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Résumé

Les dispositifs optoélectroniques quantiques en couplage faible, amplement étudiés durant
ces dernières décennies, ont apporté des solutions technologiques dans de nombreux do-
maines : émetteurs (LED, laser), détecteurs (QWIP, QCD) ou générateur de courant (cel-
lules photovoltaïques). Néanmoins, les performances de ces dispositifs en couplage faible
atteignent leurs limites fondamentales dans certains domaines, tels que les detecteurs à puit
quantique (QWIP) ou les lasers à cascade quantique (QCL). A titre d’exemples, la tempéra-
ture maximale de fonctionnement des lasers à cascade quantique THz (THz-QCL) a très peu
évolué au cours des dix dernières années. Dans ce contexte, de nouveaux concepts (nou-
veaux matériaux, phénomènes non-linéaires, . . . ) sont introduits pour tenter de dépasser les
performances actuelles de certains dispositifs optoélectroniques. Dans ce manuscrit, notre
approche consiste à explorer les propriétés de dispositifs en couplage fort afin d’évaluer leurs
éventuelles capacités à dépasser les performances de dispositifs en couplage faible.

Le couplage fort est atteint lorsque que le taux d’échange d’énergie (oscillation de Rabi)
entre deux résonnateurs, dans notre cas un photon de cavité et une excitation électronique
intersousbande, est supérieur au taux de relaxation de chacun des résonateurs. Dans ce cas,
la dégénérescence de mode est levée. Les deux résonateurs sont alors représentés par une
seule quasi-particule nommée polariton (mélange d’une onde de polarisation -polari-, et d’un
photon -ton-).

Dans le domaine des transitions intersous-bandes, qui s’étend du moyen infra-rouge au
THz, nous avons ciblé deux applications pour lesquels les propriétés des polaritons pourraient
apporter des améliorations notables par rapport aux dispositifs existants. La première con-
cerne les sources de lumière cohérente dans le THz. Une source de lumière cohérente large-
ment utilisée dans le domaine du THz sont les THz-QCL qui utilisent l’inversions de popula-
tions entre niveaux électroniques. L’ingénierie des QCL utilise des niveaux d’énergies rela-
tivement proches les uns des autres ce qui rend ces systèmes sensibles à l’activation thermique
des phonons. Une méthode alternative à l’inversion de population, utilisant les propriétés des
polaritons, est la stimulation par l’état final. Cette seconde méthode, moins dépendante de la
température, pourrait être utilisée pour générer une source de lumière cohérente. Une seconde
application des polaritons intersous-bande concerne les photo-détecteurs moyen-infrarouge
à puits quantiques. Ces détecteurs sont fondamentalement limités par entremêlement entre
l’énergie de détection et l’énergie d’activation thermique. Des structures optimisées pour dé-
tecter en couplage fort pourraient potentiellement dissocier l’énergie de détection de l’énergie
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d’activation thermique.

Figure 1: (a) Schéma d’une cavité dispersive Métal-Isolant-Métal avec une période Λ et une
épaisseur t. (b) Diagramme de band du mode TM00 restreint à la première zone de Brillouin
de cette cavité. En rose le cône de lumière. La géométrie de la cavité, période du réseau
et épaisseur de la cavité, peuvent être adaptés à chaque région active et une ingénierie du
couplage fort est dès lors envisageable.

Pour adresser ces deux problématiques nous avons choisi d’utiliser une même géométrie
de cavité pour les domaines du moyen-infra-rouge et du THz : une cavité métal-isolant-métal
avec un réseau sur le métal supérieur (Figure 1). Cette cavité métal-isolant-métal, dont la
géométrie est adaptée à chaque domaine de fréquence, confine fortement le champ électro-
magnétique autour de la région active et le réseau dispersif donne accès à plusieurs états de
couplage fort entre la lumière et la matière. Plus précisément, nous souhaitons travailler au-
dessus du cône de lumière, sans interaction avec les modes d’ordre supérieurs et de sorte que
les minimums d’énergie des deux branches polaritoniques se trouvent à k// = 0. Ainsi nous
avons choisi de coupler la transition intersousbande (Mid-IR ou THz) avec la 3eme branche
photonique de la cavité.

Dans le domaine du THz, les dimensions de la cavité métal-isolant-métal que nous avons
étudié sont les suivantes : épaisseur t=11 µm, période Λ =36 µm avec un taux de remplissage
de 80% en couplage fort avec une transition à 2.7 THz. Dans un premier temps, la dispersion
en réflectivité des branches polaritoniques a été mesurée à l’aide d’un outil de mesure spé-
cialement conçu pour ce projet. Figure 2 présente les mesures de dispersion en réflectivité de
cette cavité en couplage faible (à température ambiante, purement photonique) et en couplage
fort (à basse température, écartement de Rabi) obtenues à travers un spectromètre infrarouge
à transformée de Fourier dont le compartiment échantillon a été poussé sous vide.

Une fois la dispersion de l’échantillon mesurée, l’échantillon a été caractérisé dans un
système de spectroscopie résolue en temps (TDS) afin d’étudier les variations d’absorption
de la cavité polaritonique soumise à une excitation laser (pompe THz-QCL). Les cavités
dispersives donnant accès à plusieurs niveaux de couplage fort sur un même échantillon, il
est alors possible d’accorder les états polaritoniques avec la fréquence du laser de pompe
(fixé à 3.1 THz) en faisant pivoter l’échantillon.
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Figure 2: Mesure en dispersion à température ambiante (RT) et à 78K des polaritons inter-
sous-bande THz avec un spectromètre à transformée de Fourier.

Suite au positionnement des branches polaritoniques (via la mesure en dispersion), il a
été estimé que la configuration idéale pour explorer les phénomènes de relaxation polariton-
polariton est d’exciter la branche polaritonique basse à 25° et de sonder cette même branche
à 0°. Cette mesure est en cours au Laboratoire Pierre-Aigrain de l’ENS/Ulm.

Dans un second temps nous avons utilisé les cavités dispersives métal-isolant-métal pour
étudier les propriétés de photo-détection moyen infrarouge à puit quantique opérant en cou-
plage forte. L’objectif de cette seconde étude est double. En termes de performance du
dispositif, le couplage fort pourrait être utilisé pour dissocier la fréquence de détection et de
l’énergie d’activation thermique. Ainsi, la température à laquelle le dispositif en couplage
fort opère en régime de limitation par le bruit de fond pourrait être augmentée par rapport
au même dispositif en couplage faible. D’autre part, la génération de photo-courant à partir
d’un état polaritonique pourrait répondre à certains problèmes fondamentaux sur l’interaction
entre un état brillant des polaritons (état collectif) et un état électronique (état unique).

Nous avons choisi une longueur d’onde de photo-détection à 10 µm ce qui a défini la
géométrie de la cavité métal-isolant-métal : d’épaisseur t=1 µm, de période Λ =3.5 µm avec
un taux de remplissage de 80% en couplage fort avec une transition à 2.7 THz.

Le fonctionnement des photo-détecteurs à puit quantique est basé sur la génération de
photocourant à partir de l’excitation d’électrons de l’état fondamental du puit quantique
(quasi-lié) vers le continuum (au-dessus de la barrière, Figure 3, a). Dans le cadre de cette
thèse, nous avons conçu, fabriqué et mesuré des détecteurs en couplage faible (mesa) et fort
(SC-QWIP).

Le régime de couplage faible a été étudié sur des structures à plasmon de surface (mesa)
dans lesquelles la lumière est injectée par le substrat. Les caractérisations de ces mésa
nous ont donné des informations sur la qualité des quatre régions actives que nous avons
conçu. Il est apparu durant cette étude préliminaire que les régions actives avaient un courant
d’obscurité élevé et qu’il était difficile d’extraire des informations sur les performances de ces
détecteurs (réponse et Tblip). Néanmoins les détecteurs restent opérationnels et l’observation
des propriétés polaritoniques de ces échantillons est toujours possible (Figure 3 (b)).

Une étude préliminaire du couplage fort consiste à mesurer la dispersion en réflectivité de
la cavité à température ambiante (possible dans le moyen-infrarouge). Les branches polari-
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Figure 3: Schéma d’un photo-détecteur en couplage faible a) et fort b). c) Schéma d’un pho-
todétecteur opérant en couplage fort. d) Dispersion en réflectivité et à température ambiante
d’un dispositif polaritonique en couplage fort (période 3.8 µm, taux de remplissage 70%)

toniques ont été observées et les simulations correspondent avec les mesures expérimentales
(Figure 3) d)).

Après validation en réflectivité du couplage fort entre la région active et la cavité disper-
sive, les dispositifs de photo-détecteur en couplage fort (SC-QWIP) ont été fabriqués dans la
salle blanche du C2N-Orsay. Le schéma du dispositif de photo-détection est présenté Figure
3 (c). Il est constitué de deux plans métalliques de part et d’autre de la région active. Le métal
supérieur est composé d’un réseau métallique de périodes Λ =3.2 ; 3.7 et 4 µm et de facteur
de remplissage de 80% fabriqué grâce à une étape de lithographie électronique. Le réseau
métallique supérieur est ensuite connecté à l’électrode afin d’assurer le contact électrique.

Figure 4 présente les dispersions expérimentales normalisées en photo-courant pour les
périodes 4 µm (a), 3.7 µm (b), 3.2 µm (c). Une nette différence entre les pics de photo-
courant et les pics d’absorption attendu par les simulations (points blancs) est observable
pour le polariton bas. Pour rendre compte de cet effet nous avons dû considérer que le po-
lariton bas se trouvait à l’intérieur du puit quantique (Figure 3, (b)) de sorte qu’il ne puisse
générer du photo-courant qu’à partir du moment où il est suffisamment proche de la transition
nue. Ainsi nous avons introduit une fonction de transfert tenant en compte de l’effet tunnel
(encart Figure 4, (d)) dans la barrière en introduisant une coupure lorsque l’énergie du po-
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Figure 4: (a), (b), (c) dispersion en photocourant des SC-QWIP pour les période (4; 3,7 et
3,2 µm) et les pics d’absorption des polaritons (points blancs) obtenus en simulation RCWA.
(d), (e) et (f) sont les simulations en tenant en compte du tunneling du polariton bas à travers
la barrière (encart Figure (d)).

lariton bas se trouve sous la transition nue (ωeg). Les mêmes simulations que précédemment
tenant compte de cette fonction de transfert (Figure 4, (d), (e), (f)) montrent un bon accord
avec les mesures expérimentales. Ce résultat nous éclaire sur les propriétés des polaritons
en couplage fort qui sera intégré dans la conception de nouveaux détecteurs (SC-QWIP or
SC-QCD) conçus pour fonctionner en couplage fort.

En parallèle de ces deux projets sur les polaritons ISB, nous avons participé à la concep-
tion et à la fabrication de QCLs pour la génération d’impulsions courtes THz. Les cavités
Gires-Tournois ont montré leur intérêt, dans le moyen-infrarouge puis dans le THz, pour
compenser la dispersion de la région active. Dans le THz les GTI-QCL ont initialement util-
isé des régions actives avec un gain relativement étroit, utilisant pour mécanisme d’inversion
la dépopulation par phonon LO (longitudinal optique). Afin de réduire la largeur temporelle
de l’impulsion THz nous proposons d’utiliser des structures QCL large bande. Pour ce faire
deux types de régions actives large bande ont été développées : l’une rassemblant deux ré-
gions actives (dépopulation LO phonon) de fréquences centrales différentes et l’autre basée
sur un mécanisme de transitions intermini-bande assistées par LO phonon.

La difficulté majeure dans la fabrication de ces cavités est la gravure des cavités laser.
En effet la cavité Gires-Tournois est constituée de deux miroirs séparés l’un de l’autre de
seulement 3 µm. Compte tenu de l’épaisseur des régions actives (>15 µm) cela impose
l’utilisation d’une gravure sèche an-isotrope et selective. Afin de pouvoir fabriquer ces cavités
nous avons développé une recette de gravure ICP (Induced Coupled Plasma) dédiée à ce type
d’application.

Les cavités GTI fabriquées grâce à cette recette de gravure ICP ont généré des impul-
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Figure 5: (a) Image 3D d’une cavité Gires-Tournois utilisée pour la génération d’impulsions
THz courtes. (b) Image MEB de la cavité Gires-Tournois.

sions courtes semblables aux résultats obtenus dans la littérature. Ces dispositifs pourraient
être utiliser comme pompe en régime pulsé picoseconde pour accéder au temps de vie des
polaritons THz.
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Introduction

The development of epitaxial growth in the 70’s [1], such as molecular beam epitaxy (MBE),
appeared as a revolutionary tool to explore the fields of condensed-matter, semiconductor,
and opto-electronics. MBE brought an unprecedented control of material layer thickness at
the nano-scale.

One of the breakthroughs that stems from the MBE development was the fabrication of
quantum well (QW) structures, heterostructures and modulation doping. Inside the QW the
electronic states are confined and transitions between these electronic states can be engi-
neered between the valence and conduction bands (inter-band) or inside one band (intersub-
band). In a QW, the alloy composition of a same material (AlGaAs; AlGaInP;...), the width
of the QW and the doping of the material are the key elements to tune the transition energy.
In the case of intersubband transitions, a wide spectral range from the near-infrared to the
THz is accessible.

Optoelectronic devices typically operate in the weak coupling regime between light and
matter, for example in conventional lasers which rely on population inversion to achieve opti-
cal gain. Recently, however, there has been a surge of interest in quantum systems operating
instead in the strong coupling regime, when the coupling strength of the light-matter interac-
tion is so strong that new states – cavity polaritons – are created, that are partially light, and
partially material excitations.

In semiconductors, exciton-polaritons have been the most widely studied type of strongly
coupled system. However, recently, a new phenomenon has been realized exploiting inter-
subband transitions. The resulting excitations are called intersubband polaritons, and they
have two remarkable properties: (i) a bosonic character that is maintained up to high car-
rier densities since they are not restricted by the Mott transition limit; and, (ii) large Rabi
splittings.

One of the main issues for intersubband polaritons is the choice of the cavity, as ISB
transitions are TM polarized and therefore Bragg mirrors cannot be used. In the Mid-IR, the
first strategy to observe polaritons relied on total internal reflection. In 2003, by confining
the electromagnetic radiation between a doped layer and a GaAs/Air interface ISB polari-
tons were demonstrated for the first time [2], six years after the theoretical proposal [3].
Subsequent developments include the demonstration of ISB polariton LEDs [4] and exciton-
polariton LEDs at near-IR wavelengths; polariton-based detectors/emitters [5, 6, 7]; ultra-fast
switching [8].
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The total internal reflection configuration has significant drawbacks: it restricts the prob-
ing incident or emission angles through the cavity, no coupling from the surface is possible,
the overlap with the active region is not maximized, and the cavity is not directly scalable
from one frequency range to another.

In parallel to the work in the Mid-IR, research in the THz range explored the ultrastrong
coupling regime [9]. Because the Rabi-splitting varies as the square root of the overlap be-
tween the electromagnetic field and the QW active region, metal-insulator-metal (M-I-M)
cavities have been widely employed [10], as they offer confinement close to one. One pecu-
liarity of the patch cavities used for these studies is that they have no dispersion.

These diverse developments led to the design of a new generation of M-I-M resonators
that are instead dispersive. These resonators with a periodically opened top metal have sev-
eral advantages: the confinement is high, the light is coupled from the surface of the sample,
the coupling can be engineered by controlling the geometry of the cavity or the angle of
incidence and they are entirely scalable from the NIR to the THz [11, 12, 13]. In 2018,
phonon-polariton scattering was observed by optical pumping of a dispersive M-I-M cavity
Ref.[14]. This experiment proved the versatility of this type of cavity.

The goal of this work has been to take advantage of the dispersive M-I-M cavities to ex-
plore the fundamental properties of ISB polaritons bright states in the Mid-IR and in the THz
spectral ranges.

In the Mid-IR we have explored the effect of the strong coupling on the generation of
photocurrent by using a quantum well infrared photodetector in strong coupling with a dis-
persive M-I-M cavity [15]. This approach has a two-fold motivation. From the device point
of view, the strong coupling regime could be a key technique to disentangle the frequency
of detection from the thermal activation energy. From the polaritonic point of view, disper-
sive cavities represent an ideal platform to explore the interaction between bright states and
electrical transport. Understanding and mastering the energy exchange between the bright
states and the electrons - direct and reverse mechanisms - is essential for the development of
detectors, but especially for electrically pumped emitters.

On the other side of the Restrahlen band, the observation of THz-ISB polaritons is in
their early stages. Effectively, in the THz domain, quantum devices ( [16, 17], QWIP [18])
and thermal devices (bolometers) are generally limited to cryogenic operating temperatures.
In the long term, strong coupling might reveal as a promising concept to reduce the tempera-
ture dependence of THz quantum devices. Nevertheless, most of the fundamental properties
(lifetime, saturation levels, scattering mechanisms) of THz ISB polaritons still need to be
assessed. The observation and the estimation of these structural properties would be essen-
tial to design THz quantum devices in strong coupling, for instance for a THz ISB polariton
laser. Note that it is possible to observe THz polaritons at room temperature using parabolic
quantum wells (PQWs) [19, 20]. However, the growth of these PQWs is still challenging
and we chose to work with standard square quantum wells that are for the moment the best
candidates (narrower linewidth) for ISB polariton physics in this spectral range.

In this manuscript, we have implemented dispersive M-I-M cavities in strong coupling
with a THz intersubband transition. The dispersion of the cavity – measured with a specially
developed set-up - will be used to access a broad set of polaritonic states offering a platform
to explore the fundamental properties of THz-ISB polaritons.
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One crucial peculiarity here is that the Rabi-splitting (ERabi,THz ∼ 1-2 meV ) is much
smaller than the LO-phonon energy (ELO,GaAs ≈ 36 meV ). Consequently, the phonon-
polariton scattering is not permitted in the THz and alternative mechanisms have to be ex-
plored such as polariton-polariton scattering [21].

To observe these specific mechanisms a powerful source of light associated with a precise
technique of spectral measurement is necessary. The quantum cascade laser demonstrated in
the Mid-IR in 1994 [22] and in the THz in 2002 [23], appears as a good candidate for the
excitation of the polaritonic states, especially since the demonstration of output peak powers
close to 1 Watt [17, 24] in the range of 2.5 to 4 THz. An elevated output power enables to
pump effectively the ISB polaritons. Furthermore, the pulse length can potentially be chosen
from the µs (electrical power supply) to the ps (modelocked QC lasers [25, 26]).

THz-QC lasers can be synchronized with a photo-conductive antenna and integrated in a
time-domain spectroscopy (TDS) system. The sample in strong coupling and its modifica-
tions under the intense laser electromagnetic field can then be analyzed with a THz probe.
To be compatible with these two technologies (THz QCL and TDS) we engineered the ISB
polariton states around 2.5-3 THz.

The manuscript is divided into three main parts and it consists of six chapters that follow
almost chronologically the conduct of my Ph.D.

Part 1 concerns the work on the THz polaritons in a dispersive cavity. I first imple-
mented the Metal-Insulator-Metal (M-I-M) dispersive cavity for THz polaritons. I specifi-
cally designed and fabricated an experimental set-up to measure the dispersion on a Fourier
Transform Interferometer (FTIR). The ISB polaritons have then been studied in time-domain
spectroscopy (TDS) at the LPA in the group of S.Dhillon.

In Part 2, we explore the impact of the spectral gain broadening of a QC active region to
reduce the pulses width of mode-locked THz-QC lasers.

In Part 3, we implement the M-I-M dispersive cavity on a bound-to-quasi-bound Quan-
tum Well Infrared Photodetector (QWIP) to observe the electronic behavior of ISB polaritons.

Chapter 1 serves as a general introduction describing the formalism related to: material
science in III-V semiconductors and metals, the physics of quantum wells and intersubband
transitions, the electromagnetism of double-metal waveguides and finally the strong-coupling
regime between a cavity photon and intersubband plasmon.

Chapter 2 presents the design and the fabrication of dispersive M-I-M cavities in strong
coupling with a THz intersubband transition (3 THz). A specific set-up has been fabricated
to measure the dispersion of these samples in reflectivity at liquid Helium temperature. This
initial study gives crucial information about the energy levels of the polaritonic states and
confirms the compatibility of these samples with time-domain spectroscopy measurement
performed at the LPA/ENS laboratory. Chapter 3 presents the preliminary results on these
samples with TDS reflectivity and pump-probe measurements. The measurement of the po-
laritonic branches with and without laser pumping provides information about the potential
scattering mechanisms that come into play in the THz range. Taking a long term view, this
study could lead to the definition of a protocol for the development of intersubband polariton
lasers in the THz domain.

In parallel to the THz polaritons, Part 2 ( composed only by Chapter 4), explores tech-
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niques to improve the performance of mode-locked THz-QCLs (shorten the pulse). Recent
results, in which our group was involved, proposed to tailor the laser cavity with a Gires-
Tournois Interferometer (GTI) to compensate the gain dispersion of the active region [27].
With this technique, stable pulses down to 4 ps were obtained. In the context of the European
project H2020-Ultra-QCL, we investigated two methods to increase the number of lasing
modes: by broadening the gain. First, the dispersion compensation of a GTI was applied
to broadband active region heterostructures. The fabrication (C2N-Orsay cleanroom) of the
GTI-QC lasers required the development of a specific dry-etching recipe Ref.[28] that will
be described in details.

Part 3 of the thesis manuscript presents the work on quantum well infra-red detectors in
strong coupling.

Chapter 5 introduces the main elements of the detection theory (responsivity, detectivity,
noise equivalent power) adapted to QWIP devices. Some notable works related to QWIP
technology in weak and strong coupling are discussed.

In Chapter 6 the design, the fabrication, and the characterization of the structures in weak
(Mesa) and in strong-coupling (SC-QWIP) are presented. A comparative analysis of the
devices in weak and strong coupling and of the dispersion in photocurrent of the devices
in strong coupling confirms the polaritonic origin of the experimentally observed signal. In
particular, the singular shape of the polariton dispersions has confirmed the relative positions
of the polaritonic states (dressed states) compared to the single particle states that set the
electronic transport. The specific behavior of the lower polariton dispersion in photocurrent
required the introduction of a phenomenological model that is able to accurately reproduce
the experimental data using a single transfer function summarizing the frequency dependence
of the probability rate of escape from the QW for an electron in the excited state.
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1
Light-Matter Interaction

in Semiconductor Quantum Wells

This first chapter introduces the theoretical concepts of light-matter interaction. These transv-
ersal concepts valid for both THz and Mid-IR domains are essential to understand the strong
coupling regime.

First, the quantum mechanics of III-V semiconductors adapted to GaAs and the inter-
subband transitions will be presented. Then M-I-M cavities will be studied. Finally, we
present two theoretical visions of the strong coupling regime between a cavity photon and an
electronic transition.

1.1 III-V Semiconductor: GaAs

In this manuscript, we will present experimental results on THz polaritons, THz lasers and
Mid-IR detectors. All these devices have used GaAs/AlGaAs heterostructures active regions.
In this first section, we will apply the concepts of quantum mechanics of III-V semiconduc-
tors to this peculiar material.

Bulk GaAs crystallizes in Zinc-Blende structure (Figure 1.1) where the elements of the
groups III and V stand on the nodes of two face-centered-cubic lattice offset by a quarter of
diagonal. The first Brillouin zone of the reciprocal space represented Figure 1.1 is an octahe-
dron with cut faces. The maximum of the valence band and the minimum of the conduction
band are at the Γ point. The bulk GaAs has a direct gap.

The growth by molecular beam epitaxy permits to realize lattice-matched heterostructures
between GaAs and AlGaAs.

1.1.1 Envelope Function Formalism

In a bulk semiconductor, electrons are subjected to the a crystalline potential V (r), period-
ical in the three dimensions: V (r + R) = V (r) if R belongs to the Bravais lattice. The
Hamiltonian, neglecting the spin-orbit interaction, is then written:

Hel =
p2

2me

+ V (r). (1.1)
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1.1. III-V Semiconductor: GaAs

Figure 1.1: (a) Crystalographic view of the Zinc-Blend structure performed with Vesta Soft-
ware with the data of materialsproject.org. The Gallium sites are in grey and the Arsenide
sites on half of the tetrahedral sites are in yellow. (b) Brillouin zone for the Zinc-Blend
structure.

According to the Bloch Theorem, the eigen states are ψn,k = eik.r√
V
un,k(r) where n ∈ N.

These states are the product between a plane wave and a function with the same period of the
crystal lattice.

In the heterostructure, the energy gap between the different materials is distributed be-
tween the valence and the conduction bands. Thus the conduction band has a profile Ec(z).
In this case, a similar solution can be found where the plane wave is replaced by an envelope
function (fi) which is supposed to vary over one lattice period slowly.

Ψi(r) = fi(r)uB,WΓ (r), (1.2)

i represents the quantum number of the problem and uB,WΓ (r) is the conduction band wave-
function of the barrier (well) at the Γ point of the Brillouin zone. The envelope function
profile is determined by the potential Ec(z) to which an external potential Vext(r) can be
added.

By using this approach, it is possible to describe the electrons of the conduction band
only with the envelope function. The method consists in taking into account the contribution
of the crystalline potential in the calculation through the effective mass defined by m∗ =

~2(∂
2Ec(k)
∂k2

)−1.

1.1.2 Quantum Wells and Subbands
The evaluation of the effective mass of the different subbands is not trivial. Evan O’Neill
Kane was one of the main developers of the k.p model used to solve this problem. To es-
timate the effective masses in the different bands of the system Kane worked under the hy-
pothesis [29] that the ratio between the eigenvalues of the nth confined states and the band
gap (En/Eg) was small compared to unity. Under these conditions, the band mixing can be
neglected and the wavefunctions clearly defined.

The system is then described only by the envelope function with the appropriate effective
mass
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Chapter 1. Light-Matter Interaction

− ~2

2m∗
∇2fi(r) + V (r)fi(r) = Eifi(r). (1.3)

In a quantum well the artificial potential is created only along the growth direction z,
meaning that V (r) = V (z). In this case, the free motion in the x and y directions can be
separated :

fi,kx,y =
1√
S
ejkx,yrψi(z), (1.4)

where kx,y = kx + ky is the transverse wavevector and S is the sample area. By inserting
(1.4) into Equation (1.3) we can write the Schroedinger equation in one dimension

− ~2

2m∗
∂2

∂z2
ψi(z) + V (z)ψi(z) = Eiψi(z), (1.5)

with 1
m∗

∂
∂z
ψi(z) and ψi(z) continuous at the interface between two different materials.

Figure 1.2: (a) Schematics of three energy levels in a GaAs/AlGaAs Quantum well. (b)
Energy dispersion as a function of the in-plane wave vector.

To illustrate Equation (1.5) we consider the simplest model of an infinitely high barrier
square QW [30], i.e, V = 0 for 0 ≤ z ≤ Lw, V =∞ for z < 0 and z > Lw, where Lw is the
width of the QW. In this case the eigenstates and energy levels are

Ψn(kxy) =
√

2
LwS

sin( πn
Lw
z)exp(ikxy.r)

En(kxy) = ~2
2m

(
π2n2

L2
w

+ k2
xy

) (1.6)

Where S is the normalization area in the x-y plane, n is a positive integer, kxy is the x-y
plane wavevector and m the effective mass in the well. Equation (1.6) explains the reason
for the term "subband": in a given quantized state one can add many electrons occupying
different in-plane momenta.
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1.2. Intersubband Transitions

1.2 Intersubband Transitions
In the following section, we will introduce Fermi’s Golden Rule to calculate photon absorp-
tion inside a Quantum Well.

1.2.1 Light Matter Interaction
We consider an incident wave at frequency ω, with a wave vector q such as ω = cq/ns
where c is the speed of light in vacuum and ns is the substrate refractive index, ε̂ is the light
polarization. The oscillating electric field can then be written: ~F = F ε̂cos(ωt − q.r). The
corresponding vector potential according to the Coulomb Gauge is ~A(r, t) = j F ε̂

2ω
ej(ωt−q.r)

[31].
The Hamiltonian of an electron, charge −e, progressing in an electromagnetic field is

obtained from the Hamiltonian of a free electron, by replacing ~p by ~p + e ~A. In the dipolar
approximation, when the wavelength is far larger than the system dimensions (quantum well
width), the photon wavevector ~q and the spatial dependence of ~A can be neglected. Under
these conditions and by neglecting the term in A2:

H = H0 +
e ~A.~p

m∗
, (1.7)

where H0 is the Hamiltonian in the absence of an electric field.
We consider the transition from an initial state |Φi,k〉 of subband i, with wavevector k and

energy Ei,k = Ei +
~2k2
2m∗

and a final state |Φf,k′〉 of subband f, with wavevector k′ and energy
Ef,k′ = Ef + ~2k′2

2m∗
. These two states are described by

Ψi,k(r) = 1√
S
ejkxy .rΦi(z)

Ψf,k′(r) = 1√
S
ejk

′
xy .rΦf (z)

(1.8)

The transition rate Γif (~ω) between these two states is given by Femi’s Golden Rule

Γif (~ω) =
2π

~
|〈Ψf,k′ |V |Ψi,k〉|2δ(Ef,k − Ei,k − ~ω), (1.9)

where V = e ~A.~p
m∗

= jeF
2m∗ω

ε̂.p. The transition rate is then proportional to the square of the
following matrix element:

〈Ψf,k′ |ε̂.p|Ψi,k〉 = εzδk,k′〈Φf,k′ |pz|Φi,k〉. (1.10)

Consequently, only an electric field with a z component (TM polarized) can couple to an
intersubband transition, which occurs at a constant k vector. The energy difference between
the two states Eif = Ef,k−Ei,k does not depend on k. By introducing the oscillator strength

fif =
2

m∗~ωif
|〈Φf (z)|pz|Φi(z)〉|2 =

2m∗ωif
~
|〈Φf (z)|z|Φi(z)〉|2, (1.11)

and the z-component of the incident beam intensity Iz = ε0cnsF 2
z

2
, we obtain finally [32]

Γif (~ω) =
2πe2Izfif
m∗ωε0cns

δ(~ω − Eif ). (1.12)
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Chapter 1. Light-Matter Interaction

In Equation (1.11) the oscillator strength is related to the dipolar matrix elements that can
be calculated from the knowledge of the envelope functions.

Experimentally the Dirac function δ(~ω − Eij) can be replaced by a Lorentzian function
taking into account the natural broadening of the energy levels. The Lorentzian function is
written with a full width half maximum γ, centered around Eif . In addition the electron
density by unit area Ni and Nj for each state can be considered. The transition rate (Equation
(1.12)) is then weighted by the number of possible transitions between the states i and f
S(Nf −Ni). The final expression of the transition rate is then

Γif (~ω) =
(Ni −Nf )Se

2Izfif
m∗ωε0cns

γ

(γ/2)2 + (ω − ωif )2
. (1.13)

In the following, we consider that only the first subband is occupied (EF < E2) and
focus only on the transition 1 −→ 2. Thus N1−N2 = N1 = Ns where S is the surface of the
sample.

1.2.2 Absorption
In any medium, the absorption coefficient (α3D(r, ω)) is defined by the ratio between the
electromagnetic field energy absorbed per unit of time and volume (~Γij/(S ∗Leff )) and the
intensity of the electromagnetic field (I = ε0cnsF 2

2
). Consequently, a wave propagating in

an active medium on a length L is damped by a factor eα3DL. A more convenient approach
uses the absorbance, i.e., the electromagnetic energy absorbed by unit of surface, that is a
dimensionless quantity related to absorption by the relation α2D = α3DLeff with Leff ≈
Lwell the effective thickness of the quantum well (quasi 2D electron gas) [33]. By using
Equation (1.13) we can give the expression of the absorbance [31]

α2D(ω) =
Nse

2f12

m∗ε0cns

γ

(γ/2)2 + (ω − ω12)2
(1.14)

Experimentally the transmission is more accessible than the absorption. Considering a
TM wave with intensity I propagating through a quantum well, making an angle θ with the
growth direction (z), the length of interaction with the quantum well is then Leff/cos(θ). The
transmission in this situation is

T (ω) = exp(−α3DLeffsin
2(θ)/cos(θ)) = exp(−α2Dsin

2(θ)/cos(θ)), (1.15)

the factor sin2(θ) is because only the z component of the electric field interacts with the
electron gas. By neglecting the reflectivity at the interfaces the absorption A = 1 − T is
proportional to α2D for weak absorptions

A = 1− exp(−α2Dsin
2(θ)/cos(θ)) ≈ α2Dsin

2(θ)/cos(θ). (1.16)

1.2.3 Lorentz Model for Dielectrics
The Lorentz model is a semi-classical model describing the propagation of an electromag-
netic wave in a dielectric. This model is the most efficient to describe the properties of
insulators/semiconductors at optical frequencies from the far to the mid-Infrared. Electrons
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1.2. Intersubband Transitions

with a mass m are described as elastically bound to the nucleus that is considered as fixed.
In the case of N electrons by unit volume, there are as many oscillator eigenfrequencies [34].
The damping strength is −meγ

∂r
∂t

. The fundamental equation of the dynamics of an electron
of mass me, charge −e, resonant at ω0 and driven by an electric field E(ω) = E0ε̂e

−jωt is

me(−ω2 − jγω + ω2
0)r = −eE(ω). (1.17)

The induced polarization -that is proportional to the dipole moment- is then

Pres(ω) = −Ner =
Ne2

me

1

(ω2
0 − ω2 − jγω)

E(ω). (1.18)

The dielectric displacement of the medium is defined byD = ε0(1 + χ)E +Pres where
χ is the susceptibility of the material. According to Equation (1.18) we obtainD = ε0ε(ω)F
with

ε(ω) = 1 + χ+
Ne2

ε0me

1

(ω2
0 − ω2 − jγω))

. (1.19)

We can split (1.19) into its real and imaginary parts
ε1(ω) = Re[εr] = 1 + χ+ Ne2

ε0me

ω2
0−ω2

(ω2
0−ω2)2+(γω)2

ε2(ω) = Im[εr] = Ne2

ε0me

γω
((ω2

0−ω2)2+(γω)2)

(1.20)

This form of equation leads to constant permittivities on each side of the resonance. At
low frequencies (static) εst = εr(ω → 0) = 1 + χ + Ne2

ε0meω2
0
. At high frequency the limit is

ε∞ = εr(ω →∞) = 1 + χ.
ε1 and ε2 are related to the refractive index n and the extinction coefficient κ of the medium

through ε1 = n2 − κ2

ε2 = 2nκ
(1.21)

One important aspect of a resonant Lorentzian absorption is that the effect on the refrac-
tive index occurs over a larger frequency range than the absorption.

Bulk GaAs

In III-V semiconductors, like GaAs, the atoms are arranged in a Zinc-Blende crystal structure
by bonds of mainly covalent nature. The chemical bond shows a partial ionic character
because the shared electrons lie slightly closer to group V atoms than to group III. This
asymmetry in the electron cloud creates a dipole moment that interacts with electric fields.
This polarization creates strong absorption and reflection bands in the infrared spectral range,
particularly close to the transverse optical (TO) photon modes of the crystal.

The interaction between electro-magnetic waves and TO phonons can be modeled intro-
ducing a damped oscillator of frequency ωTO in the Lorentz model, which yields a dielectric
function response in the form (1.19)

10



Chapter 1. Light-Matter Interaction

Figure 1.3: Optical constants (real and imaginary part of the permitivity ε1, ε2, index n and
losses κ) derived from the Lorentz model for undoped GaAs. The grey areas represent the
Reststrahlen band. The phonon’s frequencies are νTO = 8.05 THz for the transverse-optical
phonon and νLO = 8.75 THz for the longitudinal-optical phonon.

ε(ω) = 1 + χ+
Ne2

ε0me

1

(ω2
TO − ω2 − jγphω)

(1.22)

= ε∞ + (εst − ε∞)
ω2
TO

ω2
TO − ω2 − jγphω

. (1.23)

Where γph is the damping of the phonon mode. If we recall the Lyddane-Sachs-Teller
relation

ω2
LO

ω2
TO

=
εst
ε∞
. (1.24)

The equation (1.22) can be rewritten

εphr (ω) = ε∞

(
1 +

ω2
LO − ω2

TO

ω2
TO − ω2 − iγphω

)
(1.25)

The model parameters are experimentally extracted [35], yielding ε∞ = 11.1, νTO = 8.05
THz, νLO = 8.75 THz and γph = 4.07.1013 1/s. The Figure 1.3 shows the real and the
imaginary parts of the dielectric function, together with the refractive index and the extinction
coefficient, of undoped GaAs.

11



1.2. Intersubband Transitions

Note that between νLO and νTO, εr is negative and
√
εr is imaginary. In this frequency

band named Reststrahlen band, light cannot propagate into the medium and is completely
reflected.

Dielectric Function in Multiple Quantum Wells

In a more detailed way, it has been shown [36] that a multiple quantum well behaves as an
anisotropic dielectric with a Lorentz-like frequency dependence [31, 12]. Starting from the
Lorentz equation (1.19), we can consider several resonances ωk. To agree with the experi-
ments, the oscillator strength fk of each transition must be taken into account leading to the
following

ε(ω) = 1 + χ+
∑
k

Nke
2

ε0me

fk
(ω2

k − ω2 − jγω))
(1.26)

In the case of a QW with an effective width Leff ∼ LQW when we focus mainly on the
transition 1→ 2, we can write

ε(ω) = ε∞

(
1 +

Nse
2

ε0meε∞Leff

f12

(ω2
12 − ω2 − jγω)

)
(1.27)

Where Ns = N ∗ Leff is the number of oscillators by unit surface. We can then define
the bidimensionnal conductivity of the quantum well σ2D(ω) = σ(ω)/Leff , in order to relate
the dielectric function to the conductivity as follows:

ε(ω) = ε∞ +
jσ2D(ω)

ε0ωLeff
(1.28)

which gives the following expression for the conductivity

σ2D(ω) =
Nse

2f12

m∗
ω

ω2
12 − ω2 − jγω

. (1.29)

At this stage it is interesting to introduce the plasma frequency associated to the transition
i→ f

ωPif =

√
(Ni −Nf )e2fif
m∗ε0ε∞Leff

(1.30)

if only two subbands are involved we can write ωP12 =
√

Nse2f12
m∗ε0ε∞Leff

which gives the follow-
ing expression 

σ2D(ω) = jωε0ε∞Leff
ω2
P12

ω2
12−ω2−jγω

ε(ω) = ε∞

(
1 +

ω2
P12

(ω2
12−ω2−jγω))

) (1.31)

This result is used to describe the permittivity in the Rigorous Coupled Wave Analysis
algorithm. Note that the value of ε∞ is different between the mid-infrared (ε∞ = 11) and the
THz (ε∞ = 12.96).
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Chapter 1. Light-Matter Interaction

The expression σ2D(ω) in Equation (1.31) leads to a second definition of the absorption
that is compatible with the Equation (1.16) at low doping level [33]

A =
R(σ2D)

ε0cns

sin2(θ)

cos(θ)
. (1.32)

1.2.4 Highly Doped Semiconductors: Depolarization shift
For high electronic densities (Ns > 1011cm−2), i.e high absorptions, it is not possible to
neglect the oscillating dipole created by the charge distribution in the quantum well. This
oscillation that corresponds to the dynamical Coulomb interaction has a significant impact
on the optical response of the quantum well.

In this development, we consider only the z component of the fields. The relation between
the external field Fext and the total field Fz is given by the conservation of the electronic
displacement Dz at the interface

F ext
z = εzzFz (1.33)

An electron in the 2D electron gas is sensitive to the external radiation excitation as well
as the oscillation of the other electrons around it. These oscillations induce an alternative
current [37]

jz(ω) = σzzFz = σ̃zzF
ext
z (1.34)

where σ̃zz describes the response of the medium with the external field and is expressed as

σ̃zz =
σzz(ω)

εzz(ω)
(1.35)

Considering that the relation between σzz and εzz is defined by Equation (1.31) we can rewrite
the conductivity as

σ̃zz = −jε0ε∞ωLeff
εzz − 1

εzz
= jωε0ε∞Leff

ω2
p

ω2 − ω̃12 + jγω
(1.36)

where ω̃12 =
√
ω2

12 + ω2
P12

The absorption of the quantum well is given similarly than in the previous section

A =
R(σ̃zz)

ε0cns

sin2(θ)

cos(θ)
(1.37)

The expression of the absorption is modified only by the coefficient ω̃12. The absorption
is blue shifted. This phenomenon is named depolarization shift.
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1.3. Electromagnetic Waveguide

1.3 Electromagnetic Waveguide
The choice of the cavity is crucial to confine the light in the active region and explore the
polariton properties. In this manuscript, we mainly exploit the properties of metal-metal
cavities. This section presents the electromagnetic concepts that will be used in the rest of
the manuscript. Note that these theoretical concepts are also valid for the metal-metal THz-
QCLs (Chapter 4).

1.3.1 Drude Model for Metals
To describe metals the model of free electrons is preferred. In this model the metal behaves
as a plasma with fixed positive ions and moving electrons. The free electron model for
metals was proposed by Drude in 1900. When an electric field is applied, the free electrons
accelerate and then undergo collisions with a characteristic scattering time τmet = 1

γmet
, where

γmet is the damping rate in the metal. Therefore the electrical conductivity is limited by
scattering.

The Drude equation is similar to the Lorentz’s ones except for the restoring force term
because the electrons are free to move in the lattice under an applied field. The equation of
motion for the displacement of a free electron of mass me and charge −e forced by an AC
field is then

m0

( ∂2

∂t2
+ γmet

∂

∂t

)
r = −eE (1.38)

Considering a periodic electric field E(ω) = E0ε̃e
−iωt Equation (1.38) leads to the per-

mittivity

εr(ω) = 1− Ne2

ε0m0

1

ω2 + jγmetω
= 1−

ω2
p

ω2 + jγmetω
(1.39)

where ωp is the plasma frequency

ωp =

√
Ne2

ε0m0

(1.40)

In a metal the optical properties are equivalently described by the AC conductivity than
by the permittivity. In fact the two functions are related by

εr(ω) = 1 +
jσ(ω)

ε0ω
(1.41)

1.3.2 Helmholtz Equation
Maxwell’s curl equations in a source-free, linear and homogeneous medium under a time-
harmonic field are

~∇× ~E = −jωµ ~H (1.42)
~∇× ~H = jωε ~E (1.43)
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Chapter 1. Light-Matter Interaction

To uncouple these two equations we take the curl on the first one and use the second one

~∇× ~∇× ~E = −jωµ~∇× ~H = ω2µε ~E. (1.44)

Recalling the vector identity ~∇× ~∇× ~A = ~∇(~∇. ~A) −∇2 ~A and knowing that ~∇× ~E = 0
in a source-free region, (1.44) becomes then

∇2 ~E + ω2µε ~E = 0 (1.45)

This last equation is known as Helmholtz equation. The propagation constant in the
medium is defined as k = ω

√
µε = nk0 where n is the refractive index of the medium and

k0 = ω/c is the free space propagation constant. In free space Helmholtz equation becomes

∇2 ~E + ω2µε ~E =
(∂2 ~E

∂x2
+
∂2 ~E

∂y2
+
∂2 ~E

∂z2

)
+ ω2µε ~E = 0 (1.46)

The projection of the Helmholtz equation on each component of a Cartesian reference
system is then (∂2Ei

∂x2
+
∂2Ei
∂y2

+
∂2Ei
∂z2

)
+ k0Ei = 0 (i = x, y, z) (1.47)

Equation (1.47) can be solved using the method of separation of variables for partial
differential equations [38]

Ei(x, y, z) = fi(x) ∗ gi(y) ∗ hi(z) (1.48)

One can then separate in three ordinary 1D differential equations

∂2fi
∂x2

+ kxfi = 0;
∂2gi
∂x2

+ kygi = 0;
∂2hi
∂x2

+ kzhi = 0 (i = x, y, z) (1.49)

where the propagation constant has been separated in three components so that

k2
x = k2

y = k2
z = k2

0 (1.50)

The solutions of Equation (1.49) are plane waves in the form e±jkxx,e±jkyy and e±jkzz

respectively. By convention, the - signs represent propagation in positive direction, while the
+ signs propagation in the negative direction.

This development leads to the expression of a plane wave

~E = ~E0e
−j~k.~r (1.51)

This equation injected in the Maxwell-Gauss equation considering a medium without
charges leads to

~k. ~E0 = 0, (1.52)

meaning that the electric field amplitude vector ~E0 must be orthogonal to the direction of
propagation ~k. Additionally if we use the Maxwell-Faraday law, we obtain

~H =
1

ωµ0

~k × ~E0 (1.53)
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1.3. Electromagnetic Waveguide

This result shows that the magnetic field vector ~H is simultaneously orthogonal to the
direction of propagation and the electric field. Therefore the EM radiation propagates in free
space as a transverse magnetic (TEM) wave.

In a medium, the electromagnetic wave can be bound in one or more directions by dielec-
tric discontinuities or conducting boundaries. Waveguides impose specific constraints that
shape the transverse mode characteristics.

1.3.3 Parallel Plate Waveguide
Waveguides are structures that confine and direct electromagnetic radiation. A simple type of
waveguide is composed of two perfectly conducting infinite plates separated by a distance t
between which EM waves are guided.

First, we recall the behavior of a TM wave reflected by a perfectly conducting surface
located at z=0 in the x-y plane. The incident wave is described by a magnetic field in the
form

~Hinc = H0e
−j(kxx+kzz)y (1.54)

Where kx = k0cos(θinc) and kz = k0sin(θinc). Due to the fact that the magnetic field has
to be tangential to the conducting boundary the reflected field is necessarily

~Hrefl = H0e
−j(kxx−kzz)y (1.55)

assuming a perfect reflection on the metallic plate. The total magnetic field from Eq.(1.54)
and (1.55)

~H = ~Hrefl + ~Hinc = 2H0cos(kzz)e−jkxxy (1.56)

The Ampère’s law gives the electric field as a function of the magnetic field

~E =
∇× ~H

jωε
=

1

jωε

[
− x ∂

∂z
+ z

∂

∂x

]
Hy (1.57)

= 2H0

√
µ

ε

[kz
k0

sin(kzz)x− jkx
k0

cos(kzz)z
]
e−jkxx (1.58)

To satisfy the boundary condition at z=0 the tangential component of ~E and the normal
component of ~H has to vanish, i.e. Ex = Ey = Hz = 0. In addition, the same conditions
are satisfied on the other metal plane for z=t, consequently, for sin(kzt) = 0 thus kzt = πm
with m an integer. This equation defines all the TMm modes where kz = mπ/t. The same
development gives similar sets of wavenumbers for the TE modes. Finally, both TM and TE
mode guidance condition is

kz = mπ/t (1.59)

where m=0,1,2... for TM modes and m=1,2,... for TE modes. The parallel-plate wave-
guide is calculated using the dispersion relation k2

x+k2
z = k2

0 = ω2µε. According to equation
(1.59)

kx =
√
ω2µε− (mπ/t)2 (1.60)
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Chapter 1. Light-Matter Interaction

Figure 1.4: (a) Schematics of the Metal-Insulator-Metal waveguide with first TM/TE modes
presented. (c) Schematics of a TM mode impinging TM mode on a metallic plane. Graphics
(b) and (d) show the dispersion of these modes: in the Mid-Infra Red (d) with a cavity width
of 1 µm and a permittivity εr = 11 ; and in the THz (b) with a cavity width of 10 µm and a
permittivity εr = 13.1.

In the following, we will mostly operate with the TM00 mode (M-I-M dispersive cavity
and M-I-M laser cavity). This mode (m=0, kz = 0) has a linear dispersion (Figure 1.4) and it
is defined by the fields

~E = −2
√

µ
ε
H0e

−jkxxz = −2ηH0e
−jkxxz

~H = ~Hrefl + ~Hinc = 2H0e
−jkxxy

(1.61)

Where kx = k0 and η is the impedance of the material.

1.3.4 Metal-Insulator-Metal Dispersive Cavity
In this section, we present the design of the dispersive metal-insulator-metal cavities. Then
we introduce the basic principles of Rigorous Coupled Wave Analysis (RCWA) simulations
and apply this algorithm to our study.

Concept

To reach the strong coupling regime, a high overlap between the electromagnetic field and
the active medium is needed. In the near infrared, excitonic polaritons are epitaxially im-
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1.3. Electromagnetic Waveguide

plemented using structures with Bragg mirrors to confine the light close to the active region
[39]. This solution is not directly scalable to the Mid-IR and the THz because ISB transitions
only interact with TM modes. In the THz, a basic cavity with high confinement of the elec-
tromagnetic field in the active core (> 90%) is the Metal-Insulator-Metal cavity. To cut-off
all the modes except the TM00 mode the thickness of the cavity has to be chosen correctly.
According to Equation (1.60) the cut-off condition is given by

ω2µε < π/t2. (1.62)

This inequality can be rewritten as a condition on the cavity thickness

t < tlim =
λ

2n
, (1.63)

λ is the wavelength of the transition around which we want to work, n is the index of the
active medium that is mostly composed of GaAs.

Figure 1.5: (a) The top grating introduces a periodic variation of the effective index in the
active region that can be considered as a one dimensional photonic crystal. (b) The dispersion
can be folded onto the Brillouin zone [40]. The effective index variation between the regions
with and without metal opens a photonic band gap at the edge of the Brillouin zone. The
purple area represents modes below the light cone.

However, coupling light into a M-I-M cavity is difficult because the coupling area is
smaller than the diffraction limit of the THz light. To overcome this difficulty and have better
control over polariton’s properties, we periodically opened the top metal. The top grating
enables surface coupling and generates dispersive modes that we can tune experimentally
with the angle of incidence (Figure 1.5). Figure 1.5 shows that the electric field energy is
confined below the metal ridges [41].

In this project, we want to couple the intersubband transition with the third photonic
branch for three reasons. First, the branch is above the light cone. Second, simulations show a
flat dispersion at k// = 0 for both upper and lower polaritons, which could lead to a polariton
accumulation in this experimentally accessible region. Third, if the cavity is sufficiently thin,
there are no higher order TM or TE modes crossing the third photonic branch.

The M-I-M cavity is versatile and by tuning the thickness and the grating period of the
cavity the 3rd photonic branch we can couple it with ISB transitions from the Mid-IR (Part
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Thickness (µm)

Implementation of
dispersive M-I-M cavities

ISB Transi-
tion (THz)

Doping
(cm−2)

QW
active
region

Buffer
layer

Grating
period
Λ (µm)

Part 1: Observation of
polariton-polariton scattering
in the THz domain

2.5 ∼ 1011 3 8 40

Part 3: QW infrared photode-
tectors in strong coupling with
a dispersive M-I-M cavity

30 ∼ 1012 1 0 4

Table 1.1: Cavity geometries studied in this manuscript. Part 1 is designed for the THz and
Part 3 is designed for the Mid-IR.

3 of this thesis) to the THz (Part 1 of this thesis). Table 1.1 presents the classical cavity
parameters used in this manuscript.

Rigorous Coupled Wave Analysis Simulations

To solve a multi-layer system with a 1D or 2D transverse structure, a semi-analytical model
is frequently used: Rigorous Coupled Wave Analysis (RCWA). This method decomposes a
multi-layer system in elementary regions that can be periodic in the transverse direction (x-y)
but have to be homogeneous in the longitudinal direction (z). In this section, we will first
describe the general procedure of RCWA codes and then see the application in the specific
case of a M-I-M cavity in strong coupling.

Figure 1.6: Simulation area and scattering matrix approach for a general patterned multilayer
structure

In each layer, the dielectric function (εl(x, y)) can be calculated knowing the geometry
(thickness of the layer, periodicity in x and/or y) and materials (refractive indexes). However,
the electromagnetic fields have z component, and as a first approach, the problem cannot
be treated only in 2D. To solve the Maxwell’s equations the fields, the dielectric function
and the permeability are expanded in the Fourier space according to all the combinations
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1.3. Electromagnetic Waveguide

of x-y harmonics (kx(m) = kx,inc − 2πm
Λx

and ky(n) = ky,inc − 2πn
Λy

with m,n ∈ N) [42].
The Maxwell’s equation can then be rewritten in a matrix form leading to the matrix wave
equation of the layer:

d2

dz̃2

(
ex
ey

)
−Ω2

(
ex
ey

)
= 0, with ex =


Ex(1, 1)
Ex(1, 2)

...
Ex(M,N)

 , ey =


Ey(1, 1)
Ey(1, 2)

...
Ey(M,N)

 (1.64)

where Ω ∈ C2∗M∗N is a matrix derived from the Maxwell’s equations containing all the
information about the geometry and the materials of the layer, andEx/y(i, j, z̃) are the electric
field components after Fourier expansion. The analytic solutions of Equation (1.64) are under
the form (

ex(z̃)
ey(z̃)

)
= exp(Ωz̃)e+(0) + exp(Ωz̃)e−(0), (1.65)

where e+(0) and e−(0) are the initial values for the differential equation. The superscripts
+ and - indicate the wave propagating respectively forward and backward in the z-direction.
From this result, the remaining components of the electromagnetic fields can be calculated in
the layer.

Once the band diagram (Ex/y(i, j), ∀i, j) in each layer has been constructed, the layers
are connected using boundary conditions at each interface. In particular, the transverse com-
ponent of the wavevector is constant all over the multi-layer structure. The common way
to match the electromagnetic field from one layer to another is to use the scattering matrix
method (Figure 1.6). In this convention the forward and backward propagating amplitudes
of waves are respectively noted bl and al respectively [43, 44]. These forward and backward
waves are related from one layer to a successive one by the scattering matrix S:(

aL
bL+1

)
= S(L+ 1, L)

(
aL+1

bL

)
=

(
S11 S12

S21 S22

)(
aL+1

bL

)
(1.66)

Finally, the scattering matrices are determined to describe the propagation over the entire
stack. The reflected b0 and transmitted aN signals of an incident plane wave (a0) are calcu-
lated from the scattering matrix of the whole structure S. In terms of scattering matrix, these
two coefficients are directly written:

b0 = S21(0, N)a0, aN = S11(0, N)a0 (1.67)

Practically, the M-I-M cavities used in this thesis are composed of four layers (Figure
1.7): the top gold grating with a period Λ ≈ λ/2n, a filling factor between 70% and 85%, a
thickness 250 nm; a buffer of GaAs, and an active region of composed by multiple quantum
wells for a total thickness t = tbuffer + tMQWs ≈ λ/10; and a bottom gold contact thickness
400 nm. The substrate is not taken into account in the simulations because the electromag-
netic field does not go through the bottom metal. Table 1.1 presents some estimation of t and
Λ for the THz and the Mid-IR domains.

These materials have been widely studied in the previous chapter, except the active region
for which we use the Zaluzny-Nalewajko model for the z component of the dielectric tensor
[36]:
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Chapter 1. Light-Matter Interaction

Figure 1.7: Lateral cross-section of M-I-M cavity. The dashed box corresponds to the unit
cell of simulation. For this study the unit cell is generally composed by four layer a top metal
grating with period Γ, a buffer GaAs layer, a multiple quantum wells region and a bottom
metal layer. t is the total thickness of the cavity between the two metal layers.

εz(ω) = ε∞
[
1− f0

ε2∞
ε2w

ω2
p

ω̃2
12 − ω2 − jωΓ12

]−1 (1.68)

where ω̃12 is the transition frequency including depolarization shift, ωp the plasma fre-
quency, Γ12 is the FWHM of the ISB transition, εw is the dielectric constant in the well
material and f0 is the oscillator strength approximated to one for this two-level system. The
plasma frequency is expressed as follows:

ωp =

√
n2De2

ε∞m∗(Lb + Lw)
(1.69)

where Lb and Lw are respectively, the barrier and well thicknesses and n2D stands for the
dopants sheet density.

The simulation is run on one 2D unit cell (dashed box) containing all the information
about the structure. The grating is periodical in only one direction (y), and the system can
thus be solved only in two dimensions y-z which highly simplifies the puzzle and permits the
use of fast Fourier-transforms [45]. The band diagram can then be displayed in the angle the
energy-angle or in the energy-k-vector space.
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1.4 Intersubband Polaritons
When a quantum well is included in a cavity, it is possible to reach the so-called strong cou-
pling regime. In this regime, the eigenstates are mixed states between an electronic excitation
and a cavity photon. These states called intersubband polaritons, present new properties that
can be used for emitters as well as for detectors from the mid- to the far-infrared.

The strong coupling between quantum well intersubband transitions and a cavity mode
was proposed in 1997 [3] and was observed in 2003 using total internal reflection [2] (Figure
1.8, (a) and single plasmon [6] waveguides. Figure 1.8 (b) shows the transmission spectra
in a multi-pass waveguide at different angles. At an angle of 60° the anticrossing appears,
which is the signature of the strong coupling.

Figure 1.8: (a) Total internal reflection waveguide and multiple quantum well structure com-
posed by 18 QWs, (b) angle resolved transmission (main panel), dipsersion of the peaks
minima corresponding to the polariton energies (top left inset) and the TE cavity mode re-
flectance (top right inset) Ref.[2].

1.4.1 Two-Level Model: Jaynes-Cummings Hamiltonian
As first model, we consider only one electron at k = 0, coupled with one photonic mode
(Figure 1.9). We neglect the losses in the cavity. As written previously only TM modes are
coupled with light. The historical semi-classical model to describe a two-level system in a
cavity is Jaynes-Cummings model [46]. Initially introduced for atomic physics, this model
can be applied to our two-level system [32]. The fundamental state is written |ψ1,k〉 and the
excited state |ψ2,k〉. The respective energies of the two states are E1 and E2. The electronic
Hamiltonian is then

Hmat = E1|ψ1,k〉〈ψ1,k|+ E2|ψ2,k〉〈ψ2,k| (1.70)

The photon energy in the cavity can be written ~ωc, the photonic part of the Hamiltonian
is then
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Hphoton = ~ωc
(
a†a+ 1/2

)
(1.71)

where a† (a) is the creation (annihilation) operator.

Figure 1.9: Schematics of a single electron interacting in strong coupling with a single pho-
ton.

The interaction hamiltonian is written Hint = −d.E in the dipolar gauge [47] where
d = −er is the dipole electric operator. E is the electric field supposed to be homogeneous
inside the cavity. E = i

√
~ωc

2ε0ε∞V
(a − a†)ε̂ which is true for the TM00 mode of a metal

insulator metal cavity. V is the effective volume of the cavity mode. Considering ε̂ in the
direction of ~z, we have

Hint = −i~Ω(|ψ1,k〉〈ψ1,k|+ |ψ1,k〉〈ψ1,k|)(a− a†) (1.72)

where Ω =
√

e2f12
4ε0εsm∗V

. By neglecting the anti-resonant terms we can simplify this equation

Hint = −i~Ω(|ψ1,k〉〈ψ1,k|a+ |ψ1,k〉〈ψ1,k|a†) (1.73)

We can assess the complete hamiltonian restricted to the subspace formed with the base
vectors {|ψ1,k〉, |ψ2,k〉} = {|ψ1,k〉 ⊗ |1〉, |ψ2,k〉 ⊗ |0〉} where |n〉 is the state with n photon in
the cavity.

HJC = Hmat +Hphoton +Hint =

∣∣∣∣ ~ωc i~Ω
−i~Ω E12

∣∣∣∣ .
This Hamiltonian represents two resonators of energiesEc = ~ωc andE12 coupled via the

coupling constant ~Ω. The eigenstates are named "intersubband polaritons". In the case of
an intersubband transition coupled with a cavity mode, they are a linear superposition of the
eigenvectors. In other terms, a combination of an electronic excitation with a cavity photon.
The high energy state is noted |UP 〉 ("Upper Polariton") and the lower state is noted |LP 〉.
They can be written |UP 〉 = αUP |ψ1,k, 1〉+ βUP |ψ2,k, 0〉

|LP 〉 = αLP |ψ1,k, 1〉+ βLP |ψ2,k, 0〉
(1.74)

The coefficients αUP/LP and βUP/LP give respectively the light and matter contribution
in the state of the system. They correspond to Hopfield coefficients [48] of intersubband
polaritons. They can be written as a function of the detuning ∆E = Ec − E12
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α2
UP = β2

LP =
∆E+
√

∆E2+(2~Ω2)

2
√

∆E2+(2~Ω)2

α2
LP = β2

UP = (2~Ω)2

2
√

∆E2+(2~Ω)2(∆E+
√

∆E2+(2~Ω)2)

(1.75)

The eigenvalues are then

EUP/LP =
1

2

(
E12 + Ec ±

√
∆E2 + (2~Ω)2

)
(1.76)

Figure 1.10: Top: Schematics of the polariton branches (red curves) energy dispersion as a
function of the energy difference between the cavity mode and the intersubband transition
calculated from Equation (1.76). The dashed blue line corresponds to the cavity mode and
the dashed green line corresponds to the intersubband transition. The black dots represent
the energies of the two polaritons when the cavity mode and the intersubband transition are
resonant separated byER = 2~Ω. Bottom: Hopfield coefficients of the system; 0 corresponds
to a polariton that is fully matter and 1 fully light.

The anti-crossing appears at the resonance. The asymptotes are two branches correspond-
ing to the energy modes of the cavity and the ISB transition. When Ec � E12
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EUP ≈ Ec
ELP ≈ E12

α2
UP = β2

LP ≈ 1
α2
LP = β2

UP ≈ 0

Reciprocally, when Ec � E12 
EUP ≈ E12

ELP ≈ Ec
α2
UP = β2

LP ≈ 0
α2
LP = β2

UP ≈ 1

On the contrary at resonance EUP/LP = E12±~Ω and α2
UP = α2

LP = β2
UP = β2

LP = 1/2.
This configuration corresponds to the maximum of interaction between the two states and to
the minimum of the energy difference between the two states: 2~Ω (minimum Rabi-splitting).

1.4.2 2D Electron Gas: Dark States and Bright States
Experimentally the Fermi level is positioned between the states E1 and E2. The system is
thus characterized by the electron density NS (2D electron gaz) on the first subband and
their coupling with the states on the second subband with the same ~k. The total number of
electrons is then N = NSS, with S the surface of the sample. The dipolar coupling between
the ISB transitions is neglected (Figure 1.11).

Figure 1.11: Schematics of a 2-level system interacting in strong coupling with a single cavity
photon. This interaction can be simplified by considering the interaction between the photon
and only one electronic state called bright state.

To describe the strong coupling regime, we need to consider the light-matter interaction
between several electrons, participating to the ISB excitation, and one photonic state. The
base of the considered space is composed by N+1 vectors: one cavity photon |φ1, 1〉, and
each electron |φ2,k, 0〉 of wavevector k

H =


~ωc i~Ω i~Ω . . . i~Ω
−i~Ω E12 0 . . . 0

−i~Ω 0 E12
. . . 0

...
... . . . . . . ...

−i~Ω 0 . . . 0 E12

 . (1.77)

By changing the base, considering one state |b〉 = 1√
N

(
∑

k |φ2,k, 0〉) and the N-1 states
deduced by orthogonal construction |ni〉, the hamiltonian can be rewritten as follows:
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H =


~ωc i

√
N~Ω 0 . . . 0

−i
√
N~Ω E12 0 . . . 0

0 0 E12
. . . ...

...
... . . . . . . 0

0 0 . . . 0 E12

 . (1.78)

This base reveals only one electric bright mode (|b〉) coupled to the cavity mode via
the constant ~Ω′ =

√
N~Ω = and N − 1 dark states. From the coupling with the cavity

mode the two polaritonic states emerge, similarly to the previous paragraph. Because ~Ω
is proportional to V and N proportional to S, the coupling constant is independent of the

surface of the sample. Consequently, ~Ω′ = ~
√

NSe2f12
4ε0εrm∗Lcav

. The same way, when NQW are

identically coupled to the cavity mode, the coupling constant is multiplied by
√
NQW . The

coupling constant that we will use in the following is

~ΩR = ~

√
NSNQW e2f12

4ε0εrm∗Lcav
. (1.79)

This energy difference is called Rabi energy in analogy to the strong coupling regime
of atoms [49]. One of the major assets of ISB polaritons is that the Rabi-splitting is easily
tunable (from weak to deep strong coupling [9]) with the doping of the quantum wells.

The dark states - discussed theoretically in Ref. [50]- appeared to be a major issue of the
observation of polaritons under electrical injection [4, 5, 51]. In this section, we saw that only
one electronic bright state interacts with the electromagnetic field whereas the N-1 electronic
dark states do not. Besides the dark states contribute to electrical transport. Consequently,
the observation of bright states is highly affected by the non-radiative scattering mechanisms
of the dark states.

1.4.3 Coupled Mode Theory

Until now, we neglected the broadening of the energy levels directly related to the dissipation
inside the system. In this last section we consider the dynamic of a photonic mode (ωc, γc)
coupled with a material resonance (ω12, γ12). This model will be particularly interesting for
the study of photocurrent generation from a photodetector in strong coupling (Part 3).

The situation we are going to study is sketched in Figure 1.12. It consists of one scattering
channel, one photonic resonator, and one matter resonator (instersubband plasmon). The
photonic resonator we have in mind is a metal-insulator-metal photonic crystal slab resonator.
This naturally coupled to the free space plane waves, which constitute the scattering channel.
The matter resonator, i.e., the two-level system, is represented by a charged oscillator, and is
directly coupled to the photonic resonator via the coupling constant Ω.

The dynamics of the system is described by the equations [53]:
da
dt

= (iωc + γc)a+ iΩb+ ks+

db
dt

= (iω12 + γ12)b+ iΩa

s− = cs+ + ad

(1.80)
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Figure 1.12: Scheme of the one-port photonic cavity. The photonic mode is coupled to the
scattering channels via the coupling constants d and k connected to the radiative decay rate
γr [52].

where s±, a and b is a set of complex, time-dependent coordinates, respectively describing
the input/output channels, the photonic resonance, and the matter resonance. They are defined
such that

• |s±|2 is the energy flux per unit time ingoing (outgoing) into (out of) the system

• |a|2 is the total electromagnetic energy stored in the cavity

• |b|2 is the total energy stored in the matter resonator

The photonic resonator is driven from the input scattering channel through the complex
amplitude k, and radiates into the output channel through d. The non-resonant scattering
amplitude is given by c.

The damping rate γc corresponds to the total losses of the bare cavity, which we will
separate in the sum of two contributions: γc = γr + γnr. The first is the main radiative mech-
anism, i.e., the cavity leaks into the scattering channel. The second is the sum of all the other
mechanisms, either non-radiative (like absorption by free carriers or metallic components), or
radiative (like the scattering into channels different from the main one: roughness scattering,
diffraction losses ...). What matters is that these mechanisms must be non-resonant, i.e., they
depend very slowly on the energy scale given by the overall width of the cavity mode.

We consider the situation where the ingoing scattering channel is populated by a har-
monically time-dependent amplitude s+(ω) = s+

0 e
iωt, in the steady-state, the system has a

response at the same pulsation ω. In particular, the outgoing channel will be populated by an
amplitude s−(ω) = s−0 e

iωt given by the relation

s−0 = s+
0

[
eiφ + eiφ

i(ω − ω12 + γ12)

(ω − ω+)(ω − ω−)
2γr

]
(1.81)

The phase φ is calculated using the energy conservation of the system and contains the
relation between: c, d, κ and γr. The reflection amplitude is then defined as
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r(ω) =
s−0
s+

0

= eiφ
(ω − ω̄+)(ω − ω̄−)

(ω − ω+)(ω − ω−)
(1.82)

In Equation (1.82) φ appears as the phase shift between the incident beam and the re-
flected beam. Under the simplifying hypothesis that the cavity is tuned at the two-level sys-
tem resonance frequency, i.e. ω12 = ωc = ω0, the above expression has two zeroes and two
poles occurring at

ω̄± = ω0 + 1
2

[
i(−γr + γnr + γ12)±

√
4Ω2 − (γr − γnr + γ12)2

]
ω± = ω0 + 1

2

[
i(γr + γnr + γ12)±

√
4Ω2 − (γr + γnr − γ12)2

] (1.83)

The zeros (ω̄±) of Equation (1.82) represent the impedance matching conditions and in
the photonics community is referred to as critical-coupling [53, 54]. The zeros are studied in
mode details in Ref.[52] (weak and strong critical coupling).

The poles (ω±) of Equation (1.82) are referred to as strong coupling condition. The
complex poles are interpreted as damped eigenfrequencies of the free-decaying modes of the
global system. Two main regimes can be recognized, depending on the sign of the quantity
under the square root:

• weak coupling when 2Ω� |γr + γnr − γ12|. The energy degeneracy is not lifted, only
the imaginary part is affected. This phenomenon is related to the spontaneous emission
modified by the coupling with the cavity mode, named Purcell effect [55].

• strong coupling when 2Ω� |γr+γnr−γ12|. The degeneracy is lifted and the minimum
energy difference between the two branches is named "Rabi splitting"
2ΩR =

√
4Ω2 − (γr + γnr − γ12)2 =

√
4Ω2 − (γc − γ12)2.
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1.5 Conclusion
In this theoretical introduction, we presented the essential formalisms to understand the
strong coupling between a metallic cavity and intersubband electronic density excitations.
The detailed study of the strong coupling between a photon and a 2D electron gas revealed
the existence of dark states that do not couple with the electromagnetic radiation. Previous
works, based on electrical injection [56, 51], have shown that the dark states can hamper the
observation of the polaritons in this configuration.

On the contrary, the bright states can be observed in reflectivity (Part 1) or in photo-current
(Part 3).

After fixing the type of excitation we will work with and the conditions of the experiment,
the last important choice is the geometry of the cavity. Up to now the frequently used cavities
for the observation of ISB polaritons were: total internal reflection [2], single-plasmon [6],
and patch cavities [41]. Nevertheless, dispersive metal-insulator-metal cavities (with a peri-
odical opening of the top metal) are promising because they offer high confinement of the
EM field within the active region. The engineering of the top metal grating and the distance
between the two metallic planes offers various geometries and gives more degrees of freedom
to observe the ISB polaritons.

The engineering of Mid-IR dispersive M-I-M cavities has led to the first observation of
scattering mechanisms between ISB-polaritons and LO-phonons [14]. The distance between
the upper and lower polariton has been engineered - via the geometry the M-I-M cavity and
the QW doping - to equalize the LO-phonon (∼ 36 meV for the GaAs, ∼ 33.6 meV for InP).

Part 1 of this Thesis presents the implementation of dispersive M-I-M cavities in the THz
domain for applications to THz-polaritons. Some scattering mechanisms of the ISB polari-
tons have been proposed Ref.[21] but not observed yet. By using THz quantum cascade
lasers (QCLs) as a (powerful) source, we propose to observe polariton-polariton scattering
mechanisms.

Part 2 presents some technical solutions to shorten the pulses of THz-QCLs implemented
in TDS systems. My contribution to this topic, in the context of the H2020 Ultra-QCL project,
has been to fabricate several QC laser samples with monolithically integrated Gires-Tournois
interferometers.

In Part 3, I developed for the first time dispersive M-I-M cavities in strong coupling with
bound-to-quasi-bound QWIP’s detectors. The bright states are then excited with a Mid-IR
thermal source (globar). Depending on the distance between the bright states and the contin-
uum, a photocurrent could be generated. The originality of this study is to use the dispersive
M-I-M cavity to observe the photocurrent generation over a large set of wavevectors (different
polariton states). This study targets two majors purposes: first to disentangle the frequency
of detection from the thermal energy activation using the strong coupling regime, second to
explore the generation photo-current from ISB polaritons (fundamental purposes).
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"C’est qu’en vérité le chemin importe peu,
la volonté d’arriver suffit à tout.",
Le mythe de Sisyphe, Albert Camus.

Part I

THz Polaritonic Dispersive Cavities,
a Tool for THz Emitters
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2
Dispersive THz Cavities for the

Strong Coupling Regime

THz radiation typically refers to the frequency range from 100 GHz to 30 THz. It is at the
border between electronics and photonics. THz sources can rely on radiation of accelerated
electrons (electronics) or on the transition between two relatively close (∼ 10 meV ) energy
levels (photonics). Different Electronic and Photonic THz sources are presented in Figure
2.1, (a). It appears on this graph that the output power of photonic, as well as electronic,
emitters decreases drastically in the THz range. The lack of powerful, compact, coherent,
and room temperature operating emitters in the THz is a significant issue for applications.

Figure 2.1: (a) Different light sources close to the THz range operating above liquid nitrogen
temperature (taken from [16]). This graph shows the THz gap between electronic and pho-
tonic devices. (b) THz-QCLs maximum operating temperature as a function of the emission
frequency [57].

The Quantum Cascade Laser appeared as one of the most promising sources to over-
come the THz emitters limitations. Nevertheless, the operating temperature of THz-QCL
(presented Figure 2.1, (b)) strongly depends on the emission frequency, and until now, no
THz-QCL has operated above the Peltier cooling temperature. This experimental observa-
tion shows that the phonon activation hampered the population inversion mechanism. Cur-
rently, THz-QCL technology still depends on cryogenic cooling that is a major drawback for
applications.
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In the first part of this manuscript, we explore the feasibility of a new type of THz emitters
operating in the strong coupling regime between light and matter. In strong coupling, the
new eigenstates of the system are called polaritons. If the polariton density is below a critical
density, the polaritons can be considered as bosons, and they are theoretically eligible to
final-state stimulation [58]. The final state stimulation occurs when a spontaneous scattering
takes place between two polaritonic states: one reservoir and one final-state. Interestingly,
the final-state stimulation process is less sensitive to the temperature than the population
inversion mechanism. Observing and mastering the final-state stimulation mechanism is a
crucial step toward the development of a polaritonic THz source.

In this context, our objective is to provide a proof of concept of the final-state stimulation
with ISB polaritons. To reach this goal, we need to identify two polaritonic states to play the
role of reservoir and final-state. To allow a scattering mechanism between these two states,
we adjust the position of the reservoir relatively to the final-state by introducing some degrees
of freedom to the system: for the matter part, we tune the coupling strength by changing the
doping inside square quantum wells; for the light part, we access a broad range of polaritonic
states by using dispersive M-I-M cavities.

In this chapter, we present briefly the concept of final-state stimulation. We will then
describe the fabrication process of polaritonic samples for the THz spectral range and present
the measurements of these samples with a set-up that I specifically designed for this experi-
ment.

2.1 Key Concept: Final-State Stimulation
The final-state stimulation, based on phonon-polariton or polariton-polariton scattering, is
the mechanism behind Bose-Einstein condensates of exciton-polaritons [59]. The long term
vision of this work is to demonstrate that final-state stimulation is also achievable with ISB-
polaritons.

Figure 2.2: A scheme of the final state stimulation system.

The formalism of final-state stimulation for THz-ISB polaritons has been developed in
Ref.[58]. A sketch of the final-state stimulation process is presented in Figure 2.2. Polaritons
can scatter (spontaneous process) from a reservoir to a final state. We note m the polariton
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density in the reservoir and n the polariton density in the final state. Polaritons in the reservoir
are created by a pump (generally a laser). The decay rate between the reservoir and the final
state increases linearly with the polaritonic density on the final state. Thus the final state
stimulated rate can be expressed as:

Γm,nsc ≈ (n+ 1)Γm,n=0
sc , (2.1)

where Γm,nsc is the decay rate from the reservoir toward the final-state, and Γm,n=0
sc is the

spontaneous scattering rate.
According to equation (2.1), when the occupancy on the final state increases, the stimu-

lated scattering rate toward the final-state increases as well. The threshold is reached when
1/Γm,nsc becomes shorter than the lifetime of the final state. In this configuration, the po-
laritons are accumulated on the final state, and they emit coherent light with output power
[60]

Pout =
~ωn
τrad

S. (2.2)

Where ω is the photon energy, τrad is the radiative lifetime of the final state, and S is the
device surface.

The main topic of the first part of this manuscript is to define which scattering mechanism
to use with THz polaritons. The scattering mechanisms must respect energy and momentum
conservation. In the Mid-IR phonon-polariton scattering has been demonstrated recently in
Ref.[14]. In the THz domain, phonon-polariton scattering is not useful because the energy
conservation can not be respected (Ephonon >> ~ΩRabi, see section 2.6). An alternative
mechanism is the polariton-polariton scattering already observed with excitonic polaritons
and proposed theoretically in Ref.[21].

2.2 Active Region Design

Our approach to explore polariton scattering mechanisms combines two technologies: time-
domain-spectroscopy and THz Quantum Cascade Lasers. The choice of the resonant fre-
quency of the intersubband transition is essential to use these two technologies simultane-
ously.

On one hand the TDS system of the LPA is limited at high frequencies by the electro-optic
crystal. On the other hand, the optical gain of broadband THz QCLs starts to drop below 3
THz (Figure 2.1). The compromise between these two technologies was found between
2.5 THz and 3 THz. In this range of frequencies, the GaAs/AlGaAs is known as the best
material for quantum wells (as for THz-QCLs).

2.2.1 Schrödinger-Poisson Simulations

The simulation in Figure 2.3 shows the energy levels in one finite quantum well made of
GaAs/Al15Ga85As. The thickness of the well is chosen at 36 nm. AlGaAs represents the
barriers that are 20 nm thick on each side of the well. The Al proportion (here 15%) fixes the
conduction band discontinuity.
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Two active regions have been grown with two different n-doping sheet density : 1 ∗
1011 cm−2 for the sample L1362 and 2 ∗ 1011 cm−2 for the sample L1412. The doping is
incorporated 5 nm before the quantum well due to the carriers segregation.

Figure 2.3: (a) Schroedinger-Poisson simulation of a structure with a 36 nm wide QW, a
concentration of 15% of alumina in the barriers and a doping sheet density of 1 ∗ 1011cm−2.
The dark flat line between the first two states (|1> and |2>) represents the Fermi level (EF )
inside the quantum well. (b) Lateral crossed-section of the active region with 3 µm quantum
wells, 8 µm of buffer layer separated from the substrate by a stop layer (Al60Ga40As).

The simulation yields a transition between the fundamental state and the first excited
state at E12 = 2.14 THz with an oscillator strength of f12 = 0.91. The depolarization shift
is taken into account by using this equation:

Ẽ12 =
√
E2

12 + E2
p , (2.3)

where Ep = ~ωp is the plasma energy due to the presence of the electronic plasma.
The plasma pulsations have been calculated for the two active regions using Eq.1.30

(ωp(L1362)

2π
= 1.3 THz and ωp(L1412)

2π
= 1.8 THz). According to the expression above, the

two active regions have different absorption peak frequencies for the transition 1-2: L1362 is
expected to absorb at 2.5 THz and L1412 at 2.8 THz.

The growth of the QWs, done at the University of Leeds, has also to take into account the
final geometry of the cavity (see Section 2.4). The thickness of the cavity is determined by
the stop layer on which the epitaxy is grown. The ideal thickness to operate in the dispersive
regime is ∼ λ/10. The cavity cannot be filled with QWs only, as the Rabi-splitting would
be too large. Thus, a buffer layer is grown on the first 8 µm before the 53 QWs (3 µm). A
scheme of the sample is presented in Figure 2.3, (b). The total thickness of the active region
is 11 µm. The number of this sample is L1362.

2.2.2 Multi-pass measurements
The multipass measurement is essential to evaluate the absorption peak (E12, FWHM) of the
active region at liquid Helium temperature. According to the absorption peak of the active
region, the geometry of the cavity (period of the grating) will then be chosen.

Starting from a narrow sample piece (8 ∗ 3 mm2), we metalize the top surface, then we
polish the two facets at 45◦ to couple the light from the Globar into the active region (Figure
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2.4). The transmitted signal is collected on a QMC Bolometer and treated by a Fourier
Transform Infrared Spectrometer (FTIR). The transmission is obtained with the following
formula:

T =

ITM,sample

ITE,sample

ITM,chamber

ITE,chamber

, (2.4)

where ITM and ITE are the transmissited intensities of respectively the TM and TE polarized
EM waves through the sample or the empty chamber (used as a reference).

Figure 2.4: (a) Scheme of multipass measurement. The signal is collected on an external
QMC Bolometer. (b-c) Multipass measurement of the samples L1362 and L1412 at different
temperatures.

Figure 2.4, (b) and (c) shows respectively the transmissions of sample L1362 and L1412
for different temperatures. At 300 K, all the excited states are populated and the ISB is not
visible. By decreasing the temperature, the electronic population decrease in the excited
states. At 150 K, two absorption peaks appear: at 2.5 THz and 4 THz for the sample L1362
and at 2.6 THz and 4.2 THz for the sample L1412. These two peaks are related to the
transition 2 − 1 and 3 − 2 (according to Fermi’s golden rule there is no transition 1 − 3, c.f.
Chapter 1). By lowering the temperature, all the electrons are stored on the ground level. At
4 K, only the 2−1 transition is observed at ν0 = 2.7 THz with a linewidth γ12 = 0.34 THz
for the sample L1362 and ν0 = 2.96 THz with a linewidth γ12 = 0.6 THz for the sample
L1412.

The additional blue shift of ≈ 0.2 THz, seen on both samples, compared to the theory
is probably due to an underestimation of the depolarization shift at 4K. So far, we can not
conclude on the effect of this blue shift on the compatibility of these samples with the LPA
TDS system. The positions of the polaritonic branches of each sample have to be assessed to
address this issue.
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2.3 Design of the Cavity: RCWA Simulations

In this section, we present the cavity design for the sample L1362. The same concepts have
been used to design the cavity of the sample L1412.

The thickness of the cavity is fixed in advance by the stop layer positioned during the
growth of the sample (Section 2.3). For a transition at 2.7 THz, we expect to operate below
the cut-off to avoid any additional coupling with high order TE or TM modes. Thus we
designed the cavity thickness to have a cut-off at 4 THz (λcut−off = 75 µm). This condition
imposed a cavity thickness of t = λcut−off/2n = 11 µm (Section 1.3.3). A thinner cavity
would increase the overlap with the MQWs (tQWs = 3 µm) risking to reach the ultra-strong
coupling regime Ref.[10] that is not in the perspectives of this work.

Knowing the experimental characteristics of the active region transition (multi-pass mea-
surements), we finalize the design of the cavity (period and filling factor). In the perspective
of pump-probe measurements, the first approach is to design the cavity such as the anti-
crossing occurs at 35°. The idea is to pump close to the anti-crossing (35-45°) and to probe
at k// = 0 where we expect to have the highest variation of reflectivity due to the scattering
mechanisms (more details in Section 2.5).

Figure 2.5: RCWA dispersions -from 1◦ to 60◦- of a bare cavity composed by 11 µm thick
GaAs buffer (left) and a cavity in strong coupling with 3 µm thick active region (53 QWs),
ISB transition at 2.7 THz, with a FWHM of 13% and a doping 1 ∗ 1011 cm−2) and 8 µm
GaAs (right). In both simulations the grating has a period of 40 µm and a filling factor of
80%.

Figure 2.5 shows an example of numerically calculated dispersion for a cavity with (right)
and without (left) QWs. The grating period is close to one third of the wavelength in vacuum
Λ = 40 µm ≈ λ/n and a filling factor 80% (classical value for M-I-M ISB polaritons
Ref.[61, 14]). The rest of the parameters are taken from the nominal values of the growth
sheet (Appendice B.1). The dispersion is plotted for k ∈ [0; π/Λ] because the band diagram
is symmetrical. The dispersion of the bare cavity (Figure 2.5, left) shows the second (2nd)
and third (3rd) photonic branches of the cavity and the first TE mode at 3.9 THz. When an
intersubband (ISB) transition at 2.7 THz with a FWHM of 12.5% is incorporated inside the
cavity (3 µm MQWs and 8 µm GaAs) the 3rd photonic branch splits into two polaritonic
states lower polariton (LP) and upper polariton (UP) (Figure 2.5, right).
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2.4 Fabrication & Mounting
In this section, we will detail the process of fabrication of a M-I-M structure. Most of the
techniques presented here will also be used for other M-I-M structures in the Mid-Infrared as
well as for THz QCLs.

The fabrication of THz photonic cavities requires optical lithography as the smaller object
of the process is the slit of the cavity that typical width is 5-8 µm.

Figure 2.6: Schematics of the THz M-I-M cavity fabrication process. From left to right:
wafer bonding, substrate etching until the stop layer and top metal deposition of the grating.

In the perspective of optical pumping the polaritonic states we designed the cavities to
have the anti-crossing at 35◦ and to have a good balance between the absorption and the
broadening of the polariton branches. For this purpose, two masks have been designed for
this project. The first mask was constituted by 2 ∗ 2 mm2 gratings with various grating
periods. Preliminary spectral measurements at 13◦ gave information about the most relevant
period for the strong coupling. Once we identified the appropriate period, we designed the
second mask with one larger grating: 4 ∗ 4 mm2 and different filling factors.

2.4.1 Cleanroom Processing
The following section presents the principal steps of fabrication of THz Metal-Insulator-
Metal cavities that I performed in the C2N-Orsay cleanroom.

Wafer Bonding & Substrate Removal

The wafer bonding integrates a metallic layer (future bottom contact) below the active region.
A sticking layer of Titanium (10 nm) and then a gold layer (200 nm) are deposited on both
the active region and a bulk wafer host substrate. The two wafers are then bonded together
(Figure 2.6, left) by their metallic surfaces in the wafer bonder (bonding parameters 45 min/
320°C/4.5 MPascal). Here the bottom contact has no electrical functionality, and it is used
only for thermal and optical properties.

The substrate (typically 500 µm thick) on which the active region has been grown is then
removed using first a manual polishing followed by a selective chemical etching (citric acid).
The active region is protected from the etching by an Al60Ga40As stop layer, presented in
dark grey on the Figure 2.6. Note that the stop layer is positioned during the epitaxy and fixes
the thickness of the cavity. The stop layer is finally removed with hydro-fluoridric acid.
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Optical Lithography, Top Metal Deposition & Lift-off

Once the active region is uncovered the patterning of the top surface can be realized. The first
step consists in coating the active region with a reversible photo-resist (AZ5214). This resist
is 1.4 µm thick and has a resolution of 1 µm, which corresponds to our specifications.

The lithography is performed with the mask aligner MJB4 (Suss MicroTec). The Mercury
(Hg) lamp emits at 365 nm has a power density of ∼ 10 mW/cm2. The first exposure
consists of removing the extra volume of the resist that generally accumulates on the edges
of the sample (edge removal). The pattern is then transferred on the resist, with first short
exposure. The unprotected regions of the resist are chemically transformed in acid radicals.
These radicals are then cross-linked (stable state insensitive to the developer) with a bake at
120°C. A final flood exposure transforms the rest of the resist in radicals that are removed by
the developer leaving only slits of resist onto the active region.

Once the mask is transferred on the sample, the residual resist is removed with a short oxy-
gen plasma. The surface of the sample is then deoxidized with hydrochloric acid (HCl:H2O)
for better adhesion between the metal and the sample surface.

The sample and the reference (bulk GaAs wafer that has the same height as the host
substrate) are deposited in the e-beam evaporator. The metals are contained inside carbon or
tungsten crucibles that are heated with an electric beam until the sublimation of the metal.
The sample and the reference are then covered by the same amount of metal measured with
a piezo-electric balance (quartz). In this process, we use a Ti/Au deposition: 10 nm of Ti to
adhere on the sample surface and 150 nm of Au to ensure the confinement of the light inside
the cavity.

Typically, the thickness of the metal should not exceed one-fourth of the resist thickness.
This is the case in this process, and after a few minutes in acetone, the resist is removed,
opening the top metal with periodical slits.

2.4.2 Mounting
Before leaving the cleanroom the back side of the sample is metalized with Ti/Au to ensure
good adhesion to the copper block that is crucial for measurements at liquid Helium temper-
atures. The sample and the reference are then cut in identical squares of 4 mm± 50µm.

After processing the sample and the reference are then soldered with indium on a copper
block (Figure 2.7, (a)). The direction of the grating is chosen to have inside the FTIR the
electric field that is perpendicular to the slits.

Moreover, to avoid spurious reflections, the sample is surrounded with sandpaper (in red
Figure 2.7, (b)) of grit comparable with the wavelength range of interest (≈ 100µm).

Figure 2.7: (a) Schematics of the mounted sample and its reference. The grey zone below the
sample represents the indium solder. (b) The picture of the sample shows the sandpaper (red)
positioned around the samples acting as a THz absorber.
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Chapter 2. Dispersive THz Cavities for the Strong Coupling Regime

2.5 Set-up for Measuring
the Polaritonic Dispersion at Low-T

The dispersion of THz polaritonic cavities has already been measured in the past Ref.[62]
for a set of angles. However, to know precisely what are the proper incidence angles for
pumping and probing the polaritonic system, we must measure dispersion in the THz range
over a large set of angles. This issue led to the development of a dedicated cryostat system.

2.5.1 Fourier Transform Interferometer and Beam Condenser

All spectroscopic measurements presented in this section are obtained with a FTIR spectrom-
eter Bruker Vertex 70. The instrument is sketched in Figure 2.8. The FTIR spectrometer core
is reminiscent of a Michelson interferometer: an IR beam from an internal source is split in
two by a beam-splitter; one beam is back-reflected from a fixed mirror while the other one
is reflected from a mobile mirror either continuously oscillating (rapid scan modulation) or
translating in discrete positions (step scan modulation). The beams are then recombined at
the beam splitter. The beam arrives collimated in the sample compartment and is focused
onto the sample (at 13°) with a beam condenser.

Figure 2.8: Schematics (top view) of the purged Bruker Vertex 70 FTIR spectrometer with a
beam condenser accessory. The interferometer is highlighted within a grey dashed line. The
sample is inside a small volume cryostat head with a ZnSe window (vacuum region in green)
and positioned on the focal point of the beam condenser. A He-NE laser beam is used for
interferometer auto alignment.

The reflected light from the sample is then collected on an internal detector. For each
spectral component, the collected signal intensity will have a beating-like modulation de-
pending on the optical path difference between the two beams. Fourier analysis allows one
to recover information on the intensity of each spectral component from the collected signal
(interferogram). The frequency spectrum is recovered by a Fourier transformation of the in-
terferogram [63]. For THz measurements, the internal source employed is either a Globar (a
heated SiC rod emitting black-body radiation) or a mercury-vapor lamp. The beam-splitter
is a 6-µm-thick Mylar film and the internal detector is a pyroelectric DTGS crystal. For
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low-noise measurements, a He-cooled Si bolometer is used as an external detector in the
following.

Figure 2.9: Reflectivity measurement with the beam condenser at 13° (a) Sample L1362 with
grating of 36 µm period and 80% filling factor at a temperature of 200 K and 5 K (b) Samples
L1362 with grating periods: 34, 36, 37, 40 µm and filling factor 80% at 5K and 13°incident
angle. UP and LP mean respectively Upper and Lower Polariton.

Passive metal-metal resonators can be fully characterized by reflection spectroscopy as
the metallic ground plane prevents transmission of radiation. Resonator modes appear as dips
in the reflectivity (R) spectrum and the sample absorptivity spectrum (A) can be recovered as
A=1-R. Experimentally the relative reflectance spectra shown above are obtained taking the
ratio of the reflected intensity from the sample to the reflected intensity from a reference gold
mirror of the same size [64]:

Rrelative =
Isample
Iref

(2.5)

The incidence angle of the beam condenser is fixed at 13 °. To check if the cavity was
operating in strong coupling with the active region (L1362), we measured the absorption of
the device with the beam condenser at different temperatures. Figure 2.9 (a) shows that at
200 K only the cavity modes exist, while the polaritonic states appear at 5K. To measure
the dispersion with the beam condenser, the period of the grating is changed. Figure 2.9 (b)
shows the sample dispersion for different grating periods (34, 36, 37 and 40 µm). These two
graphs confirm that the device is operating in strong coupling.

The next step is to measure the full dispersion of one sample. To do so, we need to adapt
the sample compartment of the FTIR.
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2.5.2 Variable Angle Inset

In order to measure R(θ) =
Isample(θ)

Iref (θ)
a variable angle reflection unit (Bruker A513/Q) can be

inserted into the FTIR chamber. The schematics of this unit is sketched in Figure 2.10. Two
spherical mirrors M and M’ can be rotated in the incidence plane of the setup ySz allowing
one to explore incidence angles ranging from 13° to 83°.

Figure 2.10: (a) Picture and (b-c) schematics of the reflectivity unit. The rotative mirrors are
labeled M and M’.

The THz radiation enters the chamber propagating from right to left (Figure 2.11). A
plane mirror M1 deflects the incoming radiation towards M. Light is then focused at point S
where the sample is placed on a micro-translation stage enabling signal maximization. The
reflected light is collected from M’ and again deflected towards the detector by an identical
mirror system M2. To select the impinging polarization of THz radiation, a polarizer can be
placed on the rotating arm before the mirror M1.

As THz ISB polaritons are not observable at room temperature, the sample needs to be
cooled at liquid Helium temperature. The geometry of the two mirrors accessory does not
host the head of a cryostat, and an alternative solution had to be found.

We decided to transform the compartment chamber of the FTIR into a cryostat (Figure
2.11). First, we had to ensure that this compartment is hermetic. The purging lines were
blocked, and two TP windows (transparent blue in Figure 2.11) were mounted to pump inde-
pendently the sample compartment and the FTIR. Specific pieces completely hermetic (thick
metallic alloy) have been fabricated in the C2N workshop: one to insert the cold finger of
a standard cryostat inside the chamber and a second to see the sample from the top of the
chamber.

To avoid water condensation on the sample at 10 K during the few hours required to align
the sample and the reference and measure the dispersion, we needed to reach a vacuum of at
least 10−5 mbar in the sample compartment. To meet these specifications we integrated three
pumping systems: the FTIR was pumped under a primary vacuum; the sample compartment
was first pumped with a turbo pump (grey), then we added a liquid nitrogen trap (cyan); and
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finally the cold finger (brown) cooled down to 10 K plays the role of a second cryogenic
pump.

Figure 2.11: Schematics of the low-temperature dispersion measurement set-up. The cham-
ber compartment of a standard FTIR is transformed into a cryostat under high vacuum (green
area). Two motorized mirrors are rotating around the focal point of the unit and collect the
reflectivity of the sample for a large set of angles.

The optical performances of the set up are comparable with the beam condenser set-up.
In both cases, most of the absorption comes from the TPX windows (30% absorption each)
of the cryostat. The polarizer is interlocked in the arm of the first mirror and rotates with
the system. Therefore the same polarization is kept for all the incident angles. The beam
is focused on the sample by the parabolic rotative mirror. The spot on the focal point has a
diameter of ≈2 mm that is why the samples size have been chosen 4 ∗ 4 mm2.
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Figure 2.12: Pictures of the experimental set up: (a) the coffer with a nitrogen trap and a
window to align the sample, (b) the rotative mirrors stage, (c) the customized cold finger
close to the focal point of the two mirrors movable mirrors system, (d) Cryostat horizontal
positioned into the sample compartment with the actuators to position the sample and (e) the
full set-up during the measurement at liquid Helium temperature. The red cylinder is the
QMC bolometer.
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2.5.3 Dispersion Measurements
After the fabrication and optimization of the sample compartment of the FTIR, the dispersion
has been measured for 4 samples.

Influence of the QW Doping

Figure 2.13 shows the highly resolved (5◦ angular steps) THz dispersions at room temperature
and at 10K of two samples: L1362 (a-b) with a grating period of 40 µm and 80% filling factor
(FF); and L1412 (d-e) with a grating period of 34 µm.

Figure 2.13: Dispersions obtained with highly resolved (5◦ angular steps and a spectral reso-
lution of 2 cm−1) presented in the k-space. (a) and (b) are the dispersions of sample L1362
with 40 µm grating period and 80% filling factor respectively at room temperature and at
10K. (d) and (e) are the dispersions of sample L1412 with 34 µm grating period and 80%
filling factor, respectively at room temperature and at 10K. (c) and (f) are respectively the
RCWA simulations of sample L1362 and L1412. The horizontal blue dashed lines represent
the ISB transition and the white dashed line correspond to the angle limit of the experimental
set-up. The blue dots represent the minima of reflectivity of the polaritonic branches for each
sample.

The bare cavity dispersions (left panels, (a) and (d)) are given by the measurement of
the cavity at room temperature, when the thermal effects hide the intersubband transition
(kBT > ~ω12). The TE mode here around 3.9 THz depends on the thickness of the cavity
and the index of refraction of the active region. The second and third photonic branches
depend on the period and the filling factor of the grating.

At low temperature (middle panels, (b) and (e)), the ISB transition is active, and the strong
coupling with the third photonic branch occurs. The reflectivity baselines vary between 80%
and 110% (instead of 100%) due to the non-ideal conditions on the device surface (coming
from the optical lithography and the lift-off) that possibly scatter the light partially.

For each sample, RCWA simulations have been performed (Fig. 2.13, (c) for L1362 and
(f) for L1412). The simulation parameters have been set using the multipass measurement for
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the ISB transition (Section 2.1.2) and SEM images to estimate the grating period and filling
factor. The thickness of the bulk GaAs and the doping have been slightly changed from the
nominal values: tbulk = 7.6 µm for both samples; dQW = 6 × 1010 cm−2 for L1362 and
dQW = 1.2× 1011 cm−2 for L1412.

The comparison between experiment and simulations show an excellent reflectivity agree-
ment on the full range of measurements for both active regions. As predicted by the simu-
lations, the upper polariton of sample L1412 overcomes the limit of detection of the TDS
system for Λk//

π
> 0.6. In addition, the polariton absorption peaks of sample L1412 are

smaller than the ones of sample L1362 (see Table 2.1). For these two reasons, the sample
L1412 is not compatible with the TDS system of the LPA.

At this step, the highly resolved reflectivity dispersion set-up enabled us to discriminate
between different samples and verify the compatibility between the polaritonic samples and
the TDS system. In the following, we will only consider the sample L1362.

Influence of the Grating Filling Factor

For each sample, two grating filing factors have been processed. Figure 2.14 presents two
experimental dispersions of the sample L1362 with the same grating period of 40 µm and
different filling factors: 70% (a) and 80% (b).

Figure 2.14: Dispersion at 10K of two different samples:(a) L1362, grating with 40 µm
period and 70% filling factor, (b) L1362, grating with 40 µm period and 80% filling factor.
The horizontal blue dashed lines represent the ISB transition. The blue dots represent the
minimum of reflectivity of the polaritonic branches for each sample.

The positions of the polaritonic branches are the same for both samples and the main
differences are the absorption peaks that are deeper for the sample with the lower filling
factor (a). Finally, both samples are compatible with the TDS system.

Comparison between Experiment and Simulations

In the last part of this section, a more accurate comparison between the experiment and the
simulations for the sample L1362 with a filling factor of 80% is presented.

Figure 2.15 (a) shows reflectivity measurement (red) and RCWA simulations (black) at
35 °. The photonic branch confirmed the grating period, the upper and lower polaritons
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were used to adjust the doping of the material (dQW = 6 × 1010 cm−2 for L1362) and
the first TE mode was used to evaluate the cavity thickness. The overestimated absorption
of the simulated photonic branch is due to the imperfections of the grating and the metal.
Nevertheless, the Q − factors of the polaritonic branches show a much better agreement
with the simulations.

After the adjustment of the doping and the thickness, the simulations have been performed
for all the angles accessed experimentally. Figure 2.15 (b) compares the polariton peaks of
absorption in the k-space for angle from 13° to 65°. The agreement is good over the full range
of angles measured in reflectivity. In the following section, we will use the good agreement
between experiment and simulations to extend the simulations in the region close to k// = 0
that is difficult to access experimentally.

Figure 2.15: Comparison between experiments and RCWA simulations for the sample L1362.
The grating period is 40 µm and the filling factor is 80%. (a) Spectra under an incidence angle
of 35°. (b) Dispersion of the polariton peaks. The simulations (black dots) were performed
with a doping of 6×1010 cm−2. (c) The Hopfield coefficients of the LP and UP as a function
of the in-plane wave vector.

With THz dispersive cavities, it is possible to access the position of the 3rd photonic
branch with the measurement at room temperature (Figure 2.13, (a)). By knowing the ISB
transition (multipass measurement), it is then possible to calculate the Hopfield coefficients.
The matter part of the Hopfield coefficients (αUP/LP ) has been calculated according to Equa-
tion 1.75. They confirm a Rabi-splitting at k// = 0.45 ∗ π

Λ
which represents an angle of 35◦.

At k// = 0.1 the lower polariton is mostly "light" and the upper polariton mostly "matter".
The portion of light/matter influences the polariton properties and will be taken into account
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for the pump-and-probe experiment design.
Table 2.1 sums up the four dispersion at room temperature and at 10 K that have been

performed during my Ph.D. The two samples L1362 (Figure 2.14 (a,b)) have relatively high
absorption levels (down to 60% at the polaritonic resonance). The Q-factors are relatively
balanced between the lower and upper polaritons (Q ∈ [13,20]). The absorption decreases
when the filling factor increases. Since the UP frequency stays below the limit of detection
of the TDS system when using a GaP crystal (3.3 THz < 3.5 THz) these two samples are the
best candidates for pump and probe experiments.

Q-factors

Sample

Nominal
Doping
per Well
(cm−2)

ISBT
(THz)

ISBT
@4K

Photonic
@RT

LP
@10K

UP
@10K

Rabi
Spliting
(THz)

L1362, FF=80%,
Λ = 40 µm, 1× 1011 2.73 8 14.48 19.93 17.83 0.52

L1362, FF=70%,
Λ = 40 µm

1× 1011 2.73 8 12.16 15.87 13.12 0.52

L1412, FF 80%,
Λ = 34 µm

2× 1011 2.96 5 12.57 6.98 18.38 0.61

L1412, FF 70%,
Λ = 34 µm

2× 1011 2.96 5 13.05 6.57 14.93 0.62

Table 2.1: Comparison of the Q-factors of the different polaritonic branches of samples
L1362 and L1412 at the incidence angle of 35◦. FF is the gratting filling factor. Λ is the
grating period.

The samples L1412 (Figure 2.13 c,d) exhibit reduced absorption levels at the LP and
UP frequencies. The larger depolarization shift and Rabi-splitting push the upper branch of
the polariton beyond the TDS limit of the LPA system for angles larger 45°. Even if the
TDS system can be modified to operate at higher frequencies, the misbalance between the Q-
factors of the upper and lower polaritons (QUP ∼ 6.5 vs QLP ∼ 18) poses a critical problem
in the pump-and-probe measurement.

To conclude, the THz dispersion set-up has been a crucial tool to select the samples poten-
tially compatible with the TDS system. It showed that the RCWA simulations are predictive
for a large set of angles. According to the good agreement between experiment and simula-
tions, it was possible to extend the simulations close to the normal incidence (k// ∼ 0) that
is an interesting region to observe polariton-polariton scattering.
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2.6 Perspectives: Polaritonic LEDs Based on
Polariton-Polariton Scattering

In the Mid-Infrared spectral range, a polariton can scatter from the upper (~kUP , EUP ) to the
lower branch (~kLP , ELP ) by emitting (EGaAs

LO,phon ≈ 36 meV , ~kLO,phon) [60]. This mechanism
proposed in 2009 [58] and demonstrated in 2018 [14] respects the energy and momentum
conservation: {

~kUP = ~kLP + ~kLO,phon

EUP = ELP + ELO,phon
(2.6)

In the THz domain the LO-phonon energy is much larger than the Rabi-splitting (EGaAs
LO,phon

≈ 36 meV > ERabi,THz ≈ 3 meV ). Consequently, no scattering mechanism is possible
between a THz-polariton and an optical phonon.

The polariton-polariton scattering is an alternative mechanism observed with exciton-
polaritons [65, 66] that could also exist in the intersubband polariton domain. The theoretical
framework proposing intersubband polariton-polariton scattering has been described in only
one publication Ref.[67], and has not yet been explored experimentally.

Considering the simulations around k// = 0 plotted in Figure 2.16, polariton-polariton
scattering could appear on both the upper and lower branches. This mechanism is described
as follows: {

~k
(1)
init + ~k

(2)
init = ~k

(1)
final + ~k

(2)
final

E
(1)
init + E

(2)
init = E

(1)
final + E

(2)
final

(2.7)

Initially the first (~k(1)
init, E

(1)
init) and the second (~k(2)

init, E
(2)
init) are in the same state (~k(1)

init =
~k

(2)
init and E(1)

init = E
(2)
init). The first polariton would then transfer part of its energy and momen-

tum to the second polariton. Both polaritons would stay on the same polaritonic branch. The
conservations of energy and momentum limits the number of states on which this mechanism
could occur.

Experimentally, light is injected in the system at a specific angle (named magic angle)
and a specific frequency. By injecting photons at the magic angle with the correct energy, the
polariton-polariton scattering mechanism can be enabled. Because the two branches (LP and
UP) have an energy minimum at k|| = 0, a THz-polariton accumulation is possible. Note that
the two magic angles -drawn on both upper and lower branches- proposed on Figure 2.16 are
not unique in our system, thanks to the elevated broadening of the polariton states.

Observing polariton-polariton scattering requires a controlled light injection to induce
polariton-polariton scattering without bleaching the ISB transition. Time-domain spectroscopy
associated with THz quantum cascade lasers appears as a suitable experimental set up to ob-
serve polariton-polariton scattering mechanisms, for two reasons:

• The reflections of the THz-QCL signal do not affect the measurement because the QCL
has a different phase than the fs pulse.

• The phase resolved measurement gives access to the observation of both amplitude and
phase.

The road-map for the observation of THz ISB polariton-polariton scattering is the fol-
lowing: first observe the scattering mechanism independently from the decay time of the
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Figure 2.16: Simulation of the dispersion of the sample L1362, with a grating period Λ =
39 µm, a filling factor of 70%. The possible "magic angles" positions on both LP (θ = 16°)
and UP (θ = 20°) are indicated. The dashed grey line represents the limit between experiment
and simulations.

polaritons; then evaluate the polariton-polariton scattering decay time (γp−p,scat).
The first experiment consists in pumping with a time scale longer than the decay time of

the polariton (δtpump,on ≈ µs� τp−p,scat = 1
γp−p,scat

). In this configuration the polaritons are
excited "continuously" by the pump and a steady state can be established. The comparison
between the polariton absorption peaks with and without the pump would give information
about the possible scattering mechanisms.

Once the scattering mechanisms have been identified, the pumping time will be decreased,
down to a few ps (see developments done in Chapter 4). When the pumping time will ap-
proach the scattering time (δtpump,on ∼ τp−p,scat), the dynamics of the system would change
(an example with Mid-IR polaritons is given in Ref [8]). If these changes are observable
experimentally it will be possible to estimate the polariton-polariton scattering lifetime.
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2.7 Conclusions
In this chapter, we have presented a new set-up to measure polaritonic dispersions at low tem-
perature. This set up has been applied to measure a highly resolved THz polariton dispersion
at 10 K.

Four samples from two different heterostructures have been measured. Depolarization
shifts larger than the simulations were observed on both samples. The highly doped structure
(L1412) had the stronger depolarization shift of ≈ 0.5 THz. As a result, the ISB transition
is incompatible with the TDS measurement system.

Consequently, only the samples L1362 will be studied in TDS in the follow-up.

The TDS system is the best tool to observe the polariton-polariton scattering because the
measurement of the probe is not affected by the scattered light from the pump. Besides the
TDS system is suitable to decrease the pumping time down to the ps [27].

Chapter 3 presents preliminary results on the measure of the THz-ISB polaritons with a
pumping time that is much longer than the decay time of the polaritons.
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3
Initial Pump-Probe Experiment of

THz Polaritonic Structures

Fundamental features of intersubband polaritons, such as scattering mechanisms or condensa-
tion phenomena, require powerful and precise instruments to be measured. The time-domain
spectroscopy (TDS) coupled with quantum cascade lasers (QCLs) appears as a promising
approach offering a narrow pump (QCL), a broadband THz probe and various measurement
configurations (transmission, reflectivity, pump-probe).

I collaborated with the team of S.Dhillon at Pierre Aigrain Laboratory (ENS/LPA Paris)
for the measurement of the THz polaritonic structures that I implemented in Chapter 2, in
the context of the Ultra-QCL FET European project. The TDS measurements have been
performed in his team at ENS.

3.1 Principle of the Pump and Probe Measurement
The scheme of a pump and probe measurement is similar to a classical optical parametric
oscillator (OPO) experiment.

Figure 3.1: Schematic of the optical parametric oscillator (OPO) experiment based on the
polariton dispersion of the sample L1362. The upper polariton is pumped with a THz-QCL
and the signal is measured with the probe of the TDS system, close to normal incidence.

53



3.1. Main Components of TDS

Figure 3.1 presents the absoption minima of the polaritonic branches of sample L1362
for different angles. One interesting configuration to observe polariton-polariton scattering
(according to Section 2.6) is to pump at 2.9 ± 0.1 THz with an incidence angle at 17 ± 3°.
The narrowband pump (THz-QCL) is used to create polaritons into a reservoir. The signal is
measured with a broadband probe around 2.85 THz and close to the normal incidence (note
that the probe already creates a density of polariton on the final state, which in principle
facilitates to reach the threshold). The goal of this measurement is to observe the influence
of the pump intensity on the absorption (or emission) of the final-state. Beside, the direct
detection of the idler beam (typically at larger angles and frequencies than the pump and the
signal beams) would be a strong evidence that optical amplification is indeed taking place in
the system.

Figure 3.2: (a) Numerically simulated emission spectra with continous wave pump of grow-
ing intensity. (b) Numerically simulated emission spectra with a pulsed pump of increasing
duration. The peak intensity is kept at I0 = 0.2 (from Ref.[68]).

The Gross-Pitaevskii model in Ref. [68] gives a theoretical vision of the expected signal
at k=0 (for the lower polariton), and typical numerical results are presented in the Figure 3.2.
Due to the assumptions done in these simulations (see Ref.[68] for more details), the pump
intensities are not given in terms of physical pump intensity but in arbitrary units (a.u.).

Under these conditions, when the pump is quasi-continuous wave (Figure 3.2, (a)), pulses
longer than 150 ps) a shift of the absorption is expected at low pump intensity (I0<0.08).
Above threshold (a pump intensity of I0=0.2), an emission (reflectivity superior to 1) is ob-
served with an amplitude maximum at 5.7. The continuous wave regime will be explored in
this chapter to explore the existence of the polariton-polariton scattering process.

A second configuration employs a pulsed pump (pulses shorter than 10 ps). In this case,
the pump has to be synchronized with the probe. Figure 3.2, (b) shows the expected signal
for different pump pulse widths. The pulse regime can provide information on the decay rate
of the polariton-polariton scattering. In Part 2, of this manuscript, we fabricated THz-QCL
with Gires-Tournois cavities to generate pulsed shorter than 5 ps.
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3.2 Main Components of
a Time-Domain Spectroscopy System

THz-TDS is a technique that allows us to coherently detect the time-resolved electric field of
THz pulses emitted by synchronized THz sources with a fs laser. It typically includes 3 parts:
1) A femtosecond optical/near-infrared laser, 2) THz generation system and 3) THz detection
system. Commonly used generation system in THz-TDS are photoconductive antennas and
the detection system is typically based on electro-optic sampling.

Figure 3.3: Schematics of a TDS measurement system in transmission configuration with a
antenna source.

Using a TDS system, we can directly measure the absorption of the polaritonic samples in
amplitude and phase. The TDS system can also operate in the pump-and-probe configuration
when a first impulsion excites the sample and a second impulsion measures the sample. We
use a THz-QCL as a pump to generate polaritons in the reservoir state and observe absorption
variations due to the presence of the pump.

3.2.1 THz Pulsed Broadband Source: Photo-conductive Antenna
Various optoelectronic sources exist for TDS: two-color filamentation by ionization of the air
with a focused laser beam (Kerr effect [69]), frequency mixing in nonlinear crystals [70] and
antenna excitation with a femtosecond laser [71]. The LPA’s TDS uses an antenna excited
with a near-infrared Ti:Sa fs laser (λ ∼ 800 nm).

A photoconductive antenna is a device that can generate broadband THz pulses covering
the frequency range from 0.1–4 THz [71]. It consists of two metal electrodes deposited
on a GaAs semi-insulating substrate, as illustrated in Figure 3.4 in its simplest form. When
a femtosecond infrared laser pulse, typically from a Ti:sapphire laser, with photon energy
larger than the band-gap of the material, excites the GaAs substrate between the positive
and negative contacts, electrons in valence band will be excited to the conduction band and
become free carriers. With the antenna biased, a transient photocurrent IPC will be generated
between the electrodes.

The THz radiation of a photoconductive antenna can be obtained by appling the Hertzian
dipole antenna model. The time-dependent emission expression in free space is [73]:
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Figure 3.4: Schematic diagram of a photoconductive antenna for THz pulse generation under
femtosecond optical pulse excitation [72].

~ETHz =
µ0w0

4π

sin(θ)

r

d

dtr
[IPC(tr)]θ̂ ∝

dIPC(t)

dt
(3.1)

where µ0 is vacuum permeability, w0 is the gap distance between the negative and positive
electrodes, r and θ are, respectively, the distance and angle of photoconductive antenna radi-
ation, tr = t− r/c.

If an ultrafast, for example ∼ 100 fs, a laser pulse is employed to create the transient
photocurrent, the generated electric fields will also last a few hundred femtoseconds, which
corresponds precisely to the THz frequency range.

3.2.2 THz Pulse Sampling
The sampling of the THz pulse is performed exploiting the Pockels effect in a crystal (ZnTe,
GaP). It is an electro-optic (EO) sampling [74]. The measurement principle relies on the ad-
ditional birefringence induced in a EO crystal by the THz field. In the appropriate geometry,
this additional birefringence turns the polarization of the infrared beam crossing the crystal.
The measurement of the polarization rotation determines the amplitude of the electric field.

Figure 3.5 presents the schematics of an electro-optic sampling system for THz electric
field detection. On one hand, we suppose that only a vertically polarized infrared fs pulse
represented in red - that previously excited the THz antenna - arrives on the ZnTe crystal. If
no THz wave (green) passes through the EO crystal, there is no induced birefringence and
the polarization of the fs pulse remains vertical. When the fs wave passes through the quarter-
wave plate after the ZnTe crystal, the vertical polarization will become circular. The vertical
and horizontal components of the optical pulse are then separated by a Wollaston prism and
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Chapter 3. Pump-Probe Experiment of THz Polaritons

Figure 3.5: Schematics diagram of an electro-optic sampling system for THz electric field
detection. ZnTe: nonlinear crystal for Pockels effect. Wollaston prism: separates horizontally
and vertically polarized components of fs optical pulses after quarter-wave-plate. Balance
photodiode: detect respectively the horizontal and vertical components of fs optical pulses
and their difference is determined and sent to a Lock-in amplifier for coherent detection [72].

are sent onto a balanced photodiode detector. This situation corresponds to the reference and
is used to calibrate the photodiode. On the other hand, when a THz pulse travels together
with the fs pulse, the refractive indexes n1 and n2 in directions ~n1 and ~n2 of the crystal
(indicated in Figure 3.5) are modified owing to the Pockels effect (induced birefingence).
Passing through the nonlinear EO crystal of thickness L, the phase retardation between the
vertically and horizontally linearly polarized components of the beam is [73]

∆φ = (n1 − n2)
ωL

c
=
ωL

c
n2

0reoETHz. (3.2)

Where n0 is the refractive index at the optical frequency and reo is the EO coefficient.
Therefore, the fs optical pulse will become elliptically polarized after the quarter-wave plate.
The horizontal Ix and vertical Iy components of the signal can then be written{

Ix = I0
2

(1− sin(∆φ) ≈ I0
2

(1−∆φ))

Iy = I0
2

(1 + sin(∆φ) ≈ I0
2

(1 + ∆φ)).
(3.3)

Where I0 is the intensity of the incident fs pulse. After separation of the electric compo-
nents on the Wollaston prism the final detected signal on the balanced photodiode is

Is = Iy − Ix = I0∆φ =
I0ωL

c
n2

0reoETHz ∝ ETHz. (3.4)

Equation 3.4 shows that the intensity imbalance measured on the photodiode is propor-
tional to the THz electric field corresponding to the point that is in temporal superposition
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with the fs optical pulse (orange point Figure 3.5). Consequently, the amplitude of the THz
electric field can be sampled at this point by reading the photodiode output signal. By control-
ling the arrival time between the THz pulse and the fs pulse -using a mechanical delay-line-
it is possible to reconstruct the THz electric field (both amplitude and phase). A lock-in am-
plifier is used to detect the signal from the balanced photodiodes with, as a reference, the
modulation frequency of the photoconductive antenna use to generate the THz beam.

3.2.3 Choice of the Crystal to Study Polaritons at 3 THz
With an upper polariton frequency between 2.7 THz and 3 THz the choice of the crystal
appeared to be critical. Figure 3.6 shows that the ZnTe strongly absorbs the signal between
2.5 THz and 3.5 THz, exactly in the region of the polaritonic branches of the sample L1362.
Consequently, a GaP crystal has been chosen, which has a narrower operation range, but more
signal in the investigated window 2.5-3.5 THz.

Figure 3.6: Influence of the crystal, ZnTe or GaP, on the recorded electric field (a) and corre-
sponding spectra (b) [69].

Nevertheless, the ZnTe is still used for alignment procedures because it has almost one
decade more of signal amplitude in the range of 0.5-2 THz, where the TDS system is opti-
mized.
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3.3 Reflectivity Measurements

Before exploring the polariton dynamics, the first step is to measure the polariton reflectivity
with the TDS system. Figure 3.7 shows a TDS system for reflection measurement. The
antenna pulse is collimated with a first parabolic mirror and focused with a second mirror
onto the sample at 45◦. After reflection onto the polariton cavity, the pulse coming from
the antenna is deformed owing to the absorptions of the polaritons. The out-coming pulse is
then analyzed by electro-optics sampling using a GaP crystal. The spectrum of the sample is
obtained by the Fourier transform of the signal in time and normalized by the spectrum of a
reference gold plate.

Figure 3.7: (a) Schematics of the a TDS system with a GaP crystal in reflectivity configuration
at an angle of incidence of the probe at 45◦, (b) Normalized reflectivity spectra at 45◦ for
the sample L1362, with a filling factor of 80% and a grating period of 40µm for different
temperatures

Figure 3.7 shows the measured reflectivity of polaritonic sample L1362 at different tem-
peratures. The results are similar to the measurements with the FTIR. At room temperature,
only the cavity modes are visible. Below 70 K the intersubband transition starts to absorb,
and the splitting of the photonic branch appears. The lower the temperature, the stronger the
absorption, and the larger the Rabi-splitting. The LP at 2.5 THz and the UP at 3.1 THz are
visible at 45◦ and stay below the set-up detection limit of 3.5 THz.

The next step is to pump the UP with a QCL emitting at a frequency of 3.1 THz. The
first campaign of measurements has been launched with both pump and probe impinging
on the sample at 45◦. The TDS is particularly adapted to this experiment because - after
averaging- the electro-optic sampling is only sensitive to the probe signal and not to the
QC laser reflections (that are de-phased from the fs laser). This configuration with both
pump and probe impinging at 45° will not permit to observe polariton-polariton scattering.
However, it will provide information about the impact of the pumping with a THz-QCL onto
the polaritonic branches.
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Figure 3.8: Images of the experimental set-up, at LPA, in reflectivity configuration. (a) A
large view of the full set-up with the fs laser, the delay line and the EO sampling. (b-c) Zoom
on the cryostat head inside which is the polariton sample. In green, the THz beams coming
from the antenna and probing the polariton sample.

3.4 Initial Pump and Probe Measurements

In this section, we motivate the choice of the pump and present the performances of the QCL
that will be used for optical pumping of the polaritonic sample. After optimization of both
the laser and the antenna signals, the pump-probe measurement has been performed at an
incidence angle of 45◦ on the polariton’s cavity.

3.4.1 Saturation of the ISB Polariton

The polaritonic states can be studied until the saturation of the two-level system (bleaching).
The saturation flux of the system is given by the equation [75]:

Φsat =
~cε0nopΓ1Γ2

2ωD2
12

(3.5)

where Γ1 is the inelastic relaxation rate, Γ2 dephasing rate, nop the optical index and c
speed of light in vacuum.

Φsat,MIR has been experimentally evaluated in the Mid-Infrared domain Ref.[76] around
0.5-1MW /cm2. According to Equation 3.5 and considering the dipolar matrix element D12

as roughly proportional to the wavelength, we estimated the saturation of a THz polaritonic
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system at Φsat,THz ≈ Φsat,MIR ∗ 10−1 ≈ 50− 100 kW/cm2.

The best source to reach such a power density is the Quantum Cascade Laser. THz-QC
lasers emit up to 1W peak power per facet [17, 24]. After focusing the light on a 100 µm
diameter spot and considering the losses in the windows of the cryostats (one for the laser and
one for the sample) the final power density impinging on the sample can be of∼ 1 kW/cm2.
With such a laser, we expect to operate below the saturation with sufficient power to highlight
scattering mechanisms in the system.

3.4.2 Source Description
One of the main parameters to increase the output power of a THz-QC laser is the thickness of
the active region, which is limited by the epitaxy running time. A remarkable work recently
proposed to waferbond two symmetric active regions together [24]; the resulting peak output
power was 470 mW per facet. More recently, the epitaxy running time has been increased,
and it has been possible to grow 24− µm-thick active regions [17] delivering an output peak
power larger than to 1 W.
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Figure 3.9: Laser L1498MC Light-Voltage versus Current (L-I-V) at 4 K with a repetition rate
of 40 kHz and a duty cycle of 2% . The geometry of the cavity is 21-µm-thick, 375-µm-wide
and 1.5 mm long.

The laser chosen to pump our THz polariton system is based on a bound-to-continuum
transition with a one-well injector embedded in a surface-plasmon waveguide. These active
regions have a laser threshold current density of 400 A/cm2 at 10 K [17]. Considering a
maximum output current of the power supply at 5 A, an appropriate geometry of the cavity
to maximize the output peak power of the laser is 375 µm wide and 1.5 mm long (for a
thickness of the active region 21 µm). With such a geometry the threshold current is reached
around 2 A, and the maximum output power is estimated to 300 mW [17]. Figure 3.9 shows
the L-I-V of sample L1498MC used for the optical pumping experiment.

The optical gain of laser L1498 covers a range of frequencies between 2.9 THz and 3.2
THz and the spectrum is not strongly dependent on the bias (Figure 3.10, (a)). Such an
optical gain corresponds to the target frequencies: 3.2 THz for pumping at 45° and 3 THz
for pumping at 15°. The output peak power reaches a maximum of 340 mW at 3.5 A applied
current and a duty cycle of 10% and a repetition rate of 40 kHz (Figure 3.10, (b)).
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Figure 3.10: Laser L1498MC driven at 40 kHz: (a) Spectra for different driving current. (b)
Output power as a function of the driving current for different duty cycles.

The repetition rate of the laser L1498MC can be synchronized with the fs laser and thus
with the antenna using a fast photodiode to trigger the power supply. Nevertheless, the phase
of the QC laser changes each time it is turned on and is different from the phase of the fs
laser. Consequently, -after averaging- the pump signal is not measured on the electro-optics
sampling line.

3.4.3 Pump and Probe Measurements at 45°

The laser signal is collimated using a parabolic mirror and then superposed with the optical
path of the antenna pulse using a beam-splitter (Figure 3.11). The probe is then collected and
sent on the EO sampling for analysis.

Figure 3.11: Schematics of the TDS with a GaP crystal in pump-probe configuration. The
laser signal is integrated to the optical path of the antenna impulsion using a beam splitter
(BS).
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During the first measurement campaign, the pump and the probe were not synchronized.
The QCL was operating 40 kHz repetition rate, with 2% duty cycle while the antenna at a rate
of 7 kHz with 50% duty cycle. In this configuration, the polariton is excited only 2% of the
probing time (Figure 3.12, a).

Figure 3.12: (a) Electrical injection of the antenna at 7 kHz, 50% duty cycle and the QCL
at 40 kHz, 2% duty cycle. (b) Green dashed: reflectivity measurement at 45° and 10 K. The
blue, grey and red curves correspond to the ratio of the reflectivities on the polariton sample
with and without laser pump for different laser driving currents (i.e. output power).

The ratio between the reflectivity measurement with and without the QCL pump, as a
function of the power for different pump power, (RQCL,on(ω)/RQCL,off (ω)) is shown in Fig-
ure 3.12, (b)).

Below 2 THz, the baseline is almost equal to one with slight variations. Some significant
oscillations appear around the purely photonic cavity mode at 2 THz. After stabilization of the
baseline between the photonic branch and the LP a second oscillation occurs and between the
two polaritonic branches the ratio starts to form from the baseline up to 1.6. This phenomenon
is amplified when the laser output power increases.

These preliminary results suggest an influence of the pump on the absorption peaks and
particularly the polariton peaks. A second campaign aimed to probe the sample only when
the pump is on. To do so the laser and the antenna have been synchronized together using the
femto second laser and a fast photodiode. The laser was still driven at 40 kHz, but the duty
cycle was increased to 10%. The emission time window of the antenna is chosen slightly
narrower than the laser pulse to be sure that the polariton is excited during the probing time
(Figure 3.13). As seen in Figure 3.11 the laser pulse arrives slightly before the antenna pulse.

The spectra under different laser excitations are shown in Figure 3.14 (a). They show that
at this power density impinging on the sample, we are still far from polariton saturation.

Figure 3.14, (b) shows the ratio between the spectra with and without laser pumping.
Below the photonic branch, the ratio is close to one, as already observed in the previous
measurement.

A first peak appears on the 2nd photonic branch at 2 THz. The curve returns to unity
between 2.1 THz, and 2.4 THz were there is no absorption. The oscillation comes back for
the LP (2.6 THz) and UP (3.1 THz).

The results with the QCL and antenna synchronized are different than the ones with no
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Figure 3.13: Laser and antenna driving voltages as a function of time. The laser and the QCL
are now synchronized and driven at a frequency of 40 kHz with a duty cycle of 10%.

synchronization (Figure 3.12). Despite a higher duty cycle of the laser pump, the absorption
variation is smaller in this second configuration, with a maximum ratio at 1.27 for the UP. At
frequencies higher than the UP the ratio drops sharply.

Figure 3.14: (a) TDS measurement in frequency domain for different output power of the
laser L1498MC. (b) The ratio of the spectra with and without laser pumping.

This first observations in TDS shows that the system and particularly the polaritonic ab-
sorptions are sensitive to the optical pump and that we are far from bleaching the transition.
However, these preliminary results are not conclusive, and further characterizations need to
be performed in the future.
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3.5 Conclusion and Perspectives
In this chapter, we introduced the TDS system and analyzed the THz polaritons in reflectivity,
and pump-probe at 45°, the incidence angle of both pump and probe. One polaritonic cav-
ity has been studied in reflectivity with and without pumping by a THz-QCL with emission
frequency resonant with the UP state. In reflectivity the photonic, as well as the polaritonic
branches, are visible and no bleaching of the polaritons is observed. The pumping has a dif-
ferent effect on each branch. No interpretation can be drawn so far, and further observations
need to be performed.

The main perspective is to modify the TDS set-up to probe the sample at a different angle
than the pump. Particularly, an interesting configuration is to probe at 0◦. We expect to have
a polariton accumulation at k|| = 0 and consequently a maximum of spectral variation at this
angle. The laser could impinge on the cavity under various angles from 45◦ (as conceptually
presented in Figure 3.15) to 12◦.

Figure 3.15: Schematics of a possible TDS configuration to pump with a THz-QCL at 45°
and probe at 0°.

As shown in Figure 3.15 the incident angle of the laser on the cavity can be tuned, offering
new degrees of freedom to explore polariton-polariton scattering phenomena.
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"I asked questions; I wanted to know why.",
Katherine Johnson

Part II

Development of Short Pulse THz Lasers
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4
THz Quantum Cascade Laser Integration in

Time-Domain Spectroscopy

In parallel to the activity on polaritons, I have been involved via the H2020 project Ultra-
QCL in the development of new techniques to implement THz Quantum Cascade Lasers
(THz-QCL) that can operate in the mode-locking regime. The final goal of the project is to
increase the output peak power and shorten the pulses emitted by these lasers.

To reach this goal, one approach is to broaden the spectral gain of the QC laser while
keeping a good dispersion compensation. In this perspective, my main involvement was to
develop an ICP etching recipe to fabricate the Gires-Tournois Interferometers (GTI) that have
a challenging high aspect ratio geometry.

In this chapter, we first briefly describe mode-locked lasers to motivate the study of short
pulse lasers. Then we present the development I performed to obtain selective, anisotropic
and reliable ICP etching recipes. After this development, I fabricated THz-QC lasers equipped
with monolithic GTIs, and the characterizations were completed at LPA/ENS.

4.1 Detecting the QCL Emission with EO Detection:
Seeding

Intuitively the fs laser and the QCL could be electrically synchronized by using a fast photo-
diode to trigger the THz-QCL. The delay due to the electrical circuit would be constant and
could be compensated. However, when the QCL is electrically pumped its phase is random
as the laser action is initiated by spontaneous emission. Consequently, the phase of the QCL
changes at each repetition and cannot be synchronized with the fs laser. On the electro-optical
detection, the electric field would then be averaged to zero.

To overcome this problem, the solution consists of seeding the QCL with the phase-
resolved THz pulse generated by the photoconductive antenna that is excited by the fs laser
[77]. In this way, the phase of the THz-QCL emission can be controlled and synchronized
with the fs laser via the antenna.

In more detail, the QCL is held below threshold by a square electrical signal with a fre-
quency of 20 kHz and a duty cycle of 10%. When the seed pulse is coupled into the QCL
cavity, the laser is brought above threshold by a short electrical pulse of 6 ns, triggered by the
fs laser.
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Figure 4.1: Schematics of a THz QCL seeded by a THz pulse generated by the antenna.

This technique works for THz-QC lasers, and have a temporal resolution of 10 fs to access
the ultrafast dynamics of QCLs.

The seeding is, therefore, a valuable tool, and it is then employed in all the following TDS
measurements using QCLs.

4.2 Optimization of the Laser Gain and Cavity
In this section, we briefly describe the THz-QCL cavity, the mode locking and the implemen-
tation of the GTI cavity based on the first generation of GTI-QCLs that had been implemented
before my arrival. These concepts are still valid for the second generation of GTI-QCLs that
I developed.

4.2.1 Fabry-Pérot Cavity in a Metal-Metal Waveguide
The metal-metal waveguide is commonly used for THz-QCLs because the light is highly
confined in the cavity, and the losses in the metal are not critical. In the perspective of mode-
locking, this cavity also facilitates the GHz modulation.

The standard M-I-M cavity with two facets is a Fabry-Pérot resonator. Two mirrors typ-
ically compose a Fabry-Pérot cavity. Each mirror has its own reflectivity (r1 and r2) and
transmission coefficient (t1 and t2). In Figure 4.3, the active region is represented in blue and
the mirrors in grey. First, we consider that the active region is not dispersive (the index n0 is
the same for all the wavelengths). The different electric fields: incident Ei, internal Ec and
transmitted Et can be related together using the reflection and transmission coefficients.

After one round trip, the internal field must be equal to itself:

Ec = r1r2Ece
−i2kL + t1Ei. (4.1)

From this equation, we can write the internal and transmitted fields as a function of the
incident electric field:
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Figure 4.2: Schematic of a Fabry-Pérot resonator with the different electric fields propagating
through the structure

{
Ec = t1Ei

1−r1r2e−j2kL

Et = t2Ece
−jkL = t2t1Eie

−jkL

1−r1r2e−j2kL .
(4.2)

In the case of symmetric mirrors, we can write the transmission coefficient as the square
root of the transmission power coefficient (T) |t1| = |t2| =

√
T and the reflection coefficient

of the mirrors as a function of the reflection power coefficient (R) r1 = r2 =
√
Re2jφR . φR is

the phase shift induced by the mirror.
The transmitted intensity can then be written as an Airy Function:

It
Ii

=
∣∣∣Et
Ei

∣∣∣2 =
T 2

1−R2

1

1 + Fsin2(φ/2)
, φ = −2kL+ 2φR, (4.3)

F = 4R
(1−R)2

is the finesse of the cavity and it increases with the mirror reflectivity. Figure 4.3
shows that the maxima of transmission in a Fabry-Pérot occur when φ = 2mπ = |2kL| with
m an integer (φR = π for a reflection from low to high index). Therefore there is a discrete
number of modes that can be transmitted inside a Fabry-Pérot cavity defined by the length of
the cavity:

ωm =
πc0

n0L
m, m ∈ N. (4.4)

It is on these modes that the light will be amplified. The free spectral range (FSR) of a
free running laser is then constant

∆ω = ωm+1 − ωm =
πc0

n0L
. (4.5)

In Figure 4.3 (a) the plain lines present the equally spaced modes inside a Fabry-Pérot
cavity with uniform amplitude distribution. In Figure 4.3 (b) the amplitude is shaped by a
Gaussian function centered around ω0 representing schematically the gain of a THz-QCL. As
a first approach, we consider a laser in which each mode (m) has its own phase (φm).The total
electric field amplitude of all the modes around the central mode in the cavity can be written
[78]:
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Figure 4.3: Schematic mode amplitude (represented by vertical lines) versus frequency for a
mode-locked laser. (a) Uniform amplitude distribution, and (b) Gaussian amplitude distribu-
tion.

E(t) =
n∑

m=−n

El(t) =
n∑

l=−n

E0exp(j((ω0 +m ∗∆ω)t+ φm)) = exp(jω0t)A(t), (4.6)

where

A(t) =
n∑

m=−n

E0exp(j((m∆ω)t+ φm)). (4.7)

If we can lock the phase of all these modes in order to have φ−n = φ−n+1 = . . . = φn =
φ, the time reference can be changed to a new time reference t’ such that ∆ωt′ = ∆ωt + φ,
In terms of the new variable t’, the Equation 4.7 can be transformed into:

A(t′) =
n∑

m=−n

E0exp(jm∆ωt′). (4.8)

In this last equation, we recognize a geometric progression with a ratio exp(j∆ωt′) be-
tween the consecutive terms. This progression is then summed to obtain [78]

A(t) = E0
sin((2n+ 1)∆ωt′)

sin(∆ωt′)
. (4.9)

Figure 4.4 shows the quantity A2(t′)/E2
0 , A(t’) being proportional to the beam intensity,

versus time t’ for 2n+1=7 oscillating modes. The phase-locking yields constructive inter-
ference, producing a train of evenly spaced light pulses. The pulse maxima occur when the
denominator of Equation 4.9 vanishes. The first maximum is at t’=0. The value of the nu-
merator (Equation 4.9) also vanishes at t’=0. Making the approximation that sin(α) ≈ α for
small values of α, the value of the squared amplitude at t’=0 is A2(t′) = (2n + 1)2E2

0 . The
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Figure 4.4: Time behavior of the square amplitude of the electric field for the case of seven
laser modes with equal, locked phases and equal amplitudes, E0.

next pulse occurs when the denominator in Equation 4.9 vanishes again, and this happens at
time t’ such as ∆ωt′/2 = π. Two successive pulses are therefore separated by a time

τp =
2π

∆ω
= 2n0L/c0. (4.10)

The first zero of Equation 4.9 occurs instead when the numerator vanishes again. This
happens at time t′p such that (2n + 1)∆ωt′p/2 = π. Since the width ∆τp (FWHM) of A2(t′),
is approximately equal to t′p, we have

∆τp ≈
2π

(2n+ 1)∆ω
=

2π

∆ωL
, (4.11)

where ∆ωL is the total laser bandwidth (Figure 4.3, a).
This example is idealistic and in reality the gain of the laser is bell shaped (Figure 4.3, (b),

but the results on the shape of the pulse are comparable to the one with the uniform amplitude
distribution (see Figure 4.5, (c). In general, when the mode-locking condition holds, the field
amplitude is given by the Fourier transform of the magnitude of the spectral amplitude. In
such a case, the pulsewidth ∆τp is related to the width of the laser spectrum ∆ωL by the
relation ∆τp = 2πβ/∆ωL, where β is a numerical factor (of the order of the unity) that
depends on the particular shape of the spectral intensity distribution.

From the analytic developments, it emerges that the pulse width ∆τp could be reducted
by increasing the optical gain width (broadband active region).

In the next section, we describe the development of broadband QCL active regions cou-
pled with a monolithic Gires-Tournois cavity that compensates the dispersion of the active
region.
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Figure 4.5: Simulation of the real part of the electric field amplitude versus time for 100
lasing modes modulated by a Gaussian gain. (a) free running laser, (b) hybrid modelocking
that compensate completely the active region dispersion and (c) hybrid mode-locking with
seeding.

4.2.2 Dispersion Compensation: Gires-Tournois Interferometer (GTI)

The quantity GDD =
(
d2φ
dω2

)
ω1

is referred to as the Group Delay Dispersion at the frequency

ω1. Its magnitude gives the pulse broadening per unit of bandwidth of the pulse. An associ-
ated quantity defined as Group Velocity Dispersion GVD =

(
d(1/vg)

dω

)
ω1

= GDD/L with vg
the group velocity and L the length of the cavity.

The goal of the following development is to reduce the GDD of a QCL active region
embedded inside a M-I-M waveguide to generate short THz pulses.

The GDD (GVD) depends on three main components: the semiconductor material, the
waveguide, and the dispersion associated with the intersubband optical gain. In 2016, the
GVD of a broadband active region (composed of three different QC structures centered at
2.3, 2.6 and 2.9 THz) M-I-M THz-QCL has been measured with TDS in Ref. [79]. The
experimental results are presented in Figure 4.6, (a). The experimental GVD was compared
with GVD models for the active region material, the intersubband gain, and the waveguide.
This study conclude was that the main contribution to the GVD is the intersubband gain
(GVD ≈ 2.5 × 105 fs2/mm). Thus the GVD of this M-I-M THz-QCL can be approx-
imately modeled by the combination of optically active intersubband transitions, each one
considered as a Drude-Lorentz dispersive medium. At that time, the challenge for the THz-
QCL community was then to find a way to compensate the dispersion of the biased active
region.

The same year, judicious processing of a Mid-IR QCL-comb waveguide succeeded to
compensate the dispersion of the biased active region (Figure 4.6, (b)). In particular, the
Gires-Tournois interferometer, obtained with a high reflection coating (300nm Al2O3 and
150 nm of gold) of the facet, appeared to have a dispersion profile that can compensate the
dispersion of the biased active region [80].
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Figure 4.6: (a) Experimentally determined group velocity dispersion (GVD) of a THz-QCL
active region operating at a currents of 230 A/cm2. The 2.48mm long and 75 mm wide laser
section was driven in quasi-DC mode (10 kHz, 10 ms pulse) and lossy side-absorbers at the
edges of the metal-metal waveguide were used to eliminate all higher order lateral modes
[79]. (b) Schematics and SEM picture of a cross section parallel to the laser ridge of the
QCL-comb and the GTI mirror composed by 300 nm Al2O3 and 150 nm of gold [80].

Figure 4.7: Schematics of a GTI coupled with a QCL to compensate the dispersion with the
goal of obtaining ultrashort THz pulses.

A Gires-Tournois cavity is composed of two mirrors, as presented in Figure 4.7. The front
mirror r2 is partially reflective and the back mirror r3 is highly reflective. The Group-Delay
Dispersion of a Gires-Tournois interferometer can be written as follows [26]:

GDDGTI = −
2τ 2(1− r2)

√
r2sin(ωτ)(

1 + r2 − 2
√
r2cos(ωτ)

)2 , (4.12)

where τ = 2nl/c denotes the round trip time of the GTI where n is the refractive index, c
the speed of light in vacuum and l the length of the GTI. Equation (4.12) shows that once the
cavity material (n) and geometry (r2 and r3) are settled the GDDGTI can be tuned with only
the length (l) of the GTI cavity.
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4.2. Optimization of the Laser Gain and Cavity

In the case of a M-I-M THz-QCL, a monolithic approach has been proposed to compen-
sate the active region dispersion with a GTI cavity in Ref.[26] (Figure 4.8). The front mirror
was obtained by opening a thin slit (1.5 µm wide) parallel to the facet of the M-I-M THz-
QCL, and at the distance l ∼ 30 µm from it. The mirrors reflectivity in this configuration
can be calculated with Meep software (by J.Jukam at the University of Bochum). The sim-
ulations show that the front mirror reflectivity is r2 = 0.61 and it is different from the back
mirror reflectivity r3 = 0.83.

The GDD of the biased active region was obtained by applying the Kramers-Kronig re-
lation on the shape of the active region gain (LO-phonon depopulation scheme) with central
frequency at 3.1 THz. The so-called Gain GDD - presented in green in Figure 4.9 (a)- is pos-
itive between 2.3 THz and 2.45 THz and negative between 2.45 THz and 2.7 THz. The
Gain GDD has dispersion peaks of about ±0.5 ps2 that is much larger than the GaAs GDD
that is an almost null (∼ 0.18 ps2) and flat (grey line). Consequently, the modes strongly
dephase with each other while propagating in the cavity. This dephasing leads to enlarging
the THz pulses.

Figure 4.8: SEM images of the first generation of THz-QCLs with monolithic GTI: (a) top
view of the GTI cavity, (b) side view of the GTI slit [26].

To overcome this difficulty, it is possible to simulate the GDDGTI(l) for different lengths
of the GTI cavity (with only GaAs inside the waveguide) and compare it with the GDD of
the active region. Figure 4.9 (b) shows the adaptation of the GTI to the laser, with the GDD
presented in green [26]. For a GTI length of 38 µm theGDDGTI stays negative but increases
strongly between 2.3 THz and 2.7 THz. On the other hand for the length 58 µm theGDDGTI

changes sign at 2.5 THz. The Gires-Tournois cavity, therefore, appears to have a dispersion
that compensates the gain GDD. After implementing the GTI on the active region, the total
GDD (Figure 4.9, (b), red and blue curves) is sharply reduced and flattened particularly in
the range from 2.4 THz to 2.65 THz.

Finally, the monolithic implementation of the GTI combined with active mode-locking
can significantly reduce the THz pulse length compared to a standard Fabry-Pérot cavity
laser. The first generation of hybrid mode-locked lasers led to the compression of the pulse
down to 4 ps [26]. In this chapter, I will present the results of the second generation devices
that I implemented using broader gain.
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Figure 4.9: Group Delay Dispersion simulation of the gain material and GTI biased on a
QC-heterostructure. (a) The individual GDD contributions of the GTI, bulk GaAs (grey), and
QCL gain (green curve). The GTI GDD is shown for a 58 µm (red) and 38 µm (blue) cavity
length. (b) The total GDD-GTI, material and gain for a 58 µm (red) and 38 µm (blue) GTIs.
The contribution of the gain and material GDD is also shown for comparison (green and grey
curves) [26]. Note the different y-axis scale in panels (a) and (b).

4.3 ICP Etching: Recipe Development
The critical step in the process of the monolithic GTI cavities is the etching of the QCL active
region. The target geometry is presented in Figure 4.10, the thickness (t) of the active region
is between 15 µm and 20 µm and the opening of the Gires-Tournois slits (s) should not
exceed s = 2 − 3 µm. Such a geometry with an aspect ratio t/s ≈ 5 − 10, at the limits of
the photo-resist specifications. Only a dry etch can fulfill such an-isotropic etching.

Figure 4.10: Cross-section of the final GTI cavity. The laser cavity is 3 mm long, 57 µm wide
and 15 µm thick, the GTI is 30-70 µm long and the slit between the laser cavity and the GTI
is only 2-3 µm wide.

When I started my Ph.D., the Inductively Coupled Plasma (ICP) etching recipe had drifted
from the last etching of the GTI cavity (First generation of GTI [26]), and an important
micromasking was typically observed (Figure 4.11). Despite relatively vertical and smooth
sidewalls, the micromasking could strongly deteriorate the laser performances for the various
cavity geometries we were studying in our group (3rd order Distributed-Feed-Back lasers [81]
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and micro-lasers [82]). For GTI cavities, the presence of micro-pillars into the slit strongly
affects the dispersion of the cavity.

My major contribution to this project was to develop a new ICP recipe to solve this diffi-
culty. During this development, we considered not only GTI cavities, but more generally the
etching of GaAs/AlGaAs heterostructures to obtain a versatile and reliable etching recipe for
the different projects of the group.

Figure 4.11: SEM images of features etched into a GaAs wafer with micromasking effects
apparent on the surface. The magnification of the images are: (a) ×110, (b) ×320, (c) ×140
and (d) ×750

The aforementioned applications demand anisotropic etch profiles, as well as smooth
sidewalls and bottom surfaces and high etch rates and selectivity. Conventional reactive ion
etching (RIE) is often used for the selective etch process of III-V compounds [83]. However,
RIE processes rely on only one RF chuck (called platen or bias power), making it difficult to
achieve good etch uniformity on large wafers. Moreover, elevated RF platen bias is typically
necessary to achieve vertical sidewalls. This also leads to high etch rates, but the physical
impact of the ions on the III-V compounds and the mask is increased too. The former one
can cause damage to the device [84, 85, 86]. The latter one reduces the mask selectivity. One
solution is to use an ICP-Deep Reactive Ion Etching (ICP-DRIE) reactor where two power
inputs are employed for the plasma. One is the platen power, similar to a RIE reactor. The
other is the ICP source power. The latter one plays the crucial role of ionizing and generating
the plasma. This technology provides almost independent control of ion density and energy,
respectively. With optimized ICP conditions, typically a low RF chuck power and a high
ICP source power, minimum damage or damage-free etch with high etch rate can be obtained
with III-V materials [87, 88].

Several approaches to increase the etch selectivity have been developed. The use of gases
promoting the formation of polymer films on the surfaces was shown to favor the selectiv-
ity. In this section, we show that a BCl3/Cl2/N2/Ar plasma chemistry can produce highly
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anisotropic etching of GaAs/AlGaAs heterostructures in combination with photoresist-based
masks. Each ICP-DRIE etching parameter affects the rate, anisotropy, surface roughness,
and sidewall morphology. All of them must be carefully controlled for reliable device manu-
facturing. I paid special attention to the problem of plasma-induced structural damages such
as the micromasking and the sidewall roughness. My objective was to optimize III-V com-
pounds etching using a ICP-DRIE etcher for my application. In the end, I have identified
plasma conditions that provide not only adequate surface chemistry but vertical and smooth
sidewalls as well.

4.3.1 Experiment
The experiments were performed in a STS (Surface Technology Systems) reactor, equipped
with a 900 W, 13.56 MHz RF coil generator. The gases employed in this study were BCl3,
Cl2, Ar, N2 and O2. During all the experiments, the temperature of the electrode was fixed at
25°C. A 5-min-long oxygen clean procedure was performed between each run to remove any
polymer from the reactor sidewalls, minimize contamination, and preserve process repeata-
bility.

Gas Flow rate (sccm) Results
Recipe Pa (mTorr) BCl3/Cl2 Ar N2 Etch rate (µm/min) Selectivity

1 10 4 0 0 3.64 6.67
2 10 2 0 0 3.6 6.5
3 10 2.5 0 0 2.38 4.3
4 10 4 5 0 2.38 4.43
9 10 6 5 2 3.84 5.95
10 10 6 5 2.5 4 7.22
11 10 6 5 3 4 6.2
16 5 20 5 3 1.14 2.5
17 10 20 5 3 1.8 4
18 20 20 5 3 2.36 5.2
20 30 20 5 3 3.7 12.33
21 30 20 5 5 5.56 16
24 20 20 10 3 2.8 8.9
25 20 20 20 3 3 8
26 20 20 30 3 2.5 7.28
27 20 20 50 3 2.23 6.42

Table 4.1: Typical results from the different etch processes I studied, with coil power : platen
power ratio fixed to 8:1. The green lines correspond to recipes that reduce the micromasking
(Section 4.3.2), the coral lines correspond to recipes with a etch rate >3.6 µm/min (Section
4.3.3) and the blue (dark blue and cyan) lines correspond to recipes that passivate the side-
walls keeping an-isotropic etching over long etching times (Section 4.3.4). In dark blue (R17)
the selected recipe for the GTI-processing presented in this thesis.

The samples were loaded into the reactor by mounting them on an alumina carrier wafer
with silicone grease to ensure good thermal contact. As part of the optimization of the etch-
ing parameters, a mask design with different kinds of test structures (trenches and cavities)
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for measuring the process outcome was employed. In this investigation, a surface inspection
of the etch result was the best way to check the etch characteristics. All test samples were 1
cm × 1 cm pieces of bulk GaAs or GaAs/Al0.15Ga0.85As THz quantum cascade lasers [89].
We studied several different etch processes, and their general characteristics were compared.
Typical parameters from these processes are summarized in Table 4.1, with an etching time
set at 5 min for all the samples. Photoresist (AZ9260, 6 µm-thick), was patterned with test
geometries on GaAs wafers, or on GaAs /Al0.15GaAs0.85 THz quantum cascade heterostruc-
tures [89], and used as the mask material. The mask erosion was estimated by measuring
its thickness pre- and post-etching. The mask selectivity was estimated by calculating the
ratio of the semiconductor etch rate to the photoresist etch rate. The samples were etched and
studied using an optical microscope and a Scanning Electron Microscope (SEM). The latter
one provides error on the measurement due to the pixel size of the image. The error bars
on the depth and angle measurement, or on the etch rate and selectivity are plotted in all the
figures.

4.3.2 Reduction of Micromasking: Chemical Etching with Cl2
Micro-masking occurs when material liberated during the etching is redeposited elsewhere
on the sample and creates an undesirable additional etch (Figure 4.12). It is most frequently
encountered when a metal mask is used because of the physical sputtering of small metal
particles, that are not volatile (as seen in Figure 4.11, (a). A photoresist mask may also
induce polymer deposition on the etched sidewalls due to a reaction with the plasma and
result in roughly etched surfaces due to micro-masking (as shown in Figure 4.11 (b), (c) and
(d). As a consequence, the micromasking phenomena can significantly reduce the etch rate.
Figure 4.13 shows SEM images of the samples after an etch with a Cl2-based chemistry. The
samples present very smooth bottom surfaces.

Figure 4.12: Main phenomena causing micro-masking: deposition of resist mask or Boron-
containing molecules appearing during the etching and passivation of the sample surface
observed while increasing the N2 flow.

However, an undercut is also observed and the sidewalls are rough. As predicted for Cl2-
rich environments, GaAs and AlGaAs were chemically etched causing severe undercut as
observed in Figure 4.13, when using the recipes R1-R3. In BCl3-rich environments instead,
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when using the recipe R4, GaAs and AlGaAs are in general slightly passivated and the under-
cut effect is reduced [90, 91, 92]. Note: BCl3 may cause a problem because Boron-containing
molecules can be deposited onto the wafer surface. By adding Ar in the BCl3/Cl2 mixture, it
is possible to sputter these non-volatile products away. With the Ar in the BCl3/Cl2 mixture,
we obtained less under etching (see Table 4.1: R4, R24, R25, R26, and R27). The effects of
the gas mixture on the etch characteristics of GaAs show that by increasing the Cl2 flow rate,
the etched surface becomes very smooth, but the etch profile is isotropic and the sidewalls
are very rough. In the next section, the effect of plasma process parameters on the etch rate
and the photoresist mask is studied.

Figure 4.13: SEM micrographs and corresponding optical photographs of features etched into
GaAs with a BCl3/Cl2 chemistry. (b-d) exhibit a smooth floor, but (a) exhibit rough sidewalls.
The recipes used are R1 for panel (a), R2 for panel (b), R3 for panel (c) and R4 for panel (d)

4.3.3 Obtaining a High Etch Rate: Ar & N2

To etch thick QCL active regions (15 − 20µm) we need to develop a recipe with high se-
lectivity to preserve the most the photoresist. For deep etching, high etch rates are generally
preferred and present good selectivity. Our objective is to develop a recipe with an increased
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etch rate by facilitating the availability of chloride ions as a result of the reaction between
BCl3 and Cl2. The addition of Ar or N2 to the BCl3/Cl2 mixture modifies the chlorine ions
density, thereby affecting the etch rates too. In essence, adding Ar or N2 can result in a dif-
ferent degree of dissociation of Cl2. As shown in Table 4.2, the dissociation enthalpies of the
used gases are different: a balance in terms of injected gas flow ratio, and the power used is
required.

Parameters BCl3 Cl2 N2 Ar
Dissociation enthalpy
(kcal mol−1) 110 58 226 363

Table 4.2: Dissociation enthalpy of BCl3, Cl2, N2 and Ar.

We investigated the introduction of N2 to the BCl3/Cl2/ Ar mixture. It is important to
note that adding only a very small amount of N2 (2 or 5 sccm) already resulted in a sizeable
increase of the GaAs etching rate, as shown in Table 4.1. From these results, it is also ob-
served that the etch rate increases rapidly with increasing Cl2 flow rate in the ratio BCl3/Cl2
due to the increase in the supply of reactive Cl+ species at the sample surface. On the other
hand, at a fixed Cl2 flow, the etch rate increases with the BCl3 flow is not as dramatic. This
stems from the higher dissociation energy of BCl3 molecules that leads to a smaller number
of available Cl radicals for the reaction.

Figure 4.14: (a) GaAs etch rate and selectivity variation with argon. The gas mixture is
BCl3/Cl2: 20 and N2:3 sccm at 20 mTorr, (see Table 4.1). (b) SEM picture of the sidewall
roughness after etching with recipe R9.

The optimum conditions for obtaining a higher etch rate were obtained at a high concen-
tration of N2 gas in the BCl3/Cl2/Ar mixture at 10 mTorr (see Table 4.1 : R9, R10 and R11)
and at even higher operating pressures of 20-30 mTorr (see Table 4.1: R20 and R21).

To be able to control the anisotropy of the process, the Ar concentration was adjusted by
varying the relative flow rates. Despite the addition of Ar in the gas mixture BCl3/Cl2 : 20,
(see Table 4.1 : R4), some under etching with rough sidewalls was always observed and the
slope was still found to be around 90 ◦. On the other hand, by adding Ar in the gas mixture
BCl3/Cl2 : 20 with N2: 3 sccm (see Table 4.1), increasing the Ar gas flow from 5 to 50 sccm
leads to an increase then a decrease of the etch rates as shown in Figure 4.14, (a). This trend
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in etch rate is attributed to a change from a chemically dominated reaction to a physically
dominated one. This is further confirmed by the decreased selectivity with an increase in the
Ar flow, due to the increased physical character of the etching.

In these first two subsectons, we estimated the impact of each chemical specie (BCl3, Cl2,
Ar and N2) on the etching (etch rate, selectivity, and anisotropy). To etch thick GaAs/AlGaAs
active regions the optimal chemistry is: a ratio BCl3/Cl2= 20, a flow rate of N2 at 3 sccm
and a flow rate of Ar at 5 sccm. However, some roughnesses and ripples are still observed
on the sidewalls (Figure 4.14, (b)) of the etched samples. These defects, due to the sidewall
passivation rupture, are few hundreds nanometers deep. They could be neglected in a standard
M-I-M process, but in the case of GTI process, these defects could hamper the opening of
GTI-slit (2− 3µm). To overcome this last issue, the last parameter to tune is the pressure.

4.3.4 Obtaining Vertical and Smooth Sidewalls:
Resist Profile and Pressure Control

The final steps of this dry etching recipe development are specific to the high aspect ratio of
monolithic-GTI cavities. It consists of the optimization of the photo-resist profile (vertical
edges and resolution) and the adjustment of the pressure to find a compromise between high
etch rate and sidewalls passivation.

Figure 4.15: (a,b): The AZ9260 photoresist profiles: the overcut profile (a) and the optimized
vertical profile (b) (c,d): SEM images after etching -with recipe R17- a GaAs wafer using a
resist mask with overcut profile (c) and vertical profile (d).

The major disadvantages of using a thick photoresist are poor resolution and difficulty in
obtaining straight wall profiles. The profile is critical since an etch of a 15 µm-thick active
region engenders a reduction (consumption) of ∼ 3 µm (50%) of the resist thickness. In
these conditions, the mask erosion by the plasma ions mainly impacts the rounded or sloped
edges of the photoresist mask. These results in an angled photoresist profile and - in case
of deep etching - this angle is transferred to the etched pattern by the gradual erosion of the
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photoresist at the mask edges (Figure 4.15, (a-c)). Consequently, the positive-tone photore-
sists were optimized to obtain a high resolution with excellent vertical profiles. Straight wall
profiles achieve the best pattern fidelity (Figure 4.15, b-d)).

Figure 4.16: SEM micrographs and corresponding optical photograph of features etched into
GaAs with BCl3/Cl2/Ar/N2. Typically found when using recipes R16; R17 and R18.

After the optimization of the resist profile, the etching recipe has been modified to im-
prove the passivation while keeping high etch rate and selectivity. The chemistry of the
recipe and the coil and platen powers were fixed according to the previous sections. The last
parameter to tune is the pressure. Figure 4.16 shows the etch profiles as a function of oper-
ating pressure (Recipes R16-R18). Vertical profiles are obtained for pressures as high as 20
mTorr. The advantage of operating at higher pressure is to improve the selectivity with the
photoresist mask. Nevertheless, the higher the pressure, the less smooth the sidewall surface
is. Finally, the intermediate pressure 10 mTorr has been chosen as a compromise between a
relatively high etch rate and the smoothness of the side walls.

4.3.5 Conclusion of the Etching Development
During this development campaign, we adapted the etching recipe to the new condition of the
ICP machine and chamber. We followed three steps schematized in Figure 4.17:

1 Reduction of the micromasking with a more chemical etching (increase of Cl2).

2 Increase of the etching rate and the passivation with additional species (Ar and N2) to
reduce the curvature of the sidewalls.

3 Control of the resist profile and tuning of the pressure, to accentuate the anisotropy and
make the sidewalls smoother.
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Figure 4.17: Schematics of the different steps followed during the ICP recipe development.

Eventually, I developed an optimized recipe (R17). It yields anisotropic etching with a
moderate etch rate and very smooth surfaces. Compared to etching with only BCl3/Cl2 or
BCl3/Cl2/Ar, a mixture of BCl3/Cl2/Ar/N2 seems optimal. This is due to a balance of the
physical and chemical etching mechanisms.

As we saw that there is no significant difference between etching GaAs and GaAs/AlGaAs
heterostructures, recipe R17 has been successfully implemented for the etching of broadband
active regions with Gires-Tournois interferometer as well as all the other devices for the
group.

In addition, the recipe R17 with the resist AZ9260 suits the etching of very thick QC
active regions, that are necessary to obtain spectrally (broadband) optical gains [93, 24, 17].
Figure 4.18 shows that for large apertures (distance between two ridges) recipe R17 can etch
down to 21 µm without consuming all the resist.
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Figure 4.18: Etch depth of GaAs and of a GaAs/AlGaAs heterostructure, as a function of the
mask aperture size for two different etching times (recipe R17). Etch depths of >21 µm can
be achieved.
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4.4 Second Generation of GTI-THz-QCLs Used in this Work
Previous works on QCL integration in TDS showed that shorter pulses were obtained with
metal-metal waveguides (compared to single plasmon ones) featuring a GTI cavity at one end
of the waveguide [72]. The second generation, I fabricated, reuses the GTI implementation
on metal-metal structures, using broader gain active regions to increase the spectral width of
the laser spectrum and reduce the pulse duration. Table 4.3 presents the structures of the first
and second generations active regions.

Sample Type of
active region

Layer structure
(nm)

Al Bar-
rier (%)

Periods
number

AR thick-
ness (µm)

Ref

L1194
phonon-
resonant

4.85/10.24/2.77
/9.37/4.62/18.4 13 200 10 [93]

L1410

L1194:
phonon-
resonant

4.85/10.24/2.77
/9.37/4.62/18.4 13.3 120

11.8 [93]
L1074:
phonon-
resonant

4.39/8.97/2.63
/9.79/4.6/17.66 15 120

L1369

LO-phonon-
assisted
interminiband
transitions

3/9.5/3/11.8/2/
12.9/1/16.2/0.5/
10.1/4/14.5/3/
17/3/7.1/3/8.6

15 115 15 [94]

Table 4.3: Description of the heterostructures used for the second generation of GTIs. In the
layer structure, bold is for the AlGaAs barriers.

4.4.1 The THz QCL Active Regions used in this Work
The first generation (Ref. [26]) of GTI THz QC lasers was engineered to operate at 2.5
THz to be compatible with a TDS system. This generation used a LO phonon depopulation
scheme based on the design of Ref.[93]. In this manuscript, the heterostructure is labeled
L1194, and a typical spectrum is presented in the Figure 4.20, (a) (red curve).

The second generation targets a broader gain to have larger optical gain bandwidth and
eventually shorter pluses. Two types of heterostructures have been grown: stacked het-
erostructures based on phonon-resonant designs (Table 4.3, 1194 and 1410) and a broadband
structure based on nine QWs forming a cascade of alternating photon and longitudinal optical
(LO) phonon-assisted transitions between quasi-minibands (L1369, Table 4.3). The conduc-
tion band diagrams related to typical LO-phonon resonant and hybrid designs are presented
in the Figure 4.19.

Four heterostructures have been pre-tested at Leeds University in standard M-I-M cavity.
Figure 4.20 shows the optical gains of the active region L1194 (2.25-2.6 THz) and L1074
(2.4-2.8 THz) that have been combined to form the active region L1410. Figure 4.22 exhibits
the impact of the side absorbers on the optical gain of the active region L1369.
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Figure 4.19: Conduction band diagrams and squared moduli of the wavefunctions of two
quantum cascade structures: (a) resonant phonon based three QWs at the design electric field
of 12.2 kV/cm [93]; (b) LO-assisted interminiband transition designs at 4.4 kV/cm, where m
and m’ denote quasi-minibands of different cascades [94].

Figure 4.20: Two different QC designs (L1074 and L1194) have been combined to produce
the active region of L1410. (a) Typical laser spectra for each design. (b) Schematics structure
of sample L1410.

4.4.2 Side Absorbers Permit to Broaden the Laser Spectra

A technique employed for broadband THz QCLs in M-I-M cavity to offset the mode com-
petition is to add highly doped layers [95, 96, 97] on top of the active region to increase the
cavity losses of higher order modes. These so-called "side absorbers" increase the losses of
the modes whose field overlaps most with the ridge sides (Figure 4.21, (b)). The TM00 mode
has much of its electric field confined below the top metal, hence it is less affected than the
higher order transverse modes by the presence of the side absorbers.

The side absorbers that can be added on the side of the ridge are typically obtained by Ni
deposition [98]. Alternatively, a part of the top n-doped layer of the active region can be left
in place during processing instead of being chemically removed.

The effect of the broadening of the spectrum has been observed on sample L1369, as
shown in Figure 4.22. Consequently, for the processes of the second generation of GTIs
the n+-doped on top of the active region [97] (after wafer-bonding) has been only partially
removed with H2SO4 : H2O2 : H2O to leave 200− 300 nm of the n-doped layer in place.
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Figure 4.21: (a) Lateral cross-section of a Metal-Insulator-Metal cavity with n-doped side
absorbers. (b) 2D finite element simulation of the waveguide losses for different transverse
magnetic modes in a 10 µm thick metal-metal cavity, 100 µm wide and 4 µm wide side
absorbers. The dielectric function of the active region and the doped layer are respectively
εGaAs=13 and εn+−doped = 7 + i25. The electric field distribution of the simulated modes is
displayed on the same graph. The electric field component orthogonal to the metallic layers
is plotted.
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Figure 4.22: Broadband laser L1369 (grown at Leeds University), with (right) and without
(left) 12 µm wide 5 nm thick Ni side absorbers, as measured at CNR/PISA SNS. The side
absorbers have a dramatic impact on the spectral laser width.

4.4.3 Fabrication

Each active region has been first tested in a standard metal-metal waveguide geometry (in
CNR Pisa) to estimate the gain of the active region, estimate the GDD by using the Kramers-
Kronig relation and fix the length of the GTI using Finite Elements Simulations (LPA). For
each active region (Table 4.4) I designed a specific mask with several GTI lengths around the
target GTI length.

The length of the cavity defines the round trip time and the GHz beating between the
modes fbeat = c

2∗nAR∗L
. With a L = 3mm length, the beat note of the cavity is at≈ 13 GHz.

The first step for fabricating a metal-metal cavity active region consists in wafer bonding
the active region onto a host GaAs substrate (Figure 4.23, (a)). To do so, the host substrate
and the active region are both covered with 10 nm Ti for adhesion and 250 nm Au for the
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bonding.

Sample Gain Width GTI width
Measured
laser
pulse width

Remarks

L1194 2.4-2.7 THz 38 µm and 58 µm 4 ps
First Generation
of GTI lasers [26]

L1410 2.6-3.2 THz
In-homogeneous
threshold

L1369
2.9-3.1 THz and
3.5-3.6 THz

35.5-38.5 µm and
50-53 µm

5 ps
Best result
without GTI

Table 4.4: Lasers processed during this PhD. Ridges are typically 56 µm wide and 3 mm
long.

The substrate (typically 500 µm thick) on which the active region has been grown is
then removed using first a manual polishing followed by a selective chemical etching (citric
acid/H2O/H2O2 3/3/1). The active region is protected from the etching by the stop layer
highly concentrated in aluminum (Al60Ga40As, Figure 4.23, (a-b)). Note that the stop layer
is positioned during the epitaxy and fixes the thickness of the cavity, which is - in the case of
GTI-lasers - between 15 and 18 µm. The stop layer is finally removed with hydrofluoridric
acid for 2 min.

The 700 nm n+-doped (2 × 1018 cm−3) GaAs top contact that is now above the active
region is used as side absorber [96]. Only 300 nm of this layer are removed using a chemical
etching (H2SO4 : H2O2 : H2O [99]) and checking the depth of this etch with a profilometer.

Once the active region is uncovered, the patterning of the top surface can be realized.
The first step consists in coating the active region with image-reversal photoresist (AZ5214,
described in Chapter 2). The lithography is performed with the mask aligner MJB4. The ridge
pattern with the slit of the GTI on one side is transferred on the resist via optical lithography
(Figure 4.23, (c)). Once the mask is transferred on the sample, the residual resist is removed
with a short O2 plasma. The surface of the sample is then deoxidized for better adhesion
between the metal and the sample surface.

Recipe Pressure
(mTorr)

Coil
(W)

Platen
(W)

BCl3
(sccm)

Cl2
(sccm)

Ar
(sccm)

N2

(sccm)
GaAs-Au 20 800 200 40 1 0 0
MGaAs 5 500 50 50 0 0 8
New recipe (R17) 10 800 100 50 2.5 5 3

Table 4.5: ICP-Etch recipes commonly used in our group.

The top metal - composed of 10 nm of Ti to adhere on the sample surface and 250 nm of
Au - is then deposited with an e-beam evaporator. The resist is removed by acetone leaving
only the top metal that is used as the top electrode (Figure 4.23, (d)).

The ridges are covered with AZ9260 resist (presented in the previous section) except on
the slit area. The sample is then etched in the ICP reactor during ∼ 7 minutes (Figure 4.23,
(d)). After this step, all the active region that was not under the resist is totally removed and
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access is possible to the bottom contact for wire-bonding. The resist on the top of the ridge
is then removed with acetone and O2 Plasma.

Finally, the back-side of the host substrate is manually polished and coated with Ti/Au
(10/150 nm) for mounting purposes on a copper block.

Figure 4.24 shows the SEM images of the typical devices at different magnification scales.
The device images (a), (c) and (d) were obtained with the recipe R17 and the image (b) with
the recipe MGaAs (Table 4.5). A clear reduction of the micro-masking has been possible
with the new recipe R17 that I developed.

Figure 4.23: Schematics of the GTI cleanroom processing.
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Figure 4.24: SEM images with different magnifications of GTI cavities after processing: a)
global view of the sample, b) shows different positions of the slits (length of the GTI), c)
shows the GTI region of one sample and d) shows the slit opening of 3 µm. a), c) and d)
were etched with the recipe R17 and b) with the recipe MGaAs see Table 4.5.
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4.4.4 Sample Mounting
After processing, the samples are cleaved on the opposite side of the GTI cavity. Samples are
then mounted with indium on a specific copper block. The copper block central length of 3
mm equals the sample length (particularly useful to avoid reflections during the seeding). Two
types of pads can be implemented on the copper block (Figure 4.25): a normal connection pad
for standard characterizations and a high-speed SMP connector with an integrated coplanar
transmission line for compatibility with RF applications. This second connector can operate
up to ∼26 GHz.

	
 	

	
 	

	
 	

(a) (b) 

(c) (d) 

Figure 4.25: (a) Diagram of a QCL mounted on a copper mount with a microwave waveguide
and a SMP connector (b) Gilded mounting block for THz QCLs. (c) Picture of a processed
sample after cleaving. (d) THz QCLs mounted on a copper block with high-speed coplanar
transmission line waveguide and integrated SMP connector [72].

The electrical connection between the QCL and the connectors is realized through mi-
crowire bonding. In the case of the SMP connector the ridge is connected to the central line
of the co-planar waveguide.
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4.4.5 Characterization of GTI QCLs (ENS/LPA)
In this section, we present the characterizations of the broadband QCLs, I fabricated, per-
formed at LPA (L1410 and L1369). Table 4.4 summarizes the most relevant results obtained
with these devices.

L1410

The sample L1410 lases over a broadband frequency range but not simultaneously because
the threshold currents of the two different parts of the active region are different.
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Figure 4.26: Spectra of sample L1410 for different currents.

No further characterizations have been performed for this sample and the heterostructure
has not been regrown.

L1369

The active regions L1369 emits a regular and continuous "comb" in the range of 2.7 THz to
3.1 THz (400 GHz). These two heterostructures have suitable properties to be studied on a
TDS set-up.

For sample L1369, the best results in mode-locking were surprisingly obtained with the
reference sample. One single pulse of the reference sample (without GTI) is shown in Figure
4.27, (b) with a pulse width of 4.5 ps at a round trip time of 70 ps. The dispersion of this
active region was flatter than expected. Figure 4.27, (d) shows on the same graph the broader
spectrum obtained from a GTI-THz QCL (see Figure 4.27, (c) and the GTI compensation
profile calculated for the same laser. The laser spectra have three distinguishable regions
centered respectively at 2.85 THz, 3.15 THz and 3.5 THz. The shape of the GTI dispersion
(Figure 4.27, (d) red) is not designed for such a spectral gain and does not reduce the total
dispersion of the laser. Consequently, the pulse is larger (6 ps) than the reference.

The GTI cavities have clearly a strong effect on the spectra. The sample with a GTI of
34.5 µm is particularly interesting because it shows a potential 900 GHz wide spectrum
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Figure 4.27: (a) and (b) pulses of the reference sample of L1369, (c) Spectra of the different
GTI geometries compared to the reference sample, (d) Spectrum of the 34.5 µm long GTI
cavity (purple) and the calculated (LPA) GTI dispersion profile. The inset shows a pulse of 6
ps obtained with this laser.

(pink curve in Figure 4.27, (c)). However, a phenomenon of spatial hole burning can be
observed [100] that possibly hinders the generation of very short pulses.
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4.5 Conclusions
In this chapter, we have presented the development of THz-QC lasers equipped with mono-
lithic GTIs for the emission of short THz pulses. To further reduce the pulse width generated
by the laser, a spectrally broad emission spectrum is of crucial importance.

To widen the spectral gain, two types of active regions have been grown: two phonon-
resonant active regions with different central frequencies were grown successively on the
same wafer, and LO-phonon assisted interminiband transition active regions.

The phonon-resonant active regions stack (L1410) had an inhomogenous threshold over
the two subregions. Consequently, the subregions were lasing at different injected currents,
limiting the broadening of the spectral gain.

On the contrary, the LO-phonon assisted interminiband transition active regions (L1369)
do not have subregions and have a homogeneous threshold intrinsically. The optical gain of
these active regions was broad (500 GHz) and could be fully exploited using side absorbers
(up to 900 GHz).

The dispersion of the LO-phonon assisted interminiband transition active regions is dif-
ferent from the phonon resonant active regions of the first GTI generation (L1194 [26]). The
dispersion compensation - performed with Gires-Tournois Interferometers (GTI)- was thus
adapted to this new laser active region.

The critical step of the fabrication of GTI-laser cavities is the high aspect ratio between
the slit opening of the GTI (2-3 µm) and the thickness of the active region (15-20 µm). For
this reason, I developed an anisotropic, selective and reproducible ICP etch recipe Ref. [28]
to etch GaAs/AlGaAs heterostructures.

Three different active regions (presented Table 4.4) have been processed with this recipe.
The shortest pulse recorded for the second generation was 5 ps (L1369), slightly longer than
the first generation (4 ps). Nevertheless, these devices are still characterized by our colleges at
the LPA and suggest a potential improvement of the performances of the broadband GTI-QC
lasers.
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l’autre mais ensemble contre le bruit.",
Michel Serres

Part III

Mid-Infrared Polaritonic Detectors
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5
Quantum Wells Infrared Detectors:

Introductory Theory

In the second part of this thesis, we explore the strong coupling from the detection point of
view. Among various type of quantum detectors, we decided as the first approach to work
with quantum well infrared detectors (QWIP). The advantage of these structures is that the
quantum engineering of the energy levels is simple, which is an asset for the design of the
structures as well as the interpretation of the results. The following chapter presents this type
of detector and introduces the fundamental concepts related to these devices.

5.1 Brief Introduction to Quantum Well Infrared Detectors
In this section, we introduce the general concepts related to QWIPs as TBlip, Dark Current,
Photo-current, Noise Equivalent Power, Detectivity, and Responsivity. These concepts are
useful to understand the QWIP development, the different limitations of this type of detectors,
and to interpret the experimental results of our study.

5.1.1 Black Body radiation
To fully understand the process of infrared detection, we also need to know some basic prop-
erties of the source. The Bose-Einstein function describes the energy distribution of a photon
field at a frequency ν with the temperature T

fB(ν) =
1

exp(hν/kBT )− 1
. (5.1)

This equation applied to the electromagnetic mode in a cavity yields Planck’s radiation
law. The irradiance Iν is the power of a blackbody source irradiated over the full solid angle
divided by the area of the same source. It is written

dIν =
2πh

c2

ν3dν

exp(hν/kBT )− 1
. (5.2)

Figure 5.1 shows the irradiance at different temperatures.
Nevertheless, only a portion of the light radiated from the source reaches the detector. A

general concept to evaluate the impinging power onto the detector is the radiance (radiation
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Figure 5.1: Energy distribution of the black body radiation vs. photon frequency for an
emissivity equal to 1. The grey area corresponds to the detection spectral window of our
detectors.

power per unit area and steradian). Consider a greybody that has an anisotropic radiation
described by the emissivity E(ν,Ω). The emissivity of the surface of a material is its effec-
tiveness in emitting energy as thermal radiation. The ratio varies between 1 (perfect black
body) and 0. The radiance can be expressed in spherical coordinates as [101]

δHν,Ω = E(ν,Ω)
2h

c2

ν3dνcos(θ)dΩ

exp(hν/kBT )− 1
. (5.3)

Where dΩ = sin(θ)dθdφ, with θ the polar angle and φ the azimuthal angle. In the
following we consider an ideal blackbody source, i.e E(ν,Ω) ≈ 1.

To estimate the optical power impinging on a detector (without focusing), we need to
integrate the radiance over the surface of the source with the spherical coordinates centered
on the detector. Considering the surface A of the detector sufficiently small we assume that
all the points of the detector see the source under the same solid angle and directly multiply
the radiance by the area A. The power P per frequency interval radiated from the blackbody
onto the detector can be expressed as a function of the radianceHν,Ω

dPν = A

∫
θ,φ

δHν,Ω = A
2h

c2

ν3dν

exp(hν/kBT )− 1
(5.4)

This formula is useful to calculate the responsivity and the detectivity of a detector.

5.1.2 Material and Electrical Transport Properties
QWIP detectors cover a large range of frequencies from the NIR to the THz. For this project,
we targeted a wavelength λ ∼ 10 µm (more details in subsection Operating Temperature).
The dimensions of the grating resonator operating at∼ 10 µm are few microns of the grating
period and ∼ 1 µm thick cavity. These dimensions are achievable in the C2N cleanroom
using wafer bonding and e-beam lithography.
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Figure 5.2: (a) Spectral response curves of six QWIPs covering the two atmospheric trans-
mission windows of 3-5 and 8-12 µm wavelength. (b) Calculated parameters of barrier Al
fraction in a GaAs/AlGaAs heterostructure and well width for a given peak detection wave-
length (λp). The values in parentheses give λp including many-body effects for a doping
density of 5 × 1011cm−2 [101]. The inset represents the valance (VB) and the conduction
(CB) bands of a bound to quasi-bound GaAs/AlGaAs quantum well. The ground (|g>) and
excited (|e>) states are represented in yellow.

In the second atmospheric window, GaAs/AlGaAs is an ideal material system (Figure
5.2, (a)). The design rules for optimized QWIP structures are shown in Figure 5.2, (b)). Our
structures target an operating wavelength of ∼ 10 µm which is obtained for a quantum well
thickness close to 6 nm and an Alumina fraction around 20%.

Bound-to-Quasi-Bound Design

In a QW the continuum is defined by the ensemble of the wave functions that are not null
at an infinite distance from the quantum well. In this energy region, the electrons are free to
flow, especially when a bias is applied. The continuum is a continuity of energy levels.

A singular disposition of the energy levels inside a QW is when the first excited state |e >
is quasi-bound. This means that the energy of the excited state is very close to the barrier
energy, and therefore, to the continuum.

To generate photocurrent carriers are needed. Thus an electronic doping is inserted inside
each quantum well by doping with silicon apportion of the QW (typically 4nm) to a density
of 4× 1018 cm−3.

Under bias, the electrons from the fundamental state |g > can generate a current if they
are excited by a photon at the energy ∆Ec = Ee − Eg. When the electron is in the excited
state it tunnels into the continuum to the electrodes.

Note that in a QWIP it is possible to generate a photocurrent from the absorption of light
at inter-band transition energy (Eg2 ≈ Evalence−Econduction). Experimentally, we can always
detect the red laser of the FTIR and we used this to pre-align the sample.
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Dark-Current

In this section, we make the assumption that the barrier width between two wells is large
enough (>20 nm) to avoid any tunneling phenomena between two wells. Under these condi-
tions the main contribution to the dark-current is the thermal activation of the carriers into the
continuum. This configuration has first been modeled by J-Kane et al. using the 3D carrier
drift model [102]. This model, that relies on the Arrhenius law, is based on 3 assumptions:
(a) the interwell tunneling is negligible, (b) the electron density remains the same in each
QW and (c) mainly one bound state is confined in the QW.

Figure 5.3: Dark current simulated using the drift model. The thermal activation energy is
estimated with a Schroedinger-Poisson model applied on a 6.5 nm wide well with 20 nm
barriers, the doping is in the center of the well. (a) the doping is fixed at 8.48×1011cm−2 and
the barrier height is modified by changing the Al fraction (20%, 22.5% and 25%). (b) The
barrier height is fixed at 25% and the doping (Fermi level) varies (4.5, 6 and 8.48×1011cm−2).

Following these assumptions, the thermionic current is given by [102]

jth,Kane = eN3Dv(F ), (5.5)

where v(F ) is the drift velocity when an electric field F is applied to the quantum well (in
our case∼ 5 kV cm−1). The N3D density is calculated by treating the barriers as a bulk semi-
conductor. Superlattice band structure effects are neglected, which is justified because the
barriers are much thicker than the wells and the resulting superlattice miniband gaps are less
than the thermal energy kBT at device operating temperatures. The quantum well confine-
ment in the QW is taken into account in the evaluation of the Fermi energy Ef . Assuming
a complete ionization, the 2D doping density equals the electron density within a given well
ND = m

π~2Ef . It is then possible to write

N3D = 2(
mbkBT

2π~2
)3/2exp(−Eact

kBT
), (5.6)

wheremb is the barrier effective mass andEact the thermal activation energy which equals the
energy difference between the top of the barrier (dependent of the Al fraction) and the top of
the Fermi sea in the well (dependent on the doping). Quantitatively the thermal energy activa-
tion can be writtenEact = Vb−EF −Eex where Vb is the barrier potential, eFLwell represents
the voltage drop across the well (assuming that the ground state Eg is independent of F) and
Eex is the exchange energy that we took equal to −13.5 meV for our simulations[103].
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The drift velocity takes the usual form:

v(F ) =
µF

[1 + (µF/vsat)2]1/2
, (5.7)

where µ is the low field mobility and vsat is the saturating velocity. The final expression of
the thermionic current is then

jth,Kane = 2ev(F )
(m∗kBT

2π~2

)3/2

e
−VB−EF−Eex

kBT . (5.8)

The 3D carrier drift model shows that the dark current depends on the doping, the frac-
tion of Al in the barrier height, the applied field and the temperature. Figure 5.3 presents
the relative variation of the dark current for fixed doping with different barriers (a) and a
fixed barrier with different dopings. We observe that the barrier height has a major impact on
the dark current because it fixes the regime of operation of the QWIP: bound-to-continuum,
bound-to-quasi-bound or bound-to-bound. Once the regime of the QWIP (Al fraction) is cho-
sen the doping can be tuned for the desired application. This model is particularly adapted to
devices that operate at a relatively high temperature (78K), at low temperature the sequential
tunneling starts to be predominant [103].

Photo-Current

Photoconductivity in solids has been widely studied [104, 105]. The device operation of
a photoconductive QWIP is similar to extrinsic semiconductor detectors [106]. The major
distinction between QWIPs and conventional intrinsic or extrinsic photoconductors is the
discreteness. The incident photons are absorbed in discrete quantum wells that are much
narrower than the inactive barrier regions.

The photoconductive gain is defined as the number of electrons flowing through the ex-
ternal circuit for each photon absorbed. Figure 5.4 (top panel) shows the dark current paths,
while the bottom panel indicates the direct photoemission and the extra current injection from
the contact to balance the loss of electrons from the well. The dark current paths remain the
same under illumination. The total collected photocurrent is the sum of the direct photoex-
cited and the extra injection contributions.

Considering the same assumptions as subsection Dark Current, the emission current of
direct excitation of electrons into the continuum for one QW can be written [101]

i
(1)
photo = eΦη(1) τrelax

τrelax + τesc
≡ eΦη

pe
N
, (5.9)

where Φ is the incident flux of photons, the superscript (1) indicates quantities for one well,
τesc is the time to escape the QW, τrelax is the intersubband relaxation time, η ≡ Nη(1) the
total absorption quantum efficiency, N is the number of wells, and the escape probability for
an excited electron from the well is given by

pe ≡
τrelax

τrelax + τesc
. (5.10)

Considering Figure 5.4 from an eulerian point of view the number of photoemitted elec-
trons from the QW (i(1)

photo) must be balanced by the extra trapped electrons i(1)
photo/pc. Where

pc, the probability to capture an electron is defined by
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Figure 5.4: Photoconductive gain mechanism in QWIPs [101].

pc ≡
τtrans

τtrans + τc
, (5.11)

τtrans is the transit time for an electron across the QW and τc is the capture time for
an excited electron back to the well. To ensure the conservation of electrons the observed
photocurrent equals the injection current.

Note that τtrans ≈ Lp/v where Lp is the quantum well period, and v is the velocity drift.
For typical parameters of v = 107 cm/s and Lp = 30-50 nm, τtrans is estimated to be in the
range of 0.3-0.6 ps

Iphoto =
i
(1)
photo

pc
= eΦη

pe
Npc

≡ eΦηgphoto. (5.12)

The photoconductive gain of the QWIP is then gphoto = pe/Npc.

5.1.3 Detector Performance
After presenting the main two mechanisms behind the current generation in a QWIP (thermal
and optical), we present the parameters that are experimentally used to assess the perfor-
mances of a QWIP.

Operating Temperature

The appropriate figure of merit to gauge the temperature performance of a QWIP is the BLIP
condition (Background Limited Infrared Photodetection). The BLIP condition is defined
when the photocurrent stemming from the background is as large as the dark current. We say
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that the detector operates under BLIP condition when the detector temperature is below the
Tblip. Thus the Tblip decreases when the dark current increases.

As we saw in Equation 5.5 the dark current is directly related to the activation energy
Jdark ∝ exp(−Eact/kbT ). In first approximation the activation energy depends mainly on
the intersubband energy transition (Eact ≈ E12 = hν). For a given temperature (T) we can
deduce that when the frequency decreases, the activation energy decreases too, and the dark
current increases exponentially. To compensate the increase of the dark current at low fre-
quencies, the temperature has to be decreased to meet the Blip condition. We can, therefore,
infer that the Tblip decreases with the wavelength, as shown in Figure 5.5.

Figure 5.5: Calculated background-limited infrared performance (blip) temperature vs. peak
detection wavelength and different carrier lifetimes (τlife) [101].

Responsivity

The responsivity represents the ratio between the number of excited electrons contributing to
the photocurrent and the number of incident photons on the detector. Considering an incident
beam of photons with frequency ν and power PS . The number of incident photons is defined
by Φ = PS/hν. According to Equation 5.12 the responsivity is:

R =
Iphoto
PS

=
e

hν
ηgphoto. (5.13)

Under the assumption that η ∝ N the responsivity is independent of the number of wells.
Note that the absorption also depends on the overlap between the quantum wells and the
electromagnetic field. In our case with M-I-M cavities the overlap is close to one, but for
cavities like single plasmon ones a lower overlap has to be taken into consideration.

Taking into account the formula of the dark current Equation (5.8), the total current can
be written

I = RPS +RPB + IDark, (5.14)
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where PB represents the incoming power of all the background objects on the environment
(adjacent signal sources, stray light, optics) of the detector

Depending on the relative magnitude of RPS , RPB,IDark the detector is defined signal-
noise limited, background-limited or dark-current-limited.

Noise Equivalent Power, Detectivity

A continuous signal (electrical, optical, thermal) is carried by quanta (electron, photons,
phonons). It is the discrete character of carriers associated with the random nature of trans-
port that generates signal variations. This mechanism gives the theoretical limit of the signal
to noise ratio. In the case of the electrical current, it has been described for the first time by
W.Schottky in thermo-ionic diodes in 1918 [107].

In an "ideal" photoconductor the carrier generation and recombination (g-r) are associated
with a Poisson distribution. In the case of an integration time (τint) much larger than the signal
pulses associated with individual detected photons (τp � τint), the generation-recombination
noise is

i2n,gr = 4egI∆f, (5.15)

where I is the mean value of the intensity, ∆f = 1/2τint is the frequency bandwidth and g is
the noise or photoconductive gain [108].

For detectors the minimum power for which the ratio signal over noise ratio equals one is
called the Noise Equivalent Power (NEP). As we saw in Equation (5.14) the noise depends
on the operating conditions of the detector, and the NEP as well. Above Tblip the dominant
noise is the dark current and the detector is Dark-current limited (g = gnoise = 1

Npc
). When

instead the detector operates under blip condition, two cases are possible: the QWIP is limited
by the background photons (Background limited, g = gphoto) or by the oscillations of the
photocurrent itself (Signal-noise limited, g = gphoto). The NEP can be calculated in each
case as presented in Table 5.1.

Signal-noise limited Background limited Dark-current limited
2hν
ητint

√
2hνPB

ητint

hν
η

√
2GthV
τint

Table 5.1: NEP for the three different types of noise. Gth is the thermal generation rate, and
V the volume of the detector and τint is the integration time [101].

In the following chapter, we will see that our devices are principally limited by a high
dark current related to the doping of the wells.

The detectivity D is defined as the inverse of the NEP (R/in). In order to specify the
performance of a detector, the specific detectivity is normalized with respect to the detector
area (A) and bandwidth (∆f ): D∗ =

√
A∆fD. This leads to the general expression

D∗ =
R
√
A∆f

in
. (5.16)
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5.2 Selected Developments of Mid-IR Detectors
from the Literature

In this introduction, we present a few selected works related to QWIP detectors operating
between 9 and 11 µm (Figure 5.6). We first detail two devices in weak coupling and then two
in strong coupling. These works represent interesting points of comparison to our devices.
The theoretical concepts are discussed in the second section of the chapter.

Figure 5.6: Specific detectivity (D∗) and spectral range coverage of various commercially
available IR detectors[109].

5.2.1 QWIP Developments and Recent Improvements
The most common photodetectors in the Mid-Infrared spectral range are based on Mercury
Cadmium Telluride (MCT, HgCdTe). Nevertheless, these detectors using interband transi-
tions are relatively slow with an output bandwidth at 3dB in the order of∼ 100 MHz [110].
Alternative technologies based on intersubband transitions have been developed at the end of
the 20th century, thanks to progress in GaAs and InP epitaxy.

Mastering the epitaxy offers a high control on the bound states inside the quantum well,
and led to the development of the QWIP. The first demonstration of a Quantum Well Photode-
tector used a superlattice of GaAs/AlGaAs detecting at 10 µm [111]. The waveguide (inset
of Figure 5.7) was a single plasmon structure structured as Mesa, and the light was coupled
to the cavity via the substrate polished at 45°. A responsivity of 0.52 A/W was measured.
Since then, QWIPs started to be an active research topic: the dark current has been reduced,
and the temperature performances increased. Thus QWIPs have been implemented in several
imaging applications [112], the detection speed has reached several GHz [113, 18] and the
operating temperature [114].

Nevertheless, most of QWIP devices need cryogenic cooling, which limits the possible
applications. To overcome this limitation, different solutions have been experimented to im-
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Figure 5.7: (a) Original concept of QWIP using a superlattice of QWs. (b) First measurement
of a QWIP using a mesa geometry (inset) [111].

prove the temperature performances.

The design of the waveguide is critical for the QWIP performances because it defines the
volume of the detector (dark current) and its efficiency in capturing photons (that influences
the responsivity). Over the last decade, M-I-M cavities appeared as an efficient and versatile
solution to confine light into a small volume. In particular patch cavities are defined by a strip
width s = λ/2neff , where λ is the detection wavelength and neff the effective index of the
active region, and a thickness t much smaller than the wavelength λ.

Figure 5.8: Plot of the tree components (a) Ez, (b) Hy and (c) Ex of the electromagnetic field
for the first resonance of a patch cavity. The thickness of the cavity is t and the stripwidth
is s = λ/2n. The maximal values are in red and minimal in blue. The induced charges and
currents are also presented [41].

When an electromagnetic wave impinges on the patch cavity it creates a sheet charge
density (σ) and a surface current (~j)

σ = ~E.~z, ~j = ~H × ~z. (5.17)

The surface current and charges induced by the mode are indicated in Figure 5.8, (a). The
induced charges and currents in the lower metallic plane are the reverse images of the ones
induced on the stripes. In this configuration, a purely vertical (z-direction) electric field is
generated between the two metals. This TM mode can then couple with the active region.
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Figure 5.9: From the reference [114] (left) SEM picture of the patch-cavity QWIP. (right)
Comparison between the responsivity of the patch-cavity QWIP compared to a Mesa.

A remarkable approach combining patch cavities (with patch size of s = 1.30 µm), sep-
arated by a distance of 3.30 µm and a QWIP active region with 4 QWs (for a total thickness
∼ 300 nm) resonant around 9 µm showed detection at room temperature (Figure 5.9, left)
[114]. The main idea of this work was to shrink the volume of the detector (composed of 49
patch cavities covering a surface of 50 × 50µm2) to reduce the dark current while keeping
the same light capture efficiency. Even without a major improvement of the TMesa

Blip = 73K

vs. TCavityBlip = 80K, these detectors had 14 times more detectivity at room temperature than
the Mesa devices (Figure 5.9, right).

Inspired by these previous and recent results, we explore in the follow up of this thesis a
new strategy to improve the TBlip that takes advantage of the strong coupling regime.
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5.2.2 Infra-Red Detectors Operating in Strong Coupling
Simultaneously to the development of QWIPs, strong coupling in the Mid-IR has been widely
studied. Influenced by the tremendous results in excitonic polaritons [59], the intersubband
community has first tried to develop polaritonic emitters electrically pumped using a quantum
cascade heterostructure embedded in a cavity. First, the spontaneous emission quantum cas-
cade structures (QC-LEDs) were strongly coupled to a single plasmon cavity [4]. By applying
a bias on these structures, the polaritonic electroluminescence was measured. The polaritons
were distinguishable on the dispersion and in agreement with the simulations. This work
associated with a theoretical framework [58] was meant to pave the way to the realization of
an electrically pumped laser.

Figure 5.10: (a) Schematics of the prism-like coupling technique. The inset plot shows the
reflectivity of the P-polarized light of the 0.8 µm n+ bottom layer for two wavelengths. (b)
Normalized ratios between P and S-polarized transmissions through the waveguide sample
for different angles of incidence [6].

A few studies tried to develop electrically injected polaritonic emitters [4, 41, 5, 51].
These approaches have been tried with different cavities as patch modes [41] or M-I-M dis-
persive cavities [51]. However, these developments did not achieve their final goal because
most of the injected energy is dissipated into the dark states and not into the polariton states.

An alternative way to take advantage of the strong coupling properties is to explore them
in detection. Effectively only the bright states are interacting with the electromagnetic field.
So by injecting light and collecting the induces photocurrent we circumvent the dark states
and the properties of the bright states can directly be observed. Even though this approach
appears appealing, only few works have been done on intersubband detectors in strong cou-
pling and on the electron-polariton tunneling process. The following paragraphs will present
two experimental studies that have observed the strong coupling in detection.

A pioneering work was performed by E.Dupont and H.C. Liu in 2003 [6] who aimed to
use strong coupling to yield a QWIP with a very low doping sheet density 2 × 1010 cm−2
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Figure 5.11: Ratio of responsivity between a device with a top GaAs/Au interface and devices
with a dielectric GaAs/air interface [6]. The Rabi splitting is significantly modified with the
bias. The inset shows the incident beam arriving at 65◦ on the structure and the two electrical
contacts[6].

(20 times lower than the standard QWIPs). The dark current would then be reduced and the
absorption increased [101] leading to a potential high-temperature operation. Experimentally,
140 Quantum-Wells were embedded in a single plasmon waveguide with a highly doped
bottom n-contact to confine the electric field on the area of the MQWs Figure 5.10. To reach
the strong coupling regime, the p-polarization (TM) has to be coupled within the waveguide.
Thus the light is injected to arrive on the bottom n-contact close to Brewster’s angle [115]
(θi ≈ 70◦). Thus the incident beam on the facet of the waveguide (θ0) should be between
70◦ and 90◦. Note the coupling with single plasmon waveguide does not grant a large set of
configurations to investigate the strong coupling regime.

By using this technique, the dispersion in transmission (Figure 5.10) was collected via
different angles of incidence.

Figure 5.12: Left) QC structure with two bound states originally designed for electro-
luminescence [7]. Right) Schematics of the light injection onto the single plasmon cavity.
The facet is polished at 70◦ and the beam is intersect the bottom contact with an angle θ.

Electrically, two samples were tested: one - in weak coupling - with a GaAs/Air interface
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and a narrow electrode and a second - in strong coupling - with a gold mirror covering the
top of the mesa. The light was impinging on the device from the top surface at an angle
65◦ with respect to the normal of this surface. The ratio between the spectra (Figure 5.11)
of the two devices (single plasmon in strong coupling divided by air-confinement in weak
coupling) performed at 80◦ shows two peaks at 860 cm−1 and 990 cm−1 corresponding to
the polariton peaks in reflectivity (respectively 890 cm−1 and 990 cm−1). The applied bias
(from 1 to 6 V) can significantly modify the Rabi splitting.

More recently, in relation with developments on QC-LEDs [4], strong coupling has been
observed with a quantum cascade (QC) structure (Figure 5.12, Left) in a single plasmon
waveguide (Figure 5.12, Right) [7]. The active region operates similarly to a quantum cascade
detector (QCD) even though the QC structure was initially designed for LED emission. The
states (/1〉 and /2〉) are bound. On both sides of the larger QW, the electrons can flow through
the thin barriers of the structure via tunneling effect.

Figure 5.13: Left) Normalized photo-voltage spectra for θ = 75◦ at 78 K. The solid lines
represent the TM- and TE-polarized light respectively in red and blue. The two dashed lines
labeled LP and UP, are the Lorentzian and Gaussian functions respectively, used in the fitting
procedure explained in the text. The result of the three curve fit is shown by the blue-dotted
line. Inset: photovoltage spectra with different incident angles: 67.7◦ in black, 76.3◦ in red
and 81.2◦ in blue. Right) Energy position for the different photovoltage peak power as a
function of the incident angle of the radiation (squares for Lorentzian function and circles
for Gaussian functions) compared with the results of the transfer matrix calculation (open
triangles). The dashed line is the energy of the bare ISB transition [7].

Figure 5.13, Left) shows the spectrum in photo-voltage of this QC detector for an angle of
θ = 75◦ and at 78K. The weak coupling configuration is represented by the TE-measurement.
Although the ISB transition only couples to TM mode, the spurious TE signal is possibly
produced by photons that have undergone a scattering event and therefore have lost their
original phase. The signal analysis shows that this signal was composed by three peaks:
the lower polariton (LP, dashed line), a middle peak (TE-ISB) and the upper polariton (UP,
dashed line). The TE-ISB has been adjusted in height by a factor 5 compared to the original
spectrum. Note that the FWHM is significantly increased from weak (6 meV) to strong
(30 meV) coupling. Note that such a broadening has recently been observed with organic
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photodiodes [116].
The dispersion has been measured by injecting light at different angles θ from 57.8◦ to

83.6◦. The inset of Figure 5.13, Left) shows the normalized spectra for θ = 67.7°, 76.3°and
81.2°. After peak analysis, the extracted polariton dispersion is presented Figure 5.13, Right).
The shape of the dispersion confirms that the device operates in strong coupling. However,
the simulation is not completely fitting the experimental results, particularly when the po-
laritonic branches are distant from the ISB transition. At 66°the simulation positioned the
lower polariton at 105 meV when the measured photocurrent is at 120 meV. At 78°the simu-
lation positioned the upper polariton at 180 meV when it is at 170 meV. This overestimation
of the energy difference between the ISB transition and the polaritonic branch far from the
anti-crossing might be related to phenomena that are not considered in the simulations.

These two works suggest that detectors are appropriate devices to observe the bright states
of a ISB polariton system. These detectors in strong coupling represent a platform to explore
the properties of ISB polaritons, in particular, the scattering mechanisms between the bright
states.

In terms of performance, a broadening of a QCD detection range has been observed, but
no significant improvement of the performances (Tblip, detectivity, responsivity) have been
noticed.

5.3 Motivations to Study QWIPs in Strong Coupling

Increasing the Tblip of a detector is a major issue. To do so we need, at a given wavelength and
operating temperature, to significantly reduce the dark current. The design of the cavity is an
important parameter, but it appears from the previous description of the QWIP that the main
limitation is the dark current direct link to the activation energy. What would be the impact
of the strong coupling on the thermal activation? Is it possible to disentangle the thermal
activation energy from the energy of the absorbed photons?

Figure 5.14: (a) Schematics of the dark and bright states relative energy levels of a SC-QWIP.
The N-1 dark states contribute to the dark current and the two bright states contribute to the
photocurrent. (b) Tblip as a function of the peak detection wavelength. In strong coupling the
lower polariton detects at lower wavelength with the same Tblip.
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Part 3 of this thesis has been initially motivated by this vision: can operation in strong
coupling affect the TBlip? We have at first step explored if a QWIP in strong coupling (SC-
QWIP) can detect photons at energies different than a QWIP with the same active region bu
that operates in weak coupling.

Schematics 5.15, a) shows the relative energies of the different accessible states. Consid-
ering N electrons on the ground state and 1 photon in the cavity, we obtain in strong coupling
two bright states (LP and UP) and N-1 dark states. The N-1 dark states are thermally activated
at an energy level close to the activation energy (Eact). The major contribution to the dark
current in strong coupling are the dark states. The bright states couple with electromagnetic
waves and contribute to the photo-current. By introducing the Rabi energy ERabi = ~ΩRabi,
we can write {

EWC = Ee − Eg ≈ Vb − Eg = Eact

ESC,LP ≈ Ee − Eg − ~ΩR < Vb − Eg = Eact
(5.18)

Where EWC is the detection energy in weak coupling, ESC,LP is the energy of the lower
polariton, Ee and Eg the energy levels of the excited and ground states and Vb the barrier
potential.

As an example, we consider an ISB transition at λ = 8µm. According to Figure 5.15
the activation energy fixes the blip condition at Tblip(λ = 8µm) = 85K (τlife =10 ps carrier
lifetime). A cavity in weak coupling does not impact the value of the transition energy nor
the activation energy and cannot reach blip conditions above 85K.

Figure 5.15: Extracted data from the Figure 5.5 with a carrier lifetime τlife = 10ps.

In strong coupling, two polaritonic states are generated on each side of the transition. By
considering a Rabi splitting (2~ΩR) at 20% of the transition, we obtain a lower polariton at
λ = 8.8 µm. In this range of wavelength (8.8 µm) the Tblip of a QWIP in weak coupling
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would not exceed 77K (Tblip(λ = 8.8 µm) = 77K) whereas the QWIP in strong coupling
could in principle be operated under blip condition until 85 K.

For our study we decided to operate at λ = 10 µm where the Tblip is low and the slope
dTblip/dλ is high. In addition, QWIPs in strong coupling with a dispersive cavity are an ideal
platform to explore the fundamental properties of ISB polaritons.

A second motivation to study SC-QWIPs is to get information on the microscopic mech-
anisms underlying the tunnel-coupling process of a polariton (collective state) into an elec-
tronic (single particle) state. Recent developments based on the electrical injection of polari-
tonic devices (LEDs and lasers [4, 5, 60]) could not efficiently excite the bright states because
most of the electrons tunnel into the dark states. We studied a detector because dark states
do not play an important role as incoming photons only excite bright polariton states. This
is a strong motivation for developing SC-QWIPs and SC-QCDs, as they appear as an ideal
system to elucidate elusive problems in intersubband polaritonics.

5.4 Conclusion
In this chapter, we presented some fundamental concepts related to detectors. We illustrated
them with two types of detectors in weak coupling.

The photo-detection appears to be an efficient technique to study the ISB polaritons. Be-
cause the electromagnetic field interacts only with the bright states, there is no implication of
the dark states in this process.

In addition, the strong coupling could be an elegant solution to disentangle the detection
energy window of a QWIP from the thermal activation energy. The literature reports two
works in which intersubband detectors operate in strong coupling[6, 7]. In both cases, a
single plasmon cavity was used. The ISB polaritons have been observed and in the QCD, case
the dispersion measured in photovoltage. The comparison of the dispersion measurement
with the simulations was not completely satisfying, suggesting that some unknown processes
might be at stake. In terms of performance, these two prospective studies did not report
significant improvements compared to the same structure in weak coupling.

Inspired by these previous results, our approach introduces a M-I-M cavity with more
degrees of freedom to couple with the ISB transition and to access experimentally more
angles, particularly close to k// = 0. The first step would be to integrate this cavity with
a QWIP active region for two reasons: (i) to confirm the generation of photocurrent from
the polaritonic states, (ii) to exploit the strong coupling regime to disentangle the detection
energy from the activation energy.
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6
Quantum Well Infrared Detectors

in Strong Coupling

In this last chapter, we propose a metal-insulator-metal cavity design to explore the disper-
sion of a quantum well infrared photodetector operating in strong coupling (SC-QWIP). The
issues at stake are twofold: in term of device performances, the strong coupling is used to dis-
entangle the detection wavelength (Edetection) from the thermal activation energy (Eactivation).
In terms of polaritonics, we expect to gain insight on the alignment between dressed (polari-
tons) and single particle (electrons) states.

As a first step, the active regions are characterized in weak coupling: multipass and single
plasmon mesa devices. Secondly, the losses in the M-I-M cavity are discussed to evaluate
their impact on the detector properties.

Finally, the new generation of SC-QWIP is studied electrically and in angle-resolved
photoresponse. These results have been published in Ref.[15].

6.1 Active Region

Three structures have been grown by molecular beam epitaxy (Table 6.1, epitaxy by G.Biasiol)
on a SI-GaAs substrate with a 400 nm stop-layer. They consist of 31 repetitions of 6.5 nm-
thick GaAs QWs separated by 20 nm-thick AlxGa1−xAs barriers where x is the Alumina
fraction (x=20/25%). The QWs are nominally doped in the center to n2D = 4.24/8.48 ×
1011 cm−2, and the structure is sandwiched by 100 nm-thick n+-GaAs contact layers (see
the growth sheets in Appendice B.2).

Figure 6.1 shows the wavefunctions inside the quantum well for two different barrier
energy levels after solving the Schroedinger-Poisson equation. The distance between the
excited state (|e〉) and the top of the barrier is significantly different in these two cases. In the
case of low barriers (Figure 6.1, (a) the excited state is 3 meV below the barrier whereas in the
case of the higher barrier (Figure 6.1, (b) this distance is 22 meV. Consequently, we expect
to observe differences on the dark current and responsivity between these two structures. In
this manuscript, we will consider these two QWs as bound-to-quasi-bound.
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Figure 6.1: Schroedinger-Poisson simulation of the energy levels inside the structures: (a)
HM4059 with 20 % Al fraction in the barriers, (b) HM4065 with 25 % Al fraction in the
barriers. The Fermi energy is calculated for a doping of 8.48× 1011cm−2.

6.1.1 Multipass Measurements
The initial characterization is the multipass waveguide transmission. A thin portion of the
wafer is cleaved, the top surface is coated with gold and the two facets of the waveguide
are polished at 45◦. The light injected through the polished facets propagates with several
reflections inside the wave-guide (5 to 10 passes through the active region). The signal that
has crossed many times the active region is then collected on the detector of the FTIR.

Figure 6.2 presents the spectra of the samples HM4058, HM4059, and HM4065. The
transmission spectra of the low barrier sample HM4059 (Figure 6.4 (b)) shows an ISB transi-
tion at 939 cm−1 with a FWHM of 10.4% at room temperature. The transition is blue shifted
at low temperature up to 968 cm−1, and the FHWM decreases to 8.1%.

At room temperature, the ISB transition of sample HM4065 is at 1091 cm−1 with a
FWHM of 9.1%. At 78 K the transition is blue shifted to 1098 cm−1, and the FWHM
is narrower 7.3%. The blue shift at 78 K stems from a combination of (i) increase of the
conduction band offset and (ii) increase of the electronic carrier density in the ground state.

The absorption of the sample HM4058 has been measured only at room temperature. The
transmission spectra is presented in Figure 6.2, (c), the ISB transition is at 968 cm−1 and the
FWHM is 12.8%.

All multipass measurements are resumed in Table 6.1.

Sample
name

Doping
1011cm−2

Barrier
Al %

ISBT cm−1

@300K
FWHM
@RT
(%)

ISBT cm−1

@78K
FWHM
@78K
(%)

HM4058 4.24 20 921 12.8
HM4059 8.48 20 939 10.4 968 8.1
HM4065 8.48 25 1060 9.1 1098 7.3

Table 6.1: Inventory of the three different heterostructures received for the project and their
ISB Transitions measured in multipass waveguide configuration.

In the perspective of this project, we investigated the samples with the higher doping
(HM4059 and HM4065) essentially. These samples will have a larger Rabi splitting (ΩR ∝
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Figure 6.2: (a) Schematics of the multipass measurement collecting the light on a MCT
detector. (b) HM4059 (c) HM4058 and (d) HM4065 multipass absorptions performed inside
a purged Bruker FTIR

√
N3D). The sample HM4058 gives information about the responsivity of the detector in

weak coupling instead.
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6.2 QWIP in Weak Coupling: Mesa Resonator

In this second section, I present the fabrication of the reference devices operating in weak
coupling. I processed these samples in the cleanroom of C2N-Orsay and I characterized
them.

Figure 6.3: Schematics of a biased QWIP operating in weak coupling. The position of the
excited level |e> sets the detection wavelength and the dark current.

6.2.1 Mesa: Design & Fabrication

The sample is patterned in square mesas of 1 mm or 300 µm sides. A positive tone photoresist
(S1818) is used as a mask for GaAs/AlGaAs wet etch with a sulfuric acid solution. The etch
depth is carefully controlled during the process with a mechanical profilometer to stop into the
bottom n+-GaAs slab, allowing the subsequent bottom contact definition. Ni/Ge/Au/Ni/Au
bottom metallization surrounding the mesas is defined via negative tone photoresist and lift-
off. The evaporated layers are then annealed at 420°C for 1 min in a rapid thermal annealing
(RTA) oven to create a diffused ohmic metal-semiconductor contact.

Similarly, Pd/Ge is evaporated on the mesas top surface and annealed at 360°C for 5 min.
Pd/Ge contact is preferred here due to its short diffusion depth (a few tens of nm) in contrast
with Ni/Ge/Au/Ni/Au which diffuses farther in the semiconductor and could then damage
the active region. A second top contact evaporation (Ti/Au) is performed to facilitate the
application of wire bonds. Finally, the sample is back-polished and a back Ti/Au contact is
evaporated to guarantee a good mechanical and thermal contact with the copper block used
to mount the sample in the cryostat.

Before mounting the sample, the facet is polished at 45°to inject light from the substrate
into the mesa. The mechanical polishing leads to a quasi-mirror surface to avoid light diffu-
sion at the surface.

Finally, the sample is mounted with indium on a copper block. The polished facet is
manually positioned at the edge of the copper block. Moreover, the contacted Mesa are
chosen close to the facet to maximize light capture before reflection inside the sample.
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Figure 6.4: Schematics of the mesa processing.

6.2.2 Measurements
In the following, I will present mostly the results of the two heterostructures with higher
doping HM4059 and HM4065. Although they have drawbacks concerning their dark current,
they should exhibit a larger Rabi-splitting when operated in SC due to their high doping.

Figure 6.5: Schematics of the photo- (left) and dark- (right) current measurements.

Dark Current

The measured dark currents are presented in Figure 6.6. Specific instrumentation source me-
ter as Keithley 2636 is required to measure the IVs at room temperature and at 78K. The IVs
of the Mesa were acquired from −1V to 1V (Figure 6.6). At low temperature, the dark cur-
rent decreases by three orders of magnitude compared to the room temperature measurement.

The photo-current generated by a black body at room temperature (placed at 10 cm from
the detector with a field of view of 24◦, Figure 6.5) is not displayed because it was too weak
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Figure 6.6: Absolute value of the dark current density measured for two mesa samples: (a)
HM4059 75 µm diameter; (b) HM4065 200 µm diameter.

compared to the dark current and the total current is superposed to the dark current curve. To
overcome this difficulty a warmer calibrated blackbody could be used, but we did not have
this type of instrument in our lab. Nevertheless, this high dark current did not appear critical
to measure the spectra of a Globar source and to explore the properties of strong coupling.
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Figure 6.7: Comparison of the dark current at 78K (plain lines) of three different heterostruc-
tures in mesa configuration. The dashed lines are simulated dark currents with the 3D carrier
drift model. The activation energy -considered independent of the voltage- has been calcu-
lated with a Shroedinger-Poisson model. The energy exchange was equal to -13.6 meV.

We observe that the dark current density of HM4065 is smaller than the one of HM4059
(almost a decade) at 78K whereas it is similar at room temperature. Because these two
samples have the same doping the only parameter that explains this difference is the alumina
fraction. As we saw in the previous chapter the high alumina fraction raises the barrier
potential. Consequently, the excited state of HM4059 is closer to the continuum than the
sample HM4065. Thus HM4059 behaves more as a bound-to-quasi-bound QWIP whereas
HM4065 behaves as a bound-to-bound QWIP. In the bound-to-bound structure, the activation
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energy to reach the continuum is higher which reduces the dark current. In the following we
will see that the dark current has a major impact on the SC-QWIP performances.

The comparisons between dark current densities at 78K of the three heterostructures and
the 3D drift model simulations are presented Figure 6.7. For the samples with low barriers
(HM4058 in black and HM4059 in red) the simulations fit with the measured dark current
density. The increase of the dark current with the doping is also respected. The increase
of the barrier potential increases directly the activation energy and sharply reduces the dark
current (dashed blue lines). However, the experimental dark current of the HM4065 is one
order of magnitude higher than the simulation predictions.

This disagreement suggests that the heterostructure HM4065 has a source of dark current
that is not taken into account in the 3D shift model. An additional mechanism could be the
sequential resonant tunneling [117]. In the context of this work, we did not try to apply a
second model to this phenomenon.

The peculiarity of the sample HM4065 is also visible on the optical spectra. Nevertheless,
the structure HM4065 still has the lowest dark current of the three heterostructures and has
been chosen to operate in strong coupling.

Optical spectra

Once mounted in the cryostat, the sample is cooled down to 78 K. The output signal of the
FTIR is sent into the device through the facet. To align the sample on the focal point of the
ZnSe lens (2 inches diameter, 2 inches focal) a chopper modulates the incident beam at a
frequency of 11 Hz (below the cut-off of the amplifier) and the electrical signal is measured
after amplification with a lock-in amplifier. After optimizing the position of the sample, and
the amplification, the signal of few millivolts on the Lock-In is directly measurable in rapid
scan on the FTIR.

Figure 6.8: HM4065 Mesa photocurrent: (a) at no bias for different light polarizations (TE
and TM), (b) for different biases without polarizer.

Figure 6.8 shows spectra of the sample HM4065 light polarization (a) and at different
biases (b). As expected, the active region interacts only with TM-polarized radiation. The
main peak of photocurrent is related to the bound-to-quasi-bound transition. The effect of
the bias on the spectra intensity is important (Figure 6.8, (b)). At zero bias it is already
possible to measure a signal due to the internal field generated by the in-homogeneity of the
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doping layers or the contact. When a bias is applied on the structure the potential is leaned
(Figure 6.3) and the barrier between the continuum and the excited state of the bound-to-
quasi-continuum QW (HM4065) decreases. The photo-excited electrons can then access the
continuum and participate in the photocurrent. For the sample HM4065 the maximum of the
signal is obtained for a negative bias of -0.2 V. At higher biases, the dark current is increased
without a significant increase of the photocurrent. A signal decrease (as seen at 0.5 V) is
observed as the amplification of the low-noise amplifier must be reduced to avoid saturation.

At higher frequencies, we observe that the samples behave differently from standard
QWIPs that have only one peak of photocurrent. In fact a broad photoresponse signal (1300
cm−1 and 1500 cm−1 at 0 V) is observed that is not predicted by the theory. This high fre-
quency signal could stem from the transition towards the continuum. However, it is difficult
to infer the exact cause of this peculiar behavior from electrical and optical characterizations.
This phenomenon is not crippling for the observation of the polaritons via the photocurrent,
but has to be taken into account in the discussion.

Figure 6.9: Photocurrent of the Mesa HM4059 100 µm diameter: (a) at no bias for different
light polarizations, (b) for different biases without polarizer.

Figure 6.9 shows the spectra for different biases for the sample HM4059. The detection
window of this second heterostructure is narrower than the mesa HM4065, and there is no
signal above 1025 cm−1. At zero bias the photocurrent has two peaks around 1025 cm−1

(Figure 6.9, (a)), the low-frequency peak is increased when a negative bias is applied, whereas
the high frequency peak is increased when a positive bias is applied.

Despite a narrower spectral window, this sample has a drawback which is the signal to
noise ratio that is two times smaller than sample HM4065 at 0 V. This is possibly due to the
height of the barriers that is lower for HM4059 and leads to an elevated dark current. For this
reason, we cannot operate at high biases (100 mV) without saturating the amplifier.

Responsivity

The dark current and photocurrent (blackbody source at 300 K describes in detail in the
supplementary of [18]) have been measured for HM4058, HM4059 and HM4065 at 78K
(and even at liquid Helium temperature for HM4059 and HM4065). The photocurrent has
been clearly observed only for the sample HM4058 (Figure 6.10, (a)).

To calculate the power impinging on the detector, we first calculate the radiance L of
a blackbody at 300 K using the Planck’s law over the detector spectral sensitivity window
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(between 26.4 THz and 31.9 THz). In this range the radiance is L = 19.27 W/(m2sr).
Only a part of this power reaches the detector due to the surface of the detector (Ap) and the
field of view of our experiment (θ = 48◦) giving a projected solid angle Ω = πsin2(θ/2) =
0.519 sr. The impinging power can then be estimated I ≈ LAdΩd = 752 nW .

The responsivity is then written as the ratio of these two components

R = (IBlackBody − Idark)/I, (6.1)

and calculated for each voltage. The maximum value of the responsivity is 0.4 A/W for
a bias of ±500 mV . This value is comparable with mesa performances of similar works
[6, 114, 118].

Figure 6.10: (a) HM4058 comparison between dark- and photo-current densities at 78 K in
Mesa configuration. (b) Responsivity of the same sample.

However, for the two other heterostructures (HM4059-HM4065) we could not extract
the photocurrent from the dark-current and thus calculate the responsivity. One main reason
is probably the doping that is twice higher in these heterostuctures. The doping increases
significantly the dark current as we show Figure 6.7 where the dark current of HM4059
(8.48×1011 cm−2) is almost one decade higher than the one of HM4058 (4.24×1011 cm−2).
For the same reason, a high doping can reduce the Tblip. On the other hand, HM4065 has the
lowest dark current. We do not have a definitive explanation for the very low responsivity of
this sample.

A second way to measure the responsivity would be to have a blackbody at a higher
temperature (3000 K for instance). However, we did not have a calibrated source to calculate
precisely the responsivity. That is why the following discussion will mainly focus on the
properties of the QWIPs in strong coupling more than their performances.

6.2.3 Conclusions QWIPs Measurement in Weak Coupling
This measurement campaign on the mesa showed that all the heterostructures were detecting
in the mid infrared, but that the performances of the detectors highly depend on the doping
and the alumina fraction of the barriers. The compromise between a high doping and a low
dark current seems to be obtained with sample HM4065 with high alumina fraction in the
barrier. We will, therefore, focus on this active region in the following.
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6.3 QWIP in Strong Coupling: Simulations, Design and
Fabrication

After the design and the characterization of three active regions in the weak coupling, we
present the design of the cavity of these active regions. First, RCWA simulations are per-
formed to define the best geometry for the cavity. Second finite element simulations explore
the impact of the metal layers on the total losses of the cavity. Third, an intermediate sample
is then fabricated to confirm the simulations with a dispersion measurement in reflectivity.
Finally, the SC-QWIP process is presented.

6.3.1 Simulations & Cavity Optimization

In the previous section, the characteristics of the active regions have been precisely deter-
mined. These characteristics will be implemented in the simulations to design the appropriate
cavity.

Λ 

t 

Figure 6.11: Schematics of the M-I-M in the Mid-IR. The thickness t of the cavity is equal to
1 µm and the grating period Λ varies between 3.2 µm and 4.5 µm.

Rigorous Coupled Waves Analysis (RCWA)

The RCWA code - already presented in Chapter 2 - is used to select the proper range of grating
periods to observe strong coupling. According to previous works in photo-luminescence (and
global perspective of electrically pumped polaritonic emitters), we designed our cavities to
couple the ISB transition with the 3rd photonic branch. In fact, in this configuration, the lower
polariton dispersion as a minimum at k// = 0 which is convenient to access experimentally.
The cavity thickness is chosen below the cut-off (t = 1µm < λ/(2n) ≈ 1.4um) in order to
work with the TM00 mode only. In this preliminary work, we simulated a large set of grating
periods to analyze the strong coupling in different configurations.

In Figure 6.12, two different grating periods (3.2 µm and 3.7 µm) have been simulated.
Because of the 3rd photonic modes redshifts when the grating period increases, the mini-
mum splitting with the ISB transition occurs at different angles (from 65°to 0°). On these
graphs in reflectivity, only the polaritonic branches have to be considered because the pho-
tonic branches are not supposed to yield a photocurrent (not coupled with the active region).

126



Chapter 6. SC-QWIP

Figure 6.12: Reflectivity simulations using a RCWA code on the sample HM4065 (transition
at 32 THz, γ = 13.9% and doping 8.48 × 1011cm−2) for different grating periods: (a)
3.7 µm, (b) 3.2 µm.

From the detection point of view, the larger grating period (a) is interesting because the
Rabi splitting is below 35°, which is the common field of view of a QWIP. Considering the
absorption, it seems that the period 3.5 µm has a higher integrated absorption over angle and
frequencies. The smaller grating period (b) has a more fundamental interest. In fact, for this
sample, the LP reaches much lower frequencies (down to 25 THz for the 4 µm sample) with
respect to the peak detectivity frequency of the QWIP when operating in the weak coupling
regime (32 THz). One of the objectives of the following experimental work is also to observe
if such a widening of the QWIP detection window towards a larger wavelength is possible.

Considering the RCWA simulations we designed cavities with the grating periods: be-
tween 3.2 µm and 4 µm for HM4065 and between 3.6 µm and 4.2 µm for HM4059.
Nevertheless, these first simulations only take the absorption into account and need to be
completed with additional simulations considering the interaction of the polaritons with the
continuum of states above the barriers, that yield the photocurrent signal.

Finite Element Simulations

The association of QWIP and M-I-M resonators raises the issue of the role of the metal losses.
In fact, the losses in the QWs provide photocurrent, whereas the losses in the metal provide
only heating. Potentially the losses of the metal could compete with the absorption of the
QWs and deteriorate the performance of the detector. To compare these two losses, we use
finite-element simulations to calculate the electromagnetic field at each point of the detector.

The structure is simulated in 2D considering the direction parallel to the slits infinite.
Two planar gold mirrors are separated by a 1 − µm-thick active region. The width of the
elementary cell is fixed at 4.1 µm with periodic conditions on the edge, and the top metal is
3.3µm wide representing a filling factor of 80% (Figure 6.13). The transition was chosen at
27.23 THz with a FWHM of 3.8 THz and the dielectric function was calculated using the
Zaluzny formalism [36].

In Frequency Domain analysis we have simulated the structure for different angles of
incidence and at different frequencies. The simulation in finite element are compatible with
the RCWA simulations in terms of absorption peaks position and amplitude for photonic
and polaritonic branches. When the eletromagnetic wave is not resonant with the cavity it
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Figure 6.13: (a) and (b) FEM simulations of the norm of the electric field (|E|2) for a 4.1 µm
grating period, a doping of 4.24 cm−1 and an incident beam at 0°, in a region of low absorp-
tion at 32 THz (b) and a region of high absorption at 24 THz (a). (c) represents the spectra
at 0°. The red line corresponds to the panel (a) and the green line to the panel (b).

is completely reflected by the top metal. At the resonant frequencies (Figure 6.13 (b)) the
electric field penetrates in the cavity and can interact with both the active region and the
metal planes.

To discriminate which area will absorb the most we calculate the resistive losses (W).
The resistive losses are generally calculated by integrating the differential form of the Joule
heating equation dP/dV = ~j. ~E = σ(ω)|E|2 over the considered volume. Because in these
simulations we are working in two dimensions we are calculating the linear resistive function
(W/m) obtained with the surface integration

Qr(ω, θ) =

∫∫
S

Im(ε(ω))|E(ω, θ)|2dS, (6.2)

where the dielectric function of the active region is calculated with the Zaluzny-Nalewaijko
model [36], and the one of the metal is calculated with the Drude model{

εmetal(ω) = 1 + jσ(ω)
ε0ω

εAR(ω) = ε∞
[
1− f0

ε2∞
ε2ω

ω2
p

ω̃2
12−ω2−jωΓ12)

]−1 (6.3)

From Equation (6.2) it is difficult to predict which parameter will be dominant between
the surface of integration (larger for the active region) and the conductivity (much higher for
the metal).

Consequently, an analytical calculation of resistive losses has to be performed for each
angle and at each frequency. The color plots for different dopings of the QWs are presented
in Figure 6.14 for the active region (Left) and the metal (Right).

In the empty cavity (n2D = 0 cm−2) almost all the EM field is absorbed by the metal.
The resistive losses on the 3rd photonic branch are in the order of ∼ 0.4 W/m versus ∼
3× 10−3 W/m inside the dielectric.

The introduction of a doping (5×10−10cm−2) inside the QWs increases the resistive losses
on the 3rd photonic branch by two orders of magnitude inside the active region (∼ 0.4 W/m).
The AR losses become comparable with the losses inside the metal. An explanation of this
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result is that the surface of absorption of the EM field in the metal is limited by the skin depth
(δ =

√
2

σ0ωµ0
= 13.8 nm), while the active region thickness is 1 µm. Consequently, the

integration surface of the resistive losses appears dominant.
At low doping 5 × 1010cm−2 the polaritons do not exist yet. When the losses increase

(4.24× 1011cm−2 and 8.48× 1011cm−2) the signature of the polaritons - on the 3rd photonic
branch - appears on the resistive losses because the absorption of the cavity is modified. The
losses in the QWs increase (on the LPQAR ∼ 0.8 W/m and the radiation is rapidly absorbed
by the active region. The losses in the metal decrease then significantly (Qmetal ∼ 0.1 W/m).

In summary, these preliminary simulations show that for highly doped QWs the resistive
losses inside the active region are dominant, and the losses inside the metal planes can be
neglected. These results were a priori predictable considering the patch cavity detectors
in Ref.[114]. Nevertheless, the M-I-M geometry is different from the patch cavity, with
different active region thicknesses and top metal patterning that could have impacted the
absorption and the energy dissipation. It was then judicious to reevaluate the distribution
of the resistive losses that confirms the feasibility of the introduction of M-I-M dispersive
cavities for detection applications.
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Figure 6.14: Linear resistive losses simulations in W/m (color scale) inside the active region
(Left) and inside the top and bottom metals (Right) for different dopings in a grating of 4.1µm
period and a filling factor of 80%.
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6.3.2 Experimental Dispersion in Reflectivity
We have first implemented a very large (2.2 ∗ 2.2 mm2) metal-AR-grating passive disper-
sive resonator with sample HM4065 using the design and fabrication procedure reported in
Ref.[12]. This architecture is extremely practical as the polaritonic dispersion can be easily
probed with angular-resolved surface reflectivity. The result reported in Figure 6.15 shows
the room-temperature photonic dispersion (energy vs incidence angle, color plot) R(E, θ)
as inferred from the reflectivity measurements. The upper (UP) and lower (LP) polaritonic
branches are clearly observed, evidence that the system operates in the strong light-matter
coupling regime.

Figure 6.15: Dispersion in reflectivity of the HM4065 grating period 3.8 µm, duty cycle 70%
at room temperature and comparison with simulations absorption minima (blue dots) to set
the experimental geometry. The blue dashed line represents the position of the ISB transition
absorption.

The dots in Figure 6.15 indicate the position of the reflection minima predicted for the two
polariton branches using a RCWA (rigorous coupled wave analysis) numerical simulation of
the structure with the nominal parameters, except for the doping that has been set to n2D =
5.5×1011 cm−2, instead of 8.48×1011 cm−2 as per growth sheet. Once this reduced doping
level is included, the agreement with the experiment is excellent, which fully confirms that
RCWA simulations can be employed as an extremely predictive numerical tool in the analysis
that follows.
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6.3.3 SC-QWIP: Fabrication & Design

I then processed the SC-QWIP. Figure 6.16 presents the different steps of this process.

Wafer Bonding & Substrate Removal

The first step of the process is to deposit the bottom ohmic contact on the active region [119].
The ohmicity of the contact is assured by a Pd/Ge deposition (25/75 nm) annealed at 360◦C
during 5 minutes [120, 121]. The resulting contact ensures the ohmicity at this interface and
the adhesion of the metal. After the annealing there is a reprise of Ti/Au (10/200 nm) for the
wafer bonding.

The two wafers are then bonded together (Figure 6.17, (a)) by their metallic surfaces in
the wafer bonder (parameters 45 min/ 320°C/4.5 MPascal).

After the wafer bonding, the active region is in the middle of the new wafer. A polishing
of the active region substrate is then required to uncover the active region again (Figure 6.16,
(b)). The first hundreds of micron are mechanically polished. Then a chemical citric acid
solution - citric powder/H2O/H2O2 3:3:1 warmed up at 40°C - etches the last few microns
at a rate of 2 µm/min until the stop layer. This stop layer (Al50Ga50As) protects the active
region from the chemical etching.

The last step consists in removing the stop layer using a fluoridric acid (HF) etching. The
active region on top of the bottom contact is then ready to be processed (Figure 6.17, (b)).

Grating: E-beam lithography

According to the simulations, the desired grating must have a period between 3 and 5 µmwith
a filling factor between 70% and 90%. Thus the smallest pattern of the grating is below 500
nm and requires electron beam lithography that is limited by the diffraction of the electrons
De Broglie wavelength of few nanometers. Thus by using an electron flux, it is possible to
achieve the necessary resolution on a PMMA resist (Figure 6.17, c).

Once the grating is written and developed on PMMA A6 (thickness 300 nm), a titanium-
gold (5-70 nm) deposition is performed on the sample. Then the sample is submerged in
acetone for the lift-off (Figure 6.17, (d)).

Electrodes

Once the grating is deposited, electrodes are fabricated in order to extract the current from
the system. One precaution to be taken is to force the photocurrent to flow below the grating
in the region where the strong coupling takes place. To do so a layer of 300-nm SiN (Figure
6.17, (e)), deposited by PECVD at high frequency and etched with 30-minute plasma CHF3

(Figure 6.17, (f) and (g)), is deposited below the electrode (Figure 6.17, (h) and (i)). The
electrode is then deposited (Ti 10nm/Au 300 nm) on the SiN and at the edges of the grating
(Figure 6.17, (i)).

Finally to reduce the dark current and access the bottom contact, the remaining bare active
region is etched (Figure 6.17, j and k) using ICP recipe R17 (Chapter 4).

According to the results in weak coupling, the process has been performed on the two
active regions with the higher doping: HM4059 and HM4065. Effectively these two samples
present suitable properties for strong coupling. Their high doping is particularly use to obtain

132



Chapter 6. SC-QWIP

Figure 6.16: Schematics of the SC-QWIP process.
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Figure 6.17: a) 3D image of the final device representing: the active region (blue), the SiN
insulator (green), the gold top contact (yellow) and ohmic PdGe bottom contact (dark orange).
b) SEM image of two final devices with the same grating period Λ = 3.2 µm and different
grating area 150× 150 µm2 (left) and 50× 50 µm2 (right).

a large Rabi splitting. The major drawback of the high doping is that it strongly increases the
dark current (cf. Chapter 5). The TBlip is then hampered.

However, the strong coupling in principle could compensate the impact of the doping
by disentangling the detection frequency from the thermal energy activation. T eoretically
it is difficult to evaluate which effect would be dominant on the TBlip between the doping
and the strong-coupling. To define a hierarchy between these two competing phenomena
experimental characterizations are essential.
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6.4 SC-QWIP Measurements
The specificity of SC-QWIP characterization is to measure the photocurrent dispersion of
the devices to gain a maximum of information about the polaritonic branches. Thus the
measurement is angle-resolved and requires a specific set-up.

6.4.1 Experimental Set-Up

Figure 6.18: Schematics of the experimental set-up with the SC-QWIP measured as an exter-
nal detector. The SC-QWIP is cooled at 78 K and can rotate inside the cryostat.

During the experiment, the FTIR and the box containing the cryostat are purged with
nitrogen. The head of the cryostat is designed to position the sample close to the center of
rotation of the system. In this configuration, the sample is at 4 cm from the cryostat window,
and a long focal length (4 inches) is needed to align the sample with the focal point. Besides
the diameter of this ZnSe lens must be large (2 inches) in order to focus the maximum of light
coming from the broadband source (Globar) onto the detector.

As the photocurrent is weak (down to pA) and bias needs to be applied, we use a Low-
Noise Current Preamplifier (Stanford SR570) to transform a low current signal into a mea-
surable voltage.

The amplifier has a different calibers named sensitivity (in A/V). The sensitivity limits
the modulation frequency (20 Hz at 1 nA/V). Typically the optimum operating point of the
SC-QWIP was 5 nA/V and 20 Hz for zero bias.

The amplifier can also apply a bias on the SC-QWIP. Under bias, more current goes
through the structure, and the caliber has to be decreased to avoid saturation. With a bias
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of 500 mV, the sensitivity caliber was of the order of 500 nA/V. Note that the caliber would
change significantly from one sample to another.

Once the sample is cooled we search for the signal using a lock-in amplifier (LIA). First,
we modulate the signal by adding a chopper on the optical path. The output current of the
detector is sent after amplification to the LIA.

Because the LIA is synchronized with the chopper, only the signal with the appropriate
frequency is detected. Note that this technique enables to filter the noise from the black body
radiation of the environment.

Figure 6.19: Amplifier Stanford SR570 bandwidth for several sensitivity settings in Low
Noise Mode (extracted from the manual).

The LIA was principally used to align the sample, as for the best SC-QWIP sample we
had typically 1 mV on the lock-in that is sufficient to measure in rapid scan mode. The
measurement in step-scan was not showing better spectra than in rapid scan.

The influence of the polarizer and a Si filter to cut the red laser signal have been tested in
weak and strong coupling. The heterostructure absorbs TM polarized radiation as expected,
in weak and strong coupling. The Si filter was a fast indicator of the quality of a detector. In
fact, all the detectors were responding to the HeNe laser of the FTIR spectrometer that we
used to align the detector. Once the sample was aligned, the Si filter was introduced on the
optical path filtering the HeNe laser. If a signal was remaining on the LIA after this step it
meant that the detector had a response in the Mid-IR, as a Globar source was used.
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6.4.2 Measurements
Electrically the SC-QWIPs behave differently from the Mesa devices. First, the IVs are
asymmetric due to only one ohmic bottom contact. Compared to the mesa IVs, the dark
current at room temperature is lower for the SC-QWIP and at 78 K it is the mesa dark current
that is lower compared to the SC-QWIP.

Second, from 300 K and 78 K the dark current density is decreased by two orders of
magnitude against four for the mesa. The sample HM4065 (Figure 6.20, (b)) appears to have
a higher reduction of photocurrent compared to the sample HM4059 (Figure 6.20, (a)).

Figure 6.20: Dark current measurement at room temperature and 78K for 150 × 150µm2

SC-QWIP samples HM4059 (a) and HM4065 (b).

Since the information on the alignment of the polaritonic vs single-particle states is ob-
tained from the comparison between absorption vs photocurrent spectra, it is crucial to verify
that the polaritonic absorption is not affected by the presence of the electric field when the
detector is operated under bias.

Figure 6.21, (a) shows reflectivity spectra at 78K for different biases performed on a
3.5 µm grating period, 80% filling factor (FF) SC-QWIP device. The overall size of the
grating (150× 150 µm2) is much smaller than the one of the passive devices, so reflectivity
measurements have been performed with a FTIR microscope at a fixed incidence angle of
20◦. To cool down the sample, we use a platform equipped with a cryogenic system (T95
Linkam system controller) and compatible with the microscope FTIR measurement. The
absorption peaks of the polaritons (upper polariton 1140 cm−1, lower polariton 1015 cm−1

and 2nd photonic branch at 880 cm−1) are not sensitive to the bias. The results confirm that
the polaritonic absorption is unaffected by the applied bias.

Photo-current measurements have been performed on the two samples HM4059 and
HM4065. The samples yield is relatively low probably, due to inhomogeneous annealing
of the electrical bottom contact. Nevertheless, the sample HM4065 rapidly appeared as the
sample with the better detection properties and tolerating high voltages (up to 2 V). Three
grating periods (3.2 µm, 3.7 µm and 4 µm) have been consistently measured with excel-
lent reproducibility.

As for the Mesas, the SC-QWIPs can operate as photovoltaic devices, but the optimal
signal is obtained for bias between 0.5 V and 1 V (respectively to the Mesa results). The
common sensitivity on the Amplifier is 1 µA/V . These parameters result from a compromise
between the bias and the sensitivity. In fact, the bias increases the current going through the
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Figure 6.21: HM4065 sample with a 150 µm2 area: (a) reflectivity at 20◦ and 78K of a 150×
150 µm2, 3.5 µm grating period and 80% filling factor sample the absorption is independent
of the applied bias; (b) Photocurrent measurement of a sample with 3.7 µm grating period,
area 150× 150 µm2 and with a ff of 80% at 78 K and 30◦

device. The higher the bias the higher the current until reaching the saturation level of the
amplifier. The sensitivity needs then to be reduced to increase the saturation current. On
these samples, at high bias (>1 V ) the sensitivity is too low to amplify correctly the signal
and the signal is reduced.

In strong coupling the applied bias increases the signal to noise ratio below 1300 cm−1

(Figure 6.21, (b)). As seen on the mesa, the sample HM4065 exhibits photodetection at high
frequencies (from 1500 cm−1 to 2300 cm−1) modulated by the absorption of the grating.
Particularly the 4th photonic branch can be almost observed on the dispersion of the 4 µm
period device (Figure 6.22).

After signal optimization, the dispersion in photocurrent has been measured for three
different grating periods (Figure 6.22). Note that for the dispersion measurement, no cryo-
shield was used to access a wider set of incidence angles. As expected, the 3rd photonic
branch is split into two polaritonic branches on both sides of the intersubband transition at
1090 cm−1. RCWA simulations (white dots) fits with the upper polaritonic branch. However,
the lower polariton does not correspond to the simulations. Conversely to the upper polariton
that is located in the continuum (Figure 6.24), the lower polariton is buried into the QW.
When the LP is heavily redshifted with respect to the bare ISB transition, the distance with
the continuum is too high and no photocurrent generation is possible. On the contrary, when
the LP is more matter part (Hopfield coefficient close to 0), it gets closer to the continuum
and a photocurrent can be generated.

This configuration is not taken into account in the simulation and reveals a large dif-
ference between the observation of the lower polariton in reflectivity and in photocurrent. In
particular, the SC-QWIP is limited in detection at a wavelength much lower than the bare ISB
transition. Nevertheless, this first generation of SC-QWIP is an asset to explore the matter
part of intersubband polaritons.

The dispersions on HM4059 were also measured showing the same behavior than de-
scribed previously but with a lower signal to noise ratio.
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Figure 6.22: Angle-resolved spectral photocurrent for three SC-QWIPs (150 µm side, 80%
filling factor) with grating periods of 3.2 µm, 3.7 µm and 4µm (from top to bottom). The
measurements are performed at 78 K, with a resolution of 12 cm−1, under a bias of 500 mV
for an angle span from 0°to 70°. The white dots correspond to the 2D RCWA simulation
for each device, with the following identical parameters for all three samples (except for the
grating): top metal thickness 200 nm; filling factor 80%; active region thickness 940 nm;
bottom metal 400 nm; ISB transition 32.8 THz; doping 5.5× 1011cm−2.
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6.4.3 Interpretation of the Experimental Results
The color plots of the photocurrent response reveal that the SC-QWIP detectors do operate
in the strong light-matter coupling regime: in contrast to the single peaked response found
in the weak coupling shown in Figure 6.8, two dispersive branches clearly appear, which
we attribute to polaritons. While the UP branch in detection closely follows the polaritonic
dispersion (white dots) extracted from the reflectivity dips or, equivalently, from absorption
peaks, the LP branch displays an interesting feature: it does not extend to wavelengths much
longer than the peak detection wavelength of the device operating in weak coupling.

Figure 6.23: Schematics of the QWIP operating in the strong coupling, and possible polari-
tonic level alignment.

This finding is in agreement with the level alignment sketched in Figure 6.23. Taking the
initial state with all electrons in the ground state of the well as a reference for energies, the
UP positions itself at higher energy with respect to the QW edge. As a result, it overlaps
with the electronic states in the quasi-continuum, so we can expect that the electronic part of
the polariton promoted to the excited state has enough energy to yield a sizable photocurrent
signal. On the other hand, the relatively large value of the Rabi splitting 2ΩRabi pushes the
energy of the LP below the bare g −→ e transition energy and, thus, well below the QW
edge. As a result, the electronic part of the polariton does not have enough energy to escape
above the QW edge and the potential barrier for moderate values of the applied electric field
in the 1-5 kV/cm range prevents significant tunneling. The photocurrent is therefore strongly
suppressed at small incidence angles.

While this qualitative picture is already quite clear, extracting quantitative information
from the data requires a theoretical model of the photocurrent process. Here we will focus
on a simple phenomenological model that is able to accurately reproduce the experimental
data in terms of a single transfer function summarizing the frequency dependence of the
probability rate of escape from the QW for an electron in the excited (e) state (Figure 6.24).
The model is based on the temporal coupled-mode theory (see Section 1.4.3) of laterally
patterned cavities in strong light-matter coupling regime developed in [61]. The escape of
electrons from the QW is included in the theory as an additional, frequency-dependent decay
of the ISB transition of rate γtunn(ω).

In its simplified formulation for spatially homogeneous cavities [61], the steady-state
of the cavity photon ak and ISB bk fields under a monochromatic and spatially plane-wave
incident electromagnetic field of amplitude Einc and in-plane wavevector k at frequency ω
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Figure 6.24: Schematics of the QW with the two polaritonic states for different angles of
injection. The transition of the bare cavity is ωeg whereas the ISB transition is ωISB (depo-
larization shift)

reads:

ωak = ωcavk ak − i(γrad + γnr)ak/2 + ΩRabibk + Einc (6.4)

ωbk = ωISBbk + ΩRabiak − i(γhom + γtunn(ω))bk/2, (6.5)

where ωcavk is the photon dispersion along the cavity plane, the effective frequency ωISB

of the bright ISB transition coupled to the cavity mode includes the depolarization shift,
ΩRabi is the Rabi frequency of the light-matter coupling, γrad, γnr and γISB are respectively
the radiative and non-radiative loss rates of the cavity photon, and the homogeneous decay
rate of the ISB transition. |ak|2 and |ak|2 can be seen as the energy stored respectively in the
caviy and in the material excitation. In this formalism, the reflected light field reads:

Erefl = Einc − iγradak, (6.6)

and the photo-current intensity is, modulo a constant factor,

Ipc = γtunn(ω)|bk|2. (6.7)

On physical grounds, we can anticipate that a reasonable choice for γtunn(ω) is to have
a sharp cut-off on the low-energy side slightly below the effective ISB transition frequency
ωISB and a slow decay at high frequencies. As it is sketched in Figures 6.7 and 6.23, escape
from the QW is rapidly suppressed when the electron energy is pushed well below the QW
edge (following a Fowler-Nordheim behavior [122]), while the high-frequency decay is due
to the reduced overlap between the electron wavefunction in the QW and the one of fast
moving outgoing states.

An example of such a shape is shown in Figure 6.25 and the corresponding color plots of
the frequency- and angle- dependent photocurrent spectra are shown in Figure 6.26 for the
three values of lattice spacing used in the experiments. Once again, the white dots indicate
the position of the reflectivity minima calculated using the same theory. As one can see
comparing these plots with the experimental ones shown in Figure 6.22, the agreement on
the position of the reflection minima and of the photocurrent maxima is excellent. Even more
importantly, the disappearance of the lower photonic branch at low energies is reproduced by
the theory.
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Figure 6.25: Transfer function representing tunnel-coupling from an electronic reservoir into
a polaritonic system. ωeg is the energy difference between |g> and |e> single particle states
and ωISB =

√
ω2
eg + ω2

p is the ISB transition of the doped active region (ωp is the plasma
frequency of the doped QW).

It is interesting to note that the agreement between the theory and the experiment re-
quires that the low-energy cut-off of the tunneling rate γtunn(ω) be located at δcut ∼ 50cm−1

below the ISB transition frequency ωISB, as clarified in Figure 6.25. Physically, this can
be understood in terms of the depolarization shift due to Coulomb interactions in the QW,
that blue-shifts the effective ISB frequency ωISB above the single particle energy difference
(~ωeg = Ee−Eg). The amount of this shift, of course, depends on the QW parameters and on
the electron surface density and in the current sample, using the real doping level, we obtain
≈ 41cm−1, a value that is comparable in magnitude to δcut. Since the excited state is very
close to the QW edge, this finding is consistent with a simple physical idea of tunneling being
quickly suppressed as the energy drops below the QW edge.

The simple transfer function γtunn(ω) that we have employed permits to reproduce the
polaritonic peak positions and validates the level alignment proposed in Figure 6.23.
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Figure 6.26: Theoretical color plots of the dependence of the photocurrent intensity on the
frequency and angle of the incident light. The white dots correspond to the peaks of absorp-
tion obtained with RCWA simulations. The three panels correspond to the three devices used
for the experimental plots in Fig.3. Parameters used in the calculations: ΩRabi = 57cm−1,
γnr = 32cm−1, γrad = 20cm−1, γhom = 65cm−1, ωISB = 1053cm−1. Other cavity parame-
ters: effective refractive index n0 = 3.1, Bragg frequency ωBragg = 24cm−1, grating periods
3.2 µm, 3.7 µm and 4 µm (from top to bottom). 143
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6.5 Conclusions & Perspectives
This last chapter had two main goals: first exploring the possibility of disentangling the de-
tection wavelength from the activation energy in a QWIP, second to explore the fundamental
properties of the bright states of the ISB polaritons with photodetection experiment. To reach
these goals, I designed, fabricated, and measured QWIPs in weak and strong coupling. The
M-I-M process appeared to have a significant impact on the electrical properties (Shottky bar-
riers). Nevertheless, it was possible to extract the photocurrent and observe the Rabi splitting
and therefore the strong-coupling regime on two different detectors (HM4059 and HM4065).
The best results have been measured for the structure with the higher barriers (HM4065).
This heterostructure appeared to have the lower dark current, offering the best signal to noise
ratio.

The dispersion in photocurrent has been measured for three different samples. Although
the dispersion of the upper polaritonic branch was predicted by the theory (RCWA simula-
tions), the lower polaritonic branch had an almost flat dispersion that was in contradiction
with the theory and different from the dispersion in reflectivity.

To understand the specificity of the dispersion in photocurrent, we have taken into account
the generation of photocurrent from the two polaritonic states. The upper state is in the
continuum and can efficiently produce a current. Conversely, the lower polaritonic state is
inside the cavity, so it cannot be coupled to the continuum and generate a photocurrent.

Figure 6.27: Schematics of the next generations of detectors: (a) bound-to-bound QW with
only the UP in the continuum, (b) QC structure extracting the photocurrent from the lower
polariton.

A transfer function representing the tunneling rate has been introduced to take into ac-
count this phenomenon. At low frequencies, this transfer function has a cut-off and a slow
decay at high energy. This shape represents the electron tunneling through a barrier from
the lower polariton state into the continuum. To be coherent with the experiment, the low
energy cut-off is located at the energy of the bare transition. This theoretical observation is
in agreement with the previous study of SC-QWIP [6] in which the lower polariton was not
generating photocurrent below the energy of the bare transition.

A theoretical perspective would be to refine the transfer function to directly link it to a
microscopic model of the electronic transport in a QWIP detector and also reproduce the
relative intensities of the polaritonic photocurrent. This is beyond the scope of this Ph.D., but
it is an immediate follow-up.

These results proved that we were not incorrect configuration to observe the impact of the
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strong coupling on the thermal activation processes. In fact, to improve the performance of a
SC-QWIP the design of the quantum well has to be reconsidered to correspond to the prop-
erties of the polaritons. To do so, we need to move away from the design rules of standard
QWIPs. Thanks to a more precise comprehension of the generation of photocurrent from
polaritonic states we envision three new detector designs:

• The first one would be based on a bound-to-bound QWIP with the excited state half a
Rabi energy below the top of the barrier (∼ 7meV ). In this case that only the upper
polariton can interact with the continuum (Figure 6.27, (a)) and the dark current would
be reduced.

• The second detector would be based on a quantum cascade detector (QC Ref.[7]) de-
signed to allow extraction of the photocurrent from the lower polariton level (Figure
6.27, (b)).
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After fifteen years of intersubband polariton development, some of the peculiar properties of
these quasi-particles are still unexplored. A deeper understanding of the polaritons is needed
to access their fundamental properties and develop their applicative potential as efficient emit-
ters or detectors in the mid-infrared and THz.

In this manuscript, we used Metal-Insulator-Metal cavities with a top metal periodic grat-
ing as a platform to explore the physics of ISB polaritons. The advantages of M-I-M are
twofold: first operating under the cut-off of the cavity enables us to isolate the TM00 mode
(Chapter 1); second the dispersion of the cavity -over a broad set of in-plane wave vectors-
offers a practical experimental configuration to observe the polaritons in both reflection and
photo-detection.

The ISB transitions were implemented using GaAs/AlGaAs quantum wells with the ap-
propriate widths (Chapter 1). Doping and barriers heights are adapted to each range of
frequencies, from the Mid-IR to the THz. The M-I-M cavity has been tailored to operate in
strong coupling with the ISB transition for each application.

In the THz domain (Part 1) common sources (QCLs) and detectors (Bolometer, QWIPs)
are expensive and operate at low temperatures. In the long term, the implementation of
ISB polaritons onto THz devices could be an elegant solution to improve their performances
because polaritons are potentially less sensitive to temperature. Until now, experiments on
THz ISB polaritons have been limited, and some of the elemental polariton’s properties as
lifetime or the saturation energy still need to be measured.

During this Ph.D., we developed structures that are potentially useful for the exploration
of the scattering mechanisms of THz ISB polaritons. In fact, in this range of frequencies, the
phonon-polariton scattering is not permitted, and we expect to observe polariton-polariton
scattering. The dispersive cavity is a major asset to study these mechanisms because it pro-
vides more degrees of freedom to engineer the system.

Measuring the dispersion is crucial to access the different states of the system and deter-
mine the best configuration to explore scattering mechanisms (Chapter 2). For this purpose,
we fabricated a new experimental set-up to measure the polariton dispersion at liquid Helium
temperature (4K). This set-up required the fabrication in the C2N workshop of a specific
system compatible with a commercial FTIR spectrometer. Four samples with different grat-
ing duty-cycles and ISB transitions have then been measured with this system; two samples
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have been selected for the Time-Domain Spectroscopy (TDS) measurement at LPA (Chapter
3). After the observation of the polaritons in reflectivity, a pump-probe experiment was per-
formed on these devices. The first configuration with both pump and probe impinging on the
sample at the same angle (45◦) has been realized showing a slight reduction of the polari-
ton’s absorption compared with the measurement without the pump. These first results are
not conclusive, and a different configuration of the TDS system will have to be implemented
in order to confirm these first observations. In particular pumping at 25°and collecting the
signal at 0°appears to be the most promising configuration.

In parallel to the exploration of THz polaritons, I contributed to the development of tech-
niques to shorten the pulses of THz quantum cascade lasers in a metal-insulator-metal waveg-
uide. Assuming that all the laser modes are in-phase, constructive interferences between these
modes generate optical pulses. The width of the pulses is inversely proportional to the band-
width of the optical gain. In Part 2 we explored a monolithic technique to compensate the
dispersion of a QCL broadband active regions.

In Chapter 4, we reassess the concept of dispersion compensation of the monolithic
Gires-Tournois Interferometers (GTI) adapted to thick broadband THz active regions [26].
Tailoring the GTI cavities appeared critical because it required a deep etching with a high
aspect ration. To overcome this difficulty, I have developed an anisotropic ICP-etching recipe
together with a thick photo-resist [28]. Once the etching met the specifications, I fabricated
the GTI-cavity in the C2N-Orsay cleanroom. The measurement -performed at LPA- of the
QCLs in hybrid-mode locking (GTI and Mode-Locking) showed a slight reduction of the
pulse width (3.8 ps) compared to the first generation of GTI-THz QCL [26].

The third part of this manuscript (Part 3) presents the implementation of M-I-M dis-
persive cavities on a bound-to-quasi-bound quantum well infrared photo-detector designed
to detect in strong coupling. In this study, we targeted two main objectives: from the device
point of view, the strong coupling can disentangle the frequency of detection from the thermal
energy activation and reduce the dark current at a given frequency. From the polaritonic point
of view, these devices represent an original tool to probe polariton’s properties electrically.

Chapter 5 introduced the theoretical concepts related to detectors (responsivity, detec-
tivity, signal to noise ratio, ...), black body radiation (radiance) and electrical transport in
QWIPs (dark current, photo-current). We then applied these concepts to describe four detec-
tors (two detectors in weak coupling and two detectors in strong coupling) from the literature
that inspired this work.

Chapter 6 focused on quantum well infrared detectors operating at a wavelength of
10 µm in strong coupling with a M-I-M dispersive cavity. The active regions have been
characterized in transmission (multi-pass) and in photo-detection (mesa). The QW param-
eters (barriers height and doping of the quantum wells) appeared as critical criteria that fix
the dark current level following a 3D drift model. At 78 K the devices were limited by the
dark current and a responsivity of 0.4 A/W was measured at 78 K and 500 mV on the best
measured sample with the lower doping. These results in weak coupling limit the possibility
of device performance improvement, but using them as a tool to study the polaritonic states
via photocurrent measurement was still possible.

We have chosen to process only the two MQWs active regions with the higher doping
to maximize the Rabi-splitting. The fabrication of SC-QWIPs was completed in the C2N-
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Orsay cleanroom. Two sets of detectors with different grating periods and sizes have been
implemented and characterized. Electrically the sample with the higher barriers exhibits
the lower dark current. The dispersion in photocurrent for this sample has been measured
for different periods. The dispersion showed a peculiar behavior of the lower polariton -
compared to the measurement in reflectivity - that has never been highlighted in the literature.

We proposed a theoretical model to explain this peculiar behavior. In this model the lower
polariton is energetically pushed inside the QW and can not generate a photo-current, except
when it gets closer to the excited state of the transition. A transfer function with a cut-off
below the excited state has been integrated to the simulations. The final simulation taking into
account the tunneling effect reproduced the experimental dispersions of the three different
devices explored. Further explorations on detectors (QWIPs or QCDs) in strong coupling
will need to rethink the detectors design entirely to align the position of the extractors with
the target polariton states (LP for QCD and UP for QWIP).
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A
External Cavity for THz Double-Metal

Waveguides

A perspective to improve the peak power of the THz-QCL pulse is to reduce the free spectral
range by increasing the length of the cavity. A monolithic approach is appealing but the
elevated current threshold of such a structure is a major issue. That is why we focused on
THz anti-reflection coatings for M-I-M cavities that have a vast set of applications, and in
particular could enable an external cavity architecture.

In a standard M-I-M THz QCL of length L, the reflectivity of the facet isR ≈ 90% (αm =
−ln(R)/2L) [123]. A reduction of one facet reflectivity (Rc < R) induces a modification
of the facet losses (αc = −ln(Rc)/2L > −ln(R)/2L) and increases the threshold current
according to the equation [124]

Icth
Ith

=
αwg + αm + αc
αwg + 2αm

(A.1)

where Ith is the threshold of the standard laser and Icth is the threshold of the same laser
with a coated facet. If the coated facet losses are comparable to the waveguide losses (αwg ∼
15 cm−1) the increase of the threshold current would be noticeable.

An illustrative example is to consider a 1 mm long laser with one coated facet (Rc =
4%) and one cleaved facet. The associated losses are αc = 16 cm−1 for the coated facet
and αm = 0.5 cm−1 for the cleaved facet. The threshold current would then be doubled
compared to a standard laser with the same length.

In this appendix we worked with short cavities of 1 mm to increase the influence of the
facets on the total losses. To date no THz anti-reflection coating is accessible, reliable and
suitable to THz-QCLs. This development would be essential for the reduction of the free-
spectral range as well as the tunability of THz lasers.

A.1 Anti-Reflection Coatings

Finding the good material for anti-reflection coating in the THz is still a challenge. In this
section we will first discuss the deposition of polymer films and propose an alternative using
thin metal films.
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A.1.1 Coatings Based on Transparent and Insulator Materials
The reflectivity at an interface of a material of index n0 coated with a film of thickness tfilm
and index nfilm is described by the Fresnel’s law [125]:

R = 1− 4
[n2

film

n0

+
n0

n2
film

+ 2 +
( 1

n0

+n0−
n2
film

n0

− n0

n2
film

)
cos2

(2πnfilmtfilm
λ

)]−1

(A.2)

The reflectivity is minimized if{
nfilm =

√
n0

tfilm = (2m+1)λ
4nfilm

(m = 0, 1, 2, ...)
(A.3)

The thickness of the anti-reflection film can be any odd number of quarter wavelengths,
and typically is λ/4nfilm thick to minimize effects of electromagnetic losses. This type of
anti-reflection coating has been successfully implemented in the Mid-IR [126].

In the THz range such approaches have been studied for Silicon (nSi ≈ 3.416) and Ger-
manium (nGe ≈ 4). The bulk GaAs has an index nGaAs ≈ 3.3 close to Silicon, however the
index of the biased QC heterostructure is more complex. Polymers with indexes between 1.5
and 1.7, as Epoxies, Mylar, Kapton and Parylene, are good candidates for THz anti-reflection
coatings on Si or Ge. The major issue in the THz is the thickness of the anti-reflection coat-
ing (tfilm > 10 µm), that imposes long and precise depositions. In fact, depositing such a
film with high homogeneity, reproducibility, on curved optics and resistant to thermal cycles
is challenging.

Figure A.1: Developments of two external cavities on single-plasmon THz-QCLs using dif-
ferent anti-reflection coatings: (a) the facet of a 4.76 THz QCL was coated with 8.3 µm-thick
SiO2 film [125], (b) HRSi lens coated with 13 µm-thick low-density polyethylene or 10 µm-
thick Parylene positioned on the facet of the QCL with gain central frequencies at 4.35 THz
and 4.6 THz [127].
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In the range around 2 THz Parylene has been successfully implemented on Si [128]. The
thermoplastic properties of Parylene (thermal stability, good adhesion, chemical inertness
and low water absorption) make it a good candidate for our study.

Material
THz refractive
index

Absorption coef-
ficient (cm−1)

Remarks

Parylene C 1.62 0.006*f-0.7
Applied on Silicon
[129] and on single-
plasmon QCLs [130]

Parylene D 1.62 0.0004*f-0.8
Applied only on Silicon
[129]

Mylar 1.57-1.58 difficult to apply
Kapton 1.7 difficult to apply

SiO2 1.9-2.1
Applied on GaAs QCL
but not Broadband
[125]

Table A.1: Different possible materials for AR coating in the THz for Si or GaAs

The major problems to implement this technique on THz-QCLs are to adapt the thickness
of the material to the optical properties of each active region and deposit it on the small
facet surface of the active region (20× 60µm2). A pioneering work on THz AR coating was
performed in 2007 in the group of D.A.Ritchie [125]. They succeeded to produce an external
cavity from a single plasmon QCL [131] emitting around 4.76 THz. The anti-reflection
coating was composed by a 8.3 µm SiO2 film and deposited directly on the facet. The laser
tunability was from 4.79 THz to 4.87 THz (Figure A.1, (a)).

However, this approach had two major limitations for our application: first the operating
AR coating window of 90GHz is too narrow to be adapted on broadband THz QCLs. Second
the far-field is not well behaved.

To broaden the spectral window of the anti-reflection coating other materials have been
tested. In 2010 Ref. [130] reported a successful application of a 17 µm-thick film of parylene
C on the facet of a single plasmon THz-QC laser with a spectral gain from 2.4 to 3 THz.
The reflectivity of the facet dropped from 32% to 5.3% and the threshold current density of
the THz-QC laser increased from 90 A/cm2 to 124 A/cm2. Nevertheless, the anti-reflection
coating was not sufficiently low to completely suppress laser oscillations.

The same year in the group of Q.Hu, a high resistivity silicon lens (technique presented in
Figure A.2, (b)) - coated with 13-µm-thick low density polyethylene (LDPE) - was abutted
with a spring retaining clip to the facet of a single plamson laser [127]. The residual reflectiv-
ity was decreased down to 0.6(±0.1)%. Laser oscillations were completely suppressed and
an external cavity with a single mode tuning over 165 GHz has been demonstrated (Figure
A.1, (b)). The major difficulty of this technique is the homogeneous coating in the spherical
Si-lens and the alignment of the HRSi lens with the laser facet.

The application of coated Si lenses on M-I-M THz-QC lasers Ref. [132] showed signifi-
cant improvement of the out-put power, the slope efficiency (Figure A.2, (b)) and of the beam
pattern (Figure A.2, (c)).

Furthermore adapting oxide or polymer AR coatings is even more challenging onto a
metal-metal waveguide because the laser facet is smaller than single plasmon ones and the
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Figure A.2: (a) M-I-M THz QC laser with abutted HRSi spacer and lens. (b) Light versus
current: lens-coupled and Winston cone-coupled devices. Insets: top, Jth versus temperature;
bottom, typical spectra of a device with a lens. (c) M-I-M THz laser with Si lens far-fields at
30 cm (blue circles) and cross section of the image at 6 cm (black line) [132].

facet reflectivity is higher. Consequently, we decided to investigate metallic AR coatings, that
have a broader transmission window and are potentially easily applicable on a laser facet.

A.1.2 Coatings Based on Thin Metallic Layers

Thin film of metals deposited by the team of K.Unterrainer [133, 134, 135] on a Si wafer
exploit impedance matching to reduce the reflection at the interface with air.

Theoretically the system is equivalent to a transmission line circuit (Figure A.3). n1 and
n2 represent respectively the indices of the Si and the air. The impedances of these two
materials are given by the ratio of the tangential components of the electric and magnetic
fields

Z =
Et
Ht

=
Z0

n
(A.4)

where Z0 =
√
µ0/ε0 = 377 Ω is the impedance of the free space and n =

√
ε. In the thin

metallic film (d is thinner than the skin depth) the electric transverse electric field -equal on
both sides on the interface- generates a current j = σE assumed to be uniform in the layer.
The magnetic field is discontinuous on each side of the interface due to the surface current
(H1 and H2). Therefore, the impedance of the metallic film is
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Figure A.3: Two dielectric media with refractive indices n1 and n2 separated by a thin film
with conductivity σ and thickness d. E0i denotes the incident electric field, E0r denotes the
reflected and E0t denotes the transmitted field. The wave propagation in the optical system is
represented by signal propagation in an equivalent transmission line circuit with Z1 and Z2

the impedances of the slab materials and ZF the impedance of the film [136].

ZF =
E

H1−H2

≈ E

dj
=

1

σd
(A.5)

In the equivalent circuit, the conducting layer acts as an additional impedance shunting
the line. In this case the surface current corresponds to an impedance ZF in parallel with Z2.
Both impedances contribute to the load impedance 1

ZL
= 1

Z2
+ 1

ZF
. The impedance matching

condition is defined by the equation ZL = Z1 that leads to the following equation

nSi − nair = Z0σ(ω)d (A.6)

In this equation we can see that the optimal thickness of the film depends on the metal
used. In addition the metal conductivity below the skin depth can not be modeled with the
Drude model. Thus for each metal the conductivity has to be measured by TDS.

In our case we used an empirical approach choosing one metal and trying different thick-
nesses. Chromium has a good adhesion on Si as well as on GaAs and it is an affordable
material. On undoped silicon we observed that the amplitude of the echo crossing the slab
(25 ps) decreases with the thickness of the metal (Figure A.4) until disappearing at 40 nm
(value displayed on the quartz balance, 16 nm at the AFM). Above this thickness the echo
comes back, but with the opposite phase, which proves that the echo disappearing is not due
to the increase of the losses, but to the reduction of the reflectivity.

Because the metallic coating could not be directly applied on the laser risking a short-
cut of the QCL, we first glued the metalized silicon slab on GaAs. From the Fresnel’s law
we expect the reflectivity of the stacked structure R = (nGaAs−nSi

nGaAs+nSi
)2 = 0.0016 to be small

compares to the maximum of reflectivity of an anti-reflection coating for a metal-metal THz
laser (4%). Experimentally the result was similar to the anti-reflection coating on Si. This
encouraging broadband antireflection coating has then been implemented on the facet of a
single plasmon THz-QCL.
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Figure A.4: TDS transmission on undoped Si wafer covered with different thicknesses of
Chromium. On the left the time-domain measurement that shows the echo (25.3 ps) as a
function of the normalized impulsion (around 19 ps). The echo vanishes for a thickness of
chromium of 40 nm and reappears for a higher thickness of Cr, but with the opposite phase.
On the right, the signal is normalized by the amplitude of the THz pulse in free space. At 40
nm, the transmitted pulse is 40% of the free space pulse. The negative percentage corresponds
to the phase inversion. The metallic Si slab has then been glued to a wafer of GaAs and the
transmission (green) and echo (blue) properties were unchanged.

Figure A.5: Positioning of the anti-reflection coating system on the facet of a surface plasmon
THz-QC laser (width 100 µm, and length 1 mm).

Consequently, the metalized Si slab has been manually sticked to the facet of a single
plasmon laser (lower facet reflectivity than the metal-metal cavity, Figure A.5). The distance
between the facet and the slab was inferior to 5 µm, i.e. highly subwavelength.

The L-I-V characteristics of the laser with and without metalized Si slab are presented in
Figure A.6. The electrical properties are similar, the threshold is higher and the output power
lower for the laser with metalized Si slab than the standard single plasmon. The decrease by
a factor two is coherent with the measurement of the absorption of the metalized Si slab with
40-nm-thick metalization (Figure A.4 shows an absorption of 55%). Consequently, the major
effect of the metalized Si slab is to increase the absorption more than reducing the reflectivity.
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This result shows that the results on bulk GaAs are not directly transposable to a THz-QCL.
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Figure A.6: LIV of the single plasmon THz-QCL (G0058) with and without anti-reflection
coating.

The origin of the problem is unclear. The air gap between the laser facet and the metalized
silicon slab might be critical for the laser performances. This air gap might increase the
reflectivity up to 4% which is enough to reach laser amplification.
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B
Polariton Active Regions: Growth Sheets

B.1 THz Polariton

Material Thickness (nm) Doping (cm−2) Remarks
GaAs 250

Al50Ga50As 500 Stop layer
GaAs 800

Start of 53 repeat periods
Al25Ga75As 15
Delta doping ×
Al25Ga75As 5

GaAs 36
End of the repeat periods

Delta doping 1× 1011

Al25Ga75As 15
GaAs 50 4× 1018 Cap Layer

Table B.1: Growth sheet of the THz-polariton active regions with × = 1 × 1011 for L1362
and ×= 2× 1011.
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B.2. Mid-IR Polaritons

B.2 Mid-IR Polaritons

Material Thickness (nm) Doping (cm−3) Remarks
GaAs 250

Al60Ga40As 400 Stop layer
GaAs 50 4× 1018

Start of 31 repeat
Al20Ga80As 20

GaAs 0.6
GaAs 5.3 ×
GaAs 0.6

End of the repeat periods
Al20Ga80As 20

GaAs 100 4× 1018 Cap Layer

Table B.2: Growth sheet of the bound-to-quasi-continuum structures HM4058 (× = 0.8 ×
1018) and HM4059 (× = 1.6× 1018).

Material Thickness (nm) Doping (cm−3) Remarks
GaAs 250

Al60Ga40As 400 Stop layer
GaAs 50 4× 1018

Start of 31 repeat
Al25Ga75As 20

GaAs 0.6
GaAs 5.3 1.6× 1018

GaAs 0.6
End of the repeat periods

Al25Ga75As 20
GaAs 100 4× 1018 Cap Layer

Table B.3: Growth sheet of the bound-to-quasi-continuum structure HM4065.
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Titre : Détecteurs moyen infrarouge et dispositifs THz en régime de couplage fort entre lumière et matière.

Mots clés : THz-QCL, photo-détecteurs, couplage fort, polaritons inter-sous-bande

Résumé :
Les polaritons inter-sous-bandes, observés pour la
première fois il y a une quinzaine d’années, sont des
quasi-particules dont de nombreuses propriétés res-
tent encore à découvrir. La recherche dans ce do-
maine se focalise actuellement sur la réalisation de
condensats de Bose-Einstein. Une telle découverte
pourrait révolutionner l’optoélectronique du moyen
infra-rouge jusqu’au THz ouvrant la voie à l’instaura-
tion de nouveaux concepts de sources lumineuses,
de détecteurs ou de systèmes logiques en couplage
fort. Dans cette quête, le choix de la cavité résonnante
est critique.
Dans ce manuscrit nous proposons d’utiliser des ca-
vités métal-isolant-métal (M-I-M) avec un réseau dis-
persif sur le métal supérieur. Ce type de cavité,
conservant un confinement élevé entre les deux plans
métalliques, offre de nombreuses possibilités d’ajus-
tement de la résonnance de cavité : via la géométrie
de la cavité (épaisseur de la cavité, période et recou-
vrement du réseau) ainsi que par le couplage de la
lumière avec la cavité (vecteur d’onde incident).

Les cavités M-I-M dispersives ouvrent donc un nou-
veau champ d’exploration des polaritons inter-sous-
bande. Dans un premier temps nous avons introduit
ces cavités dans le domaine du THz afin d’étudier
les phénomènes de relaxation polariton-polariton. Un
système expérimental dédié à cette exploration a été
conçu pour mesurer la réflectivité des polaritons THz
avec une fine résolution en angle.
Dans une second temps, des capteurs moyen infra-
rouge en couplage fort avec une cavité M-I-M disper-
sive ont été conçus, fabriqués et mesurés dans le but
d’explorer la génération de photo-courant à partir de
polaritons et d’utiliser le couplage fort pour dissocier
l’énergie de détection de l’énergie d’activation. Cette
seconde étude s’inscrit dans l’objectif de pompage
électrique des polaritons ISB.
Parallèlement à l’étude des polaritons, nous avons
également participé au développement de techniques
(interféromètre Gires-Tournois et revêtement anti-
réflection) pour compresser les impulsions optiques
de lasers à cascade quantique THz.

Title : Mid-Infrared Detectors and THz Devices Operating in the Strong Light-Matter Coupling Regime.

Keywords : THz-QCL, QWIP, Strong-Coupling, Intersubband

Abstract :
After fifteen years of intersubband polaritons develop-
ment some of the peculiar properties of these quasi-
particles are still unexplored. A deeper comprehen-
sion of the polaritons is needed to access their funda-
mental properties and assess their applicative poten-
tial as efficient emitters or detectors in the mid-infrared
and THz.
In this manuscript we used Metal-Insulator-Metal (M-
I-M) cavities with a top metal periodic grating as a
platform to deepen the understanding of ISB polari-
tons. The advantages of M-I-M are twofold : first they
confine the TM00 mode, second the dispersion of the
cavity -over a large set of in-plane wave-vectors- of-
fers various experimental configurations to observe
the polaritons in both reflection and photo-current. We
reexamined the properties of ISB polaritons in the
mid-infrared and in the THz using these resonators.
In the first part, we explore the implementation of dis-
persive M-I-M cavities with THz intersubband transi-
tions. In the THz domain, the scattering mechanisms
of the THz ISB polaritons need to be understood. The

dispersive cavity is a major asset to study these me-
chanisms because it provides more degrees of free-
dom to the system. For this purpose, we fabricated a
new experimental set-up to measure the polariton dis-
persion at liquid Helium temperature. After the charac-
terization of the polaritons in reflectivity, a pump-probe
experiment was performed on the polaritonic devices.
The second part of this manuscript presents the
implementation of M-I-M dispersive cavities with a
bound-to-quasi-bound quantum well infrared photo-
detector designed to detect in strong coupling.
Beyond electrical probing of the polaritons, the strong
coupling can disentangle the frequency of detection
from the thermal activation energy and reduce the
dark current at a given frequency.
In parallel to the exploration of THz polaritons, we de-
veloped two techniques (Gires-Tournois Interferome-
ter and Anti-reflection coating) in order to shorten the
pulses of THz quantum cascade lasers with metal-
metal waveguides.

Université Paris-Saclay
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