
HAL Id: tel-02294752
https://theses.hal.science/tel-02294752

Submitted on 23 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Shape sensing of deformable objects for robot
manipulation

Jose Manuel Sanchez Loza

To cite this version:
Jose Manuel Sanchez Loza. Shape sensing of deformable objects for robot manipulation. Automatic.
Université Clermont Auvergne [2017-2020], 2019. English. �NNT : 2019CLFAC012�. �tel-02294752�

https://theses.hal.science/tel-02294752
https://hal.archives-ouvertes.fr

UNIVERSITÉ

CLERMONT AUVERGNE

École Doctorale Sciences pour l’Ingénieur
Institut Pascal

Thèse

Présentée par

Jose Sanchez

pour obtenir le grade de
Docteur d’Université

Shape Sensing of Deformable Objects
for Robot Manipulation

Soutenue le 24 Mai 2019 devant le jury composé de :

Véronique PERDEREAU Rapporteur Professeur des universités, ISIR
Daniel SIDOBRE Rapporteur Mâıtre de conférences - HDR, Université Paul Sabatier
Giovanni LEGNANI Examinateur Professeur des universités, Università di Brescia
Pablo GIL Examinateur Associate Professor, Universidad de Alicante
Grigore GOGU Examinateur Professeur des universités, SIGMA
Chedli BOUZGARROU Encadrant Mâıtre de conférences - HDR, SIGMA
Juan CORRALES RAMÓ N Encadrant Mâıtre de conférences, SIGMA
Youcef MEZOUAR Directeur Professeur des universités, SIGMA

Declaration of Authorship

I, Jose Sanchez, declare that this thesis titled, ‘Shape Sensing of Deformable Objects for

Robot Manipulation’ and the work presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

iii

iv

Abstract

Deformable objects are ubiquitous in our daily lives. On a given day, we manipulate

clothes into uncountable configurations to dress ourselves, tie the shoelaces on our shoes,

pick up fruits and vegetables without damaging them for our consumption and fold

receipts into our wallets. All these tasks involve manipulating deformable objects and

can be performed by an able person without any trouble, however robots have yet to

reach the same level of dexterity. Unlike rigid objects, where robots are now capable

of handling objects with close to human performance in some tasks; deformable objects

must be controlled not only to account for their pose but also their shape. This extra

constraint, to control an object’s shape, renders techniques used for rigid objects mainly

innapplicable to deformable objects. Furthermore, the behavior of deformable objects

widely differs among them, e.g. the shape of a cable and clothes are significantly affected

by gravity while it might not affect the configuration of other deformable objects such

as food products. Thus, different approaches have been designed for specific classes of

deformable objects.

In this thesis we seek to address these shortcomings by proposing a modular approach

to sense the shape of an object while it is manipulated by a robot. The modularity

of the approach is inspired by a programming paradigm that has been increasingly

been applied to software development in robotics and aims to achieve more general

solutions by separating functionalities into components. These components can then be

interchanged based on the specific task or object at hand. Our approach, thus, takes

the form of a pipeline to sense the shape of deformable objects.

To validate the proposed pipeline, we implemented three different applications. Two

applications focused exclusively on estimating the object’s deformation using either tac-

tile or force data, and the third application consisted in controlling the deformation of

an object. An evaluation of the pipeline, performed on a set of elastic objects for all

three applications, shows promising results for an approach that makes no use of visual

information and hence, it could greatly be improved by the addition of this modality.

Acknowledgements

First of all I would like to thank Professor Youcef Mezouar, Professor Juan Antonio

Corrales Ramón and Professor Chedli Bouzgarrou for allowing me to pursuit my PhD

thesis at Institut Pascal. Their guidance, support and insights certainly improved the

quality of my thesis.

I thank my office mates Rawan, Rohit and Mohamed for the daily chats, good company

and helpful advice throughout my studies. To Kamal, Carlos and Miguel with whom I

got the pleasure to work and, while doing so, learn much from them. Also, I am deeply

grateful to Sabrina and Cyrille for helping me navigate multiple bureaucratic hurdles

during my studies.

Last but not least, I would like to thank my friends Natalia, Marcel, Verónica and

William for their constant encouragement and support; to my family, and especially my

parents for the endless help they have given me.

� � �

This work has been sponsored by the French government research program ”Investisse-

ments d’Avenir” through the IDEX-ISITE initiative 16-IDEX-0001 (CAP 20-25), the

IMobS3 Laboratory of Excellence (ANR-10-LABX-16-01). This research was also fi-

nanced by the European Union through the Regional Competitiveness and Employment

program -2014-2020- (ERDF AURA region) and by the AURA region. Therefore, I

would like to thank these institutions for the financial support that made this thesis

possible.

v

Contents

Declaration of Authorship iii

Abstract iv

Acknowledgements v

List of Figures xi

List of Tables xv

1 Introduction 1

1.1 What are deformable objects? . 1

1.2 Difference with rigid objects . 3

1.3 Scope of this thesis . 4

1.4 Contributions . 5

1.4.1 Survey and systematization of the state of the art 5

1.4.2 Sensor models . 5

1.4.3 Shape sensing pipeline . 6

1.4.4 Shape controller architecture . 6

1.5 Publications . 6

1.6 Outline of the thesis . 7

2 State of the art 9

2.1 Deformation sensing . 10

2.1.1 Mechanical-based models . 10

2.1.1.1 Continuum-based . 12

2.1.1.2 Discrete-based . 12

2.1.2 Data-driven models . 13

2.1.3 Hybrid models . 14

2.2 Deformation control . 15

2.2.1 Sensor-based . 17

2.2.2 Data-driven . 18

2.2.3 Mechanical model-based . 19

2.3 Summary . 20

3 Sensor modeling 23

vii

Contents

3.1 Sensors’ characteristics . 24

3.1.1 BioTac - tactile sensor . 24

3.1.2 Robot platform - force-torque sensor 25

3.2 Recurrent neural networks . 27

3.2.1 RNNs in robotics . 28

3.2.2 How do RNNs work? . 29

3.2.3 LSTMs . 31

3.3 Tactile sensor model . 32

3.3.1 Force magnitude estimation . 33

3.3.2 Contact localization . 34

3.3.3 Experimental evaluation . 36

3.3.4 Tactile sensor model . 39

3.4 Force sensor model . 40

3.4.1 Analytical model . 40

3.4.2 RNNOB . 41

3.4.3 Data collection . 43

3.4.4 Experimental evaluation . 44

3.4.5 Force sensor model . 45

3.5 Summary . 46

4 Shape sensing pipeline 49

4.1 Component-based software engineering . 49

4.2 Force transformer . 51

4.3 Deformation model . 52

4.3.1 Deformation of elastic objects . 53

4.3.2 Finite element method . 56

4.3.3 Co-rotational linear elasticity . 57

4.4 Integration of components . 58

4.5 Applications . 60

4.5.1 Tactile-based shape sensing . 60

4.5.2 Force-based shape sensing . 68

4.5.3 Shape control . 72

4.6 Summary . 77

5 Conclusions and future work 79

5.1 Contributions . 79

5.2 Limitations of the approach . 80

5.3 Future research lines . 81

5.3.1 Sensor model . 81

5.3.2 Deformation model . 82

5.3.3 Pipeline . 82

5.3.4 Shape control . 83

5.4 Final conclusions . 84

A Basics of deformation 85

A.1 Deformation types . 85

Contents Contents ix

A.2 Elasticity . 85

A.3 Deformation models . 87

B Elastic behavior of the test objects 89

Bibliography 93

List of Figures

1.1 Proposed classification of deformable objects. 3

1.2 Examples of linear, cloth-like, planar and solid deformable objects. 3

1.3 Proposed pipeline to sense the shape of deformable objects using haptic
data. 5

3.1 Example applications for different sensing modalities. 23

3.2 Schematic diagram of the BioTac sensor. Taken without permission from [1]. 25

3.3 Robotic platform used to estimate contact forces. 26

3.4 Force-torque sensor output while the arm was moved without generating
contacts. 27

3.5 Type of RNN architectures. The input, hidden and output layers are
represented by red, green and blue circles respectively. 28

3.6 An unfolded recurrent neural network. 29

3.7 Example of a RNN architecture. 30

3.8 Comparison between how a standard RNN and an LSTM compute the
hidden state. 31

3.9 Setup to collect data for the force magnitude estimation. The data con-
sisted of the tactile signals as inputs and the labels (e.g. ground truth
values) were the three-dimensional forces obtained from the force-torque
sensor. 34

3.10 Sensor model, shown in (A), and the steps of the contact localization al-
gorithm: (B) thresholding of the active electrodes where the electrodes’
size is shown proportional to their intensity values, (C) contact local-
ization based on the active electrodes and their geometric centroid, (D)
projection of the contact to the sensor’s surface. 35

3.11 Force estimation along the three axes. 38

3.12 Setup to evaluate the contact localization algorithm. 38

3.13 Errors in the X, Y and Z axes for the contact localization algorithm. . . 39

3.14 Diagram showing how the RNNOB cancels the non-contact wrench in
order to estimate the pure contact wrench of the force-torque sensor. . . . 42

3.15 RMS errors for the RNN models based on: 1) pose (p, o), 2) orienta-
tion and twist (o, v, ω) and 3) linear acceleration, orientation and twist
(IMUa, o, v, ω). 43

3.16 Test setup used to perform the collision test. 44

3.17 Non-contact wrench estimation of the proposed RNNOB (red), the analytical-
based approach (green) and the measured wrench (blue), as output by the
force-torque sensor, for an unseen manual trajectory. 46

3.18 Contact force estimation of the proposed approach compared to the ref-
erence force measurement. 47

xi

List of Figures

3.19 Non-contact wrench estimation of the RNNOB (red), analytical approach
(green) and as measured by the force-torque sensor (blue) for the rota-
tional motion test. The first three rows show the forces (in N) and the
next three rows show the torques (in N · m). The last row shows the
rotations around the sensor’s y-axis (pitch) and z -axis (yaw) expressed in
degrees. The roll angle is not shown since it has no significant effect as
the sensor’s x -axis is along the gravity vector g. 48

4.1 Proposed pipeline using a component-based representation as detailed
in [2]. The red circle denotes the interface a component provides and the
half circle represents a required interface. 50

4.2 Visual representation of the force distribution on three nodes of the mesh
using a linear shape function. 53

4.3 Example of a deformation map φ from to the rest configuration X to the
deformed configuration x. 54

4.4 Screenshot of the simulation of a deformable, where the GUI acts as the
sensor model component. The nodes of the mesh are shown in white,
while the green spheres indicate the nodes where the force is being applied
and the red squares represent the constrained nodes. 59

4.5 Shape estimation of a deformable object based on tactile sensing. On the
left, the real shape is shown and the shape estimated by our proposed
pipeline is shown on the right. 61

4.6 Test objects: cube (hard), sponge (medium) and bar (soft). 61

4.7 A cube-like object tested in the three states. Front view is shown on the
top row and a side view is shown on the bottom row. 63

4.8 Experimental setup to evaluate the performance of the shape sensing
pipeline with tactile data for a bar-like object. 64

4.9 Similarity evaluation of a bar-like object using RGB-D data: (A) point
cloud as measured by the Kinect, (B) point cloud generated by a virtual
Kinect based on the output mesh of the proposed approach, (C) octree
(white) generated from the measured point cloud to measure the similarity
with the simulated point cloud (green). 65

4.10 Point cloud segmentation for a sponge-like object. The reference frame
marks the pose of the Kinect sensor. 66

4.11 Evaluation results of the deformation sensing. 67

4.12 Experimental setup for a bar-like object. 69

4.13 Example of the path to follow the six test poses by the bar objects during
the sensing evaluation. The R′ denotes a reference frame having the
same orientation as the robot base frame (see Figure 4.12) but a different
translation in order to make it visible. 69

4.14 Test poses used for the block-like objects for the sensing evaluation. . . . 70

4.15 Estimation errors for the shape sensing using force data on the four test
objects. 71

4.16 Simulated mesh of a bar-like object. The mesh nodes are shown in black
and the nodes used to extract a pose are shown in green. 72

List of Figures List of Figures xiii

4.17 Block diagram of the proposed deformation controller. The controller uses
the output of shape sensing pipeline based on force data to regulate an
error signal eo that is the difference between the current and desired poses,
xo
c and xo

d respectively, were both are described w.r.t. the object frame.
The deformation sensing block uses the initial undeformed configuration
qo
init of the mesh and the estimated contact force Fo, both expressed

in the object frame, to update the mesh configuration qo as it deforms.
From this mesh configuration, xo

c is extracted by the method outlined in
this section. As the robot expects the end-effector twist expressed in the
robot base frame {R}, the twist expressed on the object frame, namely
[υo

R,ω
o
R], must be multiplied by an adjoint matrix Adg relating these two

frames in order to obtain the desired twist ([υee
R ,ωee

R]). 74

4.18 Command and responses of the mesh and the robot end effector (EE)
along the X and Z axes for the bar soft object. 75

4.19 Control errors along the X and Z axes for the bar soft object. 75

4.20 Command and responses of the mesh and the robot end effector (EE)
along the Z axis for the block hard object. 75

4.21 Control error along the Z for the block hard object. 76

5.1 Integration of a controller with the shape sensing pipeline. 83

A.1 Top row: an object being deformed by an external force. Bottom row:
the resulting types of deformation once the external force is removed. . . . 86

A.2 A tensile load (F) producing axial and lateral strains. The blue dashed
lines represent the original, undeformed, shape and the red solid lines
represent the deformed shape [3]. 87

A.3 Comparison of physically-based deformation models based on the evalu-
ation results from [4] and the classification presented in [5]. 88

B.1 The X axis shows the compression distance while the Y displays the force
applied to the objects. 90

B.2 Stress-strain curve. 90

List of Tables

2.1 Classification of the sensing approaches. 11

2.2 Classification of the shape control approaches. 16

3.1 Sensing characteristics of the BioTac as reported in [1]. 25

3.2 Evaluation results of the force estimation. 37

3.3 The root mean square error on the datasets for the proposed RNNOB
and the analytical method. 45

4.1 Geometric information of the test objects used in shape sensing using
tactile data. 61

4.2 Material properties of the test objects used in the tactile-based shape
sensing application. 62

4.3 Geometric information of the test objects used in shape sensing using
force data. 68

4.4 Material properties of the test objects used in shape sensing using force
data. 68

xv

Abbreviations

CBSE Component-Based Software Engineering

DLO Deformable Linear Object

EA Evolutionary Algorithm

EB Euler-Bernoulli

FEM Finite Element Method

FT Force-Torque

GM Graph Model

GNG Growing Neural Gas

GP Gaussian Process

GPR Gaussian Process Regression

HOW Histogram of Oriented Wrinkles

IMU Inertial Measurement Unit

LSTM Long Short-Term Memory

MS Mass Spring

MSM Meshless Shape Matching

NURBS Non-Uniform Rational B-Splines

PBD Position-Based Dynamics

PM Probabilistic Model

xvii

List of Tables

RGB-D Red Green Blue-Depth

RNN Recurrent Neural Networks

WNN Weightless Neural Network

Chapter 1

Introduction

As deformable objects are ubiquitous in many industries, automating their manipulation

would have a great social impact. For instance, robots could perform tasks that are either

dangerous or monotonous for workers. Examples of manipulation of deformable objects

can be found in the automobile and aerospace industries, where cables and wires must

be connected in order to assemble motors; in health care, where clothes are handled

to dress disabled people; and in the food industry where meat and produce have to

be processed with care. Therefore, plenty of robotic applications have been recently

proposed to improve the capability of robots to manipulate deformable objects. For

instance, robotic solutions that attempt to automate the manufacture of motors by

manipulating cables can be found in [6–8]; and approaches concerned with using robots

to perform clothing assistance have been proposed in [9, 10]. As an example of food

handling, some roboticists have focused on harvesting bell peppers in an autonomous

manner [11, 12].

1.1 What are deformable objects?

Deformable objects are usually considered as those objects that are able to change their

shape. However, this definition is too loose. Therefore, in this thesis, we will refer

to deformable objects as objects that retain their topology, i.e. their shape can be

altered through stretching and twisting but not by being torn or cut. This definition

disqualifies objects such as liquids and granular materials (e.g. sand, grains, etc.) as

1

2 Chapter 1: Introduction

they can separate and thus alter their topology. Furthermore, we consider as deformable

the objects that either have no compression strength, have a large strain or present a

large displacement. Examples of objects having no compression strength are cables

and clothes; whereas sponges are objects that have a large strain. For an introductory

description on strain, the reader is referred to Appendix A.

Although the definition for deformable objects stated above might exclude plenty of

objects, there are still significant differences between object such as cables and food,

clothes and sponges; and therefore we propose a classification to group objects into cat-

egories that capture their similarities. To this end, our proposed classification combines

geometric and physical properties. Geometrically, deformable objects can be divided

based on the number of significant dimensions that describe their shape. Thus, beam

objects are described by one dimension, shell objects by two dimensions and volumetric

objects by three dimensions. By also considering their physical properties, we propose

the following categories:

1. Linear: Beam-like objects that either have no compression strength such as cables,

strings and ropes; or they have a large strain such as elastic tubes and beams.

These objects are commonly referred in the robotics community as deformable

linear objects, or DLO’s for short.

2. Cloth-like: Shell-like objects not possessing any compression strength. Shirts,

pants, towels and fabric sheets are examples of this type of objects.

3. Planar: Shell-like objects that present a large strain, or a large displacement, such

as paper, cards and foam sheets. Also, thin-shell objects such as empty plastic

bottles and hollow rubber balls are considered in this category.

4. Solid: Volumetric objects such as a sponges, plush toys and food products fall in

this object category.

Figure 1.1 depicts our proposed classification and Figure 1.2 shows examples of de-

formable objects based on our classification.

1.2 Difference with rigid objects 3

Deformable
objects

Large
strain

No
compression

strength

� Physical property �

� Object’s shape �

ShellBeamBeam VolumetricShell

Cloth-like Linear Planar Solid
Figure 1.1: Proposed classification of deformable objects.

(a) Rope and cable. (b) Towel and pants. (c) Ball and bottle. (d) Sponges and meat.

Figure 1.2: Examples of linear, cloth-like, planar and solid deformable objects.

1.2 Difference with rigid objects

Although robotic manipulation of rigid objects has been studied for several decades

now [13–16], the algorithms and strategies developed for rigid objects are not always

transferable to deformable objects. For instance, force and form closure, two widely

used conditions in robot grasping, are not directly applicable to deformable objects. As

form closure consists in applying kinematic constraints on an object such that the object

cannot perform any relative motion [17], this clearly fails with deformable objects since

they have infinite degrees of freedom [18]. To apply force closure, which considers a set

of contact points such that contact forces can balance an arbitrary external wrench [19],

to deformable objects would entail to continuously recalculate the necessary forces as

the object changes its shape due to the contact forces deforming the object [20].

4 Chapter 1: Introduction

Also, as noted in [21], manipulation of rigid objects focuses mostly on controlling the

grasped object’s pose. However, manipulating deformable objects requires also control-

ling the object’s shape. This extra requirement, in addition to the inapplicability of

the methods developed for manipulation of rigid objects, has led to a diverse set of

approaches to manipulate deformable objects.

1.3 Scope of this thesis

The main purpose of this thesis is to control the shape of an object, a task sometimes

referred to as shape servoing. In order to control an object’s shape a feedback signal

is required. Ideally, this feedback signal would be the actual shape of the object as it

deforms. However, measuring the three-dimensional shape of an object while it deforms

remains an open issue. Therefore, we first have focused on estimating the shape of an

object as a preliminary goal necessary to perform the subsequent shape control.

Although a “shape sensor” is not available so far, multiple attempts are currently being

pursued to estimate a deformable object’s shape. Most of these approaches use visual

sensing and rely either on the use physical models or on so-called model-free methods

(e.g. by attaching fiducial markers on the object). Other methods have avoided the use

of a feedback signal by performing the shape control in an open-loop manner and are

thus not capable of guaranteeing a successful outcome.

Since approaches based on vision are affected by problems such as occlusions (which

occur rather often when manipulating objects), specularity (e.g. shiny objects), objects

similar to their background or objects lacking texture; the addition of complementary

modalities could greatly improve the performance of these approaches. One such modal-

ity is that of touch, e.g. force and tactile sensing. To address these shortcomings, in

this thesis we investigate the viability of an approach that estimates the shape of a

deformable object using tactile and force sensing.

Furthermore, the approaches currently found in the literature tend to be designed for

specific tasks and objects. To avoid this lack of generality, we propose a modular ap-

proach that allows for variation of different tasks/objects. The approach consists of

modules connected in a pipeline as shown in Figure 1.3 and modularity is achieved via

the replacement of modules.

1.4 Contributions 5

Updated
nodal positions

Contact
forces

Force
transform

Force
vector

Sensor
model

Tactile/force
signals

Deformation
model

Figure 1.3: Proposed pipeline to sense the shape of deformable objects using haptic
data.

1.4 Contributions

The contributions of this thesis are summarized below:

1.4.1 Survey and systematization of the state of the art

Works focusing on the manipulation and sensing of deformable objects were reviewed and

organized based on the proposed classification shown in Figure 1.1. This organization

of the state of the art allowed us to clearly identify potential solutions as well as gaps

in current approaches. One such shortcoming is for instance the lack of haptic sensing,

e.g. using force and tactile signals, which could greatly benefit robotic perception during

the manipulation of deformable objects. Furthermore, current approaches are typically

designed for specific objects with well defined tasks (e.g. tying a knot, folding clothes).

Thus, developing generic solutions would be highly desirable.

1.4.2 Sensor models

As highlighted above, the addition of haptic sensing to a robot’s perception system would

improve the shape estimation of an object while is being deformed. To extract haptic

information, tactile and force sensors are usually used, however, in order to map the

sensors’ output to contact information (i.e. magnitude and location of contact forces)

accurate sensor models are required. In this thesis, sensor models for an advanced tactile

sensor and a commercial force-torque sensor were developed.

6 Chapter 1: Introduction

1.4.3 Shape sensing pipeline

Due to the variability of tasks and deformable objects, approaches found in the literature

suffer a lack of generality. Thus, it is imperative that we develop solutions that are either

general or can be modified at run time to handle different objects and tasks. To address

this issue we propose a modular pipeline that operates on contact information regardless

of the input sensor, provided a sensor model is used to interface with the pipeline. The

modularity of the pipeline allows to change the input signals according to the particular

task being executed or the manipulated object. For instance, tactile sensing might be

more appropriate for performing in-hand manipulation, while force sensing could be

used when manipulating large objects. A diagram of the proposed pipeline can be seen

in Figure 1.3.

1.4.4 Shape controller architecture

Finally, as the main goal of this thesis is deformation control, we propose a control

architecture that uses the developed shape sensing pipeline to deform an object such

that it reaches a desired target. Although, preliminary results show great potential,

considerable work remains to be done, specially considering how heavily underactuated

the problem of shape control is.

1.5 Publications

The results from this thesis have been published in the following articles:

Journal articles

• Sanchez, Jose, Juan-Antonio Corrales Ramón, Belhassen-Chedli Bouzgarrou,

and Youcef Mezouar. “Robotic manipulation and sensing of deformable objects

in domestic and industrial applications: a survey”, The International Journal of

Robotics Research, vol. 37, issue 7, pp. 688-716. 2018.

1.6 Outline of the thesis 7

Conference articles

• Sanchez, Jose, Carlos M. Mateo, Juan-Antonio Corrales Ramón, Belhassen-

Chedli Bouzgarrou, and Youcef Mezouar. “Online Shape Tracking based on Tactile

Sensing and Deformation Modeling for Robot Manipulation”, IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, Madrid, Spain, October 1-5,

2018.

• Mohy El Dine*, Kamal, Jose Sanchez∗, Juan-Antonio Corrales Ramón, Youcef

Mezouar and Jean-Christophe Fauroux. “Force-Torque Sensor Disturbance Ob-

server using Deep Learning”, International Symposium on Experimental Robotics

Buenos Aires, Argentina, November 5-8, 2018.

1.6 Outline of the thesis

Following this introduction we discuss the state of the art for manipulating and sensing

deformable objects in Chapter 2. Chapter 3 describes the sensor models proposed for the

tactile and force-torque sensors. The shape sensing pipeline is described in Chapter 4

and its applications, including the deformation controller, are presented in Chapter 4.5.

The contributions and limitations of our work, as well as potential research lines and

concluding remarks are outlined in Chapter 5.

∗Authors contributed equally.

Chapter 2

State of the art

The context of this thesis follows our group research line on robotic manipulation of

deformation objects. Previous works have focused on tasks such as meat cutting and

grasping of deformable objects. The former was addressed by Nabil et al., where the

deformation of the meat was modeled using a mass-spring model and a multi-robot

system, consisting of an arm moving a vision system, a cutting arm and an arm holding

the meat; was used to separate meat muscles [22]. Their model was then extended by

Zaidi et al. to grasp a soft object using a multi-fingered robot hand [23]. Here, the

object was also represented as a tetrahedral mesh but with its nodes connected by non-

linear springs. They further proposed a contact model to compute the interaction forces

between the fingers and the object based on the fingers’ positions and velocities, which

were used by the deformation model in order to verify the stability of the grasp to lift

the object.

Due to the shear amount of works that deal with deformable objects in robotics, we

limit the scope of this chapter by focusing on the most relevant approaches to this

thesis. To this end, we review works that either control or sense the shape of solid

objects (see Figure 1.1), or those approaches that could be extended to perform these

tasks. For a further study of the state of the art not limited to these tasks, or type of

object, the reader is referred to recent surveys [24, 25].

9

10 Chapter 2: State of the art

2.1 Deformation sensing

Sensing of deformable objects can refer to different tasks such as:

• Parameter estimation: Physically realistic deformation models require precise

knowledge of elasticity parameters such as Young’s modulus, Poisson’s ratio, Lamé

coefficients , etc. Other deformation models, not necessarily reliant on these quan-

tities, might require knowledge of ad-hoc parameters. Thus, a critical preliminary

step to estimate deformation is the accurate identification of these material pa-

rameters.

• 2D sensing: Approaches might be interested in following or estimating the con-

tour or surface of an object while it deforms. Note that although the estimation

itself is two-dimensional, its representation might be three-dimensional (e.g. bend-

ing a sheet of paper).

• 3D sensing: Refers to the ability to estimate or track the global shape of a

deformable object.

As noted above, some approaches require the use of deformation models. These mod-

els can be mechanically motivated (continuum or discrete-based), empirically obtained

through sensor information (data-driven), or a combination of both (hybrid). For a brief

description of the mechanical-based models and how they compare against each other

in terms of accuracy and complexity the reader is referred to Appendix A.3. In this

section, the sensing approaches are organized based on the type of model they use to

represent the shape of a deformable object. A summary of the works covered in this

section is presented in Table 2.1.

2.1.1 Mechanical-based models

The sensing approaches reviewed in this section rely on mechanical-based models that

can either have a continuous or a discrete representation. The reviewed works here,

then, rely on constitutive models1 such as the Euler-Bernoulli (EB) beam theory model

or the finite element method (FEM2) for continuous representations; and mass-spring

1In these models the elasticity parameters are derived from the material properties of the object.
2A description of how the FEM method is used for simulating deformation is covered in more detail

in Section 4.3.1.

2.1 Deformation sensing 11

T
a
b
l
e
2
.
1
:
C
la
ss
ifi
ca
ti
o
n
o
f
th
e
se
n
si
n
g
a
p
p
ro
a
ch
es
.

T
a
sk

M
o
d
e
l

S
e
n
si
n
g
m
o
d
a
li
ty

S
e
n
si
n
g

2
D

S
e
n
si
n
g

3
D

P
a
ra

m
e
te
r

e
st
im

a
ti
o
n

D
a
ta

-
d
ri
v
e
n

H
y
b
ri
d

M
e
ch

.
m
o
d
e
l

V
is
io
n

2
D

V
is
io
n

3
D

H
a
p
ti
c

P
ro

p
ri
o
-

c
e
p
ti
v
e

[2
6]

�
F
E
M

�
�

[2
7]

�
�

E
B

�
[2
8]

�
G
N
G

�
�

�
[2
9]

�
M
S
+

P
M

�
[3
0]

�
M
S

�
[3
1]

�
�

E
B

+
N
U
R
B
S

�
[3
2]

�
W

N
N

�
[3
3]

�
F
E
M

�
[3
4]

�
P
B
D

�
[3
5]

�
P
B
D

+
G
P

�
�

[3
6]

�
F
E
M

�
[3
7]

�
G
N
G

�
�

[3
8]

�
�

M
S
+

E
A

�
�

[3
9]

�
�

P
B
D

�
[4
0]

�
F
E
M

�
[4
1]

�
G
P
R

�
[4
2]

�
G
M

�
S
en
si
n
g
m
o
d
a
li
ti
es

ca
n
re
fe
r
to

(e
x
a
m
p
le
s)
:
m
o
n
o
cu
la
r
ca
m
er
a
s
(2
D

v
is
io
n
),

R
G
B
-D

ca
m
er
a
s
(3
D

v
is
io
n
),

fo
rc
e
a
n
d
ta
ct
il
e
se
n
so
rs

(h
a
p
ti
c)

o
r
th
e

co
n
fi
g
u
ra
ti
o
n
of

a
m
a
n
ip
u
la
to
r
(p
ro
p
ri
o
ce
p
ti
ve
).

12 Chapter 2: State of the art

(MS) models and position-based dynamics (PBD) for discrete representations. A survey

describing these mechanical models can be found in [5].

2.1.1.1 Continuum-based

As previously noted, the mechanical-based models require knowledge of parameters to

properly estimate deformations. To this end, Frank et al. proposed an approach to

estimate the Young’s modulus and the Poisson’s ratio of non-rigid objects by combining

force and vision sensing with an FEM model [26]. A robot manipulator, with a force-

torque sensor, probed different objects to deform them and then compare the observed

deformation (obtained by the vision system) with a deformation from the FEM model.

The difference between the simulated and observed deformation served as an error func-

tion to optimize the parameters’ values. Instead of using an FEM model, Fugl et al.

used the Euler-Bernoulli beam model to estimate the Young’s modulus of an object

deforming under gravity [27]. Similar to [26], this approach made use of RGB-D data to

measure the object deformation and afterwards minimized the error between the sensed

and the simulated deformation to estimate the Young’s modulus.

Although FEM models tend to be computationally expensive, recently, it was shown

that a real time estimation of an object’s shape can be achieved using a FEM model.

In a series of papers, Petit et al., assume a known mesh of the object is available and

couple the output of an RGB-D sensor with a co-rotational FEM model to track the

shape of the object as it deforms [33]. In [36], they added force sensing to estimate the

necessary parameters (i.e. Young’s modulus and Poisson’s ratio) in a preliminary phase.

Their work was further extended in [40] to incorporate multiple deformable objects and

also deal with collisions. Their approach produced accurate results without excessive

computational cost, such that real time estimation was achieved.

2.1.1.2 Discrete-based

The following approaches represent the object as a set of points. If the points, i.e. nodes,

are connected by springs they are referred as mass-spring models, while position-based

dynamics models indicate that the representation does not require connectivity between

nodes.

2.1 Deformation sensing 13

Leizea et al. in [30], proposed an approach to track deformations using the output of an

RGB-D sensor in combination with a mass-spring model. In order to create the mass-

spring model, they use a voxel structure3 created from the object’s bounding box, where

the vertices in a voxel represented the nodes of the mesh. To estimate the deformation,

the displacement of each node (obtained by the vision system) is used to compute forces

which are then integrated to produce the new nodal positions.

Güler et al., using a type of PBD simulation called meshless shape matching (MSM),

estimated the deformation of an object’s surface as it was pushed downwards by a

probe [34]. Since MSM only requires position information, they used an optical flow

algorithm to compute the position of a set of points that corresponded with the simulated

points. In order to tune their simulation they also estimated a “deformability” parameter

to control the behavior of the simulated deformation. This approach was later extended

in [39] by including an FEM model that served as ground truth to better estimate the

deformability parameter.

2.1.2 Data-driven models

These approaches rely on data-driven techniques applied to data gathered by sensors ,

such as images or point clouds, to estimate an object’s deformation.

One of the first works to use machine learning to estimate the deformation of an object

was proposed by Cretu et al. [28]. Specifically, they combined a feedforward neural

network with a growing neural gas (GNG) network to track the contour of an object while

it was deformed by a robotic hand. The feedfoward network was used to map position

and force information, from the fingers of the robot hand, to a set of two-dimensional

points representing the contour of the object. The GNG network was grown, point

by point, until a sufficient number of points could describe the contour appropriately.

In [32], Staffa et al., applied neural networks as well to track not only the contour of

an object but their surface. They used Weightless Neural Network (WNNs) on a video

input to train different classifiers to detect whether a pixel was part of the background

or the foreground (i.e. the object to be tracked).

3A voxel structure is a three-dimensional grid composed of cells called voxels.

14 Chapter 2: State of the art

As the previous works relied on monocular cameras that remained at a fixed location,

they could only track either the contour or surface of the object. To overcome this

limitation, recent approaches have instead used RGB-D sensors to track deformations

occurring in a three-dimensional space. Hu et al. estimated the shape of different ob-

jects using Gaussian process regression (GPR) to model the object’s deformation [41].

Also using RGB-D data, Han et al. estimated the shape of a deforming object by

simultaneously tracking and reconstructing the object [42]. Here, the object is first

represented as a voxel structure created using a truncated signed distance function com-

puted from the object to the camera. Then, this representation was deformed using a

graph model (GM) that considers both the difference between the initial representation

and inconsistent transformations in neighboring vertices. Finally, the shape of the object

is reconstructed to include the color and texture information.

Recently, an approach proposed by Tawbe and Cretu, using a probe with an attached

force sensor and a moving RGB-D sensor, was able to predict the deformation of three-

dimensional objects [37]. The approach consists in first generating a mesh using the

output of the RGB-D sensor while probing the object to deform it at a specific location.

Then, once the mesh is created, the number of points representing the object is reduced

based on clusters that divide the object based on the amount of deformation (e.g. the

first cluster was the closest to the deformation and the last one was the farthest from

the deformation). To predict the deformation they trained a feedforward network for

each cluster where the input consists of a three-dimensional force, the angle of the probe

and its contact location.

2.1.3 Hybrid models

The following approaches combine discrete-based models with data-driven approaches

such as Gaussian processes (GP) and probabilistic models (PM) to sense the shape of

an object while it is undergoing deformation.

The approach proposed in [27], was later extended in [31] by using non-uniform rational

B-splines (NURBS) as a representation that described the surface of the deforming

object, which allowed them to track the object’s shape. Arriola-Rios andWyatt proposed

a system that predicts not only the deformations of elastic and plastic objects, but

also the parameters of a spring-mass model that represents the object [38]. They first

2.2 Deformation control 15

obtained the model parameters by using an evolutionary algorithm (EA) , and to predict

the shape of the object they trained a predictor offline using data from a force sensor

(pushing the object) and a monocular camera that tracked the contour of the object.

Although their system was able to generalize to different types of deformation (i.e.

plastic and elastic), only the deformation on one side of the object was predicted as the

vision system remained at a fixed location. In [35], by adding touch sensing, they were

able to characterize the deformability of surfaces. Their approach combined RGB-D

data with tactile data, obtained by physically interacting with a surface, using Gaussian

processes to create a map of how the surface deforms at different locations.

Unlike the previous approaches that tracked deformation on surfaces, Schulman et al.

succesfully estimated the deformation of an object in three dimension. Here, the object

was described using also a mass-spring model but updating the positions of the vertices

via a probabilistic model [29]. In order to update the nodal positions of the mesh, they

used point clouds obtained from an RGB-D sensor as observations and, since not all

nodes were visible to the RGB-D sensor, they relied on a physics engine simulator to

estimate the positions of the non-visible nodes.

2.2 Deformation control

So far, most approaches that deal with manipulating the shape of a deformable object

do not rely on a physical-based model of the object they control. Instead, sensing,

and in particular vision, has been used to extract feedback signals that are regulated

to manipulate the object. Also, not relying on a model, some approaches have used

machine learning (e.g. data-driven approaches) to design controllers that manipulate a

deformable object. Nevertheless, a few recent approaches have proposed using physical-

based models in order to control the shape of an object. This section will first review

the approaches based on sensing, followed by data-driven approaches and conclude with

the model-based approaches. Table 2.2 shows a classification of the reviewed methods

for shape control.

16 Chapter 2: State of the art

Table 2.2: Classification of the shape control approaches.

Task Approach
Sensing
modality

2D 3D
Sensor-
based

Data-
driven

Mech.
model

Vision
2D

Vision
3D

Proprio-
ceptive

[43] � †
[44] � VS �
[45] � VS �
[46] � VS �
[47] � HF �
[48] � VS �
[49] � FEM �
[50] � FEM �
[51] � † �
[52] � VS �
[53] MS
[54] � VS �
[41] VS + GPR �

The methods used for the model-free approaches can be classified as follows. VS:
Visual servoing, HF: Histogram features, GPR: Gaussian process regression, †: These
approaches assume the configuration of the object (e.g. as a set of points) was available

for the controller.

2.2 Deformation control 17

2.2.1 Sensor-based

Within the approaches that do not require a mechanical model, different representations

have been used as a feedback signal. For instance, the object might be represented as a

set of points that are sensed using an RGB-D sensor by covering the object with fiducial

markers. These points are then used to extract features that describe the object’s

deformation.

Navarro-Alarcón et al., in a series of works, proposed a way to control the configuration

of a deformable object using visual servoing. Here, the configuration of the object

is described using deformation feature vectors, based on a set of points tracked using

markers. The proposed deformation vectors were the following:

1. Point-based deformation: one point on the object is driven to a desired target

point.

2. Distance-based deformation: one point, or the midpoint between two points,

is moved a specified distance.

3. Angle-based deformation: rotates a line between two points by a desired angle.

4. Curvature-based deformation: an arc of three points on the object can be

manipulated to achieve a specific curvature.

These approaches also rely on a deformation Jacobian, which here refers to a matrix

mapping the motion of the grippers to the deformation of the object. In [44], the defor-

mation Jacobian is estimated using the Broyden method, which computes the Jacobian

once at the beginning and then approximates it at each iteration using the previous

Jacobian and the changes of the feature vectors and the end-effector’s pose; and, in [45],

they proposed a new estimation that used views from multiple cameras. However, both

of these approaches were limited as they control the deformation features on a plane,

namely in the image space. This was later addressed in [46], by using stereo-vision

to track the points in 3D and subsequently define the deformation feature vectors also

in 3D. A similar approach proposed by Alambeigi et al. extended its application to

heterogeneous objects while being robust to disturbances, e.g. the objects were filled

with water beads (heterogenous) and then cut (disturbance) while the controller was

18 Chapter 2: State of the art

running [54]. To achieve this, instead of relying only on a deformation Jacobian, they

combined it with an image Jacobian to consider both the deformation behavior of the

object as well as the feedback points obtained by the vision system.

Although the shape of the object can be indirectly controlled by these approaches, e.g.

by controlling a few points, they are inadequate to perform tasks that require a true

shape control. To overcome this shortcoming, Navarro-Alarcón and Liu, proposed the

use of truncated Fourier series to describe the contour of an object and used the Fourier

coefficients as feedback signals to control the object’s shape [48].

A common assumption the previous approaches made was that, at the beginning of

manipulating the object, the robot is grasping the object. To tackle this constraint,

Wang et al. proposed a vision-based controller to first make contact with the object and

then deform it into a desired configuration without the necessity to have independent

controllers for reaching and shaping [52].

2.2.2 Data-driven

Since a deformable object configuration is extremely high-dimensional, researches have

instead proposed low-dimensional representations in order to apply machine learning

techniques to develop controllers for the manipulation of deformable objects. For in-

stance, Jia et al. proposed a feature called histogram of oriented wrinkles (HOW) that

was used by a dual-arm robot to manipulate different deformable objects [47]. The HOW

feature was computed using Gabor filters that are convenient for extracting shadow and

shape variations (e.g. in the form of wrinkles). As a control law, they computed the

velocities of the end-effectors based on the difference between the HOW features of a

current and a desired image. To map the velocities to this difference, they approximated

the interaction function as a visual feedback dictionary. This dictionary was built offline

by pairing the robot configuration with the HOW features at every time step. Then,

at runtime, the difference between HOW features was used to retrieve the appropriate

command, e.g. the end-effectors’ velocities.

Also relying on data to compute a deformation model that maps custom features to

the velocities of a robot’s end-effectors, the approach described in [41] learns a model

online using a modified Gaussian process regression (GPR). The modification of the

2.2 Deformation control 19

GPR consisted in removing uninformative data to achieve a faster computation that

allowed the model to be learned online. However, as the model is learned online, an

exploration phase at the beginning of the manipulation is necessary to obtain the relevant

information. In an experimental evaluation, the approach was shown to outperform, in

terms of success and speed, the approaches described in [44, 46] since it used a nonlinear

model instead of a linear one. It is worth noting that in this approach the input data

were pointclouds (obtained by an RGB-D sensor) rather than two-dimensional images

as in the previous approaches.

Other approaches can deal with the high dimensionality of the object, but assuming

the configuration of the object is known (e.g. provided by a simulator as set of points).

In [43], Berenson proposed an approach to move the object into a desired configuration,

using a pair of floating robot’s grippers, where the object state was assumed to be

known at all times. In this approach, similar to the works by Navarro-Alarcón et al.,

Berenson computes a deformation Jacobian. Although here the computation is based

on the assumption that the position of the points farther away from where the gripper is

grasping the object are affected less by the gripper’s motion. The deformation Jacobian

is then used to compute a set of gripper velocities that minimize the error between desired

and current object configuration. Additionally, constraints were added to prevent over-

stretching and avoid collisions. This work was recently formulated as an optimization

problem in [51] and it was further extended to consider the direction in which the object

is pulled, thus improving the performance of the controller.

2.2.3 Mechanical model-based

Usually, physically realistic models, such as the finite element method, are avoided to

model deformations of objects since they are computational expensive and thus not

appropriate to perform real-time control. However, due to recent improvements in com-

puting power these models have begun to be applied in the field of robotics in control

shaping tasks. For instance, Dünser et al. represented an object, grasped by a dual-

arm robot, using a FEM model and applied optimization to find the joint angles of the

robot that moved the object into a desired shape [50]. To estimate the shape of the

object, which was modeled by a neo-Hookean material model, they first computed the

energy caused by the deformation, gravity and the force applied by the grippers, and

20 Chapter 2: State of the art

then searched for the object shape that minimized the energy. Once the shape had been

estimated, they optimized an objective function to find the set of joint positions that

were closer to reaching the target shape for the object. Since this optimization required

the computation of an expensive gradient, they applied sensitivity analysis to reduce

the computational burden.

Also using a FEM model to describe an object, but instead of relying on optimization,

Ficuciello et al. inverted the model to find the appropriate control commands to perform

shape control using a dexterous hand [49]. The fingertips of the robotic hand were

considered as end-effectors actuating the motion of the object and the contact forces

were regarded as actuators. In order to control these “actuators” they defined the

contact forces as Lagrangian multipliers that moved the fingertips such that a desired

shape could be reached. Although both of these approaches are able to control the shape

of an object in real-time, they perform open-loop control and thus, there is no feedback

on the actual shape of the object.

So far, the approaches reviewed have assumed the objects deform in a purely elastic

manner, meaning that once the deformation force is removed they return to their rest

shape (e.g. the undeformed shape). However, in reality, most objects tend to deform

elastically only in a partial manner. That is, that once the deformation force is removed

the object does not recover its original shape (e.g. plastic deformation4). Those type

of objects are refer to as rheological objects. In order to model this mixed behavior,

Cocuzza and Tan proposed to model a deformable object as a chain of masses connected

by a three-element model5. In their approach, the objective is to shape fondant icing on

top of a cake [53]. Furthermore, they identify the model parameters (e.g. the values of

the spring and the two dampers) by first performing a tensile test of the fondant icing.

2.3 Summary

This section covered the latest approaches on sensing and control of deformable objects

with a focus on solid type objects. This consideration was taken to limit the review

to the works most relevant to this thesis. For historical references, however, the reader

4The different type of deformations are described in Appendix A.1.
5A three-element model consists of a spring connected in parallel with a damper and then connected

in series with another damper. This model is widely used to represent rheological materials.

2.3 Summary 21

is referred to classic surveys focusing on industrial applications [55, 56]. Other surveys

have focused on specific tasks, such as planning with deformable objects [57], or on a

specific type of object, such as cloth-like objects [58]. Recent works covering a broad set

of both tasks and objects can be found in [24, 25].

Sensing approaches were classified based on their reliance on models, where physical-

based models are used when accuracy is preferred and geometric models or model-free

methods when speed is crucial. Model-free approaches might directly used sensor data or

require a preliminary step to collect data in order to apply machine learning techniques.

The appropriate model, or lack thereof, for a particular application must be selected by

considering the trade-off between accuracy and performance.

Regarding control approaches, it is evident that a feedback signal is necessary in order

to control the shape of a deformable object, however, it is less clear what such signal

should look like. For instance, a signal such as a mesh can better describe an object’s

shape by increasing the number of vertices that comprise the mesh. However, using

such a representation as a feedback signal, has the drawback of making the control

problem a heavily underactuated one. On the other spectrum, one could choose a

low-dimensional representation such as a pair of points with the shortcoming of not

accurately representing the actual shape of the object. Thus, similar to the sensing

approaches, the definition of a deformation feature (e.g. a feedback signal) is entirely

dependent on the task requirements.

For this reason, we propose a modular pipeline (see Chapter 4) with the potential to

modify the feedback signal at runtime to fulfill a task appropriately (e.g. sacrificing

accuracy for speed or vice versa). Of course, as different feedback signals might require

different controllers, the pipeline must also allow the replacing of controllers in an online

manner. Furthermore, as demonstrated by the review of the state of the art, and sum-

marized in Table 2.1, most approaches so far have relied on vision systems which are

affected by occlusions and are sensitive to lighting conditions. Thus, we develop sensor

models, presented in Chapter 3, based on tactile and force sensing to overcome these

issues that commonly occur while manipulating objects.

Chapter 3

Sensor modeling

As previously noted in Section 1.3, the proposed pipeline requires sensors models that

are able to output contact forces (see Figure 1.3) in order to be integrated with the rest

of the pipeline’s modules. To this end, we develop sensor models to compute information

such as the magnitude and location of contacts. The type of sensors needed depends

on the type of manipulation task the robot should execute. For instance, if the robot

requires fine and local motions (e.g. in-hand manipulation using a robot hand) tactile

sensing is preferred, while if the robot must execute large motions using a robot arm, such

as substantially deforming an object, force sensing might be more adequate. Figure 3.1

shows example applications illustrating which modality is preferred depending on the

task and the size of the object.

(a) In-hand manipulation tasks, such as the
one described in [49], could benefit from in-

formation obtained by tactile sensors.

(b) Manipulation of large objects, as proposed
in [45], requires arm manipulation where forces

might be captured by force sensors.

Figure 3.1: Example applications for different sensing modalities.

We begin this chapter by introducing the sensors used in our work and analyzing their

characteristics in Section 3.1. It will be shown that their unprocessed output can-

not be directly applied to our pipeline due to either having a complex fabrication, as

23

24 Chapter 3: Sensor modeling

shown in Section 3.1.1 or by producing undesired non-contact forces, as described in Sec-

tion 3.1.2. To overcome these issues we rely on machine learning techniques to learn the

correlation between a sensor’s output and a desired information, e.g. a three-dimensional

force. Specifically, we apply recurrent neural networks, which are described in Section 3.2

and the motivation to use them is argued in Section 3.2.1 by acknowledging similar ap-

plications in the field of robotics. Then, our proposed tactile and force sensor models

are presented in sections 3.3 and 3.4, respectively. And finally, this chapter is concluded

with a summary in section 3.5.

3.1 Sensors’ characteristics

The tactile sensor used in this thesis along with its sensing capabilities and specifications,

will be described in the next section. For a comprehensive review of tactile sensing

applications in robotics, the reader is referred to [59]. Then, the robot platform where

the force-torque sensor is attached, as well as the sensor’s behavior, will be presented

in Section 3.1.2.

3.1.1 BioTac - tactile sensor

In this thesis we use a multimodal tactile sensor named BioTac1, which was developed to

imitate the sensing capabilities of a human fingertip. As seen in Figure 3.2, the sensor is

equipped with a thermistor, a pressure sensor and 19 impedance sensing electrodes. The

BioTac is covered by a flexible skin that holds an incompressible conductive fluid. This

construction allows the BioTac to measure three modalities, namely, temperature, force

and vibrations. To measure temperature, the thermistor detects changes in temperature

caused by objects contacting the core. Force is computed by the fluid changing its

distribution when a contact with the skin occurs, this change of distribution is detected

as impedance changes by the electrodes. And finally, vibrations are measured when an

object slides across the skin of the BioTac by the hydro-acoustic pressure transducer.

The output of the sensor for these modalities is summarized in Table 3.1 along with their

ranges, resolution and frequencies. Here, En represents the voltage of an n electrode

from the 19 impedance electrodes. PDC refers to the absolute fluid pressure and PAC

1https://wiki.ros.org/BioTac

3.1 Sensors’ characteristics 25

Figure 3.2: Schematic diagram of the BioTac sensor. Taken without permission
from [1].

is the dynamic fluid pressure (e.g. vibrations). The temperature is represented by TDC

and the heat flux by TAC . The value of En is computed based on the distribution of the

incompressible fluid; since, when an object comes in contact with the sensor it deforms

the skin, causing the fluid to change its distribution. Thus, each electrode changes its

impedance value based on the amount of fluid around it, e.g. when there is less fluid

around the electrode its voltage increases.

Table 3.1: Sensing characteristics of the BioTac as reported in [1].

Sensory modality Range Resolution Frequency response

Impedance (En) 0 - 3.3V 3.2 mV 0 - 100 Hz
Fluid Pressure (PDC) 0 - 100 kPa 36.5 Pa 0 - 1040 Hz
Microvibration (PAC) +/-0.76 kPa 0.37 Pa 10 - 1040 Hz
Temperature (TDC) 0 - 75 C 0.1 C 0 22.6 Hz
Thermal Flux (TAC) 0 - 1 C/s 0.001 C/s 0.45 22.6 Hz

3.1.2 Robot platform - force-torque sensor

Since the force-torque sensor must be attached to the robot in order to enable force

sensing, we first describe the robot platform used in this research and how the force-

torque sensor is part of this platform. The robot platform, shown in Figure 3.3, consists

of a KUKA LWR arm with an attached Shadow robot hand as an end-effector. The force-

torque (FT) sensor, an ATI Gamma2 sensor, is located between the robot arm and robot

hand; and together with an Adafruit (L3GD20H + LSM303)3 inertial measurement unit

(IMU) serve as the robot’s external sensors. The IMU is connected to an Arduino board

to transmit data to a computer which is also connected to the robot and the FT sensor.

2http://www.ati-ia.com/products/ft/ft_models.aspx?id=Gamma
3https://www.adafruit.com/product/1714

26 Chapter 3: Sensor modeling

Robotic
arm

Robotic
hand

FT
sensor

IMU
Arduino
board

Figure 3.3: Robotic platform used to estimate contact forces.

Besides the external sensors, the robot arm also counts with internal sensors (e.g. joint

encoders) that are used to obtain information regarding the position and velocity of the

end-effector. The output and characteristics of each sensor are as follows:

1. ATI Gamma: produces a six-dimensional wrench expressed in the sensor’s frame

ΣS at 1,000 Hz.

2. Adafruit (L3GD20H + LSM303): generates linear accelerations and angular

velocities expressed in the IMU frame ΣIMU at 300 Hz.

3. Joint encoders: Provide, through forward and differential kinematics, the end-

effector orientation (in quaternion representation) plus linear and angular velocities

expressed in the robot frame ΣO at 500 Hz.

Figure 3.4 shows the output of the FT sensor when the robot arm, with the hand attached

as an external load, moves without any contacts. Ideally, all the force in all axes should

remain at zero as there are no contacts, however, due to gravitational, inertial, Coriolis

and centrifugal forces; the output of the sensor is non-zero and thus it necessary to

develop a sensor model that cancels these non-contact forces.

3.2 Recurrent neural networks 27

Figure 3.4: Force-torque sensor output while the arm was moved without generating
contacts.

3.2 Recurrent neural networks

As shown in the previous section, the output of the sensors requires further processing in

order to use them in the proposed pipeline. Thus, sensor models are required to map the

raw output of the sensors to information compatible with the pipeline’s interface. We

propose to use recurrent neural networks (RNNs) to learn this mapping and begin this

section by covering what RNNs are and how they work. Furthermore, we will provide

motivation, in the form of recent applications of RNNs in robotic applications, for their

use in this work.

RNNs are a type of neural network that can process sequences, unlike traditional feed-

forward networks. In fact, one can consider a feedforward network as a special case of

RNN where a single input is mapped to a single output. RNNs are called recurrent since

their output depends on previous computations and thus allow them to find patterns in

sequences. Depending on the task, different architectures of RNNs can be implemented.

Example diagrams for these architectures are shown in Figure 3.5 and their descriptions,

along with example applications, are outlined below:

28 Chapter 3: Sensor modeling

• One to one: A simple feedforward network is an example of this architecture,

since a single input is mapped to a single output. One application for this kind of

networks is image classification, where the input is an image and a label (e.g. a

cat) is the output. A diagram of this network is shown in Figure 3.5a.

• One to many: Image captioning is an example application for this type of net-

works, where an image (one input) is given to the network to produce a caption

(many outputs). This architecture can be seen in Figure 3.5b.

• Many to one: This architecture, shown in Figure 3.5c, is useful for sentiment

classification, where a sequence of words are the input to the network and the

network outputs whether the sentence is positive or negative.

• Many to many: This type of architecture is useful for machine translation were

a sentence in one language must be translated into another language where the

output sentence might have a different size from the input sentence (e.g. not a

word by word translation). One example diagram for this architecture is depicted

in Figure 3.5d

(a) One to one.

(b) One to many. (c) Many to one. (d) Many to many.

Figure 3.5: Type of RNN architectures. The input, hidden and output layers are
represented by red, green and blue circles respectively.

3.2.1 RNNs in robotics

Although RNNs have existed for well over two decades, their inefficiency in learning

information from long sequences, due mostly to the vanishing gradient problem4 [60],

rendered them inapplicable for non-trivial tasks. However, with the introduction of

gating (further discussed in Section 3.2.3), RNNs have been successfully applied on

speech recognition problems [61] and on machine translation [62].

4As artificial neural networks are usually trained by updating their weights based on the gradient,
the smaller the gradient becomes, the lesser effect it will have in changing the values of the weights.
Thus, when the gradient is sufficiently small the network stops learning (i.e. updating its weights).

3.2 Recurrent neural networks 29

Following these recent successes, researchers have also applied RNNs to robotic tasks

where contact information (e.g. forces) was involved. For instance, Erickson et al. used

RNNs to learn a force distribution map on a person’s limb caused by the forces generated

when dressing the person with a hospital gown [10]. Contact transients during snap-fit

tasks, e.g. turning on an electric switch or closing an eyeglass case, were detected using

RNNs as described in [63].

In this thesis, we will take advantage of the performance of RNNs to learn a map between

the sensor’s output (e.g. tactile and force signals) and contact forces represented as a

three-dimensional vector, i.e. the contact force in the x, y and z axes.

3.2.2 How do RNNs work?

As previously mentioned, and unlike traditional feedforward networks, RNNs are a type

of neural networks that are able to process sequences. To do so, they use recurrency

since the output of a layer is dependent on previous computations. A diagram showing

this dependency is shown in Figure 3.6, where an RNN is unfolded to show how previous

outputs are used in the computation of the current and future outputs.

x

y

U

V

h W

xt-1

yt-1

U

V
ht-1

W

W

xt

yt

U

V
ht

W

xt+1

yt+1

U

V
ht+1

W

Figure 3.6: An unfolded recurrent neural network.

Mathematically, a new hidden state ht is computed as follows:

ht = f(U · xt +W · ht−1) (3.1)

where xt is the input vector at time t and f is some nonlinear function such as tanh. The

network parameters (e.g weights) for the input, hidden and output layers are contained

in the U , W and V matrices, respectively. The output state yt is computed depending

30 Chapter 3: Sensor modeling

on the task, e.g. for classification one could used yt = softmax(V · ht) to compute the

probability of a given class. An example of an RNN architecture is shown in 3.7.

layers

Output
layer

y1

Input
layer

X1

X2

Xn

y2

ym

Figure 3.7: Example of a RNN architecture.

One problem RNNs have, is the fact that the number of layers increases with the number

of time steps of the input sequences (see Figure 3.6). This can lead to an inability of the

network to learn long term dependencies, e.g. when the relevant information happens too

far from the current time step. The reason for this is due to how the network updates its

weights. Similar to other neural networks, RNNs are trained using the backpropagation

algorithm5, but with a small difference. Since the network parameters are the same

across all time steps (see Figure 3.6) the gradient at each output is dependent of the

current time step as well as the previous time steps. The consequence of this is that the

gradient will tend to vanish the longer the input sequence is. This effect is known as the

vanishing gradient problem.

In order to deal with this problem, researchers have designed algorithms that are able

to avoid this problem by using a “gating” mechanism. This gating mechanism basically

allows the network to manage its memorizing process by selectively “forgetting” data.

One of the most successful architectures that implements this behavior is called long

short-term memory (LSTM) and will be explained in the following section.

5Backpropagation computes the gradient in order to update the network’s weights. It first computes
the error at the output and then it propagates it backwards going layer by layer.

3.2 Recurrent neural networks 31

3.2.3 LSTMs

Long short-term memory networks, or LSTMs for short, are a type of recurrent neural

network that are able to learn long term dependencies by controlling the amount of

information to add or remove from the hidden state. In fact, most of the success achieved

by RNNs is due to the use of of LSTMs, e.g. the works described in 3.2.1 all use LSTMs.

A visual representation of the structure of an LSTM, and a comparison against that of

a standard RNN, is shown in 3.8.

tanh

(a) Standard RNN.

tanh σσ σ

x

x

x
tanh

+

(b) LSMT.

Figure 3.8: Comparison between how a standard RNN and an LSTM compute the
hidden state.

As it can be seen in Figure 3.8b, LSTMs introduce an additional variable called cell state

(shown in purple). To update the value of this cell state, the LSTM uses the following

three gates:

1. Forget: This gate controls the amount of information that gets discarded from

the cell state. Here, a sigmoid (leftmost in Figure 3.8b) takes as input the value

of the previous hidden state ht−1 (green arrow on the left) and the current input

xt (red arrow) and outputs a value ranging from 0 to 1 to each element in the

32 Chapter 3: Sensor modeling

previous cell state Ct−1 (purple line). In this way, this gate updates the cell state

by forgetting irrelevant information.

ft = σ(Wf · [ht−1, xt]) (3.2)

2. Input: Here, new information is added to the cell state by computing first which

values to update and secondly by creating a cell state candidate C̃t. The values

to update are computed using a sigmoid (second from left in Figure 3.8b) and the

candidate cell state is created by a tanh function.

it = σ(Wi · [ht−1, xt]) (3.3)

C̃t = tanh(WC · [ht−1, xt]) (3.4)

3. Output: Using the outputs of the previous gates, this gate updates the cell state

by combining them (rightmost purple arrow in Figure 3.8b):

Ct = ft · Ct−1 + it · C̃t (3.5)

Finally, using the cell state computed by the gates described above, the hidden state

value (rightmost green arrow in Figure 3.8b) can be updated as follows:

ot = σ(Wo · [ht−1, xt]) (3.6)

ht = ot · tanh(Ct) (3.7)

3.3 Tactile sensor model

This section introduces the approaches developed to estimate both the magnitude and

location of contact forces using a tactile sensor, as well as the description of the experi-

mental setup used to validate them.

3.3 Tactile sensor model 33

3.3.1 Force magnitude estimation

In order to estimate the force magnitude of a contact, a sensor model for the BioTac

should map the sensor’s output to a three-dimensional force. The model therefore can

make use of the impedance and pressure signals to compute the magnitude of a contact.

Due to the fabrication of the BioTac sensor (see Figure 3.2), developing an analytical

formulation that models the fluid dynamics involved in the sensor would be extremely

complex. To avoid this, researchers have relied on machine learning algorithms which

have been proved to outperform previously analytic formulations for the BioTac sen-

sor [64]. In this thesis, we apply a recurrent neural network, as explained in Section 3.2,

to learn a mapping function relating the values of the impedance electrodes and pressure

values to a three-dimensional force.

The structure of the network consists of two hidden layers, each composed of 20 long

short-term memory units, and a fully connected output layer as shown in Figure 3.7.

Here, the inputs to the network are the 19 impedance electrodes and the two pressure

signals, and the output is a three-dimensional force. A hyperbolic tangent sigmoid

function was used for the hidden layers and a linear activation function was used for the

output layer. As noted in Section 3.2, since RNNs are ideal for time series, the input to

the network is a sequence of N time steps of the tactile signals, while the output of the

network is only the last time step of the force vector. To optimize the learning of the

network, we applied the stochastic gradient descent algorithm.

Data collection

To train the network described above it is necessary to first collect data that includes the

tactile signals from the BioTac as well as the ground truth values of force. To generate

the required dataset, each finger on the Shadow robot hand6 (which is equipped with

BioTac sensors at its tips) was moved to make contact with an ATI Gamma force-torque

sensor7, as shown in Figure 3.9.

To generate contacts on the tactile sensor with different area shapes and sizes, probes

with different tips were fixed on the force-torque sensor. Each fingers was separately

6https://www.shadowrobot.com/products/dexterous-hand/
7http://www.ati-ia.com/products/ft/ft_models.aspx?id=Gamma

34 Chapter 3: Sensor modeling

7 8 9

4 5 6
1 2 3

F/T
sensor

Shadow
hand

BioTac
sensor

Probe

Figure 3.9: Setup to collect data for the force magnitude estimation. The data
consisted of the tactile signals as inputs and the labels (e.g. ground truth values) were

the three-dimensional forces obtained from the force-torque sensor.

moved downwards ten times for ten seconds at nine locations on each probe (see Fig-

ure 3.9). This produced a total of 228 recordings, each having close to 12,000 time

steps, containing 21 tactile signals (19 impedance and two pressure signals) and a three-

dimensional force. As the sensors have different operating rates, the force-torque sensor

operates at 1 KHz while the tactile sensor runs at 100 Hz, the data was recorded at

the lowest rate. The contact forces generated ranged between 0.1 to 1.0 N8. The data

was then divided in 80% as the training dataset and 20% as the test dataset. As the

validation dataset, 20% of the training dataset was used.

3.3.2 Contact localization

Instead of relying on machine learning to estimate contact location, we leverage the

fact that the 19 impedance electrodes are distributed across the BioTac to retrieve the

location of a contact. The configuration of the electrodes can be seen in Figure 3.10a.

8Since these are usual force values that occur when making contact with the deformable objects we
are concerned with in this thesis.

3.3 Tactile sensor model 35

(a) Geometric model of the sensor with the
electrodes shown in red.

X
(m

m
)

15
10

5
0

5
Y (mm)10 5 0 5 10

Z
(m

m
)

8

6

4

2

0

2

Active Inactive

(b) Active electrodes.

x c

(c) Centroid and contact location.

X
(m

m
)

15
10

5
0

5
Y (mm)10 5 0 5 10

Z
(m

m
)

8

6

4

2

0

2

c csensor

(d) Projection of the contact to the sensor’s
surface.

Figure 3.10: Sensor model, shown in (A), and the steps of the contact localization
algorithm: (B) thresholding of the active electrodes where the electrodes’ size is shown
proportional to their intensity values, (C) contact localization based on the active elec-
trodes and their geometric centroid, (D) projection of the contact to the sensor’s surface.

The first step to estimate the contact location is to filter the active electrodes, e.g. the

ones close enough to the contact point such that their values exceed their resting values.

These resting values are the initial impedance values, which do not always initialize

with the same values and therefore must be subtracted from the current impedance

values. This filtering stage is visualized in Figure 3.10b where the size of the electrodes

is plotted proportionally to their intensity. Once the active electrodes have been filtered,

the geometric centroid is computed as the mean of the positions of them active electrodes

x̄ =
1

m

m∑
i=1

pei (3.8)

where pei represents the position of the i-th electrode. Once the centroid is known,

it is used to find the contact point by computing the direction vectors di between the

centroid and the active electrodes. In order to locate the contact point, the direction

36 Chapter 3: Sensor modeling

vectors are multiplied by the normalized intensity of the electrodes, thus assuring that

the contact point is closer to the electrodes with the highest intensities.

di = (pei − x̄)
Iei
Ie

(3.9)

where Iei is the intensity value of the i-th electrode and Ie represents the sum of all

active electrodes. By summing these displacement vectors we can compute the contact

location c

c =

∑m
i=1 di

m
+ x̄ (3.10)

Both the centroid and contact location are displayed in Figure 3.10c, where the magenta

triangle represents the geometric centroid and the blue triangle represents the contact

location. Finally, once the contact location has been computed it is necessary to project

it onto the surface of the sensor. This is achieved by modeling the sensor surface as a

sphere:

csensor = o+
r(c− o)

‖c− o‖ (3.11)

where r represents the radius of the sphere (we set r = 7 mm) and o is the origin, except

when the contact c is negative on the X axis, i.e. it is in the cylindrical part of the

sensor (see Figure 3.10a). In that case, we set o = (x, 0, 0) to avoid distortions caused

by using a spherical projection on a cylinder, where x is cx. The contact location, now

projected on the sensor’s surface, is shown as a turquoise sphere in Figure 3.10d.

3.3.3 Experimental evaluation

This section describes the experimental setups used to evaluate the accuracy of the

proposed approaches to estimate the magnitude and location of a contact force.

3.3 Tactile sensor model 37

Force magnitude estimation

To evaluate the ability of the network to estimate the three-dimensional force from

the tactile signals of the BioTac, the algorithm was implemented in Python using

TFLearn [65]. The input sequence was 50 time steps long and a learning rate of 0.01

was used in the regression (output) layer. The network was trained for 100 epochs. In

order to compare this network with similar ones found in the literature, a feedforward

deep neural network (DNN) as described by Su et al. in [64] was implemented as well,

where the 19 impedance electrode values were used as input. Additionally, two more

networks were evaluated by considering also the pressure values. Hence, the following

four networks, all using the same parameters described above, were compared:

• dnn19 : DNN with impedance values.

• dnn21 : DNN with impedance and pressure values.

• rnn19 : RNN with impedance values (using a 50 time steps sequence).

• rnn21 : RNN with impedance and pressure values (using a 50 time steps sequence).

The results obtained by these four networks are summarized in Table 3.2, and an example

of the force magnitude estimation, using the rnn21 network, is shown in Figure 3.11.

Table 3.2: Evaluation results of the force estimation.

RMSE (in mN) SMSE
fx fy fz fx fy fz

dnn19 41.74 94.38 344.74 1.6127 1.713 2.5225
dnn21 41.95 94.59 344.71 1.6294 1.7207 2.5222
rnn19 18.64 35.91 53.11 0.3213 0.2477 0.0599
rnn21 18.07 31.07 51.71 0.3018 0.1854 0.0569

Contact localization

In order to evaluate the contact localization algorithm, it is necessary to obtain a ground

truth measure of the contact location. To this end, a probe was fixed in a known location

with respect to the Shadow robot hand and then the kinematic chain of the robot hand

was used to compute the relative position between the probe frame (Σp) and the sensor

frame (Σs), as depicted in Figure 3.12.

38 Chapter 3: Sensor modeling

-0.01
0.01
0.03
0.05
0.07

f x
(N

)

-0.12

-0.08

-0.04

0.00

0.04
f y

(N
)

0 50 100 150 200 250 300 350
Time step (in samples)

-0.20

-0.10

0.00

0.10

f z
(N

) Measured
Predicted

Figure 3.11: Force estimation along the three axes.

�s

Probe

�p

Figure 3.12: Setup to evaluate the contact localization algorithm.

The distance between the probe frame and the sensor frame was then compared to the

distance between the output of the contact localization algorithm and the sensor frame.

The error was then computed as the difference between these distance and expressed

with respect of the sensor frame (Σs). The algorithm was only evaluated for the first

finger by contacting 12 locations across the sensor. For each location, the finger was

moved five times and the average error was calculated for the X, Y and Z, as shown

in Figure 3.13.

3.3 Tactile sensor model 39

X Y Z
4

3

2

1

0

1

2

3

P
o

si
ti

o
n

a
l e

rr
o

r
(m

m
)

Figure 3.13: Errors in the X, Y and Z axes for the contact localization algorithm.

3.3.4 Tactile sensor model

The tactile sensor model estimates the magnitude of contact forces using a RNN, and

the location of a contact based on an analytical method. The force estimation results,

depicted in Figure 3.11, show the accuracy of RNNs to predict three-dimensional forces

from the tactile signals of a BioTac sensor. Furthermore, the use of RNNs clearly

outperformed the use of feedforward networks, as Table 3.2 shows, validating our hy-

pothesis that considering temporal signals of the tactile data produces a more accurate

estimation. In contrast, the addition of pressure signals did not produce significant im-

provements, which suggests there is redundancy between the impedance measurements

(provided all electrodes are considered) and the pressure sensor of the BioTac.

Although the error when estimating normal forces (fz) is low, the error for tangential

forces (fx and fy) is relatively high. This disparity is caused by the manner in which the

training data was collected. As most of the data was generated by moving the fingers

downwards towards the force-torque sensor (e.g. normal forces), tangential forces were

not generated as much. Thus, having less data to learn the tangential forces the network

was not able to achieve a higher performance when estimating these forces. This issue

can be addressed, for instance, by collecting data while sliding the fingers side to side.

Regarding the accuracy of locating a contact, the proposed model was able to estimate

the contact’s position, on each axis, withing five millimeters as it is shown in Fig-

ure 3.13. The error disparity between the axes can be better understood by referring

to Figure 3.10a, which shows the X axis as the long axis of the sensor and thus results

in a larger error than the error in the Y axis. The error for the Z axis is significantly

40 Chapter 3: Sensor modeling

smaller since the estimation of this axis is governed by the geometric projection described

in Section 3.3.2, which guarantees that the estimated position will be on the sensor’s

surface. A limitation of the proposed approach is its dependence on the location of the

electrodes, that is, the algorithm cannot properly estimate contacts when they occur on

the extreme sides of the sensor (e.g. where there are no electrodes).

3.4 Force sensor model

In this section, we present a model that first estimates the non-contact forces, measured

by a force-torque sensor, that later subtracts them from the sensor output in order to

obtain the pure contact forces. The section begins by outlining the robotic platform used

and motivates the need of a sensor model, as it points out why it is not suitable to rely

on the direct output of the force-torque sensor. Then, an analytical method, commonly

used to estimate non-contact forces, is described; followed by our proposed approach

based on recurrent neural networks. Afterwards, the procedure to collect the necessary

data is presented and finally, the experimental validation comparing our approach to

the analytical approach is detailed.

Disclaimer: The material presented in this section was developed in collaboration with

fellow PhD student Kamal Mohy El Dine.

3.4.1 Analytical model

The wrench output of the force-torque sensor can be expressed as the sum of the contact

and non-contact wrenches, namely:

⎡
⎣f

τ

⎤
⎦ =

⎡
⎣ fnc

τnc

⎤
⎦+

⎡
⎣ fc

τ c

⎤
⎦ (3.12)

where [fnc, τnc]
T are the non-contact wrenches generated by gravity, inertia, Coriolis

and centrifugal forces; and [fc, τ c]
T are the pure contact wrenches due to contact forces

and torques. The output of the sensor, is expressed by f and τ which are the force

and torque values expressed in the sensor frame ΣS . Both the force and torque values,

3.4 Force sensor model 41

expressed in the sensor frame, are comprised of contact and non-contact elements and

using the Newton-Euler approach they can be expanded as:

f =

fnc︷ ︸︸ ︷
mα−mg + ω̇ ×mc+ ω × (ω ×mc)+fc (3.13)

τ = Iω̇ + ω × (Iω) +mc×α−mc× g︸ ︷︷ ︸
τnc

+τ c (3.14)

where ω is the angular velocity vector of the sensor with respect to its frame, α and

ω̇ are the linear and angular acceleration vectors respectively; g represents the gravity

vector, m is the mass of the load (i.e. the robot hand), c is its center of mass coordinates

vector and I is a 3 × 3 symmetric matrix representing the inertia matrix in the sensor

frame.

As it can be seen in equations 3.13 and 3.14, the non-contact elements can be estimated

provided the ten inertial parameters are known, namely, the values of m, c and I. To

obtain the values for these parameters, identification methods are usually applied, see

for instance [66]. In our case, we applied non-linear least squares to identify these

parameters. After the identification, the non-contact wrenches can be then removed

from the output of the force-torque sensor to obtain only the contact wrenches.

3.4.2 RNNOB

As described in the previous section, the analytical approach depends on an accurate

estimation of the inertial parameters. However, this estimation requires precise measure-

ments relating the sensor frame with the robot hand (external load), which might lead

to measurement errors. In order to overcome these inaccuracies, we propose an observer

that estimates non-contact forces without the need for precise measurements between

frames. As noted in Section 3.2, RNNs are ideal for learning time dependencies and

thus can be used to correlate the robot’s kinematics to a wrench signal (e.g. the output

of the force-torque sensor). We exploit this fact to propose an observer called RNNOB,

that uses a recurrent neural network to map sensor data into non-contact forces that are

then subtracted from the force-torque sensor measurements, as shown in Figure 3.14.

42 Chapter 3: Sensor modeling

Nominal force-torque sensor
Arm
encoders

= Due to gravity, inertia,
 Coriolis and centrifugal forces

s

OpE, OoE

O E, O E

IMU , IMU

SfC
S

C[]
SfNC
S

NC[]SfC
S

C[] +
+

SfNC
S

NC[]
SfC
S

C[]

SfNC
S

NC[]

-
Transducer

RNNOB

Forward
kinematics

IMU

Di erential
kinematics

^

^^

Figure 3.14: Diagram showing how the RNNOB cancels the non-contact wrench in
order to estimate the pure contact wrench of the force-torque sensor.

The RNNOB takes as input the pose (opE , ooE) and twist (oνE , oωE) of the end-effector

expressed with respect to the robot’s base frame Σo; and the linear acceleration IMUα

and angular velocity IMUω of the IMU sensor. The architecture of the RNNOB consists

of two hidden layers, with 15 and 10 LSTM units respectively. As an activation function

between the hidden layers, the RNNOB uses a hyperbolic tangent sigmoid function

and a linear activation function for the output layer. We apply the stochastic gradient

descent algorithm in the output layer to learn the wrench output of the force-torque

sensor while the robot was moved without generating contacts. Once the non-contact

wrench is predicted by the RNNOB, it is subtracted from the output sensor to obtain

the pure contact wrench (see Figure 3.14).

The input choice for the network was decided based on the performance of different

combinations of features. Figure 3.15 shows three different models using different feature

inputs. The first model relies only on the end-effector pose (p, o), where the second model

uses the orientation and twist of the end-effector (o, v, ω). Finally, the last and chosen

model, includes also the information obtained by the IMU sensor, namely, the linear

acceleration (IMUa, o, v, ω).

3.4 Force sensor model 43

(a) Linear errors for the three types of test motions.

(b) Angular errors for the three types of test motions.

Figure 3.15: RMS errors for the RNN models based on: 1) pose (p, o), 2) orientation
and twist (o, v, ω) and 3) linear acceleration, orientation and twist (IMUa, o, v, ω).

3.4.3 Data collection

As equations 3.13 and 3.14 show, the non-contact forces depend directly on the sensor’s

angular velocity and acceleration, linear acceleration and its orientation. Hence, it is

necessary to excite the sensor, through motions of the robot arm, to generate a wide

range of values for these variables. To this end, we generated the following datasets:

• Manual: The robot arm was set to gravity compensation mode and then an

operator manually moved the arm, without touching the robotic hand, to various

poses in the workspace with random velocities and accelerations.

• Automatic: The robot arm was commanded to move between random points in

its workspace using various trapezoidal velocity profiles without human interven-

tion.

• Sinusoidal: The robot arm executed a sinusoidal trajectory on the xy-plane of

the robot frame Σo, as shown in Figure 3.16, while the end-effector was rotated

around each axis sequentially (i.e. roll, pitch and then yaw).

44 Chapter 3: Sensor modeling

Robotic arm

Reference
FT sensor

External
load

FT sensor

IMU sensorX
Z

Y�R

�O

Figure 3.16: Test setup used to perform the collision test.

The manual data was collected in five trials, each about five minutes long; the automatic

data was collected in ten trials with an average time of two minutes each, and the

sinusoidal data was collected in one trial about three minutes long. These datasets were

then combined into one training dataset, where one trial of each of the manual and

automatic data were separated to create a test dataset, but the sinusoidal data was used

entirely for training. A validation set was used by using 20% of the training dataset. The

RNNOB was implemented in Python using TFLearn [65], where the sequence length for

the input was 20 time steps and a learning rate of 0.01 was used in the output layer.

The network was trained for 20 epochs.

Due to the different operating rates of the sensors (as described in Section 3.1.2), the

data was recorded at 500 Hz to have a uniform sampling rate. That is, the force-torque

sensor was effectively downsampled and the last output of the IMU was kept until a new

sample was published.

3.4.4 Experimental evaluation

A comparison between the proposed RNNOB (Section 3.4.2) and the analytical method

(Section 3.4.1) for the collected datasets described in the previous section is summarized

in Table 3.3.

Besides the testing performed on datasets, two additional tests were performed, namely

a rotational motion test and a collision test. The rotational motion test was used to

validate the proposed observer against gravitational forces. The measured and estimated

3.4 Force sensor model 45

Table 3.3: The root mean square error on the datasets for the proposed RNNOB and
the analytical method.

Manual Automatic Rotational
RNNOB Analytic RNNOB Analytic RNNOB Analytic

fx 1.6578 2.8934 0.8075 2.4436 0.8405 2.6900
fy 1.7235 2.6943 1.1334 2.8558 0.7189 1.2193

Error
(N)

fz 1.5420 2.2989 0.7829 1.5147 0.7082 1.2204

τx 0.2538 0.3358 0.1384 0.2835 0.0911 0.1408
τy 0.2332 0.3420 0.0995 0.2020 0.1053 0.1601

Error
(N ·m)

τz 0.0403 0.0513 0.0089 0.0132 0.0118 0.0301

wrenches (by the analytical and RNNOB approaches) can be seen in Figure 3.19, where

the angular rotations are shown at the bottom of the figure.

For the collision test, we used an ATI Mini459 force-torque sensor as reference to evaluate

the accuracy in estimating pure contact forces. Here, the robot arm was set to gravity

compensation mode to move the robotic hand and collide it ten times with the reference

force-torque sensor which was fixed on a table as shown in Figure 3.16.

An example plot showing a comparison between the measured and estimated wrenches

(from both the analytical and RNNOB approaches) of a manual motion can be seen

in Figure 3.17.

Figure 3.18 depicts one of the ten contact tests, where the force in the x axis, as predicted

by the RNNOB, is compared to the force as output by the reference force-torque sensor.

3.4.5 Force sensor model

Table 3.3 summarizes the comparison between the analytical method and the proposed

RNNOB to estimate non-contact wrenches for the three tests described in 3.4.4. It is

clear that the RNNOB outperforms the analytical method not only on each test, but

also on each dimension of the estimated wrench (i.e. on estimating the force and torque

values in the x, y and z axes). Figure 3.17 visually shows the RNNOB more closely

predicting the measured wrenches than the analytical method (see the zoomed area).

Furthermore, the RNNOB prove to be more stable when estimating gravitational forces

as it is shown in Figure 3.19. Regarding the collision tests, the RNNOB was able to

estimate contact forces within an error of 2N , as it can be seen in Figure 3.18.

9https://www.ati-ia.com/products/ft/ft_models.aspx?id=Mini45

46 Chapter 3: Sensor modeling

100

80

60

40

20

0

20

f x
(N
)

Analytical Measured RNNOB

60

40

20

0

20

40

f y
(N
)

20 40 60 80 100

t(s)

60

40

20

0

20

40

f z
(N
)

Figure 3.17: Non-contact wrench estimation of the proposed RNNOB (red), the
analytical-based approach (green) and the measured wrench (blue), as output by the

force-torque sensor, for an unseen manual trajectory.

3.5 Summary

This section has presented two sensor models, namely, a tactile sensor model and a force

sensor model, which rely on recurrent neural networks to estimate contact information.

The characteristics of the sensors were outlined as well, and an experimental validation

was conducted to evaluate the accuracy of the proposed models. The performance of the

developed sensor models proved to outperform current state of the art solutions, thus

highlighting the advantages of using recurrent neural networks. However, this perfor-

mance comes at the cost of acquiring labeled data which might not be straightforward

to obtain for certain applications.

3.5 Summary 47

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t(s)

12
10
8
6
4
2
0
2

f C
x
(N
)

Reference
Predicted

Figure 3.18: Contact force estimation of the proposed approach compared to the
reference force measurement.

48 Chapter 3: Sensor modeling

100

50

0

50

f x

Analytical Measured RNNOB

50

0

50

f y

100
50

0
50

100

f z

10
5
0
5

10

� x

6
4
2
0
2

� y

5 10 15 20 25

0.2

0.0

0.2

� z

5 10 15 20 25

t(s)

100
50

0
50

100

D
eg

re
es

Pitch Yaw

An
gl

e

Figure 3.19: Non-contact wrench estimation of the RNNOB (red), analytical ap-
proach (green) and as measured by the force-torque sensor (blue) for the rotational
motion test. The first three rows show the forces (in N) and the next three rows show
the torques (in N · m). The last row shows the rotations around the sensor’s y-axis
(pitch) and z -axis (yaw) expressed in degrees. The roll angle is not shown since it has

no significant effect as the sensor’s x -axis is along the gravity vector g.

Chapter 4

Shape sensing pipeline

In the previous chapter we presented two sensor models that can be used as components

of the proposed shape sensing pipeline as depicted in Figure 4.1. In this chapter, we

will describe the rest of the components required for the pipeline, namely, a module to

transform the contact forces, as obtained from the sensor models, such that they can

be applied to a deformation model which updates the shape of the object. We will

first justify the design and use of a pipeline based on the advantages of a component-

based development paradigm, as well as provide a description of what this paradigm

entails. Following this section, the two remaining components of the pipeline, e.g. force

transformation and deformation model, will be outlined as well as the integration of all

these components. Example applications are also provided to validate the purpose of

the pipeline. Finally, a summary of the chapter is presented at the end.

4.1 Component-based software engineering

Component-based software engineering (CBSE) is a programming paradigm that re-

gards robotic functionalities (e.g. object recognition, manipulation planning, etc.) as

components. These components can then be used as building blocks to develop robotic

applications in a reusable and maintainable manner, thus reducing software develope-

ment time [2]. This is achieved by separating the specification of the component from

its implementation, meaning that the code of a component can be upgraded without

affecting other components that rely on the upgraded component.

49

50 Chapter 4: Shape sensing pipeline

Force
transformer

Sensor
model

Deformation
model

Contact
information

Nodal
forces

Rest
mesh Mesh

Figure 4.1: Proposed pipeline using a component-based representation as detailed
in [2]. The red circle denotes the interface a component provides and the half circle

represents a required interface.

Furthermore, CBSE serves as a basis for recent software development approaches that

have successfully been applied to robotic projects, such as the BRICS component model [67]

that builds models using components and it then can automatically transform those

component-based models into a specific software framework (e.g. OROCOS1).

Other approaches have sought to capitalize on CBSE by proposing software development

techniques that, for instance, use domain-specific language to improve deployment2 for a

robot in a robotics competition [68]; or by allowing run-time adaptation of components

in order to update the behavior of a robot in reaction to changes in its environment [69].

As this section is meant to provide only a notion of CBSE, the interested reader is

referred to [2, 70] which covers this topic in greater detail.

In the context of this thesis, we apply CBSE to our proposed pipeline as shown in Fig-

ure 4.2, where a component is described as a computational unit with specified interfaces

1http://orocos.org/
2In this context, deployment refers to the process of making the software ready for an application,

e.g. how components should be executed (as processes or threads) or in which computer (if there are
multiple PCs or robots).

4.2 Force transformer 51

that has the ability to exchange information with other components through its inter-

faces. Interfaces can thus be considered as the external visible parts of the components

and allow clients (e.g. components interacting with a given component) to be protected

from changes in the component. The interfaces of a component can be provided and/or

required. Provided interfaces denote the component’s functionalities that are available

to other components, while required interfaces describe the dependencies of the compo-

nent.

In our pipeline (see Figure 4.2), the sensor model provides the contact information in-

terface which is required by the force transformer. The deformation model requires

a rest mesh and the interface provided by the force transformer, namely nodal forces,

to provide the mesh interface.

4.2 Force transformer

This section describes the force transformer component, as shown in Figure 4.2,

and how it serves as a connection between the sensor model component and the

deformation model component. Thus, this component must provide the nodal forces

interface to the deformation model that specify the three-dimensional forces acting on

each node3 of a mesh describing the deformable object. Conversely, it requires the con-

tact information interface which contains the forces deforming the object as computed

by the sensor model and represented on the sensor’s frame.

In order to transform the contact information into the required nodal forces, two steps

are required, namely, the forces must first be transformed into a common frame and

subsequently they must be distributed on the mesh’s nodes. The first step can be

achieved in a straightforward manner by using the object frame as the common frame

to transform the forces that are expressed with respect to a given sensor, e.g.:

fon = To
nfn, (4.1)

3The reasons for this requirement to apply forces directly on the nodes of a mesh are described
in Section 4.3.

52 Chapter 4: Shape sensing pipeline

where To
n is a transformation matrix relating the n-th sensor frame to the object frame.

Once the force is expressed with respect to the object frame, it can then be distributed

among the surface nodes of the mesh. To do so, it is necessary to decide which nodes

will “receive” this force. One way to select the nodes on which to apply the force is by

using K-neighbors, as this would determine those k nodes that are closest to the force

location. This computation can either be continuously applied (i.e. the force will be

applied to different nodes) or just be executed at the beginning, e.g. assuming there is

no slippage during grasping and thus the nodes where the force is applied would remain

fixed.

Once the nodes have been selected, the force distribution can be simplified by setting

the number of nodes to three. This allows the application of a linear shape function H

to distribute the force onto the nodes in an inversely proportional manner based on the

area coordinate of the node.

H =

⎡
⎢⎢⎢⎣

a1
A 0 0 a2

A 0 0 a3
A 0 0

0 a1
A 0 0 a2

A 0 0 a3
A 0

0 0 a1
A 0 0 a2

A 0 0 a3
A

⎤
⎥⎥⎥⎦ (4.2)

⎡
⎢⎢⎢⎣

f1

f2

f3

⎤
⎥⎥⎥⎦ = HT fo (4.3)

where fi is a force vector applied to node i on the X, Y and Z axes and fo represents

the three-dimensional force with respect to the object. The total area of the triangle

where the force is applied is denoted by A, and ai stands for the sub-triangle area formed

between the opposite nodes of the i-node and the contact point. An example of a force

being distributed on three surface nodes of a tetrahedral element is shown in Figure 4.2.

4.3 Deformation model

The deformation model component, shown in Figure 4.2, requires the nodal forces in-

terface provided by the component described in the previous section and an additional

4.3 Deformation model 53

a3

a1

a2

f1

f2

f3

fo

Figure 4.2: Visual representation of the force distribution on three nodes of the mesh
using a linear shape function.

interface, rest mesh, that describes the initial coordinates of the nodes when the de-

formable object at its rest state (e.g. undeformed state). It provides in turn the mesh

interface, which represents the current shape of the object as it deforms due to the forces

applied on it.

Before we detail the computations required for this component we present some technical

background4 on the deformation of elastic materials. The following sections will describe

the specific method and model used in this thesis, namely, the finite element method and

the co-rotational linear elasticity FEM model are employed to simulate deformations.

For other methods and models the reader is referred to [5, 71].

4.3.1 Deformation of elastic objects

A linearly elastic deformable body is defined by its rest configuration (e.g. undeformed

shape) and by its material parameters (e.g. Young’s modulus and Poisson’s ratio for

isotropic materials), which determine how the body deforms when external forces are

applied to it [5]. The rest configuration of a body can be described as a set of particles

or points X ∈ R
3n. In a general sense, the deformation of a body can be caused by

rigid body motions (such as translations and rotations) or due to changes in its shape.

However, in this thesis, we will refer to the deformation of a body when there is a

relative displacement between the body’s particles. This displacement of a particle is

4A short introduction to basic deformation terms is presented in Appendix A.2.

54 Chapter 4: Shape sensing pipeline

specified by a displacement vector, and using a displacement field, which is the collection

of displacement vectors for all the particles in a body, we can relate the deformation of

a body with its rest configuration by the following Lagrangian description:

x = φ(X, t) (4.4)

where t represents the time, x is the deformed configuration, X is the rest configuration

and φ is a deformation function [71], an illustration of this function is shown in Fig-

ure 4.3. By inspecting Equation 4.4, we can derive the Jacobian of the deformation

mapping, commonly referred to as the deformation gradient :

F =

⎛
⎜⎜⎜⎝

∂φx

∂Xx

∂φx

∂Xy

∂φx

∂Xz

∂φy

∂Xx

∂φy

∂Xy

∂φy

∂Xz

∂φz

∂Xx

∂φz

∂Xy

∂φz

∂Xz

⎞
⎟⎟⎟⎠ (4.5)

X x

(·)

Figure 4.3: Example of a deformation map φ from to the rest configuration X to the
deformed configuration x.

From the deformation map φ, the elastic strain5, a measure that captures how much

a configuration has deformed relative to the rest configuration, can be computed using

the Green-Lagrangian strain tensor ε as follows:

ε =
1

2

[
∇φ+ (∇φ)T + (∇φ)T · ∇φ

]
≈ 1

2

[
∇φ+ (∇φ)T

]
(4.6)

5Strain refers to the displacement between the particles of an object with respect to their distribution
when the object is at rest, i.e. there is no strain for translation or rotation of the body.

4.3 Deformation model 55

where the approximation neglects the second-order terms to produce a linearized strain

tensor and ∇ denotes the gradient. The dynamics of elastic materials are governed by

the following partial differential equation (e.g. the equation of motion):

ρẍ = ∇ · σ + f (4.7)

where ρ is the mass density of the material, f is the force applied to the object and

ẍ represents the acceleration of the points describing the object. If we assume linear

elasticity, the stress σ in an element can be computed given the element strain (as

defined in Equation 4.6) using Hooke’s law:

σ = Cε (4.8)

where C is the elasticity tensor that relates the coefficients of the strain and stress

tensors, and the Cauchy stress tensor σ has the following form:

σ =

⎡
⎢⎢⎢⎣
σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎤
⎥⎥⎥⎦ (4.9)

For isotropic materials, C depends only on the Young’s modulus and Poisson’s ratio [5]

and it is defined as:

C =
E

(1 + ν)(1− 2ν)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1−2ν
2 0 0

0 0 0 0 1−2ν
2 0

0 0 0 0 0 1−2ν
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.10)

where E and ν are the Young’s modulus and Poisson’s ratio, respectively; and the

relation between stress and strain is performed using their associated vectors, namely,

σ = [σxx, σyy, σzz, σxy, σyz, σzx]
T and ε = [εxx, εyy, εzz, γxy, γyz, γzx]

T .

56 Chapter 4: Shape sensing pipeline

Since these deformation quantities are defined in a continuous space, it is necessary,

in order to numerically solve for them, to discretize their respective equations. To

achieve this discretization, it is common to apply the finite element method which will

be described next.

4.3.2 Finite element method

The finite element method (FEM) can be used to simulate the deformation of an object

by dividing it into small elements (e.g. tetrahedra or voxels) and then solving for the

strains and stress of each element [72]. Once the object is discretized using FEM as

a mesh of connected elements, the positions of their vertices and the elastic forces are

related via a stiffness matrix Ke defined for each element e as follows:

fe = Keqe (4.11)

The stiffness matrix can be computed for each element with the following integral:

Ke =

∫
Ωe

BT
e CBe dΩe (4.12)

with B being a strain-displacement matrix defined as:

B = [B1, B2, Bn . . .] = ΔH (4.13)

where n represents the number of vertices, also called nodes, in the mesh, Δ is the

derivation operator and H represents a matrix containing shape functions for each node.

The strain-displacement for each node i can thus be computed as:

4.3 Deformation model 57

Bi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Hi
∂x 0 0

0 ∂Hi
∂y 0

0 0 ∂Hi
∂z

∂Hi
∂y

∂Hi
∂x 0

0 ∂Hi
∂z

∂Hi
∂y

∂Hi
∂z 0 ∂Hi

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.14)

By summing all the stiffness matrices of all elements we can obtain the stiffness matrix

K, which, using Newton’s second law, allows for the computation of the elements motion:

fext = Mq̈+Dq̇+Kq (4.15)

where fext is the external force caused by gravity and contacts. The position, velocity

and acceleration of each node n is represented by q, q̇ and q̈, respectively, with q ∈ R
3n;

M ∈ R
3n×3n represents the mass matrix and D is the damping matrix.

4.3.3 Co-rotational linear elasticity

In this thesis, we chose the co-rotational linear elasticity model since it provides a bal-

anced trade-off between computational complexity and accuracy. It achieves this by

combining nonlinear characteristics to guarantee rotational invariance with a linear re-

lationship between stress and deformation [71]. The co-rotational linear elasticity model

avoids issues encountered in purely linear models (e.g. inflated volumes when the object

is subject to large deformations), by assuming the deformation of the object, for each

mesh element, to be composed of a rotation plus a small amount of deformation. This

rotational component Re ∈ R
3×3 is computed via polar decomposition of the element

deformation gradient F. We use the implementation offered by Vega FEM [4], a self-

contained C/C++ library for simulating three-dimensional deformable objects, which is

formulated with the following linear expression:

fe = R̂eKe

(
R̂T

e qe − q0
e

)
(4.16)

58 Chapter 4: Shape sensing pipeline

where R̂e ∈ R
12×12 is a block diagonal matrix formed by four Re matrices, qe is the

current position and q0
e represents the rest configuration of the nodes on an element.

Since the elements are defined as tetrahedra in a three-dimensional space, both fe and

qe are 12-dimensional vectors.

4.4 Integration of components

To allow the communication between the components described in the previous sec-

tions, we implemented them as nodes in the robot operating system6 (ROS), a software

framework that handles communication via:

• topics: are used for continuous data streams (e.g. sensor output, mesh state).

The data is published by senders and subscribed by receivers and so the sender

(publisher) decides when the data is published, which triggers a callback in the

receiver (subscriber).

• services: are ideal for performing quick calculations or requesting specific data

from a component (referred to as a node in ROS). As services block calls, they

should not be used if preemption is required, e.g. when a robot must be stopped

to avoid damage to itself or its surroundings.

• actions: unlike services, actions can be preempted. During an action, the com-

ponent executes the desired task while providing feedback. This type of commu-

nication is ideal for tasks that require considerable time (e.g. several seconds) to

execute while not blocking the component. Examples for the usage of actions,

include object recognition and speech recognition.

Since we are concerned mainly with sensor updates (provided by the sensor model)

and the current state of the mesh, we use topics to establish the communication be-

tween the different components in our shape sensing pipeline. As shown in Figure 4.1,

the sensor model provides the contact information interface which is implemented as a

wrench message that is continuously published by this component. This wrench mes-

sage is composed of a three-dimensional force, a three-dimensional torque and a reference

6http://www.ros.org/

4.4 Integration of components 59

frame (in this case the sensor frame). The force transformer subscribes to this wrench

message, transforms it as described in Section 4.2, and publishes a force array message

(nodal forces interface) that contains a three-dimensional force for each node on the

mesh. The deformation model subscribes to this force array message and to the rest

mesh to continuously publish the updated mesh state that describes the deformations of

the object being manipulated.

The implementation of the deformation model component, requires to step Equa-

tion 4.15 forward in time subject to initial and boundary conditions. The initial con-

ditions are the initial positions and velocities of the mesh’s nodes and the boundary

conditions are constrained nodes specified by the user. The constrained nodes refer to

nodes that remain fixed, that is, they do not move even if deformation forces are ap-

plied to them. Additionaly, the elasticity parameters of the object’s material such as

the Young’s modulus and Poisson’s ratio are required by the model. To integrate this

component in ROS, we wrote a wrapper code for the open-source library Vega FEM [4].

An example of the simulation of a deformable object using our proposed shape sensing

pipeline is shown in Figure 4.4. Here, a graphical user interface (GUI) replaces the

sensor model as the provider of the contact information interface, which is then used

by the rest of the components.

Figure 4.4: Screenshot of the simulation of a deformable, where the GUI acts as
the sensor model component. The nodes of the mesh are shown in white, while the
green spheres indicate the nodes where the force is being applied and the red squares

represent the constrained nodes.

60 Chapter 4: Shape sensing pipeline

4.5 Applications

Using the shape sensing pipeline presented in the beginning of the chapter, we can

perform robotic tasks on deformable objects such as estimating the deformation of an

object while it is manipulated, as well as controlling its shape. In this chapter, we will

review three applications where we have used our proposed pipeline, namely, 1) shape

estimation of an object using tactile sensing; 2) shape estimation of an object using

force sensing and 3) shape control of a deformable object. The implementation of each

application will be described in the following sections, along with its evaluation and a

discussion of the performance results.

Disclaimer: The meshes used in the experimental evaluation of the applications were

generated by Belhassen-Chedli Bouzgarrou and the ground truth measure for Section 4.5.1

using vision was developed by Carlos M. Mateo.

4.5.1 Tactile-based shape sensing

By relying on tactile information, the shape sensing pipeline can be applied to estimate

the shape of an object that is being grasped by a robotic hand with tactile sensors on

its fingertips, as shown in Figure 4.5. In doing so, in-hand manipulation of deformable

objects can profit from this application. For instance, shape sensing using tactile infor-

mation can be a complimentary skill to the approach proposed by Ficuciello et al. [49],

where the shape of an object is controlled using a dexterous robot hand without any

feedback on its actual shape.

We implemented the use case of shape sensing of a deformable object for a poten-

tial application of in-hand manipulation task using our proposed pipeline, as described

in Chapter 4, and using the Shadow Dexterous Hand7 equipped with tactile sensors on

its fingertips (see Figure 4.5). Thus, we make use of the tactile sensor model presented

in Section 3.3 and couple it with the rest of the pipeline components to estimate the

deformation of an object using tactile data.

7https://www.shadowrobot.com/products/dexterous-hand/

4.5 Applications 61

Z

X Y

World
frame

Figure 4.5: Shape estimation of a deformable object based on tactile sensing. On the
left, the real shape is shown and the shape estimated by our proposed pipeline is shown

on the right.

To evaluate the performance of this application we used nine test objects8 with three

shapes (see Figure 4.6 and Table 4.1) and three different material properties (see Ta-

ble 4.2). The elasticity parameters of the materials were experimentally obtained as

described in Appendix B, and the meshes for the objects were generated using the com-

mercial software ANSYS9.

Table 4.1: Geometric information of the test objects used in shape sensing using
tactile data.

Dimensions (cm) Mesh
Length Width Height Nodes Elements

Cube 6 6 6 153 486
Sponge 8 5 2 118 304
Bar 20 4 4 152 385

Figure 4.6: Test objects: cube (hard), sponge (medium) and bar (soft).

8The objects were bought from the following vendor: http://www.moussesurmesure.com/
9https://www.ansys.com/

62 Chapter 4: Shape sensing pipeline

Table 4.2: Material properties of the test objects used in the tactile-based shape
sensing application.

Elasticity parameters
Material
name

Mass density
(kg/m3)

Young modulus
(Pa)

Poisson
ratio

Hard HR 45 45 3800 0.15
Medium Bultex 30 30 3200 0.15
Soft Bultex 26 26 3000 0.15

The objects were then deformed by moving the fingers of the robot hand while the tactile

sensors made contact with the object. The cube objects were grasped using two fingers,

while the rest of the objects were pushed by a finger of the robot hand as they were

fixed, using double sided tape, on their sides with their longest axis being parallel to the

Y axis, as shown in Figure 4.5. The sponge and bar objects start from an undeformed

state and end in a deformed state. Figure 4.7 shows the states used for the cube objects,

namely, when the object is fully visible, unoccluded ; once contact has been made but

without deformation, occluded ; and finally, the deformed state.

Since a method to measure the shape of an object while it deforms is not yet available,

we propose a vision-based method to asses the accuracy of the shape sensing pipeline

using tactile data. The method consists in using the similarity between two point clouds,

namely, a measured point cloud and a simulated point cloud. The measured point cloud

is generated using a Microsoft Kinect (v1) RGB-D sensor that is placed in front of the

test object while the object was fixed on a test rig and deformed by the fingers of the

Shadow hand, as depicted in Figure 4.8. An example of a measured point cloud can

be seen in Figure 4.9a. The simulated point cloud was generated by placing a virtual

Kinect sensor at the same position as the real sensor and replacing the real object with

the mesh output of the pipeline. Then, using ray tracing, the virtual Kinect generated

the simulated point cloud from the mesh as shown in Figure 4.9b.

In order to generate the measured point cloud it is necessary to first segment the test

object from other objects in the scene and from the background. To do so, we imple-

mented the color-based segmentation proposed in [73], which uses similarity in color

and spatial proximity to create clusters, where the cluster representing the object to be

tracked is selected manually by the user. This clustering can be seen by the different

colored point clouds in Figure 4.10b, where the test object is marked by a yellow circle.

The unsegmented point cloud is shown in Figure 4.10a. Once we have both, measured

4.5 Applications 63

(a) Unoccluded state. (b) Occluded state. (c) Deformed state.

(d) Unoccluded state. (e) Occluded state. (f) Deformed state.

Figure 4.7: A cube-like object tested in the three states. Front view is shown on the
top row and a side view is shown on the bottom row.

64 Chapter 4: Shape sensing pipeline

Test rig

Shadow
hand

Tactile sensors

Test
object

Figure 4.8: Experimental setup to evaluate the performance of the shape sensing
pipeline with tactile data for a bar-like object.

and simulated, point clouds representing the test object we can measure their similarity

using octrees10. Specifically, we generated an octree from the measured point cloud

using a minimum leaf size of 1 cm (an example of an octree can be seen in Figure 4.9c).

Then, we checked if the points from the simulated point cloud were inside of the octree

leaves and define the accuracy as the ratio of points that are inside.

We applied this method to evaluate the accuracy of the shape sensing pipeline on the

nine different test objects and the accuracy results are summarized in Figure 4.11. The

bar plots show the similarity scores between the measured and simulated point clouds

for three states of the cube-like objects (unoccluded, occluded and deformed) and for

the deformed and undeformed states for the remaining test objects.

10An octree is a tree data structure where its internal nodes have eight leaves (or children).

4.5 Applications 65

(a) Measured point cloud.

(b) Simulated point cloud.

(c) The generated octree, where the minimum leaf size is 1 cm.

Figure 4.9: Similarity evaluation of a bar-like object using RGB-D data: (A) point
cloud as measured by the Kinect, (B) point cloud generated by a virtual Kinect based
on the output mesh of the proposed approach, (C) octree (white) generated from the
measured point cloud to measure the similarity with the simulated point cloud (green).

Discussion

At first sight, the results shown in Figure 4.11 appear to demonstrate a poor accuracy

of the shape sensing based on tactile data. However, it must be noted that the accuracy

of the proposed approach should be measured against the accuracy of the similarity

measure described in Section 4.5.1 which does not provide a 100% accuracy for the

occluded and undeformed states. This results in an average accuracy rate of around

66 Chapter 4: Shape sensing pipeline

(a) Raw point cloud.

Kinect
frame

(b) Segmented point cloud.

Figure 4.10: Point cloud segmentation for a sponge-like object. The reference frame
marks the pose of the Kinect sensor.

85%. Also, it must be noted that for the cube objects, occlusions cause the similarity

measure to significantly decrease in accuracy as it can be seen in Figure 4.11a.

The performance of the pipeline on sponge objects clearly suffered as it can be seen

in Figure 4.11b. This is due to the small size of these objects, since the similarity

measure builds an octree based on the measured point cloud, which results on fewer

leaves of the octree. Thus, the similarity rate is more sensitive to noise errors, i.e.

points that are outside of the octree (as depicted in Figure 4.9c).

Regarding the high variance in the accuracy results of the similarity measure shown

in 4.11, they are in accordance to those shown when no deformation occurred (e.g.

during the occluded and undeformed states). Therefore, the variance in these results

can be attributed to the similarity measure rather than to the shape sensing pipeline.

Other factors that contribute to the accuracy errors are, for instance, that the proposed

method is highly dependent on the location of the contacts. Thus, errors in the robot

model in simulation and between the object’s real pose and its pose in simulation have

a direct impact on the performance of the pipeline. Another source of error, resulting

in the oscillation of the mesh, is due to intermittent contacts caused by the softness of

the objects as the tactile sensors fail to detect these contacts. Another error stemming

from the tactile sensors is that they cover a small surface of the fingers. This results on

the finger contacting the object with parts of the finger’s surface that are not covered

by the tactile sensor causing the object to deform but without any sensor feedback.

4.5 Applications 67

Hard Medium Soft
0

20

40

60

80

100

A
cc

u
ra

cy
 (

%
)

Unoccluded
Occluded
Deformed

(a) Accuracy results for the cube objects.

Hard Medium Soft
0

20

40

60

80

100

A
cc

u
ra

cy
 (

%
)

Unde formed
Deformed

(b) Accuracy results for the sponge objects.

Hard Medium Soft
0

20

40

60

80

100

A
cc

u
ra

cy
 (

%
)

Unde formed
Deformed

(c) Accuracy results for the bar objects.

Figure 4.11: Evaluation results of the deformation sensing.

68 Chapter 4: Shape sensing pipeline

4.5.2 Force-based shape sensing

When objects are significantly large and thus cannot be handled inside a robotic hand, it

is necessary to manipulate them using a robot arm or, in some cases, a dual-arm robot.

One example of deformable object manipulation using a dual-arm robot is presented

in [50], where, similarly as in [49], a model of the object is used to control the shape

but without relying on a feedback signal representing the object’s shape. To address

this deficiency, and as the deformation forces are caused by the motion of an arm rather

than robot fingers, we combine the force sensor model described in 3.4 with our shape

sensing pipeline.

To evaluate the accuracy of the shape sensing pipeline using force data to estimate

deformations, we devised an experiment consisting in a KUKA LWR+4 robot arm [74]

with an attached dexterous Shadow Dexterous Hand at its end and an ATI Gamma

force-sensor between them. The experimental test, with the setup shown in 4.12, was

conducted on four elastic objects with different shapes and material properties. The two

shapes of the objects are described in Table 4.3 and the materials properties are shown

in Table 4.4. During the test, the test object were fixed on a test rig, where the bar

objects were fixed such that their long axis were parallel to the XY plane of the robot

frame and the block objects were attached by their bottom side, as seen in Figures 4.13

and 4.14

Table 4.3: Geometric information of the test objects used in shape sensing using force
data.

Dimensions (cm) Mesh
Length Width Height Nodes Elements

Block 6 40 40 360 1079
Bar 6 6 50 207 536

Table 4.4: Material properties of the test objects used in shape sensing using force
data.

Elasticity parameters
Material
name

Mass density
(kg/m3)

Young modulus
(Pa)

Poisson
ratio

Hard HR 45 45 18500 0.15
Soft Bultex 26 26 9000 0.15

The test for the bar-like objects consisted on moving the robot arm to follow a set of

six poses in XZ plane of the robot frame, as shown in Figure 4.13. The block-like

4.5 Applications 69

��������

	
�
�
�

����
����

���
����
����

�
�

��	

���

�
�
����

�����
���� �
�

�
{R}

�

�
�

{o}�����������
�
��!
�

���"

�
����#$

�
����%&

�

Figure 4.12: Experimental setup for a bar-like object.

Z
X

Y

{R'}
5

1

2
3

4

6

Figure 4.13: Example of the path to follow the six test poses by the bar objects during
the sensing evaluation. The R′ denotes a reference frame having the same orientation
as the robot base frame (see Figure 4.12) but a different translation in order to make

it visible.

70 Chapter 4: Shape sensing pipeline

12 3

Z

X

Y

{o}

Figure 4.14: Test poses used for the block-like objects for the sensing evaluation.

objects were similarly tested by following a linear path along the Z axis, as depicted

in Figure 4.13. The reason for this limited test motion is due to the block-like objects

being fixed on their bottom side. For both set of tests, the error signal was defined

as the distance per axis between the pose where the end-effector grasped the object,

used as ground truth, and a pose11 on the estimated mesh that was coincident with the

end-effector pose at the beginning of the test (i.e. when the object was at rest). For

each object, seven trials were performed. The results, shown in Figure 4.15, consist of

the mean of the absolute error between the reference (end-effector pose) and measured

(extracted from the estimated) positions which was computed for each trial. The errors

for the bar objects are shown for the X and Z axes, while the errors for the block objects

show the average of the seven trials for the three test poses.

Discussion

Unlike the evaluation of the previous application, instead of measuring the similarity of

a complete face on the objects we only evaluate the difference in position between two

arbitrarily selected points. Figure 4.15 plots the errors in the X and Z axes for the bar

objects; and in the Z axis for the block objects. The plots show the average error between

the reference and measured positions for all the trials, as described in Section 4.5.2, that

is, six positions for the bar objects and three positions for the block objects.

11This pose was extracted on the mesh using the method outlined in Section 4.5.3.

4.5 Applications 71

(a) Bar soft. (b) Bar hard.

(c) Block soft. (d) Block hard.

Figure 4.15: Estimation errors for the shape sensing using force data on the four test
objects.

The accuracy of the shape sensing using force data for the bar objects is on average

less than two centimeters. However, observing Figure 4.15a, the estimation along the Z

axis for the bar soft object exhibits considerable variation. This large variation can be

attributed to the softness of the material, which fail to produce enough reaction forces

for the force sensor to capture as the manipulator moved the object through the set

of test poses. In contrast, the variation for the bar hard object, also along the Z axis,

remained small as it can be seen in Figure 4.15b.

The performance of the shape sensing pipeline on block objects reflects consistent results

as the variance is small across the different points and the two objects. Since the

tests performed on these block objects were limited to only one axis (see Figure 4.14),

there was no “crosstalk” between forces on different axes, as it was the case on the bar

objects where force measurements on one axis affected the estimations on a different

axis. Despite the small variance, the mean errors are considerable higher for the block

objects, especially for the block hard object as it is shown in Figure 4.15d. These errors

were due to the position of the test poses p1 and p2, which were at the limit of where

72 Chapter 4: Shape sensing pipeline

the objects could be stretched. This resulted in higher forces that were input to the

deformation model which in turn produced a larger deformation. On the other hand,

when the manipulator moved the object to the final pose p3 (i.e. the initial position),

the estimation was quite accurate as depicted in Figure 4.15c and Figure 4.15d.

Although the force-based shape sensing application produces a more accurate estimation

of the shape compared to the tactile-based shape sensing application, mainly due to the

higher accuracy of the force-torque sensor, it does suffer from similar issues such as the

mismatch between the pose of the real object and the pose of the simulated object,

the fact that material of the objects is nonlinear and errors due to delays between the

components.

4.5.3 Shape control

Another potential application for the shape sensing pipeline is to control the shape of a

deformable object. Here, we rely on the previous application (i.e. using the pipeline with

force data) to manipulate the objects described in the previous section into a desired

configuration. A similar setup using a KUKA robot arm with an attached Shadow robot

hand, as the one depicted in Figure 4.12, is used for this shape control application.

Figure 4.16: Simulated mesh of a bar-like object. The mesh nodes are shown in black
and the nodes used to extract a pose are shown in green.

As controlling the complete shape of an elastic object, that is, all the nodes of its mesh,

is an extremely underactuated problem; we instead control a single pose of the object.

This pose is extracted from the object’s mesh by selecting three suitable nodes, as the

green nodes shown in Figure 4.16, as follows:

c =
1

3

3∑
i=1

pi (4.17)

4.5 Applications 73

n = (p2 − p1)× (p3 − p1) (4.18)

s = cos
(π
4

)
, v = n · sin

(
π
4

)
‖n‖2

(4.19)

x = [c, (s,v)]T (4.20)

where pi is the position of the node at the i−th index of the mesh q and n represents

the normal of the plane formed by the points. The position and orientation of the pose

are given by the centroid c and the quaternion respectively, where s is the scalar part

of the quaternion and v is the vector part.

Once we have extracted a pose from the mesh, referred to as current pose xc, we can

command the robot arm to reach a desired pose xd by defining the following error signal:

e = xd − xc (4.21)

In order to control the robot motion, we must transform the error e into a twist command

by multiplying it by a diagonal gain matrix Λ. This twist, expressed in Cartesian space,

can then be mapped into joint space to compute the necessary joint velocities for the

robotic arm as:

θ̇des = J+(Λ · e) (4.22)

where J+ is the MoorePenrose inverse Jacobian used for redundant manipulators. A

diagram describing the shape controller can be seen in Figure 4.17.

As noted at the beginning of the section, a similar setup as the one described in Sec-

tion 4.5.2 was used to evaluate the shape control application. However, we evaluate this

application only on the bar soft and block hard objects (see tables 4.3 and 4.4). For

the bar object we set poses on the XZ plane as shown in Figure 4.13. As previously

mentioned, due to the block object being fixed at its bottom side, we only commanded

74 Chapter 4: Shape sensing pipeline

Pose
extraction

J+ des

RNNOB

,

IMU
sensor

F/T
sensor

Adg

Adg
T Fc

s
F

o

Fmeas

s

Fnc

^ s

IMU

+

-

Robot

Deformation
sensing

Forward
kinematics

xc
o

eoxd
o +

-

qinit
o

qo

[R, R]To o
[R, R]

Tee ee

[oR, R, R]
Tee ee ee

Figure 4.17: Block diagram of the proposed deformation controller. The controller
uses the output of shape sensing pipeline based on force data to regulate an error signal
eo that is the difference between the current and desired poses, xo

c and xo
d respectively,

were both are described w.r.t. the object frame. The deformation sensing block uses the
initial undeformed configuration qo

init of the mesh and the estimated contact force Fo,
both expressed in the object frame, to update the mesh configuration qo as it deforms.
From this mesh configuration, xo

c is extracted by the method outlined in this section.
As the robot expects the end-effector twist expressed in the robot base frame {R}, the
twist expressed on the object frame, namely [υo

R,ω
o
R], must be multiplied by an adjoint

matrix Adg relating these two frames in order to obtain the desired twist ([υee
R ,ωee

R]).

poses along the Z axis for the block object as it can be seen in Figure 4.14. We used

a graphical user interface to set the desired pose xd which the current pose xc should

reach.

The following figures show the behavior of the proposed controller in the command-

response plots, as well as the errors between them. The command signal refers to the

desired pose xd as determined by the user with the GUI; while the response (Mesh)

represents the current pose xc. Additionally, the response (EE), referring to the pose of

the end-effector12, is shown to provide insight to the estimation accuracy of the shape

sensing pipeline. The command-response plots show the command signal in green, the

mesh response in red and the end-effector response in blue. Figure 4.18 depicts this plot

for the bar object along the X and Z axes; and Figure 4.20 plots these signals for the

block object along the Z axis.

The error plots for the bar and the block objects are shown in figures 4.19 and 4.21,

respectively.

Discussion

As the evaluation of the shape control application directly depends on the performance

of the previous application, namely the force-based shape sensing, its behavior is greatly

12The initial offset between this end-effector pose and the current pose extracted from the mesh was
removed to make the plots clearer.

4.5 Applications 75

0.15
0.10
0.05
0.00
0.05
0.10

X
[m

]

0 10 20 30 40 50 60
Time [s]

0.15
0.10
0.05
0.00
0.05
0.10

Z
[m

]
Response (EE)

Response (Mesh)

Com m and

Figure 4.18: Command and responses of the mesh and the robot end effector (EE)
along the X and Z axes for the bar soft object.

0 10 20 30 40 50 60

Tim e [s]

0.15

0.10

0.05

0.00

0.05

0.10

E
rr

o
r

[m
]

X

Z

Figure 4.19: Control errors along the X and Z axes for the bar soft object.

10 20 30 40 50 60

Tim e [s]

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Z
 [

m
]

Response (EE) Response (Mesh) Com m and

Figure 4.20: Command and responses of the mesh and the robot end effector (EE)
along the Z axis for the block hard object.

affected by the inaccuracies of the latter. Ideally, that is, if the shape sensing pipeline

worked without a flaw, the red dashed line representing the mesh estimation (in Fig-

ure 4.18 and Figure 4.20) should exactly match the blue line which represents the pose

obtained by the forward kinematics of the robot, i.e. the response (EE). The red dashed

76 Chapter 4: Shape sensing pipeline

0 10 20 30 40 50 60

Tim e [s]

0.10

0.05

0.00

0.05

0.10

0.15

E
rr

o
r

in
 Z

 [
m

]

Figure 4.21: Control error along the Z for the block hard object.

line then ought to follow the command line (green line), with an expected delay be-

tween the two signals. It should be noted that the response (EE) is not the signal

being controlled, but rather it serves as a reference to measure the accuracy of the mesh

estimation, i.e. the response (Mesh), which is the signal being regulated.

Both figures show a slow response, but the test errors on the bar soft object remain

relatively small, as it can be seen in Figure 4.19 at the 19, 40 and 60 second marks. The

test errors on the block hard object present however a significant discrepancy between

the response (EE) and the response (Mesh) as shown in Figure 4.20, which results in

considerable overshoot at the 15 and 47 seconds mark. This gap between the response

(Mesh) and the response (EE) is unsurprising if one refers to performance results shown

in Figure 4.15d.

The delayed response of the controller is mainly due to:

1. Command: As the command signal is set by a GUI, the target poses for the

controller result in a sharp slope, given that the user can vary the target position

at a much higher rate than the operating rate of the shape controller (i.e. mesh

estimation plus the velocity controller of the arm).

2. Damping parameters: The deformation model requires, on top of the Young’s

modulus and the Poisson’s ratio, to define damping parameters to simulate the

deformation behavior of the object. However, setting a high damping parameter

results in a delayed estimation of the object’s deformation. Note that this delay is

not caused by a higher computational time of the deformation model, but rather

how the behavior of the simulation compares to that of reality.

4.6 Summary 77

3. Sensor noise: As the raw output of the force-torque sensor produces a noisy

signal, its output was filtered with a moving average filter to smoothen the sensor

readings. This filter in turn introduced an additional source for delay in the overall

behavior of the shape controller.

4.6 Summary

This section presented our proposed shape sensing pipeline. The need for a modular

approach was motivated by the divergence of both tasks and objects involved in the

manipulation of flexible materials. Each component of the pipeline was detailed and

their cohesive integration was outlined. Furthermore, three possible applications using

the shape sensing pipeline were implemented and evaluated, namely two shape sensing

applications, using tactile and force data, as well as a shape control application. Follow-

ing the evaluation of the applications, a discussion of the experimental results recognized

promising insights, as well as critical limitations.

Chapter 5

Conclusions and future work

This chapter will first summarize the contributions of this thesis. Next, the limitations

of our proposed pipeline will be reviewed by analyzing each of its components as well as

their interactions, followed by perspectives on how to address such limitations. Finally,

the conclusions from this work are drawn in the last section.

5.1 Contributions

In this thesis we proposed a shape sensing pipeline with the objective of approaching

a general solution to the problem of manipulating deformable objects. As we showed

in Section 2, current approaches are limited to specific tasks and objects and therefore

cannot be applied in a general manner. The main purpose of the proposed pipeline is to

increase the generality of current solutions by modularly composing behaviors depending

on the task at hand. Furthermore, a review of the state of the art exhibited a lack of

touch sensing in the field, where vision-based systems currently dominate. To address

this issue, we developed two non-vision sensor models that depend on tactile and force

information, respectively. Finally, we evaluated the applicability of the shape sensing

pipeline on two sensing tasks and one manipulation task.

79

80 Chapter 5: Conclusions and future work

5.2 Limitations of the approach

Due to the sequential nature of the pipeline, individual errors in each component aggre-

gate as their outputs pass through the rest of the pipeline resulting in a deterioration of

the pipeline’s performance. In this chapter we will analyze the source of errors for each

component involved in the pipeline.

One major issue encountered in the force estimation carried by the sensor models pre-

sented in Chapter 3 is their inability to estimate zero forces. This behavior, also noted

in [10], is inherent to recurrent neural networks since they learn the force mapping based

on the sensor’ output which are imperfect due to noise. Additionally, both tactile and

force sensors suffer from calibration issues that result in them producing inconsistent

readings. For instance, the tactile sensors used in this thesis are filled with a liquid

which, due to wear and tear, leaks and thus affects the output of the sensor; whereas

the force-torque sensor exhibits a considerable amount of sensitivity due to temperature,

as it was shown in [75]. Furthermore, the tactile sensors do not directly measure force

but rather pressure, which causes slight and short contacts to not be perceived. These

intrinsic failures in the manufacturing of the sensors are difficult to model and hence

lead to erroneous force estimations by the proposed models.

The second component of the pipeline, namely the force transformer, converts the out-

put of the sensor models such that it can be used as an input to the deformation model.

This requires two calculations, first, to transform the force from the sensors into a com-

mon frame of reference, and second to distribute the force on the mesh’s nodes, which is

a requirement of the deformation model. The former not only requires precise measure-

ments relating frames on the sensors to a common frame (e.g. the object’s frame) but

also knowledge of the location of such frames which might not always be straightforward

to acquire. The latter, nodal distribution of the force, is directly affected by the resolu-

tion of the mesh, that is, how many elements the mesh contains and therefore how many

nodes. Thus, a higher mesh resolution can achieve a more realistic force distribution

but it does so at the expense of a higher computational cost, e.g. a slower estimation

by the deformation model.

The third and last component, i.e. the deformation model, assumes the deformable

objects to be linearly elastic. However, the behavior of the deformable objects is better

5.3 Future research lines 81

described as viscoelastic, as it is can be seen by the presence of hysteresis in Figure B.1

and Figure B.2. Unlike elastic materials, viscoelastic materials dissipate energy which is

unaccounted for in the deformation model used in this thesis. Besides this assumption,

the elasticity parameters used by the deformation model, which are empirically obtained,

greatly influence its accuracy.

As noted at the beginning of this chapter, the individual errors compound as they flow

through the pipeline resulting in an amplification of the pipeline’s inaccuracies. The

modularity of the pipeline comes at the expense of this drawback as the output of

one component is used as the input for the next component. In addition to the error

propagation across components, delays on one component directly affect the performance

of a component further in the pipeline. An example of the impact a delayed output can

cause was discussed in Section 4.5.3, where the delay deteriorated the performance of

the shape controller.

To counteract the effects of these shortcomings, possible lines of research are outlined

next to extend the works presented in this thesis.

5.3 Future research lines

5.3.1 Sensor model

One way to address the issue of the RNNs’ inability to estimate zero values is to collect

data with an additional label for contact. In doing so, the algorithm can be trained to

detect contacts as well, and thus safely estimate a zero force value. Contact detection

for the tactile sensor could also be performed by using proximity queries1 between the

sensor and the object. This can be achieved, for instance, by integrating the Flexible

Collision Library [77] within our tactile sensor model. Furthermore, by analyzing the

sensor’s resolution limits, as recently proposed in [78], the tactile sensor model could be

improved to address the uncertainties arising from this limitation.

The performance of the proposed force sensor model (RNNOB) could be improved by

combining it with the analytical observer described in Section 3.4.1. Moreover, since the

analytical observer is a model-based approach, safety concerns can be ensured.

1Proximity queries are methods used for computing the distance between two bodies and checking
for collisions [76].

82 Chapter 5: Conclusions and future work

5.3.2 Deformation model

As noted in Appendix B, the elastic behavior of the objects used in this thesis is non-

linear and thus, as the deformation model assumes linear elasticity, its estimation leads

to inaccuracies. This could be addressed by replacing the deformation model with a

nonlinear model at the expense of increasing computational complexity or by estimat-

ing, and then adapting, the elastic parameters online. As Figure B.2 shows, provided

an identification process has been previously performed, the Young’s modulus could be

computed online based on the current amount of force and displacement being exerted

on the object as well as considering the geometry of the object. Furthermore, the per-

formance of the deformation model could be boosted by constraining the nodes that are

in contact with the manipulator, which could be addressed, for instance, by applying

the contact model proposed in [23]. In this manner, the estimation of the deformation

model could benefit from knowing the exact position of the nodes where the deformation

forces are applied and estimate only the position of the remaining nodes. Building upon

this new constraint, since the current approach suffers from the mesh passing through

objects (e.g. the fingers on a robotic hand), estimation during in-hand manipulation

could be greatly improved.

5.3.3 Pipeline

The performance of the pipeline, as only force and tactile sensing are used, is significantly

limited at the moment. This limitation could be addressed by incorporating visual

feedback. Current approaches that estimate deformations based on visual feedback, such

as [40, 41], could be refactored into components that are compatible with the interfaces

defined in our approach. It is however not clear how such an integration should be

carried, since it is necessary to merge disparate measurements in a coherent manner,

e.g. by respecting the topology of the mesh. A potential solution might be offered by

machine learning approaches. The work described in [79], for instance, shows promising

results by learning how objects deform using adversarial learning.

In the applications described in Chapter 4.5, the implementation of the pipeline remained

static, that is, the components were not replaced while the task was being executed.

For more complex tasks it might be necessary to divide them in sub-tasks such as

5.3 Future research lines 83

grasping an object, lifting it and transporting it to a different location to shape its

form into a desired configuration. Since these sub-tasks require different sensing and

manipulation skills, different components could be switched accordingly in order to

accommodate for the specific sub-task at hand. This switching could be performed by a

task planner that first subdivides the greater and more complex task into smaller tasks

with defined requirements and then schedule the appropriate replacement of components.

Furthermore, in the future, instead of only reusing components, complete architectures

can be reused as proposed in [80]

5.3.4 Shape control

Besides integrating current shape controllers found in the literature, as the ones proposed

in [46, 49], as components in the proposed pipeline, novel controllers can be developed

by considering the mesh information. For instance, the displacement of the nodes (or

a set of them) can be mapped to the movements of the manipulator holding the object

via a so-called deformation Jacobian. This deformation Jacobian can in turn be used to

control the shape of an object, similar to how the Jacobian of a manipulator is used to

control the movement of a robot’s end-effector in Cartesian space. An example diagram,

showing how a shape controller could be used with our proposed pipeline to drive an

object’s configuration (i.e. its shape) to a desired one, is shown in Figure 5.1. Here,

the plant is considered to be composed of a robot, with its sensors, interacting with a

deformable object; and the sensors readings could be in the form of force signals, images,

point clouds, etc. Different sensor models could be then developed for the specific sensors

of a particular robot.

Sensor
model

Deformation
model

Force
transform

Shape sensing pipeline

Controller Plant
Target
con guration

Current con guration

θ/θ/τ
.

Sensor
readings

Figure 5.1: Integration of a controller with the shape sensing pipeline.

Other characteristics of the deformation could also be controlled, for example, the energy

produced by the deformation could be monitored such that the manipulator does not

bend the object in an excessive manner. By adding this energy constraint, a controller as

84 Chapter 5: Conclusions and future work

proposed in [81] could be used to guarantee a shape controller is safe to use for delicate

objects.

5.4 Final conclusions

Although a lot of progress has been made in recent years, the manipulation of deformable

objects still remains an open challenge for robotic manipulators. Two main research lines

have been pursued in order to solve this problem, namely, sensing and controlling the

shape of a deformable object. In this thesis, we addressed the former research line with

the purpose of enabling progress on the latter. We proposed a pipeline to estimate the

shape of an object while it is manipulated by leveraging the contact forces generated

during the manipulation. These contact forces were estimated using novel sensor models

based on recurrent neural networks that take tactile and force data as input. The contact

forces where then applied to a deformation model to estimate the object’s shape in an

online manner.

The design of the pipeline was motivated by a software paradigm named component-

based software engineering, which has been increasingly adopted by the robotics commu-

nity as it reduces developing time by promoting re-use of code. It also allows modularity,

since the components can be interchanged in order to achieve a more general solution,

e.g. by replacing the deformation model for a particular class of object.

Our proposed pipeline was applied to two shape sensing scenarios, using tactile and

force sensing respectively; and to a shape control task. Despite the limited performance

of the pipeline on real-life scenarios, the results are promising since no visual feedback

was used to correct for inaccuracies, which, given the design of the pipeline, could be

integrated to improve the overall performance of the proposed approach. In addition

to including visual information, other potential improvements were outlined for future

research lines.

Appendix A

Basics of deformation

This appendix introduces basic concepts and terminology on deformation. A deforma-

tion occurs when an external force1 is applied to an object which causes the object

to change its shape. Moreover, a deformation can be classified as plastic, elastic or

elasto-plastic; depending on the object’s response when the external force is removed.

A.1 Deformation types

A plastic deformation refers to a permanent deformation, that is, an object maintains

the shape caused by a deforming force even when the force is removed. On the contrary,

an elastic deformation results on the object returning to its undeformed shape once the

deforming force is removed [3]. And an elasto-plastic deformation is a combination of

both, elastic and plastic, deformations; where the object does not return to its orig-

inal shape, but it does not hold the deformation entirely. A visual example of these

deformation types is shown in Figure A.1.

A.2 Elasticity

Elasticity measures a body’s ability to recover its shape once deformation forces are

removed. Formally, elasticity describes the relation between stress and strain. Strain

1In this thesis we are not concerned with deformations produced by other physical phenomena such
as temperature.

85

86 Appendix A: Basics of deformation

(a) Before applying a force. (b) Touching the object. (c) Deforming the object.

(d) Elastic. (e) Elasto-plastic. (f) Plastic.

Figure A.1: Top row: an object being deformed by an external force. Bottom row:
the resulting types of deformation once the external force is removed.

(ε) is the amount of deformation induced by a force on a body; and stress (σ) is the

ratio between the applied force F and the cross-section area A0 [3]. Figure A.2 shows

an object being deformed by a tensile load, which causes lateral and axial strains. For

linear elastic deformations, which occur when the stress and strain are proportional [3],

stress and strain are related by Hooke’s law [3]:

σ = Eε

where E is the modulus of elasticity, also called Young’s modulus, and is measured in

pressure units such as Pascal (N/m2) [82].

Another important elasticity parameter is the Poisson’s ratio (ν), an adimensional num-

ber that relates the ratio between axial and lateral strains [3]. In Figure A.2, the axial

strain is represented by the change of length (L−L0
L0

), where lateral strains occur perpen-

dicularly to the applied force F .

The Young’s modulus E and the Poisson’s ratio ν are common parameters in model-

ing the deformation of an isotropic object, where the deformation’s elastodynamics are

represented by a set of partial differential equations solved through discretization tech-

niques in order to approximate the displacement field. However, these parameters are

only valid for linear elasticity. Linear deformation can refer either to a geometric or a

material linearity. Geometrical linearity is not appropriate for large deformations, since

A.3 Deformation models 87

L

F

F

L0

A0

Figure A.2: A tensile load (F) producing axial and lateral strains. The blue dashed
lines represent the original, undeformed, shape and the red solid lines represent the

deformed shape [3].

only small deformations can be modeled accurately [5]. On the other hand, material

linearity refers to a deformation that retains a linear stress-strain relation [3]. In this

thesis we assume the deformable objects have material linearity.

A.3 Deformation models

Modeling a deformation can be done with a variety of techniques. These techniques

require a deformation model and a representation of the object’s shape, usually by a set

of particles or a mesh. A mesh represents an object as set of points (vertices), edges and

faces or elements for a two dimensional or a three dimensional object, respectively. The

faces are usually triangles or quadrilaterals, and the elements are commonly represented

as tetrahedra or hexahedra. The deformation models provide a function to compute the

position of every vertex based on their current position and an input force [5].

88 Appendix A: Basics of deformation

Deformation models that do not require a mesh are termed mesh-free (or meshless), and

particle based models [83] are an example of a meshless model. The mesh-based models

are categorized either as continuum or lumped (discrete) variable models, according to

the consistency of the mass and stiffness parameters with the approximated displacement

fields in the elements of the mesh. The discrete based models are mainly represented as

Mass-Spring-Damper (MSD) systems, where the vertices are treated as mass particles

and the edges are considered as springs. Continuum based methods are commonly mod-

eled with finite element methods (FEM), where the object is split into a set of discrete

geometric parts called finite elements in order to approximate the object’s shape [84].

A comparison between different physically-based models is shown in Figure A.3.

MSD models are more intuitive and simpler to implement than FEM-based models, how-

ever FEM-based models are able to produce more physically realistic simulation [5, 84].

Furthermore, MSD models are unable to preserve volume and tend to easily invert [4, 84].

Particle-
based

Physically more realistic

Complexity

Co-rotational
linear FEM

Mooney-
Rivlin Neo-

Hookean

St. Venant-
Kirchhof

Linear
FEM

Mesh-free
Mesh-based

Model types

Elastic
Hyperelastic

Material types

MSD
Nonlinear

MSD

Dynamically
coupled
particles

Discrete
based

Continuum
based

Figure A.3: Comparison of physically-based deformation models based on the evalu-
ation results from [4] and the classification presented in [5].

Since this appendix covered only a brief summary on a variety of topics regarding defor-

mation and its simulation, the interested reader is referred to [5, 84] for more comprehen-

sive surveys of deformable models and modeling techniques in computer graphics; and a

technical review of mechanical properties and elastic behavior can be found in [3, 82].

Appendix B

Elastic behavior of the test

objects

The elastic behavior of isotropic materials can be represented by two parameters, such

as the Young’s modulus and the Poisson’s ratio [85]. One common way to obtain these

parameters is to perform a compression test which consists on pushing down on an object

while simultaneously recording the displacement1 of the object and the applied force.

We attempted to estimate the material properties of the cube-like objects described

in Section 4.5.1 by performing a compression test. For the test, the object was placed

inside of a press that can be programmed to move on a vertical axis until a desired

height and is equipped with a force sensor. The press was set to first move down to

approximately compress the object 36 mm, then to move upwards until the compression

was around 4 mm and finally the press was moved down until 44 mm of compression

were reached. The results of this test can be seen in Figure B.1, where the compression

is plotted against the measured force. Similarly, the stress-strain curves for the three

materials are shown in Figure B.2. The plots show the elastic behavior for three different

materials, namely, hard (HR 45), medium (Bultex 30) and soft (Bultex 26).

It can be seen from these figures, that the behavior of all three materials is not only

nonlinear but also presents hysteresis. Hence, modeling these materials as linear will

result in inaccuracies. Nevertheless, we can use the test findings to obtain a range

1Here, displacement refers to the compression of the object, i.e. the object is fixed at one side while
the opposite side is moved towards the fixed side.

89

90 Appendix B: Elastic behavior of the test objects

Figure B.1: The X axis shows the compression distance while the Y displays the
force applied to the objects.

Figure B.2: Stress-strain curve.

91

estimation of the Young’s modulus for each material and then tune them individually

until the simulation behavior better matches reality.

Bibliography

[1] Jeremy A. Fishel. Design and use of a biomimetic tactile microvibration sensor with

human-like sensitivity and its application in texture discrimination using Bayesian

exploration. Ph.D. thesis, University of Southern California, 2012.

[2] Davide Brugali and Patrizia Scandurra. Component-Based Robotic Engineering

(Part I). IEEE Robotics and Automation Magazine, 16(4):84–96, 2009.

[3] William D. Jr. Callister. Mechanical Properties of Metals. In Materials Science and

Engineering: An Introduction, chapter 6, page 832. Wiley Publishers, 7th edition,

2006. ISBN 978-0006970118.

[4] F. S. Sin, D. Schroeder, and J. Barbič. Vega: Non-linear FEM deformable object

simulator. Computer Graphics Forum, 32(1):36–48, 2013.

[5] Andrew Nealen, Matthias Müller, Richard Keiser, Eddy Boxerman, and Mark Carl-

son. Physically based deformable models in computer graphics. Computer Graphics

Forum, 25(4):809–836, 2006.

[6] Matthias Rambow, Thomas Schauss, Martin Buss, and Sandra Hirche. Autonomous

manipulation of deformable objects based on teleoperated demonstrations. 2012

IEEE/RSJ International Conference on Intelligent Robots and Systems, pages

2809–2814, 2012.

[7] Olivier Roussel and Michel Ta. Deformable Linear Object manipulation planning

with contacts. 2014 IEEE/RSJ International Conference on Intelligent Robots and

Systems, pages 1–5, 2014.

[8] Ankit J. Shah and Julie A. Shah. Towards manipulation planning for multiple

interlinked deformable linear objects. In IEEE International Conference on Robotics

and Automation, pages 3908–3915, may 2016. ISBN 978-1-4673-8026-3.

93

94 Bibliography

[9] Wenhao Yu, Ariel Kapusta, Jie Tan, Charles C Kemp, Greg Turk, and C Karen Liu.

Haptic Simulation for Robot-Assisted Dressing. IEEE International Conference on

Robotics and Automation, 2017.

[10] Zackory Erickson, Alexander Clegg, Wenhao Yu, Greg Turk, C. Karen Liu, and

Charles C. Kemp. What does the person feel? Learning to infer applied forces

during robot-assisted dressing. In IEEE International Conference on Robotics and

Automation, pages 6058–6065. Singapore, 2017. ISBN 9781509046331.

[11] C. Wouter Bac, Jochen Hemming, B.A.J. van Tuijl, Ruud Barth, Ehud Wais, and

Eldert J. van Henten. Performance Evaluation of a Harvesting Robot for Sweet

Pepper. Journal of Field Robotics, 34(6):1123–1139, sep 2017.

[12] Christopher Lehnert, Andrew English, Christopher McCool, Adam W. Tow, and

Tristan Perez. Autonomous Sweet Pepper Harvesting for Protected Cropping Sys-

tems. IEEE Robotics and Automation Letters, 2(2):872–879, 2017.

[13] Antonio Bicchi and V. Kumar. Robotic grasping and contact: a review. In 2000

IEEE International Conference on Robotics and Automation, volume 1, pages 348–

353. IEEE, 2000. ISBN 0-7803-5886-4.

[14] Efrain Lopez-Damian, Daniel Sidobre, and Rachid Alami. A grasp planner based

on inertial properties. In Proceedings - IEEE International Conference on Robotics

and Automation, pages 754–759, 2005.

[15] Xavier Broquère, Daniel Sidobre, and Ignacio Herrera-Aguilar. Soft motion trajec-

tory planner for service manipulator robot. 2008 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems, IROS, pages 2808–2813, 2008.

[16] Juan Antonio Corrales Ramon, Veronique Perdereau, and Fernando Torres Medina.

Multi-fingered robotic hand planner for object reconfiguration through a rolling

contact evolution model. Proceedings - IEEE International Conference on Robotics

and Automation, pages 625–630, 2013.

[17] V.-D. Nguyen. Constructing Force- Closure Grasps. The International Journal of

Robotics Research, 7(3):3–16, jun 1988.

Bibliography 95

[18] Feng Guo, Huan Lin, and Yan Bin Jia. Squeeze grasping of deformable planar

objects with segment contacts and stick/slip transitions. 2013 IEEE International

Conference on Robotics and Automation, pages 3736–3741, 2013.

[19] Antonio Bicchi. On the Closure Properties of Robotic Grasping. The International

Journal of Robotics Research, 14(4):319–334, aug 1995.

[20] Yan Bin Jia, Feng Guo, and Jiang Tian. On two-finger grasping of deformable

planar objects. 2011 IEEE International Conference on Robotics and Automation,

pages 5261–5266, may 2011.

[21] Fouad F. Khalil, Phillip Curtis, and Pierre Payeur. Visual monitoring of surface

deformations on objects manipulated with a robotic hand. 2010 IEEE International

Workshop on Robotic and Sensors Environments, pages 1–6, oct 2010.

[22] Essahbi Nabil, Bouzgarrou Belhassen-chedli, and Gogu Grigore. Robotics and

Computer-Integrated Manufacturing Soft material modeling for robotic task for-

mulation and control in the muscle separation process. Robotics and Computer

Integrated Manufacturing, 32:37–53, 2015.

[23] Lazher Zaidi, Juan Antonio Corrales, Belhassen Chedli Bouzgarrou, Youcef

Mezouar, and Laurent Sabourin. Model-based strategy for grasping 3D deformable

objects using a multi-fingered robotic hand. Robotics and Autonomous Systems,

95:196–206, 2017.

[24] Jose Sanchez, Juan-Antonio Corrales, Belhassen-Chedli Bouzgarrou, and Youcef

Mezouar. Robotic manipulation and sensing of deformable objects in domestic and

industrial applications: a survey. The International Journal of Robotics Research,

37(7):688–716, jun 2018.

[25] Félix Nadon, Angel Valencia, and Pierre Payeur. Multi-Modal Sensing and Robotic

Manipulation of Non-Rigid Objects: A Survey. Robotics, 7(4):74, nov 2018.

[26] Barbara Frank, Rudiger Schmedding, Cyrill Stachniss, Matthias Teschner, and Wol-

fram Burgard. Learning the elasticity parameters of deformable objects with a ma-

nipulation robot. In IEEE/RSJ International Conference on Intelligent Robots and

Systems, pages 1877–1883, oct 2010. ISBN 978-1-4244-6674-0.

96 Bibliography

[27] Andreas Rune Fugl, Andreas Jordt, Henrik Gordon Petersen, Morten Willatzen,

and Reinhard Koch. Simultaneous Estimation of Material Properties and Pose for

Deformable Objects from Depth and Color Images. In Axel Pinz, Thomas Pock,

Horst Bischof, and Franz Leberl (editors), Pattern Recognition, volume 7476 LNCS,

pages 165–174. Springer Berlin Heidelberg, 2012. ISBN 9783642327162.

[28] Ana Maria Cretu, Pierre Payeur, and Emil M. Petriu. Soft object deformation

monitoring and learning for model-based robotic hand manipulation. IEEE Trans-

actions on Systems, Man, and Cybernetics, Part B: Cybernetics, 42(3):740–753,

2012.

[29] John Schulman, Alex Lee, Jonathan Ho, and Pieter Abbeel. Tracking deformable

objects with point clouds. In IEEE International Conference on Robotics and Au-

tomation, pages 1130–1137, may 2013. ISBN 978-1-4673-5643-5.

[30] Ibai Leizea, Hugo Alvarez, Iker Aguinaga, and Diego Borro. Real-time deformation,

registration and tracking of solids based on physical simulation. In IEEE Interna-

tional Symposium on Mixed and Augmented Reality, pages 165–170, 2014. ISBN

9781479961849.

[31] Leon Bodenhagen, Andreas R Fugl, Andreas Jordt, Morten Willatzen, Knud A An-

dersen, Martin M Olsen, Reinhard Koch, Henrik G Petersen, and Norbert Krüger.

An adaptable robot vision system performing manipulation actions with flexible ob-

jects. IEEE Transactions on Automation Science and Engineering, 11(3):749–765,

jul 2014.

[32] M Staffa, S Rossi, M Giordano, M De Gregorio, and B Siciliano. Segmentation

performance in tracking deformable objects via WNNs. Robotics and Automation

(ICRA), 2015 IEEE International Conference on, pages 2462–2467, 2015.

[33] Antoine Petit, Vincenzo Lippiello, and Bruno Siciliano. Real-time tracking of 3D

elastic objects with an RGB-D sensor. In IEEE/RSJ International Conference on

Intelligent Robots and Systems, 320992, pages 3914–3921, sep 2015. ISBN 978-1-

4799-9994-1.

[34] Püren Güler, Karl Pauwels, Alessandro Pieropan, Hedvig Kjellstrom, and Danica

Kragic. Estimating the deformability of elastic materials using optical flow and

Bibliography 97

position-based dynamics. In IEEE-RAS International Conference on Humanoid

Robots, pages 965–971, nov 2015. ISBN 978-1-4799-6885-5.

[35] Sergio Caccamo, Püren Güler, Hedvig Kjellström, and Danica Kragic. Active per-

ception and modeling of deformable surfaces using Gaussian processes and position-

based dynamics. IEEE-RAS International Conference on Humanoid Robots, pages

530–537, 2016.

[36] Antoine Petit, Fanny Ficuciello, Giuseppe Andrea Fontanelli, Luigi Villani, and

Bruno Siciliano. Using Physical Modeling and RGB-D Registration for Contact

Force Sensing on Deformable Objects. Int. Conference on Informatics in Control,

Automation and Robotics, 2017.

[37] Bilal Tawbe and Ana Maria Cretu. Acquisition and neural network prediction

of 3D deformable object shape using a kinect and a force-torque sensor. Sensors

(Switzerland), 17(5), 2017.

[38] Veronica E. Arriola-Rios and Jeremy L. Wyatt. A Multimodal Model of Object

Deformation under Robotic Pushing. IEEE Transactions on Cognitive and Devel-

opmental Systems, 9(2):153–169, 2017.

[39] Püren Güler, Alessandro Pieropan, Masatoshi Ishikawa, and Danica Kragic. Esti-

mating deformability of objects using meshless shape matching. In IEEE Interna-

tional Conference on Intelligent Robots and Systems, pages 5941–5948, 2017. ISBN

9781538626825.

[40] Antoine Petit, Stephane Cotin, Vincenzo Lippiello, and Bruno Siciliano. Captur-

ing Deformations of Interacting Non-rigid Objects Using RGB-D Data. In 2018

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pages 491–497. IEEE, oct 2018. ISBN 978-1-5386-8094-0.

[41] Zhe Hu, Peigen Sun, and Jia Pan. Three-Dimensional Deformable Object Ma-

nipulation Using Fast Online Gaussian Process Regression. IEEE Robotics and

Automation Letters, 3(2):979–986, apr 2018.

[42] Tao Han, Xuan Zhao, Peigen Sun, and Jia Pan. Robust Shape Estimation for 3D

Deformable Object Manipulation. pages 1–9, 2018.

98 Bibliography

[43] Dmitry Berenson. Manipulation of deformable objects without modeling and sim-

ulating deformation. In IEEE/RSJ International Conference on Intelligent Robots

and Systems, pages 4525–4532, nov 2013. ISBN 978-1-4673-6358-7.

[44] David Navarro-Alarcon, Yun-Hui Liu, Jose Guadalupe Romero, and Peng Li.

Model-Free Visually Servoed Deformation Control of Elastic Objects by Robot Ma-

nipulators. 2013 IEEE Transactions on Robotics, 29(6):1457–1468, dec 2013.

[45] David Navarro-Alarcon, Yun Hui Liu, Jose Guadalupe Romero, and Peng Li. On

the visual deformation servoing of compliant objects: Uncalibrated control methods

and experiments. International Journal of Robotics Research, 33(11):1462–1480, sep

2014.

[46] David Navarro-Alarcon, Hiu Man Yip, Zerui Wang, Yun-Hui Liu, Fangxun Zhong,

Tianxue Zhang, and Peng Li. Automatic 3-D Manipulation of Soft Objects by

Robotic Arms With an Adaptive Deformation Model. IEEE Transactions on

Robotics, 32(2):429–441, apr 2016.

[47] Biao Jia, Zhe Hu, Jia Pan, and Dinesh Manocha. Manipulating Highly Deformable

Materials Using a Visual Feedback Dictionary. In 2018 IEEE International Confer-

ence on Robotics and Automation (ICRA), Section IV, pages 239–246. IEEE, may

2018. ISBN 978-1-5386-3081-5.

[48] David Navarro-Alarcon and Yun Hui Liu. Fourier-Based Shape Servoing: A New

Feedback Method to Actively Deform Soft Objects into Desired 2-D Image Con-

tours. IEEE Transactions on Robotics, pages 1–8, 2017.

[49] Fanny Ficuciello, Alessandro Migliozzi, Eulalie Coevoet, Antoine Petit, and Chris-

tian Duriez. FEM-Based Deformation Control for Dexterous Manipulation of 3D

Soft Objects. In 2018 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 4007–4013. IEEE, oct 2018. ISBN 978-1-5386-8094-0.

[50] Simon Duenser, James M Bern, Roi Poranne, and Stelian Coros. Interactive Robotic

Manipulation of Elastic Objects. In 2018 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 3476–3481. IEEE, oct 2018. ISBN

978-1-5386-8094-0.

Bibliography 99

[51] Mengyao Ruan, Dale Mc Conachie, and Dmitry Berenson. Accounting for Direc-

tional Rigidity and Constraints in Control for Manipulation of Deformable Ob-

jects without Physical Simulation. In 2018 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), pages 512–519. IEEE, oct 2018. ISBN

978-1-5386-8094-0.

[52] Zerui Wang, Xiang Li, David Navarro-Alarcon, and Yun-hui Liu. A Unified Con-

troller for Region-reaching and Deforming of Soft Objects. In 2018 IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems (IROS), pages 472–478.

IEEE, oct 2018. ISBN 978-1-5386-8094-0.

[53] Silvio Cocuzza and X. T. Yan. First engineering framework for the out-of-plane

robotic shaping of thin rheological objects. Robotics and Computer-Integrated Man-

ufacturing, 53(May 2017):108–121, 2018.

[54] Farshid Alambeigi, Zerui Wang, Rachel Hegeman, Yun-Hui Liu, and Mehran Ar-

mand. A Robust Data-Driven Approach for Online Learning and Manipulation of

Unmodeled 3-D Heterogeneous Compliant Objects. IEEE Robotics and Automation

Letters, 3(4):4140–4147, 2018.

[55] Dominik Henrich and Heinz Wörn. Robot Manipulation of Deformable Objects.

Advanced Manufacturing. Springer London, London, 1 edition, 2000. ISBN 978-1-

4471-1193-1.

[56] Mozafar Saadat and Ping Nan. Industrial applications of automatic manipulation

of flexible materials. Industrial Robot: An International Journal, 29(5):434–442,

oct 2002.

[57] P. Jimenez. Survey on model-based manipulation planning of deformable objects.

Robotics and Computer-Integrated Manufacturing, 28(2):154–163, 2012.

[58] P. Jiménez. Visual grasp point localization, classification and state recognition in

robotic manipulation of cloth: An overview. Robotics and Autonomous Systems,

92:107–125, 2017.

[59] Zhanat Kappassov, Juan-Antonio Corrales, and Véronique Perdereau. Tactile sens-

ing in dexterous robot hands Review. Robotics and Autonomous Systems, 74:195–

220, 2015.

100 Bibliography

[60] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-

putation, 9(8):1735–1780, 1997.

[61] Alex Graves, Abdel-Rahman Mohamed, and Geoffrey Hinton. Speech recognition

with deep recurrent neural networks. In IEEE International Conference on Acous-

tics, Speech and Signal Processing, pages 6645–6649, 2013. ISBN 978-1-4799-0356-6.

[62] Nal Kalchbrenner and Phil Blunsom. Recurrent Continuous Translation Models.

Proceedings of the Conference on Empirical Methods in Natural Language Process-

ing (EMMLP), (October):1700–1709, 2013.

[63] Martin Karlsson, Anders Robertsson, and Rolf Johansson. Detection and Control

of Contact Force Transients in Robotic Manipulation without a Force Sensor. In

IEEE International Conference on Robotics and Automation, pages 21–25. Bris-

bane, Australia, 2018.

[64] Zhe Su, Karol Hausman, Yevgen Chebotar, Artem Molchanov, Gerald E Loeb,

Gaurav S Sukhatme, and Stefan Schaal. Force estimation and slip detection/clas-

sification for grip control using a biomimetic tactile sensor. In IEEE-RAS Interna-

tional Conference on Humanoid Robots, October, pages 297–303, nov 2015. ISBN

978-1-4799-6885-5.

[65] Damien Aymeric and Others. TFLearn, 2016.

[66] Daniel Kubus, Torsten Kröger, and Friedrich M. Wahl. On-line estimation of in-

ertial parameters using a recursive total least-squares approach. In IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems, pages 3845–3852. Nice,

France, 2008. ISBN 9781424420582.

[67] Herman Bruyninckx, Markus Klotzbücher, Nico Hochgeschwender, Gerhard Kraet-

zschmar, Luca Gherardi, and Davide Brugali. The BRICS component model. Pro-

ceedings of the 28th Annual ACM Symposium on Applied Computing - SAC ’13,

pages 1758–1764, 2013.

[68] Nico Hochgeschwender, Luca Gherardi, Azamat Shakhirmardanov, Gerhard K.

Kraetzschmar, Davide Brugali, and Herman Bruyninckx. A model-based approach

to software deployment in robotics. IEEE International Conference on Intelligent

Robots and Systems, pages 3907–3914, 2013.

Bibliography 101

[69] Luca Gherardi and Nico Hochgeschwender. RRA: Models and tools for robotics

run-time adaptation. IEEE International Conference on Intelligent Robots and

Systems, 2015-Decem:1777–1784, 2015.

[70] Davide Brugali and Azamat Shakhimardanov. Component-Based Robotic Engi-

neering (Part II). IEEE Robotics and Automation Magazine, 17(1):100–112, 2010.

[71] Eftychios Sifakis and Jernej Barbic. FEM simulation of 3D deformable solids. In

ACM SIGGRAPH 2012 Posters on - SIGGRAPH ’12, pages 1–50. ACM Press,

New York, New York, USA, 2012. ISBN 9781450316781.

[72] Peter Kaufmann, Sebastian Martin, Mario Botsch, and Markus Gross. Flexible

simulation of deformable models using discontinuous Galerkin FEM. Graphical

Models, 71(4):153–167, 2009.

[73] Qingming Zhan, Liang Yubin, and Yinghui Xiao. Color-Based Segmentation of

Point Clouds. Laser scanning 2009, IAPRS, XXXVIII, P:248–252, 2009.

[74] Rainer Bischoff, Johannes Kurth, Günter Schreiber, Ralf Koeppe, Alin Albu-

Schäffer, Alexander Beyer, and Oliver Eiberger. The KUKA-DLR Lightweight

Robot Arm - A New Reference Platform for Robotics Research and Manufacturing.

Robotics (ISR), pages 1–8, 2010.

[75] Torsten Kröger, Daniel Kubus, and Friedrich M. Wahl. 12D force and acceleration

sensing: A helpful experience report on sensor characteristics. In IEEE Interna-

tional Conference on Robotics and Automation, pages 3455–3462. Pasadena, USA,

2008. ISBN 9781424416479.

[76] Gino van den Bergen. Proximity queries and penetration depth computation on 3d

game objects. Game developers conference 2001, 2001.

[77] Jia Pan, Sachin Chitta, and Dinesh Manocha. FCL: A general purpose library for

collision and proximity queries. Proceedings - IEEE International Conference on

Robotics and Automation, pages 3859–3866, 2012.

[78] Qian Wan and Robert D Howe. Modeling the Effects of Contact Sensor Resolution

on Grasp Success. IEEE Robotics and Automation Letters, 3(3):1933–1940, jul 2018.

102 Bibliography

[79] Zhihua Wang, Stefano Rosa, Bo Yang, Sen Wang, Niki Trigoni, and Andrew

Markham. 3D-PhysNet: Learning the Intuitive Physics of Non-Rigid Object De-

formations. arXiv Computer Vision and Pattern Recognition, (Nips), 2018.

[80] Luca Gherardi and Davide Brugali. Modeling and reusing robotic software archi-

tectures: The HyperFlex toolchain. IEEE International Conference on Robotics

and Automation, pages 6414–6420, 2014.

[81] Lucas Joseph, Vincent Padois, and Guillaume Morel. Towards X-Ray Medical

Imaging with Robots in the Open: Safety Without Compromising Performances.

2018 IEEE International Conference on Robotics and Automation (ICRA), pages

6604–6610, 2018.

[82] Donald Askeland and Pradeep Fulay. Mechanical Properties and Behavior. In The

Science and Engineering of Materials, chapter 6, page 888. Cengage Learning, 6th

edition, 2005. ISBN 0534553966.

[83] David Love Tonnesen. Dynamically Coupled Particle Systems for Geometric Mod-

eling, Reconstruction, and Animation. Ph.D. thesis, University of Toronto, 1998.

[84] Patricia Moore and Derek Molloy. A Survey of Computer-Based Deformable Mod-

els. International Machine Vision and Image Processing Conference (IMVIP 2007),

pages 55–66, sep 2007.

[85] Veikko Lindroos, Markku Tilli, Ari Lehto, and Teruaki Motooka. Handbook of

Silicon Based MEMS Materials and Technologies. Applied Science Publishers, 2010.

ISBN 978-0-8155-1594-4.

