
HAL Id: tel-02295267
https://theses.hal.science/tel-02295267

Submitted on 24 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An innovative lightweight cryptography system for
Internet-of-Things ULP applications

Duy-Hieu Bui

To cite this version:
Duy-Hieu Bui. An innovative lightweight cryptography system for Internet-of-Things ULP applica-
tions. Micro and nanotechnologies/Microelectronics. Université Grenoble Alpes; Trường Đại học
Quốc Gia Hà Nội, 2019. English. �NNT : 2019GREAT001�. �tel-02295267�

https://theses.hal.science/tel-02295267
https://hal.archives-ouvertes.fr

Abstract

The Internet-of-Things (IoT) has come with new standards and new challenges. This

has sparked concerns about security constraints, despite its ever-increasing role in

business and daily lives. Clearly, IoT contains cloud computing for data processing,

communication infrastructure including the Internet, and sensor nodes. During its

operations, IoT may collect, transmit and process secret data, which trigger security

risks. Nevertheless, implementing security mechanisms for IoT encounters many

challenges due to millions of IoT devices integrated at multiple layers, each of which

has different computation capabilities and security requirements. In addition to that,

sensor nodes in IoT are intended to be battery-based constrained devices with limited

power budget, adequate computation, and small memory footprint to reduce costs.

This work is therefore motivated to focus on applying data encryption to protect

IoT sensor nodes and systems with the consideration of hardware cost, throughput

and power/energy consumption. It will firstly implement an ultra-low-power block

cipher crypto-accelerator with configurable parameters in 28nm FDSOI technology

in SNACk testchip with two cryptography modules: AES and PRESENT. AES is a

widely used data encryption algorithm for the Internet and currently used for new

IoT proposals. PRESENT is a lightweight algorithm which comes up with reduced

security level but requires with much smaller hardware area and lower consumption.

The AES module is a 32-bit datapath architecture containing multiple optimization

strategies supporting multiple security levels from 128-bit keys up to 256-bit keys.

The PRESENT module contains a 64-bit round-based architecture to maximize its

throughput. The measured results indicate that this crypto-accelerator can provide

medium throughput (around 20Mbps at 10MHz), while consumes less than 20µW

at normal condition and sub-pJ of energy per bit. However, the limitation of crypto-

accelerator is that the data has to be read into the crypto-accelerator and written

back to memory which leads to the increase of the power consumption. Following

that, this work looks into an innovative approach to implement the cryptography

algorithm which uses the new proposed In-Memory-Computing SRAM. This aims to

provide a high level of security with flexibility and configurability to adapt to new

standards and to mitigate new attacks. In-Memory Computing SRAM can provide

reconfigurable solutions to implement various security primitives by programming

the memory’s operations. The proposed scheme is to carry out the encryption in the

memory using In-Memory-Computing technology. This work evaluates two possible

mappings of AES and PRESENT using In-Memory Computing.

i

Acknowledgment

Undertaking this PhD is a truly challenging and rewarding experience for me and I

would like to take this opportunity to thank all the people who in one way or another

have contributed to the completion of my work.

First of all, I would like to express my profound gratitude to my supervisors,

HDR. Edith Beigné, Research Director, Chief Scientist of IC Design, Architecture

and Embedded Software Division (DACLE) at CEA-Leti and Professor Xuan-Tu

Tran, Director of the VNU-Key Laboratory for Smart Integrated Systems (SISLAB),

at the University of Engineering and Technology (UET), a member university of

Vietnam National University, Hanoi (VNU) who have been fantastic mentors to me,

continuously supported me with all their patience, motivation, and immense knowl-

edge.

I am also deeply grateful to my advisers, Dr. Diego Puschini and Mrs. Simone

Bacles-Min, senior scientists at CEA-Leti. If it had not been for their expertise

and constant feedback with insightful comments, valuable suggestions and encour-

agement, this thesis would not have been achievable.

I would like to thank Professor Regis Leveugle, University of Grenoble Alpes for

giving me a great honor by presiding the jury. I would like to express my gratitude to

Dr. Nadine Azemard, CNRS, LIRMM and Associate Professor Jean-Max Dutertre,

Saint-Etienne School of Mines, for accepting to be reporters. It is my pleasure to

have the participation of Associate Professor Vincent Beroulle in the jury.

May I extend my sincere thanks to Dr. HDR. Susanne Lesecq, senior scientist

at CEA-Leti for helping me get the French Government scholarship and for her kind

support at the beginning of my work in CEA-Leti.

This PhD work was conducted under the collaboration between the VNU Univer-

sity of Engineering and Technology (VNU-UET), and CEA-Leti. I sincerely thank

both organizations. My special thanks go to Dr. HDR. Marc Belleville, Former Re-

search Director, Former Chief Scientist of IC Design, Architecture and Embedded

Software Division (DACLE) at CEA-Leti and Associate Professor Viet-Ha Nguyen,

Rector of VNU-UET for their valuable assistance that made it possible for me to

complete this PhD.

I also owe my gratitude to Dr. HDR. Fabien Clermidy and Mr. Jérôme Martin

iii

who gave me their warm-hearted welcome and for providing me a wonderful atmo-

sphere for doing research.

I greatly appreciate the generous support received through the collaborative work

with my colleagues at CEA-Leti/DACLE/SCSN/LISAN and SISLAB. Thank you all

for sharing with me your excellent advice and for making my PhD fieldwork all the

more interesting.

I would never have been able to finish my PhD thesis without the persistent help

from my family and my friends. My heartfelt thanks go to my friends who always

support me and encourage me with unflagging enthusiasm.

iv

Preface

The exponential growth in Internet-of-Things (IoT) devices has brought the world

into a new era of pervasive connectivity where enormous physical things equipped

with sensors, actuators, processors, and transceivers communicate and collaborate

over the Internet. For this intelligence and interconnection, IoT is creating numerous

opportunities to revolutionize the current technologies into smart applications such

as smart homes, smart cities, smart grids, and the like which can help unburden

human life. On the other hand, IoT is also raising security constraints due to the

emergence of new standards and new threats.

IoT has evidently come with new standards, leading to the disparity between the

IoT and the existing computer-based systems or embedded systems. Specifically, im-

plementing IoT requires ultra-low-power and ultra-low-cost devices. These are known

as highly constrained devices which can operate for a long lifetime using battery or

even self-harvested energy. They enable new applications such as implant or wear-

able devices, environmental monitoring and so forth. Concurrently, IoT has brought

into play new challenges and countermeasures, for instance, the cost of devices, the

standardization of mechanisms, and the management of millions of lightweight de-

vices, power distribution, security, and privacy. Noticeably, security and low power

consumption are important features to be optimized for IoT sensor nodes. Like con-

strained devices with low resources and limited power supply, IoT sensor nodes need

low-power features to lengthen their operations and security mechanisms to protect

the secret data of users and their privacy.

In particular, IoT devices and data transmitted through multilayer networks may

contain private data or secret data which is threatened by cyber-attacks and organized

crimes on the Internet environment. With millions of IoT devices integrated, this can

open new attack surfaces which focus on IoT devices in order to use them as new

attack tools. Mirai malware which uses vulnerable IoT camera devices is the warning

for IoT system. Notwithstanding, the security feature is still left as an option because

it increases the power consumption and takes extra time-to-market to IoT products.

This leaves rooms for further studies on security to reduce the hardware cost and

power consumption.

Security functions are often based on strong cryptography algorithms such as

v

block ciphers, hash functions, and/or public key cryptography which not only re-

quire complicated computations and large power consumption but also reduce the

system throughput. Performing these security algorithms on ultra-low-power devices

is also a challenging task because these devices are lightweight devices with ade-

quate computation capability, small memory footprint and limited power budget.

Therefore, it is critical to optimize cryptographic algorithms in hardware for cost,

throughput and especially power and energy consumption. Given these conditions,

lightweight security mechanisms such as those based on block ciphers and lightweight

block ciphers are considered to be more suitable for constrained devices. To reduce

the power consumption, the implementation of security primitives is performed in the

crypto-accelerator in hardware. This approach is also applicable to high-performance

computing such as Intel CPU or embedded systems such as ARM System-on-Chips.

Nonetheless, cost, throughput and power/energy consumption are different features

which are hard to achieve at the same time.

The disadvantage of hardware crypto-accelerators is that they have fixed hardware

designs, therefore, when there is a flaw in hardware discovered, the only solution is

to make a replacement. This urges the research for new approaches for implementing

flexible security mechanisms.

Current affordable security implementation for IoT often focuses on application

specific integrated circuit (ASIC) with serial processing elements to reduce the hard-

ware cost and power consumption. However, this kind of optimizations, in general,

increases the overall latency and reduce energy efficiency. Specific or fixed security

functions implemented in ASIC are also the drawbacks in the security point of view

because the security standards evolve to adapt to new attacks and to mitigate new

threats. ASIC crypto-accelerators are hard to adapt to these changes because of their

optimal hardware structure to reduce the hardware cost and power consumption. In

addition, to optimize the power consumption, IoT devices often contain a system

on chip with multiple hardware modules from different vendors. These hardware

modules might include hardware Trojans which might monitor and expose the secret

data transported by the system buses. Furthermore, the extra cost is spent to read

the data from the memory to the crypto-accelerator and to write the data back to

the memory. Therefore, certain trade-offs should be considered to include flexible

security solutions for long lifetime constrained devices.

In-Memory Computing is a new advancement of memory technology which can

perform logical operations such as AND, OR, NAND, NOR, XOR directly using

the memory structure. It is a promising technology to implement different security

algorithms because data in the memory can be encrypted in place without being

transferred to the processing unit. This minimizes data transfer overhead and the

chance of exposing raw data to the system bus. However, because of the serial oper-

ations of In-Memory Computing, its flexibility, which can map different algorithms

to adapt to new standards or to cope with different attacks, has to be traded off with

vi

the speed and the power/energy consumption of the crypto-accelerators. In-Memory

Computing has some important advantages over the traditional methods in terms of

security, but it needs in-deep investigation.

To shed some light on the situation, this work firstly focuses on the power/energy

consumption optimization of block ciphers which can be used to implement differ-

ent security primitives to secure the data and communication in IoT systems. The

power consumption of both conventional and lightweight algorithms will be carefully

evaluated. This work proposes a low-power implementation of two standardized al-

gorithms which can be used for ultra-low-power IoT devices. The first one, Advanced

Encryption Standard (AES), is a conventional algorithm widely used to secure the

Internet applications with high levels of security. The other is PRESENT, a new

lightweight algorithm which uses hardware constructs to reduce the hardware area

and the power consumption. Implementation results show that the lightweight im-

plementation can provide lower power consumption than the traditional one but with

the sacrifice of security levels. On the other hand, IoT devices might have different

security requirements depending on the applications and the available power/energy

budget. Therefore, in the next step, this work combines the two modules, AES and

PRESENT, into a crypto-accelerator. IoT applications can choose the high secure

algorithm with more power consumption or in the critical condition the lightweight

one to lengthen its battery life. This crypto-accelerator has been fabricated using

28nm FD-SOI technology in SNACk testchip. The results indicate that this crypto-

accelerator can provide sub-pJ/bit operations.

Not only optimizing the power consumption, but the security evaluation using

the current state-of-the-art methods are also applied to the proposed design. Two

notable evaluation methods are employed in this work including Correlation Power

Analysis (CPA) and Test Vector Leakage Assessment (TVLA). TVLA can address

different information leakages in the proposed designs while CPA can be used to

mount the key recovery attack. The evaluation results using the estimated power

traces of the post-signoff netlist show that the proposed design with optimization for

low power consumption achieved equivalent information leakage in comparison with

the reference design on OpenCores.

Last but not least, from the lesson of various security breaches because of the

fixed hardware security module, this work finally explores the configurability, the

flexibility and the feasibility of different block cipher algorithms using In-Memory

Computing. This work proposes the implementation of two algorithms, which are

previously designed in the aforementioned crypto-accelerator, using the In-Memory

Computing technology. The implementation results using the behavior model of

In-Memory Computing show that the conventional algorithm, AES, with byte level

transformation has eight times higher throughput than the bit-level permutation,

PRESENT. In addition, because of the serial operations, the security functions using

this technology have to trade off flexibility and configurability with throughput and

vii

power consumption. The implementation of AES and PRESENT using In-Memory

Computing is at least five times slower than the one in the crypto-accelerator. Secu-

rity functions in memory can also be equipped with the countermeasures for software

implementations, but it needs careful investigations.

Motivations and objectives

Many researches have been focusing on reducing the area and power consumption of

cryptographic hardware primitives so that they can be used for constrained devices.

As a result, a new class of cryptography algorithms named Lightweight Cryptogra-

phy has emerged to fulfill the new requirements. Lightweight cryptography considers

the trade-offs among area, throughput, power consumption and security features by

reducing the security levels to achieve small hardware footprint and low power con-

sumption. In general, the lightweight approach is expected to reduce the data block

size and the key size to minimize the hardware area and also the power consumption

but this leads to the reduction in security level. Regardless of new advancements

in cryptography, many new IoT proposals have chosen AES as the main primitive.

Therefore, the optimization for AES is considered to be critical not only for IoT

applications but also for other products which use AES.

In addition, lightweight cryptography which uses the hardware-friendly construct

to reduce the hardware cost and power consumption is a promising candidate for

ultra-low-power and ultra-low-cost applications even though they might reduce the

level of security. However, lightweight cryptography has not been selected for recent

IoT proposals yet.

On the other hand, depending on the applications’ profile, ultra-low-power devices

might adapt to different security levels by selecting between conventional security al-

gorithms such as AES or the lightweight ones, for instance, PRESENT. Configurable

implementations will increase flexibility and configurability.

Furthermore, hardware implementations of security functions for ultra-low-cost

and ultra-low-power devices often use fixed architecture with fixed algorithms which

cannot adapt to new standards and against new attacks. With new advancement

of the memory technologies, In-Memory Computing which can be programmed to

execute logical operation directly in the memory banks might open a new solution

to address this problem. The memory can be programmed to execute the security

primitives in place without data transfer through the system bus. In-Memory Com-

puting can be an innovative solution for security, but it needs careful investigation

and evaluations.

The objective of this PhD’s work is firstly to investigate different security mech-

anisms, which are suitable for highly-constrained IoT devices, to search for a good

trade-off among security level, hardware cost and power/energy consumption. After

that, two algorithms including a highly-secure algorithm – AES and a lightweight al-

viii

gorithm – PRESENT were chosen to be implemented into a crypto-accelerator with

multiple levels of security. An optimization strategy for AES and PRESENT was

proposed to reduce its power consumption. Secondly, the implementation results of

AES and PRESENT are analyzed to extract the power traces for security evaluation.

Finally, in the search for an innovative approach to design security functions for

IoT, the design of two algorithms using In-Memory Computing is implemented and

evaluated. Security mechanisms implemented using In-Memory Computing are more

flexible in comparison with the hardware accelerator because they are reconfigurable

and can be used to map different algorithms to accelerate the computation directly in

the memory array. In-Memory Computing provides flexibility and configurability to

adapt to future IoT standards and to cope with new attacks, but it has to trade the

flexibility and configurability for higher power consumption and lower throughput

than the proposed crypto-accelerator.

Explanation for the different CMOS technologies used

in this thesis

This thesis’ work has been conducted under the collaboration among VNU Univer-

sity of Engineering and Technology (VNU-UET) – a member university of Vietnam

National University, University of Grenoble-Alpes and CEA-Leti/DACLE in France.

It involved the participation of two laboratories including the Key Laboratory for

Smart Integrated Systems (SISLAB), VNU-UET, and Digital Architecture (LISAN),

CEA-Leti/DACLE, France. The two-thirds period of the work was performed in

LISAN which has access to 28nm FD-SOI technology and TSMC 65nm. At the be-

ginning of the work, the designs are experimented using TSMC 65nm to prepare the

simulation and evaluation environment in the local computer in the lab. Some exper-

iments require an extremely large amount of disk space which can only be performed

using the local computer. However, the fabricated demonstration was implemented

using ST 28nm FD-SOI technology. All the measured results are originated from this

technology. The remaining of the research including Chapter 4 was completed in SIS-

LAB which does not have access to the technologies as in CEA-Leti. Therefore, the

experiments performed in SISLAB use 45nm technology from North Carolina State

University (NCSU) education platform development kit [FreePDK45nm]. The stan-

dard cells are from Nangate [Nangate2011OCL]. The SRAM cells and the memory

peripheral were built based on the OpenRAM compiler [Guthaus2016oao].

Contributions of the work

• Design of a low-power low-cost crypto-accelerator which can be used

for ultra-low-power IoT applications

ix

The current state-of-the-art of cryptography was studied in terms of hardware

cost, power/energy consumption, throughput and security features. After that,

two block ciphers are selected for implementation including a traditional al-

gorithm – AES, and a lightweight algorithm – PRESENT. An optimization

strategy to optimize AES hardware module was proposed based on 32-bit dat-

apath architecture. This crypto-accelerator was integrated as an IP into the

SNACk testchip. It was fabricated in 28nm FD-SOI technology. The measured

power consumption results show that it can achieve very low power consump-

tion down to 20µW for AES at 10MHz and throughput of 28Mbps, and 10µW

for PRESENT with the throughput of 17Mbps at the same operating frequency.

• Perform security evaluation of AES crypto-core in SNACk using the

post-signoff power estimation traces

One of the weaknesses in hardware crypto-accelerators is the hardware secu-

rity attack such as power analysis attacks. Designing countermeasure is not

a part of this work because this work mainly focuses on optimizing the power

consumption along with the considerations of hardware costs, throughput and

security level. Therefore, this work does not include countermeasures. How-

ever, the security evaluation framework using Correlation Power Analysis and

Test Vector Leakage Assessment is proposed for early design testing based on

the post-signoff power estimation to verify that no security weakness was in-

troduced during the optimization. The framework has successfully revealed the

secret key of the reference design on Opencores and the design in this work.

The design in this work with power optimization has a certain level of resistance

to these types of attacks. It means that the proposed optimization did not add

security leakage.

• Design and implementation of AES and PRESENT in an innovative

In-Memory Computing architecture

Crypto-accelerators have low cost, low power consumption, however, they are

fixed after the chip fabrication. In contrast, the attack methods are changing

very fast, thus, the flaws are discovered, these hardware structures must be

replaced to maintain the security feature. In this work, a configurable crypto-

accelerator is proposed using the In-Memory Computing architecture. This

work uses the memory bitcells proposed by Akyel el al. [Akyel2016ddr] to map

AES and PRESENT on this platform. For a 32-bit datapath architecture, AES

takes 232 clock cycles to finish one encryption while PRESENT needs 873 clock

cycles. Because of the bit based permutation, PRESENT implementation using

In-Memory computing are eight times slower than AES.

x

Organization of the manuscript

The rests of the manuscript are organized into four chapters. Chapter 1 introduces the

Internet-of-things (IoT) and the requirements of ultra-low-power IoT applications. It

also analyzes the importance of security in the IoT systems and the security challenges

in IoT. The IoT applications are expected to be highly-constrained devices to reduce

the cost with very low power consumption. Therefore, implementing security into

these devices to reduce cost and power consumption is seen as a challenging task.

Chapter 2 summarizes the security features in IoT and reviews the current state

of the art of security for constrained devices. It also presents the reason why block

ciphers including AES and PRESENT are selected to be implemented for IoT. The

chapter provides a scanning of the current hardware implementations of AES and

lightweight cryptography. It additionally looks into the hardware security problems.

Moreover, this chapter has two sections on the implementations of AES which use

the SRAM memory and the configurable cryptographic modules, which are directly

related to the manuscript’s proposals in Chapter 3 and Chapter 4.

Chapter 3 presents a proposal of a low-power crypto-accelerator containing two

block ciphers – AES and PRESENT. The proposal firstly involves the implementa-

tion of SNACk testchip in 28nm FD-SOI from STMicrolectronics. Furthermore, the

chapter presents these implementation results including the power estimation and

the measured results of SNACk. Finally, the security evaluation of AES in SNACk

test chip is also presented and evaluated in this chapter.

Chapter 4 proposes an innovative method to map block ciphers into hardware

using the In-Memory Computing mechanisms. It begins with the demonstration of

the memory constructions to support In-Memory Computing. It then continues with

the mapping of the block ciphers including AES and PRESENT using the memory

construction which is previously described.

Finally, the author concludes the contributions of the study in this manuscript.

Additionally, it raises some perspectives on which further researches would be bene-

ficial.

xi

List of Publications

This is the list of my publications during my thesis:

[1] Marc Belleville, Anca Molnos, Gilles Sicard, Jean-Frédéric Christmann, Do-

minique Morche, Duy-Hieu Bui, Diego Puschini, Suzanne Lesecq, and Edith

Beigné. Adaptive Architectures, Circuits and Technology Solutions for Future

IoT Systems. J. Low Power Electronics, 13(3):298–309, 2017.

[2] D. Bui, D. Puschini, S. Bacles-Min, E. Beigné, and X. Tran. Ultra low-power

and low-energy 32-bit datapath AES architecture for IoT applications. In 2016

International Conference on IC Design and Technology (ICICDT), pages 1–4,

June 2016.

[3] D. Bui, D. Puschini, S. Bacles-Min, E. Beigné, and X. Tran. AES Datapath Op-

timization Strategies for Low-Power Low-Energy Multisecurity-Level Internet-of-

Things Applications. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 25(12):3281–3290, Dec 2017.

xiii

Contents

Abstract i

Preface v

Contents xv

1 Ultra-Low-Power applications for IoT and security problems 1

1.1 Introduction to Internet-of-Things applications

and requirements for Ultra-Low-Power features 2

1.2 Security mechanisms and lightweight cryptography 7

1.3 Security challenges in IoT . 14

1.4 Conclusion . 20

2 State-of-the-art of security hardware in IoT 23

2.1 Introduction to symmetric cryptography hardware architecture and its

power consumption optimizations . 25

2.1.1 Symmetric cryptography hardware architecture 25

2.1.2 Power consumption optimizations for CMOS technologies . . . 27

2.2 AES hardware implementation . 29

2.3 Lightweight cryptography implementation 33

2.4 Configurable hardware cryptography implementation 37

2.5 Encryption using memory elements 40

2.6 Hardware Security . 40

2.7 Conclusion . 43

3 Proposed crypto-accelerator for ultra-low-power IoT 47

3.1 Introduction . 49

3.2 Proposed AES architecture . 50

3.2.1 32-bit datapath optimizations 50

3.2.2 Substitution box (S-box) . 53

3.2.3 Key expansion optimizations 53

3.3 Proposed PRESENT architecture . 56

xv

3.4 Estimation and measurement results of SNACk testchip 57

3.4.1 Configuration and test environment of SNACk 57

3.4.2 Power estimation results . 59

3.4.3 Measured results of Cryptographic Kernel in SNACk testchip 63

3.5 Security Evaluation . 69

3.5.1 Power trace generation using PrimeTime and Post-signoff netlist 69

3.5.2 Test Vector Leakage Assessment evaluation 72

3.5.3 Correlation Power Analysis attacks on estimated traces 73

3.6 Conclusion . 77

4 Using memory as acceleration for data encryption 79

4.1 Introduction . 80

4.2 Computation In-Memory mechanism and SmartMem 82

4.3 Implementation of Advanced Encryption Standard and PRESENT us-

ing Encryption in memory . 87

4.3.1 Advanced Encryption Standard 87

4.3.2 PRESENT . 92

4.4 Conclusion . 95

Conclusion and perspectives 97

Bibliography 101

List of Abbreviations 114

List of Figures 115

List of Tables 118

xvi

Chapter 1

Ultra-Low-Power applications for IoT and

security problems

Security has arisen as one of the key areas that developers of Internet-of-Things ap-

plications are trying to make it better. On the one hand, the advent of IoT has

dramatically enabled miniaturized computing platforms such as implant or wearable

devices, health monitoring, environmental monitoring and the likes due to its charac-

teristics as constrained devices which can operate for a long lifetime using batteries

or even self-harvested energy. On the other hand, the computing capability of these

devices in a pervasively connected environment has also considerably raised the con-

cerns about the misuse of collecting, processing and exchanging of user data. More

precisely, the demand for information security and privacy protection comes integrally

to the daily operations and the integration over the Internet of these new classes of

IoT backed applications. Meanwhile, IoT differs from the existing computer-based

systems or embedded systems in terms of both connectivity and the fact that IoT

needs to be implemented in ultra-low-power and ultra-low-cost devices. These devices

are lightweight devices with limited processing power, small memory footprint and

low power budget. On the contrary, strong cryptography algorithms such as block

ciphers, hash functions, and/or public key cryptography are usually employed for

security functions. However, these firm cryptography algorithms require complicated

computations and high power consumption which diminish the system throughput.

Consequently, performing cryptography algorithms on ultra-low-power devices is set

to be an extremely challenging task.

In addition, IoT ecosystems are evolving with new standards, new security threats

and attacks discovered. Therefore, flexible and configurable solutions for IoT security

are required to adapt to these factors. Software implementations of security functions

have more flexibility than hardware implementations because new standards and

bug fixes can be done by updating the software. However, software implementation

reduces the overall throughput of the system and cause higher power consumption.

1

Current affordable security solutions are focusing on implementing security functions

as hardware accelerator with serial processing to reduce hardware cost and optimize

power consumption. However, they are specific hardware with fixed functionalities

which do not provide the flexibility and configurability.

With the new advancement of memory technologies, In-Memory Computing is

a new technology which can perform logical and arithmetic computations in place

of the memory. It can be used to implement different algorithms including security

primitives. In-Memory Computing can provide more flexible solutions than specific

hardware accelerator with low power consumption. However, because of the serial

operations of the memory, the flexibility has been traded off with the throughput

and power consumption. This new mechanism needs in-deep analysis to prove its

advantages.

The purpose of this chapter is to firstly review various aspects of IoT systems

which lead to the requirement of ultra-low-power features. After that, it analyzes the

security problems in IoT and possible security mechanisms for IoT. Consequently,

it explores the possible solutions for ultra-low-power devices which are based on

the block ciphers and lightweight blocks ciphers. Furthermore, it also addresses the

security challenges in IoT in terms of attack surfaces and standardization which leads

to the requirements of a flexible and configurable design for security. These ideas are

further developed with the proposals of this work in the following chapters.

This chapter begins with Section 1.1 reviewing the organization of IoT systems

and addressing the security problems and application requirements for IoT. It fur-

ther raises the importance of ultra-low-power features for IoT sensor nodes. Section

1.2 embodies various security mechanisms applicable to IoT sensor nodes. Then, it

raises the new constraints of IoT applications which can be provided by lightweight

cryptography especially in terms of hardware cost and power consumption. This sec-

tion additionally compares the complexity of different security primitives which can

be employed for IoT. In Section 1.3, different challenges regarding security for IoT

are discussed. In return, it also analyzes strong security mechanisms which can be

applied to IoT in the future if there is a practical implementation. The chapter ends

with some conclusions and perspectives presented in Section 1.4.

1.1 Introduction to Internet-of-Things applications

and requirements for Ultra-Low-Power features

The Internet-of-Things (IoT) is a new concept of connected objects through the Inter-

net. An object or a thing is a physical thing or a device which has the capabilities of

computation and communication through the global network – the Internet. Because

of the Internet connectivity and computation capability, a thing can capture data,

preprocess them, and then send the results to the cloud through the Internet. In the

cloud, the data can be further processed by artificial intelligence (AI) applications.

2

Figure 1.2: IoT applications and their expected market share (Source: McKinsey
Global Institute (June 2015)).

The success of IoT is based on many enabling technologies. As indicated by Al-

Fuqaha et al. in [Al-Fuqaha2015iot], IoT is the combination of different technologies

including identification technology, sensing technology, communication technology,

computation technology and the software parts such as services and semantics. Iden-

tification technology is used to address and name the object in the network so that

each object can be referred to using a unique identifier. Sensing technology provides

the ability to capture the changes in the environment surrounding objects. Two

most important technologies enabling IoT are communication technology and com-

putation technology. Communication technology enables the seamless integration of

many IoT devices in a small area using wireless technology such as Wi-Fi, Bluetooth

BLE, IEEE 802.11.4, Z-wave, Sigfox and LoRaWan, and so forth. The computa-

tions in IoT Smart Objects rely on processing units such as an embedded processor

or a System-on-Chip (SoC) which does fast processing of the data. Many compu-

tations will be done in the cloud which needs supercomputers with acceleration to

4

do complicated machine learning algorithms or big data applications. Based on the

computation capability, different services which will provide data access for differ-

ent applications. Finally, to provide data for them, the semantics of data should be

defined to provide interoperability among applications.

Figure 1.3: Internet-of-Things landscape.

IoT has opened new areas for application development. Figure 1.3 shows an

example of different applications, platforms and enabling technologies for IoT. For

personal use, IoT can be used in smart homes or personal things such as smart

watches or e-health devices. For industry, IoT brings better monitoring and logistic

capability which will boost the performance and the efficiency in factories. For our

society, IoT with smart cities, smart grid and so on brings a new level of efficiency

and can help to build a sustainable environment. In summary, IoT and Artificial

Intelligence (AI) create a new world of smart things and objects which is expected

to be sold in large quantities in the coming years.

IoT is creating a world of limitless potential, but it is not without challenges.

Standardization appears to be a critical issue when it comes to adoption of IoT in

different industries such as industrial IoT, agriculture IoT or IoT for healthcare, i.e.

which among various enabling technology for IoT to be applied in such fields. This

leads to difficulties in developing interoperable applications. In addition to that,

5

different applications and services might have different requirements and interfaces;

making it strenuous to create an interoperable system. What is more, with the in-

tegration of thousands of devices, the bandwidth will become an evident bottleneck

for IoT. This leads to the development of Fog/Edge computing which will implement

the preprocessing tasks at the edge devices. The implementation of heavy computa-

tion at the edge or device levels will trigger a problem for power consumption. IoT

devices supposed to be low-cost devices with the battery-based power supply or even

power harvesting. Therefore, the optimization for low power of IoT systems will be

important for the future IoT device. Finally, IoT is posing serious issues of security

and privacy as highlighted by the current surveys on IoT such as [Atzori2010tio],

[Yang2017aso], [Lin2017aso], [Al-Fuqaha2015iot]. The Internet is exposed to many

critical bugs, even with the state-of-the-art security systems. IoT is built on the In-

ternet infrastructure, hence, inherits all the implicit issues of the Internet including

security challenges. Furthermore, many IoT devices are supposed to be constrained

low-cost devices with adequate processing power, small memory footprint, and even

limited power/energy budget; for example, power-harvesting devices and battery-

based devices. As a result, dealing with security problems for these constraint devices

is even more challenging.

In the light of these conditions, this study focuses on power/energy optimization

for security components for IoT devices/sensor nodes. They are low-cost constrained

devices with small memory footprint with reduced computation capabilities to min-

imize the cost and power consumption. Figure 1.4 shows the energy per bit of the

most important components of such devices including communication, computation

and security. It is clear from Figure 1.4 that security is an additional feature, but it

consumes a large amount of energy. Therefore, optimization for power and energy

consumption of IoT devices is becoming vital for future IoT applications. It has

been shown that for constrained IoT devices, security functions on pure software are

not efficient in terms of throughput and power consumption [Zhang2018rar]. Data

encryption/decryption using software not only reduces the throughput of the ap-

plication but also occupies the CPU runtime. This leads to an increase in power

consumption and energy consumption of devices. Eventually, most of the works on

the optimization of security primitives for low power have been focusing on hardware

architectures. In addition, power consumption optimization for security algorithms

on hardware is a challenging problem to such extent that the security algorithms

especially the encryption and decryption are pseudorandom algorithms. The ran-

domness makes it hard to define a clear strategy for optimizing power consumption.

Furthermore, optimization for power consumption might cause other security issues,

for example, the leakage of the credential information through the implementation.

Side-channel attack techniques such as power analysis attacks [Kocher1999dpa] use

power consumption as an attack vector. Consequently, power consumption optimiza-

tion should consider this issue. This work also seeks for a new method to increase

6

the security feature and to reduce the power consumption of the system. Part of

the work experiments with a new type of memory which is capable of performing

logical operations. This can be a new approach to implement security primitives in

the future.

Figure 1.4: Energy per bit of different components in IoT (Source: [Yang2017hdf]).

In summary, IoT brings countless benefits not only to individual and industrial

uses but also for the society at large. On the other hand, it also presents unique

challenges, among which the ultra-low power capability and security will be two

areas of concern in this work. Ultra-low power capability will help to deploy IoT

applications on a larger scale with battery-based and power-harvesting devices while

security will ensure the critical information not to be exposed to attackers. It should

also be emphasized that for many applications, security is an important additional

feature, but it requires a large amount of power consumption. In addition, IoT

standards and proposals have to evolve to adapt to new security requirements and

to cope with new threats. Therefore, a flexible and configurable security solution

should be taken into account. For this reason, the security functions for ultra-low

power IoT applications with flexibility and configurability are worth considering and

will be reviewed in the next section.

1.2 Security mechanisms and lightweight cryptogra-

phy

Attacks on IoT enabled devices and recent hardware attacks lately have brought into

play the concerns about the security of IoT applications. As proof, Mirai malware

in [Sinanovic2017aom] has affected numerous weak-password IoT cameras. They are

later used as a botnet for Distributed Denial of Service (DDoS) attacks on Domain

Name Server (DNS) provider Dyn. Mirai malware reveals that weak-security IoT

devices can be used not only to collect data but also to mount attacks on another

system. Mirai malware also demonstrates new attack vectors. Instead of focusing on

7

the computers or their users, in the IoT era, hackers might focus on the devices and

use them as a mean to attack other parts in the IoT system. In addition, in terms

of hardware security, the recent findings of Spectre [Kocher2018sae] and Meltdown

[Lipp2018m], which exploited the security hole in the current computer architectures

and affected billions of computers and devices, again highlighted the importance of

designs for security. A security hole in hardware architectures will create a larger

impact because hardware components especially integrated IP cores in systems-on-

chip are hard to fix and replace.

A strong-security computer-based system might require security features, for in-

cluding confidentiality, integrity, availability, accountability, auditability, trustworthi-

ness, non-repudiation and privacy as described in Table 1.1. Confidentiality ensures

the secrecy of the data while integrity enforces the non-modification of the data.

Availability ensures that the system and service are available when requested by

an authorized user. Accountability addresses the users’ responsibility for their ac-

tions, whereas auditability provides the capability to persistently monitor all actions.

Trustworthiness facilitates an ability to verify, identify and establish trust in a third

party’s environment. Last but not least, privacy puts the system in place to comply

with the privacy policies, at the same time, enables individuals to control their per-

sonal information. Fulfilling all these security requirements has already been a great

challenge, even for a computer-based system.

For computer-based systems and their interconnected networks, the above se-

curity requirement can be ensured by using the standardized security mechanisms

and recommendations as suggested by the Internet Engineering Task Force (IETF)

[Bellovin2003smi] as below.

1. One-Time Password for authentication and identification.

2. HMAC – a preferred shared-secret authentication technique.

3. IPsec – a generic IP-layer encryption and authentication protocol.

4. TLS – an encrypted, authenticated channel that runs on top of TCP.

5. SASL – a framework for negotiating an authentication and encryption mecha-

nism to be used over a TCP stream.

6. GSS-API – a framework for applications to use when they require authentica-

tion, integrity, and/or confidentiality.

7. DNSSEC – digitally signs DNS records.

8. Digital Signatures – one of the strongest forms of challenge/response authenti-

cation using public key cryptography.

9. OpenPGP and S/MIME – two different secure mail protocols.

8

10. Firewalls and Topology: Firewalls are a topological defense mechanism.

11. Kerberos – a mechanism for two entities to authenticate each other and ex-

change keying material.

12. SSH – a secure connection between client and server.

Although the aforementioned mechanisms are widely used in the current Internet ap-

plications, they require complicated software and hardware implementations which

are not suitable for constrained IoT devices. Constrained IoT devices may provide

only adequate supports for requirements such as confidentiality, integrity, identifi-

cation and authentication. Other requirements could make constrained IoT devices

more usable, but they are not mandatory.

Table 1.1: Common security requirements for Internet-based System

Requirement Definition

Confidentiality Ensuring that only authorized users access
the information

Integrity Ensuring that data is not modified

Availability Ensuring that all system services are avail-
able when requested by an authorized user

Accountability An ability of a system to hold users’ respon-
sibility for their actions

Auditability An ability of a system to persistently monitor
all actions

Trustworthiness An ability of a system to verify identify and
establish trust in a third party

Non-repudiation An ability of a system to confirm
occurrence/non-occurrence of an action

Privacy Ensuring that the system obeys privacy poli-
cies and enabling individuals to control their
personal information

Constrained IoT devices need special consideration for security not only because

of the cost but also the power/energy consumption as well as the time to market

it will incur. Instead of meeting all the security requirements as described in Table

1.1, they might have only a subset of lightweight security mechanisms which provides

trade-offs among cost, power consumption and energy consumption. The lightweight

security requirements and the associated security tools for IoT are described in Table

1.2. IoT devices might require the authentication and identification of the IoT node

9

so that only authenticated devices can join the network. IoT nodes may contain

secret data; therefore, they need data protection to protect their data from unautho-

rized access. IoT data will be analyzed to make a decision to react to the changes;

therefore, they should not be modified. This feature is protected by data and device

integrity. Furthermore, IoT devices may contain wireless communication, which can

be easily captured through the air by the attackers. This brings on the importance

of protecting the communication channel so that the data will remain secret. In ad-

dition, the software and firmware running on IoT devices should be protected from

reverse engineering and unintended modification. Finally, the availability of IoT de-

vices should be ensured so that they can run endlessly. These requirements can be

met by using current security tools such as data encryption, digital signatures, cryp-

tographic hash functions, and other security protocols. In addition, they are built

based on strong secure primitives which are cryptography functions including sym-

metric cryptography, asymmetric cryptography, cryptographic hash functions and so

son.

Table 1.2: Security requirements for constrained IoT devices

Features Description Security tools

Authentication and
identification of the
IoT nodes

Ensuring the IoT node is
not the unwanted one

Digital Signatures
Cryptographic Hash Function
Physical Unclonable Function

Data protection Protecting the IoT data
from unauthorized par-
ties

Data Encryption

Data/device in-
tegrity

Protecting the IoT data
and devices from un-
wanted modification

Cryptographic Hash Function

Communication
protection

Creating a secure
communication chan-
nel among IoT de-
vices/sensor networks

Secure protocols:
TLS/SSL
DTLS
IPSec
Data encryption

Firmware and/or
Software protection

Do not allow unautho-
rized modification of the
firmware or software

Firmware/software encryption
Digital signature

Device/data avail-
ability

Preventing the IoT de-
vices from DoS attacks

DoS detection and prevention

Currently, available lightweight cryptographic primitives can be considered so-

lutions for existing security problems on IoT constrained devices. As a matter of

10

fact, devices and protocols with proper usage of identification, authentication and

data encryption will reduce the risk of exposing secret or personal data to attackers.

These cryptographic primitives contain two main categories: asymmetric cryptogra-

phy (or public-key cryptography) and symmetric cryptography. Nonetheless, current

asymmetric cryptography has not been yet suitable for constrained devices such as

constrained IoT devices because it uses computationally intensive algorithms such as

RSA [Rivest1978amf] or Elliptic Curve Cryptography (ECC) [Koblitz1978ecc]; and

consequently, it needs complex calculations, large memories to store the keys, and

high power consumption. Table 1.3 illustrates the security levels of symmetric cryp-

tography and its equivalent asymmetric cryptography. As obviously seen, asymmetric

cryptography requires not only more processing power but also more memory and

storage than symmetric cryptography. In addition, IoT applications require multi-

ple security mechanisms such as identification, authentication and data encryption.

Asymmetric cryptography is more flexible in the application point of view, but it

takes more processing power, more data storage and much more power consumption

even when the cryptography modules are implemented in hardware.

Table 1.3: Security level recommended by ECRYPT-II [ECRYPT-II]

L
e

v
e

l

Protection

Symmetric
cryptography

Asymmetric cryptography

S
y
m

m
e

tric

c
ip

h
e

r (k
e

y

s
iz

e
 in

 b
its

)

H
a

s
h

F

u
n

c
tio

n
s
 (k

e
y

s
iz

e
 in

 b
its

)

F
a

c
to

r
M

o
d

u
lu

s
 (b

it)

Discrete
Logarithm

E
llip

tic
 c

u
rv

e

(k
e

y
 s

iz
e

 in

b
its

)

Key
(bits)

Group
(bits)

1
Attacks in "real-time" by individuals; only acceptable for

authentication tag size
32 - - - - -

2
Very short-term protection against small organizations;

should not be used for confidentiality in new systems
64 128 816 128 816 128

3
Short-term protection against medium organizations,

medium-term protection against small organizations
72 144 1008 144 1008 144

4
Very short-term protection against agencies, long-term

protection against small organizations
80 160 1248 160 1248 160

5 Legacy standard level 96 192 1776 192 1776 192

6 Medium-term protection 112 224 2432 224 2432 224

7 Long-term protection 128 256 3248 256 3248 256

8 "Foreseeable future" 256 512 15424 512 15424 512

The asymmetric cryptography system or the public-key cryptography system uses

a pair of keys as described in Figure 1.5(b): a public key for encrypting the plaintext

and a private key to decrypt the ciphertext. In contrast, the symmetric cryptography

system uses only one key on both sides as presented in Figure 1.5(a). This shared

11

Encrypt Decrypt

Key Key

(a) Symmetric cryptography

Sender

plaintext plaintextciphertext

Receiver

Shared Key

Encrypt Decrypt

Key
Private Key

(b) Asymmetric cryptography

Sender

plaintext plaintextciphertext

Receiver

Public Key

Figure 1.5: Symmetric cryptography scheme and asymmetric cryptography scheme.

key must be known in advance to do the communication. The public key can be

distributed to everyone while the private key is known to only the owner. In a

secure system using asymmetric cryptography, the sender will use the public key

to encrypt the message, while only the owner can decrypt the encrypted one with

his private key. Asymmetric cryptography is often based on hard problems such as

factorization of big prime numbers or the elliptic curves. However, to keep the system

secure, asymmetric cryptography often uses big numbers with the size of thousands

of bits. Asymmetric cryptography is more flexible because anyone taking part in

the communication can have the public key of the receiver however only the receiver

can decrypt the message. By doing this, the sender and the receiver can verify the

identity of each other. Consequently, asymmetric cryptography is widely used for

key distribution and digital signature. It is also used for high-level security protocols

such as Transport Layer Security (TLS), Datagram Transport Layer Security (DTLS),

Secure Sockets Layer (SSL), and Pretty Good Privacy (PGP) and so on.

In a practical system, both asymmetric cryptography and symmetric cryptogra-

phy are used. Asymmetric cryptography provides high-level protocols such as key

exchange, key distribution and key update while symmetric cryptography is used as

the main data encryption methods. The drawback of the systems which use only

symmetric cryptography is that the shared secret key must be known in advance.

After that, application key exchange, key distribution and key update can be im-

plemented based on the shared secret key. The shared secret key can also be used

as a method for authentication. This shared key can be programmed using a secure

12

Non-Volatile Memory (NVM) at the time of application development. Compared to

asymmetric cryptography, symmetric cryptography is used more often in practical

systems because of its high throughput.

On the other hand, symmetric cryptography including block cipher and stream

cipher is adapted to data encryption because of its fast operations (mostly XORs and

permutations). Between two types of symmetric cryptography algorithms, stream

ciphers are capable of generating the encrypted data stream very fast, but they

are limited to only stream data encryption. Notwithstanding, block ciphers can be

configured for various security functions using the operation modes to be used as a

stream cipher, a block cipher or a mechanism for authentication. It is more flexible

for applications to use block ciphers for different security purposes. Among block

cipher algorithms, Advanced Encryption Standard (AES) [FIPS-197] is considered

a well-studied algorithm which is widely used in the current standards not only for

IoT but also other applications such as network protocols, data encryption, storage

encryption, etc.

New block cipher algorithms which are lightweight in terms of hardware or soft-

ware implementation and memory footprints have emerged recently, but they have

come up with reduced security levels such as PRESENT [Bogdanov2007pau]. They,

in fact, have small hardware implementation area but use more encryption rounds and

smaller block sizes leading to lower throughput. More importantly, these lightweight

algorithms are not adopted in the new IoT proposals yet due to the shortage of their

studies in security and protocols. Thus, AES is still selected as the main primitive

for security mechanism in the emerging proposals targeting IoT applications, for ex-

ample, IEEE802.15.4 [LRWPAN], LoraWan [LoRaWan], Zigbee [Zigbee] and in other

Internet standards.

The innovation of new lightweight cryptography algorithms [ISO-29192-2] comes

from new applications which have limited power budget such as RFID applications

[ISO-29167-1, NIST-SP-800-98]. RFID cards do not have their power supply. The en-

ergy is harvested through the reader’s electromagnetic waves. The harvested power

supply is limited while the conventional cryptography algorithms need large area

footprint and power consumption. This leads to a new class of cryptography al-

gorithms to support these devices. Figure 1.6 shows the differences between two

types of cryptography algorithms. The traditional algorithms such as AES focus on

the security feature which has high levels of security; while lightweight cryptogra-

phy aims attention at the effectiveness of the algorithms not only in security feature

but also in terms of performance, power budget, and throughput and so on. Cur-

rent lightweight algorithms concentrate on reducing power consumption by using

the hardware structure such as employing wire permutation. The security feature

in lightweight cryptography is traded off with the power consumption and the cost

of the area of the implementation in hardware; while the traditional algorithms are

optimized for software implementation.

13

Traditional Algorithms Lightweight algorithms

Focusing on security Focusing on minimizing area

Optimizations for software implementations

(permutations on bytes or words, less rounds)

Optimizations for HW implementations

(permutations on bits, more rounds)

High levels of security Trade-offs between security and area

Substitution
Layer

Permutation
LayerPlaintext

Round Function
Key

Key update

A
d
d
R

o
u
n
d
K

e
y

S
u
b
B

y
te

s

S
h
iftR

o
w

s

M
ix

C
o
lu

m
n
s

A
d
d
R

o
u
n
d
K

e
y

S
u
b
B

y
te

s

S
h
iftR

o
w

s

E
n
c
ry

p
te

d
 D

a
ta

K
e
y

E
x
p
a
n
s
io

n

P
la

in
 T

e
x
t

K
e
y

AES algorithms PRESENT lightweight algorithms

Figure 1.6: Comparison between traditional and lightweight block cipher algorithms.

Overall, a variety of security mechanisms for the Internet and applications could

be implemented to ensure a certain level of security. However, they are considered

to be more suitable for software on the computer. A new series of problems aris-

ing urges the implementation of security for constrained devices with limited power

budgets such as RFID tags or power-harvesting devices. This leads to a new class

of lightweight cryptography algorithms with small area footprint, ultra-low power

consumption, reduced security levels and lower throughput. Finding a good trade-off

among security, throughput, area, and power and energy consumption, therefore, will

be a key issue for future IoT devices.

1.3 Security challenges in IoT

The first security problem lies in the scale and scope of IoT deployment. As a large

variety of devices will be integrated, with varying security supporting mechanisms

and communication/computation capabilities. As a result, a weakness in one of the

devices in this system can reveal the secrecy of the whole system. Furthermore,

the constrained IoT devices with limited computation capability and security mech-

anisms would become the weak points in the system. These devices are becoming

a new attack surface in the IoT era. Figure 1.7 illustrates the number of devices

in different layers in IoT systems and their corresponding security levels. In the

clouds and the Internet backbone, strong security mechanisms can be applied with

well-defined security features and threat models. However, at perception layers, for

the constrained devices, lightweight security mechanisms are employed to reduce the

cost and power consumption. With millions of devices involved, in the case of some

devices containing weak security, the secrecy of the system could be vulnerable to

14

Figure 1.8: IoT security threats and possible countermeasures [Mosenia2017acs].

throughput and usability. Additionally, a high level of security on embedded devices

will raise the cost of the system. Moreover, security evaluation with security evalu-

ation lab’s certificate is a long process which will add not only the cost but also the

time-to-market to the product.

Apart from that, in line with the development of quantum computers and new

computation architectures, the current cryptographic schemes are likely to be broken

in the future. For example, the current asymmetric cryptography algorithms such as

RSA are predicted to be collapsed easily by quantum computers. For that reason,

new cryptographic primitives need to be developed to mitigate the new attacks from

quantum computers. Some solutions could be practiced including lattice cryptogra-

phy and homomorphic encryption; however, they are not as efficient in the current

computer system. These new cryptographic schemes are even more costly and con-

sume a large amount of power even when running at low throughput. They are not

suitable for embedded system and especially constrained IoT devices. Despite the

impractical implementations of lattice cryptography and homomorphic encryption at

the moment, they open many new interesting application areas. For example, with

homomorphic encryption, the data from IoT devices can be encrypted and processed

in the encrypted domain. The data do not need to be decrypted in the server or the

cloud. This is perfectly fit in a wide range of Internet applications including IoT.

Figure 1.9 shows mechanisms which can be used with homomorphic encryption to

provide better security and privacy for IoT systems. With homomorphic encryption,

computers can work on encrypted data to serve encrypted requests from users. All

the computations are in the encrypted domain; therefore, the providers do not know

16

the secrecy of the data and the request. This would be a far future of security and

privacy. At the moment, these concepts are too costly for current computer systems

and it is hard to apply to IoT constrained devices.

Encrypted data, outsourced

computation

Requests processed on

encrypted data

Private requests on public

data

Figure 1.9: Homomorphic encryption and its applications to IoT [Aguilar2013rai].

The implementation of security functions in IoT also hinders in standardization.

Different enabling technologies for IoT have different security mechanisms based

on their needs. This leads to the problem of supporting multiple security mecha-

nisms in a system with different components. For constrained IoT devices, there are

lightweight cryptography algorithms and mechanisms which are already standard-

ized; however, they are not used in the recent IoT proposals. In the recent proposals,

AES is still used as the main security mechanisms for data encryption, data integrity

and network protections leading to the demand for optimization of AES for cost,

performance and power consumption for constrained IoT devices. Table 1.4 shows

some recent proposals for IoT systems in which AES is widely used as the main se-

curity mechanisms. This is because AES is proved to be secure by a large number of

researches on its security features.

New ideas have been proposed in the search for new mechanisms and more efficient

computation for the security of IoT constrained devices, for instance, approximate

Computing [Gao2017acf] or In-Memory Computing [Wang2016dad] for data encryp-

tion. However, further studies are needed to assess the effectiveness of these new

mechanisms. In this work, the encryption using In-Memory Computing will be ex-

plored in terms of power consumption and security features. Two algorithms: AES

– a traditional cryptography algorithm, and PRESENT – a standardized lightweight

one will be investigated using the new computing mechanisms. PRESENT was cho-

sen because it is designed for constrained devices which are expected to reduce the

hardware cost and power consumption with a reduced security level, while AES is

17

Table 1.4: Some proposals for IoT with security features

Sigfox LoRaWAN Thread AllJoyn Weightless

Startups Sigfox IBM & Semtech Nest Labs

(Google)

Qualcom NWave

Type of License N/A Public spec/

patented radio

IF (Semtech)

Free for

members?

Open source

license

Open standard

Type of

specification

Low-power,

wide range

modem (N/A)

MAC/PHY Network

protocol

targeting

connected

home

Wireless

Application

protocol and

framework

MAC/PHY (N/A)

Type of

network

Wide range

LPWAN

Wide range

LPWAN

IEEE 802.15.4

6LoWPAN

Zigbee

bluetooth 4.0

Wireless LAN

Bluetooth

Wide range

LPWAN

Reference

model

N/A LoRa WAN in C

(IBM LRSC)

N/A Source code

release

N/A

Demos In Service LoRa in C N/A In production N/A

Security AES 128 AES 128 +

MIC

AES 128 CCM

+ ECC

Full SW

security stack

AES-128/256

a traditional algorithm with high-level of security. Pushing the encryption into the

memory is expected to mitigate the risk of moving unencrypted data through the sys-

tem bus as well as the risk of unauthorized access from other IP cores in the system.

Furthermore, these memories with computing capability can be easily integrated into

sensors even without an embedded processor.

Security implementation should be addressed carefully with good trade-offs among

hardware cost, system throughput and power/energy consumption. Figure 1.10 de-

scribes the trade-offs among different aspects of the hardware implementation of the

cryptography algorithms. At the algorithmic level, security is related to block sizes,

key sizes and the number of rounds of cryptography algorithms. Algorithms, which

have large block sizes, key sizes and numbers of rounds, usually provide high levels of

security. However, large block sizes and key sizes require many registers to store them

and the intermediate results which, in turn, require more hardware area and power

consumption. In addition, a large number of rounds tends to reduce the throughput

of algorithms and increase energy consumption as they use more loops to output

the encrypted messages. Conventionally, cryptography algorithms are designed for

security with software implementation to run in computer systems, however, in or-

der to optimize throughput and power consumption for embedded systems, they are

now integrated into a System-on-Chip system which is implemented in hardware.

Along with security, the two new aspects, the total occupied area of the hardware

implementation and its throughput must be considered. It will not be easy to opti-

mize these aspects with new requirements of constrained devices, i.e. limited power

18

1.4 Conclusion

All things considered, the Internet-of-things presents enormous benefits to our daily

lives and society, but it also encounters major concerns about security. Security prob-

lems can be solved using standardized security mechanisms such as block ciphers,

hash functions, RSA or elliptic curves; however, these mechanisms are not suitable

for highly constrained IoT devices/sensor nodes with the ultra-low-power feature.

Ultra-low-power devices using battery power supplies or energy harvesting enables

new types of applications such as implant or wearable devices, health monitoring, en-

vironment monitoring with extended operational time. For these constrained devices,

there are trade-offs among security level, hardware cost and throughput. In general,

a high-security level often requires costly hardware and high power consumption.

The feasible solution of security for ultra-low-power devices is to use block ciphers

or lightweight block ciphers to implement various security task such as data encryp-

tion, authentication and identification using pre-shared keys and so on. The recent

proposals for IoT use Advanced Encryption Standard (AES) as the main security

primitive for the system such as LoRaWan, Sigfox, Z-wave and so forth. They are

often implemented in hardware accelerators to reduce the power consumption and in-

crease the system throughput because software implementation cannot provide high

throughput and consume the power. However, software implementations of security

functions provide flexibility and configurability because new mechanisms can be im-

plemented into the devices using the software update. On the other hand, hardware

accelerators have fixed designs, and they cannot adapt to new standards and mitigate

new attacks.

Furthermore, different applications might have different security requirements

with different power budgets. Therefore, a configurable solution will adapt better

to a wide range of applications. Conventional block ciphers such as AES can provide

high levels of security while lightweight block ciphers such as PRESENT has smaller

hardware area and lower power consumption. The combination of both types of block

ciphers can help IoT applications lengthen their operations by selecting high levels

of security when there is more stable supply and when in the low power mode, they

can use the lightweight one.

In addition, with the new advancement of memory technologies, In-Memory Com-

puting can be used to implement various security primitives in place without the

requirement of moving the data out of the memory. This not only provides high

flexibility and high configurability but also reduces the risks of exposing secret data

through the system bus. However, this new mechanism needs thorough investigations

and evaluations.

With a view to improve the current situation, this work first and foremost con-

centrates on the power/energy consumption optimization of block ciphers which can

be used to implement different security primitives to secure the data and communi-

cation in IoT systems. The power consumption of both conventional and lightweight

20

algorithms will be carefully evaluated. Then, the work proposes a low-power im-

plementation of two standardized algorithms which can be used for ultra-low-power

IoT devices. The first one, Advanced Encryption Standard (AES), is a conventional

algorithm widely used to secure the Internet applications with high levels of security.

The other is PRESENT, a new lightweight algorithm which uses hardware constructs

to reduce the hardware area and the power consumption. On the other hand, IoT de-

vices might have different security requirement depending on the applications and the

available power/energy budget. Therefore, in the next step, this work combines the

two modules, AES and PRESENT, into a crypto-accelerator with various key sizes

and block sizes. IoT applications can choose the high secure algorithm with more

power consumption or in the critical condition the lightweight one to lengthen their

operations. Not only optimizing the power consumption, but the security evaluation

using the current state-of-the-art methods are also applied to the proposed design.

Two notable evaluation methods are employed in this work including Correlation

Power Analysis (CPA) and Test Vector Leakage Assessment (TVLA). TVLA can ad-

dress different information leakage in the proposed designs while CPA can be used to

mount the key recovery attack. Last but not least, from the lesson of various security

breaches because of the fixed hardware security module, this work finally explores the

configurability, the flexibility and the feasibility of different block cipher algorithms

using In-Memory Computing. This work puts forward the implementation of two

algorithms, which are previously designed in the aforementioned crypto-accelerator,

using the In-Memory Computing technology to explore the trade-offs of the flexibility

and the configurability along with throughput and power/energy consumption.

21

Chapter 2

State-of-the-art of security hardware in IoT

Simple cryptography algorithms have been used for a long time to protect private and

confidential information such as military or diplomatic communications. For exam-

ple, Enigma Machine used by German Army during the World War II was equipped

with an electro-mechanical rotary cipher which was said to be very hard to break by

humans at that time because of an extremely large number of combinations. However,

as a result of the development of computer machines, it was then broken by a machine

designed by Alan Turing. With the help of the machine designed by Alan Turing,

British military was able to read the encrypted messages transmitted by the German.

This shows the danger of transmitting secret information in a public environment.

In the era of the connected world, information is transmitted over the Internet and

cryptography is becoming increasingly important to protect the information secrecy

and integrity. Nevertheless, multiple vulnerabilities have been discovered in ciphers

such as Data Encryption Standards (DES) [Biham1990dcd, Matsui1994lcm] or RC4

[Mantin2005pad] which were used in the GSM (Global System for Mobile commu-

nication) network. Therefore, to reduce the risks of using weak algorithms, new

applications should use well-studied and standardized algorithms. This is why Ad-

vanced Encryption Standard (AES) is chosen as the main security primitive in the

recent IoT proposals.

However, conventional algorithms with strong security levels such as AES are

often designed for software implementation with optimization for software. They

have been implemented in hardware to increase performance, and they need to be

optimized for hardware cost and power consumption, but they have larger area and

higher power consumption compared with the new lightweight cryptography algo-

rithms which are designed specifically for hardware implementation. Lightweight

algorithms such as PRESENT were designed with the trade-offs among hardware

cost, power consumption and security. They are more efficient in hardware than in

software and sometimes with reduced security levels to reduce the hardware cost and

area power consumption.

23

To optimize the security functions for IoT, block ciphers and lightweight block ci-

phers are often implemented in hardware to reduce the cost and power consumption.

However, these optimizations lead to the fixed hardware structures which cannot

adapt to new standards and mitigate new attacks. To improve flexibility, many algo-

rithms can be combined into a configurable architecture. Different optimizations can

be applied to reduce the hardware cost and power consumption. However, flexibility

and configurability still have to trade off for high power consumption.

To push one step further, In-Memory Computing and Near-Memory Computing

can be deployed to improve the flexibility and configurability of block-cipher imple-

mentations. In-Memory Computing provides logical operations and storage while

Near-Memory Computing puts the operations closer to the memory. Therefore, the

power consumption caused by the communication overheads of transferring data from

the memory to IP cores or processing elements the communication overheads can be

saved. However, because of the serial operations of the memory, it often requires a

large number of clock cycles than in the case of fixed hardware.

This chapter aims to review the recent works on designs of cryptography algo-

rithms and their hardware implementations for constrained devices. It discusses vari-

ous techniques to implement the block ciphers in hardware for performance, area and

power consumption. It also summarizes various optimization techniques using emerg-

ing technologies such as In-Memory Computing, Near-Memory Computing, Domain

Wall Nano Wires, and so on. Importantly, it summaries the current state-of-the-art

of hardware implementations of various cryptography algorithms.

Based on the above analyses, this work then proposes its own crypto-accelerator

for ultra-low-power consumption which will be discussed in details in Chapter 3. How-

ever, the crypto-accelerator has limited configurable options and flexibility. There-

fore, flexibility and configurability are further explored in Chapter 4 using In-Memory

Computing. The same algorithms in Chapter 3 are demonstrated in Chapter 4 to ex-

plore the trade-offs among flexibility, configurability, throughput and power/energy

consumption.

This chapter is organized as follows. Firstly, the hardware architectures of sym-

metric cryptography algorithms, especially the block ciphers and the power con-

sumption optimizations for CMOS technologies are presented in Section 2.1. Both

conventional algorithms and new lightweight algorithms are discussed. After that, the

current state-of-the-art of hardware implementations of AES and various lightweight

cryptography algorithms, including power optimization is shown in Section 2.2 and

Section 2.3, respectively. This chapter then discusses existing reconfigurable hardware

implementations of cryptography algorithms in Section 2.4. It includes the previous

works on In-Memory Computing and Near-Memory Computing. Section 2.5 presents

various accelerations using memory elements and the trade-offs between flexibility

and configurability with throughput and power consumption. The hardware secu-

rity including the hardware evaluation methods is described in Section 2.6. Finally,

24

Section 2.7 presents some conclusions and perspectives on the state-of-the-art.

2.1 Introduction to symmetric cryptography hardware

architecture and its power consumption optimiza-

tions

This section firstly assesses the current designs of various symmetric cryptography

algorithms and their hardware architectures. There is no specific method to design a

highly secure block cipher. However, there are some agreed secure primitives and/or

operations which have been used to design most of the symmetric cryptography

algorithms. After that, the optimization techniques which can be applied to the

hardware design of these algorithms will be discussed.

2.1.1 Symmetric cryptography hardware architecture

Symmetric cryptography algorithms are cipher algorithms which require both the

sender and the receiver to share the same key. The sender will use the key to encrypt

the data while the receiver will use it to decrypt the encrypted data. Symmetric

cryptography contains block ciphers and stream ciphers. Block ciphers work on fixed

width bit vectors. For example, Data Encryption Standard (DES) has the block size

of 56 bits, while Advanced Encryption Standard (AES) has the block size of 128 bits.

The encryption is carried out by transforming the data blocks using permutations and

some linear/non-linear transformations. On the other hand, stream ciphers generate

a pseudo-random bit stream. The encryption is performed by XORing the plaintext

with the generated pseudo-random bit stream. The general structure of a stream

cipher is presented in Figure 2.1. To keep the algorithm secure, stream ciphers often

require an initialization vector (IV) and an initialization process before generating

the pseudo-random key stream. The advantage of stream ciphers is that they can

generate a random value very fast. However, stream ciphers are only limited to

stream data and cannot be used in other modes of operations.

Intialization
Pseudo-Random

Number Generator

Plaintext

Key

Init Vector Ciphertext

Figure 2.1: Stream cipher structure.

Block ciphers work on fixed-size blocks of data and apply different transformations

including linear and non-linear ones to diffuse the input data. Block ciphers and hash

25

function define round functions which are repeated with different keys to keep it

secure. Figure 2.2 shows the general structure of block ciphers. Each round contains

non-linear layers and linear permutation. The non-linear substitution layers are often

constructed using a look-up table (S-Box). The permutation layers are often the

permutations of bytes or bits. It may contain other linear arithmetic operations.

The speed of block ciphers is often decided by the speed of its primitive operation

such as the substitution boxes (S-Boxes), the linear operations and the number of

rounds. The more rounds are executed, the more secure the algorithms are. However,

the performance will be degraded. In general, block ciphers are slower in speed when

compared with stream ciphers. However, block ciphers can be used for different

purposes using the operation modes such as Message Authentication Code (MAC)

– a lightweight version of hash functions, or as a stream cipher in counter mode

or Cipher Block Chaining (CBC) mode. Figure 2.3 shows the possible modes of

operation of block ciphers to be used as a stream cipher or a message authentication

code. These configurations are adapted in a lightweight protocol such as Counter

with CBC-MAC (CCM) used in LoRaWan [LoRaWan].

Non-Linear
Substitution

Linear
Permutation

Plaintext
Round Function

Key Key update

CiphertextBlock size

/

Key size

/

/
Block size

Block size

/

Key size

/

Figure 2.2: Block cipher structure.

Block cipher
Key

Message

fixed-size tag

Block

cipher

Plaintext

Key

Counter
Ciphertext

(a) Block cipher in counter mode (similar to stream cipher)

(b) Block cipher in feedback mode (similar to hash function)

Figure 2.3: Block cipher in different operation modes.

26

When personal computers became popular, block cipher algorithms were mostly

designed for software implementation on computers such as Advanced Encryption

Standard which was designed to be efficiently executed on modern computers. How-

ever, the rapid development of many constrained systems such as smart cards or the

power harvesting devices makes it necessary to develop a new class of lightweight

block ciphers. The design of lightweight block ciphers is similar to the traditional

algorithms, but with the optimization for hardware implementation. For example, to

reduce the hardware cost, the lightweight block ciphers often reduce the block size

and the key size. This reduces the security level but more importantly, it reduces

the hardware size and power consumption. The permutation layers use the hardware

permutation which is the permutation of wire in the circuit. Instead of large S-Boxes

in traditional algorithms, lightweight algorithms use 4-bit S-Boxes which can easily

be represented in combinational logic or use a small look-up table. New lightweight

block ciphers are friendly to hardware implementation, but they are not efficient in

software because they use many bit-level operations which take more time to complete

when implemented in software.

Among a large number of block ciphers, in this work, two standardized algorithms

are selected for evaluation. The first one is Advanced Encryption Standard (AES)

which was designed for efficient software implementation on personal computers.

The other is PRESENT – a recent lightweight cryptography algorithm targeting

constrained devices such as smart cards and embedded systems.

In summary, new advances in cryptography enable a new class of cryptography for

constrained devices which is called lightweight cryptography. Most recent lightweight

cryptography algorithms focus on optimizing the implementation area (hardware

cost) and power consumption, while the throughput is degraded. Despite no specific

guidance according to the recently-announced algorithms, lightweight cryptography

has been designed with lightweight primitives such as small S-Boxes, reduced key size

and reduced block size. Lightweight cryptography provides decent security level and

might be broken in the future. On the other hand, AES is still a strong algorithm and

recommended for many applications. It provides from medium to long-term security

level. However, its complexity makes it not suitable for constrained devices because

of hardware cost and especially the high power and energy consumption.

2.1.2 Power consumption optimizations for CMOS technologies

CMOS technologies replaced previous technologies such as bipolar ones because they

can provide faster switching rates with lower power consumption. The current in-

tegrated circuits are mostly fabricated in CMOS technologies. This section presents

the power consumption characteristics for CMOS technologies which will be used to

understand more clearly the different power consumption optimization techniques in

the following sections.

27

In a CMOS circuit, total power consumption is the sum of dynamic power con-

sumption Pdynamic and static power consumption Pstatic as in Equation 2.1. Dynamic

power consumption is caused by charging and discharging load capacitances when

gates switch or by the short circuit current when both NMOS and PMOS are in the

open state (Equation 2.2). Switching power consumption is related to load capac-

itance (C), supply voltage (V DD) and operating frequency (f) of the circuit as in

Equation 2.3. On the other hand, static power consumption is caused by the sub-

threshold leakage through the OFF transistor; gate leakage through gate dielectric;

junction leakage through source/drain diffusion; and contention current in ratioed

circuits (Equation 2.4).

Ptotal = Pdynamic + Pstatic (2.1)

Pdynamic = Pswitching + Pshort−circuit (2.2)

Pswitching = α× C × V 2
V DD × f (2.3)

Pstatic = (Isubthreshold + Igate + Ijunction + Icontention)× VV DD (2.4)

Power consumption can also be divided into different categories. Active power is

the power consumption of the circuit when it does something helpful. At the idle

time, the circuit can be put into the standby mode to reduce its power consumption.

This is called the standby power. When in the standby mode for a long time, the

circuit can also be switched into the sleep state so that it would consume even less

power, which is called the sleep power. Active power is dominated by dynamic

power consumption while standby power consumption is dominated by the leakage.

To optimize the power consumption during the active state, it is more important

to optimize the dynamic power consumption. The leakage power should also be

minimized during the standby and sleep state because the circuit does not do helpful

works.

Various techniques can be applied to minimize the power consumption of a CMOS

circuit. Power optimization can be performed from architecture levels down to fabri-

cation process. For dynamic power consumption, the focus is on the switching power

consumption. As described in Equation 2.3, switching power is related to the load

capacitance, supply voltage and operating frequency. Reducing the supply voltage

has a high impact on power consumption because switching power has a quadratic

relation with supply voltage. However, reducing the supply voltage might affect the

performance of the circuit because at lower supply voltage, the transistors in the

circuit switch slower and they are more susceptible to noise. For this area, there is

a new trend in near-threshold operations range of CMOS circuit. Reducing supply

voltage also affects the maximum operating frequency (f) of the circuit. Furthermore,

the operating frequency can also be controlled to give enough performance with re-

duced power consumption. In addition, voltage and frequency can be controlled

together to give better performance. Methods such as Dynamic Voltage Frequency

28

Scaling (DVFS) [LeSueur2010dvf] or Adaptive Voltage Frequency Scaling (AVFS)

[Beigne2011ail] are widely applied in the current products. At the microarchitecture

level, clock-gating is one of the efficient ways to reduce the dynamic power consump-

tion because it reduces the switching activity of the clock distribution network. The

idea of clock gating is to cut off the clock signals connected to sequential elements

when they are not activated. New EDA tools support the insertion of an integrated

clock gating (ICG) cells to registers with an enable signal [Benini1994spb]. At the

microarchitecture level, minimizing the glitches of the circuit can also help to reduce

the power consumption. Glitches are created because of the different propagation

delays.

To optimize the leakage power during the idle state of the circuit, power gating

is widely used. If the circuit is idle for a long enough period, the power distribution

to the circuit will be cut off. As a result, the circuit will consume little power

because there is a tiny static power consumption and no dynamic power consumption.

However, power gating needs careful controls and consideration so that the circuit

will work correctly after being powered on again. State retention can be used to

maintain the state of the circuit during the power cut-off. The working states will

be restored when the circuit is powered on. Due to the state retention and isolation,

power-on and power-off sequences takes time and have to be activated carefully.

Therefore, power gating is only effective when the power is cut off in a long period.

Bad controls of power-on and power-off sequences might leads to the increase of power

and energy consumption. Other techniques can also be applied such as using multiple

threshold voltage transistors (multi-Vth), Reserve/Forward Back-Biasing (RBB/FBB)

[Pagliari2018fbb] and optimization in the fabrication process.

In summary, optimizing power consumption of integrated circuits is important for

constrained devices. There are multiple methods to optimize different aspects of the

circuit. The optimization at the architecture level often has the most impact on the

results.

2.2 AES hardware implementation

Advanced Encryption Standard (AES) is a round-based block cipher with the block

size of 128 bits supporting the key size of 128 bits, 192 bits, and 256 bits with 10

rounds, 12 rounds and 14 rounds, respectively. It has been standardized in 2001 under

the name FIPS-197 by U.S National Institute of Standard and Technology (NIST)

[FIPS-197] and then included in ISO/IEC 18033-3 [ISO-18033-3]. AES encryption

procedure is shown in Figure 2.4. Firstly, the 128-bit data block is divided into 16

bytes and arranged into a matrix of 4×4 bytes so called the state matrix. All AES

operations work on this state matrix. There are four basic operations in a round of

AES encryption datapath including AddRoundKey, SubBytes, ShiftRows, and Mix-

Columns. AddRoundkey step is the XOR of the state matrix with the 128-bit round

29

AddRoundKey

SubBytes

ShiftRows

MixColumns

AddRoundKey

SubBytes

ShiftRows

Encrypted Data

Key expansion

Plain Text Key

Plaintext: 00112233 44556677 8899AABB CCDDEEFF

Key: 00010203 04050607 08090A0B 0C0D0E0F

00 44 88 CC

11 55 99 DD

22 66 AA EE

33 77 BB FF

00 04 08 0C

01 05 09 0D

02 06 0A 0E

03 07 0B 0F

00 40 80 C0

10 50 90 D0

20 60 A0 E0

30 70 B0 F0

00 40 80 C0

10 50 90 D0

20 60 A0 E0

30 70 B0 F0

63 09 CD BA

CA 53 60 70

B7 D0 E0 E1

04 51 E7 8C

63 09 CD BA

53 60 70 CA

E0 E1 B7 D0

8C 04 51 E7

63 09 CD BA

CA 53 60 70

B7 D0 E0 E1

04 51 E7 8C

63 09 CD BA

53 60 70 CA

E0 E1 B7 D0

8C 04 51 E7

5F 57 F7 1D

72 F5 BE B9

64 BC 3B F9

15 92 29 1A

MixColumns

ShiftRows

CA 53 60 70

63 09 CD BA

B7 D0 E0 E1

04 51 E7 8C

S-Box

XOR

SubBytes

RotWord

XOR

AddRoundKey

RCON

Figure 2.4: AES encryption algorithm in details.

key. SubBytes transform the state matrix byte-by-byte using a non-linear mapping

function. This function can be used as a look-up table (LUT) or by using arith-

metic in the finite field GF(28) and an affine transformation. ShiftRows transform

the state matrix by rows. Each row is rotated by a different number of bytes while

MixColumns transform the state matrix by its columns. In these steps, only Sub-

Bytes contain non-linear operations while the other steps are linear operations. Each

round needs a different round key generated by the key expansion algorithm. The

key expansion is composed of three operations: RotWords, SubWords, and XORs.

SubBytes and SubWords are similar because they both implement S-box operations,

while RotWord is similar to ShiftRow operation. RotWords and SubWords are only

applied to the first word in the key matrix. For AES with 256-bit keys, an additional

SubWords is added for the fifth word in the key matrix.

Recently, in the wake of information security issues, various works have been

tapped into optimizing AES for various purposes. The most notable efforts into

optimizing area and power/energy consumption of AES are summarized in Figure

2.5. The areas of these works are normalized using the number of 2-input NAND

gate equivalence (GE) while the energy consumption utilizes the notation of en-

30

ergy per bit which is the required energy to processing a bit of data. The energy

per bit is calculated by dividing the total energy required to process a data block

by the block size. For high-speed applications such as optical links or high-speed

networks, AES is implemented in hardware with the round-based implementation

[Liu2011A2G] or pipeline architecture [Mathew20115GN] or unrolled-round archi-

tecture [Maene2015sio]. On the one hand, these kinds of architectures can provide

gigabits of throughput, they, on the other hand, require high power consumption

which is not suitable for embedded systems or constrained devices. For examples, in

[Mathew20115GN], Mathew et al. present a two-stage pipeline architecture which can

provide a throughput of 53Gbps with the power consumption of 125mW . Neverthe-

less, these designs often consume more than 15,000 2-input NAND Gate Equivalences

(GEs) to hundreds of thousand GEs. The biggest part of the parallel architectures is

the S-box. In round-based architecture, there are 16 S-boxes for the encryption path

and 4 S-Boxes for the key expansion. In this case, the S-boxes may occupy half of the

total area. Round-based architectures often require 10 cycles/encryption; unrolled

implementations take from 1 to 5 cycles/encryption while pipeline architectures can

complete the encryption of a block in one cycle after the pipeline is fulfilled.

Most existing designs for low-cost and low-power AES focus on 8-bit datapaths.

8-bit datapath designs can reduce hardware implementation area significantly with

the cost of reducing throughput as they use one [Mathew20153m1, Wamser2017ptl]

or two S-boxes [Zhao2015nsa, Moradi2011ptl]. The theoretical limit of 8-bit datapath

is 160 cycles/encryption. Extreme small designs such as in [Mathew20153m1] and

[Moradi2011ptl] require more than 200 cycles/encryption. The activities in 8-bit

datapath are reduced since there are only 8 bits processed in a clock cycle with the

cost of additional registers for MixColumns and additional gates for control logic.

The additional registers for MixColumns are required because MixColumns work on

4-byte column data which are available only when the whole column is processed. To

achieve medium and high throughput, 8-bit datapath architectures have to run at a

high frequency up to GHz.

Moreover, the authors in [Jean2017bag] put AES hardware implementation to

another extreme by using the bit-sliding technique. By using a 1-bit datapath ar-

chitecture, they reduce the hardware cost of AES down to 1500 GEs. However, this

architecture takes an extremely long time to finish one encryption (up to 1700 cycles).

They also explore other options for implementing AES algorithms using bit-sliding

techniques. The 8-bit datapath presented in their work is close to the current state-

of-the-art. Bit-sliding technique can be applied to other algorithms which use the

Substitution-Permutation Network (SPN) as AES or PRESENT.

The further area reduction for 8-bit datapath is done by optimizing the S-box.

In the AES standard, the straightforward implementation of the S-box is to use a

look-up table (LUT). However, LUT-based implementations require large area foot-

print. Moreover, AES standard [FIPS-197] also describes AES S-box as an invertible

31

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

0 200 400 600 800 1000 1200 1400 1600 1800 2000

k
G

E
s

cycles

Area (kGEs) vs. Cycles/encryption

U
n

ro
lle

d
 &

 p
ip

e
lin

e
d

im
p

le
m

e
n

ta
ti
o
n

.

8-bit datapath32-bit datapath

Round

based
impl.

Bit-sliding

1

10

100

0 1 2 3 4 5 6 7

Liu, ESSCIRC’11

B
a
n

ik
IA

C
R

’1
5

Zhao, TVLSI’15

Mathew, JSSC’15

A
re

a
 (

k
 G

E
s
)

Energy/bit (pJ/bit)

Area vs. Energy/bit (low cost impl.)

Mathew, JSSC’15

U
n

ro
lle

d
 &

p
ip

e
lin

e
d

im

p
le

m
e
n

ta

ti
o
n

.

Round based

impl.

32-bit

datapath

8
-b

it

d
a
ta

p
a
th

Figure 2.5: State-of-the-art of hardware implementations of AES.

32

non-linear function in the finite field. The first step is to find the multiplicative in-

verse of the input byte in GF(28). In the second step, an affine transformation in

GF(2) is applied to the output in the first step. Many works tried to optimize S-box

further by using equivalent representations of S-Box such as the tower field which

is the decomposition of GF(28) into GF(((22)2)2) [Canright2005AVC, Satoh2001acr].

This can reduce the area of S-box to about 290GEs/S-box while the LUT-based im-

plementations require at least 400GEs/S-box. Another decomposition of GF(28) is

to use the normal basis of GF((24)2) as in [Mathew20153m1]. These methods reduce

the size of the S-box, but the unbalanced datapath of the S-boxes introduces more

activities. In [Bertoni2004PAS], Bertoni et al. present a method to synthesize the S-

box for low power by using the Decode-Switch-Encode method. It can achieve lower

power consumption but requires more area than the previous methods.

Another option in optimization is to use 32-bit datapath. AES algorithm is de-

signed for software implementation in modern computers with 32-bit instruction set

architectures. Therefore, AES in 32-bit datapath has some advantages. The number

of S-box is reduced, instead of 20 S-boxes in round-based architectures; 32-bit dat-

apath uses only four S-boxes (in case of sharing the S-box between the encryption

path and the key expansion) or 8 S-boxes (without sharing). The number of cycles

required for one encryption is about 44 to 54 cycles [Satoh2001acr], at least 4 times

higher than 8-bit architectures. 32-bit datapath architectures also use fewer registers

than 8-bit datapath because the MixColumn step may have data of the whole column

in one clock cycle. This opens an opportunity to optimize the architecture further

for area, throughput, and power/energy efficiency.

2.3 Lightweight cryptography implementation

One of the applications with mandatory security requirement is RFID tag, although it

is a small electronic card with power supply harvested from the reader. Therefore, it is

considered as the first highly-constrained devices. The development of RFID tags also

affects security trends. In particular, traditional security functions which require a

large hardware area and high power consumption are no longer suitable for RFID Tag.

To overcome this limitation, a new class of cryptography algorithms called lightweight

cryptography was brought into play. It focuses on scaling down the hardware area

and power consumption but with a reduced security level. To be more precise, many

algorithms decrease the key size and the block size to reduce hardware area and power

consumption, but this will reduce the security level. The block size is commonly

seen ranging from 48 bits to 64 bits, for example, SIMON [Beaulieu2013tsa], TWINE

[Suzaki2011tal], KATAN [Canniere2009kak], KLIEN [Gong2012kan] and so on. Some

others come in 128-bit block size such as CLEFIA [Shirai2007t1b]. The key size is

also reduced between 80 bits to 128 bits in order to maintain a decent security level.

Smaller block size and smaller key size will help to reduce the hardware area, as a

33

consequence of the use of fewer registers to store the data and the key. Additionally,

such reduction can help cut down on the power consumption to the respect that the

dynamic power consumption is related to the activity of the registers and the static

power consumption is related to its area. Another notable point is that lightweight

block ciphers use hardware structure for permutation and smaller S-box in comparison

with a traditional algorithm such as AES. However, to maintain the proper security

level, lightweight cryptography requires a larger number of rounds which reduces the

system throughput when running at the same frequency. Figure 2.6 reveals the area

and the throughput of different cryptography algorithms. It is clear from Figure 2.6

that many lightweight cryptography algorithms result in smaller hardware area, but

they generate very low throughput.

0

50

100

150

200

250

300

350

400

0

1

2

3

4

5

6

Area and throughput comparison

Area (Kgates) Throughput (kbps)@100KHz

A
re

a
 (

K
g
a
te

s
)

T
h

ro
u

g
h

p
u

t
@

1
0

0
K

H
z

(k
b
p
s
)

Figure 2.6: Area vs throughput of various cryptography algorithms.

Take the lightweight block cipher– PRESENT for example. PRESENT

[Bogdanov2007pau] is a recently-standardized block cipher for constrained designs.

In contrast to AES which uses byte level operations, PRESENT uses hardware

friendly primitives to save hardware cost and power consumption. Figure 2.7 shows

the PRESENT algorithm. To save hardware area, PRESENT uses an 80-bit key

and 64-bit block size. Its extended version supports 128-bit key with the same block

size. PRESENT uses 4-bit S-Boxes for the substitution layer instead of 8-bit

S-Boxes as in AES. Furthermore, despite complex linear operations such as

ShiftRows and MixColumns in AES, PRESENT uses only bit permutations for

permutation layer. This can be done by wire permutation in hardware. However,

because of its simple operations, PRESENT needs up to 32 rounds to keep it

unbreakable on the algorithmic level within a reasonable time.

34

Update

Update

sLayer

pLayer

sLayer

pLayer

Plaintext Key

Encrypted
data

sLayer: substitution layer (4-bit sbox)

pLayer: permutation layer (bit remapping)

Key update:

Figure 2.7: The PRESENT algorithm.

Among these algorithms, PRESENT and Clefia are standardized for lightweight

block ciphers to be used in RFID application [ISO-29167-1] and lightweight block

cipher [ISO-29192-2]. In addition, Grain and Trivium are selected as the standardized

stream ciphers. Clefia supports multiple key sizes and block sizes similar to AES. It

has high throughput but occupies a large area. Clefia, Grain and Trivium indicated

smaller hardware area than the implementations of AES at the publication time of

the ISO standard. However, running for the hardware implementation area, recent

researches such as the work by Mathew et al. in [Mathew20153m1] show that AES

encryption can also be implemented using about 2K GEs.

Along with the race for the area and power consumption, there are also al-

gorithms which focus on optimizing the throughput. For example, PRINCE in

[Borghoff2012pal] was designed to maximize its throughput with small hardware area

and low power consumption. It was reported in [Borghoff2012pal] to occupied only

3.5K GEs, but has throughput up to 530kbps compared to AES (with only 8kbps

of throughput with the same area). PRINCE has high throughput because it was

designed for a fully-unrolled architecture to be implemented using a smaller area.

Therefore, it can encrypt a block per clock cycle but with longer datapath delay as

a trade-off. The unrolling technique can also be applied to other block ciphers to

achieve high throughput but with larger area footprint and higher power consump-

tion.

Lightweight cryptography might have low power consumption; however, it may

35

0

5

10

15

20

25

30

35

40

0

50

100

150

200

250

Dynamic power (µW) vs Energy/bit (nJ)

Dynamic Power Energy/bits (nJ)

D
yn

a
m

ic
 p

o
w

e
r

(µ
W

)

E
n

e
rg

y
p
e
r

b
it
 (

n
J
)

Figure 2.8: Dynamic power consumption vs Energy per bit of different cryptography
algorithms.

consume a large amount of energy. Figure 2.8 shows the dynamic power consumption

and the energy per bit of different hardware implementations of the traditional block

cipher AES and some lightweight cryptography algorithms. Obviously, lightweight

cryptography algorithms have low dynamic power consumption, but they are not

efficient in terms of energy consumption. Theoretically, energy is related to the

power consumption and the time that the chip consumes that power. However,

lightweight block ciphers require a large number of rounds to keep its design security

level which leads to low throughput and high energy consumption. In addition,

energy consumption is becoming important for battery-based applications. Therefore,

to optimize the energy consumption, both power consumption and the execution

time must be optimized. For constrained devices, the power consumption has to

meet the demands of the power budget while the throughput must be maximized.

From Figure 2.8, AES can have good power and energy balance. Furthermore, some

lightweight cryptography implementations can achieve lower power consumption, but

they consume higher energy because of lower throughput.

Most of the early designed lightweight cryptography algorithms use hardware

friendly structure to optimize the hardware area; however, they are not optimized

for software implementation. Structures such as bit permutations or 4-bit S-boxes

needs multiple instructions in software. Along with a large number of rounds, these

lightweight cryptography algorithms have poor performance in software. This creates

36

the needs for lightweight algorithms which can run fast on both software and hard-

ware. SPECK and SIMON [Beaulieu2013tsa] are designed with this idea. The au-

thors claim the performance of 1.32 cycles/byte on Intel Processor [Beaulieu2015tsa].

With the development of new encryption methods such as homomorphic encryp-

tion [Brakerski2012fhe], calculations can be done in the encrypted domain. Two basic

operations in the encrypted domain are the multiplication (logical AND) and the ad-

dition (logical XOR). Addition can be done easily, but multiplication in homomorphic

encryption is complicated. Therefore, there are some algorithms focusing on reduc-

ing the multiplication depth so that it can be used more efficiently in homomorphic

encryption [Canteaut2016sca, Albrecht2015cfm].

In summary, under tight requirements of constrained devices in terms of hardware

area and power consumption, lightweight cryptography has been developed to reduce

the hardware area and power consumption. However, they are observed not to be

suitable for software implementation because of their hardware-specific structures.

The area and power consumption are scaled down by reducing the security level with

a smaller block size and a smaller key size, then applying the low-cost transform in

hardware. Recently, other requirements have been taken into account, such as maxi-

mizing the throughput in both software and hardware or reducing the AND depth for

homomorphic encryption. One of the areas which are not yet the focus of the current

lightweight algorithms is to optimize for power/energy consumption. Different appli-

cations might have different requirements for throughput, power/energy budget and

hardware area. Thus, finding the balance among these factors is one of the targets

of this work.

2.4 Configurable hardware cryptography implementa-

tion

Security requirements vary among different applications which drive many works to

focus on configurable hardware cryptography. Configurable cryptography modules

implement multiple cryptography accelerators or multiple cryptography primitives

so that they can be configured at run-time. This provides flexibility, but it increases

the hardware cost and also the power consumption because the security primitives

or accelerators must be included to be used when necessary. Even when they are not

used, they might still consume power.

For example, Hutter et al. in [Hutter2011acp] proposed a configurable cryptogra-

phy processor which supports both asymmetric algorithms and symmetric ones. This

design uses an 8-bit microprocessor along with two accelerators. One accelerator is

used for Elliptic Curve Cryptography (ECC) and the other is for AES. The archi-

tecture of this work is shown in Figure 2.9. It uses a microcontroller to manipulate

a microcode ROM to control the two crypto-accelerator cores. The authors claim it

as a low-cost solution with the area of 21 KGEs. Among them, AES acceleration

37

part occupies about 2.5 KGEs. In terms of throughput, this architecture takes more

than 4500 cycles to finish one encryption.

Figure 2.9: Reconfigurable crypto-processor using microcontroller and accelerators
[Hutter2011acp].

A more generic way to design the configurable cryptography processor is to include

all the individual primitives so that they can be composed into different algorithms.

Sayilar and Chiou in [Sayilar2014cht] follow this direction. They design a processing

element (PE) consisting of five configurable function units including Arithmetic Unit

(AU), Logical Operation Unit (LOU), Table Lookup Unit (TLU), Shifter-Rotator

Unit (SRU), and Permutation-Expansion Unit. The proposed system consists of an

array of PEs connecting from one layer to another using a crossbar called connection

row. By using this system, different cryptographic algorithms including AES, MD5,

SHA-1, SHA-2, and stream ciphers such as RC4, RC5 and Phelix can be mapped into

different PEs automatically or manually. AES implementation of this architecture

takes 20 clock cycles to finish one encryption. The drawbacks of this architecture are

high area cost of more than 6mm2 and high power consumption of nearly 1W/mm2.

Multiple algorithms with similar transformations can be grouped to create a re-

configurable module such as the work by Satpathy et al. [Satpathy2018grg]. This

work implements three block ciphers including AES and SM4, and Camellia by using

the common transformations of these algorithms in GF((24)2). By using a hybrid

S-boxes with shared inversion, affine scaling for MixcColumns of AES, Polynomial

optimization, and key pre-computation, the authors can reduce the area by nearly

30 percent in comparison with the separate implementations. The design has been

fabricated using 14nm technology with the power consumption of AES of 16µW at

0.24V@2.1MHz.

38

In addition, a configurable crypto-accelerator using In-Memory-Computing and

near-memory computing was proposed by Zhang et al. in [Zhang2018rar]. Figure 2.10

demonstrates their architecture with S-boxes, a bit rotators, a shifter along with a

special memory which can perform logical operations such as XOR. This architecture

supports AES, ECC and Keccak-f function (which is the SHA-3) [Bertoni2011tks].

For AES, the S-Box is designed in native GF((24)2) with registers inserted before the

inversion to reduce the glitches of the S-Box circuit. The authors claimed 80% runtime

and energy savings when compared with their baseline processor architectures. In

detail, AES needs 726 clock cycles to finish one encryption and 7.2nJ energy per bit.

Figure 2.10: Configurable accelerator using In-Memory-Computing and Near-
Memory computing by Zhang et al. in [Zhang2018rar].

In summary, configurable cryptography modules provide more flexible solutions

than specific cryptography modules. Depending on the applications’ requirements,

different security mechanisms can be used with larger hardware area to exchange for

flexibility. The drawback of these works is that they occupy a large area and consumes

huge power consumption. These systems are typically in the class of nJ energy per

bit, while the specific crypto-accelerators of AES often consume some of pJ . Due to

high power consumption and cost, these systems are not yet suitable for constrained

IoT system. In addition, In-Memory Computing and Near-Memory Computing show

their potential to be applied to cryptography systems. It is because they can process

the data near or in the memory which reduces the cost of transmitting data to the

processor or the crypto-accelerators and concurrently reduces the risk of exposing the

secret data through the system bus. Furthermore, the memory can also do parallel

39

operations not only with 32-bit or 64-bit as the processor, but also 512 bits. This

opens a new research direction for future applications.

2.5 Encryption using memory elements

SRAM memory is widely used in electronics chips as a storage element. It has a high

speed of operations and is one of the important parts of SoC architectures. SRAM

even occupies most of the space of the chip as a cache memory to store temporary

data and to prefetch instructions and data for faster access. SRAM can also be used

as a look-up element. From early days, there have been ideas on implementing the S-

Boxes using SRAM or a special type of SRAM such as Content Addressable Memory

(CAM). For example, Labbe et al. [Labbe2004ehi] designed AES crypto-accelerator

using SRAM elements to do fast S-Boxes look-up. Furthermore, Hua Li [Li2005anc]

uses CAM as a way to implement S-Boxes and inverse S-Boxes. These works use

SRAM in its pure form without any modification of the memory structure to do logic

in memory.

New advances in semiconductors enable the discovery of new material for design-

ing SRAM. For examples, Abid et al. in [Abid2009ecg] use new materials to design

SRAM and use it to do cryptography. They used CMOL gate design to design an

AES encryption core. After that, in 2016, Wang et al. [Wang2016dad] use Domain

Wall Nanowire to design SRAM with the capability of doing shift operations and

XOR operations. The authors use this new memory to design different operations of

AES. Theoretically, the composed components of this type of memory into different

AES sub-blocks can be used to build the whole AES encryption. However, this work

is based on pure simulation.

2.6 Hardware Security

Another threat to constrained IoT applications lies in hardware attacks. Even though

the algorithm is proved to be secure, its implementation in hardware or software

potentially contains flaws which lead to different types of attacks such as fault attacks,

timing attacks, side-channel attacks and so forth. The exploration of Differential

Power Attack (DPA) [Kocher1999dpa] by Kocher et al. has shown that the microchips

unintentionally leak information when they process it. This opens a new research area

to protect the system from these types of attacks. Integrating the countermeasures

of these types of attacks will raise not only the cost, but also the power consumption.

The hardware security can be divided into different categories including hardware

trojans [Dupuis2018pah], reverse engineering of hardware components and informa-

tion which it stores, and side-channel attacks. Hardware trojans have become the

new issues of highly-integrated System-on-Chip because IP cores are now designed by

different vendors that can intentionally insert trojans which are set to be activated

40

when having enough conditions. For cryptographic devices, hardware trojans might

be used to take out the secret keys. In addition, reverse engineering of hardware com-

ponents can also be used to extract helpful information. Key stored in the memory

or non-volatile elements might be extracted using this method. More importantly,

side-channel attacks employ other types of information from the chip such as volt-

age, current or power consumption to attack the cryptography algorithm. This work

focuses on side-channel attacks which can be used to mount key extraction attacks.

Side-channel information could be any forms of physical information emitted by

the microchip. This physical information is one part of the physical characteris-

tics of the chip. Two popular side-channels include power consumption of the chip

[Kocher1999dpa] and electromagnetic emission (EM) [Agrawal2003tes]. Power con-

sumption and EM captured from a device are related to the chips activities. When

applied to cryptographic chips, this instantaneous power consumption or EM are di-

rectly related to the chip operations which contains the operations with the secret

key. Therefore, power or EM traces can be extracted using the current state-of-the-art

attacks.

The current semiconductor technologies use CMOS transistors to build the func-

tional circuit. These transistors have different levels of power leakage during their

operations. The leakage is related to the current state or the function that it performs

and it is called the state dependent leakage which is directly related to the secret key

of cryptographic algorithms. By measuring power consumption of the circuit, the

secret key can be extracted if enough data is collected.

Power analysis attacks are divided into different categories including Simple

Power Analysis (SPA) [Kocher1999dpa], Differential Power Analysis (DPA)

[Kocher1999dpa], Correlation Power Analysis (CPA) [Brier2004cpa], and Template

Attack [Chari2003ta]. SPA is a simple method which guesses the secret key directly

from the power traces. SPA is often used for asymmetric cryptography when the

serial operation is used. The secret key can be guessed directly from the power

trace. However, in real hardware, the computations are often performed in parallel

and there are many noises which leads to a low success rate of SPA in practice. In

contrast, DPA and CPA use differential function and correlation estimation function

respectively to evaluate a set of guesses. The guesses with the highest score might

be the correct key. CPA is one of the most effective methods at the moment. For

template attacks, the attacker must have full control of a sample device to create a

template for the attacks. Numerous power traces must be collected, and the

template attack will characterize the system. After characterization, the attack can

be mounted with a few power traces. Template attacks need more preparation steps

than DPA or CPA, but it is also a powerful method because the victim’s secret key

can be found with fewer power traces after characterization.

Figure 2.11 demonstrates the attack flow of Power Analysis Attacks. Instead of

brute forcing the key, the attack can focus on a certain byte at a time. This reduces

41

the total number of key guesses. At first, an intermediate value in the algorithm is

selected for attack. The intermediate value can be the output of any steps in the

algorithm. After that, a hypothesis consisting of all the guesses can be calculated

using a power model. After that, the hypothesis can be correlated and compared with

the real power traces. The one which has the highest correlation can be the correct

guess. This reduces the search space and can reduce the time to find the correct key.

For a software implementation on 8-bit micro-controller, a key can be revealed using

some hundreds of traces. Power model which is often used in the power analysis

attack is Hamming Distance which is related to the activity of the key-dependent

operation. Pearson Correlation function is often used as the statistical tool for this

analysis.

…
.

First byte

2
0

0
 p

la
in

te
xt

s

….

256 key guess

AES

step/round

….
….

….
….

… …………
256

2
0

0

Hypothesis
….
….

….
….

… …………

256

2
0

0

Hypothetical Power values

Power

models

….
….

….
….

… …………

50000
2

0
0

Measured power traces
Statistical

tools

….
….

….
….

… …………

50000

2
5

6

Correlation matrix

Chosing Intemediate
Values (IVs)

Calculating
hypothetical IVs

Mapping IV to power
consumption values

Comparing
hypothesis with real

power traces

Ciphertext/plaintext,

algo, power traces

Best guessed key

Figure 2.11: Power analysis attacks.

Furthermore, key-dependent leakage can be addressed faster using statistical tests

such as Student T-Test [Student1908tpe] or a more general version – Welch T-Test

[Welch1947tgo]. These tests perform the statistical analysis of the power traces

to find the distinguishable data points in the power traces. The calculation of

T-Test is faster than DPA and CPA. Therefore, the leakage can be found earlier

[Schneider2015lam]. However, the leakage found by T-Test might not lead to key

42

recovery attacks [Schneider2015lam].

To generalize the testing methods for cryptographic devices, Test Vector Leakage

Assessment (TVLA) [Goodwill2011atm] has been proposed as a generalized method

to help designers identify the leakage. This method proposes procedures to evalu-

ate the designs including the key generation for the test, the plaintext generation

and the trace processing. The statistical test used is Welch T-Test. There are two

kinds of TVLA tests including non-specific tests and specific tests. In non-specific

tests, the encryption of the same inputs is performed repeatedly. Then, the captured

power traces are divided into two groups. If the T-Test scores of the two groups

are larger than 4.5 or smaller than -4.5 at the same point in time, the test fails and

the design might leak important information which can be used to reveal the secret

key using power analysis attacks. In specific tests, TVLA also defines a set of tests

on different steps of the algorithms such as the statistical test of the S-Box output

(SOUT), the inputs and outputs of each round (RIRO), the specific bytes of each

round (ROUT BYTE0) and so on. There is a total of 896 tests per round. The power

traces are captured with a predefined key and data with the output of the current

test being used as the input of the next test. The power traces are also divided into

two groups as in the non-specific test. The test fails when the T-Test scores of the

two groups are larger than 4.5 or smaller than -4.5 at the same point in time. The

design is not qualified when at least one of the tests fails. T-Test can be performed

much faster than mounting DPA and CPA attacks. It can also be used to evaluate

the high order leakages such as the work in [Schneider2015lam]. In addition, TVLA

can also be linked to the attack success rate [Roy2016lmi].

This work performed CPA and TVLA on the power estimated traces of the

crypto-accelerator designs to ensure that the power optimization techniques applied

to the crypto-accelerator do not introduce new leakages. There are other statistical

methods, which are alternatives to TVLA, such as Analysis of Variant (ANOVA) or

Normalized Inter-Class Variant (NICV) [Bhasin2014nicv, Moradi2014dhl]. However,

these methods are not considered in this work.

2.7 Conclusion

Security concerns for IoT systems are rising rapidly along with their vast range of ap-

plications. Therefore, implementing security mechanisms for IoT devices, especially

highly-constrained devices, need careful consideration. For these devices, a new class

of cryptography algorithms called lightweight cryptography has been developed to

save the hardware cost and reduce power consumption. However, they might have

barely acceptable security levels and a margin of lower energy consumption. Ultra-

low-power operations are crucial to many applications which do not have a stable

power supply such as the power harvesting devices. Lightweight cryptography al-

gorithms standardized by ISO/IEC for different applications are available, but they

43

have not been used yet for IoT applications.

Moreover, new IoT proposals have been adopting AES as the main security mech-

anism. Therefore, optimization for AES in terms of area, throughput and especially

power/energy consumption is becoming increasingly important. Current implemen-

tations of AES for low power consumption is focusing on 8-bit datapath designs with

one S-box which reduces the system throughput and increase the energy consump-

tion. 8-bit datapath with one S-box has small hardware area because of the small

area footprint of one S-box, but they need extra registers to store the intermediate

results for the MixColumns calculations. In addition, different implementations of

S-boxes have different hardware area and different power consumption. This opens

the need for optimizing the S-boxes for the trade-off among hardware area, power

consumption, and energy consumption.

Furthermore, different applications are subject to various security requirements

and power/energy budgets. Therefore, a configurable solution is needed to adapt to

various applications. In particular, lightweight block ciphers and conventional block

ciphers can be combined to create a flexible solution with low power consumption.

In addition, the trade-offs among area, throughput and power/energy consumption

are challenging to achieve at the same times. It even becomes more challenging when

flexibility and configurability are added.

Despite the low power consumption of these implementations, their fixed struc-

tures cannot adapt to new standards and mitigate new threats. New capabilities are

added, while new attacks and threats are discovered. Therefore, flexibility and con-

figurability of security primitives need attention. In-Memory Computing and Near-

Memory Computing are innovative methods to implement flexible security functions.

Because of the serial operations of the memory, flexibility and configurability are

traded off with throughput and power consumption.

In addition to that, hardware security which uses side-channel information as an

attack vector is bringing more and more threats to new IoT devices. Side-channel

attacks can be used to reveal the secret key of the system. Countermeasures to these

attacks are costly and often not included in the design for ultra-low-power devices.

Based on the current state-of-the-art of hardware implementations of various block

ciphers, this work proposes a low-power implementation of two standardized algo-

rithms which can be used for ultra-low-power IoT devices. The first one, AES, is a

conventional algorithm widely used to secure Internet applications with high levels of

security. The other is PRESENT, a new lightweight algorithm which uses hardware

constructs to reduce the hardware area and the power consumption. In the next

step, this work combines the two modules, AES and PRESENT, into a configurable

crypto-accelerator with various key sizes, block sizes, and security levels. Not only

the power consumption is optimized, but the security evaluation using the current

state-of-the-art methods are also applied to the proposed design to ensure that low-

power optimization does not introduce new information leakages. Finally, this work

44

explores the configurability, the flexibility and the feasibility of different block cipher

algorithms using In-Memory Computing. The next chapter will present the work on

the power optimization of block ciphers including AES and PRESENT for IoT and

our configurable crypto-accelerator in SNACk testchip.

45

Chapter 3

Proposed crypto-accelerator for

ultra-low-power IoT

New IoT applications such as implant and wearable appliance, healthcare monitor-

ing, and environment monitoring need to be implemented in ultra-low-power devices

with small hardware area. Furthermore, secret data might be collected, processed

and transmitted in the IoT network. Therefore, it is crucial to equip IoT applica-

tions with security functions to protect confidentiality and authentication. However,

security functions may reduce the system throughput and increase the power con-

sumption, because extra functions are required for their execution. This brings into

play the requirements to optimize the security functions for throughput, cost, and

power consumption.

In addition, different applications are characterized with diverse security require-

ments, depending on the type of secret data they manipulate. Applications which

require long-term security should use strong cryptography algorithms such as AES

with 256-bit keys, while lightweight applications can use lightweight cryptography

to reduce the power consumption. Security primitives with different configurations,

which can adapt to various applications’ needs, can provide the flexibility for appli-

cation development.

Ultra-low-power consumption solutions can be provided by the hardware imple-

mentation of security functions using block ciphers and lightweight block ciphers

with serial architectures. Serial processing helps improve the power consumption.

However, it increases the overall system latency and energy consumption. There-

fore, trade-offs among security levels, throughput, hardware costs and power/energy

consumption should be studied thoroughly.

The recent IoT proposals have been using Advanced Encryption Standard (AES)

as the main security mechanism to protect the data confidentiality because AES

has been proved to provide long-term security. Therefore, optimizations for AES are

important not only for IoT applications but also for a wide range of other applications

47

which use AES. However, AES has been considered to be a conventional cryptography

algorithm with high power consumption even when it is implemented on hardware.

On the other hands, for ultra-low-power applications, lightweight cryptography such

as PRESENT might also be applied to further reduce the power consumption by

using hardware friendly constructs, but this reduction has to be traded off with a low

security level and throughput.

In addition, optimizations, for instance, power optimization might cause hardware

security issues. Attacks using side-channel information especially power analysis at-

tacks can be mounted easily. Therefore, security evaluation for the optimized security

module needs careful consideration. Methods such as Correlational Power Analysis

and Test Vector Leakage Assessment might be used to evaluate the possibility to

mount the key recovery attacks and to address the different leakages of the hardware

modules.

In this chapter, a multi-standard hardware crypto-accelerator with multiple se-

curity levels covering from lightweight security up to very long-term security with

optimization for power/energy consumption is proposed. It contains two standard-

ized encryption algorithms: AES [FIPS-197] and PRESENT [Bogdanov2007pau].

AES, which is widely used in current IoT proposals, provides high levels of security

with high throughput; while PRESENT, a lightweight block cipher, encrypts data

at extremely low power consumption. This crypto-accelerator has a 32-bit data in-

terface with configurable parameters. It is up to the application to decide which

algorithm, with which key size and number of rounds to use. The AES module was

designed with 32-bit datapath to save the implementation area while the PRESENT

module has 64-bit datapath to maximize its throughput. Among other means, the

hardware area of the two designs is saved by doing key expansion on-the-fly. AES

power consumption is further optimized by a low power implementation of the sub-

stitution boxes (S-boxes), and by gating the inputs of S-boxes in the key expansion

when they are not used to reduce the switching activities. This crypto-accelerator was

implemented in the 28nm FD-SOI technology of STMicroelectronics with 11K gates

equivalent (GEs) in total and throughput up to 170Mbps. At 10MHz@0.6V@25oC,

our design provides a throughput between 17Mbps and 28Mbps while consuming less

than 20µW on average, and its energy per bit is less than 1pJ/bit. Furthermore, this

proposal does not focus on countermeasures to side-channel attacks but the security

evaluation, using Correlation Power Analysis (CPA) and Test Vector Leakage As-

sessment (TVLA), has been performed on the proposed design. The key recovery

attacks using CPA and the test score in TVLA show that the proposal has equiv-

alent information leakage when compared with an unprotected reference design on

OpenCores. Thus, this accelerator is suitable for a wide range of ultra-low-power and

ultra-low-energy applications in IoT sensor nodes.

This chapter is outlined as follows. Section 3.1 provides a short introduction to

AES and PRESENT in the proposal. Section 3.2 presents the architecture of the

48

proposed AES including all the optimizations performed on AES. PRESENT archi-

tecture is shown in Section 3.3. After that, the two block ciphers are combined into a

block cipher module with 32-bit data interfaces and implemented in SNACk testchip.

The estimation and measurement results of SNACk testchip are demonstrated in Sec-

tion 3.4. Then, the security evaluation based on the power trace generated from the

post-signoff netlist is presented in Section 3.5. This section also includes the detail

explanations of the trace processing framework to prepare the power traces for the

evaluation. Finally, some conclusions and perspectives are raised in Section 3.6.

3.1 Introduction

IoT applications might require various security profiles with different power/energy

budgets. A configurable crypto-accelerators with different power/energy profiles can

provide a flexible solution for a wide range of IoT applications. This chapter presents

a crypto-accelerator with a widely used cryptography standard core – AES and a

lightweight cryptography core – PRESENT. Two IP cores are implemented into the

cryptography kernel in SNACk testchip for evaluation. AES is selected because it

provides long-term security and has broadly been used as the main security mecha-

nism for new IoT proposals, even though it occupies a large hardware area and has

high power consumption than lightweight algorithms. Meanwhile, PRESENT is one

of the new lightweight cryptography algorithms which use the hardware construct to

reduce the hardware cost and minimize the power consumption.

The proposed AES encryption core uses 32-bit datapath supporting multiple se-

curity levels from 128-bit key up to 256-bit key. In addition, power optimization

is applied at the hardware architecture level to minimize the power consumption.

Hardware area is also optimized to reduce the hardware cost. The datapath of our

proposed AES was designed to minimize the switching activities, consequently to

save power consumption. In the AES algorithm, in each round, the certain order of

transformations can be changed without the impact on the output of the algorithm.

For example, the order of ShiftRows and SubBytes can be changed without changing

the output of the algorithm. For the design of AES, we rearranged the order of these

steps in order to achieve the best efficiency in terms of power, energy and throughput.

Our AES encryption architecture supports all the key sizes specified in AES standard

[FIPS-197].

At the same time, our proposed PRESENT encryption core uses a full parallel

architecture with 64-bit datapath to increase throughput since our PRESENT core

is a round-based encryption core which requires 32 rounds to do an encryption. Even

in this configuration, PRESENT still shows some advantages over AES with small

hardware size and low power consumption. However, PRESENT in software has

some drawbacks because of its hardware-friendly constructs in bit-based operations.

In the following sections, the full hardware architectures of the proposed AES and

49

PRESENT will be presented. Two algorithms are integrated into a crypto-accelerator

with a 32-bit data interface. The crypto-accelerator is implemented using FD-SOI

28nm technology in SNACk testchip. The implementation results and the power

consumption measurement will be discussed in the following sections.

3.2 Proposed AES architecture

AES supports multiple key sizes to allow multiple levels of security ranging from

midterm security with 128-bit keys to long-term one with 256-bit keys. Furthermore,

in a non-standard way, the reduced rounds of AES can also be used to increase the

throughput and reduce energy consumption. For examples, the best theoretical attack

on a 5-round AES requires 222.25 chosen plaintexts, a memory of 220 blocks of 128 bits,

and computation time of 222.5 encryption [Achiya2018ikr]. A lightweight application,

which does not use up to this bound, can use the reduced-round AES to minimize

the energy consumption. Consequently, this work implements a configurable AES

encryption module with different configurations of key sizes and also support reduced-

round AES. The proposed architecture is presented in Figure 3.1. The encryption

path includes four parts: a state register, 4 S-boxes, a MixColumn, and an output

register which also acts as a temporary register to store intermediate results. The key

expansion consists of two key registers and a key transformation module to support

all key sizes specified in AES. This design is a 32-bit datapath architecture which

means the input data and the input key are divided into 32-bit chunks. Each pair of

32-bit data and 32-bit key is loaded together. This takes 4 cycles to load the 128-bit

key and 128-bit data and XOR them into the state register. For 192-bit keys and

256-bit keys, after the first 128 bits are loaded, the encryption is started while the

other bits of the key are continuously loaded to maximize the throughput. There

are two feedback paths, one in the key expansion and the other in the encryption

path. The state register needs to be updated every four cycles with new 128-bit data

while the previously expanded word is sent back to the key registers to generate the

new expanded key. The details of the optimizations in our proposed architecture are

presented in the next subsections.

3.2.1 32-bit datapath optimizations

To reduce area and power consumption in the datapath, this work minimizes the

number of flip-flops and control logic in the datapath by using shift registers with

a special organization. Shift registers help to simplify loading data and loading key

steps. 32 bits of both plaintext and key are loaded at the same time into the state

register and the key register by using shift operations. By minimizing the number of

flip-flops, this work also reduces the number of clock buffers and power consumption

of the clock tree because clock buffers in the clock tree consume a large amount of

50

Figure 3.2: Our proposed state register.

results are written out from the output register. In the 128-bit key configuration, AES

encryption module needs 10 rounds, which leads to 40 cycles to finish the encryption

for a 128-bit block of data. The total number of cycles to encrypt a block in this

architecture is 44 cycles. For other key configurations, our architecture needs 52

cycles and 60 cycles to encrypt a data block for 192-bit key mode and 256-bit key

mode, respectively.

Figure 3.3: Our proposed output register.

Clock gating technique is applied on the stage register and the output register

separately to save the dynamic power consumption. For examples, in data loading

state, the clock to the output register is disabled to save power because there are

no valid data to the output register. Furthermore, when in the inactive state, the

output of these registers is not changed, which means that there is no activity in the

encryption path. The power estimation results using the post-placement-and-routing

netlist show that even in the highest throughput mode (44 cycles/encryption for 128-

bit key mode) the applied clock gating technique can save more than 13% of power.

52

Certainly, with smaller throughput, the clock gating technique can even save much

more power consumption.

3.2.2 Substitution box (S-box)

The substitution box (S-box) has a significant impact on area and power consumption

of the AES design. This architecture chooses S-box implementation for achieving the

lowest power consumption. S-boxes may occupy up to 60% of the total cell area,

and consume about 10%- 30% of the total power consumption [Hamalainen2006dai].

The smallest implementation of S-boxes has up to present been attained by Canright

[Canright2005AVC]. Canright S-box demonstrates an optimized area (292 gates/S-

box) but needs more power/energy consumption because it creates more activities,

especially in architectures with 8 S-boxes. The most popular and straight-forward

S-box implementation is the LUT-based S-box. LUT-based S-box is bigger in terms

of area (434 gates/S-box) but consumes less power/energy than Canright S-box.

The most efficient S-box in terms of power consumption is Decode-Switch-Encode

(DSE) S-box; however, it occupies a larger area. DSE S-box can be further op-

timized for power consumption using the structure proposed by Bertoni et al. in

[Bertoni2004PAS] and described in Figure 3.4. The idea is to use a onehot decoder

to convert S-box inputs into onehot representation. In this scheme, the input is repre-

sented using a group of bits where there is only one bit ‘1’ and all the others ‘0’. The

non-linear operations are performed using wire permutation as in lightweight cryp-

tography algorithms. After that, the S-box output in onehot encoding is converted

back into the original field.

Decode-Switch-Encode S-Box can reduce the power consumption because it min-

imizes the activity inside the S-box circuit. After decoding state, only one signal

changes its value to go to the encoding state. Most of the area lost is because of the

size of encoder and decoder circuits. This optimization leads to 10% power reduction

to the whole design. The synthesized DSE S-Box in this work has the size of 466

GEs/S-box which is 7% increase in size in comparison with LUT-based S-Box or 1.6

times the size of the smallest S-boxes. The S-Boxes in our design consume only 10%

of the total power consumption.

3.2.3 Key expansion optimizations

The key expansion applys the same mechanism as in the encryption path with further

optimizations for S-boxes and loading data into the key registers for different key

sizes. Also, the power consumption is saved by masking the S-Box inputs with

constant values when not being used to save the dynamic power consumption. To

save the hardware area and to improve the system throughput, the expanded key is

calculated on-the-fly and fed back directly to the key registers and the encryption

path. To support three sizes of keys in AES, the key expansion module consists of

53

Figure 3.4: Our Decode-Switch-Encode (DSE) S-Box.

two 4×4-stage shift registers which support storing and expanding of 128-bit keys,

192-bit keys and 256-bit keys. The key transform module includes four S-boxes, and

an XOR to do key expansions for all key modes.

The structure of the two registers is presented in Figure 3.5. For 128-bit key

mode, only the first shift register is used, at the same time, the clock signal to the

second shift register is disabled to save power. For 192-bit key mode, the first shift

registers and a half of the second shift register are used, while for 256-bit key mode,

both shift registers are used. The last expanded word of the key expansion output is

sent back into the first key register to continue generating the round key. Depending

on the key size, the last word may need to be transformed using RotWord, SubWord

and XOR with RCON, a round constant, before being added with other key words.

In 128-bit key mode, these three operations are applied to the last word every 4 clock

cycles while in 192-bit key mode and 256-bit key mode, they are applied every 6

clock cycles and 8 clock cycles, respectively. 256-bit key mode needs one additional

SubWord in the middle of 8 clock cycles. The second key register generates two

different key modes which are 192-bit key mode and 256-bit key mode. In 128-bit

key mode, the second key register is disabled while the output of the first key register

is selected to XOR with the output from the key transform module. In 192-bit key

54

Figure 3.6: Key transform.

3.3 Proposed PRESENT architecture

Similar to AES, PRESENT has been designed with multiple security levels support-

ing from decent security levels with 80-bit keys to the midterm security of 128-bit

keys. The reduced-round version of PRESENT [Cho2009lco] can be used to improve

throughput and minimize power consumption. Therefore, the proposed PRESENT

module is designed with different modes of keys and various number of rounds. The

proposed PRESENT architecture is presented in Figure 3.7. This architecture is a

straight-forward implementation from PRESENT specification which supports both

80-bit key and 128-bit key. Therefore, in this work, the two key modes are combined in

a configurable module with various number of rounds to allow multiple power/energy

consumption profiles. The input plaintext and key are 32-bit data interface. There-

fore, loading 64-bit blocks will take two clock cycles, whereas loading keys needs

extra clock cycles: 3-clock cycles for 80-bit keys and 4 clock cycles for 128-bit keys.

Similar to AES architecture, keys and input data blocks are loaded together so that

the addition of key and data can be done immediately. To reduce the hardware area,

the intermediate results are stored directly back to the state registers. The key ex-

tension also uses shift registers to store the expanded key. PRESENT use only 4-bit

S-Boxes, therefore, they are designed as combinational logic. The permutation is the

wire permutation. As a result, they cost fewer logic gates. All the control logics are

based on a single round counter and the key configuration.

To optimize the power consumption, the shift registers are clock gated using an

enable signal. When the shift registers in the idle state, the clock is disconnected

from the clock network to save power consumption. The S-boxes are optimized using

combinational logic. The S-Boxes are used in all steps; therefore, they are not masked

as in the case of AES. With this configuration, the proposed PRESENT core takes

37 clock cycles and 38 clock cycles to finish encrypting one 64-bit data block for

80-bit keys and 128-bit key, respectively. In comparison with the proposed AES

architecture, PRESENT core uses 2.5 times fewer registers than the ones in AES

56

V
D

D
4

G
N

D
E

2

G
N

D
4

Test FSM & configs

FLL

V
D

D
_

N
O

C
P

E
R

F
1

S
P

I_
S

S
_

C
R

Y
P

T
O

_
N

C
R

Y
P

T
O

_
R

U
N

N
IN

G
_

O

V
D

D
E

2

V
D

D
_

C
R

Y
P

T
O

G
N

D
3

V
D

D
3

F
L

L
_

F
R

E
Q

_
O

U
T

_
0

V
D

D
_

C
F

G
_

1

C
L

K
_

I

GND7

VDD7

SPI_MOSI_I

SPI_SCLK_I

VDD_FLL

SPI_SS_ASN_N_I

Crypto. kernel

GNDE1

RESETN_I

SPI_MISO_O

GND8

VDD6

VDD_NOCPERF2

VDDE1

VDD_CFG2

GND5

VDD5

V
D

D
_

N
O

C
P

E
R

F
3

V
D

D
_

A
S

N

G
N

D
6

V
D

D
8

G
N

D
E

1

V
D

D

G
N

D

V
D

D

G
N

D
B

G
C

O
N

V
D

D
_

C
F

G
3

VDD1

GND1

VDD_CFG4

VDD2

VDD0

GND2

GND0

VDD_NOCPERF3

VDD9

GND9

Figure 3.10: SNACk testchip’s layout.

the stop signal through the SPI interface. The final layout of SNACk testchip is

shown in Figure 3.10. An on-chip Frequency-Locked Loop (FLL) is used to generate

different frequencies for the test. The FLL is also programmed through the SPI

interface. All the power estimation results in the next subsection are obtained using

this test configuration using the post-signoff extraction of the layout in Figure 3.10.

3.4.2 Power estimation results

To evaluate the performance and the power consumption of the proposed architec-

tures using the test environment of SNACk chip, two encryption cores are tested with

different key lengths at different supply voltages and different operating frequencies.

The same key and the plaintexts are sent to each encryption module. Concurrently,

the activity of the post-signoff timing simulation for each encryption module is cap-

59

Figure 3.15: SNACk test setup with the oscilloscope.

sured by measuring the supply voltage and the current through this pin. Figure 3.16

shows the power consumption of AES and PRESENT measured at 10MHz at the

room temperature. The supply voltage varies from 0.4V up to 1.3V which is a larger

range than the one in the power estimation setup. This is because the standard-cell

libraries used in the power estimation are only characterized for the working condi-

tion down to 0.6V . At 0.4V , the testchip can still work at 10MHz and consumes a

power of less than 20µW . In the worst case at 1.3V , AES has a power consumption

of 180µW , while PRESENT only spends more than 100µW . There is a small margin

in terms of power consumption between AES with 192-bit keys and AES with 256-bit

keys. Figure 3.17 shows the leakage power at various supply voltages. This leakage

power consumption is measured by turning off the clock generator and the circuit is

in the idle state without any activities of the block cipher modules. The two modules

are not separated by different power domain during the implementation. Therefore,

the result is the sum of the leakage of both AES and PRESENT. It is clear from this

figure that the worse case of the static leakage is at 1.3V with 40µW . In addition,

Figure 3.18 shows that the power consumption increases linearly with the operating

frequency.

The measured energy per bit of AES with 128-bit keys is illustrated in Figure 3.19.

Obviously, the AES module with 128-bit keys consumes a small energy of 0.4pJ/bit

at the supply voltage of 0.4V and with a throughput of 28Mbps. With the same

condition, PRESENT consumes an energy of 0.3pJ/bit but with a throughput of

17Mbps. At the highest throughput of 2Gbps, the proposed AES consume 2.2pJ/bit.

Our proposed crypto-accelerator can achieve very low power consumption with high

throughput at the subthreshold supply voltage of 0.4V .

The proposed architecture shows dominant performance compared to the state

of the art which is illustrated in Figure 3.20 and Table 3.1. From the area point

of view, the proposed AES architecture with only 128-bit key is 1.5 times bigger

than the design in [Zhao2015nsa] in the same technology node, and four times big-

ger than the design in [Mathew20153m1]. However, our design has four times more

throughput than the design in [Zhao2015nsa] and about eight times more throughput

than the design in [Mathew20153m1] at the same operating frequency. In compari-

64

0

20

40

60

80

100

120

140

160

180

200

0.3 0.5 0.7 0.9 1.1 1.3

P
o
w

e
r

(u
W

)

Voltage (V)

Total power consumption at 10MHz

AES128 AES192 AES256 PRESENT128 PRESENT80

Figure 3.16: Measured power consumption of AES and PRESENT in SNACk with
different operating voltages at 10MHz.

0

10

20

30

40

50

0.3 0.5 0.7 0.9 1.1 1.3

L
e

a
k

a
g

e
 P

o
w

e
r

(u
W

)

Supply voltage (V)

Leakage Power at different
supply voltages

Figure 3.17: Measured leakage power of the blockcipher module in SNACk testchip
at different supply voltages at room temperature.

65

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70

P
o
w

e
r

(u
W

)

Frequency (MHz)

Total power consumption @ diff. freq. @ 0.6V

AES128 AES192 AES256 PRESENT128 PRESENT80

Figure 3.18: Measured total power consumption of SNACk testchip at different op-
erating frequencies.

1

10

100

1000

0.3 0.5 0.7 0.9 1.1

F
re

q
u

e
n

c
y

 (
M

H
z
)

Supply Voltage (V)

Max frequency

2Gbps

28Mbps

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0.3 0.5 0.7 0.9 1.1

P
o

w
e

r
c

o
n

s
u

m
p

ti
o

n
 (

m
W

)

Supply Voltage (V)

Power consumption

2.2pJ/bit

0.4pJ/bit

Figure 3.19: Measured energy per bit of AES with 128-bit keys.

66

Table 3.1: Comparison with other AES implementations

Design Block
size
(bit)

Key
size
(bit)

Arch.
(data-
path)

Tech.
(nm)

#cycles
per
encrypt-
ion

Area
(kGEs)

Work-
ing
freq.
(MHz)

Power
(µW)

Through-
put
(Mbps)

Energy/bit
(pJ/bit)

The proposed

AES

128 128,
192,
256

32-bit 28 44, 52,
60

8.6 10 24

(0.6V),
11

(0.4V)

28 0.65

(0.6V),
0.4 (0.4V)

Banik, SAC’15
[Banik2015EEE]

128 128 32-bit 90 44 5.5 10 - 28 6.2

Zhang,
VLSI-C’16
[Zhang2016AC4]

128 128 8-bit 40 337 2.2 122 100
(0.45V)

46.2 2.2
(0.45V)

Zhao, TVLSI’15
[Zhao2015nsa]

128 128 8-bit 65 160 4 32 61.7
(0.6V)

25.6 2.3 (0.6V)

Mathew, JSSC’15
[Mathew20153m1]

128 128 8-bit 22 336 1.947 76 170
(0.34V)

29 5.6
(0.34V)

Liu, ESSCIRC’11
[Liu2011A2G]

128 128 128-bit 90 10 15 255 5,990 2.99Gbps 2.0

Mathew, JSSC’11
[Mathew20115GN]

128 128,
192,
256

2-stage
pipeline

45 5,6,7 100 31 409
(0.34V)

800 0.511

(0.34V)

Satpathy,
VLSI’18
[Satpathy2018grg]

128 128 8 S-
boxes
(recon-
fig.)

14 25 54 620
(0.75V),
2.4
(0.24V)

26.1mW
(0.75V),
15.6
(0.24V)

3.1Gbps
(0.75V),
2.4(0.24V)

8 (0.75V),
1.3
(0.24V)

son with the same 32-bit datapath, according to our optimization, our architecture

achieves 20% improvement in power consumption in TSMC 65nm compared with the

work in [Banik2015EEE] with a small increase in terms of gate counts. However, the

work in [Banik2015EEE] does not provide the information about how they got these

results. If their result comes from a post-synthesis estimation, it is less accurate

than the proposed results because the power estimation result is based on para-

sitic values which are sometimes not available or not accurate at the post-synthesis

stage. At the same throughput of about 28Mbps, our architecture consumes the

least power (24µW@0.6V) when compared with the 8-bit datapath designs such as

in [Zhao2015nsa, Mathew20153m1, Zhang2016AC4]. At this throughput, our pro-

posed architecture has about three times less power consumption than the best 8-bit

datapath design for low-power and low-energy in [Zhao2015nsa]. In terms of en-

ergy efficiency, our design consumes the least energy per bit among the low-cost de-

signs [Liu2011A2G, Mathew20153m1, Zhao2015nsa, Zhang2016AC4, Banik2015EEE]

with only 0.65pJ/bit (@0.6V@25oC); and approaches the energy per bit of the high-

performance design in [Mathew20115GN] (0.511pJ/bit@409µW@0.34V). Comparing

with the work in [Satpathy2018grg] using 14nm technology and a configurable ar-

chitecture for three symmetric ciphers, the block cipher modules in AES still have

advantages in term of power and energy consumption. At the supply voltage of 0.4V ,

the configurable cryptography kernel in SNACk testchip still consumes a power con-

sumption of 11µW less than the one in [Satpathy2018grg].

67

1.00

10.00

100.00

1000.00

1 10 100 1000 10000

k
G

E
s

(l
o
g

 s
c
a
le

)

Cycles (log scale)

Area (kGEs) vs. Cycles/encryption

1

10

100

0 1 2 3 4 5 6 7

Liu, ESSCIRC’11

B
a
n

ik
IA

C
R

’1
5

Zhao, TVLSI’15

Mathew, JSSC’15

A
re

a
 (

k
 G

E
s
)

Energy/bit (pJ/bit)

Area vs. Energy/bit (low cost impl.)

Mathew, JSSC’15

U
n

ro
lle

d
 &

p
ip

e
lin

e
d

im

p
le

m
e
n

ta

ti
o
n

.

Round based

impl.

32-bit

datapath

8
-b

it

d
a
ta

p
a
th

Figure 3.20: Comparison with other low-cost AES implementations.

68

3.5 Security Evaluation

Hardware security has become a critical issue over the last few years. However, adding

countermeasure to the chip not only takes time but also increase power consumption

and cost. The main purpose of this work is to investigate the low power features

for IoT. For this reason, no countermeasure was integrated into its design. However,

the security evaluation was completed by using the current state-of-the-art methods

including Correlation Power Analysis (CPA) attacks and Test Vector Leakage As-

sessment (TVLA) method based on the post-signoff power-trace extraction. Power

traces are obtained by performing power estimation using the technology libraries

with the netlist after implementation. The simulation waveform of the netlist pro-

vides the activities of the design similar to the real condition. This simulates the real

situation when the chip is working. The advantage of this method is that it can be

performed at different stages of the design such as the post-synthesis netlist or post-

place-and-route netlist. The power traces have lower noises when compared with the

real power traces. Optimization techniques can be applied to fasten the calculation

and reduce the storage size such as the compression of the power traces or selecting

only the region of interest. This evaluation can help to identify the flaws early in the

design flows. In addition, it also reduces the design cost because the designers do not

have to wait until the chip is fabricated. The power-trace generation and processing

using power estimation tools will be presented in the next section.

3.5.1 Power trace generation using PrimeTime and Post-signoff

netlist

Hardware security is emerging as a major threat to the IoT systems. Therefore, an

early method to evaluate the security feature at the design stage is implemented.

Accordingly, detailed power traces are extracted from power estimation results us-

ing Primetime with the post-signoff netlist and delay information in Standard Delay

Format (SDF). Figure 3.21 illustrates the design flows to generate the power traces

for evaluation. To begin with, the post-signoff netlist is exported after the place-

ment and route with its SDF. After that, the post-signoff timing simulation is done

using QuestaSim. The timing simulation generates the waveform with real timing

information. This waveform is then used as an input to power estimation.

PrimeTime is employed to do power estimation with full timing information of

each encryption. PrimeTime records the changes at the time that power consumption

is changing. Therefore, interpolation is needed to generate the power traces similar

to the real cases. The alignment of the power traces is also performed so that each

power trace has the same reference point in time. This can be done using the start of

each encryption. Figure 3.22 shows the trace processing steps. Because PrimeTime

only records the power when there is a change in the event, therefore, a zero-order

interpolation filter is applied to get the power traces at each time step. After that,

69

KEY

.sdc, .sdf/.spef

Simu gate

.vcd

PTPX

.lib

Power Waveform

Split

Interpolate
Synchronize

Key +random data

Traces

Plaintext/

CipherText

CPA/DPA

netlist

Figure 3.21: Design flow to generate the post-signoff power traces for evaluation.

the power trace for each encryption is extracted based on the encryption time. Fur-

thermore, in order to reduce the processing time and reduces the size of the traces to

simulate different sampling speed of the trace measurement device, adjacent points

can be added and reduced into only one point in the final power traces. This com-

pression technique is used in our trace processing techniques to reduce the size of the

power traces and fasten the computation. For instance, the power traces of 20,000

encryptions exported by PrimeTime have the size of 22GB in text format, while its

compression using Gzip only occupies 4.7GB. After the Gziped file processed by this

trace processing framework using the interpolation, alignment and trace compression

technique, the trace file, which contains the region of interest, takes 4.6GB of disk

space. The file size can be made smaller by reducing the number of points in the trace

file which is similar to reducing the number of sampling file in a real measurement.

Figure 3.23 illustrates the whole trace processing framework including extracting and

splitting the power traces, interpolating and compressing them and mounting CPA

attacks. This trace processing framework has been validated using the reference de-

sign [Aes128Opencore] which was successfully attacked by this framework to recover

the secret key.

In this work, the physical side-channel attacks are evaluated based on the simu-

lated power traces from a post-signoff design flows. PrimeTime is used to generate

the power traces from the timing simulation and the physical parasitic of the de-

signs. After that, the power traces are interpolated and compressed to simulate

70

the real trace acquisition. This framework has been used in successful attacks on

the implemented designs, therefore, it will be used to generate the power-traces to

evaluate the security features in this work. The security evaluation based on power

analysis using Correlation Power Analysis and Test Vector Leakage Assessment using

this trace-processing framework will be presented in Section 3.5.2 and Section 3.5.3,

respectively.

3.5.2 Test Vector Leakage Assessment evaluation

This work firstly uses Test Vector Leakage Assessment (TVLA) [Goodwill2011atm]

method to identify the possible leakages of the proposed cryptographic designs.

TVLA includes two types of tests to evaluate the information leakage using Welch’s

T-Test function. The first one is the non-specific test – a fixed-versus-random test

which compares the T-test score between the power traces of a fixed key and fixed

data encryption and the one of a fixed key and random data encryption. The other

is the specific test which can be used to identify the information leakage at different

steps in a round such as the round output, S-Box output, round input versus round

output, and the leakage at a specific byte. The total number of specific tests is 896

tests per round.

The proposed designs and the reference design on Opencores [Aes128Opencore]

are implemented in the same technology up to signoff. The signoff netlist and delay

information are used to generate 20,000 encryption traces. These power traces are

compressed to extract only the interesting part to do the TVLA evaluation. The

TVLA evaluation is performed on all ten rounds of AES 128-bit key case. This

leads to a total of 8.960 tests of specific tests. Figure 3.24 presents the number of

test failures for each category of the proposed design and the design on OpenCores

[Aes128Opencore]. Obviously, the two designs have different leakages. The proposed

design has the weakness in ROUT and SOUT test while the design on OpenCores

shows strong leakages in RIRO, ROUT and SOUT. In addition, The proposed design

does not have any test fails in ROUT BYTE0 and ROUTE BYTE1 tests. However,

the reference design on OpenCores shows a few test failures. In general, the proposed

design has 21 test failures fewer than the reference design.

In addition, the non-specific tests are also performed on the two designs. 10.000

power traces of fixed data and fixed key encryption are generated for the proposed

design and the reference design. After that, they are divided into two groups to

calculate the T-test scores. Figure 3.25 and Figure 3.26 shows the absolute T-test

scores of this test for the proposed designs and the reference design, respectively. It is

clear from these figures that the two designs do not pass the non-specific test because

there is no countermeasure implemented in the two designs. In terms of T-test

scores, the reference design has five times bigger in T-test scores than the proposed

design. The power traces used in this test is generated using the post-signoff power

estimation. Hence, some real conditions are not considered. For example, there is no

72

1102 974

164

2

5

11

1280
935

1

10

100

1000

10000

RIRO ROUT SOUT ROUT_BYTE0 ROUT_BYTE1

N
u
m

b
e
r

o
f

te
s
t

fa
ils

TVLA evaluation results

AES 128 (Opencores) AES 128 (SNACk)

Figure 3.24: TVLA evaluation results of the specific test of the proposed design
versus the design on Opencores [Aes128Opencore].

clock jitter in this case, so, the power traces are perfectly aligned. In a real system,

a noise created by the running components or from the clock source, the noise from

the power supply and so forth might make the T-Test score much lower than this

theoretical case.

All things considered, the security evaluation using TVLA method was performed

on the proposed design and a reference design from OpenCores. The evaluation re-

sults show that our design was exposed to some of the attacks especially in the

Round-Out (ROUT) tests and the S-box-Out (SOUT) tests. While the reference

design has the weakness in Round-In Round-Out (RIRO) tests, SOUT tests, and

ROUT tests. For non-specific test, our design shows five times lower than the ref-

erence design in terms of the T-test scores. Regarding TVLA results, the security

levels of the optimized design are equivalent to the reference design. It means that

the optimizations do not introduce new leakages.

3.5.3 Correlation Power Analysis attacks on estimated traces

TVLA results provide a level of confidence to conclude that the design has ex-

ploitable leakages. However, it might not lead to a successful key-recovery attack

[Schneider2015lam]. Therefore, this work also performs Correlation Power Analysis

(CPA) attack, a key-recovery attack, to verify that the proposed optimizations do

not introduce any new leakage. The attack is based on the power traces extracted

73

Figure 3.27: Number of correct guessed key bytes (in 128-bit key mode) by last-round
CPA attack.

from different vendors, therefore, they may monitor the bus, and expose the data

to accelerate the attacks. IP cores containing hardware trojans are becoming new

threats in IoT system because IoT might contain many IP cores from different ven-

dors. Moreover, hardware trojans are hard to be detected.

In summary, the proposed design firstly focuses on optimizing area, throughput

and power/energy consumption of the data encryption module, i.e., the block cipher

module in SNACk testchip. As the design of countermeasures is a different area of

research, this work does not consider the countermeasures for different attacks such

as fault attacks or side-channel attacks. Regarding the TVLA and CPA results, the

proposed architecture has certain resistance to correlation power analysis attacks.

Our experiment shows that only 12 bytes are revealed when mounting correlation

power analysis attacks on the designs. At the system points of view, there exists a

threat of data movements along the system bus, which can be monitored by hardware

trojans from third-party IP cores. These problems can be solved by using a new

mechanism to implement cryptography. In-Memory Computing is a new promising

solution in this case. Countermeasures such as masking and hiding techniques can be

easily implemented using In-Memory Computing by executing multiple operations

at the same time. Because of the regularity of the memory, these countermeasures

might increase the security features of the IoT system at no extra cost.

76

3.6 Conclusion

Current ultra-low-power and ultra-low-cost security solutions for IoT security usually

come along with using block ciphers as the main security primitives. Block cipher

is one of the deterministic components in a secure system and can be configured

to perform different modes of operations. However, block cipher consumes a large

amount of power. To minimize the power consumption as well as the hardware cost,

lightweight cryptography has been chosen with a reduction in the security level by

using small block size, small key size and a large number of rounds. This leads to a

reduction in the throughput of the system.

On the other hand, recent IoT proposals have been continuing using AES as the

main security primitives because of its well-studied security features and performance

in software. Lightweight cryptography such as PRESENT with lower security level

but providing low cost and ultra-low power consumption has not been adopted yet.

Furthermore, depending on the applications’ needs, lightweight security functions

can be selected when ultra-low-power mode is needed to extend their operations.

Strong security can be provided by conventional security functions, while configurable

security solutions can provide flexibility in terms of applications’ points of view.

Various previous works in AES focused on the serial implementation by using 8-

bit datapath and one-S-box architecture. 8-bit datapath architectures can reduce the

hardware cost and power consumption, but it also reduces the system throughput

and increases the energy consumption. 8-bit datapath architecture also requires

additional hardware registers to store the intermediate values. Trade-offs among

security levels, hardware cost, throughput and power/energy consumption must be

considered carefully.

This work proposes a configurable block cipher module with a traditional algo-

rithm AES and a lightweight cryptography algorithm – PRESENT. IoT applications

can select among various options such as key sizes, block sizes and the number of

rounds which corresponds to different security levels and different power/energy con-

sumption profiles. Accordingly, to reduce the hardware area, AES was implemented

with 32-bit datapath architecture and supported with power reduction techniques in

the datapath. Also, a round base architecture is used to maximize the throughput of

PRESENT. The proposed PRESENT architecture has about half of AES dynamic

power consumption.

Furthermore, multiple optimization strategies for AES 32-bit datapath to achieve

a low-cost, high-throughput, ultra-low-power, ultra-low-energy design with multiple

levels of security have been proposed. The area of the proposed AES architecture

is saved by a reorganization of both datapath and key expansion to minimize the

number of registers and control logics. The power consumption is reduced by choos-

ing the S-boxes for low-power, by minimizing the activity in the key expansion and

the datapath, and by applying a clock gating strategy to data storage registers.

The throughput is maximized by using 8 S-boxes and doing key expansion in par-

77

allel with the encryption path. Multiple key sizes of the encryption module provide

different security levels which help IoT applications to adapt to a wider range of

security protocols and mechanisms. In terms of power and energy consumption, at

0.6V@25◦C, the proposed AES design can achieve power consumption of less than

20µW for all key configurations with the energy consumption of less than 1pJ/bit

with the throughput of 28Mbps at 10MHz. In this condition, the proposed AES im-

plementation has achieved nearly the same energy consumption in comparison with

the lightweight cryptography algorithm PRESENT on the same technology node –

ST FD-SOI 28nm technology. Nevertheless, this work does not look into the coun-

termeasure for power analysis attack, but the security evaluation is performed on

the AES design to identify the possible weakness in terms of hardware security. The

evaluation results using Correlation Power Analysis (CPA) and Test Vector Leakage

Assessment (TVLA) show that the optimizations are somewhat beneficial to security

features. In the key recovery attack using CPA methods, only 12 bytes out of 16

bytes of the key are revealed using the last-round key hypothesis. TVLA test results

show that the proposed design has equivalent information leakage when being com-

pared with the reference design on Opencores. The proposed block cipher module

obviously can be used for different applications with different security requirements

for future IoT systems.

On the other hand, the crypto-accelerator approach to design the encryption mod-

ules still embrace a number of weaknesses. For example, countermeasures must be

integrated separately, while countermeasures for one attacks might not be applied to

the others. In addition, the hardware accelerator cannot be changed after production,

therefore, in case of any flaws in the design of the hardware module, the only solu-

tion is to make a replacement with a more secure one. This will increase the cost of

maintaining security and bring about the interruption of the service. This urges the

demand for investigating a new method for an efficient implementation of the cryp-

tography algorithms. In the next chapter, a mapping of the same algorithms will be

explored using a new concept of computing so-called In-Memory Computing. As ear-

lier said, In-Memory Computing can help improve the flexibility and configurability

of the design.

78

Chapter 4

Using memory as acceleration for data

encryption

The proposed crypto-accelerator can provide ultra-low-power consumption with con-

figurable capability. With different optimizations as presented in Chapter 3, the block

cipher modules in SNACk testchip have small hardware footprint with ultra-low-

energy consumption. However, these advantages are from the fixed hardware struc-

ture with specific optimizations which cannot be altered after fabrication. Therefore,

specific solutions also reveal certain drawbacks.

To begin with, the crypto-accelerator often has a fixed structure with fixed al-

gorithms to optimize hardware cost and power consumption. However, it is crucial

for IoT standards to evolve to adapt to new security threats and to mitigate new at-

tacks. New cryptanalysis techniques along with newly discovered weaknesses in cryp-

tography algorithms might lead to the exclusion of algorithms out of the standards.

Therefore, flexibility and configurability which are adaptable to new IoT standards

and capable of mitigating new threats are required for future IoT applications.

In addition, systems on chip are threatened by hardware trojans. IoT devices

use highly integrated systems on chip with various IP cores procured from different

vendors. It is possible for a third party IP vendor to insert a hardware trojan into

their IP cores to monitor the system bus for secret information. Moreover, crypto-

accelerators typically read out the data from memory through the system bus before

performing their tasks and writing the data back into the memory. Consequently,

this not only raises a security threat but also creates communication overheads.

Possible solutions to overcome this overhead could be Processing In Memory

(PIM), In-Memory Computing and Near-Memory Computing which can be employed

to implement the security primitives directly in the memory. Processing In Memory

and Near-Memory Computing use the accelerator embedded in the memory con-

troller, hence the proposed crypto-accelerator can also be applicable to them. Mean-

while, In-Memory Computing enables the execution of logical or arithmetic operations

79

using the memory array itself. Thus, In-Memory Computing shows big potentials to

implement flexible and configurable security solutions which can map various security

primitives using the memory itself. However, because of the serial operations of the

memory, flexibility and configurability have to be traded off with the system through-

put and power consumption. Further study is required to prove its effectiveness.

This chapter will look into techniques to perform data encryption using In-

Memory Computing to overcome the drawbacks of hardware crypto-accelerators.

Two case studies using the same algorithms as in Chapter 3 are selected to eval-

uate the flexibility, configurability and efficiency of the proposal. All operations of

AES and PRESENT can be accomplished in a new type of memory called Smart-

Mem. SmartMem supports not only the normal memory operations such as reading

and writing but also the logic operations such as AND, OR, NOT, XOR, XNOR and

SHIFT. Using this new kind of memory, encryption can be conducted directly at the

place where the data are stored. Therefore, the data transfer is minimized while the

throughput of the whole system can be improved and the power consumption can

also be reduced.

This chapter is organized as follows. Section 4.1 gives an introduction to various

benefits of data encryption using memory elements. After that, Section 4.2 describes

the mechanism to do In-Memory Computing which is used to create SmartMem

array. The implementations of AES – a conventional cryptography algorithm, and

PRESENT – a lightweight one are presented in 4.3. Finally, Section 4.4 concludes

this chapter along with its perspectives.

4.1 Introduction

In a traditional computer-based system, most of the area of the chip is actually

occupied by cache memories or SRAMs which are used to accelerate the computation

by reducing the data access time and power consumption. However, the processor

has to read the data stored in these memories, then do the calculation and write

back the results into them. Consequently, it creates a huge communication overhead

and wastes power/energy consumption. Recently, with the advances in the design

of memories, SRAM and DRAM memories can be designed so as to execute simple

logical and arithmetic operations on the data directly in the memories or through the

memory controller. This results in a shift in system design mindset as well as brings

benefits to the design of cryptographic modules.

Figure 4.1 summaries different computation architectures for cryptographic mod-

ules. Cryptography in the first box is conducted by software running by a CPU or

a microcontroller. In this scheme, the processing unit needs to read the data from

the memory, do the cryptographic algorithms, then write the data back into the

memory. This simultaneously reduces the system throughput and increases power

consumption to the extents that the processing unit has to wait for the data trans-

80

termeasures can also be applied when using in-memory computing. For example, the

independent operations can be randomized so that it will be harder to guess at which

time a certain operation is executed. Even fault tolerant mechanisms can also be

applied. The memory can be designed with error correcting code to detect errors and

replace it by a redundancy cell. This all benefits the in-memory computing especially

in-memory encryption.

Processing in Memory (PIM) has been developed before by embedding the ALU

into the DRAM controller. In this mechanism, the dedicated processing element

is included in the memory controller for calculation. The calculation is completed

by adding dedicated hardware closer to the DRAM where the main data is stored.

The DRAM controller will read the data, do the calculation on them, and write

the results back into DRAM. SmartMem is differentiated from PIM by using In-

Memory Computation which uses SRAM memory as an accelerator for calculation.

With a special design of the memory cell and the IO circuits, the area overhead is

minimized. SmartMem structures can also be used as acceleration for PIM. In the

next section, mechanisms for in-memory computation will be addressed. After that,

these mechanisms will be used to create the Encryption-In-Memory modules.

4.2 Computation In-Memory mechanism and Smart-

Mem

SRAM memory is one of the most common components in a computing system,

however, adding computation into memory is a challenge. The main purpose of

SRAM is to write data into the memory bit cells and read data from them. Memory

is often a full custom design, therefore, adding computation to them might increase

the complexity of the design. However, adding computation to memory has many

advantages. Firstly, it reduces the data bandwidth for the memory IO. The data can

be processed directly in the memory without reading it out of the memory. This will

minimize the power consumption of the system. In addition, it also minimizes the

risks of exposing the secret data when the data are read through the system bus.

In the security view, SRAM memory is more regular than ASIC design. Therefore,

the delays and glitches are less abnormal when compared to ASIC implementation.

This makes it more secure when using the memory elements as the acceleration for

IoT. In-memory computing has more resistance to DPA attacks as claimed by Zhang

et al. in [Zhang2018rar]. A software implementation might need only 20 power

traces to reveal the first byte of the key while the near-memory architecture of Zhang

et al. needs 300 traces to obtain the same key. Nevertheless, memory design can

also be hardened to reduce information leakage, for example, the work presented in

[Rozic2012dsf].

Recently, new ideas have been raised on adding some logical and arithmetic op-

erations to the memory without changing the memory structure very much. For

82

example, Jeloka et al. in [Jeloka2016anc] create logic computation using TCAM cells

by modifying the sense amplifiers of the original TCAM memory. In the logic-in-

memory mode, this type of memory is able to do simple logic operations such as

AND or NOR. However, for implementing block cipher in memory we might need

other operations such as XOR and SHIFT. Akyel et al. in [Akyel2016ddr] show a

memory structure which supports multiple operations on each row. In this work, we

use this memory structure as the accelerator for in-memory encryption. This memory

structure is called SmartMem.

A SmartMem bit cell is constructed using traditional 6T SRAM bit cells with

two additional read ports which lead to a 10T SRAM cells. The detailed structure of

the SmartMem bit cells is presented in Figure 4.2. It contains one Write Word-Line

(WWL) and two read word lines including Read Word-line Left (RWL) and Read

Word-line Right (RWR). Reading and writing data are separated using two different

pairs of bit lines. Write Bitline Left (WBL) and Write Bitline Right (WBR) are used

for writing operation of bit cells with the same mechanisms as 6T SRAM; while Read

Bitline Left (RBL) and Read Bitline Right (RBR) are used to read the value stored

in the bit cells. For read operations, RBL and RBR must be precharged first. After

that, depending on the value stored in the 6T cell, RBL and RBR will be pulled

down to ‘0’ or kept at ‘1’. Because of this configuration, RBR reads the value of the

bit cell while RBL reads its inverse.

Figure 4.2: 10T SRAM cell for In-Memory Operation proposed by Akayel et al. in
[Akyel2016ddr].

Writing operation is accomplished by precharging WBL and WBR with the cor-

rect voltage value. After that, the word line is activated. This is the same as writing

operation of 6T SRAM cell. Similarly, reading operation is carried out by precharging

either RBL or RBR then activating the corresponding read wordline RWL or RWR.

However, RBL will read the inverse of the value stored in the bit cells. For in-memory

calculation, we will need to control both read ports.

Figure 4.3 describes the in-memory operation using this type of bit cells. Logic

operations can be performed on the data in the same column of memory. For example,

by performing read operation on both bit cell A and bit cell B using two read ports

83

of each cell, different logic results could be obtained. In this example, RBL has the

logic function A NOR B because either A or B stores the logic value ‘1’ will result

in the logic value ‘0’ at the output. In contrast, RBR has the logic function A AND

B because both A and B must store a logical value of ‘1’ to make the RBR stay in

‘1’. Further logic operations can be constructed based on this basic operation. For

example, XOR can be performed by adding a NOR gate between two read bitline

in the peripheral circuits. In [Akyel2016ddr], Akyel et al. use this memory cells

and some additional logics in the peripheral of the memory to perform simple logic

operations and arithmetic operations such as AND, OR, NAND, NOR, XOR, XNOR,

SHIFT, addition, subtraction and so on. The logic functions can also be performed

on multiple rows. However, in this work, we only focus on mapping of cryptographic

function into the memory, therefore, we only focus on XOR and shift operations. The

XOR operation will be performed on two selected rows of the memory.

Figure 4.3: In-Memory logical computation using 10T SRAM cells.

To use the additional operations of SmartMem, the interface of the traditional

SRAM must be modified to add more control information. Figure 4.4 illustrates the

differences between the traditional SRAM and the SmartMem. The signals in red

are the additional signals to support the smart operations. As can be seen from the

figure, Write Enable (WE) signal is extended into two bits to support four modes:

normal-read, normal-write, smart-read and smart-write. In the smart-read operation,

the contents of multiple memory rows will be read, and the results of the smart

operations on these rows will be obtained at the peripheral circuits of the memory.

84

SmartMem
nxm

m / Addr_bits /

n

/

5

/

2

/

1

/

1

/

1

/

m /

DIN ADDR

DOUT

CLK

RSTN

CS

SEL

OS

WE

Figure 4.4: SmartMem’s block diagram with its inputs and outputs.

R
o

w
 d

e
c
o

d
e

r

R
o

w
 d

e
c
o

d
e

r

SEL1

SEL2

OR

OR

OR

Figure 4.5: SmartMem structure with two selection lines.

85

Additionally, in the smart-write operation, the contents of multiple memory rows will

be read at the same time to perform the smart-read operation. After that, the result

of the smart operation will be obtained in the peripheral circuits, and then will be

written back into the memory. The smart operation is specified using the operation-

selection signal (OS). The selection signal (SEL) is used to select different rows of

the memory for the smart operations. The bit width of SEL signal is equal to the

number of rows in the memory. A large number of rows makes the interface of SEL

signal impractical. Therefore, to reduce the number of bits of the interface, the SEL

signal is generated by using the addresses of rows, which will be accessed, and onehot

decoders. The results from the onehot decoders will be ORed together to generate

the SEL signal. Consequently, the inputs to the memory will be the addresses of the

accessed rows passed through onehot decoders and OR together as in Figure 4.5. The

more rows are selected, the more decoders must be added to decode the row address.

This view of the memory is similar to multi-read-port SRAM.

Precharge

Bit cells

ST

Column Mux

Output IOWrite driver

Input reg. Out reg.

W
o
rd

lin
e

d
ri

v
e
r

D
e
c
o
d
e

r

Pre-

decoder

Addr

FFs

D
e
c
o
d
e

r

W
o

rd
lin

e
d

ri
v
e

r

Pre-

decoder

Addr

FFs

D
e
c
o
d

e
r

W
o
rd

lin
e

d
ri

v
e
r
Pre-

decoder

Addr

FFs
ADDR

S
E

L
1

S
E

L
2

OS driverOS

Data_in Data_out

Figure 4.6: SmartMem structure with detailed blocks.

The detailed block diagram of the SmartMem organization is shown in Figure 4.6.

It contains the similar modules as normal SRAM including bit cell array, address

decoders, wordline drivers, column multiplexers, precharge circuits, write driver and

output IO. SmartMem adds modified circuits for the write driver and the output IO

to support smart operations. The bit cell array uses a 10T SRAM cell with two read

ports and one write port as presented in Figure 4.2. To support for selecting two

rows for smart operations, two additional address lines named SEL1 and SEL2 are

86

added. After decoded into the word line, two addresses are ORed with each other to

form the SEL signal for the smart access. To control the smart operation, a new OS

driver module is added. This module will be in charge of selecting the correct smart

operation.

In summary, different logical and arithmetic operations can be performed with

the special design of the bitcell and the IO circuit to facilitate the In-Memory-

Computation capability. The data movement is reduced on account of the shortened

datapath. Moreover, In-Memory Computing has fewer area overheads than the one

in Processing in Memory because it uses the facilities of the memory to perform the

operations instead of using dedicated hardware as in Processing in Memory. The

next section presents the implementation of AES and PRESENT using the memory

design.

4.3 Implementation of Advanced Encryption Standard

and PRESENT using Encryption in memory

Specific hardware crypto-accelerators can provide ultra-low-power and ultra-low-cost

security solutions for IoT applications. However, they are not adaptable to new

standards and mitigate new threats. Flexibility and configurability can be provided

by a generic solution using In-Memory computing. To improve the weakness of

the proposal in Chapter 3, this section presents the implementation of AES and

PRESENT based on the In-Memory Computing mechanisms which were discussed

earlier in Section 4.2. In spite of implementing two algorithms using a specialized

hardware structure, this work utilizes the logic operation performed in the memory

to create a flexible and configurable implementation of the cryptography algorithms.

The memory is different from the ASIC implementation that it has regular structures

with well-defined components. On the other hand, memory is fast at looking-up

operations while it is limited in computation. Therefore, this section will manage to

use an alternative organization of the memory and the logic operations to implement

AES and PRESENT. Accordingly, two algorithms will be transformed to utilize the

advantages of the SmartMem architecture.

4.3.1 Advanced Encryption Standard

Advanced Encryption Standard (AES) is an algorithm optimized for modern com-

puters with the 32-bit and larger registers. Therefore, it contains operations which

can be performed efficiently using software. Consequently, mapping AES into the

SmartMem requires careful consideration especially with the nonlinear operation of

S-boxes. In addition, SmartMem is similar to normal memory, but it has the capabil-

ity to calculate the logical operations efficiently. As a result, AES operations must be

reorganized and transformed to use the advantage of the SmartMem. Figure 4.7 shows

87

State ← plaintext

For r = 1…9:
AddRoundKey(state, Kr-1)
ShiftRows(state)
SubBytes(state)
MixColumns(state)

AddRoundKey(state, k9)
ShiftRows(state)
SubBytes(state)
AddRoundKey(state, k10)
Ciphertext ← state

State ← plaintext

For r = 1…9:
AddRoundKey(state, Kr-1)
ShiftRows(state)
SubBytes&MixColMultiply(State)
XOR(State)

AddRoundKey(State, k9)
ShiftRows(State)
SubByte(State)
AddRoundKey(state, k10)
Ciphertext ← state

Original AES (with the

rearrangement of operations)
AES for SmartMem

Figure 4.7: AES original algorithm and the one for SmartMem.

the original AES algorithm and its modification for being implemented on SmartMem.

SubBytes and MixColumns are composed into SubBytes&MixColMultiply and fol-

lowed by an XOR because SubBytes and MixColumns multiplications will be merged

together and done by using Look-Up Table (LUT). After that, the results are XORed

to get the equivalent results as the original AES. The LUT can be done easily us-

ing the memory while XOR is supported by SmartMem. The other steps are kept

the same because these operations are supported by the SmartMem. For example,

AddRoudKey is actually XOR operation while ShiftRows can be implemented by

controlling the read and write address.

Furthermore, to generate the Look-up Table for SubBytes and MixColumns, the

MixColumns is decomposed into two steps based on the method proposed by James

A. Muir [Muir2013ato] in Figure 4.8. The output from SubBytes is multiplied with

a metric with different coefficients as in Figure 4.8(a). A new byte is created by

multiplying the output of SubBytes with different coefficients and then XOR them

together. The LUT is generated by multiplying the SubBytes LUT with different

multiplying coefficients. In the XOR step, the results will be combined as in Figure

4.8(b). The LUT values will be stored in the memory to be used as LUT tables.

The proposed organization of the SmartMem for implementing AES encryption

is illustrated in Figure 4.9. The memory is composed of four small memories with

8-bit width. Each memory will store a copy of the LUT generated in the previous

steps. The encryption controller will manage the address of each memory. Each

memory contains the LUTs for Subbytes&MulcolMultiply. Four LUTs for Sub-

ytes&MulcolMultiply occupied 1024 words of each memory bank. The expanded

keys could be reused by being generated in advance and being stored in the memory.

This occupies 160 bytes in total and 40 bytes for each memory bank. Therefore,

88

--

(a) Original MixColumns in AES

(b) MixColumns Table-Lookup construction for In-Memory Operation

Figure 4.8: MixColumns for AES using SmartMem based on the method described
in [Muir2013ato].

each memory bank has the size of 2048 words to store the LUTs, expanded keys,

plaintexts, ciphertexts and temporary data. Table 4.3 summarizes the number of

memories needed to store the LUTs, the expanded key, the S-boxes and the state.

More than 2KB can be used to store plaintexts and ciphertexts.

2048
x8-bit

2048
x8-bit

2048
x8-bit

2048
x8-bitA

d
d

r2
S

e
l

Sel

Sel

Sel

Sel

DIN3 ADDR3 DIN2 ADDR2 DIN1 ADDR1 DIN0 ADDR0

DOUT3 DOUT2 DOUT1 DOUT0

S
m

a
rt

M
e

m
_

C
ry

p
to

E
n

c
ry

p
tio

n
 C

o
n

tr
o

lle
r

Figure 4.9: SmartMem organization for AES 32-bit encryption.

89

Table 4.1: Memory size to store the expanded key, look-up table for SubBytes and
Mixcolumns of 32-bit datapath architecture

Name Quantity Size (byte) Total size (byte)

Key storage (expanded key) 11 16 176

S-Box&MixcolMultiply table 4×4 256 4096

S-Box table 4 256 1024

Total 5296

Remaining for users’ data 2896

At the startup phase, the LUTs and the expanded key will be written into each

memory. After that, the plaintexts can be written into the memory and the encryp-

tion can start right after that. The address of the plaintexts, the expanded keys and

the LUTS offsets can be programmed into the encryption controller using software.

When the encryption process is activated, the encryption controller will take control

of the memory interface to do the encryption.

After the memory is configured with the LUTs and the expanded key and the

plaintexts are written into the memory, the encryption can be started by the encryp-

tion controller. Table 4.2 summarizes the mapping of AES operations into SmartMem

operations. The first operation in the AES algorithm is AddRoundKey. This oper-

ation is the XOR of the plaintexts and the key, therefore, it is done by using the

smart-write operation. The wordline containing plaintexts and the key will be se-

lected and the read data will be applied with XOR. The output data is written back

into the memory directly. The second operation is ShiftRows. ShiftRows is done by

a normal read operation with the addresses of 4 memory banks form a diagonal of

the state matrix. To read out the diagonal of the 4×4 matrix, the four addresses of

the memory are added with 0, 1, 2, and 3, respectively at first. After that, these

addresses are shifted to read the remaining ShiftRows values. Because ShiftRows are

simply normal reads, they can also be integrated into Subbyte&MulcolMultiply. The

last operation is Subbyte&MulcolMultiply which is carried out by using the output

data from ShiftRows as the address to look up the corresponding values in the LUTs.

The output data has to be added with the LUTs’ offsets to select the correct LUTs

for the operation. To further optimize the mapping process, ShiftRows, SubBytes

and MixColumns are combined to use one normal read, one look-up operation and

three smart-write operations for each 32-bit data.

Figure 4.10 shows the performance evaluation for AES implementation using a

32-bit datapath on SmartMem. It shows the number of clock cycles which each step

needs. AddRoundkeys takes one cycle for 32-bit data and four cycles for 128-bit

data. ShiftRows needs one clock cycle to perform the normal read for 32-bit data.

SubBytes and MixcColumns need 3 XOR and one look-up, therefore, it needs four

cycles for 32-bit datapath. In total, the AES mapping on SmartMem using 32-bit

datapath requires 232 clock cycles to finish an encryption.

It is also possible to implement the AES encryption algorithm on a single mem-

90

Table 4.2: Mapping of AES operations into SmartMem operations

AES’ operations SmartMem’s operations

AddRoundKey Smart-Write: Selecting wordlines of plaintexts
and corresponding key to apply XOR and write
back.

ShiftRows Normal read operation: Read each memory us-
ing diagonal addresses of a 4×4 matrix

Subbyte&MulcolMultiply Three smart-write operations (smart-write and
write back) and one normal read

SubBytes for the last round Look-up operations

state ← plaintext

For r = 1…9:
AddRoundKey(state, Kr-1)
ShiftRows(state)
SubBytes&MixColMultiply(state)
XOR(state)

AddRoundKey(state, k9)
ShiftRows(state)
SubByte(state)
AddRoundKey(state, k10)
Ciphertext ← state

4 cycles

4x3 cycles

4x2 cycles

4 cycles

24 x 9 cycles

4 cycles

4 cycles
4 cycles

Performance: 32-bit datapath

Figure 4.10: AES 32-bit datapath using SmartMem.

ory bank to reduce hardware area and power consumption. In addition, with this

configuration, multiple banks can be used to do parallel encryption to improve the

throughput. In this case, instead of using multiple memories, a single memory bank

with a size of 2048 words is used. Figure 4.11 demonstrates the performance evalu-

ation of AES with 8-bit datapath on SmartMem. In 8-bit datapath, 1024 bytes are

used to store 4 LUTs of the SubByte&MixColMultiply. 160 bytes are used to store

the expanded key. As a consequence, only 864 bytes are used to store plaintexts, tem-

porary data and ciphertexts. Each step is performed on 1 byte. As a result, each step

needs to be repeated 16 times. In summary, the 8-bit datapath architecture needs

874 clock cycles to finish one encryption. Table 4.3 presents the memory required

to store the LUTs and data for encryption. In 8-bit datapath, a single 2048-word

memory bank is used and 592 bytes are available for user data while 1456 bytes are

used to store the LUTs and the expanded key.

In summary, it is possible to map AES algorithm using only SmartMem’s opera-

tions. AES works on a byte data. Therefore, it can be implemented using a 4-byte

91

State ← plaintext

For r = 1…9:
AddRoundKey(state, Kr-1)
ShiftRows(state)
SubBytes&MixColMultiply(state)
XOR(state)

AddRoundKey(state, k9)
ShiftRows(state)
SubByte(state)
AddRoundKey(state, k10)
Ciphertext ← state

16 cycles

16x3 cycles

16x2 cycles

16 cycles

90 x 9 cycles

16 cycles

16 cycles
16 cycles

Performance: 8-bit datapath

Figure 4.11: AES 8-bit datapath using SmartMem.

Table 4.3: Memory size to store the expanded key, look-up table for SubBytes and
Mixcolumns of 8-bit datapath architecture

Name Quantity Size (byte) Total size (byte)

Key storage (expanded key) 11 16 176

S-Box&MixcolMultiply table 4 256 1024

S-Box table 1 256 256

Total 1456

Remaining for users’ data 592

datapath (32-bit datapath) or an 8-bit datapath. This section presents the detailed

mapping of the AES operations into the SmartMem’s operations. The encryption

controller will control the read/write operations and smart-read/smart-write opera-

tions. The AES operations are decomposed into multiple operations of SmartMem,

whereas shiftRows, SubBytes and MixColumns are combined into a normal read fol-

lowed by a look-up and XORs. The mapping has been demonstrated using VHDL and

the SmartMem model. The 32-bit datapath architecture of AES using four memory

banks of 8-bit width takes 232 clock cycles for one encryption. The 8-bit datapath

architecture using a single memory bank needs 874 clock cycle per encryption.

4.3.2 PRESENT

Lightweight cryptography algorithms can also be implemented using In-Memory

Computing. Specifically, when being implemented in specific hardware

crypto-accelerators using bit-based operations, lightweight cryptography utilizes the

hardware constructs to reduce the hardware cost and power consumption. This is in

contrast to conventional cryptography algorithms which are optimized for software

implementation with operations on bytes. However, it is the bit-based operations

that make lightweight cryptography less efficient in comparison with software

implementation. Thus, this section is set to examine the possibility to implement

92

bit-based operations of cryptography algorithms using SmartMem through the

implementation of PRESENT.

PRESENT is an algorithm optimized for hardware implementation. Implement-

ing it using SmartMem operations is more complicated because PRESENT uses bit-

based operations. PRESENT contains only two operations: S-box and wire permu-

tation. Since, S-Box of PRESENT uses 4-bit S-Box, there will be a redundant to

store them in the 8-bit memory. In addition, the wire permutation in PRESENT

makes it less efficient in both software implementation and in SmartMem. Figure

4.12 demonstrates the permutation layer in PRESENT. The permutation is done at

the bit level making it hard to implement PRESENT on SmartMem. Furthermore,

the output of S-Boxes will be used as inputs to permutation. This leads to the idea

of combining S-Boxes and permutation to use Look-Up Table [Benadjila2013ilb] for

SmartMem.

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Byte 0 Byte 1 Byte 2 Byte 3

Byte 0 Byte 2

Figure 4.12: PRESENT bit permutation.

It can be seen from Figure 4.12 that the first byte after permutation is constructed

by bit 0 and bit 4 of 4 input bytes, while the second byte after permutation is from

bit 1 and bit 5 and so on. We can calculate the LUTs for PRESENT by using the

following equation:

sbox permuted = sbox0||sbox4||sbox1||sbox5||sbox2||sbox6||sbox3||sbox7 (4.1)

In equation 4.1, || is the bit concatenation operator. This means that each individual

bit of the S-box is permuted using this order: 0, 4, 1, 5, 2, 6, 3, 7. Then, the look-up

table can be generated using these equations:

LUT1 = sbox permuted (4.2)

LUT2 = sbox permuted << 2 (4.3)

LUT3 = sbox permuted << 4 (4.4)

LUT4 = sbox permuted << 6 (4.5)

In the above equation, << is the circular shift operator. The look-up tables are

created by circularly shifting the sbox permuted with a different number of bits.

93

After the look-up tables are generated, the organization of these look-up tables

using the memory structure as described in section 4.3.1 is demonstrated in Figure

4.13. Each memory bank contains 4 LUTs of size 256 bytes and 4 bytes of bit masks.

The purpose of the bit masks is to select only 2-bit at a time. These two bits, which

are the outputs of the S-box after permutation, will be XORed with the expanded

key, therefore, only selected bit are selected using these bit masks.

The encryption is carried out by selecting a word and then selectively applying the

bit mask and applying the XOR. They are a combination of smart-read and smart-

write operations. For example, to create the first byte of the output of a round,

the input data was used as an address to look-up through the LUTs to select the

first 2-bit of the first 4 bytes. Also, a mask is used to apply to each look-up, and

the outputs after masking are ORed together to form the output byte. This is done

repeatedly to get the output of a round.

2048
x8-bit

2048
x8-bit

2048
x8-bit

2048
x8-bitA

d
d

r2
S

e
l

Sel

Sel

Sel

Sel

DIN3 ADDR3 DIN2 ADDR2 DIN1 ADDR1 DIN0 ADDR0

DOUT DOUT DOUT DOUT

S
m

a
rt

M
e

m
_

C
ry

p
to

E
n

c
ry

p
tio

n
 C

o
n

tr
o

lle
r

LUT_0

LUT_1

LUT_2

LUT_3

Mask

LUT_0

LUT_1

LUT_2

LUT_3

Mask

LUT_0

LUT_1

LUT_2

LUT_3

Mask

LUT_0

LUT_1

LUT_2

LUT_3

Mask

Figure 4.13: 32-bit architecture for PRESENT on SmartMem.

Table 4.4 summarizes the memory requirements to store the look-up tables and

the expanded key for this implementation. 31 expanded keys must be stored in the

memory along with 4×4 of 8-bit S-boxes-permuted tables. 4 Masks are also needed for

each memory bank. This results in the total requirements of 4422 bytes of memory

for 32-bit datapath architecture. With this memory configuration, 3770 bytes are

remained for storing temporary data, plaintexts and ciphertexts. The total number

of clock cycles to finish one encryption is 873 clock cycles. PRESENT on SmartMem

employs a large number of clock cycles for one encryption because of its bit based

permutation which leads to the use of bit masks for each encryption.

In summary, PRESENT was designed with the hardware construct to reduce the

area and power consumption of the hardware implementation. However, when it

comes to software implementation, bit masks have to be applied which brings about

the inefficiency of the software implementation. For its implementation on SmartMem

94

Table 4.4: Memory size to store the expanded key, look-up table for substitution,
permutation and masks of a PRESENT 32-bit datapath architecture

Name Quantity Size (byte) Total size (byte)

Key storage (expanded key) 31 10 310

S-box 8-bit and permutation table 4×4 256 4096

Mask table 4 4 16

Total 4422

Remaining for users’ data 3770

using 8-bit memory bank like the one in AES implementation, the S-boxes and the

permutation can be combined into a look-up table. After that, bit masks can be

applied to get the expected output. However, because of the use of a large number of

bit masks operation, PRESENT with 32-bit architecture requires 873 clock cycles to

finish one encryption of 64-bit data block. To encryption 128 bits of data, PRESENT

will need 1746 clock cycles. Compared to AES implementation using Smartmem with

only 232 clock cycles per 128 bits of data, PRESENT is nearly eight times slower

than AES. In term of memory overhead, PRESENT uses about 800 bytes less than

AES when implemented using SmartMem.

4.4 Conclusion

Crypto-accelerators can help achieve ultra-low-power consumption with low hardware

cost, but it is also enclosed with some drawbacks in terms of security points of view.

Crypto-accelerators implement a specific algorithm and have specific optimizations to

get low power and small hardware footprint. However, the IoT standards continually

evolve to cope with critical vulnerabilities and to mitigate security threats. Mean-

while, crypto-accelerators with fixed structures and algorithms cannot keep up with

this constant change. In addition to that, today’s widely used integrated circuits are

critically vulnerable to hardware trojans which can be embedded by a third-party IP

hardware vendor to monitor the system bus or to leak secret data.

In-Memory Computing is a new promising technology which can enable the in-

place processing of information. In-Memory Computing uses the memory itself to do

logical operations such as AND, OR, XOR and so on, and some basic arithmetic op-

erations with the help of some extra circuits in the peripherals. This type of memory

is not only applicable to accelerate different types of calculations but also employable

to implement various security primitives. Security primitives implemented using this

technology can reduce the risks of moving secret data through the system bus and

the overhead of data transfer.

In-Memory Computing can be designed using various technologies such as Do-

main Wall Nano Wires, Non-Volatile Memory (NVM) or Complement Metal Oxide

Semiconductor (CMOS). SmartMem was proposed by Akyel et al. and implemented

95

based on the concepts of In-Memory Computing using the current CMOS technolo-

gies. This has been seen as an innovative idea to move the computation close to the

place where the data are stored. Some benefits could be claimed from mapping data

encryption algorithm into the SmartMem, for instance, saving the memory band-

width, saving the power consumption, and saving time to move the data from the

memory to the processor or the crypto core and vice versa. However, under current

conditions, it is challenging to map the algorithm using pure memory operation.

The SmartMem proposed by Akyel et al. uses 10T SRAM bitcells with one write

port and two read ports to enable the smart operations. Specifically, two read ports

can be used to select two different wordlines for smart operations. Also, logical op-

erations are performed using the memory structure itself. Some other operations

including XOR and arithmetic operations are performed by adding small extra cir-

cuits to the peripheral circuits of the memory.

In this chapter, the implementations of AES, a traditional cryptography algo-

rithm, and PRESENT, a lightweight block cipher, into SmartMem are proposed

using the SmartMem model. It is possible to implement them using the memory

as a look-up table in combination with smart in-memory operations. The mapping

involves using many sub-steps, hence, requires more clock cycles to finish. For AES

with 32-bit datapath using four memory banks of 8-bit width, it needs 232 clock cycles

for one encryption. PRESENT even needs 873 clock cycles to finish one encryption

because of its bit-based permutation. In terms of throughput, PRESENT has nearly

eight times slower than AES when being implemented in SmartMem using 32-bit

datapath. In comparison with the crypto-accelerator solutions proposed in Chapter

3, the implementations in Memory are five times slower than the hardware crypto-

accelerator for AES. Also, the obtained results are 27 times faster than the software

implementation using ARM processor Cortex M0 as presented in [Zhang2018rar].

This indicates the potential of In-Memory Computing which needs further studies

on the overall SmartMem architectures and system level designs, and more precisely

the usage of them for security. In addition, the implementations in SmartMem can

be updated to accommodate new requirements. This demonstrates the trade-offs of

flexibility and configurability along with the conventional parameters including the

cost, throughput and power consumption.

In addition, because of the serial operations of the memory, various existing coun-

termeasures for software implementation are applicable to the In-Memory Comput-

ing. Multiple memory operations can be executed in parallel using different memory

banks which support the implementation of masking countermeasure. In addition,

code polymorphism can be applied to independent operations. However, this study

is considered a preliminary work on using SmartMem to accelerate cryptography al-

gorithms, living a promising direction for further investigations. Further researches

could offer an in-deep exploration on power/energy estimation and security evalua-

tion.

96

Conclusion and perspectives

Internet-of-Things, with the core idea of connecting millions of objects is delivering

new business value and benefits, simultaneously accelerating new challenges, espe-

cially security constraints which have been highlighted throughout this manuscript.

Evidently, IoT systems collect massive amount of private data, process them and

send them through the Internet to the cloud which is supposedly a dangerous envi-

ronment. Therefore, security must be a fundamental enabler, instead of an option

for IoT.

However, implementing security for IoT is really challenging. The primary rea-

son lies in IoT’s association with multiple layers with different capabilities and its

integration of thousands or millions of devices. In addition, IoT sensor nodes are ex-

pected to be long lifetime, ultra-low-power and ultra-low-cost devices, which makes

it somehow vary from the underlying computer-based system or embedded systems.

IoT backed devices might use battery-based power supply or self-harvest energy from

the environment and have small memory footprint, adequate computation and lim-

ited power budget. Meanwhile, underlying security functions normally rely on strong

cryptography algorithms such as block ciphers, hash functions, and/or public key

cryptography which not only require complicated computations and large power con-

sumption, but also reduce the system throughput. As a consequence, an optimal

trade-off among security levels, hardware area and power/energy consumption must

be taken into account when designing security functions for these devices.

Recent IoT proposals largely focus on using AES as the main security mechanism

because AES has been studied for a long time with the security levels ranging from

midterms to long terms. With advancements of cryptography, many new lightweight

cryptography algorithms can also be employed to reduce the hardware cost and lower

the power consumption. However, lightweight algorithms have not been chosen for

the IoT proposals. Furthermore, different IoT applications might have diverse secu-

rity profiles with different power/energy budgets. Therefore, the security solutions

of a wide range of IoT applications need the configurability and flexibility. Depend-

ing on the security requirements of the applications, strong security mechanisms or

lightweight ones can be selected to minimize the power consumption.

On the other hand, ultra-low-power security solutions for IoT applications gener-

97

ally focus on implementing the hardware accelerator for some specific algorithms to

reduce the hardware cost and power consumption. Meanwhile, fixed hardware accel-

erators are not really adaptable to ever-evolving standards and threats. Therefore,

flexible and configurable designs are needed to keep up with the evolution of IoT

standards and security attacks. This helps prolong the lifetime of IoT applications.

This work investigates lightweight data encryption implementation for security in

IoT in terms of power consumption and energy consumption. A block cipher module

with two algorithms, AES and PRESENT were proposed with power optimization

techniques. The proposed block cipher module provides multi-security levels with

different key size ranging from 80 bits up to 256 bits. This module can also tai-

lor specific requirements of the applications. The implementation results in SNACk

testchip using FD-SOI 28nm technology from STMicroelectronics shows that this

module is able to provide medium throughput of around 20Mbps at 10MHz and

to consume less than 24µW at 0.6V . At the subthreshold voltage of 0.4V and the

operating frequency of 10MHz, the proposed design consumes an energy of about

0.4pJ/bit with a power consumption of around 10µW , which meets the demand of

ultra-low-power consumption. Furthermore, the security evaluation based on Corre-

lation Power Analysis and Test Vector Leakage Assessment using power-estimated

traces shows that the proposed optimization does not introduce new leakages when

compared with the reference design on Opencores. On the other hand, the block

cipher accelerator might have low power consumption, but it still leaves some draw-

backs, for instance, the data have to be transmitted from the memory to the system

bus and the accelerator for processing. This will increase the power consumption of

the system and possibly expose the data to other IP cores which monitor the bus.

Therefore, this work continues to investigate an innovative method for doing data

encryption which is called In-Memory Encryption. In-Memory Encryption uses a

special type of memory which is capable of doing logical operation such as AND,

OR, NOT and XOR. Using this type of memory, this work fully implemented the

same algorithms but using only the infrastructure of In-Memory Computing. In-

memory AES with 32-bit datapath needs 232 clock cycles for one encryption of 128

bits, and more than 873 clock cycles for 8-bit datapath. In the case of PRESENT

with 32-bit datapath, because of its bit based hardware permutation, it requires more

than 873 clock cycles for one encryption of a 64-bit block. In-memory PRESENT

implementation is nearly eight times slower than in-memory AES to encrypt a 128-

bit data block. Even with a large number of cycles when compared with the cus-

tomized ASIC as in SNACk, they still show potentials in terms of security features.

Based on this preliminary work on the implementation of cryptography algorithms

using In-Memory Computing, further research works on power/energy consumption

estimation, security evaluation and countermeasure designs should be conducted to

evaluate the effectiveness of In-Memory Computing. Additionally, future studies at

architecture levels and system levels are also important to improve the overall system

98

performance and security features.

There are a number of gaps in this study around adaptable security solutions, par-

ticularly flexible and configurable security solutions that calls for further researches.

Accordingly, IoT applications should be proactive to different standards and capable

of mitigating different attacks. However, the flexibility and configurability have to

be traded-off with the throughput and power consumption; thereby the most feasible

trade-off should be considered in order to improve the lifetime of devices. First of all,

software implementations of security solutions can be updated using the firmware

updates or software updates which provide flexibility. However, these approaches

tend to work inefficiently in terms of throughput and power consumption. In ad-

dition, adaptability in hardware can improve throughput and power consumption

when compared with software solutions. On the other hand, it is still less efficient

than application specific implementations. Therefore, future applications should put

forwards with the adaptability in design and implementation of security solutions

in hardware to new standards or new threats to reduce hardware cost. Even reno-

vating architectures from system levels down to device or transistor levels should be

thoroughly considered.

In addition, this work does not take into account the countermeasures. Counter-

measures are costly regarding power/energy consumption. However, their importance

with regard to hardware-security has widely been acknowledged. Accordingly, ultra-

low-power and ultra-low-cost countermeasures will be an interesting topic for future

researches. In addition, the purpose of countermeasure is to cope with different types

of attacks or analyses such as power analysis fault attack or so. Thus, countermea-

sures could employ additional hardware to facilitate the defense, which leads to a

significant increase in hardware cost and power consumption. For this reason, they

are currently not suitable for ultra-low-power and ultra-low-cost devices. Moreover,

countermeasures for one type of attacks might not protect designs from the other

types of attacks. Therefore, adaptive countermeasures should be prioritized for fu-

ture practice on the IoT system. Furthermore, the cost and power consumption

trade-offs should also be figured out.

Furthermore, In-Memory Computing sheds a new light on designing flexible se-
curity solutions as well as hardware security solutions. Accordingly, multiple coun-
termeasures for various kinds of attacks including both power analysis attacks and
fault attacks can be integrated using the current facilities of memory designs. For
example, Error Correcting Code designs included in high reliable memories can be
utilized to detect errors during the encryption in memory operation to deal with
the fault attacks. In order to mitigate power analysis attacks, conventional methods
such as masking or code polymorphism can be used at a small cost using In-Memory
Computing. Also, masking eliminates the correlation of the key-dependent power
consumption by running random operations at the same time with the key depen-
dent operations. The parallel operations are supported by In-Memory Computing
by default. Nevertheless, code polymorphism diminishes the correlation by reorder-

99

ing the operations of algorithms. Because of the serial operations of In-Memory
Computing, code polymorphism can be easily deployed using this technology. These
examples reveal the potentials of using In-Memory Computing to create adaptable
solutions for both security algorithm mapping and countermeasures. This can be a
promising research area to improve the overall security of a system without sacrificing
power/energy consumption.

100

Bibliography

[Abid2009ecg] Z. Abid, A. Alma’aitah, M. Barua, and W. Wang. Efficient CMOL gate

designs for cryptography applications. IEEE Transactions on Nanotechnology,

8(3):315–321, 05 2009.

[Achiya2018ikr] Achiya Bar-On, Orr Dunkelman, Nathan Keller, Eyal Ronen, and Adi

Shamir. Improved key recovery attacks on reduced-round aes with practical

data and memory complexities. In Hovav Shacham and Alexandra Boldyreva,

editors, Advances in Cryptology – CRYPTO 2018, pages 185–212, Cham,

2018. Springer International Publishing.

[Aes128Opencore] Hemanth Satyanarayana. AES crypto core.

URL https://opencores.org/project,aes_crypto_core

[Agrawal2003tes] Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, and Pankaj Ro-

hatgi. The em side—channel(s). In Burton S. Kaliski, çetin K. Koç, and

Christof Paar, editors, Cryptographic Hardware and Embedded Systems -

CHES 2002, pages 29–45, Berlin, Heidelberg, 2003. Springer Berlin Heidel-

berg.

[Aguilar2013rai] C. Aguilar-Melchor, S. Fau, C. Fontaine, G. Gogniat, and R. Sirdey. Re-

cent Advances in Homomorphic Encryption: A Possible Future for Signal

Processing in the Encrypted Domain. IEEE Signal Processing Magazine,

30(2):108–117, March 2013.

[Akyel2016ddr] K. C. Akyel, H. P. Charles, J. Mottin, B. Giraud, G. Suraci, S. Thuries, and

J. P. Noel. DRC2: Dynamically Reconfigurable Computing Circuit based on

memory architecture. In 2016 IEEE International Conference on Rebooting

Computing (ICRC), pages 1–8, October 2016.

[Al-Fuqaha2015iot] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and

M. Ayyash. Internet of Things: A Survey on Enabling Technologies, Protocols,

and Applications. IEEE Communications Surveys Tutorials, 17(4):2347–2376,

2015.

[Albrecht2015cfm] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge

Tiessen, and Michael Zohner. Ciphers for mpc and fhe. In Elisabeth Oswald

101

and Marc Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015,

pages 430–454, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[Atzori2010tio] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of Things:

A survey. Computer Networks, 54(15):2787–2805, October 2010.

[Banik2015EEE] Subhadeep Banik, Andrey Bogdanov, and Francesco Regazzoni. Explor-

ing energy efficiency of lightweight block ciphers. In Selected Areas in Cryptog-

raphy – SAC 2015: 22nd International Conference, Revised Selected Papers,

pages 178–194. Springer International Publishing, 2016.

[Beaulieu2013tsa] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark,

Bryan Weeks, and Louis Wingers. The simon and speck families of lightweight

block ciphers. Cryptology ePrint Archive, Report 2013/404, 2013. https:

//eprint.iacr.org/2013/404.

[Beaulieu2015tsa] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark,

Bryan Weeks, and Louis Wingers. The SIMON and SPECK lightweight block

ciphers. In Proceedings of the 52nd Annual Design Automation Conference

on - DAC ’15, pages 1–6, San Francisco, California, 2015. ACM Press.

URL http://dl.acm.org/citation.cfm?doid=2744769.2747946

[Beigne2011ail] E. Beigné and P. Vivet. An innovative local adaptive voltage scaling archi-

tecture for on-chip variability compensation. In 2011 IEEE 9th International

New Circuits and systems conference, pages 510–513, June 2011.

[Bellovin2003smi] S. Bellovin, J. Schiller, and C. Kaufman. Security mechanisms for the

internet, 2003.

[Benadjila2013ilb] Ryad Benadjila, Jian Guo, Victor Lomné, and Thomas Peyrin. Im-

plementing lightweight block ciphers on x86 architectures. In Tanja Lange,

Kristin Lauter, and Petr Lisoněk, editors, Selected Areas in Cryptography –

SAC 2013, number 8282 in Lecture Notes in Computer Science, pages 324–

351. Springer Berlin Heidelberg. DOI: 10.1007/978-3-662-43414-7 17.

URL http://link.springer.com/chapter/10.1007/978-3-662-43414-7_17

[Benini1994spb] L. Benini, P. Siegel, and G. De Micheli. Saving power by synthesizing gated

clocks for sequential circuits. IEEE Design Test of Computers, 11(4):32–41,

Winter 1994.

[Bertoni2004PAS] Guido Bertoni, Marco Macchetti, Luca Negri, and Pasqualina Fragneto.

Power-efficient ASIC synthesis of cryptographic sboxes. In Proceedings of the

14th ACM Great Lakes Symposium on VLSI, GLSVLSI ’04, pages 277–281.

ACM, 2004.

[Bertoni2011tks] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. The keccak sha-3

submission. Submission to NIST (Round 3), 2011.

102

https://eprint.iacr.org/2013/404
https://eprint.iacr.org/2013/404

URL http://keccak.noekeon.org/Keccak-submission-3.pdf

[Bhasin2014nicv] S. Bhasin, J. Danger, S. Guilley, and Z. Najm. Nicv: Normalized inter-

class variance for detection of side-channel leakage. In 2014 International

Symposium on Electromagnetic Compatibility, Tokyo, pages 310–313, May

2014.

[Biham1990dcd] Eli Biham and Adi Shamir. Differential cryptanalysis of des-like cryptosys-

tems. In Proceedings of the 10th Annual International Cryptology Conference

on Advances in Cryptology, CRYPTO ’90, pages 2–21, Berlin, Heidelberg,

1991. Springer-Verlag.

URL http://dl.acm.org/citation.cfm?id=646755.705229

[Bogdanov2007pau] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann,

M. J. B. Robshaw, Y. Seurin, and C. Vikkelsoe. PRESENT: An ultra-

lightweight block cipher. In Pascal Paillier and Ingrid Verbauwhede, editors,

Cryptographic Hardware and Embedded Systems - CHES 2007, number 4727

in Lecture Notes in Computer Science, pages 450–466. Springer Berlin Hei-

delberg, 2007.

[Borghoff2012pal] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun,

Miroslav Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov,

Christof Paar, Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and

Tolga Yalçın. PRINCE – A Low-Latency Block Cipher for Pervasive Com-

puting Applications. In Xiaoyun Wang and Kazue Sako, editors, Advances

in Cryptology – ASIACRYPT 2012, pages 208–225, Berlin, Heidelberg, 2012.

Springer Berlin Heidelberg.

[Brakerski2012fhe] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled)

fully homomorphic encryption without bootstrapping. In Proceedings of the

3rd Innovations in Theoretical Computer Science Conference, ITCS ’12, pages

309–325, New York, NY, USA, 2012. ACM.

URL http://doi.acm.org/10.1145/2090236.2090262

[Brier2004cpa] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power anal-

ysis with a leakage model. In Marc Joye and Jean-Jacques Quisquater, editors,

Cryptographic Hardware and Embedded Systems - CHES 2004, pages 16–29,

Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[Canniere2009kak] Christophe De Cannière, Orr Dunkelman, and Miroslav Knežević.

Katan and ktantan — a family of small and efficient hardware-oriented block

ciphers. In Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware

and Embedded Systems - CHES 2009, pages 272–288, Berlin, Heidelberg, 2009.

Springer Berlin Heidelberg.

[Canright2005AVC] D. Canright. A Very Compact S-Box for AES, pages 441–455. Number

3659 in Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2005.

103

[Canteaut2016sca] Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrède Lepoint,

Maŕıa Naya-Plasencia, Pascal Paillier, and Renaud Sirdey. Stream ciphers:

A Practical Solution for Efficient Homomorphic-Ciphertext Compression. In

23rd International Conference on Fast Software Encryption (FSE), volume

9783 - LNCS (Lecture Notes in Computer Science) of Fast Software Encryption

23rd International Conference, FSE 2016, Bochum, Germany, March 20-23,

2016,, pages 313–333, Bochum, Germany, March 2016. Springer.

URL https://hal.archives-ouvertes.fr/hal-01280479

[Chari2003ta] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In

Burton S. Kaliski, çetin K. Koç, and Christof Paar, editors, Cryptographic

Hardware and Embedded Systems - CHES 2002, pages 13–28, Berlin, Heidel-

berg, 2003. Springer Berlin Heidelberg.

[Cho2009lco] Joo Yeon Cho. Linear cryptanalysis of reduced-round present. Cryptology

ePrint Archive, Report 2009/397, 2009. https://eprint.iacr.org/2009/

397.

[Dupuis2018pah] S. Dupuis, M. Flottes, G. Di Natale, and B. Rouzeyre. Protection against

hardware trojans with logic testing: Proposed solutions and challenges ahead.

IEEE Design Test, 35(2):73–90, April 2018.

[ECRYPT-II] European Network of Excellence in Cryptology II. Ecrypt ii yearly report

on algorithms and keysizes, 2012.

URL http://www.ecrypt.eu.org/ecrypt2/documents/D.SPA.20.pdf

[FIPS-197] U.S National Institute of Standards and Technology. Advanced Encryption

Standard, 2001.

[FreePDK45nm] North Carolina State University. Free pdk 45nm.

URL {https://www.eda.ncsu.edu/wiki/FreePDK}

[Gao2017acf] M. Gao, Q. Wang, M. T. Arafin, Y. Lyu, and G. Qu. Approximate computing

for low power and security in the Internet of Things. Computer, 50(6):27–34,

2017.

[Gong2012kan] Zheng Gong, Svetla Nikova, and Yee Wei Law. Klein: A new family of

lightweight block ciphers. In Ari Juels and Christof Paar, editors, RFID.

Security and Privacy, pages 1–18, Berlin, Heidelberg, 2012. Springer Berlin

Heidelberg.

[Goodwill2011atm] Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Rohatgi. A

testing methodology for side-channel resistance validation, 2011.

URL \url{http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf}

104

https://eprint.iacr.org/2009/397
https://eprint.iacr.org/2009/397

[Guthaus2016oao] Matthew R. Guthaus, James E. Stine, Samira Ataei, Brian Chen, Bin

Wu, and Mehedi Sarwar. OpenRAM: An Open-source Memory Compiler. In

Proceedings of the 35th International Conference on Computer-Aided Design,

ICCAD ’16, pages 93:1–93:6, New York, NY, USA, 2016. ACM.

URL http://doi.acm.org/10.1145/2966986.2980098

[Hamalainen2006dai] P. Hamalainen, T. Alho, M. Hannikainen, and T.D. Hamalainen. De-

sign and implementation of low-area and low-power AES encryption hardware

core. In 9th EUROMICRO Conference on Digital System Design: Architec-

tures, Methods and Tools, 2006. DSD 2006, pages 577–583.

[Hutter2011acp] Michael Hutter, Martin Feldhofer, and Johannes Wolkerstorfer. A Cryp-

tographic Processor for Low-Resource Devices: Canning ECDSA and AES

Like Sardines. In Claudio A. Ardagna and Jianying Zhou, editors, Informa-

tion Security Theory and Practice. Security and Privacy of Mobile Devices in

Wireless Communication, pages 144–159, Berlin, Heidelberg, 2011. Springer

Berlin Heidelberg.

[ISO-18033-3] ISO. Information technology – Security techniques – Encryption algorithms

– Part 3: Block ciphers. ISO/IEC 18033-3:2005, International Organization

for Standardization, Geneva, Switzerland, 2005.

[ISO-29167-1] ISO. Information technology – Automatic identification and data capture

techniques – Part 1: Security services for RFID air interfaces. ISO/IEC 29167-

1:2014, International Organization for Standardization, Geneva, Switzerland,

2014.

[ISO-29192-2] ISO. Information technology – Security techniques – Lightweight cryptog-

raphy – Part 2: Block ciphers. ISO/IEC 29192-2:2012, International Organi-

zation for Standardization, Geneva, Switzerland, 2012.

[Jean2017bag] Jérémy Jean, Amir Moradi, Thomas Peyrin, and Pascal Sasdrich. Bit-

Sliding: A Generic Technique for Bit-Serial Implementations of SPN-based

Primitives. In Wieland Fischer and Naofumi Homma, editors, Cryptographic

Hardware and Embedded Systems – CHES 2017, Lecture Notes in Computer

Science, pages 687–707. Springer International Publishing, 2017.

[Jeloka2016anc] S. Jeloka, N. B. Akesh, D. Sylvester, and D. Blaauw. A 28 nm Config-

urable Memory (TCAM/BCAM/SRAM) Using Push-Rule 6t Bit Cell En-

abling Logic-in-Memory. IEEE Journal of Solid-State Circuits, 51(4):1009–

1021, April 2016.

[Koblitz1978ecc] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of computation,

48:203–209, 1987.

[Kocher1999dpa] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Anal-

ysis. In Michael Wiener, editor, Advances in Cryptology — CRYPTO’ 99,

pages 388–397, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

105

[Kocher2018sae] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg,

Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval

Yarom. Spectre Attacks: Exploiting Speculative Execution. arXiv:1801.01203

[cs], January 2018. arXiv: 1801.01203.

URL http://arxiv.org/abs/1801.01203

[LRWPAN] IEEE Standardization Group. IEEE Standard for Local and Mtropolitan Area

Networks – part 15.4: Low-rate wireless persional area networks (lr-wpans),

2011.

[Labbe2004ehi] A. Labbe, A. Perez, and J. M. Portal. Efficient hardware implementation

of a CRYPTO-MEMORY based on AES algorithm and SRAM architecture.

In 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat.

No.04CH37512), volume 2, pages II–637–40 Vol.2, 05 2004.

[LeSueur2010dvf] Etienne Le Sueur and Gernot Heiser. Dynamic voltage and frequency

scaling: The laws of diminishing returns. In Proceedings of the 2010 Inter-

national Conference on Power Aware Computing and Systems, HotPower’10,

pages 1–8, Berkeley, CA, USA, 2010. USENIX Association.

URL http://dl.acm.org/citation.cfm?id=1924920.1924921

[Li2005anc] Hua Li. A new CAM based s/s-1-box look-up table in AES. In IEEE In-

ternational Symposium on Circuits and Systems, 2005. ISCAS 2005, pages

4634–4636 Vol. 5, 05 2005.

[Lin2017aso] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao. A Survey on In-

ternet of Things: Architecture, Enabling Technologies, Security and Privacy,

and Applications. IEEE Internet of Things Journal, 4(5):1125–1142, October

2017.

[Lipp2018m] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,

Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Ham-

burg. Meltdown. arXiv:1801.01207 [cs], January 2018. arXiv: 1801.01207.

URL http://arxiv.org/abs/1801.01207

[Liu2011A2G] P. C. Liu, J. H. Hsiao, H. C. Chang, and C. Y. Lee. A 2.97 gb/s dpa-resistant

aes engine with self-generated random sequence. In Proceedings of the 2011

European Solid-State Circuit Conference (ESSCIRC), pages 71–74, Sept 2011.

[LoRaWan] Lora Alliance. LoraWan Specification, 2015.

[Lu2005rpf] Yongqiang Lu, C. N. Sze, Xianlong Hong, Qiang Zhou, Yici Cai, Liang Huang,

and Jiang Hu. Register placement for low power clock network. In Proceedings

of the ASP-DAC 2005. Asia and South Pacific Design Automation Confer-

ence, 2005., volume 1, pages 588–593 Vol. 1, Jan 2005.

106

[Maene2015sio] Pieter Maene and Ingrid Verbauwhede. Single-cycle implementations of

block ciphers. In Lightweight Cryptography for Security and Privacy, number

9542 in Lecture Notes in Computer Science, pages 131–147. Springer Interna-

tional Publishing, 2015.

[Mantin2005pad] Itsik Mantin. Predicting and distinguishing attacks on rc4 keystream

generator. In Ronald Cramer, editor, Advances in Cryptology – EUROCRYPT

2005, pages 491–506, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[Mathew20115GN] S.K. Mathew, F. Sheikh, M. Kounavis, S. Gueron, A. Agarwal, S.K.

Hsu, H. Kaul, M.A. Anders, and R.K. Krishnamurthy. 53 gbps native

composite-field AES-encrypt/decrypt accelerator for content-protection in 45

nm high-performance microprocessors. IEEE Journal of Solid-State Circuits,

46(4):767–776, 2011.

[Mathew20153m1] S. Mathew, S. Satpathy, V. Suresh, M. Anders, H. Kaul, A. Agarwal,

S. Hsu, G. Chen, and R. Krishnamurthy. 340 mV – 1.1 v, 289 gbps/w, 2090-

gate NanoAES hardware accelerator with area-optimized encrypt/decrypt

GF(24)2 polynomials in 22 nm tri-gate CMOS. IEEE Journal of Solid-State

Circuits, 50(4):1048–1058, 2015.

[Matsui1994lcm] Mitsuru Matsui. Linear cryptanalysis method for des cipher. In Tor

Helleseth, editor, Advances in Cryptology — EUROCRYPT ’93, pages 386–

397, Berlin, Heidelberg, 1994. Springer Berlin Heidelberg.

[Moradi2011ptl] Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong

Wang. Pushing the Limits: A Very Compact and a Threshold Implementation

of AES, pages 69–88. Number 6632 in Lecture Notes in Computer Science.

Springer Berlin Heidelberg, 2011.

[Moradi2014dhl] Amir Moradi, Sylvain Guilley, and Annelie Heuser. Detecting hidden

leakages. In Ioana Boureanu, Philippe Owesarski, and Serge Vaudenay, edi-

tors, Applied Cryptography and Network Security, pages 324–342, Cham, 2014.

Springer International Publishing.

[Mosenia2017acs] A. Mosenia and N. K. Jha. A Comprehensive Study of Security of

Internet-of-Things. IEEE Transactions on Emerging Topics in Computing,

5(4):586–602, October 2017.

[Muir2013ato] James A. Muir. A tutorial on white-box aes. Cryptology ePrint Archive,

Report 2013/104, 2013. https://eprint.iacr.org/2013/104.

[NIST-SP-800-98] National Institute Of Standards and Technology. NIST Special Publi-

cation 800-98 Guidelines for Securing Radio Frequency Identification (RFID)

Systems. CreateSpace, Paramount, CA, 2007.

[Nangate2011OCL] Nangate Inc. Nangate freepdk45 open cell library, 2011.

URL {http://www.nangate.com/?page_id=2325}

107

https://eprint.iacr.org/2013/104

[Pagliari2018fbb] D. J. Pagliari, Y. Durand, D. Coriat, E. Beigne, E. Macii, and M. Pon-

cino. Fine-grain back biasing for the design of energy-quality scalable oper-

ators. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, pages 1–1, 2018.

[Rivest1978amf] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digi-

tal signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126,

February 1978.

[Roy2016lmi] Debapriya Basu Roy, Shivam Bhasin, Sylvain Guilley, Annelie Heuser, Sikhar

Patranabis, and Debdeep Mukhopadhyay. Leak me if you can: Does tvla

reveal success rate? Cryptology ePrint Archive, Report 2016/1152, 2016.

https://eprint.iacr.org/2016/1152.

[Rozic2012dsf] V. Rožić, W. Dehaene, and I. Verbauwhede. Design solutions for securing

SRAM cell against power analysis. In 2012 IEEE International Symposium

on Hardware-Oriented Security and Trust, pages 122–127, June 2012.

[Satoh2001acr] Akashi Satoh, Sumio Morioka, Kohji Takano, and Seiji Munetoh. A com-

pact rijndael hardware architecture with s-box optimization. In Advances in

Cryptology – ASIACRYPT 2001, number 2248 in Lecture Notes in Computer

Science, pages 239–254. Springer, Berlin, Heidelberg, 2001.

[Satpathy2018grg] S. Satpathy, V. Suresh, S. Mathew, M. Anders, H. Kaul, A. Agarwal,

S. Hsu, and R. Krishnamurthy. 220mv-900mv 794/584/754 gbps/w reconfig-

urable gf(24)2 aes/sms4/camellia symmetric-key cipher accelerator in 14nm

tri-gate cmos. In 2018 IEEE Symposium on VLSI Circuits, pages 175–176,

June 2018.

[Sayilar2014cht] G. Sayilar and D. Chiou. Cryptoraptor: High throughput reconfigurable

cryptographic processor. In 2014 IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), pages 155–161, Nov 2014.

[Schneider2015lam] Tobias Schneider and Amir Moradi. Leakage Assessment Methodology

- a clear roadmap for side-channel evaluations. Technical Report 207, 2015.

URL https://eprint.iacr.org/2015/207

[Shirai2007t1b] Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and Tetsu

Iwata. The 128-bit blockcipher clefia. In Proceedings of the 14th International

Conference on Fast Software Encryption, FSE’07, pages 181–195, Berlin, Hei-

delberg, 2007. Springer-Verlag.

[Sinanovic2017aom] H. Sinanović and S. Mrdovic. Analysis of Mirai malicious software.

In 2017 25th International Conference on Software, Telecommunications and

Computer Networks (SoftCOM), pages 1–5, September 2017.

[Student1908tpe] STUDENT. The probable error of a mean. Biometrika, 6(1):1–25, 1908.

108

https://eprint.iacr.org/2016/1152

URL http://dx.doi.org/10.1093/biomet/6.1.1

[Suzaki2011tal] Tomoyasu Suzaki, Kazuhiko Minematsu, Sumio Morioka, and Eita

Kobayashi. Twine: A lightweight, versatile block cipher. In ECRYPT Work-

shop on Lightweight Cryptography, pages 146–169, 2011.

[Wamser2017ptl] M. S. Wamser and G. Sigl. Pushing the limits further: Sub-atomic AES.

In 2017 IFIP/IEEE International Conference on Very Large Scale Integration

(VLSI-SoC), pages 1–6, October 2017.

[Wang2016dad] Y. Wang, L. Ni, C. H. Chang, and H. Yu. DW-AES: A Domain-Wall

Nanowire-Based AES for High Throughput and Energy-Efficient Data En-

cryption in Non-Volatile Memory. IEEE Transactions on Information Foren-

sics and Security, 11(11):2426–2440, November 2016.

[Welch1947tgo] B. L. WELCH. The generalization of ‘student’s’ problem when several

different population varlances are involved. Biometrika, 34(1-2):28–35, 1947.

URL http://dx.doi.org/10.1093/biomet/34.1-2.28

[Yang2017aso] Y. Yang, L. Wu, G. Yin, L. Li, and H. Zhao. A Survey on Security

and Privacy Issues in Internet-of-Things. IEEE Internet of Things Journal,

4(5):1250–1258, October 2017.

[Yang2017hdf] K. Yang, D. Blaauw, and D. Sylvester. Hardware Designs for Security

in Ultra-Low-Power IoT Systems: An Overview and Survey. IEEE Micro,

37(6):72–89, November 2017.

[Zhang2016AC4] Yiqun Zhang, Kaiyuan Yang, M. Saligane, D. Blaauw, and D. Sylvester.

A compact 446 gbps/w aes accelerator for mobile soc and iot in 40nm. In 2016

IEEE Symposium on VLSI Circuits (VLSI-Circuits), pages 1–2, June 2016.

[Zhang2018rar] Y. Zhang, L. Xu, Q. Dong, J. Wang, D. Blaauw, and D. Sylvester. Recryp-

tor: A Reconfigurable Cryptographic Cortex-M0 Processor With In-Memory

and Near-Memory Computing for IoT Security. IEEE Journal of Solid-State

Circuits, 53(4):995–1005, April 2018.

[Zhao2015nsa] W. Zhao, Y. Ha, and M. Alioto. Novel self-body-biasing and statisti-

cal design for near-threshold circuits with ultra energy-efficient AES as case

study. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

23(8):1390–1401, 2015.

[Zigbee] Zigbee Alliance. Zigbee ip specification.

[dpacontestV3] Telecom ParisTech. Dpa contest v3.

URL http://www.dpacontest.org/v3

109

List of Abbreviations

6LoWPAN IPv6 over Low-power Wireless Personal Area Network

AI Artificial Intelligence

ALU Arithmetic Logic Unit

APB Advanced Peripheral Bus

ASIC Application Specific Integrated Circuit

AU Arithmetic Unit

AVFS Adaptive Voltage Frequency Scaling

BLE Bluetooth Low Energy

CAM Content Addressable Memory

CBC Coded Block Chaining

CCM Counter with CBC-MAC

CMOL CMOS-molecular nanoelectronics

CMOS Complementary metal–oxide–semiconductor

CPA Correlation Power Analysis

CPU Central Processing Unit

DDoS Distributed Denial of Service

DES Data Encryption Standard

DNS Domain Name Server

DNSSEC Domain Name Server Security Extension

DPA Differential Power Analysis

111

DRAM Dynamic Random-Access Memory

DSE Decode Switch Encode

DTLS Datagram Transport Layer Security

DVFS Dynamic Voltage Frequency Scaling

ECC Eliptic Curve Cryptography

EDA Electronic Design Automation

EM Electromagnetic

FBB Forward Back-Biasing

FD-SOI Fully Depleted Silicon-On-Insulator

FIPS Federal Information Processing Standards

FLL Frequency-Locked Loop

FPGA Field-Programmable Gate Array

FSM Finite State Machine

GE Gate Equivalent

GF Galois Field or Finite Field

GSM Global System for Mobile communication

GSS-API Generic Security Services Application Program Interface

HMAC Hash-based Message Authentication Code

ICG Integrated Clock Gating

IETF Internet Engineering Task Force

IoT Internet of Things

IP Intellectual Property

IP Internet Protocol

IPsec Internet Protocol Security

IV Initialization Vector

LAN Local-Area Network

112

LOU Logical Operation Unit

LPWAN Low-Power Wide-Area-Network

LUT Look-Up Table

MAC Message Authentication Code

MIC Message Integrity Code

N/A Not Available

NIST U.S National Institute of Standard and Technology

NMOS N-Type Metal–Oxide–Semiconductor

NVM Non-Volatile Memory

OS Operations of SmartMem

PE Processing Element

PGP Pretty Good Privacy

PHY Physical layer

PIM Processing In Memory

PMOS P-Type Metal–Oxide–Semiconductor

RBB Reverse Back-Biasing

RBL Read Bitline Left

RBR Read Bitline Right

RCON Round Constant

RFID Radio Frequency Identification

RIRO Round-Input Round-Output

ROM Read-Only Memory

ROUT Round-Output

RWL Read Wordline Left

RWR Read Wordline Right

S-box Substitution box

113

S/MIME Secure MIME

SASL Simple Authentication and Security Layer

SDF Standard Delay Format

SEL Selection Line

SoC Systems on Chip

SOUT S-box Output

SPA Simple Power Analysis

SPI Serial Peripheral Interface

SPN Substitution-Permutation Network

SRAM Static Random Access Memory

SRU Shifter-Rotator Unit

SSH Secure Shell

SW Software

TCAM Ternary Content-Addressable Memory

TCP Transmission Control Protocol

TLS Secure Transport Layer

TLS Transport Layer Security

TLU Table Lookup Unit

TVLA Test vector Leakage Assessment

ULP Ultra-Low-Power

VLSI Very Large Scale Integration

WBL Write Bitline Left

WBR Write Bitline Right

Wi-Fi a technology for Wireless Local Area Network

WWL Write WordLine

114

List of Figures

1.1 The general organization of IoT. 3

1.2 IoT applications and their expected market share (Source: McKinsey

Global Institute (June 2015)). 4

1.3 Internet-of-Things landscape. 5

1.4 Energy per bit of different components in IoT (Source: [Yang2017hdf]). . 7

1.5 Symmetric cryptography scheme and asymmetric cryptography scheme. . 12

1.6 Comparison between traditional and lightweight block cipher algorithms. 14

1.7 IoT security for different layers. 15

1.8 IoT security threats and possible countermeasures [Mosenia2017acs]. . . 16

1.9 Homomorphic encryption and its applications to IoT [Aguilar2013rai]. . . 17

1.10 Security trade-offs. 19

2.1 Stream cipher structure. 25

2.2 Block cipher structure. 26

2.3 Block cipher in different operation modes. 26

2.4 AES encryption algorithm in details. 30

2.5 State-of-the-art of hardware implementations of AES. 32

2.6 Area vs throughput of various cryptography algorithms. 34

2.7 The PRESENT algorithm. 35

2.8 Dynamic power consumption vs Energy per bit of different cryptography

algorithms. 36

2.9 Reconfigurable crypto-processor using microcontroller and accelerators

[Hutter2011acp]. 38

2.10 Configurable accelerator using In-Memory-Computing and Near-Memory

computing by Zhang et al. in [Zhang2018rar]. 39

2.11 Power analysis attacks. 42

3.1 The proposed AES architecture. 51

3.2 Our proposed state register. 52

3.3 Our proposed output register. 52

3.4 Our Decode-Switch-Encode (DSE) S-Box. 54

115

3.5 Key registers. 55

3.6 Key transform. 56

3.7 Proposed PRESENT architecture. 57

3.8 The block cipher modules in SNACk testchip. 58

3.9 Blockcipher module in SNACk testchip. 58

3.10 SNACk testchip’s layout. 59

3.11 Estimated leakage power at 10MHz at different supply voltages at different

corners. 60

3.12 Estimated dynamic power at 10MHz at different supply voltages. 61

3.13 Energy per bit of our AES implementation at the typical corner at different

working temperatures. 62

3.14 SNACk test card and the UART-to-SPI converter implemented in

Spartan-3E development kit. 63

3.15 SNACk test setup with the oscilloscope. 64

3.16 Measured power consumption of AES and PRESENT in SNACk with

different operating voltages at 10MHz. 65

3.17 Measured leakage power of the blockcipher module in SNACk testchip at

different supply voltages at room temperature. 65

3.18 Measured total power consumption of SNACk testchip at different oper-

ating frequencies. 66

3.19 Measured energy per bit of AES with 128-bit keys. 66

3.20 Comparison with other low-cost AES implementations. 68

3.21 Design flow to generate the post-signoff power traces for evaluation. . . . 70

3.22 Trace processing of the power curve from PrimeTime. 71

3.23 Trace processing framework. 71

3.24 TVLA evaluation results of the specific test of the proposed design versus

the design on Opencores [Aes128Opencore]. 73

3.25 TVLA evaluation results of the non-specific test of the design on Opencores. 74

3.26 TVLA evaluation results of the non-specific test of the proposed design . 75

3.27 Number of correct guessed key bytes (in 128-bit key mode) by last-round

CPA attack. 76

4.1 Comparison of traditional software-based encryption, cryptography copro-

cessor, and in-memory encryption. 81

4.2 10T SRAM cell for In-Memory Operation proposed by Akayel et al. in

[Akyel2016ddr]. 83

4.3 In-Memory logical computation using 10T SRAM cells. 84

4.4 SmartMem’s block diagram with its inputs and outputs. 85

4.5 SmartMem structure with two selection lines. 85

4.6 SmartMem structure with detailed blocks. 86

4.7 AES original algorithm and the one for SmartMem. 88

116

4.8 MixColumns for AES using SmartMem based on the method described in

[Muir2013ato]. 89

4.9 SmartMem organization for AES 32-bit encryption. 89

4.10 AES 32-bit datapath using SmartMem. 91

4.11 AES 8-bit datapath using SmartMem. 92

4.12 PRESENT bit permutation. 93

4.13 32-bit architecture for PRESENT on SmartMem. 94

117

List of Tables

1.1 Common security requirements for Internet-based System 9

1.2 Security requirements for constrained IoT devices 10

1.3 Security level recommended by ECRYPT-II [ECRYPT-II] 11

1.4 Some proposals for IoT with security features 18

3.1 Comparison with other AES implementations 67

4.1 Memory size to store the expanded key, look-up table for SubBytes and

Mixcolumns of 32-bit datapath architecture 90

4.2 Mapping of AES operations into SmartMem operations 91

4.3 Memory size to store the expanded key, look-up table for SubBytes and

Mixcolumns of 8-bit datapath architecture 92

4.4 Memory size to store the expanded key, look-up table for substitution,

permutation and masks of a PRESENT 32-bit datapath architecture . . 95

118

	Abstract
	Preface
	Contents
	1 Ultra-Low-Power applications for IoT and security problems
	1.1 Introduction to Internet-of-Things applications and requirements for Ultra-Low-Power features
	1.2 Security mechanisms and lightweight cryptography
	1.3 Security challenges in IoT
	1.4 Conclusion

	2 State-of-the-art of security hardware in IoT
	2.1 Introduction to symmetric cryptography hardware architecture and its power consumption optimizations
	2.1.1 Symmetric cryptography hardware architecture
	2.1.2 Power consumption optimizations for CMOS technologies

	2.2 AES hardware implementation
	2.3 Lightweight cryptography implementation
	2.4 Configurable hardware cryptography implementation
	2.5 Encryption using memory elements
	2.6 Hardware Security
	2.7 Conclusion

	3 Proposed crypto-accelerator for ultra-low-power IoT
	3.1 Introduction
	3.2 Proposed AES architecture
	3.2.1 32-bit datapath optimizations
	3.2.2 Substitution box (S-box)
	3.2.3 Key expansion optimizations

	3.3 Proposed PRESENT architecture
	3.4 Estimation and measurement results of SNACk testchip
	3.4.1 Configuration and test environment of SNACk
	3.4.2 Power estimation results
	3.4.3 Measured results of Cryptographic Kernel in SNACk testchip

	3.5 Security Evaluation
	3.5.1 Power trace generation using PrimeTime and Post-signoff netlist
	3.5.2 Test Vector Leakage Assessment evaluation
	3.5.3 Correlation Power Analysis attacks on estimated traces

	3.6 Conclusion

	4 Using memory as acceleration for data encryption
	4.1 Introduction
	4.2 Computation In-Memory mechanism and SmartMem
	4.3 Implementation of Advanced Encryption Standard and PRESENT using Encryption in memory
	4.3.1 Advanced Encryption Standard
	4.3.2 PRESENT

	4.4 Conclusion

	Conclusion and perspectives
	Bibliography
	List of Abbreviations
	List of Figures
	List of Tables

