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Abstract

Cognitive functions rely on the generation and regulation of information in special-
ized neuronal networks. The presubiculum, a cortical area located between the hip-
pocampus and the entorhinal cortex, is involved in signaling the sense of orientation
in animals as well as in humans. Most presubicular neurons are Head Direction Cells,
that is, they fire as a function of directional heading. The presubiculum constitutes
a crucial crossroad for spatial information. Very few data exist on the functional
organization of the presubiculum, but its 6-layered cytoarchitecture suggests that
signals are not passively relayed but rather actively integrated and refined.

During my PhD, I studied the microcircuit elements of rodent presubiculum in
the slice preparation, linking structure and physiology using patch clamp records.

First, I focused on rat principal neurons and distinguished 3 groups: a homoge-
neous population of regular spiking neurons in superficial layers, mostly pyramidal;
intrinsically burst firing neurons of layer 4; and a very heterogeneous population of
regular spiking neurons in deep layers. These populations constitute the primary el-
ements for information processing in the presubiculum, and their diversity suggests
a high computational power.

Then, I addressed the question of the inhibitory control in the presubiculum.
Recordings were performed from slices of transgenic mouse strains that express fluo-
rescent proteins in interneurons. We showed a continuum of diversity for parvalbumin-
(PV) and somatostatin- (SST) containing interneurons, from the archetypical PV-
positive fast spiking basket cells to the SST-positive low-threshold spiking Martinotti
cells. Regarding the inhibition, the presubiculum seems to possess the complexity
of all cortical areas.

Finally, I investigated the synaptic interactions of pyramidal cells and Martinotti
cells in superficial layers, using dual patch clamp recordings. Martinotti cells provide
low amplitude but reliable inhibition onto pyramidal cell dendrites. I found that the
strength at the excitatory synapse was enhanced following repetitive stimulation at
high frequency. Consequently, dendritic inhibition by presubicular Martinotti cells
may act as a homeostatic response to sustained excitation.

My PhD work brought essential knowledge about the presubicular microcircuit.
It has shed light on the different populations of principal neurons and GABAergic
interneurons and has uncovered a feedback inhibitory loop that is recruited during
sustained but not transient activity.
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Anatomy

ADN anterodorsal thalamus
AM anteromedial thalamus
AV anteroventral thalamus
CA corpus ammonis
DG dentate gyrus
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DTN dorso tegmental nucleus
LEA lateral entorhinal cortex
LDN laterodorsal thalamus
LMN lateral mammillary nucleus
MEA medial entorhinal cortex
PHR parahippocampal region
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PER Perirhinal cortex
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POR Postrhinal cortex
PoS postsubiculum = dorsal part of PrS
RSC retrosplenial cortex
sub subiculum
vm ventro-medial

Physiology

AP action potential
DC direct current
FS fast spiking
LTS low-threshold spiking
PTP posttetanic potentiation
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The presubiculum is an understudied cortical area located in the parahippocam-
pal region and involved in spatial navigation. My supervisor, Desdemona Fricker,
therefore proposed this thesis project on information encoding at the level of the
presubicular microcircuit.

The presubiculum contains head direction cells, which fire as a function of ani-
mal’s directional heading. The head direction signal is generated from vestibular
information, in subcortical areas that project to the presubiculum. Besides, pre-
subiculum receives visual information from visual and retrosplenial cortices. The
convergence of the two types of information in the presubiculum lead to the update
of the head direction signal with visual cues. The presubiculum then distributes a
visual landmark control to subcortical areas as well as a major drive to the down-
stream entorhinal cortex. Consequently, the presubicular function deeply impacts
the function of entorhinal cortex and hippocampus.

The six-layered organization of the presubiculum suggests a high computational
power, implying that information is not passively relayed, but rather actively inte-
grated and refined. But what happens when information enters the presubiculum
has been unknown as the presubicular network and its components have never been
studied in detail.

During my PhD, I studied the microcircuit elements of rodent presubiculum, using
a model that allows a very precise investigation of neuronal and synaptic properties:
the slice preparation. The underlying theme of my work was to use patch clamp
records in whole cell configuration in order to obtain electrophysiological and mor-
phological data on presubicular neurons and their connections.

A part of my work consisted in a description of the intrinsic electrophysiological
and morphological properties of the different neurons in the presubiculum. My
first project focused on principal neurons in rat, whereas the second study dealt
with the diversity of GABAergic interneurons. I defined the "building blocks" of
the presubiculum, an essential step in the understanding of information encoding
in a network. I showed that the six layers of the presubiculum contain neurons
with distinct biophysical properties and distinct dendritic and axonal arborizations,
suggesting that different integrative capabilities exist within the network. Together
with Mérie Nassar, we described the diversity of inhibitory interneurons, that are
important elements for tuning cortical information. Our results suggest that the
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presubiculum possesses all necessary elements for complex information treatment,
as is the case in other cortical areas.

The last part of my work focused on the specific interactions between pyramidal cells
and a subpopulation of interneurons, the Martinotti cells. I noticed an unusual form
of plasticity at the excitatory synapse. The transfer of information was exquisitely
low, as one action potential in the pyramidal cell rarely triggered a postsynaptic ex-
citatory event in the Martinotti cell. However, sustained activity at high frequency
was able to un-mute the synapse, which then became efficient to transfer information
and summed events could fire the Martinotti cell. Presubicular head direction cells
fire persistently as the head is turned in the cell’s preferred direction. The excita-
tory synapses onto Martinotti cells of the presubiculum are therefore appropriately
tuned to integrate and balanced the persistent intrinsic excitatory activity delivered
by the presubicular microcircuit.
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Two main parts in the introduction should acquaint the reader with the con-
text of my research. The first part presents the presubiculum, its situation in the
parahippocampal region, its anatomy and development. I then go over its function
as a key relay for landmark information in the brain, and I eventually come back
on the poor knowledge of its microcircuit. How does a microcircuit work? The
second part reviews different elements that process the information in neuronal net-
works, from ions channels responsible for excitability to some of the principles of
computation in microcircuits. I mainly develop the regulation of information from
the spike generation to the plasticity of synaptic release, because it provides useful
information for the last study of my PhD.
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1 | The presubiculum: Anatomy, function,
microcircuit

1.1 The presubicular cortex

1.1.1 Anatomy

The presubiculum is a cortical region of the hippocampal-parahippocampal forma-
tion in brain’s temporal lobe. Hippocampus proper is subdivided into the Dentate
Gyrus, Ammon’s Horn (CA3, CA2, CA1) and Subiculum; The parahippocampal
area is its continuation, composed of presubiculum, parasubiculum, entorhinal (me-
dial and lateral parts), peri- and postrhinal cortices (Fig. 1; van Strien et al., 2009).

The presubiculum corresponds to Brodmann’s area 27 and 48 (Brodmann, 1909),
following the temporoventral-to-septodorsal hippocampal axis in rodents (Fig. 1).
The most dorsal part, corresponding to Brodmann’s area 48 is also called "Post-
subiculum" (Brodmann, 1909; Rose and Woolsey, 1948; Blackstad, 1956). In the
proximo-distal axis of the hippocampus (from dentate gyrus to subiculum), the pre-
subiculum is located just next to subiculum and is then followed by the parasubicu-
lum; these 3 areas being classically grouped together into the "subicular complex".
Eventually, in its retrodorsal part, the presubiculum is bordered by retrosplenial
cortex.

The presubiculum is easily distinguishable from its neighboring areas regarding
anatomical features such as cytoarchitecture and topography of afferent fibers (Fig.
2, Ramon y Cajal, 1899; Brodmann, 1909; Rose and Woolsey, 1948; Blackstad,
1956).

Presubiculum is a 6-layered cortex. Layers were already described by Ramon y
Cajal according to their neuronal content and density, from the pial surface to the
white matter (Fig. 2C; Ramon y Cajal, 1899). This description of layer holds true
for non-human primates and rodent presubiculum.

Layer 1, the molecular layer, is almost empty and contains only few putative
interneurons, (Cajal’s "short axon cells") and glial cells. Layer 2 is a thin layer of
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Figure 1: Representations of the hippocampal formation (HF), the parahippocampal
region (PHR) and retrosplenial cortex (RSC) in rat brain. Lateral (A) and midsagittal
(B) views of the rat brain. Hippocampus contains dentate gyrus (DG), Ammon’s horn
(CA1 to CA3) and subiculum (sub). Parahippocampal region is subdivided into pre-
subiculum (PrS), parasubiculum (PaS), medial and lateral entorhinal areas (MEA and
LEA) peri- and postrhinal cortices (PER and POR). Retrosplenial cortex is subdivided
here in A29ab, A29c and A30 (Brodmann’s nomenclature). Hippocampus, PrS and PaS
follow a dorsoseptal-to-ventrotemporal axis; Entorhinal cortices follow a dorsolateral-to-
ventromedial (dl, vm); PER and POR are defined along a rostro-caudal axis. The dashed
vertical (a, b) and horizontal (c, d) lines indicate levels of coronal and horizontal sections
depicted in C. rf: rhinal fissure; cc: corpus callosum; f: fibria. Adapted from Sugar et al.
(2011) and van Strien et al. (2009)

16



approximately the same thickness as layer 1 and contains densely packed pyramidal
and fusiform cells. In the most dorsal part of mouse presubiculum, layer 2 cell
bodies tend to form clusters separated by fiber stripes (Slomianka and Geneser,
1991). Layer 3 is larger than layer 2 with a much lower neuronal density and is
composed of pyramidal neurons. Layer 4 is also named "lamina dissecans" because
it was described as a neuron free layer, containing only fibers and glial cells (Rose,
1926; Lorente De Nó, 1933). It is a convenient marker separating superficial layers
(1, 2 and 3) from deep layers (5 and 6). Layer 5 is a layer with large to medium
sized pyramidal cells whereas layer 6 contains smaller fusiform and pyramidal cells.
In primate presubiculum, deep layers are separated in 3 sub-layers (5, 6, 7). This
laminar organization has been observed with specific in situ hybridization stainings
and is less clear in rodents (Ding, 2013).

The laminar organization of the presubiculum marks an abrupt transition with
the adjacent subiculum, organized more like a cloud (even if subiculum may also
be subdivided in different layers, O’Mara et al., 2001). An "extremely dense plexus
formed by [ ] many afferent axons" in superficial layers of presubiculum distinguishes
it from its neighbors, subiculum, parasubiculum and retrosplenial cortex (Ramon y
Cajal, 1899; Blackstad, 1956). These terminals are more numerous in the dorsal
part of presubiculum (area 48; Rose and Woolsey, 1948; Blackstad, 1956). The
presubiculo-parasubiculum transition is marked by the absence of the densely packed
layer 2 in parasubiculum, the cellular density of its superficial layers being more
homogeneous. This transition is clearly visible with a specific marker of presubicular
layer 2, calbindin (Boccara et al., 2010).

The dense presubicular layer 2 is also remarkably avoided by the characteristic
plexus targeting the presubiculum (Fig. 2A and B, Ramon y Cajal, 1899). These
dense afferent fibers define very well the limits of presubiculum, especially dorsally,
where their interruption marks the border of presubiculum with retrosplenial cortex
(Ramon y Cajal, 1899; Blackstad, 1956).

1.1.2 What kind of cortex?

During development, radial migration of neuronal progenitors from the ventricu-
lar zone shapes laminar compartments (Angevine and Sidman, 1961; Rakic, 1974).
Then, subsequent change may occur to generate the adult cortical organization.
Cortical areas may be classified according to the development of their laminar or-
ganization and their aspect in the adult stage (Lorente De Nó, 1933; Filimonoff,
1947). These historic classifications can be criticized because they are based only
on anatomy, but they are still of interest for defining different parts of the cortex.
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Figure 2: Layers and afferent fibers in the presubiculum. A: Tionin-stained
horizontal section through the rat hippocampal formation. DG: dentate gyrus; S: subicu-
lum; PrS: Presubiculum; PaS: Parasubiculum; EC : Enthorinal cortex; Note the obvious
separation of superficial (1,2,3) and deep (5,6) layers by lamina dissecans (layer 4) in
the presubiculum. Note that layer 2 is more dense than layer 3, and that presubicular
deep layers appear as a continuation of the subiculum and entorhinal cortex deep layers.
Adapted from Amaral and Witter, 1989. B: Drawing of a horizontal section correspond-
ing to A, but using a 15 day old mouse, stained with the Golgi method. Adapted from
Ramon y Cajal (1899). Note the dense "plexus" of afferent fibers in the presubiculum
that partially avoid layer 2. C: Laminar organization of the human presubiculum. Nissl
method, from Ramon y Cajal (1899). Cajal’s nomenclature (my interpretation): A, plexi-
form layer (layer 1); B, small pyramidal and fusiform cell layer (layer 2); C, deep plexiform
layer (layer 3); D, large to medium size pyramidal cell layer (layer 4 and 5); E, fusiform
and triangular cell layer (layer 6).
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The Isocortex (or Cortex Completus) comprise 6 layers whereas the Allocortex (or
Cortex Incompletus) displays an incomplete structure (less than 6 layers) in develop-
mental and adult stages. The Periallocortex (or Cortex Intermedius) physically lies
between the two others and its structure changes between developmental and adult
stage. Neocortex is Isocortex; hippocampus and subiculum constitute the Archicor-
tex, which is part of the Allocortex; the presubiculum was lumped together with
the entorhinal area and termed Periarchicortex, which is part of the Periallocortex
(Lorente De Nó, 1933; Filimonoff, 1947).

More recent findings (Bayer, 1980) have shown that embryogenesis is actually
different between presubiculum and entorhinal cortex. First, neurogenesis occurs
later in presubiculum. Second, deep layers are formed before superficial layers (like
the classical cortical development) with a strong neurogenetic gradient. Indeed, deep
layers appear at E15-18 whereas superficial layers appear at E17-20. A small gradi-
ent also exists in entorhinal cortex but it occurs a little earlier (finished at E17 in
deep layers and E18 in superficial layers). Another intriguing fact is that neurogene-
sis timelines of presubiculum and subiculum are the same for deep layers but not for
superficial layers. In the adult, it is interesting to look at the presubiculo-subiculum
transition in horizontal slices (Fig 2A) to see that presubicular deep layers really
appear to be a continuation of subiculum. From his studies on Marsupials, Brod-
mann (Brodmann, 1909) even described this transition as an "abrupt interruption
of layer II-V at the beginning of the subiculum, with only layer I and VI continuing
into Ammon’s horn in greatly widened form".

All these developmental data showed that the six layers of presubiculum appear
in a very specific and unique manner. However, functional consequences of this
specific development, compared to neocortex or entorhinal cortex remain unknown.
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1.2 Presubiculum and spatial orientation

To survive, mammals rely on their sense of orientation to get water, food, and
mate, or to escape predators. This requires the innate ability to learn features
of a novel environment as it is explored. This is spatial orientation and it uses
two different cognitive processes: path integration and landmark navigation. Path
integration uses a self derived representation of space using vestibular, proprioceptive
and motor inputs; landmark navigation represents space using external cues such
as visual, olfactory, auditory and somatosensory information. Among all the brain
areas involved in these processes, the presubiculum encodes the head direction, one
critical information for spatial cognition (Wiener and Taube, 2005; Taube, 2007).

1.2.1 Head direction cells of the presubiculum

Extracellular recordings in freely moving rats have shown that 50-60 % of neurons
in dorsal presubiculum (postsubiculum) are discharging as a function of animal’s
directional heading (Ranck, 1984; Taube et al., 1990a; Taube, 2007; Boccara et al.,
2010). These neurons are called Head Direction Cells. Each head direction cell is
characterized by a specific tuning curve of its firing rate as a function of the animal’s
head direction (Fig. 3A).The cell’s preferred direction is defined as the one leading
to the maximum firing rate. Basal firing rate is close to zero and increases only
for directional ranges varying from 60◦ to 150◦ (average 90◦) with a triangular or
Gaussian distribution of frequencies around the preferred direction (Blair and Sharp,
1995; Taube, 1995). One cell is accurately tuned to only one head direction and the
whole population allows a complete representation of orientation. Each neuron has a
very stable tuning curve but the peak firing rate varies among presubicular neurons
(from 5 to 115 Hz). Last, but not least, discharge persists without adaptation as
long as the preferred direction is maintained (Taube et al., 1990a).

Head direction cells are not sensitive to the geomagnetic field but to environ-
mental visual landmarks. Rotation of the major polarizing visual cue within the
environment leads to a corresponding shift of the preferred direction (Fig. 3D).
Head direction cell firing does not change in the absence of visual landmarks, but
preferred direction can drift over time (Fig. 3E). Visual cues are used to control but
not to generate the head direction signal. Furthermore, visual inputs exert a higher
degree of control than other senses such as auditory or olfactory inputs (Goodridge
et al., 1998). Motor activity seems to improve signal quality but is not necessary for
its generation because preventing an animal from moving reduces peak firing rate
but does not abolish head direction cell activity ((Fig. 3B), Taube et al., 1990b).
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Figure 3: Basic features of presubicular head direction cells. A. Tuning curve
features of head direction cells (adapted from Taube, 1995): background firing rate is close
to zero but increases within the directional firing range to reach the peak firing rate for the
preferred direction. B. Stability of head direction cell firing across two recording sessions,
one (dashed line) recorded 15 days after the other (solid line). In standard condition,
a prominent cue card is disposed as a polarizing cue on one side of the open field wall.
C. Carrying the animal by hand and moving it around in the arena (dashed line) only
decreased peak firing rate compared to standard condition (solid line). D. Cue card
rotation causes a corresponding shift in preferred direction. Here, the same head direction
was recorded in standard condition (1, solid line), after a 180◦ clockwise rotation of the
cue card (2, dash-dot line) and after the equivalent counter rotation putting the card in its
initial position (3, line with 2 short dashes). Animal has been returned to his home cage
as environmental modifications were made. E. Drift of preferred direction following card
removal. The same head direction was recorded in standard condition (1, solid line), after
cue card removal (2, dash-dot line) and after cue card return to its initial position (3, line
with 2 short dashes). Experimental results were adapted from Taube et al. (1990a,b).
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Properties of presubicular head direction cells show that an animal primarily
uses path integration to keep track of changes in head direction but also landmark
navigation to stabilize and correct the signal. The sense of head direction is com-
puted, not only in the presubiculum, but through a head direction macrocircuit
containing several interconnected brain areas.

1.2.2 Head Direction Circuit

Areas containing head direction cells

The head direction circuit that generates and maintains the directional heading
signal includes the dorsal tegmental nucleus (DTN) (Sharp et al., 2001b), lateral
mammillary nucleus (LMN) (Stackman and Taube, 1998), anterior dorsal thala-
mic nucleus (ADN) (Taube, 1995), lateral dorsal thalamus (LDN) (Mizumori and
Williams, 1993), retrosplenial cortex (both granular and agranular regions) (Chen
and Johnston, 2004; Cho and Sharp, 2001), entorhinal cortex (Sargolini et al., 2006)
and the presubiculum. All these interconnected areas (Fig. 4; Table 1.1) contain
head direction cells that differ in their specific tuning properties. One remarkable
parameter is the directional range that is narrower for presubiculum and retrosple-
nial cortex compared to ADN, LMN and DTN (Tuning curves, Fig. 4). In addition,
subcortical head direction cells anticipate future head direction, that is, ADN and
LMN tuning curves slightly vary between clockwise and counterclockwise head ro-
tations (Fig. 4). Cortical neurons appear to be the most accurate in signaling head
direction. This is explained by the hierarchy in the head direction circuitry, which
was established mainly by doing lesioning of one area and looking at the conse-
quences in others (Clark and Taube, 2012 for review). These studies have drawn
attention to a sub-cortical generator using self-movement information; cortical areas
may bring sensory information to increase stability and precision.

Subcortical origin of head direction signals

Head direction cell activity requires information generated by the vestibular labyrinth.
The labyrinth is composed of the semicircular canal and the otolith organ that detect
angular and linear acceleration respectively. Semicircular canal function is necessary
for generating head direction cell activity in ADN (Muir et al., 2009) whereas the
otolith organ is involved in signal robustness and stability (Yoder and Taube, 2009).
The vestibular signal is carried by angular head velocity cells, that fire as a function
of head rotation speed and direction. These neurons are found all along the inte-
grative pathway, from the vestibular organ to the Dorsal Tegmental Nucleus (DTN)
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Figure 4: The Head direction circuit.
Left. Typical tuning curves showing firing rate (Hz) as a function of head direction (de-
gree) are shown for presubiculum (postsubiculum), retrosplenial cortex, ADN, left LMN
and DTN. Solid lines and dashed lines represent tuning curves during clockwise and coun-
terclockwise head turns, respectively. Adapted from Wiener and Taube (2005).
Right. Hypothethical landmark-processing circuit in rodents adapted from Yoder et al.
(2011). On the one hand, the head direction signal is being generated by the reciprocal
connections between the DTN and the LMN (dashed red lines) and then sent from the
LMN to ADN, which projects to presubiculum (here PoS). On the other hand, visual
information is conveyed to the presubiculum through different routes, including a direct
connection from visual cortex, dorsal (red), ventral (purple), and tectal (orange) visual
streams. These pathways target retrosplenial cortex, which has reciprocal connections
with presubiculum. The presubicular signal is then sent, as a feedback control to upstream
areas of the head direction system, LMN and ADN. But is also drives entorhinal cortex
and therefore hippocampus. Abbreviations: ADN, anterodorsal thalamus; EC, entorhinal
cortex; Hpc, hippocampus; LDN, lateral dorsal thalamus; LMN, lateral mammillary nuclei;
Par, parietal cortex; PoR, postrhinal cortex; PoS, dorsal presubiculum / postsubiculum;
Rsp, retrosplenial cortex; SC, superior colliculus; Vis, visual cortex.
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and Lateral Mammilary Nucleus (LMN). These two last areas also contain head di-
rection cells. Many experimental and modeling studies suggest that the DTN-LMN
interactions would constitute the head direction cell generative circuit, converting
angular velocity information in head direction information (Bassett et al., 2007;
Clark and Taube, 2012).

The head direction signal is thought to be generated according to continuous
attractor dynamics (see Fig. 5 ; Skaggs et al., 1995; Redish et al., 1996; McNaughton
et al., 2006) and different versions exists for the head direction circuit (e.g. Sharp
et al., 2001a versus Boucheny et al., 2005). Recent experimental findings reinforces
the validity of these models in the generation of stable activity states (Schmidt-
Hieber and Häusser, 2013; Domnisoru et al., 2013), such as the head direction signal.

From LMN, the head direction signal is then relayed via the anterodorsal tha-
lamus (ADN) (Fig. 4) that sends projections to cortical areas such as retrosplenial
cortex (van Groen and Wyss, 1990a) and presubiculum (van Groen and Wyss, 1990c)
driving cortical head direction cells. Functionally, ADN is a critical relay in the head
direction circuit, its lesion disrupting head direction cells in cortical areas, including
presubiculum (Goodridge and Taube, 1997), parasubiculum and entorhinal cortex
(Clark and Taube, 2012).

If head direction signal in ADN is not abolished by lesions of presubiculum
(Goodridge and Taube, 1997), this last one plays a significant feedback control in
refining the signal with visual information.

Visual landmark control of the head direction signal by the presubiculum

Presubiculum is one entry point of visual information into the head direction sys-
tem (Fig. 4). It receives direct projections of primary and secondary visual cortices
(Vogt and Miller, 1983) and projections from retrosplenial cortex, relaying infor-
mation from visual cortex (Vogt and Miller, 1983; van Groen and Wyss, 1990a;
Jones and Witter, 2007) and from associative visual cortical areas, such as posterior
parietal and postrhinal cortices (Yoder et al., 2011). Visual information might also
come from the laterodorsal thalamus (LDN) that sends direct projections to pre-
subiculum (van Groen and Wyss, 1992b). LDN receives visual inputs from pretectal
areas and superior colliculus but it has no functional impact onto visual landmark
dependent activity in presubiculum (Golob et al., 1998). LDN seems also to be
associated with somatosensory inputs (Bezdudnaya and Keller, 2008), but head di-
rection signal dependence upon somatosensory inputs has never been shown. By
its direct projections to ADN (van Groen and Wyss, 1990c; Ishizuka, 2001; Yoder
and Taube, 2011) and LMN (Allen and Hopkins, 1989; Gonzalo-Ruiz et al., 1992;
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Figure 5: A continuous attractor network model of Head Direction (HD) signal
generation. This network is graphically arranged in a ring with each HD cell (colored
circles) positioned according to their corresponding preferred tuning direction. Each HD
cell drives nearby neurons more strongly than more distant neurons and feedback inhibition
limits the overall activity (not shown here); a "hill" of high activity (warm points) emerges
from these elements. This equilibrium is stable until the animal’s head turns, during
which two additional signals are added to the circuit: an angular head velocity (AHV)
(gray circle) and a conjunctive HD × AHV (black circle). (B) Following a head turn,
conjunctive HD × AHV cells drive the activity hill in the appropriate HD. For example,
a right head turn would engage HD × AHV neurons that are specifically sensitive to
clockwise head turns (solid arrows). These neurons would in turn activate HD cells to
the right of the hill and drive activity to the animal’s current HD. Adapted from Clark
and Taube (2012); See also Sharp et al. (2001a) or McNaughton et al. (2006) for further
information.
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Yoder and Taube, 2011), the presubiculum appears like an ideal relay for carrying
visual landmark information into subcortical generators of head direction signal.
Indeed, presubiculum lesion impairs visual landmark control of a cell’s preferred
direction in ADN (Goodridge and Taube, 1997) and LMN (Yoder et al., 2011). In
other words, without the presubiculum, Head direction cells’ preferred directions in
ADN and LMN are much less influenced by visual cues (Fig. 3D). This feedback
visual control might be exerted in a larger extent in the whole head direction circuit,
the presubiculum projecting also to the retrosplenial cortex (Wyss and van Groen,
1992), LDN (van Groen and Wyss, 1990b,c) or medial entorhinal cortex (Honda
et al., 2008). Moreover, visual information transmitted via the presubiculum is also
critical for the activity in the downstream hippocampus.

1.2.3 The presubiculum is a major contributor of spatial
representation and memory

The first evidence for the representation of space in the brain was the discovery of
"place cells" in the hippocampus by O’Keefe and Dostrovsky (1971). Place cells fire
as a function of the animal’s position within space, and they are believed to be the
neuronal substrate of a spatial cognitive map. Since, spatial information processing
has been shown to occur at the level of the whole hippocampal-parahippocampal
area, especially through dialogue between the hippocampus and the medial entorhi-
nal cortex.

Entorhinal-hippocampal connectivity

Interconnectivity within the hippocampal, parahippocampal and entorhinal cortices
is depicted in figure 6. Entorhinal cortex sends many different projections to the hip-
pocampus. Layer 2 neurons project to the dentate gyrus and also directly to CA3
(perforant path). Dentate gyrus granule cells excite CA3 pyramidal cells, which
then contact CA1 pyramidal cells (Amaral and Witter, 1989) and also other CA3
pyramidal cells (Le Duigou et al., 2014). Entorhinal layer 3 cells also make direct
contacts onto CA1 (Amaral and Witter, 1989; Kohara et al., 2013), Subiculum,
and CA2 receives strong inputs from superficial entorhinal neurons; the originat-
ing layer(s) being debated: layer 2/3 (Chevaleyre and Siegelbaum, 2010) or solely
layer 2 (Kohara et al., 2013). CA1 projects to subiculum. Both close the loop by
projecting back to entorhinal cortex (Amaral and Witter, 1989). Subiculum is also
interconnected with pre- and parasubiculum (Amaral and Witter, 1989; Kim and
Spruston, 2011), CA1 projections to the dorsal part of the presubiculum have been
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described (van Groen and Wyss, 1990c), but contradicted thereafter by another
study (Cenquizca and Swanson, 2007).

Spatial neurons in entorhinal-hippocampal circuit

Hippocampus (CA1, CA3) contains place cells, that discharge for discrete locations
(place fields) within the environment (O’Keefe and Dostrovsky, 1971). Grid cells
were described in the entorhinal cortex (Fyhn et al., 2004) and in pre- and para-
subiculum (Boccara et al., 2010). A grid cell discharges for multiple place fields
disposed in a hexagonal grid manner within the environment. Entorhinal cortex
also possesses head direction cells (Sargolini et al., 2006). Border cells, which are
active only close to the environmental borders, were identified in the entorhinal
cortex (Solstad et al., 2008) and the presubiculum (Boccara et al., 2010). Some
cells encode a conjunctive representation of position, direction, and velocity in the
entorhinal cortex (Sargolini et al., 2006) and presubiculum (Boccara et al., 2010).
At the neuronal level, space is coded by place, grid, border, or head direction signal
in the whole hippocampal-parahippocampal circuit.

The emergence of all these spatial signals in the hippocampal and parahippocam-
pal areas is poorly understood. Grid cells could be a path integration signal in
response to incoming linear and angular velocity signals; place cells were thought
to derive from grid cell signal (see McNaughton et al., 2006; Moser and Moser,
2013). A recent study, showing entorhinal grid cells projecting directly onto the
hippocampus supports this theory showing a possible direct influence onto place
cells (Zhang et al., 2013). However, generation of place cells by grid cells has be-
come a very controversial idea, entorhinal grid cells being impaired following lesions
of hippocampus (Bonnevie et al., 2013). Today, some researchers consider these two
systems as complementary processes of spatial cognition (Bush et al., 2014).

Compared to grid and place signals, head direction signal maturation occurs
earlier during development (Langston et al., 2010; Wills et al., 2010) and they are
not altered by hippocampal lesions (Golob and Taube, 1997). Thus, presubicular
head direction cells do not require place and grid cells of the hippocampal-entorhinal
circuit. In contrast, presubiculum function may be required for the generation of
grid and place cells.

The entorhinal-hippocampal circuit relies on the presubicular directional
signal

The presubiculum is an integrative relay for directional heading and visual infor-
mation upstream to the entorhinal-hippocampal network (Yoder and Taube, 2011).
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Figure 6: Entorhinal-hippocampal circuit and function. Top. Circuit of the main
excitatory connections. Colors of arrows represent different pathways: In red, the classical
tri-synaptic circuit; in green, the direct cortical projection to CA1; in light blue, the direct
cortical projection to CA2; in dark blue, the recurrent excitation in CA3; In purple, the
reciprocity between presubiculum (PrS) and medial entorhinal cortex (MEC), with more
projections from PrS to MEC. See section text for more details. Bottom. Neurons that
code spatial information in the entorhinal-hippocampal circuit. From Marozzi and Jeffery
(2012). ab: angular bundle; fb: fimbria; dl: deep layers; hf: hippocampal fissure; pp:
perforant path; sl: superficial layers; sc: Schaffer collaterals; sp: stratum pyramidale.
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Inhibition of hippocampal place cell activity turns entorhinal grid cells into head
direction cells (Bonnevie et al., 2013). This implies that the grid cell signal somehow
contains a head direction signal. The only possible source of a directional signal for
grid cells are the presubicular head direction cells (Fig 4). Ipsi- and contralateral
projections from presubiculum reach layer 2/3 of entorhinal cortex (Honda et al.,
2008), where grid cells are found.

Head direction cells, grid cells and place cells are equally influenced by visual
landmarks. Rotation of a visual landmark produces an equivalent rotation of grid,
place field and preferred direction (Fig. 7; Knierim et al., 1995; Sargolini et al.,
2006). Lesions of anterior thalamus (ADN) and presubiculum degrade CA1 place
fields (reduction of their spatial information content) and, interestingly, add them
some directional information content (Calton et al., 2003). In addition, place fields of
presubiculum-lesioned animals shift unpredictably and are barely controled by visual
landmarks. These results show that (1) without head direction signal - disrupted by
ADN lesion - the presubiculum is still able to exert a visual landmark control over
place cells; (2) without the contribution of presubiculum, the head direction signal
is not sufficient to completely control the hippocampal function; finally, (3) without
upstream directional information processing, the hippocampus hijacks place signal
and transforms it into a conjunctive head-direction/place signal.

The integration of information about visual landmarks and head directions by the
presubiculum is a crucial step for subsequent spatial processing by entorhinal cortex
and hippocampus and might be important for memorizing the explored environment.
The head direction information delivered by presubiculum is very stable over time
(Fig. 3B) and therefore behaves as a long term process that could be used for
memory retrieval. Direct implication of head direction cells in memory has never
been directly demonstrated, but, performance in landmark navigation dependent
memory task was impaired in rats with presubicular lesion (Taube et al., 1992).
This result of the Morris water maze task - where the rat has to escape milky-water
pool by finding a hidden platform using a landmark navigation - reproduces quite
well the effect of hippocampal lesions (Morris et al., 1982).
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Figure 7: Landmark control of spatial signals. From Yoder and Taube (2011). Each
panel displays the response of a different spatial cell type in rats to a 90◦ rotation of the
salient visual landmark cue – a white sheet of cardboard attached along the inside wall of
the enclosure (represented by a red arc in each panel). (a) The directional tuning curve
of an anterior thalamic head direction cell, (b) the place field of a hippocampal place
cell, and (c) the firing pattern of an entorhinal cortical grid cell show angular shifts of
the spatial signal that approximate the amount of cue card rotation. Panel (a) is based
on polar coordinates from Taube, 1995; (b) and (c) are based on data in Calton et al.,
2003 and Sargolini et al., 2006, respectively. Data shown in plots (b) and (c) have been
smoothed to improve presentation. Peak firing rates are indicated for each plot.
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1.3 Information processing in the presubicular
microcircuit

All spatial and non spatial information received by the presubiculum must be pro-
cessed at the microcircuit level for building a local head direction signal. The con-
tinuous attractor network model (Fig. 5) has often been considered for larger scales
than microanatomy (see Sharp et al., 2001a) and few experimental data are avail-
able to support or refute this model at the scale of the microcircuit (Taube, 2007).
However, feedback inhibition (that might come from the local circuit) has been used
in models to limit the overall neuronal activity (McNaughton et al., 2006). Fur-
thermore, stellate cells in medial entorhinal cortex (putative grid cells) are mainly
interconnected through disynaptic inhibition, which may constitute a recurrent in-
hibitory attractor network able to generate grid cells dynamics (Couey et al., 2013).
However, a recent study has cast doubt on this model (Buetfering et al., 2014), and
suggests that interneurons may just control the gain of grid cell output.

The fact that head direction cells have more precise tuning properties in pre-
subiculum than in sub-cortical areas (Tuning curves on Fig. 4), may reflect the
refinement of the signal being relayed many times. Of course, the specificity of local
head direction signals may be due to the specific features of information processing
within each area, and cortical complexity may generate a more precise signal than
subcortical nuclei. Head directional tuning properties could therefore depends on
some features of the presubiculum, including neuronal electrophysiological intrinsic
properties and morphologies, intra- and inter-laminar information flows, or putative
modular organization such as cortical columns.

1.3.1 Anatomy and intrinsic excitability of presubicular neu-
rons

When I started my thesis work, little neuroanatomical data was available concerning
the presubiculum. Funahashi and Stewart (1997a) partly characterized presubicu-
lar neurons physiology and morphology, however, without providing an extensive
description of neuronal diversity across all 6 layers (Fig. 8A). Pyramidal cells were
found in layer 3 and 5, as well as stellate cells in layer 2 and 5 and all these cells were
regular spiking neurons (Funahashi and Stewart, 1997a). However, this study did
not give a clear view of presubicular diversity, due to a low number of recorded neu-
rons. Another more recent study reported that deep layer neurons had a higher sag
ratio (showing the Ih expression level) and that they adapted more than superficial
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Figure 8: Cellular properties in presubiculum. A. Dendritic morphologies in pre-
and parasubiculum, from Funahashi and Stewart (1997a). B. Intrinsic properties of deep
and superficial layer neurons of dorsal presubiculum. These are regular spiking neurons;
Ih expression seems higher in deep layer cells. C. Persistent activity can be induced in a
presubicular neuron with an initial short depolarization that fires the cell, in the presence of
a cholinergic agonist. B and C from Yoshida and Hasselmo (2009). D. A TTX-insensitive
sodium current with slow activating and inactivating kinetics in presubicular principal
neurons, from Fricker et al. (2009).
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layer cells (Fig. 8B, Yoshida and Hasselmo, 2009).
Suprathreshold current pulses, in the presence of cholinergic receptor agonist

carbachol (CCh; 10 µM) that "mimics" wakening, were able to trigger a persistent
firing (less than 10 Hz) (Fig. 8C Yoshida and Hasselmo, 2009). The activation of
ICAN (calcium-activated nonselective cationic current), was found to underly this
persisting firing in presubicular neurons. This study showed that head direction cell
persistent firing may be supported at the cellular level, but its regulation should
implicate an extrinsic inhibitory control, as the discharge persisted during tens of
seconds.

Last, a TTX-insensitive sodium current with slow kinetics was revealed in super-
ficial principal neurons, presumably expressed at distant sites from soma (Fig. 8D);
Fricker et al., 2009). Such a current could support sustained firing in axon (Bean,
2007) and could amplify excitatory inputs in dendrites (Major et al., 2013).

1.3.2 Interlaminar, intralaminar and modular organization

Both interlaminar and intralaminar excitatory connection exist in the presubiculum
(Funahashi and Stewart, 1997b). Recurrent excitation in deep layers (also in para-
subiculum) can induce synaptic bursts in deep layers, but not in superficial layers,
as few axonal collaterals are ascending (Funahashi and Stewart, 1997b, Fig. 9A,
B). The lack of connectivity from deep to superficial layers was later confirmed with
anterograde and retrograde tracings (Honda and Ishizuka, 2004, Fig. 9A, B). In
contrast, many descending projections emerge from superficial layers and contact
neurons in deep layers (Funahashi and Stewart, 1997b; Honda and Ishizuka, 2004,
Fig. 9A, B, C). Axonal tracings of single layer 5 neurons showed that these cells had
very diverse projection patterns including long septotemporal intrinsic projections
(Honda et al., 2011, Fig. 9D). Different types of projections were highlighted: some
of them were restricted to deep layers, hypothesized to send feedback information;
other covered the whole presubicular plate and are thought to regulate the tempo-
ral dynamics within a widespread neuronal population in the presubiculum (Honda
et al., 2011).

The presence of functional modules, such as cortical columns, was never demon-
strated. Nevertheless, there are several peculiarities of the presubicular cortex in-
dicating that this is a relevant question. Developmental cortical columns, clearly
distinguishable during early post natal stage (Nishikawa et al., 2002), does not at-
test that functional units exists in the adult. Nonetheless, anatomical modules were
revealed in the adult. In monkey, "patches" were identified in superficial layers of
presubiculum by labeling with several markers, including acetylcholinesterase, cy-
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Figure 9: Presubicular intrinsic connectivity. A. Picrotoxin-induced burst revealed
by Local Field Potential (LFP) recordings in deep layers of the presubiculum. During
this burst, deep layer neurons fire, whereas layer 2 cells remain silent, showing the non-
propagation of activity from deep to superficial layers B. Antidromic stimulations revealed
projections from superficial layers to deep layers in the presubiculum, but not from deep to
superficial layers. aAP: antidromic action potential; rec: recording site; stim: stimulation.
A and B were adapted from Funahashi and Stewart (1997b).C. Summary of associative
and contralateral projections unraveled by Honda and Ishizuka (2004) using retrograde
and anterograde tracings. D. A unique layer 5 pyramidal cell projection area along the
septo-temporal axis which covered all layers of presubiculum. Sub: subiculum; PreS:
presubiculum; ParS: parasubiculum; MEA: medial entorhinal area; LEA: lateral entorhinal
area. From Honda et al. (2011).
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tochrome oxydase, myelin, calcium binding proteins paravalbumin, calbindin and
calretinin (Ding and Rockland, 2001). The relevance of these patches is unclear,
but they may be linked to some functional features. Indeed, a grid like arrangement
of calbindin positive pyramidal cells exists in entorhinal cortex, and these neurons
have been shown to be more theta modulated than the neighboring stellate, non-
calbindin positive cells (Ray et al., 2014).

1.3.3 Input and output relays in the presubicular
microcircuit

The microcircuit organization makes more sense when incoming and outgoing infor-
mation pathways are understood. The long range connectivity of the presubiculum
is summarized in table 1.1 and its known laminar organization is depicted on fig-
ure 10. As the cellular neuroanatomy of the presubiculum has been unknown, it
has been quite difficult to link the long range connectivity with the microcircuit
elements. Some studies did identify input/output pathways in presubiculum. Only
those identifying precise afferent targets or efferent populations will be presented
here.

Presubicular superficial layer neurons constitute the major output toward ipsi-
lateral and contralateral medial entorhinal cortices (MEC), mainly targeting their
superficial layers (Köhler, 1985; Honda and Ishizuka, 2004). Ipsilateral and con-
tralateral projection originated from different neurons in superficial layers, and 20-
30% of ipsilaterally projecting neurons are GABAergic (van Haeften et al., 1997). In
addition, some projections emerge from deep layer neurons of the presubiculum and
target deep layers and layer 1 of the ipsilateral MEC (Honda and Ishizuka, 2004).
In presubiculum, layer 3 neurons that project to the entorhinal cortex receive di-
rect inputs from retrosplenial cortex on their proximal dendrites (Kononenko and
Witter, 2011). Consequently, layer 3 neurons may relay the retroplenial information
directly to the entorhinal cortex.

Two non-overlapping pathways toward lateral mammilary nucleus (LMN) and
toward anterodorsal thalamus (ADN) have been identified in dorsal presubiculum
(Yoder and Taube, 2011). The presubiculum-to-LMN projection originates exclu-
sively from a thin layer of large pyramidal cells in layer 4, whereas cells that project
to ADN are a heterogeneous population in deep layers. These pathways could con-
stitute the cellular basis of landmark control of head direction cells in subcortical
areas (see section 1.2.2; Yoder and Taube, 2011).
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Figure 10: Laminar specificity of afferences and efferences in presubiculum.
See table 1.1 for references. B-F from Yoder and Taube (2011). Cholera toxin fluorophore
conjugates were injected into LMN (B, Alexa fluor 488) and ADN (C, Alexa fluor 594)
(scale bars=500 µm), migrated retrogradely in non-overlapping neuronal populations in
presubiculum (D, scale bar=300 µm). Biotinylate dextran amines were injected into LMN
or ADN, and retrogradely stained neurons were revealed in slice counterstained for thionin
(E, scale bar=75µm and F, scale bar=50µm).
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Does PrS receive from? Does PrS project to?
LMN no otherwise it should have been

shown by van Groen and Wyss
(1990b,c)...

yes Allen and Hopkins (1989);
Gonzalo-Ruiz et al. (1992);
Yoder and Taube (2011)

ADN yes van Groen and Wyss (1990b,c,
1995)

yes van Groen and Wyss (1990b,c);
Yoder and Taube (2011)

LDN yes van Groen and Wyss (1990b,c) yes van Groen and Wyss (1990b,c);
Ishizuka (2001)

AV yes van Groen and Wyss (1990b,
1995)

yes van Groen and Wyss (1990b);
Ishizuka (2001)

AM yes no van Groen and Wyss (1990b);
Ishizuka (2001)

AC
cx

yes Vogt and Miller (1983); Jones
and Witter (2007)

no Jones and Witter (2007)

RS
cx

yes Vogt and Miller (1983); van
Groen and Wyss (1990a,c);
Jones and Witter (2007)

yes Vogt and Miller (1983); van
Groen and Wyss (1990c, 1992a);
Wyss and van Groen (1992)

vis
cx

yes Vogt and Miller (1983) yes Vogt and Miller (1983)

hip ? van Groen and Wyss (1990c);
Cenquizca and Swanson (2007)

no Rowland et al. (2013)

sub yes van Groen and Wyss (1990b,c);
Funahashi et al. (1999); Kim and
Spruston (2011)

yes Funahashi et al. (1999)

cPrS yes Honda et al. (2008)
PaS yes van Groen and Wyss (1990b);

Ding (2013)
yes van Groen and Wyss (1990b);

Ding (2013)
MEC yes Michael Wyss (1981); Funahashi

and Stewart (1997a); van Groen
and Wyss (1990b,c)

yes Swanson and Cowan (1977);
Beckstead (1978); Köhler (1985,
1984); Bartesaghi and Gessi
(1990); van Groen and Wyss
(1990b,c); Honda and Ishizuka
(2004); Kononenko and Witter
(2011); Canto et al. (2012); Row-
land et al. (2013)

LEC ? Michael Wyss (1981) but never
reproduced

no Shipley (1975)

Rh
cx

no Kosel et al. (1983) no van Groen and Wyss (1990c)

Table 1.1: Long range connectivity of the presubiculum (main connections). LMN: lat-
eral mammillary nucleus; ADN: anterodorsal thalamus; LDN: laterodorsal thalamus; AV:
anteroventral thalamus ; AM: anteromedial thalamus; AC cx: anterior cingular cortex;
RS: retrosplenial; vis: visual; hip: hippocampus; sub; subiculum; cPrS: contralateral pre-
subiculum; PaS: parasubiculum; MEC: medial entorhinal cortex; LEC: lateral entorhinal
cortex; Rh cx: perirhinal and postrhinal cortices.
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2 | How does a microcircuit work?

In the context of my PhD, this question would rather be “How does the presubic-
ular microcircuit work?” Indeed, the network of the presubiculum has not been
very well described so far. To understand how a network generates information, it
is important to understand how the different elements of a given network partici-
pate to information processing. The present chapter mainly focused on the current
understanding of neuronal network physiology in a more general context.

My 3 first studies deal with neuronal properties: the morphology and intrinsic
electrophysiology. I therefore go over the basis of neuronal excitability, explaining
the biophysics behind the different parameters that I described in presubicular neu-
rons (resistance, membrane time constant, the action potential shape. . . ) and why
this is important for neuronal function.

In my last work, I am showing that the short-term dynamics of information
transfer from pyramidal cells to Martinotti cells is uncommon. The synaptic trans-
fer seems muted initially, but becomes efficient with repetitive high frequency stim-
uli. This may involve a presynaptic form of plasticity in the axon and/or at the
presynaptic terminals. I therefore reviewed the molecular mechanisms of plasticity
present in the axons and at the presynaptic terminal in order to better discuss my
results.

2.1 Many integrative levels in neuronal networks

The principle of a neuronal network was introduced for decades by Santiago Ramon
y Cajal, who was the first to understand that neurons were anatomically and func-
tionally distinct cellular units (Ramon y Cajal, 1899; Bullock, 2005; García-López
et al., 2007). Drawings of Golgi stained neurons perfectly depicted the complexity
of neuronal network anatomy, suggesting the direction of information flows between
neurons and therefore providing a cartography of neuronal networks (Fig. 11, Ra-
mon y Cajal, 1899; Lorente de Nó, 1934). However, knowing the diversity of neuronal
morphologies, the location of neurons, and the anatomical pathway of information
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Figure 11: Studying the network. Same neurons, different methods. A. Drawing
made by Ramon y Cajal of the hippocampal and parahippocampal network. (Ramon y
Cajal, 1899). B. Lorente de No’s drawing of CA3 recurrent network (Lorente de Nó,
1934). The two authors deduced physiological pathways from their drawing, suggested
with arrows. C. A way to address microcircuit connectivity through multiple patch clamp
recordings, linking structure and physiology, from Couey et al. (2013).
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is only the first step to understand information processing in neuronal networks.
These pathways are routes for information. As all the elements of the network pos-
sess properties that can modulate the information, the nervous signal is not only
passively transferred from one neuron to another.

Let’s take the example of sensory thalamo-neocortical projections. Excitatory
information from the ventrobasal thalamus principally targets layer 4 (L4) neurons,
which subsequently distribute intra-laminar (within L4) and inter-laminar (in layer
3 and 5) excitation (Lübke and Feldmeyer, 2007). Ventrobasal thalamus neurons di-
rectly project onto layer 4 fast spiking (FS) interneurons, which fire with very short
latency due to the high amplitude of the synaptic responses and their fast integrative
properties (Gabernet et al., 2005; Cruikshank et al., 2007, 2010); FS cells therefore
provide feedforward inhibition onto L4 cells and enhance their temporal precision
by defining an early and short window for excitation (Swadlow and Gusev, 2002;
Cruikshank et al., 2007; Gabernet et al., 2005). In contrast, low-threshold spiking
interneurons (LTS), putative dendrite-targeting interneurons, are not recruited by
ventrobasal thalamic projections (Cruikshank et al., 2010), so they do not provide
feedforward inhibition in L4, at least for the thalamic pathway. L4 excitatory neu-
rons are able to activated LTS and PV cells, as a feedback inhibitory control (Beier-
lein et al., 2003), however their synaptic recruitment has very distinct dynamics. FS
cells provide an initial feedback control that attenuates with time, whereas LTS are
recruited later during high frequency stimuli (Beierlein et al., 2003). Moreover, as
they target specific subcellular compartments they do not have the same impact, as
somata targetting PV cells may directly regulate outputs whereas dendrite-targeting
LTS neurons modulate inputs.

Even this oversimplified view of layer 4 activation by thalamic axons gives an
idea of the complexity of computation in a microcircuit, depending on the targets
of afferent axons, the intrinsic connectivity of local networks, the strength and dy-
namics at a given synapse or the integrative properties of excitatory and inhibitory
neurons.
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2.2 Neuronal intrinsic excitability

Excitability properties allow neurons to continuously make decisions as they re-
ceive information. All neurons are not alike and can be defined by their intrinsic
excitability that reflects their responsiveness to incoming information. Knowledge
of neuronal intrinsic excitability is, thus, essential for a better understanding of
microcircuit information processing (Toledo-Rodriguez et al., 2005).

2.2.1 Resting membrane potential

Resting membrane potential (Vrest) is the neuronal membrane potential when the
neuron does not receive any information from afferences. Vrest is determined by
plasma membrane total conductance that mainly depends on K+, Na+ and Cl− ion
movements. The membrane basal conductance is called leak conductance GL; Vrest

value can be expressed by the Goldman-Hodgkin-Katz equation:

Vrest = 58log10
pK [K+]e + pNa[Na+]e + pCl[Cl−]i
pK [K+]i + pNa[Na+]i + pCl[Cl−]e

This value is negative, generally close to -70 mV, and is mainly due to the high
conductance of potassium ions, that brings the membrane potential close to EK+;
Na+ and Cl− ions also participate but their impact is more limited due to their
lower permeability at this potential.

2.2.2 Neuronal passive properties

The elements of the neuronal plasma membrane can be seen as elements of an
electrical circuit. The lipid bilayer is an insulator, separating external and internal
conductive media; it is also a capacitor, its capacitance C being proportional to
membrane surface. Currents can cross through the opened ionic channels: those
are resistors and the total resistance equals the reciprocal of the sum of all specific
conductances. At rest, membrane electrical properties can be modeled by a resistor
(membrane resistance Rm) and capacitor (membrane capacitance Cm) put in parallel
and under the electromotive force Vrest. When a constant current Istim is applied to
the circuit, the parallel RC circuit passively reacts according to Rm and Cm values.

Istim = ICm + IRm ; with ICm = Cm
dV

dt
and IRm = V

Rm

Then, Istim = Cm
dV

dt
+ V

Rm
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Where V is the relative variation of Vm. The exponential resolution of this differ-
ential equation predicts membrane potential dynamics:

V = VS(1− e−t/RmCm)

t is the latency from the beginning of current application. At stationary state, ICm

is null and V equals VS, as predicted by Ohm’s law.

VS = RmIstim

During non-stationary states, potential variation depends on the exponential time
constant τ :

τ = RmCm

From an initial value (e.g. Vrest) and given the passive properties Rm and Cm, the
membrane potential value Vm resulting from a constant current application Istim
can then be deduced:

Vm = Vrest +RmIstim(1− e−t/τ )

These equations describe how passive properties influence neuronal excitability. To
summarize, the amplitude of the steady state response is determined by membrane
resistance, and the time necessary to reach the steady state depends on the ca-
pacitance and resistance. Small neurons with a small membrane surface and a low
amount of leak current would have small capacitance and high resistance, and should
be very excitable. In addition to these passive properties, many active conductances
are present in neurons.

2.2.3 Action potentials

The action potential constitutes the most characteristic neuronal active property.
Their molecular basis, ion channels, were still unknown when the ionic basis under-
lying its generation was elucidated (Hodgkin and Huxley, 1952). Nonetheless, the
Hodgkin-Huxley model described dynamics of ionic exchanges, in the giant squid
axon, that predicted the channel dynamics during these transient impulses. The ac-
tion potential is generated by the interaction of voltage-gated sodium and potassium
channels. It starts when membrane potential reaches a threshold, where the opening
of voltage gated sodium channels produces a regenerative depolarizing sodium in-
flux. Consecutive sodium channel inactivation and voltage gated potassium channel
opening underlie the repolarization phase, followed by the afterhyperpolarization
(AHP) when sodium channels are closed. The slow inactivation of the outward
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conductances eventually lets membrane potential return to its initial value. Ac-
tion potentials are followed by an "absolute refractory period", during which the
inactivation of sodium channels makes impossible the initiation of another action
potential. During the following "relative refractory period", sodium channels start to
recover from inactivation and action potentials of lower amplitude can be generated
(Hodgkin and Huxley, 1952).

Compared to the giant squid axon, mammalian neurons express much more
voltage dependent ion channels that can influence action potential shape (Bean,
2007). Furthermore, channel expression may differ between neuron subtypes, so
action potential shape can be very different from one cell to another (Bean, 2007).
First, sodium and potassium currents that are required for action potentials are not
necessarily carried by the same channels in different neuronal populations, as it was
shown in fast spiking (FS) interneurons of dentate gyrus. Their KV 3 channels have
fast kinetics of activation and inactivation and thus enhance a fast repolarization
(Martina et al., 1998), responsible for the short duration and the deep AHP of these
action potentials. Second, many other conductances can be triggered by the action
potential waveform (Ca2+: IL; K+: IKCa

; Na+: INa...) (Toledo-Rodriguez et al.,
2005; Bean, 2007). For example, midbrain dopaminergic neurons of mouse have very
wide action potentials due to the activation of large calcium conductances (Puopolo
et al., 2007). Action potentials of different neurons may have very different shapes
and these can be considered as signatures typically reflecting plasma membrane
channel composition. Last, it is worth noting that the action potential waveform
can change according to the activity-dependent activation or inactivation of specific
conductances, especially in the axon (see section 2.3.2).

2.2.4 Firing properties

Active conductances of the neuronal plasma membrane operate either in subthresh-
old ranges, suprathreshold ranges, or in both. Subthreshold dynamics of membrane
potential will determine firing onset (Toledo-Rodriguez et al., 2005). For exam-
ple, subthreshold potassium conductances (such as the ID-like current; see section
2.3.2) can delay firing onset by opposing the initial depolarization (Goldberg et al.,
2008; Campanac et al., 2013). Both suprathreshold and subthreshold conductances
determine the firing pattern (Toledo-Rodriguez et al., 2005).

Different populations of cortical neurons can be distinguished by their firing pat-
terns in response to direct current (DC) injections (Connors and Gutnick, 1990).
Initially, cortical neurons were grouped into 3 categories: regular spiking and in-
trinsically bursting patterns for excitatory neurons and fast spiking interneurons
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Figure 12: Firing patterns of neocortical neurons. Three distinct firing patterns
had been identified initially: Regular Spiking (RS), Intrinsically Bursting (IB) and Fast
Spiking (FS). Adapted from Connors and Gutnick (1990)

(Connors and Gutnick, 1990).

Regular spiking (RS) cells are the most common cells encountered in cerebral
cortex. In response to depolarizing currents, they fire action potentials regularly,
their frequency increases with the injected current and they exhibit a pronounced
initial adaptation, meaning that firing frequency dramatically decreases over the
initial period (few tens of ms). Intrinsically bursting (IB) cells have stereotyped
clustered patterns of high frequency discharge (150-250 Hz), the burst, rhythmically
initiated at 5-15 Hz. The bursts are initiated by depolarizing waves, which typically
lead to a decrease in amplitude of successive spikes (accomodation, due to sodium
channel inactivation) as well as their broadening (Fig. 12). Increasing the DC
injection may eventually turn IB to RS behavior, but keeping the typical spike
shape of an IB cell, with the underlying depolarization. Fast spiking interneurons can
initiate spikes at high frequency (400-600 Hz) without adaptation or accommodation.

Since Connors and Gutnick (1990), the investigations of neuronal properties in
many cortical areas have shown a greater diversity of firing patterns, especially for
interneurons (Fig. Ascoli et al., 2008). Interneuron firing patterns can be defined
according to their steady state firing pattern, including adapting or non-adapting
regular spiking, irregular spiking, fast spiking, intrinsically burst spiking; or ac-
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Figure 13: Firing patterns of cortical interneurons.

cording to the response for the step onset, including burst, continuous, delayed or
stuttering firing (Fig. 13).

The sequence of individual action potentials emitted by a neuron constitutes one
basic feature describing its responsiveness, that is, how it is able to transform input
into output (Connors and Gutnick, 1990). Specific firing patterns may be linked to
specific functions. A burst is thought to be more efficient than a regular spiking train
in the initiation of synchronized cortical activities (Chagnac-Amitai and Connors,
1989). Intrinsic firing patterns were correlated to function in hippocampal neurons in
vivo; place cells were intrinsically bursting neurons, whereas silent cells were regular
spiking (Epsztein et al., 2011). Last, it is worth noting that a regular spiking neuron
can experience a synaptically triggered bursting behavior, but in this case it is not an
intrinsic mechanism of bursting because it needs synaptic activation first (Larkum
et al., 1999; Gulledge et al., 2005).

The information content given by a firing pattern could be easily deduced if all
single spikes carried the same information. However, the final purpose of an action
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potential is the synaptic activation, and it highly depends on activity dependent reg-
ulatory mechanisms occurring in the axon (Debanne et al., 2011), or in the synaptic
terminals (Abbott and Regehr, 2004).
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2.3 Wiring a network: axonal conduction and reg-
ulation of information

Action potentials are generated in the axon initial segment (AIS), a discrete axonal
domain of 10-60 µm length, located near the soma (Kole and Stuart, 2012). They are
actively conducted to the remote axonal terminals, where they activate the synapses.
Action potential conduction is blocked by tetrodotoxin (TTX, a selective blocker of
voltage gated sodium channel) or by changing sodium gradient (Hodgkin and Katz,
1949), the regenerative sodium influx is therefore the motor of axonal conduction.
The AIS action potential depolarizes the proximal axon to the action potential
threshold; an axonal action potential is then generated and actively transmitted
to the downstream axon, this conduction being unidirectional because of sodium
channel refractory period and the high conductance state generated by potassium
channel activation.

2.3.1 Axonal conduction velocity

The synaptic activation delay from the AIS discharge is set by axonal conduction
velocity, which depends on passive axonal conduction properties, defined by length
and time constant, as well as on the density of voltage gated ion channels (Bucher
and Goaillard, 2011). The signal propagates faster if the axon diameter is high
(reduced axial resistance) or if its membrane capacitance is low (faster to load).
Higher sodium channel density would increase the speed of the regenerative wave
propagation (Manor et al., 1991). Geometrical irregularities - such as bifurcations,
swellings or synaptic boutons - constitute abrupt changes in biophysical properties
that tend to slow down conduction velocity (Goldstein and Rall, 1974; Lüscher and
Shiner, 1990; Manor et al., 1991).

Conduction velocity is highly dependent on recent activity history and linked to
the recovery cycle of axon excitability (Bucher and Goaillard, 2011). Early studies
on frog’s sciatic-gastrocnemius preparation have shown that, compared to resting
state, conduction velocity is higher after a first neural impulse (Adrian, 1920). This
modulation induced by repetitive stimuli depended on the inter-stimulus-interval.
Very short intervals (≤2 ms) led to a depression of conduction velocity whereas
higher intervals (up to 100 ms) induced its facilitation (Bullock, 1951). Moreover,
this facilitating period, called the "supernormal period", could be extended as much
as the number of conditioning stimuli increased.

Activity-dependent conduction velocity is indeed correlated to axonal excitabil-
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ity and depends on axonal ion channel dynamics. The depression occurring for very
short inter-stimulus-intervals is linked to the relative refractory period following an
action potential (Hodgkin and Huxley, 1952), during which a higher action poten-
tial threshold slows conduction velocity. Many underlying mechanisms have been
proposed to explain the facilitating period and all imply an activity-dependent in-
crease of excitability such as activation of persistent sodium currents or increased
extracellular potassium concentration (Bucher and Goaillard, 2011).

Myelination enables a saltatory conduction that causes a dramatic acceleration
of conduction (Lillie, 1925; Huxley and Stämpfli, 1949; Tasaki, 1939), an therefore
allows a faster synaptic activation (Bucher and Goaillard, 2011). Velocity was re-
ported to be 0.25 - 0.4 m.s−1 in hippocampal un-myelinated thin axons, 2.9 m.s−1

in myelinated layer 5 pyramidal cells, and it can reach several tens of m.s−1 in mo-
toneuron myelinated fibers (Debanne et al., 2011). Myelinated axons are composed
of two kinds of specialized domains: nodes of Ranvier and myelin sheath. Nodes
of Ranvier contains a high density of sodium channels and they are separated by
internodes, axons encapsulated by an isolating myelin sheath. Myelin reduces mem-
brane capacitance and increases membrane resistance (acts like the insulation of a
cable), and therefore increases length constant. Consequently, depolarization gener-
ated at nodes of Ranvier is transferred almost instantaneously toward the following
node (Debanne et al., 2011).

2.3.2 Analog information encoding in the axon

All along their axonal conduction, action potentials undergo modulations that change
their impact onto presynaptic terminals and therefore refine the primitive neuronal
information given by firing patterns. The change of axonal membrane properties
during sustained discharges can oppose or enhance propagation of action potentials.
The presence of specific conductances coupled to membrane potential changes in the
axon can alter action potential shape (height, duration), which is a crucial parame-
ter for synaptic activation. Analog signalling (Alle and Geiger, 2008; Debanne et al.,
2013) adds some information to the digital, all-or-none, neuronal code and plays a
significant role in synaptic transfer reliability (Debanne, 2004; Alle and Geiger, 2008;
Debanne et al., 2011; Bucher and Goaillard, 2011; Kole and Stuart, 2012; Debanne
et al., 2013).

49



Action potential propagation failure

In an extreme case of such modulation, the action potential conduction can be to-
tally stopped. Impedance mismatches caused by bifurcations or swelling can induce
propagation failures (Grossman et al., 1979; Lüscher and Shiner, 1990; Baginskas
et al., 2009; Bucher and Goaillard, 2011). Conduction failures occur more often
during high frequency (≥1 Hz) stimulation (Grossman et al., 1979; Krnjevic and
Miledi, 1959) but not only because of geometrical parameters (Debanne, 2004).

Repetitive firing increases extracellular potassium concentration that depolar-
izes the membrane and therefore induces sodium channel inactivation (Debanne,
2004). Alternatively, the activation of a BK conductance (large-conductance Ca2+-
activated K+ channels) or the Na+/K+ pump (activated by accumulation of in-
tracellular sodium) induces outward currents that keep membrane potential away
from threshold and can lead to conduction block (Debanne, 2004). Interestingly,
the hyperpolarization-induced cationic current (IH) has been shown to counteract
hyperpolarization in terminals so as to limit propagation failures during repetitive
stimulation in hippocampus (Soleng et al., 2003) and cerebellar cortex (Baginskas
et al., 2009).

In contrast, propagation failures can occur during sparse activity and are less
likely during sustained activity. In hippocampal axons, propagation failures were
linked to an IA conductance (Debanne et al., 1997). The fast activating and inacti-
vating kinetics of this current imply that failures occur only when action potentials
are initiated with very short latency after depolarization onset. When firing is de-
layed from the depolarization onset, or if the action potential occurs during a train
of action potentials, IA inactivation increases conduction reliability (Debanne et al.,
1997).

Action potential shape and synaptic efficiency

In cortical neurons, the modification of action potential waveform leads to changes
in synaptic strength (Boudkkazi et al., 2011), as it controls voltage-gated calcium
channel opening at the synapse (e.g. Sabatini and Regehr, 1997; Geiger and Jonas,
2000; see section 2.4). Several mechanisms of synaptic analog-digital facilitation by
spike-shape modification have been reported in central axon (Debanne et al., 2013),
mostly involving potassium channels.

ID and IA potassium conductances. Action potential waveform highly depends
on the activity dependent modulation of A- and D-type potassium conductances (De-
banne et al., 2011). ID conductances, carried by dendrotoxin-sensitive KV 1 channels,
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are characterized by fast activation (ms) and slow inactivation (seconds) below the
spike threshold, as well as a slow recovery from inactivation (seconds) (Storm, 1990).

The axon initial segment is able to perform advanced signal processing as it can
express many voltage-gated sodium and potassium channels, including KV 1 channels
(Kole and Stuart, 2012). In neocortical layer 5 pyramidal neurons, KV 1 expression
in the axon initial segment strongly controls action potential width ahead from
its initiation site (Kole et al., 2007). This is further improved by KV 1 expression
in axonal collaterals and synaptic terminals (Foust et al., 2011). A long somatic
depolarization of layer 5 pyramidal neurons is transmitted along the axon, and in-
creases spike width and synaptic efficiency (Shu et al., 2006) by the inactivation of
KV 1 (Shu et al., 2007; Kole et al., 2007). This provides a mechanism for a cortical
state-dependent modulation of information transfer, favoring communication dur-
ing wakefulness (Shu et al., 2006; Kole et al., 2007). The transmission of somatic
depolarization along the axon diminishes with the distance from soma, due to at-
tenuation by axonal passive integration (Sasaki et al., 2012; Debanne et al., 2011).
Consequently, steady state depolarization may facilitate the transfer of information
to nearby neurons and may promote the creation of localized functional modules.

In CA3, an D-type potassium conductance, expressed at least in the proximal
axon (Axonal Kv1 Channels determine pyramidal cell excitability, S. Rama et al.
9th FENS forum of Neurosciences, 2014), was involved in the strength of recurrent
excitatory synapses (Saviane et al., 2003). Contrary to neocortical layer 5 pyramidal
cells (Kole et al., 2007), ID in CA3 influences somatic spike repolarization and cell
excitability, causing a typical depolarizing ramp prior to discharge, abolished with
specific blockers of ID (DTX).

In mossy fiber boutons, the heteromultimeric assemblies of KV 1.2 (ID) and KV 1.4
(IA) subunits (Sheng et al., 1993) generate a A-type potassium with unique prop-
erties: fast activation (ms), fast inactivation (tens of ms) and slow recovery from
inactivation (hundreds of ms) (Po et al., 1993; Geiger and Jonas, 2000). This potas-
sium conductance efficiently participates to action potential repolarization at low
frequency stimulation (>1 Hz, Geiger and Jonas, 2000). Its cumulative inactivation
and slow recovery during trains of action potentials at high frequencies (10 to 100
Hz) induces spike broadening in synaptic terminals, but not in the soma. Spike
broadening enhances the calcium influx and therefore the synaptic activation, even
few seconds after the end of the stimulus (Fig. 14; Geiger and Jonas, 2000).

KV 7 potassium channels - IM conductance. The M-current (IM) is a slowly
activating (tens of ms) and non-inactivating potassium current. It is suppressed
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Figure 14: Action potential broadening enhances synaptic efficiency in mossy
fiber boutons (MFB).A. Broadening during a train of action potentials (APs) recorded
from a MFB (inset). Spike width increased with the number and frequency of APs, more
at the MFB than at the soma (B). C. Slow recovery of AP width after a high stimulus
train. E. Recorded AP waveforms were injected as a command in voltage clamp mode
(action potential clamp) at the MFB. It revealed an increase of calcium influx with AP
broadening, which enhanced synaptic strength (F). Adapted from Geiger and Jonas (2000),
inset in (A) from Bischofberger et al. (2006).
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by activation of muscarinic receptors by acetylcholine and may be enhanced by
somatostatin (Storm, 1990). KV 7 potassium channels are responsible for the M-
current and they are specifically co-expressed with sodium channels in the AIS and
in nodes of Ranvier in central neurons (Devaux et al., 2004; Rasmussen et al., 2007).
This current influences neuronal excitability parameters (Peters et al., 2004), such
as spontaneous firing (Shah et al., 2008). The M-current may also improve neuro-
transmitter release efficiency at Schaffer collateral synapses by preventing sodium
channel inactivation, thereby preserving action potential amplitude (Vervaeke et al.,
2006). KV 7.2/7.3 channels may increase NaV channel availability in nodal domains
in myelinated central nervous system axons, and so enhance action potential con-
duction (Battefeld et al., 2014).

Large-conductance calcium-activated potassium channels (BK or KCa1.1
channels). The BK conductance, with slower kinetics than the M-current, is typ-
ically activated by the calcium entry triggered by discharge, and participates in
frequency adaptation and long-lasting hyperpolarization (Storm, 1990). A BK con-
ductance was identified in the presynaptic terminals of CA3 pyramidal cells and
contributes to spike repolarization in the axon (Raffaelli et al., 2004; Hu et al., 2001).
The activity-dependent inactivation of axonal BK produces spike broadening and
therefore increases release probability at the CA3 recurrent synapses (Raffaelli et al.,
2004) and the CA3-to-CA1 synapses (Hu et al., 2001).

Extrinsic modulation of action potential shape. The action potential wave-
form can be modified through the activation of specific receptors on the axonal
plasma membrane (Sasaki, 2013). In CA3 neurons in organotypic culture, astro-
cytic glutamate release was shown to broaden action potentials by activation of
AMPA receptors (Sasaki et al., 2011) - astrocytic release of neurotransmitter be-
ing quite controversial as it was never clearly demonstrated in vivo (Hamilton and
Attwell, 2010).

Endogeneous adenosine is thought to be a very important factor for homeostatic
plasticity (Dias et al., 2013). This purine nucleoside is known to regulate the general
state of arousal and its increasing level during wakefulness eventually promotes sleep
at the end of the day (Dunwiddie and Masino, 2001). The basal extracellular level
(25-250 nM) continuously activates axonal GI/O-coupled A1 adenosine receptors
(Dias et al., 2013) that shorten action potentials, certainly via the activation of
axonal KV 1 channels (Sasaki et al., 2011).
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2.4 Synaptic transfer and modulation of informa-
tion in the presynaptic terminal

A synapse is the communication tool used by axons to transfer information onto
effector cells such as muscles, glandular cells and other neurons. There are different
types of synapses including chemical, electrical and mixed synapses. In the mam-
malian nervous system, most of them are chemical synapses, where the information
is carried by the presynaptic secretion of neurotransmitter onto the postsynaptic
neuron. Chemical synapses are divided into three parts that can be identified with
electron microscopy (Fig. 15): the presynaptic element, the postsynaptic element
and the synaptic cleft. Presynaptic elements, the synaptic boutons, are axonal
swelling characterized by numerous mitochondria and synaptic vesicles that con-
tain neurotransmitter (Fig. 15, Harris and Weinberg, 2012). The active zone is
the functional area of the presynaptic terminal membrane where vesicles are docked
and primed for release (Harris and Weinberg, 2012). The postsynaptic density (Fig.
15) is a submembranous electron-dense zone reflecting the presence of postsynap-
tic receptors and scaffolding molecules that are aligned with the presynaptic active
zone (Harris and Weinberg, 2012; Sheng and Kim, 2011). The neurotransmitter is
released into the synaptic cleft, which consists of a widening of extracellular space
between pre- and postsynaptic compartments and contains electron-dense material
corresponding to extracellular matrix and specialized synaptic proteins (Fig. 15;
Harris and Weinberg, 2012; Sheng and Kim, 2011).

2.4.1 Basic mechanism of neurotransmitter release

An action potential that invades the presynapse is able to trigger neurotransmission
with a high temporal precision (Kaeser and Regehr, 2014). The two requirements for
neurotransmitter release are: (1) the availability of releasable vesicles at the active
zone and (2) an increase of Ca2+ level at the active zone.

Even if hundreds of vesicles are associated with each active zones (Rizzoli and
Betz, 2005), only few of them are able to be released: the readily releasable pool
(RRP, < 5%, e.i. 5-10 vesicles) and the recycling pool (RP, 10-20%). The remaining
non-recycling pool (NRP; also named Reserve Pool) would not be released (but see
Ikeda and Bekkers, 2009) but rather provide a store for the RP (Rizzoli and Betz,
2005). The RP can be released only during sustained and high frequency activation
but the RRP is released instantaneously when terminals are activated. RRP vesicles
are primed in a dedicated molecular framework that promotes the Ca2+-dependent
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Figure 15: Cortical chemical synapse. A. Golgi-impregnated pyramidal cell in
hippocampal area CA1, showing the soma and apical and basal dendrites. Inset, left.
Higher magnification shows an axon passing by dendritic spines protruding from the apical
dendritic shaft. B. Chemical asymmetrical synapse (glutamatergic) on a CA1 pyramidal
cell spine revealed with electron microscopy. The postsynaptic density (green arrow)
highlights the synaptic contact. Note the presence of vesicles in presynaptic terminals
(bar = 1µm) C. Drawing of dendritic spine synapse: (a) spine apparatus; (b) spine neck;
(c) presynaptic membrane; (den.t.) dendritic microtubules; (d) dense material in synaptic
cleft; (e) postsynaptic membrane; (f) synaptic cleft; (g,h,i) plasma membranes of pre-,
post-, and neighboring processes; (m) mitochondrion; (pre) presynaptic axons; (st) “stalk”
of axon; (sv) synaptic vesicles. Adapted from Harris and Weinberg (2012).
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fusion by coupling vesicles to voltage gated calcium channels (Fig. 16A). Calcium
channel opening following an action potential induces a sharp calcium increase (from
0.1 µM to 30-100 µM). The Ca2+ transient (Calocal) is very short (∼200 µs) due to the
fast inactivation of channels with action potential repolarization and a subsequent
diffusion and buffering by calcium binding proteins (Roberts, 1993). The activation
of the release machinery is enhanced by calcium fixation on low affinity domains
of synaptotagmin (Fig 16, Südhof, 2013) and therefore requires high Ca2+ levels.
Taken together, these elements ensure the temporal precision of neurotransmitter
release. The RRP can be divided into fast and slow releasing subpools (Wu and
Borst, 1999; Sakaba and Neher, 2001), and the more easily released pool has the
lower replenishment rate. This heterogeneity of RRP vesicle release might reflect
their accessibility to calcium and therefore their proximity to calcium channels.

The basic organization of the synaptic active zone determines the synaptic strength.
In a recent study on CA3 recurrent synapses, Holderith et al. (2012) has shown that
the size of the active zone determines the number of docked vesicles, the calcium
entry and therefore the release probability.

2.4.2 Synchronous versus asynchronous release of neuro-
transmitter

Synchronous release - when synchronized with the arrival of an action potential in
the presynaptic terminal - constitutes the major mode of neurotransmitter release
at most synapses, especially for low frequency stimuli (Kaeser and Regehr, 2014).
Neurotransmitter release can be asynchronous, that is, vesicle fusion is not time
locked with the action potential. An extreme case is the deep cerebellar nuclei
to inferior olive synapses that operate mainly with this transfer mode (Best and
Regehr, 2009).

Delayed release depends on the accumulation of intracellular Ca2+, occurring
especially during rapid and sustained firing. The high level of residual Ca2+ (Cares)
might enhance the exocytosis of the subset of RRP vesicles that releases slowly
and recovers rapidly (Wu and Borst, 1999; Sakaba and Neher, 2001; Otsu et al.,
2004; Kaeser and Regehr, 2014). Indeed, the introduction of the slow calcium chela-
tor EGTA in the presynaptic compartment suppresses asynchronous but not syn-
chronous release (Cummings et al., 1996; Atluri and Regehr, 1998; Manseau et al.,
2010, but see Vyleta and Jonas, 2014). Delayed release seems to depend on Ca2+

sensors that have lower affinity than those involved in synchronous release (Kaeser
and Regehr, 2014). An increased Cares may depend on the asynchronous activation
of Ca2+ channels (Few et al., 2012), the activation of Ca2+ permeable receptors
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Figure 16: Schematic of neurotransmitter release. A. Action potential induces
voltage dependent Ca2+ influx leading to fusion of vesicles. B. Molecular components
of release machinerie. C. Molecular mecanism of release. Priming consists of the liaison
of membrane and vesicles thanks to SNAREs (soluble N-ethylmaleimide-sensitive factor-
attachment protein receptors) and SM proteins (for Sec1/Munc18-like proteins). SNAREs
are syntaxin-1 (Stx) and SNAP-25 on the membrane ; Synaptobrevin (Syb) on the vesi-
cle. Munc18-1 is the main SM protein. Synaptotagmin (Syt1/2/9) is the calcium sensor
that enhances the SNARE/SM protein fusion mechanism. Coupling with voltage gated
calcium channels is operated by proteins of the active zone: Rab3, RIM (Rab3 interact-
ing molecules), RIM-BP (RIM binding proteins), liprin-α, ELKS and piccolo/bassoon.
Adapted from Kaeser and Regehr (2014)

.
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(P2X2, TRPV1), a Ca2+ dependent enhancement of voltage gated Ca2+ channel
permeability or a Ca2+-induced Ca2+ release from intracellular stores (Kaeser and
Regehr, 2014). The last mechanism does seem universal (Carter et al., 2002) and
mitochondria could limit asynchronous release by an uptake of cytosolic Ca2+ dur-
ing high rate stimuli (David and Barrett, 2003; Talbot, 2003; see section 2.4.3).
This limitation of delayed release would ensure longer lasting synchronous release
by preventing vesicular depletion (David and Barrett, 2003; Talbot, 2003).

Cortical PV+ interneurons provide dense inhibition that cover neighboring prin-
cipal neurons like a blanket (Packer and Yuste, 2011). They are crucial in oscil-
lating neuronal networks and enable ensemble coding of information by improving
spike timing precision of pyramidal neurons (Fig. 17A, B; McBain and Fisahn,
2001). Asynchronous release of neurotransmitter occurs for high frequency stimuli
at autaptic and synaptic connections of PV+/fast spiking interneurons in neocortex
(Manseau et al., 2010). At these synapses, asynchronous release rises as time and
frequency of discharge increase, providing a prolonged and desynchronizing inhibi-
tion, thought to disrupt cortical information processing (Manseau et al., 2010, Fig.
17C, D). Release synchrony modulation enables the same fast spiking interneurons
to enhance either synchronization or desynchronization and therefore appears to be
a key regulator for network information processing.

Asynchronous release has also been described at cortical excitatory synapses. It
occurs for high frequency stimuli (40 Hz) at synapses made by excitatory neurons
onto low threshold spiking interneurons in somatosensory cortex layer 4 (Beierlein
et al., 2003). The functional role of asynchronous release at this glutamatergic
synapse is unknown (Beierlein et al., 2003) but it could constitute a short term
synaptic memory, facilitating summation of synaptic events and therefore firing.

2.4.3 Short term presynaptic plasticity

An initial synaptic activation typically produces a transient alteration of synaptic
efficiency, known as short term presynaptic plasticity. Different types have been
identified: short-lived depression, facilitation, long-lived depression, augmentation
and posttetanic potentiation (PTP) (Regehr, 2012, Fig. 18). These adaptative
changes of functional connectivity determine the dynamics of information flow and
therefore constitute key processes for microcircuit computation (Fisher et al., 1997;
Zucker and Regehr, 2002; Abbott and Regehr, 2004; Regehr, 2012).

Short-lived depression and facilitation are typically observed by looking at the
postsynaptic amplitudes for two closely spaced stimuli (paired-pulse). Paired-pulse
depression corresponds to a decreasing amplitude; Paired-pulse facilitation is defined
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Figure 17: Impact of fast spiking interneuron-mediated synchronous and asyn-
chronous GABA release onto neocortical pyramidal cell firing. A, B. Adapted
from Bacci and Huguenard (2006); Deleuze et al. (2014). Pyramidal cell spike timing pre-
cision is improved by fast-spiking interneuron-like synchronous feedback inhibition. Scale
bars: 40 mV, 50ms. C, D. Adapted from Manseau et al. (2010). Asynchronous synaptic
release of GABA deteriorates the overall precision and reliability of APs in pyramidal
neurons. The scheme on the left refers to the paired-recording configuration where one
presynaptic fast-spiking (FS) interneuron is synaptically connected to itself and to a post-
synaptic pyramidal neuron (PYR). Current-clamp superimposed traces recorded from a
pyramidal cell (red traces) stimulated with frozen noise current injections in the absence
(C) and presence (D) of a spike train (300 Hz, 500 ms) elicited in a presynaptic FS inter-
neuron. Spike trains in the FS interneuron (blue trace) induced asynchronous release (D).
Pyramidal neuron spike precision and reliability deteriorates both during and over 500
ms after the train (gray box) during asynchronous synaptic release (raster plots). Note
the spike disappearance (white arrowheads) and the increased jitter after the presynaptic
stimulus train.
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by an increasing amplitude (Regehr, 2012, Fig 18A, C). The amplitude difference
tends to disappear as the time between the two stimuli increases; depression may
persist longer (decay time constant ≈ 1 sec, Fig 18A) than facilitation (decay time
constant of tens or few hundreds of ms, Fig 18C). Long-lived depression, augmen-
tation and PTP are longer lasting, but still transient changes that occur after an
intense stimulus (decay time constant of seconds to minutes; Regehr, 2012, Fig 18B,
D). Such alterations of synaptic efficiency can be due to different mechanisms (not
all present at the same synapse) involving vesicular pool dynamics and/or calcium
signalling (Fig. 18). Different kinds of plasticity often coexist in the same termi-
nal, so the level of their relative expression determines the overall synapse dynamics
(Regehr, 2012).

Depression

Decrease of synaptic strength may be due to vesicular depletion. If a large fraction
of vesicles is released by an action potential or a train of action potentials, less will
be available for subsequent activation (Betz, 1970; Regehr, 2012; Zucker and Regehr,
2002). Depletion and the resulting depression depend on several factors including
the availability of releasable vesicles, their release probability and replenishment
rate (Regehr, 2012). The depletion model predicts that a lower release probability
should decrease depression (Regehr, 2012). This is true in cortical synapses where
depression may be turned into facilitation by a decrease of release probability (De-
banne et al., 1996; Angulo et al., 1999). However, not all the predictions of this
model were always confirmed (Sullivan, 2007; Waldeck et al., 2000), thus depletion
cannot account for all depressing synapses (Regehr, 2012).

Another model explaining depression considers the inactivation of release sites
by fused vesicle material (Regehr, 2012). Blocking endocytosis, which is involved in
clearance of fusion proteins at the active zone, enhances depression in the Calyx of
Held (Hosoi et al., 2009). The accessibility of the active zone would be a very limiting
parameter at these synapses that possess only 2 release ready vesicles per active zone
(1100 docked vesicles for 554 active zones, Sätzler et al., 2002). At synapses with
a large releasable pool of vesicles (Saviane and Silver, 2006), the presence of this
mechanism is unknown but it might be less critical given the greater number of
docked vesicles (10-30, Schikorski and Stevens, 1999, 2001).
Other proposed mechanisms for depression imply the change of release probability
(Sullivan, 2007; Regehr, 2012), such as the use-dependent inhibition of the release
machinery (Hsu et al., 1996; Waldeck et al., 2000) or the calcium-induced inhibition
of calcium currents (Xu and Wu, 2005; Xu et al., 2007; Sullivan, 2007).
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These and other mechanisms can account not only for short-lived but also for
long-lived depression. The depletion model for long-lived depression refers to vesic-
ular depletion of the entire RP, and not only the RRP, resulting in a longer delay
for a full replenishment (Regehr, 2012). A transient decrease of release probability
can also explain long-lived depression (Regehr, 2012); for instance, the slow recov-
ery after inactivation of presynaptic voltage gated calcium channels is involved in a
reduced synaptic strength at the calix of Held (Forsythe et al., 1998).

Short term facilitation

All mechanisms that were proposed to explain facilitation involve calcium signalling
(Fig. 18).

One of the most popular theories is the residual calcium hypothesis, in which
calcium would be directly responsible for facilitation (Katz and Miledi, 1968). The
calcium signal that triggers release (Calocal) is quickly cleared from presynaptic ter-
minals. However, a residual "active calcium" level (Cares) can persist and enhance
Calocal evoked by a subsequent action potential, leading to a higher vesicular release,
thus causing facilitation. This hypothesis is controversial as Cares level is very low
(∼1% of Calocal) and the summation of Cares and Calocal would therefore not be able
to cause a significant facilitation (Regehr, 2012). However, Cares may act on high
affinity calcium sensors involved in vesicular fusion enhancement (Regehr, 2012).

Different calcium buffers are found among different neuronal populations, and
they are often used as descriptive tools (Ray et al., 2014) rather than for their func-
tion. Artificial calcium buffers are known to influence synaptic strength, especially
BAPTA, with its fast kinetics, reduces Calocal as it enters the synapse (Adler et al.,
1991). Endogenous buffers with similar kinetics, such as calbindin or calretinin,
would be able to capture Calocal and diminish the initial synaptic activation; its
progressive saturation would result in facilitation (Regehr, 2012; Faas et al., 2007).
EGTA, a slower calcium buffer, does not affect synchronous release (Adams et al.,
1985; Adler et al., 1991) but abolishes asynchronous release (see section 2.4.2), sug-
gesting a capture of Cares. Parvalbumin (PV) is a neuronal marker of fast-spiking
interneurons and also a Ca2+ binding protein similar to EGTA. PV downregulates
facilitation by accelerating the decay of Cares, thus preventing Cares increase during
repetitive stimuli (Caillard et al., 2000; Regehr, 2012).

Augmentation - Posttetanic potentiation (PTP)

Augmentation and PTP describe transient increases of synaptic strength (enhance-
ment) triggered by an intense ("tetanic") conditioning stimulus (Regehr, 2012).This
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Figure 18: Short term presynatic plasticity. A-D. Different forms of plasticity (see
text). E-G.Mecanisms of use-dependent plasticity (see text) Adapted from Regehr (2012)

.
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kind of enhancement was reported in the neuromuscular junction (Magleby and
Zengel, 1975, 1976) and in central synapses, such as the Calyx of Held (Habets
and Borst, 2005; Korogod et al., 2005), mossy fiber boutons (Lee et al., 2007) and
hippocampal Schaffer collaterals (Brager et al., 2003).

Augmentation or PTP? Augmentation decays faster (seconds or a few tens of
seconds) than PTP (tens of seconds or minutes) and may be theoretically triggered
by shorter stimuli of lower frequency (Regehr, 2012). In their study, Mochida et al.
(2008) induced augmentation with a 10 Hz stimulus lasting 10 seconds and PTP
with a 10 Hz stimulus lasting 60 seconds. However, conditioning stimuli may be
very different according to different studies. At the Calyx of Held of young animals,
Korogod et al. (2005, 2007) stimulated 4 to 8 seconds at 100 Hz whereas Habets
and Borst (2005) stimulated during 5 min at 20 Hz; both triggered what they called
PTP and reported very different decays (20-60 sec versus 9 min), suggesting differ-
ent mechanisms, the shorter forms being "similar to augmentation in hippocampal
synapses", according to the authors (Korogod et al., 2005). This illustrates that the
distinction between PTP and augmentation is not always obvious (Regehr, 2012). A
feature that suggests two distinct mechanisms was described at the frog neuromus-
cular junction: augmentation time course is relatively insensitive to the duration of
tetanic stimulation (Magleby and Zengel, 1976), whereas the magnitude and decay
of PTP increase with the duration of the conditioning stimulus (Magleby and Zen-
gel, 1975). Last, it is worth noticing that the total enhancement at a synapse results
from the sum of facilitation, augmentation and PTP (Fisher et al., 1997; Zucker and
Regehr, 2002).

Calcium is responsible for the time course of enhancement. Similar time
courses were reported for amplitudes of Calocal transients, Cares level, frequency of
miniature events and synaptic enhancement following tetanic stimuli at the Calyx
of Held (Korogod et al., 2005, 2007; Habets and Borst, 2005, 2006); action potential
waveform was not involved in these processes, as shown by direct recording from
Calyx of Held (Korogod et al., 2007) (see section 2.3.2). The long lasting Ca2+

elevation in the presynaptic terminal is pretty often responsible for enhancement
(Regehr, 2012). Two presynaptic actors were involved in persistent Cares: Na+/Ca2+

exchanger and mitochondria. During an intense stimulus, Ca2+ was shown to enter
the mitochondria, which slows and reduces its cytosolic elevation; after the stim-
ulation, mitochondrial Ca2+ release further maintains the cytosolic Ca2+ level and
contributes to the slow decay of Cares (Regehr, 2012). This may not be the case in
all synaptic terminals, especially not in those without mitochondria, such as ∼50%
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of hippocampal Schaffer collateral synapses (Shepherd and Harris, 1998). Known
processes of Ca2+ extrusion are the Ca2+ ATPase and the Na+/Ca2+ exchanger in
plasma membrane. During intense stimuli, Na+ becomes elevated in the terminal
and the Na+/Ca2+ exchanger is therefore not able to eliminate Ca2+ until Na+

returns to its initial level, which slows Ca2+ elimination (Regehr, 2012).

Calcium dependent mechanisms. Many Cares-dependent mechanisms that im-
prove release probability and quantal size have been suggested to be involved in en-
hancement (Regehr, 2012). Cares-dependent activation of protein kinase C (PKC)
has been proposed to mediate functional regulation of release machinery proteins
(Regehr, 2012) such as Munc18-1 (Fig. 16, Genc et al., 2014). It may also facil-
itate Ca2+ influx (increase of ≈15 %) through presynaptic voltage gated channels
(Korogod et al., 2007; Habets and Borst, 2006) that would account for augmen-
tation but not PTP (Mochida et al., 2008). Synapsin (Fig. 16) phosphorylation
by Ca2+/calmodulin (and cAMP-dependent protein kinases) will reinforce its in-
teraction with vesicles, speed up trafficking and therefore promote PTP, but not
augmentation (Fiumara et al., 2007). PTP was shown to increase the RRP by 30%
(Habets and Borst, 2005); nevertheless, this may rather be due to a Ca2+-dependent
change of cytosqueleton dynamics that moves RRP closer to the presynaptic Ca2+

sources (Lee et al., 2010) and therefore increases the proportion of the fast RRP
subpool (section 2.4.1). He et al. (2009) and Xue and Wu (2010) described a PTP
associated with an increased amplitude of miniature events, albeit previous studies
reported PTPs that were not associated with amplitude changes (Korogod et al.,
2005; Habets and Borst, 2005). This improved PTP was triggered using more intense
stimuli compared to those used in earlier studies, and was linked to an increased
vesicular size resulting from the activation of PKC (He et al., 2009; Xue and Wu,
2010).

Microcircuit information processing depends on short term presynaptic
plasticity

Microcircuit function depends on the anatomy and dynamics of synaptic pathways
that functionally binds neuron in assemblies (Abbott and Regehr, 2004; Silberberg
et al., 2005). Synaptic dynamics depends on the initial release probability and
therefore act as a filter. Synaptic depression, occuring at synapses with a high
initial release probability, is able to convert an apparent presynaptic spike rate code
into a spike timing code (Shadlen and Newsome, 1995) as it better encodes the
stimulus onset or the percentage changes in the stimulus intensity (Abbott and
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Figure 19: Synaptic transmission in the mammalian hippocampus. The central
scheme represents the main neuron types and synaptic connections in hippocampal area
CA1. Excitatory glutamatergic neurons are in red, and inhibitory GABAergic neurons are
in blue. The different types of connections are depicted in the inserts. (a) An inhibitory
connection between a bistratified cell (BS) and a pyramidal cell (PC). (b) A depressing
excitatory connection between a PC and a BS. (c) A facilitating excitatory connection
between a PC and an oriens–lacunosum moleculare cell (O–LM). (d) A depressing exci-
tatory connection between PCs in CA1. (e) A depressing inhibitory connection between
a basket cell (BC) and a PC. (f) A depressing inhibitory connection between BCs. (g)
A facilitating excitatory connection between a granule cell (GC) and a CA3 PC. Addi-
tional abbreviations: AAC, axo-axonic cell; CH, contralateral hemisphere; EC, entorhinal
cortex; MF, mossy fibre; PP, perforant pathway; SB, subiculum; SC, Schaffer collateral;
SLM, stratum lacunosum moleculare; SO, stratum oriens; SP, stratum pyramidale; SR,
stratum radiatum; TC, trilaminar cell. From Silberberg et al. (2005).
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Regehr, 2004; Regehr, 2012). In contrast, facilitation, occuring at synapses with a
low initial release probability, is better to encode sustained and fast activity (Abbott
and Regehr, 2004; Regehr, 2012).

In cortical areas, the strength and plasticity of synapses made by an individual
neuron of the circuit depends on presynaptic properties but also on the postsy-
naptic target (Scanziani et al., 1998; Markram et al., 1998; Koester, 2005; Ali and
Thomson, 1998; Ali et al., 1998; Abbott and Regehr, 2004; Silberberg et al., 2005,
Fig. 19). This is particularly true regarding interactions between excitatory neurons
and the different subtypes of interneurons (Silberberg et al., 2005), as depicted on
figure 19. In hippocampus (Fig. 19) and neocortex, the pyramidal to basket cell
connection tends to depress (Beierlein et al., 2003; Ali et al., 1998) whereas the
pyramidal-to-dendrite targeting interneuron synapse is facilitating (Beierlein et al.,
2003; Fanselow et al., 2008; Ali and Thomson, 1998). This is an interesting tool used
by the microcircuit to perform a temporal separation of perisomatic and dendritic
inhibition. Indeed, the nature of recurrent inhibition onto hippocampal pyramidal
cells shifts during a persistent stimulation, from an onset transient perisomatic in-
hibition to a late persistent dendritic inhibition (Pouille and Scanziani, 2004). This
spatio-temporal shift in inhibition relies on synapse dynamics, but also on synaptic
event kinetics, membrane time constant and dynamics of dis-inhibition (Pouille and
Scanziani, 2004).

2.4.4 Voltage dependent regulation of synaptic activation

As described above, Ca2+ is a core component of neurotransmitter release as it
takes part in many, if not all, processes that lead to and regulate vesicular fusion
at the presynaptic terminal. However, synaptic activation may also be modulated
in a Ca2+-independent way (Debanne et al., 2013). In hippocampal mossy fiber
terminals, subthreshold depolarization enhanced synaptic activation, independently
of action potential waveform or calcium entry modulation (Alle, 2006; Scott et al.,
2008) and with a very short latency. Earlier studies have shown that depolariza-
tion of the presynaptic terminal could enhance release, independently of its role
on calcium channel opening (Hochner et al., 1989). Membrane potential is there-
fore believed to be a key regulator of release probability (Parnas and Parnas, 2010;
Debanne et al., 2013).

Independently of calcium entry, presynaptic Ca2+ channels could serve as a volt-
age sensor enhancing release of synaptic vesicles thanks to the physical interaction
of channels and release machinery (Dekel et al., 2012). Another class of molecules
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involved in voltage dependent release of neurotransmitter are G protein-coupled
receptors (GPCR) (Parnas and Parnas, 2010). Many GPCRs can exert a tonic inhi-
bition of synaptic activation by inhibition of calcium channels or the increase of K+

conductances; others, such as muscarinic M2 receptors (M2R) are tightly coupled to
the release machinery and are able to exert a tonic block of fusion (Parnas and Par-
nas, 2010). At resting membrane potential, M2R affinity is high and its activation
inhibits release. During synaptic activation, depolarization decreases M2R affinity,
which unbinds neurotransmitter and inactivates the tonic block of the release ma-
chinerie (Parnas and Parnas, 2010) - a nice example of information encoding by the
direct interaction between intrinsic and extrinsic signals. This kind of regulation is
likely to occur in cortical synapses, such as the mossy fibers terminals that contain
many GPCRs, such as GABA-B receptors, metabotropic glutamate receptors or
adenosine receptors (Debanne et al., 2013).

2.4.5 Regulation of presynaptic function by extrinsic factors

Extrinsic molecules, present in the extracellular medium may bind to their recep-
tors on the presynaptic membrane and regulate synaptic transfer of information.
Among all systems that can interact with presynaptic terminals, adenosine and
endocannabinoid signalling offer interesting regulatory mechanisms of information.

Adenosine. Adenosine regulates synaptic efficiency by modulation of the action
potential waveform (2.3.2) but also acts directly on synaptic terminals (Dias et al.,
2013). The diversity of adenosine receptors and their coupling to intracellular sig-
nalling is likely to induce different levels of plasticity, from depression to potentia-
tion, also depending on adenosine levels (Dias et al., 2013). For example, in response
to synaptic activation, adenosine may be released by astrocytes and enhance neu-
rotransmitter release via presynaptic GS-coupled A2A receptor activation (Panatier
et al., 2011). This neuroglial collaboration seems essential as blocking astrocyte sig-
nalling disrupts basal synaptic transmission (Panatier et al., 2011). Alternatively,
astrocytic release of adenosine can mediate depression of synaptic activity via a
GI/O-coupled A1 receptor (Pascual, 2005) .

Endocannabinoids. Endocannabinoids are powerful regulators of synaptic func-
tion, able to suppress neurotransmitter release in a transient or long-lasting manner,
at both excitatory and inhibitory synapes (Castillo et al., 2012). They are phos-
pholipid derivatives, including N-arachidonoyl-ethanolamide (anandamide) and 2-
arachidonoyl glycerol (2-AG), mainly binding type 1 cannabinoid receptor CB1R -
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a GPCR - in nerve terminals (Alger and Kim, 2011).
Endocannabinoids may act via retrograde signalling. Endocannabinoids are syn-

thetized as a response to postsynaptic Ca2+ elevation, generally induced by a sus-
tained (seconds) depolarization. Their lipophilic properties allow their diffusion to
the presynaptic compartment, where they bind to presynaptic CB1Rs, suppressing
neurotransmitter release (Castillo et al., 2012). CB1R-induced short-term synap-
tic depression is mediated by a GI/O protein that may inhibit voltage gated Ca2+

channel influx or increase K+ conductances, whereas long term depression requires
adenylate-cyclase inhibition and inactivation of PKA pathway (Castillo et al., 2012;
Alger and Kim, 2011).

Endocannabinoids mediate a form of metaplasticity, a plasticity that serves sub-
sequent synaptic plasticity; retrograde signaling from dendrites of CA1 pyramidal
neurons was shown to depress inhibitory synapses locally and therefore favor the
potentiation of nearby excitatory synapses (Chevaleyre and Castillo, 2004).

Tonic activation of presynaptic CB1Rs was shown to mute a subpopulation of
CCK-containing neurons in CA3 of the hippocampus (Losonczy et al., 2004). Infor-
mation transfer at these neurons was enabled by sustained high firing frequencies
(>> 100 action potentials at 25 Hz) and endocannabinoid signalling could consti-
tute a high pass filter for information coming from CCK-interneurons to pyramidal
cells.
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Animals

The choice of the animal model is always conditioned by the question.
Sprague-Dawley rats of 21 – 35 days of age (CERJ Janvier, Le Genest Saint

Isle, France) were used to study principal neurons. Principal neurons constitute
the majority of cells (≈ 80 %) so their identification in the slice preparation does
not require specific markers. Moreover, slices from rats are often of better quality
compared to those from mice.

The other studies needed the identification of interneurons. I therefore had to
use specific mouse strains expressing fluorescent proteins in interneuron populations.
It is worth noting that using 2 different species (mouse and rat) did not ease the
comparison between principal cells and interneurons, due to possible inter-species
variability.

The GAD67-GFP knock-in mouse reveals most of the interneurons (Tamamaki
et al., 2003; Suzuki and Bekkers, 2010). It has been generated by the insertion of an
enhanced green fluorescent protein (eGFP) to the locus encoding GAD67 (glutamic
acid decarboxylase-67) using homologous recombination (Tamamaki et al., 2003).
The GAD67 is the main enzyme that synthesizes GABA from glutamate. Conse-
quently, the genetic construct might diminish the amount of GABA in these neurons.
Indeed, 10-20 % of what were found to be negative for GABA with immunohisto-
chemistry, a result that has been attributed to a possibly diminished amount of
GABA in these cells (Tamamaki et al., 2003; Suzuki and Bekkers, 2010). However,
it can be due to sensitivity issues with immunochemistry, non related to a reduced
production of GABA, but rather to a natural low amount of GABA in some in-
terneurons. For the maintaining of this strain, I have been crossing knock-in males
with C57Bl/6J females (CERJ Janvier, Le Genest Saint Isle, France). Other models
were used to identify more specific population of interneurons.

Pvalb-Cre mice (Jax 008069; Hippenmeyer et al., 2005) or Sst-IRES-Cre mice
(Jax n◦013044; Taniguchi et al., 2011) were crossed with the Ai14 Cre reporter line
(Jax n◦007914; Madisen et al., 2010). Cre-mediated recombination resulted in the
expression of red fluorescent tdTomato (RFP) labeling in subsets of GABAergic
neurons. Pvalb-Cre x Ai14 labels neurons expressing the calcium binding protein
parvalbumin (PV). These interneurons are typically fast spiking and provide peri-
somatic inhibition in cortical areas (Ascoli et al., 2008). Sst-IRES-Cre x Ai14 stains
neurons expressing the neuropeptide somatostatine (SOM). These interneurons are
rather regular spiking and target the dendrites of principal cortical neurons (Ascoli
et al., 2008). It is worth noting that somatostatin can be expressed by other neurons
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than dendrite-targeting interneurons, especially during developmental states; these
transient expression of somatostatin may induce the expression of the RFP for life
(Hu et al., 2013).

I also used the transgenic mouse line X98-SST (Jax n◦006340), in which GFP
expression is driven by the GAD67 promoter. For this mouse line, the random
insertion of the transgene in the genome has led to the labeling of a subset of
somatostatin positive neurons with axonal arborizations in layer I (Martinotti-type
morphology in neocortex; Ma et al., 2006). For the maintaining of this strain, I have
been crossing transgenic males with C57Bl/6J females (CERJ Janvier, Le Genest
Saint Isle, France).

Slices

The success of slice electrophysiology mainly depends on the good quality of slices.
This is really a critical point that I have been trying to improve during my PhD.
The methodology should be modified according to the age of the animal and many
recipes and experimental procedures exist in the literature (many references and
tricks can be found on BrainSliceMethods.com, for example). The common idea
with slice preparation is that nothing should be left to chance. All the steps that
can be under control have to be done meticulously, from the preparation of solutions
to the dissection and slicing. More subtle parameters, such as water quality or the
stress of the animals, should alter the slice quality and must therefore be controlled
as much as possible. Following these general principles, slice quality has been good
most of time, even with the oldest animals (> P60) that I used.

After anesthesia with ketamine hydrochloride and xylazine (for rat: 80 and 12
mg/kg; for mouse: 100 and 25 mg/kg, respectively), animals were perfused via the
heart with a the cutting solution cooled to 2–6 ◦C and equilibrated with 5% CO2 in
O2. The success of the perfusion significantly improves the slice quality with animals
older than 25 days. I have been using 2 different cutting solutions: one based on
choline chloride, the other on sucrose. The choline chloride solution contained (in
mM): 110 choline Cl, 2.5 KCl, 25 NaHCO3, 1.25 NaH2PO4, 7 D-glucose, 0.5 CaCl2
and 7 MgCl2. The sucrose solution contained (in mM): 125 NaCl, 25 sucrose, 2.5
KCl, 25 NaHCO3, 1.25 NaH2PO4, 2.5 D-glucose, 0.1 CaCl2, 7 MgCl2 (in mM).

The forebrain was dissected, and slices of 250-350 µm were cut. Two different
angles have been used for making slices containing the presubiculum. The simpler
was the "horizontal" angle: the dorsal part of the brain was glued on the slicer
platform. For the "oblique" angle, the brain was split in two with a knife cut sep-
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arating the two hemispheres; then an additional cut was performed starting from
the ventral side, with a 30◦ angle with respect to the sagittal plane. This angle is
supposed to better preserve the integrity of the hippocampal network. More possi-
bilities exist and should be tested in the future. I have tested "parasagittal" slices,
but they did not seem ideal because this angle does not allow to distinguish easily
the limit between presubiculum and retrosplenial cortex. For "horizontal", "oblique"
and "parasagittal" slices, the vibratome slicing was operated following the caudo-
rostral direction. I tried coronal slices once, however the angle seemed really not
appropriate for physiology: neurons were dead.

Before recording, slices were being stored for at least 1 h at 22–25◦C in a chamber
containing artificial cerebrospinal fluid (ACSF). ACSF contained (in mM) 124 NaCl,
2.5 KCl, 26 NaHCO3, 1 NaH2PO4, 2 CaCl2, 2 MgCl2, and 11 D-glucose and was
gently bubbled with 5% CO2 in O2 (pH 7.3, 305–315 mOsm/L).

Recordings

For recordings, slices were transferred to a chamber (volume ≈ 2 mL), heated to
32–35 ◦C, on the stage of an Axioskop 2 FS plus microscope (Zeiss, France). Neurons
were visualized with an EMCCD Luca-S camera (658 x 496 pixels, 10 x 10 µm;
Andor) using infrared differential interference contrast. Fluorescent neurons were
visualised using a white LED mounted on the epifluorescent port of the microscope,
coupled to an excitation/emission filter system.

Recordings were made with glass pipettes pulled using a Brown–Flaming elec-
trode puller (Sutter Instruments) from borosilicate glass of external and internal
diameter of 1.5 mm and 0.86, respectively (Harvard Apparatus, UK; reference:
GC150F-10). The electrode resistance, when filled with the internal solution was
3–6 MΩ.

I used different kinds of internal solutions, depending on the study. The potassium-
gluconate solution 1.0 contained (in mM) 130 K-gluconate, 5 KCl, 10 HEPES, 10
ethylene glycol tetra-acetic acid (EGTA), 2 MgCl2, 4 MgATP, 0.4 Tris-GTP, 10
Na2-phosphocreatine. The high amount of EGTA in this solution certainly allowed
a good stability of recordings. However, with perspective I consider 10 mM as a
concentration that may have a huge effect on calcium signaling and therefore on
physiology; 1 mM could have been enough. I performed few recordings using a so-
lution with the same compounds except EGTA, firing patterns were not changed,
but action potential shapes were altered. Thus, EGTA is a compound that has to
be carefully used, because it can influence cell physiology.
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I then modified the potassium gluconate 1.0, diminishing the amount of chloride
to better see the inhibition and eliminating the EGTA, to not counteract calcium
signaling. This was particularly important for the study of synapse dynamics with
paired recordings. The potassium-gluconate 2.0 contained (in mM) 150 K-gluconate,
1 KCl, 10 HEPES, 2 MgCl2, 4 MgATP, 0.4 Tris-GTP, 10 Na2-phosphocreatine.

To reveal the morphology, I added 1-3 mg/ml of biocytin in these solution. One
might think that having a lot of biocytin could be better. It seems to be true.
However, the background staining increases with the time spent with the pipette in
the slice before patching. In conclusion, with high amount of biocytin, patching has
to be very fast (few seconds after penetration of the pipette in slice).

Analysis of the electrophysiology

Electrophysiological parameters were analysed with dedicated softwares: AxoGraph
X (http://www.axograph.com/) for manual analysis, Spikoscope (a Labview based
sofware developed by Ivan Cohen) and routines that I developed with Matlab (the
Mathworks) for automated analysis. Details will not be extensively described here,
as they are specifically provided in the methods of the different studies.

Morphology

Neurons were filled with biocytin, included in the recording pipette (1-3 mg/mL),
so that their anatomy could be examined. Slices containing filled cells were fixed in
4% paraformaldehyde (PFA) in 0.12 M phosphate buffer (PB) at least overnight at
4 ◦C. PB contained (in mM) 0.14 NaH2PO4H2O and 0.1 NaOH and was adjusted
at pH 7.3. Slices were then rinsed 3 times in PB, and put in 30% sucrose (for
cryoprotection) at 4◦C at least overnight. Slices could be kept in 30% sucrose for
several weeks.

Membranes were permeabilized by three cycles of freezing/thawing over dry ice.
To do so, slices are disposed on a slide, in a small drop of sucrose. The slide is
then put on dry ice until sucrose is frozen. The slide is then put on a warm surface,
such as the experimenter palm, until full thawing. The process has to be done three
times.

Slices were then washed 3 times in 0.02 M Potassium Phosphate buffered saline
(KPBS). KPBS contained (in mM) 0.0035 KH2PO4H2O, 0.0165 K2HPO4H20 and
0.9% NaCl, was adjusted at pH 7.3 and then filtered. The aim of this step is to
eliminate the remaining sucrose. The first washing can be fast, the two following
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should be longer (10-20 min).
Slices were then pre-incubated 2-4 hours in a solution composed of KPBS, Triton

0.3 %, Milk 2%. The Triton starts the permeabilization for the subsequent incuba-
tion, proteins of the Milk saturate the non-specific fixation sites (e.g. charges) to
limit the background staining.

To reveal the biocytin, slices were then incubated overnight at 4◦C with a fluores-
cent streptavidin (Alexa 488, cy3 or cy5 conjugate, Invitrogen, Eugene, OR, USA)
diluted at 1:200 to 1:500 in 0.02 M KPBS, Milk 2 %, Triton 1 %. 4’,6’-diamidino-
2-phenylindole (DAPI) was added for staining of the tissue structure. Note that a
high concentration of Triton was used because of the slice thickness: it improves
permeabilization without degrading the staining, streptavidin not being sensitive to
high Triton concentration (not the case with some antibodies).

Slices were then washed 3 x 20 min before mounting (mounting medium: Pro-
Long Gold, life technology). Before mounting, the location of the revealed cell was
checked to adjust the orientation of the slice on the slide.

Slides were visualized with a QImaging Retiga EXI camera (Qimaging Surrey,
BC, Canada), and scanned with an Optigrid II (Thales Optem, Qioptik, Rochester,
NY, USA) mounted on an inverted Olympus IX81 microscope. The Optigrid system
permitted the acquisition of structured images and the subsequent three-dimensional
reconstruction of filled neurons with the software Volocity (Improvision, Perkin-
Elmer, Coventry, UK). Stacks of 75–250 images were acquired using a X20 NA
0.85 oil immersion objective (steps of maximum 0.7 µm between images). Overview
images were acquired with a X4 NA 0.16 objective.

After the acquisition, neurons were reconstructed using the Neurolucida software
(Microbrightfield, Williston, VT, USA). RGB stacks were exported from Volocity
as a RGB tif stacks, converted into 8 bit tif stacks using ImageJ and then imported
into Neurolucida. Manual 3D reconstructions were executed in Neurolucida by dis-
criminating axons from dendrites, as well as apical and basal dendrites for pyramidal
neurons. Dendrite diameters were typically bigger than axon’s and the presence of
spines on dendrites and varicosities on axons helped the discrimination.

The orientation of dendritic arbors were described using the "wedge analysis".
From the soma of each cell, 12 segments each occupying 30◦ of arc were created,
starting with a 15◦ segment centered on the vertical. The cortical surface was set as
0◦, the subiculum was situated to the left and the parasubiculum to the right. The
total dendritic length in each segment was measured. Twelve-segment wedges were
converted to six-segment wedges for some analyses by summing pairs of adjacent
segments, starting with that centered on 0◦.
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The neurolucida function "layer length analysis" was used to determine dendritic
length in each presubicular layer, and also in the neighboring areas.

Axonal projections within the presubiculum were defined for projections that
could be followed for 500 µm or more.

No correction for tissue shrinkage was applied.
All the results were exported in excel format and imported in Matlab (The

Mathworks) for compiling results and making figures.

A rather objective method to describe neuronal
populations: unsupervised clustering

Describing neuronal properties could appear as a quite easy task as it solely needs to
highlight the similarities and differences between distinct populations. However, the
identification of populations can be difficult, especially because there are many ways
to describe and classify neurons. They can be described according to the expression
of specific molecular markers, morphology, intrinsic electrophysiological properties,
their recruitment by specific inputs or their target as well as their activity related
to a specific behavior (Ascoli et al., 2008).

Neuronal populations can be distinguished by two opposed methods. Groups
can be defined arbitrarily in a first place (e.g. neurons of different layers, with
different shapes), and then their properties can be compared in a subsequent step.
In contrast, populations can be defined as results of their description, neuronal
properties being used to defined groups in an objective manner. The second method
is called unsupervised clustering, because the groups of neurons are not defined in
an initial step. Neuronal features therefore define groups objectively, even though
the choice of the descriptive parameters can influence the results. Indeed, if different
kind of parameters are used, the resulting classification has quasi no chance to be the
same (Cauli et al., 2000). Moreover, using different sets of one kind of parameters
(e.g. molecular markers) is likely to provide a different classification.

When establishing groups of neurons is done arbitrary, only few parameters can
be used. For example, one can decide to group neurons according to their position in
a tissue, or according to their firing pattern (regular spiking, fast spiking, intrinsic
burst firing). However, this initial choice is not necessarily the best, as it might
hide the intrinsic diversity of each population. It is extremely difficult to take into
account a lot of features to manually define different populations, especially because
we are compelled to define groups looking at each parameter, one after the other. In
contrast, unsupervised clustering classifies objects by attributing the same weight
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to each parameter; and this can include many parameters.
Each neuron is thus represented by one point in a multidimensional space (the

number of dimension equals the number of parameters) and the closest neurons in
this space are then grouped together. Our clustering was based on Ward’s method
(Ward Jr, 1963), as previously used to classify neuronal subpopulations (Cauli et al.,
2000). It was implemented using Matlab (The Mathwork) and its statistical toolbox.
Data were first standardized by centering and reducing all values. For each step of
this agglomerative method, the two closest points (neurons) were grouped together
using the matrix of their Euclidean distances. The centroid of the newly created
population substituted the two previous values, updating the matrix of Euclidean
distance then used for the subsequent step. For each step, the mean individual-
to-centroid distance (or mean within-cluster distance) was calculated. This value
typically decreased as the number of clusters increased. The maximum reduction
(breaking point) defined a statistically optimal number of clusters (Thorndike pro-
cedure, Thorndike, 1953). For each number of clusters, different parameters were
described statistically to provide a ‘biological signature’ for each cluster. Final
clusters were defined from statistical and biological parameters as described in the
Results.

This methodology really eases the process of classification and remains quite
objective. One bias still remains: the choice of parameters. Different statistical
methods exists to check the influence of parameters on the final classification. For
example, one can perform a factor analysis using the principal component analysis
(Dumitriu et al., 2007), which determines what are the parameters that are the most
related to the first component; in other words, those responsible for the highest part
of the variability. Another method consists in the scrambling of the values of one
parameter in the dataset, which disrupts its correlation with others, but not its
distribution (Karagiannis et al., 2009; Perrenoud et al., 2013). Classification is
more affected when randomization is performed on important parameters.
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ARTICLE 1

Cellular neuroanatomy of rat
presubiculum

The presubiculum is involved in spatial orientation signaling as it contains head di-
rection cells, neurons that discharge as a function of the animal’s directional heading.
The generation of the presubicular head direction signal seems to result from the
integration of vestibular and visual information in this six-layered cortex. How pre-
subiculum processes this information is still unresolved, and its microcircuit has not
been studied in detail. In particular, the neuronal basis of presubicular information
processing has been unknown.

What are the morphologies and firing patterns of neurons composing the pre-
subicular cortex? Are there different kinds of neurons in the different layers of the
presubiculum? The first part of my PhD work was to shed light on the presubicular
neuronal properties in the different layers of the presubiculum. I studied electro-
physiology and morphology using the whole cell patch clamp technique in the slice
preparation of the young adult rat.

I have shown that the presubiculum possesses a laminar specificity of neuronal
integrative properties: neurons are different in different layers. Neurons in superficial
layers were all regular spiking, very hyperpolarized from firing threshold and mainly
pyramidal cells. I found a group of intrinsic burst firing pyramidal neurons in layer
4. Neurons in deep layers were rather heterogeneous in terms of morphologies and
excitable properties, but all were regular spiking cells, even though they differed
from those in superficial layers. The cellular diversity in deep layers suggests that
computation may be more diverse there than in superficial layers.
In addition, I confirmed that presubicular regular spiking cells were intrinsically
able to sustain firing in response to long depolarizations, similar to presubicular
head direction cells in vivo.
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These results are essential to understand the presubicular physiology and suggest
that information processing in this area might be based on a cortical model. Specific
hypotheses about information flow in the presubiculum remain to be tested.
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Abstract

The presubiculum, at the transition from the hippocampus to the cortex, is a key area for spatial information coding but the ana-
tomical and physiological basis of presubicular function remains unclear. Here we correlated the structural and physiological prop-
erties of single neurons of the presubiculum in vitro. Unsupervised cluster analysis based on dendritic length and form, soma
location, firing pattern and action potential properties allowed us to classify principal neurons into three major cell types. Cluster 1
consisted of a population of small regular spiking principal cells in layers II/III. Cluster 2 contained intrinsically burst firing pyrami-
dal cells of layer IV, with a resting potential close to threshold. Cluster 3 included regular spiking cells of layers V and VI, and
could be divided into subgroups 3.1 and 3.2. Cells of cluster 3.1 included pyramidal, multiform and inverted pyramidal cells. Cells
of cluster 3.2 contained high-resistance pyramidal neurons that fired readily in response to somatic current injection. These data
show that presubicular principal cells generally conform to neurons of the periarchicortex. However, the presence of intrinsic
bursting cells in layer IV distinguishes the presubicular cortex from the neighbouring entorhinal cortex. The firing frequency adap-
tation was very low for principal cells of clusters 1 and 3, a property that should assist the generation of maintained head direction
signals in vivo.

The presubiculum lies at the transition between the hippocampal
archicortex and the six-layered neocortex. Principal cells in the
CA1 and CA3 areas of the hippocampus proper are tightly packed
in a single layer and neighbouring cells have similar electrical
properties and shape (Jarsky et al., 2008). In contrast, excitatory
neurons of the canonical neocortex are organized in vertical
columns and six horizontal layers with differing properties
(Mountcastle, 1997; Douglas & Martin, 2007; L€ubke & Feldmeyer,
2007). The organization of the presubiculum is suggested to lie
between these patterns with elements of horizontal and vertical
stratification.
The superficial layers I–III of the presubiculum are separated by a

plexiform layer IV (lamina dissecans) from the deep layers, V and
VI (Canto et al., 2008). The deep layers are in continuity with those
of the entorhinal cortex (Lorente de No, 1934; Witter et al., 1989;
Van Strien et al., 2009). Evidence for a vertical, columnar organiza-
tion is more controversial. Vertical structures appear transiently dur-
ing early postnatal development in mice (Nishikawa et al., 2002).
The monkey presubiculum exhibits a vertical neurochemical modu-
larity, for calbindin and cytochrome oxidase, in layers I and II (Ding
& Rockland, 2001), which may correspond to a patchy afferent
innervation (Goldman-Rakic et al., 1984) also evident in the Nissl-
stained human presubiculum (Longson et al., 1997).

The presubiculum may have a specific role in the representation
of space by the hippocampal formation (Rolls, 2006). Some presu-
bicular cells signal head direction persistently (Ranck, 1984; Taube
et al., 1990), and some are sensitive to location (Cacucci et al.,
2004; Boccara et al., 2010). Head direction signalling in the presu-
biculum probably depends on specific afferent information. Afferents
include polymodal inputs to layers I and III from the visual and ret-
rosplenial cortex (Vogt & Miller, 1983; Kononenko & Witter, 2012)
and to layers I and III–VI from the anterior thalamus (Shipley &
Sorensen, 1975; van Groen & Wyss, 1990; Yoder et al., 2011; Shi-
bata & Honda, 2012). The presubiculum is also innervated by fibres
from the anteroventral and lateral dorsal thalamus, hippocampus and
subiculum (van Groen & Wyss, 1990; O’Mara et al., 2001). Outputs
from the presubiculum project to the entorhinal cortex (layers II/III)
and lateral mammillary nucleus (layer IV), whereas principal cells
of layers V and VI excite the anterodorsal nucleus of the thalamus
(Yoder & Taube, 2011). However, less is known about the cellular
and anatomical substrates of information processing within the
presubiculum (Funahashi & Stewart, 1997a,b). How many cell types
exist? What are their firing patterns? Do cells of different layers pos-
sess specific and distinct properties? How do principal cell dendritic
processes and axonal projections underlie the spread of activity
within the presubiculum?
To answer these questions, we correlated the anatomy with the

electrophysiology of rat presubicular neurons recorded in vitro. We
examined different morphological properties, action potential (AP)
shapes and firing patterns of pyramidal and non-pyramidal cells, situ-
ated throughout the presubiculum. Presubicular cells of different lay-
ers differed in excitability and anatomy. Most principal cells showed
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little spike frequency adaptation in vitro, consistent with their main-
tained signalling of head direction in vivo (Taube & Muller, 1998).

Materials and methods

Electrophysiology: whole-cell records in a submerged chamber

Slices containing the hippocampus, subicular complex and entorhinal
cortex were prepared from 71 male Sprague-Dawley rats aged 21–
35 days (CERJ Janvier, Le Genest Saint Isle, France), for electro-
physiological and subsequent immunohistochemical experiments.
Our care and use of the rats conformed to the European Communities
Council Directive 86/609/EEC and institutional policies and guide-
lines. Our study was approved by local ethical committees (Universit�e
Pierre et Marie Curie and INSERM). After anaesthesia with ketamine
hydrochloride and xylazine (80 and 12 mg/kg, respectively), animals
were perfused via the heart with a solution containing (in mM): 110
choline Cl, 2.5 KCl, 25 NaHCO3, 1.25 NaH2PO4, 7 D-glucose, 0.5
CaCl2 and 7 MgCl2, cooled to 2–6 °C and equilibrated with 5% CO2

in O2. The forebrain was dissected, and slices (300 lm thick) were
cut (Microm HM 650V, Walldorf, Germany). Horizontal brain sec-
tions were made in a 3.9–5.7 mm vertical range with respect to the
ear bar horizontal plane (Kruger et al., 1995), with 80% of slices
between levels 4.2 and 5.2 mm. This standardized plane allowed for
a description of the properties of neurons from a similar dorsoventral
level. Before recording, slices were stored for at least 1 h at 22–25 °
C in a chamber containing a solution of (in mM): 124 NaCl, 2.5 KCl,
26 NaHCO3, 1 NaH2PO4, 2 CaCl2, 2 MgCl2, and 11 D-glucose,
gently bubbled with 5% CO2 in O2 (pH 7.3, 305–315 mOsm/L).
Salts were obtained from Sigma (Lyon, France).
Slices were transferred to a chamber (volume~2 mL), heated to 32

–34 °C, on the stage of an Axioskop 2 FS plus microscope (Zeiss,
France) for recordings. Neurons were visualized with an EMCCD
Luca-S camera (658 9 496 pixels, 10 9 10 lm; Andor) using
infrared differential interference contrast.
Recordings were made with glass pipettes pulled using a Brown–

Flaming electrode puller (Sutter Instruments) from borosilicate glass
of external diameter 1.5 mm (Hilgenberg, Germany). The electrode
resistance, when filled with a solution containing (in mM):
130 K-gluconate, 5 KCl, 10 HEPES, 10 ethylene glycol tetra-acetic
acid, 2 MgCl2, 4 MgATP, 0.4 Tris-GTP, 10 Na2-phosphocreatine
and 2.7 biocytin, was 3–6 MΩ. Whole-cell current-clamp records
were made with an Axopatch 200A amplifier (Molecular Devices,
Sunnyvale, CA, USA) operated in fast mode and low-pass filtered at
5 kHz. A chlorided silver wire contacted the pipette solution and a
3 M KCl agar bridge contacted the bath solution, yielding an
estimated junction potential of ~15 mV, which was not corrected.
Fifteen of 133 presubicular neurons were recorded without ethylene
glycol tetra-acetic acid in the pipette solution to determine how cal-
cium buffering influenced firing frequency adaptation. The hyperpo-
larization-activated cyclic nucleotide-gated channel blocker ZD7288
(20 lM; Tocris, Bristol, UK) was bath applied in some experiments
to evaluate the presence of the hyperpolarization-activated current
(Ih) pharmacologically.

Electrophysiological intrinsic properties

The recorded signals were analysed with AxoGraph X or software
written in Labview (National Instruments). We waited for 3–5 min
after whole-cell recordings began, before measuring cellular parame-
ters as the neuronal membrane potential typically decreased by about
10 mV over this period, presumably due to the equilibration of a

Donnan potential. The resting membrane potential was the mean
potential over at least 10 s. Most electrophysiological parameters were
measured from responses to step current injections of 800 ms duration
applied from a fixed membrane potential of �65 mV. Injected currents
increased in increments of 5 pA from negative to positive values. The
range of current amplitudes was adjusted to induce voltage deflections
that ranged between a hyperpolarization to about �100 mV during the
first step and a depolarization to maximum firing frequency.
Exceptions to this protocol are specified in the text.
The neuronal input resistance (Rin) was determined as the slope

of the current–voltage relationship from �10 to 10 pA of injected
current. Membrane time constants (τ) were obtained by fitting single
or double exponentials (Axograph, Simplex algorithm) to potential
changes induced by step hyperpolarizing current injections. The
membrane capacitance (C) was calculated using the following rela-
tion: C = τ/Rin. A ‘sag index’, reflecting the presence of the h-cur-
rent, was calculated as the ratio of the maximal negative potential
(sag, reached typically between 0 and 200 ms), divided by the mean
steady-state voltage deflection (typically between 400 and 800 ms).
Action potentials were detected from continuous periods of rising

membrane potential with an amplitude threshold typically set at
30 mV (Cohen & Miles, 2000). The threshold current for firing
(rheobase) was defined as the minimum depolarizing current that ini-
tiated an AP. Input–output curves plot the mean firing frequency as
a function of the injected current. The firing frequency (Hz) was
deduced either by counting the number of APs over time (normal-
ized AP count) or by averaging all instantaneous frequencies. The
initial slope (I–O slope) was determined using the normalized AP
count from the first five current steps beyond rheobase. A bursting
index (BI) and indices to describe the initial and late firing fre-
quency adaptation [initial adaptation index (IAI) and late adaptation
index (LAI), respectively] were calculated. The BI was calculated as
1 � (ISImin/ISIav), where ISImin was the minimum interspike interval
and ISIav was the mean interspike interval. The BI was thus close to
0 for regular spiking (RS) cells and close to 1 for burst firing cells.
The IAI measured the percentage change in firing frequency from
the first to the fifth AP and the LAI measured frequency changes
between the fifth and the last AP. Both indices were calculated from
five consecutive depolarizing pulses (ΔI 5 pA), with evoked repeti-
tive firing at frequencies close to 20 Hz, and then averaged. The
adaptation indices were not calculated for intrinsic bursting neurons.
We measured the highest sustained firing frequency (‘maximum fre-
quency’) from depolarizing pulses of increasing amplitude, and
duration of 2 s. At high-amplitude current injections, the total num-
ber of APs could fall, even as the mean instantaneous frequency
continued to rise or remained stable. This point was considered as
the maximal sustainable frequency.
The AP threshold was measured from the first evoked AP, as the

potential where dV/dt > 10 V/s (Fricker et al., 1999). The AP peak
was its maximum potential. The AP height was measured as the dif-
ference between the AP peak and maximal afterhyperpolarization
(AHP), during the next 20 ms. The AHP amplitude denotes the volt-
age difference between AHP and threshold. The AHP trajectories
were sometimes complex, with a first AHP followed by an afterde-
polarization and then a second AHP. For simple AHP trajectories,
the first AHP equalled AHP. The AP rising amplitude was the
difference between the threshold and the peak AP voltage. The AP
width was measured from the first AP, at the midpoint of the AP
rising phase. dV/dt was monitored during the evolution of the AP.
The maximum and minimum dV/dt, occurring during the rising
phase and falling phase respectively, are given as the maximum
depolarization rate and the maximum repolarization rate.
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Anatomy and immunohistochemistry

Neurons were filled with biocytin, included in the recording pipette
(1 mg/mL), so that their anatomy could be examined. Slices con-
taining filled cells were fixed overnight at 4 °C in 4% paraformalde-
hyde in 0.12 M phosphate buffer (pH 7.4), rinsed in phosphate
buffer, and cryoprotected in 30% sucrose. Membranes were permea-
bilized by three cycles of freezing/thawing over dry ice. The mor-
phology was revealed using a streptavidin–Cy3 conjugate (1 : 500,
Invitrogen, Eugene, OR, USA). Filled cells were visualized with a
QImaging Retiga EXI camera (Qimaging Surrey, BC, Canada), and
scanned with an Optigrid II (Thales Optem, Qioptik, Rochester, NY,
USA) mounted on an inverted Olympus IX81 microscope. The Opti-
grid system permitted the acquisition of structured images and the
subsequent three-dimensional reconstruction of filled neurons with
the software Volocity (Improvision, Perkin-Elmer, Coventry, UK).
Stacks of 75–250 images were acquired using a 9 20 NA 0.85 oil
immersion objective (steps of 0.5 lm between images). Overview
images were acquired with a 9 4 objective of NA 0.16. All princi-
pal cells had dendritic spines. Pyramidal neurons possessed one or
two main (apical) dendrites oriented radially toward the pial surface.
The main dendrite of inversed pyramidal cells was oriented away
from the pial surface. Multiform cells did not have an obvious main
dendrite.

B iocytin reconstruction of neurons

Neurolucida software (Microbrightfield, Williston, VT, USA) was
used to reconstruct the neuronal form in three dimensions from

stacks of acquired images (Fig. 1A). Dendritic arbors were
described by wedge analysis. From the soma of each cell, 12 seg-
ments each occupying 30° of arc were created, starting with a
� 15° segment centred on the vertical. The cortical surface was
set as 0°, the subiculum was situated to the left and the parasubic-
ulum to the right. The total dendritic length in each segment was
measured. Twelve-segment wedges were converted to six-segment
wedges for some analyses by summing pairs of adjacent segments,
starting with that centred on 0°. The Neurolucida function ‘layer
length analysis’ was used to determine dendritic length in each
presubicular layer. Axonal projections within the presubiculum
were defined for projections that could be followed within axons
for 500 lm or more. No correction for tissue shrinkage was
applied.

Proj ection onto a standardized presubiculum map

We wished to compare the form of neurons from different slices.
We therefore projected the somatic location of each recorded cell
onto a standardized map of the presubiculum. One axis of this map
followed the cortical surface from the border between the subiculum
and presubiculum to that between the presubiculum and parasubicu-
lum. The other axis corresponded to the apical–basilar dendritic axis
of pyramidal cells. This axis closely followed the orientation of
blood vessels penetrating the presubiculum from the pia (Fig. 1C).
Each recorded neuron was assigned normalized x/y coordinates
(between 0 and 1) according to the location of its soma in the presu-
biculum (Fig. 1D).
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Fig. 1. Situation and anatomy of the rat presubiculum. (A) Horizontal section (300 lm) stained with 4',6-diamidino-2-phenylindole to reveal nuclei in the hip-
pocampus and parahippocampal regions. The presubiculum (PrS) and parasubiculum (PaS) are indicated as well as the subiculum (Sub), entorhinal cortex (EC),
dentate gyrus (DG) and CA3 and CA1 regions. (B) Enlargement of the presubiculum from the inset in A showing differences in cell density in different cytoar-
chitectonic layers I-VI. Blood vessels (arrowheads) project from the pia to the deep presubiculum. (C) Left panel: the major axis of pyramidal cell dendrites
(n = 26) is closely aligned with blood vessel orientation. Right panel: x–y coordinates for somatic location on a standardized map. x coordinates give the lateral
position of the cell body, ranging from 0 (next to the subiculum) to 1 (next to the parasubiculum). y coordinates indicate cell depth (0, cortical surface; 1, below
layer VI). (D) x–y coordinates of n = 101 identified presubicular neurons plotted on the standardized map. Filled circles, cells with a complete dataset of mor-
phological and electrophysiological parameters included in cluster analysis (clus). Grey circles, cells with partial datasets, not included in cluster analysis (non-
clus). Diamonds, interneurons (in), not included in cluster analysis.
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Interneurons

Putative interneurons were identified according to several criteria.
Fast spiking neurons were classified as interneurons, when firing in
response to current injection was sustained at maximum instanta-
neous firing frequencies >> 100 Hz (n = 8). Other cells were classi-
fied as stuttering interneurons, if they discharged with an
instantaneous firing frequency >> 100 Hz, and firing was not con-
tinuous but interrupted by silent intervals (n = 2; Petilla Interneuron
Nomenclature Group et al., 2008). For these and other cells, inter-
neuron identity was confirmed if the AP halfwidth was short
(< 0.7 ms) and spikes were followed by a deep AHP of amplitude
at least 15 mV. Anatomical evidence was also used to confirm inter-
neuron identity. The criteria applied to well-filled cells included a
non-pyramidal morphology, dendrites with few or no dendritic
spines and a dense, local axonal arborization. A very high firing fre-
quency was the single most reliable criterion for classification. Typi-
cally, identified interneurons fulfilled most of the criteria that we
used. However, in the absence of immunohistochemistry, we cannot
exclude that some cells may have falsely been classified as principal
neurons.

Cluster analysis

The neuronal form, position and electrical properties were used to
make a bias-free classification of principal cells based on unsuper-
vised clustering. Neurons classified as interneurons on the basis of
anatomical and physiological criteria were excluded. Clustering was
based on 14 electrophysiological, 13 morphological and two posi-
tional parameters. The electrophysiological parameters were: passive
and active properties (resting membrane potential, Rin, tau, sag
ratio, rheobase, I–O slope, mean instantaneous frequencies for a
100 pA current step injection, mean of BI for the five first steps
with at least five APs), and AP properties (width, AHP, first AHP,
amplitude, maximum depolarization rate and maximum repolariza-
tion rate). The morphological properties were dendrite count, den-
dritic length, six-segment wedge-analysis results (six values) and
layer-length-analysis results (five values). The positional parameters
were standardized coordinates. Each neuron was thus represented
by one point in a multidimensional space (29 dimensions). Our
clustering was based on Ward’s method (Ward, 1963), as previ-
ously used to classify neuronal subpopulations (Cauli et al., 2000).
It was implemented using MATLAB (The Mathwork) and its statisti-
cal toolbox. Data were first standardized by centring and reducing
all values. For each step of this agglomerative method, the two
closest points (neurons) were grouped together using the matrix of
their Euclidean distances. The centroid of the newly created popula-
tion substituted the two previous values, updating the matrix of
Euclidean distance then used for the subsequent step. For each step,
the mean individual-to-centroid distance (or mean within-cluster
distance) was calculated. This value typically decreased as the num-
ber of clusters increased. The maximum reduction (breaking point)
defined a statistically optimal number of clusters (Thorndike proce-
dure) (Thorndike, 1953). For each number of clusters, different
parameters were described statistically to provide a ‘biological sig-
nature’ for each cluster. Final clusters were defined from statistical
and biological parameters as described in the Results.

Statistics

Results are given as mean � SEM. 25%, 50% and 75% quantiles
are indicated in Supporting Information Table S2. Statistical analysis

was performed with Prism (GraphPad Software, Inc.). We calculated
Pearson’s r correlation index to reveal the association of two vari-
ables. Statistical comparison between different cell clusters used
unpaired one-way ANOVA combined with a post hoc Tukey’s test, in
the case of normal distribution of data points, and if variances did
not differ significantly. If the normality test was not passed, or if
variances differed significantly, we applied the non-parametric
Kruskal–Wallis test followed by Dunn’s multiple comparison test
(Supporting Information Table S1). When comparing a value of one
cluster with all of the other clusters, the highest P-values are given
in the text.

Results

Presubicular anatomy and distribution of presubicular neurons

The rat presubiculum is shown in the context of the hippocampal
formation in Fig. 1A and in greater detail in Fig. 1B. In our slice
preparation, it was a curved, rather trapezoid region (Fig. 1B and
C). The thickness of the layers and particularly that of layers II/III
increased between the proximal presubiculum, next to the subicu-
lum, and the distal part next to the parasubiculum. Apical dendrites
of pyramidal neurons ran towards the cortical surface. Blood vessels
of this strongly vascularized region followed the same radial axis
(Fig. 1B, arrowheads). The orientation of the blood vessels and api-
cal dendrites of nearby pyramidal cells were typically close, within
10% (n = 30 slices, Fig. 1C). Thus, the blood vessel orientation
was closely aligned with the somatodendritic axis of principal cells
in this region.
The neuronal somatic depth was therefore situated on a standard-

ized map with respect to the axis defined by presubicular blood ves-
sels. Laterally, the somatic position could vary between 0 at the
most proximal region of the presubiculum bordering the subiculum,
and 1 at the most distal limit at the border to the parasubiculum
(Fig. 1C). The vertical coordinates varied between 0 at the pial sur-
face, and 1 at the lower limit of the presubiculum (Fig. 1C).
We recorded from 133 neurons distributed throughout the presu-

biculum. The somatodendritic anatomy was recovered for 101 bio-
cytin-filled neurons with somata in all layers of the presubiculum
as shown in Fig. 1D. We performed cluster analysis on a subset
of 58 principal cells (Fig. 1D, black dots) with complete data for
all morphological and electrophysiological parameters (Table 1).
Putative interneurons were not included in this analysis. Ten
recorded cells with somata in superficial or deep layers were iden-
tified as interneurons (Fig. 1D, diamonds), according to their firing
pattern, short AP width, maximum firing frequency higher than
100 Hz, non-pyramidal dendritic and axonal form, and the absence
of dendritic spines.

Cluster analysis reveals four main groups of presubicular
neurons

An unsupervised cluster analysis was used to classify presubicular
neurons based on the electrophysiological, morphological and posi-
tional parameters of Table 1 (n = 58, see Materials and methods).
Figure 2A shows the hierarchical tree diagram of clusters that
emerged. Small distances indicate close cells or groups of cells.
Clusters were cell groups with a separating Euclidean distance
higher than a defined cutoff. The Thorndike procedure first separated
two clusters (within-cluster distance drop from 5.03 to 4.23) of neu-
rons with somata located in superficial and deeper layers. The
within-cluster distance was more than 1.5 9 higher (5.14 vs. 3.32)
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in the second than in the first cluster, corresponding to a higher vari-
ability in the second cluster. Decreasing the cutoff value further sep-
arated the second cluster into a group of deep layer neurons, and a
distinct neuronal population in layer IV (Fig. 2B).
The emerging clusters thus corresponded quite closely to the

principal cell somatic location on an axis between layers II and
VI. Cluster 1 comprised RS cells of superficial layers II and III
(n = 24; RS sup cells). Cluster 2 contained intrinsically burst firing
cells of layer IV (n = 6; IB cells). Cluster 3 was composed of
mostly RS cells of layers V and VI (n = 28; RS deep cells). This
cluster was subdivided into two further subgroups: cluster 3.1 of
regularly spiking neurons with diverse morphologies (n = 17; RS
deep-1) and cluster 3.2 of more excitable regularly spiking, pyra-
midal-shaped cells (n = 11; RS deep-2). We now describe each of
these four groups of presubicular principal cells in detail.

Principal cells of cluster 1 : regular firing neurons with somata
in layers II and III

Figure 3A shows the reconstructed, two-dimensional dendritic form
for seven neurons with somata located in superficial layers of the
presubiculum. Layer I was relatively cell-free, with sparse, possibly
inhibitory neurons. We recorded 44 cells, mostly with a pyramidal
dendritic form, from layers II or III. Twenty-four of these neurons,
with data on all parameters, were included in the cluster analysis
and were grouped together in cluster 1.

The presubicular pyramidal cells of layers II and III typically
had rather small somata with a cross-sectional area of 94 �
6 lm2 (n = 20, Supporting Information Fig. S1). They extended a
single major apical dendrite that ramified with terminal apical tuft
dendrites in layer I as it approached the cortical surface (Fig. 3A).
The apical dendrites of some cells bifurcated at several tens of
lm from the soma to form twin dendrites that usually branched
symmetrically. Layer II/III neurons extended up to seven basal
dendrites (4.5 � 0.3, n = 24) and some cells possessed sparse
oblique dendrites. The apical dendrites of these cells were radially
oriented, whereas the basal dendrites extended in all directions
from the soma (Fig. 7A, RS sup, blue). Three layer II neurons
were atypical with less well-defined apical and basilar dendrites
(e.g. cell No. 174 in Fig. 3A). The mean total dendritic length of
superficial pyramidal cells was 3175 � 171 lm (n = 24; for
n = 21 neurons, apical 1741 � 126 lm; basal 1496 � 114 lm).
The greatest mean dendritic length was found in segments oriented
towards the cortical surface (Fig. 7A) with a high density of distal
apical tuft dendrites in layer I. The basal dendrites of layer II/III
neurons did not penetrate deep layers, but rather extended
horizontally on approaching the border with layer IV (Fig. 7B
and C).
Neurons of all clusters possessed a high density of dendritic

spines. Well-filled cells projected profuse local axon collaterals,
thinner than dendrites with varicosities. The axons of the superficial
cells in cluster 1 tended to project to deeper layers of the presubicu-

Table 1. Electrophysiological and dendritic properties of presubicular neuron clusters

Clusters

1 – RS sup 2 – IB 3.1 – RS deep 1 3.2 – RS deep 2

Mean SEM n Mean SEM n Mean SEM n Mean SEM n

Lateral position (normalized coordinates) 0.40 0.03 24 0.36 0.04 6 0.39 0.03 17 0.39 0.06 11
Cell depth (normalized coordinates) 0.39 0.02 24 0.59 0.02 6 0.82 0.02 17 0.72 0.04 11
Resting membrane potential (mV) �77.5 0.8 24 �62.1 1.4 6 �71.1 1.3 17 �67.9 1.6 11
Neuronal input resistance (MΩ) 360 24 24 216 28 6 415 32 17 819 67 11
Tau (ms) 22 1 24 18 2 6 26 3 17 52 7 11
Sag ratio 1.06 0.01 24 1.23 0.03 6 1.18 0.03 17 1.10 0.02 11
Rheobase (pA) 37 2 24 43 8 6 36 4 17 15 1 11
Firing rate at 100 pA (Hz) 27 1 24 68 22 6 24 2 17 33 1 11
Input–output slope (Hz/nA) 463 24 24 346 196 6 371 23 17 514 27 11
Bursting Index 0.18 0.02 24 0.88 0.04 6 0.32 0.06 17 0.19 0.05 11
AP width (ms) 0.80 0.03 24 0.89 0.05 6 0.95 0.05 17 1.24 0.10 11
AP AHP (mV) �12.7 0.4 24 �14.8 1.7 6 �14.6 0.8 17 �14.2 0.8 11
AP rise amplitude (mV) 98.1 1.0 24 89.8 3.5 6 92.7 1.5 17 94.4 1.7 11
AP maximum depolarization rate (V/s) 506 19 24 359 26 6 367 16 17 340 24 11
AP maximum repolarization rate (V/s) �122 5 24 �91 7 6 �97 5 17 �80 6 11
AP first AHP (mV) �11.6 0.5 24 2.8 1.2 6 �13.7 0.9 17 �13.8 0.8 11
Dendritic count 4.5 0.3 24 5.3 0.6 6 5.4 0.4 17 3.9 0.4 11
Dendritic length (lm) 3175 171 24 3357 416 6 3861 263 17 3166 295 11
Layer I dendritic length (lm) 1340 108 24 1056 311 6 239 151 17 510 106 11
Layer II dendritic length (lm) 254 48 24 258 28 6 102 63 17 161 34 11
Layer III dendritic length (lm) 1481 139 24 558 171 6 224 63 17 602 133 11
Layer IV dendritic length (lm) 87 30 24 1167 100 6 239 80 17 355 117 11
Layer V/VI dendritic length (lm) 0 0 24 266 109 6 2631 208 17 1775 227 11
0° wedge dendritic length (lm) 1532 107 24 1762 267 6 748 132 17 1208 242 11
60° wedge dendritic length (lm) 276 59 24 383 171 6 695 200 17 396 150 11
120° wedge dendritic length (lm) 216 32 24 309 73 6 525 132 17 302 91 11
180° wedge dendritic length (lm) 442 59 24 327 66 6 906 115 17 428 72 11
240° wedge dendritic length (lm) 451 60 24 311 40 6 484 90 17 564 129 11
300° wedge dendritic length (lm) 281 58 24 292 42 6 535 52 17 283 76 11

Cluster 1 corresponds to RS cells in layers II/III (RS sup); cluster 2 corresponds to intrinsic bursting neurons (IB) with soma location in layer IV; clusters 3.1
and 3.2 correspond to subpopulations of RS neurons in layer V/VI (RS deep-1 and RS deep-2). Electrophysiological and morphological parameters used for
cluster analysis are given for each of the four main clusters.
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lum (six out of 10 well-filled axons, cf. Fig. 7D and E). Possible
longer range axonal projections were typically cut in the slice prepa-
ration.
The layer II/III neurons of cluster 1 did not discharge spontane-

ously in either cell-attached or whole-cell recording modes. The
membrane voltage measured several minutes after break-in was
�77.5 � 0.8 mV, more negative than in other clusters (ANOVA and
Tukey’s post hoc test, P < 0.001). Their mean firing threshold was
�39.8 � 0.5 mV (n = 24). An Rin of 360 � 24 MΩ and a mem-
brane time constant, tau, of 22 � 1 ms were measured from step
current injections made from a holding voltage of �65 mV. All
layer II/III neurons discharged regularly in response to maintained
or step current injections (Table 1; Fig. 3B and C).
The potential difference between the resting and threshold poten-

tial in layer II/III neurons was 37.7 � 0.9 mV (cf. Fig. 8A, blue cir-
cles). The mean rheobase, the minimum current needed to elicit an
AP, at a latency < 800 ms was 37 � 2 pA. Figure 3B shows the
responses of three principal neurons located in layer II or III to step
current injections. The input–output curves (Fig. 8), constructed by
plotting the number of APs (E) or their frequency (F) against the
injected current, had a mean initial slope of 463 � 24 Hz/nA. At
larger currents, the total number of APs could fall, even as the peak
instantaneous frequency continued to rise or remained stable. This
point was considered as the maximal sustainable frequency
(48 � 3 Hz, n = 14).

The AP peak and amplitude in neurons of layers II/III were
58.2 � 0.8 and 98.1 � 1.0 mV, respectively. The mean duration at
half amplitude of evoked APs was rather short, 0.80 � 0.03 ms,
shorter than for other clusters (Fig. 8G). The maximum AP depolar-
ization and repolarization rates were fast (506 � 19 and
�122 � 5 V/s, respectively) (Fig. 8H). The spike AHP was typi-
cally complex or biphasic (Fig. 3D), with a mean maximal ampli-
tude of �12.7 � 0.4 mV.
The Ih inferred by a ‘sag’ in responses to step hyperpolarizations,

was small or absent in layer II/III cells (Figs 3B and 8C). The addi-
tion of ZD7288, an Ih blocker, caused little change in membrane
resistance at rest (20 lM, n = 3, < 10%).

Pyramidal cells of cluster 2 : burst firing neurons with somata
in layer IV

Figure 4A shows the reconstructed somatodendritic form of four
neurons with somata located in the less densely populated layer IV
(lamina dissecans). We recorded nine cells from this region and six
of them included in the cluster analysis formed a distinct group
(cluster 2).
Layer IV may represent a continuation of the subiculum (Fig. 1B)

with large pyramidal cells of this region projecting to the lateral
mammillary nuclei (Yoder & Taube, 2011). The mean cross-sectional
area of the somata was 159 � 8 lm2 (n = 6, Supporting Information
Fig. S1). The cells shown in Fig. 4A possess prominent apical den-
drites extending towards the pia, with a more or less elaborate tuft,
and three to five basal dendrites. The mean total dendritic length was
3357 � 416 lm (n = 6). Dendrites of layer IV cells ramified largely
in layers I-IV, with lesser projections to layer V/VI (Fig. 7, intrinsic
bursting cells, red). The dendrites of some cells deviated asymmetri-
cally from the main tissue axis. Those of neurons close to the subicu-
lum, in particular, were often oriented towards the subiculum
(cf. Fig. 4A, No. 151 and 188). Axons of well-filled layer IV pyrami-
dal cells ramified in all layers, except layer I (Fig. 7D and E).
The pyramidal cells of layer IV discharged in single or

repeated bursts in response to suprathreshold current steps (n = 6;
BI 0.88 � 0.04, Fig. 4B and C). Their mean resting membrane
potential was �62.1 � 1.4 mV, less negative than the pyramidal
cells of layers II and III, and the mean voltage threshold was
�44.1 � 2.0 mV (n = 6). The mean membrane resistance was
216 � 28 MΩ, lower than for cells of other clusters, and
the time constant was short (18 � 2 ms). We distinguished
weakly burst firing cells (two of six cells; Fig. 4, No. 142) where
current injection induced an initial burst of two to five APs (at
intervals of 3–10 ms) followed by regular firing at 10–50 Hz,
from more strongly bursting neurons where repetitive bursting
was elicited (four of six cells; Fig. 4, No. 150) (cf. Williams &
Stuart, 1999).
The potential difference between the resting and threshold poten-

tial in burst firing neurons was 18.0 � 2.4 mV, smaller than for
cells of other clusters (Fig. 8A, red squares). Nevertheless, the mean
rheobase was higher than in other clusters (43 � 8 pA). Rebound
spikes were sometimes observed after the offset of a hyperpolarizing
pulse (not shown). Bursting neurons had a high sag index
(1.23 � 0.03) (Fig. 8C). The sag was suppressed by the Ih blocker
ZD7288 (20 lM, n = 2) but burst firing was maintained (not
shown).
The AP peak and amplitude were 45.6 � 2.7 and 89.8 �

3.5 mV, respectively, with a mean halfwidth of 0.89 � 0.05 ms
(Figs 4D and 8G). The first AP of a burst repolarized to a potential
of + 2.8 � 1.2 mV before a second AP was initiated (‘first AHP’;
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Fig. 2. Classification of presubicular cell types by cluster analysis. Fifty-
eight neurons with complete anatomical and physiological data (cell identifi-
cation number, right) were included in the analysis based on the parameters
given in Table 1. (A) Dendrogram reveals three main clusters: 1, 2 and 3.
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between the two subgroups. (B) The three main clusters correspond to neu-
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bursting (IB)] fire in bursts. The BI shows a gradient. Most cells from clus-
ters 1 and 3 fire regularly (blue, RS sup, Regular Spiking cells of layers
II/III; green, RS deep, Regular Spiking cells of layers V/VI).
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Fig. 4D). Following a burst, a mean AHP of amplitude of
�14.8 � 1.7 mV was reached after 60 � 17 ms.

Cells of clusters 3. 1 and 3. 2 : regular firing neurons with
diverse anatomy and somata in layers V / V I

The morphologies of neurons with somata located in deep layers V
and VI were more diverse than those of superficial cells of cluster
1. They possessed pyramidal, polymorphic or multiform dendritic
shapes (Figs 5A and 6A) (Lorente de No, 1934). Thirty-eight cells
were recorded from layers V and VI, and 28 of them with complete
data formed a third cluster. This cluster was in turn separated
(Fig. 2A) into cluster 3.1 (n = 17) and cluster 3.2 (n = 11). The
APs of neurons from clusters 3.1 and 3.2 tended to be larger and
slower than those of the superficial layer cells of cluster 1. The

mean halfwidth for APs of cluster 3.2 cells was longer than for all
other clusters.
Figure 5A shows the somatodendritic anatomy for five layer V/VI

neurons of cluster 3.1. Their cross-sectional soma area was
143 � 11 lm2 (n = 14, Supporting Information Fig. S1). The apical
dendrites of cells in this cluster either extended to layer I forming a
sparse tuft (No. 159) or terminated abruptly in layer II/III (No. 163).
They possessed one to six basal dendrites. Multiform cells did not
have a single, major dendrite, but rather three to six primary den-
drites oriented in different directions within the deep layers or
towards layer III (No. 128). Inverted pyramidal cells possessed one
major dendrite extended laterally or downward, and another three to
four first-order dendrites (No. 132). The mean total dendritic length
of cluster 3.1 cells was 3861 � 263 lm (n = 17), higher than in all
other clusters. The dendritic distribution for all deep layer cell types
was maximal in layer V/VI with little spread to superficial layers
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Fig. 3. Cluster 1 neurons with somata in presubicular layers II and III (RS sup cells). (A) Reconstructions of seven biocytin-filled neurons in superficial layers
of the presubiculum. Most cells in cluster 1 are small pyramidal-shaped neurons. Neurons are rotated to present the radial axis as vertical. Axons are red, den-
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cells in response to a + 150 pA step current injection. (D) AP waveforms show a rather short AP halfwidth. (E) AP phase plots reveal high rising dV/dt in clus-
ter 1 cells. Vm, membrane potential.
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(Fig. 7A–C). Well-filled local axons of deep layer cells projected
into the superficial layers (n = 6/12) (Honda et al., 2008, 2011) and
projecting axons were cut as they entered the white matter.
The mean resting potential of neurons of cluster 3.1 in layers V/

VI was �71.1 � 1.3 mV (n = 17), more depolarized than the
superficial cells. The mean voltage threshold was �38.8 � 0.7 mV.
The mean membrane resistance was 415 � 32 MΩ, which was
rather high, and the mean membrane time constant, tau, was
26 � 3 ms, longer than in the superficial layer neurons. These cells
tended to fire repetitively in response to step current injections. The
difference between the resting and threshold potential in cluster 3.1
cells was 32 � 2 mV. The mean rheobase was 36 � 4 pA. Fig-
ure 5B and C shows repetitive discharges induced by step current
injections in different deep layer pyramidal cells and a multiform
cell. The input–output curves (Fig. 8E and F) for cells of this cluster
were similar to those of cluster 1, with a mean initial slope of
371 � 23 Hz/nA. The maximal sustained firing frequency was
35 � 3 Hz (n = 9).
The mean sag index for cells of cluster 3.1 was 1.18 � 0.03

(Fig. 8C). The sag was suppressed by ZD7288 (10 lM; n = 3), and
the resting membrane potential hyperpolarized by �10 mV (not
shown). Thus, in the absence of Ih, the membrane potential of these
neurons approached that of layer II/III cells.
The AP peak and amplitude for cells of cluster 3.1 were

53.9 � 1.1 and 92.7 � 1.5 mV, respectively, and the AP width was
0.95 � 0.05 ms (Fig. 8G). The maximum rates of AP depolarization
and repolarization were 367 � 16 and �97 � 5 V/s, respectively.
This was lower than in superficial RS cells (depolarization rate:
Kruskal–Wallis with Dunn’s multiple comparisons test, P < 0.001;

repolarization rate, normal distribution: ANOVA and Tukey’s post hoc
test, P < 0.01), as revealed by phase plots of APs (Figs 5E and
8H). The APs in some cells repolarized with a shoulder (Fig. 5D)
unlike RS superficial layer cells. The amplitude of the AHP was
�14.6 � 0.8 mV.
Figure 6A shows the somatodendritic form of five neurons with

somata located in layer V/VI that were grouped in cluster 3.2 (soma
cross-sectional area, 136 � 8 lm2; n = 11). The dendrites of these
cells were pyramidal shaped, largely oriented in segments directed
towards or away from the pial surface and often with a slender hori-
zontal spread (Fig. 7A). The mean total dendritic length for cluster
3.2 cells was 3166 � 295 lm (n = 11). Dendrites were largely con-
fined to deep layers V and VI, even though proportionally more
dendrites of cluster 3.2 cells projected to layers I-III compared with
those of neurons from cluster 3.1 (Fig. 7B and C). Well-filled axons
of cluster 3.2 cells tended to ramify locally in deep layers and typi-
cally also projected into superficial layers, as for those of cluster 3.1
cells.
The neurons of cluster 3.2 had a mean resting potential of
�67.9 � 1.6 mV (n = 11), more depolarized than superficial cells,
and their mean voltage threshold was �40.1 � 0.6 mV. The mean
membrane resistance was 819 � 67 MΩ, higher than in all other
clusters (Kruskal–Wallis with Dunn’s multiple comparisons test,
P < 0.01), and the mean membrane time constant, tau, was
52 � 7 ms, which was also high (Kruskal–Wallis with Dunn’s mul-
tiple comparisons test, P < 0.01) The difference between the resting
and threshold potential in these pyramidal cells of layers V and VI
was 27.9 � 1.9 mV. The mean rheobase was 15 � 1 pA, signifi-
cantly lower than in other clusters (Kruskal–Wallis with Dunn’s
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multiple comparisons test, P < 0.01). Figure 6B and C shows regu-
lar, repetitive firing induced by step current injections for three deep
layer pyramidal cells. The input–output curves (Fig. 8E and F) for
cluster 3.2 cells had the steepest mean initial slope of 514 � 27 Hz/
nA. The maximal sustained firing frequency was 31 � 7 Hz
(n = 4).
The mean sag index for RS deep layer cells of cluster 3.2 was

1.10 � 0.02 (Fig. 8C). The peak and amplitude voltage of the first
AP were 54.4 � 1.5 and 94.4 � 1.7 mV, respectively. The mean
AP width was 1.24 � 0.1 ms, larger than other clusters (Fig. 8G).
The APs of cluster 3.2 possessed a ‘shoulder’ upon repolarization
similar to neurons of cluster 3.1. The maximum rates of AP

depolarization and repolarization were 340 � 24 and �80 � 6 V/s,
respectively (Fig. 8H). The amplitude of the AHP was
�14.2 � 0.8 mV.

R epetitive firing: frequency, regularity and adaptation

Many presubicular neurons signal head direction (Taube et al.,
1990). While an animal’s head is oriented in its preferred direction,
a given presubicular cell discharges APs in sustained fashion over
periods of several minutes. We found that small positive current
injections (40–120 pA) induced maintained firing in both deep and
superficial layer cells in vitro. In records from 14 neurons, a
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maintained current was applied for at least 60 s to induce an initial
firing at 15–25 Hz, which is similar to physiological firing rates in
vivo (Taube et al., 1990). Even though the firing frequency tended
to decline over time, all 14 cells tested fired repetitively in a main-
tained fashion while the current was applied (Fig. 9A). The firing
frequency after 60 s was between 5 and 20 Hz.
To better define the firing frequency adaptation from cells of clus-

ter 1 and 3, we analysed responses to a standard 800 ms depolariz-
ing pulse (Fig. 9C). As early firing frequency adaptation was
usually more pronounced than late adaptation, we calculated two
indices: the IAI and LAI, showing the evolution of firing frequency
before and after the fifth AP, respectively. The mean IAI was
�23 � 4% (n = 52). Strong initial adaptation was correlated with a
high BI, as was the case for some cluster 3 neurons with a narrow
first interspike interval (Pearson’s r = 0.8, P < 0.0001, Fig. 9D).
Late adaptation was smaller than initial adaptation, with a mean LAI

of �9 � 1% at 20 Hz (n = 52, Fig. 9E), and this adaptation index
varied little for physiological firing frequencies.
As neurons discharge repetitively, calcium enters and activates

several potassium channels with different kinetics that could con-
tribute to distinct time scales of adaptation. We thus asked how
adaptation was affected by omitting the calcium buffer ethylene
glycol tetra-acetic acid from the recording solution. The current and
voltage thresholds were reduced in the absence of the Ca buffer, so
smaller currents could induce similar frequencies of firing. Both
early and late adaptation were significantly reduced. In the absence
of ethylene glycol tetra-acetic acid, the IAI was �11 � 4% and the
LAI was as small as �2 � 3% (for mean firing frequencies of
20 Hz; n = 15).
Overall, these data show that RS presubicular cells fire in sus-

tained fashion with only a minor degree of adaptation that is due in
part to currents resulting from Ca entry.
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Discussion

We have classified presubicular principal cells, using an unsuper-
vised cluster analysis based on cellular position, form and physiol-
ogy obtained from in vitro records. The presubicular cell types from
our analysis tend to correspond to neuronal types in other cortical
regions. The presubiculum is situated at the transition between the
archicortex and neocortex. Our data suggest that the neuronal types
and their spatial arrangement in this region are closer to those of the
entorhinal cortex than the cloud-like architecture of the subiculum.
In particular, our cluster analysis revealed groups of neurons with
similar properties arranged in the superficial, intermediate and deep

layers of the presubiculum. Two specific features of the presubicular
neurons are of interest. First, layer IV cells, of the sparsely popu-
lated lamina dissecans, fired in bursts of APs, whereas principal
cells from other superficial and deep layers discharged regularly.
Second, repetitively firing principal neurons showed very little fre-
quency adaptation consistent with a possible role in a maintained
signalling of head direction.

The presubicular cortex is a transitional cortical region

The presubiculum can be divided into six cytoarchitecturally distinct
horizontal layers. None of the layers are as densely packed as the
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stratum pyramidale of the hippocampus proper, even though layers
II and III contain a high pyramidal cell density (Figs 1 and 3). We
show that the presubiculum shares features with the isocortex, where

distinct cell populations are found in distinct layers. The firing pat-
terns of presubicular neurons correspond to the RS and intrinsically
bursting neurons of the neocortex (Connors & Gutnick, 1990). We
also detected interneurons (Fig. 1D). Cells identified as interneurons
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on the basis of anatomical and physiological criteria (Materials and
methods) were encountered at a frequency similar to the estimated
proportion of GABAergic neurons in the cortex. They were not
included in the cluster analysis.
Columnar borders were not obvious in our slices of the presubicu-

lum, even though columnar structures are transiently visible in
young mice (Nishikawa et al., 2002). However, axons of layer II
and III neurons are radially oriented towards deep layers and may
form elements of a vertical functional orientation (cf. Fig. 3). Deep
layer axons may project out of the presubiculum as in the canonical
neocortex. Ontogenetically, the presubiculum, together with the en-
torhinal cortex, belongs to an intermediate periallocortex (Filimo-
noff, 1947). Presubicular cells share some functional properties with
the medial entorhinal cortex, in that both code for head direction
and also for spatial grid information (Boccara et al., 2010). The
deep presubicular layers V and VI and the neuronal types situated
in them (Fig. 1) seem to be similar in form and physiology to analo-
gous layers of the entorhinal cortex (Hamam et al., 2000; Tahvildari
& Alonso, 2005; Canto & Witter, 2012). Layer III presubicular cells
extend only a very small portion of their basilar dendrites to deep
layers as do the cells of this layer in the medial entorhinal cortex.
There are some differences, however, including an absence in the
presubiculum of ‘fanned’ cells like those of layer II of the lateral en-
torhinal cortex (Tahvildari & Alonso, 2005). In presubiculum layer
II we find mainly pyramidal neurons and only rare stellate cells as
in the medial entorhinal cortex (Canto & Witter, 2012). Further-
more, in contrast to the lamina dissecans of the entorhinal cortex
(Canto & Witter, 2012), presubicular layer IV contains burst firing
neurons (Figs 2 and 4). The anatomical continuity of layer IV with
the subiculum, and the presence of bursting cells in both regions
(Jarsky et al., 2008) may reflect a common origin.

Cluster classification of presubicular neurons

Principal cells were classified with an unsupervised cluster analysis
based on the somatic location, morphology and firing pattern. We
focused on a limited dorsoventral portion at the centre of the presu-
biculum. At this level, superficial cells (layers II and III; cluster 1)
were separated from deep cells (layers V and VI; cluster 3), and
burst firing pyramidal neurons of layer IV emerged as a distinct
third group (cluster 2, Fig. 2). These three clusters coincided with
the neuronal somatic location. Our analysis suggests that neurons
from the deep layers may be separated into two subgroups (clusters
3.1 and 3.2).
The presubicular principal cells of superficial layers II/III dis-

charged regularly and were grouped into cluster 1. The form and
electrophysiology of neurons from layers II and III was rather
homogeneous, even though 4',6-diamidino-2-phenylindole staining
may suggest cytoarchitectural differences between these layers. The
principal cells of the superficial layers in cluster 1 were the least
excitable neurons recorded. The apical dendrites of superficial pyra-
midal cells may be innervated by afferents from the retrosplenial
and visual cortices as well as the thalamus and hippocampus (van
Groen & Wyss, 1990; Van Strien et al., 2009; Kononenko & Wit-
ter, 2012). The axons of presubicular cells from layers II/III typi-
cally project towards deep layers (Fig. 3; cf. Funahashi & Stewart,
1997a).
Burst firing layer IV pyramidal cells, grouped in cluster 2, have

not been described previously (Funahashi & Stewart, 1997a,b;
Yoshida & Hasselmo, 2009). These neurons have rather depolarized
resting potentials and relatively hyperpolarized firing thresholds
resulting in the smallest potential difference between rest and thresh-

old of all clusters (Fig. 8A). They express the h-current strongly.
Their apical dendrites extend to layer I where they may receive
visual and entorhinal cortex inputs (van Groen & Wyss, 1990).
Burst firing transmitted by local axons of layer IV cells should reli-
ably excite postsynaptic targets within the presubiculum and help
define functional units for processing head direction, whereas longer
range targets of these cells probably include the lateral mammillary
nucleus (Yoder & Taube, 2011).
Deep, layer V and VI cells of cluster 3 fired regularly, as did cells

of cluster 1. Cells of clusters 1 and 3 exhibited little firing frequency
adaptation consistent with a role in maintained signalling of head
position. However, both the physiology and morphology of cluster 3
cells were more variable than those of cluster 1. Deep pyramidal
cells of other cortical regions also tend to be diverse and layer VI
cells include non-pyramidal glutamatergic neurons (Hamam et al.,
2000; Andjelic et al., 2009; Canto & Witter, 2012). Some multiform
cells of cluster 3 may possibly have been GABAergic, although
their dendrites were typically spiny.
Our analysis suggests that cluster 3 may be divided into two sub-

clusters, 3.1 and 3.2. The neurons of cluster 3.1 are morphologically
and electrophysiologically diverse. The pyramidal cells of cluster
3.2 possess rare oblique dendrites and a high Rin. The majority of
their cell bodies are located in the upper portion of layer V/VI, close
to layer IV. Cluster 3.2 neurons could also correspond to the cells
projecting to the lateral mammillary nucleus described by Yoder &
Taube (2011). The responses to somatic current injection showed
that neurons of subcluster 3.2 were more excitable than cells of sub-
cluster 3.1. An enhanced excitability of layer V bursting cells in the
barrel cortex depends partly on a reduced inhibitory control (Schu-
bert et al., 2001). It remains to be shown if cluster 3.2 presubicular
cells are also less inhibited than RS neurons in cluster 1 or 3.1. Pro-
filing the gene expression (Belgard et al., 2011) in single cells from
clusters 3.1 and 3.2 might define still further subclasses in these
deep layer cells or show that they form a continuum with a range of
overlapping phenotypes.
With distinct laminar termination patterns for presubicular affer-

ents (van Groen & Wyss, 1990), deep cells with dendrites restricted
to deep layers and superficial cells presumably receive different
inputs. A minority of deep cells of cluster 3 possess dendrites that
span all layers, and could perhaps integrate information from distinct
sources. The axons of layer V/VI cells ramify locally in superficial
presubicular layers (Honda et al., 2011) and project to the antero-
dorsal thalamus (van Groen & Wyss, 1990). It is not clear whether
single deep layer neurons that receive thalamic inputs also project
back to the anterodorsal thalamus.

Presubicular microcircuit structure and function

Cells in both the deep and superficial layers of the presubiculum
signal head direction in the intact animal, even if not all presubicular
cells are also head direction cells (Boccara et al., 2010). Afferents
to the region are crucial to construct head direction signals. Our data
show that the physiological properties of presubicular cells are well
suited to sustain neuronal firing for a given orientation. We exam-
ined adaptation at discharge frequencies close to those measured in
vivo (~20 Hz) (Taube et al., 1990). The superficial and deep layer
presubicular neurons supported prolonged maintained firing (Fig. 9).
Their low adaptation contrasts with the accommodation of CA1
(Madison & Nicoll, 1984) and somatosensory cortex pyramidal cells
(Fleidervish et al., 1996).
Pyramidal cells in neocortical slice preparations (Connors et al.,

1982) are typically silent. In vivo, state-dependent modulation may
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favour pyramidal cell firing. Even so, RS pyramidal neurons in deep
layers of the entorhinal cortex remain silent during exploration
(Burgalossi et al., 2011). Head direction cells in the presubiculum
in vivo fire only when the head orients to its preferred orientation.
In the CA1 region, only a subset of neurons discharge in a spatially
tuned manner while other cells remain silent (Epsztein et al., 2011).
Possibly, as in other cortical regions, highly divergent inhibitory
neurons (Fino & Yuste, 2011) dominate the operation of presubicu-
lar microcircuits in spatial signalling (Chrobak & Buzsaki, 1996).
We detected many spontaneous inhibitory events in records from
pyramidal cells (Simonnet, J. & Fricker, D., unpublished observa-
tion). As interneurons shape tuning width in the visual cortex (Katz-
ner et al., 2011) they also seem likely to contribute to the direction
selectivity of presubicular principal cells (Taube, 2007; Isaacson &
Scanziani, 2011).
When do presubicular pyramidal neurons fire? We found resting

potentials that were 30 or 38 mV hyperpolarized from threshold in
RS neurons of superficial and deep layers, respectively (Fig. 8A).
Thus, only strong, synchronous and sustained synaptic inputs from
afferents corresponding to a given head direction seem likely to
assure maintained firing (Jerome et al., 2011). The tetrodotoxin-
insensitive, dendritic sodium current of presubicular principal cells
(Fricker et al., 2009) might function in a similar way to dendritic
calcium signals in direction-sensitive visual cortex cells (Jia et al.,
2010), boosting correlated inputs to induce firing in response to
directional inputs (Gasparini et al., 2004; Losonczy et al., 2008).
In conclusion, the cytoarchitectonics of the presubicular microcir-

cuit provide this transitional region with a distinct organization. Our
data on layer-specific differences in neuronal type, shape, intrinsic
currents and discharge patterns provide a basis to understand how
this region integrates afferent information by transforming synaptic
signals in a voltage- and site-dependent manner.

Supporting Information

Additional supporting information can be found in the online ver-
sion of this article:
Fig. S1. Soma size estimates. (A) Shown are 60 9 photographs of
biocytin filled neuron somata for each cluster. (B) Measures for
soma cross-sectional area in µm2, obtained from measurement with
Volocity image analysis software.
Table S1. Statistical tests.
Table S2. Electrophysiological and dendrite properties of presubicu-
lar neuron clusters. Given are 25%, 50% and 75% quantiles, in addi-
tion to mean and SEM.
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ARTICLE 2

Properties of presubicular neurons that
project to lateral mammillary nucleus or
anterodorsal thalamus

In my previous work, I described the laminar specify of integrative properties in the
presubiculum (Simonnet et al. 2013). I hypothesized that distinct electrophysiolog-
ical and morphological properties may be linked to the projection specificity of the
different neuronal populations.

The present study is part of an ongoing work that aims to link the diversity of
presubicular principal cells with their function. We are using an in vivo approach
to identify the presubicular neurons that project to subcortical areas, the lateral
mammillary nucleus (LMN) and the anterodorsal thalamus (ADN), in the in vitro
slice preparation.

At its origin, the purpose of this work was to describe the properties of different
projection-specific subpopulations of neurons, and we have obtained several inter-
esting results: ADN projecting neurons and LMN projecting neurons have distinct
morphological and electrophysiological properties. ADN projecting neurons are reg-
ular spiking neurons, which may correspond to a homogeneous population in deep
layers, whereas LMN projecting neurons correspond to intrinsic burst firing neurons
that I previously described in layer 4.

We next wish to combine projection-specific labeling of presubicular neurons
with the optogenetic stimulation of their afferences, in order to address how the
input-output conversion is operated in the presubiculum. In the general discussion,
I suggest a possible pathway for relaying visual information in the presubiculum,
and I present some hypotheses that can be tested in future studies.
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Introduction 
The head direction signal is thought to originate from subcortical areas, from the 

interconnection between lateral mammillary nucleus (LMN) and dorso tegmental nucleus 

(DTN) (Bassett et al., 2007; Clark and Taube, 2012). The LMN sends its projections to the 

anterodorsal thalamus (ADN) (Gonzalo-Ruiz et al., 1992) that is a critical relay of the head 

direction signal to cortical areas, including the presubiculum (Goodridge and Taube, 1997). 

The presubicular head direction signal is continuously updated by visual cues (Taube et al., 

1990), receiving projections from both visual cortex (Vogt and Miller, 1983) and retrosplenial 

cortex (Vogt and Miller, 1983; van Groen and Wyss, 1990; Jones and Witter, 2007). Finally, 

the presubiculum exerts a visual landmark control on the subcortical head direction signal 

(Goodridge and Taube, 1997; Yoder et al., 2011) via direct projections to ADN (van Groen 

and Wyss, 1990; Ishizuka, 2001) and LMN (Allen and Hopkins, 1989; Gonzalo-Ruiz et al., 

1992).  

A recent tracing study has identified the elements of the presubicular microcircuit projecting 

to subcortical areas as two non-overlapping populations, cells in deep layer projecting to 

ADN and neurons in layer 4 projecting to LMN (Yoder and Taube, 2011). Yet, the 

morphological and electrical properties of these neurons have remained unknown. Given the 

location of their cell bodies, we suggest that the LMN projecting neurons might correspond to 

intrinsically burst firing neurons of layer 4, or upper layer 5 pyramidal neurons (Simonnet et 

al., 2013). ADN projecting neurons are located in deep layers, and we ask whether they 

constitute a homogeneous subpopulation within the diverse population of deep layer neurons 

(Simonnet et al., 2013). Our present study tested this hypothesis by in vitro recording of ADN 
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projecting neurons and LMN projecting neurons, identified by stereotaxic injections of 

retrograde tracers in vivo. 

 

Methods 
Retrobeads (Lumafluor) are non-toxic fluorescent microspheres that can be taken up by 

presynaptic terminals, migrate retrogradely to the cell bodies in 48 hours, and allow for 

subsequent recordings from visually identified projecting neurons in the slice preparation 

(Katz et al., 1984; Kim and Spruston, 2011). We used 24- to 45-day-old mice that were 

anesthetized with ketamine hydrochloride and xylazine (80 and 12 mg/kg, respectively). 

Stereotaxic injections of 100-300 µl of green or red retrobeads were performed into ADN and 

LMN. Coordinates were defined from the bregma according to the antero-posterior (AP), 

medio-lateral (ML) and dorso-ventral (DV) axis and were (AP / ML / DV) -0.82 / 0.75 / -2.85 

for ADN (Fig. 1A, B) and -2.80 / 0.75 / -5.35 for LMN (Fig. 1D, E) (Franklin, 2001). After 

surgery, mice were returned to their home cages for at least 48 hours. We made acute slices, 

patch clamp recordings of the intrinsic electrophysiological properties and revealed 

morphological properties following the methods described in our previous study (Simonnet et 

al., 2013).  

 
Results 
Laminar distribution of LMN and ADN projecting neurons  

Retrobeads appeared as small fluorescent spheres in the somata of specific neuronal 

populations in the slice preparation. The topographical distributions of ADN and LMN 

projecting neurons followed those described by Yoder and Taube (2011). ADN projecting 

neurons were confined to deep layers (Fig. 1C) whereas LMN projecting neurons were found 

in layer 4 (Fig 1F). Many stained neurons were also found in nearby subiculum, which is 

known to project to the Medial Mammillary Bodies (Ishizuka, 2001), an area very close to 

LMN and difficult to avoid by injecting into the LMN. However, the specific patterns of 

thalamic and LMN projecting neurons within the hippocampal and parahippocampal areas 

allowed to verify the accuracy of the injection (Ishizuka, 2001). We excluded animals if the 

distribution of projecting neurons did not match the expected results.  

 

Properties of ADN and LMN projecting neurons  

The post-hoc revelation of recorded neurons revealed that LMN projecting neurons were 

pyramidal cells in layer 4 (Fig 2A, D) similar to those described in rat. They had ascending 

apical dendritic trees ramifying in layer 1 and basal dendrites mainly covering layer 4, with 
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some extension in layer 3 and deep layers. ADN projecting neurons were located in deep 

layers, mostly pyramidal cells and extended their dendritic arborization across all layers of 

the presubiculum. For now, the morphology of only a small number of neurons has been 

revealed, so we cannot exclude that cells with other morphologies project to ADN.  

Table 1 and Figure 2 describe the passive, firing and action potential properties of the two 

neuronal populations. Differences in firing patterns can be observed in two representative 

examples in Figure 2: regular firing for ADN cells and initial single spike or intrinsic burst 

followed by irregular spiking for LMN cells. 

In LMN neurons (n =17), the fast membrane time constant (12.9 ± 1.3 ms) and the presence 

of a depolarizing current at the onset of a depolarization (Fig 2. E, inset) promoted short 

latency firing (55 ± 4.2 ms) of either bursts or single spikes. After the initial discharge, the cell 

fired regular sparse firing (Fig 2F). When neurons did not fire in bursts, a depolarizing 

envelope always underlied the single spike, and the after hyperpolarization amplitude was 

low (-10.4 ± 1 mV, compared to -17 ± 0.9 mV for ADN projecting neurons), an evidence for 

the ability to fire bursts (Connors and Gutnick, 1990; Simonnet et al., 2013). Our results 

therefore confirmed the hypothesis that LMN projecting neurons correspond to the intrinsic 

bursting neurons in layer 4, previously described in rat presubiculum (Simonnet et al., 2013).  

The firing onset of ADN projecting neurons (n = 9) was different as they had a longer 

membrane time constant  (36 ± 2.8 ms) and latency to fire at rheobase (328 ± 105.1 ms) but 

contrary to LMN neurons, they were able to sustain high firing frequency (30 spikes per 

second at two times the rheobase). 
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Table 1 : Intrinsic electrophysiological properties of LMN and ADN projecting neurons. Tau: 
membrane time constant. Rin: Input resistance ; inst freq: instantaneous frequency (Hz). CV: 
inst freq coefficient of variation. AHP: after hyperpolarization. AP: action potential. 
 

 
 

Figure 1. Retrograde labeling of specific efferent neurons in different layers of the 

presubiculum. A, B. Coronal plates from (Franklin, 2001) corresponding to the theoretical 

anteroposterior level for stereotaxic injections in ADN (A) and LMN (D). C, D. Coronal section 

showing the injection sites for the defined coordinates in ADN (C, Fluroruby) and LMN (D, 

red retrobeads, superimposed with bright field image). E, F. Labeled cell bodies of projecting 

neurons in presubiculum for injection in ADN (E) and LMN (F). Green retrobeads injected in 

ADN retrogradly stained deep layer (5/6) neurons in the presubiculum, in a very specific 

manner. Red retrobeads injected in the LMN retrogradly stained neurons within layer 4, but 

also subicular neurons that projected to medial mammillary nucleus (MM), next the the LMN 

(see on B). 

 

Figure 2. Electrophysiological and morphological properties of ADN and LMN neurons 
(A-C), ADN projecting neurons. (A) Morphology, dendrite in light blue and axon in orange, 

layers in green. The arrow indicates the vertical axis determined as defined in (Simonnet et 

al. (2013). (B) Membrane voltage responses to negative and positive current steps of 800 ms 

up to rheobase. (C) Evolution of discharge from rheobase, for the neuron in (A). (D-F) same 

as A-C, but for a LMN projecting neuron. In (E), see the magnification of the depolarizing 

onset that causes discharge with short latency. The framed inset is a magnification showing 

the intrinsic bursting behaviour in another LMN projecting neuron. (G) Membrane time 

constant as a function of input resistance suggests two populations with distinct properties, 

altough some overlap exists. (H-I) The action potential afterhyperpolarization tended to be 

deeper for ADN than LMN neurons, because of the depolarization underlying firing and 

causing bursts in LMN neurons (A, inset).    

ADN projecting neurons LMN projecting neurons
mean sem count mean sem count

Resting membrane potential (mV) -69.5 2.8 9 -66.0 1.6 16
Tau (ms) 36.1 6.4 9 12.9 1.3 17
Rin (MΩ) 419.7 28.3 9 191.0 20.7 17
Rheobase (pA) 71 15.1 9 74 6.2 17
Firing latency (ms) 328 105.1 9 55 4.3 17
Two times rheobase - Spikes per sec 32.8 6.0 9 14.0 3.6 17
Two times rheobase - Mean inst freq (Hz) 42.2 6.3 9 49.1 12.1 17
Two times rheobase - CV 0.26 0.05 9 1.01 0.18 13
AP - rise amplitude (mV) 73.1 2.0 9 75.0 3.1 17
AP - half width duration (ms) 0.570 0.049 9 0.502 0.020 17
AP - AHP amplitude -17.8 0.9 9 -10.4 1.0 17
AP - max depolarization rate (Hz/pA) 384 16 9 480 38 17
AP - max repolarization rate (Hz/pA) -136 15 9 -153 7 17
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Figure 1 
 

 
 
Figure 1. Retrograde labeling of specific efferent neurons in different layers of the 
presubiculum. A, B. Coronal plates from (Franklin, 2001) corresponding to the theoretical 
anteroposterior level for stereotaxic injections in ADN (A) and LMN (D). C, D. Coronal section showing 
the injection sites for the defined coordinates in ADN (C, Fluroruby) and LMN (D, red retrobeads, 
superimposed with bright field image). E, F. Labeled cell bodies of projecting neurons in presubiculum 
for injection in ADN (E) and LMN (F). Green retrobeads injected in ADN retrogradly stained deep layer 
(5/6) neurons in the presubiculum, in a very specific manner. Red retrobeads injected in the LMN 
retrogradly stained neurons within layer 4, but also subicular neurons that projected to medial 
mammillary nucleus (MM), next the the LMN (see on B). 
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Figure 2 

 
 
 
Figure 2. Electrophysiological and morphological properties of ADN and LMN neurons 
(A-C), ADN projecting neurons. (A) Morphology, dendrite in light blue and axon in orange, layers in 
green. The arrow indicates the vertical axis determined as defined in Simonnet et al. (2013). (B) 
Membrane voltage responses to negative and positive current steps of 800 ms up to rheobase. (C) 
Evolution of discharge from rheobase, for the neuron in (A). (D-F) same as A-C, but for a LMN 
projecting neuron. In (E), see the magnification of the depolarizing onset that causes discharge with 
short latency. The framed inset is a magnification showing the intrinsic bursting behaviour in another 
LMN projecting neuron. (G) Membrane time constant as a function of input resistance suggests two 
populations with distinct properties, altough some overlap exists. (H-I) The action potential 
afterhyperpolarization tended to be deeper for ADN than LMN neurons, because of the depolarization 
underlying firing and causing bursts in LMN neurons (A, inset).    
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ARTICLE 3

A continuum of diversity of Parvalbumin
or Somatostatin expressing interneurons
in mouse presubiculum

Head direction cells are found in many subcortical and cortical areas. A specificity
of presubicular head direction cells is the narrower directional firing range and the
lower firing rate compared to the afferent anterodorsal thalamus. I think that this
could be due to the refinement operated by the presubicular cortical circuit, which
possesses different layers to process the information. During my first study, I had
noticed frequent spontaneous inhibitory activity in recordings of principal cells (not
shown). GABAergic interneurons generally regulate activity by balancing excitation,
selecting incoming information or synchronizing the activity of neuronal assemblies,
and I think that they constitute major regulators of the head direction signal in the
presubiculum.

Similarly to my previous study, a first step to understand the role of inhibition in
the presubiculum was to understand its cellular basis. Cortical interneurons are very
diverse. The few data that I had obtained in presubicular rat slices was definitely
not enough to describe fully the interneuronal population. Identification of interneu-
rons in rat slices is complicated because cellular bodies of both pyramidal neurons
and interneurons have a similar size. I never succeeded to identify interneurons
by their somatic shape. I therefore switched to transgenic mouse models, enabling
the identification of different subtypes of interneurons, the Parvalbumin (PV+) and
Somatostatin (SOM+) containing interneurons. We used the Pvalb-Cre mice for
identification of PV+ interneurons and Sst-IRES-Cre and X98-SST for identifying
SOM+ interneurons. At this time, Mérie Nassar joined the lab and we worked to-
gether on this subject. We used the same experimental approaches and the analysis
tools that I had developed for my first study. Our results show that the presubicular
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diversity of interneurons is comparable to what is found in other cortical areas. We
found the typical PV+ fast spiking basket cells, and other interneurons resembling
the typical SOM+ low threshold spiking Martinotti cells. These cells were identified
in two distinct subgroups of our unsupervised classification. However, a third group
lay between the two, grouping together neurons with intermediate features: quasi
fast spiking cells with diverse morphologies.

In the future, it will be important to understand if these identified interneurons
have distinct functional roles by identifying their specific targets and afferences.
This will be an essential step to better understand the regulation of information
flow in the circuit and how a specific head direction signal emerges from this cortex.
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ABSTRACT not exceeding 250 words  

 
The presubiculum is located between hippocampus and entorhinal cortex and plays 

an important role in spatial information processing and notably in signaling heading 

direction. We have recently examined presubicular principal neurons (Simonnet et al. 

2013) but little is known about inhibitory interneurons in this region. Here, we 

examined the electrophysiological and morphological properties of parvalbumin-

expressing (PV) and somatostating-expressing (SOM) interneurons from three 

transgenic mouse lines, Pvalb-Cre, Sst-Cre and X98, where interneurons are labeled 

with red (RFP) or green (GFP) fluorescent protein. Pvalb-Cre RFP neurons 

preferentially concentrated in superficial layers of presubiculum, as well as the less 

abundant interneurons of the X98 line. Sst-Cre RFP interneurons were more densely 

distributed in deep layers.  

PV and SOM containing interneurons in presubiculum are diverse, and we used 

Wardʼs unsupervised cluster analysis based on electrophysiological parameters 

describing passive properties, firing patterns and AP shapes, to classify these 

interneurons according to their similarities. This revealed two main groups of 

interneurons: On one extreme of the spectrum are SOM-positive low-threshold 

spiking Martinotti type cells (cluster 1). On the other end we find archetypal PV-

positive fast spiking basket cells (cluster 2b). An intermediate cluster, cluster 2a, 

contained a mix of PV or SOM expressing interneurons with intermediate electrical 

properties and mostly basket like morphologies. This result suggests a graded 

continuum of diversity for PV and SOM interneurons in presubiculum.  
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INTRODUCTION not exceeding 500 words;  

 

The presubicular cortex is located between the hippocampus and the medial entorhinal 

cortex, and it is thought to play a major role in spatial navigation. It contains "head direction" 

cells which discharge as a function of the animal's head in the environment, contributing to 

the sense of orientation (Taube et al. 1990; Van Strien et al. 2009; Boccara et al. 2010). 

Visual information from the visual and retrosplenial cortices, and head directional information 

of vestibular origin are both processed in presubiculum (Calton et al. 2003). Presubicular 

output neurons provide directional information to the grid cells in the superficial layers of the 

entorhinal cortex (van Groen and Wyss 1990a; van Haeften et al. 1997; Honda and Ishizuka 

2004; Yoder et al. 2011; Kononenko and Witter 2012; Rowland et al. 2013).  

We have shown previously three major principal cell types in superficial and deep layers of 

presubiculum (Simonnet et al. 2013). Inhibitory synaptic events were frequently observed in 

recordings from principal cells, and presubicular signal processing involves interactions 

between excitatory glutamatergic neurons and inhibitory GABAergic interneurons. The 

physiological and anatomical features of presubicular interneurons and their distributions 

across superficial and deep layers are insufficiently known however. In the hippocampus and 

in neocortex, distinct subsets of interneurons are believed to play distinct roles. In particular, 

soma targeting inhibitory neurons control timing and frequency of action potential discharge 

(Miles et al. 1996; Fricker and Miles 2001) and may contribute to the generation of fast 

oscillations (Cobb et al. 1995; Chrobak and Buzsaki 1996; Somogyi and Klausberger 2005). 

Dendrite targeting interneurons rather select input signals to pyramidal neurons and could 

affect head directional signal processing in the presubicular microcircuit in this way (Taube 

2007; Isaacson and Scanziani 2011). 

The diversity of interneuron function relies on a heterogeneous population of GABAergic 

neurons known to derive from multiple embryonic sources (Kepecs and Fishell 2014). 

Interneurons may be subdivided according to their anatomy, electrophysiological and 

neurochemical features, as well as their synaptic connectivity (Freund and Buzsáki 1996; 

Cauli et al. 1997; Kawaguchi and Kubota 1997; Parra et al. 1998; Markram et al. 2004; Rudy 

et al. 2010; Defelipe et al. 2013; Kubota 2014). What constitutes an interneuron type is still 

matter of debate, and classifications based on unsupervised clustering methods are a way to 

define neuronal classes through sets of common functional features (Ma et al. 2006; 

Karagiannis et al. 2009; Mcgarry et al. 2010; Perrenoud et al. 2012; Helm et al. 2013). Even 

so, as Battaglia and coworkers (Battaglia et al. 2013) pointed out, a structured continuum of 
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phenotypes with ʻatypicalʼ interneurons positioned at frontiers between distinct groups may 

exist. 

We therefore performed a detailed electrophysiological and anatomical characterization of 

two major populations of interneurons in mouse presubiculum, those expressing the calcium 

binding protein parvalbumin (PV) and those expressing the neuropeptide somatostatin 

(SOM), identified from three transgenic mouse lines, Pvalb-Cre- or Sst-Cre-RFP and X98 

GFP mice. Using unsupervised cluster analysis, we revealed two main groups of 

interneurons. The subsets so-defined by similarity of electrophysiological parameters did not 

entirely coincide with the expression of neurochemical markers. Our results establish the 

dichotomy between Pvalb and X98 interneurons in presubiculum, while Sst-Cre neurons 

showed similarities with either the X98 or the Pvalb interneurons.  

 

MATERIALS AND METHODS 

Animals 

Experiments were performed in male and female Pvalb-Cre mice (Jax 008069; 

(Hippenmeyer et al. 2005)) or Sst-IRES-Cre mice (Jax n°013044; (Taniguchi et al. 2011)) 

crossed with the Ai14 Cre reporter line (Jax n°007914; (Madisen et al. 2010)). Cre-mediated 

recombination resulted in the expression of red fluorescent tdTomato (RFP) labeling in 

subsets of GABAergic neurons. The terms “Sst-Cre” or “Pvalb-Cre” will be used when 

referring to the mouse line. The abbreviations “SOM” and “PV” will be used when referring to 

the expression of the neuropeptide, which, as we will show, is not always equivalent.  

Additionally we used the transgenic mouse line X98 (Jax n°006340), in which GFP 

expression is driven by the GAD67 promoter. Labeled is a subset of somatostatin positive 

neurons with axonal arborizations in layer I (Martinotti-type morphology in neocortex; (Ma et 

al. 2006)). Our care and use of the animals conformed to the European Communities 

Council Directive of 22 September 2010 (2010/63/EU) and French law (87/848). Our study 

was approved by the local ethics committee Charles Darwin N°5. 

 

Slices preparation 

Acute slices containing the hippocampus, subicular complex and entorhinal cortex were 

obtained from 25-31 days-aged mice. After ketamine hydrochloride and xylazine anesthesia 

(80 and 12 mg.kg-1, respectively), the animals were perfused through the heart with a cutting 
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solution containing 125 NaCl, 25 sucrose, 2.5 KCl, 25 NaHCO3, 1.25 NaH2PO4, 2.5 D-

glucose, 0.1 CaCl2, 7 MgCl2 (in mM) cooled to 4 °C and equilibrated with 5% CO2 in O2. 

Animals were decapitated and horizontal, 250-300 µm thick brain sections were prepared in 

the same cutting solution using a vibratome (Leica VT1000S or Microm HM650V). Slices 

were stored for at least 1 h at 22–25 ° C in a holding chamber filled with ACSF containing (in 

mM): 124 NaCl, 2.5 KCl, 26 NaHCO3, 1 NaH2PO4, 2 CaCl2, 2 MgCl2, and 11 D-glucose, 

bubbled with 5% CO2 in O2 (pH 7.3, 305–315 mOsm/L). They were then transferred to the 

recording chamber (volume 2-3 ml), heated at 33-35 °C, of either an Axioskop 2 FS plus 

microscope (Zeiss, France) or an BX51WI microscope (Olympus, France).  

 

Whole-cell patch-clamp recordings 

Recordings were made with glass pipettes pulled using a Brown–Flaming electrode puller 

(Sutter Instruments) from borosilicate glass of external diameter 1.5 mm (Hilgenberg, 

Germany). The electrode resistance was 3–6 MΩ after filling with a solution containing (in 

mM): 135 K-gluconate, 1.2 KCl, 10 HEPES, 0.2 EGTA, 2 MgCl2, 4 MgATP, 0.4 Tris-GTP, 10 

Na2-phosphocreatine and 2.7 biocytin. This internal solution was adjusted to a pH of 7.3 with 

KOH and an osmolarity of 300 mOsm. Slices were visualized using infrared-differential 

interference contrast optics, and fluorescently labeled PV, SST or X98 interneurons were 

identified using LED illumination coupled to appropriate emission/excitation filters (OptoLED, 

Cairn Research, Faversham, UK). Whole-cell current-clamp recordings were made using a 

MultiClamp 700B amplifier and pCLAMP software (Molecular Devices, Union City, CA). The 

signal was filtered at 6 kHz and digitized at 20 kHz. The estimated junction potential of ~15 

mV was not corrected.  

 

Electrophysiological analysis 

Recorded signals were analyzed with AxographX and routines written in MATLAB (The 

Mathwork). After break-in, we waited for 3–5 min before measuring cellular parameters. 

Resting membrane potential (RMP) was the mean potential over at least 10 seconds. Most 

electrophysiological parameters were measured from responses to step current injections of 

800 ms duration applied from a fixed membrane potential of -65 mV. Injected currents 

increased from negative to positive values, with a range of amplitudes that resulted in 

hyperpolarization to about -100 mV during the first step and depolarizations to maximum 

sustainable firing frequency. Maximum sustainable firing frequency was defined as 
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maximum firing frequency before spike inactivation became evident, even though 

instantaneous frequency continued to rise or remained stable. Neuronal input resistance 

(Rin) was determined as the slope of the current-voltage (IV) relationship between -71 and -

64 mV. Membrane time constants (τ) were estimated by fitting a double exponential to the 

negative deflection of membrane voltage (Levenberg-Marquardt algorithm; (Golowasch et al. 

2009)) observed after applying a 800 ms hyperpolarizing current injection inducing a voltage 

change that did not exceed 15 mV. A “sag ratio”, indicative of Ih expression, was calculated 

as the ratio of the maximal negative potential (sag, reached typically between 0-200 ms), 

divided by the mean steady state voltage deflection (typically between 400-800 ms).  

Action Potentials (APs) were detected from continuous periods of rising membrane potential 

with a minimum amplitude of 30 mV. Rheobase (or threshold current for firing) was defined 

as the smallest current step of 800 ms that elicited at least one AP. Firing frequency (Hz) 

was deduced either  by averaging all instantaneous frequencies of a given step (MeanInsF) 

or dividing the number of APs over time (APs/sec). Input-output (I-O) curves were 

constructed by plotting firing frequency (either MeanInsF or APs/sec) as a function of the 

injected current; their initial slopes (I-O gain) were obtained with a linear fit of the first 9 steps 

beyond rheobase. Coefficient of variation (CV) was calculated as standard deviation divided 

by the mean of instantaneous frequencies when at least 3 APs were elicited. This value 

gave an index of firing regularity; the higher the value, the more irregular the firing would be. 

First AP-Latency was calculated from the first AP in the spike trains following a two-fold 

rheobase current injection. Adaptation index (AI) was defined as the ratio of the mean of the 

three last instantaneous frequencies divided by the first instantaneous frequency.  

AP waveform features were obtained by the averaging the measures from the first AP 

elicited from three consecutive depolarizing steps with a firing latency less than 100 ms. AP 

threshold was defined as the membrane potential at the point at which dV/dt > 30 mV/ms. 

AP peak was its maximum potential. AP rising amplitude was measured as the difference 

between the threshold and the AP peak voltage. The AP rising amplitude was the difference 

between the threshold and the peak AP voltage. AP width was measured at the half-height 

of the AP rising phase. Max depolarization rate and max repolarization rate were defined as 

the maximum and minimum dV/dt, occurring during rising phase and falling phase 

respectively. 

 

Cluster analysis 
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We performed unsupervised cluster analysis using 17 electrophysiological parameters 

gathered from 142 neurons from superficial and deep layers of the presubiculum. 

Interneurons were grouped based on similarities of the electrophysiological variables 

considered, using Wardʼs method, and Euclidean distances as the distance measure (Ward 

1963), as described previously (Simonnet et al. 2013). Cluster analysis was implemented 

using MATLAB (The Mathwork) and its statistics toolbox. The number of clusters in our 

analysis was examined using the Thorndike procedure (Thorndike 1953), where jumps in 

distances within clusters indicate prominent differences between neurons. 

We based our classification on (1) RMP, (2) Rin, (3) Tau, (4), Sag ratio; I-O gain ((5) 

MeanInsF or (6) APs/sec); (7) MeanInsF with (8) CV;  (9) latency and (10) AI at the 2-fold 

rheobase step; AP properties including (11) threshold, (12) width, (13) amplitude, (14) AHP, 

(15) rising amplitude, (16) maximum depolarization rate and (17) maximum repolarization 

rate. 

 

Statistics 

Results are given as mean +/- SEM. Statistical analysis was performed with Prism 

(GraphPad Software, Inc.) and MATLAB (The Mathwork).  

 

Morphology revelation and 3D reconstruction 

After recording with pipettes containing biocytin (1-3 mg.ml-1), slices were fixed in 4% 

paraformaldehyde in 0.1 M phosphate buffer (PB) at 4°C for 24 hours. Thereafter, slices 

were rinsed three times in PBS and cryoprotected in 30% sucrose mixture at 4°C overnight. 

Membranes were permeabilized by three cycles of freezing/defrosting over dry ice followed 

by three rinses with PBS. Slices were incubated in a blocking solution containing PBS 

(0.1M), milk 2% and 0.3% TritonX100 for 3h at room temperature. Then, we added the 

nuclear marker 4,6-diamidino-2-phenylindole (DAPI) (1:1000), Streptavidin–Cy3 or Cy5 

conjugate (1:500, Invitrogen, Eugene, OR, USA) in the same blocking solution for 3 hours at 

room temperature. After washing with PBS three times, slices were mounted on coverslips 

using anti-fade Prolong Gold medium. Filled cells were visualized with a QImaging Retiga 

EXI camera (Qimaging Surrey, BC, Canada), and scanned with an Optigrid II (Thales 

Optem, Qioptik, Rochester, NY, USA) on an inverted Olympus IX81 microscope. The 

Optigrid system permitted the acquisition of structured images and the subsequent three-

dimensional reconstruction of filled neurons with the software Volocity (Improvision, Perkin-
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Elmer, Coventry, UK). Stacks of 75–250 images were acquired using a 20X oil immersion 

objective. Stacks were then imported in Neurolucida (Microbrightfield, Williston, VT, USA) for 

digital reconstructions. The Neurolucida explorer program was used for "layer length" 

analysis allowing us to determine directionality and length per layer of dendritic and axonal 

distribution as described previously (Simonnet et al. 2013). Layers and boundaries of the 

presubiculum were determined using DAPI staining. No correction for tissue shrinkage was 

applied. 

 

Immunohistochemistry 

Mice were anesthetized intraperitoneally with ketamine hydrochloride and xylazine (80 and 

12 mg.kg-1, respectively), transcardially perfused with 0.9% saline containing heparin (100-

200 UI/ml followed by 30–50 ml of a fixative solution containing 4% paraformaldehyde in 0.1 

M phosphate buffer (PB). Dissected brains were post-fixed overnight in the same fixative 

solution at 4°C and then placed in a 30% sucrose solution at 4°C for at least 24 h. Using a 

slicing vibratome (Leica), 50 um-thick horizontal sections were collected in 0.1M PBS. 

 

RESULTS 

Interneuron subtypes in presubiculum: layer distribution and immunohistochemistry 

in three transgenic mouse lines 

The mouse presubiculum is shown in the context of the hippocampal formation in Fig. 1A. It 

is similar to rat presubiculum, with high density of cell bodies in layer II.  

 

[Figure One near here] 

 

To examine the diversity of PV and SOM expressing interneurons in the presubiculum, we 

recorded from 142 interneurons from three transgenic mouse lines. To target PV 

interneurons, we used Pvalb-Cre mice (Hippenmeyer et al. 2005), crossed with a reporter 

line expressing a red fluorescent protein (RFP), td-Tomato (Ai14, (Madisen et al. 2010); Fig 

1D).  To target SOM interneurons, we used SST-IRES-Cre mice (Taniguchi et al. 2011) 

crossed with the same reporter line Ai14 (Fig 1E), and the X98 line (Ma et al. 2006), where a 

subset of SOM interneurons is GFP labeled (Fig 1F). Neuronal somatic location of recorded 
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neurons was situated on a schematic of a standardized presubiculum (Fig. 1B). To assess 

the laminar distribution of different interneurons subtypes, we quantified the number of 

fluorescently labeled interneurons in these three lines in superficial and deep layers of 

presubiculum.  Pvalb-Cre interneurons were more numerous in superficial layers than in 

deep layers, while tomato-labeled Sst-Cre interneurons were more abundant in deep than in 

superficial layers (numbers). The expression of GFP-labeled neurons in the X98 line was 

more restricted, with lower absolute numbers of labeled interneurons, and a preferential 

distribution to superficial layers (numbers). A potential dorso-ventral gradient in the density 

of interneuron subtypes was examined.  We counted the neurons in horizontal slices in three 

different depths ((a), DV xx; (b), DV xx; (c), DV xx; cf. Fig. 1C). Gradient exists or not? Panel 

D-E show the middle depth that was used for most recordings (close to DV xx.x, Paxinos 

Mouse Atlas or Allen brain atlas).  

We next examined the recombination specificity of the Pvalb-Cre and Sst-Cre mouse lines, 

and validated the somatostatin expression in GFP labeled neuron from X98 mice. Horizontal 

sections of presubiculum from adult animals were stained with antibodies to PV and SOM 

(Fig 2A-F). The fraction of RFP+ or GFP+ cells that were immunopositive for each marker 

was quantified in slices from 3 animals from each line. Virtually all RFP+ neurons in the 

Pvalb-Cre line were PV immunopositive (count), while a small percentage was positive for 

SOM (count). All GFP+ neurons of the X98 line were positive for SOM and no PV labeling 

was found.  In the Sst-Cre line, the result was less clear-cut as expected from previously 

described off-target recombination (Hu et al. 2013).  In the presubiculum, about 15 % of Sst-

Cre RFP+ cells were positive for PV, while only 85% colocalised with SOM immunostained 

cells (count).  

 

[Figure two near here] 

 

Cluster analysis revealed two main groups of presubicular interneurons based on 
electro-physiological parameters.  

To examine how presubicular PV or SOM positive interneurons classify on the basis of 

electrophysiological parameters, we recorded from 46 Pvalb-Cre RFP+ neurons, 61 Sst-Cre 

RFP+ neurons and 35 GFP+ neurons of the X98 line, in order to determine their firing 

patterns, passive membrane properties and action potential waveforms. Seventeen 

superficial layer pyramidal neurons were included as controls, to validate the analysis 
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method. Neurons were biocytin-filled for post-hoc revelation of their anatomy. For a subset of 

completely reconstructed neurons, we matched the morphology with the electrophysiological 

definition of interneuron clusters. Unsupervised cluster analysis using Wardʼs method (Ward 

1963) was performed based on 17 variables listed in Table 1. Figure 3A shows the 

hierarchical tree diagram of clusters that emerged. The tree diagram initially separated two 

populations: the first branch (I.) included all principal neurons, all X98 GFP+ cells, and some 

Sst-Cre RFP+ cells; the second branch (II.) included all Pvalb-Cre RFP+ cells and some Sst-

Cre RFP+ cells. Decreasing the cut-off value for cluster separation allowed us to completely 

isolate the pyramidal neurons, as a highly homogenous population of cells, in cluster 0 (cf. 

Fig 3A, broken vertical line). An archetypical glutamatergic cell is shown in Fig 3B. This 

separation comforts us with the validity of our clustering method, and while the pyramidal 

neurons were not considered in further detail, they served as an external reference for the 

interneuron containing clusters. We found two interneuron containing clusters, cluster 1 and 

2, suggesting that two main inhibitory cell types were present in our data set of presubicular 

interneurons.  Indeed, cluster 1 and cluster 2 strictly segregated X98 GFP+ neurons from 

Pvalb-Cre RFP+ neurons. These two mouse lines are expected to specifically label distinct 

interneuron types, and this is confirmed by their distribution in two distinct clusters. Many 

RFP+ interneurons recorded in Sst-Cre mice were similar to the somatostatin expressing 

X98 GFP+ neurons in cluster 1, while others, in contrast, were highly similar to Pvalb-Cre 

RFP+ interneurons in cluster 2. 

While the Thorndike procedure suggested 3 main separations, we decided on a somewhat 

lower cutoff value for cluster separation, yielding two subclusters, 2a and 2b, both containing 

Pvalb and Sst-Cre RFP + cells. We noticed similar within-cluster Euclidean distances of 

clusters 1, 2a and 2b (13, 12 and 13, respectively) that will be now described in detail. 

 

[Table One near here]//[Figure Tree near here] 

 

Cluster 1: Somatostatin expressing low rheobase adapting interneurons   

Cluster I comprised n = 65 interneurons, among which 55% were GFP+ cells from the X98 

mouse line, and 45% Sst-Cre RFP+ cells. A representative cluster 1 neuron is shown in Fig. 

3C, a Martinotti type X98 neuron, with adapting firing pattern and broad action potential 

waveform. This cell was located in layer III, and may be considered as archetypal for the 

somatostatin expressing, adapting interneurons of cluster 1. 
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Many cluster 1 interneurons discharged spontaneously (numbers), even before rupturing the 

membrane for whole-cell recording. The resting membrane potential was relatively 

depolarized at -54 ± 1 mV, more positive than in the other clusters. Their mean AP threshold 

was -38.6 ± 0.4 mV.  Rin was 374 ± 17 MΩ, about twice as high as for cluster 2 cells, and 

membrane time constant, tau, was 32 ± 2 ms, almost three times longer than for cluster 2 

cells. The firing pattern of cluster 1 cells was regular or irregular, with the highest CV at two-

fold rheobase current levels (0.24 ± 0.02) and a stronger frequency adaptation (AI, 0.70 ± 

0.01) compared to cluster 2 cells.  Examples of firing patterns from three different cells of 

cluster 1 are illustrated in Fig. 4A and B.  Action potentials were easily initiated by positive 

current injection, with a mean rheobase of 40 ± 3 pA. Hyperpolarizing current injections 

induced a pronounced voltage sag (Fig. 4B; sag ratio 1.04 ± 0.00). Input-output curves, 

constructed by plotting the frequency of action potentials against injected current (Fig. 4C), 

had a mean initial slope of 778 ± 28 Hz.nA-1. The firing frequency reached at double 

rheobase current level was 35 ± 2 Hz, and the latency of the first action potential following a 

depolarizing current step was 21 ± 1 ms. Action potentials were rather high and broad, with 

mean amplitudes of 82 ± 1 mV and widths of 0.29 ± 0.01 ms. The maximum action potential 

depolarization and repolarization rates were 567 ± 11 and -329 ± 9 V.s-1 respectively. Spike 

after-hyperpolarization was typically complex or bi-phasic (Fig. 3C), with mean maximal 

amplitude of -24 ± 0 mV.  

 

Cluster 2b: fast-spiking parvalbumin expressing interneurons    

Cluster 2b comprised n = 29 neurons, 75% of which were RFP+ neurons from the Pvalb-Cre 

line, and 25% from the Sst-Cre line. An archetypal neuron for this cluster is shown in Fig. 3E, 

a parvalbumin expressing basket shaped interneuron with fast-spiking (FS) firing pattern. 

The cell body was located in layer III, and in fact all recovered neurons in this cluster were 

superficial layer cells. 

Cluster 2b interneurons had a hyperpolarized resting membrane voltage at -70 ± 1 mV, more 

negative than the average of cells in clusters 1 or 2a. Their mean firing threshold was -42.2 ± 

0.7 mV. Rin was 137 ± 17 MΩ, which is half the value of cluster 2a and 3 times less than 

cluster 1. The membrane time constant, tau, was 13 ± 2 ms, similar to cluster 2a, but almost 

three times lower than for cluster 1 cells. The firing pattern of cluster 2b cells was the typical 

non-accommodating, fast-spiking pattern of basket cells, characterized by a low CV at two-

fold rheobase current levels (0.08 ± 0.02) and a corresponding adaptation index of 1.00 ± 

0.02.  Fig. 4A and B shows examples of firing patterns from three different cells of cluster 2b 
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(right column), which are quite stereotyped. The minimum current to drive these neurons to 

fire was 202 ± 23 pA, a high rheobase compared to cells in cluster 1 or 2a. Virtually no 

voltage sag was observed in response to hyperpolarizing current injections (Fig 4.B; sag 

index 1.09 ± 0.01). The input-output curves rose steeply, with a high I-O gain of 1437 ± 131 

Hz.nA-1. The firing frequency reached at double rheobase was very high at 297 ± 27 Hz, and 

the latency of the first action potential in a step was short (8 ± 2 ms). Cluster 2b fast-spiking 

cells generated single action potentials with the shortest half width (0.18 ± 0.01 ms). Spike 

amplitudes were 69 ± 2 mV and the maximum rates of depolarization and repolarization 

were 623 ± 26 and -547 ± 30 V.s-1 respectively. Spike afterhyperpolarization was typically 

simple with a mean amplitude of -23 ± 1 mV.   

Cluster 2a: quasi fast-spiking parvalbumin or somatostatin expressing interneurons    

Cluster 2a grouped together n = 48 neurons, that were either RFP+ neurons from the Pvalb-

Cre line (50%) or from the Sst-Cre line (50%). While cluster 1 adapting SOM cells and 

cluster 2b fast-spiking cells formed the two distinct extremes of our data set, cluster 2a 

contained a mix of somatostatin and parvalbumin expressing cells with intermediate values 

for most electrophysiological parameters. An illustrative example for cluster 2a is shown in 

Fig. 3D, a Sst-Cre RFP+ neuron, with quasi-FS properties and basket-cell like morphology, 

located in layer 5/6. 

The membrane voltage of cluster 2a cells was intermediate at -60 ± 1 mV. The firing 

threshold was -37.4 ± 0.5 mV. Rin (189 ± 11 MΩ) and membrane time constant (11 ± 1 ms) 

were also intermediate. The firing pattern of cluster 2a cells could be regular or quasi-fast 

spiking with a low CV (0.07 ± 0.00), similar to cluster 2b, and a an adaptation index of 0.92 ± 

0.02. Examples of firing patterns are shown in Fig. 4A and B. A voltage sag was moderately 

distinguishable (sag ratio, 1.11 ± 0.01). Action potentials were obtained from a rheobase 

current level of 113 ± 8 pA. Input-output curves, constructed by plotting the frequency of 

action potentials against injected current (Fig. 4C), had a mean initial slope of 762 ± 41 

Hz.nA-1, close to that of cluster 1. The firing frequency at double rheobase current level was 

quasi fast-spiking at 128 ± 7 Hz, and the latency of the first action potential in a step was 14 

± 2 ms. Action potential amplitude was 76 ± 1 mV and the half width was 0.23 ± 0.01 ms. 

The maximum action potential depolarization and repolarization rates were 627 ± 14 and -

409 ± 15 V.s-1 respectively. Spike after-potential waveforms were either simple or complex 

with mean amplitude of -24 ± 1 mV.  
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Morphology 

Among the 142 recorded interneurons, the axonal and dendritic morphology of a subset of 

28 biocytin filled cells was reconstructed using Neurolucida. We examined how their 

morphologies correlated with our electrophysiologically defined groups of interneuron 

clusters, and with the morphological features of somatostatin or parvalbumin positive 

interneuron archetypes described in other cortical areas.  

Figure 5A shows the somatodendritic form of five somatostatin expressing neurons that were 

grouped in cluster 1. Somata were ovoid, located either in superficial or deep layers. The 

axons emerged from the cell body or from an ascending dendritic trunk. X98 axonal tree was 

compact with one part that ramified immediately above the cell body in layer III. Multiple 

ascending axon branches extended towards layer I where dense axon collaterals branched 

horizontally for distances as long as 300µm (Martinotti type interneurons, Wang et al. 2004). 

The dendritic arbor of X98 neurons was multipolar. Sst-Cre RFP+ neurons of cluster 1 

emitted a local axonal arbor in the vicinity of the cell body. Some axon collaterals reached 

layer I, but had little ramifications there. Sst-Cre RFP+ neuron dendrites were locally 

distributed around the perisomatic region within a radius of 150-200 µm and preferentially 

oriented towards deeper layers. The mean total axonal length of reconstructed cluster 1 

interneurons (n = 3) was 11548 ± 1201 µm, which is significantly higher compared to cluster 

2a and 2b interneurons. Their mean dendritic length was significantly shorter (1500 ± 1201 

µm; (n = 3; p value). Seven representative cluster 2a interneurons are shown in Figure 5B. 

Their somata were located either in superficial or deep layers. Some superficial layer 

neurons including Pvalb3 with putative chandelier morphology, and Sst5, had their axon and 

dendrites entirely limited to superficial layers. Some deep layer neurons, Pvalb2 and Sst4, 

(and 8 other neurons, not shown) were exclusively covering deep layers with axons and 

dendrites. In these examples, axonal trees were distributed locally around the soma in their 

home layer, with little asymmetrical upward or downward shift, or sideways shift, with 

respect to the soma. Such local axons are typical for basket cells. Sst3 had some dendrites 

extending farther away from its home layer, to superficial layers II and III. Pvalb1, 

conversely, had its soma in layer V, but the axon projected across deep and superficial 

layers, with dense ramifications specifically in layer II. Sst6 was atypical, with its cell body 

located in superficial layer III but its expansive axon - quasi non-overlapping with the 

dendrites - crossed downward to the deep layers, sparsely covering a large area. Some 

neurons (n = 6) had axon endings in the neighboring region of the parasubiculum, as 

indicated with broken vertical lines for Sst1 (3063 µm, about 4% of total length), Pvalb1 

(2187 µm) and Pvalb3 (xxx µm).  
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The mean total axonal length for all reconstructed interneurons of cluster 2a was 6589 ± 944 

µm (n = 13). Dendrites in cluster 2a interneurons usually emanated in all directions, some 

running up to 500 µm away from the soma, and their mean total length was 2201 ± 138 µm 

(n = 13). 

Examples of interneurons of cluster 2b are shown in Fig. 5C, with their somata located in 

superficial layers. In 3 out of 4 neurons, the axon remained restricted to the superficial home 

layers, with ascending rather than downward projecting collaterals (Pvalb4, Pvalb5 and 

Sst7). The axonal tree was usually dense (n = 6). Pvalb5 had a particularly dense and huge 

axon ramifying in all directions with farther-reaching axon collaterals, reminiscent of large 

basket cells (Wang et al. 2002). Similar to cluster 2a, cluster 2b interneurons were mostly 

multipolar at the somato-dendritic level with an evenly distributed dendritic arbor that 

ramified near the cell body. Pvalb4 and one other similar neuron (not shown; n = 2) had a 

vertically biased dendritic arbor that projected into both deep and superficial neighboring 

layers. Dendrites could spread towards superficial layer (Pvalb5) and/or deep layers (Sst7). 

One atypical cell was located at the boundary between layer 3 and 4: primary dendrites were 

distributed around the whole perimeter of the cell body surrounded by a dense axonal tree; a 

dendritic tuft extended towards the pial surface, ending in layer II. The mean total axonal and 

dendritic length of cluster 2b interneurons was respectively of 8165 ± 1658 µm and 2277 ± 

403 µm (n = 8). 

 

DISCUSSION 

This study provides the first electrophysiological and morphological characterization of PV 

expressing and SOM expressing interneurons in mouse presubiculum. Firing patterns and 

active and passive membrane properties were examined in interneurons from three 

transgenic mouse lines, Pvalb-Cre Sst-Cre and X98 mice. Unsupervised cluster analysis 

based on electrophysiological parameters grouped the recorded interneurons into 3 clusters. 

This classification partly followed neurochemical marker expression, and we found the 

classical archetypes of SOM adapting neurons (in cluster 1) and fast-spiking PV neurons (in 

cluster 2b) in presubiculum. An intermediate cluster (cluster 2a) revealed similarities 

between subpopulations of some quasi fast spiking PV or SOM expressing neurons. The 

reliability of our clustering approach was supported by its ability to group pyramidal cells 

taken as controls. The electrical and morphological profile of interneurons in superficial and 

deep layers of presubiculum is found to share common features with the diversity of 
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interneurons in hippocampus and neocortex. Our results suggest that the inhibitory network 

of the presubicular microcircuit is likely to be subdivided into distinct functional territories.  

Mouse lines and neurochemical marker expression pattern in presubiculum  

The use of genetically modified mouse lines is a helpful tool to study specific subsets of 

neurons. We find a distinct distribution of Pvalb-Cre RFP, Sst-Cre RFP and X98 GFP 

interneurons in superficial versus deep layers of presubiculum: presubicular Pvalb-Cre RFP 

cells were preferentially distributed in thalamorecipient superficial layers (L-II/III) while Sst-

Cre RFP cells were more densely located in deep layers (L-V/VI). Previous work in mouse 

visual cortex on the contrary found that PV and SOM interneurons were rather evenly 

distributed across superficial and deep layers (Gonchar et al. 2007). Xu et al. (2010) and Ma 

et al. (2006) found - similarly to our results - higher SOM positive cell densities in deep 

layers, even though there are also region specific differences between visual, frontal and 

somatosensory cortical areas, as well as species specific differences between mouse and 

rat cortex (Ma et al. 2006; Xu et al. 2010). The PV cell counts in the study by Xu et al.  

(2010) were rather higher in deep layers, unlike the higher densities we find for PvalbCre 

RFP cells in superficial layers of presubiculum. Our study therefore reveals a unique 

distribution of interneuron subtypes that accumulate in distinct layers of presubiculum. 

Immunohistochemistry confirmed that the Pvalb-Cre line almost exclusively labels PV 

expressing neurons, while hardly any were SOM positive. Conversely, all X98 GFP neurons 

were positive for SOM.  The validation of SOM expression in the Sst-Cre RFP+ cells was 

less clear cut in our hands.  The same Sst-Cre line has been used previously by several 

authors, and it was generally assumed that Cre-mediated recombination was restricted to 

SOM interneurons (Gentet et al. 2012; Cottam et al. 2013; Kvitsiani et al. 2013; Xu et al. 

2013). Only recently it was pointed out by Hu et al. (2013), that an average of 6-10% of Sst-

Cre RFP+ neurons in five different cortical areas (cingulate, M1, S1, A1, and V1) were in fact 

fast-spiking PV expressing interneurons. In presubiculum, about 85% of Sst-Cre RFP+ cells 

were SOM positive, while 15% were PV positive. This result may be explained by off-target 

recombination, which may occur in PV cells that transiently expressed SOM during 

development (Hu et al., 2013). In that case, the off-target recombination rate could be higher 

in presubiculum than in other brain regions. Even though PV and SOM expression do not 

overlap in neocortical adult interneurons in rat or mouse (Gonchar and Burkhalter 1997; 

Kawaguchi and Kubota 1997; Xu et al. 2010; Kubota et al. 2011), on the mRNA level, both 

PV and SOM mRNA may be detected in a same interneuron (Cauli et al. 2000). In the 
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hippocampus, on the other hand, bistratified neurons or oriens-locunosum-moleculare 

interneurons may coexpress PV and SOM (Jinno and Kosaka 2000; Klausberger et al. 2003; 

Somogyi and Klausberger 2005; Fishell and Rudy 2011; Katona et al. 2014).  We therefore 

consider the possibility that in the presubiculum some PV positive Sst-Cre RFP+ neurons 

might also coexpress the two neuropeptides. 

Interneuron classification 

Since the early work of Ramon y Cajal (Ramon y Cajal 1911), numerous subtypes of 

interneurons have been described as a functionally heterogeneous population according to 

their electrophysiological, morphological, molecular and developmental characteristics in 

different areas of the brain. Here we asked whether in presubiculum, neurochemically 

defined interneurons from the three transgenic mouse lines were electrophysiologically and 

anatomically distinct. The fundamental question of how to define different classes of 

interneurons (Parra et al. 1998) or their structured continuum (Battaglia et al. 2013) still 

remains, objective criteria have been proposed to classify interneurons into distinct groups 

which should help to understand the organizing principles of interneuron diversity (Markram 

et al. 2004; Petilla Interneuron Nomenclature Group et al. 2008; Druckmann et al. 2012). 

Wardʼs unsupervised classification method allowed us to objectively identify neuron types 

based on a combination of 17 electrophysiological parameters. Morphological criteria were 

then correlated with the resulting groups.  

We expected fluorescently labeled interneurons in the PvalbCre and X98 line to differ in their 

electrical properties, and presumed similarities between Sst-Cre and X98 fluorescent cells.  

Wardʼs method has the advantage not to require any preliminary supposition about the 

number of cell types, while it tends to achieve a lesser significant separation between 

neuronal classes compared to K-means clustering (Cauli et al. 2000; Karagiannis et al. 

2009). Our cluster analysis completely separated presubicular glutamatergic pyramidal cells, 

that were included as controls (cluster 0), from GABAergic inhibitory interneurons (clusters 1 

and 2), thus validating and supporting the reliability of our analysis scheme. This separation 

also indicated a meaningful cutoff value for the number of distinct clusters.  We were 

satisfied to find interneurons originating from the X98 mouse line only in cluster 1, while 

interneurons from the Pvalb-Cre line grouped together on a separate branch, in cluster 2 

(Fig. 3). Indeed the X98 interneurons correspond closely to the archetypical adapting SOM 

cells (Fig. 3C), while Pvalb-cre neurons had a classical fast-spiking firing pattern (Fig. 3E). 

These two interneuron classes have been defined previously in both hippocampus and 
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neocortical areas (Cauli et al. 1997; Kawaguchi and Kubota 1997; Markram et al. 2004; 

Somogyi and Klausberger 2005; Petilla Interneuron Nomenclature Group et al. 2008; Fishell 

and Rudy 2011). 

The “right” number of clusters using the Wards method may be suggested by the Thorndike 

procedure. Thorndike yields the mathematically optimal cut-off value for maximizing 

information content. Biologically meaningful interneuron clusters however would ideally 

correspond to functionally distinct interneuron types.  We therefore tentatively set a cut-off 

threshold a bit lower, so that Cluster 2 became subdivided in 2 subclusters 2a and 2b.  

Somewhat surprisingly, interneurons from the Sst-cre line were found in all interneuron 

containing clusters (cluster 1, 2a and 2b). 

Two main archetypes of GABAergic interneurons  

Cluster 1 interneurons corresponded typically to adapting-SOM type interneurons. As 

described in hippocampus (oriens-lacunosum-moleculare interneurons) and neocortex 

(Martinotti cells), these cells were highly excitable and characterized by rather depolarized 

membrane potentials and pronounced voltage sags. All cells in this cluster were from SOM 

expressing X98 interneurons or from the Sst-Cre line. They displayed a regular-spiking firing 

pattern with a consistently marked frequency adaptation. Action potentials were 

characterized by their high amplitude and half-durations (Wang et al. 2004; Halabisky et al. 

2006; Ma et al. 2006; Uematsu et al. 2007; Karagiannis et al. 2009; Xu et al. 2013).  

The morphologies of cluster 1 interneurons revealed that X98 GFP+ cells generally had 

multipolar dendrites and axons sending several collaterals to layers 2/3 and particularly layer 

1 where the collaterals branched horizontally for distances as long as 300µm, as previously 

described for Martinotti-cells (Wang et al. 2004; Ma et al. 2006). Sst-Cre RFP+ cells of 

cluster 1 had a sparse and local axonal arborization similar to subtypes of SOM neurons 

described in the GIN mouse line (Mcgarry et al. 2010). Cluster 1 interneurons are well suited 

to control inputs to principal cell apical dendrites and tufts. Specifically, they could interact 

with afferent excitatory projections to presubicular layer I or III, such as retrosplenial and 

thalamic inputs (van Groen and Wyss 1990b). 

Cluster 2b corresponded to the well-established FS cells, that are similarly found in 

hippocampus (Somogyi and Klausberger 2005) and neocortex (Kawaguchi 1995). Most of 

these interneurons were recorded from the Pvalb-Cre line, and a small fraction from the Sst-

Cre line. If off-target recombination falsely labeled PV interneurons in the Sst-Cre line, these 
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neurons could well be grouped together with the other FS-PV cells in cluster 2b. 

Presubicular FS cells were characterized by a hyperpolarized resting membrane voltage, the 

lowest input resistance and the shortest membrane time constant. They displayed the lowest 

electrical excitability when probed with somatic current injections, and showed the least 

marked voltage sag in response to hyperpolarizing steps. A delay from depolarization to the 

appearance of the first AP commonly found in FS cells is likely to be correlated with a more 

depolarized threshold mediated by the Kv1.1 subunit (Goldberg et al. 2008). Stronger 

depolarizing stimuli gave rise to sustained high-frequency trains of narrow and fast spikes 

with little or no frequency adaptation, that requires fast delayed rectifier Kv3-mediated 

currents (Martina et al. 1998; Erisir et al. 1999). Hence, the AP firing pattern can be 

described as fast spiking, with subpartitions including continuous, delayed or stuttering firing 

(Druckmann et al. 2012).  

Anatomically, FS cells have been well characterized in neocortical superficial layers where 

they correspond mainly to basket cells and chandelier cells (Kawaguchi 1995; Wang et al. 

2002) and to basket cells as well in hippocampus (Freund and Buzsáki 1996; Somogyi and 

Klausberger 2005). We cannot identify their postsynaptic target cells from our data, but with 

analogy to other cortical areas we presume that cluster 2b basket cells contact the 

perisomatic region of presubicular principal neurons. Most presubicular cluster 2b FS cells 

had multipolar dendrites and based on their axonal arbor, they have been shown to vary in 

size (small or large basket-cell) and axonal projections (mostly local, some translaminar or 

transcolumnar) similarly to previous studies (Wang et al. 2002; Karube et al. 2004; Markram 

et al. 2004). The RFP cells from the Sst-Cre line had basket like morphologies similar to the 

Pvalb-Cre RFP neurons in this cluster. 

… and a transitional edge cluster 

Cluster 2a grouped together a large subset of Sst-Cre RFP interneurons with an equal 

number  of Pvalb-Cre RFP interneurons. It is known from other neocortical areas that the 

population of SOM positive neurons comprises several subtypes, such as the Martinotti type 

cells (Wang et al. 2004), the SOM cells in the X94 line (Ma et al. 2006), as well as other 

subtypes (Halabisky et al. 2006; Mcgarry et al. 2010). These cluster 2a Sst-cre RFP cells in 

presubiculum are clearly separate from the classical adapting SOM-archetype that is 

represented in our cluster 1. Their electrical features, as well as those of Pvalb-Cre RFP 

cells in cluster 2a, include intermediate values for membrane potential, a relatively small 

resistance and short time constant approaching that of archetypal FS cells. Cluster 2a cells 
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from both Cre mouse lines had spikes of short duration and produced diverse firing patterns 

ranging from single spiking, to stuttering, to regular spiking. At higher firing frequencies, they 

displayed a quasi-fast-spiking firing pattern due to their weak to absent frequency 

adaptation. But cluster 2a cells are also distinct from the classical fast-spiking PV cells in 

cluster 2b.   

Somato-dendritic morphology was mostly similar to basket cells, for both, RFP cells 

originating from the Sst-Cre and the Pvalb-Cre line (Wonders and Anderson 2006; Kubota 

2014). These cells tended to branch within their home layer revealing intra-laminar 

projections that could mediate early and late blanket inhibition (Karnani et al. 2014). Some 

basket cell morphologies did not follow this pattern, with dendrites oriented upwards to 

seemingly target layer II cell-bodies, but also downward to deep layer V/VI.  Or conversely, a 

soma and dendritic arborization in superficial layers with an axonal arbor extending to deep 

layers. Such cells could be specialized in translaminar inhibition (Bortone et al. 2014). 

A structured continuum of diversity  

We suggest that in presubiculum, a continuum of diversity exists within the interneuron 

populations that we have examined, ranging from the archetypal SOM adapting cells to the 

archetypal fast-spiking PV cells.  This continuum is graded, with the existence of 

intermediate cluster 2a interneurons, at the edge between these archetypes, containing 

equally Pvalb-Cre and Sst-Cre RFP cells. Based on the theory of fuzzy sets, a structured 

continuum has been suggested previously as an alternative classification scheme for cortical 

interneurons (Battaglia et al. 2013). This seems helpful whenever the attribution of specific 

neurons to a single defined class is difficult.  In presubiculum, cluster 2a manifests the 

convergence of traits from the SOM-adapting and the PV fast-spiking archetype. 

Interneuron diversity is correlated with the developmental origins of interneurons. Both PV 

and SOM interneurons along with the majority of neocortical interneurons originate from the 

medial ganglionic eminence (Xu et al. 2004; Wonders and Anderson 2006; Batista-Brito and 

Fishell 2009; Miyoshi et al. 2010; Kepecs and Fishell 2014). While the adapting-SOM and 

the FS-PV cells may be archetypal, their common origin could have left intermediate “edge 

cells” at the transition between these two archetypes, reflecting a relic of their shared 

embryonic origin. Interestingly, clones from a same progenitor lineage are equally likely to be 

comprised of mixed SST- and PV-expressing interneurons rather than one subtype (Kepecs 

and Fishell 2014). Could that explain the equal presence of Sst-Cre and Pvalb-cre RFP cells 
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in a same interneuron class? Even if SOM was only expressed transiently in Sst-Cre cells of 

cluster 2a, they would still be RFP+ for life, due to Cre-recombinase expression and Cre-

mediated recombination (Hu et al. 2013). In future studies it will be interesting to determine 

the molecular phenotypes of these quasi-FS RFP+ Sst-Cre interneurons and identify any 

differentially expressed calcium binding proteins or neuropeptides. 

PV and SOM neurons not only share a common origin, the MGE, but here we consider a 

population of interneurons that have migrated in a similar spatio-temporal fashion, and in the 

presubiculum they arguably receive shared local cues that could control neuritic branching 

and orientate phenotypic traits (Adams and Eichmann 2010; Battaglia et al. 2013). The 

presubiculum lies at the junction between the hippocampal archicortex and the neocortex 

(O'Mara et al. 2001; Simonnet et al. 2013) and even though its six-layered cytoarchitecture is 

similar to a neocortical organization, the heterogeneous and somewhat atypical populations 

of presubicular PV and SOM interneurons described in the present work could have 

emerged due to the transitional location of this cortical region. Possibly uncommonly similar 

electrophysiological and anatomical features between Sst-Cre and Pvalb-Cre RFP cells in 

cluster 2a could have been generated due to local signals in the presubiculum.  

Implication of interneurons in presubicular microcircuit function 

Studying neuronal diversity is a tool to establish a correspondence between neuronal types 

and their respective connectivity patterns and functions in the brain. By analogy with other 

cortical areas, it is probable that GABAergic inhibition in the presubiculum is involved in 

temporal processing, in controlling sensitivity or sharpening selectivity of the head directional 

signal.  

FS cells of cluster 2b may form proximal, perisomatic synapses on target neurons, and so 

could quickly suppress the output of target neurons, mediating fast inhibition, and precision 

timing as in hippocampus or somatosensory cortex (Miles et al. 1996; Fricker and Miles 

2000; Pouille and Scanziani 2001; Gabernet et al. 2005). In contrast, cluster 1 Martinotti cell 

inhibition might be more graded and selective by inhibit excitatory inputs arriving at dendritic 

sites close to the location of inputs, such as retrosplenial or thalamic inputs to layer I of 

presubiculum. Presubicular Martinotti cells are often reciprocally connected with principal 

neurons (Simonnet and Fricker, not shown, manuscript in preparation), and their recruitment 

might limit excitatory inputs or mediate lateral inhibition onto nearby cells (Silberberg and 

Markram 2007). Mapping studies using two-photon glutamate uncaging showed a lack of 
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fine level of connectivity of both PV and SOM interneurons in the mouse somatosensory and 

frontal cortex (Fino and Yuste 2011; Packer and Yuste 2011). Presubicular PV or SOM 

interneurons with local, sparse or dense axonal trees similar to basket-cells could innervate 

their postsynaptic targets without any evident specificity, as if they were spreading a “blanket 

of inhibition” into the microcircuit (Karnani et al. 2014). Futures studies combining recordings 

from principal cells and interneurons will let us examine connectivity motifs of interneuron 

subclasses in presubiculum, and determine similarities and differences with the inhibitory 

circuit design in other parts of the cortex. 
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ABBREVIATIONS  

ADP, after-depolarisation 
AP, action potential  
AHP, after-hyperpolarization  
BI, bursting index 
C, capacitance 
DAPI, 4',6-diamidino-2-phenylindole 
EGTA, ethylene glycol tetraacetic acid 
FHP, first after-hyperpolarization 
GFP, green fluorescent protein 
IAI, initial adaptation index 
IB, intrinsic bursting 

InsF, instantaneous frequency 
LAI, late adaptation index 
PV, parvalbumin 
RFP, red fluorescent protein (tdTomato) 
RMP, resting membrane potential 
RS, regular spiking 
Rin, input resistance 
SHP, second after-hyperpolarization 
SOM, somatostatin 
TTX, tetrodotoxin 
Vm, membrane potential 
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LEGENDS 

 

Fig. 1. Distribution patterns of interneurons in the mouse presubiculum (A) horizontal 

section of mouse presubiculum stained with DAPI. (B) schematic indicating the somatic 

locations of a sample of the recorded interneurons from three mouse lines: Green, Pvalb-Cre 

RFP; red, Sst-Cre RFP; blue, X98. (C) a,b,c indicates schematically the level of horizontal 

sections at different dorsoventral levels. Shown in A,D,E,F are section at intermediate level 

b. (D-F), fluorescently labeled interneurons of the Pvalb-Cre (D), Sst-Cre (E) and X98 GFP 

mouse lines (F).  

 

Fig. 2. Immunostaining of RFP or GFP expressing interneurons. (A-C), anti-PV labeling. 

(D-F), anti-SOM labeling, on mouse lines Pvalb-Cre (A, D), Sst-Cre (B, E) and X98 (C, F).  

 

Table 1. Electrophysiological properties of presubicular neurons. Values are given for 

each of the three mouse lines (A) and grouped into clusters (B). These 17 parameters were 

used for Wardʼs unsupervised cluster analysis.  

 

Fig. 3. Classification of 142 presubicular interneurons and 17 presubicular 

glutamatergic neurons using Wardʼs unsupervised cluster analysis. (A) Dendrogram. 

The broken vertical line indicates the first level of cut-off, which isolates cluster 0, containing 

only pyramidal neurons (grey boxes, representative example shown in (B)). Cluster 1 is 

composed of SST interneurons from the X98 (blue) and Sst-Cre (red) mouse lines. Cluster 2 

subdivides into cluster 2a and cluster 2b. Cluster 2a comprises a mix of Sst-Cre (red) and 

Pvalb-Cre (green) interneurons. Cluster 2b contains mostly fast-spiking Pvalb-Cre (green) 

cells. Somatic location was either superficial (yellow) or deep (orange). For each cluster, one 

neuron is shown as an illustrative example: (B, grey box), pyramidal neuron of cluster 0. (C, 

blue box), Martinotti type adapting neuron of cluster 1. (D, red box), Sst-Cre quasi fast-
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spiking  interneuron form cluster 2a. (E, green box), fast-spiking Pvalb-Cre neurons from 

cluster 2b. (B-E), current-clamp recordings in response to a negative current pulse that 

hyperpolarizes the cell to -100 mV and a current pulses at rheobase. Insets: details of the 

first AP repolarization phase (red trace). Morphologies with axons in red and dendrites in 

blue.  

 

Fig. 4. Electrophysiological diversity of PV and SOM interneurons. (A) Examples of 

firing patterns of three different interneurons per cluster are shown during an 800 ms 

rheobase current pulse. (B) Discharge patterns obtained in response to rheobase*2 and a 

negative current pulse that hyperpolarizes the cell to -100 mV . Note the low input resistance 

of the cluster 1 neurons compared with that of the cluster 2a and 2b (larger current steps 

required to elicit similar voltage changes). Cluster 1 neurons had the most pronounced 

voltage sag apparent upon hyperpolarization. (C) Input-output curves (upper) and current–

voltage relation at sub-threshold potentials (lower) are plotted for three example interneurons 

from each cluster. Green, Pvalb-Cre RFP; red, Sst-Cre RFP; blue, X98. (D) RMP, rheobase, 

adaptation index and CV for each cluster. Each cell is represented by a dot. Horizontal lines 

(red) indicate mean values. (E) AP width plotted against the Rin for each neuron. Low AP 

width and Rin are characteristics of cluster 1 interneurons. Each cell is represented by a 

symbol.   

 

Fig. 5. Morphological variability of presubicular interneurons. (A, B, C) Representative 

axo-dendritic trees of 15 biocytin-filled and Neurolucida-reconstructed interneurons in cluster 

1, cluster 2a and cluster 2b respectively. Axons are shown in red, dendrites in blue and cell 

bodies in black. Cluster 1 was in part composed of Martinotti-like interneurons. Cluster 2a 

and 2b contained mainly multipolar basket-cell like interneurons.  
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Table	  1	  
	  
	  

	  

mean sem n mean sem n mean sem n mean sem n
RMP)(mV) -54 1 35 -58 1 61 -65 1 46 -78 1 17
Rin)(Mohm) 376 22 35 285 20 61 148 9 46 250 24 17
Time)constant)(ms) 36 3 35 21 2 61 10 1 46 28 4 17
Sag 1.25 0.02 35 1.15 0.01 61 1.10 0.01 46)) 1.04 0.00 17
Rheobase)(pA) 40 4 35 72 9 61 175 14 46 84 9 17
I-O)gain)(Hz/nA)(MeanInsF) 748.12 38.00 35 916.83 53.87 61 1014.75 92.16 46 275.16 23.25 17
I-O)gain)(Hz/nA)(APs/sec) 731.79 46.22 35 884.59 58.66 61 1065.18 98.48 46 270.32 22.11 17
MeanInsF)(Hz) 33 3 35 74 8 61 247 19 46 33 3 17
Coefficient)of)variation 0.28 0.03 35 0.15 0.01 61 0.06 0.00 46 0.20 0.02 17
Latency)(ms) 21 2 35 15 1 61 13 2 46 27 3 17
Adaptation)Index 0.66 0.02 35 0.86 0.02 61 0.94 0.02 46)) 0.72 0.04 17
Threshold)(mV) -38.2 0.4 35 -38.5 0.5 61 -39.6 0.6 46 -35.0 0.7 17
Width)(ms) 0.27 0.01 35 0.27 0.01 61 0.20 0.01 46 0.55 0.01 17
Amplitude)(pA) 83 1 35 77 1 61 72 1 46 84 1 17
AHP)(mV) -23.8 0.7 35 -23.5 0.5 61 -23.7 0.6 46 -15.3 0.5 17
Max)depolarization)rate)(V.s-1) 598 14 35 571 13 61 637 18 46 534 20 17
Min)depolarization)rate)(V.s-1) -355 11 35 -353 14 61 -498 22 46 -135 5 17

mean sem n mean sem n mean sem n mean sem n
RMP)(mV) -78 1 17 -54 1 65 -60 1 48 -70 1 29
Rin)(Mohm) 250 24 17 374 17 65 189 11 48 137 17 29
Time)constant)(ms) 28 4 17 32 2 65 11 1 48 13 2 29
Sag 1.04 0.00 17 1.22 0.01 65 1.11 0.01 48 1.09 0.01 29
Rheobase)(pA) 84 9 17 40 3 65 113 8 48 202 23 29
I-O)gain)(Hz/nA)(MeanInsF) 275 23 17 778 28 65 762 41 48 1437 131 29
I-O)gain)(Hz/nA)(APs/sec) 270 22 17 746 35 65 747 43 48 1525 132 29
MeanInsF)(Hz) 33 3 17 35 2 65 128 7 48 297 27 29
Coefficient)of)variation 0.20 0.02 17 0.24 0.02 65 0.07 0.00 48 0.08 0.02 29
Latency)(ms) 27 3 17 21 1 65 14 2 48 8 2 29
Adaptation)Index 0.72 0.04 17 0.70 0.01 65 0.92 0.02 48 1.00 0.02 29
Threshold)(mV) -35.5 0.5 17 -38.4 0.4 65 -37.4 0.5 48 -42.2 0.7 29
Width)(ms) 0.56 0.02 17 0.29 0.01 65 0.23 0.00 48 0.18 0.01 29
Amplitude)(pA) 84 2 17 82 1 65 76 1 48 69 2 29
AHP)(mV) -14.7 0.6 17 -23.8 0.5 65 -23.8 0.5 48 -22.9 0.8 29
Max)depolarization)rate)(V.s-1) 517 22 17 567 11 65 627 14 48 623 26 29
Min)depolarization)rate)(V.s-1) -134 6 17 -329 9 65 -409 15 48 -547 30 29

X98 PCSST)tom PV)tom

Cluster)0 Cluster)1 Cluster)2a Cluster)2b
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Figure 3: Dendrogram
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ARTICLE 4

Memory of past activity determines the
recruitment of a Martinotti cell-mediated
inhibitory feedback loop in mouse
presubiculum

My previous studies characterized principal cells and interneurons in the different
layers of the presubiculum. Different bricks of the microcircuit have therefore been
identified, but the synaptic connectivity in the presubicular network is still unknown.
The full presubicular intrinsic connectivity and its dynamics remain to be unraveled
to understand the presubicular information processing. Revealing the excitatory
information flows and their regulation by the different interneurons is difficult to
do in only one stage. I therefore chose to address one more specific question: the
recruitment of dendritic inhibition.

In the present work, I have been studying the interaction between pyramidal
cells and Martinotti cells in superficial layers of presubiculum. The morphologies of
these two neuronal types suggest their interconnections: axons of Martinotti cells
innervate mainly layer 1 and 3, where pyramidal cell dendrites ramify; axons of
pyramidal cells innervate layer 3, where Martinotti cell dendrites are located. Using
dual patch clamp recordings, I confirmed the presence of a high degree of inter-
connections between pyramidal cells and Martinotti cells. Martinotti cells provided
weak inhibition that might influence spiking activity at the soma. It is worth noting
that the inhibitory effect is lower when the Martinotti cell action potential is timed
immediately after the pyramidal cell discharge. The pyramidal cell to Martinotti
cell synapse is facilitating with unexpectedly slow kinetics. The synaptic transfer
rate is almost zero for single spikes and becomes more reliable after repetitive firing
at high frequency. This synaptic enhancement may persist for several hundreds of
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milliseconds after the end of high frequency stimulation.
Taken together, these results suggest that the pyramidal cells and Martinotti

cells form a feedback inhibitory loop recruited during persistent firing. The spike
timing dependent inhibitory strength of Martinotti cells might provide a filter that
favors lateral inhibition but not self-induced inhibition. This loop could therefore
be used to refine persistent head direction signaling in the presubiculum by the
preferential inhibition of cells with different directional tuning.
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Introduction 

 

The presubiculum is an understudied cortical region located between the hippocampus and 

the entorhinal cortex (Amaral and Witter, 1989; van Strien et al., 2009).  Around sixty percent 

of neurons in the presubiculum are head direction cells (Taube et al., 1990; Boccara et al., 

2010), which fire persistently as the animalʼs head is turned toward the preferred directional 

firing range. Presubiculum plays a major role in visual landmark encoding, controlling the 

accuracy of the head direction signal and providing visual cues for hippocampal-based 

landmark navigation (Yoder et al., 2011). 

The presubicular head direction signal arises from the combination of subcortical signals, 

mainly from anterior thalamus (Goodridge and Taube, 1997), and visual information (Taube 

et al., 1990) from visual cortex (Vogt and Miller, 1983) or relayed by retrosplenial cortex (van 

Groen and Wyss, 1990). Yet, integrative properties of the presubicular microcircuit that 

generates the local head direction signal are poorly understood.  

The electrophysiological and morphological properties of excitatory and inhibitory neurons 

contained in the six layers of this transitional cortex have been described previously (Abbasi 

and Kumar, 2013; Simonnet et al., 2013). Inter- and intralaminar recurrent projections have 

been studied to some degree (Funahashi and Stewart, 1997; Honda et al., 2008), but the fine 

interconnection and the dynamics of information within the circuit have not been established 

yet. It has been shown that presubicular neurons can experience (Simonnet et al., 2013) or 

even generate (Yoshida and Hasselmo, 2009) persistent firing during tens of seconds to 

minutes in vitro, which constitutes a cellular basis for the head direction signal. This 

persistent activity should be balanced by the recruitment of the local inhibitory network that 

may ensure the specificity of the head direction signal over time (Isaacson and Scanziani, 

2011), as suggested in continuous attractor models of the head direction signal (McNaughton 

et al., 2006). High frequency burst firing of neocortical layer 5 pyramidal cells recruit local 

dendrite-targeting interneurons, the Martinotti cells, which provide feedback inhibition 

(Silberberg and Markram, 2007; Zhu et al., 2011). This recurrent inhibition strongly regulates 

the integration of inputs arriving onto the apical dendritic tree in vivo (Murayama et al., 2009).  

We have previously identified dendrite-targeting neurons in the presubiculum that we defined 

as Martinotti cells (Nassar et al. in preparation) and here we study their interconnectivity with 

pyramidal cells. We determined that presubicular Martinotti cells are part of a feedback 

inhibitory pathway in superficial layers of mouse presubiculum. The recruitment of Martinotti 

cells is time and frequency dependent, and the synapse has a low reliability during sparse 
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firing. Moreover, the un-muting of the synapse outlasts the high frequency stimulation for 

seconds, constituting a memory of past activity that enhances synapse reliability for 

subsequent firing. This may constitute an important mechanism that controls the tuning 

properties of head direction cells as they persistently fire.  

 

Methods 

 

Slice preparation and recording. 

Horizontal slices of hippocampal and parahippocampal areas were prepared from 24- to 35-

day-old male and female transgenic mice expressing GFP in a subpopulation of SST-positive 

neurons corresponding to Martinotti cells in neocortex (X98 line, JAX stock n° 006340; Ma et 

al., 2006). Our care and use of the animals conformed to the European Communities Council 

Directive of 22 September 2010 (2010/63/EU) and French law (87/848). Our study was 

approved by the local ethics committee Charles Darwin N°5. After anesthesia with ketamine 

hydrochloride and xylazine (80 and 12 mg/kg, respectively), animals were perfused via the 

heart with at least 30 ml of a solution containing (in mM): 125 NaCl, 25 sucrose, 2.5 KCl, 25 

NaHCO3, 1.25 NaH2PO4, 2.5 D-glucose, 0.1 CaCl2 and 7 MgCl2, cooled to 2–6 °C and 

equilibrated with 5% CO2 in O2. The forebrain was dissected, and horizontal slices (260-320 

µm thick) were cut on a vibratome (Leica VT1200S). Slices were transferred to a storage 

chamber containing warmed (37°C) artificial cerebrospinal fluid (ACSF) containing (in mM): 

124 NaCl, 2.5 KCl, 26 NaHCO3, 1 NaH2PO4, 2 CaCl2, 2 MgCl2, and 11 D-glucose, gently 

bubbled with 5% CO2 in O2 (pH 7.3, 305–310 mOsm/L). ACSF was allowed to progressively 

cool down to room temperature (22-25°C) and slices were kept during at least 1 h. 

The recording chamber (volume ~2 mL) was heated to 32 – 34 °C. Neurons were visualized 

with an EMCCD Luca-S camera (Andor) on a Axioskop 2 FS plus microscope (Zeiss, France) 

with infrared differential interference contrast. 

Patch clamp glass pipettes were pulled from borosilicate glass of external diameter 1.5 mm 

(Hilgenberg, Germany) using a Brown-Flaming electrode puller (Sutter Instruments). The 

electrode resistance was 3–6 MΩ, when filled with a solution containing (in mM): 135 K-

gluconate, 2 KCl, 10 HEPES, 0-0.2 ethylene glycol tetra-acetic acid (EGTA), 2 MgCl2, 4 

MgATP, 0.4 Tris-GTP, 10 Na2-phosphocreatine. Whole-cell records were made with a 

Multiclamp 700B amplifier and acquired with pClamp software (Molecular Devices, 

Sunnyvale, CA, USA). Recordings were filtered at 6 KHz in current clamp mode and at 2 KHz 
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in voltage clamp mode. Recordings were not corrected for junction potential (~15 mV). Spike 

trains of in vivo recorded presubicular head direction cells (Boccara et al. 2010) were 

extracted with MATLAB (The Mathwork) and imported in pClamp to generate command 

protocols. Access resistance was continuously monitored and was stable within ± 15 % for all 

included recordings. All salts and anesthetics were obtained from Sigma (Lyon, France). 

 

Data analysis 

Signals were analysed with AxoGraphX, and software written in Labview (National 

Instruments) or MATLAB (The Mathwork).  

Cellular properties and action potentials. Methods for detection of action potentials and 

description of electrophysiological parameters were similar to those in our previous studies 

(Simonnet et al, Nassar et al.).  

Synapses. Excitatory and inhibitory postsynaptic events in paired recordings were measured 

in either voltage clamp or current clamp mode, and two different methods served to 

determine synaptic efficiency (failure rate, transfer rate, dynamics). Peak amplitude method. 

To obtain shape parameters of synaptic events, traces were aligned at the peak of the 

presynaptic action potential and averaged. Amplitudes of synaptic events could also be 

measured from single trials using a fixed 3 ms time window starting from action potential 

peak. Noise was determined as the maximum amplitude of baseline fluctuations within a 3 

ms time window prior to the action potential peak. Synaptic responses that were smaller than 

1.6 RMS (root mean square) of the noise were considered as failures (Markram et al., 1997; 

Beierlein et al., 2003). Failure rate was the number of failures divided by the number of 

presynaptic activations, and conversely, transfer rate was 1 – failure rate. In an alternative, 

automatic detection method, all postsynaptic events (spontaneous and spike-locked) were 

detected as continuous periods of rising membrane potential (low-pass filtered at 400 Hz for 

current clamp or 1000 Hz for voltage clamp), with an amplitude threshold at 0.3-0.6 mV for 

current clamp or 4-7 pA for voltage clamp recordings. This amplitude threshold was 

determined for individual recordings and set as a value that minimized errors, both false 

positive and missed events, as judged by eye. Detected synaptic responses were considered 

spike-locked if their delay (at mid-rise amplitude) from the action potential peak was 

comprised between 0.5 and 3 ms. Synaptic transfer rate was the number of spike-locked 

events divided by the number of presynaptic activations. We confirmed that the performance 

of the automatic detection method was comparable to the peak amplitude method (Fig. 5F), 

and we used it routinely for the analysis of synaptic transmission after repeated presynaptic 
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activation. Spontaneous activity can bias transfer rate calculation, which is why a correction 

based on the RMS of the noise was performed for the peak amplitude method. We also 

determined the noise level for the automatic detection method. Presynaptic firing patterns 

were aligned to a “control window”, generally prior to the stimulation, and transfer rate, 

corresponding to a noise value, was calculated. This procedure was applied multiple (250 - 

300) times using different starting points in the same control window to obtain a estimate of 

false positives. The probability of false positives was very low for all our recordings. While it 

may depend on the level of background synaptic activity, it never exceeded 0.05, and was 

not correlated to presynaptic firing frequency. 

 

Cellular anatomy.  

For some experiments, biocytin (1mg / ml) was added to the internal solution. The procedure 

for post-hoc anatomical revelation was described previously (Simonnet et al. 2013). 

Neurolucida software (Microbrightfield, Williston, VT, USA) was used to reconstruct axo-

dendritic morphologies in three dimensions from stacks of acquired images. 

 

Results 

We studied interactions between Martinotti cells (MC) and Pyramidal cells (PC) in layer 2 and 

3 of mouse presubiculum. Presubicular MCs were identified in horizontal slices of 24- to 35-

day-old male and female X98-SST transgenic mice. In terms of electrophysiological and 

morphological properties, they were similar to neocortical Martinotti cells (Ma et al., 2006, 

Nassar et al 2014). GFP neurons were found in all layers of presubiculum, except in layer 1; 

all expressed somatostatin and one third also expressed calbindin (not shown). 

 

Martinotti cell and pyramidal cell electrophysiological properties 

Properties of MC and PC are summarized in table 1 and Fig. 1. Pyramidal cells in superficial 

layers of mouse presubicular cortex were regular spiking, similar to those previously 

described in rat (Simonnet et al., 2013). Their resting membrane potential was rather 

hyperpolarized at -77.5 ± 0.7 mV (Fig, 1A, B). They were little excitable neurons, with a low 

input resistance (Fig, 1D, E; 233.8 ± 16.9 MΩ), high rheobase (Fig, 1F, G; 88.6 ± 7 mV) and 

a low input-output gain (Fig, 1F, G; 0.296 ± 0.019 Hz.pA-1).  
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Martinotti cells on the contrary were highly excitable. Their resting membrane potential was -

53.3 ± 0.9 mV and some of them were spontaneously active (23 out of 30) (Fig. 1A, B). They 

had a higher input resistance (342.4 ± 22.3 MΩ) than pyramidal cells (fig 1.E) and a low 

threshold spiking behavior; rheobase was 44.2 ± 4.3 pA, firing gain was 0.728 Hz.pA-1 and 

frequency could reach more than 150 Hz (Fig. 1F). The presence of a hyperpolarization 

activated current Ih was suggested by a prominent voltage sag (Fig. 1H). Thus, they have the 

electrophysiological intrinsic properties of neocortical X98-SST/Martinotti cells (Ma et al., 

2006). 

 

High level of interconnectivity between Martinotti cells and Pyramidal cells 

The comparison of Martinotti and pyramidal cell morphologies suggested that one could be 

the preferential target of the other (Fig. 2A). Dendrites of pyramidal cells ramified in layer 1 

and 3, the main areas targeted by Martinotti cell axons. Martinotti cell dendrites principally 

ramified in layer 3 where pyramidal cell axons had collaterals. These overlapping 

morphologies might reflect the presence of a feedback loop between the two neuronal 

populations. We therefore tested the interconnection between Martinotti and nearby 

pyramidal cells in superficial layers using dual recordings. Connectivity was high, as 

summarized on panel 2B. The proportion of connected pairs was 60 % (43 out of 72 tested) 

for Martinotti cell to pyramidal cells and 41 % (35 out of 85 tested) for pyramidal cell to 

Martinotti cells. About 29 % (20 out of 69 tested) of dual recorded neurons were reciprocally 

connected. Synaptic strength and its dynamics (short term plasticity) indicate how and when 

a given synapse participates to microcircuit information processing (Abbott and Regehr, 

2004; Silberberg et al., 2005; Regehr, 2012). We therefore investigated synaptic features of 

the MC-to-PC and PC-to-MC connections in detail. 

 

Martinotti cells provide reliable inhibition onto pyramidal cell dendrites 

We investigated the electrophysiological properties of the inhibitory MC-to-PC synapse and 

confirmed its dendritic location suggested by morphology. At -50 mV, the amplitudes of the 

averaged GABAergic current responses (see method) were comprise between 2.3 and 32.3 

pA (13.8 ± 2.36 pA; Fig. 3A-C). Even if the amplitudes were small, the failure rate was low 

(0.07, n=4, certainly overestimated, see discussion), showing the high reliability of this 

inhibitory synapse. The amplitude of synaptic events was progressively reduced between the 

beginning and the end of presynaptic action potential trains elicited at 20, 50 or 100 Hz (Fig. 
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3D). The paired pulse ratio at 50 Hz was 0.81 ± 0.04 (n=8), indicating short-term depression. 

The low amplitude of synaptic events is partly due to a low driving force for GABAA currents, 

the theoretical reversal potential of chloride being only 13 mV more negative than the holding 

voltage in our conditions. The experimental reversal potential of synaptic current was more 

negative than chloride reversal potential (n = 2, not shown), which is a typical distortion of 

dendritic currents recorded with somatic patch clamp (Silberberg and Markram, 2007; 

Williams and Mitchell, 2008) and therefore indicative of the dendritic origin of these 

GABAergic currents. 

The efficacy of inhibition was examined by looking at MC ability to delay a spike during a 30-

40 Hz somatic-induced firing of PC (Fig. 4A, B). The variation between the duration of PC 

inter-spike-interval (ISI) during which inhibition occurred (post-ISI) and the previous ISI (pre-

ISI) was used as an index of inhibitory effect (Fig. 4A). This index was low, as PC inter-spike-

intervals were only slightly increased by MC firing (Fig 4B, 6-30 %, n=4) which further 

indicates the dendritic origin of inhibition (Williams and Stuart, 2003). Nonetheless, we 

noticed that the inhibitory effect depended on MC spike timing; it was lower if MC fired earlier 

during post-ISI (Fig. 4B). This occurred in particular for reciprocally connected MC-PC pairs 

(Fig. 4C), when a PC discharged a MC with short latency, the inhibitory event in return 

increased the afterhyperpolarization (AHP) of the PC action potential, but it did not really 

affect post-ISI (Fig. 4C). To better understand the role of this feedback inhibition, we then 

investigated how pyramidal cells recruited Martinotti cells.  

 

Repetitive stimulation un-mutes PC-to-MC connection 

The probability for evoking a postsynaptic excitatory event in a MC with a single spike in the 

PC was very low (range = 0 - 0.35; Median = 0.08; 75% percentile = 0.19; n = 23). However, 

synaptic transfer increased significantly after a 30 Hz train of 30 action potentials (Fig. 5, n = 

7). Early and late transfer rates were calculated based on synchronous excitatory 

postsynaptic events, elicited for the 5 first and the 5 last action potentials, respectively, 

showing an increase in synaptic transfer by 3.45 ± 0.91 (n = 7) at the end of the train. The 

amplitude of the postsynaptic events also increased significantly (multiplied by 1.34 ± 044; n 

= 7), but to a lesser degree compared to the increase in transfer rate. The repetitive 

stimulations at the PC-to-MC synapse thus increased the PC-to-MC synaptic efficacy; 

Transfer probability depends on presynaptic firing frequency 
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Short term plasticity mechanisms typically depend on dynamical properties in the presynaptic 

compartment (Zucker and Regehr, 2002; Regehr, 2012). We therefore compared how 

presynaptic firing frequency would influence postsynaptic responses. Trains of equivalent 

numbers of action potentials were elicited in the pyramidal neuron, at a frequency of either 30 

Hz or 10 Hz (Fig. 6A, B), with silent periods of at least 10 seconds between trains (Fig. 6A). 

The synaptic transfer rate was always higher for 30 Hz trains (0.32 ± 0.06) compared to 10 

Hz trains (0.18 ± 0.05; n = 9, Table 3, Fig. 6B,C). Therefore, increasing the firing frequency 

clearly enhanced synaptic reliability. If the transfer rate is normalized to a 1 second period of 

action potential firing, the increase in synaptic transfer is even more striking, going up by a 

factor of 6.2 ± 1.1 when presynaptic firing frequencies increase from 10 to 30 Hz. (see Table 

3). An alternative protocol, consisting of consecutive step current injections with increasing 

amplitude, from 15 to 50 Hz (Fig. 6D, n = 6 different pairs). Once again, the PC-to-MC 

transfer rate, calculated for the first ten spikes, increases progressively from 10 to 50 Hz (Fig. 

6E). This frequency dependent transfer rate at PC-to-MC synapses was observed in all 

tested pairs (n = 27 in total). 

 

Increase of transfer rate as a medium term memory process 

The change of transfer rate was related not only to the present presynaptic firing frequency, 

but also to the recent past of presynaptic activity, as suggested by the facilitating dynamics. 

Figure 7A-C shows how an initial 10 Hz spike train is scarcely transmitted, with a subsequent 

sharp increase in the transfer rate for a 30 or 40 Hz train of action potential firing. 

Interestingly, this apparent “un-muting” of the synapse was then maintained, and the 

immediately succeeding 10 Hz train had a much higher transfer rate compared to the initial 

one. In fact, the probability to get a postsynaptic event was almost as high as during the high 

frequency un-muting stimulus (1-2 seconds; n = 3). This plasticity of transfer rate was fully 

reversible with longer silent inter-stimulus intervals: synapses were no longer un-muted for a 

10 Hz spike train that was applied more than 10 seconds after a 30 Hz train (cf. Fig. 6B, 7B). 

In vivo, head direction cells of the presubiculum sustain firing if the head is still (Taube et al., 

1990). In vitro, principal cells of presubiculum can sustain firing during several seconds in 

response to DC (direct current) injection, even though their discharge frequency slightly 

adapts over time (Yoshida and Hasselmo, 2009; Simonnet et al., 2013). We therefore tested 

the dynamics of the PC-to-MC synapse during the progressive decrease of firing frequency 

induced by maintained DC injection (Fig. 7D-F). Two cases were distinguished for each 

neuron. First, initial firing was not high enough to un-mute synapses and synaptic transfer 
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stayed low (Fig. 7D and 7F, orange lines); Secondly, the initial high frequency firing un-muted 

the PC-to-MC synapse, and transfer rate remained stable thereafter, even if firing frequency 

decreased (Fig. 7D and 7F, blue lines). These results confirmed that the initial discharge had 

a significant impact on further information transfer. However, these sustained discharges 

may not correspond to firing patterns of head direction cells in vivo. 

The PC-to-MC synaptic dynamics account for more natural firing patterns. 

In vivo studies of head direction (HD) cells in the presubiculum reported variable peak firing 

rates, from 5 to 115 spikes per seconds, 2/3 being < 40 Hz (Taube et al., 1990b). In 

recordings of head direction cells from freely moving animals, we found that the mean peak-

firing rate was 10 ± 2 spikes per seconds (n = 5 HD cells, Fig. 8A). Firing patterns were 

highly irregular (Fig. 8B, C), with peak instantaneous frequencies up to 250 Hz. We extracted 

stretches of sustained spiking activity, corresponding to maintained HD cell firing (Fig. 8D), 

and played those as depolarizing current commands into a pyramidal cell. Figure 8E, F 

shows the spike pattern initiated in the pyramidal cell and the simultaneous recording from a 

postsynaptically connected Martinotti cell, either in current clamp or voltage clamp mode. As 

expected from our previous results, single pyramidal cell action potentials at the beginning of 

the in vivo spike pattern were rarely transmitted, but the PC-to-MC synaptic efficiency was 

enhanced during period of sustained and high frequency natural firing (Fig. 8E-G).  Synaptic 

un-muting could persist during silent periods following an enhancement. For one pair with a 

relatively high basal transfer rate, the pyramidal cell fired the Martinotti cell but only 

specifically during sustained and high frequency firing (Fig. 8E, G). 
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Conclusion 

Our present work constitutes the first study of dynamical synaptic properties in the rodent 

presubicular microcircuit. We have identified elements of an inhibitory feedback circuit in 

superficial layers: a Pyramidal Cell (PC) exciting a Martinotti Cell (MC), which in return 

inhibits the Pyramidal Cell. MCs target mainly layers 1 and 3 and provide reliable dendritic 

inhibition. The efficiency of inhibition in terms of delaying PC firing induced with somatic DC 

injection seemed rather weak. Nonetheless, we noticed that the strength of inhibition 

depended on MC spike timing, that is, if inhibition was synchronized with the pyramidal cell 

AHP, the inhibitory effect was the lowest. The synaptic transfer from PC to MC was activity 

dependent, as it increased with the duration and frequency of the presynaptic discharge. 

Excitatory post-synaptic events were rarely detected in MC upon single spike firing of PC. 

However, the synaptic transfer rate was significantly increased at the end of a PC spike train 

at 30 Hz. This “un-muting” of the PC-to-MC synapse also enhanced subsequent synaptic 

transfer during hundreds of milliseconds and up to seconds after the end of a stimulus.  

Following un-muting, even single spikes, or low frequency discharge, could effectively 

transfer information. Natural firing patterns of head direction cell spike trains were injected 

into a pyramidal cell to confirm that MCs could be recruited by in vivo discharge patterns. 

Martinotti cells may be tuned to refine the head directional signal during sustained firing of 

Head Direction Cells. 

 

Discussion and perspectives 

Martinotti cells and pyramidal cells constitute the highly interconnected elements of a 

feedback subcircuit in the presubiculum. 

A high proportion of connections were found in our recordings: 40 % from PC to MC, 60% 

from MC to PC and 30% of pairs were reciprocally connected. As the slice preparation 

cannot preserve the integrity of all connections, our estimation of the overall connectivity is 

certainly on the low side. The amount of inhibitory connections and the transfer rate at 

connected pairs might have been further underestimated because of the very low amplitude 

of inhibitory synaptic events at distal dendritic contacts. The MC-to-PC connectivity, as well 

as the reliability at these synapses, may be higher than our estimation. In order not to miss 

small amplitude events, the internal recording solution could be modified to increase the 

driving force for chloride, which would produce synaptic events of higher amplitude and the 

reliability of these synapses (failure/transfer rate) could be better addressed. Adapting the 
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recording conditions in this way should also help the observation of the kinetics of the evoked 

IPSCs, as well as their short-term synaptic dynamics.  

The high proportion of MC-to-PC connections in presubiculum is similar to what is found in 

neocortex, where Martinotti cells provide a dense, reliable and non-specific inhibition onto 

neighboring pyramidal cells (Fino and Yuste, 2011). Together with the high number of PC to 

MC connections, this indicates that MC provide a recurrent inhibitory control onto superficial 

layer pyramidal cells (Kapfer et al., 2007; Silberberg and Markram, 2007; Berger et al., 

2009). We have recently shown that the optogenetic activation of afferent fibers from 

anterodorsal thalamus, a determinant area of presubicular function (Goodridge and Taube, 

1997), directly activated pyramidal cells, but rarely SST+ interneurons. This further supports 

the feedback inhibitory role of MCs in the presubiculum (Mathon, Nassar, Simonnet and 

Fricker, unpublished). 

The direct PC-to-PC connectivity seems very low in the presubiculum (0 out of 22 checked 

connections, not shown). Thus the inhibition provided by Martinotti cells might be a 

prominent way to interact between presubicular pyramidal cells, similarly to Martinotti cells in 

neocortex during high frequency burst (Silberberg and Markram, 2007). Given the high 

degree of connectivity and the dense ramification of the Martinotti cell axon in superficial 

layer, the presence of disynaptic inhibition will be certainly confirmed in future studies 

combining dually recorded pyramidal cells.  

 

Facilitating synaptic transfer rate at the PC to MC synapse.  

Single spikes in PC rarely excited MC, but sustained and high frequency stimuli could evoke 

postsynaptic EPSCs following facilitating dynamics: the transfer rate increased gradually 

during the stimulation, and could eventually fire the MC (Fig. 6D, 8G) when excitatory 

postsynaptic events started to sum. In neocortex and hippocampus, short-term dynamics of 

pyramidal cell excitatory synapses depend on the target interneuron (Ali and Thomson, 1998; 

Ali et al., 1998; Markram et al., 1998; Beierlein et al., 2003; Koester, 2005; Silberberg et al., 

2005; Silberberg and Markram, 2007). The dynamics of the PC-to-MC synapse match well 

with the corresponding excitatory synapses in hippocampus (Ali and Thomson, 1998) and 

neocortex (Beierlein et al., 2003; Silberberg and Markram, 2007; Fanselow et al., 2008); all 

these synapses are strengthen during repetitive stimulations. However, we could not address 

the dynamics of amplitude changes with a classical paired-pulse protocol (as we did for the 

MC to PC synapse), because most synapses stayed silent during a paired pulse. Amplitudes 

tended to increase somewhat during repetitive stimuli (Fig. 5, 6D), especially in recordings 
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with a high initial transfer rate (Fig. 5D, 8G). The frequency dependent increase of transfer 

rate that we observe in presubiculum may go with the frequency dependent amplitude 

increase described in many facilitating synapses, such as the excitatory synapses onto 

Martinotti cells in neocortex (Markram et al., 1998; Fanselow et al., 2008). Finally, the 

facilitation of synaptic efficacy may last several hundreds of milliseconds after the end of a 

stimulation (Gupta et al., 2000; Regehr, 2012). This slow decay seems similar to the 

persistent increase of transfer rate that we observe after high frequency stimuli (Fig. 7, 8). 

Nevertheless, the transfer rate always stays relatively low, even after un-muting, compared to 

sustained stimulations in neocortical layer 3 (Fanselow et al., 2008) or layer 5 (Silberberg 

and Markram, 2007) PC-to-MC synapses. We therefore suggest that the PC-to-MC synaptic 

transmission in the presubiculum is regulated by an activity dependent mechanism, distinct 

from presynaptic short term facilitation (Zucker and Regehr, 2002; Regehr, 2012), acting 

either in the axon or at the presynaptic site. (Debanne et al., 2013).  

 

Function of frequency-dependent dendritic inhibition in the presubiculum.  

Frequency dependent mechanisms at the synapse regulate information transfer in neuronal 

networks (Abbott and Regehr, 2004). In somatosensory cortex, the switch between two 

regimes of activity, sparse firing to burst firing, reroutes the information from depressing 

pyramidal-to-pyramidal synapse to facilitating pyramidal-to-Martinotti synapse (Silberberg 

and Markram, 2007). We have no information about the pyramidal-to-pyramidal connection in 

the presubiculum, but presubicular pyramidal-to-Martinotti synapse follows the same logic. 

Sixty percent of presubicular neurons are head direction cells (Boccara et al., 2010) and 

these neurons can sustain firing, sometimes at high frequency (Fig. 8), when the animal 

remains within the directional range of the head direction cell (HDC) (Taube et al., 1990). The 

PC-to-MC synapse is perfectly tuned to function in the context of a sustained head direction 

signal, as its very low initial transfer rate acts as a high pass filter (Abbott and Regehr, 2004), 

insensitive to sharp increases, but enhanced over time. We predict that MCs should not be 

recruited during fast head turns that donʼt involve a sustained activation of a HDC. We show 

that inhibition by a MC does not have much inhibitory effect on PC discharge induced by 

somatic DC injection. However, the inhibitory effect may be higher in dendrites. Presubicular 

pyramidal cell dendrites may produce electrical regenerative events (Simonnet and Fricker, 

unpublished) which may be affected by MC inhibition similar to the inhibition of dendritic 

spikes by MCs (Larkum et al., 1999; Murayama et al., 2009). When persistently signaling a 

head direction, the inhibition of dendritic excitatory inputs is likely to be enhanced, which may 
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function as a homeostatic process avoiding over-excitation in the intrinsic network (Isaacson 

and Scanziani, 2011). At the same time, dendritic inhibition should not abolish output firing 

rate, which is consistent with the fact that no adaptation was reported for HDC firing (Taube 

et al., 1990). MC inhibition could however help to synchronize spiking activity of neurons with 

the same or very close tuning properties, opening time windows for dendritic excitation.  

Feedback inhibition mediated by MCs may be particularly important to improve the accuracy 

of head direction signal. We found that inhibition had a lower effect if it was synchronized 

with the AHP, namely when it corresponded to self-induced feedback inhibition (PC1 fires a 

MC that reciprocally inhibits PC1). Thus, self-induced feedback inhibition (on PC1) should be 

weaker than lateral inhibition (on PC2). Continuous attractor network models suggests that 

the best-tuned HDC fires at maximum frequency, neighboring HDCs fire less, and a feedback 

inhibition limits the overall activity (McNaughton et al., 2006). Based on PC-to-MC synapse 

dynamics, we assume that PC1 may be the best to recruit a MC. In turn, the MC may 

mediate a global feedback inhibition affecting PC2 and to a lesser extent PC1, because 

inhibition is time locked to PC1 firing. Hence, the activity-dependent recruitment of Martinotti 

cells by the presubicular intrinsic recurrent network could make an ideal inhibitory feedback 

loop, perfectly tuned to refine the rate coding of the Head Direction Cells.  
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Figure Legends 

 
Figure 1. Electrophysiological intrinsic properties of Martinotti cells and pyramidal 
cells in superficial layers. 
(A) Current clamp recordings of a MC (green) and a PC (blue) at resting membrane potential 

(RMP), and (B) the values for 32 MCs and 28 PCs. (C) Typical responses of a MC and a PC 

to negative and positive current step injection of 800 ms, and the corresponding IV curves 

(D). (E) Compared input resistance for 32 MCs and 28 PCs. (F) Input-Output curves of the 

firing rate (Hz) as a function of injected currents revealed (G) a lower threshold current and 

higher input-output (I-O) gain in MCs than in PCs. (H) The high sag ratio is typical for MCs. 

Note there are fewer values for sag ratio (27 for MCs, 18 for PCs) compared to other 

parameters, because it is calculated for steady-state potential values comprised within a -90 

to -100 mV range (Nassar et al. in preparation), not always reached in our recordings. In B, E 

and H, orange horizontal bars indicate the mean value. 

 

 

Figure 2. Compared morphology of Martinotti and pyramidal cells and their 
connectivity in the slice preparation.  
(A) Neurolucida reconstruction of a reciprocally connected pair in layer 3, disposed on a 

picture of the corresponding slice during the recording. PC dendrites covered layer 1 and 3, 

the preferentially targeted area of the MC axon (inset), whereas the PC axon mainly 

innervates layer 3, where MC dendrites are found (inset). DG: dentate gyrus, Pas: 

Parasubiculum (B) Proportion of unilaterally and reciprocally connected pairs. Number of 

tested connection may vary because they were not always tested in both directions.  

 

 

Figure 3. Properties of Martinotti cell inhibitory synapses.  
(A) Single action potentials were elicited at 0.5 Hz in a MC (green trace) and individual 

inhibitory currents were recorded in a connected PC clamped at -50 mV, then averaged (av, 

74 traces). (B) Corresponding IPSC amplitude (black) and noise (white) histograms. The 

transfer rate was calculated with a threshold corresponding to 1.6 times the RMS of noise. 

(C) Average amplitudes (including failures) for n = 22 paired. (D) Dynamic of synaptic 

responses for 10 action potentials triggered at 50 Hz. The average amplitude (av, 40 traces) 

depressed during repetitive stimuli, likely due to an increase of failure rate over time, visible 

on individual trials.  
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Figure 4. Timing dependent inhibitory effect of Martinotti cells.  
(A) Firing was induced at 30 – 40 Hz in a PC with current step injection (blue) and single 

spikes were elicited in a connected MC (green) using 2 ms pulses of 1.5 nA. IPSP, triggered 

by a MC action potential is clearly visible on the top trace (arrow), but less so in the bottom 

trace (arrow) because it is almost synchronized with the trough of the afterhyperpolarization 

(AHP). MC delay is the delay of MC firing from PC firing as indicated; postISI is the inter-

spike-interval during which MC fires; preISI is the previous one. The magnitude of the 

inhibitory effect was calculated as 1 – postISI/preISI and plotted as a function MC delay  (B). 
Note that the inhibitory effect is relatively weak, but tends to be stronger as MC delay 

increases. (C) For a reciprocally connected pair, inhibition is triggered by the PC spike with 

very short latency and boosts the PC AHP, as indicated by red filled areas. 

 

 
Figure 5. Repetitive stimulus un-mutes the pyramidal cell to Martinotti cell excitatory 
synapses.  
(A) 30 action potentials were elicited at 30 Hz in a PC while a connected MC was recorded in 

voltage clamp mode at -65 mV. Note that there are more EPSCs (apparent as vertical 

descending lines) at the end of the stimulation. The synaptic transfer rate was determined 

with two different methods (see methods) exposed in this figure. (B) Synaptic transfer raster 

plots, each line representing on trial. Blue bars indicate presynaptic action potentials and red 

dots represent EPSCs that were triggered within a monosynaptic delay of less than 3 ms. 

Early and late transfer rates were calculated from action potential 1 to 5 and from action 

potential 26 to 30, respectively. (C) The late transfer rate was systematically and significantly 

(Wilcoxon signed rank test, p = 0.0078; n = 7 pairs) higher than the early transfer rate. The 

EPSC amplitudes were significantly (Wilcoxon signed rank test, p=0.0391) higher as well, but 

the amplitude increase was observed in 5 out of 7 pairs only. (D) Early and late action 

potentials were detected and aligned at their peak. Average synaptic responses are higher 

for late action potentials, which translates the increase in transfer rate apparent in traces of 

individual responses. (E) Corresponding EPSC and noise amplitude histograms. The 

indicated transfer rate was calculated with a threshold corresponding to 1.6 times the RMS of 

noise (see methods). (F) Transfer rate deduced from peak amplitude measurement was 

plotted as a function of transfer rate obtained with EPSC detection. Early transfer rate is 

depicted in orange, late transfer rate in purple. The two methods give comparable results.  
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Figure 6. Frequency-dependent synaptic transfer from pyramidal cell to Martinotti cell.  
(A) 30 action potentials were elicited at either 10 or 30 Hz in a PC while a connected MC was 

recorded in voltage clamp mode at -65 mV. (B) Synaptic transfer raster plots, each line 

representing on trial. Blue bars indicate presynaptic action potentials and red dots represent 

EPSCs that were triggered within a monosynaptic delay of less than 3 ms. Note that there 

are more EPSCs elicited during the 30 Hz train. (C) Frequency dependent enhancement of 

transfer rate for n = 9 pairs (** Wilcoxon signed rank test, p=0.002). (D) Similar result 

obtained with a protocol of step current injections of increasing amplitude in the PC. Again, 

synaptic transfer, calculated for the 10 first action potentials, was enhanced by the increasing 

firing frequency of the PC; in this example, the MC was recorded in current clamp mode at 

resting membrane potential (~ -55 mV) and summation of synaptic potentials for high 

frequency firing of the PC initiated 1 action potential in the MC. (E) Transfer rate increases 

with increasing presynaptic firing frequency; gray traces are individual cells, black trace 

represents the average of individual from 25 to 40 Hz.  

 

Figure 7. Low firing frequencies can efficiently transfer information, depending on 
past activity of pyramidal cell.  
(A) A sequence, including a 10 Hz stimulus (pre 10 Hz) followed by an un-muting stimulus, 

followed by another 10 Hz stimulus (post 10 Hz), was applied in a PC, as the MC was 

recorded in voltage clamp mode at -65 mV. (B) Synaptic transfer raster plots show a clear 

enhancement after the un-muting stimulation. (C) Summary data from n = 3 pairs.  (D) and 
(E) Maintained current injections were applied to induce maintained firing in a PC while a MC 

was recorded in current clamp mode. The top graphs show the evolution of presynaptic 

instantaneous frequency with time of stimulation (blue +). Instantaneous frequency was 

calculated for each spike as the inverse of the previous inter-spike interval. Red dots indicate 

the monosynaptic EPSPs in the postsynaptic MC. The lower graphs (gray line) show the 

evolution of transfer rate as a function of time. For the two stimuli, firing frequency adapted, 

from 20 to 10 Hz in (D) and from ~50 to 20 Hz in (E). In (D), the initial frequency did not 

enhance transfer rate, which therefore stayed low (0 – 0.25). In (E), the initial frequency un-

muted and locked synaptic transfer at higher level (0.2 - 0.5), even if presynaptic frequency 

diminished. (F) Results for n = 3 pairs: with an initial low frequency stimulation (orange 

dashed-line), synapses remain quite un-efficient (orange line); with a higher initial frequency 

(bleu dashed-line), synapses are enhanced and transfer rate (blue line) stays high even if 

firing frequency diminishes.  
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Figure 8. Recruitment of Martinotti cells during natural discharge of pyramidal cells. 
 (A) Polar plot of a head direction cell, representing the firing frequency (Hz) as a function of 

head direction (°). (B) Raster plots showing the firing pattern of this head direction cell within 

its directional firing range. Note that the firing is highly irregular. (C) Histogram of the 

instantaneous frequencies as the animals turned its head within the directional firing range. 

(D) Sample period during which a sustained firing occurred (282 - 286 s) as the head 

remained within the directional firing range (200 - 240°). (E) This firing pattern was injected in 

a PC, while a connected MC was recorded either in current clamp mode at RMP, or in 

voltage clamp mode at -65 mV. (F) Transfer rates plotted for each presynaptic action 

potential; on the top (example shown above), pair that had a high basal transfer rate; on the 

bottom, a pair that had a lower initial transfer rate. Downward red lines indicate a transfer 

rate of 0. (G) and (H), “burst” of activity underlined by the gray box in (E) and (F) at shorter 

time scale. The initial transfer was null, then progressively increased so this single PC was 

able to reliably fire the MC at the end of the bursting period (5/5); the transfer rate remained 

elevated during the subsequent firing at lower frequencies. The synapse with lower transfer 

rate followed the same dynamics, at a lower level. 
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Figure 1 
 
 

 
 
 

Figure 1. Electrophysiological intrinsic properties of Martinotti cells and pyramidal cells in 
superficial layers of presubiculum.  
(A) Current clamp recordings of a MC (green) and a PC (blue) at resting membrane potential (RMP), 
and (B) the values for 32 MCs and 28 PCs. (C) Typical responses of a MC and a PC to negative and 
positive current step injection of 800 ms, and the corresponding IV curves (D). (E) Compared input 
resistance for 32 MCs and 28 PCs. (F) Input-Output curves of the firing rate (Hz) as a function of 
injected currents revealed (G) a lower threshold current and higher input-output (I-O) gain in MCs than 
in PCs. (H) The high sag ratio is typical for MCs. Note there are fewer values for sag ratio (27 for MCs, 
18 for PCs) compared to other parameters, because it is calculated for steady-state potential values 
comprised within a -90 to -100 mV range (Nassar et al. in preparation), not always reached in our 
recordings. In B, E and H, orange horizontal bars indicate the mean value. 
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Figure 2 
 
 

 
 
 

Figure 2. Compared morphology of Martinotti and pyramidal cells and their connectivity in the 
slice preparation.  
(A) Neurolucida reconstruction of a reciprocally connected pair in layer 3, disposed on a picture of the 
corresponding slice during the recording. PC dendrites covered layer 1 and 3, the preferentially 
targeted area of the MC axon (inset), whereas the PC axon mainly innervates layer 3, where MC 
dendrites are found (inset). DG: dentate gyrus, Pas: Parasubiculum (B) Proportion of unilaterally and 
reciprocally connected pairs. Number of tested connection may vary because they were not always 
tested in both directions.  
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Figure 3 
 
 

 
 
 
 

Figure 3. Properties of Martinotti cell inhibitory synapses.  
(A) Single action potentials were elicited at 0.5 Hz in a MC (green trace) and individual inhibitory 
currents were recorded in a connected PC clamped at -50 mV, then averaged (av, 74 traces). (B) 
Corresponding IPSC amplitude (black) and noise (white) histograms. The transfer rate was calculated 
with a threshold corresponding to 1.6 times the RMS of noise. (C) Average amplitudes (including 
failures) for n = 22 paired. (D) Dynamic of synaptic responses for 10 action potentials triggered at 50 
Hz. The average amplitude (av, 40 traces) depressed during repetitive stimuli, likely due to an 
increase of failure rate over time, visible on individual trials.  
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Figure 4 
 

 

 
 

 
Figure 4. Timing dependent inhibitory effect of Martinotti cells.  
(A) Firing was induced at 30 – 40 Hz in a PC with current step injection (blue) and single spikes were 
elicited in a connected MC (green) using 2 ms pulses of 1.5 nA. IPSP, triggered by a MC action 
potential is clearly visible on the top trace (arrow), but less so in the bottom trace (arrow) because it is 
almost synchronized with the trough of the afterhyperpolarization (AHP). MC delay is the delay of MC 
firing from PC firing as indicated; postISI is the inter-spike-interval during which MC fires; preISI is the 
previous one. The magnitude of the inhibitory effect was calculated as 1 – postISI/preISI and plotted 
as a function MC delay  (B). Note that the inhibitory effect is relatively weak, but tends to be stronger 
as MC delay increases. (C) For a reciprocally connected pair, inhibition is triggered by the PC spike 
with very short latency and boosts the PC AHP, as indicated by red filled areas. 
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Figure 5 
 

 
Figure 5. Repetitive stimulus un-mutes the pyramidal cell to Martinotti cell excitatory synapses.  
(A) 30 action potentials were elicited at 30 Hz in a PC while a connected MC was recorded in voltage clamp 
mode at -65 mV. Note that there are more EPSCs (apparent as vertical descending lines) at the end of the 
stimulation. The synaptic transfer rate was determined with two different methods (see methods) exposed in 
this figure. (B) Synaptic transfer raster plots, each line representing on trial. Blue bars indicate presynaptic 
action potentials and red dots represent EPSCs that were triggered within a monosynaptic delay of less 
than 3 ms. Early and late transfer rates were calculated from action potential 1 to 5 and from action potential 
26 to 30, respectively. (C) The late transfer rate was systematically and significantly (Wilcoxon signed rank 
test, p = 0.0078; n = 7 pairs) higher than the early transfer rate. The EPSC amplitudes were significantly 
(Wilcoxon signed rank test, p=0.0391) higher as well, but the amplitude increase was observed in 5 out of 7 
pairs only. (D) Early and late action potentials were detected and aligned at their peak. Average synaptic 
responses are higher for late action potentials, which translates the increase in transfer rate apparent in 
traces of individual responses. (E) Corresponding EPSC and noise amplitude histograms. The indicated 
transfer rate was calculated with a threshold corresponding to 1.6 times the RMS of noise (see methods). 
(F) Transfer rate deduced from peak amplitude measurement was plotted as a function of transfer rate 
obtained with EPSC detection. Early transfer rate is depicted in orange, late transfer rate in purple. The two 
methods give comparable results.  
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Figure 6 
 
 

 
Figure 6. Frequency-dependent synaptic transfer from pyramidal cell to Martinotti cell.  
(A) 30 action potentials were elicited at either 10 or 30 Hz in a PC while a connected MC was 
recorded in voltage clamp mode at -65 mV. (B) Synaptic transfer raster plots, each line representing 
on trial. Blue bars indicate presynaptic action potentials and red dots represent EPSCs that were 
triggered within a monosynaptic delay of less than 3 ms. Note that there are more EPSCs elicited 
during the 30 Hz train. (C) Frequency dependent enhancement of transfer rate for n = 9 pairs (** 
Wilcoxon signed rank test, p=0.002). (D) Similar result obtained with a protocol of step current 
injections of increasing amplitude in the PC. Again, synaptic transfer, calculated for the 10 first action 
potentials, was enhanced by the increasing firing frequency of the PC; in this example, the MC was 
recorded in current clamp mode at resting membrane potential (~ -55 mV) and summation of synaptic 
potentials for high frequency firing of the PC initiated 1 action potential in the MC. (E) Transfer rate 
increases with increasing presynaptic firing frequency; gray traces are individual cells, black trace 
represents the average of individual from 25 to 40 Hz.  
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Figure 7 
 
 

 
 
 

Figure 7. Low firing frequencies can efficiently transfer information, depending on past activity 
of pyramidal cell.  
(A) A sequence, including a 10 Hz stimulus (pre 10 Hz) followed by an un-muting stimulus, followed by 
another 10 Hz stimulus (post 10 Hz), was applied in a PC, as the MC was recorded in voltage clamp 
mode at -65 mV. (B) Synaptic transfer raster plots show a clear enhancement after the un-muting 
stimulation. (C) Summary data from n = 3 pairs.  (D) and (E) Maintained current injections were 
applied to induce maintained firing in a PC while a MC was recorded in current clamp mode. The top 
graphs show the evolution of presynaptic instantaneous frequency with time of stimulation (blue +). 
Instantaneous frequency was calculated for each spike as the inverse of the previous inter-spike 
interval. Red dots indicate the monosynaptic EPSPs in the postsynaptic MC. The lower graphs (gray 
line) show the evolution of transfer rate as a function of time. For the two stimuli, firing frequency 
adapted, from 20 to 10 Hz in (D) and from ~50 to 20 Hz in (E). In (D), the initial frequency did not 
enhance transfer rate, which therefore stayed low (0 – 0.25). In (E), the initial frequency un-muted and 
locked synaptic transfer at higher level (0.2 - 0.5), even if presynaptic frequency diminished. (F) 
Results for n = 3 pairs: with an initial low frequency stimulation (orange dashed-line), synapses remain 
quite un-efficient (orange line); with a higher initial frequency (bleu dashed-line), synapses are 
enhanced and transfer rate (blue line) stays high even if firing frequency diminishes.  
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Figure 8 
 
 

 
 
 
Figure 8. Recruitment of Martinotti cells during natural discharge of pyramidal cells. 
 (A) Polar plot of a head direction cell, representing the firing frequency (Hz) as a function of head 
direction (°). (B) Raster plots showing the firing pattern of this head direction cell within its directional 
firing range. Note that the firing is highly irregular. (C) Histogram of the instantaneous frequencies as 
the animals turned its head within the directional firing range. (D) Sample period during which a 
sustained firing occurred (282 - 286 s) as the head remained within the directional firing range (200 - 
240°). (E) This firing pattern was injected in a PC, while a connected MC was recorded either in 
current clamp mode at RMP, or in voltage clamp mode at -65 mV. (F) Transfer rates plotted for each 
presynaptic action potential; on the top (example shown above), pair that had a high basal transfer 
rate; on the bottom, a pair that had a lower initial transfer rate. Downward red lines indicate a transfer 
rate of 0. (G) and (H), “burst” of activity underlined by the gray box in (E) and (F) at shorter time scale. 
The initial transfer was null, then progressively increased so this single PC was able to reliably fire the 
MC at the end of the bursting period (5/5); the transfer rate remained elevated during the subsequent 
firing at lower frequencies. The synapse with lower transfer rate followed the same dynamics, at a 
lower level. 
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Tables 
 

 

 

Table 1. Electrophysiological properties of presubicular pyramidal cells and Martinotti 
cells. Table 1. Electrophysiological properties of presubicular pyramidal cells and Martinotti cells. 

Pyramidal cells
mean

resting membrane potential (mV) -77.5
time constant (ms)          25.8
input resistance (MΩ) 233.8
sag ratio 1.03
rheobase (pA) 88.6
input-output gain (Hz/pA) 0.296
firing frequency @ 2x rheobase (Hz) 36.0
action potential rising amplitude (mV) 82.9
action potential half duration (ms) 0.561
AP rising phase speed (V/s) 507.6
AP falling phase speed  (V/s) -135.9

Table 1. Electrophysiological properties of presubicular pyramidal cells and Martinotti cells. 

Pyramidal cells Martinotti cells
std n mean
0.7 28 -53.3
2.4 25 36.7

16.9 28 342.4
0.00 18 1.26
7.0 28 44.2

0.019 28 0.728
3.1 28 31.2
1.3 28 81.6

0.019 28 0.282
17.6 28 575.2
4.6 28 -335.6

Table 1. Electrophysiological properties of presubicular pyramidal cells and Martinotti cells. 

Martinotti cells
std n
0.9 32
3.7 26

22.3 31
0.02 27
4.3 32

0.040 31
2.5 32
1.1 32

0.005 32
14.6 32
9.7 32  

 

 

 

 
Table 2:  Increasing transfer rate at the PC-to-MC synapse during repetitive firing. 
Calculated early and late transfer rates during trains of 30 spikes at either 10 or 30 Hz. Early 
and late transfer rates were calculated from action potential 1 to 5 and from action potential 
26 to 30, respectively. The variation between late and early was calculated for each 
frequency, as well as the increase between early and late phase between frequencies. 
Sometimes, the increase cannot be calculated if initial transfer rate is null, so the mean value 
can be underestimated. 

 

Early Late Early Late 10Hz 30Hz Early Late
pair_13o08c1c2  0.21 0.30 0.36 0.49 1.4 1.4 1.7 1.6
pair_13o11c4c5  0.00 0.16 0.10 0.17 inf 1.7 inf 1.0
pair_13o23c6c7  0.06 0.30 0.14 0.60 4.8 4.4 2.2 2.0
pair_13o25c3c5  0.02 0.16 0.09 0.60 7.0 6.7 4.0 3.9
pair_13n26c4c5  0.00 0.00 0.03 0.20 inf 7.0 inf inf
pair_13d16c1c2  0.32 0.66 0.36 0.96 2.1 2.7 1.1 1.5

pair_13d16c10c11 0.20 0.12 0.25 0.43 0.6 1.7 1.3 3.6
pair_13d19c11c12 0.00 0.33 0.07 0.33 inf 5.0 inf 1.0

MEAN 0.10 0.25 0.17 0.47 3.17 3.81 2.05 2.08
SD 0.12 0.20 0.13 0.26 2.66 2.30 1.17 1.17

SEM 0.04 0.07 0.05 0.09 1.19 0.81 0.52 0.44
N 8 8 8 8 5 8 5 7

Table 2:  Increasing tranfer rate at the PC-to-MC synapse during repetitive 
firing. Calculated early and late tranfer rates during trains of 30 spikes at either 
10 or 30 Hz. Early and late transfer rates were calculated from action potential 1 
to 5 and from action potential 26 to 30, respectively. The variation between late 
and early was calculated for each frequency, as well as the increase between 
early and late phase between frequencies. Note that increase cannot always be 
calculated if initial transfer rate is null, so the mean value can be underestimated.

Transfer rates Transfer rate variations
10Hz 30Hz Late / Early 30Hz / 10Hz
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Table 3: Frequency dependent transfer rate at the PC-to-MC synapse. Calculated 
transfer rate over trains of 30 spikes (* for this pair, spike train had 25 spikes) at 10 or 30 Hz. 
The 30Hz/10Hz column shows the variation between the two frequencies. Transfer rate per 
second was calculated by multiplying transfer rate with presynaptic frequency. Note that high 
increases between 10 and 30 Hz are often associated with very low transfer rates for 10 Hz 
(†). 

 

10Hz 30Hz 30Hz/10Hz 10Hz 30Hz 30Hz/10Hz
pair_13925c1c3 * 0.10 0.19 0.1 1.04 5.66 5.4
pair_13o08c1c2  0.28 0.39 1.4 2.81 11.67 4.2
pair_13o11c4c5  0.06 0.13 2.2 0.60 4.00 6.7
pair_13o23c6c7  0.24 0.42 1.8 2.39 12.67 5.3
pair_13o25c3c5  0.08 0.33 4.2 0.78 9.89 12.7
pair_13n26c4c5† 0.005 0.09 18.0 0.05 2.57 54.0
pair_13d16c1c2  0.51 0.73 1.4 5.13 22.00 4.3
pair_13d16c10c11 0.17 0.31 1.8 1.71 9.33 5.5
pair_13d19c11c12 0.21 0.27 1.3 2.11 8.00 3.8

MEAN 0.18 0.32 3.58 1.85 9.53 11.31
SD 0.15 0.19 5.52 1.53 5.77 16.23

SEM 0.05 0.06 1.84 0.51 1.92 5.41
N 9 9 9 9 9 9

Table 3: Frequency dependent tranfer rate at the PC-to-MC synapse. Calculated tranfer 
rate over trains of 30 spikes (* for this pair, spike train with 25 spikes) at 10 or 30 Hz. The 
30Hz/10Hz column shows the variation between the two frequencies. Transfer rate per second 
was calculated by multipling transfer rate with presynaptic frequency. Note that high increases 
between 10 and 30 Hz are often associated with very low transfer rates for 10 Hz.

Tranfer rate per secondTranfer rates
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My PhD

During my PhD, I investigated the integrative properties of presubicular neurons at
the anatomical, cellular and synaptic level in the context of microcircuit computa-
tion.

I studied the electrophysiological and morphological properties of presubicular
principal cells in rat. I classified neurons according to different parameters reflect-
ing their passive properties, firing patterns, action potential waveform, location, the
orientation of dendrites and their repartition across layers. I applied an unsuper-
vised clustering method using 27 descriptive parameters in total, for a dataset of 58
neurons. Neurons fell into 3 main groups in 3 different layers, with distinct morpho-
logical and electrophysiological properties. Superficial layer neurons were mainly
pyramidal and all fired regularly with very little adaptation. This group constitutes
a very homogeneous population. I discovered a population of intrinsically burst
firing pyramidal cells in layer 4, and obtained preliminary data showing that these
neurons project to lateral mammillary nucleus. Deep layer neurons were more het-
erogeneous, but they were all regular spiking with little adaptation, although it was
a bit higher than for superficial layers. Two subgroups emerged; one corresponding
to very excitable pyramidal neurons in upper layer 5, the other was composed of neu-
rons with diverse morphologies and integrative properties. I showed that all regular
spiking neurons had the intrinsic capability to maintain high frequency firing during
tens of seconds. This work gave an overall view of the diversity of presubicular
principal neurons.

In collaboration with Mérie Nassar, I next described the diversity of interneurons
in mouse presubiculum. Similarly to my previous work, we recorded from identified
fluorescent interneurons in the slice and reconstructed their anatomy. Unsupervised
clustering based on electrophysiological parameters describing firing pattern, spike
waveform and passive properties, revealed a continuum of diversity for PV+ and
SST+ interneurons. We identified 3 groups of interneurons, partly following the ex-
pression of neurochemical markers. We found archetypal PV+ fast spiking cells and
SST+ low threshold adapting interneurons. A third group of quasi-fast spiking cells
lied at the transition between the two groups. In terms of morphology, dendritic and
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axonal arbor of presubicular interneurons was quite coherent with the physiological
classification, as the two archetypal groups displayed typical morphologies and the
third one was very diverse even though anatomical features were not included in the
cluster analysis. In conclusion of this work, two modalities of inhibition could ex-
ist in the presubiculum, the PV-mediated perisomatic inhibition and SST-mediated
dendritic inhibition, although this still needs to be confirmed in future studies. The
entire interneuronal population has not been characterized yet, but the presubicular
inhibitory microcircuit is likely to possess the whole complexity of cortical areas
regarding its diversity.

After the basic description of these neuronal populations, I have been interested
in the synaptic interconnectivity in the presubicular microcircuit, looking at the
fine interaction between pyramidal cells and Martinotti cells in superficial layers. I
recorded from pairs of neurons and showed a high interconnectivity between pyra-
midal cells and Martinotti cells. The inhibitory synapse is reliable, but somatic
inhibition is weak, probably due to the remote location of the synapse in the den-
dritic arbor. The inhibitory effect depends on the relative timing between synaptic
event and pyramidal cell spike. Our results suggest that self-induced feedback inhi-
bition (when the connection is reciprocal) may have less inhibitory effect than lateral
inhibition. The dynamics of the pyramidal cell to Martinotti cell synapse is depen-
dent on the presynaptic activity pattern. While this synapse is almost silent during
sparse spiking activity, it facilitates strongly during sustained high frequency firing,
and this effect persists for several seconds. We have not identified the mechanism un-
derlying this synaptic un-muting yet. We suggest that this feedback inhibitory loop
counterbalances excitation and preserves tuning of the head direction signal during
prolonged discharge. I therefore defined the dynamics of a feedback inhibitory loop
in the presubiculum.
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1 | Building blocks of the presubiculum

The description of principal neurons and interneurons of the presubicular micro-
circuit is the basis for a better understanding of this understudied cortical area. My
PhD work constitutes the first extensive study of electrophysiological and morpho-
logical properties of both major neuronal populations in the presubicular cortex.
Indeed, little had been known about the cellular and anatomical substrates of pre-
subicular components (Funahashi and Stewart, 1997a; Yoshida and Hasselmo, 2009;
Fricker et al., 2009; Menendez de la Prida et al., 2003).

1.1 Did we correctly addressed the whole diver-
sity of principal neurons?

In the wake of my publication on principal cell diversity in the presubiculum (Si-
monnet et al., 2013), another group published a similar study focused specifically
on superficial layers (Abbasi and Kumar, 2013). The comparison of the two articles
is a good way to appreciate the strengths, but also some weaknesses, of my work.

Both studies used unsupervised cluster analysis to classify presubicular neurons
into distinct groups. Our dataset included 58 neurons located across all the presubic-
ular cortex, completely characterized by both electrophysiological and morphological
parameters. Putative interneurons were not included in our analysis. Abbasi and
Kumar (2013) based their cluster analysis on electrophysiological parameters only,
with a total number of 177 recorded neurons in the superficial layers. Morphology
was obtained for a subset of neurons only, and correlated with the physiological
classification at a subsequent time. Both studies found a majority of regular spiking
neurons: 62% of the neurons in Abbasi’s study were regular spiking neurons, with
properties similar to those that we had described previously, representing 78% of
all neurons in layer 3 and 56% in layer 2. Abbasi certainly better addressed the
neuronal diversity in layer 2 compared to layer 3, as most neurons included in their
study came from layer 2 (128). On the contrary, most of our recordings were coming
from layer 3. Because the exact limit between layer 2 and 3 is not always obvious, we
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had defined an objective measurement of depth and lateral position. The homogene-
ity of the neuronal properties that we described for superficial layer neurons largely
reflects the properties of layer 3 neurons. As an example for diversity in layer 2, cell
174 in our Fig 3 (Simonnet et al., 2013) displayed distinct electrophysiological and
morphological properties compared to the other neurons; this cell was grouped with
other neurons of layer 2 with cluster analysis (84, 175, 63 in Fig 2), and we probably
should have emphasized the existence of subpopulations in superficial layers as well.

One weakness of the work published by Abbasi and Kumar (2013) is the lower
quality of their dataset compared to ours. Dendrites and axons can be damage by
the slicing procedure. In our study we had excluded low quality electrophysiological
recordings and also cells with non-recovered dendritic arborization, which allowed us
to get a high quality dataset, even though of rather modest size (58 neurons) com-
pared to the number of initially recorded neurons (133 neurons). Abbasi and Kumar
(2013) recorded 177 cells, filled 118 cells, recover 89 dendritic arborization and 42
axonal projections. Consequently, half of their recordings have no morphological
correlate and three quarter may correspond to neurons with no or very limited ax-
onal projections. The integrity of the proximal axon, which contains the axon initial
segment, up to the first node in myelinated axons ( 100 µm from the soma) highly
regulates subthreshold and firing properties (Kole, 2011; Battefeld et al., 2014, Rama
et al. 9th FENS forum of Neuroscience 2014). Consequently, part of the diversity
described by Abbasi and Kumar (2013) may reflect an experimental bias. It is worth
noting that we also had neurons with limited axonal arborization (< 100 µm, 30%),
which could have biased our results, but certainly not account for the heterogeneity
of deep layer neurons as only 4 of these 26 neurons had a limited axonal length.
The diversity of principal neurons in deep layers will deserve further investigation,
and the identification of projecting neurons could be an elegant way to address this
question.

As Abbasi and Kumar (2013) recorded many neurons in a confined area, their
description of electrophysiological properties of neurons in superficial layers covered
much of the existing diversity, even though it was not systematically correlated with
morphology. In contrast, the strength, and the initial purpose, of our work was to
describe neurons of all layers, in order to shed light on the overall organization of the
circuit. We may have missed part of the diversity because of our limited dataset. Our
approach has demonstrated that, like in other periallocortical or neocortical areas,
the cellular properties of presubicular neurons follow their laminar organization.
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1.2 Interneuron diversity

Cortical GABAergic interneurons represent only 20 % of cortical neurons, but they
constitute a very heterogeneous population in terms of function, electrophysiological
properties, dendritic and axonal projections (Isaacson and Scanziani, 2011; Gentet,
2012; Klausberger and Somogyi, 2008; Parra et al., 1998).

Parvalbumin (PV) positive interneurons and somatostatin (SOM) positive in-
terneurons appear as two distinct computational elements of microcircuits (Gentet,
2012). They are often opposed in terms of function (perisomatic versus dendritic
inhibition), morphologies (Basket cells versus Martinotti Cells) or intrinsic electro-
physiological properties (fast spiking cells versus adapting cells).

We characterized the diversity of electrophysiological and morphological proper-
ties of these two major interneuron subtypes in the presubiculum, as described and
discussed earlier. To summarize, PV+ and SOM+ interneurons formed a structured
continuum of diversity, as we found two groups of archetypes (PV+ and SOM+)
as well as a third group of intermediate neurons, lying at the frontier between
archetypes (Battaglia et al., 2013).

The choice of parameters used for unsupervised cluster analysis has a high im-
pact on the resulting classification (Cauli et al., 2000), therefore the results have
to be interpreted carefully. Our classification is based on electrophysiological prop-
erties of neurons only, although anatomical features seemed quite specific within
the different populations (Fig 5, Nassar et al.). One might think that using more
or different parameters could have helped to better define the populations (Cauli
et al., 2000). However, it is more important to include parameters that distinguish
functional populations and we used independent parameters to obtain a non-biased
classification. Too many parameters may water down the classification if included
parameters are equally variable across all populations.

The molecular properties of SST+ and PV+ interneurons could have been re-
vealed, using single cell RT-PCR (Cauli et al., 2000; Cabezas et al., 2013), or im-
munohistochemistry (Perrenoud et al., 2012).

PV+ and SOM+ neurons together with the 5HT3a+ cells are thought to rep-
resent all the cortical interneurons (Rudy et al., 2010). Consequently, in order to
define the entire diversity of presubicular interneurons, the properties of 5HT3a
interneurons should also be addressed.
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2 | Perspective: from neuronal diversity to
function

The morphological properties of principal neurons and interneurons indicate what
kind of inputs they may receive, by comparing their dendritic morphology (Simonnet
et al., 2013: Fig. 7; Nassar et al.: Fig. 5) with our knowledge on the laminar
specificity of afferences and the projections of local axons (Simonnet et al., 2013:
Fig. 7; Nassar et al.: Fig. 5) (Peters and Feldman, 1976). The integrative properties
suggest how these neurons convert input into output (Simonnet et al., 2013: Fig. 8;
Nassar et al.: Fig 4).

In fact, the description of neuronal features brought a lot of questions. We
therefore defined hypotheses about the information flows and their regulation in
the presubiculum, from afferences to microcircuit to efferences. For example, it is
relevant to ask the question of the target-specificity of afferences. Are all the cells
with dendrites in superficial layers (layer 2/3 pyramidal cells and interneurons, layer
4 and layer 5/6 pyramidal cells?) differentially or similarly targeted by a distinct
input into superficial layers (e.g. thalamus)? Does a homogeneous population (e. g.
layer 3 pyramidal cells) receive distinct inputs from distinct afferences targeting the
same area (thalamus, retrosplenial cortex, visual cortex. . . )?

Preliminary results, obtained with optogenetic stimulation of afferences (Petre-
anu et al., 2007), showed that pyramidal cells and Pvalb-Cre RFP+ interneurons,
but not Sst-Cre RFP+ interneurons in superficial layers were directly recruited by
thalamic inputs (Mathon, Nassar, Simonnet and Fricker, unpublished). The direct
recruitment of PV interneurons by long-range projections indicates a feedforward
inhibitory circuit, whereas the SST interneuron may provide feedback inhibition
(Cruikshank et al., 2010; Lee et al., 2013). Moreover, deep layer cells seem to be
not directly targeted, but rather receive recurrent excitation. These results suggest
that (1) superficial layer neurons are the main targets of thalamus, (2) they regulate
information with inhibitory feedback and feedforward circuits, (3) they send the in-
tegrated information towards deep layers. The functional impact of the recruitment
of interneurons in superficial layers will stay unclear as long as their specific targets
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remain unknown.
Functional mapping, using caged glutamate photolysis (Beed et al., 2013; Fino

and Yuste, 2011; Packer and Yuste, 2011) or optogenetic activation of identified neu-
ronal populations (Zhao et al., 2011; Kätzel et al., 2010) are two ways to determine
the local inhibitory connectivity. The Pvalb-Cre- or Sst-Cre- mice may be used to
specifically induce the expression of channelrhodopsin-2 (Nagel et al., 2003) in these
two specific subpopulations, allowing their specific light-induced activation in the
presubicular microcircuit.

Ultimately, the functional implication of the different subtypes of interneurons
in tuning the Head direction cells could be addressed in vivo, using specific inacti-
vation of specific sub-population with halorhodopsins (Zhang et al., 2007). Tuning
properties of head direction cells should be affected differently by distinct interneu-
rons.
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3 | Neurons that project to lateral mam-
millary (LMN) and anterodorsal thala-
mus (ADN): implication for the visual
update of the head direction signal

The LMN projecting neurons have been thought to be the preferential route for the
visual update of the subcortical head direction signal (Yoder et al., 2011); different
elements had been considered. The visual cortex sends direct projections to the
superficial layers of presubiculum (Vogt and Miller, 1983). Thus, Yoder and Taube
(2011) suggested that layer 4 pyramidal neurons could be their preferential targets,
considering their prominent dendritic arborization that extends in superficial layers.
The visual information necessary for presubicular action onto subcortical nuclei
seems primarily mediated by these projections, as the indirect pathway via the
retrosplenial cortex has less influence on visual update of subcortical head direction
cells (Clark et al., 2010; Calton et al., 2008).

Our findings cast more doubt on these assumptions. Indeed, both ADN and
LMN projecting neurons extend their dendrites in superficial layers, and superficial
layer and layer 4 neurons send descending axons to deep layers (Simonnet et al.,
2013), and might recruit ADN projecting neurons. Additional knowledge about the
integration of visual cortical information in the presubicular microcircuit is necessary
to predict how the presubiculum could operate visual control.

Nonetheless, LMN projecting neurons have interesting integrative properties to
operate the fast visual update. It was shown that visual update was effective within
very short latency ( 80 ms) in thalamus (Zugaro et al., 2003), suggesting that the
integration in Visual cortex→ PrS→ LMN→ ADN or Visual cortex→ PrS→ ADN
pathways should be very fast. We hypothesize that the fast integrative properties
and the intrinsically burst firing behavior of LMN projecting neurons favor fast
transfer of information, in both pathways. Efficient excitatory drive (burst) would be
rapidly sent in parallel, to the LMN, and to neurons projecting to ADN via recurrent
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axons (Simonnet et al., 2013). Thus, convergent information from the presubiculum
and LMN may update head direction signal in thalamus. Yet, recurrent excitation of
LMN projecting neurons onto ADN projecting neurons remains to be demonstrated.

Furthermore, the anticipation of future head direction is a characteristic of LMN
(Stackman and Taube, 1998) and ADN (Goodridge and Taube, 1997) head direction
cells, and modeling suggested that visual update should be delivered at low frequen-
cies (< 1Hz) to not disrupt the anticipatory time interval (van der Meer et al.,
2007). Single spikes or intrinsically burst firing of LMN projecting layer 4 neurons
may provide the necessary sparse coding as they do not sustain high frequency firing
(Simonnet et al., 2013).

The diversity of ADN projecting and LMN projecting neurons has to be ad-
dressed further to complete these results and confirm their different integrative
properties.

In a next step, we propose to test whether these populations are recruited by
afferences from visual cortex or not. We will combine the retrograde tracing tech-
nique with stimulation of the visual afferences with optogenetics. We will (1) inject
retrobeads in LMN or ADN to assist the selection of neurons in the presubicular
slice; and (2) inject viral constructions expressing channelrhodopsin (Nagel et al.,
2003) in the visual cortex that will let us stimulate corresponding fibers in slices
(Petreanu et al., 2007). It is possible that neither, one or both populations receive
direct input from the visual cortex fibers, and it is probable that other neurons, such
as layer 3 neurons, or interneurons will also be recruited. In any case, this will shed
light on the specific targets of visual cortex in the presubiculum; it will confirm or
refute our hypothesis about the central role of layer 4 intrinsically bursting neurons
in the relay of visual information from visual cortex to subcortical areas.
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4 | Memory of past activity at the pyrami-
dal cell-to-Martinotti cell synapse: prop-
erties and mechanisms

4.1 Better define the dynamics of the plasticity,
its specificity and variability

The dynamics of the activity dependent increase of synaptic strength expressed at
the PC-to-MC synapse are still awaiting further study. In this part, I will detail
several issues that will need to be addressed in order to better define some aspects
of this unusual form of synaptic plasticity: the time-course, the un-muting stimulus,
the synapse specificity and the variability of transfer rate.

The time-course. The decay is one major parameter of all the plasticity processes
as it characterizes the type of plasticity, that is, if it is a long-term process or a short-
term process. We already know that the increase of transfer rate that we describe
corresponds to a short term dynamic, but so far we ignore its precise time course. I
therefore propose to perform continuous stimulation at low frequency (0.2- 0.5 Hz),
as a probe of transfer rate, then to un-mute synaptic transfer at some point (with a
high frequency stimulus) to subsequently determine the time-course of the decaying
transfer rate.

The un-muting stimulus. I have already shown that un-muting depends on the
number of presynaptic action potentials and their frequency. However, I have only
tested some selected frequencies (10 Hz and 30 Hz). An un-muting index may be
defined, corresponding to the number spikes necessary to increase the transfer rate
by 2, 3, etc. By defining this for many frequencies (from 1 to 100 Hz), it should
be possible to establish a representation of the transfer rate evolution as a function
of stimulation duration and frequency, allowing a quantification of the un-muting
requirements at the PC-to-MC synapse. My guess is that with increasing duration
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and frequency, un-muting will be more efficient. Saturation may be reached at some
point, as it was shown for the frequency dependence of short term facilitation in
neocortex (Markram et al., 1998). Last, the activity dependent synaptic transfer at
the PC-to-MC synapse could be modeled.

Synapse specificity. The PC-to-MC synapse was the only excitatory synapse
that I have studied in the presubiculum so far. Short term dynamics of synapses
have been shown to be synapse-specific in other cortical areas (Markram et al.,
1998; Pouille and Scanziani, 2004, so it should be interesting to test the excitatory
synapses that target other postsynaptic cells in the presubiculum as well. One
obvious candidate would be the pyramidal cell-to-parvalbumin-positive interneuron
synapse. My hypothesis is that the dynamics should be opposite. This is actually
a crucial point, as it has important consequences concerning the specific role of
Martinotti cells compared to other populations of interneurons in the presubiculum.

Variability. We noticed a rather high variability for initial transfer rates, differing
from pair to pair (e.g. Fig. 4). This could possibly be due to the number of con-
tacts made by the PC axon onto the MC. The numbers of putative contacts could
be estimated by light microscopy of labeled neurons. However, electron microcopy
is required to determine precisely the number of synaptic contacts (Markram et al.,
1997). In the work by Markram et al. (1997) the number of synaptic contacts was
not correlated with the amplitude of post synaptic events, but in fact the number
of synapses was not very different (from 5 to 8) between neurons. More recently,
number and size of active zones was shown to be a main determinant of release
probability (Holderith et al., 2012). Light microscopy may therefore not be pre-
cise enough to determine the number of contacts; ultimately, analysis with electron
microscopy will be required

4.2 Mechanisms of activity dependent synaptic
transfer at the pyramidal cell to Martinotti
cell synapse?

In this part, I will discuss possible mechanisms explaining the dynamics at the the
pyramidal cell to Martinotti cell (PC-to-MC) synapse, and the experiments that
could unveil those mechanisms.
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4.2.1 Activity dependent action potential broadening

Activity dependent action potential broadening in the axon and the presynaptic
terminal is known to increase calcium influx at the synapse, which enhances synap-
tic transfer (Geiger and Jonas, 2000; Sabatini and Regehr, 1997). I observed action
potential broadening in the pyramidal cell during repetitive stimuli, and it was more
pronounced for high frequencies (not shown). This phenomenon is primarily medi-
ated by the activity dependent inactivation of potassium conductances implicated in
action potential repolarization, including the D-type current, in neocortical layer 5
pyramidal cells (Foust et al., 2011; Kole et al., 2007; Shu et al., 2007) and CA3 pyra-
midal cells (Saviane et al., 2003), the A-type current in mossy fiber boutons (Geiger
and Jonas, 2000) or the BK current in CA3 pyramidal cell synapses (Hu et al., 2001;
Raffaelli et al., 2004). The presence of one, or several of these conductances in pyra-
midal cells of the presubiculum could explain the dynamics of synaptic transfer at
the PC-to-MC synapse, although the release probability at the PC-to-MC synapse
of the presubiculum remains much lower than those described in studies implicating
these conductances.

What does induce spike broadening? The expressions of ID and BK currents
at the CA3-CA3 synapse was shown to keep low the initial transfer rate. Their
pharmacological inactivation dramatically increases spike width at the soma and
decreases failure rate (Saviane et al., 2003; Raffaelli et al., 2004). Besides, the initial
transfer rate at the PC-to-MC synapse is much lower than in CA3 - this could be
explained by the short action potential ( 0.6 ms) of the presubicular pyramidal cells,
compared to CA3 pyramidal cells (> 1 ms). Consequently, a high expression of these
K channels could explain the short spike width and the low transfer probability at
the MC-to-PC synapse.

In neocortical layer 5 pyramidal cells, action potentials have quite similar widths
(0.5 - 0.7 ms) (Kole et al., 2007; Shu et al., 2007) compared to the presubiculum, but
their synapses are much more efficient (Kole et al., 2007; Zhu et al., 2011). These
neurons are rather different from CA3 cells, as activity dependent spike broadening
occurs in the soma, but unrelated to ID inactivation (Kole et al., 2007; Shu et al.,
2007). In contrast, ID is expressed in the axon initial segment, where it normalizes
the spike waveform. Indeed, it maintains a short width even if somatic spike broad-
ening occurs, especially during intrinsic burst firing at the soma (Kole et al., 2007).
However, somatic depolarization can be transferred to the proximal axon and slowly
inactivate ID, resulting in gradual spike broadening (Foust et al., 2011; Kole et al.,
2007) and synaptic enhancement remaining several seconds after hyperpolarization
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(Kole et al., 2007; Shu et al., 2006, 2007).
In terms of kinetics, the transfer of the PC-to-MC synapse resembles this volt-

age dependent increase of synaptic strength although it is difficult to evaluate, as
the stimulation protocols are very different. While our pulse protocols did not in-
duce tonic depolarization of somatic membrane potential, we cannot exclude that
depolarization may occur in the axon, due to an activity dependent activation of
depolarizing current (Fricker et al., 2009). We don’t have evidence in favor of the
expression of a D-type potassium current in presubicular pyramidal neurons, such
as the depolarizing ramp at the onset of depolarizing DC injection (Saviane et al.,
2003), but a possible axonal or synaptic expression would not be visible at the soma
anyway (Foust et al., 2011; Kole et al., 2007; Shu et al., 2007).

Patch clamp recordings of mossy fiber boutons revealed an activity dependent
spike broadening mechanism, mediated by the cumulative inactivation of a A-type
potassium current, which activated and inactivated rapidly, and which recovered
slowly from inactivation (Geiger and Jonas, 2000). After a high frequency stimulus,
spike width returned to its initial value within several seconds, suggesting that the
enhancement of synaptic strength followed the same dynamics. As the synaptic
spike broadening cannot be addressed with somatic patch clamp recording, it is
difficult to pin down the implication of a specific synaptic K conductance (Geiger and
Jonas, 2000). But action potential broadening in presubicular pyramidal neurons is
certainly a candidate mechanism to explain the frequency dependent recruitment of
Martinotti cells.

Testing the spike broadening hypothesis. In a next step I will determine if
action potential broadening is an enhancer of synaptic transfer at the PC-to-MC
synapse in presubiculum.

I will therefore test the implication of the above-described currents using a com-
parative pharmacological approach. D-type and A-type currents can be blocked by
4-aminopyridine (4-AP), or tetraethylammonium (TEA). Adjusting the concentra-
tions can help to differentiate A- from D-types conductance, as low concentration of
4-AP (20 µM) are known to block preferentially D-type current (Boudkkazi et al.,
2011; Storm, 1990). Axonal D-type current can be specifically blocked by DTX-
I sensitive Kv1 channel subunits (Kv1.1, Kv1.2 and Kv1.6 subunits) (Boudkkazi
et al., 2011; Kole et al., 2007; Shu et al., 2007). BK conductances can be specifically
blocked by Paxilline or Iberotoxine (Raffaelli et al., 2004).

I will first address the effect on somatic spike broadening; even a small change
can attest of the presence of these K+ currents. However, their axonal or synaptic
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expression may not be detected in somatic recordings (Kole et al., 2007), so I will
directly address their potential effect on synaptic transfer using paired recordings
(Boudkkazi et al., 2011). Using low frequency stimulation (0.2 – 0.5 Hz), I might
observe an increase of transfer rate after pharmacological blockade. If one of the
above drugs enhances synaptic transmission, I should check the location of the
involved conductance by local puff application of the blocker (Kole et al., 2007),
while recording from a postsynaptic neuron and looking for a change of transfer
rate. Alternatively, I may look at spike broadening by direct axonal recordings, in
whole cell (Kole et al., 2007), in cell attached (Sasaki et al., 2011) or using calcium
imaging (Foust et al., 2011).

The presence of these channels in the axon initial segment could be checked by
immunocytochemistry. It has already been done for Kv1 channels, which were co-
localized with the axon initial segment or nodal molecules, such as Ankyrin-G and
Nav channels (Goldberg et al., 2008; Lőrincz and Nusser, 2008).

4.2.2 Modulation at the synapse

Neurotransmitter release probability depends on the expression of short term plas-
ticity mechanisms (Regehr, 2012), the organization of the presynaptic active zone
that conditions release mode (Kaeser and Regehr, 2014) and the activation of presy-
naptic receptors, such as G protein-coupled receptors that can enhance or depress
synaptic transfer (Castillo et al., 2012; Debanne et al., 2013; Parnas and Parnas,
2010).

Short term synaptic plasticity. Many mechanisms of short and medium term
plasticity, responsible for paired-pulse facilitation and augmentation, may explain
the increase of synaptic transfer. All the mechanisms that were implicated in facil-
itation or augmentation require an elevation of intracellular calcium level (residual
calcium) (Regehr, 2012). The use of ethylene glycol tetraacetic acid (EGTA, 10
mM), a slow calcium buffer, in the patch pipette should disrupt the expression of
plasticity but not normal release (Manseau et al., 2010).

Cannabinoids. Among the synaptic regulation of release probability, the tonic
block of the synapse by endocannabinoids is one candidate mechanism that could
explain the activity dependent un-muting that we observe at the PC-to-MC synapse.
Persistently active presynaptic cannabinoid receptors were reported for the inhibitory
synapses made by CCK interneurons onto CA3 pyramidal cells (Losonczy et al.,
2004), but not for excitatory synapses. Even so, the described dynamics closely
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resemble those of the PC-to-MC synapse. The transfer rate is null at the stimulus
onset and for a “moderate” frequency (25 Hz) and gradually starts releasing GABA
during a high frequency (100 Hz) stimulus. The tonic activation of cannabinoid re-
ceptors was demonstrated, as the type 1 cannabinoid receptor antagonist, AM251,
released the synaptic block. The implication of other GPCR was tested, such as
GABAB receptors, metabotropic glutamate receptors, muscarinic receptor, but the
effect was specific of cannabinoids (Losonczy et al., 2004). This is not really an
activity dependent mechanism of enhancement, but rather an override of a muting
mechanism by a high frequency stimulus. In the future, the cannabinoid dependence
should be tested at the PC-to-MC synapse by the application of AM251.

4.2.3 The transfer rate increase may results from a syner-
gistic mechanism

The dynamic of the PC-to-MC synaptic transfer in presubiculum may result from
the expression of different kinds of activity dependent mechanisms. The synapses
could express a form of short-term facilitation, coupled to another mechanism of
activity-dependent un-muting. This is actually the case for neocortical layer 5 pyra-
midal cell synapses (Zhu et al., 2011). The pyramidal-to-pyramidal connection is
gradually enhanced during “up-state” depolarization of somatic membrane poten-
tial (Shu et al., 2006), due to the inactivation of ID in the proximal axon (Kole
et al., 2007; Shu et al., 2007). In the meantime, the same cell possesses facilitating
synapses onto Martinotti cells and depressing synapses onto fast spiking interneu-
rons and pyramidal cells (Markram et al., 1998; Silberberg and Markram, 2007).
Zhu et al. (2011) have demonstrated that the two mechanims are important for the
recruitment of Martinotti cells in neocortex.
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General conclusion
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During my PhD, I studied the rodent presubiculum, a six-layered cortex in the
parahippocampal area involved in spatial cognition. The presubiculum contains
head direction cells, which fire persistently as a function of an animal’s directional
heading. The neuronal network generating this signal has been understudied and
my PhD work has been developed to clarify the physiology of this cortical area.

I revealed the overall organization of principal neurons contained across the six layers
of the presubiculum. The presubiculum possesses a laminar specificity of neuronal
integrative properties. This area possesses the high computational power of cortical
areas, as it contains different neuronal populations in the different layers that are
likely to play distinct roles.

Following this idea, I showed that neurons projecting to lateral mammillary nucleus
(LMN) and anterodorsal thalamus (ADN) had different morphological and electro-
physiological properties. LMN projecting neurons correspond to layer 4 intrinsic
burst firing pyramidal neurons. ADN projecting neurons seem to correspond to a
homogeneous population in deep layers. The identification of specific postsynaptic
targets should therefore be further considered to address the functional diversity
in the presubiculum. Similarly, the local interconnectivity should vary for different
neuronal populations and is likely to be a key component in the generation and the
regulation of presubicular spatial signals.

More specifically, local inhibition plays a major role in regulating information pro-
cessing in cortical areas. I therefore investigated the electrophysiological and mor-
phological properties of different populations of GABAergic interneurons in the pre-
subiculum. Our results suggest that inhibition in presubiculum is likely to be as
complex as in other cortical areas. The functional role of the different interneurons
remains to be address to understand how the inhibitory network influence informa-
tion processing in the presubiculum.

I started to answer this question by focusing on one specific aspect: the recruit-
ment of the presubicular Martinotti cells, typical dendrite-targeting interneurons.
These cells are not recruited during sparse activity, but only during persistent and
high frequency firing of pyramidal cells. This matches with the dynamics of similar
synapses in other cortical areas and might be used to modulate persistent head di-
rection signaling in the presubiculum. Nonetheless, I noticed that the pyramidal cell
to Martinotti cell synapse had a much lower initial transfer rate compared to similar
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synapses in the neocortex or the hippocampus. The mechanism behind this partic-
ular synapse dynamics remains to be identified. In the future, the other synapses
should be investigated to fully understand the dynamics of information flows and
their regulation in the presubicular network.

To conclude, my PhD work constitutes an essential contribution to the understand-
ing of the presubicular information processing, a first step to elucidate the coding
of orientation signals by this cortical area.
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ARTICLE

Cellular anatomy, physiology and epilep-
tiform activity in the CA3 region of Dcx
knockout mice: a neuronal lamination de-
fect and its consequences

The purpose of the present study was the characterization of animals with an inacti-
vated doublecortin gene. These mice presented an abnormality of lamination in CA3
of the hippocampus, associated with an epileptic phenotype. I had to characterize
the intrinsic electrophysiological properties and the morphologies of the pyramidal
neurons contained within the delaminated stratum pyramidale of CA3. I showed that
neurons in animals with inactivated doublecortin gene were more excitable, had ab-
normal dendritic trees and misplaced dendritic spines compared to wild types. These
features could contribute to the enhanced susceptibility to epileptiform activity in
slices.
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NEUROSYSTEMS

Cellular anatomy, physiology and epileptiform activity in the
CA3 region of Dcx knockout mice: a neuronal lamination
defect and its consequences
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Abstract

We report data on the neuronal form, synaptic connectivity, neuronal excitability and epileptiform population activities generated by
the hippocampus of animals with an inactivated doublecortin gene. The protein product of this gene affects neuronal migration during
development. Human doublecortin (DCX) mutations are associated with lissencephaly, subcortical band heterotopia, and syndromes
of intellectual disability and epilepsy. In Dcx) ⁄ Y mice, CA3 hippocampal pyramidal cells are abnormally laminated. The lamination
defect was quantified by measuring the extent of the double, dispersed or single pyramidal cell layer in the CA3 region of Dcx) ⁄ Y

mice. We investigated how this abnormal lamination affected two groups of synapses that normally innervate defined regions of the
CA3 pyramidal cell membrane. Numbers of parvalbumin (PV)-containing interneurons, which contact peri-somatic sites, were not
reduced in Dcx) ⁄ Y animals. Pyramidal cells in double, dispersed or single layers received PV-containing terminals. Excitatory mossy
fibres which normally target proximal CA3 pyramidal cell apical dendrites apparently contact CA3 cells of both layers in Dcx) ⁄ Y

animals but sometimes on basilar rather than apical dendrites. The dendritic form of pyramidal cells in Dcx) ⁄ Y animals was altered
and pyramidal cells of both layers were more excitable than their counterparts in wild-type animals. Unitary inhibitory field events
occurred at higher frequency in Dcx) ⁄ Y animals. These differences may contribute to a susceptibility to epileptiform activity: a modest
increase in excitability induced both interictal and ictal-like discharges more effectively in tissue from Dcx) ⁄ Y mice than from wild-type
animals.

Introduction

Molecules that interact with microtubules during development affect
neuronal migration (Kerjan & Gleeson, 2007; Conde & Cáceres, 2009;
Jaglin & Chelly, 2009). Mutations of molecules, including double-
cortin (DCX; Francis et al., 1999; Gleeson et al., 1998), the platelet-
activating factor acetylhydrolase (LIS1, Hattori et al., 1994; Reiner
et al., 1993) and a- and b-tubulin (TUBA, TUBB; Keays et al., 2007;
Jaglin et al., 2009) are linked to disordered cortical lamination.
Lamination defects are associated with inherited syndromes involving
intellectual disability and epilepsy (Schwartzkroin & Walsh, 2000;
Guerrini & Parrini, 2010).

DCX binds to microtubules in migrating cells (Friocourt et al.,
2003; Schaar et al., 2004), facilitating neuronal migration by limiting
the number of leading processes (Kappeler et al., 2006; Koizumi
et al., 2006). When this protein is absent, or mutated in mouse,
migration is disorganized (Corbo et al., 2002; Kappeler et al., 2006)
and retarded (Friocourt et al., 2007). DCX mutations in human
produce a disorganized, unfolded cortex, with band heterotopia, where
some neurons remain in cortical white matter and do not reach the
cortex (Kerjan & Gleeson, 2007; Leger et al., 2008; Jaglin & Chelly,
2009).
Two approaches have been used to explore how abnormal

lamination due to DCX mutations produces an epileptic phenotype.
Suppressing Dcx expression by RNA interference results in animals
with subcortical band heterotopias (Bai et al., 2003; Ackman et al.,
2009). In contrast, genetic deletion of Dcx produces mice (Dcx) ⁄ Y)
with a heterotopia restricted to the CA3 region of the hippocampus
(Corbo et al., 2002; Kappeler et al., 2006, 2007). Possibly, gene
compensation occurs in these Dcx knockout (KO) animals (Deuel
et al., 2006). However, these mutant animals exhibit seizures,
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suggesting a hippocampal perturbation may suffice to generate them
(Nosten-Bertrand et al., 2008; Kerjan et al., 2009).

It remains unclear why disorders of migration and lamination favour
epileptiform activities (Schwartzkroin & Walsh, 2000). Defective
migration might alter the adult proportion of excitatory cells and
GABAergic interneurons (Friocourt et al., 2007; Kerjan et al., 2009).
Ectopically located neurons might not develop beyond immature, pro-
epileptic phenotypes (Ackman et al., 2009). Changes in the synaptic
connectivity of ectopically situated cells might favour epileptiform
syndromes (Fleck et al., 2000; Ackman et al., 2009). Synaptic
function might be compromised by altered microtubule transport to
terminals (Fleck et al., 2000; Deuel et al., 2006).

The CA3 region of Dcx) ⁄ Y animals may help to understand the
consequences of lamination defects. Synaptic connectivity in this
region is well established (Johnston & Amaral, 1997). Here, we
explored the perturbed lamination in the CA3 region of Dcx) ⁄ Y mice.
We searched for changes in synaptic targets of inhibitory or excitatory
fibres that normally innervate precise regions of the CA3 pyramidal
cell membrane. We compared the physiology and anatomy of
pyramidal cells from both regions of the double pyramidal cell layer
and attempted to induce epileptiform activities. Interictal and ictal-like
activities were provoked by moderate increases in cellular excitability
in tissue from Dcx) ⁄ Y but not from wild-type (WT) animals.

Materials and methods

Animals

Dcx) ⁄ Y mice and their WT littermates, aged 1–6 months, were used
for anatomical and electrophysiological studies. The KO mice were
maintained on an Sv129Pas background with more than ten gener-
ations of backcrosses and genotyped to verify that the Dcx gene was
inactivated (Kappeler et al., 2006, 2007). They were anaesthetized by
intraperitoneal injection of a mixture of ketamine (80 mg ⁄ kg) and
xylazine (12 mg ⁄ kg; Sigma, Lyon, France). All work was performed
in accordance with the European Communities Council Directive
(86 ⁄ 809 ⁄ EEC) on the care and use of animals for experimental
procedures and was approved by local ethical committees.

Anatomy

For anatomy, mice were perfused intracardially under ketamine ⁄ xyla-
zine anaesthesia with 4% paraformaldehyde in 0.12 m sodium
phosphate buffer (PB, pH 7.4). Brains were removed, immersed in
paraformaldehyde solution for 1 h, rinsed in PB and cryoprotected
overnight in 20% sucrose in PB at 4 �C. Forebrain blocks were frozen
and sectioned coronally at 40 lm. Sections were rinsed in phosphate-
buffered saline (PBS, 0.12 m) and stored at )20 �C in an ethylene
glycol-based solution. Before immunohistochemistry, free-floating
sections were rinsed in potassium phosphate-buffered saline (KPBS).
For immunostaining, we used three WT and four Dcx) ⁄ Y animals.

Immunohistochemical labelling

Immunostaining was performed for the neuron-specific nuclear marker
NeuN, for the interneuron marker parvalbumin (PV) for the vesicular
GABA transporter (vGAT) which labels some GABAergic terminals
(Dumoulin et al., 1999) and for the zinc transporter 3 (ZnT3) which is
enriched in mossy fibre terminals (Palmiter et al., 1996).

Sections were first incubated in KPBS containing 0.3% Triton X-100
and 2% milk protein (KPBS-Triton-Milk) for 1 h. Double immuno-
staining was made by an overnight incubation in a NeuN antibody

(1 : 10000, Chemicon) together with a PV antibody (1 : 8000, Swant)
or a vGAT antibody (1 : 5000, gift from B. Gasnier) in KPBS-Triton-
Milk. They were then rinsed in KPBS before incubation for 1 h in
biotinylated horse anti-rabbit IgG (Vector Laboratories) diluted 1 : 400
in KPBS-Triton-Milk for PV and vGAT staining. After several rinses,
sections were then incubated for 30 min with A488-conjugated
streptavidin (1 : 400, Molecular Probes) for PV and vGAT staining
andCy3-conjugated goat anti-mouse (1 : 200, Jackson Immunoresearch)
for NeuN staining in KPBS-Triton-Milk. Double immunostaining for
NeuN and ZnT3 was performed by incubation in an Alexa-488-
conjugated NeuN antibody (1 : 500, Chemicon) and a ZnT3 antibody
(1 : 1000, gift from R. Palmiter) in KPBS-Triton-Milk. Sections were
then rinsed in KPBS and incubated for 30 min in Cy3-conjugated
donkey anti-rabbit (1 : 400, Jackson Immunoresearch) inKPBS-Triton-
Milk.After immunostaining, sectionswere rinsed inKPBSandmounted
with an antifade agent (ProLong Gold; Invitrogen, Eugene, OR, USA).

Microscopy and image quantification

Images were acquired and analysed by an investigator blind to the
nature of the animal from which tissue was obtained. They were made
with an inverted microscope (Olympus IX81), an Optigrid II (Thales
Optem) and camera (QImaging Retiga EXI) using an acquisition,
scanning and measurement system (Volocity, Improvision, Coventry,
UK). The Optigrid system permitted acquisition of structured images
and subsequent three-dimensional reconstruction. Stacks of images of
the CA3 region were acquired with a 10 · objective of NA 0.8 (30–45
images at intervals of 1 lm with a voxel size of 0.64 lm) or with a
40 · objective of NA 1.3 (40–70 images at 0.4 lm with a voxel size
of 0.16 lm).

Electrophysiology: multi-electrode records from tissue in an
interface chamber

Slices were prepared after removing the forebrain from Dcx) ⁄ Y mice
or WT littermates anaesthetized with ketamine ⁄ xylazine. Brain tissue
was immersed in a solution containing (mm) 250 sucrose, 1 KCl, 26
NaHCO3, 10 d-glucose, 1 CaCl2 and 10 MgCl2, at 2–8 �C and
bubbled with 5% CO2 in O2. Transverse slices of 400 lm thickness
including the hippocampus and cortex were cut in a coronal plane with
a vibratome (HM 650 V; Microm, Walldorf, Germany). They were
transferred to an interface recording chamber where they were
perfused with a solution containing (mm) 124 NaCl, 3.5 KCl, 26
NaHCO3, 10 d-glucose, 2 CaCl2 and 2 MgCl2, heated to 34–36 �C
with their upper surface exposed to a humidified 5% CO2 ⁄ 95% O2

atmosphere. Recordings were made in an interface chamber from
slices of brain tissue prepared from ten WT and 13 Dcx) ⁄ Y mice.
Intracellular records were made with glass electrodes filled with 4 m

KAc and bevelled to a final resistance of 50–80 MX. Signals were
amplified and filtered (high-pass, 3 kHz) with an Axoclamp 2B
amplifier (Axon, Molecular Devices, Sunnyvale, CA, USA) operated
in current-clamp mode. Extracellular records were made with linear
arrays of 8–12 nichrome electrodes of 50 lm diameter with a
separation between electrode centres of �100 lm (Bazelot et al.,
2010). Electrode arrays were positioned by a manipulator to contact
slices from above and so record from sites along the somato-dendritic
axis of CA3 pyramidal cells. Extracellular signals were amplified and
filtered with pass-band of 0.1 Hz to 20 kHz using a non-commercial-
ized 16-channel amplifier (Dr. F. Dubois, Dipsi, Chatillon, France).
Intracellular and extracellular signals were digitized at 10–20 kHz by
a 12-bit, 16-channel analog-to-digital converter (Digidata 1200A;
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Axon Instruments, Molecular Devices), and visualized on a PC with
the program Axoscope (Axon, Molecular Devices).
Multi-electrode records of spontaneous field events with variable

spatial distributions were analysed with routines written in Matlab
(The Mathworks, Natick, MA, USA). The amplitude of each field
event was measured at its peak from all electrodes, the time-to-peak
was measured from 10 to 90% of peak amplitude, and the decay from
90 to 10% of amplitude. After a principal component analysis, a
k-means clustering algorithm was used to separate distinct field
inhibitory postsynaptic potentials (IPSPs; Bazelot et al., 2010).
Starting with an excess of clusters, Euclidean distances between
cluster centroids were calculated and visualized as a dendrogram.
Clusters were coalesced when their centroids were separated by a
Euclidean distance of < 10. Cluster coherence was confirmed visually
and only well-merged clusters were analysed further. Current source
density analysis was used (Bazelot et al., 2010) to derive spatial and
temporal variations in transmembrane currents associated with differ-
ent field IPSP clusters.
In some experiments, GABAA receptor-mediated signalling was

suppressed by picrotoxin (50 lm), or bicuculline (20 lm; both from
Ascent Scientific, Bristol, UK).

Electrophysiology: whole-cell records from slices in a
submerged chamber

For whole-cell records from single neurons, the forebrain was
dissected after anaesthetizing Dcx) ⁄ Y animals or their WT littermates
aged 21–35 days with ketamine (80 mg ⁄ kg) and xylazine
(12 mg ⁄ kg). Transverse slices of 300 lm thickness containing the
CA3 region of the hippocampus were prepared with a vibratome
(Microm HM 650 V) in a solution containing (mm) 110 choline
chloride, 2.5 KCl, 25 NaHCO3, 1.25 NaH2PO4, 7 d-glucose, 0.5
CaCl2 and 7 MgCl2. The solution was cooled to 2–6 �C and
equilibrated with 5% CO2 in O2. Slices were stored for at least 1 h
at 22–25 �C in a chamber containing (in mm) 124 NaCl, 2.5 KCl, 26
NaHCO3, 1 NaH2PO4, 2 CaCl2, 2 MgCl2 and 11 d-glucose bubbled
with 5% CO2 in O2 (pH 7.3, 305–315 mOsm ⁄ L). Recordings were
made after transferring slices to a chamber of �2 mL, at 32–34 �C,
mounted on an Axioskop 2 FS microscope (Zeiss, Le Pecq, France).
Slices were prepared from eight WT and ten Dcx) ⁄ Y mice.

Neurons were visualized with a Luca EMCCD camera (Andor)
using infrared differential interference contrast. Whole-cell records
were made from CA3 pyramidal cells with glass pipettes of 3–6 MX.
Pipettes were pulled from borosilicate glass 1.5 mm of external
diameter (Hilgenberg, Germany) using a Brown-Flaming electrode
puller (Sutter Instruments). They were filled with a solution containing
(mm) 130 K-gluconate, 5 KCl, 10 HEPES, 10 EGTA, 2 MgCl2, 4
MgATP, 0.4 Tris-GTP, 10 Na2 -phosphocreatine and 2.5 biocytin.
Records were made with an Axopatch 200A amplifier (Axon,
Molecular Devices) operated in current clamp fast mode. A
chloride-coated silver wire contacted the pipette solution and a 3 m

KCl agar bridge contacted the bath, yielding an estimated junction
potential of �15 mV, which was not corrected.
Patch clamp recordings were analysed with Axograph-X (Axog-

raph Scientific, Sydney, Australia) Spikoscope (created by Dr. I.
Cohen in Labview, National Instruments, Nanterre, France) and
routines written in Matlab (The Mathworks). Neuronal input resis-
tance (Rin) was measured from the linear range of slope resistance in
voltage responses to small step current injections of 800 ms from a
holding voltage of )65 mV. Membrane time constants (s) were
obtained by fitting single or double exponentials to potential changes
induced by these injections. Action potential (AP) threshold was

measured as the point where dV ⁄ dt > 10 mV ⁄ ms (Fricker et al.,
1999). AP height was measured as the difference between the peak
potential of the spike and the maximal afterhypolarization, for a
period of 20 ms after the AP peak. The AP rising magnitude was
defined as the voltage difference between the threshold and AP peak.
The current threshold was defined as the minimum current step of
800 ms that initiated an AP. Input–output curves were made by
plotting injected current against the mean AP frequency, measured as
the reciprocal of the interspike interval.
Electrophysiological parameters were measured only from neurons

that were subsequently identified morphologically. For this, biocytin
was added to the pipette solution at 1 mg ⁄ mL. Slices were fixed in 4%
paraformaldehyde in 0.12 m PB (pH 7.4, 4 �C). They were rinsed in
PB and cryo-protected in 30% sucrose. Membranes were permeabi-
lized by three freeze–thaw cycles over dry ice. Biocytin-filled neurons
were revealed with a streptavidin–Cy3 conjugate (1 : 500, Invitrogen).
Images were acquired using the microscope and camera system
described above. Somato-dendritic forms of neurons were recon-
structed in two dimensions with the Neurolucida program (Micro-
brightfield, Williston, VT, USA), which provided estimates of
dendritic lengths.

Statistical analyses

Data were analysed by an unpaired Student’s t-test, and analyses of
variance (anova) to assess interactions between genotype and time.
Non-normally distributed variables were analysed with the Mann–
Whitney rank sum test. Significance was established at P < 0.05.
Errors were given as SEM or SD as noted.

Results

Characterization of pyramidal cell layering abnormalities in the
CA3 region

NeuN-stained sections (Fig. 1) revealed three distinct patterns of
pyramidal cell lamination in the CA3 region of Dcx) ⁄ Y mice (n = 4).
First, a dual layer with separate external (closer to the fimbria) and
internal groups of pyramidal cell somata was evident at some sites
(Fig. 1B). Layers were separated by�100 lm and somata were usually
less dense in the internal layer. At other sites, the cell body layer was
dispersed (Fig. 1C) with a width similar to that occupied by two distinct
layers when they were present. Finally, at some sites CA3 pyramidal
cell somata were arranged in a single layer of similar thickness and
somatic density to that of WT animals (Fig. 1D; n = 2 WT mice).
We examined the distribution of these different lamination patterns

within the CA3 region and along the rostral–caudal axis of the
hippocampus in four Dcx) ⁄ Y animals. Figure 1E shows the fraction of
the linear extent of the CA3a, b and c regions consisting of a double,
dispersed or a single layer. The CA3c region included both double and
dispersed layers (double 46 ± 15%, dispersed 48 ± 14%, single
6 ± 5%), the CA3b region was largely a double and dispersed layer
(double 62 ± 19%, dispersed 34 ± 19%, single 4 ± 3%), while the
CA3a pyramidal cell layer was mostly a single layer (single layer
76 ± 13%, dispersed 24 ± 12%). Lamination patterns varied from
dorsal to ventral hippocampus, but there was no clear trend.

Innervation of the dual CA3 layer by interneurons targeting
pyramidal cell somata

Basket and axo-axonic interneurons target the soma and axon initial
segment of pyramidal cells and often contain the inhibitory cell
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marker PV. Perturbed interneuron migration (Kappeler et al., 2006;
Friocourt et al., 2007) and abnormal lamination of the CA3 region in
Dcx) ⁄ Y animals might result in an aberrant inhibitory innervation of
peri-somatic regions of pyramidal cells. We compared the density
(number of cells ⁄ mm2) and location of PV-immunopositive cells and
their axonal terminals in WT and Dcx) ⁄ Y mice to see whether the
inhibitory innervation of CA3 pyramidal cells was compromised
(Fig. 2).

We compared the location and density of PV-immunopositive cell
bodies (Fig. 2A–C) in the CA3 region of WT (n = 3) and Dcx) ⁄ Y

mice (n = 4). In WT animals, 18% (73 ± 23, n = 3) of PV-positive
cell somata were located in stratum oriens, between the fimbria and
stratum pyramidale, whereas in Dcx) ⁄ Y mice 10% (37 ± 8, n = 4) of
PV-positive somata were located in stratum oriens. In WT mice, 14%
(57 ± 10) of the somata of PV-positive cells were located in stratum
radiatum, while in Dcx) ⁄ Y animals, 13% (45 ± 8) of PV-positive
somata were located in this layer, between the internal pyramidal cell
layer and the stratum lacunosum-moleculare. In WT animals, the
remaining 68% (281 ± 37) of PV-positive somata were located in
stratum pyramidale. In Dcx) ⁄ Y animals, 77% (277 ± 30) of PV-
positive somata were situated in the external and internal layers and
the space between them. Of PV-positive somata, 47% (169 ± 20) were
associated with the external cell body layer, 24% (85 ± 16) with the
internal layer and the somata of 6% (23 ± 2) of the total PV-positive
cell population were situated between the two layers. Thus, the density
and distribution of PV-positive neurons (Fig. 2C) are comparable in
Dcx) ⁄ Y and WT mice.

Synaptic terminals contacting peri-somatic sites provide a punctate
PV immunostaining that surrounds NeuN-stained CA3 cell somata of
WT animals. In Dcx) ⁄ Y mice, PV staining was detected around NeuN-
positive pyramidal cell somata of both single, internal and external cell
layers and between the layers (Fig. 2D and E). The presence of vGAT
confirmed the staining of synaptic terminals of peri-somatic interneu-
rons. Immunostaining for vGAT and PV was aligned with NeuN-
labelled CA3 pyramidal cell somata in both the double layer (Fig. 2D)
and the single layer (Fig. 2E) of Dcx) ⁄ Y animals as in WT animals
(data not shown).

Interneuron activity in the CA3 region of slices from Dcx) ⁄ Y and
WT animals

The above data suggest that the density of PV-positive interneurons is
similar in Dcx) ⁄ Y and adult WT mice (Friocourt et al., 2007), and that
their terminals innervate pyramidal cells of both internal and external
layers in Dcx) ⁄ Y animals. We next used extracellular records of
inhibitory field events to compare activity in inhibitory circuits of
Dcx) ⁄ Y and WT mice (Bazelot et al., 2010).
Records were made with extracellular electrode arrays (Fig. 3)

aligned along the somato-dendritic axis of CA3 pyramidal cells. In
Dcx) ⁄ Y animals, records were made from regions of a double
pyramidal cell layer (n = 9 slices from four animals), and in WT
animals orthogonally to the single pyramidal cell layer (n = 7 slices
from three animals). This configuration (Bazelot et al., 2010) allowed
us to distinguish between inhibitory events with distinct somatic or
dendritic spatial profiles, but did not permit separation of events
generated by distinct single peri-somatic or dendritic targeting
interneurons. Figure 3A compares field IPSPs recorded from the
stratum pyramidale of Dcx) ⁄ Y and WT mice. These events were
typically correlated with inhibitory events in intracellular records
(Fig. 3B; Bazelot et al., 2010).
The frequency of spontaneous field IPSPs (Fig. 3C) from slices of

Dcx) ⁄ Y animals was 25.7 ± 5.5 Hz (mean ± SD, n = 9), significantly
higher than that, 10.5 ± 6.1 Hz, of events recorded from slices of WT
animals (mean ± SD, n = 7, P = 0.0013). The mean amplitude of field
IPSPs (Fig. 3C), measured at the electrode with the largest signal, in
slices from Dcx) ⁄ Y animals was 25.3 ± 2.7 lV (mean ± SD, n = 9),
larger than that, 18.9 ± 2.4 lV (mean ± SD, n = 7, P = 0.0025), from
WT mice. The time-to-peak of averaged field IPSPs was similar:
1.1 ± 0.2 ms (mean ± SD, n = 9) in records from slices of Dcx) ⁄ Y

animals and 1.2 ± 0.1 ms (mean ± SD, n = 7, P = 0.33) in slices
from WT mice. The decay of averaged field IPSPs (Fig. 3C) measured
from 90 to 10% of peak amplitude was 6.2 ± 1.0 ms in slices from
Dcx) ⁄ Y animals (mean ± SD, n = 9), shorter than the value of
7.9 ± 0.1 ms (mean ± SD, n = 7, P = 0.03) from WT animals.
Dendritic field IPSPs occurred at a frequency < 5% that of somatic

A B C D

E

Fig. 1. Perturbation of the CA3 pyramidal cell layer in Dcx) ⁄ Y mice. (A) NeuN staining for neuronal somata in seven sections of 40 lm thickness taken at intervals
of 200 lm to cover the entire dorso-ventral extent of dorsal hippocampus. A distinct dual pyramidal cell layer is most evident in the CA3c region closest to the
dentate gyrus. (B) A double CA3 pyramidal cell layer, (C) a dispersed cell layer, and (D) a single layer from NeuN-stained sections. (E) The proportion of the CA3a,
CA3b and CA3c regions that comprise a double (do), dispersed (di) or single (s) pyramidal cell layer (from seven sections of each of n = 4 Dcx) ⁄ Y mice).

Altered neuronal excitability and form in Dcx) ⁄ Y mice 247

ª 2012 The Authors. European Journal of Neuroscience ª 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd
European Journal of Neuroscience, 35, 244–256

208



events in slices from both Dcx) ⁄ Y and WT animals (data not shown).
Thus, inhibitory circuits are more active in Dcx) ⁄ Y than in WT mice.
This enhanced activity might depend on an enhanced excitability of
interneurons or of the pyramidal cells that excite them.
Fields generated if an interneuron innervates both layers of CA3

pyramidal cells in Dcx) ⁄ Y animals should be spatially larger than
those associated with a single layer. Figure 3D shows a current source
density analysis for spontaneous peri-somatic field IPSPs from a zone
with a dual cell body layer in a slice from a Dcx) ⁄ Y animal. Similar
analysis is shown for a field IPSP from a WT mouse in Fig. 3E. The
current source indicates the site of active inhibitory terminals for the
Dcx) ⁄ Y animal was more intense, with a larger extent along
the somato-dendritic axis, than for slices from WT mice. The
difference in source dimensions was confirmed in comparing mean
current profiles for 23 field event clusters isolated from records in five
Dcx) ⁄ Y slices and 17 inhibitory field clusters from five WT slices
(Fig. 3F). A wider current source suggests some, and possibly all,
perisomatic interneurons form synaptic contacts with pyramidal cells
in both internal and external layers of Dcx) ⁄ Y mice (cf. Fig. 2).

Innervation of the dual CA3 pyramidal cell layer by mossy fibre
axons

Mossy fibre axons of dentate granule cells synapse with large spines
on proximal dendrites of CA3 pyramidal cells (Claiborne et al., 1986).
We used immunostaining for the vesicular zinc transporter ZnT3,
highly expressed in mossy fibre terminals, to determine whether
mossy fibre innervation was altered in Dcx) ⁄ Y animals (Fig. 4; n = 4
Dcx) ⁄ Y mice).
The extent of ZnT3 staining was compared in regions of Dcx) ⁄ Y

animals where a double CA3 stratum pyramidale was evident and in

regions where there was just a single layer (Fig. 4A). In regions with
a double layer, the width of ZnT3 immunostaining (Fig. 4B),
associated with both internal and external layers, was 245 ± 12 lm
(13 of 27 segments in seven sections from four animals) or
200 ± 17 lm when ZnT3 staining was associated with the external
layer but not the internal layer (14 of 27 segments). When there was
only a single CA3 pyramidal cell layer in Dcx) ⁄ Y mice, the width of
ZnT3 staining was reduced, 150 ± 4 lm (five segments), similar to
that in WT animals. Thus, the space occupied by mossy fibres is
wider in regions with a double layer than in those with a single CA3
pyramidal cell layer.
These findings suggest mossy fibres might innervate proximal apical

dendrites of pyramidal cells with somata located in either internal or
external cell layers. Closer examination revealed a more complex
situation. In regions with a clear double layer, ZnT3 staining (Fig. 4A)
extended from the external layer up to and even beyond the internal layer
of somata in 11 of 31 segments of the CA3c region (seven sections from
four animals). In these cases, mossy fibres may have terminated on
apical dendrites of pyramidal cells of both the internal and external
layers. In other cases (20 of 31 segments inCA3c), ZnT3 staining did not
extend beyond the internal layer of CA3 pyramidal cell bodies. If these
cells were innervated, mossy fibres must have formed contacts with
basilar dendrites (Claibourne et al., 1986;Kerjan et al., 2009). In four of
28 CA3b segments examined, ZnT3 staining did not extend to the
internal layer of NeuN-stained pyramidal cell somata: these cells were
either innervated on distant basilar dendrites or received no mossy fibre
inputs. Innervation of other CA3b segments was similar to that of CA3c,
with mossy fibres extending to (13 of 28 segments) or beyond the
internal pyramidal cell layer (11 of 28 segments).
The form of single CA3 pyramidal cells filled with biocytin during

whole-cell records gave more detail on mossy fibre innervation

A B C

D E

Fig. 2. Parvalbumin-positive interneurons and terminals in Dcx) ⁄ Y and WT mice. Parvalbumin immunostaining (green) with a NeuN counterstain (red) for
neuronal somata in the CA3 region of (A) wild-type and (B) Dcx) ⁄ Y mice. (C) The density of PV-positive somata (number of cells ⁄ mm2) in stratum oriens, stratum
pyramidale (st. pyr, both internal and external layers in Dcx) ⁄ Y mice), and in stratum radiatum (st.rad.), in WT (orange) and Dcx) ⁄ Y animals (yellow). (D, E)
Staining for perisomatic interneuron terminals with antibodies against parvalbumin (orange) and the vesicular GABA transporter (blue) with NeuN (green) to reveal
CA3 cell somata. Both internal (I) and external (E) cell layers appear to be innervated in regions with a double layer (D) as in regions with a single CA3 pyramidal
cell layer (E). In D and E, labelling is from left to right: PV + NeuN, NeuN + vGAT and PV + NeuN + vGAT.
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(Fig. 4C–F). Mossy fibre terminals contact unusually large spines
3–6 lm in size on proximal dendrites (Claibourne et al., 1986;
Gonzales et al., 2001). Large spines in well-filled CA3b,c pyramidal
cells of WT animals (n = 5, not shown) were limited to the most
proximal 35–85 lm of apical dendrites. The expression of large spines
differed for pyramidal cells with somata in the external layer of
Dcx) ⁄ Y animals. In three cells (Fig. 4C and D), large spines were
evident on the most proximal apical dendrites, then were absent from
apical dendrites for a distance of about 25 lm, corresponding to
somata of the internal pyramidal cell layer, and re-appeared beyond
this layer. Such separate groups of large spines covered a total length
of about 80 lm on the apical dendrites of cells in the external CA3
layer. The distribution of large spines also differed for pyramidal cells
of the internal layer of Dcx) ⁄ Y animals (Fig. 4E and F, n = 4 well-
filled cells). Large spines were present not only on the proximal 20–
60 lm of apical dendrites but also on basilar dendrites located
between internal and external cell layers. Thus, mossy fibre innerva-
tion is disturbed for CA3 cells of both internal and external layers of
Dcx) ⁄ Y mice.

Properties of pyramidal cells in the internal and external CA3
layers in Dcx) ⁄ Y animals

Dendritic form as well as somatic position is abnormal for neurons in
some animals with migration defects (Fleck et al., 2000). We
compared biocytin-filled pyramidal cells from both internal and

external cell layers of Dcx) ⁄ Y mice with those of CA3 pyramidal cells
from wild-type mice.
We compared dendritic arborizations of biocytin-filled pyramidal

cells from the CA3b, c region of WT animals (Fig. 5A, n = 4) with
well-filled cells from the external layer (Fig. 5B, n = 3) and the
internal layer (Fig. 5C and D, n = 4) or cells from regions with a
dispersed CA3 stratum pyramidale (data not shown, n = 4). All cells
had a pyramidal-shaped soma. While most cells possessed typically
oriented apical and basilar dendrites, one neuron from the internal
CA3c layer of a Dcx) ⁄ Y animal possessed few if any basilar dendrites
(Fig. 5D).
Apical dendrites of pyramidal cells in the external layer of Dcx) ⁄ Y

mice were typically shorter than those of WT pyramidal cells (Fig. 5B
and E), while basilar dendrites of cells of the internal layer were less
profuse (Fig. 5C andE). This observationwas quantified by dividing the
total, summed length of apical dendrites by that of basilar dendrites
(Fig. 5E). The resulting ratio was 1.60 for CA3c pyramidal cells from
WT animals (n = 4), 1.41 for cells from the external layer of Dcx) ⁄ Y

mice (n = 4) and 3.78 for cells from the internal layer (n = 4). Thus, the
total dendritic length for pyramidal cells from Dcx) ⁄ Y animals is
typically shorter than that of WT cells (Fig. 5F). If the density of
dendritic synapses were similar, Dcx) ⁄ Y pyramidal cells would be
expected to receive fewer excitatory synapses than those ofWT animals.
Neurons in brains with migration defects may remain in an

immature physiological state (Colombo et al., 2007; Fallet-Bianco
et al., 2008; Ackman et al., 2009). We compared the physiology of

A

B C

D E F

Fig. 3. Spontaneous field IPSCs from Dcx) ⁄ Y and WT mice. (A) Inhibitory field potentials recorded spontaneously from the stratum pyramidale of Dcx) ⁄ Y and
WT animals. (B) Extracellular field events correspond to intracellular IPSPs recorded from a WT and a Dcx) ⁄ Y slice (five overlaid traces). (C) Inhibitory fields from
Dcx) ⁄ Y (n = 9 slices, four animals) and WT mice (n = 7 slices, three animals). The mean frequency (first panel) and mean amplitude of field IPSPs (second panel)
were larger in Dcx) ⁄ Y than in WT mice. Times to peak (third panel) were similar and averaged field IPSCs decayed somewhat more quickly (fourth panel) in
Dcx) ⁄ Y animals. (D, E) Multi-electrode records (right panel, ten superimposed traces) and current source density plotted against time (left panel) for a peri-somatic
field IPSP from a Dcx) ⁄ Y mouse (D) and a WT animal (E). Warm colours (red max.) in these current source density plots indicate sources and cool colours current
sinks (blue max.). The middle panel shows the amplitude profile of the current source density at the peak of the event. (F) Summed data show consistently wider
sources in Dcx) ⁄ Y than in WT animals (Mann–Whitney U test, *P < 0.05, **P < 0.01).
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identified pyramidal cells of the internal and external cell layers of
Dcx) ⁄ Y mice with that of WT pyramidal cells (Fig. 6). Resting
potential, input resistance and membrane time constant were similar
for pyramidal cells from Dcx) ⁄ Y and from WT animals (Table 1,
Fig. 6A–C). Similarly, AP properties including voltage threshold,
amplitude and duration at half-height duration were comparable for
pyramidal cells of Dcx) ⁄ Y and WT animals (Table 1).
The most striking difference was that pyramidal cells from Dcx) ⁄ Y

animals were more excitable than those from WT mice. CA3
pyramidal cells in both WT and mutant animals rarely fired at resting
potential. However, firing was induced (Fig. 6D and E) at a lower
current threshold, 67 ± 14 pA (n = 11), in Dcx) ⁄ Y CA3 cells than in
WT CA3 pyramidal cells, 109 ± 18 pA (n = 7, P = 0.01). The slope
of the relationship between injected current and firing frequency was
steeper, 158 ± 18 Hz ⁄ nA, for cells of Dcx) ⁄ Y animals (n = 11),
compared with 97 ± 12 Hz ⁄ nA in WT mice (n = 7, P > 0.01;
Fig. 6E). Firing frequency induced by a given current injection
(Fig. 6F), and firing rate gain (Fig. 6E and H) were higher in cells
from Dcx) ⁄ Y animals while the threshold current was lower in Dcx) ⁄ Y

animals than in WT mice (Fig. 6G). Cells from Dcx) ⁄ Y animals

tended to cluster in a low-threshold – high-gain region in threshold vs.
firing rate gain plots (Fig. 6I).
We next investigated if excitability differed between cells with

different locations in the CA3 region of Dcx) ⁄ Y animals. The current
threshold of pyramidal cells from WT animals was 109 ± 18 pA
(n = 7). In pyramidal cells of the internal cell layer it was
94 ± 32 pA (n = 4), in cells of a dispersed layer it was
53 ± 32 pA (n = 3) while in pyramidal cells of the external layer
the current threshold was 51 ± 11 pA (n = 4). Steeper slopes of
current ⁄ firing relationships suggested that Dcx) ⁄ Y cells of all groups
were more excitable than WT cells. In WT animals the slope was
97 ± 12 Hz ⁄ nA (n = 7), while it was 140 ± 34 Hz ⁄ nA for pyrami-
dal cells of the internal layer (n = 4), 133 ± 9 Hz ⁄ nA for cells of the
external layer (n = 4) and 217 ± 37 Hz ⁄ nA for dispersed pyramidal
cells (n = 3). Thus, a step depolarization of 200 pA from resting
potential induced WT firing at 6 ± 4 Hz for pyramidal cells, at
17 ± 9 Hz in cells of the internal layer and at 23 ± 2 Hz in cells of
the external layer.
The absence of DCX might modify neuronal excitability indepen-

dently of its actions on neuronal migration. To test this we compared

A

a b

B

C D E F

Fig. 4. Innervation of CA3 pyramidal cells by mossy fibres. (A) Double immunostaining for the zinc-transporter ZnT3 (red) and for NeuN (green), in zones of the
CA3c region of Dcx) ⁄ Y mice with, (a) a dual pyramidal cell layer or (b) a single layer. (B) Summary of the mean width of ZnT3 staining, corresponding to the mossy
fibre layer, in regions with a dual or a single pyramidal cell layer. (C–F) Large post-synaptic spines in biocytin fills of single CA3 pyramidal cells with somata
situated in the external (C and D) or the internal (E and F) layers. A cell of the external layer (C and D) with large, thorny excrescence-like spines at two separate sites
on apical dendrites, before (white arrow) and after (grey arrow) the internal pyramidal cell layer. A cell with soma in the internal cell layer (E and F) exhibited large
excrescence-like spines both on proximal apical (grey arrow) and on proximal basilar dendrites (white arrow).
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CA1 pyramidal cell excitability in Dcx) ⁄ Y and WT animals. The CA1
pyramidal cell layer is a little less tightly organized in Dcx) ⁄ Y than in
WT animals but never forms a double layer (Kappeler et al., 2007).
The current needed to induce an AP in WT CA1 pyramidal cells was
99.3 ± 18.1 pA (mean ± SEM; n = 7) while it was sigificantly less in
pyramidal cells from Dcx) ⁄ Y animals, at 56.3 ± 8.9 pA (mean ±
SEM; n = 8; P = 0.036). Neither input resistance nor resting potential
were significantly different. In WT CA1 pyramidal cells, resting
potential was )64 ± 2 mV (mean ± SEM; n = 7) and in pyramidal
cells from Dcx) ⁄ Y animals it was )69 ± 2 mV (mean ± SEM; n = 8;
P = 0.120), while the input resistance of WT CA1 pyramidal cells was
236 ± 30 MX (mean ± SEM; n = 7) and in cells from Dcx) ⁄ Y

animals it was 256 ± 33 MX (mean ± SEM; n = 8; P = 0.750).

Induced epileptiform activity in the CA3 region of Dcx) ⁄ Y and
WT animals

We compared the susceptibility to epileptiform activities of slices from
WT and Dcx) ⁄ Y animals. Records were made from slices maintained
in an interface chamber at low divalent cation concentrations (Ca2+

and Mg2+ both reduced from 2 to 1 mm) to increase neuronal
excitability. Both interictal and ictal-like discharges were detected in

simultaneous records made from single cells and with extracellular
electrode arrays.
Interictal-like events, often with multiple burst components, were

detected in 27 out of 30 slices from nine Dcx) ⁄ Y animals, but in only
four of 22 slices from seven WT animals (cf. Nosten-Bertrand et al.,
2008). Their mean total duration was 332 ± 42 ms and they recurred
at a frequency of 0.38 ± 0.17 Hz (Fig. 7A and B). Field potentials
were evident in all layers of the CA3 region. Pyramidal cells of both
internal and external layers of Dcx) ⁄ Y animals always received
synaptic events and often fired during interictal-like events. Intracel-
lular records suggested that pyramidal cells received strong inhibitory
inputs during interictal events (Fig. 7A). Further evidence for a
contribution from hyperpolarizing GABAergic inputs was obtained by
showing the GABAA receptor antagonist bicuculline (10 lm, n = 6)
increased the amplitude and duration of interictal field events. These
data suggest that depolarizing GABAergic signalling did not contrib-
ute to interictal-like activities.
Ictal-like events (Fig. 7C and D) were induced in some slices

exposed to reduced levels of divalent cations. They occurred
spontaneously in 11 ⁄ 30 slices from nine Dcx) ⁄ Y animals, but were
never detected in 22 ⁄ 22 slices of seven WT animals. Ictal-like events
were typically preceded by pre-ictal events and recurred at intervals

A

E F

DB C

Fig. 5. Modified dendritic form of CA3 pyramidal cells from Dcx) ⁄ Y mice. (A) Two-dimensional reconstruction of a biocytin-filled CA3c pyramidal cell of a WT
mouse. (B–D) Reconstructions of CA3c pyramidal cells with somata in the external (B) or internal (C and D) pyramidal cell layer of Dcx) ⁄ Y animals. The cell in D
was apparently well filled, but few or no basilar dendrites were evident.(E) Total length of apical (grey) and basilar dendrites (clear) for CA3c pyramidal cells of WT
and for cells of the internal and external pyramidal cell layers of Dcx) ⁄ Y animals. A reduction in total length was apparent for basilar dendrites of cells in the internal
layer and the apical dendrites of cells in the external pyramidal cell layer. (F) Total dendritic length was significantly less (*P > 0.05) for well-filled cells (n = 9) of
Dcx) ⁄ Y animals than for WT pyramidal cells (n = 4).
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ranging from 1–2 s to 30 min. They consisted of an initial event
succeeded by repeated burst discharges for a duration of 20–60 s
(Fig. 7C). Current density analysis (Fig. 7D) showed the initial event
was associated with a sink in stratum radiatum and a shorter duration
sink in stratum oriens. Succeeding bursts showed a rather different
arrangement with a sink predominating in stratum oriens but present to
a lesser extent in radiatum. It was hard to distinguish an initiation site
in either external and internal cell layers as ictal-like events were
infrequent and latency differences were small and variable.

Discussion

We have examined the extent and consequences of a lamination
defect in the CA3 hippocampal region of Dcx) ⁄ Y animals. It consists
of a dual or dispersed layer of pyramidal cell somata, typically in the
CA3b and c regions (Fig. 1). We asked whether this lamination
disorder perturbs synaptic targeting by excitatory and inhibitory
systems that normally contact specific sites on the CA3 pyramidal cell
membrane. Both peri-somatic interneurons (Figs 2 and 3) and mossy

fibres that normally excite proximal dendrites of CA3 cells (Fig. 4)
tended to contact appropriate zones on neurons of both layers in
Dcx) ⁄ Y mice, although aberrant connectivity was sometimes evident.
Pyramidal cells of both layers were somewhat smaller (Fig. 5), with a
reduced total dendritic length (Fleck et al., 2000). Pyramidal cells of
both layers were more excitable than WT cells (Fig. 6). Thus, the
absence of DCX affects dendritic form and synaptic connectivity and
results in an enhanced pyramidal cell excitability. These factors may
underly the enhanced susceptibility to epileptiform activities of slices
(Fig. 7) and Dcx) ⁄ Y animals (Nosten-Bertrand et al., 2008; Kerjan
et al., 2009).

Site and form of CA3 pyramidal cells in Dcx) ⁄ Y mice

We found the double, or dispersed, pyramidal cell layer was largely
restricted to the CA3b, c regions of Dcx) ⁄ Y mice maintained on the
Sv129Pas background (Corbo et al., 2002; Kappeler et al., 2007). In
double mutant animals for DCX and DCX-like kinase (Dclk),
lamination of both the CA3 and the CA1 regions is defective,

A B C

D

F G IH

E

Fig. 6. Pyramidal cells of Dcx) ⁄ Y mice are more excitable than WT pyramidal cells. (A) Responses to current injections of a WT pyramidal cell, a pyramidal cell of
the internal layer and a pyramidal cell of the external cell layer of a Dcx) ⁄ Y animal (left-to-right). Step currents of 600 ms duration and )100, )75, )50, )25, 0 and
+25 pA amplitude. Input resistance and membrane time constant of Dcx) ⁄ Y cells were not significantly different from those of WT cells. (B) Averaged current–
voltage relationships and (C) similar input resistances of WT and Dcx) ⁄ Y animals. (D, E) Cells of Dcx) ⁄ Y animals were more excitable than those of WT animals.
They fired at higher frequencies (D) in response to identical depolarizing current injection. (E) Input–output curves relating firing frequency to injected current
differed between WT (white circles) and Dcx) ⁄ Y (black circles) pyramidal cells. (F) Current injections (200 pA, 600 ms) induced significantly higher firing
frequencies in Dcx) ⁄ Y cells. (G) The minimum current needed to trigger an action potential was lower in Dcx) ⁄ Y cells. (H) An enhanced cellular excitability was
evident as a steeper slope of the input ⁄ output relationship (mean firing rate gain) in Dcx) ⁄ Y cells. (I) The firing rate gain plotted against the threshold current for each
cell (Mann–Whitney U test, *P < 0.05, **P < 0.01, ns not significant).

252 M. Bazelot et al.

ª 2012 The Authors. European Journal of Neuroscience ª 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd
European Journal of Neuroscience, 35, 244–256

213



suggesting Dclk can assume some functions of Dcx in the CA1
subfield (Deuel et al., 2006; Kerjan et al., 2009; but see Kappeler
et al., 2007). Both CA1 and CA3 subfields are also severely
disorganized in Lis1 mutant animals (Fleck et al., 2000).

Factors underlying the formation of a double or dispersed CA3
pyramidal cell layer in Dcx) ⁄ Y mice are not well understood. CA3
pyramidal cell neurogenesis peaks at about embryonic day 14.5 and
neurons reach the neuronal plate after 4–5 days (Altman & Bayer,
1990a; Nakahira & Yuasa, 2005). As well as normally sited
hippocampal plate cells, a heterotopic band has been observed in

the intermediate zone of Dcx) ⁄ Y animals that later becomes stratum
oriens (Kappeler et al., 2007). Possibly, these post-mitotic neurons
sense components of the stop signal for migration too soon or mis-read
motogenic and guidance signals (Hack et al., 2002; Guerrini &
Parrini, 2010). In the cortex, delayed Dcx expression reinitiates
migration of mis-positioned cells (Manent et al., 2009). However, we
did not find evidence for the coexistence of an ectopic CA3 cell body
layer and a correctly sited layer. Instead, neurons of both internal and
external layers (Fig. 1) were malformed (Fig. 5) with an enhanced
excitability (Fig. 6), suggesting that the absence of Dcx affects CA3
cell development regardless of their final position. The enhanced
excitability of CA1 pyramidals from Dcx) ⁄ Y animals also supports
this idea.
Our data suggest that the absence of DCX affects not only migration

but also the maturation and form of CA3 pyramidal cell dendrites. The
total dendritic length of CA3 pyramidal cells from Dcx) ⁄ Y animals
was about 20–30% less than that of cells from WT animals. The basal
dendrites of CA1 pyramidal cells from Lis ) ⁄ ) animals are somewhat
more severely stunted (Fleck et al., 2000). In Dcx) ⁄ Y–Dclk2 ) ⁄ )

double mutants, the secondary apical dendrites of CA1 cells are
reduced in length and complexity (Kerjan et al., 2009). No alteration
in dendritic complexity was explicitly described for ectopic cortical
cells from animals in which Dcx expression was reduced by RNA
interference (Ackman et al., 2009). Biocytin filling sometimes
revealed extreme dendritic forms (Fig. 5D), but deformation of
pyramidal cell dendrites tended to be homogeneous. Basilar dendrites
of cells of the internal layer were poorly developed, while apical
dendrites of external layer cells were stunted. Thus, cells of both layers
in Dcx) ⁄ Y animals possessed shorter total dendritic lengths, implying
a reduced global synaptic excitation due to fewer spines, even if
inhibitory innervation of pyramidal cell dendrites was presumably also
reduced.

A C

B D

Fig. 7. Interictal and ictal-like activity recorded from slices of Dcx) ⁄ Y animals. (A) Intra- and extracellular records of interictal-like events from the external layer of
the CA3 region of a Dcx) ⁄ Y slice in the presence of 1 mm Ca2+ and 1 mm Mg2+. Holding pyramidal cell membrane potential at )50 mV (upper traces) and then at
)70 mV (lower traces) revealed a fast inhibitory component of interictal-like events. (B) An inhibitory contribution was confirmed by the increase in amplitude and
duration of population events induced by the GABAA receptor antagonist bicuculline (20 lm). Intracellular and field records from the external cell layer of a Dcx) ⁄ Y

slice. (C) Ictal-like activity recorded with a multi-electrode array aligned along the somato-dendritic axis of CA3 pyramidal cells. E1–3, stratum oriens; E4–5, stratum
pyramidale; E6–9, stratum radiatum. (D) The initial 800 ms of an ictal event, and a current source density analysis. This analysis points to a major current sink for the
initial part of the event in stratum radiatum, while for later events the sink was more widely distributed across stratum oriens and radiatum.

Table 1. Electrical properties of pyramidal cells of WT and Dcx) ⁄ Y animals

Electrical property WT Dcx) ⁄ Y
Mann–Whitney
U test

Resting membrane
potential (mV)

)68 ± 5 (7) )71 ± 3 (11) NS

Input resistance (MX) 317 ± 39 (7) 401 ± 39 (11) NS
Membrane time
constant (ms)

54 ± 7 (6) 72 ± 9 (10) NS

Threshold potential (mV) )40 ± 1 (7) )40 ± 1 (11) NS
Action potential
amplitude (mV)

)94 ± 2 (7) )93 ± 2 (7) NS

Action potential
width (ms) 0.75 ± 0.03 (7) 0.81 ± 0.03 (7) NS
Threshold current (pA) 109 ± 18 (7) 67 ± 14 (11) P < 0.05
Firing rate gain (Hz ⁄ pA) 97 ± 12 (7) 158 ± 18 (11) P < 0.01

For each parameter the mean and standard error on the mean are given with the
number of observations in parentheses. According to the Mann–Whitney U-
test, there were no significant differences in resting membrane potential, input
resistance or membrane time constant. Similarly, parameters describing action
potentials, including threshold, amplitude and duration at half-height, were
similar. The threshold current for action potential initiation was significantly
lower and the firing rate gain (Fig. 6E) was higher in Dcx) ⁄ Y mice.
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Peri-somatic interneurons and the dual CA3 pyramidal cell layer
in Dcx) ⁄ Y mice

PV-positive interneurons normally establish synapses on restricted
peri-somatic regions of CA3 pyramidal cells (Freund & Katona,
2007). We found that numbers of PV-immunopositive cells were not
reduced in Dcx) ⁄ Y animals. Even if migration is perturbed and may be
retarded (Kappeler et al., 2006; Friocourt et al., 2007), these inhib-
itory cells eventually reach sites similar to those in the hippocampus of
WT animals (Fig. 2A–C). This situation differs in the CA1 region of
Lis1 mutant animals, where PV-expressing interneurons terminate in
the stratum radiatum (Jones & Baraban, 2009).
Interneurons arrive in the CA3 region at embryonic day 16

(Pleasure et al., 2000; Danglot et al., 2006; Manent et al., 2006)
invading the hippocampal plate with similar timing to that of
pyramidal cells (Soriano et al., 1986; Altman & Bayer, 1990a,b).
Destinations and connections of interneurons and pyramidal cells may
then be coordinately regulated (Manent et al., 2006). Molecular
determinants of the selective innervation of specific subregions of
pyramidal cell membrane by distinct inhibitory cells during this
coordinated synaptogenesis remain to be completely understood
(Danglot et al., 2006). Our data suggest cells of both the internal
and the external cell layers express molecules needed for the formation
of appropriately sited peri-somatic contacts by PV-immunopositive
interneurons. Furthermore, current source density distributions from
array records of field IPSPs (Bazelot et al., 2010) implied that the
same interneuron may synapse with cells of both the internal and the
external cell layers (Fig. 3D–F). Either dual records from peri-somatic
inhibitory cells and pyramidal cell targets in both layers or tracing
axonal arbors of single filled interneurons could confirm this point.
Such records could also let us test whether interneuron excitability was
enhanced in Dcx) ⁄ Y mice, as in Lis1 KO animals (Jones & Baraban,
2007), or whether the increased frequency of field IPSPs (Fig. 3A)
resulted instead from an increased pyramidal cell excitability (Fig. 6).
Other interneurons, such as axo-axonic cells, target distinct, specific
sites of pyramidal cell membranes. Studies on the spatial specificity of
their synaptic contacts with Dcx) ⁄ Y pyramidal cells could provide
insights into mechanisms underlying the formation of precise
inhibitory connections in the hippocampus.

Mossy fibre excitation of a dual CA3 pyramidal cell layer in
Dcx) ⁄ Y mice

As the growth and migration of CA3 interneurons and principal cells
occur in a temporally coordinated sequence, so too does the mossy
fibre innervation of CA3 pyramidal cells (Deguchi et al., 2011).
Mouse dentate granule cells are born from embryonic stages until
postnatally (Angevine, 1965; Altman & Bayer, 1990b), and generally
reach their final destination later than CA3 pyramidal cells (Danglot
et al., 2006). Some early mossy fibre contacts with CA3 cells may be
formed close to birth (Amaral & Dent, 1981) but most innervation,
including an infrapyramidal bundle (Bagri et al., 2003), is established
later. We used ZnT3 immunostaining (Fig. 4A and B) to define mossy
fibre trajectories and large post-synaptic spines (Claiborne et al.,
1986; Gaiarsa et al., 1992) as an indication of sites of mossy fibre
contacts. Our data suggest mossy fibre targeting of CA3 pyramidal
cells is perturbed, but most cells of both internal and external layers of
Dcx) ⁄ Y mice are innervated on proximal apical or basilar dendrites.
Cells of the internal layer tended to be innervated by a maintained
infra-pyramidal projection (Fig. 4E and F; Gaarskjaer, 1986; Kerjan
et al., 2009) even if it terminates sometimes on distant basilar
dendrites. Infra-pyramidal mossy fibre projections are coupled to

thorny excrescences on basilar dendrites, as we found (Fig. 4), in
animals with CA3 pyramidal cell lamination defects other than those
associated with Dcx (Nowakowski & Davis, 1985). As for inhibitory
contacts, mossy fibre pathfinding and synaptogenesis may result from
coordinately regulated pre- and post-synaptic processes of attraction
and repulsion (Qin et al., 2001; Förster et al., 2006; Xu & Henke-
meyer, 2009). In particular, the absence of large spines on dendrites of
cells from the external layer as they cross zones of internal layer
somata (Fig. 4C and D) suggests CA3 cell bodies may repel mossy
fibre contacts (Seki & Rutishauser, 1998).
The shift in location of mossy fibre contacts from apical to basilar

sites (Gonzales et al., 2001) could enhance the efficacy of mossy fibre
excitation of pyramidal cells of the internal layer of Dcx) ⁄ Y mice. The
smaller diameters of basilar dendrites should favour excitatory
postsynaptic potential propagation to the soma (Carnevale et al.,
1997), thus assuring a greater influence of basilar mossy fibre inputs
on somatic potential than for contacts made with thicker apical
dendrites.

CA3 pyramidal cell excitability and epileptiform activities in
Dcx) ⁄ Y mice

Our data suggest that CA3 pyramidal cells may make a primary
contribution to the epileptic phenotype of Dcx) ⁄ Y animals. The
excitability of pyramidal cells in both layers was increased with a
reduced current threshold and an increase in the gain of the
relationship between injected current and the frequency of firing to
injected current. This enhanced excitability may depend in part on
the higher input resistance of the smaller pyramidal cells of mutant
animals (Zhu, 2000). Alternatively, the expression of voltage-
independent currents (Taverna et al., 2005) might be changed,
although we detected no major change in subthreshold input
resistance. Voltage-dependent currents might also change to com-
pensate for a reduced excitatory drive due to reduced dendritic length
(Desai et al., 1999). Homeostatic control of cellular excitability in a
healthy brain functions to counter changes in network activity
(O’Leary et al., 2010). In the pathologically changed CA3 network
of Dcx) ⁄ Y mice, might such compensatory mechanisms aggravate
aberrant patterns of network activity so that seizures beget further
seizures (Ben-Ari et al., 2008)? Interestingly, we noted that in the
absence of a dual layer (Kappeler et al., 2007), CA1 pyramidal cells
from Dcx) ⁄ Y animals were also more excitable than their counter-
parts from WT mice. Further work is needed to define factors
controlling this cell-autonomous enhanced excitability of Dcx) ⁄ Y

pyramidal cells.
The interictal-like behaviour (Fig. 7A and B) presumably results

from interactions between an enhanced pyramidal cell excitability
and recurrent synaptic connectivity in the CA3 region. We did not
test explicitly whether recurrent connectivity was enhanced or
whether the efficacy of single recurrent excitatory synapses was
altered in Dcx) ⁄ Y animals. Our data on field IPSPs (Fig. 3) and the
activation of a strong synaptic inhibition during inter-ictal-like events
suggests that Cl-homeostasis was not compromised (Shimizu-Okabe
et al., 2007). As in other slice models, ictal-like events occurred
much less frequently than interictal ones (Avoli et al., 2002). There
seemed to be a genuine difference in susceptibility between slices
from WT and Dcx) ⁄ Y animals, suggesting that modified cellular and
circuit properties in the CA3 region of the hippocampus can suffice
to generate ictal-like activity. The reduced divalent cation stimulus
used to induce this activity seems likely to have further increased
CA3 cell excitability while reducing the efficacy of excitatory and
inhibitory synapses.
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Conclusions

Dcx) ⁄ Y animals were known to possess a double layer of CA3
pyramidal cells. These data show that cells in both layers have simplified
dendritic arbors and an increased excitability as do cells of the less
disorganized CA1 region. This situation recalls that described for the
CA1 region of Lis1 KO animals (Fleck et al., 2000). Thus, defects in
pyramidal cell form and function are associatedwithmigration disorders
in two animal models of dis-lamination, disorganization and seizures,
linked to two distinct microtubule-associated molecules.
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Abstract

Cognitive functions rely on the generation and regulation of information in special-
ized neuronal networks. The presubiculum, a cortical area located between the hip-
pocampus and the entorhinal cortex, is involved in signaling the sense of orientation
in animals as well as in humans. Most presubicular neurons are Head Direction Cells,
that is, they fire as a function of directional heading. The presubiculum constitutes
a crucial crossroad for spatial information. Very few data exist on the functional
organization of the presubiculum, but its 6-layered cytoarchitecture suggests that
signals are not passively relayed but rather actively integrated and refined.

During my PhD, I studied the microcircuit elements of rodent presubiculum in
the slice preparation, linking structure and physiology using patch clamp records.

First, I focused on rat principal neurons and distinguished 3 groups: a homoge-
neous population of regular spiking neurons in superficial layers, mostly pyramidal;
intrinsically burst firing neurons of layer 4; and a very heterogeneous population of
regular spiking neurons in deep layers. These populations constitute the primary el-
ements for information processing in the presubiculum, and their diversity suggests
a high computational power.

Then, I addressed the question of the inhibitory control in the presubiculum.
Recordings were performed from slices of transgenic mouse strains that express fluo-
rescent proteins in interneurons. We showed a continuum of diversity for parvalbumin-
(PV) and somatostatin- (SST) containing interneurons, from the archetypical PV-
positive fast spiking basket cells to the SST-positive low-threshold spiking Martinotti
cells. Regarding the inhibition, the presubiculum seems to possess the complexity
of all cortical areas.

Finally, I investigated the synaptic interactions of pyramidal cells and Martinotti
cells in superficial layers, using dual patch clamp recordings. Martinotti cells provide
low amplitude but reliable inhibition onto pyramidal cell dendrites. I found that the
strength at the excitatory synapse was enhanced following repetitive stimulation at
high frequency. Consequently, dendritic inhibition by presubicular Martinotti cells
may act as a homeostatic response to sustained excitation.

My PhD work brought essential knowledge about the presubicular microcircuit.
It has shed light on the different populations of principal neurons and GABAergic
interneurons and has uncovered a feedback inhibitory loop that is recruited during
sustained but not transient activity.
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Résumé

Les fonctions cognitives dépendent de la génération et du traitement de l’information
dans des réseaux neuronaux spécialisés. Le présubiculum, une aire corticale située
entre l’hippocampe et le cortex entorhinal, est impliqué dans le sens de l’orientation
aussi bien chez l’animal que chez l’Homme. La plupart des neurones du présubiculum
sont des cellules de direction de la tête, elles déchargent en fonction de la direction
prise par la tête de l’animal. Peu de données existent sur l’organisation fonctionnelle
du présubiculum, mais les 6 couches suggèrent que les informations n’y sont pas
relayées passivement, mais qu’elles y sont plutôt activement intégrées et raffinées.
J’ai étudié les éléments du microcircuit presubiculaire sur tranche aigüe de rongeur,
liant structure et physiologie en utilisant la technique de patch clamp.

Je me suis d’abord intéressé aux neurones principaux, chez le rat, et j’ai identifié
3 groupes : une population homogène de neurones pyramidaux à décharge régulière
dans les couches superficielles ; des neurones pyramidaux à décharge en bouffée dans
la couche 4 ; une population hétérogène de neurones à décharge régulière située en
couches profondes. Ces populations neuronales constituent la base cellulaire du
codage de l’information, et leur diversité suggère une puissance computationnelle
avancée dans le traitement du signal nerveux au niveau du présubiculum.

Je me suis ensuite intéressé au contrôle inhibiteur dans le présubiculum en étudi-
ant les propriétés des interneurones à partir de souris transgéniques exprimant une
protéine fluorescente dans les interneurones. Nous avons montré qu’il existait un
continuum au niveau de la diversité des interneurones, depuis des cellules en panier
à décharge rapide et exprimant la parvalbumine, jusqu’au cellules de Martinotti à
bas seuil d’activation et exprimant la somatostatine. Concernant l’inhibition, le
présubiculum semble posséder la complexité de toute aire corticale.

Finalement, j’ai étudié les interactions synaptiques entre les cellules pyramidales
et les cellules de Martinotti dans couches superficielles, en réalisant des doubles en-
registrements en patch clamp. Les cellules de Martinotti procurent une inhibition
fiable au niveau des dendrites des cellules pyramidales. L’efficacité de la synapse
excitatrice s’améliorait lors de stimulations répétées à haute fréquence. L’inhibition
dendritique délivrée par les cellules de Martinotti du présubiculum pourrait con-
stituer un processus homéostatique répondant à une stimulation soutenue.

Mon travail de thèse a apporté des connaissances essentielles sur le microcircuit
du présubiculum. Il a fait la lumière sur les différentes populations de neurones
principaux et d’interneurones et a révélé une boucle de rétrocontrôle inhibiteur qui
est recruté préférentiellement lors d’activités maintenues.
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