.

Finally, suppose that n �∈ IP ∪ IN . We will show that Left has a winning move on n, and
Right does not. Since IP0,0 = [0, a[, we can assume n ≥ a, and Left can play a. Suppose that
Left’s move to n − a is not a winning move, and let us show that Left has a winning move to
n− a− k. Since Left’s move to n− a is not a winning move, this means that n− a ∈ INi,j for some
integer i, j with i + j ≥ 1. Consequently we have n ≥ b, and playing b is a valid move for Left.
By condition (v), we can’t have n − b ∈ INi,j since otherwise we would have n ∈ IPi,j . Moreover,

we can’t have either n − b ∈ INi′,j′ for some (i′, j′) �= (i, j) since it would contradict condition (ii).

Consequently, n− b ∈ IL, and using the induction hypothesis, this is a winning move for Left. The
only possible winning move for Right would be to play to a position n′ which is a P-position. Using
the induction hypothesis, this means that n′ ∈ IP . However using the conditions (iii) and (iv) this
would also imply n ∈ IN , a contradiction.

175

Corollary 123. Under the conditions of the theorem, the game G is ultimately L.
Proof. Since INi,j and IPi,j are both empty if i + j > a, the two sets IL and IN are finite, and the
result follows from the theorem.

9.6 Conclusion

Our study of Partizan Subtraction games in this chapter is an example of a more general
construction which consists in giving different rulesets to each of the players. It is interesting to
investigate this construction for other games as well. The work of [CSD+12] on Chessfight, an
other game obtained by this construction which is related to Wythoff is another example of such
game.

In addition, if we were able to characterize the asymptotic behaviour of some Partizan Sub-

traction games, there are still many open cases. For example, we have seen a large class of games
where one of the player dominates, but it seems that there are only few choices for the subtraction
sets leading to ultimately impartial or fair games. Hence, it might be interesting to try to charac-
terize some of the subtraction sets which leads to such games. Note that in [Wal02], Subtraction
games (and more generally Octal games) were expressed as a form of string rewriting games, and
some properties of these games were connected to the rationality of some language associated to
these games. An interesting approach would be to extend these results to Partizan Subtraction

games.
Finally, the question of the complexity of Partizan Subtraction games is still very open.

If we showed that computing the outcome of a given position (on one heap) is NP-hard, it is not
clear whether this problem is in NP or not, and it seems that it could be much more difficult than
that. It might be easier to prove the hardness of the problem on multiple heaps. To this end, it is
interesting to continue the investigation of [Pla95] on the canonical forms for these games.

176

Conclusion

We have seen in this thesis several problems related to one-player and two-player games, or in
other terms, reconfiguration problems and combinatorial games. On the reconfiguration side, we
studied problems related to the reconfiguration of two particular objects: graph colourings and
perfect matchings. These two problems were studied both from a complexity point of view, and
from a structural point of view. Concerning complexity, we proved both hardness results, as well as
polynomial algorithms when the input graph is restricted to certain classes. From a structural point
of view we improved some upper bounds on the length of the transformation for the reconfiguration
of colourings.

After looking at reconfiguration problems, we considered other questions related to reconfigu-
ration, but which are not directly reconfiguration problems. We studied the problem of sampling
random colourings, for which we considered the performance of a certain type of algorithm called
Glauber Dynamics; and a variant of online colouring algorithms, for which we constructed and
analysed several algorithms for different classes of graphs.

On the combinatorial games side, we considered two construction operators and investigated
how games built using these operators were modified. We proved some structural properties of
these constructions, and used these properties for concrete examples. In particular, we analysed
several games obtained from these constructions by combining other well known games. We were
able to characterise the outcome of some of these games, and proved some hardness results for
others.

There are still many open problems on the various topics that we considered, and we recall
some of the major ones here. On the reconfiguration part, there are still many classes of graphs for
which the complexity of reconfiguration of colouring and perfect matching is open. Figuring out for
which classes of graphs these problems are difficult could help to understand the structure of the
underlying reconfiguration graph. Additionally, in relation to our results about online colouring
from Chapter 6, it could be interesting to investigate these problems when there are additional
constraints restricting the type of operations permitted.

One other important open problem is Cereceda’s conjecture which asserts that the reconfigu-
ration graph of colourings has quadratic diameter if the number of colours is at least col(G) + 2.
Although our work in Chapter 3 made some important progress towards proving this conjecture,
it still remains widely open, and it is not clear how our techniques could be improved further. One
way to tackle the conjecture would be to consider specific classes of graphs.

In relation to this conjecture is the problem of sampling random colourings and the correspond-
ing conjecture that Glauber dynamics has a polynomial mixing time if the number of colours is at
least Δ + 2. As we have seen, this conjecture is largely open, and there are still a large number
of interesting classes of graphs for which the conjecture can be tested and that have not yet been

177

considered in the literature. Currently, the best bound on the number of colours for which the
conjecture holds is k ≥ (116 − ε)Δ for some ε > 0. It could be interesting to investigate the limits
of the current techniques and see if there are ways to decrease significantly the number of colours
from the 11

6 Δ bound and still keep a polynomial mixing time. Another interesting question would
be to investigate the mixing time for graphs of small degeneracy, and explore whether the mixing
time remains polynomial for these graphs, even for a number of colours below Δ+ 2.

On the combinatorial game part, there are still a very large number of games whose complexity is
unknown (see for example a list on the website [Bur]). We mentioned the complexity of subtraction
games, but there are many other games, and in particular games played on graphs, which appear
to be difficult but for which there is no formal proof of their hardness. Finding a placement game
with simple local rules (for example played on bounded degree graph) which is provably difficult
might be a lead to proving the hardness of these other games.

Concerning subtraction games, there is very little known about these games and their structure,
despite being some of the most simple possible games that we can consider. Getting a better
understanding of these games and their periods might be a first step towards analysing octal
games, a generalisation of subtraction games, which are conjectured to be periodic as well.

Finally, we have seen in Chapter 8 a particular construction which leads to an almost disjunctive
sum of games. If we were able to prove a nice theory for these games, it is not clear whether this
theory, and in particular the values we derive for these games, can be put to a practical use except
in very restricted settings. It could be interesting to investigate whether it is possible to find a
more general setting for which the structure of the values remain simple.

178

Bibliography

[AB95] Ingo Althöfer and Jörg Bültermann. Superlinear period lengths in some subtraction
games. Theoretical computer science, 148(1):111–119, 1995.

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach.
Cambridge University Press, 2009.

[ACM10a] Lowell Abrams and Dena S Cowen-Morton. Algebraic structure in a family of nim-
like arrays. Journal of Pure and Applied Algebra, 214(2):165–176, 2010.

[ACM10b] Lowell Abrams and Dena S. Cowen-Morton. Periodicity and other structure in a col-
orful family of nim-like arrays. The Electronic Journal of Combinatorics [electronic
only], 17(1):Research Paper R103, 21 p., electronic only–Research Paper R103, 21
p., electronic only, 2010.

[ACM14] Lowell Abrams and Dena S Cowen-Morton. A family of nim-like arrays: The locator
theorem. Theoretical Computer Science, 535:31–37, 2014.

[Ada04] Colin Conrad Adams. The knot book: an elementary introduction to the mathematical
theory of knots. American Mathematical Soc., 2004.

[AEH+18] John Asplund, Kossi Edoh, Ruth Haas, Yulia Hristova, Beth Novick, and
Brett Werner. Reconfiguration graphs of shortest paths. Discrete Mathematics,
341(10):2938–2948, 2018.

[AEOP02] Ravindra K Ahuja, Özlem Ergun, James B Orlin, and Abraham P Punnen. A survey
of very large-scale neighborhood search techniques. Discrete Applied Mathematics,
123(1-3):75–102, 2002.

[AH89] Kenneth I Appel and Wolfgang Haken. Every planar map is four colorable, vol-
ume 98. American Mathematical Soc., 1989.

[Ald82] David J Aldous. Some inequalities for reversible markov chains. Journal of the
London Mathematical Society, 2(3):564–576, 1982.

[AMMVB04] Dimitris Achlioptas, Mike Molloy, Cristopher Moore, and Frank Van Bussel. Sam-
pling grid colorings with fewer colors. In Latin American Symposium on Theoretical
Informatics, pages 80–89. Springer, 2004.

179

[AMMVB05] Dimitris Achlioptas, Mike Molloy, Cristopher Moore, and Frank Van Bussel. Rapid
mixing for lattice colourings with fewer colours. Journal of Statistical Mechanics:
Theory and Experiment, 2005(10):P10012, 2005.

[AMP15] Oswin Aichholzer, Wolfgang Mulzer, and Alexander Pilz. Flip distance between tri-
angulations of a simple polygon isNP-complete. Discrete & computational geometry,
54(2):368–389, 2015.

[ANW07] Michael Albert, Richard Nowakowski, and David Wolfe. Lessons in play: an intro-
duction to combinatorial game theory. AK Peters/CRC Press, 2007.

[AS17] Susanne Albers and Sebastian Schraink. Tight Bounds for Online Coloring of Basic
Graph Classes. In Kirk Pruhs and Christian Sohler, editors, 25th Annual European
Symposium on Algorithms (ESA 2017), volume 87 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 7:1–7:14, Dagstuhl, Germany, 2017. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[BB73] Umberto Bertele and Francesco Brioschi. On non-serial dynamic programming. Jour-
nal of Combinatorial Theory, Series A, 14(2):137–148, 1973.

[BB00] J. (Rob) van den Berg and R. Brouwer. Random sampling for the monomer–dimer
model on a lattice. Journal of Mathematical Physics, 41(3):1585–1597, 2000.

[BB14a] Marthe Bonamy and Nicolas Bousquet. Recoloring graphs via tree decompositions.
ArXiv preprint arXiv:1403.6386, 2014.

[BB14b] Marthe Bonamy and Nicolas Bousquet. Reconfiguring independent sets in cographs.
ArXiv preprint arXiv:1406.1433, 2014.

[BB18] Marthe Bonamy and Nicolas Bousquet. Recoloring graphs via tree decompositions.
European Journal of Combinatorics, 69:200–213, 2018.

[BBFJ19] Marthe Bonamy, Nicolas Bousquet, Carl Feghali, and Matthew Johnson. On a
conjecture of mohar concerning kempe equivalence of regular graphs. Journal of
Combinatorial Theory, Series B, 135:179 – 199, 2019.

[BBH+19] Marthe Bonamy, Nicolas Bousquet, Marc Heinrich, Takehiro Ito, Yusuke Kobayashi,
Arnaud Mary, Moritz Muehlenthaler, and Kunihiro Wasa. The perfect matching
reconfiguration problem. ArXiv preprint arXiv:1904.06184, 2019.

[BBP18] Marthe Bonamy, Nicolas Bousquet, and Guillem Perarnau. Frozen colourings of
bounded degree graphs. Electronic Notes in Discrete Mathematics, 68:167–172, 2018.

[BC09] Paul Bonsma and Luis Cereceda. Finding paths between graph colourings:
Pspace-completeness and superpolynomial distances. Theoretical Computer Science,
410(50):5215–5226, 2009.

[BCD+18] Laurent Beaudou, Pierre Coupechoux, Antoine Dailly, Sylvain Gravier, Julien Mon-
cel, Aline Parreau, and Eric Sopena. Octal games on graphs: The game 0.33 on
subdivided stars and bistars. Theoretical Computer Science, 746:19–35, 2018.

180

[BCG82] E. R. Berlkamp, J. H. Conway, and R. K. Guy. Winning ways for your mathematical
plays. New York: Academic Press, 1982.

[BCG04] Elwyn R Berlekamp, John H Conway, and Richard K Guy. Winning Ways for Your
Mathematical Plays, Volumes 1-4. AK Peters/CRC Press, 2001-2004.

[BCG19] Suman K Bera, Amit Chakrabarti, and Prantar Ghosh. Graph coloring via degen-
eracy in streaming and other space-conscious models. Preprint, 2019.

[BCK+17] Luis Barba, Jean Cardinal, Matias Korman, Stefan Langerman, André van Renssen,
Marcel Roeloffzen, and Sander Verdonschot. Dynamic graph coloring. In Workshop
on Algorithms and Data Structures, pages 97–108. Springer, 2017.

[BD97] Russ Bubley and Martin Dyer. Path coupling: A technique for proving rapid mixing
in markov chains. In Foundations of Computer Science, 1997. Proceedings., 38th
Annual Symposium on, pages 223–231. IEEE, 1997.

[BDGJ99] Russ Bubley, Martin Dyer, Catherine Greenhill, and Mark Jerrum. On approxi-
mately counting colorings of small degree graphs. SIAM Journal on Computing,
29(2):387–400, 1999.

[BDJ98] Russ Bubley, Martin Dyer, and Mark Jerrum. An elementary analysis of a procedure
for sampling points in a convex body. Random Structures & Algorithms, 12(3):213–
235, 1998.

[BDK05] Magnus Bordewich, Martin Dyer, and Marek Karpinski. Path coupling using stop-
ping times. In International Symposium on Fundamentals of Computation Theory,
pages 19–31. Springer, 2005.

[BDKK17] Boštjan Brešar, Paul Dorbec, Sandi Klavzar, and Gašper Košmrlj. How long can
one bluff in the domination game? Discussiones Mathematicae Graph Theory, 37(2),
May 2017.

[Bea76] Dwight R Bean. Effective coloration. The Journal of Symbolic Logic, 41(2):469–480,
1976.

[BEMPS10] Laura Beaudin, Joanna Ellis-Monaghan, Greta Pangborn, and Robert Shrock. A
little statistical mechanics for the graph theorist. Discrete Mathematics, 310(13-
14):2037–2053, 2010.

[Ber88] Elwyn R Berlekamp. Blockbusting and domineering. Journal of Combinatorial
Theory, Series A, 49(1):67–116, 1988.

[Ber90] Marc E Bertschi. Perfectly contractile graphs. Journal of Combinatorial Theory,
Series B, 50(2):222–230, 1990.

[BF90] Uri Blass and Aviezri S Fraenkel. The sprague-grundy function for wythoff’s game.
Theoretical Computer Science, 75(3):311–333, 1990.

[BH14] Sarah-Marie Belcastro and Ruth Haas. Counting edge-kempe-equivalence classes for
3-edge-colored cubic graphs. Discrete Mathematics, 325:77–84, 2014.

181

[BH19] Nicolas Bousquet and Marc Heinrich. A polynomial version of cereceda’s conjecture.
ArXiv preprint arXiv:1903.05619, 2019.

[BHI+19a] Marthe Bonamy, Marc Heinrich, Takehiro Ito, Yusuke Kobayashi, Haruka Mizuta,
Moritz Mühlenthaler, Akira Suzuki, and Kunihiro Wasa. Diameter of colorings under
kempe changes. 2019.

[BHI+19b] Marthe Bonamy, Marc Heinrich, Takehiro Ito, Yusuke Kobayashi, Haruka Mizuta,
Moritz Mühlenthaler, Akira Suzuki, and Kunihiro Wasa. Shortest reconfiguration of
colorings under kempe recoloring. 2019.

[BI17] Sergey Bereg and Takehiro Ito. Transforming graphs with the same graphic sequence.
Journal of Information Processing, 25:627–633, 2017.

[BJL+14] Marthe Bonamy, Matthew Johnson, Ioannis Lignos, Viresh Patel, and Daniël
Paulusma. Reconfiguration graphs for vertex colourings of chordal and chordal bi-
partite graphs. Journal of Combinatorial Optimization, 27(1):132–143, 2014.

[BKMP05] Noam Berger, Claire Kenyon, Elchanan Mossel, and Yuval Peres. Glauber dynamics
on trees and hyperbolic graphs. Probability Theory and Related Fields, 131(3):311–
340, 2005.

[BKW14] Paul Bonsma, Marcin Kamiński, and Marcin Wrochna. Reconfiguring independent
sets in claw-free graphs. In Scandinavian Workshop on Algorithm Theory, pages
86–97. Springer, 2014.

[BLR06] John Billingham, Robert Leese, and Hannu Rajaniemi. Frequency reassignment in
cellular phone networks. Technical report, Motorola, 2006.

[BM76] John Adrian Bondy and Uppaluri Siva Ramachandra Murty. Graph theory with
applications, volume 290. Citeseer, 1976.

[BMMN16] Richard C Brewster, Sean McGuinness, Benjamin Moore, and Jonathan A Noel.
A dichotomy theorem for circular colouring reconfiguration. Theoretical Computer
Science, 639:1–13, 2016.

[BMNR14] Paul Bonsma, Amer E Mouawad, Naomi Nishimura, and Venkatesh Raman. The
complexity of bounded length graph recoloring and csp reconfiguration. In In-
ternational Symposium on Parameterized and Exact Computation, pages 110–121.
Springer, 2014.

[BMP17] Nicolas Bousquet, Arnaud Mary, and Aline Parreau. Token jumping in minor-closed
classes. In Fundamentals of Computation Theory, FCT 2017, Bordeaux, France,
pages 136–149, 2017.

[BN15] Richard C Brewster and Jonathan A Noel. Mixing homomorphisms, recolorings, and
extending circular precolorings. Journal of Graph Theory, 80(3):173–198, 2015.

[Bon13] Paul Bonsma. The complexity of rerouting shortest paths. Theoretical computer
science, 510:1–12, 2013.

182

[Bon16] Paul Bonsma. Independent set reconfiguration in cographs and their generalizations.
Journal of Graph Theory, 83(2):164–195, 2016.

[BOR+18] Marthe Bonamy, Paul Ouvrard, Mikaël Rabie, Jukka Suomela, and Jara Uitto. Dis-
tributed recoloring. ArXiv preprint arXiv:1802.06742, 2018.

[Bou01] Charles L Bouton. Nim, a game with a complete mathematical theory. Annals of
Mathematics, 3(1/4):35–39, 1901.

[BP16] Nicolas Bousquet and Guillem Perarnau. Fast recoloring of sparse graphs. European
Journal of Combinatorics, 52:1–11, 2016.

[Bre77] Wayne M Brehaut. An efficient outerplanarity algorithm. In Proceedings of the 8th
South-Eastern Conference on Combinatorics, Graph Theory, and Computing, pages
99–113, 1977.

[BUH00] Dennis M Breuker, Jos WHM Uiterwijk, and H Jaap van den Herik. Solving 8× 8
domineering. Theoretical Computer Science, 230(1-2):195–206, 2000.

[Bul02] Nathan Bullock. Domineering: Solving large combinatorial search spaces. ICGA
Journal, 25(2):67–84, 2002.

[Bur] Kyle Burke. Combinatorial games rulesets. https://turing.plymouth.edu/

~kgb1013/rulesetTable.php.

[CD69] Alfred J Cole and AJT Davie. A game based on the euclidean algorithm and a
winning strategy for it. The Mathematical Gazette, 53(386):354–357, 1969.

[Cer07] Luis Cereceda. Mixing graph colourings. PhD thesis, The London School of Eco-
nomics and Political Science (LSE), 2007.

[CFKP07] Ioannis Caragiannis, Aleksei V Fishkin, Christos Kaklamanis, and Evi Papaioannou.
A tight bound for online colouring of disk graphs. Theoretical Computer Science,
384(2-3):152–160, 2007.

[CHJ08] Luis Cereceda, Jan van den Heuvel, and Matthew Johnson. Connectedness of the
graph of vertex-colourings. Discrete Mathematics, 308(5-6):913–919, 2008.

[CHJ09] Luis Cereceda, Jan van den Heuvel, and Matthew Johnson. Mixing 3-colourings in
bipartite graphs. European Journal of Combinatorics, 30(7):1593–1606, 2009.

[CHJ11] Luis Cereceda, Jan van den Heuvel, and Matthew Johnson. Finding paths between
3-colorings. Journal of graph theory, 67(1):69–82, 2011.

[CHMW87] Vasek Chvátal, Ch́ınh T Hoàng, Nadimpalli VR Mahadev, and Dominique De Werra.
Four classes of perfectly orderable graphs. Journal of graph theory, 11(4):481–495,
1987.

[CL08] David Collins and Tamás Lengyel. The game of 3-euclid. Discrete Mathematics,
308(7):1130 – 1136, 2008.

183

[CLLW18] Wai Hong Chan, Richard M Low, Stephen C Locke, and Oi Lin Wong. A map of
the p-positions in ‘nim with a pass’ played on heap sizes of at most four. Discrete
Applied Mathematics, 244:44–55, 2018.

[CLN17] Matthew Cook, Urban Larsson, and Turlough Neary. A cellular automaton for
blocking queen games. Natural Computing, 16(3):397–410, 2017.

[CLSB81] Derek G. Corneil, H. Lerchs, and Lorna K. Stewart Burlingham. Complement re-
ducible graphs. Discrete Applied Mathematics, 3(3):163–174, 1981.

[CM11] Kelly Choo and Gary MacGillivray. Gray code numbers for graphs. Ars Mathematica
Contemporanea, 4(1):125–139, 2011.

[CM18] Sitan Chen and Ankur Moitra. Linear programming bounds for randomly sampling
colorings. arXiv preprint arXiv:1804.03156, 2018.

[CNS18] Alda Carvalho, João Pedro Neto, and Carlos Santos. Ordinal sums of impartial
games. Discrete Applied Mathematics, 243:39–45, 2018.

[Con59] Ian G Connell. A generalization of wythoff’s game. Canadian Mathematical Bulletin,
2(3):181–190, 1959.

[Con76] John Horton Conway. On numbers and games. Academic Press, 1976.

[Con00] John H Conway. On numbers and games. AK Peters/CRC Press, 2000.

[CPS85] Derek G. Corneil, Yehoshua Perl, and Lorna K. Stewart. A linear recognition algo-
rithm for cographs. SIAM Journal on Computing, 14(4):926–934, 1985.

[CSD+12] Alda Carvalho, Carlos P Santos, Cátia Lente Dias, Francisco Coelho, João Pedro
Neto, and Sandra Vinagre. A recursive process related to a partizan variation of
wythoff. Integers, 12(5):1029–1045, 2012.

[CUL99] J CULBARSON. Sokoban is pspace-complete. Proceedings in Informatics, Waterloo,
Canada, 1999, 4:65–76, 1999.

[DDF+14] Erik D. Demaine, Martin L. Demaine, Eli Fox-Epstein, Duc A. Hoang, Takehiro
Ito, Hirotaka Ono, Yota Otachi, Ryuhei Uehara, and Takeshi Yamada. Polynomial-
time algorithm for sliding tokens on trees. In Algorithms and Computation - 25th
International Symposium, ISAAC, Proceedings, pages 389–400, 2014.

[DDHL16] Eric Duchêne, Matthieu Dufour, Silvia Heubach, and Urban Larsson. Building nim.
International Journal of Game Theory, 45(4):859–873, 2016.

[DEGI09] Camil Demetrescu, David Eppstein, Zvi Galil, and Giuseppe F Italiano. Dynamic
graph algorithms. In Algorithms and Theory of Computation Handbook, Second
Edition, Volume 1, pages 228–255. Chapman and Hall/CRC, 2009.

[DF03] Martin Dyer and Alan Frieze. Randomly coloring graphs with lower bounds on girth
and maximum degree. Random Structures & Algorithms, 23(2):167–179, 2003.

184

[DF10] Martin Dyer and Alan Frieze. Randomly coloring random graphs. Random Structures
& Algorithms, 36(3):251–272, 2010.

[DFFV06] M. Dyer, A. D. Flaxman, A. M. Frieze, and E. Vigoda. Randomly coloring sparse
random graphs with fewer colors than the maximum degree. Random Structures &
Algorithms, 29(4):450–465, 2006.

[DFHV04] Martin Dyer, Alan Frieze, Thomas P Hayes, and Eric Vigoda. Randomly coloring
constant degree graphs. In null, pages 582–589. IEEE, 2004.

[DFI04] Camil Demetrescu, Irene Finocchi, and Giuseppe F. Italiano. Dynamic graphs. In
Dinesh P. Mehta and Sartaj Sahni, editors, Handbook of Data Structures and Appli-
cations. Chapman and Hall/CRC, 2004.

[DFK91] Martin Dyer, Alan Frieze, and Ravi Kannan. A random polynomial-time algorithm
for approximating the volume of convex bodies. Journal of the ACM (JACM),
38(1):1–17, 1991.

[DG00] Martin Dyer and Catherine Greenhill. On markov chains for independent sets. J.
Algorithms, 35(1):17–49, 2000.

[DGH01] Persi Diaconis, Ronald Graham, and Susan P Holmes. Statistical problems involving
permutations with restricted positions. State of the Art in Probability and Statistics:
Festschrift for Willem R. Van Zwet, 36:195, 2001.

[DGJ06] Martin Dyer, Leslie Ann Goldberg, and Mark Jerrum. Systematic scan for sampling
colorings. The Annals of Applied Probability, 16(1):185–230, 2006.

[DGM02] Martin Dyer, Catherine Greenhill, and Mike Molloy. Very rapid mixing of the glauber
dynamics for proper colorings on bounded-degree graphs. Random Structures &
Algorithms, 20(1):98–114, 2002.

[DHLP18] Eric Duchene, Marc Heinrich, Urban Larsson, and Aline Parreau. The switch oper-
ators and push-the-button games: a sequential compound over rulesets. Theoretical
Computer Science, 715:71–85, 2018.

[DHNP19] Eric Duchêne, Marc Heinrich, Richard J. Nowakowski, and Aline Parreau. Partizan
subtraction games. 2019.

[DHP18] Michelle Delcourt, Marc Heinrich, and Guillem Perarnau. The glauber dynamics for
edges colourings of trees. arXiv preprint arXiv:1812.05577, 2018.

[Dir61] Gabriel Andrew Dirac. On rigid circuit graphs. In Abhandlungen aus dem Math-
ematischen Seminar der Universität Hamburg, volume 25, pages 71–76. Springer,
1961.

[DJM17] Martin Dyer, Mark Jerrum, and Haiko Müller. On the switch markov chain for
perfect matchings. Journal of the ACM (JACM), 64(2):12, 2017.

[DL17] Maya Dotan and Nati Linial. Efficient generation of random one-factorizations for
complete graphs. arXiv preprint arXiv:1707.00477, 2017.

185

[DM17] Martin Dyer and Haiko Müller. Counting perfect matchings and the switch chain.
ArXiv preprint arXiv:1705.05790, 2017.

[DPP18] Michelle Delcourt, Guillem Perarnau, and Luke Postle. Rapid mixing of glauber dy-
namics for colorings below vigoda’s 11/6 threshold. arXiv preprint arXiv:1804.04025,
2018.

[dR+] H. N. de Ridder et al. Information system on graph classes and their inclusions (IS-
GCI). http://www.graphclasses.org/.

[DR08] Eric Duchêne and Michel Rigo. A morphic approach to combinatorial games: the
tribonacci case. RAIRO-Theoretical Informatics and Applications, 42(2):375–393,
2008.

[DR10] Eric Duchêne and Michel Rigo. Invariant games. Theoretical Computer Science,
411:3169 – 3180, 2010.

[DRSS15] Paul Dorbec, Gabriel Renault, Aaron N Siegel, and Éric Sopena. Dicots, and a
taxonomic ranking for misere games. Journal of Combinatorial Theory, Series A,
130:42–63, 2015.

[DSC93] P. Diaconis and L. Saloff-Coste. Comparison theorems for reversible Markov chains.
The Annals of Applied Probability, pages 696–730, 1993.

[DSVW04] Martin Dyer, Alistair Sinclair, Eric Vigoda, and Dror Weitz. Mixing in time and
space for lattice spin systems: A combinatorial view. Random Structures & Algo-
rithms, 24(4):461–479, 2004.

[EF02] Thomas Erlebach and Jiri Fiala. On-line coloring of geometric intersection graphs.
Computational Geometry, 23(2):243–255, 2002.

[Fár48] István Fáry. On straight-line representation of planar graphs. Acta Sci. Math.,
11:229–233, 1948.

[FB73] Aviezri S Fraenkel and I Borosh. A generalization of wythoff’s game. Journal of
Combinatorial Theory, Series A, 15(2):175–191, 1973.

[Feg19a] Carl Feghali. Paths between colourings of graphs with bounded tree-width. Infor-
mation Processing Letters, 144:37–38, 2019.

[Feg19b] Carl Feghali. Paths between colourings of sparse graphs. European Journal of Com-
binatorics, 75:169–171, 2019.

[Feg19c] Carl Feghali. Reconfiguring 10-colourings of planar graphs. ArXiv preprint
arXiv:1902.02278, 2019.

[FH18] Graham Farr and Nhan Bao Ho. The sprague–grundy function for some nearly
disjunctive sums of nim and silver dollar games. Theoretical Computer Science,
732:46–59, 2018.

186

[Fis77] Steve Fisk. Geometric coloring theory. Advances in Mathematics, 24(3):298–340,
1977.

[FJP14] Carl Feghali, Matthew Johnson, and Daniël Paulusma. A reconfigurations analogue
of brooks’ theorem. In International Symposium on Mathematical Foundations of
Computer Science, pages 287–298. Springer, 2014.

[FJP15] Carl Feghali, Matthew Johnson, and Daniël Paulusma. Kempe equivalence of colour-
ings of cubic graphs. Electronic notes in discrete mathematics, 49:243–249, 2015.

[FK87] Aviezri S Fraenkel and Anton Kotzig. Partizan octal games: partizan subtraction
games. International Journal of Game Theory, 16(2):145–154, 1987.

[FL81] Aviezri S Fraenkel and David Lichtenstein. Computing a perfect strategy for n×
n chess requires time exponential in n. In International Colloquium on Automata,
Languages, and Programming, pages 278–293. Springer, 1981.

[Fla82] Jim Flanigan. One-pile time and size dependent take-away games”, Fibonacci Quart.
Fibonacci Quarterly, pages 51–59, 1982.

[Fla00] Achim Flammenkamp. http://wwwhomes.uni-bielefeld.de/achim/octal.html,
2000.

[FMFPH+12] Ruy Fabila-Monroy, David Flores-Peñaloza, Clemens Huemer, Ferran Hurtado, Jorge
Urrutia, and David R Wood. Token graphs. Graphs and Combinatorics, 28(3):365–
380, 2012.

[FNPS05] Dimitris A Fotakis, Sotiris E Nikoletseas, Vicky G Papadopoulou, and Paul G Spi-
rakis. Radiocoloring in planar graphs: complexity and approximations. Theoretical
Computer Science, 340(3):514–538, 2005.

[Fra97] Aviezri S Fraenkel. Combinatorial game theory foundations applied to digraph ker-
nels. Electron. J. Combin, 4(2), 1997.

[Fra04] Aviezri S Fraenkel. Complexity, appeal and challenges of combinatorial games. The-
oretical Computer Science, 313(3):393–415, 2004.

[Fra07] Aviezri S. Fraenkel. The Raleigh game. INTEGERS: Electronic Journal of Combi-
natorial Number Theory, 7(2):A13, 2007.

[FS99] Sabino Jose Ferreira and Alan D Sokal. Antiferromagnetic potts models on the
square lattice: A high-precision monte carlo study. Journal of statistical physics,
96(3-4):461–530, 1999.

[FT04] Rudolf Fleischer and Gerhard Trippen. Kayles on the way to the stars. In Interna-
tional Conference on Computers and Games, pages 232–245. Springer, 2004.

[FV06] Alan Frieze and Juan Vera. On randomly colouring locally sparse graphs. Discrete
Mathematics & Theoretical Computer Science, 8(1), 2006.

187

[FV07] Alan Frieze and Eric Vigoda. A survey on the use of markov chains to randomly
sample colourings. Oxford Lecture Series in Mathematics and its Applications, 34:53,
2007.

[Gal74] David Gale. A curious nim-type game. The American Mathematical Monthly,
81(8):876–879, 1974.

[GH18] Sylvain Gravier and Marc Heinrich. Online graph coloring with bichromatic ex-
changes. Submitted, 2018.

[GJK10] Leslie Ann Goldberg, Mark Jerrum, and Marek Karpinski. The mixing time of
glauber dynamics for coloring regular trees. Random Structures & Algorithms,
36(4):464–476, 2010.

[GJMP06] Leslie Ann Goldberg, Markus Jalsenius, Russell Martin, and Mike Paterson. Im-
proved mixing bounds for the anti-ferromagnetic potts model on Z

2. LMS Journal
of Computation and Mathematics, 9:1–20, 2006.

[GJT76] M. Garey, D. Johnson, and R. Tarjan. The planar Hamiltonian circuit problem is
NP-complete. SIAM Journal on Computing, 5(4):704–714, 1976.

[GK07] David Gamarnik and Dmitriy Katz. Correlation decay and deterministic fptas for
counting list-colorings of a graph. In Proceedings of the eighteenth annual ACM-
SIAM symposium on Discrete algorithms, pages 1245–1254. Society for Industrial
and Applied Mathematics, 2007.

[GKMP09] Parikshit Gopalan, Phokion G Kolaitis, Elitza Maneva, and Christos H Papadim-
itriou. The connectivity of boolean satisfiability: computational and structural di-
chotomies. SIAM Journal on Computing, 38(6):2330–2355, 2009.

[GKRS15] David Galvin, Jeff Kahn, Dana Randall, and Gregory B Sorkin. Phase coexistence
and torpid mixing in the 3-coloring model on \mathbbzˆd. SIAM Journal on Discrete
Mathematics, 29(3):1223–1244, 2015.

[GL88] András Gyárfás and Jenö Lehel. On-line and first fit colorings of graphs. Journal of
Graph theory, 12(2):217–227, 1988.

[GMP04] Leslie Ann Goldberg, Russell Martin, and Mike Paterson. Random sampling of
3-colorings in Z

2. Random Structures & Algorithms, 24(3):279–302, 2004.

[GMP05] Leslie Ann Goldberg, Russell Martin, and Mike Paterson. Strong spatial mixing with
fewer colors for lattice graphs. SIAM Journal on Computing, 35(2):486–517, 2005.

[GN96] Richard K Guy and Richard J Nowakowski. Unsolved problems in combinatorial
games. Games of No Chance, 3, 1996.

[GR07] David Galvin and Dana Randall. Torpid mixing of local markov chains on 3-colorings
of the discrete torus. In Proceedings of the eighteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 376–384. Society for Industrial and Applied Mathe-
matics, 2007.

188

[Gru39] Patrick M Grundy. Mathematics and games. Eureka, 2:6–9, 1939.

[GS09] Adrien Guignard and Éric Sopena. Compound node–kayles on paths. Theoretical
Computer Science, 410(21-23):2033–2044, 2009.

[Gur07] Vladimir A Gurvich. On the misere version of game euclid and miserable games.
Discrete mathematics, 307(9-10):1199–1204, 2007.

[Gur16] Venkatesan Guruswami. Rapidly mixing markov chains: a comparison of techniques
(a survey). arXiv preprint arXiv:1603.01512, 2016.

[Hak63] S. L. Hakimi. On realizability of a set of integers as degrees of the vertices of a linear
graph II. Uniqueness. Journal of the Society for Industrial and Applied Mathematics,
11(1):135–147, 1963.

[Hal97] Magnús M Halldórsson. Parallel and on-line graph coloring. Journal of Algorithms,
23(2):265–280, 1997.

[Hal00] Magnús M Halldórsson. Online coloring known graphs. the electronic journal of
combinatorics, 7(1):7, 2000.

[Hay03] Thomas P Hayes. Randomly coloring graphs of girth at least five. In Proceedings
of the thirty-fifth annual ACM symposium on Theory of computing, pages 269–278.
ACM, 2003.

[Hay06] Thomas P Hayes. A simple condition implying rapid mixing of single-site dynamics
on spin systems. In null, pages 39–46. IEEE, 2006.

[HD05] Robert A. Hearn and Erik D. Demaine. PSPACE-completeness of sliding-block puz-
zles and other problems through the nondeterministic constraint logic model of com-
putation. Theoretical Computer Science, 343(1-2):72–96, 2005.

[Heu13] Jan van den Heuvel. The complexity of change. Surveys in combinatorics,
409(2013):127–160, 2013.

[HG96] Hacène Ait Haddadene and Sylvain Gravier. On weakly diamond-free berge graphs.
Discrete Mathematics, 159(1-3):237–240, 1996.

[HGM98] Hacène Aı̈t Haddadène, Sylvain Gravier, and Frédéric Maffray. An algorithm for
coloring some perfect graphs. Discrete mathematics, 183(1-3):1–16, 1998.

[HHNRC05] Michael E. Houle, Ferran Hurtado, Marc Noy, and Eduardo Rivera-Campo. Graphs
of triangulations and perfect matchings. Graphs and Combinatorics, 21(3):325–331,
2005.

[HIZ15] Tatsuhiko Hatanaka, Takehiro Ito, and Xiao Zhou. The list coloring reconfiguration
problem for bounded pathwidth graphs. IEICE TRANSACTIONS on Fundamentals
of Electronics, Communications and Computer Sciences, 98(6):1168–1178, 2015.

[HIZ17] Tatsuhiko Hatanaka, Takehiro Ito, and Xiao Zhou. The coloring reconfiguration
problem on specific graph classes. In International Conference on Combinatorial
Optimization and Applications, pages 152–162. Springer, 2017.

189

[HLZ16] Lingxiao Huang, Pinyan Lu, and Chihao Zhang. Canonical paths for mcmc: from art
to science. In Proceedings of the twenty-seventh annual ACM-SIAM symposium on
Discrete algorithms, pages 514–527. Society for Industrial and Applied Mathematics,
2016.

[HM97] Hacène Aı̈t Haddadène and Frédéric Maffray. Coloring perfect degenerate graphs.
Discrete Mathematics, 163(1-3):211–215, 1997.

[HN03] D G Horrocks and Richard J Nowakowski. Regularity in the g- sequences of octal
games with a pass. Integers: Electronic Journal of Combinatorial Number Theory,
3(G01):2, 2003.

[HN19] Melissa Huggan and Richard J. Nowakowski. Conjoined games: Go-cut and sno-go.
Games of No Chance 5, 2019. To appear.

[HNU99] Ferran Hurtado, Marc Noy, and Jorge Urrutia. Flipping edges in triangulations.
Discrete & Computational Geometry, 22(3):333–346, 1999.

[Ho12a] Nhan Bao Ho. Subtraction games with three element subtraction sets. ArXiv preprint
arXiv:1202.2986, 2012.

[Ho12b] Nhan Bao Ho. Variations of the game 3-Euclid. International Journal of Combina-
torics, 2012.

[HRR03] Arthur Holshouser, Harold Reiter, and James Rudzinski. Dynamic one-pile Nim.
Fibonacci Quarterly, 41(3):253–262, 2003.

[HRR04] Arthur Holshouser, Harold Reiter, and James Rudzinski. Pilesize Dynamic One-
Pile Nim and Beatty’s Theorem. INTEGERS: Electronic Journal of Combinatorial
Number Theory, 4(G03):G03, 2004.

[HS92] Magnús M Halldórsson and Mario Szegedy. Lower bounds for on-line graph coloring.
In Proceedings of the third annual ACM-SIAM symposium on Discrete algorithms,
pages 211–216. Society for Industrial and Applied Mathematics, 1992.

[HS05] Thomas P Hayes and Alistair Sinclair. A general lower bound for mixing of single-
site dynamics on graphs. In Foundations of Computer Science, 2005. FOCS 2005.
46th Annual IEEE Symposium on, pages 511–520. IEEE, 2005.

[Hub98] Mark Huber. Exact sampling and approximate counting techniques. In Proceedings
of the thirtieth annual ACM symposium on Theory of computing, pages 31–40. ACM,
1998.

[HV03] Thomas P Hayes and Eric Vigoda. A non-markovian coupling for randomly sampling
colorings. In Foundations of Computer Science, 2003. Proceedings. 44th Annual
IEEE Symposium on, pages 618–627. IEEE, 2003.

[HV07] Thomas P Hayes and Eric Vigoda. Variable length path coupling. Random Structures
& Algorithms, 31(3):251–272, 2007.

190

[HVV15] Thomas P Hayes, Juan C Vera, and Eric Vigoda. Randomly coloring planar graphs
with fewer colors than the maximum degree. Random Structures & Algorithms,
47(4):731–759, 2015.

[IDH+11] Takehiro Ito, Erik D Demaine, Nicholas JA Harvey, Christos H Papadimitriou,
Martha Sideri, Ryuhei Uehara, and Yushi Uno. On the complexity of reconfigu-
ration problems. Theoretical Computer Science, 412(12-14):1054–1065, 2011.

[IKO14] Takehiro Ito, Marcin Kamiński, and Hirotaka Ono. Fixed-Parameter Tractability of
Token Jumping on Planar Graphs, pages 208–219. Springer International Publishing,
2014.

[Ira94] Sandy Irani. Coloring inductive graphs on-line. Algorithmica, 11(1):53–72, 1994.

[Jal09] Markus Jalsenius. Strong spatial mixing and rapid mixing with five colours for the
kagome lattice. LMS Journal of Computation and Mathematics, 12:195–227, 2009.

[Jal12] Markus Jalsenius. Sampling colourings of the triangular lattice. Random Structures
& Algorithms, 40(4):501–533, 2012.

[Jer95] Mark Jerrum. A very simple algorithm for estimating the number of k-colorings of
a low-degree graph. Random Structures & Algorithms, 7(2):157–165, 1995.

[JKK+16] Matthew Johnson, Dieter Kratsch, Stefan Kratsch, Viresh Patel, and Daniël
Paulusma. Finding shortest paths between graph colourings. Algorithmica,
75(2):295–321, 2016.

[JM96] Mark T Jacobson and Peter Matthews. Generating uniformly distributed random
latin squares. Journal of Combinatorial Designs, 4(6):405–437, 1996.

[JS79] Wm Woolsey Johnson and William Edward Story. Notes on the “15” puzzle. Amer-
ican Journal of Mathematics, 2(4):397–404, 1879.

[JS89] Mark Jerrum and Alistair Sinclair. Approximating the permanent. SIAM journal
on computing, 18(6):1149–1178, 1989.

[JS96] Mark Jerrum and Alistair Sinclair. The markov chain monte carlo method: an
approach to approximate counting and integration. Approximation algorithms for
NP-hard problems, pages 482–520, 1996.

[JVV86] Mark R Jerrum, Leslie G Valiant, and Vijay V Vazirani. Random generation of
combinatorial structures from a uniform distribution. Theoretical Computer Science,
43:169–188, 1986.

[KMM12] Marcin Kamiński, Paul Medvedev, and Martin Milanič. Complexity of independent
set reconfigurability problems. Theoretical computer science, 439:9–15, 2012.

[KQ95] Hal A Kierstead and Jun Qin. Coloring interval graphs with first-fit. Discrete
Mathematics, 144(1-3):47–57, 1995.

191

[KT81] HA Kierstead and WT Trotter. An extremal problem in recursive combinatorics,.
Congressus Numerantium, 33:143–153, 1981.

[Lar11] Urban Larsson. Blocking wythoff nim. the electronic journal of combinatorics,
18(1):120, 2011.

[Lar13] Urban Larsson. Impartial games emulating one-dimensional cellular automata and
undecidability. Journal of Combinatorial Theory, Series A, 120(5):1116–1130, 2013.

[Law77] Charles L. Lawson. Software for c1 surface interpolation. In Mathematical software,
pages 161–194. Elsevier, 1977.

[Len03] Tamás Lengyel. A nim-type game and continued fractions. Fibonacci Quarterly,
41(4):310–320, 2003.

[LM06] Lap Chi Lau and Michael Molloy. Randomly colouring graphs with girth five and
large maximum degree. In Latin American Symposium on Theoretical Informatics,
pages 665–676. Springer, 2006.

[LMNS18] Urban Larsson, Neil A McKay, Richard J Nowakowski, and Angela A Siegel. Wythoff
partizan subtraction. International Journal of Game Theory, 47(2):613–652, 2018.

[LMP09] Brendan Lucier, Michael Molloy, and Yuval Peres. The glauber dynamics for colour-
ings of bounded degree trees. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, pages 631–645. Springer, 2009.

[LMR02] Michael Lachmann, Cristopher Moore, and Ivan Rapaport. Who wins domineering
on rectangular boards. More Games of No Chance, 42:307–315, 2002.

[LP15] Anna Lubiw and Vinayak Pathak. Flip distance between two triangulations of a
point set is NP-complete. Computational Geometry, 49:17–23, 2015.

[LP17] D. A. Levin and Y. Peres. Markov chains and mixing times, volume 107. American
Mathematical Soc., 2017.

[LR17] Urban Larsson and Israel Rocha. Eternal picaria. Recreational Mathematics Maga-
zine, 4(7):119–133, 2017.

[LST89] László Lovász, Michael Saks, and William T Trotter. An on-line graph coloring
algorithm with sublinear performance ratio. Discrete Mathematics, 75(1-3):319–325,
1989.

[Lue75] George S Lueker. Two np-complete problems in nonnegative integer programming.
Technical report, Princeton University. Department of Electrical Engineering, 1975.

[LV98] Stefano Leonardi and Andrea Vitaletti. Randomized lower bounds for online path
coloring. In RANDOM, volume 98, pages 232–247. Springer, 1998.

[�LV05] Tomasz �Luczak and Eric Vigoda. Torpid mixing of the wang–swendsen–koteckỳ
algorithm for sampling colorings. Journal of Discrete Algorithms, 3(1):92–100, 2005.

192

[LV12] Julien Lemoine and Simon Viennot. Nimbers are inevitable. Theoretical Computer
Science, 462:70–79, 2012.

[LVM81] Michel Las Vergnas and Henri Meyniel. Kempe classes and the hadwiger conjecture.
Journal of Combinatorial Theory, Series B, 31(1):95–104, 1981.

[Maa05] Thomas Maarup. Everything you always wanted to know about hex but were afraid
to ask. University of Southern Denmark, 2005.

[Mar99] F. Martinelli. Lectures on Glauber dynamics for discrete spin models. In Lectures
on probability theory and statistics, pages 93–191. Springer, 1999.

[Mey78] Henry Meyniel. Les 5-colorations d’un graphe planaire forment une classe de com-
mutation unique. Journal of Combinatorial Theory, Series B, 24(3):251–257, 1978.

[MFL11] Rebecca E Morrison, Eric J Friedman, and Adam S Landsberg. Combinatorial games
with a pass: A dynamical systems approach. Chaos: An Interdisciplinary Journal
of Nonlinear Science, 21(4):043108, 2011.

[MI05] GA Mesdal III. Partizan splittles. In Games of No Chance III, Proc. BIRS Workshop
on Combinatorial Games, pages 447–461. Citeseer, 2005.

[MIZ17] Haruka Mizuta, Takehiro Ito, and Xiao Zhou. Reconfiguration of steiner trees in an
unweighted graph. IEICE Transactions, 100-A(7):1532–1540, 2017.

[MMS12] Jessica McDonald, Bojan Mohar, and Diego Scheide. Kempe equivalence of edge-
colorings in subcubic and subquartic graphs. Journal of Graph theory, 70(2):226–239,
2012.

[MN13] Neil A McKay and RJ Nowakowksi. Outcomes of partizan euclid. Combinatorial
Number Theory, pages 123–137, 2013.

[MO07] GA Mesdal and Paul Ottaway. Simplification of partizan games in misere play.
Integers, 7:G06, 2007.

[Moh06] Bojan Mohar. Kempe equivalence of colorings. In Graph Theory in Paris, pages
287–297. Springer, 2006.

[Mol04] Michael Molloy. The glauber dynamics on colorings of a graph with high girth and
maximum degree. SIAM Journal on Computing, 33(3):721–737, 2004.

[Mou15] Amer Mouawad. On Reconfiguration Problems: Structure and Tractability. PhD
thesis, University of Waterloo, 2015.

[MP99] Frédéric Maffray and Myriam Preissmann. Sequential colorings and perfect graphs.
Discrete Applied Mathematics, 94(1):287 – 296, 1999. Proceedings of the Third
International Conference on Graphs and Optimization GO-III.

[MR13] Rebecca Milley and Gabriel Renault. Dead ends in misere play: the misere monoid
of canonical numbers. Discrete Mathematics, 313(20):2223–2231, 2013.

193

[MS10a] Bojan Mohar and Jesús Salas. On the non-ergodicity of the swendsen–wang–koteckỳ
algorithm on the kagomé lattice. Journal of Statistical Mechanics: Theory and
Experiment, 2010(05):P05016, 2010.

[MS10b] Elchanan Mossel and Allan Sly. Gibbs rapidly samples colorings of G(n, d/n). Prob-
ability theory and related fields, 148(1-2):37–69, 2010.

[Mul16] Todd Mullen. The self-referential games minnie and wynnie and some variants.
Master’s thesis, Dalhousie University, 2016.

[NB08] N. S. Narayanaswamy and R. Subhash Babu. A note on first-fit coloring of interval
graphs. Order, 25(1):49–53, Feb 2008.

[Nis18] Naomi Nishimura. Introduction to reconfiguration. Algorithms, 11(4):52, 2018.

[Niv05] Gabriel Nivasch. More on the sprague-grundy function for wythoff’s game. In Games
of No Chance III, Proc. BIRS Workshop on Combinatorial Games, pages 377–410,
2005.

[OSIZ18] Hiroki Osawa, Akira Suzuki, Takehiro Ito, and Xiao Zhou. The complexity of (list)
edge-coloring reconfiguration problem. IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, 101(1):232–238, 2018.

[Ped08] Kasper Pedersen. On systematic scan. PhD thesis, The University of Liverpool,
2008.

[Pla95] Thane Plambeck. Notes on partizan subtraction games, 1995.

[Pla05] Thane E Plambeck. Taming the wild in impartial combinatorial games. INTEGERS:
Electronic Journal of Combinatorial Number Theory, 5(1):1–36, 2005.

[Pla06] Thane E Plambeck. Advances in losing. ArXiv preprint math/0603027, 2006.

[Poo16] Chun Yeung Poon. Glauber dynamics for sampling an edge colouring of regular
trees. Master’s thesis, The Chinese University of Hong Kong, 2016.

[PS08] Thane E Plambeck and Aaron N Siegel. Misere quotients for impartial games. Jour-
nal of Combinatorial Theory, Series A, 115(4):593–622, 2008.

[RA96] Jorge Luis Ramı́rez-Alfonśın. Complexity of the frobenius problem. Combinatorica,
16(1):143–147, 1996.

[Ran06] Dana Randall. Rapidly mixing markov chains with applications in computer science
and physics. Computing in Science & Engineering, 8(2):30–41, 2006.

[RT00] D. Randall and P. Tetali. Analyzing Glauber dynamics by comparison of Markov
chains. Journal of Mathematical Physics, 41(3):1598–1615, 2000.

[S+84] James J Sylvester et al. Mathematical questions with their solutions. Educational
times, 41(21):6, 1884.

194

[San10] Carlos Manuel Ferreira Pereira dos Santos. Some notes on impartial games and NIM
dimension. PhD thesis, University of Lisbon, 2010.

[Sav70] Walter J. Savitch. Relationships between nondeterministic and deterministic tape
complexities. Journal of Computer and System Sciences, 4:177–192, 1970.

[Sen51] James K. Senior. Partitions and their representative graphs. American Journal of
Mathematics, 73(3):663–689, 1951.

[Sie13] Aaron N Siegel. Combinatorial game theory, volume 146. American Mathematical
Soc., 2013.

[Sie15] Aaron N Siegel. The structure and classification of misere quotients. Games of No
Chance 4, 63:241, 2015.

[Sil76] Rober Silber. A fibonacci property of wythoff pairs. Fibonacci Quart, 14(4):380–384,
1976.

[Sin92] A. Sinclair. Improved bounds for mixing rates of Markov chains and multicommodity
flow. Combinatorics, probability and Computing, 1(4):351–370, 1992.

[SJ89] Alistair Sinclair and Mark Jerrum. Approximate counting, uniform generation and
rapidly mixing markov chains. Information and Computation, 82(1):93–133, 1989.

[Smi10] David A. Smith. The First-fit Algorithm Uses Many Colors on Some Interval Graphs.
PhD thesis, Arizon State University, Tempe, AZ, USA, 2010. AAI3428197.

[Spr35] Richard Sprague. Über mathematische kampfspiele. Tohoku Mathematical Journal,
First Series, 41:438–444, 1935.

[SS97] Jesús Salas and Alan D Sokal. Absence of phase transition for antiferromagnetic
potts models via the dobrushin uniqueness theorem. Journal of Statistical Physics,
86(3-4):551–579, 1997.

[STT12] Hadas Shachnai, Gal Tamir, and Tami Tamir. A theory and algorithms for combi-
natorial reoptimization. In Latin American Symposium on Theoretical Informatics,
pages 618–630. Springer, 2012.

[SU93] Walter Stromquist and Daniel Ullman. Sequential compounds of combinatorial
games. Theoretical Computer Science, 119(2):311–321, 1993.

[SVW18] Daniel Stefankovic, Eric Vigoda, and John Wilmes. On counting perfect matchings
in general graphs. In LATIN 2018- 13th Latin American Symposium, Proceedings,
pages 873–885, 2018.

[SW18] Shay Solomon and Nicole Wein. Improved dynamic graph coloring. In 26th Annual
European Symposium on Algorithms (ESA 2018). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2018.

[Tak18] Asahi Takaoka. Complexity of hamiltonian cycle reconfiguration. Algorithms,
11(9):140, 2018.

195

[Tuc87] Alan Tucker. Coloring perfect (k4- e)-free graphs. Journal of Combinatorial Theory,
Series B, 42(3):313–318, 1987.

[Uit16] Jos WHM Uiterwijk. Polymerization and crystallization of snowflake molecules in
domineering. Theoretical Computer Science, 644:143–158, 2016.

[Var17] Shai Vardi. Randomly coloring graphs of bounded treewidth. arXiv preprint
arXiv:1708.02677, 2017.

[Vig00] Eric Vigoda. Improved bounds for sampling colorings. Journal of Mathematical
Physics, 41(3):1555–1569, 2000.

[Viz64] Vadim G Vizing. On an estimate of the chromatic class of a p-graph. Diskret analiz,
3:25–30, 1964.

[Wal02] Johannes Waldmann. Rewrite games. In International Conference on Rewriting
Techniques and Applications, pages 144–158. Springer, 2002.

[War16] Mark Daniel Ward. A conjecture about periods in subtraction games. ArXiv preprint
arXiv:1606.04029, 2016.

[Wei05] Dror Weitz. Combinatorial criteria for uniqueness of gibbs measures. Random Struc-
tures & Algorithms, 27(4):445–475, 2005.

[Wel93] Dominic Welsh. Complexity: Knots, Colourings and Countings. London Mathemat-
ical Society Lecture Note Series. Cambridge University Press, 1993.

[Wil74] Richard M Wilson. Graph puzzles, homotopy, and the alternating group. Journal
of Combinatorial Theory, Series B, 16(1):86–96, 1974.

[Wil89] Herbert S Wilf. Combinatorial algorithms: an update, volume 55. SIAM, 1989.

[Wil99] Todd G. Will. Switching distance between graphs with the same degrees. SIAM
Journal on Discrete Mathematics, 12(3):298–306, 1999.

[Wol93] David Wolfe. Snakes in domineering games. Theoretical computer science,
119(2):323–329, 1993.

[Wro14a] Marcin Wrochna. Homomorphism reconfiguration via homotopy. ArXiv preprint
arXiv:1408.2812, 2014.

[Wro14b] Marcin Wrochna. Reconfiguration in bounded bandwidth and treedepth. ArXiv
preprint arXiv:1405.0847, 2014.

[WS04] Dror Weitz and Alistair Sinclair. Mixing in time and space for discrete spin systems.
University of California, Berkeley, 2004.

[Wyt07] Willem A Wythoff. A modification of the game of nim. Nieuw Arch. Wisk, 7(2):199–
202, 1907.

196

[Zan15] Tom C. van der Zanden. Parameterized complexity of graph constraint logic. In
Thore Husfeldt and Iyad A. Kanj, editors, 10th International Symposium on Param-
eterized and Exact Computation, volume 43 of LIPIcs, pages 282–293, 2015.

[ZZ07] Hamid Zarrabi-Zadeh. Online coloring co-interval graphs. In Proc. 12th International
CSI Computer Conference, pages 1328–1332. Citeseer, 2007.

[ZZC09] Hamid Zarrabi-Zadeh and Timothy M Chan. An improved algorithm for online unit
clustering. Algorithmica, 54(4):490–500, 2009.

197

Index

Π-Bound, 24
Π-Connectivity, 24
Π-Reachability, 24
χ-bounded, 15
P-position, 124
G(k,G), 26
GKem(k,G), 26
Left-options, 122
Right-options, 122
a-feasible list assignment, 49
k-colouring, 15
k-colouring reconfiguration, 26
SG-sequence, 132
NPSPACE, 12
NP, 12
PSPACE, 12
P, 12
X-complete, 12
X-hard, 12
Cram, 126
Domineering, 126
First-Fit, 104
Kempe-Bound, 43
Nim, 126
Partizan Subtraction games, 159
QBF, 12
Subtraction games, 132
Wythoff, 127
Wythoff pairs, 139

(v, e)-connectors, 58

adjacent, 13
aperiodicity, 19
associated vertices, 36

bipartite graph, 17

children, 16

chordal graph, 17
chromatic number, χ(G), 15
circular graph, 111
class of graph, 16
clique number, ω(G), 14
clique, Kn, 14
cograph, 17
combinatorial game, 122
compatible rulesets, 135
complete bipartite graph, Ka,b, 17
complete tree, 16
connected components, 14
connected graph, 14
connector pair, 35
connector vertices, 35
continuous time Markov Chain, 20
cotree, 18
cycle graph, Cn, 14

degeneracy, col(G), 14
detailed balance equations, 19
diameter, 14
disjunctive sum, 129
distance between vertices, 14

equivalent, 130
equivalent colourings, 44
ergodicity, 19
Euler’s formula, 17
exterior and interior (edge) boundary of T , 84

fair, F , 161
feasible list assignment, 50
flip, 56
fringe boundary, 84
full colour, 49

game graph, 122
game position, 122

198

game value, 130
gate, 36
graph, 13
Grundy k-colouring, 111

impartial game, 124
independence number, α(G), 15
independent set, 15
induced subgraph, 13
input edge, 33
internal vertex, 35
internal vertices, 16, 84
interval graph, 17
irreducibility, 19

join node, 18

Kempe chain, 15
Kempe-exchange, 16

leaf recolourings, 44
leaves, 16, 84
length of a path, 14
line graph, 14
list assignment, 16
list colouring, 16
local Kempe exchange, 105

Markov chain, 18
matching, 15
maximum degree, Δ(G), 14
misère-play, 124
mixing time, 20
monochromatic connector, 35

NCL configuration, 32
NCL machine, 32
neighbourhood, 14
neighbours, 13
neutral edge, 36
node, 32
Non-deterministic Constraint Logic (NCL), 32
non-invariant game, 128
normal options of a game, 136
normal-play, 124

online algorithm, 103

online colouring algorithm with Kempe exchanges,
105

ordinal sum, 133

outcome, 124

outer-planar, 17
output edge, 33

parent, 16

partizan game, 124

path, 14

path graph Pn, 14

perfect elimination ordering, 17

perfect graphs, 15

perfect matching, 15

planar graph, 17

play of a game, 124

polynomial hierarchy, 13

polynomial-time reductions, 12

proper colouring, 15

push operator, 135

push-canonical form, 150

push-dominated option, 150

push-equivalence, 146

push-game, 136

push-reversible option, 150

push-sum, 146

push-values, 146

reconfiguration graph, GΠ(I), 23

regular graph, 14

relaxation time, 20

resulting vertices, 42

reversibility, 19

root, 16

root partition, 63

root recolourings, 44

ruleset, 122

sequential compound, 133

set of P-positions, 125
set of edges, 13

set of vertices, 13

size of a colour, 109

sliding move, 63

sorted transformation sequence, 44

spectral gap, 20

199

split graph, 17
star, 16
state space, 18
stationary distribution, 19
strongly dominating, SD, 161
subgraph, 13

total variation distance, 20
transition matrix, 18
tree, 16
treewidth, tw(G), 17

ultimately impartial, UI, 161
union node, 18
unit interval graph, 17

weakly dominating, WD, 161

200

List of Figures and Tables

1.1 Example of graphs. 14

1.2 A Kempe chain, and a Kempe exchange. 17

1.3 Example of a simple Markov chain. 19

2.1 Recolouring example. 26

2.2 Frozen colourings. 28

2.3 Results on Kempe recolouring. 28

2.4 Results on single vertex recolouring. 31

2.5 Complete tripartite graph. 32

2.6 An NCL machine with a valid orientation. 33

3.1 Gadgets for the PSPACE-hardness of colouring reconfiguration. 37

3.2 Recofiguration graph for the edge gadget. 38

3.3 Construction to remove the constraints. 42

3.4 Removing the constraints for the edge gadget. 44

4.1 Example of reconfiguration sequence for perfect matchings. 56

4.2 Perfect matching reconfiguration with arbitrarily large flips. 57

4.3 Assembling the gadgets of the PSPACE-hardness reduction. 60

4.4 The gadgets for the PSPACE-hardness reduction. 60

4.5 Reconfiguration graph for the edge gadget. 61

4.6 Reconfiguration graph for the and gadget. 62

4.7 The different cases in Claim 30. 66

4.8 Reconfiguration sequence for Assumption 5 . 68

5.1 Example of lattices. 77

5.2 Known results for the mixing time of Glauber dynamics. 80

6.1 An outer-planar graph. 109

6.2 Circular drawing and intersection compatible colouring. 112

6.3 Recursive decomposition for Lemma 66. 113

6.4 Cutting a surface along a path. 116

7.1 A domineering board. 124

7.2 Game tree. 124

7.3 The four possible outcomes of a game. 126

7.4 The possible options for Nim . 127

201

7.5 Nim and Wythoff, played on a board. 128
7.6 Decomposition of a position as a dijunctive sum. 130
7.7 SG-values for Nim, Wythoff, and Euclid. 132

8.1 Game tree of a push-game. 138
8.2 The possible moves for Zeruclid. 140
8.3 P-positions for Wythoff and Nim� Euclid. 142
8.4 SG-values for 3-heaps Zeruclid. 143
8.5 Symmetry strategy for Push-Cram on three lines. 145
8.6 Different strategies for Push-Cram on three columns. 146
8.7 Symmetry strategy for Push-Cram on four columns. 147
8.8 The push-game �3. 148

9.1 Outcomes and possible moves for some simple Partizan Subtraction games . . . 169
9.2 Aymptotic behaviour of Partizan Subtraction for different subtraction sets. . . . 171

202

Appendix A

Missing proofs from Chapter 5

For any function f : Ω→ R, the variance and the Dirichlet form of L are defined respectively as

VarL(f) =
1

2

∑
α,β∈Ω

π(α)π(β)(f(α)− f(β))2 ,

ξL(f, f) =
1

2

∑
α,β∈Ω

π(α)L[α→ β](f(α)− f(β))2 .

Let FL = {f : VarL(f) > 0} and note that FL = FL′ are the set of non-constant functions, as π
and π′ are positive on Ω. It is well-known (see e.g. Remark 13.13 in [LP17]) that the spectral gap
of L satisfies

Gap(L) = min
f∈FL

ξL(f, f)
VarL(f)

. (A.1)

A.1 Proof of Proposition 35

We first recall the statement of the proposition. Let b := maxα∈Ω
π(α)
π′(α) . For every (σ, η) ∈ L its

congestion is defined as

ρσ,η :=
1

π(σ)L[σ → η]ω(σ, η)

∑
(α,β)∈L′

∑
γ∈Γα,β
γ�(σ,η)

g(γ)π′(α)L′[α→ β] · |γ|ω .

Let ρmax = max{ρσ,η : (σ, η) ∈ L} be the maximum congestion over all transitions of L. We want
to show the following:

Proposition 35 (Weighted multi-commodity flows method). We have τ(L) ≤ b2ρmax · τ(L′) .

203

This result is proved by comparing the Dirichlet form and the variance of L and L′. We have

ξL′(f, f) =
1

2

∑
α,β∈Ω

π′(α)L′[α→ β](f(α)− f(β))2

=
1

2

∑
α,β∈Ω

∑
γ∈Γα,β

g(γ)π′(α)L′[α→ β](f(α)− f(β))2

=
1

2

∑
α,β∈Ω

∑
γ∈Γα,β

g(γ)π′(α)L′[α→ β]

⎛
⎝ ∑

(σ,η)∈γ

√
ω(σ, η)

f(σ)− f(η)√
ω(σ, η)

⎞
⎠

2

≤ 1

2

∑
α,β∈Ω

∑
γ∈Γα,β

g(γ)π′(α)L′[α→ β] · |γ|ω
∑

(σ,η)∈γ

(f(σ)− f(η))2

ω(σ, η)

=
1

2

∑
(σ,η)∈L

(f(σ)− f(η))2 · 1

ω(σ, η)

∑
(α,β)∈L′

∑
γ∈Γα,β
γ�(σ,η)

g(γ)|γ|ωπ′(α)L′[α→ β]

≤ ρmax ξL(f, f) ,

where we used the Cauchy-Schwartz inequality in the first inequality. Additionally, we have

VarL′(f) =
1

2

∑
α,β∈Ω

π′(α)π′(β)(f(α)− f(β))2

≥ 1

2b2

∑
α,β∈Ω

π(α)π(β)(f(α)− f(β))2

=
1

b2
VarL(f) .

Combining the previous two inequalities and using (A.1), the desired result follows,

Gap(L′) = min
f∈FL′

ξL′(f, f)

VarL′(f)
≤ b2ρmax min

f∈FL

ξL(f, f)
VarL(f)

= b2ρmax Gap(L) .

A.2 Proof of Proposition 42

We first recall the statement of the proposition:

Proposition 42. Let G = (V,E) be a graph on n vertices, and k be a positive integer. Let v ∈ V
such that N(v) induces a clique of size at most k − 2. For any choice of parameters (p1, . . . , pn),
the Glauber dynamics LV and LV \{v} for k-colourings of V and V \ {v} respectively and defined
with the same parameters satisfy,

τ
(LV \{v}

) ≤ τ(LV) .

Let U = {u1, . . . , um} = V \ {v}. Let p1, . . . , pm, pv be the parameters for u1, . . . , um, v, respec-
tively. Let ΩV and ΩU be the set of L-colourings of G and G[U] respectively. Let d = |N(v)| the
degree of v. Since N(v) is a clique, we have:

|ΩV | = |ΩU |(k − d) .

204

Indeed, for every colouring αU of U , there are exactly (k − d) possibilities to extend it into a
colouring of V . Let πV and πU be the stationary distributions of LV and LU , which are uniform as
the transitions are symmetric. Recall that FLV

is the set of non-constant functions from ΩV to R.
Let Fv

LV
be the subset of these functions which are independent of v, i.e. which satisfy f(α) = f(β)

whenever α and β agree on U .
Using (A.1), we have

Gap(LV) = min
f∈FLV

ELV
(f)

VarLV
(f)

≤ min
f∈Fv

LV

ELV
(f)

VarLV
(f)

. (A.2)

Let f ∈ FV , then we have the following

VarLV
(f) =

1

2

∑
α,β∈ΩV

πV (α)πV (β)(f(α)− f(β))2

=
1

2

∑
α,β∈ΩV

1

|ΩV |2 (f(α)− f(β))2

=
1

2

∑
αU ,βU∈ΩU

∑
c∈[k]

c �∈α(N(v))

∑
c′∈[k]

c′ �∈β(N(v))

1

|ΩV |2 (f(αU)− f(βU))
2

=
1

2

∑
αU ,βU∈ΩU

(k − d)2

|ΩV |2 (f(αU)− f(βU))
2

= VarLU
(f) (A.3)

Additionally, if f ∈ Fv
V , then we have

ELV
(f) =

1

2

∑
ui∈U

∑
α,β∈ΩV

differ at ui

1

|ΩV |pi(f(α)− f(β))2 +
∑

α,β∈ΩV
differ at v

1

|ΩV |pv(f(α)− f(β))2

=
1

2

∑
ui∈U

∑
αU ,βU∈ΩU
differ at ui

∑
c∈[k]

c�∈α(N(v))
c �∈β(N(v))

1

|ΩV |pi(f(αU)− f(βU))
2

≤ 1

2

∑
ui∈U

∑
αU ,βU∈ΩU
differ at ui

k − d

|ΩV | pi(f(αU)− f(βU))
2

= ELU
(f) . (A.4)

where we used that N(v) is a clique in the inequality. Putting together (A.2)–(A.4), gives as
required

Gap(LV) ≤ Gap(LU) .

205

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

